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Abstract 

This thesis investigates the potential of the adjoint method for calibrating a climate 

model. The adjoint method is applied to optimize process parameters on climate timescales to 

reduce model biases. The difficulty that must be overcome is the limited assimilation window 

in the adjoint method. Extending the assimilation window longer than the characteristic period 

of the fastest growing mode, will lead to the occurrence of secondary minima accompanied by 

an exponential increase of the adjoint sensitivities, and the gradient-descent minimization 

algorithm is likely trapped into local minima. With a long assimilation window such as 

climate timescales, the adjoint model cannot provide useful gradients for the optimization. To 

overcome the limited assimilation window problem, synchronization which is implemented as 

nudging technique is exploited to regularize the fast-growing modes of the nonlinear system 

and hence extend the feasible assimilation window for parameter estimation. 

Firstly, the performance of this method was investigated based on Lorenz (1963) model. 

It was shown that: by using a finite nudging coefficient which is strong enough to push the 

positive Lyapunov exponents to negative values, the feasible assimilation window can be 

extended arbitrary and the control parameter can be efficiently and reasonably retrieved. 

Performance of this method depends on synchronization efficiency which is influenced by 

observation noise, observation frequency, variables chosen for nudging and nudging strength. 

With noisy and sparse observations, an optimal nudging coefficient which best recovers true 

signal can be predefined and benefits the parameter estimation.  

Secondly, this method was applied to an intermediate earth simulation model, the Planet 

Simulator (PlaSim). I closely examined the usefulness of the adjoint model generated by an 

automatic differentiation tool TAF. Then identical twin experiments were performed with two 

different configurations, with and without moisture parameterizations (the ‘maximal’ and 

‘minimal’ configurations, respectively). The optimization successfully retrieved the default 

values of the control parameters for both the two configurations with assimilation window of 

2-month and 1-year.  

At last, the ’maximal’ configuration was used optimize process parameters by 

assimilating the ERA-Interim data. A number of assimilation experiments using 4,7,16 

control parameters and using different observations in the cost function were conducted. The 

contributions of each parameter to the model state variables were studied in detail. By 

optimizing two parameters controlling absorptivity (longwave) of clouds and water vapor, the 

global mean bias of net long wave radiation at the surface and at the top of the atmosphere 

can be significantly reduced. The global mean bias of short wave radiation at the surface and 

at the top of the atmosphere can be efficiently reduced by optimizing parameters tuning cloud 

optical properties. The air temperature is also considerably improved. Then, the estimated 

parameters were tested with the free model (without nudging terms). The improvements in the 

radiative fluxes and the air temperature are similar to that in the assimilation experiments 

which further validate the usefulness of the method. Other model states such as convective 
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precipitation and surface latent heat flux show both improvement and deterioration. However, 

the specific humidity is hardly improved which is likely due to model deficiency.  

This study demonstrates that by using synchronization, the adjoint method can be applied 

to estimate process parameters on climate timescales efficiently. The method overcomes 

difficulties of parameter estimation in chaotic models and provides a promising way for 

tuning process parameters in coupled climate models.  
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Zusammenfassung 

Diese Arbeit untersucht das Potenzial der adjungierten Methode zur Verbesserung eines 

Klimamodells. Das maximale Assimilationsfenster in der adjungierten Methode ist durch die 

Vorhersagbarkeit des nichtlinearen Systems begrenzt. Eine weitere Erweiterung des 

Assimilationsfensters führt zum Auftreten von mehreren Minima in der objektiven Funktion, 

die die Abweichung zwischen Model und Daten misst, begleitet von einer exponentiellen 

Zunahme der Gradienten. Als Folge steigt die Wahrscheinlichkeit, dass die Minimierung in 

einem lokalen Minimum stecken bleibt. Um die Beschränkung des Assimilationsfensters zu 

überwinden, wird Synchronisation mit den Daten ausgenutzt, die die schnell wachsenden 

Modi dämpft und das nichtlinearen Systems regularisieren kann. 

Zunächst wurde diese Methode anhand des Lorenz (1963) Modells untersucht. Es wurde 

gezeigt, dass durch die Verwendung eines festen Nudging-Koeffizienten, der groß genug ist, 

um positiven Lyapunov-Exponenten auf negative Werte zu drücken, das Assimilationsfenster, 

in dem der Parameter effizient rekonstruiert werden kann, beliebig erweitert werden kann. 

Diese Methode hängt von Beobachtungsfehlern, Beobachtungshäufigkeit, den Variablen, die 

für die Kopplung gewählt wurden, und deren Kopplungsstärke ab, da diese Faktoren zur 

Synchronisationseffizienz beitragen. Bei fehlerhaften und spärlichen Beobachtungen ist der 

optimale Kopplungskoeffizient dadurch ausgezeichnet, dass das fehlerfreie Signal durch 

Synchronisation am besten angenähert wird. Dieser Wert ist auch optimal für die 

Parameterschätzung, da der Einfluss der Fehler auf die geschätzten Parameterwerte minimal 

wird. 

Im zweiten Teil wurde diese Methode auf ein Erdsystem-Simulationsmodell, den Planet 

Simulator (PlaSim), angewendet. Wir untersuchten die Nützlichkeit des adjungierten Modells, 

das durch das automatisches Differenzierungswerkzeug TAF erzeugt wurde, für die 

Parameteroptimierung. Es wurden identische Zwillingsexperimente mit zwei verschiedenen 

Konfigurationen durchgeführt; mit und ohne Feuchtigkeitsparametrierungen ("Maximale" und 

"Minimale" -Konfiguration). Die Optimierung hat die Standardwerte der Parameter für beide 

Konfigurationen mit einem Assimilationsfenster von 1 Jahr erfolgreich rekonstruiert. 

Schließlich wurde die "Maximale" Konfiguration verwendet, um Prozessparameter zu 

optimieren, indem ERA-Interim-Daten assimiliert werden. Eine Reihe von 

Assimilationsexperimenten unter Verwendung von 4,7 oder 16 Kontrollparametern und unter 

Verwendung verschiedener Beobachtungen in der objektiven Funktion wurden durchgeführt, 

um die Leistungsfähigkeit dieser Methode zu bewerten. Die Beiträge der einzelnen Parameter 

zu verschiedenen Modelvariablen wurden im Detail untersucht. Durch die Optimierung von 2 

Parametern, die die Absorptionsfähigkeit (Langwellen) von Wolken und Wasserdampf 

kontrollieren, kann die globale mittlere Vorspannung der Netto-Langwellenstrahlung an der 

Oberfläche und an der Oberseite der Atmosphäre deutlich reduziert werden. Die global 

gemittelten Fehler der Kurzwellenstrahlung an der Oberfläche und an der Oberseite der 

Atmosphäre konnten effizient reduziert werden, indem die Parameter optimiert wurden, die 

die optischen Eigenschaften der Atmosphäre bestimmen. Auch die Lufttemperatur wurde 

deutlich verbessert. Dann wurden die geschätzten Parameter mit dem freien Modell (ohne 
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Synchronisation) getestet. Die Verbesserungen für die Strahlungsflüsse und die Temperatur 

sind ähnlich denen der Assimilationsexperimente, womit die Nützlichkeit des Verfahrens 

weiter validiert worden konnte. Andere Modellzustände wie konvektiver Niederschlag und 

latenter Oberflächenwärmefluss wurden ebenfalls verbessert. Allerdings wurde die 

spezifische Feuchtigkeit kaum verbessert. 

Diese Studie zeigt, dass durch Synchronisation die adjungierte Methode angewendet 

werden kann, um auf klimatologischen Zeitskalen Prozessparameter effizient abzuschätzen. 

Die Methode überwindet Schwierigkeiten bei der Parameterschätzung in chaotischen 

Modellen und bietet eine vielversprechende Möglichkeit, Prozessparameter in gekoppelten 

Klimamodellen abzustimmen. 
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Chapter 1  

Introduction 

1.1 Climate model tuning  

State-of-the-art climate models are widely used both to project the future climate change 

and understand the dynamics of the atmosphere and ocean system. Climate models solve the 

primitive equations which govern the atmosphere and ocean system, using different numerical 

methods that are specified on a specific spatial grid. Due to limited computational resources, 

the spatial resolution of climate models is usually very coarse, typically ranging between 

25-300km for global models (Taylor et al., 2012). Many processes such as cloud formation, 

radiative transfer, and turbulence, occur at much smaller scales and thus cannot be explicitly 

resolved by the numerical models. In such a case, parameterizations are used to approximate 

the statistical impacts of the sub-grid-process on the large-scale flow regarding the large-scale 

flow itself. The details of these parameterizations and values of process parameters involved 

are essential to determine the model’s climatology (Murphy et al. 2004). But because 

parameterization details, as well as the dependence of their amplitudes on the simulated 

large-scale flow fields, are largely unknown, current studies use process parameters that are 

constant in time and space. Unfortunately, even these constant values span a large range of 

plausible values (Järvinen et al., 2010; Louis, 1979; Murphy et al., 2004; Tett et al., 2013). 

Thus, tuning these uncertain parameters is crucial to improve the climate simulation and 

affects climate sensitivity (Hourdin et al., 2016). 

Traditionally, process parameters are manually tuned in a trial and error approach to 

reduce the difference between the model-simulated and observed climatologies. Mauritsen et 

al. (2012) documented how they tuned a global model. Based on a few well-understood cases 

for which the impact a process parameter on the model simulation is known, they tuned the 

climate model to best match the radiation balance at the top of the atmosphere (TOA), the 

global mean temperature, sea ice, clouds and wind fields by adjusting couples of uncertain 

parameters. Due to the complexity of climate models, tuned process parameters are limited to 

a very small subspace, and observations that are used as targets are often related to the energy 

balance of the climate models. A survey on “How do modeling centers tune their models?”
1
 

shows that parameters related to clouds are most frequently tuned, and the TOA radiation 

balance and the global mean temperature are commonly used as targets (Hourdin et al., 2016; 

Mauritsen et al., 2012). This aims at balancing energy received from the sun and energy lost 

to space by adjusting the representation of clouds. For different purposes, additional targets 

may also be included in the tuning process such as tropical variability or ocean heat transport 

in the North Atlantic. Thus, the traditional tuning process is subjective, computationally 

expensive and labor-intensive. A further complication is that it is usual for a tuning process to 

be unsuccessful. Even if only a handful of process parameters are considered, their non-local 

effects can lead to unforeseeable, sometimes detrimental, effects over long integration periods. 

Additionally, the values of process parameters may depend on the spatial and temporal 
                                                            
1 See http://dx.doi.org/10.1175/BAMS-D-15-00135.2 
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resolution of the model (Tiedtke, 1989). Because of this, the modelling community is looking 

for alternatives to efficiently and effectively tuning process parameters that always is intended 

to improve the model simulation. Parameter optimization techniques are such alternatives and 

have advanced quickly over the past decades. 

1.2 Parameter optimization methods 

Considerable parameter optimization methods have been developed by statistics, 

engineering and computer science communities and have been applied to optimize process 

parameters for climate models. Generally, these methods can be categorized into three groups 

based on Stochastic Bayesian approaches, optimization algorithms and data assimilation 

techniques. 

In Stochastic Bayesian approaches (Järvinen et al., 2010; Jackson et al., 2004), optimized 

parameters and confidence ranges are estimated from prior probability of parameters and a 

likelihood function that measures the probability of the observations simulated by the models. 

These methods require a large number of model integrations and are computationally 

expensive. For example, Järvinen et al. (2010) estimated 3 of 4 parameters based on the 

adaptive Markov chain Monte Carlo (MCMC) method which requires 4500 years of model 

integrations. Also, these methods depend on the choice of the likelihood function.  

Optimization algorithms are exploited to find values of a set of parameters that minimize 

an objective function which measures the distance of the model simulation to a small subset 

of observations. Some existing methods such as Green’s function method (Menemenlis et al., 

2005; Stammer and Wunsch, 1996), the simultaneous perturbation stochastic approximation 

method (SPSA, Spall,1998) and Gauss-Newton line-search algorithms (Tett et al., 2013; Tett 

et al., 2017) are investigated with the aim of automatically calibrating climate models. 

Usually, gradients of the cost function with respect to process parameters are approximated 

with finite differences of perturbed integrations. Convergence and costs are sensitive to the 

number of process parameters and optimization algorithms used. 

Being an optimization problem, data assimilation would be an alternative as well and can 

efficiently handle a large number of observations. It has been well addressed for state 

estimation and has been investigated for parameter estimation. Some studies have estimated 

the uncertain parameters using an ensemble Kalman Filter (Annan et al., 2005; Evensen, 2009; 

Schirber et al., 2013; Wu et al., 2012; Zhang, 2011) and achieved the success of different 

degrees. For the ensemble Kalman filter method, parameters are tuned based on the 

covariance of the parameters and the model states, which depends on the ensemble number. 

Larger ensemble numbers may better depict their covariance, but they will also significantly 

increase computational costs. The adjoint method is another advanced data assimilation 

method which is widely used to estimate the model states (Dee et al., 2011; Köhl, 2015; Saha 

et al., 2010; Stammer et al., 2002) and the parameters (Liu et al., 2012). Using the German 

Estimating the Circulation and Climate of the Ocean (GECCO) synthesis framework, Liu et al. 

(2012) showed that the adjoint method could be used to efficiently estimate the parameters 

that control eddy-induced tracer mixing. For atmospheric models, on the other hand, it is 

challenging to estimate process parameters on climate timescale simulation by using the 



 

3 

  

adjoint method. The reasons are: (1) some of the parameterization schemes take very complex 

forms which make it hard to code the tangent linear model and its adjoint; (2) some of the 

parameterized processes such as convective precipitation are highly nonlinear and may 

degrade usefulness of the adjoint model; (3) a large assimilation window is required to allow 

the process parameters to influence the model’s climatology while the feasible assimilation 

window of the adjoint method is limited by predictability of the nonlinear system. 

In this study, the adjoint method will be further investigated for calibrating a climate 

model by optimizing process parameters. This study is motivated by the following two studies: 

(1) based on CEN Earth System Assimilation Model, Blessing et al. (2014) showed that it is 

feasible to use the adjoint model automatically generated by the Transform Algorithm of 

Fortran (TAF, Giering; Kaminski 1998) to estimate process parameters. With an automatic 

differentiation tool TAF, the adjoint model is generated although with the complex forms of 

parameterization schemes in this coupled model. This work solves the first problem as 

mentioned in the last paragraph; (2) Abarbanel et al. (2010) showed the potential of using 

synchronization to overcome the limited assimilation window problem in the adjoint method. 

It is feasible to investigate whether the adjoint method can be used to estimate process 

parameters on climate timescales efficiently. 

Further, in previous studies based on the traditional tuning method and optimization 

algorithms, the observations used are usually global mean values, sometimes zonally averaged 

values (Järvinen et al., 2010; Jackson et al., 2004; Zhang et al., 2015). Only a small subset of 

observations is included in the objective functions. Different climate models may be tuned to 

perform better on constrained variables while degrade other variables. Nowadays, reanalysis 

datasets (Dee et al., 2011; Saha et al., 2010) provide high resolution and high-frequency 

model states which better describe the atmosphere system. Making full use of the reanalysis 

datasets to calibrate climate models is preferable. The adjoint method appears as the most 

natural choice with computational costs that are substantially independent of the control 

parameter dimensions (within the same iterations) and can easily handle a plenty of 

observations.  

1.3 Objectives 

This thesis aims to estimate process parameters on climate timescales using the adjoint 

method. The Dynamical State and Parameter Estimation (DSPE) method (Abarbanel et al., 

2010; Abarbanel et al., 2009) will be exploited to extend the feasible assimilation window to 

climate timescales and tested for parameter estimation. The following work will be done: 

(1) Testing the performance of the DSPE method with the Lorenz (1963) system. 

Potential problems with the classical DSPE method will be explored and 

explained. Subsequently, modifications will be made on this classical DSPE 

method for parameter estimation. Finally, factors that influence the accuracy of 

parameter estimation with the modified DSPE method will be comprehensively 

investigated. 

(2) The modified DSPE method will be applied to the Planet Simulator (PlaSim, 

Fraedrich et al. 2005b). A ‘maximal’ configuration and a ‘minimal’ configuration 

which varies in their degrees of nonlinearity are used for testing. With the adjoint 
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model generated by TAF, identical twin experiments are performed to investigate 

the viability of parameter estimation on climate timescales with the modified 

DSPE method. 

(3) Lastly, the ‘maximal’ configuration will be applied to estimate parameters by 

assimilating ERA-Interim data. A number of assimilation experiments will be 

conducted. The effects of each parameter to the observations will be analyzed in 

detail. Then, impacts of the estimated parameters on the free model (without 

nudging terms) will be evaluated to validate the usefulness of this method. 

1.4 Structure of this thesis 

The rest of this study is structured as follows: 

Chapter 2 provides the background of parameter optimization problem starting from Bayes’ 

theorem. Several parameter estimation methods that have been applied to optimize process 

parameters for calibrating climate models are discussed. 

Chapter 3 provides the methodology for this study. The adjoint method is introduced based on 

the Lorenz (1963) system. The challenge of applying the adjoint method to climate timescales 

assimilation is presented. The potential of using chaos synchronization (Abarbanel et al., 2010; 

Abarbanel et al., 2009) to overcome the challenge is discussed, and this method is further 

modified for parameter estimation. 

Chapter 4 investigates the performance of this modified DSPE method based on the Lorenz 

(1963) system. Assimilation experiments are performed to investigate the dependence of the 

modified DSPE method on observation noise, observation frequency and other factors. 

Chapter 5 gives a detailed description of the climate model, PlaSim, used in this study. The 

parameterizations and the process parameters to be optimized are also described. 

Chapter 6 further applies this modified DSPE method to PlaSim. The usefulness of the adjoint 

model generated by TAF is closely examined based on finite differences of perturbed 

integrations. Finally, identical-twin experiments are performed to investigate the performance 

of the method with this complex earth system model. 

Chapter 7 estimates process parameters by assimilating ERA-Interim data (Dee et al., 2011) 

for an assimilation window of 1 year. Several experiments are performed to test the 

performance of the modified DSPE method. The influence of estimated parameters on the free 

model’s climatology is evaluated. 

Finally, chapter 8 compiles the conclusions of this study and outlines future work. 
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Chapter 2  

Background 

 Parameter estimation tries to find optimal values of a set of parameters which minimize 

the difference between model-simulated and observed climatologies. Parameter estimation 

problem can be coherently described by Bayes' theorem. This chapter will provide a 

systematic introduction to parameter estimation problem in the framework of Bayes' theorem, 

and the three categories of optimization methods mentioned above will be derived in this 

framework. Then, assumptions made in different optimization methods will be discussed, and 

the potential of using data assimilation techniques for calibrating climate models will be 

highlighted. 

2.1 The Bayesian formulation 

Bayes' theorem is stated mathematically as equation (2.1): 

𝑃(𝑚|𝑑𝑜) =
𝑃(𝑑𝑜|𝑚)𝑃(𝑚)

𝑃(𝑑𝑜)
                                     (2.1)  

where m represents a poorly known parameter vector and d0 represents an observation vector. 

P(m) and P(d0) are prior probabilities of the parameter vector m and the observation vector d0 

without regarding the other. P(d0|m) is the probability of observing observations d0 given the 

parameter vector m (usually called likelihood functions). P(m|d0) gives a conditional 

probability of the parameter vector m given the observation vector d0. Equation (2.1) outlines 

a solution to an inverse problem from which one can get the best choice of the parameter 

vector m that is consistent with the observation vector do. The uncertainty of the parameter 

vector m can also be derived from the posterior probability P(m|d0). 

Figure 2.1 gives a simple linear example in which parameter uncertainty takes a 

Gaussian distribution. The solid blue line in Figure 2.1 shows the prior probability of 

parameter m with its mean <m>=0 and uncertainty m=2.0. The linear equation is x1=2*m. 

An observation do=5.0 is given with uncertainty of do=0.5 and also takes a Gaussian 

distribution. The posterior probability of m can be expressed by: 

𝑃(𝑚|𝑑𝑜) =

1

√2𝜋𝜎𝑑𝑜
exp⁡(−

(𝑥1−𝑑𝑜)
2

2𝜎𝑑𝑜
2 )×

1

√2𝜋𝜎𝑥
exp⁡(−

(𝑚−<𝑚>)2

2𝜎𝑚
2 )

∫
1

√2𝜋𝜎𝑚
exp⁡(−

(𝑚−<𝑚>)2

2𝜎𝑚
2 )×

1

√2𝜋𝜎𝑑𝑜
exp⁡(−

(𝑥1−𝑑𝑜)
2

2𝜎𝑑𝑜
2 )𝑑𝑥

                      (2.2) 

The solid red line and the solid black line in Figure 2.1 represent the likelihood function, 

and the posterior probability distribution of parameter m with given observation do. In climate 

models (x1 in this example), m represents model uncertain parameters or the initial state and 

do represents available observations. With relatively accurate observations, parameter 

estimation attempts to derive the posterior probability of parameters which enables better 

simulation of the climate system and uncertainty analysis.  
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Figure 2.1. A prior probability distribution of the uncertain parameter m (solid blue line), a 

likelihood function of observing the observations do given the uncertain parameter m (solid 

red line) and the posterior probability distribution estimated based on Bayes' theorem (solid 

black line). The dash lines represent the maximum probabilities of the three probability 

density functions. 

2.2 Stochastic Bayesian methods 

In a linear model, the posterior probability density function can be explicitly solved as 

equation (2.2) and its time evolution can be characterized by its mean value and variance. But 

in climate models which consist of several nonlinear prognostic equations, explicitly 

calculating the posterior probability is impossible. This problem can be solved by sampling 

parameter space with large ensemble members and then calculate an approximated posterior 

probability. 

The prior probability of P(m) is usually based on our knowledge of the parameter and the 

climate system (e.g. a uniform distribution or a Gaussian distribution), so 

𝑃(𝑚) = ∑ 𝐺(𝑚𝑖)
𝑁
𝑖=1                                             (2.3) 

where G is a given probability density function of parameter vector m, N is the total ensemble 

members and equation (2.1) is approximated with: 

𝑃(𝑚|𝑑𝑜) = ∑
𝑃(𝑑𝑜|𝑚𝑖)𝐺(𝑚𝑖)

∑ 𝑃(𝑑𝑜|𝑚𝑗)
𝑁
𝑗=1 𝐺(𝑚𝑖)

𝑁
𝑖=1                                  (2.4) 

Under the Gaussian assumption, the likelihood function P(d0|m) takes the following 

form: 
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𝑃(𝑑0|𝑚𝑖) = 𝐴𝑒𝑥𝑝(−
(𝑑0−𝑀(𝑚𝑖))

2

2𝜎2
)                                 (2.5) 

and M is both the model operator and the measurement operator which transform parameter m 

information to estimates of the observations do.  is uncertainty of the observations and A is a 

constant that doesn’t influence final estimation.  

The direct method to solve equation (2.4) involves subdividing parameter space into a 

number of equally spaced intervals. Then computing the likelihood function P(d0|m) for every 

possible combination of parameters and then evaluating the posterior probability in equation 

(2.4). The advantage of the direct method is that the full posterior probability can be 

computed with sufficient small parameter intervals. The disadvantage is the large number of 

model integrations, and the resolution of the posterior probability is constrained by the 

interval spacing. For example, if one parameter is divided into 100 equally spaced intervals, 

the model needs to be integrated 100 times to calculate P(m|d0). Many of these integrations 

may have very small prior probability, hence don’t contribute to the integral in equation (2.4). 

Moreover, increasing the number of parameters will lead to dramatically increase of model 

integrations with a rate of 100
n
 in which n represents the number of parameters.  

To reduce computational costs of this equal sampling method, importance sampling 

techniques such as Gibbs sampler (Jackson et al., 2004), adaptive Markov chain Monte Carlo 

method (Järvinen et al., 2010) and multiple very fast simulated annealing (Jackson et al., 2004) 

are exploited to improve efficiency of calculating the posterior probability of process 

parameters. Based on given probability distributions of process parameters, these importance 

sampling techniques will sample more frequently in larger likelihood region. Although with 

different efficient sampling methods, estimating the posterior probability of process 

parameters is still computationally expensive and the computation cost may increase 

dramatically with increasing of parameter dimensions. For examples, in Jackson et al. 

(2004)’s work, estimating three parameters cost more than 34000 model integration for 

multiple very fast simulated annealing, and 10
4
-10

6 
integration for Gibbs sampler and grid 

search method. From the model development perspective, determining the optimal values of 

parameters that maximize the likelihood function P(d0|m) or minimize the difference between 

the model-simulated and observed climatologies is more attractive.  

2.3 Optimization algorithms 

Optimization algorithms are developed to find values of a set of parameters that 

minimize an objective function (hereafter, called cost function) which measures the distance 

between the observations and the model simulations. The cost function usually takes a quadric 

form as equation (2.6): 

𝐽(𝑚) =
(𝑑0−𝑀(𝑚))

2

2𝜎2
                                             (2.6) 

which can be derived by a simple natural logarithmic transformation of equation (2.5).  

Optimization algorithms are originally applied to linear systems. For climate models 

which are nonlinear, most of the practical estimation methods use linearization assumption in 

which sensitivity of the model’s climatology with respect to process parameter m is assumed 
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linear. Then, gradients of the cost function J(m) with respect to parameter m can be 

approximated by finite differences of perturbed integrations as equation (2.7) shows and the 

cost function J(m) is recursively reduced until certain criteria are reached. 

𝜕𝐽

𝜕𝑚
=
𝐽(𝑚+𝛿𝑚)−𝐽(𝑚)

𝛿𝑚
                                             (2.7)  

A common characteristic of optimization algorithms is that they assume linear responses 

of the cost function to parameters. But different optimization methods may work differently to 

search the optimal values of process parameters. For example, Tett et al. (2013 ) use 

Gaussian-Newton line search algorithms and approximate gradients from finite differences of 

perturbed integrations to automatically calibrate HadAM3. The Green’s function method is 

another popular optimization method which follows inverse theory and has been successfully 

applied to calibrate an Ocean General Circulation Model (Menemenlis et al., 2005; Stammer 

and Wunsch, 1996). Rather than directly reducing the cost function J(m), this method maps 

the observation information back to process parameters via the model Green’s function which 

is computed based on a linearization assumption. For these two methods, the approximate 

gradients with respect to each parameter need to be evaluated one by one and therefore the 

computational cost is proportional to the dimension of parameters. The simultaneous 

perturbation stochastic approximation (SPSA) method is a highly efficient optimization 

algorithm and has been applied to calibrate an atmosphere general circulation model (Agarwal, 

2016). The approximate gradients are evaluated based on only two simultaneous perturbed 

integrations regardless of the dimension of parameters. 

A key advantage of optimization algorithms is the simplicity of implementation 

compared with the adjoint method or the ensemble Kalman Filter. But a principal drawback of 

these methods is that the cost function needs to be reasonably linear. Usually, observations are 

globally averaged to smooth out spatial variance which makes approximate gradients from 

finite differences useful. Moreover, convergence and the computational cost likely depend on 

gradient descent algorithms, number of process parameters and nonlinearity of climate 

models. 

2.4 Data assimilation methods 

 Data assimilation techniques have been well addressed for state estimation and have been 

widely used to produce accurate initial state for forecasting (Schiller and Brassington, 2011). 

Data assimilation methods also show potential for parameter estimation and several studies 

have applied these methods to estimate parameters. One of the advantages of data assimilation 

methods is that they can easily handle a plenty of observations. Here, we introduce two 

advanced data assimilation methods which have been investigated for parameter estimation. 

2.4.1 Ensemble Kalman Filters 

The ensemble Kalman filer (Evensen, 2009) is a popular data assimilation method due to 

its easy implementation. The ensemble Kalman Filter bases on least square fitting algorithm 

and is widely used to blend observations and model initial state for forecasting. By taking 
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process parameters as model state variables, it is also extended to estimate parameters 

(Anderson, 2001; Annan et al., 2005; Wu et al., 2012; Zhang, 2011).  

The ensemble Kalman Filter uses finite ensemble members to represent the nonlinear 

propagation of prior probabilities. When observations are available, the Kalman Filter 

algorithm will update the model state based on the model and the observation uncertainty. The 

covariance matrix computed from the ensemble members also helps to distribute observed 

information to unobserved model state and parameters. In this method, the covariance matrix 

plays a critical role in the analysis process. For example, Schirber et al. (2013) provided a 

study in which they use an ensemble Kalman Filter to estimate four cloud-related parameters 

based on ECHAM6 and found no improvements on the model’s climatology. One of the 

possible reasons is that they use a 6-hour update interval and therefore the covariance matrix 

may only reflect covariance of short-term prediction with parameters. The parameters are 

tuned to improve short-term forecast rather than the model’s climatology. Annan et al. (2005) 

also attempted to estimate process parameters in an intermediate complexity earth system 

using an ensemble Kalman Filter. To tune the model’s climatology, they used a 10-year 

update interval. Based on identical twin experiments, they demonstrated that the model’s 

climatology could be tuned by simultaneous estimation of 12 parameters. But applying this 

method to assimilate real observations needs further investigation. In the ensemble Kalman 

Filter method, some artificial tricks such as covariance inflation or localization are needed to 

get good results in a complex geophysical system. 

2.4.2 The adjoint method 

The adjoint method (Le-Dimet and Talagrand, 1986; Talagrand and Courtier, 1987), also 

known as four-dimensional variational data assimilation (4D-Var) in numerical weather 

prediction community, is a mature data assimilation method. This method belongs to 

optimization algorithms because this method also tries to find optimal values of the control 

variables including process parameters and model state that minimize a cost function as 

equation (2.8). However, the adjoint method is much more complicated and optimal than the 

optimization algorithms introduced above due to the use of the adjoint model. The adjoint 

model is exploited to calculate gradients of the cost function with respect to the control 

variables. It is a popularly used inverse method for reanalyse (Dee et al., 2011; Köhl, 2015; 

Saha et al., 2010) and parameter estimation (Liu et al., 2012; Zou et al., 1992).  

𝐽(𝑚) =
(𝑑0−𝑀(𝑚))

2

2𝜎2
+
(𝑚−𝑚𝑏)

2

2𝜎𝑏
2                                     (2.8) 

If parameter m takes a Gaussian distribution with mean mb and uncertainty b, equation 

(2.8) can be derived by a simple natural logarithmic transformation of equation (2.4). It 

should be noted that the denominator part of equation (2.4) can be thought of as a normalizing 

constant and therefore doesn’t matter in the adjoint method. The cost function (2.8) is 

assumed to be quadric, and a minimization algorithm (such as the Quasi-Newton algorithms) 

is adopted to iteratively reduce the cost function, or equivalently maximize the posterior 

probability P(d0|m).  
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In the adjoint method, the second term on the right-hand side of equation (2.8) is usually 

called a background term. It is critical when there are more control variables than the 

observations (or the minimization problem is under-determined). But in this study, only a few 

process parameters will be tuned while a plenty of observations can be used. Also, prior 

probabilities of process parameters are not clear. Therefore, the background terms will not be 

included in the cost function. 

The adjoint method provides an analysis that is consistent with model dynamics and its 

computational cost, while substantial, is independent of control variables. Therefore, it has 

been the method of choice for most major numerical weather prediction centers and widely 

used for reanalyse. It also shows great potential for parameter estimation. But constructing the 

adjoint model is a long-term project along with the development of the forward models, and 

the feasible assimilation window in this method is limited by the predictability of nonlinear 

system (will be introduced in chapter 3). Techniques are required to extend the feasible 

assimilation window for the adjoint method. 

2.5 Summary 

In this part, parameter estimation problem is formulated based on Bayes’ theorem. The 

three categories of parameter estimation methods are briefly discussed. Stochastic Bayesian 

methods attempt to calculate the posterior probability of process parameters based on a prior 

probability of parameters and a likelihood function. Although the use of importance sampling 

techniques helps to improve efficiency, these methods are still computationally expensive. 

Optimization algorithms try to find optimal values of parameters that minimize a cost function. 

Gradients of the cost function with respect to process parameters are practically approximated 

by finite differences of perturbed integrations, and the choice of the cost function is critical. 

Two advanced data assimilation method: the adjoint method and the ensemble Kalman Filter 

method, seem to be promising methods for parameter estimation. Further studies are still 

needed to apply these data assimilation methods to calibrate climate models. In this study, the 

adjoint method will be further applied to estimate process parameters on climate timescales. A 

detailed introduction of the adjoint method and synchronization technique which can be used 

to extend the assimilation window will follow in chapter 3. 
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Chapter 3 

Methodology 

This chapter intends to provide a theoretical basis for this study. Based on the Lorenz 

(1963) system, mathematical formulation of variational data assimilation and the adjoint 

method which is practically exploited to solve the variational data assimilation problem are 

introduced in detail. Then, the limitation of the adjoint method is presented, and several 

methods which can be used to extend the feasible assimilation window are reviewed. Here, 

the dynamical state and parameter estimation method will be exploited in this study due to its 

potential to overcome the limited assimilation window problem and its easy implementation.  

3.1 Mathematical formulation of variational data assimilation  

The mathematical formulation of variational data assimilation involves minimizing a 

cost function which measures the distance between the model simulation and the observations 

subjected to a set of constrains (govern equations, boundary condition, .etc.). In practice, 

background terms for the control variables, including initial conditions, boundary conditions 

and poorly known parameters, also appear in the cost function to deal with the 

under-determined problem. The background terms usually have quadric forms which derive 

from the Gaussian assumption for the probability density function. The optimal values of the 

control variables can be found using an unconstrained minimization algorithm (e.g., 

Conjugate Gradient method, Quasi-Newton method) providing the information of the cost 

function and its gradient with respect to the control variables. 

The Lorenz model (1963) provides a practical test case for data assimilation and is 

widely used in predictability and data assimilation studies (Gauthier, 1992; Miller et al., 1994; 

Pires et al., 1996; Stensrud and Bao, 1992). It shares some fundamental properties of the 

atmosphere such as the occurrence of regime behavior. Here, the Lorenz model is used to 

formulate variational data assimilation and to present limitations of the adjoint method. This 

system consists of three ordinary differential equations: 

𝑥̇ = σ(y − x)                                                 (3.1) 

𝑦̇ = ρx − y − xz                                               (3.2) 

𝑧̇ = xy − βz                                                  (3.3) 

where  is the Prandtl number,  is the Rayleigh number and  is the domain aspect ratio. 

Given an initial condition (xini,yini,zini)=(x0,y0,z0) and the parameters (,,), the system will 

have a unique solution. If model variables are observed in time t: 

(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = (𝑥𝑜𝑏𝑠, 𝑦𝑜𝑏𝑠, 𝑧𝑜𝑏𝑠)                              (3.4) 

and we may expect that the observations don’t match the model solution. The system becomes 

over-determined. In practice, we cannot provide an accurate initial condition and the 

observations may also contain errors. For the purpose of parameter estimation, the parameter 
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 is also assumed to have error. Therefore, the model simulation is different with the available 

observations. The govern equations (3.1)-(3.3) with a biased parameter , an initial condition 

with errors, and the observations with small errors are rewritten as following:  

𝑥̇ = σ(y − x)                                                 (3.5) 

𝑦̇ = (ρ + δρ)x − y − xz                                        (3.6) 

𝑧̇ = xy − βz                                                  (3.7) 

𝑋𝑖𝑛𝑖 = (𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖 , 𝑧𝑖𝑛𝑖) = (𝑥0 + 𝛿𝑥, 𝑦0 + 𝛿𝑦, 𝑧0 + 𝛿𝑧)                 (3.8) 

𝑋𝑜𝑏𝑠 = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = (𝑥𝑜𝑏𝑠𝜀𝑥, 𝑦𝑜𝑏𝑠𝜀𝑦, 𝑧𝑜𝑏𝑠𝜀𝑧)               (3.9) 

Usually, the observations have much smaller errors than the model simulation. The 

problem now is to find optimal values of initial condition Xini and parameter  which make 

model simulation as close as possible to the observations. This goal is achieved by 

minimizing the following quadratic cost function: 

𝐽(𝑋𝑖𝑛𝑖 , 𝜌) =
1

2
∑

(𝑀(𝑋𝑖𝑛𝑖,𝜌)−𝑋𝑜𝑏𝑠)
2

𝜀2
𝑛
𝑡=1 +

1

2

(𝑋𝑖𝑛𝑖−𝑋𝑏)
2

𝛿2
+
1

2

(𝜌−𝜌𝑏)
2

𝜎𝜌
2                (3.10) 

where M represents the model operator. The symbols: ,  and  represent uncertainties of 

the observations, the initial condition and parameter . Xb and b are background values for 

the initial condition and the parameter . In this formulation, the model is assumed to be 

perfect, and the variational data assimilation problem is called a strong-constrained problem 

in which the final solution will exactly satisfy the governing equations (3.5)-(3.7). In equation 

(3.10), the cost function uses a quadric form which is consistent with the Gaussian assumption 

from Bayes’ theorem as equation (2.5). The first term on the right-hand-side of the equation 

(3.10) measures the model-observations misfits and the second and third terms are 

background terms depending on the relative accuracy of the initial condition and parameter . 

For some implementations, other penalty terms like gravity wave penalty terms (Zou et al., 

1993), nudging coefficient terms (Abarbanel et al., 2010), may also be added to the cost 

function to reduce their values during the optimization. 

3.2 The adjoint method 

Although several methods exist for minimizing the cost function (3.10) such as genetic 

algorithms (Evensen, 2009; Jackson et al., 2004) and penalty algorithms (Le-Dimet and 

Talagrand, 1986), a practical way is the adjoint method due to the large dimension of control 

variables in atmospheric models and oceanic models. The adjoint model is a powerful tool for 

directly and efficiently computing sensitivities of model outputs with respect to model inputs 

independent of variable dimensions. A detailed introduction of the adjoint method and its 

applications can be found in Errico (1997). 

3.2.1 The tangent linear model and its adjoint 

In a nonlinear system, usually, the adjoint model is the adjoint of the tangent linear model 

(TLM). Figure 3.1 gives a schematic diagram of the tangent linear model. The black line 

represents a trajectory of X
r
(t) starting from an initial condition X0. The blue line X

p
(t) is a 
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perturbed trajectory with a small perturbation X on the initial condition X0. After integrating 

for a period t, the two trajectories will be different, and the difference ∆X can be calculated by 

finite differences of these two integrations: 

∆𝑋 = 𝑋𝑝(𝑡) − 𝑋𝑟(𝑡) = 𝑀0→𝑡(𝑋0 + 𝛿𝑋) −𝑀0→𝑡(𝑋0)                (3.11) 

Here, M0t represents a forecast model which evolves the model state X to specific time t. 

If the system is linear or for a nonlinear system linear dynamic dominates the integration, the 

tangent linear approximation based on the reference trajectory X
r
(t) can also be used to 

represent the evolution of the perturbation X. This correspondence can be derived with 

first-order Taylor series: 

∆𝑋 = 𝑀0→𝑡(𝑋0 + 𝛿𝑋) −𝑀0→𝑡(𝑋0) ≈
𝜕(𝑀0→𝑡(𝑋0))

𝜕𝑋0
× 𝛿𝑋 = 𝐌0→𝑡(𝑋0) × 𝛿𝑋      (3.12)  

where M0t (X0) is the so-called tangent linear model depending on the reference trajectory 

X
r 
(t). It should be noted that the tangent linear model M0t (X0) is a perturbation forecast 

model and it is exploited to predict the evolution of a small error X, rather than the model 

state X. Although the tangent linear model is time-dependent through its dependent on the 

time evolution of the reference trajectory X
r
(t), it is a linear model because the tangent linear 

model in equation (3.12) doesn’t depend on the prognostic variable X. 

 

Figure 3.1. A schematic diagram of the tangent linear model. The black line represents a 

reference trajectory X
r
(r). The blue line represents a perturbed trajectory X

p
(t). The red 

stair-like line represents a tangent linear approximation based on the reference trajectory. The 

symbols M0t(X0) and M0t(X0) represent a model forecast operator and the tangent linear 

model, respectively.  

In practice, it is much more useful to derive sensitivity of a specific target (∆X in this 

case) with respect to the initial perturbation (X) or the model parameters, the reverse process 

of what the tangent linear model does. This can be derived by transpose of equation (3.12):  

𝛿𝑋 = 𝐌𝒕→𝟎
𝑻 (𝑋0) × ∆𝑋                                         (3.13)  
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and 𝐌𝐭→𝟎
𝐓 (X0) is the adjoint of the tangent linear model which performs as a backward 

integration from t to 0. 

As equation (3.13) shows, the benefit of the adjoint method is that the computational cost 

is independent of the number of the control variables X. Given a target ∆X depending on the 

model state, sensitivities with respect to all the control variables X can be directly derived by 

integrating the adjoint model 𝐌𝐭→𝟎
𝐓 (X0) backward once.  

For the Lorenz system, the equations of tangent linear model with respect to a reference 

trajectory 𝑋𝑟(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) are given as: 

(
𝛿𝑥̇
𝛿𝑦̇
𝛿𝑧̇

) = (

−𝜎 𝜎 0
𝜌 − 𝑧(𝑡) −1 −𝑥(𝑡)
𝑥(𝑡) 𝑦(𝑡) −𝑏

⁡⁡⁡
0
𝑥(𝑡)
0
⁡)(

𝛿𝑥
𝛿𝑦
𝛿𝑧
𝛿𝜌

)                  (3.14) 

and the adjoint model of this system is:  

(

 
 
𝛿𝑥𝑎𝑑̇

𝛿𝑦𝑎𝑑̇

𝛿𝑧𝑎𝑑̇

𝛿𝜌 )

 
 
= (

−𝜎 𝜌 − 𝑧(𝑡) 𝑥(𝑡)

𝜎 −1 𝑦(𝑡)

0 −𝑥(𝑡) −𝑏
⁡0 ⁡⁡⁡⁡⁡⁡⁡𝑥(𝑡)⁡⁡⁡⁡⁡ ⁡⁡0

)(

𝛿𝑥𝑎𝑑
𝛿𝑦𝑎𝑑
𝛿𝑧𝑎𝑑

)                     (3.15) 

To minimize the cost function (3.10), the adjoint model is used to compute sensitivities of 

the cost function with respect to the initial state (xini, yini,zini) and parameter . With the 

adjoint model, gradients of the cost function (3.10) can be computed as: 

𝜕𝐽(𝑋𝑖𝑛𝑖,𝜌)

𝜕(𝑋𝑖𝑛𝑖,𝜌)
= ∑ 𝐌𝑇(

𝑀(𝑋𝑖𝑛𝑖,𝜌)−𝑋𝑜𝑏𝑠

𝛿2
)1

𝑡=𝑛 +
𝑋𝑖𝑛𝑖−𝑋𝑏

𝜎2
+
𝜌−𝜌𝑏

𝜎𝜌
2                (3.16) 

where M
T 

is the adjoint operator. The difference between the model simulation and the 

observations is used as (xad, yad, zad) on the right-hand side of equation (3.15) to drive a 

backward integration of the adjoint model and the gradients of the cost function J with 

respects to the parameter  and the initial conditions Xini can be computed. 

3.2.2 The minimization algorithm 

One of the important parts of the adjoint method consists of minimizing the cost function 

J by an iteratively unconstrained minimization algorithm using the gradient information 

provided by the adjoint model. In this study, a Quasi-Newton method based on Fletcher and 

Powell (1963) is exploited. The basic procedure of this method for minimizing the cost 

function J(C) is described below: 

1) Starts with an initial guess of the control vector C0 (including the initial state Xini 

and parameter  in the Lorenz system) and initialize the inverse Hessian matrix H0 

with an identity matrix. 

2) Set k=0, integrate the forward model and the adjoint model backward to compute 

the gradient of the cost function g0 based on equation (3.16) and set the searching 

direction: 

𝑑0 = −𝐻0𝑔0                                     (3.17) 
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3) For k=1,2n, iteratively search the minimum of the cost function J(C). This is 

done through a line search of a proper positive scalar k which minimizes 

J(Ck+kdk). A new control vector Ck+1 is obtained as: 

𝐶𝑘+1 = 𝐶𝑘 + 𝛼𝑘𝑑𝑘                                (3.18) 

4) Integrate the adjoint model backward with the new control vector Ck+1 and 

compute a new gradient gk+1 based on equation (3.16).  

𝑔𝑘+1 = ∇𝐽(𝐶𝑘+1)                                  (3.19) 

 The convergence criteria is checked here. If ‖𝑔𝑘+1‖ ≤ 𝜀, where  is a small 

number, the optimization will be terminated and Ck+1 is taken as the optimal 

solution. Otherwise, the process continues.                                  

5) Correct the approximation of the inverse of the Hessian matrix Hk+1 and compute a 

search direction dk+1for the next iteration: 

𝐻𝑘+1 = 𝐻𝑘 +
𝑝𝑘∙𝑝𝑘

𝑇

𝑝𝑘
𝑇𝑞𝑘

−
𝐻𝑘𝑞𝑘∙𝑞𝑘

𝑇𝐻𝑘

𝑞𝑘
𝑇𝐻𝑘𝑞𝑘

                       (3.20) 

𝑝𝑘 = 𝐶𝑘+1 − 𝐶𝑘                                   (3.21) 

𝑞𝑘 = 𝑔𝑘+1 − 𝑔𝑘                                   (3.22) 

𝑑𝑘+1 = −𝐻𝑘+1𝑔𝑘+1                                (3.23) 

          And setting k=k+1, this process is repeated from step 3). 

3.2.3 The optimization process 

 

Figure 3.2. A schematic diagram of the recursive minimization process in the adjoint method. 

With the gradients provided by the adjoint model, a minimization algorithm is adopted to 

iteratively reduce the cost function J(C). Figure 3.2 gives a schematic diagram of the recursive 

minimization process in the adjoint method. Three stages involve in each iteration: 1) with a 

first guess of control vector C0 including the initial condition Xini and parameter , the model 

is integrated forward from t0 to tn. The model-observation misfits are computed and stored 
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when the observations are available and the cost function J(C) is evaluated after the forward 

integration; 2) integrate the adjoint model from tn to t0 with external forcing terms depending 

on the model-observation misfits. The gradients of the cost function J(C) with respect to the 

control vector C are computed; 3) providing the gradients and the cost function, a gradient 

descent algorithm is exploited to reduce the cost function J(C) and a new control vector C is 

provided for the next iteration. This recursive data assimilation process will be exit when the 

cost function J(C) or the gradients 
𝜕𝐽

𝜕𝐶
 is considerable small. At that time, the adjoint method 

successfully finds a model solution that minimizes the distance between the model simulation 

and the observations. 

In equations (3.14) and (3.15), the tangent linear model and its adjoint model are 

presented in continuous forms. However, this is not relevant to real geophysical models in 

which the adjoint of the discretized model is usually used rather than the discretization of a 

continuous adjoint model such as equation (3.15). Because in an atmosphere or ocean general 

circulation model, some of the parameterizations such as vertical mixing usually have very 

complex forms and it is impossible to derive continuous adjoint equations. Practically, the 

adjoint of the discretized model is used, and some automatic differentiation tools such as TAF 

have been developed to automatically generate the tangent linear model and the adjoint model 

based on the discretized models. 

In this study, the adjoint of the discretized model is used. Equations (3.1)-(3.3) are 

integrated with a fourth-order Runge-Kutta scheme and a time-step of t=0.01. The tangent 

linear model and its adjoint are generated by TAF. The three parameters are set to classical 

values: =10.0,=28.0,=8/3, which produce chaotic behavior (Nese et al., 1987) with 

Lyapunov exponents of (0.93,0.00,-14.60). The model is spun up for 10
4 

time units (TUs) 

with the final state (12.45260, 13.16454, 31.38284) used as an initial state for all assimilating 

experiments below. 

The cost function used for the Lorenz system is as follow:  

J(x0, y0, z0, ρ) =
1

N
[∑ (x(m) − xobs(m)) +N
m=1 ∑ (y(m) − yobs(m)) +N

m=1 ∑ (z(m) −N
m=1

zobs(m))]                                                             (3.17) 

in which the control variables are the initial state (x0,y0,z0) and the Rayleigh number . 

3.3 Limitations of the adjoint method 

The adjoint model is based on the tangent linear approximation, and the usefulness of the 

adjoint model is limited by the nonlinear system. The stronger the nonlinearity and the longer 

the integration time, the less accurate the tangent linear approximation will become. Therefore, 

the feasible assimilation window of the adjoint method is limited in a nonlinear system. Based 

on the Lorenz system, this limitation is presented from the cost function and the adjoint 

sensitivity. 
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3.3.1 Behaviour of the cost function 

Previous studies (Gauthier, 1992; Miller et al., 1994; Pires et al., 1996; Stensrud and Bao, 

1992) showed that the behavior of the cost function is strongly dependent on integration time. 

Pires et al. (1996) gave an estimation of the feasible assimilation window depending on first 

guess errors and the leading Lyapunov exponent  of the nonlinear system: -ln(e)/(2)2 

TUs, where e is first guessed errors along the most unstable direction. Figure 3.3 displays the 

cost function for an integration of 2 TUs (dashed black line) and 5 TUs (solid black line) 

depending on the parameter . For 2 TUs, the cost function is smooth, and the minimization 

will iteratively find the global minimum. While for 5TUs, dozens of secondary minima appear, 

and the gradient decent minimization algorithm is likely trapped into one of the secondary 

minima. The red squares and circles in Figure 3.3 represent two cases in which the 

optimization luckily and successfully reach the global minimum while the black markers 

represent three cases in which the optimization is trapped into local minima. With the 

extending assimilation window, more secondary minima will occur and the cost function will 

look like white noise (see Figure 6.1 in (Evensen, 2009)). This is caused by the chaotic 

behavior of the nonlinear system. Every secondary minimum represents a separation of two 

nearby trajectories and may close again after a period (Pires et al., 1996) for the Lorenz 

system. As Figure 3.5 shows, two nearby trajectories first separate at 15 TUs and go close 

again between 16-18 TUs. 

 

Figure 3.3. The cost function for an integration time of 5 TUs (black solid line) and 2 TUs 

(black dashed line). The red markers represent cases which reach the global minimum after 

the optimization and the black markers represent cases which are trapped into one of the 

secondary minima. The vertical lines indicate the minima after the optimization. 
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3.3.2 Behaviour of the adjoint sensitivities 

 

Figure 3.4. (a) The instantaneous error growth with small perturbations on parameter : the 

red line is computed based on a reference integration and a perturbed integration of the 

nonlinear model; the black line is from the tangent linear model; (b) is similar to (a) but the 

perturbations are on the initial state. The black dashed line is a linear fit to the tangent linear 

error growth. The perturbation size is 10
-5

. 

From the point view of predictability, the chaotic behavior of the nonlinear system acts 

as: two nearby trajectories will gradually separate starting from the most unstable modes with 

time integration and the average separating rate can be represented by leading Lyapunov 

exponent (Nese et al., 1987). When separation occurs, the prediction is not controlled by the 

initial state and the prediction limit is reached. The instantaneous local error growth caused by 

the initial errors (Rui-Qiang et al., 2008) and the parameter errors defined as equation (3.18) 

and the error growth from the tangent linear model is used to illustrate the limitation of the 

adjoint model. The bracket in equation (3.18) represents ensemble mean. For the nonlinear 

error growth rate, we use 10
6
 ensemble members, and the perturbations are assumed to be 

random with an amplitude of =10
-5

 on the initial state and parameter . 

𝐸(𝑥(𝑡0), 𝛿(𝑡0), 𝜏) = [ln⁡(
‖𝐽(𝑡0+𝜏)‖

‖𝐽(𝑡0)‖
)]                                (3.18) 

The red line and black line in Figure 3.4 (a) represent the instantaneous local error 

growth of the nonlinear model and the tangent linear model with small perturbations on 

parameter . Linear fitting is overlaid as the black dashed line. The local errors grow 

exponentially with a rate around 0.9139 for both the nonlinear model and the tangent linear 

model for the initial 15 TUs. The local error growth will finally saturate when the trajectories 

separate due to the nonlinearity (see Figure 3.5) while the tangent linear error keeps growing. 

The instantaneous local error growth for the parameter  error is similar to that of the initial 

perturbation due to the chaotic nature of the nonlinear system. It should be noted that the 

perturbation of parameter  used here doesn’t significantly change the leading Lyapunov 

exponent and therefore the chaotic nature of the nonlinear system. When separation occurs, 
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the tangent linear approximation breaks and the sensitivities compute by the adjoint model 

will only reflect the chaotic nature of the system and are different to that derived from finite 

differences of perturbed model integrations (Köhl and Willebrand, 2002; Lea et al., 2000). 

The separation time is directly related to perturbation sizes and the local leading Lyapunov 

exponent of the chaotic system. For real data assimilation problems, the error of the first 

guessed value is considerably large, the model simulation and the observations may separate 

within a short period which prevents the optimization converge to the global minimum.  

 

Figure 3.5. Two trajectories starting with the same initial state but slight different values of 

parameter : =28.0 (the blue line) and =28.00001(the black dotted line). 

As analyzed above, the limitation of the adjoint method is that: with extending 

assimilation window, multiple minima occur in the cost function; the adjoint sensitivity will 

show an exponentially increase which cannot lead the optimization to the global minimum 

and the gradient-based minimization algorithms are likely to be trapped into secondary 

minima. Therefore, the feasible assimilation window is limited by the predictability of the 

nonlinear system. Although there are cases in which the optimization may reach the global 

minimum (see Figure 3.3), these are only lucky cases. Further extending the assimilation 

window will lead to more secondary minima and greatly increase the possibility of being 

trapped into a local minimum. When the assimilation is quiet long such as for climatological 

timescale of atmosphere models, gradients computed by the adjoint model will increase 

exponentially to infinite and are useless for the optimization. Regularizations are needed to 

extend the feasible assimilation window.  

3.4 Extending the feasible assimilation window  

Among the several methods trying to extend the feasible assimilation window are the 

quasi-static variational assimilation method (Pires et al., 1996), the statistical variational 

assimilation method (Köhl and Willebrand, 2002; Sugiura et al., 2008) and the dynamical 

state and parameter estimation method (Abarbanel et al., 2010; Abarbanel et al., 2009). The 

former one tries to avoid the secondary minima by tracking the absolute minimum with a 

progressively increasing assimilation window. Due to the chaotic behavior of the nonlinear 
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model, the assimilation window will still be limited to a certain period. The statistical 

variational assimilation uses a separate adjoint model which describes the sensitivity of the 

mean state (Köhl and Willebrand, 2002) or long timescale processes (Sugiura et al., 2008) 

rather than a special realization of trajectory to assimilate statistical or long timescale 

information. For this method, constructing the separate adjoint model needs some skills and 

usefulness of the approximate adjoint model cannot be easily validated. The DSPE method 

avoids the occurring of secondary minimum by synchronizing chaos of the nonlinear system 

and the observation system by coupling the two systems with nudging terms. (Abarbanel et al., 

2010; Abarbanel et al., 2009) advocate that the nudging term can be penalized and pushed to 

zero after the optimization recovering the original physics of the nonlinear system. This 

method only needs small changes to the traditional variational data assimilation, and the 

feasible assimilation window can be extended arbitrarily. Moreover, the adjoint model 

generated by TAF can be directly used. 

3.4.1 Regularization with synchronization 

The DSPE method extends the feasible assimilation window by synchronizing the chaotic 

behavior of the nonlinear system and the observations. Synchronization of chaos refers to a 

process in which two similar dynamical system, driven by the same inputs, produce the same 

outputs after a long time integration (Alvarez, 1996; Boccaletti et al., 2002) and has 

interesting applications in synchronizing chaotic circuits and communications (Boccaletti et 

al., 2002). In practice, synchronization is exploited to force one chaotic system to follow the 

same path of another chaotic system. Figure 3.6 gives a schematic diagram of identical 

synchronization for two dynamical systems. System 1 and system 2 represent two systems 

with the same govern equations but start with different initial states. X(t) and Y(t) from 

system 1 are used to drive system 2. After a long period, the two systems will have the same 

model state and the two systems are completely synchronized. System 1 is called a master 

system which corresponds to the observations system in this study and system 2 is a slave 

system. 

 

Figure 3.6. A schematic diagram of synchronizing two chaotic systems. System 1 and system 

2 are coupled through (X1,Y1) and (X,Y). 

By considering data assimilation problems as a question of synchronization in which the 

nonlinear numerical model is synchronized to the observations, Abarbanel et al. (2010) 

System 1 System 2 

X(t) 

Y(t) 

Z(t) 

X1(t) 

Y1(t) 

Z1(t) 

Coupling 

Coupling 

Z(t)=Z1(t) 
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purposed the DSPE method. By synchronizing the nonlinear model and the observations, this 

method considerably extends the feasible assimilation window, which helps to estimate 

uncertain parameters and unobserved parts of the model state by using observations 

distributed over long time periods. With the updated parameters and model state, predictions 

are made. In the atmospheric community, synchronization is usually achieved by simple 

nudging method (Hoke and Anthes, 1976) and Lunkeit (2001) showed that two identical 

global atmospheric circulation models with many degrees of freedom could be completely 

synchronized with simple nudging terms once the nudging strength is strong enough. 

Equations (3.19)-(3.21) give an example of synchronization when a simple nudging term is 

added to equation (3.1). Based on the idea of Abarbanel et al. (2010), a penalty term for the 

nudging coefficient is added to the cost function as the second term on the right-hand side of 

equation (3.22). The penalty term tries to drive the nudging coefficient  towards 0 during the 

optimization.  

𝑥̇ = σ(y − x) + α(x − 𝑥𝑜𝑏𝑠)                                   (3.19)  

𝑦̇ = ρx − y − xz                                             (3.20) 

𝑧̇ = xy − βz                                                 (3.21) 

J(x0, y0, z0, ρ,α) = {𝐽𝑒} + {𝐽𝑝} = {⁡
1

N
[∑ (x(t) − xobs(t))

2
+N

t=1 ∑ (y(t) −N
t=1

yobs(m))
2
+∑ (z(t) − zobs(t))

2
N
t=1 ]} + {𝑊𝛼

2𝛼2}                        (3.22) 

(Abarbanel et al., 2010; Abarbanel et al., 2009) suggested that the initial value of the 

nudging coefficient  should be strong enough to push positive Lyapunov exponents to 

negative values. Ideally, the penalty term in equation (3.22) should gradually reduce the 

nudging coefficient  while keeping it still strong enough to avoid separations in each 

iteration. At the end of the optimization, the nudging coefficient  is close to 0 and recovers 

the original physics of the model. In the framework of variational data assimilation, the 

penalty term of the nudging coefficient  usually appears as a background term with a 

background value of =0 and W represents its uncertainty which is investigated here. The 

weighting factor W will strongly influence the convergence of the nudging coefficient , 

hence it will influence the successfulness of this method especially when the assimilation 

window is rather long (e.g., climatology timescale). 
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3.4.2 Effects of nudging  

 

Figure 3.7. The instantaneous local error growth for perturbed initial state (b) and perturbed 

parameter  (a) with perturbation sizes of 10
-5

 for the synchronized system (3.19)-(3.21): the 

black dashed lines are from the tangent linear model and the red dashed lines are from 

perturbed the nonlinear system integrations. The nudging coefficient is =20. 

One of the important differences between parameters errors and initial state errors is that 

parameter errors have impacts on the model simulation at each time step while initial state 

errors affact model simulation indirectly through error propagation along with the model 

integration. The red dashed line and black dashed line in Figure 3.7 show the mean local error 

growth of the nonlinear model and the tangent linear model caused by initial state 

perturbations (b) and parameter  perturbations (a) for the slave system (3.19)-(3.21) with 

=20. As Figure 3.7(b) indicates, the nudging term has moved the leading local Lyapunov 

exponent from 0.9139 to -1.1062 and initial errors are exponentially damped out with a rate 

around -1.1062 while parameter  perturbation still acts as a constant force that pushes the 

trajectory away from the observations as the black dashed line and the red dashed line in 

Figure 3.7(a) show. Unless we replace the model simulation with the system of the 

observations, the slave system can never be completely synchronized, and parameter  

perturbation information will always remain in the slave system (3.19)-(3.21). 
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Figure 3.8. The cost function depending on nudging coefficient  and parameter  without the 

penalty term (a) and with the penalty term and W=1.0 (b). The black rectangle area of (b) is 

zoomed in as (c). The estimated nudging coefficient  and parameter  for expt1 and expt2 

(in Chapter 4) are marked with the green and red filled circles. The arrows represent 

schematic optimization routes for different experiments. The integration time is 20 TUs. The 

cost functions are computed with error-free data. 

Figure 3.8 shows the cost function depending on the nudging coefficient  and the 

parameter  without the penalty term (a) and with the penalty and Wa=1.0 (b). When the 

nudging coefficient is larger than around 5, the cost function surface shows a regular core 

around zero parameter error without secondary minima that starts to widen with increasing 

coefficient for both cases. With increasing nudging coefficient, the cost function surface 

becomes regular for the given range of the parameter  (22.0-34.0) while the position of the 

global minimum for parameter  doesn’t change as the thick black line in Figure 3.8 (a) 

shows. In Figure 3.8 (b), the inclusion of the penalty term reduces the global minimum from 

the thick black line in Figure 3.8 (a) to a single point (28.0,0.0). Based on the idea of the 

DSPE method, the parameter should converge faster than the nudging strength goes down so 

that the nudging strength can avoid the occurrence of secondary minima. In Figure 3.8 (c), we 

zoom into the black rectangle region of Figure 3.8 (b) in which the nudging coefficient is 

smaller than 8, and the parameter  is around 28. The cost function is irregular even with very 

small parameter error when the nudging strength is smaller than 5. It is unlikely that the 

optimization can reach the global minimum (28.0, 0.0) and is therefore likely be trapped into 

secondary minima. 

In the original DSPE method, the nudging strength should be strong enough to avoid the 

occurrence of secondary minima. The weighting factor Wa which appears as the uncertainty of 

the nudging coefficient  in variational data assimilation is likely to play an important role in 

tuning the nudging coefficient  during the optimization and therefore significantly influences 

the success of the optimization. When adding the nudging term, the forward model has been 

altered. But the influence of parameter error remains as Figure 3.7 shows, and it affects the 

cost function as Figure 3.8(a) displays. For parameter estimation, we argue that constant 

nudging coefficients can be used without penalizing them. Providing enough observations, the 
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nudging term should at least be strong enough to push the positive Lyapunov exponents to 

negative values or stop the exponential error growth in the tangent linear model.  

For the modified DSPE method, the slave system is still as equations (3.19)-(3.21) while 

the cost function is replaced with:  

J(x0, y0, z0, ρ) = {⁡
1

N
[∑ (x(t) − xobs(t))

2
+N

t=1 ∑ (y(t) − yo(t))
2
+N

t=1 ∑ (z(t) − zo(t))
2N

t=1 ]}  

(3.23) 

 In this method, we only need to add nudging terms to the forward model with proper 

nudging coefficients. In the following chapter, this modified DSPE method will be 

investigated based on the Lorenz system. 
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Chapter 4 

 Assimilating experiments with the Lorenz system 

To evaluate the performance of parameter estimation based on the classical DSPE 

method (Abarbanel et al., 2010; Abarbanel et al., 2009) and the modified DSPE method, we 

performed case studies with perfect observations and noisy observations. The influences of 

the nudging coefficient, sets of variables used for nudging and observation frequency, which 

impacts synchronization efficiency, are investigated. Throughout this study, we use the term 

“synchronization efficiency” to represent how well the nudging terms can recover the 

error-free signal from the noise and sparse observations. 

The first guess of the control variables are (x,y,z,)=(12.4473,11.2885,34.3449,24.5255) 

for all experiments. Unless declared, the assimilation window is 20TUs which is around ten 

times the feasible assimilation window (Pires et al., 1996). For noisy observations, the 

observation noise is assumed to has a uniform distribution with amplitudes: 1.37 for x, 1.56 

for y and 4.35 for z, which corresponds to a signal-to-noise ratio of 20db. For the 

minimization, the maximum iteration number is set to 80 and the convergence criterion is a 

gradient norm below 10
-8

.  

4.1 Case studies 

4.1.1 Perfect observations  

In this section, identical-twin experiments with perfect observations are performed. The 

influence of the penalty term in the classic DSPE method (Abarbanel et al., 2010) is 

investigated through expt1, expt2 and expt3 which use a different weighting factor Wa (see 

table 4.1). In expt4, a constant nudging coefficient is used, and it is excluded from the control 

variables. Observations are provided every time step for all state variables. For perfect 

observations, the success of the optimization will be judged by the final parameter error and 

whether or not the convergence criterion is reached. The estimated values of the control 

variables and the nudging coefficient  for all four experiments are listed in table 4.1.  

Table 4.1. Parameter , initial state and nudging coefficient  after the optimization. 

Expt 

No 

Wa Perfect observations Noisy observations 

  x y z   x y z 

Expt1 1 2.5189 28.1298 3.6793 15.9187 36.1799 0.70389 31.0058 12.3408 11.3836 34.3991 

Expt2 0.01 3.2921 28.0008 12.8009 13.1395 31.1078 17.6873 27.9914 12.5594 12.8587 31.1276 

Expt3 0. 20.848 27.9999 12.4526 13.1645 31.3828 98.1526 28.0148 14.1599 12.9026 30.8440 

Expt4 --- 20.000 27.9999 12.4526 13.1645 31.3828 20.0000 28.0423 12.4818 12.9669 31.1037 

 

Figure 4.1 (a) and (b) shows the norm of  and the nudging strength  depending on 

iteration number. Both expt3 and expt4 have successfully retrieved parameter  within 30 

iterations. The nudging coefficient  increases slightly from 20 to 20.85 in expt3. For expt1 

and expt2, the optimization is stopped by exceeding the maximum iteration number rather 

than satisfying the gradient norm criterion. The red and green circles in Figure 3.8 (c) show 
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the estimated parameter  and the nudging coefficient  after the optimization for expt1 and 

expt2. Although the estimated values of parameter  are also close to 28 in these two 

experiments (see also table 4.1), chaos reemerges in expt1 and expt2 which can be inferred 

from the dramatical increase of gradient norm as Figure 4.1(d) displays. From table 4.1, it is 

noted that expt3 and expt4 also accurately estimate the initial state because observations are 

provided every time step while expt1 and expt2 fail. Even the maximum iteration number is 

set to 1000, expt1 and expt2 still cannot reach the global minimum (not shown here). 

 

Figure 4.1. (a) norm of , (b) the nudging coefficient , (c) the cost function components Jp 

and Je, and (d) norm of gradient, as function of iteration number for perfect observations. The 

line colors represent different experiments indicated by legend in (a). The dashed lines and 

solid lines in (c) represent Jp and Je component of the cost function as in equation (3.22). 

The different specification of Wa in expt1, expt2 and expt3 significantly influence the 

performance of the optimization. For simplicity, we use Je to represent the model-observation 

misfit cost and Jp to represent the penalty term as the second term on the right-hand side of 

equation (3.22). Increasing the nudging coefficient  decreases Je and increases Jp. When 

minimizing the whole cost function, the optimization path is constrained by the balance 

between them. In Figure 4.1 (c), Jp is larger than Je in expt1; the optimization reduces the 

nudging coefficient  to reduce the whole cost function during the initial iterations. In expt2, 

Je is comparable or larger than Jp in the first few iterations, and the optimization efficiently 

reduces Je mainly by tuning the control variable  while only slightly increasing the nudging 

coefficient . After that, Jp dominates the cost function and the optimization reduces the cost 

function by quickly decreasing the nudging coefficient  as Figure 4.1 (b) shows. When the 

nudging coefficient  is decreased below a threshold value (around 10 in this case), a 

transition appears which is shown as a significant increase of the gradient norm in Figure 4.1 

(d) starting from 3rd iteration in expt1 and the 22th iteration in expt2. The slave system 
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becomes chaotic again, and the estimated  shows no improvement after this transition. At 

this stage, the optimization reaches a balance between reducing the penalty term Jp and 

increasing the model-observation misfits Je. The red arrows in Figure 3.8 (b) gives a 

schematic route for expt1 and expt2. In expt3, in which no penalty term is added for the 

nudging coefficient , the optimization slightly increases the nudging strength which implies 

that tuning the initial state and parameter  is the most efficient way to reduce the cost 

function. Optimization routes of expt3 and expt4 are provided as the blue arrows and black 

arrows in Figure 3.8 (a).  

4.1.2 Noisy observations  

The four experiment setups are now tested with noisy observations. We use expt1n, 

expt2n, expt3n and expt4n to represent the new experiments. The optimization is successful if 

the gradient criterion is satisfied within the maximum iteration number.  

 

Figure 4.2. (a) norm of , (b) the nudging coefficient , (c) the cost function components Jp 

and Je, and (d) norm of gradient, depending on iteration numbers. The line colors represent 

different experiments indicated by legend in (a). The dashed lines and solid lines in (c) 

represent Jp and Je component of the cost function as in equation (3.22).  

The norm of  and the estimated values of the nudging coefficient  are plotted in 

Figure 4.2 (a) and Figure 4.2 (b) and also listed in table 4.1. Only expt1n fails to retrieve 

parameter . In expt2n and expt3n, the nudging coefficient  is strongly increased while it is 

decreased in expt1n. Expt1n fails because the dramatic decrease of the nudging strength  

during the initial iterations, which makes the system chaotic again and multiple minima 

reoccur. Compared with Figure 4.1 (c), Figure 4.2 (c) shows that Je stays much larger than Jp 

during the optimization in expt2n and expt3n. In this situation, the optimization will further 
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reduce the cost function by increasing the nudging coefficient  to fit the noisy signal after 

the parameter  is accurately estimated. The gradient norm criterion is finally reached when 

the negative gradient of  with respect to Je and positive gradient of  with respect to Jp 

cancel each other. At this stage, the effect of reducing Je and increasing Jp reaches a balance. 

These results are similar to the findings by Bao (1993). However, since they investigated only 

assimilation windows much shorter than the limits of the validity of the linearized model and 

in our study the nudging coefficient  is an essential factor that enables the feasibility of the 

optimization in a chaotic regime and therefore has additional constraints depending on the 

parameter error to keep the cost function regular as Figure 3.8 illustrates. 

Although parameter  is successfully estimated in expt2n, expt3n and expt4n, expt2n and 

expt4n provide a better estimation of the initial state. In expt3n, the nudging strength is 

dramatically increased to 98.1526 which strongly erased the initial state errors, and the 

optimization provides a bad estimation of initial state with noisy observations.  

The results of these case studies indicate that a successful optimization can be achieved 

only when the nudging strength is strong enough to avoid separation of the model simulation 

from the observed trajectory during the optimization. A proper Wa needs to be chosen in the 

classic DSPE method which is difficult to specify. Under the presents of noise in the 

observations, a large Wa or a no-existing penalty term leads to increasing of the nudging 

coefficient  because the noise can only be fitted by the nudging terms. A small Wa leads to 

fast decay of the regularization, chaos reappears and stalls the optimization. Results of expt4 

for both perfect observations and noisy observations show that the optimization works 

perfectly and efficiently with a constant nudging coefficient . In summary, we don't see a 

benefit of including the nudging coefficient as part of control variables if the goal is to 

estimate parameters in chaotic systems. The behavior of the slave system depends on the 

nudging coefficient , and the nudging coefficient  is tuned by the weighting factor Wa for 

the penalty term. In the classical DSPE method, the weighting factor for the penalty term 

should be specified carefully which requires detailed knowledge of the cost function. While 

for the modified DSPE method, a minimum required nudging coefficient  should be 

predefined which is relatively easy to determine.  

With a constant nudging term, the initial state can also be reasonably estimated if 

accurate observations are provided in the time window before the initial information is erased. 

For long assimilation windows, the initial error will be erased for most of the assimilation 

window by the strong nudging terms and shows no significant influences on parameter 

estimation. In the following part, we will only provide results for the estimated parameter . 

4.2 Dependence on synchronization efficiency 

With noisy observations, the nudging terms will introduce besides the true signal also 

noise into the system. Previously studies (Alvarez, 1996; Yang et al., 2006) have indicated 

that synchronization efficiency depends on the noise level, variables chosen for nudging, 

observational frequency and nudging strength. In this section, the influence of these factors on 

the parameter estimation will be investigated.  
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4.2.1 Influence of observation noise 

 

Figure 4.3. (a) The cost function depending on the parameter  and the nudging strength  for 

the case of nudging y. The thick black lines represent global minima for a specific nudging 

strength  and the black circles are the estimated parameter  from the optimization. (b) Root 

mean square errors compute from error-free observations with the slave system with true 

parameter (black circles) and optimized parameter (black line). 

Equation (4.1) gives a general form of nudging with noisy observations and a parameter 

error in which observation noise and error-free signal are represented separately. With perfect 

observations, the nudging term will only introduce the true signal to the system and the 

difference between the slave system and observations will disappear when the parameter error 

becomes smaller. Parameters can be precisely estimated by variational data assimilation. With 

noisy observations, the nudging term will also introduce noise to the system as the third term 

on the right-hand side of equation (4.1) which degrades synchronization. The larger the 

nudging coefficient, the more noise will be introduced. There exists an optimal nudging 

strength which achieves the best ratio between true signal and introduced noise as shown in 

Figure 4.3 (b) and Figure 4.5. Here we investigate the influence of observation noise 

introduced by the nudging term on the parameter estimation. The variables used for nudging 

is y, and other sets of variables will be tested in next section. Experiments without penalizing 

nudging coefficient are repeated by gradually increasing nudging strength from 0 to100. The 

assimilation window is 20 TUs. 

⁡⁡⁡⁡⁡⁡
𝜕𝑢

𝜕𝑡
= 𝑓(𝑢, 𝜌) + 𝛼 × (𝑢𝑡𝑟𝑢𝑒 − 𝑢) + 𝛼 × 𝑢𝑛𝑜𝑖 + 𝛿𝜌 ×

𝜕𝑓(𝑢,𝜌)

𝜕𝜌
                 (4.1) 

Figure 4.3(a) shows the cost function depending on nudging strength  and parameter . 

The global minima of the cost function for a specific nudging strength  and the estimated 

parameter  are overlaid as the thick black line and black circles, respectively. When the 

nudging strength is larger than 5, the cost function surface is regular without any secondary 

minima. The Optimization always reaches the global minima by tuning parameter . The 
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estimated parameter slightly depends on the nudging coefficient because the non-linearity of 

the system may lead to a rectifying effect of the noise introduced into the system by the 

nudging term or because parameter changes can accommodate for the observations noise, 

although the latter is less likely since the noise is symmetric. The RMSEs computed from 

error-free data with the slave system and the last iteration of every assimilation experiment 

are plotted in Figure 4.3(b). The two RMSEs curves are almost indistinguishable which 

indicates that the noise signal introduced by the nudging term could not be reduced further 

after the optimization. With the increasing nudging coefficient, the sensitivity of parameter is 

also reduced which can be seen from the decrease of the cost function range with the 

increasing nudging coefficient  in Figure 4.3(a). To investigate the causes for residual error 

of the estimated parameter  under noisy conditions, three groups of experiments are 

performed. Expt5 uses the optimal nudging strength =15 which leads to the best 

synchronization shown as the black filled circle in Figure 4.3(b), while in expt6 =60 is set 

which introduces two times more noise into the system. Expt 7 is similar to expt6 except that 

error-free y observations are used for nudging which will not introduce noise to the slave 

system. The same noisy observations are used to compute the cost function in these three 

experiments. We perform the three groups of experiments for assimilation windows from 2 

TUs to 300 TUs. 

As Figure 4.4(a) shows, when the assimilation window is smaller than 40TUs, the 

estimated parameter varies significantly because for a limited number of error realizations the 

mean over all errors will not be exactly zero even for symmetric noise and the estimated 

parameter can compensate for this change in mean. The shift of the mean gets smaller with 

the length of the assimilation window and beyond 40TUs, the estimated parameter is robust 

and the RMSEs in Figure 4.4(b) are close to their corresponding errors introduce by the 

nudging term in Figure 4.3(b). Expt 5 better retrieved the parameter than expt6, which 

indicates that the noise introduced by nudging term influences the accuracy of the estimated 

parameter. Expt7, which doesn’t introduce noise signal from the nudging term best retrieved 

the parameter and also recovered the noise-free trajectory. After optimization, the whole 

nudging term is almost 0 in expt7 while it always exists in expt5 and expt6 due to the noisy 

observations. The results here show the noise introduced by the nudging term influences the 

accuracy of parameter estimation which cannot be reduced after optimization while a 

compensation of a shift in mean due to a limited number of error realizations can be largely 

reduced by extending the assimilation window. The results also indicate that the less the noise 

is introduced by the nudging terms, the more accurate the estimated parameter  will be. 
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Figure 4.4. (a) The estimated parameter  depending on assimilation window for nudging y. 

Expt5 (blue line) uses a nudging coefficient =15 with noisy y observations. Expt6 (black 

line) uses a nudging coefficient =60 with noisy y observations and Expt7 (red line) uses a 

nudging strength =60 with error-free y observations. (b) Root mean square errors for the 

above experiments. The dashed line represents the noise error introduced by nudging term 

shown in Figure 4.3(b). 

4.2.2 Experiments with different nudging variables 

Figure 4.5 and Figure 4.3(b) show the RMSEs computed from error-free observations 

and the slave system synchronized by noisy observations for 200 TUs. The optimal nudging 

strength is marked with the filled markers. In agreement with Alvarez (1996), we found that 

the Lorenz (1963) system can be synchronized with six different sets of variables: x, y, xy, xz, 

xyz, yz. Nudging z doesn’t help to synchronize the system while it introduces noise to the 

system. Both nudging x and nudging y can synchronize the system and nudging y performs 

better than nudging x. When used together, it leads to the smallest RMSEs. Including nudge z 

leads to larger RMSEs than excluding nudging z when the nudging strength is strong enough 

for synchronization. Nudging xz leads to the largest RMSEs even with its optimal nudging 

strength. In this section, the influence of variables chosen for nudging on the parameter 

estimation is further investigated. This is done by using the setup of expt5 with the other five 

sets of nudging variables and gradually increasing the assimilation window from 2 TUs to 300 

TUs. The optimal nudging strength is shown as the filled markers in Figure 4.5. 
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Figure 4.5. Root mean square errors computed from error-free observations and the slave 

system with different sets of variables chosen for nudging (see legend). The red markers 

represent the optimal nudging coefficient which best recovers the error-free signal from noisy 

observations. The dashed line is noise level. 

 

Figure 4.6. The estimated parameter  depending on the assimilation window with different 

sets of variables chosen for nudging (see legend). 

Figure 4.6 shows the estimated parameter  for all sets of variables used for nudging 

depending on assimilation window. For windows smaller than 40TUs, the estimated 

parameter varies with the assimilation window and different nudging variables. When 

nudging x, xy, y and xyz, the estimated parameter  gradually converges and goes close to the 

true value with larger assimilation windows. Although the estimated parameter when nudging 

xz is also accurate for assimilation range from 140 TUs to 240 TUs, it is less accurate for 

other assimilation window ranges and it also shows some abrupt jumps around 25 TUs and 
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260 TUs because the noise introduced by nudging z degrades synchronization efficiency. 

Estimated parameter when nudging yz also slightly varies for the assimilation windows of 220 

TUs and 240 TUs but less serious than for nudging xz. 

Results here indicate that variables used for nudging also influence the accuracy of the 

parameter estimation. With different sets of variables chosen for nudging, the synchronization 

efficiency varies and hence the accuracy of the estimated parameter . The different 

synchronization efficiency for different variables chosen for nudging reflects the relative 

importance of the variables for regularizing the unstable manifolds (Abarbanel et al., 2010; 

Yang et al., 2006). In real implementations, it is hard to determine the unstable manifolds due 

to the high complexity and large dimension of the atmospheric system. We suggest to nudging 

all variables which regularizes all manifolds and find out the optimal nudging strength to 

produce an effective synchronization, although nudging irrelevant variables may introduce 

unnecessary additional noise. 

4.2.3 Influence of observation frequency 

 

Figure 4.7. Cost functions depending on the parameter  and the nudging strength  with 

nudging y for an observation frequency of every 5 steps, 10 steps and 20 steps as indicated by 

the titles. The thick black lines represent the global minimum with different nudging 

coefficients, the black triangles are the estimated parameter  after the optimization.  

In real implementations, observations which usually come from reanalysis datasets are 

provided at a fixed time interval. Linear interpolation is used to fill the gaps between two-time 

instances which may force the system to an unphysical linear evolution. In this part, the 

influence of the observation frequency on the parameter estimation will be investigated. 

Observations are provided every 5 steps, 10 steps and 20 steps. The sets of variables used for 

nudging is y. Results of the other sets of variables used for nudging are similar to nudging y 

except for nudging xz and nudging x which do not lead to synchronization with the 

observations for 10-step and 20-step gaps. Expt4n is repeated by gradually increasing the 

nudging strength from 0 to 100 with observations every 5 steps, 10 steps, 20 steps. Linear 
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interpolation is used when nudging between two observational time steps. The assimilation 

window is still 20 TUs. 

As Figure 4.7 shows, although all secondary minima are avoided with increasing 

nudging strength, the global minima of the slave system shown as the thick black lines are 

shifted, and the optimization reaches the global minima by tuning the parameter as the black 

triangles show. This shift is more serious with sparser observations than denser observations. 

With interpolation, linear evolution is assumed between two observational time levels and 

forced on the slave system. The optimal nudging strength will introduce the least error and 

keeps the most nonlinearity of the system. The optimal nudging strength is also diagnosed 

with:  =18 for 5 steps,  =17 for 5 steps and  =14 for 20 steps. 

 

Figure 4.8. Trajectories of the variable y. The blue line is the true trajectory; the dotted lines 

are the linear interpolated trajectories with observations every 5steps (red dots) and 20 steps 

(magenta dots). The solid lines are trajectories after optimization with the optimal nudging 

strength for observations every 5steps (red line) and 20 steps (magenta line). 

In Figure 4.8, we plot the interpolated y variable used for nudging and the y trajectory 

after optimization with the optimal nudging strength for observations every 5 steps and every 

20 steps. For the interpolation between 5 steps which is much smaller than the predictability 

time of the Lorenz system, the slave system still follows the true trajectory reasonably well. 

Although some of the extreme values (at around 1825 steps) and transitions(y0) are not very 

well captured in the interpolated observations, the nudging term helps the slave system to 

better follow the nonlinear evolution without introducing unwanted transitions. With 

observations every 20 steps, the interpolated trajectory is stepwise. With its optimal nudging 

strength, the nudging term still recovers some of the nonlinear evolution of the system 

although not as good as observed every 5 steps. But when applied the strong nudging term, 

the slave system will follow the interpolated trajectory without catching the nonlinear 

transition points. Linear evolution will dominate the slave system which is different from the 

dynamics of observation system. The optimization will tune the parameter  to reduce the cost 
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function in this improper stepwise linear system which causes the estimated parameter  to 

significantly shift away from the true value. 

Three groups of experiments are performed with the optimal nudging strength and 

nudging y for observations every 5 steps, 10 steps and 20 steps. The assimilation window is 

gradually extended from 2TUs to 300 TUs to reduce the compensation effect of a low number 

of noisy observations. 

 

Figure 4.9. The estimated parameter  depending on the assimilation window for nudging y 

with the optimal nudging strength for different observation frequencies (see legend).  

Figure 4.9 shows the estimated parameter  depending on the size of the assimilation 

window for different observation frequencies. Similar to Figure 4.6, the parameter estimation 

biases due to a low number of noisy observations are visible when the assimilation window is 

small. The case with observations every 20 steps shows stronger compensation than the cases 

with observations every 5 steps and 10 steps within 40 TUs, because the number of error 

realizations is low and the mean effect is correspondingly larger. By extending the 

assimilation window, the parameter estimation of  is robust among all 3 cases. The case with 

observations every 5 steps achieves the best estimation while the case with observations every 

20 steps achieves the worst. The difference is caused by different synchronization efficiency 

with different observation frequencies. Overall, by using the optimal nudging strength, we can 

still reasonably and robustly estimate the parameter  with the given sparse observations. 

In summary, parameter estimation based on this simplified DSPE method depends on the 

synchronization efficiency. Observational noise degrades parameter estimation because it 

unavoidably will be introduced to the slave system which degrades synchronization. Variables 

chosen for nudging influences the parameter estimation because of their different 

synchronization efficiency. A low observation frequency has a more serious impact on this 

method because nudging will force a linear evolution of the slave system which makes the 

slave system significantly different from the nonlinear dynamics governed by the equations. 

By choosing an optimal nudging strength which best recovers the error-free observations, the 
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negative effect of noise and linear interpolation can be reduced, and the parameter  can be 

reasonably estimated. 

4.3 Discussions and conclusions  

Due to the chaotic nature of the nonlinear model, the feasible assimilation window of the 

variational assimilation method is limited by the predictability of the dynamical system. 

(Abarbanel et al., 2010; Abarbanel et al., 2009) introduced the DSPE method to determine 

unknown parameters and the unobserved model state from observed time series of the 

nonlinear system using long assimilation windows. Synchronization is used to regularize the 

nonlinear instability and to avoid the occurrence of second minima in the cost function. They 

advocated that the necessary nudging term can be penalized and brought down to zero during 

the optimization.  

In this study, we further investigate the viability of the DESP method on parameter 

estimation with long assimilation windows. We find that the penalty term for nudging 

coefficient plays a critical role for the development of the nudging coefficient during the 

optimization, and hence significantly influences the success of the parameter estimation. A 

large penalty term is likely to push the nudging term below a threshold value, and the slave 

model becomes chaotic again, which stalls the parameter estimation. Under the presence of 

observation noise, a small or non-existing penalty term leads to the increase of the nudging 

strength because the noise can only be fitted via nudging. A considerable large nudging 

coefficient is obtained, and its size is controlled by the weight of penalty term of the nudging 

coefficient. Although the forward model is changed by adding nudging terms, the influence of 

the parameter errors remains due to its direct influence on the model simulation, which 

enables the retrieval of the correct parameters in the presence of nudging terms. To guarantee 

the success of optimization, the nudging strength should be strong enough to avoid transitions 

relative to the observed state caused by erroneous parameters or initial errors. In this case, the 

assimilation window can be extended to infinite time.  

The presence of observation noise degrades synchronization to the true (noise-free) 

system, the estimated parameter ρ shifts from the true value for strong nudging. With 

increasing nudging coefficients, more noise will be introduced into the slave system. By using 

the optimal nudging strength which best recovers the error-free signal from the noisy 

observations, we can still accurately estimate parameter . Variables chosen for nudging also 

influence the accuracy of parameter estimation due to their different synchronization 

efficiency. For real implementations, we suggest adding nudging terms for all prognostic 

equations, if the necessary dimensions are not known. As the parameter estimation benefits 

from variables chosen for nudging, other synchronization methods such as the 

delay-coordinate nudging (Pazó et al., 2015) may also improve the accuracy of the parameter 

estimation.  

For sparse observations, linear interpolation is used to fill the gaps between observation 

times. Strong nudging strength will make the slave system follow the linear evolution which 

violates the nonlinear dynamics of the governing equations, and for large gaps, the violation 

leads to increasing biases in the estimated parameter. Optimal nudging strengths can also be 
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found which introduce the least noise while best following the nonlinear evolution. The 

optimal nudging strength doesn’t vary too much for our selected observation frequency.  

Our results show that the performance of the parameter estimation with this simplified 

DSPE method depends on the synchronization efficiency. The more effective the 

synchronization, the more accurate the estimated parameter will be. With given observations, 

optimal nudging strength should be predefined for a better parameter estimation. Practically, 

the nudging strength must be large enough to push the positive Lyapunov exponents to 

negative values. 

This simplified DSPE method only needs small changes of the traditional adjoint method 

and is expected to be suitable to systematically tune the model’s climatology by optimizing 

process parameters for coupled climate models. However, we have explored this simplified 

DSPE method only for the simple Lorenz (1963) model. For complex atmospheric models, 

there are a number of issues that we have not investigated here due to the simplicity of the 

Lorenz (1963) model. These issues are: 

 “On-off” switches as discussed in (Mu and Wang, 2003; Xu, 1996; Zou, 1997).  

Zero-order discontinues processes such as convective rain will directly degrade the 

usefulness of the tangent linear approximation because in the optimization we use 

gradients to make predictions for the effect of finite perturbations for which the 

gradients are no longer a good approximation. Some modification such replacing the 

“on-off” by smooth functions (Knorr et al., 2010; Županski and Mesinger, 1995) can 

be used to reduce the discontinuities in the forward model.  

 For real implementation with a coupled climate model, the ERA-Interim (Dee et al., 

2011) and NCEP reanalysis (Kanamitsu et al., 2002), which provide all variables at a 

6-hour interval, could be used for synchronization. It is not clear whether the 

frequency is sufficient, but technique like delay-coordinate nudging (Pazó et al., 

2015) may be employed to enhance synchronization. Moreover, further 

complications arise from additional model errors not described by the optimized 

parameters that project on the parameter and impact the parameter estimation.  

Overall, it is reasonable to extend the feasible assimilation window for parameter 

estimation by using nudging terms to regularize the fast-growing unstable modes. In next 

section, the method will be further applied to a more complex earth simulation system, the 

Planet Simulator. 
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Chapter 5 

The Climate model and configurations 

Although the Lorenz (1963) system used in chapter 4 provides an interesting analog for 

Rayleigh-Bénard convection, it lacks many characteristics of a full, three-dimensional 

atmospheric system. For further tests on the usefulness of this simplified DSPE method on the 

parameter estimation, the Planet Simulator (PlaSim, Fraedrich et al., 2005a) is used here. Its 

exact adjoint model has been generated by an automatic differentiation tool TAF (Giering and 

Kaminski, 1998) and initially tested by Blessing et al. (2014) which provide us a good test 

base for the modified DSPE method. In this chapter, we briefly introduce this model and the 

parameterization processes that will be used in parameter estimation. 

5.1 The model and its configurations  

The dynamic core of PlaSim is the Portable University Model of the Atmosphere(PUMA) 

(Fraedrich et al., 2005a) including parameterization schemes for radiation, diagnostic cloud 

cover, large scale precipitation, convective precipitation, and dry convective adjustment. 

PUMA uses a spectral transform method horizontally, finite differences in the vertical and a 

semi-implicit time step. Other modules are reduced to linear systems including a 

thermodynamic sea-ice module, a land surface component and terrestrial biosphere 

component (SIMBA), a slab ocean module. Detailed description of this model and its 

parameterization schemes can be found online
2
. 

The model resolution used in this study is 5.6 (T21) with ten vertical sigma levels for 

the atmosphere. The time step is 45 minutes. In our study, two configurations are used: (1) the 

“maximal” configuration which uses most of PlaSim’s component except for the SIMBA 

module and the slab ocean module is replaced with climatological surface temperature; (2) the 

“minimal” configuration which excludes the hydrological cycle and use climatology land 

surface and sea surface temperature to replace the correspondent components. For both 

configurations, the model is spun up for ten years using monthly averaged climatological sea 

ice concentration sea surface temperature (SST), glacier coverage, albedo and soil 

temperature. The restart files at the end of the spin-up are stored and used for all identical 

twin experiments below. For assimilating ERA-Interim data, the model is forced by 6-hourly 

ERA-Interim surface temperature rather than the climatology. 

The “minimal” configuration is much more linear and simpler than the “maximal” 

configuration due to excluding the parameterization of moisture processes. For the minimal 

setup, Blessing et al. (2014) showed that the parameter could be accurately estimated after the 

optimization. The “minimal” configuration is used here to diagnose potential problems when 

linearizing the vertical diffusion parameterization schemes. We will also test the performance 

of the simplified DSPE with long assimilation window based on identical twin experiments.  

                                                            
2
https://www.mi.uni-hamburg.de/en/arbeitsgruppen/theoretische-meteorologie/modelle/plasim.html. 

https://www.mi.uni-hamburg.de/en/arbeitsgruppen/theoretische-meteorologie/modelle/plasim.html
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For assimilating the ERA-Interim reanalysis data (Dee et al., 2011), the “maximal” 

configuration is needed and therefore testing is done before that. The usefulness of the TAF 

generated tangent linear model and adjoint model will be tested step-by-step. And identical 

twin experiments will also be performed to investigate the performance of the modified DESP 

method. 

Figure 5.1 (a) and (b) show the annual mean of zonal averaged zonal wind and 

temperature for the ERA-Interim data and the PlaSim simulation (“maximal” configuration). 

The model simulation matches observed atmosphere structures well. For the zonal mean of 

the eastward component of the wind u, westerlies (flow from west to east in meteorology) 

prevail almost everywhere except close to the equator where easterlies prevail. The westerlies 

peak in the subtropical jet stream which is centered at around 30-40 degree latitude and 

stronger in the southern hemisphere than in the northern hemisphere. But the peak speeds of 

westerlies in the PlaSim simulation are stronger than ERA-Interim for both hemispheres. 

 

Figure 5.1. Annual mean of zonal averaged zonal wind (m/s) and temperature (C) for the 

ERA-Interim reanalysis (a) and the PlaSim simulation (b). Annual mean of the ERA-Interim 

data use data of year 1992. 
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Figure 5.2. Zonal averaged climatological temperature difference (C) (a) and specific 

humidity difference (kg/kg) (b) between the PlaSim simulation and the ERA-Interim 

reanalysis. The difference is computed by the PlaSim simulation minus ERA-Interim 

reanalysis. Annual mean of ERA-Interim data uses data of year 1992. 

 

Figure 5.3. Temperature difference in level 10 between the PlaSim simulation and the 

ERA-Interim reanalysis for model level 10. The difference is computed by the PlaSim 

simulation minus ERA-Interim data. Annual mean of the ERA-Interim data uses data of year 

1992. The contour interval is 2 C. 

For air temperature, the PlaSim simulation shows a cold bias almost everywhere except 

for the equator and the subtropical region at the top of the atmosphere as in Figure 5.2 (a). An 
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average of -2 C bias is visible for the lower atmosphere and much larger (around -4 C) in 

the Antarctic. At the top of the atmosphere, a warm bias with amplitudes around 2-4 C exists 

in the tropics and subtropical region while a cold bias with amplitudes larger than -10 C 

dominates the polar region. At the topmost level of the Antarctic region, a warm bias exists. 

Figure 5.3 shows the temperature difference for level 10. A warm bias exists over Asia, 

northern America, and Antarctica from 0E to 120E. A cold bias dominates all other regions. 

For specific humidity, the PlaSim simulation has less water vapor (~20% less than the 

ERA-Interim reanalysis) in the whole atmosphere as Figure 5.2 (b) shows. 

5.2 Description of physical parameterizations  

For the parameter estimation, a couple of physical parameterizations which include 

uncertain process parameters are selected. The first ten parameters have been tested in the 

previous study (Blessing et al., 2014) based on identical twin experiments. In this study, six 

more parameters are included. We briefly introduce these physical processes and the 

parameters. The parameters, their default values and possible ranges are listed in table 5.1. 

The first nine parameters are related to the dynamical core of the model and used in identical 

twin experiments with the “minimal” configuration. The rest of the parameters are related to 

the radiation parameterization, and tune cloud characteristics and water vapor absorptivity of 

longwave radiation. Four of them together with the first nine parameters are used in identical 

twin experiments with the “maximal” configuration while all of them are tested in 

assimilating the ERA-Interim data. 

Table 5.1. Process parameters used in parameter estimation  

Parameter  Description  Default  Range  

tfrc1 time scale for Rayleigh friction (lev01) 20 days >0 days 

tfrc2 time scale for Rayleigh friction (lev02) 100 days >0 days 

tdissd diffusion time scale for divergence 0.2 days >0 days 

tdissz diffusion time scale for vorticity 1.1 days >0 days 

tdisst diffusion time scale for temperature 5.6 days >0 days 

vdiff_lamm Parameter in vertical diffusion 160 m 0-1000m 

vdiff_b Parameter in vertical diffusion 5 m >0 m 

vdiff_c Parameter in vertical diffusion 5 m >0 m 

vdiff_d Parameter in vertical diffusion 5 m >0 m 

tpofmt Tuning of point of mean transimittivity in layer 1. 0-1 

tswr1 Tuning of cloud albedo range1(<0.75 um) 0.04 0.01-0.2 

tswr2 tuning of cloud back scattering range2(>0.75 um) 0.048 0.01-0.5 

tswr3 tuning of cloud scattering albedo range2(>0.75 um) 0.004 0.001-0.1 

th2oc absorption coefficient water vapor continuum 0.04 0.005-0.1 

acllwr mass absorption coefficient for clouds 0.1 >0 

tdissq diffusion time scale for specific humidity 0.2 days >0days 
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5.2.1 Rayleigh friction 

A Rayleigh friction scheme is used in the uppermost two levels to represent gravity wave 

drag effects at the top of the atmosphere. Rayleigh friction is done in spectral space, and its 

contribution to the tendency of divergence or vorticity X is: 

𝜕𝑋

𝜕𝑡
= −

1

𝜏
𝑋                                                  (5.1)  

where  is the timescale (days) for the Rayleigh friction. In this study,  for the uppermost two 

levels are used in parameter estimation. 

5.2.2 Horizontal diffusion  

The horizontal diffusion parameterization bases on Laursen and Eliasen (1989). The 

diffusion is also done in spectral space. Its contribution to the tendency of temperature, 

divergence, vorticity and moisture X is: 

           
𝜕𝑋𝑛

𝜕𝑡
= −𝑘𝑥𝐿𝑛𝑋𝑛                                             (5.2) 

where n is the wave number and Ln is a scale selective function of the total wave number and 

acts to enhance damping effects with increasing wave number n: 

𝐿𝑛 = {
(𝑛 − 𝑛∗)

𝛼⁡⁡𝑓𝑜𝑟⁡𝑛 > 𝑛∗
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑛 < 𝑛∗⁡

⁡⁡                                 (5.3)  

The cut-off wave number is 15 and =2. The diffusion time scales kx for temperature (tdisst), 

divergence (tdissd), vorticity (tdissz) and specific humidity (tdissq) are used in parameter 

estimation and their default value is listed in table 5.1. 

5.2.3 Vertical diffusion parameterization 

The unresolved turbulent exchange is represented by vertical diffusion parameterization 

scheme based on Louis (1979). The calculation of the exchange coefficient Km and Kh are as 

follows: 

𝐾𝑚 = 𝑙𝑚
2 |

𝜕𝑣⃗ 

𝜕𝑧
| 𝑓𝑚(𝑅𝑖)                                           (5.4) 

𝐾ℎ = 𝑙ℎ
2 |
𝜕𝑣⃗ 

𝜕𝑧
| 𝑓ℎ(𝑅𝑖)                                            (5.5)  

where lm and lh are the mixing lengths (Blackadar, 1962) and defined as:  

1

𝑙𝑚
=

1

𝑘𝑧
+

1

𝜆𝑚
                         (5.6)                      

1

𝑙ℎ
=

1

𝑘𝑧
+

1

𝜆ℎ
                                                  (5.7) 

where 𝜆ℎ = 𝜆𝑚√3𝑑 2⁄  . The default values are: m=160 and d =5. The functions fh(Ri) and 

fm(Ri) are empirical function of Richardson number based on Monin-Obukhov similarity 

theory. 

For stable conditions (Ri0), fm(Ri) and fh(Ri) are given by:   
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𝑓𝑚 =
1

1+(2𝑏𝑅𝑖/√1+𝑑𝑅𝑖)
                                        (5.8)  

𝑓ℎ =
1

1+(3𝑏𝑅𝑖√1+𝑑𝑅𝑖)
                                         (5.9) 

while for the unstable cases (Ri<0): 

𝑓𝑚 = 1 −
2𝑏𝑅𝑖

1+(3𝑏𝑐
𝑙𝑚
2

Δ𝑧3 2⁄ 𝑧1 2⁄
[(
𝑧+Δ𝑧

𝑧
)1 3⁄ −1]

3 2⁄
/√−𝑅𝑖)

                     (5.10) 

𝑓ℎ = 1 −
3𝑏𝑅𝑖

1+(3𝑏𝑐
𝑙𝑚
2

Δ𝑧3 2⁄ 𝑧1 2⁄
[(
𝑧+Δ𝑧

𝑧
)1 3⁄ −1]

3 2⁄
/√−𝑅𝑖)

                     (5.11) 

where b, c are constant values and their default values are: b=5 and c =5. For this 

parameterization scheme, the uncertain parameters to be tuned are m (vdiff_lamm), b 

(vdiff_b), c (vdiff_c) and d (vdiff_d). 

5.2.4 Radiation parameterization  

A diagnostic cloud parameterization scheme based on Slingo and Slingo (1991) is used 

in this model. Five parameters related to the cloud prosperities, which influence shortwave 

radiation and longwave radiation, are chosen for parameter estimation. Three parameters are 

related to the transmissivity of clouds for solar radiation. fb1 is related to backscatter of solar 

radiation with wavelength <0.75 um and takes the form: 

𝑇𝐶1 =
1

1+𝑓𝑏1𝜏𝑁1/√𝑢0
                                        (5.12) 

where N1 is effective optical depth based on Stephens (1978). u0 is the solar zenith angel. fb1 

(tswr1) is a tunable parameter, which comprises a tuning opportunity for cloud albedo, and is 

set to a default value of 0.03335. 

Parameters fb2 (tswr2) and fo2 (tswr3) are used to approximate the table values of the 

backscatter coefficients 2 and 0: 

𝛽2 =
𝑓𝑏2√𝑢0

ln⁡(3+0.1𝜏𝑁2)
                                        (5.13)  

⁡𝜔0 = 1 − 𝑓𝑜2𝑢0
2ln⁡(1000/𝜏𝑁2)                            (5.14) 

where N2 is the optical depth based on Stephens (1978). The default values of fb2 (tswr2) and 

fo2 (tswr3) are 0.048 and 0.004. 

Parameters kcl
 
(acllow) and kh2o (th2oc) are used to parameterize absorption effects of 

clouds and water vapor on longwave radiation and the absorptivity are given by: 

𝐴𝑐𝑙 = 1 − exp⁡(−𝛽𝑑𝑘𝑐𝑙𝑊𝐿)                                (5.15) 

𝐴ℎ2𝑜 = 1 − exp⁡(−𝑘ℎ2𝑜𝑊𝐿1)                               (5.16) 

where WL is the cloud liquid water path and WL1 is liquid water path. The default values are: 

kcl
 
= 0.1 and kh2o =0.25. 
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The last parameter chosen for parameter estimation is fT (tpofmt) which provides a tuning 

opportunity for transmissivity of a layer partially filled with clouds and is given by:  

𝑇(𝑙, 𝑙 − 1) = 𝑓𝑇𝑇(𝑙,𝑙−1)
𝑐𝑠 (1 − 𝑐𝑐(𝑙,𝑙−1)𝐴(𝑙,𝑙−1)

𝑐𝑙 )                   (5.17) 

where 𝑇(𝑙,𝑙−1)
𝑐𝑠  is the clear sky transmissivity and 𝐴(𝑙,𝑙−1)

𝑐𝑠  is the cloud emissivity. Its default 

value is set to fT=1. 

5.3 Implementation of nudging terms 

For the implementation of the modified DSPE method, simple nudging terms (Hoke and 

Anthes, 1976) are added to the climate model. For PlaSim, a spectral transform method is 

used for solving the primitive equations. Model integration including 4 steps: 1) compute the 

tendencies caused by adiabatic nonlinear term effects in physical space; 2) compute the 

diabatic tendency in spectral space and adding the adiabatic perturbation; 3) compute the 

parameterization effects including: radiation, precipitation, planet boundary etc. in physical 

space; and 4) compute damping effects in spectral space. The nudging terms are added to the 

tendencies in spectral space after step 4) with nudging divergence, vorticity, temperature. 

Moisture is also included in the nudging when the “maximal” configuration is used. The 

implementation of the nudging terms as the spectral coefficient of the model state is as 

follows: 

𝜕𝑋𝑛

𝜕𝑡
= −

1

𝜏𝑟𝑒𝑙𝑎𝑥
(𝑋𝑛 − 𝑋𝑛

𝑜𝑏𝑠)                                   (5.18) 

where relax is a nudging timescale. In this study, an implicit time step scheme is used and the 

equation (5.18) is rewrite as: 

𝑋𝑛
𝑡+1−𝑋𝑛

𝑡

∆𝑡
= −

1

𝜏𝑟𝑒𝑙𝑎𝑥+∆𝑡
(𝑋𝑛

𝑡 − 𝑋𝑛
𝑜𝑏𝑠)                           (5.19) 

5.4 Summary 

In this chapter, we provided details of PlaSim and the configurations that will be used for 

the assimilating experiments. For the “maximal” configuration, we see that the simulation 

with PlaSim resembles basic characteristic of the ERA-Interim data. But PlaSim simulates 

much stronger westerlies than the ERA-Interim data, and the air temperature is colder except 

for the upper layer in the tropics. PlaSim also has less moisture than the ERA-Interim data. It 

is difficult to identify the causes of these biases. The parameterization schemes used in this 

study are introduced. Some of the parameterization schemes have very complex forms, which 

makes it harder to code the TLM and adjoint model. But with automatic difference tools TAF, 

the TLM and adjoint model are automatically generated. In the study below, we will try to 

reduce model bias by tuning the introduced process parameters.  
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Chapter 6   

Assimilation experiments with PlaSim 

In this chapter, the modified DSPE method is tested with the “minimal” configuration 

and the “maximal” configuration of PlaSim. The usefulness of the TLM and the adjoint model 

is tested by comparing with the finite differences of the perturbed model integrations. 

Modifications are made to the TLM and the adjoint model to improve the description of the 

error propagation of the nonlinear model. We start with the “minimal” configuration which is 

more linear than the “maximal” configuration. Throughout this study, the original nonlinear 

system is called the free system or PlaSim while the system with nudging terms is called the 

slave system.  

6.1 The cost function  

The cost function used for identical twin experiments is defined as following: 

𝐽(𝑝) = ∑
(𝑇−𝑇𝑒𝑟𝑎)

2

𝜎𝑡𝑘
2

𝑙𝑒𝑣
𝑘=1 + ∑

(𝑉𝑜−𝑉𝑜𝑒𝑟𝑎)
2

𝜎𝑡𝑘
2

𝑙𝑒𝑣
𝑧=1 +∑

(𝐷−𝐷𝑒𝑟𝑎)
2

𝜎𝑑𝑘
2

𝑙𝑒𝑣
𝑘=1 +

(𝑆𝑃−𝑆𝑃𝑒𝑟𝑎)
2

𝜎𝑠𝑝
2 ⁡           (6.1) 

where T, Vo, D, and SP represent air temperature, vorticity, divergence and surface pressure. 

Specific humidity is not included in the cost function because: (1) there is no water vapor in 

the “minimal” configuration, and (2) for the “maximal” configuration, the tangent linear 

model cannot provide a reasonable approximation of the nonlinear perturbation of moisture 

due to the strong nonlinear moisture parameterizations, such as convective precipitation and 

dry convective adjustment. The observations are time averaged over the whole assimilation 

window to represent the mean state. For historical reason, the observations used in the 

“minimal” configuration don’t include air temperature for model level 1 (upper most level of 

the model).  

6.2 Modifying the TLM and its adjoint 

For PlaSim, the TLM and the adjoint model have been automatically generated by TAF. 

The correctness of the TLM and the adjoint model is validated in Blessing et al. (2008). For 

the “minimal” configuration, Blessing et al. (2014) also provided four examples in which the 

parameters are accurately retrieved with an assimilation window of 56 days and a reduced 

time step of 10 minutes. But with larger time steps (20min and 45min in their study), the 

optimization fails for such a long assimilation window. Although the simulations with time 

steps of 45 minutes and 10 minutes show some differences, it is unlikely that the differences 

change the predictability of the system and hence change the feasible assimilation window. It 

is likely that the accuracy of the TLM and its adjoint depends on the time step, due to strong 

nonlinearity parameterizations such as vertical diffusion parameterization. Although reducing 

the time step may improve the validity the TLM and the adjoint model (Blessing et al., 2014; 

Zhu and Kamachi, 2000), the computational cost is also greatly increased. Here, potential 

problems with the exact TLM and the adjoint model generated by TAF are further tested. 

Small modifications based on Zhu et al. (2002) are made on the exact TLM and the adjoint 
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model to improve the usefulness of the adjoint model without reducing the time step. The 

problem will be shown based on the “minimal” configuration and modifications are made 

when linearizing the vertical diffusion parameterization. Then assimilating experiments will 

be performed to validate the usefulness of the modified adjoint model. For this “minimal” 

configuration, the first nine parameters listed in Table 5.1 are used for the parameter 

estimation. 

To validate the exact TLM generated by TAF, the time evolution of root mean square 

errors (RMSEs) for the exact TLM and a perturbed PlaSim integration with 0.0001% 

perturbation on all nine parameters are computed based on equation (6.2) and (6.3): 

𝑅𝑀𝑆𝐸𝑠 = √
1

𝑁
(𝑋𝑝 − 𝑋𝑟𝑒𝑓)

2                                       (6.2) 

𝑅𝑀𝑆𝐸𝑠 = √
1

𝑁
(𝑀(∆𝑝))2                                         (6.3) 

where X represents the model state used in the cost function, subscripts p and ref represent a 

perturbed integration and a reference integration. M is the TLM operator, and p is the 

parameter perturbation. N is the number of the model grid on one level (32x64). 

 

Figure 6.1. The time evolution of instantaneous RMSEs for the exact TLM (the green line), 

the modified TLM (the black line) and a perturbed PlaSim integration (the blue line) with a 

perturbation size of 0.0001%. The red dashed line is a linear fit of the blue line for the first 50 

days.  

The green line and blue line in Figure 6.1 show the time evolution of RMSEs from the 

exact TLM and a perturbed PlaSim integration. The leading local Lyapunov exponent 

=0.093 /day is crudely computed based on a linear fit of the nonlinear error propagation 

within the first 50 days. The predictability limit of this “minimal” configuration is around 
1


10 days and a feasible assimilation window should be around 20 days. The error 

propagation in the exact TLM matches that of the PlaSim quite well within one day. Beyond 
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one day, the RMSEs from the exact TLM grow dramatically and are totally different with that 

from PlaSim. For integration time larger than one day, the exact TLM cannot reasonably 

describe error propagation and hence the adjoint model will not provide useful gradient 

information that points to the global minimum. An explanation is that: the nonlinear model 

contains fast-growing modes, which saturate quickly and have little effects on the model 

simulation. Directly linearizing these processes will lead to a dramatical error growth rate in 

the TLM as the green line in Figure 6.1 shows and limit the usefulness of the TLM model and 

its adjoint. Regularizations are needed for improving the usefulness of the TLM and the 

adjoint model.  

For the “minimal” configuration, the dramatically increase of RMSEs in the exact TLM 

is likely caused by linearizing the vertical diffusion parameterization. Previous studies (Errico 

et al., 1993; Janisková et al., 1999; Laroche et al., 2002; Mahfouf, 1999; Zhu et al., 2002) 

have shown that regularizations are needed when linearizing the vertical diffusion 

parameterization. One reason is that directly linearizing the vertical diffusion parameterization 

may lead to unstable of the TLM (conflicting with the CFL condition, Zhu and Kamachi 

(2000)). Another reason is that this parameterization contains fast-growing modes, but these 

modes saturate quickly and therefore have little effects on the model simulation. However, 

linearizing these fast-growing modes will lead to the dramatical error growth in the TLM. 

Among the several methods for regularization are: (1) neglect 𝐾𝑚
′  (Errico et al., 1993; 

Mahfouf, 1999); (2) smoothing the discontinue point in the forward model (Janisková et al., 

1999; Laroche et al., 2002); (3) removing part of TLM which contribute to the instability of 

TLM while have little impact on the error propagation (Zhu et al., 2002). For the parameter 

estimation, the third method is adopted, which can retain most of the parameter information 

and which also has been tested to be useful by Liu et al. (2012). 

In PlaSim, the vertical diffusion parameterization is based on Louis (1979) and is 

expressed as equations (5.4)-(5.11). For this parameterization scheme, the TLM will provide 

too large error propagation when the Richardson number changes signs (Janisková et al., 1999; 

Laroche et al., 2002). This indicates that the fast-growing modes in this parameterization are 

related to the Richardson number. The change of sign for the Richardson number represents 

the change of stability in the atmosphere. By try-and-error, we find that the TLM and the 

adjoint model can accurately represent the error propagation simply by setting 𝑅𝑖′ = 0. The 

black line in Figure 6.1 shows the error propagation for the modified TLM which fits well to 

the nonlinear one until 50 days when nonlinearity acts to stop the linear error growth.  

 



 

48 

  

Figure 6.2. Spatial distribution of the surface pressure difference (10Pa) caused by 10% 

perturbations on all 9 parameters: (a) the finite difference between a perturbed PlaSim 

integration and the control integration, (b) the modified TLM, (c) the exact TLM. The 

integration time is 10 days. 

Figure 6.2 plots the surface pressure difference between a perturbed PlaSim integration 

and the control integration (a), the modified TLM (b) and the exact TLM with 10% 

perturbations on all parameters for an integration of 10 days. Both the pattern and amplitude 

of the surface pressure difference are similar in the modified TLM and the finite difference 

which indicates for how long the linear dynamics dominate the nonlinear model and for how 

long the simplified TLM accurately represents error propagation of the nonlinear model. The 

exact TLM gives a much larger surface pressure difference than both the nonlinear model and 

the modified TLM. The results show that it is necessary to modify the TLM generated by 

TAF. By simply setting 𝑅𝑖′ = 0 when linearizing the vertical diffusion parameterization, the 

modified TLM can accurately describe the most relevant terms of the nonlinear error 

propagation. 

 

Figure 6.3. The cost function depending on parameter perturbations (%) for an assimilation 

window of 10 days. All 9 parameters are perturbed. 

To test the usefulness of the modified adjoint model for parameter estimation, 

identical-twin experiments are performed with an assimilation window of 10 days. Figure 6.3 

shows the cost function depending on the parameter perturbations. The cost function is quiet 

smooth and shows no chaotic behavior. From the cost function perspective, the optimization 

should converge if the adjoint model can provide useful gradients. Four assimilating 

experiments are performed which perturbed all nine parameters with perturbation sizes of 

10%, -10%, 20%, -20%. The change of the cost function, the norm of gradients, and the norm 

of the parameter perturbations are plotted in Figure 6.4. For all four experiments, the norm of 

the parameter errors is reduced by more than three orders, and the cost function and its 

gradients are also strongly reduced. The true values of the parameters are successfully 

retrieved after the optimization. 
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Figure 6.4. Convergence of the minimization for the minimal configuration for four 

experiments with different perturbation size (see legend) on all 9 parameters. The assimilation 

window is 10 days. 

With the automatic differentiation tool TAF, the TLM and the adjoint model can be 

automatically generated, and the correctness can be verified through gradient check as in 

Blessing et al. (2008), which is usually done with very small perturbations and within a short 

integration period. While for data assimilation, the perturbation sizes are considerable larger 

and it is more practical to test the usefulness of the adjoint model as in Figure 6.2 shows. 

Although the TLM and the adjoint model are correct, their usefulness for data assimilation 

may be degraded due to linearize fast growing modes in the vertical diffusion 

parameterization. These modes contribute most to the unstable of the TLM but have little 

impacts on accurate representation of the TLM. As suggested by Zhu et al. (2002), this 

problem can be solved by setting 𝑅𝑖′ = 0. Through performing identical twin experiments, 

we see that the modified adjoint model provides useful gradient information and the default 

values of the parameters are successfully retrieved within 30 iterations. In the following part, 

the simplified DSPE method will be tested with the modified adjoint model derived here. 

Nudging terms will be added to the forward model as in equations (5.18)-(5.19) and the 

assimilation window will be extended to 1 year. 

6.3 Assimilating experiments with the “minimal” configuration 

6.3.1 The nudging strength for synchronization 

To synchronize the chaos of the nonlinear system and observations which is required by 

the modified DSPE method, the nudging strength should be strong enough to push the 

positive Lyapunov exponent to negative values. For the “minimal” configuration, the nudging 

terms are added on air temperature (lev02-lev10), vorticity (all levels) and divergence (all 

levels) using the same nudging timescale. Based on the TLM, Figure 6.5 shows the logarithm 

of RMSEs with a 0.0001% perturbation on all 9 parameters for different nudging timescales. 

When decreasing the nudging timescales from 5 days to 2 days, the exponential increase of 

RMSEs gradually reduces and shows no visible exponential increase for a nudging timescale 

of 2 days. The nudging timescale is set to 2 days for this “minimal” configuration. 
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Figure 6.5. The time evolution of instantaneous RMSEs for the modified TLM without 

nudging (=0 day), with nudging timescales ranging from 5 days to 2 days (see legend). 

Figure 6.6 shows the cost function components depending on the parameter perturbations 

ranging from -90% to 90% for the free system (the solid lines) and the slave system (the 

dashed lines) with a nudging timescale of 2 days for an integration time of 1 year. Without 

nudging terms, there are narrow valleys around the global minima which show strong 

sensitivity. Beyond this region, multiple minima occur, and the sensitivity is much smaller. 

Also, we see that the cost function is not symmetric which reflect the nonlinearity of the free 

system. With nudging terms, the cost function is smooth for all components. The cost function 

component for temperature and divergence is not strictly symmetric. Negative perturbation 

side shows larger gradient than the positive perturbation side. With nudging timescales 

smaller than 2 days, the slave system is non-chaotic, but nonlinearity still exists.  
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Figure 6.6. Cost function components depending on the size of parameter perturbations for 

PlaSim (the solid lines) and the slave system (the dashed lines): (a) surface pressure, (b) 

temperature, (c) vorticity and (d) divergence. The integration time is 1 year. The cost function 

is normalized by the mean value over all perturbations. 

The TLM should provide error propagations that is similar to that from the finite 

difference between a perturbed and the control slave system integrations. Although the highly 

nonlinear processes in the moisture parameterization are excluded in this “minimal” 

configuration, there still exists some “if” and “where” statements (such as the vertical 

diffusion parameterization). These conditionals potentially degrade the usefulness of the TLM 

and its adjoint because that a small perturbation on the nonlinear model integration may 

change the trajectory shift to another side of the conditionals and the TLM based on the 

unperturbed trajectory cannot describe this. The problem is likely to be more serious with 

longer integration time because the conditionals are likely to take effects more frequently. For 

the slave system, the usefulness of TLM model is validated before performing assimilating 

experiments. This is done by comparing model state differences with a 10% perturbation on 

all nine parameters from the finite difference of perturbed slave system integrations and the 

TLM of the slave system after 1-year integrations. 

Figure 6.7 shows the surface pressure difference of the slave system from the finite 

difference (a) and the TLM (b) after 1-year integration. The TLM fits well with the finite 

difference for both pattern and amplitude. Slightly differences are visible near Antarctica 

where the finite difference shows larger differences than the TLM. Overall, the conditionals in 

the “minimal” configuration don’t degrade the usefulness of TLM. With a 2-day nudging 

timescale, this slave system becomes non-chaotic, and the TLM can very well describe the 

error propagation of this slave system. Although the conditionals may slightly degrade the 

performance of the TLM, the TLM generated by TAF and modified by setting 𝑅𝑖′ = 0 can 
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provide an accurate description of the parameter sensitivity compared with the finite 

difference. 

 

Figure 6.7. The surface pressure difference (Pa) caused by a 10% perturbation on all 9 

parameters for the finite difference of perturbed slave system integrations (a) and the TLM of 

the slave system (b) after 1-year integrations.  

6.3.2 Assimilation experiments  

Three identical twin experiments are performed to investigate how the DSPE method 

works with the “minimal” configuration. The nine parameters are perturbed with sizes of 10%, 

20% and -90% and the assimilation window is 1-year.  

 

Figure 6.8. Convergence of the minimization for 3 assimilating experiments with an 

assimilation window of 1 year: (a) 10% perturbations (b) 20% perturbations (c) -90% 

perturbations. The cost function, norm of gradients and norm of parameter perturbation shown 

in the figure are normalized by their maximum values, respectively. 

Figure 6.8 gives convergence of the minimization for the three experiments. For all three 

experiments, the norm of the parameter perturbations is reduced by more than three orders 
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with a significant reduction of the cost function and its gradients. With -90% perturbation 

which is already far away from the default values of the parameters, the minimization 

iteratively retrieved the true parameters. The slight difference of the parameter perturbation 

norm is likely caused by the conditionals in the slave system. When the optimization is close 

to the global minimum, the adjoint model cannot provide useful gradients information to lead 

the optimization closer to the global minimum. Overall, the optimization is already close to 

the global minimum, and the parameters are accurately retrieved. 

For the “minimal” configuration, the slave system can be synchronized through nudging 

divergence, temperature, vorticity with a nudging timescale of 2 days. A nudging timescale of 

2 days is approximately the largest nudging timescale that stops the exponential error growth 

of the TLM. When the slave system is synchronized, the cost function becomes smooth, and 

the TLM reasonably describe the error propagation of the slave system. Through identical 

twin experiments, the adjoint model provides useful gradients of the cost function with 

respect to the parameters, and the parameters are accurately retrieved with an assimilation 

window of 1 year. When nonlinear system and observations are synchronized, the 

assimilation window can be extended arbitrarily. 

6.4 Assimilating experiments with the “maximal” configuration 

The “minimal” configuration is relatively linear with a predictability time of ~10 days. 

The TLM can very well describe error propagation of the slave system, and the conditional 

statements don’t seriously degrade the usefulness of the TLM. For the “maximal” 

configuration, including the moisture parameterizations such as convective precipitation, large 

scale precipitation, and dry convective adjustment significantly increases the nonlinearity of 

the nonlinear system and their implementations with multiple loops of “if” and “where” 

statements also degrade the usefulness of the TLM and the adjoint model. The large-scale 

precipitation which produces a nonzero effect when air parcels are supersaturated, is a 

first-order discontinuous process (Zou, 1997). This process degrades the usefulness of the 

adjoint model because the tangent linear approximation cannot describe the nonlinear 

perturbations which change the side of conditionals. The convective precipitation 

parameterization in PlaSim is based on Kuo (1974), which is zero-order discontinuous and the 

tangent linear approximation doesn’t apply theoretically. In a discrete climate model, all of 

these processes will lead to a discontinuous cost function. Although the exact TLM and 

adjoint model can be correctly generated with automatic differentiation tools, they may not be 

useful for the optimization. 

Since 1990s’, numerical weather prediction (NWP) groups have tested different ways of 

dealing with moisture parameterizations in the adjoint method: (1) use the adiabatic forward 

model and its adjoint model (Navon et al., 1992); (2) use the full forward model to define the 

basic state and the cost function while using the adiabatic adjoint model for computing 

gradients (Zupanski, 1993); (3) use the full forward model and the simplified-physics adjoint 

model (Mahfouf, 1999; Rabier et al., 2000). Although the physical parameterization will 

make the cost function non-convex, they may not hurt the general convexity of the cost 

function which is assumed in gradient-based minimization algorithms (Zhang et al., 2001). 
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Minimization algorithms such as Quasi-Newton methods may still approach the global 

minima with descent directions from the adjoint model. 

 

Figure 6.9. Temperature difference (C) of level 01(uppermost) caused by a 10% perturbation 

on tfrc1 after a 2-days integration of the nonlinear model (a) and the TLM (b). Temperature 

difference (C) of level 10 (lowermost) caused by a 10% perturbation on vdiff_lamm after a 

6-hours integration of PlaSim (c) and the TLM (d). 

Figure 6.9 (a) and (b) show the temperature difference for the uppermost level from 

perturbed PlaSim integrations and the TLM with a 10% perturbation on parameter tfrc1 after 

a 2-day integration. The temperature differences in Figure 6.9 (a) and (b) are quiet similar for 

both pattern and amplitude. Fig 6.9 (c) and (d) are the same as Fig 6.9 (a) and (b) except that 

the perturbation is on the parameter vdiff_lamm and the integration period is for 6 hours. The 

temperature differences show some similarities such as central Pacific Ocean and northwest 

of Northern American which indicate that the tangent linear approximation matches the 

nonlinear error propagation accurately without changing of the conditionals. There are 

considerable local changes that don’t match because of switching parameterization processes 

in the nonlinear model on or off. But for a small time interval, we see that the TAF generated 

TLM can still reasonably describe error propagation of the nonlinear model before strong 

nonlinear moisture parameterizations are triggered. Including the nudging terms may also 

contribute to reduce the separation caused by these conditionals. In this chapter, the 

performance of the simplified DSPE method for parameter estimation will be tested with the 

“maximal” configuration.  
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6.4.1 The nudging strength for synchronization  

 

Figure 6.10. The time evolution of instantaneous RMSEs for the TLM without nudging 

(=0day), with nudging timescales ranging from 6.2 days to 0.25 days (see legend). The 

“maximal” configuration is used. 

As in chapter 3, it is better to predefine the best nudging coefficient for better estimating 

the parameters with the simplified DSPE method. But due to the high dimension of PlaSim, it 

is not easy to find the best nudging coefficients. For atmosphere or ocean models, usually 

global uniform nudging timescales are used, and the nudging timescales may depend on 

different purposes and different model variables. For examples, nudging timescales ranging 

from 0.5 days to 4 days are used to initialize decadal predictions (Polkova et al., 2014) 

depending on model variables. Krishnamurti et al. (1991) use nudging timescales ranging 

from 2.8 hours to 5.6 hours to initialize weather predictions for the tropical region. For our 

purpose, the nudging strength should at least be strong enough to change the positive 

Lyapunov exponents to negative values. In this study, a global uniform nudging timescale for 

all prognostic variables except surface pressure is used. The maximum nudging timescale can 

be decided by whether it can stop the exponential increase of the TLM error propagation. 

Figure 6.10 shows the logarithm of RMSEs from the TLM with a 10% perturbation on all 

parameters. Without nudging terms (=0day), the RMSEs grow exponentially with a rate of 

=0.2550 /days, which indicate an average predictability time of 2 days. With the increasing 

nudging strength, the exponential increase rate is gradually reduced. A nudging timescale of 

3.1 days still shows some abrupt jumps which indicate that the synchronization is not stable. 

A nudging timescale of 2 days seems to be strong enough to stop the exponential error growth. 

In this section, the nudging strength is chosen to be two days which is a little smaller than the 

predictability time of the free nonlinear system. 



 

56 

  

 

Figure 6.11. The cost functions depending on sizes of perturbations on the 13 parameters (see 

legend). The integration time is 2 months. 

The cost functions depending on parameter perturbations for 13 parameters with a 

2-month integration are shown in Figure 6.11. The relative sensitivity can be referred by the 

values of the cost functions divided by the size of parameter perturbation. The cost function is 

smooth, which indicates that the nudging strength is strong enough to prevent chaotic 

behavior of the nonlinear system. The parameter vdiff_lamm shows the strongest relative 

sensitivity. The parameters th2oc, tdissd, tdissz, vdiff_b and tfrc1 also show strong relative 

sensitivities. For the “maximal” configuration, the cost function is not symmetric, and the left 

side part shows stronger relative sensitivity than the right side. For identical twin experiments, 

all these 13 parameters are used to test the performance of the simplified DSPE method. 

In the nonlinear system, the TLM cannot well describe the error propagation when the 

error changes actions by the conditionals as Figure 6.9(b) shows. Although the including of 

nudging terms cannot fully restore the action controlled by the conditionals, they reduce the 

negative effects of model trajectories separation on the TLM caused by the conditionals. 

Before performing assimilation experiments, it is necessary to test how well the TLM can 

represent the nonlinear error propagation in the slave system. This is done by comparing the 

propagated TLM error with the finite difference of the perturbed slave system integration to 

the reference slave system integration. The integration time is 12 months. 
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Figure 6.12. The zonal mean temperature changes from the TLM (b and d) and the finite 

differences of perturbed slave system integrations (a and c) with a -10% perturbation on tfrc1 

and th2oc: (a) and (b) are caused by perturbed tfrc1, (b) and (d) are caused by perturbed th2oc. 

The integration time is 1 year. 

 

Figure 6.13. The temperature changes of level 10 for the TLM (b) and the finite difference of 

perturbed slave system integrations with a -10% perturbation on the parameter th2oc. 

Figure 6.12 shows the zonal mean temperature change from the TLM and the finite 

difference caused by a -10% perturbation on the parameter tfrc1 (a and b) and th2oc (c and d). 

The TLM represents reasonably the main characteristics of temperature change from the finite 

difference of the perturbed slave system integrations. There are also some different signals in 

the TLM and the finite difference which are likely caused by differences in on and off 

switching in of some parameterizations. Figure 6.13 shows the temperature differences for 

model level 10 with a -10% perturbation on th2oc. Both patterns and amplitude match 

reasonably well. Temperature is reduced for most of the region except south of 40S and north 

of 60N. There are also some local characteristics that don’t match perfectly such as the 

Antarctica. But overall, the adjoint model can be expected to provide useful gradients 

information for the optimization. And the changes for other model states are also consistent 

between the TLM and the finite difference except for the specific humidity.  
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Figure 6.14. The zonal mean specific humidity (kg/kg) changes from the finite differences of 

perturbed slave system integrations (a and c) and the TLM (b and d) with a 10% perturbation 

on tfrc1 and th2oc: (a) and (b) are caused by perturbed tfrc1, (b) and (d) are caused by 

perturbed th2oc. The integration time is 1 year. 

The moisture processes are quite nonlinear and strongly influenced by the 

parameterization especially in the tropical region. The parameterizations are implemented 

with multiple loops of “if” and “where” statements which potentially degrade the usefulness 

of the TLM. In the tropical region, where convective precipitation dominates the variance of 

specific humidity, a small parameter perturbation likely changes the actions depending on 

conditionals. Figure 6.14 shows the specific humidity changes from the TLM and the finite 

differences caused by a -10% perturbation on the parameter tfrc1 (a and b) and th2oc (c and d). 

The specific humidity changes from the TLM and the finite difference are different for both 

perturbed tfrc1 and th2oc. The parameter tfrc1, which mainly influences the top of the 

atmosphere, has little influence on the specific humidity of lower level. Once the perturbation 

changes the action of the conditionals, it will significantly increase the amplitude of the 

changes in the finite differences as Figure 6.14 (a) and (b) show and the usefulness of the 

TLM and the adjoint model is seriously degraded. For the parameter th2oc, the TLM also 

provides specific humidity changes that are different from the finite difference in both pattern 

and amplitude.  
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Figure 6.15. Specific humidity (kg/kg) changes in level 10 for the TLM (b) and the finite 

difference of perturbed slave system integrations with a -10% perturbation on the parameter 

th2oc. The integration time is 12 months. The scales of color bars are different for (a) and (b).  

 

Figure 6.16. The cost function components of specific humidity depending on parameter 

perturbations for 13 parameters (see legend). 

Figure 6.15 shows specific humidity changes for model level 10 with a -10% 

perturbation on the parameter th2oc. It is clear that the TLM provides specific humidity 

changes different with that from the finite difference of perturbed slave system integrations. 

The finite difference changes are of one order larger than that from the TLM, especially in the 

tropical region where convective precipitation dominates. Considering the consistency of the 

TLM and the finite difference of the slave system for other model prognostic variables, it is 

possible that the selected parameters cannot significantly influence specific humidity and the 

differences in Figure 6.15 and Figure 6.14 may just be noise. To check the sensitivity of the 

specific humidity with respect to the selected parameters, we show the cost functions of the 
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specific humidity depending on perturbations sizes for the 13 parameters are shown in Figure 

6.16 with an integration time of 2 months. The cost function is relative smooth for small 

perturbations, but there are some zigzags for larger perturbations. In the 13 parameters, there 

are two parameters that show considerable relative sensitivity with respect to the specific 

humidity: tdissq and th2oc. But as Figure 6.14 and Figure 6.15 show, the TLM cannot 

reasonably describe the impacts of the parameters on the specific humidity. However, the 

TLM can still accurately describes the impacts on other model states as Figure 6.12 and 

Figure 6.13 show. Hence, the specific humidity is not included in the cost function, but it is 

still used to synchronize chaos of the nonlinear model and observations. 

6.4.2 Assimilation experiments 

As shown above, the simple nudging terms can successfully synchronize chaos with 

nudging timescales smaller than two days by nudging temperature, vorticity, specific 

humidity and divergence. The TLM can also reasonable represents the error propagation of 

the slave system for all model states except for the specific humidity. In this section, the 

performance of the simplified DSPE method is tested through identical twin experiments. 

Four experiments are performed with perturbation sizes: 10%, -10%, 20%, -20% on all 13 

parameters. The assimilation window is two months. The successfulness of the assimilating 

experiments is judged by whether the default values of the parameters are accurately 

retrieved.  

 

Figure 6.17. Convergence of the minimization for 4 experiments with perturbation sizes of 

10%, -10%, 20% and -20% (see legend): (a) the cost function, (b) norm of the perturbation 

sizes, (c) norm of the gradients. 

Figure 6.17 shows the convergence of the minimization for all four experiments. As 

Figure 6.17 (a) and (c) show, the cost functions for all four experiments are reduced close to 0, 

and their gradients are also significantly reduced after the optimization. The optimization is 
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stopped when the adjoint model cannot provide useful gradients, and the final gradients are 

slightly different as Figure 6.17(c) shows. But as indicated by the cost function and absolute 

differences of the parameters to their true values (Figure 6.17 (b)), the four assimilating 

experiments accurately retrieves the default values of the parameters, and the minimization is 

likely to close to the global minimum at last. The assimilating experiment with a -10% 

perturbation on all parameters is an ideal case in which both the parameter norm and the 

gradients are iteratively reduced. In experiments with perturbation sizes of 10%, 20% and 

-20%, the absolute differences of the control parameters to their true values are firstly 

decreased for initial iterations and then increased from the 6th iteration. At last, the absolute 

differences are reduced close to 0.  

 

Figure 6.18. Absolute difference of components of control parameters over iteration number.   

The norm of perturbations for all parameters and the gradients with respect to each of the 

parameter are plotted in Figure 6.18 and Figure 6.19. For the assimilating experiment with a 

-10% perturbation on all parameters as shown in Figure 6.18(c) and Figure 6.19(c), the 

minimization gradually brings the parameter perturbations close to 0. After ten iterations, the 

absolute difference of the estimated parameters to the true values cannot be further reduced, 

and the optimization is finally stopped after the 15
th

 iteration. The minimization cannot further 

approach the global minimum because the adjoint model cannot provide useful gradients. For 

the other three experiments, the parameter perturbations are gradually reduced during initial 

iterations. Then, the absolute differences of several parameters such as vdiff_d, vdiff_c, tdisst, 

tdissq to the true values are significantly increased, and the norm of the perturbation sizes are 

increased as Figure 6.17(b) shows. As Figure 6.19, these parameters have small sensitivities. 

While for parameters with larger sensitivities such as vdiff_lamm, th2oc, tfrc1 and tdissz, the 

optimization quickly reduces the absolute difference of these parameters to their true values. 
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Figure 6.19. As Figure 6.18 but for gradients of the cost function with respect to the control 

parameters. 

In the Quasi-Newton algorithm used in this study, the minimization directions are 

decided as equations (3.20)-(3.23) with the gradients provided by the adjoint model. Here, the 

parameter tdissd in the experiments with -20% perturbations which is increased significantly 

during the optimization is taken as an example to show the performance of the minimization 

algorithms. For computing the new searching direction for the minimization, the new 

approximated inverse of the Hessian matrix and the gradients from the adjoint model are used 

as in equation (3.23). The new gradient, the gradient from the adjoint model, the diagonal part 

and the off-diagonal part for the parameter tdissq are shown in Figure 20. As Figure 6.19(d) 

shows, the gradient of the cost function with respect to the parameter tdissq is much smaller 

than most of the parameters. During iteration 2-10, the off-diagonal part decides the new 

searching direction and provides a negative value of the gradient for this parameter. Hence, 

the parameter tdissq is increased during these iterations but has little effects on the cost 

function due to its small sensitivity. In the 8
th

 iteration, the gradient shows abrupt reduction 

which is likely due to the nonlinear and discontinuous parameterizations. But at last, the 

Quasi-Newton algorithm successfully reduces the parameter perturbations to 0 with the 

gradients information provided by the adjoint model.  
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Figure 6.20. The new search directions (d), the diagonal part (d_diag) and off-diagonal 

(d_offdiag) and the gradients information from the adjoint model (g) for the parameter 

tdissq.in experiments with -20% perturbations. The components are computed based on 

equations (3.20)-(3.23).  

For the “maximal” configuration, although the strong nonlinearity and conditionals in the 

moisture parameterizations, the adjoint model still provides usefulness gradient information 

for the minimization. Figure 6.11 shows that the cost functions for some parameters are not 

quadratic, but the assimilating experiment results show that the minimization algorithm which 

assumes quadratic cost function can still iteratively bring the parameters back to their default 

value. The optimization will finally exit when the parameter errors are very small. At that 

time, the adjoint model cannot provide useful gradients information which can lead the 

minimization further approaching the global minimum. For all the four identical twin 

experiments, the default values of the parameters are already reasonably retrieved. Overall, 

the TAF generated adjoint model can provide useful gradients, and the simplified DSPE 

method works for the “maximal” configuration. 

6.4 Discussions and conclusions  

In this part, the simplified DSPE method is tested with the more complex chaotic system 

PlaSim. Synchronization is achieved by simple nudging (Hoke and Anthes, 1976) technique. 

Two configurations are used to test the performance of the simplified DSPE method. One is 

the “minimal” configuration in which moisture parameterizations are excluded, and the 

climatological surface temperature is used to replace the slab ocean and the land model, 

respectively. The other one is the “maximal” configuration, which includes all the moisture 

parameterizations and is, therefore, more nonlinear. With strong enough nudging terms, the 

feasible assimilation window can be extended arbitrarily, and the parameters are accurately be 

retrieved for both the “minimal” configuration and the “maximal” configuration in the 

identical twin experiments. Due to the strong nonlinearity of vertical diffusion 

parameterizations, directly linearizing these processes will degrade the usefulness of the 

adjoint model, even lead to the adjoint model unstable, and modifications are made to 
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improve the TLM and its adjoint (Errico et al., 1993; Laroche et al., 2002; Mahfouf, 1999; 

Zhu and Kamachi, 2000; Zhu et al., 2002). 

For the “minimal” configuration, the predictability time is around 10 days which allows 

feasible assimilation windows around 20 days. By comparing the nonlinear error growth and 

the tangent linear error growth, a potential problem in the TAF generated TLM model 

associated with the linearization of the vertical diffusion parameterization is found. As 

suggested by Zhu et al. (2002), this problem is solved by setting 𝑅𝑖
′ = 0 in the TLM and its 

adjoint. By using a nudging timescale of 2.0 days, the chaotic behavior of the nonlinear 

system and the pseudo-observations is synchronized. The cost function is smooth but not 

absolute symmetric due to the nonlinearity of the slave system. The TLM accurately describes 

the nonlinear error propagation of the slave system. Identical twin experiments with an 

assimilation window of 1-year show that the modified DSPE method works perfectly despite 

some of the conditionals in some of the parameterizations. 

For the “maximal” configuration, the inclusion of the moisture parameterizations 

increases the nonlinearity of the system. The predictability time is reduced to around 4 days 

which allows feasible assimilation windows of 8 days. Blessing et al. (2014) have shown that 

the feasible assimilation window is limited to no more than 1 day. The reason is that the 

moisture parameterizations are implemented with multiple loops of “if” and “where” 

statements, which degrade the usefulness of the TLM and its adjoint. But for finite 

perturbations, the TAF generated TLM can still describe nonlinear error propagation if the 

conditionals are not changing any action due to a perturbation. With a nudging timescale of 

2.0 days and nudging temperature, vorticity, divergence and specific humidity, the system is 

synchronized which is identified from the non-exponential error growth of the TLM. By 

comparing the error growth of the TLM and the finite difference of the perturbed slave system 

integrations, it is shown that the TLM can still accurately describe the nonlinear error 

propagation of temperature, divergence, vorticity and surface pressure except for the specific 

humidity due to the multiple loops of “if” and “where” statements. By using temperature, 

vorticity, divergence and surface pressure in the cost function, the parameters are successfully 

retrieved for a 2-month assimilation window  

Overall, the simplified DSPE method still works for this complex climate model PlaSim. 

Although there are multiples loops of “on-off” switches in moisture parameterizations, the 

TAF generated adjoint model can provide useful gradients information for the optimization, 

and the parameters are reasonably well recovered.  
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Chapter 7 

Assimilating the ERA-Interim data 

As the identical twin experiments above show, we retrieved the default values of the 

parameters with accurate and high-frequency pseudo-observations, using the modified DSPE 

method. Compared to the ERA-Interim reanalysis data, our model resolution is coarser, and 

the parameterizations are simpler. Assimilating the ERA-Interim data is much more 

challenging due to the unknown model errors, observation noise, and interpolation used to fill 

the 6-hour gaps between two reanalysis times. The estimated parameters may be influenced 

by the finite nudging terms. For parameter estimation on climate timescales, it is likely that 

the tuned parameters compensate error from other parameterizations. Therefore, with a 

different combination of control parameters and with different observations in the cost 

function, the parameters may not converge to the same values after the optimization. In this 

section, the modified DSPE method will now be applied to assimilate the ERA-Interim 

reanalysis dataset (Dee et al., 2011). First, the slave system with nudging terms will be used to 

estimate the control parameters by assimilating the ERA-Interim data. Then, contributions of 

each parameter to the cost function reduction will be analyzed carefully to check how the 

method works. At last, effects of the estimated parameters on the free system (without 

nudging terms) must be evaluated. 

 The questions to be investigated are: (1) by using all the prognostic variables as in the 

identical twin experiments, can we reasonably estimate the model parameters? (2) By 

including longwave (LW) and shortwave (SW) fluxes at the surface and the top of the 

atmosphere (TOA) in the cost function, can the method reduce the flux biases by tuning 

clouds properties, and at the same time, improves the model-simulated temperature. (3) Can 

the estimated parameters improve the free model’s climatology? This part will provide a 

guideline for further applying this method to the coupled model CESAM.  

7.1 Experiment setup 

Due to the complex model and the noisy observations, it is impossible to define the best 

nudging timescale as Figure 4.5 displays. But the nudging timescales should be smaller than 

2.03 days in the ‘maximal’ configuration as Figure 6.10 shows. Because of the model error, 

the nudging terms may be larger than the model’s physics terms. For a nudging timescale of 

=2.03days, the ratios of the nudging terms to the total tendencies for temperature (a), 

moisture (b), divergence (c) and vorticity (d) are shown in Figure 7.1. The nudging terms are 

large in all four variables, especially in the tropics and in the polar region. With smaller 

nudging timescales, the rations will be larger which may not benefit the optimization. The 

large ratios also indicate that the model has large errors which may not be absolutely reduced 

by optimizing the process parameters. Therefore, the effects of the estimated parameters on 

the free model (without nudging terms) must be evaluated after the optimization.    



 

66 

  

 

Figure 7.1. Ratios of the nudging terms to the total tendencies for temperature (a), moisture 

(b), divergence (c) and vorticity (d). The rations are averaged over a 6-month integration 

period.   

In this chapter, two groups of assimilation experiments are performed. The first group 

assimilation experiments consist of 6 experiments with nudging timescales of 2.03 days, 1.19 

days, 0.56 days, 0.25 days, 0.15 days, and 0.09 days. A nudging timescale of 2.03 days is a 

little larger than the leading Lyapunov exponent as Figure 6.10 shows and is of the same order 

of damping timescales, while a nudging timescale of 0.09 days is very strong and is of the 

same order as for initializing the NWP in the tropical region (Krishnamurti et al., 1991). 

Similar to the identical twin experiments in chapter 6, temperature, divergence, vorticity and 

specific humidity from the ERA-Interim data are used in the nudging terms to push the 

PlaSim simulation to follow the ERA-Interim data while annually averaged temperature, 

divergence, vorticity and surface pressure are used in the cost function. The 16 parameters 

listed in Table 5.1 are chosen as the control parameters. The performance of the optimization 

and influences of the nudging timescales are investigated based on these assimilation 

experiments. 

Based on results of the first group assimilation experiments, the second group 

assimilation experiments consisting of two experiments are performed. The two assimilation 

experiments use the same variables as in the first group experiments for synchronization while 

they use different control parameters and different observations to compute the cost function. 

Details of the two experiments are listed in Table 7.1. Expt-p04 includes four control 

parameters: tfrc2, vdiff_d, th2oc and acllwr and uses net LW flux at the surface and at the 

TOA and air temperature to compute the cost function. Parameters tfrc2 and vdiff_d are 

selected due to their effects on temperature based on results of the first group assimilation 

experiments. Parameters th2oc and acllwr tune LW absorption coefficient of water vapor and 

clouds and will be optimized to reduce the large biases of net LW fluxes at the surface and at 

the TOA. Expt-p07 further takes parameters tswr1, tswr2 and tswr3 as control parameters to 

reduce net SW flux biases. 
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Table 7.1 Experiment setups for the second groups of assimilation experiments. 

 Control parameters Observations in cost function 

Expt-p04 tfrc2,vdiff_d,th2oc,acllwr Top LW flux; Surface LW flux; Air temperature 

Expt-p07 tfrc2,vdiff_d,th2oc,acllwr

,tswr1,tswr2,tswr3 

Top LW flux; Surface LW flux; top SW flux; surface 

SW flux; Air temperature 

The ERA-Interim data is first vertically averaged to our model grid and then horizontal 

spectral truncated to the T21 grid for nudging and computing the cost function. The PlaSim is 

spun up for 1 year with active nudging terms to push the model closer to the observations, and 

the restart file is stored. Afterwards, the assimilation experiments are performed starting from 

this restart file, and the assimilation window is 1 year. When the nudging terms are added to 

the model, the relative importance of the cost function components is also distorted. To make 

full use of all observations during the optimization, weighting factors are added to different 

components of the cost function and make them equally-weighted which leads to an initial 

value of the cost function equal to 15.5.  

7.2 Results for the first group assimilation experiments  

7.2.1 Convergence of the minimization 

 

Figure 7.2. Convergence of the minimization for the cost function and the gradient norm in all 

six experiments. 

Figure 7.2 shows the convergence of the minimization in all six experiments with 

different nudging timescales (see legend). With a nudging timescale of 2.03 days, the 

optimization quickly reduced the cost function from 15.5 to 11.4 within 29 iterations. The 

minimization stopped because the adjoint model cannot provide useful gradients. There are 
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still considerable errors that cannot be reduced. With decreasing nudging timescales, the 

reduction of the cost function is reduced, and iteration numbers are increased. Because with 

decreasing nudging timescales, the sensitivities of the cost function with respect to the 

parameters are reduced. The gradient norms are also iteratively reduced, and there are some 

abrupt increases due to nonlinearity. From the perspective of the cost functions and gradient 

norms, the minimization helps to reduce the difference between the slave system and the 

ERA-Interim data. 

 

Figure 7.3. Convergence of all 16 parameters (see title) in the 6 experiments. 

Convergence of the 16 parameters in the six experiments is displayed in Figure 7.3. 

Except for parameters tfrc2, tdissd, th2oc and tdissq which converge to similar values 

respectively in all six experiments, the estimated values of the other parameters show 

divergence and seems to depend on the nudging timescales. Parameter th2oc approached 0 

after the first iteration for all experiments which means that the slave system doesn’t need this 

extra exponential absorptivity of long wave radiation by water vapor. Although tdissq drifts to 

infinite (1/tdissq~ 0 days) in the six experiments, which indicates no diffusion for specific 

humidity, this is not physically meaningful. For the rest of the parameters, we see transitions 

with decreasing nudging timescales. For example, the estimated values of parameters 

vdiff_lamm, vdiff_b and vdiff_c are gradually reduced with decreasing nudging timescales. 

Parameter tdisst is finally tuned to unphysical values (tdisst>0). Parameters tswr2, tswr3, and 
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acllwr in some experiments are tuned to 0 which is also out of their range and may have 

significant impacts on the radiation processes. 

Overall, all the six experiments successfully reduce the cost functions and the gradient 

norms. Among all the 16 parameters, parameters th2oc, tfrc2, and tdissd converge to similar 

values in all the six experiments while the other parameters show divergence or are even be 

tuned out of their physical range. For the minimization, the cost function reduction decreases 

with decreasing nudging timescales because the sensitivities of parameters are reduced. 

7.2.2 Evaluation of the optimization  

To better illustrate the effects of the parameter estimation on different variables of the 

slave system, the temperature difference between the slave system and the ERA-Interim data 

and the temperature increment after the optimization are shown. Here, we only show the 

results of the assimilation experiment with a nudging timescale of =2.03 days. For the air 

temperature, the other experiments show similar results. Figure 7.6 (a) and (b) show zonally 

averaged temperature difference between the slave system and the ERA-Interim data and the 

temperature increment after the optimization. The slave system has a warm bias in the tropical 

region centered at level 03, and in the polar region for the uppermost layer. Except for level 

10 and level 9, most of the regions are still colder than the ERA-Interim data. As Figure 7.6 (a) 

shows, the warm bias of the slave system in level 10 and level 9 are mainly over land regions 

which also exists in the free model as shown in Figure 5.3. By using simple nudging terms to 

couple PlaSim and the ERA-Interim data, the model-observation misfits over land regions are 

harder to reduce than over ocean regions, especially in the northern hemisphere in level 09 

and level 10.  

 

Figure 7.4. Constituents of the cost function reduction in the six assimilation experiments.  

The temperature increments after the optimization are shown in Figure 7.5 (a) and Figure 

7.6 (b). The misfits over the land regions in level 10 and level 9 are reduced by 2 C and the 

cold bias in middle levels is reduced by around 1.0 C. The warm bias centered in level 3 in 

the tropical is slightly reduced by 0.5 C. The Antarctica shows both improvement and 

degradation after the optimization. In other five experiments with different nudging 
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timescales, the temperature differences and the temperature increments show similar patterns 

with that shown in Figure 7.5 (a) and Figure 7.6 (a), especially in the tropics and over the land 

regions, but the amplitudes are reduced with decreasing nudging timescales. However, the 

differences and the increments of divergence, vorticity and surface pressure varies a lot, 

especially the patterns, with decreasing nudging timescales.  

a. The air temperature 

 

Figure 7.5. (a) Zonally averaged temperature difference (C) of the slave system simulation 

and the ERA-Interim data. (b) Zonally averaged temperature increment after the optimization 

in the assimilation experiment with a nudging timescale of =2.03 days. The contour interval 

is 0.5 C.  

 

Figure 7.6. (a) The temperature difference (C) in level 10 between the slave system 

simulation and the ERA-Interim data. (b) The temperature increment (C) in level 10 after the 

optimization of the slave system. The nudging timescale of the slave system is =2.03 days. 

The contour interval is 1 C. 

b. The other variables 
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Figure 7.7. The divergence differences between the slave systems and the ERA-Interim data 

with nudging timescales of =2.03days (a) and =0.09days (c) in model level 10. The 

divergence increments after the optimization are shown in (b) and (d), respectively. 

Figure 7.7 shows the divergence differences and the increments in the assimilation 

experiments with nudging timescales of =2.03days and =0.09days. With decreasing 

nudging timescales, the divergence difference is reduced especially in the tropics while still 

considerable large south of 60S. In the assimilation experiments with a nudging timescale of 

=2.03days, the optimization reduces the biases in the tropics and the Antarctica. While in the 

assimilation experiments with a nudging timescale of =0.09days, the optimization only 

reduces the error in the Antarctica with little effects in the tropics. Because in the slave system 

with a nudging timescale of =0.09days the bias information is damped out by the strong 

nudging terms and the sensitivities of divergence observations with respect to process 

parameters are significantly reduced. Compared with the air temperature observations, the 

divergence observation error information seems more easily be damped by the nudging terms. 
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Figure 7.8. Zonally averaged differences and zonally averaged increments of temperature (a), 

divergence (b), vorticity (c) and surface pressure (d) in model level 10. The solid lines 

represent the differences of the slave system with different nudging timescales and the dashed 

lines are the increments, respectively. The colors represent the assimilating experiments with 

different nudging timescales as the legend indicates. 

Figure 7.8 shows zonally averaged differences and zonally averaged increments of 

temperature (level 10), divergence (level 10), vorticity (level 10) and surface pressure in all 

the six assimilation experiments. The slave systems have a cold bias in the polar region and a 

warm bias in the northern hemisphere, especially over the land regions as Figure 7.6 shows. 

The optimization tries to reduce the bias with temperature increments that are opposite to the 

temperature differences. With decreasing nudging timescales, the temperature differences are 

reduced which, at the same time, reduce the sensitivities of parameters and thus the 

temperature increments after the optimization are also reduced. Overall, the optimization 

reduces the temperature bias of the slave systems by tuning the parameters.  

As Figure 7.7(b) shows, the divergence difference is reduced south of 60S and in the 

tropics. With decreasing nudging timescales, the divergence difference south of 60S is hardly 

reduced while are quickly reduced in the tropics and even invisible with a nudging timescale 

 0.56 days. As Figure 7.7(b) and Figure 7.8(b) display, the divergence differences in the 

tropics can be reduced by the optimization while they are only slightly reduced south of 60S. 

The large divergence difference south of 60S is likely related to the coarse model resolution 

and is hardly removed by only tuning process parameters. The vorticity differences and the 

surface pressure differences as shown in lower of Figure 7.8 are also hardly reduced after the 

optimization. After synchronization, it seems that the divergence observations, the vorticity 

observations and the surface pressure observations are much too noisy to be used for the 

optimization. Also, the errors seem to related to model deficiency and cannot be reduced by 

optimizing the process parameters. 
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7.2.3 Detailed effects of each parameter 

 

Figure 7.9. Contribution of each parameter (see legend) to constituents of the total cost 

function reduction in all 6 experiments (see titles). 

To further understand the contribution of each parameter to the slave system, the 16 

parameters are perturbed from their optimized value to their default values one by one for all 

the six experiments. The contribution of each parameter to the reduction of the cost function 

is approximated by the cost function difference between each perturbed integration and the 

optimized integration divided by the cost function reduction, respectively. Due to the 

nonlinearity of the slave system, the sum of the contributions cannot be exactly 100%. The 

sum of the contributions ranges from 140%-67% in the six assimilation experiments. Figure 

7.9 shows contribution of each parameter in all six experiments and their impacts on different 

variables are also shown (see legend). The positive (negative) values mean the parameters are 

tuned to reduce (increase) the cost function (or specific observations as legend shows).  

As the dark blue bars in Figure 7.9 show, all parameters are tuned to reduce the cost 

function, and the minimization algorithm find a minimum (at least a local one) in the six 

experiments. For different constituents of the total cost function, the temperature cost 

reduction dominates the cost reduction, mainly caused by changes of parameter th2oc. 

Parameter acllwr also contributes largely to reduce the temperature cost. But its contributions 

are significantly reduced with decreasing nudging timescales and shows almost no 

contribution when the nudging timescale is smaller than 0.25 days. Parameters tfrc2 and 

tdissd, which converge to similar values in all six experiments consistently, improve 



 

74 

  

temperature and divergence. Although not converging to similar values, vdiff_d also 

considerably improves the slave system in the six experiments. The other parameters show 

very small contributions to the cost reduction while their estimated values differ for the six 

experiments and even tuned into different directions. It is possible that these parameters 

cannot be very well observed by the observations used here and more observations or 

background terms are required to constrain these parameters.  

a. Effects of the parameters tuning long wave radiation 

 

Figure 7.10. Zonally averaged temperature increments (C) caused by changes of parameter 

th2oc in the assimilation experiments with nudging timescales of =2.03days (a) and 

=0.09days (b). The contour interval is 0.5 C in (a) and 0.05 C in (b). 

Among all the 16 parameters, parameters th2oc, acllwr, and tpofmt are used to tune the 

absorption (longwave) of water vapor and clouds. As Figure 7.9 shows, parameter th2oc 

contributes most to the cost function reduction, especially the temperature cost, in all the 

assimilation experiments. Parameter acllwr also contributes largely to reduce the temperature 

cost while its contributions are reduced with decreasing nudging timescales. Parameter tpofmt 

slightly reduces the temperature cost. In this part, the detailed effects of the three parameters 

are analyzed. 

Figure 7.10 shows the zonally averaged temperature increments caused by changes of 

parameter th2oc in assimilation experiments with nudging timescales of =2.03days and 

=0.09days. Their patterns are similar, but the amplitudes are reduced to 0.1 times. 

Decreasing nudging timescales from =2.03days to =0.09days will increase the nudging 

strength from 0.03 to 0.4, and therefore the temperature increments are reduced in the two 

assimilation experiments. Change of parameter th2oc decreases the temperature in lower 

model levels over the land regions and the tropics while it increases the temperature in almost 

all the other regions. Compared to zonally averaged temperature difference as in Figure 7.5(a), 

the temperature increment caused by changes of parameter th2oc significantly reduces the 

temperature difference.  
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Figure 7.11. Divergence increments (1/s) caused by changes of parameter th2oc in the 

assimilation experiments with nudging timescales of =2.03days and =0.09days. 

It worth to note that changes of the parameter th2oc also improves divergence, and the 

improvements are reduced with decreasing nudging timescales as shown in Figure 7.9. The 

divergence increments in model level 10 caused by changes of the parameter th2oc in 

assimilation experiments with nudging timescales of =2.03days and =0.09days are shown in 

Figure 7.11. Compared to the total divergence increments as displayed Figure 7.7(b)-(d), 

parameter th2oc contributes to improving divergence in the tropics in the assimilation 

experiment with a nudging timescale of =2.03days. While in the assimilation experiments 

with a nudging timescale of =0.09days, parameter th2oc has little effect on divergence. It is 

likely that parameter th2oc is informed by temperature observations and the improved 

temperature also improves the simulated divergence. 

The zonally averaged temperature increments caused by changes of parameter acllwr are 

shown in Figure 7.12. In the assimilating experiments with a nudging timescale of =2.03 

days, changes of parameter acllwr mainly reduces the warm bias in the tropics centered 

around level 3 as Figure 7.12(a) shows. It leads to both positive and negative effects in the 

other regions. The effects of parameter acllwr are significantly reduced with decreasing 

nudging timescales, and even the patterns of the temperature increment are changed. 

Parameter acllwr influences air temperature through tuning the absorption coefficient of 

clouds. The cloud cover in the control run and with nudging timescales of =2.03day and 

=0.09day is shown in Figure 7.13. Figure 7.13(c) shows that the small nudging timescale 

significantly changes the pattern of cloud cover and therefore change the sensitivity of 

parameter acllwr. An explanation is that: the strong nudging terms act as strong sources of 

temperature and moisture; they introduce more moisture into the slave system and change 

saturate specific humidity at the same time; the cloud cover, which is diagnosed base on 

threshold values of relative humidity, will also be changed. Using small nudging timescales 

will lead to bad synchronization considering the diagnostic variables such as cloud cover. 

Therefore, it is better not to use too small nudging timescales. 
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Figure 7.12. Zonally averaged temperature increments (C) caused by changes of acllwr in 

the assimilating experiments with nudging timescales of =2.03days and =0.09days. The 

contour interval is 0.25 C in (a) and 0.01 C in (b). 

 

Figure 7.13. Zonally averaged cloud cover in the control run and with nudging timescales of 

=2.03days and =0.09days. 

Parameter tpofmt tunes mean transmissivity (longwave) for a layer. Figure 7.14 shows 

temperature increments caused by changes of parameter tpofmt. As Figure 7.9 shows, 

parameter tpofmt only slightly reduces the temperature cost, and its contribution is very small 

compared to parameters th2oc and acllwr. The estimated values in all the assimilation 

experiments also vary. Parameter tpofmt is changed from 1. to 1.5 in the assimilation 

experiment with a nudging timescale of =2.03days while is changed to 0 in the assimilation 

experiment with a nudging timescale of =0.09 days. As Figure 7.14 shows, decreasing 

parameter tpofmt increases the air temperature in lower model levels while decreases air 

temperature in upper levels, and vice versa. But its overall effects are very small, and 

parameter tpofmt is likely not very well informed by the observations in the cost function. 
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Figure 7.14. Zonally averaged temperature increments (C) caused by changes of parameter 

tpofmt in the assimilation experiments with nudging timescales of =2.03days and =0.09days. 

The contour interval is 0.01 C in (a) and 0.02 C in (b). 

b. Effects of Rayleigh friction 

In PlaSim, changes of Rayleigh friction directly influence divergence and vorticity in 

model level 01- level 02 and therefore have impacts on temperature through thermal wind 

balance. In all assimilating experiments, parameter tfrc2 is reduced to 0.1 times of its default 

value as Figure 7.3 shows, which reduces the temperature cost and the divergence cost as 

Figure 7.9 shows. Changes of parameter tfrc2 and its effects on the slave model simulation are 

explained below.  

 

Figure 7.15. Zonally averaged temperature increments (C) caused by changes of parameter 

tfrc2 in the assimilating experiments with nudging timescales of =2.03days (a) and 

=0.09days (b). (c) and (d) are the same as (a) and (b) except that (c) and (d) are the 

divergence increments. 

The effects of parameter tfrc2 on temperature and divergence in the assimilating 

experiments with nudging timescales of =2.03 days and =0.09 days are shown in Figure 

7.15 (a) and (b). Similar to effects of parameter th2oc, the temperature increment patterns are 
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similar with different nudging timescales while the amplitudes are reduced when the nudging 

timescale is decreased from =2.03 days to =0.09days. As Figure 7.15(c) and (d) show, the 

divergence increments in both the assimilation experiments share both similar patterns and 

similar amplitudes, which indicates that parameter tfrc2 is likely not sensitivity to the 

divergence observations after the synchronization.  

 

Figure 7.16. (a) Zonally averaged temperature differences (solid lines) and zonally averaged 

temperature increments (dashed lines) in level 04 in all the assimilating experiments. (b) 

Similar to (a) but for divergence and in level02. The line colors represent the assimilation 

experiments with different nudging timescales as the legend indicates. 

As chapter 5.2.1 shows, parameter tfrc2 directly tunes the damping strength of Rayleigh 

friction on divergence and vorticity. Then, the changes of divergence and vorticity influence 

the air temperature through thermal wind balance. Changes of parameter tfrc2 reduce both the 

temperature cost and the divergence cost. We note that changes of parameter tfrc2 largely 

reduce the temperature cost in level 4 and the divergence cost in level 2. The temperature 

differences and the divergence differences between the slave models and the ERA-Interim 

data in the corresponding levels are shown in Figure 7.16. The increments are also shown in 

the dashed lines. Changes of parameter tfrc2 reduce the temperature differences in all the 

assimilation experiments, especially in the polar region. In the tropics, parameter tfrc2 slightly 

reduces the temperature bias. With deceasing nudging timescales, the temperature differences 

are reduced and the increments caused by changes of parameter tfrc2 are also reduced. 

Compared to the temperature differences, the divergence differences seem too noisy and can 

hardly be reduced by changes of parameter tfrc2 as Figure 7.16(b) shows. In the assimilation 

experiments, it is likely that parameter tfrc2 is informed by temperature observations rather 

than the vorticity observations and the divergence observations. With nudging divergence and 

vorticity, sensitivities of the two observations with respect to parameter tfrc2 are damped. The 

divergence observations and the vorticity observations cannot inform the control parameters. 

The usefulness of the divergence observations and the vorticity observations in the cost 

function will be further validated with another assimilation experiment, and the results will be 

discussed below. 
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c. Effects of horizontal diffusion timescales 

 

Figure 7.17. Divergence difference (a) and divergence increment (b) in level 3 caused by 

changes of parameter tdissd in the assimilation experiment with a nudging timescale of 

=2.03days.  

As introduced in 5.2.2, parameters tdisst, tdissz, tdissq and tdissd act to damp the 

prognostic variables with wavenumber larger than 15, which also make the model stable. Here, 

effects of parameter tdissd in the assimilation experiment with a nudging timescale of 

=2.03days are picked out as an example to illustrate the effects of these parameters. In all the 

assimilation experiments, parameter tdissd is reduced from 0.2 days to 0.09 days and 

considerably reduces the divergence cost, especially in model level 3. The divergence 

difference and the divergence increment caused by changes of parameter tdissd are shown in 

Figure 7.17. The divergence increment shows spectral ripple pattern and is one order smaller 

than the divergence difference. Decreasing parameter tdissd as in all the assimilating 

experiments increases damping effects on divergence and makes the nonlinear system more 

linear. From Figure 7.17, it seems that changes of parameter tdissd act to damp the divergence 

difference due to the coarse orography, such as around the Andes in southern America. To 

better illustrate effects of parameter tdissd, the divergence differences and the divergence 

increments along 20S in level 3 are plotted in Figure 7.18. The divergence differences are 

large, especially in the land regions such as 60 W where the Andes located, and show wave 

patterns. The optimization slightly reduces these local differences by enhancing the damping 

effects. Parameter tdissd are tuned to compensate these noise-like signals caused by the coarse 

orography of the model. The effects of parameter tdissz, tdisst, tdissq to their corresponding 

variables are similar to that of parameter tdissd, but their sensitivities are much smaller. 

Several reasons may explain performance of these parameters in the assimilating experiments: 

(1) as Figure 7.17 displays, the divergence difference and the vorticity difference are too noise, 

and these parameters are tuned to damp the local noise; (2) in the slave systems, the nudging 

terms also act as the damping terms which largely reduce sensitivities of the horizontal 

diffusion parameters, and the parameters may even be tuned to negative values such as 

parameter tdisst. Overall, optimizing these parameters has little effect on the cost reduction.  
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Figure 7.18. Divergence differences (solid lines) and divergence increments (dashed lines) 

along 20S in level 3 in all the assimilating experiments. The line colors represent the 

assimilating experiments with different nudging timescales as the legend indicates.  

d. Effects of vertical diffusion parameters 

 

Figure 7.19. Contribution of parameter vdiff_lamm to the divergence cost reduction and the 

vorticity cost reduction in the assimilation experiments with different nudging timescales 

(horizontal axis). The bar colors indicate model levels as the legend shows. 

Parameters vdiff_b, vdiff_c, vdiff_d and vdiff_lamm tune the strength of vertical diffusion. 

In the assimilation experiments, the estimated values of these parameters vary, and their 

contributions to the cost function reduction are small as Figure 7.9 displays. For these four 

parameters, parameter vdiff_c shows almost no contribution and the other three parameters 

mainly influence temperature, vorticity, and divergence. The performance of these parameters 

in the assimilation experiments is analyzed based on parameters vdiff_lamm and vdiff_d.  

The contributions of parameter vdiff_lamm to the divergence cost reduction and the 

vorticity cost are shown in Figure 7.19. From a default value of 160m, parameter vdiff_lamm 

is tuned to 355.84m in the assimilating experiments with a nudging timescale of =2.03day 
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while is tuned to 107.56m in the assimilating experiments with a nudging timescale of 

=0.09day, which leads to different contributions to the cost function reduction. In the 

assimilation experiments with large nudging timescales (1.19days), changes of parameter 

vdiff_lamm reduce both the divergence cost and the vorticity cost. With decreasing nudging 

timescales, changes of parameter vdiff_lamm reduce the vorticity cost while increasing the 

divergence cost reduction, especially in model level 3. It seems that parameter vdiff_lamm can 

reduce the vorticity cost more easily than the divergence cost with deceasing nudging 

timescales. 

 

Figure 7.20. (a) Divergence differences (solid lines) and divergence increments (dashed lines) 

along 20S in level 3 in all the assimilating experiments. (b) Same as (a) but for vorticity. The 

line colors represent the assimilation experiments with different nudging timescales as the 

legend indicates.  

The zonally averaged differences and the increments of divergence and vorticity caused 

by changes of parameter vdiff_lamm in model level 3 are shown in Figure 7.20. Both the 

vorticity differences and the divergence differences show wave-like patterns along latitude. 

Changes of parameter vdiff_lamm only slightly reduce the vorticity differences around 

20S-40S and 30N-40N depending on the nudging timescales while having little effects on the 

divergence differences. Although changes of parameter vdiff_lamm considerably reduce the 

vorticity cost, they only slightly reduce the vorticity differences. Their contributions to the 

cost function reduction are enlarged by the normalizing factors which make the vorticity cost 

at every level equal to 0.5. Moreover, the wave-like vorticity difference pattern along latitude 

indicates that the vorticity observations may not provide useful information for the 

optimization after synchronization. Parameter vdiff_lamm is likely tuned compensate local 

noise signals. 
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Figure 7.21. (a) Zonally averaged temperature differences (solid lines) and temperature 

increments (dashed lines) in level 10 caused by changes of parameter vdiff_d in all 

assimilating experiments. (b) Same as (a) but for divergence. The line colors represent the 

assimilation experiments with different nudging timescales as the legend indicates. 

In all the assimilation experiments, values of parameter vdiff_d are significantly increased 

depending on the nudging timescales as Figure 7.3 shows. Changes of parameter vdiff_d 

considerably reduced the divergence cost and the temperature cost in model level 10. The 

temperature differences and the temperature increments, the divergence differences and the 

divergence increments caused by changes of parameter vdiff_d in model level 10 are shown in 

Figure 7.21(a) and (b) respectively. The estimated parameter vdiff_d slightly reduces the 

divergence differences in 60S and also considerably reduced the temperature differences 

south of 60S. Parameter vdiff_d seems to be informed by both the temperature observations 

and the divergence observations. Parameter vdiff_d will be further investigated in the second 

group assimilating experiments.  

e. Effects of parameters tuning shortwave radiation 

Parameters tswr1, tswr2 and tswr3 tune cloud optical properties. As Figure 7.3 and Figure 

7.9 show, the estimated values of these parameters vary in assimilation and have little effect 

on the cost function reduction. The temperature increments caused by changes of these three 

parameters in the assimilating experiment with a nudging timescale of =2.03days are shown 

in Figure 7.22. Compared to contributions of parameters th2oc and acllwr, which tune 

absorption coefficients (longwave) of water vapor and cloud, changes of these parameters 

have little effect on the air temperature. In PlaSim, these three parameters directly tune solar 

radiation at the surface and at the top of the atmosphere (TOA). They are practically tuned to 

get better global mean solar radiation. The divergent of the three parameters in the 

assimilation experiments indicate that the three parameters cannot be very well informed by 

the observations used in the assimilation experiments. The solar radiation observations must 

be included in the cost function to better inform these parameters. This Hypothesis inspires 

the second group of assimilation experiments, and the effects of these three parameters will be 

further analyzed in detail. 
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Figure 7.22. Temperature increments (C) by changes of parameters tswr1 (a), tswr2 (b) and 

tswr3 (c) in the assimilation experiment with a nudging timescale of =2.03days. 

7.2.4 Assimilation of the temperature observations 

As analyzed above, it seems that only temperature observations inform the control 

parameters and only parameters tfrc2, th2oc and acllwr are very well observed by temperature 

observations. To further validate this hypothesis, another assimilation experiment is 

performed with only the temperature observations in the cost function and a nudging 

timescale of =2.03 days. 

  

Figure 7.23. Convergence of the cost function (a), parameters tfrc2 (b), th2oc and acllwr (c) in 

an assimilation experiment with only temperature observations in the cost function. The 

nudging timescale is =2.03days.  

Figure 7.23 displays convergence of the cost function (a), parameters tfrc2 (b), th2oc and 

acllwr (c). The cost function is reduced by around 2.2 which is similar to the temperature cost 

reduction in the first group assimilation experiment with a nudging timescale of =2.03 days. 

Parameters tfrc2, th2oc and acllwr converge to similar values as in Figure 7.3 while other 

parameters (not shown) are still different with that in Figure 7.3. The results validate that the 

three parameters tfrc2, th2oc, and acllwr contribute most to the cost function reduction and 

are informed by temperature observations. While including the divergence observations and 
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the vorticity observations in the cost function cannot provide useful information for 

optimizing these parameters. The other 13 parameters cannot be very well informed by the 

temperature observations.   

7.2.5 Summary 

In the assimilation experiments above, the 6-hourly ERA-Interim data is used to 

regularize the unstable manifolds of the model simulation with nudging vorticity, divergence, 

temperature and specific humidity. Annually averaged vorticity, divergence, temperature and 

surface pressure are used in the cost function. Because the nudging terms largely reduce the 

cost function components and their relative importance, weighting factors are added to each 

constituent of the cost function, which normalizes each cost function constituent equally.  

As the results show, the optimization always tunes the control parameters to reduce the 

cost function, especially the temperature cost and the divergence cost. The vorticity cost and 

the surface pressure cost is not significantly reduced. However, by carefully checking the 

optimization increments, we note that the divergence differences, the vorticity differences, 

and the surface pressure differences are too noisy to be used for parameter estimation while 

the temperature differences still show large-scale biases and can be used for parameter 

estimation. Although the divergence costs are also largely reduced in all assimilation 

experiments, it is mainly caused by: (1) parameters such as th2oc and tfrc2 are tuned to reduce 

the temperature differences, and the improved temperature substantially improves divergence 

as Figure 7.11 shows; (2) after synchronization, the difference between the ERA-Interim data 

and the slave system simulation are too noise and parameter tdissd is tuned to damp these 

noisy-like signals (see Figure 7.17). 

Among all the 16 parameters, only parameters th2oc, acllwr and tfrc2 seem to be 

informed by the temperature observations and converge to similar values independent of the 

nudging timescales. Although parameter tdissd also converges to similar values in all the 

assimilation experiments, it is tuned to damp the noise-like divergence differences which are 

likely due to the coarse resolution of the model. Other horizontal diffusion parameters diverge 

and even be tuned to unphysical values. For the vertical diffusion parameters, only parameter 

vdiff_d considerably reduced the temperature differences in the Antarctica and will be further 

investigated in the second group assimilation experiments. Parameters tswr1, tswr2, and tswr3 

have little contributions to the cost function reduction and are not sensitive to the observations 

used in the cost function. These three parameters tune cloud optical properties and will be 

further investigated with the shortwave radiation observations.  

For the nudging timescales used for synchronization, too small nudging timescales (such 

as =0.09 days) may lead to bad synchronization regarding the diagnostic variables such as 

cloud cover. An explanation is that: the strong nudging terms on equations governing specific 

humidity and temperature will significantly increase local specific humidity and change local 

saturation specific humidity. The cloud cover parameterization schemes in PlaSim and the 

ERA-Interim reanalysis system are different. Therefore, nudging the temperature and the 

specific humidity too close to the ERA-Interim will not necessary simulate better cloud cover. 

In fact, it degrades the cloud cover field and influence estimation of parameters related to 
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cloud cover such as parameter acllwr. For the ‘maximal’ configuration, a nudging timescale 

of =2.03 days is reasonable.  

7.3 Results for the second group assimilating experiments 

7.3.1 Convergence of the minimization 

 

Figure 7.24. Convergence of the total cost (a), the temperature cost (b), sum of the net SW 

flux costs at the surface and at the TOA (c) and sum of the net LW flux costs at the surface 

and at the TOA vs. iteration number. The solid lines with stars are from Expt-p04 while the 

dashed lines with circles are from Expt-p07. In Expt-p04, net LW flux at the surface and at the 

TOA are not included in the cost function and therefore (d) only shows sum of the net LW 

flux costs at the surface and at the TOA from Expt-p07.    

Figure 7.24 shows the total cost and the cost of different observations depending on 

iteration number. The decreases in the total cost, the temperature cost, and the flux costs are 

greatest during initial iterations. After the optimization, the temperature cost is reduced by 1.2 

in both the assimilation experiments. In Expt-p04, the cost of global mean net LW flux at the 

surface and at the TOA is reduced to around 0. In Expt-p07, the costs of both the global mean 

net LW flux and net SW flux at the surface and at the TOA are reduced to around 0. From the 

perspective of the cost function, the global mean net LW flux and net SW flux biases are more 

easily reduced than temperature error by optimizing process parameters. 

Table 7.2. The default values and the estimated values of the parameters after the 
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optimization.  

 tfrc2 vdiff_d th2oc acllwr tswr1 tswr2 tswr3  

Default 100. 5. 0.25 0.1 0.0333 0.048 0.004  

Expt-p04 8.04 62.16 0.0337 0.0499 ------- ------- -------  

Expt-p07 8.95 40.27 0.0456 0.0349 0.0618 0.1736 0.0186  

 

The default values and the estimated values of parameters are listed in table 7.2. After the 

optimization, the parameters are significantly changed. Except for parameter tfrc2, values of 

all the other parameters are different with that in the first group assimilation experiments. 

Parameter tfrc2 is reduced to around 0.1 times of its default value which enhances damping 

effects on vorticity and divergence in upper model level. Parameters th2oc and acllwr are 

significantly decreased, which reduces absorption coefficient (longwave) of water vapor and 

cloud. But different with the first group assimilation experiments, they are larger than 0. In 

Expt-p07, parameters tswr1, tswr2 and tswr3 are considerably increased and in their valid 

range as listed in table 5.1. Increasing parameter tswr1 increases cloud albedo (for spectral 

range <0.75 um). Therefore, it allows less solar radiation reaching the surface and more 

reflected solar radiation to the TOA. Increasing parameter tswr2 increases cloud back 

scattering coefficient for spectral range >0.75 um and reduces solar radiation to the surface. 

Increasing parameter tswr3 reduces single scattering albedo for spectral range >0.75 um. 

Effects of these parameters on the air temperature and the radiative fluxes will be analyzed in 

detail below.     

7.3.2 The air temperature improvement 

a. The temperature improvement 

As Figure 7.25 displays, the temperature increments in assimilation experiments 

Expt-p04 and Expt-p07 share similar patterns and amplitudes, and also similar to that in 

Figure 7.4(b). The temperature increments are mainly caused by changes of parameter th2oc, 

especially in level 6- 10. Parameters tfrc2 contributes to reducing the temperature bias in 

model level 3 in the polar region and parameter vdiff_d reduces the temperature bias in the 

Antarctica as Figure 7.21 shows. The warm bias in the tropics (see Figure 7.5a) centered at 

level 3 is only slightly decreased by changes of parameter tfrc2. But the bias cannot be further 

reduced by changing parameter tfrc2 because it will increase temperature errors in the polar 

region. In the assimilation experiment Expt-p07, the reduction of this warm bias is smaller 

due to changes of parameter tswr3. Increasing (decreasing) parameter tswr3 will increase 

(decrease) the air temperature in the tropics centered at level 3 (see Figure 7.22c). In the first 

group assimilation experiments, parameter acllwr are also tuned to 0 to reduce the warm bias 

in the tropics centered at model level 3. But in Expt-p04 and Expt-p07, parameter acllwr is 

only reduced by 0.5 times and has little effects on temperature. This indicates that parameter 

acllwr is mainly informed by the flux observations. Overall, both Expt-p04 and Expt-p07 lead 

to similar temperature increments with that in the first group assimilation. Contributions of 

each parameter to the temperature cost reduction will be analyzed to explain the similarity of 

the temperature increments.  
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Figure 7.25. Temperature increments in both the assimilation experiments. 

b. Contributions of each parameter 

Contributions of each parameter to the temperature cost reduction and the surface 

pressure cost reduction are approximated as in chapter 7.2.3 and are shown in Figure 7.26. 

The sum of the approximated contributions to the temperature cost reduction by each 

parameter is around 1.07 and 1.12 respectively which are similar to the temperature cost 

reduction in Expt-p04 and Expt-p07 as Figure 7.24(b) displays. For the temperature cost 

reduction, changes of parameter th2oc still contribute most (~70%), which lead to the similar 

temperature increment structures in level 6-10 in all the assimilation experiments. Both 

parameter tfrc2 and parameter vdiff_d reduce the temperature cost by similar values in the two 

assimilation experiments, respectively. Parameter acllwr has little effect on the temperature 

and is informed by other observations in Expt-p04 and Expt-p07. In Expt-p07, parameters 

tswr1, twsr2 and tswr3 play a small role in the temperature cost reduction with parameters 

tswr1and twsr2 reduce the temperature cost while parameter tswr3 increases the temperature 

cost. For the surface pressure, only parameter tfrc2 slightly reduces the cost.  

 

Figure 7.26. Approximated contributions of each parameter to the temperature cost reduction 

and the surface pressure cost reduction in the two assimilation experiments. The blue bars are 



 

88 

  

the temperature cost reduction and the yellow bars are the surface pressure cost reduction. 

Positive values (negative values) mean the control parameters reduced (increased) the cost by 

the values on y-axis. 

7.3.3 The radiative fluxes improvement 

a. The radiative fluxes improvement 

Table 7.3. The net SW flux and net LW flux at the surface and at the TOA in the ERA-Interim 

data, the slave system simulation and the assimilation experiments. 

 ERA-Interim Slave system Expt-p04 Expt-p07 

Net Surface LW (Wm
-2

) -55.92 -26.18 -58.95 -54.38 

Net Top LW (Wm
-2

) -245.38 -232.75 -246.90 -248.90 

Net Surface SW (Wm
-2

) 164.54 183.33 178.52 165.31 

Net Top SW (Wm
-2

) 243.75 247.90 244.11 243.59 

 

In both Expt-p04 and Expt-p07, the biases of net flux observations are significantly 

reduced. The global mean net LW and SW fluxes at the surface and at the TOA in the 

ERA-Interim data, the slave system simulation and the two assimilation experiments are listed 

in table 7.3. The zonally averaged values are plotted in Figure 7.26. In the slave system, the 

global mean net surface LW flux, net top LW flux and net surface SW flux in the slave system 

have biases of 29.7 Wm
-2

, 12.7 Wm
-2

, and 19.8 Wm
-2

. For the global mean net LW flux at the 

surface and at the TOA, both Expt-p04 and Expt-p07 significantly reduce the biases and 

match very well with ERA-Interim data. For the global mean net SW flux at the surface, 

Expt-p04 only slightly alleviates the bias while Expt-p07 reduce the bias by 18 Wm
-2

. In the 

assimilation experiments, Expt-p07 best simulates the global mean net SW flux and net LW 

flux at the surface and at the TOA. 
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Figure 7.27. Zonally averaged net surface LW flux (a), net top LW flux (b), net top SW flux (c) 

and net surface SW flux (d) in the ERA-Interim data (blue lines), the slave system simulation 

(black lines) and the two assimilation experiments (dotted lines with markers, see legend). 

Negative (positive) values mean upward (downward).  

As Figure 7.27(a)-(b) show, the zonally averaged net LW flux at the surface and at the 

TOA in the Expt-p04 and Expt-p07 are shifted downward and match the ERA-Interim data 

reasonably well. However, there are still errors depending on latitudes cannot be reduced. For 

example, Expt-p07 and Expt-p04 simulate a little more outgoing LW flux at the surface and at 

the TOA. But overall, the optimization significantly improves net surface LW flux and net 

TOA LW flux.  

For net surface SW flux, the global mean value is only slightly reduced by 4.8 Wm
-2

 in 

Expt-p04, and the reduction is mainly in the tropics as Figure 7.27(d) shows. The slight 

reduction is caused by the increasing cloud cover as Figure 7.28 displays. In Expt-p04, 

improvement of the air temperature in the tropics substantially increases total cloud cover, 

which blocks solar radiation reaching the surface and therefore reduces net SW flux at the 

surface. While in Expt-p07, the bias of global mean net surface SW flux is reduced by 18 

Wm
-2

. The reduction is at all latitudes, especially in the tropics, as Figure 7.27(d) shows. The 

bias reduction of net surface SW flux is caused by: (1) the increasing cloud cover in the 

tropics as shown in Figure 7.28, (2) changes of parameters tswr1, tswr2, and tswr3 which tune 

cloud optical properties. As the results of Expt-p04 and Expt-p07 show, optimizing 

parameters tswr1, tswr2 and tswr3 is a more efficient way to reduce the net surface SW flux 

bias. The net top SW flux is slightly reduced in both the assimilation experiments because the 

increasing cloud cover in the tropics scatters and reflects a little more solar radiation 

backward.   

 

Figure 7.28. Zonally averaged totally cloud cover in the slave system simulation (black line), 

the ERA-Interim data (blue line) and in the two assimilation experiments (dotted lines with 

markers, see legend).  
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As the results show, the biases of net LW fluxes at the surface and at the TOA can be 

reasonably simulated in both Expt-p07 and Expt-p04. Due to the improvement of the air 

temperature in the tropics, which slightly increases the cloud cover, the bias of global mean 

net SW fluxes at the surface is slightly reduced in the tropics. In Expt-p07, the bias of global 

mean net SW fluxes at the surface is more efficient reduced by optimizing parameters tswr1, 

tswr2 and tswr3. Effects of each parameter on net LW flux and net SW flux are shown below. 

b. Effects of each parameter 

To better understand how the parameters contribute to improving the global mean net LW 

flux and net SW flux, approximated contributions of each parameter to the global mean net 

SW and net LW fluxes changes are shown in Figure 7.29.  

In both the assimilation experiments, parameters tfrc2 and vdiff_d almost have no effects 

on net SW flux and net LW flux at the surface and at the TOA, and they are informed by the 

air temperature observations in the optimization. The rest parameters contribute significantly 

to the flux cost reduction. Parameters th2oc and acllwr contribute to net LW flux 

improvement and parameters tswr1, tswr2 and tswr3 contribute net SW flux improvement. 

The sum of the contributions shown in Figure 7.29 is close to the flux bias reduction listed in 

Table 7.3, which indicates the linear approximation can reasonably represent contributions of 

each parameter. 

As Figure 7.28(a) displays, parameter th2oc alone significantly increases the global mean 

net surface LW flux by -30 Wm
-2 

(negative indicates outgoing). As for net top LW flux, 

parameters th2oc and acllwr contribute to reducing the bias by -10 Wm
-2 

and -4 Wm
-2

, 

respectively. And their contributions are slightly different in Expt-p07 and Expt-p04. The 

values of parameters th2oc and acllwr are decreased in the optimization, which reduces 

absorption coefficients (longwave) of water vapor and cloud and therefore increases outgoing 

LW flux at the surface and at the TOA. By optimizing parameters th2oc and acllwr, the global 

mean net LW flux at the surface and at the TOA can be well very well simulated. Tuning 

parameters th2oc is more efficient considering the air temperature observations and the LW 

flux observations. 
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Figure 7.29. Approximated contributions of each parameter (see legend in d) to net surface 

LW flux (a), net top LW flux (b), net top SW flux (c) and net surface SW flux (d). Positive 

values (negative values) mean the control parameter increases (decreases) the corresponding 

variables. The corresponding values of ERA-Interim data and the slave system simulated 

values are on top of each subplot.   

For net SW flux as Figure 7.28(c)-(d) show, parameter th2oc slightly reduces net surface 

SW and net top SW flux due to the increasing cloud cover in the tropics. Parameters tswr1, 

tswr2, and tswr3 dominate the changes of net SW flux at the surface and at the TOA. For net 

surface SW flux which has a global mean bias of 19.8 Wm
-2

, parameters tswr1 and tswr2 are 

tuned to reduce the bias by -6 Wm
-2

 and -10 Wm
-2 

while parameter tswr3 has little effect. But 

changes of parameters tswr1 and tswr2 also significantly decrease net top SW flux by -5 

Wm
-2 

and -13 Wm
-2

, and degrade net top SW flux. Parameter tswr3 is tuned to increase net 

top SW flux by 15 Wm
-2

, which compensates the negative effects of parameters tswr1 and 

tswr2. 

Figure 7.30 displays the spatial distributions of the net surface (a-c) SW flux and net top 

(d-f) SW flux caused by changes of parameters tswr1, tswr2 and tswr3. Parameters tswr1 (a) 

and tswr2 (b) reduce net surface SW flux globally by increasing albedo (for spectral range 

<0.75 um) and backscattering coefficient (for spectral range >0.75 um) of clouds. The 

change of parameter tswr3 also decreases surface SW flux in most regions of the tropics while 

increasing it between 20S-60S and 20N-60N over the ocean region. But, effects of parameter 

tswr3 on the global mean surface SW flux is very small as Figure 7.29(d) shows.  

The global mean net top SW flux is reasonably well in the slave system simulation. 

However, changes of parameters tswr1 (d) and tswr2 (e) largely reduce net top SW radiation 

globally by increasing the reflected and backscattered SW flux to the TOA. Therefore, 

changes of parameters tswr1 and tswr2 degrade the global mean net top SW flux. The 

negative effects of parameters tswr1 and tswr2 on net top SW flux are compensated by 

changes of parameter tswr3 which reduce the single scattering albedo. Overall, the 
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optimization efficiently improves the global mean net SW flux at the surface and at the TOA 

by tuning parameters tswr1, tswr2, and tswr3. 

 

Figure 7.30. Increments of net surface SW flux (a)-(c) and net top SW flux (d)-(f) caused by 

changes of parameters tswr1 (a,d), tswr2 (b,e) and twsr3 (c,f).  

Based on the analysis above, the improvements of the model simulation caused by the 

optimization can be briefly explained as follow. For the net LW flux at the surface and at the 

TOA, the slave system simulates less outgoing LW flux both at the surface and at the TOA 

than the ERA-Interim data. The optimization increases net outgoing LW flux at the surface by 

decreasing absorption coefficient of water vapor (th2oc), which efficiently reduces back LW 

radiation to the surface. For net LW flux at the TOA, it is increased by decreasing absorption 

coefficients of water vapor (th2oc) and clouds (acllwr), which allows more outgoing 

longwave radiation. As for net SW flux at the surface, the slave system simulates more net 

SW flux at the surface than the ERA-Interim data. The bias is reduced by increasing albedo 

(tswr1, for spectral range <0.75 um) and backscattering coefficient (tswr2, for spectral range 

>0.75 um) of clouds. At the same time, the changes of albedo (for spectral range <0.75 um) 

and backscattering coefficient (for spectral range >0.75 um) of clouds increase reflected SW 
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flux to the TOA and makes net SW flux at the TOA worse. The negative effects on net SW 

flux at the TOA is compensated by reducing single scattering albedo (tswr3, for spectral range 

>0.75 um) of clouds. 

Overall, by optimizing parameter th2oc and acllwr which tunes absorption coefficients of 

water vapor and clouds, the global mean net LW flux at the surface and at the TOA can be 

very well simulated. The global mean net SW flux at the surface and at the TOA can also be 

very well simulated by optimizing parameters tswr1, tswr2 and tswr3 which tune cloud 

optical properties. As for the air temperature, its improvement is mainly caused by changes of 

parameter th2oc. Parameter tfrc2 improves temperature in upper model levels through thermal 

wind relation and parameter vdiff_d also slightly improves temperature in the Antarctica.   

7.4 Evaluation with the free model 

In the assimilation experiments with the slave systems, the control parameters are tuned 

to reduce the cost function. However, the nudging terms still retain in the slave system after 

the optimization and act as external forcing to push to slave system close to the ERA-Interim 

data. As Figure 7.1 shows, the nudging terms are large compared with the tendency terms. 

The purpose of the assimilation experiments is to find optimal values of the control 

parameters which reduce bias of the free model (without the nudging terms). Therefore, the 

effects of the optimized parameters on the free model must be evaluated before we draw the 

conclusion that the method can be applied to calibrating the climate model. Three model 

simulations are performed with the estimated parameters from the assimilation experiments 

Expt-p04, Expt-p07, and expt-p16 (the first group assimilation experiments with a nudging 

timescale of =2.03days). We use Expt-p04f, Expt-p07f, and expt-p16f to represent the three 

free model simulations respectively and the model simulation with the default values of 

parameters is called control run (ctrl in the figures). The model is integrated for 3 years with 

the last 2-year data for comparison. Although some parameters such as tdisst is tuned to 

negative values in the assimilation experiment expt-p16, the free model simulation expt-p16f 

with the estimated parameters is still stable. First, the net SW flux and net LW flux at the 

surface and at the TOA which are significantly improved in the assimilation experiments 

Expt-p04 and Expt-p07 will be evaluated. Second, the air temperature which also plays an 

important role in informing the parameters will be analyzed. At last, the effects on other 

variables which are not explicitly used in the cost function such as zonal wind, cloud cover 

and specific humidity will be shown.  

7.4.1 The Radiative fluxes 

    The global mean radiative fluxes in the ERA-Interim data and the four free model 

simulations are listed in table 7.4. The meridional distributions of the annual mean difference 

between the four model simulations and the ERA-Interim data are shown in Figure 7.31. In 

both Expt-p04f and Expt-p07f, net surface LW flux and net top LW flux are significantly 

improved while being seriously degraded in expt-p16f. Figure 7.31 (a) and (b) show that the 

control run simulates less outgoing surface LW flux and outgoing top LW flux than the 

ERA-Interim data at all latitudes. Both Expt-p04f and Expt-p07f improve net surface LW and 



 

94 

  

net top LW flux almost at all latitudes. However, expt-p16f seems to over fit the ERA-Interim 

data and simulates much more outgoing LW flux at the surface and at the TOA. In the 

assimilation experiments expt-p16 with a nudging timescale =2.03 days, parameters acllwr 

and th2oc are tuned to around 0 to reduce the temperature cost regardless of LW flux at the 

surface and at the TOA. The estimated parameters acllwr and th2oc make clouds and water 

vapor almost transparent to longwave radiation and therefore seriously degrades LW fluxes 

both at the surface and at the TOA. While in assimilation experiments Expt-p04 and Expt-p07, 

parameter th2oc is observed by temperature, net surface LW flux, and net top LW flux while 

parameter acllwr is mainly observed by net top LW flux. They are tuned to finite values to 

reduce the total cost. Therefore, it is critical important to include net LW flux at the surface 

and at the TOA in the cost function to optimize parameters which tune absorption coefficients 

of clouds and water vapor.    

Table 7.4. Radiative fluxes, surface latent heat flux and surface sensible heat flux in the 

ERA-Interim data and the model simulations with parameters from different assimilation 

experiments. Negative values represent outgoing. 

 Net Top LW 

(Wm-2) 

 

 

Net Surface LW 

(Wm-2) 

 

Net Top SW 

(Wm-2) 

 

Net Surface 

SW (Wm-2) 

 

Surface latent heat 

flux (Wm-2) 

 

Surface sensible 

heat flux (Wm-2) 

 ERA-Interim -245.38 -55.92 243.75 164.54 -81.58 -17.46 

Ctrl -228.74 -31.79 239.33   176.01 -103.52 -26.09 

Expt-p04f -240.81 -63.19 239.58 176.14 -87.42 -24.10 

Expt-p07f -243.13 -59.62 239.21 161.00   -80.29 -22.47 

Expt-p16f -259.71 -110.73 244.03 190.46 -72.87 -19.47 

   

For net SW flux at the TOA, both Expt-p04f and Expt-p07f don’t change the global mean 

values while expt-p16f increases net SW flux by 4.7 Wm
-2

. Compared to net LW flux 

improvement as Figure 7.31(a) and (b) show, changes of net SW flux at the TOA is not 

significant. As Figure 7.31(d) shows, expt-p16f increases net SW flux at low latitudes and 

middle latitudes, and it degrades net SW flux at middle latitudes. Therefore, expt-p16f doesn’t 

robustness improve net SW flux at TOA. From the global mean perspective, the 

model-simulated net SW flux at the TOA is reasonable well. However, there are still errors 

depending on latitudes which are seldom reduced with the optimized parameters.  
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Figure 7.31. Meridional distributions of the annual mean difference of surface LW flux (a), 

top LW flux (b), surface SW flux (c), top SW flux (d), surface latent heat flux (e) and surface 

sensible heat flux between the model simulations and the ERA-Interim data. The line style 

and line color represent the model simulations with optimized parameters from different 

assimilation experiments (see legend). 

For net surface SW flux as Figure 7.31(c) shows, the positive bias of global mean value is 

reduced only in Expt-p07f while there are still errors depending on latitudes. Expt-p04f 

doesn’t change the bias of net surface SW flux as in the assimilation experiment Expt-p04. In 

the assimilation Expt-p04, the reduction of net surface SW flux is achieved by the increasing 

the total cloud cover in the tropics while total cloud cover changes are very small in 

Expt-p04f as Figure 7.36(c) shows. One of the important reasons is that the specific humidity 

cannot be improved in the model. Although surface latent heat flux and surface sensible heat 

flux are not included in the cost function, they are also considerably improved in Expt-p07f 

and Expt-p04f due to the improvement of temperature and radiative fluxes. 

Overall, with the optimized parameters from assimilation experiments, the free model 

simulations Expt-p04f and Expt-p07f improve the global mean radiative fluxes in a way 

similar to that in the corresponding assimilation experiments: Expt-p04f significantly 

improves net LW flux at the surface and at the TOA while has little effect on net SW flux at 

the surface and at the TOA; Expt-p07f improves both net LW flux and net SW flux 

significantly. Surface latent heat flux is also improved, and surface sensible heat flux is 

slightly improved. However, in the free model simulation expt-p16f, radiative fluxes are much 

worse than the control simulation. This is because that: (1) parameters th2oc and acllwr are 

tuned to 0 to reduce the temperature cost without regarding net SW flux and net LW flux, 

which makes clouds and water vapor transparent to longwave radiation and significantly 
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degrades net LW flux at the top and at the surface; (2) parameters tswr1, tswr2, and tswr3 are 

not very well informed by the observations in the first group assimilation experiments, 

changes of these parameters significantly degrade net SW flux at the surface. Therefore, it is 

important to include the LW and SW fluxes in the cost function when optimizing the 

parameters related to clouds and water vapor properties. 

7.4.2 Temperature and zonal wind 

 

Figure 7.32. The root mean square error of temperature (upper panels) and Zonal wind (lower 

panels) for different geographical regions. The RMSE is computed with the 4 model 

simulations (see legend) and the ERA-Interim data.  

The air temperature is important observations in all the assimilation experiments which 

inform parameters such as tfrc2, vdiff_d, and th2oc. Although not explicitly included in the 

cost function, the Zonal wind can be changed by optimized parameter tfrc2 and therefore is 

evaluated here. Figure 7.32 shows the root mean square error of temperature and Zonal wind 

for a global, the tropics, the northern hemisphere and the southern hemisphere average in the 

four free model simulations.  
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Figure 7.33. (a) Annual mean of zonally averaged temperature difference between the control 

run and the ERA-Interim data. Annual mean of zonally averaged temperature differences 

between the model simulations with optimized parameters from different assimilation 

experiments and the control run (b-d). 

From a global perspective, the three simulations with optimized parameters reduce RMSE 

for both temperature and Zonal wind. The estimated parameters significantly reduce the Zonal 

wind RMSE in model level 2-4 where the control run simulates too strong westerlies. In lower 

model levels, the estimated parameters slightly increase the zonal wind RMSE in both the 

northern and the southern hemisphere while decreasing it in the tropics. Globally, the 

temperature shows an error reduction for all three simulations. However, the error reduction 

varies in different geographical regions and different simulations. All three experiments 

reduce the temperature RMSE in the tropics and in the southern hemisphere while having 

both positive and negative effects in the northern hemisphere. As Figure 7.33 shows, the 

temperature RMSE reduction in model level 2-5 is mainly caused by: (a) temperature 

increases in the polar region, which exist in all 3 simulations with optimized parameters, due 

to changes of parameter tfrc2; (2) temperature decreases in the tropics in Expt-p04f and 

expt-16f due to changes of parameter acllwr. In Expt-p07f, temperature decreases in the 

tropics centered at level 3 due to changes of parameter acllwr are compensated by changes of 

parameter tswr3. Parameter th2oc, which contributes most to the temperature cost reduction, 

contributes to reducing the cold bias in the tropics in all three simulations.  

The zonal wind is mainly influenced by changes of parameter tfrc2. In the assimilation 

experiments, parameter tfrc2 is informed by temperature through the thermal wind relation. 

The Rayleigh friction timescale tfrc2 is reduced from 100 days to around 10 days in the 

assimilation experiments as listed table 7.1, which lead to similar zonal wind patterns in the 

three free model simulations with optimized parameters. Therefore, zonal wind from 

Expt-p07f is shown for comparison. Zonally averaged zonal wind and standard deviation for 
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the ERA-Interim data, the control run and Expt-p07f are shown in Figure 7.34. The control 

run simulates too strong westerlies in both hemispheres. The optimized parameter tfrc2 

strongly enhances the damping effect on divergence and vorticity. Therefore, the strength of 

westerlies is reduced and at the same time, the variance is reduced. However, it seems that the 

locations of the maximum zonal wind in the southern hemisphere and the northern 

hemisphere are not changed.  

 

Figure 7.34. (a) Annual mean of zonal wind for the ERA-Interim data (a), the control 

simulation (b) and Expt-p07f (c). 

7.4.3 Specific humidity, precipitation and cloud cover 

 

Figure 7.35. (a) Specific humidity difference between the control simulation and the 

ERA-Interim data, (b) specific humidity difference between Expt-p07f and the control 

simulation. The contour interval for the dashed and solid lines is 0.5x10
-3

 kg/kg. 

 In the control simulation, the PlaSim simulates less moisture than the ERA-Interim data 

as Figure 7.35(a) displays. One of the possible reasons is that the simulated temperature is too 

low which allows less moisture in the atmosphere. The optimized parameters increase the air 

temperature, especially in the tropics. But globally, the specific humidity in Expt-p07f is 

reduced by around 1.8%. As Figure 7.35(b) shows, the specific humidity is reduced at the 

tropics in model level 8 and at the northern hemisphere, which is likely because of model 
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deficiency. The moisture reduction in the northern hemisphere may be responsible for the 

temperature decreases in the northern hemisphere as Figure 7.34(b)-(d) show. The reduction 

of the specific humidity and the decreasing of parameter th2oc reduce the absorptivity of 

longwave radiation by water vapor. As Figure 7.36(c) shows, the total cloud cover is also 

reduced in the northern hemisphere and therefore decreases absorptivity of longwave 

radiation by clouds. In fact, the absorptivity of longwave radiation by clouds is also reduced 

by decreasing parameter acllwr. All these factors lead to the reducing temperature in the 

northern hemisphere and degrade the air temperature in the northern hemisphere. 

 

Figure 7.36. (a) Zonally averaged convective precipitation, (b) large-scale precipitation and (c) 

total cloud cover for the ERA-Interim data, the control run and the three simulations with 

optimized parameters. 

The changes of precipitation and total cloud cover are also evaluated. As Figure 7.36 (a) 

shows, the control simulation simulates too much convective precipitation due to strong 

cumulus convection in the tropics. All the three simulations with optimized parameters reduce 

the convective precipitation the by around 20% because the improved temperature caused by 

changes of parameter th2oc (see Figure 7.33 b-d) reduces the cumulus convection and 

therefore reduces the convective precipitation. There is still too much convective precipitation 

around 20S and 20N which is likely due to the coarse resolution of the model. In the tropics, 

both the large-scale precipitation and total cloud cover in Expt-p04f and Expt-p07f are 

slightly improved. However, they are degraded beyond the tropics. Although expt-p17f 

significantly degrades the SW and LW fluxes, it still slightly improves convective 

precipitation and total cloud cover in the tropics. This is because that the improvements in the 



 

100 

  

tropics are mainly caused by temperature improvements, due to changes of parameter th2oc. 

While beyond tropics, expt-p17f performs worse than all other simulations. 

With the optimized parameters, the moisture still cannot be improved, especially in the 

tropics in model level 8. Another assimilation experiment (not shown here) is performed, 

which only includes the mean specific humidity in model level 8 in the cost function and uses 

16 control parameters as in the first group assimilation experiments. The specific humidity 

cost cannot be reduced. It is likely that the moisture bias is due to model deficiency and 

cannot be reduced by tuning process parameters. With less moisture in the atmosphere, the 

large-scale precipitation and total cloud cover also cannot be further improved. 

7.5 Summary 

In this section, we further applied the modified DSPE method to assimilate the 

ERA-Interim data. Temperature, vorticity, divergence and specific humidity from the 

6-hourly ERA-Interim data were used as nudging variables to synchronize chaotic behavior of 

the PlaSim simulation and the ERA-Interim data. Two groups of assimilation experiments 

were performed to investigate the performance of the method. 

The first group of assimilation experiments consisted six experiments with different 

nudging timescales ranging from =2.03 days to =0.09 days. The cost function included 

annual mean vorticity, divergence, temperature and surface pressure and 16 parameters from 

different parameterizations were chosen as control parameters. In the cost function, the 

temperature cost reduction contributes most to the whole cost function reduction. The 

divergence and vorticity observations seem too noisy to be used for the optimization. After 

the optimization, the divergence cost is also reduced due to the improvement of the air 

temperature. In all the 16 parameters, only parameters tfrc2 were very well informed by 

temperature observations and were robustness estimated, independent of the nudging 

timescales. Although parameters th2oc and acllwr also contributed significantly to the cost 

reduction, they were over-tuned without net LW flux at the surface and at the TOA. As for the 

nudging timescales, a small nudging timescale such as =0.09 days is not recommended 

because: (1) a small nudging timescale may seriously degrade the diagnostic variables such as 

cloud cover as Figure 7.13 displays and therefore influenced the estimation of parameters 

related to these variables; (2) it also increased the iteration number of the minimization and 

therefore increased computational costs. For the “maximal” configuration, a nudging 

timescale of =2.03 days worked well.   

In the second group of assimilation experiments, the same observations were used for 

synchronization while observations included in the cost function and the control parameters 

were different. Two assimilation experiments were performed. Expt-p04 attempted to 

optimize four control parameters and to reduce bias of temperature, net surface LW flux, and 

net top LW flux. Expt-p07 further included net surface SW and net top SW flux in the cost 

function and attempted to reduce the biases by optimizing three more parameters related to 

cloud optical properties. The results show that the biases of net LW flux at the surface and at 

the TOA can be significantly reduced by optimizing parameters th2oc and acllwr. However, 

Expt-p04 slightly reduces the global mean net surface SW flux bias by increasing the total 
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cloud cover in the tropics. As the results of Expt-p07 show, the global mean net surface SW 

fluxes bias could be efficiently reduced by tuning parameters tswr1 and twsr2. However, 

changes of parameters tswr1 and tswr2 also strongly degrade net SW flux at the TOA. The 

negative effects on net top SW flux are compensated by changes of parameter tswr3. For the 

air temperature, parameter th2oc still contribute most to reduce the temperature bias. 

Parameters tfrc2 and vdiff_d also contribute considerably to improve the air temperature. 

Overall, the bias global mean LW flux at the surface and at the TOA could be reduced by 

tuning parameters which controls absorptivity of clouds and water vapor and the bias global 

mean SW flux at the surface and at the TOA could be efficiently reduced by tuning 

parameters which controls optical properties of clouds. The results of the two group of 

assimilation experiments indicate that the net LW flux and net SW flux at the surface and at 

the TOA are important observations and must be included in the cost function when 

estimating parameters related to clouds optical properties and absorptivity coefficients of 

clouds and water vapor. 

At last, three free model (without the nudging terms) simulations with the estimated 

parameters from assimilation experiments expt-p16 (with a nudging timescale of =2.03 days), 

Expt-p04 and Expt-p07 were performed to evaluate whether the estimated parameters 

improved the free model’s climatology. All the three simulations reduce the temperature 

RMSE, especially in the southern hemisphere and in the tropics. In the northern hemisphere, 

the estimated parameters have both positive and negative effects. For net LW flux at the 

surface and at the TOA, both Expt-p07f and Expt-p04f reduce the global mean bias as in the 

corresponding assimilation experiment Expt-p07 and Expt-p04. With three more estimated 

parameters which controls cloud optical properties, Expt-p07f also improves SW flux at the 

surface and at the TOA. The results indicate that the parameters estimated based on the slave 

system improve the free model’s climatology. For other variables that were not explicitly 

included in the cost function, the optimized parameters had both positive and negative effects 

depending on geographical regions. The optimized parameter tfrc2, which is informed by the 

temperature observations in the assimilation experiments, reduces the strength of westerlies 

while also reduces the variance. In the tropics, the control run simulated too much convective 

precipitation, and it is reduced by more than 20% because of the improved temperature fields. 

Both the large-scale precipitation and cloud cover are slightly improved in the tropics while 

are degraded at middle and high latitudes. For the specific humidity, the model simulations 

with optimized parameters still simulate too less moisture. The bias of moisture in the model 

simulation seems cannot be improved by tuning the process parameters alone. The bias of 

moisture is likely due to model deficiency such as coarse resolution or model structure 

(spectral transform method). Due to the less moisture, the total cloud cover beyond the tropics 

and the large-scale precipitation is less than the ERA-Interim data and by now cannot be 

improved by tuning process parameters.  

Finally, let us answer the question we posed: (1) Using all the prognostic variables in the 

cost function is not helpful, and only temperature provides useful information for the 

optimization. Also, not all parameters can efficiently change the model’s climatology. In 

PlaSim, only parameters acllwr and th2oc which tune absorption coefficients of clouds and 

water vapor seems significantly influence the air temperature. Parameter tfrc2 also can 
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improve the upper-level temperature through thermal wind relation; (2) It is important to 

include net LW flux and net SW flux at the surface and at the TOA in the cost function. The 

global mean bias of SW and LW fluxes can be significantly reduced by tuning several 

parameters which tune properties of clouds and water vapor. However, the local errors at 

different latitudes or at each latitude-longitude grid point cannot be efficiently reduced, 

especially for the net SW flux at the surface and at the TOA; (3) Similar to the assimilation 

experiments, the free model simulations with optimized parameters reduce the biases, 

especially the radiative fluxes. However, the specific humidity cannot be improved by tuning 

the process parameters. The moisture bias is probably due to model deficiency. Because of 

this, the cloud cover and large-scale precipitation also cannot be efficiently improved beyond 

the tropics.  
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Chapter 08 

Conclusions and Future works 

Climate models use parameterizations to represent the impact of unresolved physical 

processes on the large-scale flow regarding large-scale flow itself. Constant parameters are 

unavoidably introduced in the parameterizations and values of these parameters cannot be 

directly observed. These parameters are an important source of model uncertainty and should 

be tuned to improve the model simulation. In this study, we applied the adjoint method to 

calibrate a climate model by optimizing process parameters. To overcome the limited 

assimilation window problem in the adjoint method, synchronization, which is implemented 

as nudging technique, was exploited to regularize nonlinear instability. For parameter 

estimation, constant nudging coefficients were used, and the nudging strength should at least 

be strong enough to push the positive Lyapunov exponents to negative values. In this method, 

the feasible assimilation window can be extended the arbitrary which enables parameter 

estimation on climate timescales. 

The following part of this thesis will be separate into two parts. The first part will give 

main results and conclusions of the method. The second part will outline the possible future 

works.  

8.1 Overview of Conclusions 

In the adjoint method, the feasible assimilation window is limited by the predictability of 

the chaotic system. To estimate uncertain parameters and unobserved model states from a 

small subset of model state and then make predictions, Abarbanel et al. (2010) purposed to 

use chaos synchronization to extend the feasible assimilation and make full use of the 

observations distributed over a long period. They advocated that the nudging terms can be 

penalized in the cost function and break down to 0 after the optimization.  

We found that the penalty terms for nudging coefficients influence the successfulness of 

this method, especially with a very large assimilation window. Based on Lorenz (1963) model, 

we showed that: a large penalty term leads to fast decay of the nudging coefficient until chaos 

reappears, which stalls the optimization; small or non-existing penalty terms leads to 

increasing nudging coefficients with noisy observations. With constant nudging coefficients, 

we found that parameter errors information can still be observed in the cost function and their 

sensitivities can be very well represented by the adjoint model. Therefore for parameter 

estimation, we used constant nudging coefficients to synchronize the observations and the 

model. Performance of this method depends on synchronization efficiency which is 

influenced by observation noise, observation frequency, variables chosen for nudging and 

nudging coefficients. With noisy and sparse observations, optimal nudging coefficients which 

best recovers true signal can be predefined and benefit the parameter estimation.  

This method was then applied to PlaSim (Fraedrich et al., 2005b). The performance of 

this method was firstly validated with identical twin experiments and then applied to 
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assimilate the ERA-Interim data. Two configurations were used which are different in 

nonlinearity. For the “minimal” configuration which excludes the strong nonlinear moisture 

parameterizations, the feasible assimilation window is limited to around 20 days. A nudging 

timescale =2.0 days was predefined which stops the exponential error growth of TLM. 

Through identical twin experiments with an assimilation window of 1 year, it was seen that 

the default values of process parameters were accurately and efficiently retrieved within 

around 30 iterations, which is much more efficient than the SPSA method (Agarwal, 2016).  

For the “maximal” configuration, including the moisture parameterizations significantly 

increased the nonlinearity and degraded the usefulness of the TLM and adjoint model. This 

system can be synchronized with nudging timescales smaller than 2.03 days by nudging 

divergence, vorticity, moisture, and temperature. The usefulness of the adjoint model was 

closely examined. Identical twin experiments show that this method accurately and efficiently 

retrieved the default values of parameters.  

We then applied this method to assimilate the ERA-Interim data with the ‘maximal’ 

configuration. Two groups of assimilation experiments were performed with different control 

parameters and different observations in the cost function.  

In the first group assimilation experiments, it was seen that the temperature observations 

are most important observations and inform several control parameters such as th2oc, tfrc2, 

and acllwr. The divergence observations and the vorticity observations are too noisy to be 

used for optimizing the parameters. Among all the 16 parameters, only th2oc, tfrc2, and 

acllwr are informed by the temperature observations and converge to similar values in all 

experiments while others diverge. The divergence of parameters can have three reasons: (a) 

Some sensitive observations such as SW flux and LW flux at the surface and at the TOA are 

not included in the cost function, and therefore the parameters related to cloud optical 

properties may not be very well informed. (b) Some parameters such as vdiff_lamm have 

regional different impacts on the state variables (especially the divergence and the vorticity) 

which can be positive in some places and negative in others. Changing the nudging timescales 

is found to easily impact the pattern of the remaining model-observation misfits. This leads to 

a changing error that is projected on the parameter estimates and therefore to changing 

estimated depending on the nudging timescales. (c) Small nudging timescales significantly 

degrade the cloud cover fields as Figure 7.13 displays and therefore influence the estimates of 

parameters controlling clouds properties. In our model, it was seen that the air temperature is 

more sensitivity to parameters tuning absorption coefficients (longwave) of water vapor and 

clouds.  

In the second group assimilation experiments, the bias of net LW flux at the surface is 

efficiently reduced by decreasing parameter th2oc, which reduces the absorptivity of water 

vapor to longwave radiation. The bias of net LW flux at the TOA is reduced by changes of 

parameters th2oc and acllwr. The decreasing parameters th2oc and acllwr reduces 

absorptivity of clouds and water vapor and hence increases outgoing longwave radiation at the 

TOA. As for the SW flux at the TOA and at the surface, they are efficiently improved by 

tuning parameters tswr1, tswr2 and tswr3 which control cloud optical properties. Error 

compensation occurs when optimizing these three parameters. Parameters tswr1 and tswr2 are 
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tuned to reduce net SW flux to the surface by increasing albedo and backscattering 

coefficients of clouds. However, they also significantly increase reflected SW flux to the TOA 

and significantly degrades net SW flux at the TOA. Parameter tswr3 are tuned to reduce the 

negative effects on net SW flux at the TOA by reducing single scattering albedo. For the air 

temperature, parameter th2oc contributes most. Parameter tfrc2 is very well informed by the 

temperature observations and improves the air temperature in upper levels. The results 

demonstrate that the radiative flux observations must be included when optimizing parameters 

controlling clouds and water vapor properties. The air temperature observations also play an 

important role in informing the parameters. By optimizing several process parameters 

controlling properties of clouds and water vapor, the biases of global mean net SW flux and 

net LW flux at the surface and at the TOA can be significantly improved. However, there are 

still errors depending latitudes which can hardly be reduced by tuning the parameters alone. 

At last, effects of the estimated parameters on the free model’s climatology (without 

nudging terms) were evaluated. The improvements of the free model’s climatology resemble 

the improvements in the corresponding assimilation experiments. The free model simulation 

Expt-p04f reduces the global mean net LW flux at the surface and at the TOA by around 32 

Wm
-2

 and 12 Wm
-2

 and matches reasonable well with the ERA-Interim data. However, the net 

SW flux at the surface and at the TOA is seldom changed. Expt-p07f best simulates net SW 

flux and net LW flux at the surface and at the TOA. While expt-p16f significantly degrades 

radiative fluxes because the control parameters in the assimilation experiment expt-p16 are 

tuned to reduce temperature bias without regarding radiative fluxes. The temperature RMSE 

in all the three simulation is reduced by more than 10% depending on model levels and 

geographical regions. In the three free-model simulations, the too strong westerlies are also 

significantly reduced by changes of parameter tfrc2. The convective precipitation is also 

reduced by more than 20% in the tropics. The large-scale precipitation and the total cloud 

cover show both improvement and degradation. However, the three simulations cannot 

improve the specific humidity which is likely caused by model deficiency.  

 Overall, by using nudging terms to synchronize the model simulation and the 

observations, the adjoint method is successfully applied to estimate process parameters on 

climate timescales and the estimated parameters improve the free model simulation. An 

advantage of the adjoint method is that it is much more efficient than the cost function based 

gradient approximation method such as SPSA (Spall, 1998). Agarwal (2016) applied the 

SPSA method to PlaSim for parameter estimation and found that the SPSA method needs at 

least 300 iterations to converge while the adjoint method usually converges within 40 

iterations (one iteration costs about 3-4 times of one forward integration). The limitation of 

the adjoint method is that the usefulness of the adjoint model must be validated when 

including new observations. For some model variables, the TAF generated adjoint model 

cannot provide useful sensitivities with respect to the control parameters and therefore cannot 

be directly included in the cost function. For example, in the tropics, the specific humidity is 

dominated by cumulus convective which is implemented with multiple ‘if’ and ‘where’ 

statements. The adjoint model cannot provide useful gradients information of the specific 

humidity (on every model grid) with respect to the control parameters as Figure 6.14 and 
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Figure 6.15 displays. Modifying the implementation of these parameterization may help to 

improve the adjoint model.    

8.2 Outlook  

Further studies are still needed to:  

(1) In this study, PlaSim is an intermediate complex model with prescribed SST. 

Blessing et al. (2014) have developed a coupled system CEN Earth System 

Assimilation Model (CESAM) in which PlaSim is coupled to MITgcm (Marshall 

et al., 1997). The TLM and its adjoint can be automatically generated by an 

automatic differentiation tool TAF (Giering and Kaminski, 1998). The method 

will be further applied to this coupled system for testing. For the ocean model, we 

don’t have enough data for synchronization, but a statistical adjoint method (Köhl 

and Willebrand, 2002; Liu et al., 2012) can be used to extend the feasible 

assimilation window.   

(2) A significant concern of this study is the coarse resolution of the model. A higher 

resolution version of CESAM is being developed with the atmospheric 

component has a resolution of T42 with ten levels, and the ocean component has 

a resolution of 1x1 with 23 vertical levels. The method will be further applied 

to this new model version. 

(3) The CEN Earth System Assimilation Model is developed for initializing seasonal 

to decadal prediction using the adjoint model, which is expected to produce a 

dynamical balanced initial condition. By using synchronization, we will extend 

the assimilation window for CESAM and initialize long-term predictions using 

the adjoint method. Moreover, parameters controlling the surface heat flux and 

momentum flux will be expanded geographic-dependent and time-dependent (Liu 

et al., 2012; Sugiura et al., 2008) and be estimated using the adjoint method to 

improve the model performance. 
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Figure Captions 
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(black solid line). The dash lines represent the maximum probabilities of the three 

probability density function. ............................................................................................... 6 

Figure 3.1. A schematic diagram of the tangent linear model. The black line represents a 

reference trajectory X
r
(r). The blue line represents a perturbed trajectory X

p
(t). The red 

stair-like line represents a tangent linear approximation based on the reference trajectory. 

The symbols M0t(X0) and M0t(X0) represent a model forecast operator and the tangent 

linear model, respectively. ................................................................................................ 13 

Figure 3.2. A schematic diagram of the recursive minimization process in the adjoint method.
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Figure 3.3. The cost function for an integration time of 5 TUs (black solid line) and 2 TUs 
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the secondary minima. The vertical lines indicate the minima after the optimization. .... 17 

Figure 3.4. (a) The instantaneous error growth with small perturbations on parameter : the 

red line is computed based on a reference integration and a perturbed integration of the 

nonlinear model; the black line is from the tangent linear model; (b) is similar to (a) but 

the perturbations are on the initial state. The black dashed line is a linear fit to the tangent 

linear error growth. The perturbation size is 10
-5
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Figure 3.5. Two trajectories starting with the same initial state but slight different values of 
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Figure 3.6. A schematic diagram of synchronizing two chaotic systems. System 1 and system 
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Figure 3.7. The instantaneous local error growth for perturbed initial state (b) and perturbed 
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-5
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perturbed the nonlinear system integrations. The nudging coefficient is =20. .............. 22 

Figure 3.8. The cost function depending on nudging coefficient  and parameter  without the 

penalty term (a) and with the penalty term and W=1.0 (b). The black rectangle area of (b) 

is zoomed in as (c). The estimated nudging coefficient  and parameter  for expt1 and 

expt2 (in Chapter 4) are marked with the green and red filled circles. The arrows 

represent schematic optimization routes for different experiments. The integration time is 
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Figure 4.1. (a) norm of , (b) the nudging coefficient , (c) the cost function components Jp 

and Je ,and (d) norm of gradient , as function of iteration number for perfect observations. 

The line colors represent different experiments indicated by legend in (a). The dashed 

lines and solid lines in (c) represent Jp and Je component of the cost function as in 
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Figure 4.2. (a) norm of , (b) the nudging coefficient , (c) the cost function components Jp 

and Je ,and (d) norm of gradient , depending on iteration numbers. The line colors 

represent different experiments indicated by legend in (a). The dashed lines and solid 

lines in (c) represent Jp and Je component of the cost function as in equation (3.22). ...... 27 
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the case of nudging y. The thick black lines represent global minima for a specific 
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