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Chapter 0

Overview and structure

The topic of this thesis is to study infinite graphs which have some sort of
symmetry. Most of the graphs studied in this thesis are Cayley graphs of
groups, quasi-transitive or transitive graphs. The main goal of this thesis is
to use the symmetry of those graphs to extend known results of finite graphs
to infinite graphs. We hereby focus mostly on two-ended graphs.

This thesis consists of five major parts: The first part consists of Chap-
ter 1 and Chapter 2. Chapter 1 gives insight into the studied problems, their
history and our results. Chapter 2 presents most of the general definitions
and notations we use. It is split into three sections. Section 2.1 recalls the
definitions and notations related to the topology used in this thesis. Sec-
tion 2.2 is used to remind the reader of the most important definitions and
notations used for graphs. The final section of Chapter 2, Section 2.3, dis-
plays the commonly used group theoretic notations. We will already use
those notations in Chapter 1.

The second major part of this thesis is Chapter 3, which studies Hamilton
circles of two-ended Cayley graphs. We expand our studies of Hamilton
circles in Cayley graphs in Chapter 4 in which we extend a variety of known
Hamiltonicity results of finite Cayley graphs to infinite Cayley graphs.

Chapter 5 makes up the third major part of this thesis. As Chapter 3
and Chapter 4 have mostly studied two-ended groups and their Cayley graphs
we expand our knowledge about two-ended groups further. We collect and
prove characterizations of two-ended groups, their Cayley graphs and even
two-ended transitive graphs which need not be Cayley graphs of any group.

The last major part of this thesis is Chapter 6 in which we show that
for transitive graphs there exists a way of splitting those graphs in manner
similar to Stallings theorem.
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Chapter 1

Introduction and motivation

In 1959 Elvira Rapaport Strasser [59] proposed the problem of studying the

existence of Hamilton cycles in Cayley graphs for the first time. In fact the

motivation of finding Hamilton cycles in Cayley graphs comes from the “bell

ringing” and the “chess problem of the knight”. Later, in 1969, Lovász [2]

extended this problem from Cayley graphs to vertex-transitive graphs. He

conjectured that every finite connected transitive graph contains a Hamilton

cycle except only five known counterexamples, see [2].

As the Lovász conjecture is still open, one might instead try to solve

the, possibly easier, Lovász conjecture for finite Cayley graphs which states:

Every finite Cayley graph with at least three vertices contains a Hamilton

cycle. Doing so enables the use of group theoretic tools. Moreover, one can

ask for what generating sets a particular group contains a Hamilton cycle.

There are a vast number of papers regarding the study of Hamilton cycles

in finite Cayley graphs, see [18, 23, 42, 73, 74] and for a survey of the field

see [75].

We focus on Hamilton cycles in infinite Cayley graphs in Chapter 3 and

Chapter 4. As cycles are always finite, we need a generalization of Hamilton

cycles for infinite graphs. We follow the topological approach of Diestel

and Kühn [14, 15, 17], which extends the notion of a Hamilton cycle in a

sensible way by using the circles in the Freudenthal compactification |Γ| of

a locally finite graph Γ as “infinite cycles”, also see Section 2.1. There are

already results on Hamilton circles in general infinite locally finite graphs,
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see [28, 32, 35, 36].

It is worth remarking that the weaker version of the Lovasz’s conjecture

does not hold for infinite groups. For example, it is straightforward to check

that the Cayley graph of any free group with the standard generating set

does not contain Hamilton circles, as it is a tree.

It is a known fact that every locally finite graph needs to be 1-tough to

contain a Hamilton circle, see [28]. Futherhmore, Geogakopoulos [28] showed

that the weak Lovász’s conjecture cannot hold for infinite groups which can

be written as a free product with amalgamation of more than k groups over

a finite subgroup of order k. Geogakopoulos also proposed the following

problem:

Problem 1. [28, Problem 2] Let Γ be a connected Cayley graph of a finitely

generated group. Then Γ has a Hamilton circle unless there is a k ∈ N such

that the Cayley graph of Γ is the amalgamated product of more than k groups

over a subgroup of order k.

In Section 3.2.1 we give a counterexample to Problem 1. Hamann conjec-

tured that the weak Lovász’s conjecture for infinite groups holds for infinite

groups with at most two ends except when the Cayley graph is the double

ray.

Conjecture. [33] Any Cayley graph of a finitely generated group with at

most two ends is Hamiltonian except the double ray.

Stallings [67] showed in 1971 that finitely generated groups with more

than one end split over a finite subgroup. We show that there is a way of

splitting transitive graphs, not necessarily Cayley graphs, with more than one

end over some finite subgraphs. This is possible by using nested separation

systems. Nested separation systems have been of great use in recent time.

Carmesin, Diestel, Hundertmark and Stein used nested separation systems

in finite graphs to show that every connected graph has a tree-decomposition

which distinguishes all its k-blocks [10]. Addtionally, Carmesin, Diestel,

Hamann and Hundertmark showed that every connected graph even has

canonical tree-decomposition distinguishing its k-profiles [8, 9]. With the

3



help of the tree amalgamation defined by Mohar in 2006 [49] we are now able

to extend theorem of Stallings to locally finite transitive graphs, and further-

more even to quasi-transitive graphs, see Section 2.2 for the definitions.
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Chapter 2

Definitions and notations

In this chapter we recall the definitions and notations used in this thesis.

Our notation and the terminologies of group theory and topology and graph

theory follows [62], [55] and [14], respectively. Please note the following:

As Chapter 3, Chapter 4 and Chapter 5 are mostly group based G will be

reserved for groups in those chapters. In those chapters Γ will be reserved

for graphs. As Chapter 6 is more strongly related to graph theory, this is

reversed for Chapter 6. In Chapter 6 G will denote graphs and not groups.

In Chapter 6 we will denote groups, mostly groups acting on graphs, by Γ.

As the majority of this thesis is written such that G is a group and Γ is a

graph, this is also true for Chapter 2.

2.1 On topology

A brief history

End theory plays a very crucial role in topology, graph theory and group

theory, see the work of Hughes, Ranicki, Möller and Wall [38, 50, 51, 71]. In

1931 Freudenthal [25] defined the concept of ends for topological spaces and

topological groups for the first time. Let X be a locally compact Hausdorff

space. In order to define ends of the topological space X, he looked at in-

finite sequence U1 ⊇ U2 ⊇ · · · of non-empty connected open subsets of X
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such that the boundary of each Ui is compact and such that
⋂
Ui = ∅.1 He

called two sequences U1 ⊇ U2 ⊇ · · · and V1 ⊇ V2 ⊇ · · · to be equivalent, if

for every i ∈ N, there are j, k ∈ N in such a way that Ui ⊇ Vj and Vi ⊇ Uk.

The equivalence classes of those sequences are the ends of X. The ends

of groups arose from ends of topological spaces in the work of Hopf [37].

Halin [30], in 1964, defined vertex-ends for infinite graphs independently as

equivalence classes of rays, one way infinite paths. Diestel and Kühn [17]

showed that if we consider locally finite graphs as one dimensional simplicial

complexes, then these two concepts coincide. Dunwoody [20] showed that

in an analogous way, we can define the number of vertex-ends for a given

finitely generated group G as the number of ends of a Cayley graph of G.

By a result of Meier we know that this is indeed well-defined as the number

of ends of two Cayley graphs of the same group are equal, as long the gener-

ating sets are finite, see [45]. Freudenthal [26] and Hopf [37] proved that the

number of ends for infinite groups G is either 1,2 or ∞. This is exactly one

more than the dimension of the first cohomology group of G with coefficients

in ZG. Subsequently Diestel, Jung and Möller [16] extended the above result

to arbitrary (not necessarily locally finite) transitive graphs. They proved

that the number of ends of an infinite arbitrary transitive graph is either 1,2

or ∞. In 1943 Hopf [37] characterized two-ended finitely generated groups.

Then Stallings [67, 66] characterized all finitely generated groups with more

than one end. Later, Scott and Wall [61] gave another characterization of

two-ended finitely generated groups. Cohen [12] studied groups of cohomo-

logical dimension one and their connection to two-ended groups. Afterwards

Dunwoody in [21] generalized his result. In [41] Jung and Watkins studied

groups acting on two-ended transitive graphs.

The definition

Let X be a locally compact Hausdorff space X. Consider an infinite se-

quence U1 ⊇ U2 ⊇ · · · of non-empty connected open subsets of X such

that the boundary of each Ui is compact and
⋂
Ui = ∅. Two such se-

1In Section 2.1 Ui defines the closure of Ui.
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quences U1 ⊇ U2 ⊇ · · · and V1 ⊇ V2 ⊇ · · · are equivalent if for every i ∈ N,

there are j, k ∈ N in such a way that Ui ⊇ Vj and Vi ⊇ Uk. The equiva-

lence classes2 of those sequences are topological ends of X. The Freudenthal

compactification of the space X is the set of ends of X together with X. A

neighborhood of an end [Ui] is an open set V such that V ) Un for some n. We

denote the Freudenthal compactification of the topological space X by |X|.
We use the following application of the Freudenthal compactification. For

that we have to anticipate two-definitions from Section 2.2. A ray in a graph,

is a one-way infinite path. The subrays of a ray are it’s tails. We say two

rays R1 and R2 of a given graph Γ are equivalent if for every finite set of

vertices S of Γ there is a component of Γ\S which contains both a tail of R1

and of R2. The classes of the equivalent rays is called vertex-ends and just

for abbreviation we say ends. If considering the locally finite graph Γ as a

one dimensional complex and endowing it with the one complex topology

then the topological ends of Γ coincide with the vertex-ends of Γ. For a

graph Γ we denote the Freudenthal compactification of Γ by |Γ|. The ends

of a graph Γ are denoted by Ω(Γ).

A homeomorphic image of [0, 1] in the topological space |Γ| is called arc.

A Hamilton arc in Γ is an arc including all vertices of Γ. By a Hamilton circle

in Γ, we mean a homeomorphic image of the unit circle in |Γ| containing all

vertices of Γ. Note that Hamilton arcs and circles in a graph always contain

all ends of the graph. A Hamilton arc whose image in a graph is connected,

is a Hamilton double ray. It is worth mentioning that an uncountable graph

cannot contain a Hamilton circle. To illustrate, let C be a Hamilton circle of

graph Γ. Since C is homeomorphic to S1, we can assign to every edge of C a

rational number. Thus we can conclude that V (C) is countable and hence Γ

is also countable.

2We denote the equivalence class of Ui by [Ui].
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2.2 On graphs

Let Γ be a graph with vertex set V and edge set E. For a set X ⊆ V we

set Γ[X] to be the induced subgraph of Γ on X. The neighbourhood of a

set of vertices X of a graph Γ are all vertices in V \X which are adjacent

to X, we denote this set by N(X). The set of edges between X and N(X)

is denoted by δ(X) and we call it the co-boundary of X. For a graph Γ let

the induced subgraph on the vertex set X be called Γ[X]. A path between

two vertices is called geodesic if it is a shortest path between them.

Let PΓ (FΓ) be the set of all subsets (finite subsets) of V . Furthermore

we set QΓ = {A ∈ PΓ | |δ(A)| <∞}. It is worth mentioning that PΓ can be

regarded as a Z2-vector space with the symmetric difference and so we are

able to talk about the dimension of QΓ/FΓ.

A ray is a one-way infinite path in a graph, the infinite sub-paths of a

ray are its tails. An end of a graph is an equivalence class of rays in which

two rays are equivalent if and only if there exists no finite vertex set S such

that after deleting S those rays have tails completely contained in different

components. We say an end ω lives in a component C of Γ \X, where X is

a subset of V (Γ) or a subset of E(Γ), when a ray of ω has a tail completely

contained in C, and we denote C by C(X,ω). We say a component of a

graph is big if there is an end which lives in that component. Components

which are not big are called small. A slightly weaker version of ends living

in a vertex set is the following: An end ω is captured by a set of vertices X

is every ray of ω has infinite intersection with X. An end ω of a graph Γ

is dominated by a vertex v if there is no finite set S of vertices S \ v such

that v /∈ C(S, ω) ∪ S. Note that this implies that v has infinite degree. An

end is dominated if there exists a vertex dominating it. A sequence of vertex

sets (Fi)i∈N is a defining sequence of an end ω if Ci+1 ( Ci, with Ci :=C(Fi, ω)

and
⋂
Ci = ∅. We define the degree of an end ω as the supremum over the

number of edge-disjoint rays belonging to the class which corresponds to ω,

see the work of Bruhn and Stein [7]. If an end does not have a finite degree

we say that this end has infinite vertex degree and call such an end a thick

end. Analogously, an end with finite vertex degree is a thin end. If a graph
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only has thin ends, then this graph is thin.

A graph is called Hamiltonian if it contains either a Hamilton cycle or

its closure in the Freudenthal compactification contains a Hamilton circle.

In slight abuse of notation we omit the closure when talking about a graph

containing a Hamilton circle.

Thomassen [68] defined a Hamilton cover of a finite graph Γ to be a

collection of mutually disjoint paths P1, . . . , Pm such that each vertex of Γ

is contained in exactly one of the paths. For easier distinction we call this

a finite Hamilton cover. An infinite Hamilton cover of an infinite graph Γ

is a collection of mutually disjoint double rays, two way infinite paths, such

that each vertex of Γ is contained in exactly one of them. The order of an

infinite Hamilton cover is the number of disjoint double rays in it.

A locally finite quasi-transitive graph3 is accessible if and only if there

exists a natural number k such that every pair of two ends of that graph

can be separated by at most k edges. Note that for graphs with bounded

maximal degree the definition of accessibility is equivalent to the following:

A graph of bounded maximal degree is accessible if and only if there exists

a natural number k′ such that every pair of two ends of that graph can

be separated by at most k′ vertices. As the maximum degree in a locally

finite quasi-transitive graphs is bounded, we may use “vertex accessibility”

for those graphs.

Cuts and separations

A finite set C = E(A,A∗) ⊆ E is a finite cut if (A,A∗) is a partition of the

vertex set and if |E(A,A∗)| is finite. We say a cut C = E(A,A∗) is induced

by the partition (A,A∗). We denote the set of all finite cuts by Bfin(Γ). A

finite cut E(A,A∗) is called k-tight if |E(A,A∗)| = k and if moreover G[A]

and G[A∗] are connected. We note that Bfin(Γ) with the symmetric difference

forms a vector space over Z2. We note that if C = E(A,A∗) is a cut, then

the partition (gA, gA∗) induces a cut for every g ∈ Aut(Γ). For the sake of

simplicity we denote this new cut only by gC.

3See Section 2.3 for the definition of quasi-transitive graphs.
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In the following we give an ordering on Bfin(Γ) to make it a poset. Suppose

that C1 = E(A,A∗) and C2 = E(B,B∗) are two finite cuts. Then C1 ≤ C2

if and only if A ⊆ B and A∗ ⊇ B∗ or A ⊆ B∗ and A∗ ⊇ B. Two cuts are

called comparable if C1 ≤ C2 or C2 ≤ C1. Dunwoody [22] proved that if a

graph Γ has at least two ends, then there exists a cut C ∈ Bfin(Γ) such that C

and gC are comparable for every g ∈ Aut(Γ). As a consequence of the above

mentioned result he characterized all groups acting on those graphs.

A concept similar to cuts is the concept of separations. Let Γ be a

graph. A separation of Γ is an ordered pair (A,A∗) with A,A∗ ⊆ V (Γ)

such that Γ = Γ[A] ∪ Γ[A∗].4 For a separation (A,A∗) we call A ∩ A∗ the

separator of this separation. A k-separation of Γ is a separation (A,A∗) such

that the size of A ∩ A∗ is k. We call a separation (A,A∗) tight if there exists a

component of Γ \ (A ∩ A∗) such that each vertex of A ∩ A∗ has a neighbor in

that component. A separation (A,A∗) is splitting separation if it separates

ends, i.e there are ends ω and ω′ such that ω lives in Γ[A \ A∗] and such

that ω′ lives in Γ[A∗ \ A].

We define a partial order ≤ on the set of all separations of Γ. For two

separations (A,A∗) and (B,B∗) let (A,A∗) ≤ (B,B∗) if and only if A ⊆ B

and A∗ ⊇ B∗. Two separations (A,A∗) and (B,B∗) are nested if one of the

following is true:

(A,A∗) ≤ (B,B∗), (A,A∗) ≤ (B∗, B), (A∗, A) ≤ (B,B∗), (A∗, A) ≤ (B∗, B).

We denote this by (A,A∗) ‖ (B,B∗). Otherwise we say that the sepa-

rations (A,A∗) and (B,B∗) are crossing. We denote crossing separations

by (A,A∗) ∦ (B,B∗). A set O of separations is called nested if each pair of

elements of O are comparable. For two separations (A,A∗) and (B,B∗) we

call the sets

A ∩B,A ∩B∗, A∗ ∩B and A∗ ∩B∗

the corners of these separations. Corners give rise to four possible corner

4This implies that there is no edge from A \A∗ to A∗ \A in Γ.
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separations which consist of a “corner vs. the rest”, i.e.:

(A ∩B,A∗ ∪B∗), (A ∩B∗, A∗ ∪B), (A∗ ∩B,A ∪B∗) and (A∗ ∩B∗, A ∪B).

The corners A ∩ B and A∗ ∩ B∗ are opposite, as are the corners A ∩ B∗
and A∗ ∩B.

A set O of separations is symmetric if for every separation (A,A∗) ∈ O,

the separation (A∗, A) also is in O.

The order of a separation is the size of its separator. In this thesis we

only consider separations of finite order, thus from here on, any separation

will always be a separation of finite order.

For two-ended graphs we strengthen the definition of tight separations.

Let k ∈ N and let Γ be a two-ended graph with a separation (A,A∗). We

call (A,A∗) k-tight if the following holds:

1. |A ∩ A∗| = k.

2. There is an end ωA living in a component CA of A \ A∗.

3. There is an end ωA∗ living in a component C∗A of A∗ \ A.

4. Each vertex in A ∩ A∗ is adjacent to vertices in both CA and CA∗ .

If a separation (A,A∗) of a two-ended graph is k-tight for some k, then

this separation is just called tight. We use this stronger definition of tight

or k-tight separations only in Chapter 5. Note that finding tight separations

is always possible for two-ended graphs. In an analogous matter to finite

cuts, one may see that (gA, gA∗) is a tight separation for g ∈ Aut(Γ) when-

ever (A,A∗) is a tight separation. Note that this is true for both definitions

of tight.

A separation (A,A∗) is connected if Γ(A∩A∗) is connected. See the work

of Carmesin, Diestel, Hundertmark and Stein [10] for applications and results

on separations.
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Tree-decomposition

A tree-decomposition of a graph Γ is a pair (T,V) such that T is a tree and

such that V = (Vt)t∈V (T ) is a family of vertex sets of Γ with the additional

following conditions:

(T1) V (Γ) =
⋃
t∈V (T ) Vt.

(T2) For every edge e = xy of Γ there is a t ∈ V (T ) such that x ∈ Vt

and y ∈ Vt.

(T3) Vt1 ∩ Vt2 ⊆ Vt3 whenever t3 lies on the path in T between t1 and t2.

The sets Vt are also called parts of a tree-decomposition. The vertices of

a tree T in a tree-decomposition will be called nodes. Please note that

if e = t1t2 is an edge of a tree T of a tree-decomposition then Vt1 ∩ Vt2 is a

separator of G unless Vt1 ∩ Vt2 = Vti for i ∈ {1, 2}. We also call all the sets

of the form Vt1 ∩ Vt2 the adhesion sets of the tree-decomposition.

A tree-decomposition (T,V) of finite adhesion distinguishes two ends ω1

and ω2 if there is an adhesion set Vt1 ∩ Vt2 such that ω1 lives in a different

components of Γ \ (Vt1 ∩ Vt2) than ω2.

Tree amalgamation

Next we recall the defitinition of the tree amalgamation for graphs which

was first defined by Mohar in [49]. We use the tree amalgamation to obtain

a generalization of factoring quasi-transitive graphs in a similar manner to

the HNN -extensions or free-products with amalgamation over finite groups.5

For that let us recall the definition of a semiregular tree. A tree T

is (p1, p2)-semiregular if there exist p1, p2 ∈ {1, 2, . . .} ∪∞ such that for the

canonical bipartition {V1, V2} of V (T ) the vertices in Vi all have degree pi

for i = 1, 2.

In the following let T be the (p1, p2)-semiregular tree. Suppose that there

is a mapping c which assigns to each edge of T a pair

5See Section 2.3 for details about the HNN -extension or the free-product with amal-
gamation.
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(k, `), 0 ≤ k < p1, 0 ≤ ` < p2,

such that for every vertex v ∈ V1, all the first coordinates of the pairs

in {c(e) | v is incident with e} are distinct and take all values in the

set {k | 0 ≤ k < p1}, and for every vertex in V2, all the second coordiantes

are distinct and exhaust all values of the set {` | 0 ≤ ` < p2}.
Let Γ1 and Γ2 be graphs. Suppose that {Sk | 0 ≤ k < p1} is a family

of subsets of V (Γ1), and {T` | 0 ≤ ` < p2} is a family of subsets of V (Γ2).

We shall assume that all sets Sk and T` have the same cardinality, and we

let φk` : Sk → T` be a bijection. The maps φk` are called identifying maps.

For each vertex v ∈ Vi, take a copy Γvi of the graph Γi, i = 1, 2. De-

note by Svk (if i = 1) and T v` (if i = 2) the corresponding copies of Sk or T`

in V (Γvi ). Let us take the disjoint union of graphs Γvi , v ∈ Vi, i = 1, 2. For

every edge st ∈ E(T ), with s ∈ V1, t ∈ V2 and such c(st) = (k, `) we identify

each vertex x ∈ Ssk with the vertex y = φk`(x) in T t` . The resulting graph Y

is called the tree amalgamation of the graphs Γ1 and Γ2 over the connecting

tree T . We denote Y by Γ1 ∗TΓ2. In the context of tree amalgamations the

sets {Sk | 0 ≤ k < p1} and {T` | 0 ≤ ` < p2} are also called the sets of adhe-

sion sets and a single Sk or T` might be called an adhesion set of this tree

amalgamation. In particular the set {Sk} is said to be the set of adhesion sets

of Γ1 and {T`} to be the set of adhesion sets of Γ2. In the case that Γ1 = Γ2

and that φk` is the identity for all k and ` we may say that {Sk} is the set

of adhesion sets of this tree amalgamation. If the adhesion sets of a tree

amalgamation are finite, then this tree amalgamation is thin.

Alternative notations for graphs

As this thesis considers Cayley graphs on several occasions it is very useful

to be able to consider edges as labeled by the corresponding generators. For

that we use the following notation originally used by [42, 75].

In addition to the notation of paths and cycles as sequences of vertices

such that there are edges between successive vertices we use the following

notation: For that let g and si, i ∈ Z, be elements of some group and k ∈ N.
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In this notation g[s1]k denotes the concatenation of k copies of s1 from the

right starting from g which translates to the path g, (gs1), . . . , (gsk1) in the

usual notation. Analogously [s1]kg denotes the concatenation of k copies

of s1 starting again from g from the left. We use g[s1, . . . , sn]k to denote the

following path

g, g(s1), . . . , g(s1 · · · sn), g(s1 · · · sn)s1, . . . , g(s1 · · · sn)2, . . . , g(s1 · · · sn)k

In addition g[s1, s2, . . .] translates to be the ray g, (gs1), (gs1s2), . . . and

[. . . , s−2, s−1]g[s1, s2, . . .]

translates to be the double ray

. . . , (gs−1s−2), (gs−1), g, (gs1), (gs1s2), . . .

When discussing rays we extend the notation of g[s1, . . . , sn]k to k being

countably infinite and write g[s1, . . . , s2]N and the analogue for double rays.

By

g[s1]k1 [s2]k2 · · ·

we mean the ray

g, gs1, gs
2
1, . . . , gs

k1
1 , gs

k1
1 s2, . . . , gs

k1
1 s

k2
2 , . . .

and analogously

· · · [s1]k−1g[s1]k1 · · ·

defines the double ray

. . . , gs
k−1

−1 , . . . , gs−1, g, gs1, gs
2
1, . . . , gs

k1
1 , . . .

Sometimes we will use this notation also for cycles. Stating that g[c1, . . . , ck]

is a cycle means that g[c1, . . . , ck−1] is a path and that the edge ck joins the

vertices gc1 · · · ck−1 and g.
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2.3 On groups

As we only consider groups with locally finite Cayley graphs in this thesis,

we assume that all generating sets are finite.

For a subset A of a set X we denote the complement of A by Ac. We

denote the disjoint union of two sets A and B by A tB.

Let G = 〈S〉. The Cayley graph associated with (G,S) is a graph hav-

ing one vertex associated with each element of G and edges (g1, g2) when-

ever g1g
−1
2 lies in S. For a set T ⊆ G we set T± :=T ∪T−1. Throughout this

thesis we assume that all generating sets are symmetric, i.e. whenever s ∈ S
then s−1 ∈ S. Thus if we add an element s to a generating set S, we always

also add the inverse of s to S as well.

We denote the Cayley graph of G with respect to S with Γ(G,S). A finite

group G is a p-group if the order of each element of G is a power of p, where p

is a prime number. Let A and B be two subsets of G. Then AB denotes the

set {ab | a ∈ A, b ∈ B}. We use this to also define A2 as AA. Let H ≤ G,

then for g ∈ G and h ∈ H we denote g−1Hg and g−1hg by Hg and hg,

respectively. An important subgroup of H is Core(H) := ∩g∈GHg which is

always normal in G and moreover if [G : H] = n, then the index Core(H)

in G is at most n!, see the work of Scott [62, Theorem 3.3.5]. We denote the

order of the element g by o(g). We denote the centralizer of the element g

by CG(g) :={h ∈ G | hg = gh} and the commutator subgroup of G by G′.

Furthermore, NG(H), CG(H) and Z(G) denote the normalizer subgroup of H

in G, the centralizer subgroup of H in G and the center of G, respectively.

If H is a characteristic subgroup of G, then we write HcharG.

Assume that H and K are two groups. Then G is called an extension

of H by K if there is a short exact sequence:

1→ H → G→ K → 1

For a group G = 〈S〉 we define e(G) := |Ω(Γ(G,S)|. We note that this

definition is independent of the choice of S as

|Ω(Γ(G,S))| = |Ω(Γ(G,S ′))|

15



as long as S and S ′ are finite, see the work of Meier [45, Theorem 11.23].

Let H be a normal subgroup of G = 〈S〉. In Chapters 4 and Chapter 5 we

denote the set {sH | s ∈ S} by S. We notice that S generates G :=G/H. A

subgroup H of G is called characteristic if any automorphism φ of G maps H

to itself and we denote it by HcharG.

A finite dihedral group is defined with the presentation 〈a, b | b2, an, (ba)2〉,
where n ∈ N and denote the finite dihedral groups by D2n. The infinite

dihedral group is a group with the presentation 〈a, b | b2 = 1, bab = a−1〉
which is denoted by D∞. It is worth remarking that it is isomorphic to Z2∗Z2.

A group G is called a planar group if there exists a generating set S of G

such that Γ(G,S) is a planar graph.

Suppose that G is an abelian group. A finite set of elements {gi}ni=1 of G

is called linear dependent if there exist integers λi for i = 1, . . . , n, not all

zero, such that
∑n

i=1 λigi = 0. A system of elements that does not have

this property is called linear independent. It is an easy observation that a

set containing elements of finite order is linear dependent. The rank of an

abelian group is the size of a maximal independent set. This is exactly the

rank the torsion free part, i.e if G = Zn⊕G0 then the rank of G is n, where G0

is the torsion part of G.

Let R be a unitary ring. Then we denote the group ring generated by R

and G by RG. In this thesis we only deal with the group rings Z2G and ZG.

We denote the group of all homomorphisms from the group ring RG to an

abelian group A by HomZ(RG,A).

Free product with amalgamation

Let G1 and G2 be two groups with subgroups H1 and H2 respectively such

that there is an isomorphism φ : H1 → H2. The free product with amalgama-

tion is defined as

G1 ∗H1G2 :=〈S1 ∪ S2 | R1 ∪R2 ∪H1φ
−1(H1)〉.

A way to present elements of a free product with amalgamation is the Brit-

ton’s Lemma:

16



Lemma 2.3.1. [4, Theorem 11.3] Let G1 and G2 be two groups with sub-

groups H1
∼= H2 respectively. Let Ti be a left transversal 6 of Hi for i = 1, 2.

Any element x ∈ G1 ∗HG2 can be uniquely written in the form x = x0x1 · · ·xn
with the following:

(i) x0 ∈ H1.

(ii) xj ∈ T1\1 or xi ∈ T2\1 for j ≥ 1 and the consecutive terms xj and xj+1

lie in distinct transversals.

This unique form is the normal form for x.

A generating set S of G1 ∗H G2 is called canonical if S is a union of Si

for i = 1, . . . , 3 such that 〈Si〉 = Gi for i = 1, 2 and H = 〈S3〉. We note that

when H = 1, then we assume that S3 = ∅. When we write G = G1 ∗H G2 we

always assume that G1 6= 1 6= G2.

HNN-extension

Let G = 〈S | R〉 be a group with subgroups H1 and H2 in such a way that

there is an isomorphism φ : H1 → H2. We now insert a new symbol t not

in G and we define the HNN-extension of G∗H1 as follows:

G∗H1 :=〈S, t | R ∪ {t−1htφ(h)−1 | for all h ∈ H1}〉.

Ends of Cayley graphs

As we are studying the Hamiltonicity of Cayley graphs throughout this thesis,

it will be important to pay attention to the generating sets involved, see

Chapter 3 and Chapter 4. Throughout this thesis, whenever we discuss

Cayley graphs we assume that any generating set S = {s1, . . . , sn} is minimal

in the following sense: Each si ∈ S cannot be generated by S \ {si}, i.e. we

have that si /∈ 〈sj〉j∈{1,...,n}\{i}. We may do so because say S ′ ⊆ S is a minimal

generating set of G. If we can find a Hamilton circle C in Γ(G,S ′), then this

6A transversal is a system of representatives of left cosets of Hi in Gi and we always
assume that 1 belongs to it.
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circle C will still be a Hamilton circle in Γ(G,S). For this it is important

to note that the number of ends of G and thus of Γ(G,S ′) does not change

with changing the generating set to S by [45, Theorem 11.23], as long as S

is finite, which will always be true in this thesis.

We now cite a structure for finitely generated groups with two ends.

Theorem 2.3.2. [61, Theorem 5.12] Let G be a finitely generated group.

Then the following statements are equivalent.

(i) The number of ends of G is 2.

(ii) G has an infinite cyclic subgroup of finite index.

(iii) G = A ∗CB and C is finite and [A : C] = [B : C] = 2 or G = C ∗C
with C is finite.

Throughout this thesis we use Theorem 2.3.2 to characterize the structure

of two-ended groups, see Section 3.1 for more details.

To illustrate that considering different generating sets can make a huge

difference let us consider the following two examples. Take two copies of Z2,

with generating sets {a} and {b}, respectively. Now consider the free product

of them. It is obvious that this Cayley graph with generating set {a, b} does

not contain a Hamilton circle, see Figure 2.1. Again consider Z2 ∗ Z2 with

generating set {a, ab} which is isomorphic to D∞ = 〈x, y | x2 = (xy)2 = 1〉.
It is easy to see that the Cayley graph of D∞ with this generating set contains

a Hamilton circle, see Figure 2.2.

a

b

Figure 2.1: The Cayley graph of Z2 ∗Z2 with the generating set {a, b} which
does not contain a Hamilton circle.

The action of groups

A group G acts on a set X if there exists a function f : G × X → X

with f(g, x) := gx such that the following is true:
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a

ab

Figure 2.2: The Cayley graph of Z2 ∗ Z2 with the generating set {a, ab} in
which the dashed edges form a Hamilton circle.

(i) g1(g2x) = (g1g2)x,

(ii) 1x = x.

The action of a group G on a set X is called trivial if gx = x for all g ∈ G
and all x ∈ X. In this thesis we assume that no action we consider is the

trivial action.

Let a group G act on a set X. For every element of x ∈ X we denote the

orbit containing x by Gx. The quotient set G \X is the set of all orbits. In

particular whenever we consider the automorphism group G of a graph Γ,

the quotient graph G \ Γ is a graph with the vertices {vi}i∈I ⊆ V (Γ) such

that vi’s are the representatives of the orbits, and the vertices vi and vj are

adjacent if and only if there are h1, h2 ∈ G such that h1vi is adjacent to h2vj.

Now let Y be a subset of X. Then we define the set-wise stabilizer of Y with

respect to G as

GY :={h ∈ G | hy ∈ Y, ∀y ∈ Y }.

If G acts on X with finitely many orbits, i.e. G \ X is finite, then we say

the action is quasi-transitive. A graph Γ is called transitive if Aut(Γ) acts

transitively and if the action of Aut(Γ) on the set of vertices of Γ has only

finitely many orbits, then we say Γ is quasi-transitive.

One of the strongest tools in studying groups acting on graphs is the

Bass-Serre Theory. This theory enables us to characterize groups acting on

trees in terms of fundamental groups of graphs of groups.

Lemma 2.3.3. [64] Let G act without inversion of edges on a tree that thas

no vertices of degree one and suppose G acts transitively on the set of (undi-

rected) edges. If G acts transitively on the tree then G is an HNN-extension of

the stabilizer of a vertex over the pointwise stabilizer of an edge. If there are
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two orbits on the vertices of the tree then G is the free product of the stabiliz-

ers of two adjacent vertices with amalgamation over the pointwise stabilizer

of an edge.

Geometric group theory

Let (X, dX) and (Y, dY ) be two metric spaces and let φ : X → Y be a map.

The map φ is a quasi-isometric embedding if there is a constant λ ≥ 1 such

that for all x, x′ ∈ X:

1

λ
dX(x, x′)− λ ≤ dY (φ(x), φ(x′)) ≤ λdX(x, x′) + λ.

The map φ is called quasi-dense if there is a λ such that for every y ∈ Y

there exists x ∈ X such that dY (φ(x), y) ≤ λ. Finally φ is a quasi-isometry

if it is both quasi-dense and a quasi-isometric embedding. If X is quasi-

isometric to Y , then we write X ∼QI Y . Remember that G = 〈S〉 can be

equipped by the word metric induced by S. Thus any group can be turned

to a topological space by considering its Cayley graph and so we are able to

talk about quasi-isometric groups and it would not be ambiguous if we use

the notation G ∼QI H for two groups H and G. A result of Meier reveals

the connection between Cayley graphs of a group with different generating

sets.

Lemma 2.3.4. [45, Theorem 11.37] Let G be a finitely generated group and

let S and S ′ be two finite generating sets of G. Then Γ(G,S) ∼QI Γ(G,S ′).

By Lemma 2.3.4 we know that any two Cayley graphs of the same group

are quasi-isometric if the corresponding generating sets are finite. Let G be

a finitely generated group with generating set S. Let B(u, n) be the ball of

radius n around the vertex u of Γ(G,S) i.e.:

B(u, n) = {v ∈ Γ(G,S) | d(u, v) < n}.

Suppose that c(n) is the number of infinite components of Γ(G,S) \B(u, n).

It is important to notice that since Γ(G,S) is a transitive graph, it does not
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matter where we pick u up. Thus the definition of c(n) is well-defined. Now

we are ready to define the number of ends of G. We set e(n) = limn→∞ c(n).

Please note that the number of ends of a group G coincides |Ω(Γ(G,S)| for

any finitely generated group as long as S is finite.

Lemma 2.3.5. [5, Corollary 2.3] Finitely generated quasi-isometric groups

all have the same number of ends.

Now by Lemma 2.3.5 we can conclude the following Corollary 2.3.6.

Corollary 2.3.6. [45, Theorem 11.23] The number of ends of a finitely gen-

erated group G is independent of the chosen generating set.

Lemma 2.3.7. [45, Proposition 11.41] Let H be a finite-index subgroup of a

finitely generated group G. Then H ∼QI G.

Lemma 2.3.5 and Lemma 2.3.7 together imply the following corollary.

Corollary 2.3.8. Let G be a finitely generated group with a subgroup H is

of finite index, then the numbers of ends of H and G are equal.
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Chapter 3

Hamilton circles in Cayley

graphs

3.1 Hamilton circles

In this section we prove sufficient conditions for the existence of Hamilton

circles in Cayley graphs. In Section 3.1.1 we take a look at abelian groups.

Section 3.1.2 contains basic lemmas and structure theorems used to prove

the main results of Chapter 3 which we prove in the Section 3.1.3.

3.1.1 Abelian groups

In the following we will examine abelian groups as a simple starting point

for studying Hamilton circles in infinite Cayley graphs. Our main goal in

this section is to extend a well-known theorem of Nash-Williams from one-

ended abelian groups to two-ended abelian groups by a simple combinatorial

argument. First, we cite a known result for finite abelian groups.

Lemma 3.1.1. [65, Corollary 3.2] Let G be a finite abelian group with at

least three elements. Then any Cayley graph of G has a Hamilton cycle.

Next we state the theorem of Nash-Williams.

Theorem 3.1.2. [56, Theorem 1] Let G be a finitely generated abelian group

with exactly one end. Then any Cayley graph of G has a Hamilton circle.
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It is obvious that the maximal class of groups to extend Theorem 3.1.2

to cannot contain Γ(Z, {±1}), as this it cannot contain a Hamilton circle. In

Theorem 3.1.3 we prove that this is the only exception.

Theorem 3.1.3. Let G be an infinite finitely generated abelian group. Then

any Cayley graph of G has a Hamilton circle except Γ(Z, {±1}).

Proof. By the fundamental theorem of finitely generated abelian groups [62,

5.4.2], one can see that G ∼= Zn ⊕ G0 where G0 is the torsion part of G

and n ∈ N. It follows from [61, lemma 5.6] that the number of ends of Zn

and G are equal. We know that the number of ends of Zn is one if n ≥ 2

and two if n = 1. By Theorem 3.1.2 we are done if n ≥ 2. So we can assume

that G has exactly two ends.

Since Γ(Z, {±1}) is not allowed, we may assume that S contains at least

two elements. Now suppose that S = {s1, . . . , sk} generates G such that S

is minimal in the sense of generating of G. Without loss generality assume

that the order of s1 is infinite. Let i be the smallest natural number such

that si+1
2 ∈ 〈s1〉. Since the rank of G is one, we can conclude that {s1, s2} are

dependent and thus such an i exists. In the following we define a sequence of

double rays. We start with the double ray R1 = [s−1
1 ]N1[s1]N. Now we replace

every other edge of R1 by a path to obtain a double ray spanning 〈s1, s2〉. The

edge 1s1 will be replaced by the path [s2]i[s1][s−1
2 ]i. We obtain the following

double ray:

R2 = · · · [s−1
2 ]i[s−1

1 ][s2]i[s−1
1 ]1[s2]i[s1][s−1

2 ]i[s1] · · ·

Note that R2 spans 〈s1, s2〉. We will now repeat this kind of construction

for additional generators building double rays R` such that R` spans the

subgroup generated by the first ` generators. For simplicity we denote R` by

[. . . , y−2, y−1]1[y1, y2, . . .]

with

ym ∈ {s1, s2, . . . , s`}± for every m ∈ Z \ {0}.
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As above let i ∈ N be minimal such that si+1
`+1 ∈ 〈s1, s2, . . . , sj〉. We now

define the double ray

R`+1 = · · · [s−1
`+1]i[y−2][s`+1]i[y−1]1[s`+1]i[y1][s−1

`+1]i[y2] · · · .

We now repeat the process until we have defined the double ray Rk−1, say

Rk−1 = [. . . , x−2, x−1]1[x1, x2, . . .]

with xm ∈ {s1, . . . , sk−1}± for every m ∈ Z \ {0}. Now let i be the smallest

natural number such that si+1
k ∈ 〈s1, . . . , sk−1〉. Now, put

P1 = · · · [s−1
k ]i−1[x−2][sk]

i−1[x−1]1[sk]
i−1[x1][s−1

k ]i−1[x2] · · ·

and

P2 = [. . . , x−2, x−1]sik[x1, x2, . . .].

It is not hard to see that P1 ∪ P2 is a Hamilton circle of Γ(G,S).

Remark 3.1.4. One can prove Theorem 3.1.2 by the same arguments used

in the above proof of Theorem 3.1.3.

3.1.2 Structure tools

In this section we assemble all the most basic tools to prove our main results

of Chapter 3. Our most important tools are Lemma 3.1.6 and Lemma 3.1.7

which we also use in Chapter 4. In both lemmas we prove that a given

graph Γ contains a Hamilton circle if Γ admits a partition of its vertex set

fulfilling the following nice properties. All partition classes are finite and of

the same size. Each partition class contains some special cycle and between

two consecutive partition classes there are edges in Γ connecting those cycles

in a useful way, see Lemma 3.1.6 and 3.1.7 for details.

But first we state a well known Lemma about the structure of Hamilton

circles in two-ended graphs.

Lemma 3.1.5. [Folklore] Let Γ = (V,E) be a two-ended graph and let R1
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and R2 be two doubles rays such that the following holds:

(i) R1 ∩R2 = ∅

(ii) V = R1 ∪R2

(iii) For each ω ∈ Ω(Γ) both Ri have a tail that belongs to ω.

Then R1 tR2 is a Hamilton circle of Γ.

Lemma 3.1.6. Let Γ be a graph that admits a partition of its vertex set into

finite sets Xi, i ∈ Z, fulfilling the following conditions:

(i) Γ[Xi] contains a Hamilton cycle Ci or Γ[Xi] is isomorphic to K2.

(ii) For each i ∈ Z there is a perfect matching between Xi and Xi+1.

(iii) There is a k ∈ N such that for all i, j ∈ Z with |i− j| ≥ k there is no

edge in Γ between Xi and Xj.

Then Γ has a Hamilton circle.

Proof. By (i) we know that each Xi is connected and so we conclude from the

structure given by (ii) and (iii) that Γ has exactly two ends. In addition note

that |Xi| = |Xj| for all i, j ∈ Z. First we assume that Γ[Xi] is just a K2. It

follows directly that Γ is spanned by the double ladder, which is well-known

to contain a Hamilton circle. As this double ladder shares its ends with Γ,

this Hamilton circle is also a Hamilton circle of Γ.

Now we assume that |Xi| ≥ 3. Fix an orientation of each Ci. The goal is

to find two disjoint spanning doubles rays in Γ. We first define two disjoint

rays belonging to the same end, say for all the Xi with i ≥ 1. Pick two

vertices u1 and w1 in X1. For R1 we start with u1 and move along C1 in the

fixed orientation of C1 till the next vertex on C1 would be w1. Then, instead

of moving along C1, we move to X2 by the given matching edge. We take

this to be a the initial part of R1. We do the analogue for R2 by starting

with w1 and moving also along C1 in the fixed orientation till the next vertex

would be u1, then move to X2. We repeat the process of starting with two

25



vertices ui and wi contained in some Xi, where ui is the first vertex of R1

on Xi and wi the analogue for R2. We follow along the fixed orientation on Ci

till the next vertex would be ui or wi, respectively. Then we move to Xi+1 by

the giving matching edges. One can easily see that each vertex of Xi for i ≥ 1

is contained exactly either in R1 or R2. By moving from u1 and w1 to X0

by the matching edges and then using the same process but moving from Xi

to Xi−1 extents the rays R1 and R2 into two double rays. Obviously those

double rays are spanning and disjoint. As Γ has exactly two ends it remains

to show that R1 and R2 have a tail in each end, see Lemma 3.1.5. By (iii)

there is a k such that there is no edge between any Xi and Xj with |i−j| ≥ k.

The union
⋃`+k
i=` Xi, ` ∈ Z, separates Γ into two components such that Ri

has a tail in each component, which is sufficient.

Next we prove a slightly different version of Lemma 3.1.6. In this ver-

sion we split each Xi into an “upper” and “lower” part, X+
i and X−i , and

assume that we only find a perfect matching between upper and lower parts

of adjacent partition classes, see Lemma 3.1.7 for details.

Lemma 3.1.7. Let Γ be a graph that admits a partition of its vertex set into

finite sets Xi, i ∈ Z with |Xi| ≥ 4 fulfilling the following conditions:

(i) Xi = X+
i ∪X−i , such that X+

i ∩X−i = ∅ and |X+
i | = |X−i |

(ii) Γ[Xi] contains an Hamilton cycle Ci which is alternating between X−i
and X+

i .1

(iii) For each i ∈ Z there is a perfect matching between X+
i and X−i+1.

(iv) There is a k ∈ N such that for all i, j ∈ Z with |i− j| ≥ k there is no

edge in Γ between Xi and Xj.

Then Γ has a Hamilton circle.

Even though the proof of Lemma 3.1.7 is very closely related to the proof

of Lemma 3.1.6, we still give the complete proof for completeness.

1Exactly every other element of Ci is contained in X−i .
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Proof. By (i) we know that each Xi is connected and so we conclude from

the structure given by (ii) and (iii) that Γ has exactly two ends. In addition

note that |Xi| = |Xj| for all i, j ∈ Z.

Fix an orientation of each Ci. The goal is to find two disjoint spanning

doubles rays in Γ. We first define two disjoint rays belonging to the same

end, say for all the Xi with i ≥ 0. Pick two vertices u1 and w1 in X−1 . For R1

we start with u1 and move along C1 in the fixed orientation of C1 till the

next vertex on C1 would be w1, then instead of moving along C1 we move

to X−2 by the given matching edge. Note that as w1 is in X−1 and because

each Ci is alternating between X−i and X+
i this is possible. We take this

to be a the initial part of R1. We do the analog for R2 by starting with w1

and moving also along C1 in the fixed orientation till the next vertex would

be u1, then move to X−2 . We repeat the process of starting with some Xi

in two vertices ui and wi, where ui is the first vertex of R1 on Xi and wi

the analog for R2. We follow along the fixed orientation on Ci till the next

vertex would be ui or wi, respectively. Then we move to Xi+1 by the giving

matching edges. One can easily see that each vertex of Xi for i ≥ 1 is

contained exactly either in R1 or R2. By moving from u1 and w1 to X+
0 by

the matching edges and then using the same process but moving from X−i
to X+

i−1 extents the rays R1 and R2 into two double rays. Obviously those

double rays are spanning and disjoint. As Γ has exactly two ends it remains

to show that R1 and R2 have a tail in each end, see Lemma 3.1.5. By (iv)

there is a k such that there is no edge between any Xi and Xj with |i−j| ≥ k

the union
⋃`+k
i=` Xi, ` ∈ Z separates Γ into two components such that Ri has

a tail in each component, which is sufficient.

Remark 3.1.8. It is easy to see that one can find a Hamilton double ray

instead of a Hamilton circle in Lemma 3.1.6 and Lemma 3.1.7. Instead of

starting with two vertices and following in the given orientation to define

the two double rays, one just starts in a single vertex and follows the same

orientation.

The following lemma is one of our main tools in proving the existence of

Hamilton circles in Cayley graphs. It is important to note that the restric-
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tion, that S ∩H = ∅, which looks very harsh at first glance, will not be as

restrictive in the later parts of this thesis. In most cases we can turn the

case S ∩H 6= ∅ into the case S ∩H = ∅ by taking an appropriate quotient.

Lemma 3.1.9. Let G = 〈S〉 and G̃ = 〈S̃〉 be finite groups with non-trivial

subgroups H ∼= H̃ of indices two such that S ∩H = ∅ and such that Γ(G,S)

contains a Hamilton cycle. Then the following statements are true.

(i) Γ(G ∗HG̃, S ∪ S̃) has a Hamilton circle.

(ii) Γ(G ∗HG̃, S ∪ S̃) has a Hamilton double ray.

To prove Lemma 3.1.9 we start by finding some general structure given

by our assumptions. This structure will make it possible to use Lemma 3.1.7

and Remark 3.1.8 to prove the statements (i) and (ii).

Proof. First we define Γ := Γ(G ∗HG̃, S ∪ S̃). Let s ∈ S \H and let s̃ be

in S̃ \ H̃. By our assumptions Γ(G,S) contains a Hamilton cycle. Say this

cycle is C0 = 1[c1, . . . , ck]. It follows from S ∩H = ∅ that C0 is alternating

between H and the right coset Hs. For each i ∈ Z we now define the graph Γi.

For i ≥ 0 we define Γi := Γ[H(ss̃)i ∪H(ss̃)is]

and for i ≤ −1 we define Γi := Γ[Hs̃(ss̃)−i−1 ∪H(s̃s)−i].

Note that the Γi partition the vertices of Γ. By our assumptions we know

that C0 is a Hamilton cycle of Γ0. We now define Hamilton cycles of Γi for

all i 6= 0.

For i ≥ 1 we define Ci :=(ss̃)i[c1, . . . , ck]

and for i ≤ −1 we define Ci :=(s̃s)−i[c1, . . . , ck].

To show that Ci is a Hamilton cycle of Γi it is enough to show that Ci is a

cycle and that Ci contains no vertex outside of Γi, because all cosets of H

have the same size and because C0 is a Hamilton cycle of Γ0 = Γ(G,S).
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For i ≥ 1 we first show that Ci is a cycle. It follows directly from the

fact that C0 is a cycle that in Γ each Ci is closed.2 Assume for a contraction

that (ss̃)ic0 · · · cj = (ss̃)ic0 · · · c` for some j < `. This contracts that C0 is a

cycle as it is equivalent to 1 = cj+1 · · · c`.
It remains to show that every vertex of Ci is contained in Γi. Since H is

a normal subgroup of both G and G̃, the elements s and s̃ commute with H.

As each vertex v := c0 . . . cj is contained in either H or Hs we can conclude

that (ss̃)iv ∈ (ss̃)iH = H(ss̃)i or (ss̃)iv ∈ (ss̃)iHs = H(ss̃)is.

Next we note some easy observations on the structure of the Ci’s. First

note that Ci ∩ Cj = ∅ for i 6= j and also that the union of all Ci’s con-

tains all the vertices of Γ. In addition note that each Ci is alternating

between two copies of H as C0 was alternating between cosets of Γ0. Fi-

nally note that by the structure of Γ there is no edge between any Γi and Γj

with |i− j| ≥ 2 in Γ. By the structure of Γ for i ≥ 0 we get a perfect

matching between Ci ∩H(ss̃)is and Ci+1 ∩H(ss̃)i+1 by s̃.

By a similar argument one can show that for i < 0 we get a similar struc-

ture and the desired perfect matchings.

The statement (i) now follows by Lemma 3.1.7. Analog statement (ii)

follows by Remark 3.1.8.

We now recall two known statements about Hamilton cycles on finite

groups, which we then will first combine and finally generalize to infinite

groups. For that let us first recall some definitions. A group G is called

Dedekind, if every subgroup of G is normal in G. If a Dedekind group G is

also non-abelian, it is called a Hamilton group.

Lemma 3.1.10. [11] Any Cayley graph of a Hamilton group G has a Hamil-

ton cycle.

In addition we know that all finite abelian groups also contain Hamilton

cycles by Lemma 3.1.1. In the following remark we combine these two facts.

Remark 3.1.11. Any Cayley graph of a finite Dedekind group of order at

least three contains a Hamilton cycle.

2Γ contains the edge between the image of c1 and ck for each Ci.
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3.1.3 Main results of Chapter 3

In this section we prove our main results of Chapter 3. For that let us

recall that by Theorem 2.3.2 we know that every two-ended group is either

a free product with amalgamation over a finite subgroup of index two or an

HNN-extension over a finite subgroup. Now we prove our first main result,

Thereom 3.1.12, which deals with the first type of groups. To be more precise

we use Remark 3.1.11 to prove that there is a Hamilton circle in the free

product with amalgamation over the subgroup of index two of a Dedekind

group and an arbitrary group.

Theorem 3.1.12. Let G = 〈S〉 and G̃ = 〈S̃〉 be two finite groups with non-

trivial subgroups H ∼= H̃ of indices two and such that G is a Dedekind group.

Then Γ(G ∗HG̃, S ∪ S̃) has a Hamilton circle.

Proof. First, it follows from Remark 3.1.11 that Γ(G,S) has a Hamilton

cycle. If all generators of S = {s1, . . . , sn} lie outside H, then Lemma 3.1.9

completes the proof. So let sn ∈ S \H and let s̃ ∈ S̃ \ H̃. Let us suppose

that S ′ := {s1, . . . , si} is a maximal set of generators of S contained in H and

set L := 〈S ′〉. First note that L is a normal subgroup of G. We now have

two cases, either H = L or L 6= H. We may assume that L 6= H as otherwise

we can find a Hamilton circle of Γ(G ∗HG̃, S ∪ S̃) by Lemma 3.1.6 as H is a

Dedekind group and thus Γ(H,S ′) contains a Hamilton cycle. Because L ( H

and H ∼= H̃ we conclude that there is a subgroup of H̃ that is corresponding

to L, call this L̃.

Let Λ be the Cayley graph of the group G/L ∗H/LG̃/L̃ with the generating

set S∪ S̃, where S and S̃ the corresponding generating sets of G/L and G̃/L̃,

respectively. Note that every generator of the quotient group G/L lies outside

of H/L. Hence it follows from Lemma 3.1.9, that we can find a Hamilton

double ray in Λ, say R. Now we are going to use R and construct a Hamilton

circle for Γ := Γ(G ∗HG̃, S ∪ S̃). Since L is a subgroup of H, we can find a

Hamilton cycle in the induced subgroup of L, i.e. Γ(L, S ′). We denote this

Hamilton cycle in Γ(L, S ′) by C = [x1, . . . , xn]. We claim that the induced

subgraph of any coset of L of G∗HG̃ contains a Hamilton cycle. Let Lx be an

arbitrary coset of G ∗HG̃. If we start with x and move along the edges given
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by C, then we obtain a cycle. We will show that this cycle lies in Lx. Since L

is a normal subgroup of both G and G̃ it implies that L is a normal subgroup

of G ∗HG̃. Since L is normal, the element x commutates with the elements

of L and so x[C] lies in Lx and the claim is proved. It is important to notice

that R gives a perfect mating between each two successive cosets. Thus we

are ready to invoke the Lemma 3.1.6 and this completes the proof.

The following Theorem 3.1.14 proves that the second type of two-ended

groups also contains a Hamilton circle, given some conditions.

Remark 3.1.13. Let us have a closer look at an HNN extension of a finite

group C. Let C = 〈S | R〉 be a finite group. It is important to notice that ev-

ery automorphism φ : C → C gives us an HNN-extension G = C ∗C. In par-

ticular every such HNN-extension comes from an automorphism φ : C → C.

Therefore C is a normal subgroup of G with the quotient Z, as the presenta-

tion of HNN-extension G = C ∗C is

〈S, t | R, t−1ct = φ(c)∀c ∈ C〉.

Hence G can be expressed by a semidirect product C o Z which is induced

by φ. To summarize; every two-ended group with a structure of HNN-

extension is a semidirect product of a finite group with the infinite cyclic

group.

Theorem 3.1.14. Let G = (HoF,X ∪Y ) with F = Z = 〈Y 〉 and H = 〈X〉
and such that H is finite and H contains a Hamilton cycle. Then G has a

Hamilton circle.

Proof. Let C = [c1, . . . , ct] be a Hamilton cycle in Γ(H,X). We now make a

case study about the size of Y .

Case I : If |Y | = 1, then F = Z = 〈y〉. Since H is a normal subgroup of G,

it follows that gH = Hg for each g ∈ G. Thus the vertices of the set Cg

form a cycle for every g ∈ G. Let Cg be the cycle of Hg for all g ∈ Z, and

let C be the set of all those cycles. We show that for every pair of g, h ∈ Z
we either have Ch ∩ Cg = ∅ or Ch = Cg. Suppose that Cg ∩ Ch 6= ∅. This
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means that

ciy
g = cjy

h

⇔ c−1
j ci = yh−g.

The order of the left hand side is finite while the order of the right hand side

is infinite. Thus we conclude that yh−g = 1 which in turn yields that g = h

thus we get Cg = Ch. We claim that every vertex is contained in C. Suppose

that g ∈ G. Since G = H o Z, we deduce that G = HZ. In other words,

there is a natural number i and an h ∈ Z such that g = cih and so g lies in

the cycle Ch. These conditions now allow the application of Lemma 3.1.6,

which concludes this case.

Case II : Assume that |Y | ≥ 2. By Theorem 3.1.3 there are two disjoint

double rays

R1 = [. . . , x−2, x−1]1[x1, x2, . . .]

and

R2 = [. . . , y−2, y−1]x[y1, y2, . . .]

where xi, yi, x ∈ Y ± such that the vertices of R1 ∪ R2 cover all elements Z.

Since H is a normal subgroup of G, we can conclude that gH = Hg. Thus

the vertices of the set gC form a cycle for every g ∈ G. Now consider the

double rays

P1 = · · · [x−2][c1, . . . , ct−1][x−1]1[c1, . . . , ct−1][x1][c1, . . . , ct−1] · · ·

and

P2 = · · · [y−2][c1, . . . , ct−1][y−1]x[c1, . . . , ct−1][y1]][c1, . . . , ct−1] · · · .

For easier notation we define a := c1 · · · ct−1. We claim that P1 ∩ P2 = ∅.
There are 4 possible cases of such intersections. We only consider this one
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case, as the others are analog. So assume to the contrary

x · ay1 · · · ay`1 · c1 · · · c`′1 = ax1 · · · ax`2 · c1 · · · c`′2 .

Since H is a normal subgroup of G, for every g ∈ G we have ag = gh for

some h ∈ H. It follows that

x · ay1 · · · ay`1 · c1 · · · c`′1 = ax1 · · · ax`2 · c1 · · · c`′2
⇔ x · y1 · · · y`1h · c1 · · · c`′1 = x1 · · ·x`2h′ · c1 · · · c`′2 for some h, h′ ∈ H

⇔ x · y1 · · · y`1h̄ = x1 · · ·x`2h̄′ for some h̄, h̄′ ∈ H
⇔ (x1 · · ·x`2)−1x · y1 · · · y`1 = h̄′h̄−1

The left side of this equation again has finite order, but the right side has

infinite order. It follows that

(x1 . . . xi)
−1xy1 · · · yj = 1

xy1 · · · yj = x1 . . . xi

But this contradicts our assumption thatR1 andR2 were disjoint. Therefore,

as V (P1 ∪ P2) = V (Γ(G,X ∪ Y )), the double rays P1 and P2 form the desired

Hamilton circle.

3.2 Multiended groups

In this section we give a few insights into the problem of finding Hamilton

circles in groups with more than two ends, as well as showing a counterex-

ample for Problem 1. We call a group to be a multiended group if is has more

than two ends. Please recall that Diestel, Jung and Möller [16] proved that

any transitive graph with more than two ends has infinitely many ends3 and

as all Cayley graphs are transitive it follows that the number of ends of any

group is either zero, one, two or infinite. This yields completely new chal-

lenges for finding a Hamilton circle in groups with more than two ends. In the

3In this case the number of ends is uncountably infinite.
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Figure 3.1: Hamilton circle in the Wild Circle.

following we provide the reader with an example to illustrate the problems of

finding a Hamilton circles in an infinite graph with uncountably many ends.

In Figure 3.1 we illustrate the graph which is known as the Wild Circle, for

more details see [14, Figure 8.5.1]. The thick edges of this locally finite con-

nected graph form a Hamilton circle which uses only countably many edges

and vertices while visiting all uncountably many ends. Thus studying graphs

with more than two ends to find Hamilton circles is more complicated than

just restricting one-self to two-ended graphs.

3.2.1 A counterexample of Problem 1

We now give a counterexample to Problem 1. Define G1 :=G2 :=Z3 × Z2.

Let Γ := Γ(G1 ∗Z2G2). Let G1 = 〈a, b〉 and G2 = 〈a, c〉 where the order of a

is two and the orders of b and c, respectively, are three. In the following we

show that the assertion of Problem 1 holds for Γ and we show that |Γ| does

not contain a Hamilton circle.

For that we use the following well-known lemma and theorem.

Lemma 3.2.1. [14, Lemma 8.5.5] If Γ is a locally finite connected graph,

then a standard subspace 4 of |Γ| is topologically connected (equivalently: arc-

connected) if and only if it contains an edge from every finite cut of Γ of which

4A standard subspace of |Γ| is a subspace of |Γ| that is a closure of a subgraph of Γ.
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it meets both sides.

Theorem 3.2.2. [15, Theorem 2.5] The following statements are equivalent

for sets D ⊆ E(Γ):

(i) Every vertex and every end has even degree in D.

(ii) D meets every finite cut in an even number of edges.

Assume for a contradiction that there is a Hamilton circle in Γ and let D

be its edge set. Clearly D contains precisely two edges incident to every

vertex. Theorem 3.2.2 tells us that D meets every finite cut in an even

number and every vertex twice. Since circles are connected and arc-connected

we can, by Lemma 3.2.1, conclude that D meets every finite cut in at least

one edge. We will now show that there is no set D ⊆ E with these properties.

For this purpose we study two cases: In each case we will consider a few finite

cuts in Γ that show that such a D cannot exist. Figures 3.2 and 3.3 display

induced subgraphs of Γ. The relevant cuts in those figures are the edges that

cross the thick lines. The cases we study are that D contains the dashed edges

of the appropriate figure corresponding to the case, see Figures 3.2 and 3.3.

For easier reference we call the two larger vertices the central vertices.

Case 1: We now consider Figure 3.2, so we assume that the edges from

the central vertices into the ‘upper’ side are one going to the left and the

other to the right. First we note that the cut F ensures that the curvy edge

between the central vertices is not contained in D. Also note that F ensures

that the remaining two edges leaving the central vertices must go to the

‘lower’ side of Figure 3.2. As the cuts B and C have to meet an even number

of edges of D we may, due to symmetry, assume that the dotted edge is also

contained in D. This yields the contraction that the cut A now cannot meet

any edge of D.

Case 2: This case is very similar to Case 1. Again we may assume that

the there are two edges leaving the central into the ‘upper’ and the ‘lower’

side, each. The cut C ensures that D must contain both dotted edges. But

this again yields the contraction that A cannot meet any edge in D.

35



A

B C

F

Figure 3.2: Case 1

A

B C

Figure 3.3: Case 2

It remains to show that G1∗Z2G2 cannot be obtained as a free product with

amalgamation over subgroups of size k of more than k groups. IfG1∗Z2G2 were

fulfilling the premise of Problem 1 then there would be a finite W ⊂ V (Γ),

say |W | = k, such that Γ \W has more than k components.

We will now use induction on the size of W . For a contraction we assume

that such a set W exists. For that we now introduce some notation to

make the following arguments easier. In the following we will consider each

group element as its corresponding vertex in Γ. As Γ is transitive we may

assume that 1 is contained in W . Furthermore we may even assume that no

vertex which has a representation starting with c is contained in W . Let Xi
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be the set of vertices in Γ that have distance exactly i from {1, a}. We

set Wi :=Xi ∩W . For xi ∈ Wi let x−i be its neighbour in Xi−1, note that

this is unique. For a vertex x ∈ Xi let x̄ be the neighbour of x in Xi which is

not xa, note this will always be either xb or xc. For a set Y of vertices of Γ

let CY be the number of components of Γ \ Y .

As Γ is obviously 2-connected the induction basis for |W | = 0 or |W | = 1

holds trivially.

We now assume that |W | = k and that for each W ′ with |W ′| ≤ |W | − 1

we know that CW ′ ≤ |W ′|. In our argument we will remove sets of vertices

of size ` from W while decreasing CW by at most `.

Let x ∈ W be a vertex with the maximum distance to {1, a} in Γ,

say x ∈ Xi.

Suppose that xa /∈ W . The set {xb, xb2} intersects at most one compo-

nent of Γ \W , as the two vertices are connected by an edge. We can use the

same argument for {xc, xc2}. If xa /∈ W , then it lies in one of these compo-

nents as well. If is xb further away from {1, a}, then it is connected to xb

by the path xb, xba = xab, xa, otherwise we can argue analogously with c

instead of b. Hence x has neighbors in at most two components of Γ \W , so

removing x reduces CW by at most one.

So we may assume that xa ∈ W . Let us consider the eight neighbors

of x and xa. We know that four of those neighbors are in Xi+1. We may

assume that those four vertices are xb, xab, xb2 and xab2. By our choice of

x we know that all those vertices belong to the same component of Γ \W .

We may assume that xc and xac2 are in Xi. By our above arguments for the

case that xa /∈ W we may assume that either xc and xac2 are both in W or

both not in W . If xc and xac2 are both in W , then CW\{x,xa} ≤ CW − 1 and

we are done. If xc and xac2 are both not in W , then CW\{x,xa} ≤ CW − 2

and we are done.

3.2.2 Closing Chapter 3

We still believe that it should be possible to find a condition on the size of

the subgroup H to amalgamate over relative to the index of H in G1 and G2
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such that the free product with amalgamation of G1 and G2 over H contains

a Hamilton circle for the standard generating set. In addition it might be

necessary to require some condition on the group G1/H. We conjecture the

following:

Conjecture 1. There is a function f : N → N and let G = G1 ∗HG2 where

G1 = 〈S1〉 and G2 = 〈S2〉 are finite groups with following properties:

(i) [G1 : H] = k and [G2 : H] = 2.

(ii) |H| ≥ f(k).

(iii) Each subgroup of H is normal in G1 and G2.

(iv) Γ(G1/H, S/H) contains a Hamilton cycle.

Then Γ(G1 ∗HG2, S1 ∪ S2) contains a Hamilton circle.
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Chapter 4

From circles to cycles

4.1 Groups with Hamilton circles

One of the strongest results about the Lovász’s conjecture is the following

theorem which has been proved by Witte.

Theorem 4.1.1. [74, Theorem 6.1] Every connected Cayley graph on any

finite p-group is Hamiltonian.

In this section we are trying to present a generalization for Theorem 4.1.1

for infinite groups. First of all we need to show that two-ended groups always

contain a subgroup of index two.

Lemma 4.1.2. Let G be a finitely generated two-ended group. Then G con-

tains a subgroup of index two.

Proof. It follows from [45, Lemma 11.31] and [45, Theorem 11.33] that

there exists a subgroup H of index at most 2 together with a homomor-

phism φ : H → Z with finite kernel. Now if G is equal to H, then we deduce

that G/K is isomorphic to Z where K is the kernel of φ. Let L/K be the

subgroup of G/K corresponding to 2Z. This implies that the index of L in G

is 2, as desired.

Now by Lemma 4.1.2 we know that G always possesses a subgroup H

of index 2. In Theorem 4.1.5 we show that if any Cayley graph of H is

Hamiltonian, then Γ(G,S) contains a Hamilton circle if S ∩H = ∅.
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For two-ended graphs we say R1 t R2 is a Hamilton circle if the double

rays R1 and R2 fulfill the conditions of Lemma 3.1.5. Lemma 3.1.5 directly

implies the following corollary.

Corollary 4.1.3. Let G be a two-ended group with a subgroup H of index

two. If any Cayley graph of H contains a connected Hamilton arc, then any

Cayley graph Γ(G,S) of G contains a Hamilton circle if H = 〈S ∩H〉.

The problem of finding Hamilton circles in graphs with more than two

ends is a harder problem than finding Hamilton circles in graphs with one or

two ends, as we have seen in Section 3.2.1. For graphs with one or two ends

the goal is to find one or two double rays containing all the vertices which

behave nicely with the ends. For graphs with uncountalby many ends, it is

not so straightforward to know what this desired structure could be. But the

following powerful lemma by Bruhn and Stein helps us by telling us what

such a structure looks like.

Lemma 4.1.4. [7, Proposition 3] Let C be a subgraph of a locally finite

graph Γ. Then the closure of C is a circle if and only if the closure of C is

topologically connected and every vertex or end of Γ in this closure has degree

two in C.

Theorem 4.1.5. Let G = 〈S〉 be a two-ended group with a subgroup H of

index 2 such that H ∩S = ∅ and such that |S| > 2. If any Cayley graph of H

is Hamiltonian, then Γ(G,S) is also Hamiltonian.

Proof. First we notice that H is two-ended, see [61, Lemma 5.6]. Let g ∈ S.

We claim that gS generates H. Since the index H in G is 2, we conclude

that S2 generates H. So it is enough to show that 〈gS〉 = 〈S2〉. In order

to verify this we only need to show that sisj ∈ 〈gS〉, where si, sj ∈ S. Since

the both of gs−1
i and gsj lie in gS, we are able to conclude that sisj belongs

to 〈gS〉. We now suppose that R1 tR2 is a Hamilton circle in Γ(H, gS). Let

Ri = [. . . , gsi−2 , gsi−1 ]gi[gsi1 , gsi2 , . . .],

where sij ∈ S for i = 1, 2 and j ∈ Z \ {0}. Without loss of generality we can

assume that g1 = 1. We will now “expand” the double rays Ri to double
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rays in Γ(G,S). So we define

R′i := [. . . , g, si−2 , g, si−1 ]gi[g, si1 , g, si2 , . . .]

for i = 1, 2. We note that S ∩ H = ∅. First we show that R′i really is

a double ray. This follows directly from the definition of R′i and the fact

that Ri is a double ray. It remains to show that R′1 and R′2 are disjoint and

moreover their union covers each vertex of Γ(G,S). Suppose that R′1 and R′2
meet. Let v ∈ R′1 ∩R′2 with the minimal distance in R′1 from the vertex 1.

Now we have the case that v ∈ H or v /∈ H. Both cases directly give a

contradiction. From v ∈ H we can conclude that R1 and R2 meet, which

contradicts our assumptions. Assume that v /∈ H. Without loss of generality

assume that v 6= 1. Suppose that the path from 1 to v in R′1 used s11 . This

implies that vg−1 ∈ H and vg−1 ∈ R′1,R′2. But this contradicts both the

minimality of the distance of v from 1 and the fact that vg−1 ∈ R1,R2. If

the path from 1 to v in R′1 does not use s11 then it must contain s1−1 . This

implies that we can use g−1v instead of vg−1 to get the same contradictions

as in the above case.

It remains to show that R′1 and R′2 each have a tail in each of the two

ends of Γ(G,S). Let ω and ω′ be the two ends of Γ(G,S) and let X be a finite

vertex set such that C(X,ω) ∩ C(X,ω′) = ∅. It remains to show that R′i
has a tail in both C(X,ω) and C(X,ω′). By symmetry it is enough to show

that R′i has a tail in C :=C(X,ω). Let CH be the set of vertices in C which

are contained in H. By construction of R′i we know that R′i ∩CH is infinite.

And as Γ(G,S) is infinite and as R′i is connected, we can conclude that C

contains a tail of R′i.

With an analogous method of the proof of Theorem 4.1.5, one can prove

the following theorem.

Theorem 4.1.6. Let G = 〈S〉 be a two-ended group with a subgroup H of

index 2 such that H ∩ S = ∅. If any Cayley graph of H contains a Hamilton

double ray, then so does Γ(G,S).

Corollary 4.1.7. Let H be a two-ended group such that any Cayley graph
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of H is Hamiltonian. If G = 〈S〉 is any extension of H by Z2 in such a way

that S ∩H = ∅, then Γ(G,S) has a Hamilton double ray.

Lemma 4.1.8. Any Cayley graph of Z contains a Hamilton double ray.

Proof. Let Z = 〈S〉. We proof Lemma 4.1.8 by induction on |S|. There is

nothing to show for |S| = 2. So we may assume that |S| > 2 and any Cayley

graph of Z with less than |S| generators contains a Hamilton double ray.

Let s ∈ S and define H :=〈S \ s〉. Because H is a subgroup of Z we know

that H is cyclic. By the induction hypothesis we know that there is a Hamil-

ton double ray of H, say RH = [. . . x−2, x−1]1[x1, x2, . . .]. Let k :=[Z : H],

note that k ∈ N. So we have G =
⊔k−1
i=0 Hs

i. We define

R := · · · [s−1]−(k−1)[x−2][s]k−1[x−1]1[s]k−1[x1][s−1]−(k−1)[x2] · · ·

As Z is abelian we can conclude that R covers all vertices of Γ(G,S). It

remains to show that R has tails in both ends of Γ(G,S) which follows

directly from the fact that RH is a Hamilton arc of H and the fact that the

index of H in G is finite.

We now give two lemmas which show that we can find normal subgroups

in certain free-products with amalgamations or HNN-extensions.

Lemma 4.1.9. Let G = G1 ∗H G2 be a finitely generated 2-ended group,

then H is normal in G.

Proof. As G is two-ended we know that [Gi : H] = 2 for i ∈ {1, 2}. Let g ∈ G
be any element. Let f ∈ H. We have to show that gfg−1 ∈ H. It is sufficient

to check the case when g is a generator of G. But this case is obvious.

Lemma 4.1.10. Let G be a two-ended group which splits over Zp as an HNN-

extension. i.e. G = 〈k, t | kp = 1, tkt−1 = φ(k)〉, with φ ∈ Aut(Zp). Then Zp
is normal in G.

Proof. Let g ∈ G. We have to show that gf = f rg for g ∈ G and f ∈ Zp
and some r ∈ Z. By our presentation of G we know that g = ki1tj1 · · · kintjn .
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From tkt−1 = φ(k) = k` for some ` ∈ Z we conclude the following:

tkt−1 = k`

⇒ t2kt−2 = tk`t−1

= (tkt−1)`

= k`
2

⇒ t2k = k`
2

t2

By induction we obtain txk = k`
x
tx for x ∈ N and we can extend this by

replacing t with t−1 to all x ∈ Z. This implies

txkt−x = k`
x

txt−x = k`
x

for all x ∈ Z

⇒ (txkt−x)m = (k`
x

)m = ky for some y ∈ Z

⇒ txkmt−x = ky
′

for some y′ ∈ Z

txkm = ky
′
tx

This implies that we have a presentation of each g ∈ G as g = kytx for

some x, y ∈ Z. Let f ∈ Zp, say f = ku, be given. We conclude

gf = kytxku = kyky
′
tx for some y′ ∈ Z

= ky
′′
kutx for some y′′ ∈ Z

= ky
′′
g

This finishes the proof.

Witte has shown that any Cayley graph of a finite dihedral group contains

a Hamilton path.

Lemma 4.1.11. [73, Corollary 5.2] Any Cayley graph of the finite dihedral

group contains a Hamilton path.

Next we extend the above mentioned lemma from a finite dihedral group

to the infinite dihedral group.

Lemma 4.1.12. Any Cayley graph of D∞ contains a Hamilton double ray.
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Proof. Let S be an arbitrary generating set of D∞ = 〈a, b | b2 = (ab)2 = 1〉.
Let S1 be a maximal subset of S in a such way that S1 ⊆ 〈a〉 and de-

fine S2 := S \ S1. We note that each element of S2 can be expressed as ajb

which has order 2 for every j ∈ Z. First we consider the case that S1 is

not empty. Assume that H = 〈ai〉 is the subgroup generated by S1. We

note that Hchar〈a〉 E D∞ and so we infer that H E D∞. It follows from

Lemma 4.1.8 that we have the following double ray R:

[. . . , s−2, s−1]1[s1, s2, . . .],

spanning H with each si ∈ S1 for i ∈ Z \ {0}. We notice that D∞/H = 〈S2〉
is isomorphic to D2i for some i ∈ N and by Lemma 4.1.11 we are able

to find a Hamilton path of D∞/H, say [x1H, . . . , x2i−1H], each x` ∈ S2

for ` ∈ {1, . . . , 2i− 1}. On the other hand, the equality bab = a−1 implies

that batb = a−t for every t ∈ Z and we deduce that xatx = a−t for every t ∈ Z
and x ∈ D∞ \ 〈a〉.1 In other words, we can conclude that xsix = s−1

i for

each si ∈ S1 and x ∈ D∞ \ 〈a〉. We now define a double ray R′ in D∞ and

we show that it is a Hamiltonian double ray. In order to construct R′, we

define a union of paths. Set

Pj := pj[x1, . . . , x2i−1, s
−1
j+1, x2i−1, . . . , x1, sj+2],

where pj := s1 · · · sj whenever j > 0, pj := s−1 · · · sj whenever j < 0 and fi-

nally p0 := 1. It is straightforward to see that P2j and P2(j+1) meet in exactly

one vertex. We claim that the collection of all P2j’s are pairwise edge disjoint

for j ∈ Z. We only show the following case and we leave the other cases to the

reader. Assume that p2jx1 · · ·x` meets with p2j′x1 · · ·x2i−1s
−1
2j′+1x2i−1 · · ·x`′ ,

where j < j′ and ` ≤ `′. It is enough to verify ` = `′. It is not hard to see

that p2jx1 · · ·x` = p2j′s
−1
2j′+1x1 · · ·x`′ . We can see that the left hand side of

the equality belongs to the coset Hx1 · · ·x` and the other lies in Hx1 · · ·x`′
and so we conclude that ` = `′. We are now ready to define our desired

1This follows as every element of D∞ \ 〈a〉 can be presented by aib for i ∈ Z.
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double ray. We define

R′ :=
⋃
j∈Z

P2j.

It is straightforward to check R′ contains every element of D∞, thus we

conclude that R′ is a Hamilton ray, as desired.

If S1 is empty, then S ∩ 〈a〉 = ∅ and Theorem 4.1.6 completes the proof.

With a slight change to the proof of Lemma 4.1.12 we can obtain a Hamil-

ton circle for D∞.

Theorem 4.1.13. The Cayley graph of D∞ is Hamiltonian for any gener-

ating set S with |S| ≥ 3.

Proof. As this proof is a modification of the proof of Theorem 4.1.12, we

continue to use the notations of that proof here. We may again assume

that S1 6= ∅. Otherwise X :=〈S1〉 ⊆ 〈a〉 which implies that X ∼= Z. In this

case using Lemma 4.1.8 and applying Theorem 4.1.5 finishes the proof.

Since |S| ≥ 3, each of Pj has length at least one. Now we define new

paths

P ′j := pj[x1, . . . , x2i−2, s
−1
j+1, x2i−2, . . . , x1, sj+2],

where pj := s1 · · · sj whenever j > 0, pj := s−1 · · · sj whenever j < 0 and fi-

nally p0 := 1.

R1 :=
⋃
j∈Z

P ′2j and R2 := [. . . , s−2s−1]x2i−1[s1, s2, . . .].

Now R1 tR2 is a Hamilton circle.

Theorem 4.1.14. Let G = 〈S〉 be a two-ended group which splits over Zp
such that S ∩ Zp 6= ∅, where p is a prime number. Then Γ(G,S) has a

Hamilton circle.

Proof. First we notice that S and Zp meet in exactly one element and its

inverse, say S ∩ Zp = {k, k−1}. By Theorem 2.3.2 we already know that G is

isomorphic to G1 ∗ZpG2 or an HNN-extension of Zp, where |G1| = |G2| = 2p.
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Let us first assume that G ∼= G1 ∗ZpG2, where Gi is a finite group such

that [Gi : Zp] = 2 for i = 1, 2. Since Zp by Lemma 4.1.9 is a normal sub-

group of G, we deduce that G/Zp ∼= Z2 ∗ Z2 which is isomorphic to D∞.

We set S ′ := S \ {k, k−1} and now the subgroup generated by S ′ has only

trivial intersection with Zp. Otherwise Zp 3 x ∈ 〈S ′〉 yields that k ∈ 〈S ′〉,
which cannot happen as S was minimal. We denote this subgroup by H.

Note that HZp = G because ZP is normal.2 So we can conclude that H is

isomorphic to D∞ ∼= Z2 ∗ Z2 as:

Z2 ∗ Z2
∼= (G1 ∗ZpG2)/ZP = G/Zp = (HZP )/Zp ∼= H/(H ∩ Zpp) = H

It follows from Lemma 4.1.12 that there exists the following Hamilton double

ray R in H:

[. . . , s−2, s−1]1[s1, s2, . . .],

with si ∈ S ′. We notice that R gives a transversal of the subgroup Zp.
Set xi := Πi

j=1sj for i ≥ 1 and xi := Πi
j=−1 for i ≤ −1. There is a perfect

matching between two consecutive cosets Zpxi and Zpxi+1.3 It is important

to note that Zp = 〈k〉 is a normal subgroup of G. We use this to find a cycle

in each coset of Zp.4

We now are ready to apply Lemma 3.1.6 to obtain a Hamilton circle.

Now assume that G is an HNN-extension which splits over Zp. We recall

that G can be represented by 〈k, t | kp = 1, t−1kt = φ(k)〉, with φ ∈ Aut(Zp).
Since Zp is a normal subgroup, we conclude that G = Zp〈t〉 = 〈k〉〈t〉. Again

set S ′ := S \ {k, k−1} and H :=〈S ′〉.

〈S ′〉 = H = H/(H ∩ Zp) ∼= ZpH/Zp = G/Zp = Zp〈t〉/Zp ∼= 〈t〉.

Hence we conclude that S ′ generates 〈t〉. It follows from Lemma 4.1.8

2To illustrate: Consider the generating sets. Because 〈k〉 is normal in G we can conclude
that G = 〈S〉 = 〈S′〉〈k〉.

3This matching is given by si+1 for i ≥ 1 and si−1 for i ≤ −1.
4To illustrate consider the following case, all other cases are analogous: By normality

of Zp in G we know that xik
` = k`

′
xi. And as we have a cycle in Zp given by k we have

such a cycle coset of Zp.
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that Γ(〈t〉, S ′) contains a Hamilton double ray. By the same argument as

in the other case we can find the necessary cycles and the matchings between

them to use Lemma 3.1.6 to find the desired Hamilton circle.

In the following theorem we are able to drop the condition of S ∩H 6= ∅
if p = 2.

Theorem 4.1.15. Let G be a two-ended group which splits over Z2. Then

any Cayley graph of G is Hamiltonian.

Proof. Suppose that G = 〈S〉. If S meets Z2 = {1, k}, then we can use

Theorem 4.1.14 and we are done. So we can assume that S does not inter-

sect Z2. We note that Z2 is a normal subgroup of G either by Lemma 4.1.9 or

Lemma 4.1.10 and we deduce from Theorem 2.3.2 that G = G/Z2 is isomor-

phic to Z or D∞. In either case we can find a Hamilton double ray in Γ(G,S)

by either Lemma 4.1.8 or Lemma 4.1.12, say

R = [. . . , s̄−1]1[s̄1, . . .].

This double ray induces a double ray in Γ(G,S), say

R = [. . . , s−1]1[s1, . . .].

We notice that R meets every coset of Z2 in G exactly once. We now define

the following double ray

R′ := [. . . , s−1]k[s1, . . .].

It is important to note that R and R′ do not intersect each other. Otherwise

there would be a vertex adjacent to two different edges with the same label

and this yields a contradiction. Now it is not hard to see that RtR′ forms

a Hamilton circle.

Remark 4.1.16. The assumption that G is two-ended is necessary and it

cannot be extended to multi-ended groups, see Section 3.2.1 in which we

study G = Z6 ∗Z2 Z6. We proved that there is a generating set S of G of

size 3 such that Γ(G,S) is not Hamiltonian.
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4.2 Generalization of Rapaport Strasser

In this section we take a look at the following famous theorem about Hamilton

cycles of Cayley graphs of finite groups which is known as Rapaport Strasser’s

Theorem and generalize the case of connectivity two to infinite groups in

Theorem 4.2.4.

Theorem 4.2.1. [59] Let G be a finite group, generated by three involu-

tions a, b, c such that ab = ba. Then the Cayley graph Γ(G, {a, b, c}) is

Hamiltonian.

In the following, we will try to extend Theorem 4.2.1 to infinite groups.

But we need to be careful. There are nontrivial examples of infinite groups

such that their Cayley graphs do not possess any Hamilton circle, as we have

seen in Section 3.2.1. Here we have an analogous situation. For instance let

us consider Z2 ∗ (Z2 × Z2) with a canonical generating set. Suppose that a is

the generator of the first Z2. Then every edge with the label a in this Cayley

graph is a cut edge. Hence we only consider Cayley graphs of connectivity at

least two. On the other hand our graphs are cubic and so their connectivities

are at most three.

We note that by Bass-Serre theory, we are able to characterize groups with

respect to the low connectivity as terms of fundamental groups of graphs. It

has been done by Droms, see Section 3 of [19]. But what we need here is

a presentation of these groups. Thus we utilize the classifications of Geor-

gakopoulos [29] to find a Hamilton circle. First we need the following crucial

lemma which has been proved by Babai.

Lemma 4.2.2. [3, Lemma 2.4] Let Γ be any cubic Cayley graph of any one-

ended group. Then Γ is 3-connected.

By the work of Georgakopoulos in [29] we have the following lemma about

the generating sets of 2-connected cubic Cayley graphs.

Lemma 4.2.3. [29, Theorem 1.1 and Theorem 1.2] Let G = 〈S〉 be a group,

where S = {a, b, c} is a set of involutions and ab = ba. If κ(Γ(G,S)) = 2,

then G is isomorphic to one of the following groups:
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(i) 〈a, b, c | a2, b2, c2, (ab)2, (abc)m〉, m ≥ 1.

(ii) 〈a, b, c | a2, b2, c2, (ab)2, (ac)m〉, m ≥ 2.

With the help of the lemmas above we are able to prove the extension of

Theorem 4.2.1 for 2-connected graphs.

Theorem 4.2.4. Let G = 〈S〉 be a group, where S = {a, b, c} is a set of in-

volutions such that ab = ba. If κ(Γ(G,S)) = 2, then Γ(G,S) is Hamiltonian.

Proof. Using Lemma 4.2.3 we can split the proof in two cases:

(i) G ∼= 〈a, b, c | a2, b2, c2, (ab)2, (abc)m〉, m ≥ 1.

If m = 1, then G is finite and we are done with the use of Theorem 4.2.1.

So we can assume that m ≥ 2. We set Γ := Γ(G, {a, b, c}). Let R be

the graph spanned by all the edges with labels a or c. It is obvious that

R spans Γ as every vertex is incident with an edge with the label a and

an edge with the label c. We want to apply Lemma 4.1.4. Obviously R
induces degree two on every vertex of Γ. It follows from transitivity,

that for any end ω there is a defining sequence (Fi)i∈N such that |Fi| = 2

and such that the label of each edge in each Fi is c.

To illustrate, consider the following: The cycle C := 1[a, b, a, b] sepa-

rates Γ into two non-empty connected graphs, say Γ1 and Γ2. Let e1

and e2 be the two edges of Γ between C and Γ1. Note that the label of

both of those edges is c, additionally note that F :={e1, e2} separates Γ1

from Γ[Γ2∪C]. Let R′ be any ray in Γ belonging to an end ω. There is

an infinite number of edges contained in R′ with the label c as the order

of a, b, ab and ba is two, let D be the set of those edges. We can now

pick images under some automorphisms of F which meet D to create

the defining sequence (Fi)i∈N.

Each such Fi is met by exactly two double rays in R. It is straight-

forward to check that R meets every finite cut of Γ. This implies that

the closure of R is topologically connected and that each end of Γ has

degree two in this closure.
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(ii) G ∼= 〈a, b, c | a2, b2, c2, (ab)2, (ac)m〉, m ≥ 2

The proof of (ii) is very similar to (i). But we use the edge with labels b

and c and the defining sequence consists of two edges both with label b

instead of c.5

In the following we give an outlook on the problem of extending Theo-

rem 4.2.1 to infinite groups with 3-connected Cayley graphs. Similar to the

Lemma 4.2.3 there is a characterization for 3-connected Cayley graphs which

we state in Lemma 4.2.5. Note that the items (i) and (ii) have at most one

end.

Lemma 4.2.5. [27] Let G = 〈S〉 be a planar group, where S = {a, b, c} is

a set of involutions and ab = ba. If κ(Γ(G,S)) = 3, then G is isomorphic to

one of the following groups:

(i) 〈a, b, c | a2, b2, c2, (ab)2, (acbc)m〉,m ≥ 1.

(ii) 〈a, b, c | a2, b2, c2, (ab)2, (bc)m, (ca)p〉,m, p ≥ 2.

(iii) 〈a, b, c | a2, b2, c2, (ab)2, (bcac)n, (ca)2m〉, n,m ≥ 2

Lemma 4.2.5 gives us hope that the following Conjecture 2 might be a

good first step to prove Conjecture 3 of Georgakopoulos and Mohar, see [27].

Conjecture 2. Let G be a group, generated by three involutions a, b, c such

that ab = ba and such that Γ(G, {a, b, c}) is 2-connected. Then the Cayley

graph Γ(G, {a, b, c}) is Hamiltonian.

Conjecture 3. [27] Every finitely generated 3-connected planar Cayley graph

admits a Hamilton circle.

We hope that methods used to prove Conjecture 2, and then possibly

Conjecture 3, would open the possibility to also prove additional results like

the extension of Theorem 4.2.6 of Rankin, which we propose in Conjecture 4.

5One could also show that Γ is outer planar as it does not contain a K4 or K2,3 minor
and thus contains a unique Hamilton circle, see the work of Heuer [34] for definitions and
the proof.
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Theorem 4.2.6. [58] Let G be a finite group, generated by two elements a, b

such that (ab)2 = 1. Then the Cayley graph Γ(G, {a, b}) has a Hamilton

cycle.

Conjecture 4. Let G = be a group, with a generating set S = {a±, b±} such

that (ab)2 = 1 and κ(Γ(G,S)) ≥ 2. Then Γ(G,S) contains a Hamilton circle.

4.3 Finding generating sets admitting

Hamilton circles

This section has two parts. In the first part we study the Hamiltonicity of

Cayley graphs obtained by adding a generator to a given generating sets of

a group. In the second part, we discuss an important theorem called the

Factor Group Lemma which plays a key role in studying Hamiltonianicity of

finite groups.

4.3.1 Adding generators

Fleischner proved in [24] that the square of every 2-connected finite graph has

a Hamilton cycle. Georgakopoulos [28] has extended this result to Hamilton

circles in locally finite 2-connected graphs. This result implies the following

corollary:

Corollary 4.3.1. [28] Let G = 〈S〉 be an infinite group such that Γ(G,S) is

2-connected then Γ(G,S ∪ S2) contains a Hamilton circle.

In the following we extend the idea of adding generators to obtain a

Hamilton circle in the following manner. We show in Theorem 4.3.2 that

under certain conditions, it suffices to add just a single new generator instead

of adding an entire set of generators to obtain a Hamilton circle in the Cayley

graph.

Theorem 4.3.2. Let G = 〈S〉 be a group with a normal subgroup H which is

isomorphic to the infinite cyclic group, i.e. H = 〈a〉, such that Γ(G,S \{H})
has a Hamilton cycle. Then Γ(G,S ∪ {a±}) is Hamiltonian.
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Proof. We first notice that because G contains a Hamilton cycle, G contains

a cyclic subgroup of finite index and Theorem 2.3.2 implies that G is two-

ended. We set Γ := Γ(G,S ∪ {a±}). Let C = H[x1, . . . , xn] be the Hamilton

cycle of Γ(G,S \ {H}). As G is two-ended, we only need to find two disjoint

double rays which together span Γ such that for every finite set X ⊂ V (Γ)

each of those rays has a tail in each infinite component of Γ \ X. By the

structure of G we can write

G = 〈a〉 t
n−1⊔
i=1

((
Πi
j=1xj

)
〈a〉
)
.

Let Γ′ be the subgraph of Γ induced by
⊔n−1
i=1

(
Πi
j=1xj

)
〈a〉. We now show

that there is a double ray R spanning Γ′ that has a tail belonging to each end.

Together with the double ray generated by a this yields a Hamilton circle.

To find R we will show that there is a “grid like” structure in Γ′. One might

picture the edges given by a as horizontal edges and we show that the edges

given by the xi are indeed vertical edges yielding a “grid like” structure.

We claim that each xi either belongs to CG(a), i.e. axi = xia, or that we

have the equality axi = xia
−1. By the normality of 〈a〉, we have ag ∈ 〈a〉

for all g ∈ G. In particular we can find `, k ∈ Z \ {0} such that a(x−1
i ) = ak

and axi = a`.6 Hence we deduce that 1 = a`k−1. It implies that k = ` = ±1

for each i. For the sake of simplicity, we assume that k = ` = 1 for all i. The

other cases are totally analogous, we only have to switch from using a to a−1

in the appropriate coset in the following argument.

Now we are ready to define the two double rays, say R1 and R2, which

yield the desired Hamilton circle. For R1 we take 〈a〉. To define R2 we first

define a ray R+
2 and R−2 which each starting in x1. Let

R+
2 :=x1[x2, . . . , xn−1, a, x

−1
n−1, . . . , x

−1
2 , a]N

R−2 :=x1[a−1, x2, . . . , xn−1, a
−1, x−1

n−1, . . . , x
−1
2 , a−1]N

6a(x
−1
i ) = xiax

−1
i = ak ⇒ a = x−1i akxi = (x−1i axi)

k and with x−1i axi = axi = a` this
implies a = (a`)k = a`k ⇒ 1 = a`k−1.
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By our above arguments, all those edges exist and we define R2 :=R+
2 ∪R−2 .

By construction it is clear that R1 ∩ R2 = ∅ and V (Γ) ⊆ R1 ∪ R2. It also

follows directly from construction that for both ends of G there is a tail of Ri

that belongs to that end.

Under the assumption that the weak Lovász’s conjecture holds true for

finite Cayley graphs, we can reformulate Theorem 4.3.2 in the following way:

Corollary 4.3.3. For any two-ended group G = 〈S〉 there exists an a ∈ G
such that Γ(G,S ∪ {a±}) contains a Hamilton circle.7

Proof. It follows from Theorem 2.3.2 that G has a subgroup of finite index

which is isomorphic to Z. We denote this subgroup by H. If H is not normal,

then we substitute H with Core(H) which has a finite index as well. Now we

are ready to invoke Theorem 4.3.2 and we are done.

Corollary 4.3.4. Let G = 〈S〉 be a group and let G′ ∼= Z have a finite index.

Then there exists an element a ∈ G such that Γ(G,S∪{a±}) has a Hamilton

circle.

One might be interested in finding a small generating set for a group

such that the Cayley graph with respect to this generating set is known to

contain a Hamilton cycle or circle. For finite groups this was done by Pak

and Radoiĉic̀.

Theorem 4.3.5. [57, Theorem 1] Every finite group G of size |G| ≥ 3 has a

generating set S of size |S| ≤ log2 |G|, such that Γ(G,S) contains a Hamilton

cycle.

A problem with extending Theorem 4.3.5 to infinite groups is that having

a generating set of size at most log2 of the size of the group is no restriction

if the group is infinite. We only consider context-free groups and prevent

the above problem by considering the index of the free subgroups in those

context-free groups8 to obtain a finite bound for the size of the generating

7This remark remains true even if we only assume that every finite group contains a
Hamilton path instead of a Hamilton cycle.

8A group G is called context-free if G contains a free subgroup with finite index.
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sets, see Theorem 4.3.9 for the details. Before we extend Theorem 4.3.5

to infinite graphs we need some more lemmas. In the following we give an

extension of Lemma 3.1.6 from two-ended graphs to graphs with arbitrary

many ends.

Lemma 4.3.6. Let Γ′ be an infinite graph and let C ′ be a Hamilton circle

of Γ′. Let Γ be a graph fulfilling the following conditions:

(i) Γ′i with i ∈ {1, . . . , k}, are k pairwise disjoint copies of Γ′ such that

(a) V (Γ) =
⊔k
i=1 V (Γ′i).

(b)
⊔k
i=1E(Γ′i) ⊆ E(Γ).

(ii) Let Φ be the natural projection of V (Γ) to V (Γ′) and set [v] to be the

set of vertices in Γ such that Φ maps them to v. Then for each vertex v′

of Γ′ there is

(a) an edge between the two vertices in [v] if k = 2, or

(b) a cycle Cv in Γ consisting exactly of the vertices [v] if k ≥ 3.

(iii) There is a j ∈ N such that in Γ there is no edge between vertices v

and w if dΓ′(Φ(v),Φ(w)) ≥ j.

Then Γ has a Hamilton circle.

Proof. The proof of Lemma 4.3.6 consists of two parts. First we extend the

collection of double rays that C ′ induces on Γ′ to a collection of double rays

spanning V (Γ) by using the cycles Cv. Note that if k = 2, we consider the

edge between the two vertices in each [v] as Cv as the circles found by (ii) (b)

only are used to collect all vertices in [v] in a path, which is trivial if there

are only two vertices in [v]. In the second part we show how we use this new

collection of double rays to define a Hamilton circle of Γ. Let v′ and w′ be

two vertices in Γ′ and let vi and wi be the vertices corresponding to v′ and w′

in Γi. If v′w′ is an edge of Γ′ then by assumption (ii) we know that viwi is an

edge of Γ for each i. This implies that there is a perfect matching between

the cycles Cv and Cw.
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The Hamilton circle C ′ induces a subgraph of Γ′, say R′. As Γ′ is infinite,

we know that R′ consists of a collection of double rays. Let

R′ = . . . , r−1, r0, r1, . . .

be such a double ray. Let R′1, . . . , R
′
k be the copies of R′ in Γ given by

assumption (i). Let rji be the vertex of Rj corresponding to the vertex ri.

We now use R′ to construct a double ray R in Γ that contains all vertices of Γ

which are contained in any R′j. We first build two rays R+ and R− which

together will contain all vertices of the copies of R′.

For R+ we start in the vertex r1
0 and take the edge r1

0r
1
1. Now we follow

the cycle Cr1 till the next vertex would be r1
1, say this vertex is r`1 and now

take the edge r`1r
`
2. We repeat this process of moving along the cycles Cv and

then taking a matching edge for all positive i. We define R− analogously

for all the negative i by also starting in r1
0 but taking the cycle Cr0 before

taking matching edges. Finally we set R to be the union of R+ and R−.

As R+ ∩ R− = r1
0 we know that R is indeed a double ray. Let R be the set

of double rays obtained by this method from the set of R′.
In the following we show that the closure of R is a Hamilton circle in |Γ|.

By Lemma 4.1.4 it is enough to show the following three conditions.

1. R induces degree two at every vertex of Γ,

2. the closure of R is topologically connected and

3. every end of Γ is contained in the closure of R and has degree two in R.

1. follows directly by construction. We can conclude 2. directly from the

following three facts: First: Finite paths are topologically connected, sec-

ondly: there is no finite vertex separator separating any two copies of Γ′ in Γ

and finally: R′ was a Hamilton circle of Γ′, and thus R′ meets every finite

cut of Γ′ and hence R meets every finite cut of Γ. It is straightforward to

check that by our assumptions there is a natural bijection between the ends

of Γ and Γ′.9 This, together with the assumption that the closure of R′ is a

9Assumption (iv) implies that no two ends of Γ′ get identified and the remaining parts
are trivial or follow from the Jumping Arc Lemma, see [14, 15].
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Hamilton circle of Γ′, implies 3. and thus the proof is complete.

Now we want to invoke Lemma 4.3.6 in order to study context-free groups.

First of all let us review some basic notations and definitions regarding

context-free groups. Let us have a closer look at context-free groups. In

the following, F will always denote a free group and Fr will denote the free

group of rank r. So let F be a free subgroup of finite index of G. If F = F1,

then G is two-ended, see Theorem 2.3.2. Otherwise G has infinitely many

ends, as the number of ends of G is equal to the number of ends of F by

Lemma 2.3.8. To extend Theorem 4.3.5 to infinite groups we first need to

introduce the following notation. Let G be a context-free group with a free

subgroup Fr with finite index.

It is known that Core(Fr) is a normal free subgroup of finite index, see [4,

Corollary 8.4, Corollary 8.5]. Here we need two notations. For that let G be

a fixed group. By mH we denote the index of a subgroup H of G, i.e. [G : H].

We set

nG := min{mH | H is a normal free subgroup of G and [G : H] <∞}

and

rG := min{rank(H) | H is a normal free subgroup of G and nG = mH}.

It is worth remarking that nG ≤ n!(r − 1) + 1, because we already know

that Core(Fr) is a normal subgroup of G with finite index at most n!. On the

other hand, it follows from the Nielsen-Schreier Theorem, see [4, Corollary

8.4], that Core(Fr) is a free group as well and by Schreiers formula (see [4,

Corollary 8.5]), we conclude that the rank of Core(Fr) is at most n!(r−1)+1.

We want to apply Corollary 4.3.1 to find a generating set for free groups

such that the corresponding Cayley graph contains a Hamilton circle. By

a theorem of Geogakopoulos [28], one could obtain such a generating set S

of Fr by starting with the standard generating set, say S ′, and then defin-

ing S :=S ′ ∪ S ′2 ∪ S ′3. Such a generating set has the size 8r3 + 4r2 + 2r. In

Lemma 4.3.7 we find a small generating set such that Fr with this gener-
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ating set is 2-connected and obtain in Corollary 4.3.8 a generating set of

size 6r(r + 1) such that the Cayley graph of Fr with this generating set

contains a Hamilton circle.

Lemma 4.3.7. There exists a generating set S of Fr of size less than 6r

such that Γ(Fr, S) is 2-connected.

Proof. Let {s1, . . . , sr}± be the standard generating set of Fr. We set

T :={s1, . . . , sr, s
2
1, . . . , s

2
r, s1s2, s1s3, . . . s1sr}.

Finally we define S :=T±. It is straightforward to see that |T | = 3r− 1 and

hence |S| = 6r−2. We now claim that Γ := Γ(Fr, S) is 2-connected. For that

we consider Γ\{1} where 1 is the vertex corresponding to the neutral element

of Fr. It is obvious that the vertices si and s−1
i are contained in the same

component of Γ \ {1} as they are connected by the edge s2
i . Additionally the

edges of the form s1si imply that s1 and si are always in the same component.

This finishes the proof.

Using Lemma 4.3.7 and applying Corollary 4.3.1 we obtain the following

corollary.

Corollary 4.3.8. For every free group Fr there exists a generating set S of Fr

of size at most 6r(6r + 1) such that Γ(Fr, S) contains a Hamilton circle.

We are now able to find a direct extension of Theorem 4.3.5 for context-

free groups.

Theorem 4.3.9. Let G be a context-free group with nG ≥ 2. Then there

exists a generating set S of G of size at most log2(nG) + 1 + 6rG(6rG + 1)

such that Γ(G,S) contains a Hamilton circle.

Proof. Suppose that G is a context-free group. Furthermore let Fr be a free

subgroup of G with finite index n, where r ≥ 1. We split our proof into two

cases.

First assume that r = 1. This means that G contains a subgroup iso-

morphic to Z with finite index and thus G is two-ended. Let H = 〈g〉 be
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the normal free subgroup of G such that m〈g〉 = nG. Let G:=G/H. We may

assume |G| ≥ 3. By the assumptions we know that |G| ≥ 2, so if |G| = 2 then

we choose an element f /∈ H and obtain a Hamilton circle of Γ := Γ(G,S±)

with S :={f, g} as Γ is isomorphic to the double ladder. Our assumptions

imply that G is a group of order nG. As nG is finite, we can apply Theo-

rem 4.3.5 to G to find a generating set S of G such that Γ(G,S) contains a

Hamilton cycle. For each s̄ ∈ S we now pick a representative s of s̄. Let S ′ be

the set of all those representatives. We set S :=S ′∪{g, g−1}. By construction

we know that G = 〈S〉. It is straightforward to check that Γ(G,S) fulfills

the conditions of Lemma 3.1.6 and thus we are done as |S| = log2(nG) + 2.

Now suppose that r ≥ 2. Let H be a normal free subgroup of G such

that rank(H) = rG. By Corollary 4.3.8 we know that there is a generating

set SH of size at most 6rG(6rG + 1) such that ΓH := Γ(H,SH) contains a

Hamilton circle.

If nG = 2 then, like in the above case, we can just choose an f ∈ G \H
and a set of representatives for the elements in SH , say S ′, and set S :=S ′ ∪
f± to obtain a generating set such that Γ(G,S) fulfills the condition of

Lemma 4.3.6.

So let us assume that nG ≥ 3. We define G :=G/H. As G is a finite

group we can apply Theorem 4.3.5 to obtain a generating set S for G of size

at most log2(nG) such that Γ(G,S) contains a Hamilton cycle. Again choose

representatives of S to obtain S ′. Let S :=S ′ ∪ SH . Note that

|S| ≤ 6rG(6rG + 1) + log2(nG).

By construction we know that G = 〈S〉. Again it is straightforward to

check that Γ := Γ(G,S) fulfills the conditions of Lemma 4.3.6 and thus we

are done.

Corollary 4.3.10. Let G be a two-ended group. Then there exists a gen-

erating set S of G of log2(nG) + 3 such that Γ(G,S) contains a Hamilton

circle.

Remark 4.3.11. We note that it might not always be best possible to use

Theorem 4.3.9 to obtain a small generating set for a given context-free group.
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The advantage about Theorem 4.3.9 compared to just applying Corollary 4.3.1

is that one does not need to “square” the edges between copies of the underly-

ing free group. This is a trade-off though, as the following rough calculation

shows. Suppose that Γ := Γ(G,S) where G is a context-free group. Addition-

ally assume that Γ is 2-connected, which is the worst for Theorem 4.3.9 when

comparing Theorem 4.3.9 with a direct application of Corollary 4.3.1. Ap-

plying Corollary 4.3.1 to Γ we obtain that Γ(G,S ∪ S2) is Hamiltonian. For

instance, let Fr be a normal free subgroup of G with rG = r and [G : Fr] = nG.

We now define SF as the standard generating set of Fr and SH as the repre-

sentative of the cosets of Fr. Then set S := SF ∪ SH . We have

|S2
F | = 4r2 = 4r2

G

|SHSF | = |SFSH | = 2rG = 2nGrG

|S2
H | = n2

G.

Applying Corollary 4.3.1 yields a generating set of size 4r2
G + 4rGnG + n2

G

while a a direct application of Theorem 4.3.9 yields a generating set of size

at most log2(nG) + 1 + 6rG(6rG + 1). Thus which result is better depends the

rank of the underlying free group and nG.

4.3.2 Factor Group Lemma

In this section we study extensions of the finite Factor Group Lemma to

infinite groups. For that we first cite the Factor Group Lemma:

Theorem 4.3.12. [42, Lemma 2.3] Let G = 〈S〉 be finite and let N be a cyclic

normal subgroup of G. If [x̄1, . . . , x̄n] is a Hamilton cycle of Γ(G/N, S \{N})
and the product x1 · · · xn generates N , then Γ(G,S) contains a Hamilton

cycle.

To be able to extend Theorem 4.3.12, we have to introduce some notation.

Let G be a group with a generating set S such that G acts on a set X. The

vertex set of the Schreier graph are the elements of X. We join two vertices x1

and x2 if and only if there exists s ∈ {S} such that x1 = sx2. We denote the

Schreier graph by Γ(G,S,X).
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Suppose that X is the set of right cosets of a subgroup H of G. It is

an easy observation that G acts on X. Now we are ready to generalize the

Factor Group Lemma without needing the cyclic normal subgroup. It is

worth remarking that if we consider the trivial action of G on G, we have the

Cayley graph of G with respect to the generating S, i.e. Γ(G,S,G) = Γ(G,S).

Theorem 4.3.13. Let G = 〈S〉 be a group and let H be a subgroup of G and

let X be the set of left cosets of H. If 1 < [G : H] <∞ and [x1, . . . , xn] is a

Hamilton cycle of Γ(G,S,X) and the product x1 · · ·xn generates H, then we

have the following statements.

(i) If G is finite, then Γ(G,S) contains a Hamilton cycle.

(ii) If G is infinite, then Γ(G,S) contains a Hamilton double ray.

Proof. (i) Let us define a :=x1 · · ·xn. Assume that [G : H] = `. We claim

that C := 1[x1, . . . , xn]` is the desired Hamilton cycle of G. It is obvious

that C contains every vertex of H at least once. Suppose that there is

a vertex v 6= 1 in C which is contained at least twice in C. Say

v = ai1 [x1, . . . , xi2 ] = aj1 [x1, . . . , xj2 ] with i1 ≤ j1 < l and i2, j2 < n.

This yields that

x1 · · ·xi2 = akx1 · · ·xj2 with k := j1 − i1 ≥ 0.

As 1 and ak are contained in H, we may assume that i2 = j2. Other-

wise x1 · · ·xi2 would belong to a different right coset of H as akx1 · · ·xj2
which would yield a contradiction. Thus we can now write

x1 · · ·xi2 = akx1 · · ·xj2

and it implies that k = 0. We conclude that C is indeed a cycle. It

remains to show that every vertex of Γ(G,S) is contained in C. So

let v ∈ V (Γ(G,S)) and let Hx1 · · ·xk be the coset that contains v. So

we can write v = hx1 · · ·xk with h ∈ H. As a generates H we know
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that h = aj. So we can conclude that v = ajx1 · · ·xi ∈ C. So C is

indeed a Hamilton cycle of G.

(ii) The proof of (ii) is analogous to the above proof. First notice that

since G has a cyclic subgroup of finite index, we can conclude that G

is two-ended by Theorem 2.3.2. We now repeat the above construction

with one small change. Again define a :=x1 · · ·xn. As the order of a

in H is infinite, we define C to be a double ray. So let

C :=[x−1
1 , . . . , x−1

n ]N1[x1, . . . , xn]N.

It is totally analogously to the above case to show that no vertex

of Γ(G,S) is contained more than once in C, we omit the details here.

It remains to show that every vertex of Γ(G,S) is contained in C. This

is also completely analogue to the above case.

Let us have a closer look at the preceding theorem. As we have seen

in the above proof the product x1 · · ·xn plays a key role. In the following

we want to investigate a special case. Suppose that G = 〈S〉 is an infi-

nite group with a normal subgroup H = 〈a〉 of finite index and moreover

assume that G/H contains a Hamilton cycle 1[x1, . . . , xn]. Depending on the

element x = x1 · · · xn, the following statements hold:

(i) If x = a, then Γ(G,S) has a Hamilton double ray.

(ii) If x = a2, then Γ(G,S) has a Hamilton circle.

(iii) If x = ak and k ≥ 3, then Γ(G,S) has an infinite Hamilton cover of

order k.

This yields the following conjecture:

Conjecture 5. There exists a finite Hamilton cover for every two-ended

transitive graph.

In 1983 Durnberger [23] proved the following theorem:
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Theorem 4.3.14. [23, Theorem 1] Let G be a finite group with G′ ∼= Zp.
Then any Cayley graph of G contains a Hamilton cycle.

This yields the following natural question: What does an infinite group G

with G′ ∼= Zp look like?

Lemma 4.3.15. Let G be a finitely generated group such that |G′| < ∞.

Then G has at most two ends.

Proof. Since G/G′ is a finitely generated abelian group, by [62, 5.4.2] one can

see that G/G′ ∼= Zn⊕Z0 where Z0 is a finite abelian group and n ∈ N ∪ {0}.
As the number of ends of Zn ⊕ Z0 is at most two we can conclude that the

number of ends of G is at most two by [61, Lemma 5.7].

We close this chapter with a conjecture. We propose an extension of

Theorem 4.3.14. Please note that the methods of the proof of Theorem 4.1.14

can be used to show the special case of Conjecture 6 if the generating set

does not have empty intersection with the commutator subgroup.

Conjecture 6. Let G be an infinite group with G′ ∼= Zp. Then any Cayley

graph of G contains a Hamilton circle.
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Chapter 5

Two-ended graphs and groups

5.1 Two-ended graphs

This section is split into two parts. In Section 5.1.1 we characterize quasi-

transitive two-ended graphs without dominated ends. In Section 5.1.2 we

characterize groups acting on those graphs with finitely many orbits.

5.1.1 Characterization

We characterize quasi-transitive two-ended graphs without dominated ends

in Theorem 5.1.1 which is similar to the characterization of two-ended groups,

see the item (iv) of Theorem 5.2.1. The second theorem in this section is

Theorem 5.1.7, which states that for quasi-transitive two-ended graphs with-

out dominated ends each end is thin. We give a direct proof of Theorem 5.1.7

here but one can deduce Theorem 5.1.7 from Theorem 5.1.1.

Theorem 5.1.1. Let Γ be a connected quasi-transitive graph without domi-

nated ends. Then the following statements are equivalent:

(i) Γ is two-ended.

(ii) Γ = Γ̄ ∗T Γ̄ fulfills the following properties:

a) Γ̄ is a connected rayless graph of finite diameter.
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b) All adhesion sets of the tree amalgamation contained in Γ̄ are finite

and connected and pairwise disjoint.

c) The identification maps are all the identity.

d) T is a double ray.

(iii) Γ is quasi-isometric to the double ray.

In Theorem 5.1.1 we characterize graphs which are quasi-isometric to the

double ray. It is worth mentioning that Krön and Möller [43] have studied

arbitrary graphs which are quasi-isometric to trees.

Before we can prove Theorem 5.1.1 we have to collect some tools used

in its proof. The first tool is the following Lemma 5.1.2 which basically

states that in a two-ended quasi-transitive graph Γ we can find a separation

fulfilling some nice properties. For that let us define a type 1 separation of Γ

as a separation (A,A∗) of Γ fulfilling the following conditions:

(i) A ∩ A∗ contains an element from each orbit.

(ii) Γ[A ∩ A∗] is a finite connected subgraph.

(iii) Exactly one component of A \ A∗ is big.

Lemma 5.1.2. Let Γ be a connected two-ended quasi-transitive graph. Then

there exists a type 1 separation of Γ.

Proof. As the two ends of Γ are not equivalent, there is a finite S such that

the ends of Γ live in different components of Γ\S. Let C be a big component

of Γ \ S. We set Ā :=C ∪ S and Ā∗ := Γ \C and obtain a separation (Ā, Ā∗)

fulfilling the condition (iii). Because Ā ∩ Ā∗ = S is finite, we only need to

add finitely many finite paths to Ā∩ Ā∗ to connect Γ[Ā ∩ Ā∗]. As Γ is quasi-

transitive there are only finitely many orbits of the action of Aut(Γ) on V (Γ).

Picking a vertex from each orbit and a path from that vertex to Ā∩Ā∗ yields

a separation (A,A∗) fulfilling all the above listed conditions.

In the proof of Lemma 5.1.2 we start by picking an arbitrary separation

which we then extend to obtain type 1 separation. The same process can
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be used when we start with a tight separation, which yields the following

corollary:

Corollary 5.1.3. Let Γ be a two-ended quasi-transitive graph and let (Ā, Ā∗)

be a tight separation of Γ. Then there is an extension of (Ā, Ā∗) to a type 1

separation (A,A∗) such that Ā ∩ Ā∗ ⊆ A ∩ A∗.

Every separation (A,A∗) which can be obtained by Corollary 5.1.3 is a

type 2 separation. We also say that the tight separation (Ā, Ā∗) induces the

type 2 separation (A,A∗).

In Lemma 5.1.4 we prove that in a quasi-transitive graph without domi-

nated ends there are vertices which have arbitrarily large distances from one

another. This is very useful as it allows to map separators of type 1 separa-

tions far enough into big components, such that the image and the preimage

of that separation are disjoint.

Lemma 5.1.4. Let Γ be a connected two-ended quasi-transitive graph without

dominated ends, and let (A,A∗) be a type 1 separation. Then for every k ∈ N
there is a vertex in each big component of Γ \ (A ∩ A∗) that has distance at

least k from A ∩ A∗.

Proof. Let Γ and (A,A∗) be given and set S :=A ∩ A∗. Additionally let ω

be an end of Γ and set C :=C(S, ω). For a contradiction let us assume

that there is a k ∈ N such that every vertex of C has distance at most k

from S. Let R = r1, r2, . . .be a ray belonging to ω. We now define a forest T

as a sequence of forests Ti. Let T1 be a path from r1 to S realizing the

distance of r1 and S, i.e.: T1 is a shortest path between r1 and S. Assume

that Ti is defined. To define Ti+1 we start in the vertex ri+1 and follow a

shortest path from ri+1 to S. Either this path meets a vertex contained

in Ti, say vi+1, or it does not meet any vertex contained in Ti. In the first

case let Pi+1 be the path from ri+1 to vi+1. In the second case we take the

entire path as Pi+1. Set Ti+1 := Ti ∪ Pi+1. Note that all Ti are forests by

construction. For a vertex v ∈ Ti let di(v, S) be the length of a shortest

path in Ti from v to any vertex in S. Note that, as each component of

each Ti contains at exactly one vertex of S by construction, this is always
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well-defined. Let P = ri, x1, x2, . . . , xn, s with s ∈ S be a shortest path

between ri and S. As P is a shortest path between ri and S the subpath

of P starting in xj and going to s is a shortest xj− s path. This implies that

for v of any Ti we have di(v, S) ≤ k. We now conclude that the diameter of

all components of Ti is at most 2k and hence each component of T :=
⋃
Ti

also has diameter at most 2k, furthermore note that T is a forest. As S is

finite there is an infinite component of T , say T ′. As T ′ is an infinite tree of

bounded diameter it contains a vertex of infinite degree, say u. So there are

infinitely many paths from u to R which only meet in u. But this implies

that u is dominating the ray R, a contradiction.

Our next tool used in the proof of Theorem 5.1.1 is Lemma 5.1.5 which

basically states that small components have small diameter.

Lemma 5.1.5. Let Γ be a connected two-ended quasi-transitive graphs with-

out dominated ends. Additionally let S = S1 ∪ S2 be a finite vertex set such

that the following holds:

(i) S1 ∩ S2 = ∅.

(ii) Γ[Si] is connected for i = 1, 2.

(iii) Si contains an element from of each orbit for i = 1, 2.

Let H be a rayless component of Γ \ S. Then H has finite diameter.

Proof. Let Γ, S and H be given. Assume for a contradiction that H has

unbounded diameter. We are going to find a ray inside of H to obtain a

contradiction. Our first aim is to find a g ∈ Aut(Γ) such that the following

holds:

(i) gSi ( H

(ii) gH ( H.

Let dm be the maximal diameter of the Si, and let dd be the distance be-

tween S1 and S2. Finally let dS = dd + 2dm.
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First assume that H only has neighbors in exactly one Si. This implies

that Γ \H is connected. Let w be a vertex in H of distance greater than 2dS

from S and let g ∈ Aut(Γ) such that w ∈ gS. This implies that gS ( H.

But as Γ \H contains a ray, we can conclude that gH ( H. Otherwise gH

would contain a ray, as Γ \H contains a ray and is connected.

So let us now assume that H has a neighbor in both Si. Let P be a

shortest S1 − S2 path contained in H
⋃

(S1 ∪ S2), say P has length k. We

pick a vertex w ∈ H of distance at least 2dS + k + 1 from S, and we pick

a g ∈ Aut(Γ) such that w ∈ gS. Obviously we know that gP ⊆ (gH ∪ gS).

By the choice of g we also know that gP ⊆ H. This yields that gH ⊆ H,

as gH is small. We can conclude that gH 6= H and hence gSi ( H follows

directly by our choice of g.

Note that as gH is a component of Γ \ gS fulfilling all conditions we had

on H we can iterate the above defined process with gH instead of H. We can

now pick a vertex v ∈ S. Let U be the images of v. As H is connected we

apply the Star-Comb lemma, see [14], to H and U . We now show, that the

result of the Star-Comb lemma cannot be a star. So assume that we obtain

a star with center x. Let ` := |S|. Let dX be the distance from S to x. By

our construction we know that there is a step in which we use a gx ∈ Aut(G)

such that d(S, gxS) > dx. Now pick `+ 1 many leaves of the star which come

from steps in the process after we used gx. This implies that in the star, all

the paths from those `+1 many leaves to x have to path through a separator

of size `, which is a contradiction. So the Star-Comb lemma yields a comb

and hence a ray.

Lemma 5.1.6. Let Γ be a two-ended connected quasi-transitive graph without

dominated ends and let (A,A∗) be a type 1 separation and let C be the big

component of A \ A∗. Then there is a g ∈ Aut(Γ) such that g(C) ( C.

Proof. Let Γ be a two-ended connected quasi-transitive graph without domi-

nated ends and let (A,A∗) be a type 1 separation of Γ. Set d := diam(A ∩ A∗).
Say the ends of Γ are ω1 and ω2 and set Ci :=C(A ∩ A∗, ωi). Our goal now

is to find an automorphism g such that g(C1) ( C1.

To find the desired automorphism g first pick a vertex v of distance d+ 1
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from A ∩ A∗ in C1. As (A,A∗) is a type 1 separation of the quasi-transitive

graph Γ there is an automorphism h of Γ that maps a vertex of A ∩ A∗
to v. Because Γ[A ∩ A∗] is connected and because d(v, A ∩ A∗) ≥ d+ 1 we

can conclude that (A ∩ A∗) and h(A ∩ A∗) are disjoint. If h(C1) ( C1 we

can choose g to be h, so let us assume that h(C1) ⊇ C2. Now pick a ver-

tex w in C1 of distance at least 3d + 1 from A ∩ A∗, which is again possible

by Lemma 5.1.4. Let f be an automorphism such that w ∈ f(A ∩ A∗). Be-

cause d(w,A ∩ A∗) ≥ 3d+ 1 we can conclude that

A ∩ A∗, h(A ∩ A∗) and f(A ∩ A∗)

are pairwise disjoint and hence in particular f 6= h. Again if f(C1) ( C1 we

may pick f as the desired g, so assume that f(C1) ⊇ C2.

This implies in particular that fC2 ( hC2 which yields that

h−1f(C2) ( C2

which concludes this proof.

Note that the automorphism in Lemma 5.1.6 has infinite order. Now we

are ready to prove Theorem 5.1.1.

Proof of Theorem 5.1.1. We start with (i) ⇒ (ii).

So let Γ be a graph fulfilling the conditions in Theorem 5.1.1 and let Γ be

two-ended. Additionally let (A,A∗) be a type 1 separation of Γ given by

Lemma 5.1.2 and let d be the diameter of Γ[A∩A∗]. Say the ends of Γ are ω1

and ω2 and set Ci :=C(A ∩ A∗, ωi). By Lemma 5.1.6 we know that there is

an element g ∈ Aut(Γ) such that g(C1) ( C1.

We know that either A ∩ gA∗ or A∗ ∩ gA is not empty, without loss of

generality let us assume the first case happens. Now we are ready to define

the desired tree amalgamation. We define the two graphs Γ1 and Γ2 like

follows:

Γ1 := Γ2 := Γ[A∗ ∩ gA].
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Note that as A ∩ A∗ is finite and because any vertex of any ray in Γ with

distance greater than 3d + 1 from A ∩ A∗ is not contained in Γi we can

conclude Γi is a rayless graph.1 The tree T for the tree amalgamation is just

a double ray. The families of subsets of V (Γi) are just A∩A∗ and g(A∩A∗)
and the identifying maps are the identity. It is straightforward to check that

this indeed defines the desired tree amalgamation. The only thing remaining

is to check that Γi is connected and has finite diameter. It follows straight

from the construction and the fact that Γ is connected that Γi is indeed

connected.

It remains to show that Γi has finite diameter. We can conclude this

from Lemma 5.1.5 by setting S := g−1(A ∩ A∗)⋃ g2(A ∩ A∗). As Γi is now

contained in a rayless component of Γ \ S.

(ii) ⇒ (iii) Let Γ = Γ̄ ∗T Γ̄ where Γ̄ is a rayless graph of diameter λ and T

is a double ray. As T is a double ray there are exactly two adhesion sets,

say S1 and S2, in each copy of Γ̄. We define Γ̂ := Γ̄ \ S2. Note that Γ̂ 6= ∅.
Let T = . . . , t−1, t0, t1, . . . . For each ti ∈ T we now define Γi to be a copy of Γ̂.

It is not hard to see that V (Γ) =
⊔
i∈Z V (Γi), where each Γi isomorphic to Γ̂.

We now are ready to define our quasi-isometric embedding between Γ and

the double ray R = . . . , v1, v0, v1, . . . Define φ : V (Γ) → V (R) such that φ

maps every vertex of Γi to the vertex vi of R. Next we show that φ is a

quasi-isomorphic embedding. Let v, v′ be two vertices of Γ. We can suppose

that v ∈ V (Γi) and v′ ∈ V (Γj), where i ≤ j. One can see that

dΓ(v, v′) ≤ (|j − i|+ 1)λ

and so we infer that

1

λ
dΓ(v, v′)− λ ≤ dR(φ(v), φ(v′)) = |j − i| ≤ λdΓ(v, v′) + λ.

As φ is surjective we know that φ is quasi-dense. Thus we proved that φ is

1Here we use that any ray belongs to an end in the following manner: Since A ∩ B
and g(A ∩B) are finite separators of Γ separating Γ1 from any Ci, no ray in Γi can be
equivalent to any ray in any Ci and hence Γ would contain at least three ends.
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a quasi-isometry between Γ and R.

(iii) ⇒ (i) Suppose that φ is a quasi-isometry between Γ and the dou-

ble ray, say R, with associated constant λ. We shall show that Γ has

exactly two ends, the case that Γ has exactly one end leads to a contra-

diction in an analogous manner. Assume to the contrary that there is a

finite subset of vertices S of Γ such that Γ \ S has at least three big com-

ponents. Let R1 := {ui}i∈N, R2 := {vi}i∈N and R3 := {ri}i∈N be three rays

of Γ, exactly one in each of those big components. In addition one can see

that dR(φ(xi), φ(xi+1)) ≤ 2λ, where xi and xi+1 are two consecutive vertices

of one of those rays. Since R is a double ray, we deduce that two infinite

sets of φ(Ri) :={φ(x) | x ∈ Ri} for i = 1, 2, 3 converge to the same end of R.

Suppose that φ(R1) and φ(R2) converge to the same end. For a given ver-

tex ui ∈ R1 let vji be a vertex of R2 such that the distance dR(φ(ui), φ(vji)) is

minimum. We note that dR(φ(ui), φ(vji)) ≤ 2λ. As φ is a quasi-isometry we

can conclude that dΓ(ui, vji) ≤ 3λ2. Since S is finite, we can conclude that

there is a vertex dominating a ray and so we have a dominated end which

yields a contradiction.

Theorem 5.1.7. Let Γ be a two-ended quasi-transitive graph without domi-

nated ends. Then each end of Γ is thin.

Proof. By Lemma 5.1.2 we can find a type 1 separation (A,A∗) of Γ. Sup-

pose that the diameter of Γ[A ∩ A∗] is equal to d. Let C be a big component

of Γ \ A ∩ A∗. By Lemma 5.1.4 we can pick a vertex ri of the ray R with

distance greater than d from S. As Γ is quasi-transitive and A ∩ A∗ con-

tains an element from of each orbit we can find an automorphism g such

that ri ∈ g(A ∩ A∗). By the choice of ri we now have that

(A ∩ A∗) ∩ g(A ∩ A∗) = ∅.

Repeating this process yields a defining sequence of vertices for the end living

in C each of the same finite size. This implies that the degree of the end

living in C is finite.
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For a two-ended quasi-transitive graph Γ without dominated ends let s(Γ)

be the maximal number of disjoint double rays in Γ. By Theorem 5.1.7 this

is always defined. With a slight modification to the proof of Theorem 5.1.7

we obtain the following corollary:

Corollary 5.1.8. Let Γ be a two-ended quasi-transitive graphs without dom-

inated ends. Then the degree of each end of Γ is at most s(Γ).

Proof. Instead of starting the proof of Theorem 5.1.7 with an arbitrary sepa-

ration of finite order we now start with a separation (B,B∗) of order s(Γ) sep-

arating the ends of Γ which we then extend to a connected separation (A,A∗)

containing an element of each orbit. The proof then follows identically with

only one additional argument. After finding the defining sequence as images

of (A,A∗), which is too large compared to s(Γ), we can reduce this back down

to the separations given by the images of (B,B∗) because (B∩B∗) ⊆ (A∩A∗)
and because (B,B∗) already separated the ends of Γ.

It is worth mentioning that Jung [40] proved that if a connected locally

finite quasi-transitive graph has more than one end then it has a thin end.

5.1.2 Groups acting on two-ended graphs

In this section we investigate the action of groups on two-ended graphs with-

out dominated ends with finitely many orbits. We start with the following

lemma which states that there are only finitely many k-tight separations

containing a given vertex. Lemma 5.1.9 is a separation version of a result

of Thomassen and Woess for vertex cuts [70, Proposition 4.2] with a proof

which is quite closely related to their proof.

Lemma 5.1.9. Let Γ be a two-ended graph without dominated ends then

for any vertex v ∈ V (Γ) there are only finitely many k-tight separations

containing v.

Proof. We apply induction on k. The case k = 1 is trivial. So let k ≥ 2 and

let v be a vertex contained in the separator of a k-tight separation (A,A∗).

Let C1 and C2 be the two big components of Γ \ (A ∩ A∗). As (A,A∗) is
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a k-tight separation we know that v is adjacent to both C1 and C2. We now

consider the graph Γ− := Γ− v. As v is not dominating any ends we can find

a finite vertex set S1 ( C1 and S2 ( C2 such that Si separates v from the

end living in Ci for i ∈ {1, 2}.2 For each pair x, y of vertices with x ∈ S1

and y ∈ S2 we now pick a x − y path Pxy in Γ−. This is possible as k ≥ 2

and because (A,A∗) is k-tight. Let P be the set of all those paths and let VP

be the set of vertices contained in the path contained in P . Note that VP is

finite because each path Pxy is finite and both S1 and S2 are finite. By the

hypothesis of the induction we know that for each vertex in VP there are only

finitely (k − 1)-tight separations meeting that vertex. So we infer that there

are only finitely many (k − 1)-tight separations of Γ− meeting VP . Suppose

that there is a k-tight separation (B,B∗) such that v ∈ B ∩ B∗ and B ∩ B∗
does not meet VP . As (B,B∗) is k-tight we know that v is adjacent to both

big components of Γ \ B ∩ B∗. But this contradicts our choice of Si. Hence

there are only finitely many k-tight separations containing v, as desired.

In the following we extend the notation of diameter from connected graphs

to not necessarily connected graphs. Let Γ be a graph. We denote the set of

all subgraphs of Γ by P(Γ). We define the function ρ : P(Γ)→ Z ∪ {∞} by

setting ρ(X) = sup{diam(C) | C is a component of X}.3

Lemma 5.1.10. Let Γ be a quasi-transitive two-ended graph without dom-

inated ends with |Γv| < ∞ for every vertex v of Γ and let (A,A∗) be a

tight separation of Γ. Then for infinitely many g ∈ Aut(Γ) either the num-

ber ρ(A∆gA) or ρ(A∆gA)c is finite.

Proof. Let (A,A∗) be a tight separation of Γ. It follows from Lemma 5.1.9

and |Γv| <∞ that there are only finitely g ∈ Aut(Γ) such that

(A ∩ A∗) ∩ g(A,A∗) 6= ∅.
2A finite vertex set S separates a vertex v /∈ S from an end ω1 if v is not contained in

the component G \ S which ω1 lives.
3If the component C does not have finite diameter, we say its diameter is infinite.
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This implies that there are infinitely many g ∈ Aut(Γ) such that

(A ∩ A∗) ∩ g(A ∩ A∗) = ∅.

So let g ∈ Aut(G) with (A ∩ A∗) ∩ g(A ∩ A∗) = ∅.
By definition we know that either A∆gA or (A∆gA)c contains a ray.

Without loss of generality we may assume the second case. The other case

is analogous. We now show that the number ρ(A∆gA) is finite. Suppose

that C1 is the big component of Γ \ (A∩A∗) which does not meet g(A∩A∗)
and C2 is the big component of Γ \ g(A∩A∗) which does not meet (A∩A∗).
By Lemma 5.1.4 we are able to find type 1 separations (B,B∗) and (C,C∗)

in such a way that B ∩B∗ ( C1 and C ∩ C∗ ( C2 and such that the B ∩B∗
and C∩C∗ each have empty intersection with A∩A∗ and g(A∩A∗). Now it is

straightforward to verify that A∆gA is contained in a rayless component X

of Γ \ ((B ∩B∗)⋃(C ∩ C∗)). Using Lemma 5.1.5 we can conclude that X

has finite diameter and hence ρ(A∆gA) is finite.

Assume that an infinite group G acts on a two-ended graph Γ without

dominated ends with finitely many orbits and let (A,A∗) be a tight separation

of Γ. By Lemma 5.1.10 we may assume ρ(A∆gA) is finite for infinitely

many g ∈ Aut(Γ). We set

H := {g ∈ G | ρ(A∆gA) <∞}.

We call H the separation subgroup induced by (A,A∗).4 In the sequel we

study separations subgroups. We note that we infer from Lemma 5.1.10

that H is infinite.

Lemma 5.1.11. Let G be an infinite group acting on a two-ended graph Γ

without dominated ends with finitely many orbits such that |Γv| < ∞ for

every vertex v of Γ. Let H be the separation subgroup induced by a tight

separation (A,A∗) of Γ. Then H is a subgroup of G of index at most 2.

Proof. We first show that H is indeed a subgroup of G. As automorphisms

4See the proof of Lemma 5.1.11 for a proof that H is indeed a subgroup.
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preserve distances it is that for h ∈ H, g ∈ G we have

ρ(g(A∆hA)) = ρ(A∆hA) <∞.

As this is in particular true for g = h−1 we only need to show that H is

closed under multiplication and this is straightforward to check as one may

see that

A∆h1h2A = (A∆h1A)∆(h1A∆h1h2A)

= (A∆h1A)∆h1(A∆h2A).

Since ρ(A∆hiA) is finite for i = 1, 2, we conclude that h1h2 belongs to H.

Now we only need to establish that H has index at most two in G. As-

sume that H is a proper subgroup of G and that the index of H is big-

ger than two. Let H and Hgi be three distinct cosets for i = 1, 2. By

Lemma 5.1.10 we know that there are only finitely many g ∈ Aut(Γ) such

that both ρ(A∆giA and ρ((A∆giA)c are infinite. As H is infinite we may

therefore assume that ρ((A∆giA)c) is finite for i = 1, 2 as g1, g2 /∈ H. Note

that

A∆g1g
−1
2 A = (A∆g1A)∆g1(A∆g−1

2 A).

On the other hand we already know that

A∆g1g
−1
2 A = (A∆g1A)c∆(g1(A∆g−1

2 A))c.

We notice that the diameter of A∆giA is infinite for i = 1, 2. Since g2 /∈ H we

know that g−1
2 /∈ H and so ρ(g1(A∆g−1

2 A)) is infinite. By Lemma 5.1.10 we

infer that ρ(g1(A∆g−1
2 A)c) is finite. Now as the two numbers ρ((A∆g1A)c)

and ρ(g1(A∆g−1
2 A)c) are finite we conclude that ρA∆g1g

−1
2 A <∞. Thus we

conclude that g1g
−1
2 belongs to H. It follows that H = Hg1g

−1
2 and multi-

plying by g2 yields Hg1 = Hg2 which contradicts Hg1 6= Hg2.

Theorem 5.1.12. Let G be a group acting with only finitely many orbits on

a two-ended graph Γ without dominated ends such that |Γv| < ∞ for every

vertex v of Γ. Then G contains an infinite cyclic subgroup of finite index.
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Proof. Let (A,A∗) be a tight separation and let (Ā, Ā∗) be the type 2 separa-

tion given by Corollary 5.1.3. Additionally let H be the separation subgroup

induced by (A,A∗). We now use Lemma 5.1.6 on (Ā, Ā∗) to find an ele-

ment h ∈ G of infinite order. It is straightforward to check that h ∈ H. Now

it only remains to show that L :=〈h〉 has finite index in H.

Suppose for a contradiction that L has infinite index in H and for sim-

plicity set Z := A ∩ A∗. This implies that H =
⊔
i∈N Lhi. We have the two

following cases:

Case I: There are infinitely many i ∈ N and ji ∈ N such that hiZ = hjiZ

and so Z = h−jihiZ. It follows from Lemma 5.1.9 that there are only finitely

many f -tight separations meeting Z where |Z| = f . We infer that there are

infinitely many k ∈ N such that h−j`h`Z = h−jkhkZ for a specific ` ∈ N.

Since the size of Z is finite, we deduce that there is v ∈ Z such that for a

specific m ∈ N we have h−jmhmv = h−jnhnv for infinitely many n ∈ N. So we

are able to conclude that the stabilizer of v is infinite which is a contradiction.

Hence for ni ∈ N where i = 1, 2 we have to have

(h−jmh−1
m )h−jn1hn1 = (h−jmhm)−1h−jn2hn2 .

The above equality implies that Lhn1 = Lhn2 which yields a contradiction.

Case II: We assume that are only finitely many i ∈ N and ji ∈ N such

that hiZ = hjiZ. We define the graph X := Γ[A∆hA]. We can conclude

that Γ = ∪i∈ZhiX. We can assume that hiZ ⊆ hjiX for infinitely many i ∈ N
and ji ∈ N and so we have h−jihiZ ⊆ X. Let p be a shortest path between Z

and hZ. For every vertex v of p, by Lemma 5.1.9 we know that there are

finitely many tight separation gZ for g ∈ G meeting v. So we infer that there

are infinitely many k ∈ N such that h−j`h`Z = h−jkhkZ for a specific ` ∈ N.

Then with an analogue method we used for the preceding case, we are able

to show that the stabilizer of at least one vertex of Z is infinite and again

we conclude that (h−jmh−1
m )h−jn1hn1 = (h−jmhm)−1h−jn2hn2 for n1, n2 ∈ N.

Again it yields a contradiction. Hence each case gives us a contradiction and

it proves our theorem as desired.
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5.2 Applications

In this section we use the results of the preceding section in order to study

two-ended groups. We split this section into two parts. In Section 5.2.1 we

investigate the characterization of two-ended groups. In Section 5.2.2 we

study subgroups of those groups.

5.2.1 Two-ended groups

In the following we use the results of Section 5.1.2 to give an independent

proof of some known characterizations of two-ended groups as well as a new

characterization, see Theorem 5.2.1. It is worth mentioning that the equiv-

alence of the items (i− iv) has been shown in by Scott and Wall [61]. The

equivalence between the item (vi) and (i) has been proved by Dick and Dun-

woody [13]. Finally Cohen in [12] proved that the item (vii) is equivalent

to (i).

Theorem 5.2.1. Let G be a finitely generated group. Then the following

statements are equivalent:

(i) G is a two-ended group.

(ii) G has an infinite cyclic subgroup of finite index.

(iii) G has a finite normal subgroup K such that G/K ∼= D∞ or Z.

(iv) G is isomorphic to either A∗CB and C is finite and

[A : C] = [B : C] = 2 or ∗φC with C is finite and φ ∈ Aut(C).

(v) Any Cayley graph of G ∼QI Γ(Z,±1).

(vi) There is an action of G on the double ray with finite stabilizers and one

edge orbit.

(vii) The dimension of H1(G,Z2G) is one.5

5Hi(G,X) denotes the ith cohomolgy group of the group G with coefficients in the ring
X.
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The above theorem with conjunction of Theorem 5.1.12 implies the fol-

lowing corollary immediately:

Corollary 5.2.2. Let G be an infinite group acting with only finitely many

orbits on a two-ended graph Γ without dominated ends. Then G is two-

ended.

Before we can prove Theorem 5.2.1 we have to collect some tools and

concepts used in the proof of Theorem 5.2.1. For the sake of simplicity, we

introduce the following shorthand. We call

HomZ(ZG,Z2) and HomZ(ZG,Z2)/Z2G

by Z2G and Z̃2G, respectively. We notice that those groups can be regarded

as Z2-vector spaces. We start with the following lemma which is known as

Shapiro’s Lemma.

Lemma 5.2.3. [6, Proposition 6.2] Let H be a subgroup of a group G and

let A be an RH-module. Then H i(H,A) = H i(G,HomRH(RG,A)).

Lemma 5.2.4. Let G be a finitely generated group. Then

dimH0(G, Z̃2G) = 1 + dimH1(G,Z2G).

Proof. First of all, we note that the short exact sequence

0→ Z2G ↪→ Z2G� Z̃2G→ 0

gives rise to the following long sequence:

0→ H0(G,Z2G)→ H0(G,Z2G)→ H0(G, Z̃2G)→ H1(G,Z2G)→ 0

We notice that G acts on Z2G by g.f(x) := gf(g−1x) and it follows from

Lemma 5.2.3 that H i(G,Z2G) = 0 for every i ≥ 1. But H0(G,A) is an

invariant subset of A under the group action of G. Thus we deduce that

H0(G,Z2G) = 0 and H0(G,Z2G) = Z2.
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Hence we have

dimH0(G, Z̃2G) = 1 + dimH1(G,Z2G).

Lemma 5.2.5. Let G = 〈S〉 be a finitely generated group and Γ := Γ(G,S).

Then the spaces PΓ and FΓ can be identified by Z2G and Z2G, respectively.

Proof. Suppose that f ∈ Z2G. We define Af := {g ∈ G | f(g) = 1}.
Now it is straightforward to check that there is a one to one correspondence

between Z2G and PΓ. The second case is obvious.

Lemma 5.2.5 directly yields the following corollary.

Corollary 5.2.6. Let G = 〈S〉 be a finitely generated group and let Γ be the

Cayley graph of G with respect to S. Then dimension of QΓ/FΓ is equal

to dimH0(Γ, Z̃2G).

Before we can start the proof of Theorem 5.2.1 we cite some well known

facts we use proof of Theorem 5.2.1.

Lemma 5.2.7. [62, Theorem 15.1.13] Let G be a finitely generated group

such that [G : Z(G)] is finite. Then G′ is finite.

Lemma 5.2.8. [39, Proposition 4.8] Let G be a finitely generated group and

let H and K be subgroups of G such that HK is also a subgroup of G.

Then [HK : H] = [K : H ∩K].

Lemma 5.2.9 (N/C Theorem). [62, Theorem 3.2.3] Let G be a group and

let H ≤ G then NG(H)/CG(H) is isomorphic to a subgroup of Aut(H).

Lemma 5.2.10. [70, Proposition 4.1] Let Γ be an infinite graph, let e be an

edge of Γ, and let k be a natural number. Then G has only finitely many k-

tight cuts containing e.

Lemma 5.2.11. [22, Theorem 1.1] Let Γ be a connected graph with more than

one end. Then there exists a k-tight cut (A,A∗) such that for any g ∈ Aut(Γ)

either (A,A∗) ≤ g(A,A∗) or vice versa.
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Let us now have a precise look at an HNN-extension.

Remark 5.2.12. Let C = 〈S | R〉 be a finite group. Every automorphism φ

of C gives us an HNN-extension G = ∗φC. We can build an HNN-extension

from an automorphism φ : C → C. Therefore C is a normal subgroup of G

with the quotient Z, as the presentation of HNN-extension G = ∗φC is

〈S, t | R, t−1ct = φ(c)∀c ∈ C〉.

Hence G can be expressed by a semidirect product C o Z which is induced

by φ.

We now are in the position to prove the main theorem of this section.

Theorem 5.2.1. We illustrate the strategy to proof Theorem 5.2.1 in the

following diagram, see Figure 5.1.

(i)

(ii) (iii) (v)(iv)

(vi)

(vii)

⇒ ⇒ ⇒

⇒

⇒

⇒

⇒

⇐=

Figure 5.1: Structure of the proof of Theorem 5.2.1

Proof of Theorem 5.2.1. (i) ⇒ (ii) Let Γ be a Cayley graph of G and

thus G acts on Γ transitively. Now it follows from Theorem 5.1.12 that G

has an infinite cyclic subgroup of finite index.

(ii) ⇒ (iii) Suppose that H = 〈g〉 and we may assume that H is normal,

otherwise we replace H by Core(H). Let K = CG(H) and since [G : H] is

finite, we deduce that [K : Z(K)] is finite , because H is contained in Z(K)

and the index of H in G is finite. In addition, we can assume that K is a

finitely generated group, as [G : K] <∞ we are able to apply Lemma 2.3.7.

We now invoke Lemma 5.2.7 and conclude that K ′ is a finite subgroup. On

the other hand K/K ′ must be a finitely generated abelian group. Since K

is infinite, one may see that K/K ′ ∼= Zn ⊕K0, where K0 is a finite abelian

group and n ≥ 1.
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We now claim that n = 1. Since [G : H] < ∞ and H ⊆ K, we infer

that [K : H] <∞. But Lemma 2.3.7 implies that e(K) = e(H ∼= Z). Thus K

is two-ended and if n ≥ 2, then Zn⊕R is one-ended which is a contradiction.

Hence the claim is proved. Next we define a homomorphism ψ : K → Z with

the finite kernel K0. Since K0 is finite subgroup of K such that K/K0
∼= Z,

we deduce that K0charK. It follows from Lemma 5.2.9, that G/CG(H) is

isomorphic to a subgroup of Aut(Z) ∼= Z2 and so we may assume that K is a

normal subgroup of G. If K = G, then we are done. We suppose that K < G.

We notice that K0charK CG and so K0 is a finite normal subgroup of G.

We claim that G/K0 is not an abelian group. Since K is a proper sub-

group of G, we are able to find g ∈ G \K such that g does not commutate

with h ∈ H ⊆ K and we have h−1ghg−1 ∈ H. So gK0 and hK0 do not com-

mutate and the claim is proved. Let aK0 generate K/K0
∼= Z and we pick up

an element bK0 in (G/K0) \ (K/K0). We can see that G/K0 = 〈aK0, bK0〉.
We note that K/K0EG/K0 and so bab−1K0 = aiK0 for some i ∈ Z. Since K0

is a finite group and G/K0 is not abelian, we conclude that bab−1K0 = a−1K0.

We already know that [G : K] = 2 and so b2K0 ∈ K/K0. We assume

that b2K0 = ajK0 for some j ∈ Z. With bab−1K0 = a−1K0 and we deduce

that j = 0. Thus b2K0 = K0 and we conclude that G/K0 = K/K0〈bK0〉. In

other words one can see that G/K0 = ZZ2, where Z is a normal subgroup.

(iii) ⇒ (iv) Let G = KN such that N is a finite normal subgroup of G

and K ∼= Z or K ∼= D∞ and moreover K ∩N = 1. If K ∼= Z, then by Re-

mark 5.2.12 we get an HNN-extension of ∗ψN where ψ ∈ Aut(N). So we may

assume that φ : G/N → 〈a〉 ∗ 〈b〉, where 〈a〉 ∼= 〈b〉 ∼= Z2. Let A and B be the

pull-backs of 〈a〉 and 〈b〉 by h, respectively. We note that the index of K in

both of A and B is two. Let us define a homomorphism Φ: A ∗C B → G,

by setting Φ(X) = X, where X ∈ {A,B}. It is not hard to see that Φ is an

isomorphism.

(iv) ⇒ (v) Assume that G is isomorphic to either A∗CB where C is finite

and [A : C] = [B : C] = 2 or ∗φC with C is finite and φ ∈ Aut(C). If we

consider a canonical generating set S for G, then one may see that Γ(G,S)

is a two-ended graph. So by Theorem 5.1.1 we are done.
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(v) ⇒ (vi) Since the Cayley graph is quasi-isometric to the double ray, we

conclude thatG is a two-ended group. We choose a generating set S forG and

consider Γ := Γ(G,S). We now construct a “structure tree”6 R of Γ, which

will be the double ray, in such a way that G acts on R and all stabilizers are

finite with exactly one edge orbit. It follows from Lemma 5.2.11 that there

is a finite cut C = (A,A∗) of Γ such that the set S := {g(A,A∗) | g ∈ G}
is a nested set. As S is nested, we can consider S as a totally ordered

set. Let g ∈ G be such that g(A,A∗) is the predecessor of (A,A∗) in this

order. We may assume that A ( gA. This implies that Γ\(A∪gA∗) is finite.

Let g′ ∈ G such that g′(A,A∗) is the predecessor of g(A,A′). We can conclude

that g−1g′(A,A∗) is the predecessor of (A,A∗) and as predecessors are unique

we can conclude that g′ = g2. Hence we can decompose Γ by g into infinitely

many finite subgraphs such that between any two of these subgraphs there

are finitely many edges. We now contract each finite subgraph to a vertex

and for every finite cut between two consecutive subgraphs we consider an

edge. Thus we obtain the double ray R in such way that G acts on R. It is

straightforward to check that there is only one edge orbit. So we only need

to establish that the stabilizers are finite. Let e be an edge of R. Then e

corresponds to a k-tight cut C. It follows from Lemma 5.2.10 that there are

finitely many k-tight cuts meeting C. So it means that the edge stabilizer

of R is finite. With an analogous argument one can show that the vertex

stabilizer of R is finite as well.

(vi) ⇒ (iv) Since G acts on the double ray, we are able to apply the Bass-

Serre theory. So it follows from Lemma 2.3.3 that G is either a free product

with amalgamation over a finite subgroup or an HNN-extension of finite

subgroup. More precisely, the group G is isomorphic to G1 ∗G2 G3 or ∗φG1,

where Gi is finite subgroup for i = 1, 2, 3 and φ ∈ Aut(G2). On the other

hand, Theorem 5.1.12 implies that G must be two-ended. Now we show

that [G1 : G2] = [G1 : G3] = 2. We assume to contrary [Gi : G2] ≥ 3 for

some i ∈ {1, 3}. Then G1 ∗G2 G3 has infinitely many ends which yields a

contradiction. One may use a similar argument to show that G1 = G2 for

6For more details about the structure tree see [52].

81



the HNN-extension.

(vi) ⇒ (vii) Since Γ = Γ(G,S) ∼QI R, where R is the double ray, we

conclude that G is a two-ended group. It follows from Lemma 5.2.4 that we

only need to compute dimH0(G, Z̃2G) in order to calculate dimH1(G,Z2G).

By Corollary 5.2.6, it is enough to show that the dimension of QΓ/FΓ is two.

Let {e1, . . . , en} be an independent vector of QΓ. Since the co-boundary of

each ei is finite, we are able to find finitely many edges of G containing all

co-boundaries, say K. We note that Γ is a locally finite two-ended graph and

so we have only two components C1 and C2 of Γ \K. Every ei corresponds

to a set of vertices of Γ. We notice that each ei takes the same value on

each Ci. In other words, ei contains both ends of an edge e ∈ Ci or none

of them. We first assume that 2 ≤ n. Then there are at least two vectors

of {e1, . . . , en} which take the same value on a component C1 and it yields

a contradiction with independence of these vectors. Hence we have shown

that n ≥ 2. Let K be a finite set of vertices of Γ such that C1 and C2 are

the infinite components of Γ \K. Since the co-boundary of each Ci is finite,

each Ci can be regarded as an element of QΓ/FΓ and it is not hard to see

that they are independent.

(vii) ⇒ (i) As we have seen in the last part the dimension of QΓ/FΓ is

exactly the number of ends. Hence Lemma 5.2.4 and Corollary 5.2.6 complete

the proof.

Remark 5.2.13. It is worth remarking that by Part (iii) of Theorem 5.2.1

every two-ended group can be expressed by a semi-direct product of a finite

group with Z or D∞.

5.2.2 Subgroups of two-ended groups

In this section we give some new results about subgroups of two-ended groups.

It is known that every subgroup of finite dihedral is isomorphic to a cyclic

group of another dihedral group. Next we prove this result for the infinite

dihedral group.
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Lemma 5.2.14. Every subgroup of D∞ is isomorphic to either a cyclic group

or to D∞.

Proof. By the definition of D∞ we know that each element of D∞ can be

expressed by aibj where i ∈ Z and j ∈ Z2. Let H be an arbitrary infinite

subgroup of D∞. We have a natural homomorphism from f : H → D∞/〈a〉.
If the map f is trivial, then H is cyclic and we are done. So we can as-

sume that f is surjective. We note that K := Ker(f) has index 2 in H and

moreover K = 〈ai〉 for some i ≥ 2. Thus we deduce that H contains an

element ajb where j ∈ Z. It is straightforward to verify that the homomor-

phism ψ : H → D∞ where ψ carries ai to x and ajb to y is an isomorphic

map, as desired.

Corollary 5.2.15. Let H be an infinite subgroup of D∞, then the index of H

in D∞ is finite.

Proof. Assume that H is an arbitrary infinite subgroup of D∞. Let us have a

look at H1 := H ∩〈a〉. If H1 is trivial, then since 〈a〉 is a maximal subgroup,

one may see that H〈a〉 = D∞. So we infer that H ∼= D∞/〈a〉 ∼= Z2 which

yields a contradiction. Thus H1 is not trivial. Suppose that H1 = 〈ai〉
where i ≥ 1. Because the index H1 in D∞ is finite, we have that [G : H] <∞.

Theorem 5.2.16. If G is a two-ended group and H is an infinite subgroup

of G, then the following statements hold:

(i) H has finite index in G.

(ii) H is two-ended.

Proof. It follows from part (iii) of Theorem 5.2.1 that there is a finite normal

subgroup K such that G/K is isomorphic either to Z or to D∞. First assume

that H contains an element of K. In this case, H/K is isomorphic to a

subgroup of Z or D∞. By Corollary 5.2.15 we infer that [G/K : H/K] is finite

and so we deduce that [G : H] is finite. Thus suppose that K * H. Since K

is a normal subgroup of H, we know that HK is a subgroup of G. With an
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analogous argument of the preceding case we can see that [G/K : HK/K] is

finite and so [G : HK] is finite. By Lemma 5.2.8 we have equality

[HK : K] = [K : H ∩K]

and so [HK : K] is finite. On the other hand one can see that

[G : H] = [G : HK][HK : H].

Hence [G : H] <∞, as desired.

If we suppose that an infinite group G has more than one end, then the

converse of the above theorem is also correct.

Theorem 5.2.17. Let G be a finitely generated group with e(G) > 1 and the

index of every infinite subgroup is finite, then G is two-ended.

Proof. First we claim that G is not a torsion group. By Stallings theorem

we know that we can express G as either free-product with amalgamation

over finite subgroup or an HNN-extension over a finite subgroup. Thus we

are able to conclude that G contains an element of infinite order, say g and

the claim is proved. By assumption the index of 〈g〉 in G is finite. Thus the

equivalence of (i) and (ii) in Theorem 5.2.1 proves that G is two-ended.

The following example shows that we cannot drop the condition e(G) > 1

in the Theorem 5.2.17. For that let us recall some definition: An infinite

group T is a Tarski Monster group if each nontrivial subgroup of T has p

elements, for some fixed prime p. It is well known that such a group exists

for large enough primes p.

Example 5.2.18. Let T be a Tarski monster group for a large enough

prime p. Note that it is well known that T is a finitely generated group. By the

well known theorem of Stallings we know that e(T ) = 1. We set G :=T ×Z2.

Note that G is also one-ended, as the index T in G is finite. In the following

we show that the only infinite subgroup of G is T . Now let H be an infinite
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subgroup of G. It is obvious that H 6⊆ T as that would imply that H is finite.

As T is a maximal subgroup of G we know that TH = G.

2 = [G : T ] = [TH : T ] = [H : H ∩ T ].

For the last equality in the statement above we used Lemma 5.2.8. As H ∩T
is a subgroup of T we conclude it is finite. Thus we know that H is finite

giving us a contradiction.

Theorem 5.2.19. Let G be an infinite finitely generated solvable group7 such

that the index of every infinite subgroup is finite. Then G is two-ended.

Proof. First we show that G is not torsion. Assume to contrary that G is

a torsion group. It is known that any finitely generated solvable torsion

group is finite, see [60, Theorem 5.4.11]. This implies that G is finite and it

yields a contradiction. Hence G has an element g of infinite order. Again by

assumption we know that the index 〈g〉 is finite in G. Thus the equivalence

of (i) and (ii) in Theorem 5.2.1 proves that G is two-ended.

In the sequel, we are going to study the commutator subgroup of two-

ended groups.

Theorem 5.2.20. Let G be a two-ended group which splits over a subgroup C

of order n. Then either 4 ≤ [G : G′] ≤ 4n or |G′| ≤ n.

Proof. If G is an HNN-extension, then G = CZ. So G/C is an abelian group

and we infer that G′ is a subgroup of C and we are done. So we assume that G

is a free product with amalgamation over C. In this case, G/C ∼= D∞. It is

not hard to see that the commutator subgroup of D∞ is generated by 〈a2〉.
thus we deduce that G′K/K has index 4 in G/K. In other words, one can

see that [G : G′K] = 4. On the other hand, we have G′K/G′ ∼= K/G′ ∩K.

Hence we can conclude that [G : G′] does not exceed 4n.

We close Chapter 5 with the following example.

7A group G is solvable if the derived series terminates, i.e. there exists a k such that
G(k) = 1 with G(0) = G and G(n) = [G(n−1), G(n−1)].

85



Example 5.2.21. For instance, suppose that G is a semi-direct product of Zn
by Z. It is straightforward that G′ ∼= Zn. For the other case let G = D∞×A5,

where A5 is the alternating group on the 5 letters. We note that A5 is a perfect

group and so A′5 = A5. Now we can see that [G : G′] = 240.
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Chapter 6

Splitting graphs

We want to remind the reader, that in Chapter 6 the symbols of groups and

graphs change, see Chapter 2 for the reasoning. In this chapter we denote

groups by Γ and graphs by G.

6.1 Finding tree-decompositions

We start this section by studying separations and separation systems. Our

goal is to show that we can separate any two given ends of a graph by

separations which behave nicely.

So let G be a locally finite graph. For two different given ends ω1 and ω2

let (A,A∗) be a splitting separation such that its separator is the minimum

size among all separator of splitting separations separating ω1 and ω2. We

define S(ω1, ω2) as the set of all separations (B,B∗) separating ω1 and ω2

such that |B ∩B∗| = |A ∩ A∗|, i.e.

S(ω1, ω2) = {(B,B∗) | (B,B∗) separates ω1 and ω2; |A ∩ A∗| = |B ∩B∗|}.

We notice that with this notation, ω1 and ω2 live in B and B∗, respectively.

For a given graph G let Sk be the set of all tight splitting k-separations

of G. We denote the set of all tight k-separations by Sk(G).

It will be important to our arguments that we can limit the number of

some special type of separations meeting a given finite vertex set S. For this
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we cite a lemma by Thomasen and Woess.

Lemma 6.1.1. [70, Corollary 4.3] Let S ⊆ V (G) be a finite set of a locally

finite graph G. Then there are only finitely many (A,A∗) ∈ Sk(G) such that

their separators meet S.

For two given ends ω1 and ω2 of G, we can find a tight m-separation which

separates ω1 and ω2. Now for a separation (A,A∗) ∈ S(ω1, ω2), we associate

to the separation (A,A∗), a set containing all crossing tight `-separations

where ` ≤k and we denote it by N(A,A∗) i.e.

Nk(A,A
∗) :={(B,B∗) ∈

⋃
`≤k

S`(G) | (A,A∗) ∦ (B,B∗)}

It follows from Lemma 6.1.1 that the size ofNk(A,A
∗) for a separation (A,A∗)

is finite. We denote this size by nk(A,A
∗). We call this number the cross-

ing number of the separation (A,A∗). We set n(ω1, ω2) to be the minimum

number among all numbers nk(A,A
∗) for all elements of S(ω1, ω2), i.e.

nk(ω1, ω2) := min{nk(A,A∗) | (A,A∗) ∈ S(ω1, ω2)}.

A separation in S(ω1, ω2) is called narrow separation of type (ω1, ω2, k) if its

crossing number is equal to nk(ω1, ω2) and if additionally nk(ω1, ω2) ≥ 1. We

denote the set of all narrow separations of type (ω1, ω2, k) by Nk(ω1, ω2).

Let us define N k as the set of separations which are narrow for a pair two

different ends, i.e.N k :=
⋃Nk(ω1, ω2), for all ω1 6= ω2 ∈ Ω(G). LetN k

` ⊆ N k

be the set of all the separations in N k with separators of size at most `

for ` ∈ N. Please note that N k
` and N k are symmetric.

Theorem 6.1.2. Let Γ be a group acting on a locally finite graph G with

finitely many orbits. Then the action Γ on N` has finitely many orbits.

Proof. Assume that U ⊆ V (G) is finite such that ΓU = V (G). It follows

from Lemma 6.1.1 that there are only finitely many narrow separations whose

separators meet U , say (Ai, A
∗
i ) for i = 1, . . . ,m. Suppose that (A,A∗) is an

arbitrary separation in N`. Let v ∈ A ∩ A∗ be an arbitrary vertex. By the
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definition of U we can now map x into U by some g ∈ Γ. We can conclude

that g(A∩A∗) is a separator of a separation that meets U , as it contains gx.

Thus we can conclude that g(A,A∗) is one of the (Ai, A
∗
i )’s.

Next we are going to show that N k is a nested set. In order to show

this, we have to verify some facts and lemmas. Let (A,A∗) ∈ Nk(ω1, ω2)

and (B,B∗) ∈ Nk(ω′1, ω′2) be two crossing narrow separations. Let W be

defined as W := {ω1, ω2, ω
′
1, ω

′
2}. Then we have the two following cases:

• There is exactly one corner separation of {(A,A∗), (B,B∗)} that does

not capture an end in W .

• Every corner separation of {(A,A∗), (B,B∗)} captures an end of W .

We study each case independently. The aim is to show that there are always

two opposite corners capturing the ends ω1 and ω2 which belong to S(ω1, ω2).

Lemma 6.1.3. Let (A,A∗) ∈ S(ω1, ω2) and (B,B∗) ∈ S(ω′1, ω
′
2) be two

crossing separations and let W = {ω1, ω2, ω
′
1, ω

′
2}. If there is exactly one cor-

ner separation of {(A,A∗), (B,B∗)} that does not capture an end in W , then

there are two opposite corners capturing ends of W which belong to S(x, y)

for suitable x, y ∈ W .

Proof. Let (A,A∗) ∈ S(ω1, ω2) and (B,B∗) ∈ S(ω′1, ω
′
2) be two crossing

separations and let W = {ω1, ω2, ω
′
1, ω

′
2}. Such that there is exactly one

corner separation of {(A,A∗), (B,B∗)} that does not capture an end in W ,

then there are two opposite corners capturing ends of W . Either there are

exactly two or exactly three corners capturing ends of W . If there are exactly

two corners capturing ends of W , then those corners are opposite corners and

we are done. So we may assume that there are exactly three corners capturing

ends of W . Without loss of generality, let us assume that (A ∩ B∗, A∗ ∪ B)

does not capture an end of W . In the following we assume that the ends

of W are distributed as shown in the Figure 6.1. We denote the numbers of

vertices in various subsets of the separators with the letters a-e as indicated

in Figure 6.1.
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A

a

b

c

de

ω′
1ω1

ω′
2

ω2

A∗

B

B∗

Figure 6.1: Crossing separations with one corner without an end.

Note that the separation (A∩B,A∗ ∪B∗) separates ω1 and ω2. Further-

more note that (A∗ ∩B∗, A ∪B) separates ω′1 and ω′2. This implies that

a+ b+ e ≥ a+ e+ c and c+ e+ d ≥ b+ e+ d.

Thus one can see that b = c and we deduce that (A ∩B,A∗ ∪B∗) ∈ S(ω1, ω2)

and (A∗ ∩B∗, A ∪B) ∈ S(ω′1, ω
′
2), as desired. With analogous methods one

can easily verify the other possible distributions of the ends of W , we omit

this here.

Lemma 6.1.4. Let (A,A∗) ∈ S(ω1, ω2) and (B,B∗) ∈ S(ω′1, ω
′
2) be two

crossing separations and let W = {ω1, ω2, ω
′
1, ω

′
2}. Then if every corner sepa-

ration of {(A,A∗), (B,B∗)} captures an end of W , then every corner belongs

to S(x, y) for suitable x, y ∈ W .

Proof. As every corner separation of {(A,A∗), (B,B∗)} captures an end ofW ,

we know that (A,A∗) separates ω′1 and ω′2 and moreover ω1 and ω2 are sep-

arated by (B,B∗). Thus |A ∩ A∗| = |B ∩ B| and so (B,B∗) ∈ S(ω1, ω2)

and (A,A∗) ∈ S(ω′1, ω
′
2). Now let the ends of W be distributed as shown in

Figure 6.2.

We shall show that the size of separator (A ∩ B,A∗ ∪ B∗) is exactly the

same as the size of separator (A,A∗). Since the separation (A ∩B,A∗ ∪B∗)
separates ω1 and ω2, we can conclude that

a+ b+ e ≥ a+ e+ c.
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b
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ω′
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A∗

B

B∗

Figure 6.2: Crossing separations where an end lives in every corner.

Analogously ω1 and ω2 can be separated by the separation

(A∗ ∩B∗, A ∪B) and so c+ e+ d ≥ a+ e+ c.

We deduce that b = c and this means that the separation (A ∩ B,A∗ ∪ B∗)
belongs to S(ω1, ω2). With the similar method, one can verify that a = d

and show an analogous result for the other corners.

The next lemma we need shows that when dealing with nested separations

the corner separations behave in a nice way. For this we need an infinite

version of a lemma in [10] which has been proved by Carmesin, Diestel,

Hundertmark and Stein.

Lemma 6.1.5. Let (A,A∗), (B,B∗) and (C,C∗) be splitting separations. Ad-

ditionally let (A,A∗) ∦ (B,B∗). Then the following statements hold:

(i) If (C,C∗) ‖ (A,A∗) and (C,C∗) ‖ (B,B∗), then (C,C∗) is nested with

every corner separation of {(A,A∗), (B,B∗)}.

(ii) If (C,C∗) ‖ (A,A∗) or (C,C∗) ‖ (B,B∗), then (C,C∗) is nested with

any two opposite corner separations of {(A,A∗), (B,B∗)}.

Proof. For the proof of the (i), see [10, Lemma 2.2].1 In the following we

prove the second part here. Assume to the contrary that (C,C∗) is neither

1Even though the proof in [10] is just for finite graphs, it works totally analogously.
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nested with (A ∩B,A∗ ∪B∗) nor with (A∗ ∩B∗, A ∪B). Without loss of

generality, we can suppose that

C ⊆ B and so B∗ ⊆ C∗.

So we conclude that

C ∩ (A ∪B) = C and we conclude that A ∪B ⊇ C.

On the other hand, we have

C∗ ∩ (A∗ ∩B∗) = A∗ ∩B∗ and it yields that C∗ ⊇ (A∗ ∩B∗).

Hence we found that (A ∪B,A∗ ∩B∗) ≤ (C,C∗) and it yields a contradic-

tion. The other cases are similar to the above case.

In Theorem 6.1.6 we now prove our aim, i.e. we show that N k is a nested

set.

Theorem 6.1.6. Let G be a locally finite graph. Then the set N k is a nested

set.

Proof. Assume for a contradiction that

(A,A∗) ∈ Nk(ω1, ω2) and (B,B∗) ∈ Nk(ω′1, ω′2)

are two crossing narrow separations. Set W :={ω1, ω2, ω
′
1, ω

′
2}.

Let (X,X∗) and (Y, Y ∗) be two opposite corner separations such that

exactly one end in W lives in X and Y , respectively. Now we need the

following two claims:

Claim I: Nk(X,X
∗) ∩Nk(Y, Y

∗) ⊆ Nk(A,A
∗) ∩Nk(B,B

∗).

Let (C,C∗) ∈ Nk(X,X
∗) ∩Nk(Y, Y

∗). Then we have

(C,C∗) ∦ (X,X∗) and (C,C∗) ∦ (Y, Y ∗)
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So it follows from part (ii) of Lemma 6.1.5 that

(C,C∗) ∦ (A,A∗) and (C,C∗) ∦ (B,B∗)

and we are done.

Claim II: Nk(X,X
∗) ∪Nk(Y, Y

∗) ( Nk(A,A
∗) ∪Nk(B,B

∗).

To show the inclusion suppose that

(C,C∗) ∈ Nk(X,X
∗), but

(C,C∗) /∈ Nk(A,A
∗) and (C,C∗) /∈ Nk(B,B

∗).

So (C,C∗) ‖ (A,A∗) and (B,B∗). By first part of Lemma 6.1.5 we conclude

that (C,C∗) is nested with every corner of {(A,A∗), (B,B∗)}. Therefore we

get a contradiction, as (C,C∗) ∈ Nk(X,X
∗).

As (A,A∗) is assumed to be crossing (B,B∗) we know

(A,A∗) ∈ Nk(A,A
∗) ∪Nk(B,B

∗).

We know that (A,A∗) is nested with both (X,X∗) and (Y, Y ∗). Thus Claim

II is proved.

By symmetry and by renaming the ends and the sides we only have two

cases:

Case I: ω1 lives in A ∩B and ω′2 lives in A∗ ∩B∗.
By Lemma 6.1.3 we conclude that

(A ∩B,A∗ ∪B∗) ∈ S(ω1, ω2) and (A∗ ∩B∗, A ∪B) ∈ S(ω′1, ω
′
2).

As both (A,A∗) and (B,B∗) are narrow, we know that

nk(A ∩B,A∗ ∪B∗) ≥ nk(ω1, ω2) and nk(A
∗ ∩B∗, A ∪B) ≥ nk(ω

′
1, ω

′
2).
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Claim I yields

|Nk(A ∩B,A∗ ∪B∗) ∩Nk(A
∗ ∩B∗, A ∪B)|

≤ |Nk(A,A
∗) ∩Nk(B,B

∗)|

Claim II yields

|Nk(A ∩B,A∗ ∪B∗) ∪Nk(A
∗ ∩B∗, A ∪B)|

< |Nk(A,A
∗) ∪Nk(B,B

∗)|

Now we have a simple calculation.

nk(ω1, ω2) + nk(ω
′
1, ω

′
2) ≤ nk(A ∩B,A∗ ∪B∗) + nk(A

∗ ∩B∗, A ∪B)

= |Nk(A ∩B,A∗ ∪B∗) ∪Nk(A
∗ ∩B∗, A ∪B)|

+|Nk(A ∩B,A∗ ∪B∗) ∩Nk(A
∗ ∩B∗, A ∪B)|

< |Nk(A,A
∗) ∪Nk(B,B

∗)|+ |Nk(A,A
∗) ∩Nk(B,B

∗)|
= |Nk(A,A

∗)|+ |Nk(B,B
∗)| = nk(A,A

∗) + nk(B,B
∗)

= nk(ω1, ω2) + nk(ω
′
1, ω

′
2).

In other words, we found that

nk(ω1, ω2) + nk(ω
′
1, ω

′
2) < nk(ω1, ω2) + nk(ω

′
1, ω

′
2)

and this yields a contradiction.

Case II: ω1 lives in A ∩B and ω2 lives in A∗ ∩B∗.
By switching the names of ω′1 and ω′2 we can assume that ω′1 lives in A∩B∗.
By Lemma 6.1.4 we conclude that

(A ∩B,A∗ ∪B∗) ∈ S(ω1, ω2) and (A ∩B∗, A∗ ∪B) ∈ S(ω′1, ω
′
2)

and (A∗ ∩B,A ∪B∗) ∈ S(ω′1, ω
′
2) and (A∗ ∩B∗, A ∪B) ∈ S(ω1, ω2)
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In the same manner to the above calculation we now obtain:

2nk(ω1, ω2) + 2nk(ω
′
1, ω

′
2) ≤ nk(A ∩B,A∗ ∪B∗) + nk(A

∗ ∩B∗, A ∪B)

+nk(A
∗ ∩B,A ∪B∗) + nk(A ∩B∗, A∗ ∪B)

= 2|Nk(A ∩B,A∗ ∪B∗) ∪Nk(A
∗ ∩B∗, A ∪B)|

+2|Nk(A ∩B,A∗ ∪B∗) ∩Nk(A
∗ ∩B∗, A ∪B)|

< 2|Nk(A,A
∗) ∪Nk(B,B

∗)|+ 2|Nk(A,A
∗) ∩Nk(B,B

∗)|
= 2|Nk(A,A

∗)|+ 2|Nk(B,B
∗)| = 2nk(A,A

∗) + 2nk(B,B
∗)

= 2nk(ω1, ω2) + 2nk(ω
′
1, ω

′
2).

This is again a contradiction and hence we are done.

It is known that every symmetric nested system of separations of a finite

graph can be used to define a tree-decomposition. See the work of Carmesin,

Diestel, Hundertmark and Stein [10].

We will use the same tools in order to define a tree-decomposition of an

infinite quasi-transitive graph G. We define a relation between separations

of a system of nested separations. Let O be a symmetric system of nested

separations. Assume that (A,A∗) and (B,B∗) belong to O.

(A,A∗) ∼ (B,B∗) :⇔
{

(A,A∗) = (B,B∗) or

(A∗, A) is a predessor2of (B,B∗) in (O,≤)

It follows from [10, Lemma 3.1] that ∼ is an equivalence relation. We denote

the equivalence class of (A,A∗) by [(A,A∗)]. We now are ready to define a

tree-decomposition (T,V) of G. We define the nodes for the tree T of the

tree-decomposition (T,V) as the equivalence classes. More precisely

V[A,A∗] :=
⋂
{B | (B,B∗) ∈ [(A,A∗)]}

Now put V := {V[A,A]}. For every [(A,A∗)] we add the edge [(A,A∗)][(A∗, A)]

and so (T,V) is a tree-decomposition of G.

2In a partial order (P,≤), an element x ∈ P is a predecessor of an element z ∈ P
if x < z but there is no y ∈ P with x < y < z.
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A symmetric nested systems of separations O is sparse if for every

(A,A∗), (B,B∗) ∈ O

there are only finitely many (C,C∗) ∈ O such that

(A,A∗) ≤ (C,C∗) ≤ (B,B∗).

By [10, Lemma 3.2, Lemma 3.3, Theorem 3.4] we get the following lemma:3

Lemma 6.1.7. [10] Let G be a locally finite graph, and let O be a sparse

symmetric nested systems of separations, thenO defines a tree-decomposition

of G.

Using Lemma 6.1.1 we obtain the following corollary to Theorem 6.1.6.

Corollary 6.1.8. Let G be a quasi-transitive graph then N` is a sparse sym-

metric nested system of separations for each ` ∈ N ∪ {0}.

Proof. By Theorem 6.1.6 we know thatN` is nested asN k
` ⊆ N k. Let (A,A∗)

and (B,B∗) be two separations in N k
` . Let x be a vertex in a shortest path

between a vertex v in A ∩ A∗ and a vertex w in B ∩ B∗. By Lemma 6.1.1

we know there are only finitely many separators in N k
e ll which contain x.

As there are only a finite number of pairs of vertex v, w with v ∈ A ∩ A∗
and w ∈ B ∩B∗ we are done.

Let Γ be a group acting on a locally finite graph G with at least two ends.

A tree-decomposition (T,V) for G with the following properties is a type 0

tree-decomposition with respect to Γ:

(i) (T,V) distinguishes at least two ends.

(ii) (T,V) has finite adhesion.

(iii) Γ acts transitively on the edges of T .

3The proofs in [10] are just for finite graphs. But with the additional assumption that
the system is sparse the proofs are identical.
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If the group acting on G is obvious in the context we just omit naming the

group and just say (T,V) a type 0 tree-decomposition of G.

Theorem 6.1.9. Let Γ be a group acting on a locally finite graph G with at

least two ends. Then there is a type 0 tree-decomposition (T,V) for G.

Proof. By Lemma 6.1.7 it is enough to find a sparse symmetric nested set of

splitting separations that is invariant under Γ. Assume that (A,A∗) ∈ N k

and let O be the orbit of (A,A∗) under Γ.4 As Γ is acting on G we know

that g(A,A∗) ∈ N k for each g ∈ Γ. So it follows from Theorem 6.1.6 that O
is nested. By Corollary 6.1.8 we know that O is sparse. It is obvious that

making O symmetric by adding (A∗, A) to O whenever (A,A∗) ∈ O does not

change O being nested nor sparse, hence by the method mentioned above,

we are done.

Let Γ be a group acting on a locally finite graph G with at least two

ends. A type 0 tree-decomposition (T, V̂) with additional properties that

each adhesion set is connected is a type 1 tree-decomposition with respect

to Γ. As with type 0 tree-decomposition we omit ‘with respect to Γ’ if the

group acting on the graph is clear.

In the following Theorem 6.1.10 we modify (T,V) given by Theorem 6.1.9

in order to obtain a type 1 tree-decomposition.

Theorem 6.1.10. Let Γ be a group acting on a locally finite graph G. There

is a type 1 tree-decomposition of G with respect to Γ.

Proof. We use Theorem 6.1.9 to find a type 0 tree-decomposition (T,V) of G.

Let u and v be two vertices of an adhesion set Vt ∩ Vt′ . Assume that P is

the set of all geodesics between u and v and assume that V1 is the set of all

vertices of G which are contained in a geodesic in P . Now we add all vertices

of V1 to the adhesion set Vt ∩ Vt′ . We continue for each pair of vertices in

any adhesion set. We denote a new decomposition by (T, V̂) and the part

obtained from Vt is called V̂t.

4Note that all separators of separations in O have the same size and hence O ⊆ N k
e ll

for some k, `.
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Now we show that (T, V̂) is a type 1 tree-decomposition. For that we

first show, that (T, V̂) is indeed a tree-decomposition. As (T,V) is a tree-

decomposition it suffices to show that if there is a vertices x such that x ∈ V̂t
and x ∈ V̂t′ then x is also in all V̂t′′ for all t′′ on the t − t′ path in T . As

we have not removed any vertices from any part, it suffices to check this for

vertices which were contained in a geodesic in the process of connecting the

adhesion sets. So let x1 and x2 be to distinct vertices in an adhesion set

and let P be a geodesic between x1 and x2. Additionally let c be a different

than x1 or x2 on P . Say x1, x2 ∈ V̂t and c ∈ V̂t′ \ Vt for some t′ 6= t. Assume

that there is a t′′ which is on a t − t′ path such that t 6= t′′ 6= t′. We may

assume that c ∈ Vt′ \ Vt′′ . We have to show that c ∈ V̂t′′ . Let S be the

adhesion set of (T,V) corresponding to the edge of T that separates t′′ from

t′. Let P ′ = p1, . . . pn be the subpath of P such that p1 is the first vertex

that P has in S and pn is the last vertex P has in S. As P is a geodesic,

this implies that P ′ is a p1 − pn geodesic. By our assumptions we know that

c ∈ P ′. This implies that c ∈ Vt′′ .
Now we show that (T, V̂) still distinguishes at least two ends, has a finite

adhesion set and Γ acts on (T, V̂). There are two ends ω1 and ω2 which are

separated by (T,V). It means that there exist two rays Ri ∈ ωi for i = 1, 2

and t1t2 ∈ E(T ) such that Vt1 ∩ Vt2 separates ω1 and ω2. Assume that Ti is

the component of T − t1t2 containing the node ti for i = 1, 2. Without loss

of generality we can assume that
⋃
t∈Ti Vt contains a tail of Ri. So this yields

that V̂t1 ∩ V̂t2 separates tails of R1 and R2 where V̂ti is induced part by Vti
for i = 1, 2 as (Vt1 ∩ Vt2) ⊆ (V̂t1 ∩ V̂t2).

To see that all the adhesion sets of (T, V̂) are finite, one might note

the following: Let P be a geodesic and v, w ∈ P . This implies that vPw5

is a geodesic between v and w. This directly implies that we only added

finitely many vertices to each adhesion set as G is locally finite. Since we

added all vertices of geodesics between vertices of adhesion sets, the con-

struction of (T, V̂) implies that Γ acts on (T, V̂). Thus (T, V̂) is a type 1

tree-decomposition with respect to Γ, as desired.

5For a path P and two vertices v, w ∈ P we define the path from v to w contained in P
as vPw.
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By the proof of Theorem 6.1.10 we get the following corollary which will

be useful in Section 6.2.

Corollary 6.1.11. Let (T,V) be a type 0 tree-decomposition of a locally finite

graph G with respect to a group Γ. Then (T,V) can be extended to a type 1

tree-decomposition (T, V̂) of G with respect to Γ.6

We call a tree-decomposition of a graph G connected if all parts are

connected. In the following lemma we show that any tree-decomposition of

a connected graph is connected if all of its adhesion sets are connected. The

proof of Lemma 6.1.12 is a little bit technical but the intuition is quite easy.

We pick two arbitrary vertices in the same part. As our graph is connected

we can pick a path connecting those vertices in the entire graph. Such a

path must leave and later reenter that part through an adhesion set. Even

stronger it must leave and reenter any part through the same adhesion set.

As we assume every adhesion set to be connected we can change the path to

instead of leaving the part to be rerouted inside that adhesion set.

Lemma 6.1.12. A tree-decomposition of a connected graph G is connected

if all its adhesion sets are connected.

Proof. Suppose that u and w are two vertices of Vt for some t ∈ V (T ).

Since G is connected, there is a path P = p1, . . . , pn between u and w and

lets say p1 = u and pn = w. If P ⊆ Vt then we are done. So we may assume

that P leaves Vt. Let pi ∈ Vt such that pi+1 /∈ Vt and let pi+ be the first

vertex of P that comes after pi such that pi+ ∈ Vt. We say the vertex pi+

corresponds to the vertex pi. As u = p1 and pn = w ∈ Vt we know that

such a vertex must always exist. Let X be the set of all vertices pi ∈ Vt

such that pi+1 /∈ Vt and let X+ be the set of all vertices pi+ corresponding

to vertices in X. By the definition of a tree-decomposition we know that

for each i such that pi ∈ X there is an adhesion set Si such that pi ∈ S

and pi+ ∈ S. Now we are ready to change the path P to be completely

6Extending here is meant in the sense of the proof of Theorem 6.1.9. I.e. we extend
a tree-decomposition by, for each part, adding a finite number of vertices to that parts
whilst keeping it a tree-decomposition
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contained in Vt. Let i be the smallest integer such that pi ∈ Vt and let Si

be the adhesion set containing both pi and pi+ . We pick a path Qi from pi

to pi+ contained in Si. Let k be the largest natural number such that pk is

contained in Qi. We change the path P to go to pi and then to use Qi till the

vertex pk and then continue on along P . It is straightforward to see that the

new path P contains less vertices outside of Vt. Iterating this process yields

a u− w path completely contained in Vt.

Theorem 6.1.13. Let Γ be a group acting on a locally finite graph with

finitely many orbits. Additionally let (T, V̂) be a type 1 tree-decomposition

of G. Then there exists H ≤ Γ whose action on each part of (T, V̂) has finitely

many orbits.

Proof. Let V̂t = [(A,A∗)] be an arbitrary part of (T, V̂). We claim that the

stabilizer of V̂t in Γ satisfies the assumption of H. We define

KB := {g ∈ Γ | g(B,B∗) ∼ (B,B∗)} for every (B,B∗) ∼ (A,A∗).

It is not hard to see that KB is a subgroup of Γ and moreover KB ⊆ ΓV̂t
for each (B,B∗) ∼ (A,A∗). Let g ∈ Γ such that g(B,B∗) ∼ (B,B∗) and

let (C,C∗) be a separation such that g(B,B∗) ∼ (C,C∗), then we know

that (B,B∗) ∼ (C,C∗) and so g ∈ ΓV̂t .

We now show that ΓV̂t acts on the set {B | (B,B∗) ∼ (A,A∗)} with only

two orbits. As (T, V̂) is type 1 tree-decomposition we know that Γ acts on

the sides of the separations with only two orbits. Assume for a contradiction

that there are at least three orbits {Bi}i∈{1,2,3} on {B | (B,B∗) ∼ (A,A∗)}
where (A,A∗) ∼ (Bi, B

∗
i ) for every i ∈ {1, 2, 3}. There are an element g ∈ Γ

and i, j ∈ {1, 2, 3} in such a way that Bi = gBj. On the other hand, we

have (Bi, B
∗
i ) ∼ (A,A∗) which yields a contradiction. We use the fact

that g(Bj, B
∗
j ) ∼ (Bj, B

∗
j ) to infer that g ∈ KBj

⊆ ΓV̂t , but we know that Bi

and Bj belong to different orbits under the action ΓV̂t .

Next we show that the action of ΓV̂t on the adhesion sets of V̂t has only

two orbits. Assume to contrary that the action ΓV̂t has at least three or-

bits {Bi ∩B∗i | (Bi, B
∗
i ) ∼ (A,A∗)}i∈{1,2,3}. Since the group ΓV̂t acts with only
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two orbits on {B | (B,B∗) ∼ (A,A∗)}, there exist i, j ∈ {1, 2, 3} and g ∈ ΓV̂t
such that gBi = Bj and so gB∗i = B∗j . We deduce that g(Bi ∩B∗i ) = Bj ∩B∗j
where g ∈ ΓV̂t and this yields a contradiction, as they lie in different orbits.

We now claim that there exists d ∈ N in such a way that for every vertex

of v ∈ V̂t there is an adhesion set B∩B∗ of V̂t such that d(v,B∩B∗) ≤ d. Thus

we deduce that the action ΓV̂t on the set of {B ∩ B∗ | (B,B∗) ∼ (A,A∗)}
has finitely many orbits. For every u ∈ V̂t, suppose that Bu ∩B∗u has the

minimum distance du from u among all adhesion sets. Assume to contrary

that the set {du | u ∈ Vt} is not bounded. Without loss of generality suppose

that there is an increasing sequence dv1 < dv2 < · · · . Since the action of Γ

on G has finitely many orbits, there is a g ∈ Γ such that there are i, j ∈ N
with j > i and gvi = vj. Therefore it yields a contradiction, as we have

dvi = d(vi, Bvi ∩B∗vi) = d(gvi, g(Bvi ∩B∗vi)) = d(vj, g(Bvi ∩B∗vi)) ≥ dvj .

Since every vertex of V̂t has a distance less than d from an adhesion set

of V̂t and because the action of ΓV̂t on the set {B ∩ B∗ | (B,B∗) ∼ (A,A∗)}
has finitely many orbits, we deduce that ΓV̂t acts on V̂t with finitely many

orbits.

Corollary 6.1.14. Let Γ be a group acting on a locally finite graph G with

finitely many orbits and (T, V̂) be a type 1 tree-decomposition. Then the

stabilizer of each part V̂t of (T, V̂) acts on V̂t with finitely many orbits, in

particular every part is quasi-transitive.

Theorem 6.1.15. Let Γ be a group acting on locally finite graph G and

let (T, V̂) be a type 1 tree-decomposition of G with respect to Γ. Then the

degree of each node t ∈ V (T ) is finite if and only if V̂t is finite.

Proof. If V̂t is finite, then it is a straightforward argument to show that the

degree of t is finite.

So assume that the degree of t is finite. Suppose that V̂t =
⋂n
i=1Bi and we

denote the corresponding adhesion sets by Bi∩B∗i for i = 1, . . . , n. By Corol-

lary 6.1.14, we find a finite subset U of vertices V̂t such that Aut(V̂t)U = V̂t.

Let now v ∈ U be an arbitrary vertex which is not in any adhesion set. Then
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we are able to find an adhesion set Bj ∩B∗j in such a way that any geodesic

from (Bj ∩B∗j ) to v is the shortest among all geodesics between (Bi ∩B∗i )
and v for i = 1, . . . , n. Since U is a finite set, we deduce that there ex-

ists k ∈ N such that for every v ∈ Vt there is an adhesion set Ai∩Bi in such

a way that d(v,Bi ∩B∗i ) ≤ k. Therefore V̂t is finite, as G is a locally finite

graph, as desired.

Corollary 6.1.16. Let G be a locally finite graph and let (T, V̂) be a type 1

tree-decomposition of G with respect to Aut(G). Then the degree of each t

with t ∈ V (T ) is finite if and only if V̂t is finite.

Theorem 6.1.17. Let G be a locally finite graph and additionally let (T,V)

be a tree-decomposition of G such that the maximal size of the adhesion sets

is finite and furthermore bounded. Then any thick end of G is captured by a

part Vt ∈ V.

Proof. Suppose that ω is a thick end of G. Let k be the maximal size of

the adhesion sets of (T,V) of G. Suppose for a contradiction that ω is not

captured by any part. As ω is a thick end, we can chose k+ 1 vertex disjoint

rays belonging to ω. Let those rays be R1, . . . , Rk+1.

We first show that each ray Ri must leave every part Vt eventually.7 For

a contradiction assume that there is a ray Ri which does not eventually leave

a part Vt. As ω is not captured by any part, it is not captured by Vt and

hence there exists a ray that only meets Vt finitely many times. Let us call

that ray R and let R+ be a tail of R such that R+ does not meet Vt. We now

have the contradiction that R+ and Ri belong to ω but there exists a finite

adhesion set separating R+ and Ri.

For each ray Ri let Xi be the set of nodes t ∈ T such that Ri contains

a vertex of Vt. Let Ti :=T [Xi].
8 By the axioms of tree-decompositions we

know that Ti is connected. As each ray Ri has to leave each part eventually

we know that Ti contains a ray, say RT
i . Let us now consider RT

i and RT
j

for i 6= j.

7There is a vertex in Ri such that no later vertex of Ri is contained in Vt.
8T [X] is the subgraph of T induced by X.
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First suppose that RT
i and RT

j do not meet. This implies that there is an

adhesion set S such that Ri and Rj have tails in different components of G\S.

This contradicts that Ri and Rj belong to the same end. Let Zij :=RT
i ∩RT

j .

We claim that ZT
ij :=T [Zij] is a ray. We have just seen that ZT

ij is not empty.

If ZT
ij is not a ray, then we may assume that there is a vertex xi of RT

i

such x ∈ ZT
ij and xi+1 /∈ ZT

ij . But this also implies that there is an adhesion

set separating a tail of Ri from Rj. So we conclude that ZT
ij is ray.

Let Z :=
⋂k+1
j=2 Z1j and ZT :=T [Z]. By our argument above we can con-

clude that ZT is also a ray. Let ZT = z1, z2, . . . This implies that the part Vz0

contains a vertex from each of k + 1 rays R1, . . . , Rk+1. As each of those rays

also contains a vertex in Vz2 we have a contradiction. There are k+1 disjoint

rays going through a separator of size at most k.

Corollary 6.1.18. Let G be a locally finite graph and Γ be a group acting

on G with finitely orbits. Then any thick end of Γ is captured by a part any

type 1 tree-decomposition with respect to Γ.

We obtain the following nice theorem by just using the tools proved so far.

Let G be a locally finite graph and let (T,V) be a tree-decomposition of G.

Suppose that ω1 and ω2 are two ends of G and furthermore assume that ω1

is captured by V1 and ω2 is captured by V2. We say (T,V) distinguishes ω1

and ω2 efficiently if the following conditions are fulfilled:

(i) |Vi ∩ Vj| <∞ for all i 6= j.

(ii) V1 6= V2.

(iii) If the minimal size of a separator separating ω1 from ω2 is k then there

exists an adhesion set Vi ∩ Vj of size k separating ω1 from ω2.

Finally we say that (T,V) distinguishes Ω(G) efficiently if (T,V) distinguishes

each pair ω1, ω2 of Ω(G) efficiently.

Theorem 6.1.19. Let G be a locally finite graph. For each k ∈ N there

exists a tree-decomposition of G that distinguishes all ends of G which can

be separated by at most k vertices efficiently.
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Proof. Let k be given. Now consider N k
k . By Corollary 6.1.8 we know

that N k
k is a sparse symmetric nested system of separations. By Lemma 6.1.7

we obtain a tree-decomposition (T,V) of G. That (T,V) separates all ends

of G which can be separated by at most k vertices efficiently follows directly

from the definition of N k
k .

6.2 Splitting of graphs

We start this section by showing that we use nice type 1 tree-decompositions

to obtain tree-amalgamations.

Lemma 6.2.1. Let Γ be a group acting on a locally finite graph G with

finitely many orbits. Then any type 1 tree-decomposition (T, V̂) of G with

respect to Γ induces a tree amalgamation G = Vt ∗TVt′ with Vt and Vt′ in V̂.

Proof. We already know that Γ \ T is the K2. In other words, the ver-

tices of Γ \ T are {Vt, Vt′}, where Vt and Vt′ are parts of (T, V̂) and such

that tt′ ∈ E(T ). We now show that G is the tree amalgamation Vt ∗T Vt′ .
Because Γ \T is the K2 we can conclude that T is a (p1, p2)-semiregular tree

where p1 and p2 are the numbers of adhesion sets in Vt and Vt′ , respectively.

We set Vt as G1 and Vt′ as G2 in the above definition of tree amalgama-

tion. The adhesion sets contained in Vt and Vt′ play the role of the sets {Sk}
and {T`}, respectively. As all adhesion sets in Vt and V ′t are isomorphic we

can find the desired bijections φk`. It is obvious that we can find a mapping c

so we conclude that G = Vt ∗TVt′ .

Any tree amalgamation of a locally finite graph with a quasi-transitive

action which can be obtained by Lemma 6.2.1 is called a tree amalgamation

with respect to Γ.

Finally we are ready to give the graph-theoretical version of Stallings’ theo-

rem.

Theorem 6.2.2. If G is a locally finite quasi-transitive graph with more than

one end, then G is a thin tree amalgamation of quasi-transitive graphs.
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Proof. Since G is a locally finite quasi-transitive graph with more than one

end there is a type 1 tree-decomposition (T, V̂) of G by Corollary 6.1.12.

Using Lemma 6.2.1 together with Corollary 6.1.14 means that we are done.

6.3 Accessible graphs

In this section we first define the process of splitting of a locally finite quasi-

transitive graph and then define an algorithm of splitting a locally finite

quasi-transitive graph which terminates after finitely many steps if and only

if the graph is accessible, see Theorem 6.3.2.

We say that we split a locally finite quasi-transitive G with more than one

end if we write G as a thin tree amalgamation G = G1 ∗TG2 with respect to

some group Γ. In this case we callG1 andG2 the factors of this split. If theGi

have more than one end each, we can split the Gi by a tree amalgamation

with respect to a group Γ′. An iteration of such a process is called a splitting

process of G. We say a process of splitting terminates if there is a step in

which all the factors contain at most one end each.

Algorithm 1. Given a locally finite quasi-transitive graph G with more then

one end we define a splitting process in the following:

For the first step we do the following: Assume that i is the smallest integer

such that N i
i is not empty. Let Ωi be the set of ends of G which can be split

by separations in N i
i . We pick a separation (A,A∗) ∈ N i

i such that n(ω1, ω2)

is minimal among all ends in Ωi.

Let O be the orbit of (A,A∗) under Aut(G). By Theorem 6.1.6 we know

that O is nested. By making O symmetric and using Lemma 6.1.7 and Corol-

lary 6.1.8 we obtain a tree-decomposition of G, say (T,V). Note (T,V) is a

type 0 tree-decomposition of G. By Corollary 6.1.11 we can extend (T,V)

to a type 1 tree-decomposition (T, V̂). By Lemma 6.2.1 we can split G.

Say G = G1 ∗TG2.

Let us now assume that we have split G at least once. Let Gj be a factor

which captures at least two ends of G. We now check if there is a separation
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in N i
i that separates any two ends of G captured by Gj. If there is no such

separation we increase i until the new N i
i contains a separation which sepa-

rates two ends of G which are captured by Gj. For each separation (A,A∗)

in N i
i we now consider the separation (Ā, Ā∗) induced by (A,A∗) on Gj such

that (A,A∗) separates two ends captured by Gj. Among all such separa-

tions (Ā, Ā∗) we now pick all those such that A ∩ A∗ is minimal, let the set

of those be X. Let us now pick a separation (B̄, B̄∗) ∈ X such that its

crossing number is minimal among all separations in X. Let O be the orbit

of (B̄, B̄∗) under the action of Aut(G)Gj
. Note that O is a sparse nested

system of separations. Making O symmetric in the usual way we can obtain

a type 0 tree-decomposition of Gj by Lemma 6.1.7. By Corollary 6.1.11 we

make it to a type 1 tree-decomposition of Gj under the action Aut(G)Gj
. So

by Theorem 6.2.1 we can find a thin tree amalgamation of Gj with respect

to Aut(G)Gj
. We now repeat this process for each factor Gj for j = 1, 2.

To summarize, we start with a narrow separation of which the separator

has the minimal size and we consider the type 1 tree-decomposition induced

by this separation. This type 1 tree-decomposition gives us a thin tree-

amalgamation of two new graphs, say G1 and G2. Let us assume that G1

has more than one end. We know consider the narrow separations of G

that separates ends captured in G1. We pick one outside of the orbit of the

first one of minimal size which is also crossing the minimal number of tight

separations of G. We are considering the separation of G1 which is induced

by this chosen separation. We note finding those separations is possible. We

now consider the orbit of this induced separation. Note that we are first

looking for separations in N i
i which separate ends in G1 here. If we have

to increase i we still look for the separations with the smallest order. This

has the consequence that we are first using all separations in N x
y with y ≤ x

before we increase x.

Again we repeat the process and we are able to express G1 as a thin tree

amalgamation G11 ∗T1 G12 with respect to Aut(G)G1 . If G2 has more than

one end, then we can express G2 as a thin tree amalgamation G21 ∗T2 G22.

Afterwards, we repeat this process for each Gij where i, j ∈ {1, 2} and con-

tinue so on. We notice that we are able to repeat the process as long as each
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factor has more than one end.

Theorem 6.3.1. Let G be a locally finite quasi-transitive graph. Then for

every two ends ω1 and ω2 of G Algorithm 1 splits ω1 and ω2.

Proof. Let ω1 and ω2 be two ends of G and let k be the smallest integer

such that there is a separation in N k
k that separates those two ends. We

assume that ` is the smallest integer such that N `
` is not empty. We start

Algorithm 1 with N `
` . First we claim that after finitely many steps we are

forced to move to N `+1
`+1 . It follows from Theorem 6.1.2 that Aut(G) acts with

finitely many orbits on N `+1
` . So we suppose that Xi, for i = 1, . . . , t, are the

orbits of N `
` under action Aut(G). Additionally assume that

|A ∩ A∗| ≤ |B ∩B∗| and n`(A,A
∗) ≤ n`(B,B

∗)

for (A,A∗) ∈ Xi and (B,B∗) ∈ Xj if t ≥ j > i ≥ 1.

Due to Algorithm 1 we need to start with X1 and let G1 ∗T1 G2 be a thin

tree-amalgamation of G obtained from X1. Then suppose that (A,A∗) ∈ X2

separates two ends living in G1. We continue Algorithm 1 and we find a

type 1 tree-decomposition of G1 with respect to Aut(G)G1 . We show that all

elements of X2 separating two ends of G1 are used in the second step of our

Algorithm. We know that Aut(G) acts on T1. In other words, if (T1,V) is the

type 1 tree-decomposition of G1 ∗T1 G2, then gV̂t = V̂t′ for every g ∈ Aut(G)

where t, t′ ∈ T1. Thus if (B,B∗) ∈ X2 separates two ends of G1, then there

a g ∈ Aut(G) such that g(B,B∗) = (A,A∗) and furthermore we deduce

that gG1 = G1 and so g ∈ Aut(G)G1 . Hence (B,B∗) is used in the second

step. Now we are able to conclude that after finitely many steps we can

move to N `+1
`+1 , as the action of Aut(G) has finitely many orbits on N`. With

an analogous method we can show that Algorithm 1 has finitely many steps

between two consecutive Nn and Nn+1. Thus after finitely many steps we

are able to reach to N k
k , as desired.

Theorem 6.3.2. If G is a locally finite quasi-transitive graph, then the pro-

cess of splitting of G defined in Algorithm 1 terminates if and only if G is

accessible.
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Proof. First suppose that the process of splitting of G terminates. We need

to show that there is a k such that we can separate any two different ends ω

and ω′ of G by at most k edges. As G is quasi-transitive, the maximum

degree of G is bounded and hence it suffices to show that there is k such that

each pair of ends of G can be separated by at most k vertices.

We now show that there is a k such that we can extend any separation

obtained in some step of the splitting process to a separation of the entire G

with an adhesion set of size at most k. Let G1 and G2 be two graphs obtained

during the splitting process in such a way that G2 ( G1.

We now use a separation (A,A∗) used to define G2 to define a separa-

tion (B,B∗) of G2. If (A,A∗) is a separation of G2 we are done. So let us

assume that A ∩ A∗ meets some adhesion sets contained inG1. We know from

Lemma 6.1.1 that each vertex in A ∩ A∗ only meets finitely many adhesion

sets of tight separations of G1. Since A ∩ A∗ is finite, we know that A ∩ A∗
only meets finitely many adhesion sets of tight separations of G1 . Thus the

union of A ∩ A∗ with all adhesion sets of tight separations meeting A ∩ A∗
gives us a separation of G2. Note that we only need that A ∩ A∗ is a finite

set. This union now gives an adhesion set B ∩B∗ of a separation (B,B∗) of

finite order. We can do this for every step in the splitting process. Since we

have finitely many steps, we are able to take the maximum among all sizes

of those B ∩ B∗, say this maximum is k. So we can separate each two ends

of G with at most k vertices as each end of G lives in a part of some finite

step.

For the backward implication, we assume that we can separate each two

ends with at most k vertices. This implies Algorithm 1 never considers

a N `
` for ` > k. By Theorem 6.3.1 we already know that for each pair of

ends, Algorithm 1 distinguishes these two ends. On the other hand we can

separate every pair of ends by an element in N k
k . Hence we infer that our

algorithm stops after finitely many steps and as result the splitting process

terminates.

We close the section by remarking that we can strengthen Theorem 6.1.19

for accessible quasi-transitive graphs.
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Remark 6.3.3. Let G be an accessible quasi-transitive graph, then there

exists a tree-decomposition of G that distinguishes all ends of G efficiently.

6.4 Applications

Let G be a locally finite graph. Krön and Möller [43] have shown that thin

graphs are quasi-isometric to trees for arbitrary graph. We start with the

following crucial lemma.

Lemma 6.4.1. [72, Theorem 3.1 and Theorem 3.3] Suppose that G is a

locally finite graph and let x, y ∈ V (G) ∪ Ω(G) be two distinct points. There

is a geodesic arc between x and y.

The following Theorem 6.4.2 is a generalization from transitive to quasi-

transitive graphs of a theorem of Thomassen and Woess [70, Theorem 5.3].

The proof here uses the same general strategy as the proof by Thomassen

and Woess.

Theorem 6.4.2. Let G be a locally finite quasi-transitive graph which is thin.

Then G is accessible.

Proof. In order to show that G is accessible it is enough to show that the

size of splitting separations has an upper bound. Assume for a contradiction

that this is not true and let (Ai, A
∗
i ) be a sequence of minimal separations

of G in such a way that |Ai ∩ A∗i | > |Aj ∩ A∗j | for i > j and suppose that ωi

and ω′i live in a component of Ai and A∗i , respectively. By Lemma 6.4.1,

we are able to find geodesic double rays Ri between ωi and ω′i for i ≥ 1.

Let S := {v1, . . . , vn} be a set of representatives of all orbits. We may as-

sume that each Ri meets S, otherwise we can switch Ri with gRi for a suitable

automorphism g of G. Since we have infinitely many double rays, we can

infer that there exists an infinite subsequence {Rij}j∈Z meeting S in the same

vertex. We may assume that this vertex is v0, otherwise we just relabel the

vertices in S. Let Pij and Qij be v1Rij and Rijv1 which are two geodesic

rays belonging of ωij and ω′ij respectively. Since the degree of v1 is finite and

we have infinitely many rays {Pij}j∈Z, we deduce that {Pij}j∈Z is convergent
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to a ray P . With an analogous method we may assume that {Qij}j∈Z is

convergent to a geodesic ray Q. Suppose that ω and ω′ are ends containing

the rays P and Q respectively. Let (A,A∗) be a minimal separation for ω

and ω′, where ω and ω′ live in A and A∗ respectively. It follows from def-

inition of convergence that there is N ∈ N such that the geodesic double

ray Rik contains a subpath uk(P ∪ Q)vk of the geodesic double ray P ∪ Q,

where k > N . We may assume that uk ∈ A and vk ∈ A∗. We already

know that a separation (Aik , A
∗
ik

) with |Aik ∩ A∗ik | > |A ∩ A∗| separates ωik
and ω′ik . On the other hand the separation (A,A∗) separates ωik and ω′ik and

it yields a contradiction, as |Aik ∩ A∗ik | is minimum among separators which

separates ωik and ω′ik .

In proof the next theorem we use the following result of Thomassen.

Lemma 6.4.3. [69, Proposition 5.6. ] If G is an infinite locally finite con-

nected quasi-transitive graph with only one end, then that end is thick.

Theorem 6.4.4. Let G be a locally finite quasi-transitive graph. Then G is

thin if and only if the splitting process of G ends up with finite graphs.

Proof. First assume that G is thin. It follows from Theorem 6.4.2 that G is

accessible and so Theorem 6.3.2 implies that the process of splitting termi-

nates after finitely many steps. Thus it is enough to show that all graphs in

the final steps are finite. Assume to contrary that there is an infinite graph

in a final step, say H. Since G is a thin graph, the graph H possesses exactly

one thin end ω. We know by Corollary 6.1.14 that H is a quasi-transitive

graph. Hence Lemma 6.4.3 implies that ω is thick, a contradiction. For the

backward implication, suppose that G has a thick end ω. It follows from

Corollary 6.1.18 that ω was captured by a part and so this end remained in a

part in the splitting process in each step and hence the part containing this

end is infinite in each step. Thus we found a contradiction, as desired.

Virtually free groups have been intensively studied in computer science and

mathematics, see [1, 53, 54]. A group Γ is called virtually free if it contains

a free subgroup of finite index. There are some characterizations of those
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groups, see [1]. In particular Woess [76] has shown that G is a finitely

generated virtually free group if and only if every end of any Cayley graph

of G is thin.

Using our splitting process we obtain another characterization for finitely

generated virtually free groups and as an application of this characterization

we infer the well-known result that finitely generated virtually free groups

are accessible. Indeed, in 1983 Linnell [44] proved that any finitely generated

group with only finitely many conjugacy classes of finite subgroups is acces-

sible. In 1993 Sénizergues [63] has shown that if G is a finitely generated

virtually free group then there are only finitely many conjugacy classes of fi-

nite subgroups of G. Both results combined show that any finitely generated

virtually free group is accessible.

Theorem 6.4.5. Let Γ be a finitely generated group. Then G is a virtually

free group if and only if the splitting process of a Cayley graph of G ends up

with finite graphs.

As an immediate consequence of the above theorem we have the following

corollary.

Corollary 6.4.6. Finitely generated virtually free groups are accessible.
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Appendix A

We summarize the results shown in this thesis in the following very briefly.
We first give a summery in German then in English.

A.1 Zusammenfassung

In Chapter 3 zeigen wir, dass Cayley-Graphen von Gruppen, welche als
freies Produkt mit Amalgamation über einer endlichen Untergruppe oder
als HNN-Erweiterung einer endlichen Gruppe geschrieben werden können,
einen topologischen Hamiltonkreis besitzen, falls einer der Faktoren eine
Dedekind-Gruppe ist. In Chapter 4 untersuchen wir weitere Cayley-Graphen
auf topologische Hamiltonkreise. Unter anderem verallgemeinern wir das
berühmte Resultat von Rapaport Strasser welches besagt: Jeder Cayley-
Graph einer endlichen Gruppe, welche von drei Involutionen erzeugt wird,
von denen zwei kommutieren, enthält einen Hamiltonkreis. Wir verallge-
meinern dies zu unendlichen Gruppen deren Cayley Graph Zusammenhang
2 hat. Zusätzlich zeigen wir, dass, wenn eine Gruppe über einer Untergruppe
zerfällt, welche isomorph zu einer zyklischen Gruppe von Primordnung ist,
dann jeder Cayley-Graph dieser Gruppe einen topologischen Hamiltonkreis
hat, sofern das benutzte Erzeugenendensystem diese Untergruppe trifft.

In Chapter 5 erweitern wir unsere Studien von zweiendigen Gruppen und
Graphen und geben eine detaillierte Liste von Charakterisierungen dieser
Objekte. Chapter 6 zeigt, dass man den Prozess des Teilens von Gruppen
im Sinne von Stallings auf mehrendinge quasi-transitive Graphen erweitern
kann. Es ist bekannt, dass ein solcher Prozess des Teilens von Gruppen genau
für erreichbare Gruppen terminiert. Wir zeigen, dass es einen Prozess gibt
quasi-transitive Gruppen zu teilen, welcher genau für erreichbare Graphen
terminiert.
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A.2 Summary

Chapter 3 shows that Cayley graphs of groups which are either a free product
with amalgamation over a finite subgroup of index two or an HNN-extension
over a finite subgroup contain a Hamilton circle if at least one of the factors
is a Dedekind group. Chapter 4 further explores Hamilton circles on Cay-
ley graphs. Among other things we extend the famous result of Rapaport
Strasser which states every Cayley graph of a finite group which is gener-
ated by three involutions, two of which commute, contains a Hamilton cycle
to infinite groups in the 2-connected case. Additionally, we show that if a
two-ended group splits over a subgroup isomorphic to a finite cycle group of
prime order, then any Cayley graph of that group contains a Hamilton circle
as long as the generating set used to generate that Cayley graph does meet
that subgroup.

In Chapter 5 we extend our studies of two-ended groups and graphs and
give a detailed list of characterizations of those objects. Chapter 6 shows
that the process of splitting groups defined by Stallings can be extended to
quasi-transitive graphs. It is known that such a process of splitting groups
terminates exactly for accessible groups. We show there is a process of split-
ting quasi-transitive graphs that terminates exactly for accessible graphs.

A.3 My contribution

My co-authors and I share an equal work in the papers on which this thesis
is based. Highlights of my contributions are finding, formulating and proving
the structure tools used throughout in Chapter 3 and Chapter 4. In particu-
lar Lemma 3.1.6, Lemma 3.1.7 and Lemma 4.3.6 are mine. Furthermore, the
proof of Theorem 3.1.12, one of the main results in Chapter 3 mostly based
on those tools. Additionally, the proof for the counterexample to Problem 1
is done by me. The proof Theorem 4.2.4 is also mostly done by me. The
charaterization of connected quasi-transitive graphs without dominated ends
in Chapter 5 is also done by me. Algorithm 1 in Chapter 6 was also formu-
lated and proved by me. Note that this was inspired by an algorithm which
was obtained in a discussion between Lehner, Miraftab and me.

This thesis is based on the following papers: Chapter 3 on [46], Chapter 4
on [47], Chapter 5 on [48], Chapter 6 on [31].
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[5] S. Brick. Quasi-isometries and ends of groups. J. Pure Appl. Algebra,
(86):23–33, 1993.

[6] K.S. Brown. Cohomology of groups, volume vol. 87 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1994. Corrected reprint of
the 1982 original, x+306 pages.

[7] H. Bruhn and M. Stein. On end degrees and infinite circuits in locally
finite graphs. Combinatorica, 27:269–291, 2007.

[8] J. Carmesin, R. Diestel, M. Hamann, and F. Hundertmark. Canonical
tree-decompositions of finite graphs I. Existence and algorithms. J.
Combin. Theory Ser. B, 116:1–24, 2016.

[9] J. Carmesin, R. Diestel, M. Hamann, and F. Hundertmark. Canonical
tree-decompositions of finite graphs II. The parts. J. Combin. Theory
Ser. B, 118:262–283, 2016.

[10] J. Carmesin, R. Diestel, F. Hundertmark, and M. Stein. Connectivity
and tree structure in finite graphs. Combinatorica, 34(1):1–35, 2014.

115



[11] C.C. Chen and N. Quimpo. Hamilton cycles in cayley graphs over hamil-
tonian groups. Research Report, No. 80, 1983.

[12] D.E. Cohen. Ends and free products of groups. Math. Z., (114):9–18,
1970.

[13] W. Dicks and M.J. Dunwoody. Groups acting on graphs. Cambridge
University Press, 1989.

[14] R. Diestel. Graph Theory. Springer, 4th edition, 2010.

[15] R. Diestel. Locally finite graphs with ends: a topological approach. I.
Basic theory. Discrete Math., 311:1423–1447, 2011.

[16] R. Diestel, H. A. Jung, and R. G. Möller. On vertex transitive graphs
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