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Kurzfassung
Wir zeigen rigoros, dass jedes zeitabhängige wechselwirkende Gitterfermionenmod-
ell auf ein anderweitig entsprechendes nicht-wechselwirkendes Modell abgebildet wer-
den kann. Dieses effektive Modell ist so konstruiert, dass es exakten Zugriff auf die
Einteilchen-Green-Funktion erlaubt — zum Preis einer exponentiell großen Anzahl zusät-
zlicher virtueller Freiheitsgrade. Da die Physik des Systems invariant unter zeitabhängi-
gen unitären Transformationen bleibt, welche ausschließlich diese virtuellen Freiheits-
grade involvieren, betrachten wir zwei mögliche Realisationen des effektiven Modells:
Zuerst wählen wir das virtuelle Subsystem in diagonaler Form, wodurch sich bei Ausin-
tegration der virtuellen Plätze die Nichtgleichgewichts-Selbstenergie als Überlagerung
nichtwechselwirkender isolierter Moden erweist — die Lehmann Darstellung. Dieses
Resultat is sehr nützlich, wenn eine numerische Lösung der Dyson-Gleichung im Kon-
text von Approximationen benötigt wird, welche eine genährte Selbstenergie aus einem
kleinen Referenzsystem bestimmen. Indem man anstatt der Selbstenergie das effektive
Modell bestimmt, wird ein Markovscher Zeitpropagationsalgorithmus möglich, d.h. ohne
Verwendung einer Erinnerungsfunktion. Wir demonstrieren dies explizit am einfachen
Beispiel der zeitabhängigen Cluster-Störungstheorie (CPT), indem wir die Langzeitdy-
namik eines inhomogenen Anfangszustands nach einem Quanten-Quench, beschrieben
durch das Hubbard Modell auf einem 10 × 10 Quadratgitter, simulieren. Wir zeigen,
dass die Verletzung von Erhaltungssätzen im Regime kleiner Hubbard-Wechselwirkungen
moderat bleibt, und, dass Prethermalisierungsphysik im Clusteransatz enthalten ist. Da-
raufhin leiten wir eine erhaltende CPT ab, welche die fundamentalen Erhaltungssätze
respektiert. In Form lokaler Zwangsbedingungen für die spinabhängige Teilchen- und
Doublonendichte verwenden wir dabei die Erhaltungssätze, um die zeitabhängige Hüpf-
matrix im Referenzcluster zu bestimmen. In einer ersten Rechnung betrachten wir die
Dynamik eines zweidimensionalen Hubbard-Modells nach einem Quench auf schwache
Wechselwirkung. In der Tat ergibt sich in eine starke Veränderung der Dynamik in
der erhaltenden CPT. Die Doublonendichte zeigt eine monotone Relaxation, während
sich in einer gewöhnliche CPT-Rechnung stark oszillierendes Verhalten findet. Im
Folgenden verlassen wir das Thema clusterbasierter Theorien und leiten eine alterna-
tive, block-tridiagonale Darstellung des effektiven Modells ab. Die Konstruktion ist
analog zum Mori-Zwanzig-Formalismus, welchen wir auf Keldysh-Matsubara-Green-
Funktionen verallgemeinern. Basierend auf diesem Resultat leiten wir einen selbstkonsis-
tenten Zweipol-Ansatz ab und zeigen, wie Erhaltungssätze in diesem erzwungen werden
können. Zuletzt diskutieren wir mögliche zukünftige Anwendungen.
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Abstract
We rigorously prove that any time-dependent, interacting lattice fermion model can be
mapped to a corresponding noninteracting model. By construction, this effective model
gives exact access to the one-particle Keldysh-Matsubara Green’s function of the system
– at the cost of introducing an exponentially large number of virtual one-particle degrees
of freedom. As the physics of the system are invariant under time-dependent unitary
transformations involving these virtual degrees of freedom only, we explore two distinct
realizations of the effective model: First, we choose the virtual subsystem to be diago-
nal which, upon tracing out the virtual sites, yields the nonequilibrium self-energy as a
superposition of noninteracting isolated modes—the Lehmann representation. This re-
sult is highly useful to efficiently solve Dyson’s equation numerically in contexts where
an approximate self-energy is obtained from a small reference system. Calculating the
effective noninteracting model instead of the self-energy, a memory-kernel-free time-
propagation algorithm becomes possible. This is demonstrated explicitly by choosing the
nonequilibrium cluster perturbation theory (CPT) as a simple approach to study the long-
time dynamics of an inhomogeneous initial state after a quantum quench in the Hubbard
model on a 10 × 10 square lattice. We demonstrate that the violation of conservation
laws is moderate for weak Hubbard interaction and that prethermalization physics are
contained in the cluster approach. Improving upon plain CPT, we construct a conserv-
ing generalization. In form of local constraints on the local spin-dependent particle and
the doublon density, we use the macroscopic conservation laws to self-consistently fix
the time-dependent hopping in the reference cluster. Using a simple two-site cluster in a
proof-of-concept calculation, we consider the dynamics of the two-dimensional, particle-
hole-symmetric Hubbard model following a weak interaction quench. Indeed we find
the dynamics profoundly altered in the conserving CPT. The doublon density shows a
monotonous relaxation while strongly oscillating behavior is found within the plain CPT.
Leaving the topic of cluster-based theories, we also derive a second form of the effective
model which is block-tridiagonal. The construction is analog to the Mori-Zwanzig pro-
jection technique which we generalize to Keldysh-Matsubara Green’s functions. Based
on our results we derive a selfconsistent nonequilibrium two-pole approach and explain
how to enforce conservation laws. Finally, possible future applications are discussed.
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1. Introduction

In flood tides of life, in tempests of doing,
Up and down running,

The here with there joining,
Birth with the grave,

An eternal ocean,
A weaving, reweaving,
A life aglow, burning,

So seated before time’s humming loom,
I weave the Godhead’s living costume.

— Spirit of Earth in Goethe’s Faust1

In his colorful self-description, Goethe’s Spirit of Earth pinpoints one of the key aspects
of our everyday experience: Our world is dynamic. Nevertheless, in solid state physics,
research has long been focused mainly on the time-independent properties of condensed
matter systems. And for good reason. The defining notions of electronic transport, for ex-
ample, conductor and insulator, are to be understood in the limit of small electrical fields.
Here, linear response theory applies and one can show that the dissipative response of
an equilibrated system to a small perturbation is determined by the system’s equilibrium
properties alone. This key insight is known as the fluctuation-dissipation theorem [3]
and its roots reach back as early as the beginning of the 20th century with works of Ein-
stein [4], Nyquist [5], and Onsager [6]. Considering the effect of a small electrical field on
the electronic subsystem of a solid, the theorem allows to relate the conductivity in Ohm’s
law to an equilibrium current-current correlation function [3]. Of course, this conductiv-
ity will be highly dependent upon the phase, e.g., zero for an insulator at zero temperature
or finite for a metal. A bit more exotic, the system could also be superconducting such
that the conductivity is divergent. Standard parameters available to an experimentalist
to tune a system into a specific phase are chemical doping, temperature changes or the
application of pressure [7]. With the impressive advancements in experiment, i.e., the
continuing refinement of pump-probe experiments [8–12] and the ever increasing con-
trol over ultracold atoms in optical lattices [13–19], a desire to explore new possibilities
of phase manipulation has emerged. The idea is to excite the system far away from equi-
librium into a transient state. Then, it is time that may drive the system through multiple
transient phases before equilibrium, the Spirit’s eternal ocean, is reached.

1 English translation by Martin Greenberg [1]. The German original [2] reads: In Lebensfluten, im Taten-
sturm / Wall ich auf und ab, / Wehe hin und her! / Geburt und Grab, / Ein ewiges Meer, / Ein wechselnd
Weben, / Ein glühend Leben, / So schaff ich am sausenden Webstuhl der Zeit / Und wirke der Gottheit
lebendiges Kleid.
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1. Introduction

From an experimental perspective, pump-probe spectroscopy provides a state of the
art option for the study of such non-adiabatic dynamics in solids. Especially suited for
the investigation of the electronic structure is the time- and angle-resolved photoemis-
sion spectroscopy (trARPES). Based on the photoelectric effect, the electronic degrees
of freedom are excited by an initial femtosecond laser pulse. The wavelength is com-
monly chosen in the infrared range such that the photon energy is to low to dislodge
electrons. At a later time, the excited electronic many-body state is probed with a sec-
ond, ultraviolet laser pulse. Through multiple measurements, the transient dynamics of
the momentum-resolved electronic spectral function can be captured. In comparison to
standard ARPES [20], the extra time-dependent layer offers a possibility to disentangle
purely electronic from lattice effects. For example, charge density waves could be ruled
out as the underlying cause of a transient metallic phase in a photo-excited Mott insula-
tor [9]. From a technical viewpoint, the ultrashort lifetime of such photo-induced tran-
sient phases is a highly desirable feature in the context of ultrafast electronic devices [21].
It is thus to no surprise, that their systematic investigation proceeds to draw a consider-
able amount of attention [8–12].

A theorist starting out for a systematic investigation of out-of-equilibrium phenomena
in condensed matter systems, on the other hand, soon stands face-to-face with a highly
complicating aspect. It stands for incredible rich physics combined with a dramatic in-
crease in complexity as no other: Strong correlations due to the Coulomb interaction.
Already in equilibrium, this poses a tremendous challenge. A prime example is given
by the Mott-transition [22, 23]: While from a single-particle viewpoint, i.e., band the-
ory [24], any crystalline solid with a half-filled valence band is predicted to be a metal,
this prediction must be reconsidered if electronic interactions are taken into account.
A simple delocalization of the electrons into their kinetic ground state is now hindered
as it comes accompanied by a large potential energy due to the electron-electron repul-
sion. In case the potential energy dominates, the electronic charges become localized by
the system’s attempt to maximize the distance between them—the correct prediction is
a (Mott-)insulator. A much more involved example is provided by high-temperature su-
perconductivity in copper oxides. In these highly-correlated systems, a large variety of
phenomena is found. Depending on temperature and doping, one observes, for example,
“strange” but also normal, i.e., Fermi-liquid, metallic behavior as well as antiferromagnetic
ordering, and, of course, superconductivity with unusual high transition temperatures (up
to 135K at normal pressure) [25].

After having identified electronic correlations as a key aspect for many condensed mat-
ter systems, the natural pathway to proceed is the formulation of a minimal model that
allows for an isolated study. Such a model is given by the Fermi-Hubbard model (in the
following simplyHubbard model). It is not only the paradigmatic model for the Mott tran-
sition [23] but also considered as highly relevant in the context of high-Tc superconductiv-
ity [26]. Introduced independently by Hubbard [27], Kanamori [28] and Gutzwiller [29]
in 1963, it is defined by a rather innocent-looking improvement over a standard tight-
binding Hamiltonian: A single extra term is added which accounts for an energy penalty
if two electrons of opposite spin occupy the same Wannier orbital. However, one should
not be deceived from the apparently simple structure. From a mathematical point of
view, the complexity of the problem is increased dramatically. The tight-binding model
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is integrable, i.e., it can completely be described by a single-particle Hamiltonian whose
dimension scales linear with system size. Nevertheless, many-particle expectation values,
like, e.g., the current-current correlation function required to evaluate the resistivity in
Ohm’s law, are easily accessible by means of Wick’s Theorem. The Hubbard model, on
the contrary, can be seen as the prototype of a nonintegrable model (in two and higher
dimensions): It must be described by a many-body Hamiltonian with a dimension scal-
ing exponentially in system size due to the interaction term. In particular, this implies
a breakdown of Wick’s Theorem. So even if one is able to obtain an (approximate) one-
particle solution, one can, in general, not infer higher-order correlation functions from
this information alone.

If considering out of equilibrium dynamics in the Hubbard model, the situation is even
worse. The standard protocol, preparation of an equilibrium initial state which is subse-
quently evolved using a time-dependent Hamiltonian, already accentuates a major diffi-
culty. If the initial state problem is not simply integrable, we are faced with two many-
body problems: Initial state preparation and time evolution. A beautiful example how this
may reflect in the mathematics is given by nonequilibrium dynamical mean-field theory
(DMFT) [30]. In the DMFT, the lattice problem is selfconsistently expressed in terms
of an Anderson impurity embedded in a noninteracting bath. Interestingly, if using a
Hamiltonian-based formulation, two baths are needed to account for the dynamical case
in contrast to one for a standard equilibrium calculation. The first describes the initial
state correlations and their decay, while the second is initially uncoupled but builds up
such that it describes the long-time dynamics [31].2 A closely related problem is the loss of
time-translational invariance which highly complicates the Green’s function formalism—
the standard toolkit of many-body theory [32]. Instead of a diagonal spectral represen-
tation, one must work with time-non-local quantities which renders analytical as well as
numerical investigations far more challenging. Lastly, one should mention a difficulty
intrinsic to our very goal, the description of dynamical phase transitions which emerge
during the time-propagation of the many-body interacting state [33–36]. If subject to
such a transition, the time-evolution features non-analytic points which are difficult to
capture correctly using approximate methods. In the simplest case, one finds such non-
analyticities being smeared out [37]. However, one may also imagine situations where
the breakdown of the Taylor series in the vicinity of such a point renders standard tools
such as, e.g., the Magnus expansion [38] unusable.

Due to its simple structure, the time-dependent Hubbard model suggests itself as the
perfect toy model for the development of new methods for the study of nonequilibrium
dynamics in correlated systems. Indeed, in response to the high demand, a number of
well-known equilibriummethods have seen generalizations to time-dependent setups and
have successfully been applied to the Hubbard model. Amongst the most powerful is cer-
tainly the previously mentioned DMFT whose origins date back over 25 years [39–41].
Assuming its impurity problem can be solved without further approximations, it pro-
vides the exact solution in the limit of infinite lattice dimension. The first appearance

2 In contrast to intuition, it is the atomic limit and not a simple tight-binding initial state that allows for
a description of the dynamics using only one bath. This is due to the fact that the dynamic mean-field
represents the contribution of the surrounding lattice which is zero only in the atomic limit. See Ref. 31
for the details.
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1. Introduction

concerning nonequilibrium physics is due to Schmidt and Monien [42] who generalized
its selfconsistency condition using the Keldysh formalism [43]. A first successful appli-
cation was carried out in 2006 by Freericks, Turkowski and Zlatić [44]. Since then, a
considerable amount of progress has been made [30]. Nevertheless, important method-
ological challenges are still investigated, e.g., overcoming the dynamical sign problem of
Monte-Carlo-based impurity solvers [45, 46] or dealing with the rapid increase of nec-
essary bath sites in Hamiltonian-based approaches [31, 47–49]. Both limit the accessible
timescale. In this context, also the self-consistency condition itself should be mentioned
which requires solving Dyson’s equation on the Keldysh-Matsubara contour—a difficulty
most severe for inhomogeneous setups [50]. Taylor-made for the opposite limit, one di-
mension, we have the density-matrix renormalization group (DMRG) [51]. First proposed
byWhite in 1992 [52], it has seen a generalization to nonequilibrium in 2004 [53–55]. Con-
cerning the 1D Hubbard model, the DMRG is highly successful on short and intermediate
timescales where it provides the exact solution, e.g., Refs. 56–58. Access to large times,
however, is inhibited due to an exceeding growth of the entanglement entropy. In the
context of exactly solving the 1D Hubbard model, also the famous Bethe-ansatz solution,
found by Lieb and Wu in 1968 [59, 60], comes to mind. Yet, while there are attempts
to also study out-of-equilibrium phenomena [61], a systematic generalization of Bethe-
ansatz techniques to nonequilibrium seems still to be lacking [62]. Lastly, one should
also mention Monte-Carlo simulations. In equilibrium, these offer indeed numerically
exact solutions in certain parameter regimes, e.g., Refs. 63, 64. However, simulations of
nonequilibrium dynamics (out of the context of other methods such as the DMFT) still
seem to be rather rare [65].

If one is interested in exactly studying out-of-equilibrium dynamics in the Hubbard
model, the available methods restrict oneself to one (DMRG) and infinite dimensions
(DMFT) and not too large timescales. Especially two-dimensional systems, where the
DMRG is inapplicable and the central approximation of the DMFT, locality of spatial cor-
relations, becomes highly inaccurate, are difficult to access. Interestingly, help may come
from a rather unexpected direction: Experiment. Namely, in the form of ultracold atoms
in optical lattices [13]. In spirit of Feynman’s idea of a quantum simulator [66], these
systems are well isolated and offer such a precise control over the kinetic as well as the
interaction parameters of the trapped atoms that they seem well-suited for a systematic
investigation of the Bose- as well as the Fermi Hubbard model [14]. Indeed, concerning
the latter, metallic as well as Mott-insulating phases have been realized [15, 16]. After the
preparation of an equilibrated phase, also nonequilibrium dynamics can be initiated, for
example, by suddenly changing a parameter [17]. A promising recent development, which
presumably will also stimulate future out-of-equilibrium studies, concerns the implemen-
tation of spatially-resolvedmicroscopywhich allows to study spin and charge correlations
with local, per site resolution [18, 19]. Despite these successes, a remaining stumbling
block should be mentioned which concerns the cooling of the atoms into regimes of even
higher quantum degeneracy [14]. While the atomic gases are ultracold in an absolute
sense, the relevant temperature scale is set by the Fermi temperature, TF, which is of
the order of hundreds of nano-Kelvin. The lowest relative temperatures reached so far,
0.03−0.05T/TF [67], are thus quite high in comparison to a real material. For copper, for
example, where TF-Cu ≈ 8.6× 104 K [24], this would equal T = 0.05TF-Cu ≈ 4.3× 103 K.
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To understand the current limit, let us consider the standard technique for the last cool-
ing stage, evaporative cooling [68]: In the equilibrated, trapped gas, the energy of each
single atom varies considerably about its mean due to particle-particle collisions. This is
exploited, by removing the atoms with the highest energies and waiting for the subse-
quent rethermalization at lower temperature. While quite effective for bosons, the Pauli
principle poses a fundamental limit in the fermionic case. Taking a mean-field viewpoint,
one expects a Fermi sea to develop at low temperatures such that the number of unoccu-
pied low-energy states becomes small. Therefore, the scattering into such states becomes
a rare event, while scattering into an occupied low-energy state is forbidden. As a result,
evaporative cooling becomes ineffective. Overcoming this, but also other challenges [14],
is of fundamental interest in the search for better cooling techniques and the “progress on
the theory of dynamics and thermalization in strongly correlated systems will have a strong
impact on guiding experiments to cool into new regimes” [14].

Of course, there are attempts to overcome the limitations of the mentioned techniques.
Considering for example the DMFT, there are cluster extensions [69] or the nonequilib-
rium dual-fermion approach [70]. Considering the DMRG, the so called projected entan-
gled pair states (PEPS) [71] should be mentioned, which presumably will see a general-
ization to nonequilibrium in the future. However, these approaches are computationally
very demanding. While one can expect them to become of growing importance in the
long term due to the ever increasing computer power, simpler, more flexible approaches
are needed in the short term. Indeed, such approaches have been suggested, for example,
the generalization of the Gutzwiller variational technique [29] to nonequilibrium [72, 73].
While its efficient evaluation makes use of the limit of infinite lattice dimension (the so
called Gutzwiller approximation [74]), so that its application implies assuming the lo-
cality of spatial correlations, it is computationally much less demanding. For simple
setups, one can even aim for an analytical solution as has been shown for interaction
quenches in the homogeneous Hubbard model [73]. A different, promising method is
given by the nonequilibrium self-energy functional theory (SFT) [75, 76]. Similar to the
Gutzwiller method, it is a variationally controlled approximation. The variational princi-
ple, however, is not wave-function-based (in equilibrium, the Ritz variational principle; in
nonequilibrium the Dirac-Frenkel variational principle [77]) but Green’s-function-based
and intimately linked to the Luttinger-Ward functional [75, 76]. By means of finding
optimal values for the one-particle part of a small, and as such easy to solve, cluster sys-
tem, it selfconsistently includes the effect of short-range correlations into the calculation.
A remaining limitation, however, concerns the computationally expensive inversion of
Dyson’s equation on the Keldysh-Matsubara contour [76]. Going beyond intermediate
times is therefore prohibited. Underlining the potential of such light-weight, approxi-
mate methods, both, the nonequilibrium Gutzwiller as well as the nonequilibrium SFT,
correctly capture important features of the dynamical Mott transition [73, 78] in qualita-
tive agreement with the nonequilibrium DMFT [79]. Furthermore, due to being compu-
tationally much less demanding, longer timescales compared to the DMFT are accessible.
Therefore, as an important aspect, also the influence of the ramp duration on the dynam-
ical Mott transition could be studied [78, 80].

In this thesis, we develop new methodological tools to enable the study of nonequi-
librium dynamics in the presence of short-range spatial correlations. Special emphasis is
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put on avoiding an intrinsic bottleneck of Green’s-function-based approaches in nonequi-
librium, namely, the solution of Dyson’s equation on the Keldysh-Matsubara contour in
which the nonequilibrium self-energy serves as a memory kernel. To this end, we develop
an exact mapping of time-dependent interacting to noninteracting fermionic lattice mod-
els. The idea is linked to a rather fundamental property of the nonequilibrium self-energy,
namely, that it can be decomposed into a superposition of noninteracting isolated modes,
better known as its Lehmann representation. This property was first conjectured and
numerically verified in the context of nonequilibrium DMFT [50], where it could indeed
be exploited to make a fully inhomogeneous setup numerically tractable. After recalling
some important notions of nonequilibrium many-body theory in Chapter 2 – in particu-
lar the generalization of the well-known Lehmann representation of equilibrium Green’s
functions to nonequilibrium – we give an in-depth introduction into the general idea in
Chapter 3. We proceed with a rigorous proof of the existence of the Lehmann represen-
tation of the nonequilibrium self-energy. We detail how our proof enables to reach long
timescales in the context of cluster-based methods and present a numerical algorithm for
an efficient computational implementation. With these tools at hand, we consider clus-
ter perturbation theory (CPT) as a simple numerical test case in Chapter 4. Indeed, we
find that our time-local (i.e., memory-kernel-free) algorithm allows to access much longer
times in comparison to previous studies. Yet, we also rediscover the main drawbacks of
the simple, non-selfconsistent embedding approach of the CPT. In general, it violates im-
portant conservation laws such as energy and particle number conservation. We address
these issues in Chapter 5 where we develop a conserving cluster perturbation theory by
enforcing local constraints which correspond to the macroscopic conservation laws. To
this end, we make fully use of the time-local algorithm developed for the nonequilibrium
CPT. As a proof of principle, we numerically solve weak quenches in the homogeneous
Hubbard model. By design, we find conservation laws fulfilled. In comparison to a plain
CPT calculation, this has a profound impact on the dynamics.

Motivated by the successful application of the mapping idea in the context of cluster-
based methods, we also investigate a somewhat different route in Chapter 6. In the con-
text of equilibrium studies of the Hubbard model, so called n-pole approximations have
gained some popularity [27, 81–85]. We show that the time-dependent noninteracting
Hamiltonian resulting from the mapping procedure can be constructed such that it cor-
responds to a nonequilibrium n-pole approximation thus generalizing this idea. The con-
cept is closely related to the continued fraction expansion in theMori-Zwanzig projection
technique [86–88] whichwe formulate for the first time using Keldysh-Matsubara Green’s
functions. Applying the idea to the time-dependent Hubbardmodel, we derive a fully self-
consistent nonequilibrium two-pole approximation, much in the spirit of Roth [81, 82].
Finally, we show how to implement conservation laws in the nonequilibrium two-pole
approximation.

Lastly, in Chapter 7, we summarize the main results and give an outlook to possible
future developments.
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2. Nonequilibrium formalism

Equilibrium many-body theory [89] is largely based on Green’s functions and has its his-
torical roots in quantum field theory and its diagrammatic perturbative methods [90, 91].
Targeted at zero temperature problems, we have the Feynman-Dyson perturbation theory
which is formulated on the real-time axis and based on the idea of adiabatic switching of
the interaction and the Gell-Mann-Low theorem [92]. At finite temperature, the appro-
priate ansatz is given by the imaginary-time Matsubara technique [93] which exploits the
structural similarity between the statistical and the time-evolution operator. Results for
the real time axis are then obtained from analytical continuation. Despite their intrinsic
differences, if perturbatively expanding the corresponding Green’s function with the help
Wick’s theorem [94] one finds that the same set of diagrams emerges for both approaches.
Key insights gained from diagrammatic manipulations, like the linked-cluster theorem or
the existence of a self-energy and Dyson’s equation, thus apply to both cases [32]. This
on first sight astounding finding can be traced back to the fact that both can be derived
as the limiting cases of a more general unifying theory which describes time-dependent
phenomena as well: The nonequilibrium Keldysh-Matsubara formalism.

Its main idea is the introduction of an L-shaped time contour (cf. Fig. 2.1), in this
thesis referred to as the Keldysh-Matsubara contour. Due to a corresponding contour-
ordering operator, the correct placement of the time-evolution and the statistical operator
is beautifully taken care of. Leading up to the formalism in its modern form, the nowadays
most famous publication was written by Keldysh and published in 1964 [43]. He showed
that the so called “vacuum stability condition” in the zero-temperature formalism can be
dropped if one introduces a contour that makes a round trip along the real time axis. As a
remaining restriction, his approach relies on an adiabatic switching of the interaction as
the only possibility to take into account initial state correlations. A proper generalization
was given by Danielewicz in 1984 [95], who in this context also derived an appropriately
generalized version ofWick’s theorem, by showing that an extension of Keldysh’s contour
into the imaginary-time domain allows for a description of arbitrary thermal initial states.
A fully comprehensive view, which also includes the possibility of non-thermal, correlated
initial states was finally given by Wagner in 1991 [96]. While the mentioned publications
clearly advanced the contour idea, let us note that the development of nonequilibrium
many-body theory is by far not limited to these authors. Other influential works include,
for example, Martin and Schwinger [97] as well as Kadanoff and Baym [98].1 Finally, we
refer to Ref. 32 for a pedagogical introduction into nonequilibrium many-body theory.

In the following, we briefly motivate the Keldysh-Matsubara contour as an elegant tool
for the investigation of nonequilibrium phenomena (Section 2.1). We proceed by defining

1 Some personal historical viewpoints of researchers who were involved in the field’s early developments
can be found in Refs. 99, 100 and 101.
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t = 0 C1

tmax

t′

−iβ

C2

C3

t

Figure 2.1.: Keldysh-Matsubara contour C . C1 denotes the upper branch, C2 the lower
branch and C3 the imaginary Matsubara branch. Together, the upper and
lower branch define the Keldysh part K = C1 ∪ C2 of the contour. As an
illustration of the concept of contour ordering, consider the shown exam-
ple: Here, t is later than t′ in sense of the contour, denoted as t >C t′ in
the text. A contour-ordered expression involving the Hamiltonian at these
times, for example, would therefore yield: TC {H(t′)H(t)} = H(t)H(t′).We
further note that for two variables on the upper branch, i.e., t1, t2 ∈ C1, the
contour-ordering operator TC reduces to conventional time-ordering operator
T : TC {H(t1)H(t2)} = T {H(t1)H(t2)} .

contour-ordered Green’s functions and derive its equations of motion in Section 2.2. As
an important cornerstone of this thesis, we end this chapter with the introduction of the
Lehmann representation of contour-ordered Green’s functions (Section 2.3).

2.1. The Keldysh-Matsubara contour
We consider a time-dependent Hamiltonian H(t) = H0(t) + Hint(t) where H0(t)
is assumed to be its noninteracting quadratic part while Hint(t) contains the quartic
terms. We further assume a scenario where the system is initially in equilibrium with
Hamiltonian Hini = H(0) due to being in contact with a surrounding environment.
At time t = 0, the system is decoupled from its environment and a unitary time-
evolution is initiated. From Schrödinger’s equation we obtain the time-ordered propa-
gator U(t, 0) = T exp

(
−i
∫ t
0
H(t′)dt′

)
, with Planck’s constant ℏ set to one. Further-

more, we introduce the convention that operators with a hat carry a time dependence
according to the Heisenberg picture, i.e., Â(t) ≡ U †(t, 0)AU(t, 0), for an arbitrary, time-
independent observable A. The expectation value ⟨Â(t)⟩H at time t is defined as

⟨Â(t)⟩H ≡ tr
(
ρU †(t, 0)AU(t, 0)

)
, ρ =

1

Z
exp (−βHini) . (2.1)

Here, β denotes the inverse temperature, with Boltzmann’s constant kB set to one. For a
convenient notation, we assume a term−µN to be absorbed into the noninteracting part
of the Hamiltonian, i.e.,H0(t), where µ denotes the chemical potential andN the particle
number operator. ρ then refers to the grand-canonical density matrix and consequently
Z = tr (exp (−βHini)) to the grand-canonical partition function. The trace tr (·) runs over
the full Fock space.
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2.1. The Keldysh-Matsubara contour

By employing the contour-ordering operator TC , cf. Fig. 2.1, we can express Eq. (2.1) as

⟨Â(t)⟩H =
1

Z
tr (TC {exp (S)A(t)}) , S ≡ −i

∫
C

H(t′)dt′. (2.2)

We emphasize that the introduction of a dummy contour-time dependence A(t) on the
right hand side of this expression is necessary to ensure a correct placement of A when
evaluating the contour ordering. We further emphasize that the action S is defined only
within the context of a contour-ordered expression.

So far, Eq. (2.2), does not seem to be much more than an elegant way of rewriting the
initial expression. However, the true power of this formulation is revealed if we con-
sider a perturbative expansion. To this end, it is convenient to define S = S0 + Sint,
where S0 ≡ −i

∫
C
H0(t

′)dt′ and Sint ≡ −i
∫
C
Hint(t

′)dt′. Since the contour-ordering op-
erator takes care of correctly positioning all involved operators, we are allowed to split up
the matrix exponential such that exp (S) = exp (S0) exp (Sint) . Furthermore, the grand-
canonical partition function can be rewritten as Z = tr (TC exp (S)) since the integra-
tions along the upper and lower branch of the contour cancel each other. By expanding
in powers of Sint, we therefore obtain a perturbation theory in the interaction which can
be evaluated bymeans ofWick’s theorem. Using the standard set of rules, a diagrammatic
perturbation theory can be set up, cf. for example Ref. 32. It is worthwhile to note that
this derivation was carried out completely in the Schrödinger picture. The simplicity is a
direct consequence of the powerful contour-ordering idea.

Let us finally comment on how to obtain the zero- and finite-temperature formalism
from the more general Keldysh-Matsubara formalism. The latter is obtained rather triv-
ially by setting tmax = 0 which reduces the contour to its Matsubara branch. To ob-
tain the former, we assume the noninteracting part of the Hamiltonian H0(t) to be time-
independent and the interacting part to be switched adiabatically, i.e., Hint(t) = e−ϵ|t|V,
with ϵ > 0 and ϵ → 0 at the end of the calculation. In the limit t → −∞ the system
is thus uncorrelated and Wick’s theorem applies. Additionally, we perform the zero-
temperature limit β → ∞ so that the density matrix, assuming no degeneracies, reduces
to a pure state ρ(−∞) = |ψ(−∞)⟩⟨ψ(−∞)| and consequently we have Z = 1. Exploit-
ing that adiabatic switching leaves |ψ(−∞)⟩ intact up to a phase factor, we are allowed
to replace ⟨ψ(−∞)|U †(t,−∞) = ⟨ψ(−∞)|U(∞,t)

⟨ψ(−∞)|U(−∞,∞)|ψ(−∞)⟩ . Finally, we interpret the time-
ordering as a contour-ordering on the branch C1 (going from t = −∞ to tmax = ∞) of
the Keldysh-Matsubara contour such that we arrive at

⟨Â(t)⟩H =
⟨ψ(−∞)|TC

{
e
−i

∫
C1

H(t′)dt′
A(t)

}
|ψ(−∞)⟩

⟨ψ(−∞)|TC e−i
∫
C1

H(t′)dt′ |ψ(−∞)⟩
, (2.3)

which is the well-known starting point of zero-temperature perturbation theory. Let us
emphasize that the interpretation of the imaginary-time ordering in the Matsubara ap-
proach as a contour-ordering on the branch C3 and similarly the interpretation of the
time ordering in the zero-temperature formalism as a contour-ordering on the branch C1

implies structural identity to the Keldysh-Matsubara formalism up to the explicit form of
the involved contour. It is therefore to no surprise that the same set of diagrams emerges
in all three cases (see Ref. [32] for a more in-depth discussion).
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2. Nonequilibrium formalism

2.2. Nonequilibrium Green’s functions for fermionic
lattice models

While our considerations so far have been completely general, we will from now on re-
strict the discussion to time-dependent, fermionic lattice models. The Hamiltonian reads

H(t) =
∑
ij

(Tij(t)− δijµ)c
†
icj +

1

2

∑
kk′ll′

Ukk′ll′(t)c
†
kc

†
k′cl′cl, (2.4)

where the indices i, j run over the possible one-particle orbitals (lattice sites, local
orbitals, spin projection, …). Fermions in such states are created (annihilated) by
the operators c†i (ci). Without loss of generality, we assume the symmetry relation
Ukk′ll′(t) = −Uk′kll′(t) = −Ukk′l′l(t) = Uk′kl′l(t) to hold for the interaction term which
leads to a leaner notation.

A quantity central to this thesis is the contour-ordered one-particle Green’s function.
It is defined as

Gij(t, t
′) = −i⟨TC ĉi(t)ĉ†j(t′)⟩H =

−i
Z

tr
(
exp (−βHini)

[
TC ĉi(t)ĉ†j(t′)

])
. (2.5)

Its equations of motion read

i∂tGij(t, t
′) = δijδC(t, t

′) +
∑
k

[Tik(t)− µδik]Gkj(t, t
′) (2.6)

− i
∑
k′ll′

Uik′ll′(t)⟨TC ĉ†k′(t)ĉl′(t)ĉl(t)ĉ
†
j(t

′)⟩,

−i∂t′Gij(t, t
′) = δijδC(t, t

′) +
∑
k

Gik(t, t
′) [Tkj(t

′)− µδkj]

− i
∑
kk′l′

Ukk′jl′(t
′)⟨TC ĉi(t)ĉ†k(t

′)ĉ†k′(t
′)ĉl′(t

′)⟩.

It is worthwhile to note that the equations of motion reflect the main complication of
many-body theory: The set of equations is non-closed due to the interaction term which
couples the one-particle Green’s function to correlation functions of second order. The
same pattern repeats itself if one calculates the equations of motion of higher-order cor-
relation functions. A systematic analysis leads to the Martin-Schwinger hierarchy [97], a
solution of which, however, is not possible without making approximations.

The standardway to relate the two-particle terms back to the one-particle Green’s func-
tion is based on defining the so called self-energy Σ:

[Σ ◦G]ij(t, t′) = −i
∑
k′ll′

Uik′ll′(t)⟨TC ĉ†k′(t)ĉl′(t)ĉl(t)ĉ
†
j(t

′)⟩, (2.7)

[G ◦ Σ]ij(t, t′) = −i
∑
kk′l′

Ukk′jl′(t
′)⟨TC ĉi(t)ĉ†k(t

′)ĉ†k′(t
′)ĉl′(t

′)⟩.

Here, we have made use of a shorthand notation for the convolution of contour matrices.
For example:

[G ◦ Σ]ij(t, t′) =
∫
C

dt1
∑
l

Gilσ(t, t1)Σljσ(t1, t
′). (2.8)
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2.3. Lehmann representation of the nonequilibrium Green’s function

We will employ the same notation for matrix products involving time-local quantities by
assuming an implicit contour Dirac delta function δC(t, t′) to be present. For example,
T (t) should be replaced by T (t)δC(t, t′) in a contour convolution, so that

[T ◦G]ijσ(t, t′) =
∫
C

dt1
∑
l

Tilσ(t)δC(t, t1)Gljσ(t1, t
′) (2.9)

=
∑
l

Tilσ(t)Gljσ(t, t
′).

A common way to establish that the self-energy is a well-defined object relies on an ex-
plicit construction bymeans of diagrammatic perturbation theory [32]. As part of this the-
sis, we follow a different route and construct the self-energy in a rather special formwhich
highlights its mathematical structure: The so called Lehmann representation, cf. Chapter 3.

Making use of Eq. (2.7), the equation of motion of the one-particle Green’s function
can be expressed in terms of the one-particle Green’s function and the self-energy. The
result is known as Dyson’s equation:

G = G0 +G0 ◦ Σ ◦G. (2.10)

G0 denotes the noninteracting propagator. Its (contour) inverse can be stated analytically

[G−1
0 ]ij(t, t

′) = [δij(i∂t + µ)− Tij(t)] δC(t, t
′). (2.11)

While the dynamics of Eq. (2.10) is purely Markovian for Σ = 0, the self-energy can be
interpreted as a memory kernel introducing retardation effects in case of non-vanishing
interaction. We will investigate this further in Chapter 3.

It is worthwhile to note that, while a formal solution for the one-particle Green’s to
Eq. (2.10) is easily found, this solution involves the self-energy as an unknown object. A
closed set of equations can be obtained by expressing the self-energy as the sum of all
dressed skeleton diagrams [32]. This gives an independent equation, Σ = ΣU [G], where
ΣU [·] is a functional on the space of one-particle Green’s functions. This functional is
universal in the sense that it only depends on the interaction term U but not on the
hopping T . Summing the diagrammatic series to a closed form expression, however, has
so far not been possible even for the most simple interaction terms like the completely
local Hubbard interaction. In practice, one therefore has to truncate the series if aiming
at a numerical solution (e.g., Ref. 102).

2.3. Lehmann representation of the nonequilibrium
Green’s function

In many-particle theory, the term Lehmann representation refers to the decomposition of
the interacting Green’s function into a superposition of noninteracting, isolated modes.
For equilibriumGreen’s functions, this is a standard textbook result, e.g. Ref. 89. It uncov-
ers their analytical properties and can be used to show that the related spectral function
is positive definite. The Lehmann representation is further essential for the evaluation of
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diagrams through contour integrations in the complex frequency plane, for the derivation
of sum rules, etc. It refers to the expression

Gij(ω) =
∑
mn

e−βEm + e−βEn

Z

⟨m|ci|n⟩⟨n|c†j|m⟩
ω − (En − Em)

, (2.12)

where |m⟩ refers to the m-th eigenstate with eigenenergy Em of the initial Hamiltonian
(i.e.,Hini|m⟩ = Em|m⟩) and Z to the grand-canonical partition function. We identify the
Green’s function of an isolated mode (hmode = ϵc†c) in frequency space

g(ϵ;ω) =
1

ω − ϵ
(2.13)

and define the “Q-matrix” [103, 104]: Qi(m,n) = z(m,n)⟨m|ci|n⟩, where we introduced the
quantity z(m,n) =

√
(e−βEm + e−βEn)/Z . As a useful property, the rows of the Q-matrix

fulfill the orthonormality condition∑
mn

Qi(m,n)Q
∗
j(m,n) = ⟨

{
ci, c

†
j

}
⟩H = δij. (2.14)

Here, {A,B} = AB+BA denotes the anticommutator. We emphasize that theQ-matrix
is not quadratic. This implies in particular

∑
iQi(m,n)Q

∗
i(m′,n′) ̸= δmm′δnn′ . Using the Q-

matrix and g(ϵ;ω), the Green’s function is expressed as

Gij(ω) =
∑
mn

Qi(m,n)g(ϵ(m,n);ω)Q
∗
j(m,n), ϵ(m,n) ≡ En − Em. (2.15)

A natural generalization of the Lehmann representation to nonequilibrium Green’s
functions based on Eq. (2.15) was discussed recently in the context of nonequilibrium
dynamical mean-field theory, cf. Ref. 31. First of all, consider the following replacement
for the Q-matrix

Qi(m,n) → Qi(m,n)(t) = z(m,n)⟨m|ĉi(t)|n⟩eiϵ(m,n)t. (2.16)

The orthonormality condition, Eq. (2.14), generalizes to
∑

mnQi(m,n)(t)Q
∗
j(m,n)(t) = δij .

Furthermore, Q(t) is equal on the upper and lower branch of the Keldysh-Matsubara
contour while being constant constant on the Matsubara branch with Q(−iτ) = Q(0)
and τ ∈ [0, β]. This restricts the dependence on imaginary-time, which corresponds to a
frequency dependence in equilibrium, cf. Eq. (2.15), to the Green’s function of the isolated
mode. The correct replacement for g(ϵ;ω) is obtained by using the Keldysh-Matsubara
formalism to solve hmode = ϵc†c for the one-particle Green’s function:2

g(ϵ;ω) → g(ϵ; t, t′) = i[f(ϵ)−ΘC(t, t
′)]e−iϵ(t−t

′). (2.17)
2 A curious reader might wonder, why the mathematical structure is so much more complex in nonequi-

librium. In particular: Why does the Fermi distribution only appear here? The reason lies in the com-
plexity of the backtransformation from spectral representation to imaginary time within the Matsub-
ara formalism. With ωn being the fermionic Matsubara frequencies and τ − τ ′ ∈ (0, β), we have
g(ϵ;−iτ,−iτ ′) = −i

β

∑
n g(ϵ; iωn)e

−iωn(τ−τ ′) =
∫∞
−∞

dω
2π (g(ϵ;ω+i0)−g(ϵ;ω−i0)) f(ω)e−ω(τ−τ ′).

The equality is based on the residue theorem and exploits that, on the imaginary axis, the Fermi distri-
bution has simple poles at the Matsubara frequencies. The Fermi distribution therefore arises naturally
as port of the backtransformation.
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2.3. Lehmann representation of the nonequilibrium Green’s function

f(ϵ) = (eβϵ+1)−1 denotes the Fermi-functionwhileΘC(t, t
′) refers to the contour variant

of the Heaviside step function (ΘC(t, t
′) = 1 for t ≥C t

′,ΘC(t, t
′) = 0 otherwise). Finally,

the Lehmann representation of the nonequilibrium Green’s function is given by

Gij(t, t
′) =

∑
mn

Qi(m,n)(t)g(ϵ(m,n); t, t
′)Q∗

j(m,n)(t
′). (2.18)

Of course, this result can also be obtained rigorously. To this end, it is sufficient to expand
the definition of the nonequilibrium Green’s function, Eq. (2.5), using the eigenstates |m⟩
of the initial Hamiltonian Hini and then to identify the Q-matrix and the solution of the
isolated mode, g(ϵ; t, t′).

The special form of the nonequilibriumGreen’s function, Eq. (2.18), highlights its math-
ematical structure. It features g(ϵ; t, t′), which is analytically known as the nonequilib-
rium solution of an isolated mode, as the only quantity that depends on both contour
times. The complicated Q-matrix, on the other hand, is time local. To explicitly mention
a possible application, let us note that in Ref. 31 it was used to prove that the nonequi-
librium DMFT action, a quantity dependent on two-contour times, can be mapped onto
a single-impurity Anderson Hamiltonian, a quantity dependent on a single time variable.
Such a mapping allows for powerful Hamiltonian-based methods being used as impu-
rity solvers, e.g., the multi-configuration time-dependent Hartree method [48] or, most
promising, the time-dependent DMRG [47].
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3. Lehmann representation of the
nonequilibrium self-energy

In the last chapter we have introduced some basic notions of out-of-equilibrium many-
body theory for fermionic lattice models. Most importantly for this thesis: The Lehmann
representation of the nonequilibrium Green’s function, which uncovers the mathemat-
ical structure of its dependence on the two contour times. The explicit construction of
a Lehmann representation for the self-energy, on the other hand, turns out to be more
tedious yet useful nevertheless. This is already true for the equilibrium case. In a re-
cent work, for example, a highly non-trivial diagrammatic construction has been worked
out [106] which was subsequently used to cure the problem of possibly negative spectral
functions arising from a summation of a subclass of diagrams.

In nonequilibrium, additional complexity arises from the arbitrary time dependence
of the model parameters so that even the existence of a Lehmann representation of the
self-energy is unclear a priori. However, if existent it allows to map Dyson’s equation
onto a Markovian (i.e., memory-kernel-free) propagation scheme as was pointed out re-
cently [50]. This can lead to a tremendous speedup within numerical applications as
solving Dyson’s equation scales cubically in the maximum propagation time compared
to a linear scaling in the mapped Markovian case. We recapitulate the idea in Sec. 3.1. In
Section 3.2, one of the main results of this thesis is presented: We explicitly construct the
Lehmann representation of the nonequilibrium self-energy in case of an arbitrary time-
dependent interacting lattice fermion model. In the course of this we show that any such
model can exactly be mapped to a noninteracting lattice fermionmodel. Section 3.3 details
the numerical foundations allowing for a practical implementation. Finally, a summary
is given in Section 3.4.

3.1. Motivation
In several Green’s-function-based methods, an approximate self-energy Σ′ is obtained
from a small reference system by using exact diagonalization. The desired one-particle
Green’s function G of a much larger system is then obtained through Dyson’s equation

Gij(t, t
′) = [G0]ij(t, t

′) +

∫
C

∫
C

dt1dt2
∑
k1k2

[G0]ik1(t, t1)Σ
′
k1k2

(t1, t2)Gk2j(t1, t
′), (3.1)

Major parts of this chapter have previously been published as C. Gramsch and M. Potthoff, “Lehmann
representation of the nonequilibrium self-energy”, Phys. Rev. B 92, 235135 (2015). Copyright (2015) by
the American Physical Society. Reproduced with permission.
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whereG0 denotes the noninteracting Green’s function (i.e., U = 0) of the model given by
Eq. (2.4). Typical examples include dynamical mean-field theory (DMFT) [39, 40, 42, 44],
where Σ′ is obtained from a single-impurity Anderson model [31], or cluster perturba-
tion [107–112] and self-energy functional theory [75, 76, 113], where Σ′ stems from a
small reference system. To solve Eq. (3.1) numerically, a discretization of the continuous
time-contour C is necessary (cf. Fig. 2.1). The number of time steps required to reach a
given maximal time is dependent on the lowest relevant timescale that is set by a given
Hamiltonian. Based on this discretization, the effort required to solve Eq. (3.1) forG scales
cubically in the number of time steps and also the system size. Despite this challenge also
thememory consumption, which scales quadratically in these quantities, poses a problem.
Progress was made recently [50] by introducing a mapping of Eq. (3.1) onto a Markovian
propagation-scheme.

The idea proposed by the authors of Ref. 50 relies on the assumption that the self-energy
can be written in the following form:

Σ′
ij(t, t

′) = δC(t, t
′)Σ′HF

ij (t) +
∑
s

his(t)g(hss; t, t
′)h∗js(t). (3.2)

Here, Σ′HF
ij (t) denotes the time-local Hartree-Fock term. This decomposition is very sim-

ilar to the expression Eq. (2.18) for the Green’s function. We will refer to this as the
Lehmann representation of the self-energy. The immediate and important advantage of
the Lehmann representation is that the self-energy can be interpreted as a hybridization
function [31, 50]. This property allows to write down an effective noninteracting model
with Hamiltonian

Heff(t) =
∑
ij

(Tij(t) + Σ′HF
ij (t))c

†
icj +

∑
is

(his(t)c
†
ifs + H.c.) +

∑
s

hssf
†
sfs. (3.3)

The s-degrees of freedom represent “virtual” orbitals in addition to the physical degrees
of freedom labeled by i. They form an “effective medium” with time-independent on-site
energies hss and hybridization strengths his(t) such that the interacting Green’s function
of the original model is the same as the Green’s function of the effective noninteracting
model on the physical orbitals:

Gij(t, t
′) = −i⟨TC ĉi(t)ĉ†j(t′)⟩Heff . (3.4)

With this simple construction, the inversion of the Dyson equation can be avoided in
favor of a Markovian (i.e., memory-kernel-free) time propagation within a noninteracting
model.

As a successful benchmark, an interaction quench in an inhomogeneous Hubbard
model was treated with nonequilibrium DMFT in Ref. 50 using self-consistent second-
order perturbation theory as impurity solver. On the theoretical side, however, it re-
mained an open question if the existence of a Lehmann representation must be postulated
or if this is a general property of the nonequilibrium self-energy.

In the following we explicitly derive Eq. (3.2) for the exact self-energy corresponding
to the general, interacting Hamiltonian defined in Eq. (2.4), i.e., we show that the exact
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3.2. Analytical construction

self-energy can always be written in the form of a Lehmann representation. The proposed
construction scheme is not only useful as an analytical tool but also well suited for nu-
merical applications where an approximate self-energy is obtained from a small reference
system using exact diagonalization. In this case, the number of virtual orbitals is constant
and the effort for solving Eq. (3.1) scales linearly in tmax. This is a great advantage if one
is interested in long-time dynamics.

3.2. Analytical construction
We start our construction from the Lehmann representation ofG as stated in Eq. (2.18) and
define α ≡ (m,n) as a shorthand notation for the remainder of this chapter (cf. Fig. 3.1).
For our model Hamiltonian (2.4) the associated one-particle excitation energies ϵα and
the Q-matrix are given by Eq. (2.16). The self-energy is related to this representation
through Dyson’s equation Σ = G−1

0 − G−1. However, the inverse G−1 cannot directly
be calculated with Eq. (2.18) since Q(t) is not quadratic. As a first step we block up the
matrix Q(t) to a quadratic form. This is achieved by interpreting its orthonormal rows
(cf. the remark beneath Eq. (2.16)) as an incomplete set of basis vectors. Q(t) itself is an
incomplete unitary transform from this viewpoint. We now pick an arbitrary, pairwise
orthonormal completion of this basis to find an unitary transformO(t) that containsQ(t)
in its upper block (cf. Fig. 3.1). The next steps of our discussion will be independent of
the particular completion that is chosen. The only mathematical requirement is that it
is as smooth (and thus differentiable) in the time variable t as Q(t); see Section 4.4 for
numerical details on the construction of O(t).

The completed unitary transform O(t) describes additional virtual orbitals (labeled by
the index s, see Fig. 3.1 and Eq. (3.3)). For convenience, we also absorb in the definition
of O(t) the extra factor Eαα′(t) = δαα′exp (−iϵαt) that stems from the noninteracting
Green’s function g(ϵα; t, t′) (cf. Eqs. (2.18) and (2.17)). For clarity in the notations we use
the following index convention throughout this work

physical orbitals: i, j, virtual orbitals: r, s, (3.5)
physical or virtual orbitals: x, y, excitations: α, α′.

Like every time-dependent unitary transform, O(t) is generated by an associated Hermi-
tian matrix. We define

hxy(t) =
∑
α

[i∂tOxα(t)]O
†
αy(t). (3.6)

Indeed, by integration we have

O(t) = T exp
(
−i
∫ t

0

h(t′)dt′
)
O(0) (3.7)

and furthermore h(t) is Hermitian:

h(t) = [i∂tO(t)]O
†(t) = i∂t[O(t)O

†(t)]−O(t)i∂tO
†(t)

=
(
[i∂tO(t)]O

†(t)
)†

= h†(t). (3.8)
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3. Lehmann representation of the nonequilibrium self-energy

i

s
x

α = (m,n)

Q(t)E(t)

Q⊥(t)E(t)

hij(t) his(t)

h∗is(t)
hss

O(t) ≡ h(t) =,

Figure 3.1.: Unitary completion of the time-dependent matrix Q(t). The matrix Q⊥(t)
contains a completing set of orthonormal basis vectors in its rows. For con-
venience, the phase factor Eαα′(t) = δαα′exp (−iϵαt) is also absorbed into
O(t). The generating, Hermitian matrix h(t) (cf. Eq. (3.6)) can be assumed as
diagonal and time-independent in the virtual sector.

We now require the virtual part hss′(t) to be diagonal and time-independent such that
hss′(t) = hss(0)δss′ . To this end we use our freedom in choosing the completing basis
vectors Q⊥(t) which allows us to perform the associated unitary transform in the virtual
sector (see Fig. 3.1). With the resulting hxy(t) we define the single-particle Hamiltonian
Heff(t)

Heff(t) =
∑
xy

hxy(t)a
†
xay, (3.9)

which has precisely the form of the effective Hamiltonian stated in Eq. (3.3). The re-
quirement of a diagonal virtual sector defines the effective Hamiltonian uniquely up to
rotations in invariant subspaces.

At time t = 0, the effective medium can be stated in a diagonal form which is useful
for the evaluation of the corresponding one-particle Green’s function. We recall that we
required O(t) to be as smooth as Q(t) and take a look at

[i∂tO(t)]t=0 = h(0)O(0) = O(0)M, (3.10)

where M = O†(0)h(0)O(0). In particular, Eq. (3.10) implies [i∂tQ(t)E(t)]t=0 = Q(0)M
(cf. Fig. 3.1), while Eq. (2.16) easily evaluates to [[i∂tQ(t)E(t)]iα]t=0 = Q(0)iαϵα. We can
thus identifyMαα′ = δαα′ϵα. Putting everything together we find

hxy(0) =
∑
α

Oxα(0)ϵαO
∗
yα(0). (3.11)

We require that the effective medium is initially in thermal equilibrium with the same
inverse temperature β and the same chemical potential µ as the physical system. The
associated one-particle Green’s function of the medium is defined as

Fxy(t, t
′) = −i⟨TC âx(t)â†y(t′)⟩Heff . (3.12)

Recalling the diagonal form of the effective medium at t = 0 (cf. Eq. 3.11) and using that
the effective Hamiltonian (3.9) is noninteracting, we can easily rewrite this expression
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3.2. Analytical construction

into
Fxy(t, t

′) = i
∑
α

Oxα(t)[f(ϵα)−ΘC(t, t
′)]O∗

yα(t
′). (3.13)

The physical sector of F is by construction identical with the Lehmann representation of
G:

Fij(t, t
′) =

∑
α

Qiα(t)g(ϵα; t, t
′)Q∗

jα(t
′) = Gij(t, t

′). (3.14)

F encodes the full information on the one-particle excitations of the system defined by
the Hamiltonian (2.4). Eq. (3.14) further stresses the fact that in principle any (sufficiently
smooth) completion ofQ(t) to a unitary transformO(t) leads to a valid effective Hamilto-
nian. The physical sectors of O(t) and h(t) remain independent of its choice. The virtual
sectors, on the other hand, are affected and only the special choice ofO(t) (cf. the discus-
sion above and below Eq. (3.9)) guarantees a diagonal form of the effective medium.

Having found an effective, noninteracting model that reproduces the correct Green’s
function, it remains to link this back to the self-energy. The time-non-local (correlated)
partΣC

ij(t, t
′) follows by tracing out the virtual orbitals. This procedure is straightforward

as they are all noninteracting and we can use, e.g., a cavity-like ansatz [31] or an equation
of motion based approach [50]. This results in a hybridization-like function

ΣC
ij(t, t

′) ≡
∑
s

his(t)g(hss; t, t
′)h∗js(t

′) (3.15)

that encodes the influence of the virtual sites on the physical sector. The Green’s function
at the physical orbitals is then obtained from a Dyson-like equation

Fij(t, t
′) =

[
1

F−1
0 − ΣC

]
ij

(t, t′), (3.16)

where

[F−1
0 ]ij(t, t

′) = [i∂t − hij(t)]δC(t, t
′), (3.17)

with δC(t, t′) = ∂tΘC(t, t
′) as the contour delta function.

To make the final connection to the self-energy we evaluate the physical sector of h.
With

i∂tQi(m,n)(t)e
−iϵ(m,n)t = z(m,n)⟨m|[ĉi(t), Ĥ(t)]|n⟩ (3.18)

=
∑
j

(Tij(t)− µδij)Qj(m,n)(t) +
∑
ji′j′

Uii′jj′(t)z(m,n)⟨m|ĉ†i′(t)ĉj′(t)ĉj(t)|n⟩

we obtain

hij(t) = Tij(t)− δijµ+ ΣHF
ij (t), (3.19)

ΣHF
ij (t) ≡ 2

∑
i′j′

Uii′jj′(t)⟨TC ĉ†i′(t)ĉj′(t)⟩H = 2
∑
i′j′

Uii′jj′(t)⟨TC â†i′(t)âj′(t)⟩Heff .
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3. Lehmann representation of the nonequilibrium self-energy

At the physical orbitals the effective Hamiltonian is thus determined by the Hartree-Fock
Hamiltonian. By comparison of Eq. (3.16) with Dyson’s equation, Eq. (2.10), we finally
identify

Σij(t, t
′) = δC(t, t

′)ΣHF
ij (t) + ΣC

ij(t, t
′), (3.20)

concluding our construction of the self-energy. Let us stress that with Eqs. (3.9), (3.15)
and (3.19) we now have an explicit recipe to construct the Lehmann representation of the
self-energy. This representation is further unique as follows from the uniqueness of the
corresponding effective Hamiltonian (cf. the discussion above and below Eq. (3.9)).

3.2.1. Useful properties

With the Hamiltonian of the effective medium, Eq. (3.9), at hand, a number of useful
properties follow immediately:

Positive spectral weight

By taking a look at the Matsubara branch only, one can link the Lehmann representation
of the self-energy to the positive definiteness of its equilibrium spectral function. With
ΣM(τ − τ ′) ≡ −iΣ(−iτ,−iτ ′) we can perform the usual Fourier transform from imag-
inary time to Matsubara frequencies and then find the analytical continuation ΣM(ω) to
the complex-frequency plane (see for example Ref. 31). The spectral function is defined
as

CΣ
ij(ω) =

i

2π
[ΣM

ij(ω + i0)− ΣM
ij(ω − i0)] (3.21)

for real ω. It can be calculated explicitly from the matrix elements of the effective Hamil-
tonian. One finds:

CΣ
ij(ω) =

∑
s

his(0)h
∗
js(0)δ(ω − hss), (3.22)

where δ(ω) is the Dirac delta function. The positive definiteness for every ω is immedi-
ately evident.

Higher-order correlation functions

The self-energy and its time derivatives can be used to calculate certain expectation values
of higher order. Most prominent example is the interaction energy Eint which can be
stated as

Eint(t) =
−i
2

∫
C

dt̃
∑
ij

Σij(t, t̃)Gji(t̃, t
+), (3.23)
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3.2. Analytical construction

as follows from Eq. (2.7). By comparing the equations of motion ofGij(t, t
′) and Fxy(t, t′)

this contour convolution can be simplified using the effective Hamiltonian. One finds∫
C

dt̃
∑
j

Σij(t, t̃)Gji′(t̃, t
′) =

∑
j

[hij(t)− Tij(t)]Fji′(t, t
′)

+
∑
s

his(t)Fsi′(t, t
′). (3.24)

This is a remarkable relation as the contour integration can be avoided in favor of a simple
matrix multiplication.

In fact, arbitrary many-particle correlation functions can be expressed using relations
analogous to Eq. (3.24). Consider, for example, the definition

η(ijk)x(t) ≡
∑
mn

z(m,n)⟨m|ĉ†i (t)ĉj(t)ĉk(t)|n⟩O
†
(m,n)x(t) (3.25)

Then

−i
∑
x

η(ijk)x(t)Fxl(t, t
+) =

∑
mn

[z(m,n)]
2⟨m|ĉ†i (t)ĉj(t)ĉk(t)|n⟩f(ϵ(m,n))⟨n|ĉ

†
l (t)|m⟩

= ⟨ĉ†l (t)ĉ
†
i (t)ĉj(t)ĉk(t)⟩H . (3.26)

Of course, while η(ijk)x(t) is easily stated through Eq. (3.25) if the system can be diagonal-
ized exactly, an explicit expression might not be available in the context of approximate
methods. This is similar to, for example, self-consistent perturbation theory where G
and Σ are the only available quantities. In this case, only a small subset of multi-particle
correlation functions is directly accessible.

Quantum quenches

A convenient tool to drive quantum systems out of equilibrium is given by the so-called
quantum quenches. Here, one (or more) parameters of the system are changed suddenly.
This sudden change reflects itself as a discontinuous time dependence of the effective
Hamiltonian: Assume that the system is subjected to a quench at time t = 0, so that
Hini → Hfinal = const. Initially the system is in thermal equilibrium and the effective
Hamiltonian is given by Eq. (3.11), where ϵα are the excitations energies of Hini. The O-
matrix is continuous at t = 0 despite the quantum quench (it only depends on ĉi(t), cf.
Eq. (2.16)). Its time derivative, however, is not and thus h(t) jumps from h(0) to

hij(0
+) =

∑
α

[i∂tOiα(t)]t=0+O
∗
jα(0). (3.27)

After this jump, the effective Hamiltonian will in general not be constant for times t > 0,
i.e., h(t) ̸= h(0+).
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3. Lehmann representation of the nonequilibrium self-energy

3.3. Numerical construction of the effective
Hamiltonian

As discussed above Eq. (3.9) and shown in Fig. 3.1, it is possible to enforce a diagonal
virtual sector of the effective Hamiltonian. Such a sparse form is of course advantageous
within in a numerical context as it improves the scaling of matrix-matrix and matrix-
vector multiplications. Assuming h is of dimension Nh × Nh, a matrix-matrix multipli-
cation scales quadratic, instead of cubic, and a matrix-vector multiplication linear in Nh

due to the sparse form.
It remains to design an algorithm which allows to determine a unitary completion of

theQ-matrix which is equally smooth asQ itself (regarding its time argument) and indeed
gives a diagonal form for the virtual sector when inserted into Eq. (3.6). To this end, we
assume that a small cluster is solved using exact diagonalization and that all time deriva-
tives H(n)(t) = ∂nt H(t) of the Hamiltonian are given analytically. Since all eigenvec-
tors of the initial Hamiltonian are known, the numerical evaluation of Eq. (2.16) becomes
straightforward if we have an expression for ĉi(t). Since we are also interested in n-th
order derivatives, let us first consider the propagator U(t, 0) = T exp

(
−i
∫ t
0
H(t′)dt′

)
:

U (n)(t, 0) = ∂n−1
t (−iH(t)U(t, 0)) (3.28)

= −i
n−1∑
k=0

(
n− 1

k

)
H(k)(t)U (n−1−k)(t, 0).

Eq. (3.28) allows to determine the n-th derivative U (n)(t, 0) iteratively as it only depends
on U (k)(t, 0) with k < n. Using further that

∂nt ĉi(t) =
n∑
k=0

(
n

k

)
U (k)(t, 0) ci [U

(n−k)(t, 0)]† , (3.29)

we find the n-th derivative ĉ(n)i (t) of the annihilation operator and thus of Q(n)(t), see
Eq. (2.16). In the following we will therefore assume that Q(n)(t) is available to arbitrary
order.

3.3.1. The equilibrium Hamiltonian
At time t = 0, the effective medium is given by Eq. (3.11). Q(0) and ϵα are directly
accessible from exact diagonalization. It such remains to construct Q⊥(0), i.e., a basis for
the virtual sector. We define

Pαα′ =
∑
i

Q∗
iα(0)Qiα′(0) , (3.30)

which can be easily verified to be a projector. Its eigenvalues are therefore restricted to
0 and 1. Eigenvectors corresponding to 1 are given by Q(0)† itself, eigenvectors corre-
sponding to 0, on the other hand, form the desired matrix [Q⊥(0)]†. However, if we insert
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3.3. Numerical construction of the effective Hamiltonian

this result into Eq. (3.11) we will have hss′ ̸= 0 for s ̸= s′, i.e., generally hwill not be diag-
onal in the virtual sector. This is due to the fact that we picked the completing partQ⊥(0)
randomly. Explicit diagonalization of h in the virtual sector yields a unitary transform R

hss′ =
∑
r

RsrdrR
∗
rs′ . (3.31)

Replacing Q⊥(0) → RQ⊥(0), we get hss′ → δss′ds, i.e., we have found the desired com-
pleting basis which gives h with a diagonal virtual sector.

3.3.2. Propagation scheme
Assume now that O(t) as well as Q(n≥1)(t) are known for an arbitrary time t. This is at
least the case for t = 0+, since we have O(0) = O(0+) even for a discontinuous time-
dependence of H(t) (cf. Sec. 3.2.1) while Q(n≥1)(t) is directly accessible at all times if we
employ exact diagonalization. We recall that h(t) is required to be constant and diagonal
in the virtual sector (cf. discussion below Eq. (3.8))

hss′(t) = δss′hss(0) ⇒ h
(n≥1)
ss′ (t) = 0, (3.32)

i.e., all time derivatives vanish in the virtual sector. Only the hybridization elements and
the physical sector yield non-trivial elements. They follow from Eq. (3.6) as

h
(n)
iy (t) = i

n∑
k=0

(
n

k

)∑
α

[∂k+1
t (Qiα(t)e

−iϵαt)][O(n−k)(t)]†]αy. (3.33)

O(n)(t), on the other hand, only depends on h(k)(t) and O(k)(t), with k < n:

O(n)(t) = −i∂(n−1)
t h(t)O(t) (3.34)

= −i
n−1∑
k=0

(
n− 1

k

)
h(k)(t)O(n−1−k)(t).

It is thus possible to iteratively calculate h(n)(t) and O(n)(t).
With O(n)(t) at hand, O(t + ∆t) can be computed directly from its Taylor series. Al-

ternatively, we can base the propagation on h(n)(t) and the analytical relation

O(t+∆t) = T
{
exp

(
−i
∫ t+∆t

t

h(t′)dt′
)}

O(t) . (3.35)

Using the Magnus expansion [114], the time-ordered exponential can be systematically
expanded in ∆tn and h(n)(t). Assuming that ∆t lies within the convergence radius of
the Magnus expansion (this is generally expected to be the case for sufficiently small∆t),
we can reduce the propagation error arbitrarily by increasing the order. In practice, an
evaluation of the Magnus expansion using commutator-free exponential time propaga-
tors [115] (CFETs) allows for an efficient numerical propagation which takes advantage
of the sparse form of the effective Hamiltonian.

The same procedure can be reiterated again and again to propagate O(t) to arbitrary
large times. We emphasize that the whole procedure is numerically exact, i.e., the error
is below machine precision, if ∆t is chosen sufficiently small.
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3. Lehmann representation of the nonequilibrium self-energy

3.3.3. Dimensionality of the O-matrix
For a one-band systemwith two spin degrees of freedom, the dimension of the Fock space
scales as dim(FT,U) = 4L where L is the number of lattice sites. The full O-matrix, as
constructed in Section 3.2, strictly fulfills

∑
xOx(m,n)(t)O

∗
x(m′,n′)(t) = δnn′δmm′ for all

possible combinations of (m,n). It is therefore of dimension

O(t) ∈ C42L×42L , (3.36)

as both, ⟨m| and |n⟩, run through all eigenstates of the Hamiltonian HT,U , cf. Eq. (2.16).
Already for a 4-site system, a naive implementation will therefore yield an O-Matrix of
dimension O(t) ∈ C65536×65536 which, assuming complex numbers at double precision
(i.e., 128 bit per complex number), would require 64 GB ofmemory for storage. In practice,
however, it is commonly possible to exploit certain symmetries of the Hamiltonian to
drastically reduce this dimension. In the following we will assume that the Hamiltonian
is particle-hole symmetric and that the total spin-density is conserved.

The minimal dimension of the O-matrix follows from the number of non-vanishing
terms of the Q-matrix, cf. Eq. (2.16). Any combination (m,n), with Qi(m,n)(t) = 0 for
all times, can be neglected when completing the Q-matrix to the unitary O-matrix. We
will refer to any O-matrix with a dimension less than 42L × 42L, cf. Eq. (3.36), as reduced
O-matrix. First of all, let us consider finite temperatures, i.e., z(m,n) > 0. Our task is to
count the number of non-vanishing excitations ⟨m|ĉiσ(t)|n⟩. Exploiting conservation of
the total spin, we can represent each eigenstate as a direct product, i.e., |m⟩ = |m↑⟩⊗|m↓⟩,
so that ⟨m|ĉiσ(t)|n⟩ = ⟨mσ̄|nσ̄⟩⟨mσ|ĉiσ(t)|nσ⟩. The number of contributing terms, Nct,
follows as

Nct =
L∑
l=0

(
L
l

)2

×
L−1∑
k=0

(
L
k

)(
L

k + 1

)
=

(2L)!2

L!2(L− 1)!(L+ 1)!
≡ f(L). (3.37)

This gives the explicit values:

β ∈ R: L 1 2 3 4 5 6 …
Nct 2 24 300 3920 52920 731 808 …

The resulting reduced O-matrix, O(t) ∈ CNct×Nct , still looks quite large. However, the
number reduces further if we restrict ourselves to systems which are initially at zero
temperature, i.e., β → ∞. This limit yields z(m,n) = 0 if Em ̸= 0 ∧ En ̸= 0. For a half-
filled system with an even number of lattice sites and a non-degenerate ground state one
obtains

Nct = 2×
(
L
L/2

)(
L

(L/2 + 1)

)
= 2× f(L/2), (3.38)

while for an odd number of lattice sites, the ground state is at least two-fold degenerate
at half-filling due to particle-hole symmetry. One therefore finds

Nct = 2×
((

L
(L+ 3)/2

)(
L

(L− 1)/2

)
+

(
L

(L+ 1)/2

)(
L

(L− 1)/2

))
= f

(
L+ 1

2

)
. (3.39)
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Combining these results, we obtain the following table

β → ∞: L 1 2 3 4 5 6 7 8 …
Nct 2 4 24 48 300 600 3920 7840 …

Within a practical application, the exact number of contributing terms may deviate from
the table entries stated for β ∈ R and β → ∞. At finite temperature, a further reduction
of terms is often possible by introducing a cutoff value ϵcutoff and neglecting all terms with
z(m,n) < ϵcutoff. On the other hand, even at zero temperature the minimal dimension can
be substantially larger if one finds a degenerate ground state. An important example is the
noninteracting 2×2 cluster with next-neighbor hoppingwhich turns out to have a 16-fold
degenerate ground state at half filling. Numerics yield Nct = 512 ≫ 48. Nevertheless,
the takeaway message is that the algorithm performs best for initial states prepared at
zero temperature.

3.4. Summary
Concluding, we have shown that the self-energy of an arbitrary interacting fermionic
lattice model can be decomposed into a superposition of noninteracting isolated modes
called the Lehmann representation. Our proof provides a direct scheme to construct this
Lehmann representation of the self-energy, and thus allows for a deeper theoretical under-
standing of the self-energy complementary to its diagrammatic definition. Interestingly,
our argumentation also shows that the original interacting system can exactly be mapped
onto an exponentially large, noninteracting system described by an effectiveHamiltonian.

To be used within a practical application, we have stated an algorithm that allows to
construct this effective, noninteracting Hamiltonian which underlies the Lehmann rep-
resentation of the self-energy. Most interestingly, the number of virtual sites, which is
identical to the number of noninteracting modes within the Lehmann representation, is
only dependent on the system size for a given problem and thus constant over time. This
property is very useful in the context of methods where a small reference system is solved
exactly to approximate the dynamics of a much larger system. A concrete numerical ex-
ample is part of the next chapter (Section 4.4). There, the algorithm is used in the context
of nonequilibrium cluster perturbation theory to access long timescales.
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4. Cluster perturbation theory (CPT)

Based on the current state of theoretical computer science it is believed that, indepen-
dent of the concrete method, the computational effort required to exactly simulate an ar-
bitrary fermionic lattice system is only tractable if the system under consideration is small
enough.1 Indeed, this statement clearly holds true for the mapping procedure introduced
in the laster chapter which involves an exponential scaling in system size of the dimen-
sion of the relevant matrices (the O-matrix and the effective medium, h(t), cf. Sec. 3.3.3).
Like every other exact-diagonalization-based approach, it is therefore limited to a rather
small number of lattices sites (e.g., using the Lanczos technique, the half-filled Hubbard
model on 24 sites was simulated in Ref. 119). One intuitive idea to tackle larger systems is
to view them as being built up from many small clusters. These small clusters are easily
solved. The remaining problem is then to couple the obtained solutions back together to
finally reach the desired description of the original object of interest: the large system.
The question is obvious: What is the right way to embed the cluster solutions into the larger,
original lattice?

Of course, no matter how intuitive our argumentation, if considering an arbitrary
fermionic lattice system any computationally tractable answer must bring us immediately
into the realm of approximations. In the context of nonequilibrium Green’s functions, a
first rather basic approach is given by cluster perturbation theory (CPT) [107, 108]. As-
sume that we have solved the problem regarding themovement of a single electronwithin
a system of disconnected clusters, i.e., we know the probability amplitude (Green’s func-
tion) of an electron’s movement between two sites i and j. The idea of the CPT to take
into account the missing coupling between the clusters, commonly referred to as the
intercluster-hopping, is most easily understood from a statistical point of view: The prob-
ability amplitude of an electron moving from one site i to another site j is the sum of the
probability amplitudes of an electron doing so by (i) never crossing a cluster boundary (ii)
exactly once crossing a cluster boundary (iii) exactly twice crossing a cluster boundary
(iv - ∞) and so forth. For a noninteracting system, where electron movement is the only
degree of freedom, this is exact.

Sections 4.1 – 4.3 have been published as part of C. Gramsch and M. Potthoff, “Enforcing conservation
laws in nonequilibrium cluster perturbation theory”, Phys. Rev. B 95, 205130 (2017). Copyright (2017)
by the American Physical Society. Reproduced with permission.
Sections 4.4 and 4.5 have been published as part of C. Gramsch and M. Potthoff, “Lehmann represen-
tation of the nonequilibrium self-energy”, Phys. Rev. B 92, 235135 (2015). Copyright (2015) by the
American Physical Society. Reproduced with permission.

1 To give a concrete example, the 2D fermionic Hubbard model with local magnetic fields is known to
be a computationally hard problem, both on classical and quantum computers [117]. Considering only
the former, the search for an polynomial generic algorithm for treating interacting quantum systems
relates to the famous yet currently unproven hypothesis P ̸= NP, see Ref. 118 for a recent review.
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4. Cluster perturbation theory (CPT)

However, the picture breaks down if we are dealing with interacting Green’s functions.
Regarding the starting point, i.e., the probability amplitude describing an electron’s move-
ment in the system of decoupled clusters, the interaction is already taken into account.
What we are missing is again the intercluster-hopping. Yet, when performing the same
summation as before, it turns out that a large class of possible processes is not taken into
account. The CPT restricts the electron-electron interaction to the same cluster, i.e., an
electron travelling from i to j may on its way only interact with other electrons who have
never left their cluster. This is a dramatic simplification. In the most extreme example of a
single-site cluster, the interaction electrons cannot move at all and as such nonlocal cor-
relations are completely ignored. On the brighter side, the quality of the approximation
can be controlled systematically. By using larger clusters, where the interaction electrons
are more mobile, we improve the results.

Although the general scheme of the CPT is rather simple, one faces additional com-
plexity if dealing with out-of-equilibrium setups. Here, translational invariance with re-
spect to time is broken. A diagonal spectral representation of the CPT Green’s function
is therefore insufficient which must instead be stated as a non-diagonal quantity on the
Keldysh-Matsubara contour. In particular, solving the CPT equation requires a matrix
inversion which scales cubically in the maximal propagation time. To overcome this lim-
itation, the existence of a Lehmann representation of the self-energy (cf. Chapter 3) can be
exploited. This allows to define a time-local one-particle Hamiltonian that generates the
CPT Green’s function at the price of an exponentially large number of additional, virtual
one-particle degrees of freedom in the cluster size. The time propagation, on the other
hand, becomes Markovian so that the computational effort scales linear in the maximal
propagation time.

Using the Hubbard model as a toy model (Sec. 4.1), we formulate the cluster pertur-
bation theory in its self-energy-based and in the new time-local Hamiltonian-based form
in Sections 4.2 and 4.3. To prove that the latter can be superior if considering out-of-
equilibrium setups, we proceed by investigating a concrete example in Section 4.4: The
dynamics of a singlemagneticmoment after an interaction quenchwithin the 2DHubbard
model. Exploiting the Markovian character, simulation times up to tmax = 104 become
accessible for this inhomogeneous problem where the inverse nearest-neighbor hopping
serves as the time unit. Yet the limitations of the CPT also surface, most prominently in
the form of a violation of fundamental conservation laws. Finally, a conclusion is given
in Section 4.5.

4.1. The Hubbard model

From the generic fermionic Hamiltonian defined in Eq. (2.4), the single-band Hubbard
model on an arbitrary lattice is obtained by introducing two spin species σ ∈ {↑, ↓}
and defining the interaction as purely local with interaction strength U(t). The hopping
matrix T (t) is assumed as spin-diagonal for simplicity. The Hamiltonian reads

HT,U(t) =
∑
ijσ

(Tijσ(t)− δijµ)c
†
iσcjσ + U(t)

∑
i

ni↑ni↓, (4.1)
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where niσ = c†iσciσ denotes the spin-dependent local density operator. A formal deriva-
tion from Eq. (2.4) is possible by replacing i → (iσ) and defining Tiσjσ′(t) = δσσ′Tijσ(t)

as well as Ukσ1k′σ2l′σ3lσ4(t) =
U(t)
2

(δklδk′l′δσ1σ4δσ2σ3 − δkl′δk′lδσ1σ3δσ2σ4) δkk′δσ1σ̄2 . Here, σ̄
indicates a flip of the spin index σ, i.e., ↑̄ =↓ and vice versa.

Simplifications to the nonequilibrium formalism

Within this chapter, the dependence of the Green’s function and other quantities on T (t)
and U(t) is made explicit in the notation using subscripts where convenient (e.g., GT,U ,
ΣT,U , etc.). Due to the locality of the interaction term a number of simplifications arise
in comparison with the completely general expressions stated in Chapter 2. The contour
convolution of self-energy and one-particle Green’s function simplifies to

[ΣT,U ◦GT,U ]ijσ(t, t
′) = −iU(t)[G(2l)

T,U ]ijσ(t, t
′), (4.2)

where we defined the two-particle Green’s function G(2l)

[G
(2l)
T,U ]ijσ(t, t

′) = ⟨TC n̂iσ̄(t)ĉiσ(t)ĉ†jσ(t′)⟩. (4.3)

Analogously, we have

−i[G(2r)
T,U ]ijσ(t, t

′)U(t′) = [GT,U ◦ ΣT,U ]ijσ(t, t
′), (4.4)

where G(2r) is defined as

[G
(2r)
T,U ]ijσ(t, t

′) = ⟨TC ĉiσ(t)n̂jσ̄(t′)ĉ†jσ(t′)⟩. (4.5)

The local doublon density di(t) can thus be expressed using the self-energy and the one-
particle Green’s function

di(t) ≡ ⟨n̂i↑(t)n̂i↓(t)⟩HT,U
(4.6)

=
−i
U(t)

[ΣT,U ◦GT,U ]iiσ(t, t
+) =

−i
U(t)

[GT,U ◦ ΣT,U ]iiσ(t, t
+).

Decomposition of the self-energy into its Lehmann representation

Using the formalism developed in Chapter 3, the self-energyΣT,U can be decomposed into
its Lehmann representation. This yields the unitary completion OT,U of the Q-matrix as
well as the effective Hamiltonian

Heff
T,U(t) =

∑
xyσ

[hT,U ]xyσ(t)a
†
xσayσ (4.7)

and a corresponding Green’s function [FT,U ]xyσ(t, t
′) (cf. Sec. 3.2). We recall that both

quantities span the physical as well as the virtual sector and that FT,U is constructed such
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4. Cluster perturbation theory (CPT)

that it coincides with GT,U in the former, cf. Eq. (3.14). Inspired by the fact that higher-
order correlation functions can be accessed by means of simple matrix-matrix products
(cf. Sec. 3.2.1) we define

[ηT,U ]ixσ(t) ≡
∑
mn

z(m,n)⟨m|n̂iσ̄(t)ĉiσ(t)|n⟩[OT,U ]
†
(m,n)xσ(t), (4.8)

To avoid confusion about the virtual sector we further define [ηT,U ]ss′ = 0, although we
will never reference these elements. The two-particle Green’s functions G(2l)

T,U and G(2r)
T,U

are now given as

[G
(2l)
T,U ]ijσ(t, t

′) = i
∑
x

[ηT,U ]ixσ(t)[FT,U ]xjσ(t, t
′), (4.9)

[G
(2r)
T,U ]ijσ(t, t

′) = i
∑
x

[FT,U ]ixσ(t, t
′)[ηT,U ]

∗
ixσ(t

′), (4.10)

as readily follows from Eq. (3.26). Assuming U(t) ̸= 0, a different route to access
[ηT,U ]ixσ(t) uses the matrix elements of the effective Hamiltonian:

[hT,U ]ijσ(t) = U(t)[ηT,U ]ijσ(t) + Tijσ(t)− δijµ, (4.11)
[hT,U ]isσ(t) = U(t)[ηT,U ]isσ(t).

To be consistent with Eq. (3.19), [ΣHF
T,U ]ijσ(t) = U(t)[ηT,U ]ijσ(t) = U(t)δij⟨n̂iσ̄(t)⟩HT,U

must hold. This is indeed the case, as can be shown by evaluating Eq. (4.8) in the physical
sector.

4.2. Self-energy-based formulation of the CPT
The idea of the CPT [107, 108] is to partition the lattice into clusters small enough to be
treated exactly, e.g., using Krylov-space methods or full diagonalization, and to subse-
quently include the connections between the clusters perturbatively. On the level of the
Hamiltonian one starts by partitioning the full hopping matrix T into the intra-cluster
hopping T ′ and the inter-cluster hopping V so that T ′ only contains terms which con-
nect lattice sites within the individual clusters, while V contains all remaining terms such
that T = T ′ + V , see Fig. 4.1. Corresponding to the intra-cluster hopping, we define a
cluster HamiltonianHT ′,U(t)which describes the system of isolated clusters, also referred
to as the reference system. Its Green’s function and self-energy are denoted as GT ′,U and
ΣT ′,U , respectively.

For the equilibrium as well as for the nonequilibrium case [105, 110, 112], the CPT can
be seen as an all-order perturbation theory in the inter-cluster hopping V which provides
the one-particle Green’s function of the original system by expanding around the cluster
Green’s function:

GCPT = GT ′,U +GT ′,U ◦ V ◦GT ′,U + · · · = 1

G−1
T ′,U − V

. (4.12)
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T T ′ V

T T ′−λ V+λ

a)

b)

Figure 4.1.: Sketch of plain CPT (a) and conservingCPT (b). Plain CPT: the hoppingmatrix
T is decomposed T = T ′ + V into the intra-cluster (T ′) and the inter-cluster
hopping V . The problem defined by T ′ (and the local Hubbard-type inter-
action) is solved exactly. V is treated by all-order perturbation theory (ne-
glecting vertex corrections), see Eq. (4.12). Conserving CPT: the same as plain
CPT but with “renormalized” intra- (T ′ −λ) and inter-cluster hopping V +λ,
where the time-dependent renormalization λ (indicated in red) is used to en-
force conservation laws. Note that λ may also comprise the on-site energies.

We also have:
GCPT =

1

G−1
T,0 − ΣT ′,U

. (4.13)

In the noninteracting case, this is exact since ΣT ′,0 = 0. For finite U(t), however, the CPT
Green’s function GCPT represents an approximation of the exact Green’s function GT,U .

Eq. (4.13) defines the standard, plain CPT approach. A closer look, however, reveals
that the CPT is not unique since one may consider a different starting point for the all-
order perturbation theory in V . To this end, consider a starting point with a renormalized
intra-cluster hopping, T ′ → T ′ − λ, resulting in a renormalized cluster Green’s function
GT ′−λ,U and self-energyΣT ′−λ,U . Correspondingly, also the inter-cluster hopping V must
be renormalized as V → V + λ. Summation of the geometrical series yields

GCPT[λ] =
1

G−1
T ′−λ,U − (V + λ)

=
1

G−1
T,0 − ΣT ′−λ,U

, (4.14)

where we emphasized the special role of the renormalization parameter λ by square
brackets. For U(t) = 0, we have GCPT[λ] = GT,0 for any λ. For an interacting sys-
tem, however, the choice for λ is crucial, i.e., the resulting CPT Green’s function does
depend on the starting point of the all-order perturbation theory in the inter-cluster hop-
ping. Finally, plain CPT at finite interaction is recovered as GCPT[0], i.e., the special role
of the parameter λ is ignored in this case for simplicity.
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4. Cluster perturbation theory (CPT)

This ambiguity in the definition of the CPT seems to be problematic on first sight, yet it
can be turned into an advantage by interpreting the renormalization λ as an optimization
parameter. This has beenworked out systematically in the context of the (nonequilibrium)
self-energy functional theory (SFT) [76, 78, 113, 120], where the optimal λ is derived
from a variational principle based on the self-energy. In the following Chapter 5, we will
take a slightly different route and use the freedom in λ to enforce local constraints on
the spin-dependent particle and the doublon density which in turn will guarantee the
otherwise violated macroscopic conservation laws. Physically, the parameter set λ must
be interpreted as a nonlocal mean-field and the resulting conserving CPT as a cluster
mean-field theory.

4.3. Hamiltonian-based formulation of the CPT
Let us now discuss how the CPT Green’s function can be obtained from an effective one-
particle Hamiltonian and how to set up a Markovian time-propagation scheme [105], As
discussed in Sec. 4.2, we have T = T ′ + V where T ′ − λ is the renormalized intra-
cluster and V + λ the renormalized inter-cluster hopping. For each set of parameters
λ, an effective one-particle CPT Hamiltonian can be defined by adding the inter-cluster
hopping to the effective Hamiltonian (4.7) of the reference system:

HCPT[λ](t) = Heff
T ′−λ,U(t) +

∑
ijσ

[Vijσ(t) + λijσ(t)]c
†
iσcjσ (4.15)

≡
∑
xyσ

hCPT
xyσ(t)c

†
xσcyσ.

The CPT Green’s function, as computed from HCPT[λ](t),

GCPT[λ]xyσ(t, t
′) = −i⟨TC ĉxσ(t)ĉ†yσ(t′)⟩HCPT[λ] (4.16)

then coincideswith the original definition in Eq. (4.14) if only the physical sector is consid-
ered, i.e., (x, y) = (i, j). This can be verified easily by integrating out the virtual, s degrees
of freedom from HCPT. Eq. (4.15) reflects the freedom we have in the CPT construction
as the λ-terms cancel in the physical sector. λ only enters implicitly through the hy-
bridization strengths h′isσ(t), through the on-site energies h′ssσ (where h′ ≡ hT ′−λ,U ) and
through the Hartree-Fock term ΣHF

T ′−λ,U of the reference system’s Hamiltonian HT ′−λ,U .
Similarly to the self-energy-based formulation, plain CPT is recovered as HCPT[0].

For each set of parametersλ, the two-particle correlation functionG(2l) is approximated
within the context of the CPT as

G(2l)[λ]ijσ(t, t
′) = i

∑
x

η′[λ]ixσ(t)G
CPT[λ]xjσ(t, t

′), (4.17)

where we have defined
η′[λ] ≡ ηT ′−λ,U . (4.18)
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Eq. (4.17) corresponds to the exact expression given by Eq. (4.9) and is in particular con-
sistent with the standard approximation G(2l)[λ](t, t′) = i

U(t)
[ΣT ′−λ,U ◦GCPT[λ]] (t, t′).

G(2r)[λ] is defined analogously, and thus the symmetry relation

G(2r)[λ]jiσ(t, t
+) =

[
G(2l)[λ]ijσ(t, t

+)
]∗ (4.19)

is ensured within the CPT independently of λ. We note that this symmetry is not suffi-
cient to allow for an unambiguous definition of the doublon density based on Eq. (4.6). In
addition, the diagonal elements must be independent of σ and their imaginary part must
vanish. As will be discussed in detail in Chapter 5, both relations can be enforced through
the renormalization parameter λ. In case of an arbitrary, non-conserving set of parame-
ters λ and thus in particular for the plain CPT, the ambiguity needs to be circumvented
by defining the doublon density as an average

di[λ](t) = −1

4

∑
σ

[
G(2l)[λ]iiσ(t, t

+) +G(2l)[λ]iiσ(t, t
+)
]
. (4.20)

As an important observable of interest, the total energy is expressed as

Etot[λ](t) = Ekin[λ](t) + Eint[λ](t) (4.21)

= −i
∑
ijσ

Tijσ(t)G
CPT[λ]ijσ(t, t

+) + U(t)
∑
i

di[λ](t),

within cluster perturbation theory.

4.4. Numerical example: An inhomogeneous setup in
the 2D-Hubbard model

To showcase the potential of our time-local formulation of the CPT,we consider a concrete
test scenario in this section: The dynamics of a local magnetic moment after an interaction
quench in the 2D-Hubbard model. Measuring time in units of the inverse hopping, we
are able to propagate the system up to a maximal time of tmax = 104 in comparison to
tmax = 10–20 inverse hoppings that where reached in previous simulations using the
nonequilibrium CPT (e.g., Refs. 110, 112).

We emphasized in Sections 4.2 and 4.3 that the CPT features an intrinsic degree of
freedom, namely, the starting point T ′ − λ of the all order perturbation theory. As this
is a proof of concept calculation, we will consider plain CPT in this Section, i.e., λ = 0,
for simplicity. A more advanced theory, which involves a self-consistent determination
of λ by means of local constraints derived from the macroscopic conservation laws, is
presented in Chapter 5.

4.4.1. Prethermalization
The study of real-time dynamics initiated by an interaction quench in the Hubbard model
has attracted much attention recently [17, 79, 121–125]. Here, the system is prepared
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4. Cluster perturbation theory (CPT)

in a thermal (usually noninteracting) initial state and then, after a sudden change of the
interaction parameter U , evolves in time as prescribed by the interacting Hamiltonian.
While the setup is apparently simple, the search for universal properties of the time evo-
lution remains notoriously difficult due to the non-integrability of the Hubbard model
in two and higher dimensions. Apart from the general assumption that non-integrable
models feature thermalization and thus lose memory of the initial state in the long-time
limit [126], only the time evolution after quenches to a weak, finite HubbardU seems to be
well understood so far. Here, it could be shown by means of weak-coupling perturbation
theory [124, 125, 127, 128] that observables initially relax to non-thermal, quasistationary
values (the system prethermalizes) before the significantly slower relaxation towards the
thermal values sets in.

It was later worked out [129] that the mechanism which traps the system in a quasi-
stationary prethermal state is quite similar to the mechanism that hinders noninteracting
systems from thermalizing. In the latter case the integrability of the Hamiltonian leads to
a large number of constants of motion that highly constrain the dynamics of the system.
In case of weakly interacting systems it is the proximity to the integrable point that in-
troduces approximate constants of motion and hinders relaxation beyond the prethermal-
ization plateau on short timescales t ≲ T/U2 (here, T is the nearest-neighbor hopping).
Relaxation towards the thermal average is delayed until later times (t ≳ T 3/U4).

As a proof of concept of our formalism we use nonequilibrium CPT to investigate the
short- and long-time dynamics of an inhomogeneous initial state after an interaction
quench in the Hubbard model. In particular we will study if and to what extent the CPT
is able to describe prethermalization and the subsequent relaxation to a thermal state.

4.4.2. Setup
We consider the Hubbard model at zero temperature (β → ∞) and half-filling (µ = U/2)
on a square lattice of L = 10× 10 sites with periodic boundary conditions. The system is
cut into 25 clusters of size 2×2. The hopping is restricted to nearest neighbors and we set
T = 1 to fix energy and time units. Translational invariance of the initial state is broken
by applying a local magnetic field of strength B to an arbitrarily chosen “impurity site”
(here, site 0 in cluster 0):

Tijσ(t) = δ⟨i,j⟩T − zσδi,jδi,0B(t) , (4.22)

where δ⟨...⟩ is non-zero and unity for nearest neighbors only and where z↑ = +1 and
z↓ = −1. Initially, the magnetic field is switched on with strength B(0) = 10 to induce a
(nearly) fully polarized magnetic moment on the impurity site and then switched off for
times t > 0:

B(t) = B(0)(1−Θ(t)). (4.23)

Here, Θ(t) is the Heaviside step function. Furthermore, the interaction U(t) is switched
off initially and then switched on to a non-zero value Ufin

U(t) = Ufin Θ(t). (4.24)
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Hence, in the quantum quench considered here, two parameters are changed simultane-
ously. The initial Hamiltonian Hini features no interactions but is inhomogeneous due to
the local magnetic field, the final Hamiltonian Hfin is translationally invariant due to the
absence of the magnetic field but has a finite interaction Ufin > 0.

To apply nonequilibriumCPT, we use exact diagonalization to solve the 25 independent
cluster problems and to construct the Hamiltonian of the effective medium (for details on
the numerical implementation see Section 3.3). Finally, Eq. (4.15) is used to account for the
inter-cluster hopping (we recall that λ = 0 in our case since we consider plain CPT). The
number of non-zero elements of a cluster’s Q-matrix and therefore the computational
effort of our approach increases quadratically with the number of active states in the
density matrix ρcluster =

∑
m exp (−βEm) |m⟩⟨m| (Hcluster|m⟩ = Em|m⟩), i.e., states that

contribute with a significant weight exp (−βEm) to thermal averages. For convenience
we have therefore chosen a zero-temperature initial state and consider a weak interac-
tion U = 10−4 to lift the ground-state degeneracy present in the noninteracting system
(denoted as U = 0+ in the following). The effective Hamiltonian hI(t) for each cluster
is then of size 48 × 48 and the final CPT Hamiltonian of size 1200 × 1200. Exploiting
its sparse form we are able to perform 1, 000, 000 time steps with ∆t = 0.01 to reach a
maximal time tmax = 104 with modest computational effort.

The partitioning of the lattice into 2 × 2 clusters by CPT breaks rotational and reflec-
tion symmetries of the original problem. These are restored by averaging the resulting
one-particle density matrix over the 4 possible ways to cut the lattice into 2× 2 clusters.
In the following we will show results for the time evolution of the local magnetic moment
mi(t) = ni↑(t) − ni↓(t) at the impurity (mImp(t)) and at its nearest neighbors (mNN(t)).
Only the latter are affected by the averaging. It restores the equivalence of nearest neigh-
bors that lie in the same and nearest neighbors that lie in a neighboring cluster of the
impurity. The extensive quantities total energy Etot(t) = Ekin(t) + Eint(t) (cf. Eq. (4.21))
and total magnetizationM(t) =

∑
imi(t) are both unaffected by the averaging.

The initial state is the same for all quenches discussed in the following. We find
a polarization of mImp(0) ≈ 0.97 at the impurity which is partially screened (e.g.,
mNN(0) = −0.04) so that the total magnetization amounts toM(0) =

∑
imi(0) ≈ 0.70.

4.4.3. Noninteracting case
We first discuss the noninteracting case, i.e., a purely magnetic quench where Ufin = 0+.
Here, CPT predicts the exact time evolution (cf. the discussion below Eq. (4.12)) since
the cluster self-energies ΣT ′,0 vanish. Our results are shown in Fig. 4.2. For short times
(t ∈ [10−2, 4 × 100]) the local magnetic moment at the impurity mImp(t) (blue line) de-
cays to a value slightly above zero. Subsequently (t ∈ [4 × 100, 104]) the dynamics is
governed by collapse-and-revival oscillations caused by the finite system size. In partic-
ular we find that mImp(t) returns arbitrarily close to its initial value for large times. This
is readily understood from the fact that the system’s dynamics is governed by the one-
particle propagator exp (−iTfint) where Tfin denotes the final hopping matrix (i.e., after
the quench). Tfin involves only a small number of different one-particle energy levels and
thus U(t, 0) returns arbitrarily close to the identity matrix over time.

For the noninteracting system it is possible to directly access the long-time average of
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Figure 4.2.: Time evolution of the local magnetic moment at the impurity (mImp(t), blue
line) and its nearest neighbors (mNN(t), orange line). The dark-blue (dark-
orange) arrow, which is pointing from right to left, indicates the long time
average of the blue (orange) curve. The light-blue (light-orange) arrow, which
is pointing from left to right, indicates the analytical average, Eq. (4.25).
The long time average was taken over 500, 000 data points in the interval
[0.5× 104, 104].

the one-particle density matrix. One finds

ρ
avg
ijσ = lim

tmax→∞

1

tmax

∫ tmax

0

dt⟨ĉ†iσ(t)ĉjσ(t)⟩

=
1

L

∑
k⃗k⃗′

δε
k⃗
,ε

k⃗′
ei(k⃗·R⃗i−k⃗′·R⃗j)⟨ĉ†

k⃗σ
(0)ĉk⃗′σ(0)⟩, (4.25)

where we used that Hfin can be diagonalized by a Fourier transformation involving the
reciprocal lattice vectors k⃗ (R⃗i denotes the lattice vector to site i). This yields the expres-
sion Hfin =

∑
k⃗σ εk⃗ĉ

†
k⃗σ
ĉk⃗σ and ĉiσ(t) = 1√

L

∑
k⃗ e

−ik⃗·R⃗ie−iεk⃗tĉk⃗σ(0), where L is the system
size. In Fig. 4.2 this prediction is compared with the numerical time average and indeed
shows perfect agreement. It is interesting to note that for non-degenerate energy levels
εk one would have ρavgiiσ = Nσ/L, where Nσ is the total number of particles with spin σ,
and thereforemavg

i =M(0)/L. We conclude that degeneracy of energy levels is required
to find memory of the initial state encoded in the average local magnetic momentsmavg

i .

4.4.4. Quenches to finite Ufin

For finite Ufin the CPT becomes an approximation and it is a priori unclear what kind of
phenomena it is able to describe. In Fig. 4.3 we show the long-time evolution for quenches
to different Ufin. For weak Ufin ≲ 0.5 we find a (prethermalization-like) separation into
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Figure 4.3.: CPT results for the time evolution of the local magnetic moment at the im-
purity (mImp(t), blue line) and at its nearest neighbors (mNN(t), orange line)
for quenches from the limit of vanishing interaction U = 0+ (numerically
implemented by setting U = 0.0001) to finite Ufin. In the insets the long-
time behavior (t ∈ [5 × 103, 104]) is plotted on a linear scale. The interval
consists of 500, 000 data points and was also used to calculate the long-time
average (straight dashed lines). In total 1,000,000 time steps were performed
with ∆t = 0.01 on a L = 10× 10 lattice (cut into 25 clusters of size 2× 2 by
CPT).
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two different time scales. Initially the time evolution qualitatively follows the noninter-
acting case, i.e., we see a fast decay of the local moment at the impurity site (blue line)
followed by a quasi-stationary region of collapse-and-revival oscillations. For larger times
these oscillations decay and the system relaxes into a state characterized by quasi-periodic
fluctuations around its long-time average (dashed blue line) which are driven by different
frequencies. Taking a look at the Ufin dependence of the dynamics we notice that the re-
gion of collapse-and-revival oscillations shrinks with increasing Ufin and finally vanishes
for Ufin ≳ 1. The system then directly relaxes into a state with fluctuations around its
long-time average.

For comparison, also the magnetic moment at the neighbouring sitesmNN(t) is plotted.
While its dynamics for short times must naturally be different from mImp(t) due to the
inhomogeneous initial state, we would expect a qualitative agreement in the long-time
limit if the system thermalizes. However, this is not the case. There remains a clear
difference in the amplitude of the fluctuations around the long-time average up to the
largest simulated times. Hence we conclude that the system still keeps memory of the
initial state and thus does not thermalize.

Having in mind the general discussion on prethermalization in Sec. 4.4.1, one can give
an intuitive interpretation of these observations based on the effective-medium approach:
While the noninteracting system is isolated and its dynamics is constrained throughmany
constants of motion, there is a large number of virtual orbitals coupled to the system in
the interacting case. These virtual orbitals act like a surrounding bath. For weak Ufin the
virtual orbitals are only weakly coupled to the system and their influence is delayed to
large times, while initially the dynamics is constrained similar to the noninteracting case.
For strong Ufin, on the other hand, the coupling is strong and affects the dynamics of the
system considerably. However, the number of virtual sites is still too small to allow for
a complete dissipation of the information on the initial state into the bath. Therefore, a
thermalized state is not reached. For an exact calculation the number of virtual siteswould
scale exponentially in system size. For CPT, on the other hand, it scales exponentially only
in cluster size but linearly in the number of clusters and thus in the system size. Memory
of the initial state is therefore retained within the one-particle density matrix and leaves
its traces in the magnetic moments as seen in our calculations.

4.4.5. Violation of conservation laws
CPT as an approximation lacks any kind of self-consistency and is thus unable to respect
the fundamental continuity equations and their corresponding conservation laws [76].
Therefore, one has to expect a violation of energy- or particle-number conservation, for
example. Furthermore, in contrast to the equilibrium case where CPT interpolates be-
tween the exact limits U = 0 and T = 0, it yields exact results only for quenches to
Ufin = 0. The dynamics after a quench to the atomic limit Tfin = 0 (with finite Ufin > 0)
cannot be described exactly due to the non-local entanglement of the initial state. We thus
generally expect that the quality of the CPT results degrades with increasing interaction
strength.

The numerical results for the total energy, see Fig. 4.4, confirm this expectation. Energy
conservation is respected for Ufin = 0, where CPT is exact. With Ufin > 0 and increasing,
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Figure 4.4.: Violation of energy conservation by the CPT. The numbers indicate the re-
spective value of Ufin. Energy conservation is respected for Ufin = 0+ where
the CPT is exact (black line). An increasingly significant violation of energy
conservation is seen for larger Ufin.
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Figure 4.5.: Violation of conservation of the total magnetizationM by the CPT. The num-
bers indicate the value ofUfin. Curves forUfin ≥ 0.25 are only partially plotted
for better visibility.
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however, a significant time dependence of the total energy sets in earlier and earlier. For
Ufin ≳ 1 energy conservation is violated already for t ≲ 10. Similar results are found for
the total magnetizationM =

∑
i(ni↑ − ni↓), cf. Fig. 4.5. While the magnetization should

be constant for all times since neither hopping nor interaction (cf. Eqs. (4.22) and (4.24))
involve spin-flip terms, we find such behavior only for short times. For longer times
oscillations arise and the conservation of total magnetization is violated. For increasing
Ufin the oscillations set in earlier indicating again that the quality of CPT is best for values
of Ufin close to zero.

We note that the total particle numberN = N↑+N↓, however, is conserved during the
time evolution. This holds true for a half-filled and homogeneously charged system and is
due to the fact that CPT preserves particle-hole symmetry. This can easily be understood
as follows: Each cluster Hamiltonian is particle-hole symmetric and since each cluster
is solved exactly within CPT the corresponding effective Hamiltonian Heff

T ′,U(t) is also
particle-hole symmetric. The CPT Hamiltonian is now given by Eq. (4.15) which addi-
tionally includes the inter-cluster hopping. However, the inter-cluster hopping is clearly
particle-hole symmetric and so is the final CPT Hamiltonian.

4.5. Summary
In this chapter, we have recalled the standard, self-energy-based viewpoint on the cluster
perturbation theory and have derived an equivalent time-local Hamiltonian-based for-
mulation. In the course of this, we have put special emphasis on an important property
intrinsic to the CPT approach: The one-particle part of the intra-cluster Hamiltonian,
which forms the starting point of the all-order perturbation theory [110] in the inter-
cluster hopping, can be chosen freely. The simplest choice is to determine it directly from
the full hopping matrix which yields the standard, plain CPT.

To emphasize the essential advantage of the Hamiltonian-based formulation – its
Markovian (i.e., memory-kernel-free) propagation algorithm – we have used plain CPT
to investigate the time evolution of local magnetic moments in the fermionic Hubbard
model after an interaction quench. Indeed, our formalism allowed to avoid the solution
of an inhomogeneous Dyson equation on the Keldysh contour and we were able to prop-
agate the one-particle density matrix up to times tmax = 104. For comparison let us note
that prior studies based on the nonequilibrium CPT (e.g., Refs. 110, 112) have been limited
to tmax = 10–20 inverse hoppings.

On the physical side, quenches to weak Ufin turned out to be most interesting. In agree-
ment with the predictions of general perturbative considerations [124, 125, 127–129], we
found a separation of the dynamics into two time scales. While the system qualitatively
follows the constrained dynamics of the noninteracting Ufin = 0 limit, the constraints
are broken up for large times due to the interaction and the system shows signs of relax-
ation. However, memory of the initial state persists in the density matrix up to the largest
simulated times clearly indicating the absence of thermalization.

While the simple treatment of correlations by nonequilibrium CPT has shown to be
enough to cover the mentioned two-stage relaxation dynamics, it also leads to a violation
of the fundamental conservation laws of energy and total magnetization. The natural
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way to fix this is by additionally imposing a self-consistency condition as it is done in
nonequilibrium DMFT or in self-energy functional theory. Due to the significant, addi-
tional complexity of these approaches, however, simulations would again be restricted to
short time scales. A simpler, more pragmatic approach might thus be preferable where,
for example, local continuity equations are enforced to ensure energy, total magnetization
and particle-number conservation [76]. Such a “conserving cluster perturbation theory”
is derived in the next Chapter.
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cluster perturbation theory

From the numerical example in Section 4.4 it was seen that plain CPT suffers from con-
ceptional difficulties. While it is the drawback of any mean-field theory that the feedback
of certain correlations on the dynamics of the observables of interest is missing, such as,
e.g., the missing feedback of nonlocal spatial correlations on the local self-energy in the
case of the DMFT, the situation is even worse in case of plain CPT: There is no feedback
at all. In particular, plain CPT calculations cannot be expected to respect the macroscopic
conservation laws emerging from the symmetries of the underlying Hamiltonian. This
can be traced back to the lack of any element of self-consistency in the plain CPT. Indeed,
we observed a violation of the conservation laws of total energy and magnetization in a
numerical example (cf. Section 4.4.5).

In this chapter we give a proof of principle that this drawback can be overcome. We
make use of the fact that the CPT can be viewed as an all-order perturbation theory [110]
in the inter-cluster hopping around a system of decoupled clusters, where the starting
point, i.e., the intra-cluster Hamiltonian, is not at all predetermined. The idea is to for-
mulate the macroscopic conservation laws as local constraints on the spin-dependent
particle and doublon density. These equations are then used to fix the intra-cluster one-
particle parameters and thereby to optimize the starting point for the cluster perturbation
expansion. This defines a novel “conserving cluster perturbation theory.” The theory is
conserving by construction, it is nonperturbative, and in principle controlled by the in-
verse cluster size as a small parameter. In practice, however, the accessible cluster size is
limited by the exponential growth of the cluster Hilbert space. Hence, conserving CPT
must be seen as a typical cluster mean-field theory which correctly accounts for nonlocal
correlations up to the linear scale of the cluster. Opposed to standard mean-field theories,
the “mean-field” or the renormalization of the one-particle parameters is determined by
imposing local constraints expressing conservation laws, i.e., it is finally the symmetries
of the lattice model which dictates the time-dependent cluster embedding. As the the-
ory relies on local self-consistency or conditional equations, it can easily be extended to
inhomogeneous models or inhomogeneous initial states.

While the underlying idea is conceptually simple, its practical realization requires a
couple of new theoretical concepts which are discussed here in detail. In particular, the
implementation of a causal time-stepping algorithm requires a careful analysis to which

This chapter has previously been published as part of C. Gramsch and M. Potthoff, “Enforcing conser-
vation laws in nonequilibrium cluster perturbation theory”, Phys. Rev. B 95, 205130 (2017). Copyright
(2017) by the American Physical Society. Reproduced with permission.
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order the renormalization of the intra-cluster parameters at a certain time slice enters the
conditional equations. We are able to demonstrate that an efficient numerical implemen-
tation of the theory is possible and discuss first results for weak interaction quenches in
a two-dimensional Hubbard model. The algorithm scales linearly with the propagation
time and exponentially in the cluster size. Conservation laws are satisfied with numerical
accuracy. Yet, long time scales cannot be achieved with the present implementation due
to singular points which are found to evolve during the time propagation.

In this chapter, we make substantial use of the previous groundwork on the Hubbard
model and the cluster perturbation theory as presented in Sections 4.1 – 4.3. As highly
relevant quantities, let us explicitly recall the intra-cluster hopping T ′(t), the inter-cluster
hopping T (t), the Hubbard interaction U(t) and the renormalization parameter λ(t).
Also, we pick up on the introduced convention to explicitly denote the dependence of
the Green’s function and other quantities on T (t) and U(t) using subscripts where con-
venient (e.g., GT,U , ΣT,U , etc.).

The macroscopic conservation laws are expressed by local constraints in Section 5.1.
The main theoretical work addresses the solution of the local constraints for the optimal
starting point of the all-order perturbation theory. This is presented in Sec. 5.2. Numerical
results are discussed in Sec. 5.3. We summarize the main results in Sec. 5.4.

5.1. Formulation of the conservation laws as local
constraints

While conservation laws like particle-number or energy conservation are naturally ful-
filled if one is able to treat a physical problem exactly, this is not necessarily the case
when working with approximate methods. For Green’s-function-based methods it was
shown by Baym and Kadanoff [130, 131] that respecting certain symmetry relations for
the two-particle Green’s function is sufficient to ensure that an approximation is con-
serving. Here, we build on an equivalent formulation of the macroscopic conservation
laws for the particle number, spin and energy and reformulate them as local constraints
for the spin-dependent particle density and the doublon density, respectively. This is in
the spirit of expressing conservation laws of a classical field theory as continuity equa-
tions and follows the work of Baym and Kadanoff [130, 131]. One should note, however,
that in our case the local constraints cannot be written in the standard form of continuity
equations, as here we aim at an approach for a discrete lattice model.

To discuss the local constraints, we first consider the exact time evolution of a system
described by the Hubbard Hamiltonian HT,U(t). We write G ≡ GT,U , G(2l) ≡ G

(2l)
T,U and

G(2r) ≡ G
(2r)
T,U in this subsection to keep the notation simple. The exact time evolution of

the system will preserve the total particle number and the z-component of the total spin
as can be expressed by the following local constraint for the spin-dependent density:

0 = ∂t⟨n̂iσ(t)⟩HT,U
− [G ◦ T − T ◦G]iiσ(t, t+),

⇔ Fiσ(t) ≡ G
(2l)
iiσ (t, t

+)−G
(2r)
iiσ (t, t+) = 0 , (5.1)
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as can be verified directly using Eq. (4.6). The first line of Eq. (5.1) constitutes the
discrete-lattice analog of the continuity equation for the spin-dependent particle den-
sity. Opposed to a continuum theory, however, the divergence of the spin-dependent
particle-current density is replaced by the commutator. The second line of Eq. (5.1) is
an equivalent formulation of the same constraint as has originally been mentioned by
Baym and Kadanoff [130, 131]. Next, we consider the following local constraint for the
doublon density [cf. Eq. (4.6)]:

Ciσ(t) ≡ i∂t

[
G

(2l)
iiσ (t, t

+) +G
(2r)
iiσ (t, t+)

]
(5.2)

− 2
∑
jσ

[
Tijσ(t)G

(2r)
jiσ (t, t

+)−G
(2l)
ijσ (t, t

+)Tjiσ(t)
]
= 0.

In the exact theory, this constraint together with the above constraint Fiσ(t) = 0 ex-
presses the necessity that the doublon density can be derived consistently from either
G(2l) or G(2r) and for each spin component σ in Eq. (4.6). More important, in case of
a time-independent Hamiltonian, i.e., if HT,U(t) = const. for t > t0, Eq. (5.2) implies
total-energy conservation. This is explicitly shown in the Appendix A.1 where, for com-
pleteness, also a formal derivation of Eq. (5.2) is carried out.

While in the exact theory the equations Fiσ(t) = 0 and Ciσ(t) = 0must hold necessar-
ily, this is no longer guaranteed in an approximate approach. In particular, the equations
are usually violated within the conventional CPT.The important point is that via Eqs. (4.2)
and (4.4) both, G(2l) and G(2r), can be expressed in terms of the single-particle Green’s
function and the self-energy and thus both equations Fiσ(t) = 0 and Ciσ(t) = 0 can be
expressed in terms of the central quantities of the CPT. Furthermore, as we have shown
in Sec. 4.3, they can be incorporated in the Markovian time-propagation scheme based on
the Hamiltonian formulation of the CPT. The latter is essential for the numerical treat-
ment.

Our main idea is thus to enforce the local constraints Fiσ(t) = 0 and Ciσ(t) = 0within
the context of the CPT by exploiting the above-discussed freedom in the choice of the CPT
starting point, i.e., by choosing an appropriate renormalization λ = λopt. If λopt can be
found, this automatically ensures the conservation of particle number, spin and energy.

The final forms of the conditional equations for λopt are obtained by replacingG(2r) and
G(2l) by their CPT approximations G(2l)[λ] and G(2r)[λ] in the expressions for F and C
given by Eqs. (5.1) and (5.2):

F [λopt]iσ(t)
!
= 0, C[λopt]iσ(t)

!
= 0. (5.3)

We note that the number of free parameters λ must be chosen to match the number of
linear independent constraints defined by Eq. (5.3) to ensure the existence of a unique
solution λopt.

5.2. Solving the self-consistency equations
Having formulated the self-consistency conditions, Eq. (5.3), it remains to explicitly solve
these equations for λopt. An important simplification arises from the fact that the CPT
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is by construction a causal theory, i.e., the time-local elements GCPT(t, t+) of the CPT
Green’s function at time t, for example, only depend on quantities at earlier times. The
same holds for G(2l)(t, t+) and for hCPT

xyσ(t). This allows us to construct a strategy for the
solution of Eq. (5.3) in the form of a time-propagation algorithm. Let us therefore assume
that λopt is known for all time points on a discrete time grid and that only the parameters
λopt(t) at the latest point of time t are unknown.

Therewith, the actual task is to solve Eq. (5.3) for λopt(t) only at the given latest point of
time t. To this endwe have to analyze at time t the λ(t) dependence of the relevant quanti-
ties, i.e., ofG(2l)(t, t+) andG(2r)(t, t+), see Eqs. (5.1) and (5.2). First of all, the dependence
of G(2l)(t, t+) (and G(2r)(t, t+)) on λ(t) at time t is due to the CPT Hamiltonian hCPT

xyσ(t)
[see Eq. (4.15) and see Eqs. (4.16) and (4.17)]. The λ(t)-dependence of the latter is exclu-
sively due to the time-evolution operator U ′[λ] ≡ UT ′−λ,U of the reference system. The
detailed construction of hCPT

xyσ(t) is not important here, and we refer to Ref. 105 for a com-
prehensive discussion. Finally, the functional dependence of U ′[λ](t, 0) on λ is through
an integration over all times between 0 and t. With this information at hand, we are in
fact able to characterize the dependence on λ(t) at time t of the quantitiesG(2l)(t, t+) and
G(2r)(t, t+) which enter the local constraints (5.3) that serve to enforce the conservation
laws.

The most important point for the following discussion is the fact that, in the limit of
vanishing time step ∆t → 0, the parameter set λ(t) at the latest point of time enters
basically all central quantities as a null set only: Consider, for example, G(2l)(t, t+). Its
first-order response due to a variation of λ(t) at time t vanishes (as shown below). On
the one hand, this missing sensitivity implies a complication of the theory since one has
to account for this mathematical property explicitly when setting up a numerical imple-
mentation. On the other hand, once one has recognized the property, it actually helps to
the solve Eqs. (5.3). Consider a given arbitrary causal functionalM [λ](t). The main trick
is to enhance the sensitivity of M [λ](t) to variations of λ(t) at time t by taking its time
derivative. Typically, if the first-order response ofM [λ](t) vanishes, ∂tM [λ](t) is a linear
function of λ(t) at time t. Clearly, this is the key to solve an equation like M [λ](t) = 0
for λopt(t).

In the following subsections Secs. 5.2.1 and 5.2.2 the above-sketched ideas are worked
out on a more technical level. Finally, the Section 5.2.4 addresses the initial state at time
t = 0.

5.2.1. Time-local variations
Assume that we have found the optimal renormalization λopt(t) for t ≤ tn ≡ n∆t. We
introduce a variation δnloc which affects the current (the n-th) time step only:

δnlocλijσ(t) = δλijσ(t)Θ
n
loc(t), Θn

loc(t) =

{
1 if t ∈ [tn, tn+1],

0 else.
(5.4)

For simplicity, we require the variations to be symmetric, i.e., δλijσ(t) = δλjiσ(t). This
implies a restriction to symmetric solutions λopt. Consider now an arbitrary, causal func-
tionalM [λ](t), i.e., a functional that at time t only depends on λ(t′) with t′ ≤ t. For such
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an object, the variational operator δnloc is related to the conventional functional derivative
through

δnlocM [λ](t) =
∑
σ

∑
i≥j

∫ t

tn

dt′ δM [λ](t)

δλijσ(t′)
δλijσ(t

′), (5.5)

where the restriction i ≥ j is necessary because of the symmetry requirement λijσ = λjiσ .
We now take the combined limit n → ∞, ∆t → 0 such that we always have

t ∈ [tn, tn+1] to define the time-local variation δloc in the continuum limit

δlocM [λ](t) = lim
∆t→0
n→∞

δnlocM [λ](t), (5.6)

with the corresponding variational quotient

δlocM [λ](t)

δlocλijσ(t)
≡ lim

∆t→0
n→∞

∫ t

tn

dt′ δM [λ](t)

δλijσ(t′)
. (5.7)

This variational quotient describes the linear response of M [λ](t) when varying the pa-
rameters at the latest time step:

δlocM [λ](t) =
∑
σ

∑
i≥j

δlocM [λ](t)

δlocλijσ(t)
δλijσ(t). (5.8)

5.2.2. Integrated quantities in λ
With the appropriate variation for our purposes at hand, we can study the effect of the
variation on the main quantities within the CPT framework. We first consider the time-
evolution operator (“propagator”) of the reference system U ′[λ] ≡ UT ′−λ,U . It is instruc-
tive to study the effect of the operator δnloc first, i.e., the effect of a time-local variation
with finite time step ∆t. Keeping only terms of the order O(∆t) one finds

δnlocU ′[λ](t, 0) = −i

[∑
ijσ

∫ t

tn

δλijσ(t
′)ĉ†iσ ĉjσdt′

]
U ′[λ](tn, 0) +O(∆t2). (5.9)

In lowest order we thus have δnlocUT ′−λ,U(t, 0) ∝ ∆t δλ(t). This means that the linear
response vanishes identically in the limit ∆t → 0. This property originates from the
fact that λ(t) is integrated over time within the propagator UT ′−λ,U(t, 0), and that the
contribution of a single time step, t ∈ [tn, tn+1], to this integral is of zero measure in the
limit ∆t→ 0.

A finite time-local variation is obtained for the first time derivative of the propagator
rather than for the propagator itself. Namely, the corresponding time-local variational
quotient remains non-zero in the continuum limit:

δloc[i∂tU ′[λ](t, 0)]

δlocλijσ(t)
= −

[
c†jσciσ + c†iσcjσ − δijc

†
iσciσ

]
U ′[λ](t, 0). (5.10)
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Multiplying this equation with λijσ(t), summing over i, j, σ and comparing with the
standard equation of motion i∂tU ′[λ](t, 0) = HT ′−λ,U(t)U ′[λ](t, 0), shows that the time
derivative of the propagator is of the general form

i∂tU ′[λ](t, 0) =
∑
σ

∑
i≥j

δloc[i∂tU ′[λ](t, 0)]

δlocλijσ(t)
λijσ(t) + ξU ′ [λ](t), (5.11)

where ξU ′ [λ](t) = HT ′,U(t)U ′[λ](t, 0). Note that the dependence on λijσ(t) at time t is
strictly linear in the limit ∆t→ 0.

With this definition and with Eq. (5.10), it is obvious that the variational derivative
and ξU ′ [λ](t) on the right-hand side of Eq. (5.11) depend on λ(t) only through an integra-
tion over time within the propagator U ′[λ](t, 0). We will call such quantities integrated
quantities in λ. Integrated quantities in λ inherit an important property from the cluster
propagator U ′[λ], see Eq. (5.9): Their time-local variation vanishes in the limit ∆t→ 0.

Furthermore, the time derivative of any quantity M [λ] that is integrated in λ, i.e., the
time derivative of a functional of the formM [λ](t) =M(U ′[λ](t, 0)), can be brought into
a form analogous to Eq. (5.11). This follows immediately from the chain rule in calculus
as i∂tM [λ](t) = i∂M(U ′)

∂U ′
∂U ′[λ](t,0)

∂t
. Explicitly this result reads

i∂tM [λ](t) =
∑
σ

∑
i≥j

δloc[i∂tM [λ](t)]

δlocλijσ(t)
λijσ(t) + ξM [λ](t), (5.12)

where δloc[i∂tM [λ](t)]
δlocλijσ(t)

and ξM [λ] are again integrated quantities in λ. We furthermore con-
clude that a time-local variation of the time derivative of an integrated quantity in λ is
non-zero in general.

Themain idea in the following is to combine the conditional equations (5.3) into a single
equationΓ[λopt](t)

!
= 0 such thatΓ[λ] is of the formΓ[λ](t) = J [λ](t)λ(t)+ξΓ[λ](t)where

J [λ] and ξΓ[λ] are integrated quantities in λ. This is formally easily solved for λopt(t)
by matrix inversion and allows to derive an efficient propagation scheme for numerical
purposes.

λ-dependence of G(2l) and G(2r)

The main building blocks of the local constraints on the spin-dependent density, Eq. (5.1),
and the doublon density, Eq. (5.2), are given by the two-particle correlation functions
G(2l) and G(2r). Within the CPT approximation they are defined through Eq. (4.17). We
therefore have to understand the λ dependence of η′[λ] ≡ ηT ′−λ,U and GCPT[λ].

One can easily see that η′[λ] is an integrated quantity in λ. Consider, for example,
the physical sector. From Eq. (4.11) we have η′ijσ[λ](t) = δij⟨n̂iσ̄(t)⟩HT ′−λ,U

. The only λ-
dependence of this expression indeed stems from the propagator U ′[λ]. To obtain a non-
vanishing time-local variation we thus have to consider the first derivative with respect
to time. This is worked out in Appendix A.2:

δloc[i∂tη
′
ijσ(t)] = η′iiσ(t)δλijσ(t)−

∑
lσ′

[δλilσ′(t)]γlσ
′

ijσ(t),

δloc[i∂tη
′
isσ(t)] = −

∑
lσ′

[δλilσ′(t)]γlσ
′

isσ(t), (5.13)
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where the newly introduced tensor γ[λ]lσ′
isσ(t) is cluster-diagonal, i.e., γ[λ]lσ′

isσ(t) ̸= 0 if
and only if i and l refer to lattice sites within the same cluster. It furthermore follows
that i∂tη′[λ](t) can be brought into the form specified by Eq. (5.12), where the variational
derivative δloc[i∂tη

′[λ]ixσ(t)]
δλjlσ(t)

, as given by Eq. (5.13), and ξη′ [λ]ixσ(t) are integrated quantities
in λ. An explicit expression for the latter is not needed for our purposes.

Let us now take a look at the CPT Green’s function. It depends on λ through the
Hamiltonian HCPT[λ], which in turn depends on λ through the hybridization strengths
h′[λ]isσ(t) = U(t)η′[λ]isσ(t) and the Hartree-Fock term Σ′[λ]HF

ijσ(t) = U(t)η′[λ]ijσ(t).
The Hamiltonian HCPT(t) is therefore an integrated quantity in λ. As the propagator
UCPT[λ](t, 0) = T exp

(
−i
∫ t
0
dt′HCPT[λ](t′)

)
involves a second integral over time, we

conclude that δnlocGCPT(t, t+) ∝ ∆t2 δλ(t). In this sense, GCPT must be seen as an inte-
grated quantity in λ of second order. Consequently, the time-local variation of its first
derivative with respect to time vanishes:

δloc[i∂tG
CPT[λ](t, t+)] = 0. (5.14)

We note that the time derivative involves the product of the matrix elements of the CPT
Hamiltonian, Eq. (4.15), with GCPT[λ](t, t+), i.e., the product of an integrated quantity in
λ with an integrated quantity in λ of second order, respectively. Obviously, the product
scales like an ordinary integrated quantity in λwhen a time-local variation is applied, i.e.,
δnloch

CPT(t)GCPT(t, t+) ∝ ∆tδλ(t) in lowest order in ∆t.
Concluding, to get a non-vanishing time-local variation, one must consider the first

time derivative of the two-particle Green’s functions G(2l) and G(2r). We find

δloc

[
i∂tG

(2l)
ijσ (t, t

+)
]
=
∑
x

(δloc[i∂tη
′
ixσ(t)])G

CPT
xjσ(t, t

+) (5.15)

and an analogous expression for G(2r). Only the η′-term contributes to the variation,
cf. Eq. (5.13), while the variation of the CPT Green’s function vanishes, cf. Eq. (5.14). We
also note that Eq. (5.13) may be used at this point and that i∂tG(2l)(t, t+) [and analogously
i∂tG

(2r)(t, t+)] is of the form

i∂tG
(2l)
ijσ (t, t

+) =
∑
σ′

∑
k≥l

δlocG
(2l)
ijσ (t, t

+)

δlocλklσ′(t)
λklσ′(t) + [ξG(2l) ]ijσ(t), (5.16)

where both, the variational derivative δlocG
(2l)(t,t+)
δlocλ(t)

, as given by Eq. (5.15), and the quan-
tity ξG(2l)(t), which is not needed in explicit form for our purposes, scale like integrated
quantities in λ under time-local variations. This follows from the fact that i∂tGCPT(t, t+)
scales like an integrated quantity in λ under time-local variations and the related discus-
sion above.

λ-dependence of the local constraints

The local constraint on the spin-dependent density, Eq. (5.1), is formulated in terms of the
difference betweenG(2l) andG(2r). Therefore its first derivative with respect to time must
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5. Enforcing conservation laws in cluster perturbation theory

be considered to obtain a non-vanishing time-local variation:

δloc[i∂tF [λ]iσ(t)] = δloc
[
i∂tG

(2l)[λ]iiσ(t, t
+)− i∂tG

(2r)[λ]iiσ(t, t
+)
]
, (5.17)

For the time-local variation of the local constraint on the doublon density, Eq. (5.2), on
the other hand, one finds

δlocC[λ]iσ(t) = δloc
[
i∂tG

(2l)[λ]iiσ(t, t
+) + i∂tG

(2r)[λ]iiσ(t, t
+)
]
, (5.18)

since δloc[T ◦G(2r)−G(2l) ◦T ](t, t+) = 0, where we made use of the fact that T = T ′+V
is the hopping of the original system and thus independent of λ.

To treat both constraints in a combined formal frame, we define the functional Γ[λ]:

Γ[λ]a(t) =

{
i∂tF [λ]iσ(t) if 0 ≤ a < 2L ,

C[λ]iσ(t) if 2L ≤ a < 4L ,
(5.19)

where L is the number of lattice sites. With this, the conditional equation for the optimal
renormalization reads Γ[λopt]

!
= 0. From the previous discussion and Eq. (5.16) it follows

that Γ[λ]a(t) is of the form

Γ[λ]a(t) =
∑
b

J [λ]ab(t)λb(t) + ξΓ[λ]a(t), (5.20)

where we introduced the super-index bwhich labels the set of free parameters: λb = λijσ,
i ≥ j. Both J [λ] and ξΓ[λ] scale like integrated quantities in λ under time-local variations.
The Jacobian matrix J is defined as

J [λ]ab(t) ≡
δlocΓa[λ](t)

δlocλb(t)
. (5.21)

The matrix J [λ](t) is quadratic if the number of free parameters λb is chosen such that
it equals the number of conditional equations [see Eq. (5.19)]. Assuming that J [λ](t) is
regular, one can formally solve the conditional equation for the optimal renormalization:

Γ[λopt](t)
!
= 0 ⇔ λopt(t) = − [J [λopt](t)]

−1
ξΓ[λ

opt](t) , (5.22)

see Eq. (5.20). This completes our derivation.
Let us emphasize that the single point λopt(t) represents a null set with respect to the

time-integrations in J [λopt](t) and ξΓ[λopt](t). This can be exploited to derive an efficient
numerical scheme to obtain λopt(t) step by step on the time axis as detailed in the next
subsection 5.2.3. There we also argue why finding an explicit expression for ξΓ[λ](t) can
in fact be circumvented. An explicit expression for J [λ](t) in terms of known quantities,
on the other hand, is available via Eqs. (5.13), (5.15), (5.17) and (5.18).
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5.2. Solving the self-consistency equations

5.2.3. High-order time propagation scheme
Finally, we like to set up an efficient numerical scheme to determine λopt(t). This should
be based on a time-propagation algorithm where the error is of high order in the basic
time step∆t. Let us assume that for each time step the Taylor expansion of λopt(t) is well
defined. For each time interval and for arbitrary t ∈ [tn, tn+1] we then have

λopt(t) =



λ(0)(t) =

np∑
p=0

λ0,p
p!
tp +O(∆tnp+1) if t ∈ [0, t1[,

λ(1)(t) =

np∑
p=0

λ1,p
p!

(t− t1)
p +O(∆tnp+1) if t ∈ [t1, t2[,

. . .

(5.23)

where each λ-term must be considered as a tuple with components labelled by the super-
index b, e.g., λn,p = ([λn,p]b), where n refers to the n-th time interval, and where p runs
from p = 0 up to the maximum order of the polynomial np. During the time propagation,
the polynomial approximationmust be updated after each time step. This is done by fixing
the coefficients at each interfacing time tn such that Γ[λopt](tn) = 0. For times t ̸= tn we
then have Γ[λopt](t) = O(∆tnp+1). Writing J(t) ≡ J [λopt](t) and ξΓ(t) ≡ ξΓ[λ

opt](t) for
short and applying the product rule to J(t)λopt(t) = ξΓ(t), the self-consistency condition
(5.22) is readily rewritten in terms of the Taylor coefficients:

λn,p = J−1(tn)

(
p−1∑
r=0

(
p

r

)
[∂p−rt J(t)]t=tnλn,r − [∂pt ξΓ(t)]t=tn

)
. (5.24)

Suppose that λ(q)(t) is known for all q < n, i.e., suppose that the propagation has been
completed over the interval [0, tn[. The next step is to update the coefficients. At this
point we can exploit that J(t) and ξΓ(t) scale like integrated quantities in λ under time-
local variations which implies δlocJ(t) = 0 and δlocξΓ(t) = 0. Hence, at t = tn, both are
independent of λopt(tn). We define

λ̃(t) =

{
λopt(t) if t < tn,

0 else.
(5.25)

Then,
ξΓ(tn) = Γ[λ̃](tn), (5.26)

and we are now able to solve Eq. (5.24) for λn,0. The first derivatives ∂tJ(t)
∣∣
t=tn

and ∂tξΓ(t)
∣∣
t=tn

explicitly depend on λopt(tn) = λn,0, which is now known, but
are integrated quantities in the first derivative ∂tλopt(t), i.e., they are independent of
∂tλ

opt(t)
∣∣
t=tn

= λn,1. Therefore, the same idea can be applied and in fact be repeated
again and again until finally λ(n)(t) is known up to the desired order. We emphasize
that the presented algorithm gives a fully converged λopt(t) = λ(n)(t) + O(∆tnp+1) for
t ∈ [tn, tn+1[ within a single iteration.
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5. Enforcing conservation laws in cluster perturbation theory

5.2.4. The equilibrium initial state
Initially, at time t = 0 the system is assumed to be in a thermal state. The CPT ap-
proximation for the initial thermal state suffers from the fact that the starting point of
the all-order perturbation theory in the inter-cluster hopping is not unique. This is com-
pletely analogous to the CPT description of the real-time dynamics. Unlike the real-time
dynamics, however, the local constraints cannot be used to fix the renormalization pa-
rameters λeq ≡ λ(0) for the initial state, and thus a nontrivial self-consistency condition
is not available, unfortunately.

This can be seen as follows: Let us assume that the hopping matrix T , and conse-
quently T ′ and V , are real and symmetric. Consider G(2l) at times t = t′ = 0. Via
Eq. (4.17) this is given as G(2l)[λ]ijσ(0, 0

+) = i
∑

x η
′[λ]ixσ(0)G

CPT[λ]xjσ(0, 0
+). Tak-

ing a look at η′ first we find that its imaginary part vanishes. To this end we note that
the Hamiltonian HT,U(0) is symmetric and therefore has real eigenvectors |m⟩. Simi-
larly, the Q-matrix is real at time t = 0 and completion to a unitary matrix O(0) yields
the special case of an orthogonal, i.e., real O(0). It then follows that Im{η′ixσ(0)} = 0
from Eq. (4.8). Hence, Eq. (4.11) implies that HCPT[λ](0) is real and symmetric, and
therefore GCPT[λ]xyσ(0, 0

+) = i⟨ĉ†yσ(0)ĉxσ(0)⟩HCPT[λ] is purely imaginary. Consequently,
G(2l)[λ](0, 0+) is real. Finally, we conclude with Eq. (4.19) that

G(2l)[λ]ijσ(0, 0
+) = G(2r)[λ]jiσ(0, 0

+). (5.27)

This directly proves thatF [λ]iσ(0) = 0. Furthermore, causality requires λeq to be indepen-
dent of HT,U(t > 0). We are therefore free to choose HT,U(t) = HT,U(0) = const. such
that

C[λ]iσ(0) = 2
∑
jσ

Tijσ(0)
[
G(2r)[λ]jiσ(0, 0

+)−G(2l)[λ]ijσ(0, 0
+)
]
= 0 (5.28)

irrespective of λeq. Thus, both constraints hold trivially.
For the concrete numerical calculations we circumvent this issue and consider a non-

interacting initial state. The initial value λeq is then fixed by requiring λ to be continuous
so that λeq = λ(0+). This does not violate causality since the CPT is exact in this case
independently of λeq.

5.3. Numerical results
The conserving CPT has been implemented numerically. First results are discussed for
the two-dimensional Hubbard model on an L = 10 × 10 square lattice with periodic
boundary conditions. As these results shall serve as a proof of concept only, we restrict
ourselves to the most simple approximation, i.e., to the smallest meaningful cluster as the
building block of the reference system, namely a cluster consisting of 2× 1 sites. Hence,
the entire system is partitioned into 50 clusters in total, see Fig. 5.1.

Initially, the system is prepared in its noninteracting ground state at half-filling by
choosing µ = 0. Note that the CPT description of this initial state is exact (and in-
dependent of the renormalization). The hopping of the original system is restricted to
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λ

T

Figure 5.1.: Partitioning of the Hubbard model with nearest-neighbor hopping on the
two-dimensional square lattice used for the numerical calculations. Original
system: L = 10×10 lattice with periodic boundary conditions. Reference sys-
tem: 50 clusters of size 2× 1. The figure shows a 4× 4 excerpt. Clusters are
indicated by dashed rectangles. Nearest-neighbor hopping T and optimiza-
tion parameter λ(t) are indicated by black and red lines. The time-dependent
renormalization λ(t) is employed to enforce the conservation of energy in the
real-time dynamics following an interaction quench.

nearest neighbors, and we set the nearest-neighbor hopping T = 1 to fix energy and time
units. To drive the system out of equilibrium we consider an interaction quench where
the Hubbard-U is suddenly, at time t = 0, switched on to a finite value Ufin:

U(t) = Θ(t)Ufin. (5.29)

Here, Θ(t) denotes the Heaviside step function. For times t > 0 the interaction strength
is constant. To maintain particle-hole symmetry and half-filling, the chemical potential
is quenched as well, from µ = 0 to µ = U/2 in the final state.

Studying the model at the particle-hole symmetric point is convenient since the con-
servation of the total particle number is trivially respected in this case [112]. For a spin-
independent parameter quench, as considered here, the CPT also trivially respects the
conservation of the total spin. Total-energy conservation, on the other hand, is violated in
a conventional CPT approach as has been explicitly demonstrated recently [105]. For the
present setup wewill therefore employ the nearest-neighbor hopping within the 2×1 ref-
erence system to enforce the energy-conservation law. This specifies the time-dependent
renormalization parameter λ(t) (see Fig. 5.1).

We note that the computational effort to self-consistently evaluate the presented the-
ory numerically is essentially determined by the underlying solver for the conventional
nonequilibrium CPTwith little overhead. Here, we use the time-local, Hamiltonian-based
solver developed in Ref. 105 which constructs the effective Hamiltonian of each cluster
by exact diagonalization. For the 2 × 1 reference system under consideration, only two
virtual sites are needed for an exact mapping. This gives us four sites per cluster so that
the CPT-Hamiltonian comprises 200 sites in total. Furthermore, regarding computational
demands, our approach inherits a constant memory consumption from the CPT solver as
well as the linear scaling in the maximum propagation time. In particular, we have used
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5. Enforcing conservation laws in cluster perturbation theory

a time step of ∆t = 0.001 to propagate the system up to 26, 500 steps up to a maximum
propagation time of tmax = 26.5. For each such time step tn, the scheme developed in Sec-
tion 5.2.3 has been employed with np = 1, i.e., we have calculated the Taylor coefficients
λn,0 and λn,1.

While the required computational resources are very moderate, accessing longer time
scales has turned out to be hindered by mathematical complications. As is obvious from
Eq. (5.22), an inversion of the Jacobian matrix J(t) is necessary to obtain λopt(t) at each
time step. However, with increasing Ufin this matrix exhibits singular points of non-
invertibility at earlier and earlier times. In fact, one finds numerically that also the starting
point t = 0+ is singular, namely the Jacobian matrix vanishes: J(0+) = 0. Fortunately,
one also has ξΓ(0+) = 0, such that this problem is fixed by applying L’Hôpital’s rule. At
time t = 0+, the defining equation for λopt(0+) becomes

λopt(0+) = −
[
∂tJ [λ

opt](0+)
]−1

[∂tξΓ[λ
opt](0+)]. (5.30)

While this solves the problem at time t = 0+, finding a systematic and convenient way to
propagate beyond the singular points of the Jacobian matrix at finite times remains topic
for future investigations.

Apart from this technical problem, the suggested scheme works as expected. Results
for the time evolution of the doublon density are shown in Fig. 5.2. It is evident that
the renormalization λ has a strong influence on the dynamics and leads to qualitatively
different results when comparing the plain unoptimized CPT calculation with the novel
conserving CPT. While the dynamics is characterized by ongoing oscillations when using
plain CPT, there is a monotonous decay of the doublon density in case of the conserving
CPT. The longest maximum propagation time is achieved for the quench U = 0 → 0.5.
Here, the first singular point of the Jacobian shows up at tmax ≈ 26.5. On this time scale,
the doublon density seems to relax to a stationary state with little to no oscillations.

The qualitatively different time dependence of the doublon density reflects the qual-
itatively different behavior found for the total energy in the plain and the conserving
CPT: This is shown in the inset of Fig. 5.3. For the conserving CPT, the total energy is
perfectly conserved within numerical accuracy—by construction of the approach. In the
plain CPT calculation, however, the total energy shows unphysical oscillations. Here,
maxima and minima of Etot(t) nicely correspond to maxima and minima in the plain-
CPT doublon density seen in Fig. 5.2. It must be concluded that those are artifacts of the
plain CPT approach. We also note that small unphysical oscillations of the total energy
density Etot(t)/L (with L = 100) with amplitudes less than 0.01 lead to much stronger
oscillations in the doublon density with amplitudes of about 0.04.

The main part of Fig. 5.3 displays the results for the time evolution of the renormaliza-
tion parameter λ(t). Its dependence on Ufin turns out to be rather weak on a time scale
of a few inverse hoppings. Irrespective to the final interaction strength Ufin, the initial
equilibrium value is found as λeq ≈ −0.86. For t > 0 and for all Ufin, the renormalization
parameter rapidly increases to λ ≈ 0.6within a very short time t ≈ 0.7. This corresponds
to the rapid initial drop of the doublon density (cf. Fig. 5.2). Results for longer times are
again only available for the quench U = 0 → 0.5. On the time scale up to tmax ≈ 26.5, we
observe a subsequent slow relaxation of λ(t) toward an average final value λ∞ ≈ 1.0with
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Figure 5.2.: Time evolution of the local doublon density after an interaction quench
U = 0 → Ufin. Grey lines: plain CPT. Blue lines: conserving CPT. Results
for different Ufin ranging from Ufin = 0.5 (top curve) to Ufin = 1.0 (bottom)
with equidistant steps ∆Ufin = 0.1. For the conserving CPT calculations,
propagation times are limited by singular Jacobians.
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Figure 5.3.: Time evolution of the optimal renormalization parameter λopt(t) for different
Ufin as indicated and corresponding to Fig. 5.2. Inset: time dependence of the
total energy (plain and conserving CPT).
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small superimposed oscillations. It seems reasonable to assume that a similar behavior
would also be found for the other quenches, given that the short-time dynamics is very
similar for the different Ufin.

One should note that λ∞ = 1 amounts T ′ − λ∞ = 0, i.e., a vanishing renormalized
intra-cluster hopping. Apart from the remaining oscillations of the renormalization pa-
rameter around λ∞ = 1, this means that the system “chooses” the atomic limit of the
Hubbard model as the optimal starting point for the all-order perturbation theory in the
inter-cluster hopping for long times. Thismay be interpreted as follows: First of all, the re-
maining oscillations are understood as being necessary to keep the total energy constant
within the conserving CPT. Disregarding the oscillations, the value λ∞ = 1 means that,
on the level of the reference system, the doublon density becomes a conserved quantity
for long times. This, however, is in fact a plausible starting point if the doublon density
of the full lattice model approaches a constant in the course of time. As is seen in Fig.
5.2, this is almost the case. The remaining time dependence of the doublon density of
the lattice model is weak and would be exclusively due to the inter-cluster hopping (if
λ(t) = λ∞ = 1 exactly).

Let us compare the CPT result for the doublon density with the results of previous cal-
culations for the one-dimensional Hubbard model [58] using the density-matrix renor-
malization group (DMRG) and for the model in infinite dimensions using the dynamical
mean-field theory (DMFT) [79]. In both cases, a very fast relaxation of the doublon den-
sity on a time scale of one inverse hopping has been found in fact. Typically, however,
the doublon density first develops a minimum before it saturates to an almost constant
value. This minimum is absent in the conserving CPT calculations (see Fig. 5.2). Note,
that for weak quenches and on the intermediate time scale discussed here and in the
DMRG and DMFT studies, the doublon density does not relax to its thermal value due
to kinematic constraints becoming active after the ultrashort initial relaxation step. [124,
132] Indeed, one expects a subsequent relaxation on a much longer time scale. Let us
emphasize that while our data in Fig. 5.2 are compatible with these expectations, serious
predictions using the conserving CPT are not yet possible. This would require a much
more systematic study involving different and in particular larger clusters, an analysis
of the dependence on the cluster shape and also a systematic discussion of the different
possibilities to choose renormalization parameters for the self-consistent procedure.

5.4. Summary
Cluster perturbation theory, as proposed originally, represents the most simple way to
construct a mean-field theory which incorporates to some extent the effects of short-
range correlations. In Chapter 4 we had emphasized that the starting point of the pertur-
bational expansion in the inter-cluster hopping is by no means predetermined and that
the according freedom in the choice of the intra-cluster hopping parameters can be ex-
ploited to “optimize” the mean-field theory. There are different conceivable optimization
schemes. One way is to add an additional self-consistency condition as, for example, a
self-consistent renormalization of the on-site energies which would be very much in the
spirit of the Hubbard-I approximation. The disadvantage of such ideas is their ad hoc char-
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acter. An optimization following a general variational principle is much more satisfying
and physically appealing. This is the route that is followed up by self-energy-functional
theory [75, 76]. Unfortunately, total-energy conservation is not straightforwardly imple-
mented within the SFT context. An appealing idea is thus to use the above-mentioned
freedom to enforce energy conservation, and actually any conservation law dictated by
the symmetries of the problem at hand. This leads to the conserving CPT proposed here.

Aswe have argued (see Sec. 5.2.4), this idea can exclusively be used to constrain the CPT
real-time dynamics while other concepts must be invoked for the initial thermal state. On
the other hand, there is an urgent need for numerical approaches, even for comparatively
simple cluster mean-field concepts, which are able to address the real-time dynamics of
strongly correlated lattice fermion models beyond the more simple extreme limits of one
and infinite lattice dimension.

In this chapter we could give a proof of principle that a nonequilibrium conserving
cluster perturbation theory is possible and can be evaluated numerically in practice. An
highly attractive feature of this approach is the linear scaling with the propagation time,
while the exponential scaling with the cluster size is the typical bottleneck of any cluster
mean-field theory.

The mapping of the original nonequilibrium CPT onto an effective auxiliary problem
specified by a noninteracting Hamiltonian with additional virtual (“bath”) degrees of free-
dom is crucial for the practical implementation of the approach. One should note that the
number of virtual sites is related to the number of one-particle excitations and thus grows
exponentially with the original cluster size. Hence, any practical calculation is limited to
a few (say, at most 10) cluster sites only. This implies that a systematic finite-size scal-
ing analysis will be problematic if long-range correlations dominate the essential physi-
cal properties – this is the above-mentioned drawback that is shared with any available
cluster-mean-field theory. We therefore expect that the field of applications of conserving
CPT is limited to problems with possibly strong but short-ranged correlations.

Due to its formulation in terms of Green’s functions with time arguments on the
Keldysh contour, the CPT has an inherently causal structure. Our results in particular
demonstrate how to exploit this causality for an efficient time-stepping algorithm where
updates of the parameter renormalization can be limited to the respective last time slice
during time propagation. The essential problem that had to be solved here consists in con-
trolling the order (in the sense of a Taylor series) at which the parameter renormalization
on a single time slice enters other physical quantities, such as the basic time-evolution
operator, Green’s functions, etc. This has allowed us to set up a highly accurate numerical
algorithm where conservation laws are respected with machine precision.

For convenience, first numerical results have been generated for interaction quenches
of the two-dimensional Hubbard model on a square lattice at half-filling, where particle-
number and spin conservation are respected trivially. Energy conservation has been en-
forced by time-dependent renormalization of the intra-cluster hopping in the 2 × 1 ref-
erence cluster. It is worth pointing out that even with this simple approximation (small
cluster) the impact of the self-consistency condition is substantial. Comparing the con-
serving against plain CPT, there is a qualitative change of the time-dependence of the
doublon density which is plausible and improves the theory: Artificial oscillations due to
the finite cluster size are almost completely suppressed, and an ultrafast relaxation to a
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(prethermal) state with nearly constant doublon density is predicted as might be expected
from previous computations for one- and infinite-dimensional lattices.

Let us emphasize once more that our purpose has been to formally develop the very
idea of a constrained CPT and to provide a proof of principle for its practicability. There
are a couple of future tasks that suggest themselves immediately but are beyond the scope
of this chapter: First of all, a more systematic study of the dependence on the cluster size
and shape is needed. Note that this also includes the necessity to take into account more
than a single optimization parameter as there are four local constraints to be satisfied in
the present formulation of the theory [see Eq. (5.3)], corresponding to the conservation
of spin and particle density as well as two constraints for the doublon density (implying
energy conservation). Hence, for a cluster consisting of Lc sites, at most 4Lc parameters
are needed. In addition, both the number of constraints and the optimization parameters
depend on the spatial symmetries and other symmetries, e.g., particle-hole symmetry, of
the original and the reference system. If necessary, more degrees of freedom and cor-
respondingly more parameters can be generated by coupling uncorrelated “bath” sites
to the physical sites in the reference system in the spirit of (cluster) dynamical mean-
field theory. Systematic studies addressing the mentioned issues are necessary before a
systematic and quantitative comparison with other approaches or with experiments is
meaningful.

Interestingly, the conditional equations for the renormalization parameters feature sin-
gular points of non-invertibility. Technically, this currently restricts our investigations
to quenches with small final interaction and short propagation times. It is not clear at the
momentwhether or not a physical meaning can be attributed to those singular points; also
this requires further systematic studies. According to our present experience, it is well
conceivable that, with a suitable regularization scheme, time propagation through a sin-
gularity of the Jacobian is possible and has no apparent impact on the time dependence of
physical observables. Developing such a regularization scheme is the next task for future
studies and the most important issue to make the conserving CPT a powerful numerical
tool to address, e.g., real-time magnetization dynamics, even of inhomogeneous models
and on long time scales.
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approximation

In a first attempt to deal with the complexity of electronic correlations described by
the Hubbard model, Hubbard himself proposed a scheme to decouple the hierarchy that
arises from the equation of motion of the one-particle Green’s function [27]. Nowadays
known as Hubbard-I, his approach is equivalent to self-consistently approximating the
self-energy using the exact expression of the atomic limit. Following the review of Geb-
hard [23], the resulting expression for the equilibrium Green’s function reads

Gk⃗σ(ω) =
Z+
σ (k⃗)

ω − E+
σ (k⃗)

+
Z−
σ (k⃗)

ω − E−
σ (k⃗)

, (6.1)

where k⃗ refers to quasi-momenta exploiting the lattice periodicity. Quasi-particle disper-
sion and spectral weight are given as

E±
σ (k⃗) =

1

2

[
ϵ(k⃗) + U ±

√
(ϵ(k⃗)− U)2 + 4Unσ̄ϵ(k⃗)

]
, (6.2)

Z±
σ (k⃗) = ±E

±(k⃗)− U(1− nσ̄)

E+(k⃗)− E−(k⃗)
,

with ϵ(k⃗) =
∑

R⃗ T (R⃗)e
−ik⃗·R⃗ being the Fourier transform of the time-independent hop-

ping Tijσ = T (R⃗i − R⃗j), with R⃗i denoting a lattice vector, and nσ = 1
L

∑
i⟨niσ⟩ as the

spin-dependent density which is self-consistently determined from the lattice Green’s
function.

By design, Hubbard-I is exact in the noninteracting limit, U = 0, and the atomic limit
ϵ(k⃗) = 0. In the intermediate regime, it includes important effects characteristic for a
many-body system: There is a dynamic shifting of spectral weight between the two poles,
which correspond to the lower (E−

σ ) and the upper (E+
σ ) Hubbard bands, by tuning of the

interaction U and the particle density nσ̄. In his original paper [27], Hubbard further
showed that for a constant density of states, ρ0(ω) = 1

∆
, for |ω| ≤ ∆

2
, ρ0(ω) = 0 other-

wise, a Mott transition is found at U = 0+ at half-filling. Of course, one should also note
that, due to its simplicity and rather ad hoc decoupling scheme, the theory has a number
of severe defects [23]. First of all, a Mott transition at U = 0+ is by no means generic.
Although correct in one dimension [59], this seems more like a random coincidence since
Hubbard-I lacks feedback of non-local correlations, i.e., the self-energy is k⃗-independent.
This is far from true in low-dimensional systems but becomes accurate only in the oppo-
site limit of infinite lattice dimension [39], where DMFT studies have shown, however,
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6. Nonequilibrium two-pole approximation

that theMott transition happens at finite critical interaction [133]. As another problematic
aspect, Hubbard-I gives an insufficient description of the weak-coupling limit U/W ≪ 1
(withW as the bandwidth). In particular, it does not reduce to the Hartree-Fock solution,
i.e., there is no Fermi-liquid phase. This cannot hold in general. Lastly let us mention a
problem that is shared with any two-pole approximation: The two distinct poles form a
poor approximation of the branch cut of the Green’s function at the real axis. This implies
the lack of quasi-particle damping.

Necessary improvements to Hubbard-I can be derived from a number of different view-
points. A non-comprehensive list includes the decoupling scheme by Roth [81, 82], the
spectral density approach (SDA) [83], Mori-Zwanzig-like projection techniques [84, 85],
or the composite operator method (COM) [134]. The resulting broad spectrum of possi-
ble applications is rather impressive: It reaches as far as the study of high-temperature
superconductivity [135], ab initio electronic structure calculations [136], magnetic or-
dering [137, 138], the interplay of disorder and strong correlations [139], and, of
course, the Mott transition which was already investigated as part of Hubbard’s origi-
nal series [27, 140], cf. Ref. 141 for a recent discussion. Even an extension to the classical
Heisenberg ferromagnet has been put forward [142].

Targeted at nonequilibrium steady states, a generalization of the spectral density ap-
proach (SDA) has been developed [143, 144] and has been used to study the current-
induced switching of the magnetization in magnetic tunnel junctions. A systematic
framework for arbitrary time-dependent setups, however, is still lacking. Within this
chapter, we develop such an approach for fermionic lattice models. Our starting point is
a main result from Chapter 3, namely, that any interacting, fermionic lattice model can
be mapped onto a noninteracting model by introducing virtual degrees of freedom. In
Sec 6.1 we show, that these virtual degrees of freedom have a counterpart in the original
system from which the effective medium can be derived without the need of calculating
the Q-matrix (cf. Chapter 3). A systematic scheme to construct such operators parallels
the Lanczos algorithm [145] and is presented in Sec. 6.2. It leads us very naturally to
a nonequilibrium continued fraction representation of Green’s function and self-energy
thus generalizing Mori’s famous result [88] to Keldysh-Matsubara Green’s functions. Fi-
nally, in Sec. 6.3, we employ our results to construct a nonequilibrium two-pole approxi-
mation to the Hubbard model. A summary is given in Sec. 6.4.

6.1. Prerequisites
Within this section we heavily build upon the results proven in Chapter 3. To recapitulate
an important insight recall that any interacting fermionic lattice model can be mapped
to an appropriately chosen effective medium. In Sec. 3.2 we have constructed this ef-
fective medium to feature a diagonal virtual sector. By integrating out the virtual sites,
this lead us to the self-energy in its Lehmann representation. Let us emphasize, however,
that a diagonal virtual sector is by no means the only choice. Considering an arbitrary
fermionic lattice model, H(t) as given by Eq. (2.4), we drop this requirement for the ef-
fective medium, h(t), in this section: hss′(t) ̸= δss′hss′(0). This restores the full freedom
in choosing the generating O-matrix, h(t) = [i∂tO(t)]O(t) (cf. Sec. 3.2). Nevertheless,
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the main feature of the effective medium approach still holds: One-particle expectation
values taken with respect to the effective Hamiltonian, Heff(t) =

∑
xy hxy(t)â

†
xây, and

the original Hamiltonian, H(t), are equivalent, cf. Sec. 3.2.
In Section 6.1.1 we show that each choice for the O-matrix comes accompanied with

a set of operators acting in the original many-body Fock space. By definition, these op-
erators give direct access to the effective medium and thus suggest a new recipe for its
construction (Sec. 6.1.2). Furthermore, together with the physical creation (annihilation)
operators, they span an inner product space of operators (Sec. 6.1.3). Considering the
time-evolution of a creation (annihilation) operator in the exact case and in effective-
medium-based approximations, we show in Sec. 6.1.4 that it is restricted to a reduced
subspace, which we call the active subspace. Exploiting the existence of an inner product,
we use this property to derive a completeness relation (Sec. 6.1.5) which directly leads us
to the decoupling scheme by Roth [81, 82].

6.1.1. One-to-one correspondence of virtual operators

Within the physical sector, there is an obvious one-to-one correspondence between the
operators âi [â†j] and the operators ĉi [ĉ†j]: ⟨TC âi(t)â†j(t′)⟩Heff = ⟨TC ĉi(t)ĉ†j(t′)⟩H , i.e.,
one-particle expectation values taken with respect to the effective Hamiltonian and the
original Hamiltonian are equivalent, cf. Sec. 3.2. Let us emphasize though that this equiva-
lence is restricted to one-particle Green’s functions. This is due to the fact that, in contrast
to the original system, higher-order Green’s functions in the effective system decouple
by Wick’s theorem, e.g.,

⟨â†i (t1)â
†
j(t2)âk(t3)âl(t4)⟩Heff = ⟨â†i (t1)âl(t4)⟩Heff⟨â†j(t2)âk(t3)⟩Heff (6.3)

− ⟨â†i (t1)âk(t3)⟩Heff⟨â†j(t2)âl(t4)⟩Heff

̸= ⟨ĉ†i (t1)ĉ
†
j(t2)ĉk(t3)ĉl(t4)⟩H .

It is, however, possible to define operators ĉs [ĉ†s′] that extend the one-to-one cor-
respondence to the virtual sector. Interestingly, these can be chosen such that cer-
tain higher-order correlation functions become easily accessible. A concrete example
will be studied in Sec. 6.3.1. We start by defining Iβ =

{
(m,n) : z(m,n) > 0

}
where

z(m,n) =
√
e−βEm + e−βEn/Z as defined in Section 2.3. Here, it is important to note

that z(m,n) can only be zero if β → ∞. Iβ thus only distinguishes between zero and finite
temperature and will be used to rigorously take care of a number of subtleties that arise
in the zero temperature limit. Let further O(t) be an arbitrary (in the sense of a possibly
non-diagonal virtual sector, cf. the introduction Sec. 6.1), sufficiently smooth completion
of the Q-matrix (cf. Sec. 3.2) such that

∑
x

O(m,n)x(t)O
∗
(m′,n′)x(t) = δmm′δnn′ , (m,n), (m′, n′) ∈ Iβ. (6.4)
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6. Nonequilibrium two-pole approximation

Using the eigenbasis of the initial Hamiltonian, Hini|m⟩ = Em|m⟩, we define the matrix
elements of the virtual operators for (m,n) ∈ Iβ as

ĉs(t) ≡
∑

(m,n)∈Iβ

1

z(m,n)
Os(m,n)(t)|m⟩⟨n|, (6.5)

For (m,n) ∈ Iβ , this is consistent with the relation ⟨m|ĉi(t)|n⟩ = 1
z(m,n)

Oi(m,n)(t) that
trivially holds in the physical sector. Corresponding to the O-matrix, we obtain an ef-
fective Hamiltonian Heff(t) =

∑
xy hxy(t)â

†
xây from Eq. (3.6) such that the one-particle

Green’s function of the original system can be extended to the virtual sector:

Gxy(t, t
′) ≡ −i⟨TC ĉx(t)ĉ†y(t′)⟩H = −i⟨TC âx(t)â†y(t′)⟩Heff = Fxy(t, t

′). (6.6)

In the context of one-particle expectation values, the operators ĉx [ĉ†x] and âx [â†x] are
therefore equivalent.

6.1.2. Accessing the effective medium
Exploiting the one-to-one correspondence, a number of relations can be generalized from
the effective to the original system. First of all, there exists an analog to the fermionic
anticommutation relation

{
âx(t), â

†
y(t)
}
= δxy:

⟨
{
ĉx(t), ĉ

†
y(t)
}
⟩H = δxy. (6.7)

We emphasize that it is essential to take the expectation value ⟨·⟩H if calculating the
anticommutator in Eq. (6.7). The anticommutator itself is not fermionic [except, of course,
in the physical sector]. In general, we thus have{

ĉi(t), ĉ
†
s(t)
}
̸= 0,

{
ĉs(t), ĉ

†
i (t)
}
̸= 0,

{
ĉs(t), ĉ

†
s′(t)

}
̸= δss′ . (6.8)

Furthermore, one can easily show that the operators ĉx(t) [ĉ†y(t)] are subject to the same
equation of motion as the operators âx(t) [â†y(t)]

i∂tĉx(t) =
∑
y

hxy(t)ĉy(t), (6.9)

which, in general, is not consistent with Heisenberg’s equation of motion (for the subset
of physical operators ĉi(t), see Sec. 6.1.3).1 Together with the anticommutation relation,

1 Considering only virtual operators, Eq. (6.9) is consistent with Heisenberg’s equation of mo-
tion for operators with an explicit time-dependence in the Schrödinger picture. By defining
cs(t) = U(t, 0)ĉs(t)U†(t, 0) as the Schrödinger picture version of ĉs(t), we get the equation of
motion i∂tĉs(t) =

∑
y hsy(t)ĉy(t) =

[
ĉs(t), Ĥ(t)

]
+ U†(t, 0)[i∂tcs(t)]U(t, 0). The explicit time-

dependence of cs(t) originates from time-dependent orthonormalization coefficients which ensure
⟨{ĉx(t), ĉy(t)}⟩H = δxy at every time t. In equilibrium, it is thus possible to enforce i∂tcs(t) = 0
such that Heisenberg’s equation of motion is restored in its well known form. To this end, one simply
chooses Os(m,n)(t) = Os(m,n)(0)e

−iϵ(m,n)t when completing the Q-matrix, cf. Sec. 3.2.
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Eq. (6.7), it follows that the matrix elements of the effective Hamiltonian can be accessed
from the operators ĉx(t) [ĉ†y(t)] as well

hxy(t) = ⟨
{
[i∂tâx(t)], â

†
y(t)
}
⟩Heff = ⟨

{
[i∂tĉx(t)], ĉ

†
y(t)
}
⟩H , (6.10)

with the associated propagator U being given as

Uxy(t) =
[
T exp

(
−i
∫ t

0

dt′h(t′)
)]

xy

=
∑
mn

Ox(m,n)(t)O
†
(m,n)y(0). (6.11)

While all these results are in principle straightforward, they suggest a new recipe to
construct the effective medium: Instead of completing the Q-matrix to a unitary trans-
form, which requires the knowledge of all eigenstates of the initial Hamiltonian as well
as their time-evolution, we can focus on constructing virtual operators ĉs(t) [ĉ†s′(t)] that
satisfy the anticommutation relation, Eq. (6.7), and give rise to the effective medium via
Eq. (6.10). In this context we recall that the unitary completion O(t) of the Q-matrix
and as such the effective medium hxy(t) is not unique, cf. Chapter 3. As is evident from
Eq. (6.5), this non-uniqueness transfers to the equivalent formulation using the virtual op-
erator operators. It implies that the virtual operators ĉs(t) [ĉ†s′(t)] are only fixed up to a
time-dependent unitary transform. Note that such a transformation must not involve the
physical degrees of freedom, i.e., ĉi(t) [ĉ†j(t)], but has to be limited to the virtual sector.

6.1.3. Inner product space of operators
It is worthwhile to realize that the expression ⟨

{
·, ·†
}
⟩H can be interpreted as a scalar

product. To this end, we trivially have linearity in the first and semilinearity in the second
argument for any operatorA. To establish positive definiteness, however, onemust define
the underlying vector space differently in case of zero and finite temperature. Consider
the following:

⟨
{
A,A†}⟩H =

∑
nm

z2(m,n) |⟨n|A|m⟩|2 ≥ 0, (6.12)

While we have z(m,n) =
√
e−βEm + e−βEn/Z > 0 at any finite temperature, the quantity

vanishes for many combinations (m,n) in the limit β → ∞ implying that ⟨
{
·, ·†
}
⟩H

is only semi-definite at zero temperature (cf. the remark below Eq. (6.3)). To establish
definiteness also in this case, we define the vector space as:

O ≡

 ∑
(m,n)∈Iβ

α(m,n)|m⟩⟨n| : α(m,n) ∈ C

 , Iβ =
{
(m,n) : z(m,n) > 0

}
. (6.13)

Correspondingly, we define a projection operator Pβ[·] such that Pβ[A] ∈ O for any
operator A. It can be interpreted to project out the thermally suppressed matrix ele-
ments at zero temperature. At finite temperature β < ∞, it is equal to the identity, i.e.,
Pβ[A] = A. In practice, it can of course also make sense to neglect certain combinations
with z(m,n) < ϵ ≪ 1 assuming we are at low-enough temperatures (cf. Section 3.3.3). Fi-
nally let us note that, by definition, the set of operators {Pβ[ĉx(t)]} forms an orthonormal
basis of O with respect to the scalar product ⟨

{
·, ·†
}
⟩H at every time t.
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6. Nonequilibrium two-pole approximation

Time-evolution of the physical operators

The difference between zero and finite temperature has an important consequence if we
consider the time-evolution of the physical operators ĉi(t). At finite temperature, their
time-evolution as generated by Heisenberg’s equation of motion is completely consistent
with the time-evolution that follows from the effective medium:

β <∞ : i∂tĉi(t) =
[
Ĥ(t)ĉi(t)− ĉi(t)Ĥ(t)

]
(6.9)
=
∑
x

hix(t)ĉx(t). (6.14)

At zero temperature, however, this holds only true if we restrict ourselves to non-
suppressed matrix elements. Using the projection operator Pβ , the following general
equation can be formulated:

i∂tPβ[ĉi(t)] = Pβ
[
Ĥ(t)ĉi(t)− ĉi(t)Ĥ(t)

]
(6.9)
=
∑
x

hix(t)Pβ [ĉx(t)] . (6.15)

The difference between zero and finite temperature can be traced back to the fact that
the Q-matrix (cf. Eq. (2.16)) does not hold information on matrix elements ⟨n|ĉi(t)|m⟩
for which z(m,n) = 0. Only elements (m,n) ∈ Iβ , which fulfill z(m,n) > 0, are stored
and thus described by the effective medium. As a consequence, if considering two ar-
bitrary operators A,B, we are always allowed to write ⟨ĉi(t)B⟩ =

∑
x Uix(t)⟨ĉi(0)B⟩,

with Uxy(t) from Eq. (6.11), since only matrix elements with z(m,n) > 0 are refer-
enced. However, the evaluation of the time-evolution in a more general expression, e.g.,
⟨Aĉi(t)B⟩ =

∑
x Uix(t)⟨Aĉi(0)B⟩, where all matrix elements ⟨m|ĉi(t)|n⟩ are referenced,

is only valid at finite temperature.

6.1.4. The active subspace
While the possibility to neglect certain matrix elements of the operators ĉx(t) at zero
temperature is an important simplification, it is likely that we are interested in neglecting
even more degrees of freedom. Either, because the problem can be simplified by exploit-
ing certain symmetries of the Hamiltonian, or because the basis is by far too large, e.g.,
for non-integrable systems. Of course, a further basis reduction in the latter case must
be carefully motivated since it leads into the realm of approximations. After having trun-
cated the basis to a small enough, tractable set, its resulting dynamics are confined to a
vector space A which is much smaller than O and which we call the active subspace.

To give a proper definition, we consider a full basis of operators ĉx(t) as given. We
further assume that, by having performed a basis reduction (either exactly or approxi-
mately), we have divided the basis into two subsets: A small, tractable subset IA of basis
vectors which includes the physical degrees of freedom ĉi(t) and a large subset I⊥A that
we neglect. For both subsets, the dynamics shall be unitary, i.e.,

i∂tĉx(t) = ⟨
{
[i∂tĉx(t)], ĉ

†
y(t)
}
⟩H , x, y ∈ IA (x, y ∈ I⊥A) (6.16)

and thus in particular hxy(t) = 0 if x ∈ IA, y ∈ I⊥A . The matrix elements of the corre-
spondingO-matrix are defined via Eq. (6.5). We note that in case of an approximate basis
reduction, our assumption implies that Eq. (6.15) is violated.
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We now define the active subspace A of operators as:

A ≡

{∑
x∈IA

αxPβ[ĉx(0)] : αx ∈ C

}
, (6.17)

with an associated projection operator PA[·] such that PA[O] = A. With respect to the
eigenbasis of the initial Hamiltonian Hini, PA can be stated explicitly as

[PA]
(m,n)
(m′,n′) =

∑
x∈IA

Ox(m,n)(t)O
†
(m′,n′)x(t), (m,n), (m′, n′) ∈ Iβ, (6.18)

where the time t can be chosen arbitrarily due to Pβ[ĉx(t)] ∈ A because of the unitary
time evolution. Furthermore, we define by A⊥ the orthogonal complement space of A
with respect to O [i.e., O = A⊕A⊥, with “⊕” being the direct sum].

The division into a set of tractable, x ∈ IA, and intractable, x ∈ I⊥
A , degrees of freedom

is quite analogous to the Mori-Zwanzig projection technique [86–88]. Following Mori’s
original paper [87], the equation ofmotion of a set of dynamical variablesA(t) (in our case
this is given by the set of operators ĉx) is considered. For a time-independent Hamiltonian,
H(t) = H , the equation of motion i∂tA(t) = [A(t), H] is restated as

∂tA(t)− iω̂A(t) +

∫ t

0

φ(t− s)A(s)ds = f(t), (6.19)

where (f(t), A∗) = 0, (f(t1), f ∗(t2))) = φ(t1 − t2)(A,A
∗) for a scalar product (·, ·∗) and

A ≡ A(0). His projection operator onto the A-axis, P (·) = (·, A∗)(A,A∗)−1A, is analog
to our projection operator onto the active subspace, PA[·]. A minor difference is found
in the property that our degrees of freedom are normalized. His ω̂ corresponds to our
effective medium h(t). Since Eq. (6.19) is exact, it highlights the information discarded in
the context of an approximate basis truncation: f(t) must be discarded, which amounts
to contributions of the orthogonal complement spaceA⊥. Furthermore, a bit more subtle,
φ(t) is also discarded. It quantifies the amount of back scattering, i.e., processes of the
form A→ f → A.

6.1.5. Completeness of the active subspace
The restriction of the dynamics to the linear subspaceA, either exactly due to symmetries
of the Hamiltonian or approximately due to neglecting a certain subset of basis vectors,
allows for the statement of a completeness relation. Let “•” denote an arbitrary product
of fermionic creation and annihilation operators. One finds

⟨ • ĉi(t)⟩H =
∑
mn

z(m,n)⟨n| • |m⟩f(ϵ(m,n))Oi(m,n)(t) (6.20)

=
∑
x

∑
m′n′

∑
mn

z(m,n)⟨n| • |m⟩Ox(m,n)(t
′)O†

(m′,n′)x(t
′)f(ϵ(m′,n′))Oi(m′,n′)(t)

=
∑
x

⟨{ • , ĉx(t′)}⟩H⟨ĉ†x(t′)ĉi(t)⟩H

=
∑
x∈IA

⟨{ • , ĉx(t′)}⟩H⟨ĉ†x(t′)ĉi(t)⟩H
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6. Nonequilibrium two-pole approximation

The last equality exploits the unitarity of the time-evolution, i.e., Eq. (6.16). Correlation
functions of the form

⟨ĉ†x(t)ĉi(t)⟩H = 0, x ∈ I⊥A , (6.21)

must therefore vanish, as the two subspaces A and A⊥ are not connected through the
effective medium. Relation (6.20) proves that the evaluation of ⟨• ĉi(t)⟩H involves a pro-
jection of “•” onto the active subspace. Its time-independent, equilibrium variant lies at
the heart of the famous Roth approximation, cf. Eq. (32) in Ref. 82. It should be empha-
sized though, that the approximate nature of the Roth approximation does not stem from
the application of Eq. (6.20) which is an exact relation. The single approximation made is
the usage of a truncated basis, cf. Sec. 6.1.4. Let us further note that, by slightly adapting
the proof, one can show the following variations

⟨ĉi(t) • ⟩H =
∑
x∈IA

⟨ĉi(t)ĉ†x(t′)⟩H⟨{ĉx(t′), • }⟩H , (6.22)

⟨ĉ†i (t) • ⟩H =
∑
x∈IA

⟨ĉ†i (t)ĉx(t′)⟩H⟨
{
ĉ†x(t

′), •
}
⟩H ,

⟨ • ĉ†i (t)⟩H =
∑
x∈IA

⟨
{
• , ĉ†x(t′)

}
⟩H⟨ĉx(t′)ĉ†i (t)⟩H .

In combination with the completeness relations, Eq. (6.20) and Eq. (6.22), a second relation
will prove to be useful. Let Uxy(t), x, y ∈ IA denote the matrix elements of the propaga-
tor U(t) = T exp

(
−i
∫ t
0
dt′h(t′)

)
in the active subspace. Let further M be an arbitrary

operator. Then:∑
x∈IA

ĉx(t)Mĉ†x(t) =
∑

x,y1,y2∈IA

Uxy1(t)U∗
y2x

(t)ĉy1(0)Mĉ†y2(0) =
∑
x∈IA

ĉx(0)Mĉ†x(0), (6.23)

where we exploited the unitarity of the propagator. One easily veryfies that the proof
holds independent of the order of ĉ†x(t), ĉx(t), i.e.,∑

x∈IA

ĉ†x(t)Mĉx(t) =
∑
x∈IA

ĉ†x(0)Mĉx(0) (6.24)

holds as well.

Non-interacting systems and Wick’s Theorem

For a noninteracting system, one can easily show that Wick’s Theorem follows from Eqs.
(6.20) and (6.23). To this end, let H(t) = H0(t) be an arbitrary one-particle Hamiltonian.
The active subspace follows asA = {

∑
i αi[Pβ ĉi(0)] : αi ∈ C} , i.e., dynamics is restricted

to the physical one-particle degrees of freedom. Let us now consider an arbitrary, two-
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6.2. Analytical scheme to construct the effective medium

particle expectation value:

⟨ĉ†i (t1)ĉ
†
j(t2)ĉk(t3)ĉl(t4)⟩

(6.20)
=
∑
j′

⟨
{
ĉ†i (t1)ĉ

†
j(t2)ĉk(t3), ĉj′(t

′)
}
⟩⟨ĉ†j′(t

′)ĉl(t4)⟩ (6.25)

=
∑
j′

⟨ĉ†i (t1)ĉ
†
j(t2) {ĉk(t3), ĉj′(t′)}⟩⟨ĉ

†
j′(t

′)ĉl(t4)⟩

−
∑
j′

⟨
[
ĉ†i (t1)ĉ

†
j(t2), ĉj′(t

′)
]
ĉk(t3)⟩⟨ĉ†j′(t

′)ĉl(t4)⟩

(6.23)
= ⟨ĉ†j(t2)ĉk(t3)⟩⟨ĉ

†
i (t1)ĉl(t4)⟩ − ⟨ĉ†i (t1)ĉk(t3)⟩⟨ĉ

†
j(t2)ĉl(t4)⟩.

In the last step we exploited Eq. (6.23) by setting t′ = t3, so that {ĉk(t3), ĉj′(t3)} = 0.
The commutator in the remaining term is easily evaluated and yields the final result after
taking again advantage of Eq. (6.23) by setting t′ = t1 and t′ = t2, respectively. Let
us emphasize that for a two-particle expression with a different order of the operators,
e.g., ⟨ĉk(t3)ĉ†i (t1)ĉl(t4)ĉ

†
j(t2)⟩, one can apply the same idea by using one of the variants

of the completeness relation and the time-shift argument, i.e., Eqs. (6.22) and Eq. (6.24).
Considering finally an arbitrarily ordered n-particle expectation value, the same steps can
be performed repeatedly such that in the end an expression involving only one-particle
expectation values is obtained. This proves Wick’s Theorem.

6.2. Analytical scheme to construct the effective
medium

In Section 6.1.2 we have argued that the possibility to extend the one-to-one correspon-
dence to the virtual sector suggests the following construction scheme for the effective
Hamiltonian: Assume that only the operators in the physical sector, i.e., ĉi(t) [ĉ†j(t)], and
the Hamiltonian H(t) are given. By completing the set of virtual operators ĉs(t) [ĉ†s′(t)]
we enable ourselves to obtain hxy(t) from Eq. (6.10). An intuitive way to work this out
largely parallels the Lanczos algorithm [145] and is presented in Section 6.2.1. The re-
sulting effective medium is found to be block-tridiagonal. Its relation to the effective
medium that we have used for the Lehmann representation, which features a diagonal
virtual sector (cf. Fig. 3.1), is worked out as part of Section 6.2.2. There we also show
that the block-tridiagonal structure of the effective medium translates to a representation
of the two-time Green’s function as a continued fraction within the Keldysh-Matsubara
formalism.

6.2.1. Lanczos-like algorithm for obtaining the virtual operators
Our construction is based on the property that ⟨

{
·, ·†
}
⟩ forms a scalar product on O, i.e.,

our main idea is to apply Gram-Schmidt orthonormalization. A systematic scheme can
be based on a repeated calculation of the derivative with respect to time of the physical
operators ĉi(t) which yields linear independent operators due to the commutation with
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6. Nonequilibrium two-pole approximation

the Hamiltonian. Consider, for example, the first step:

Γ̂
(1)
i (t) ≡ i∂tĉi(t)−

∑
j

⟨
{
i∂tĉi(t), ĉ

†
j(t)
}
⟩ĉj(t)−

∑
j<i

⟨
{
i∂tĉi(t), [ĉ

(1)
j (t)]†

}
⟩ĉ(1)j (t),

ĉ
(1)
i (t) ≡ Γ̂

(1)
i (t)√

⟨
{
Γ̂
(1)
i (t), [Γ̂

(1)
i ]†(t)

}
⟩
. (6.26)

Assuming 0 ≤ i < L, with L denoting the total number of single-particle de-
grees of freedom, this provides us with L virtual operators denoted as ĉ(1)i (t). With
ĉ
(n)
i (t) ≡ Γ̂

(n)
i (t)/⟨

{
Γ̂
(n)
i (t), [Γ̂

(n)
i (t)]†

}
⟩, we iteratively define

Γ̂
(n+1)
i (t) = i∂tĉ

(n)
i (t)−

∑
m≤n

∑
j

⟨
{
i∂tĉ

(n)
i (t), [ĉ

(m)
j (t)]†

}
⟩ĉ(m)
j (t)

−
∑
j<i

⟨
{
i∂tĉ

(n)
i (t), [ĉ

(n+1)
j (t)]†

}
⟩ĉ(n+1)
j (t) (6.27)

for all n. The matrix elements of the effective Hamiltonian can be classified according to
our construction scheme. We set ĉ(0)i (t) ≡ ĉi(t) and define

h
(n,m)
ij (t) ≡ ⟨

{
i∂tĉ

(n)
i (t), [ĉ

(m)
j (t)]†

}
⟩, (6.28)

which is non-zero only for n− 1 ≤ m ≤ n+ 1, i.e., the hopping is limited to neighbour-
ing sectors. This follows from Eq. (6.27) and the from the effective Hamiltonian being
Hermitian. Consequently, we obtain a block-tridiagonal form:

h\(t) =


h(0,0) h(0,1) 0 0 · · ·
h(1,0) h(1,1) h(1,2) 0 · · ·
0 h(2,1) h(2,2) h(2,3) · · ·
0 0 h(3,2) h(3,3) · · ·
... ... ... ... . . .

 . (6.29)

Similarly, the virtual sector can be subdivided according to this scheme such that h(n,n)(t)
is a linear map in the n-th virtual sector. Consequently, h(n,n+1) maps from the n + 1-th
to the n-th virtual sector. Let us note that h\(t) coincides with the effective medium h(t),
as defined in Eq. (3.9), only in the physical sector. Finally, Eq. (6.29) implies that ĉ(n+1)

i

can be stated by means of a recursion formula

Γ̂
(n+1)
i (t) = h

(n,n+1)
ii (t)ĉ

(n+1)
i (t) = i∂tĉ

(n)
i (t)−

∑
j≥i

h
(n,n−1)
ij ĉ

(n−1)
j (t) (6.30)

−
∑
j<i

h
(n,n+1)
ij (t)ĉ

(n+1)
j (t)−

∑
j

h
(n,n)
ij (t)ĉ

(n)
j (t).

A closer look reveals that the block-tridiagonal shape as well as the recursion formula
were results to be expected by design. In its essence, the construction largely parallels
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6.2. Analytical scheme to construct the effective medium

the Lanczos algorithm [145] which yields an orthonormal basis [here: ĉ(n)i (t)] of a corre-
sponding Krylov subspace [146] [here: A, see below]. It should also be noted, that a sim-
ilar algorithm appears in the context of the Mori-Zwanzig projection technique [86–88].
It is thus to no surprise that it is possible to derive a generalization of Mori’s continued
fraction expansion [88] to Keldysh-Matsubara Green’s functions (cf. Sec. 6.2.2).

Termination of the iterative scheme

If we are dealingwith finite systems, themaximal number of virtual operators is also finite
and so the inductive scheme given by Eq. (6.27) must terminate after a finite number of
iterations. In the simplest case, the time-evolution of all involved operators is smooth.
Then, we find at every time t the same lowest order Nit such that h(Nit,Nit+1)(t) vanishes.
The associated active subspace reads:

A =

{
Nit∑
n=0

∑
i

αi[Pβ ĉ(n)i (0)] : αi ∈ C

}
. (6.31)

Interestingly, it is the lowest-dimensional subspace that features Pβ[ĉi(t)] ∈ A, i.e., any
other subspace Ã with the same property must contain A. This follows from its con-
struction as a Krylov space with i∂t as the generating operator. Based on this property,
an upper bound for the required number of iterationsNit can be obtained by counting the
number of non-vanishing elements of theQ-matrix (in complete analogy to Section 3.3.3):
Exploiting known symmetries of the Hamiltonian and excluding thermally suppressed
combinations (i.e., combinations with z(m,n) = 0) we start with an upper bound Nct for
the number of contributing combinations (m,n). Based on this knowledge we can be sure
that an exact description of the system using an O-matrix of dimension Nct ×Nct is pos-
sible. Assuming L linear independent operators are obtained per iteration, the inductive
procedure must terminate after Nit ≤ Nct/L− 1 steps.

A possible complication could be that we do not obtain L linear independent opera-
tors per iteration. This is most likely due to a special form of the Hamiltonian. For a
single-impurity Anderson model, for example, we obtain per step only a single new vir-
tual operator since interactions are restricted to the impurity site. Consequently, we have
to perform Nct − L iterations in this case.

The situation is more complicated if the time-evolution is not smooth. An important
scenario that falls into this category is an interaction quench: H(t < tq) = H0(t),
H(t ≥ tq) = H0(t) + Hint(t). In this case, we have Nit = 0 for times t < tq since
the system can be completely described in terms of the physical degrees of freedom. For
t ≥ tq, on the other hand, virtual degrees of freedom must be considered as well such
that we haveNit > 0. A simple solution for this example is to include the missing virtual
operators for t < tq.

6.2.2. The nonequilibrium Green’s function as a continued
fraction

It is worthwhile to link our results back to the conventional, two-time Keldysh-Matsubara
formalism. To this end, we integrate out the virtual degrees of freedom step by step for
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6. Nonequilibrium two-pole approximation

each n. The block-tridiagonal form of the effective Hamiltonian leads to the emergence
of a continued fraction. Consider the definition

g
(n)
ij (t, t′) =

1

[g
(n,n)
0 ]−1 − Λ(n)

, [g
(n,n)
0 ]−1

ij (t, t
′) = [δiji∂t − h

(n,n)
ij (t)]δC(t, t

′), (6.32)

Λ
(n)
ij (t, t′) =

∑
kl

h
(n,n+1)
ik (t)g

(n+1)
kl (t, t′)h

(n+1,n)
lj (t′), (6.33)

which yields for the one-particle Green’s function

Gij(t, t
′) =

 1

[g
(0,0)
0 ]−1 − h(0,1) ◦ 1

[g
(1,1)
0 ]−1−h(1,2)◦ 1

[g
(2,2)
0 ]−1−...

◦h(2,1)
◦ h(1,0)


ij

(t, t′). (6.34)

In contrast to equilibrium expansions, cf. Ref. 88, the evaluation of every fraction requires
amatrix inversion on the Keldysh-Matsubara contour. Due to this property, it seemsmuch
more convenient to refrain from integrating out the physical sectors in practice. Instead,
one works with an enlarged single-particle Hilbert space which also comprises the virtual
sector.

A continued fraction can also be stated for the nonequilibrium self-energy
Σ(t, t′) = δC(t, t

′)ΣHF(t) + ΣC(t, t′):

ΣC
ij(t, t

′) =

h(0,1) ◦ 1

[g
(1,1)
0 ]−1 − h(1,2) ◦ 1

[g
(2,2)
0 ]−1−...

◦ h(2,1)
◦ h(1,0)


ij

(t, t′). (6.35)

Note that in this form, the correlated part of the self-energy is not given in form of a
Lehmann representation. Even if we diagonalize g(1)(t, t′) such that

ΣC
ij(t, t

′) =
∑
kk′

h
(0,1)
ik (t)g

(1)
kk′(t, t

′)h
(1,0)
k′j (t′) =

∑
k

h̄
(0,1)
ik (t)ḡ

(1)
kk (t, t

′)h̄
(1,0)
kj (t′) (6.36)

there is a mismatch with our definition, Eq. (3.15), since ḡ(1,1)(t, t′) is not simply the so-
lution of an isolated site, Eq. (2.17). Since it is quite instructive, we explicitly derive the
Lehmann representation of the nonequilibrium self-energy starting from Eq. (6.32) in the
following.

Lehmann representation of the nonequilibrium self-energy

The Green’s function g(1)kl (t, t
′) can be written as

g
(1)
kl (t, t

′) = i
[
U (1)(t, 0)

(
f [h≥(1,1)(0)]−ΘC(t, t

′)
)
[U (1)(t′, 0)]†

]
kl
. (6.37)

Here, h≥(1,1)(t) is defined as equal to h\(t) but with the first line and column removed,
cf. Eq. (6.29). At time t = 0, it is diagonalized as h≥(1,1)(0) = RDR†, withDss′ = δss′Dss.
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6.3. Application to the one-band Hubbard model

The propagator U (1) is defined as U (1)(t, 0) = T exp
(
−i
∫ t
0
dt′h≥(1,1)(t′)

)
. Finally, the

expression f [·] refers to the matrix Fermi distribution:

f [h≥(1,1)(0)] = f [RDR†] = Rf [D]R†, where f [D]ss′ = δss′f(Dss), (6.38)

where f(ϵ) denotes the Fermi distribution. Let us emphasize that U (1)(t, 0), h≥(1,1)(t),
D and R are linear transformations in the full virtual sector. The corresponding indices
are s, s′, while the k, l indices label degrees of freedom in the first virtual sector only.
Eq. (6.37) thus projects out the dynamics of all virtual sectors but the first. We proceed
by defining

his(t) ≡ eiDsst
∑
ks′

h
(0,1)
ik (t)U (1)

ks′ (t, 0)Rs′s, (6.39)

which in particular guarantees his(−iτ) = his(0) as is easily verified. This is necessary
to use his(t) as hopping parameter within a single-particle Hamiltonian. Inserting this
definition into Eq. (6.36) yields the Lehmann representation

ΣC
ij(t, t

′) =
∑
s

his(t)g(Dss; t, t
′)h∗js(t

′) (6.40)

in formal agreement with our definition, Eq. 3.2, and with g(ϵ; t, t′) as defined in Eq. (2.17).
Note that formal agreement implies identity up to rotations in invariant subspaces due to
the uniqueness of the Lehmann representation (cf. the discussion below Eq. (3.9)).

6.3. Application to the one-band Hubbard model
So far, our considerations are formally exact for arbitrary, fermionic lattice systems. In
this section we take a look at a concrete model Hamiltonian, namely the time-dependent
Hubbard model. In particular, since an exact solution is restricted to very small lattice
sizes, we suggest a self-consistent approximation that can also be applied to larger sys-
tems. The main idea is rather simple: Taking advantage of the block-tridiagonal form of
the effective medium, we decouple virtual sectors of second and higher order, i.e.,

h\(t) =


h(0,0) h(0,1) 0 0 · · ·
h(1,0) h(1,1) h(1,2) 0 · · ·
0 h(2,1) h(2,2) h(2,3) · · ·
0 0 h(3,2) h(3,3) · · ·
... ... ... ... . . .

 ≈


h(0,0) h(0,1) 0 0 · · ·
h(1,0) h(1,1) 0 0 · · ·
0 0 h(2,2) h(2,3) · · ·
0 0 h(3,2) h(3,3) · · ·
... ... ... ... . . .

 .

(6.41)

As h(0,0) is exactly given by the Hartree-Fock Hamiltonian, this can be considered as the
simplest approximation possible within this scheme that goes beyond standard mean-
field theory. From the viewpoint of the continued fraction expansion, it is equivalent to
setting Λ(1) = 0 within the expansion of the Green’s function as a continued fraction. A
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6. Nonequilibrium two-pole approximation

decoupling via Eq. (6.41) can therefore be interpreted as the nonequilibrium variant of a
two-pole approximation [88].

The route to a self-consistent two-pole approximation first of all requires the explicit
derivation of the matrix elements of the first virtual sector h(1,1) for the Hubbard model.
This is worked out in Section 6.3.1. As a major complication we find, that this does not
automatically lead to a closed set of equations, i.e., there is no obvious way to express
h(1,1) in terms of ⟨[ĉ(n)i (t)]†ĉ

(m)
j (t)⟩, n,m ≤ 1. This issue is investigated in Section 6.3.2

where we exploit the completeness of the active subspace to close the self-consistency
without the need to resort to a further approximation. In Section 6.3.3, we discuss the
resulting self-consistency cycle and argue that a violation of energy and particle number
conservation must be expected during the propagation. Finally, we specialize the prop-
agation to the time-local density matrix instead of the time-non-local Green’s function
which allows to enforce the conservation laws and their corresponding local constraints
(Section 6.3.4).

For a leaner notation, we employ the shorthand notation Â ≡ Â(t) for operators in
the Heisenberg picture throughout this section where this is unambiguously possible.
Expectation values are taken with respect to the Hubbard Hamiltonian, i.e., ⟨·⟩ ≡ ⟨·⟩H
with H(t) as defined in Eq. (6.42).

6.3.1. Evaluating the first virtual sector for the Hubbard model
To give a self-contained presentation, we recall the Hubbard Hamiltonian as

H(t) =
∑
ijσ

[Tijσ(t)− µδij]c
†
iσcjσ + U(t)

∑
i

ni↑ni↓. (6.42)

One readily calculates the time-derivative i∂tĉiσ as

i∂tĉiσ =
[
ĉiσ, Ĥ

]
=
∑
j

(Tijσ(t)− δijµ)ĉjσ + U(t)n̂iσ̄ ĉiσ (6.43)

Evaluation of Eq. (6.26) yields

γ̂iσ ≡ ĉ
(1)
iσ =

n̂iσ̄ − ⟨n̂iσ̄⟩√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

ĉiσ (6.44)

It is instructive to verify that γ̂iσ indeed fulfills the orthonormalization requirement,
Eq. (6.7):

⟨
{
γ̂iσ, ĉ

†
jσ

}
⟩ ∝ ⟨

{
[n̂iσ̄ − ⟨n̂iσ̄⟩] ĉiσ, ĉ†jσ

}
⟩ = ⟨[n̂iσ̄ − ⟨n̂iσ̄⟩]

{
ĉiσ, ĉ

†
jσ

}
⟩ = 0, (6.45)

⟨
{
γ̂iσ, γ̂

†
jσ

}
⟩ =

⟨[n̂iσ̄ − ⟨n̂iσ̄⟩] [n̂jσ̄ − ⟨n̂jσ̄⟩]
{
ĉiσ, ĉ

†
jσ

}
⟩√

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2
√

⟨n̂jσ̄⟩ − ⟨n̂jσ̄⟩2
= δij

⟨[n̂iσ̄ − ⟨n̂iσ̄⟩]2⟩
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

= δij.

We proceed by calculating explicit expressions for h\(t). The physical sector is readily
obtained from Eq. (6.43)

h
(0,0)
ijσ (t) = ⟨

{
i∂tĉiσ, ĉ

†
jσ

}
⟩ = Tijσ(t)− µδij + U(t)⟨n̂iσ̄⟩δij (6.46)
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and identical to the Hartree-Fock Hamiltonian as expected. The hybridization elements
between the physical and virtual sector follow as

h
(0,1)
ijσ (t) = [h

(1,0)
jiσ (t)]∗ = ⟨

{
i∂tĉiσ, γ̂

†
jσ

}
⟩ = U(t)

⟨
{
n̂iσ̄ ĉiσ, (n̂jσ̄ − ⟨n̂jσ̄⟩) ĉ†jσ

}
⟩√

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

= δijU(t)
√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2. (6.47)

The evaluation of h(1,1)ikσ (t) = ⟨
{
i∂tγ̂iσ, γ̂

†
kσ

}
⟩, on the other hand, turns out to be quite

tedious. We refer to Appendix B.1 for the details. For the diagonal elements, one obtains
the final expression

h
(1,1)
iiσ (t) = Tiiσ(t)− µ+ U(t) (1− ⟨n̂iσ̄⟩)−

(
1

2
− ⟨n̂iσ⟩

)∑
j ̸=i

[
Tijσ̄(t)⟨ĉ†iσ̄ ĉjσ̄⟩+ cc.

]
√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

+

√
⟨n̂iσ⟩ − ⟨n̂iσ⟩2√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

∑
j ̸=i

[
Tijσ̄(t)⟨γ̂†iσ̄ ĉjσ̄⟩+ cc.

]
√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

, (6.48)

and for the off-diagonals (i ̸= k)

h
(1,1)
ikσ (t) =

Tikσ(t) (⟨n̂iσ̄n̂kσ̄⟩ − ⟨n̂iσ̄⟩⟨n̂kσ̄⟩)− ⟨
[
Tikσ̄(t)ĉ

†
iσ̄ ĉkσ̄ + Tkiσ̄(t)ĉ

†
kσ̄ ĉiσ̄

]
ĉ†kσ ĉiσ⟩√

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2
√

⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2
.

(6.49)

So far no approximation has been made, i.e., the expressions stated for the hybridization
elements, Eq. (6.47), and the first virtual sector of the effective Hamiltonian, Eqs. (6.48)
and (6.49), are exact. Within in the two-time Keldysh-Matsubara framework, they prove
the non-equilibrium self-energy of the Hubbard to be of the following structure

Σijσ(t, t
′) = δC(t, t

′)δijU(t)⟨n̂iσ̄(t)⟩ (6.50)

+ U(t)
√
⟨n̂iσ̄(t)⟩(1− ⟨n̂iσ̄(t)⟩)g(1,1)ijσ (t, t′)

√
⟨n̂jσ̄(t′)⟩(1− ⟨n̂jσ̄(t′)⟩)U(t′),

where

[g(1,1)]−1
ijσ(t, t

′) =
(
δiji∂t − h

(1,1)
ijσ (t)

)
δC(t, t

′)− Λ
(1)
ijσ(t, t

′). (6.51)

There are two obvious limits where our results yield a closed set of equations and thus
allow for an instant solution of the Hubbard model. There first is trivially given by the
noninteracting limit, i.e.,U(t) = 0. A bitmore interesting is the opposite, atomic limit, i.e.,
T (t) = 0. In this case one finds Γ̂(2)

i = 0 ⇒ h(1,2)(t) = 0 (amounting to Λ(1)(t, t′) = 0 in
the two-time Keldysh-Matsubara formalism), and furthermore h(1,1)ikσ = δikh

(1,1)
iiσ . We can

thus setup a selfconsistency cycle and solve exactly for the one-particle Green’s function
in the physical as well as in the virtual sector. In addition, through ⟨γ̂iσ ĉiσ⟩, the latter
provides us with an expression of the double occupation.
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Interestingly, there is a third case where the physical and first virtual sector alone are
sufficient to aim for an exact solution of the Hubbard model: The two-site cluster with
a zero-temperature initial state. Assuming a non-degenerate ground state and exploiting
conservation of the total spin, the O-matrix corresponding to this setup is maximally
of dimension 4 × 4 per spin type as detailed in Section 3.3.3. Since the spin-dependent
effective medium is of the same dimension, it must be sufficient for an exact description
(cf. the discussion beneath Eq. (6.31) for more details). However, taking a look at the off-
diagonal values of the effective medium we notice a severe difficulty: There is no obvious
way to express the expectation values

⟨n̂iσn̂kσ⟩, ⟨ĉ†kσ ĉkσ̄ ĉ
†
iσ̄ ĉiσ⟩, ⟨ĉ†kσ ĉ

†
kσ̄ ĉiσ̄ ĉiσ⟩, (6.52)

in terms of expectation values ⟨ĉ†iσ ĉjσ⟩, ⟨γ̂
†
iσ ĉjσ⟩, ⟨γ̂

†
iσγ̂jσ⟩ only. Of course, this also hin-

ders to directly employ our expressions for the effective medium in the context of an
approximation which truncates any but the first virtual sector. A possible way to pro-
ceed exploits the completeness of the active subspace, cf. Section 6.1.5. It is detailed in
the next subsection.

6.3.2. Accessing arbitrary two-particle expectation values

By design, two-particle correlation functions of the form ⟨n̂iσ̄ ĉ†iσ ĉjσ⟩ are easily expressed
using the operators γ̂iσ, ĉjσ:

⟨n̂iσ̄ ĉ†iσ ĉjσ⟩ =
√

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2⟨γ̂†iσ ĉjσ⟩+ ⟨n̂iσ̄⟩⟨ĉ†iσ ĉjσ⟩. (6.53)

The idea to obtain expressions for the remaining two-particle correlation functions ex-
ploits that we are dealing with a four-dimensional active subspace

A =

{∑
iσ

[
α
(0)
iσ Pβ[ĉiσ(0)] + α

(1)
iσ Pβ[γ̂iσ(0)]

]
, α

(0)
iσ , α

(1)
iσ ∈ C

}
. (6.54)

As shown in Section 6.1.5, it comes accompanied by a completeness relation. For an
arbitrary time-local two-particle correlation function it can be stated in the following
way [using ĉ(0)iσ = ĉiσ, ĉ(1)iσ = γ̂iσ for efficient notation]

⟨ĉ†iσ ĉ
†
jσ̄ ĉkσ̄ ĉlσ⟩ =

1

4

∑
j′σ′

1∑
n=0

(
⟨
{
ĉ†iσ ĉ

†
jσ̄ ĉkσ̄, ĉ

(n)
jσ′

}
⟩⟨[ĉ(n)j′σ′ ]

†ĉlσ⟩ (6.55)

− ⟨
{
ĉ†iσ ĉ

†
jσ̄ ĉlσ, ĉ

(n)
jσ′

}
⟩⟨[ĉ(n)jσ′ ]

†ĉkσ̄⟩

+ ⟨ĉ†iσ ĉ
(n)
jσ′⟩⟨

{
[ĉ

(n)
jσ′ ]

†, ĉ†jσ̄ ĉkσ̄ ĉlσ

}
⟩

− ⟨ĉ†jσ̄ ĉ
(n)
jσ′⟩⟨

{
[ĉ

(n)
jσ′ ]

†, ĉ†iσ ĉkσ̄ ĉlσ

}
⟩
)
.

In contrast to the original expression, Eq. (6.20), we have stated a symmetrized form by
averaging over the four possible choices to single out an individual creation [annihilation]
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6.3. Application to the one-band Hubbard model

operator. Within the context of an approximation, we might otherwise be faced with
inconsistent results depending on our choice. This was already noted by Roth in her
original paper, Ref. 82 below Eq. (56), who also suggested to cure this ambiguity by taking
the average. The correlation functions considered by her lack invariance under spin flips
“and this points up an ambiguity in our method of evaluating the four operator averages (…),
namely, that the division into the A and B of Eq. (32) is not unique. In the limits U → ∞ and
U → 0, the two spin directions do give equivalent results. For intermediate values it would
seem best to average them.” Here, Roth’s Eq. (32) is an equilibrium variant of our Eq. (6.20).
The found ambiguity in splitting four operators intoA andB is exactly the questionwhich
operator should be singled out if applying Eq. (6.20). As she also observes, an average is
not necessary in exact cases, where all terms must give the same result.

Let us take a closer look now at one of the anticommutator terms, e.g.,
⟨
{
ĉ†iσ ĉ

†
jσ̄ ĉkσ̄, ĉ

(n)
jσ′

}
⟩. If n = 0, the expression reduces to a one-particle expectation value.

If n = 1, on the other hand, the anticommutation yields another two-particle expecta-
tion value. Within our theory, all one-particle expectation values as well as two-particle
expectation values of the form ⟨γ̂†iσ ĉjσ⟩, cf. Eq. (6.53), are directly accessible. Eq. (6.55)
therefore constitutes a linear equation that can be solved for the remaining two-particle
correlation functions. We emphasize that the validity of Eq. (6.55) follows directly from
the low-dimensional structure of the active subspace which only involves one virtual de-
gree of freedom [γiσ]. If the low dimensionality is due to an approximation, Eq. (6.55)
provides a natural way to access arbitrary time-local two-particle correlation functions
which involves no additional approximation. If the low dimensionality is exact, e.g., the
two-site Hubbard cluster at zero-temperature mentioned above Eq. (6.52), it is exact as
well. In either case, it allows to close the self-consistency cycle as every matrix element
of the effective medium can now be stated in terms of ⟨ĉ†iσ ĉjσ⟩, ⟨γ̂

†
iσ ĉjσ⟩ and ⟨γ̂†iσγ̂jσ⟩.

Although straightforward, it is quite cumbersome in practice to solve Eq. (6.55) for
the operators necessary to close the self-consistency cycle, Eq. (6.52). We refer to Ap-
pendix B.2 for the details of the derivation. For an efficient notation, we suppress an
explicit time-dependence not only for operators in the Heisenberg picture but for any
quantity in the results below. For example, in Eqs. (6.56) and (6.57), ξkσ ≡ ξkσ(t) is of
course time-dependent. As an assuring check, we find that Wick’s theorem is recovered
in all cases if the limit U(t) → 0 is taken. This follows from h(0,1)(t) vanishing in this
limit such that ⟨γ̂†iσ ĉjσ⟩ = 0. Finally, we note that i ̸= k is assumed for all results below.

Explicit solution of Eq. (6.55) for ⟨n̂iσn̂kσ⟩

Density-density correlations are obtained as:


⟨n̂kσ̄n̂iσ̄⟩
⟨n̂kσn̂iσ̄⟩
⟨n̂kσ̄n̂iσ⟩
⟨n̂kσn̂iσ⟩

 =
1

2


1 −1

2
ξkσ̄ −1

2
ξiσ̄ 0

−1
2
ξkσ 1 0 −1

2
ξiσ̄

−1
2
ξiσ 0 1 −1

2
ξkσ̄

0 −1
2
ξiσ −1

2
ξkσ 1


−1

w

(1)
ikσ̄ + w

(1)
kiσ̄

w
(2)
ikσ̄ + w

(2)
kiσ

w
(2)
ikσ + w

(2)
kiσ̄

w
(1)
ikσ + w

(1)
kiσ

 , (6.56)
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where the coefficients are given by

w
(1)
ikσ̄ = −⟨n̂kσ⟩⟨n̂iσ̄⟩ξkσ̄ + ⟨n̂iσ̄⟩⟨n̂kσ̄⟩ −

∣∣∣⟨ĉ†iσ̄ ĉkσ̄⟩∣∣∣2 − ∣∣∣⟨γ̂†iσ̄ ĉkσ̄⟩∣∣∣2 , (6.57)

w
(2)
ikσ̄ = −⟨n̂kσ̄⟩⟨n̂iσ̄⟩ξkσ + ⟨n̂iσ̄⟩⟨n̂kσ⟩,

ξkσ =
1

2

⟨ĉ†kσγ̂kσ⟩+ ⟨γ̂†kσ ĉkσ⟩√
⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2

.

By construction, we find that Eq. (6.56) features the right symmetries: It is invariant under
exchanges the of indices, i↔ k, spin-flips, σ ↔ σ̄, or complex conjugation.

Explicit solution of Eq. (6.55) for ⟨ĉ†kσ ĉkσ̄ ĉ
†
iσ̄ ĉiσ⟩

For the spin-flip correlation function we find the expression:

⟨ĉ†kσ ĉkσ̄ ĉ
†
iσ̄ ĉiσ⟩ = −1

4

[
1 +

1

4
(ζkσ+ζ

∗
kσ̄+ζiσ̄+ζ

∗
iσ)

]−1

×
[
w

(3)
ikσ̄+w

(3)
kiσ+[w

(3)
ikσ]

∗+[w
(3)
kiσ̄]

∗
]
,

(6.58)

where the coefficients are given by

w
(3)
ikσ̄ = ⟨ĉ†iσ̄ ĉkσ̄⟩⟨ĉ

†
kσ ĉiσ⟩+

[√
⟨n̂iσ⟩−⟨n̂iσ⟩2√
⟨n̂iσ̄⟩−⟨n̂iσ̄⟩2

⟨γ̂†iσ̄ ĉkσ̄⟩ −
⟨n̂iσ̄⟩−⟨n̂iσ⟩√
⟨n̂iσ̄⟩−⟨n̂iσ̄⟩2

⟨ĉ†iσ̄ ĉkσ̄⟩

]
⟨ĉ†kσγ̂iσ⟩,

ζkσ =
⟨ĉ†kσγ̂kσ⟩√

⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2
. (6.59)

The right-hand side of Eq. (6.58) features indeed the right symmetries: The result is in-
variant if we replace i ↔ k (or conjugate the equation) in combination with a spin flip,
σ ↔ σ̄.

Explicit solution of Eq. (6.55) for ⟨ĉ†kσ ĉ
†
kσ̄ ĉiσ̄ ĉiσ⟩

The last correlation function describes the movement of doublons on the lattice:

⟨ĉ†kσ ĉ
†
kσ̄ ĉiσ̄ ĉiσ⟩ =

1

4

[
1 +

1

4

∑
σ′

[ζkσ′+ζ∗iσ′ ]

]−1

×
[
w

(4)
ikσ̄+w

(4)
ikσ+[w

(4)
kiσ]

∗+[w
(4)
kiσ̄]

∗
]

(6.60)

where the coefficients are given by

w
(4)
ikσ̄ ≡ ⟨ĉ†kσ̄ ĉiσ̄⟩⟨ĉ

†
kσ ĉiσ⟩ (6.61)

+

[
(1−⟨n̂iσ̄⟩−⟨n̂iσ⟩) ⟨ĉ†kσ̄ ĉiσ̄⟩√

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2
−
√
⟨n̂iσ⟩−⟨n̂iσ⟩2√
⟨n̂iσ̄⟩−⟨n̂iσ̄⟩2

⟨ĉ†kσ̄γ̂iσ̄⟩

]
⟨ĉ†kσγ̂iσ⟩.

Again, we note that symmetry relations are correctly reproduced by the right-hand side
of Eq. (6.60): It is invariant under spin flips, σ ↔ σ̄, as well as complex conjugation in
combination with an index exchange, i↔ k.
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Gxyσ(−iτ,−iτ ′) h\(0)

ED

f [h\(0)]

Next iteration

h\(tmax)
ED

U(tmax +∆t, 0)

Gxyσ(t, t
′)

t, t′ ∈ Ctmax

tmax → tmax +∆t

Eqs. (6.46) - (6.49),
(6.56) - (6.61)

a) b) Eqs. (6.46) - (6.49),
(6.56) - (6.61)

Figure 6.1.: a) Self-consistent determination of the initial state: Given a guess for the
Green’s function, the effective medium h\(0) can be determined. By using ex-
act diagonalization, we obtain the Fermi matrix f [h\(0)] such that the Green’s
function can be updated via Eq. (6.62). b) Propagation scheme: Given h\(tmax)
and U(tmax, 0), we can perform a single time-step ∆t. The updated Green’s
function follows from Eq. (6.62) and gives rise to h\(tmax +∆t).

6.3.3. Self-consistency cycle for a time-non-local theory
With expressions for a self-consistent determination of the effective medium at hand, we
can state a self-consistency cycle to obtain the equilibrium Green’s function as well as
a propagation scheme for finite times t, t′. Its precise form is detailed in Fig. 6.1. We
emphasize that the propagation scheme allows for t ̸= t′, i.e., time-non-local correlations
are accessible by our approximation. This property is ensured by design since we have
access to the time-evolution operator U(t, 0) = T exp

(
−i
∫ t
0
dt′h\(t′)

)
. The Green’s

function is then given as

Gxyσ(t, t
′) = −i⟨TC ĉxσ(t)ĉ†yσ(t′)⟩ = i

[
U(t, 0)

(
f [h\(0)]−ΘC(t, t

′)
)
U †(t′, 0)

]
xyσ

,

where ĉxσ(t) =

{
ĉiσ(t) if x ∈ {0, . . . , L− 1},
γ̂iσ(t) if x ∈ {L, . . . , 2L− 1}.

(6.62)

Here, f [·] refers to the matrix Fermi distribution, cf. Eq. (6.38). We recall that the obtained
dynamics are exact in the following limits: (1) No interactions, i.e., U(t) = 0, (2) single-
site cluster, Tijσ(t) = δijTiiσ(t) and (3) two-site cluster with the initial state being non-
degenerate and at zero-temperature.

In the approximate case, on the other hand, we note an important restriction. Despite
the completely self-consistent design, we must expect a violation of conservation laws, or
more general, their corresponding local constraints derived in Section 5.1. To understand
what is missing, we take a closer look at the double occupation. The ambiguity that arises
from Eq. (6.53) is dealt with by taking the average, which is in particular consistent with
Eq. (6.55). The explicit expression reads

⟨n̂iσ̄n̂iσ⟩ =
1

4

∑
σ

(√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

[
⟨γ̂†iσ ĉiσ⟩+ ⟨ĉ†iσγ̂iσ⟩

]
+ 2⟨n̂iσ̄⟩⟨n̂iσ⟩

)
. (6.63)

In the exact case, its time-derivative simplifies considerably since the interaction term
commutes with the double occupation:

i∂t⟨n̂iσ̄n̂iσ⟩ = ⟨
[
n̂iσ̄n̂iσ, Ĥ0

]
⟩. (6.64)
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Within our approximation, on the other hand, we explicitly take into account only sim-
plifications that arise in calculating [ĉiσ, Ĥ] and [n̂iσ̄ ĉiσ, Ĥ] separately (in the context of
calculating h(n,m)

ijσ (t), cf. Sec. 6.3.1). As a result, a violation of the local constraint of the
doublon density must be expected. From an analog argumentation the same follows for
the local constraint of the spin-dependent density. In practice, this poses a severe issue,
since it implies violation of energy as well as particle number conservation. However, the
problem can be cured by specializing the theory to be purely time-local. This is detailed
in the following.

6.3.4. Conservation laws: Specialization to a time-local theory

In a purely time-local context, it is possible to specialize the self-consistency cycle such
that conservation laws are respected by the time-evolution. The idea is linked to the Pauli
principle, which poses a constraint on some of the matrix elements of G(t, t+):

⟨γ̂†iσ ĉiσ⟩ =
⟨n̂iσ̄n̂iσ⟩ − ⟨n̂iσ̄⟩⟨n̂iσ⟩√

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2
= ⟨ĉ†iσγ̂iσ⟩, (6.65)

⟨γ̂†iσγ̂iσ⟩ =
⟨n̂iσ̄n̂iσ⟩ (1− 2⟨n̂iσ⟩) + ⟨n̂iσ̄⟩2⟨n̂iσ⟩

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2
, (6.66)

Within our time-non-local (Roth-like) approach, these constraints are known to be
violated [147], i.e., incompatible values for the double occupation are obtained from
Eqs. (6.65) and (6.66). In the following we fix this issue and, in the course of this, fur-
thermore enforce conservation laws.

The overall scheme is easiest to understand if we set aside the initial state problem for
a moment and only focus on the dynamics. To this end, let us assume that the initial one-
particle density matrix, Gxyσ(0, 0

+), is given such that Eqs. (6.65) and (6.66) are fulfilled.
To derive the dynamics of G(t, t+), we need an equation of motion for each of its matrix
elements. To ensure the Pauli principle, we define the equation of motion of ⟨γ̂†iσ ĉiσ⟩
and ⟨γ̂†iσγ̂iσ⟩ as the time-derivate of Eqs. (6.65) and (6.66). To become able to evaluate it
selfconsistently, we need expression for i∂t⟨n̂iσ̄n̂iσ⟩ as well as i∂t⟨n̂iσ⟩ in terms of matrix
elements of G(t, t+). Considering the time-derivative of the double occupation first, we
define its equation of motion using the local constraint Eq. (5.2) for the doublon density.
In the context of our theory it reads

i∂t⟨n̂iσ̄n̂iσ⟩ =
∑
jσ′

√
⟨n̂iσ̄′⟩ − ⟨n̂iσ̄′⟩2

(
Tijσ′(t)⟨γ̂†iσ′ ĉjσ′⟩ − ⟨ĉ†jσ′ γ̂iσ′⟩Tjiσ′(t)

)
+
∑
jσ′

⟨n̂iσ̄′⟩
(
Tijσ′(t)⟨ĉ†iσ′ ĉjσ′⟩ − ⟨ĉ†jσ′ ĉiσ′⟩Tjiσ′(t)

)
. (6.67)

The crucial point is here that Eq. (6.67) automatically ensures energy conservation as we
have previously discussed in Section 5.1. The equation of motion of all remaining matrix
elements ofG(t, t+) (therefore including i∂t⟨n̂iσ⟩) is now readily defined via the effective
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medium:

i∂tGxyσ(t, t
+) =

[
h\(t), G(t, t+)

]
xyσ

for (x, y) /∈ Id, (6.68)
Id ≡ {(L+ i, L+ i), (i, L+ i), (L+ i, i)} .

It remains to take a look at the local constraint for the spin-dependent density:

i∂t⟨n̂iσ⟩ =
∑
j

[
Tijσ(t)⟨ĉ†iσ ĉjσ⟩ − Tjiσ(t)⟨ĉ†jσ ĉiσ⟩

]
(6.69)

+ U(t)
√
⟨n̂iσ⟩ − ⟨n̂iσ⟩2

(
⟨ĉ†iσγ̂iσ⟩ − ⟨γ̂†iσ ĉiσ⟩

)
︸ ︷︷ ︸

=0, due to Eq. (6.65)

.

Comparing to Eq. (5.1), we find it obeyed as well.
Concluding, let us emphasize once more that the through Eqs. (6.65) - (6.68) defined

selfconsistent propagation scheme fulfills both, the Pauli exclusion principle as well as the
macroscopic conservation laws. Nevertheless, a closer look also reveals that a price had to
be paid: We have lost access to time-non-local states as there is no apparent way to define
an effective Hamiltonian H tl(t) such that Gxyσ(t, t

+) = i⟨ĉ†yσ(t)ĉxσ(t)⟩H tl . Furthermore,
and maybe more importantly, the initial state is not easily determined from Eqs. (6.65) -
(6.68) alone, as discussed below.

Initial state

Apart from Eqs. (6.65) and (6.66), we have only stated equations of motion, i.e., the initial
stateGxyσ(0, 0

+) is undefined up to now. In the simple cases, it can be stated exactly. Im-
portant examples are given by the noninteracting initial state or the atomic limit which
can both be treated rigorously. In particular, Eq. (6.65) is then trivially fulfilled. However,
if one wants to start from arbitrary interaction, one runs into problems: While a selfcon-
sistency cycle for the matrix elements unrelated to the double occupation, Gxyσ(0, 0

+)
for (x, y) /∈ Id, is easily setup in complete analogy to the time-non-local case, it is rather
unclear how to correctly incorporate Eqs. (6.65) and (6.66) or, equivalently, how to define
the double occupation.

Coming from the time-non-local self-consistency cycle, a possible choice is to enforce
Eq. (6.65) by averaging inconsistent results. The algorithm could look as follows: Given
a density matrix G(N)

xyσ(0, 0+) after the N -th iteration, we compute the effective medium
h
\
(N)(0) in complete analogy to before. We then define Gtmp

xyσ(0, 0
+) ≡ if [h

\
(N)(0)]xyσ

which, in general, will violate Eqs. (6.65) and (6.66), i.e., it does not constitute a proper
updateG(N+1)(0, 0+). It can be used, however, to update the double occupation alone. To
avoid the instability of Eq. (6.66) at half-filling, we base the average on Eq. (6.63):

⟨niσ̄niσ⟩(N+1) =
1

4

∑
σ

(√
⟨niσ̄⟩t − ⟨niσ̄⟩2t

[
⟨γ†iσciσ⟩t + ⟨c†iσγiσ⟩t

]
+ 2⟨niσ̄⟩t⟨niσ⟩t

)
,

(6.70)
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where ⟨c†xσcyσ⟩t ≡ −iGtmp
xyσ(0, 0

+). With an update for the double occupation at hand, we
define

⟨c†xσcyσ⟩(N+1) = ⟨c†xσcyσ⟩t if (x, y) /∈ Id, (6.71)

such that the remaining matrix elements (x, y) ∈ Id follow from Eqs. (6.65) and (6.66).
A second option specific to zero-temperature initial states is adiabatic switching: Start-

ing at time t = −tad from a noninteracting initial state, U(−tad) = 0, the interaction
is slowly turned on until the desired interaction, U(0) = Ueq, is reached. The result-
ing one-particle density matrix, G(0, 0+), serves as the initial state for the subsequent
nonequilibrium dynamics. Let us emphasize that, to ensure quasi-adiabatic dynamics
during this process, it is crucial that the switch duration time, tad, is chosen long enough.
Since the presented time-propagation algorithm forG(t, t+) is completelyMarkovian (i.e.,
memory-kernel-free), we expect that this important condition can be met with ease in nu-
merical applications.

6.4. Summary
For the equilibrium case, Hubbard-I and its many improvements have proven to be a
highly versatile method that can be formalized systematically in the framework of the
Mori-Zwanzig projection technique [86–88]. Interestingly, this technique turns out to be
closely related to the Lehmann representation of the self-energy. While the Lehmann rep-
resentation is obtained from an effective medium with diagonal virtual sector, an equiv-
alent continued fraction representation of the self-energy can be derived from a block-
tridiagonal form. Therewith, we have for the first time generalized the Mori-Zwanzig
approach to far-from-equilibrium states in fermionic lattice models. Let us emphasize
here that the standard derivation of this important technique (e.g., Ref. 88) is invalid be-
yond the linear response regime. Concerning thematrix elements of the block-tridiagonal
effective medium we have derived an analytical relation to higher-ordered correlation
functions using a Lanczos-like algorithm. Assuming they can be evaluated, preferably in
a self-consistent manner, we are in the position to study correlated systems on large time-
scales by numerical means as an inversion of Dyson’s equation on the Keldysh contour
can be avoided.

As a first application, we have developed a two-pole approximation for the time-
dependent Hubbardmodel. Slightly improving upon the results obtained by Roth [81, 82],
we derived a symmetrized decoupling scheme that preserves important symmetries of
the corresponding correlation functions. Furthermore, we did not assume translational
invariance such that our results apply also for inhomogeneous setups. Regarding time-
dependent problems, we discussed the issue of missing energy and particle-number con-
servation. We showed that, by specializing the theory from a two-time Green’s-function-
based view to a time-local density-matrix variant, local constraints implying energy and
particle-number conservation can be enforced. As a remaining challenge, we found an
ambiguity regarding the question on how to obtain the initial state in the time-local spe-
cialization.
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With the theoretical foundations completely laid out, our results call for a numerical
implementation of the method and we expect no severe complications in the process of
this. Furthermore, the availability of a non-trivial test case, i.e., dynamics in a two-site
cluster with a zero-temperature non-degenerate initial state, will serve well in verifying
the implementation for correctness. Then, already for a pure equilibrium study it will be
interesting to see how our averaged decoupling scheme performs versus Roth’s original
procedure. Regarding time-dependent problems, a comparison of the two-time and time-
local self-consistency schemes would be very interesting: How striking is the violation of
conservation laws if using the time-non-local scheme? Will there be a qualitative differ-
ence in the dynamics between the two schemes? Can we see prethermalization or steady
states in the long-time limit?

A particular appealing application of our method are two-dimensional systems. Here,
exact numerical studies underline the importance of nonlocal contributions to the self-
energy [63, 148]. In our nonequilibrium two-pole approach, these terms are approximated
by means of a Roth-like decoupling scheme, i.e., short-range spatial correlations are taken
into account. Since we have furthermore refrained from assuming translational invari-
ance, we are in the position to pick up on a scenario commonly realized in experiments
with ultracold atoms (e.g., Ref. 17): The dynamics of interacting fermions in the presence
of a confining lattice potential. Another fascinating field that has drawn a lot of attention
recently is many-body localization [149]. Here, the potential of a conceptionally simple
two-pole approach was pointed out in a recent work [139]. Rather intuitively, Hubbard-I
can be shown to be become exact in the limit of strong correlations where the eigenstates
become localized. Then, first order corrections can be shown to be nonlocal and might
thus be well approximated by our Roth-like decoupling scheme.

Furthermore, the time-dependence of magnetic systems seems an area worthwhile to
focus on. In fact, the very first application of the steady state generalization of the spectral
density approach (SDA) was targeted at such systems [83, 143, 144]. This comes to no sur-
prise considering themany successful studies of magnetism using the SDA [138, 150–152]
in the past. Let us note in this context that, by construction, our nonequilibrium two-pole
approach is consistent up to the fourth-order in the spectral moments. Interestingly, a
consistent treatment of the fourth-order moment has often been emphasized to be crucial
in describing magnetic effects [152] since it provides for a spin-dependent shift of the cen-
ters of gravity of the two Hubbard bands. Far-from-equilibrium, we therefore similarly
expect an important influence on the dynamics and it will be fascinating to see what kind
of time-dependent phenomena future numerical studies will bring to light.

Lastly, with the groundwork being done, the door is opened for a generalization of
other successful n-pole approaches. Interesting candidates include the modeling of quasi-
particle damping [85] or an extension of the Roth decoupling to Kondo systems [153]. As
both approaches are formulated in frequency space, the first step would to be to carefully
check if a time-local effective-medium-based generalization to nonequilibrium is possible.
If not, a time-nonlocal generalization in spirit of the continued fraction representation
might be applicable. In any case, the future might see a variety of nonequilibrium n-pole
approaches specifically crafted for the description of distinct phenomena.
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7. Conclusions and Perspectives

In this thesis, we have developed two new approximate methods for the description of
out-of-equilibrium dynamics of fermions on a lattice in the presence of short range spa-
tial correlations: The conserving cluster perturbation theory and the nonequilibrium two-
pole approach. Central for the derivation of these approaches is a general insight, which
we have rigorously established as part of this thesis: It is possible to exactly map any
time-dependent fermionic lattice model from the original Hamiltonian with a quartic in-
teraction term to a quadratic one-particle Hamiltonian. We refer to this free model as
the effective medium. It consists out of the following terms: The original hopping matrix,
renormalized by the Hartree-Fock corrections; an exponentially large number of addi-
tional one-particle degrees of freedom, which we call virtual sites in distinction of the
original physical sites; a hybridization term which couples the physical and virtual sites.
Ultimately leading us to the mentioned new methods, we have explored two different
directions to explicitly construct the effective medium:

1. From the time-evolved eigenstates of the initial (original, interacting) Hamiltonian,
the effective medium can be constructed such that the there is no coupling between
the virtual sites, i.e., the virtual sites are only coupled to the physical sites but not
among each other. Interestingly, by integrating out the virtual sites we could proof
a fundamental property of the nonequilibrium self-energy: It can be expressed in form
a Lehmann representation, i.e., as a superposition of noninteracting, isolated modes.
In fact, up to its time-local Hartree-Fock term, the self-energy is nothing else but
the hybridization function obtained from integrating out the virtual sites. Let us
emphasize that, while the existence of a Lehmann representation of the nonequi-
librium self-energy was first conjectured and numerically verified in the context of
nonequilibrium DMFT [50], a rigorous analytical construction has been lacking up
to now.

2. We have also constructed a block-tridiagonal form of the effective medium. Its ma-
trix elements are then related to higher order correlation functions which can be
stated explicitly. Interestingly, this construction can be understood as a generaliza-
tion of the Mori-Zwanzig projection technique (MZPT) [86–88] to Keldysh-Matsubara
Green’s functions. Therefore, our result enables for the first time the usage of this
well-established technique in far-from-equilibrium setups. To clarify this statement
let us underline that, despite often been mentioned in the context of nonequilib-
rium statistical mechanics, the standard formulation of the Mori-Zwanzig projec-
tion technique is only valid if perturbations are small, i.e., in the linear response
regime. Our generalized construction is independent of this assumption.
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Cluster perturbation theory

The first result is especially useful in the context of cluster-based methods, where an ap-
proximate self-energy is obtained from a small reference system. The standard way to
obtain the desired lattice Green’s function is to invert Dyson’s equation on the Keldysh-
Matsubara contour—a computationally expensive operation. However, by interpret-
ing the self-energy as a hybridization function, an equivalent effective medium can be
stated [50]. In the effective-medium description, the time propagation is Markovian, i.e.,
there is no memory kernel. To explicitly construct the effective medium, we have devel-
oped and implemented a numerical algorithm which is most efficient if applied to small
cluster systems. In contrast to Ref. 50, where the nonequilibrium self-energy must first be
determined explicitly (an operation that typically scales cubic in the maximal propagation
time tmax) and is then decomposed using a Cholesky decomposition, our algorithm derives
the effective medium directly from the time-evolved eigenstates of the initial Hamiltonian
and therefore scales linear in tmax and exponential in the cluster size.

The simplest application of our algorithm is possible within the cluster perturbation
theory (CPT). Here, as a proof of concept, we have considered the time evolution of local
magnetic moments in the fermionic Hubbard model after an interaction quench from the
noninteracting initial state. Indeed, in comparison to prior studies that have been limited
to maximal propagation times tmax = 10–20 inverse hoppings [110, 112], we were able to
propagate the one-particle density matrix up to a much longer time, tmax = 104 inverse
hoppings, for an inhomogeneous setup.

While the CPT is of course a simple theory that lacks a selfconsistent coupling between
reference system and the desired lattice Green’s function, we have nevertheless found
some interesting results for quenches to weak Ufin. In this regime, the CPT simulations
showed a separation of the dynamics into two time scales, in agreement with general
perturbative considerations [124, 125, 127–129]: For short times, the noninteracting fix
point, Ufin = 0, constraints the dynamics such that the time-evolution of the magnetic
moments qualitatively follows the noninteracting case. For large times, however, the
constraints are broken up due to the interaction and the system shows signs of relaxation.
While one might be tempted to link this to a possible thermalization of the system [154],
our data clearly shows a persistence of memory effects in the density matrix up to the
largest simulated times. We therefore conclude that a simple, non-selfconsistent CPT
approach is insufficient to capture this important many-body effect.

Conserving cluster perturbation theory

More severe than the lack of thermalization in the long time limit is the violation of funda-
mental conservation laws by the CPT. Our numerical results showed that neither energy
nor magnetization are conserved during the time-evolution. This is due to the missing
feedback between the lattice Green’s function and the approximate self-energy from the
reference system. To address this problem, while at the same time avoiding the significant
additional complexity of more systematic theories such as the nonequilibrium DMFT [30]
or the nonequilibrium self-energy functional theory [76], we explored a rather pragmatic
idea: The macroscopic conservation laws can be formulated in terms of local constraints
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for the spin-dependent particle and doublon density [76]. These constraints are violated
within standard CPT but can be enforced if viewing the CPT as an all-order perturbation
theory [110] in the inter-cluster hopping around a system of decoupled clusters. From
this viewpoint, the one-particle part of the decoupled clusters is not predetermined and
can be renormalized such that the local constraints are fulfilled.

We have formulated this conserving CPT using the effective-medium-based approach.
Therefore, the method profits from our previous results, i.e., it is not bottlenecked by
an inversion of Dyson’s equation on the Keldysh-Matsubara contour. To minimize the
computational overhead of obtaining the correct renormalization, we have exploited the
inherently causal structure of the CPT: By carefully analyzing the order (in the sense of
a Taylor series) at which the renormalization at the last time slice enters the local con-
straints, we have developed a time-stepping algorithmwhich updates the renormalization
only at this very last slice. Furthermore, our algorithm allows to also determine the time-
derivatives of the renormalization (up to arbitrary order) such that the propagation error
per time step can be systematically controlled. The macroscopic conservation laws are
then respected up to machine precision.

Our first numerical simulation have indeed shown that enforcing the local constraints
for spin-dependent particle and doublon density has profound impact on the dynamics.
We have considered weak interaction quenches in the half-filled two-dimensional Hub-
bard model on a square lattice. While spin- and particle-number conservation hold triv-
ially in this case due to particle-hole symmetry, we additionally enforced energy conser-
vation by renormalizing the intra-cluster hopping of a 2× 1 reference cluster. In a plain
CPT calculation, this rather small cluster size leads to heavy artificial oszillations. In the
conserving CPT, however, these unphysical oszillations are almost completely suppressed
and the doublon density shows an ultrafast, monotonous relaxation against a stationary
state. Such a (prethermal) plateau is compatible with previous exact calculations for one-
and infinite-dimensional lattices [58, 79]

As a complicating but nevertheless highly interesting aspect, we found singular points
of non-intertibility of the conditional equations, i.e., points where the inversion for the
optimal renormalization parameter becomes ill-defined. From a technical viewpoint, the
emergence of these singularities currently restricts the accessible timescale. However, it
is well conceivable that a propagation beyond those singular points is possible in principle
if a proper regularization scheme is used.

Nonequilibrium two-pole approximation

As a different direction, the construction of the effective-medium in a block-tridiagonal
form has lead us to discover a generalization of the Mori-Zwanzig projection tech-
nique [86–88] to Keldysh-Matsubara Green’s functions. In particular, by integrating out
the virtual sites, we have found a generalized continued fraction representation of the
one-particle Green’s function in analogy to Mori’s famous result [88]. Yet it should be
noted that, while this representation can efficiently be worked with in frequency space,
it is less practical in nonequilibrium studies where each fraction requires the inversion of
a Dyson-like equation on the Keldysh-Matsubara contour. The much simpler approach is
to refrain from integrating out the virtual lattice sites and work directly with the effec-
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tive medium which is of a sparse, block-tridiagonal form with the matrix elements being
given as higher order correlation functions.

The standard way to construct an approximation in the Mori-Zwanzig formalism is
to truncate the continued fraction after the n-th order yielding a so called n-pole ap-
proximation [88]. From the effective-medium viewpoint, this is equivalent to truncate
the block-tridiagonal one-particle Hamilton matrix after the n-th block (equivalent to the
n− 1-th virtual sector). If all its matrix elements can be expressed in terms of matrix ele-
ments of the corresponding one-particle Green’s function (which comprises the physical
as well as n− 1 virtual sectors), one can formulate a fully self-consistent approximation
that can efficiently be propagated to arbitrary long times.

As the simplest approximation that goes beyond Hartree-Fock we have explicitly con-
structed a nonequilibrium two-pole approximation. To selfconsistently express the two
particle correlation functions appearing in the effective medium, we have derived a
slightly improved variant of the decoupling scheme first stated by Roth [81, 82] which
preserves the correct symmetries of the correlation functions. A remaining issue trou-
bling the decoupling process is the to be expected violation of conservation laws in time-
dependent setups. Yet, if one is interested in time-local matrix elements of the Green’s
function only (i.e., the one-particle density matrix of the physical as well as the single
virtual sector), time-local constraints equivalent to particle number and energy conser-
vation can easily be implemented. The resulting theory is conserving. A last remaining
challenge appears if the initial state cannot be obtained exactly, i.e., if the system is ini-
tially not in the noninteracting or the atomic limit. Then, determining the initial state
turns out to be ambiguous in the time-local specialization.

Perspectives
Thecluster perturbation theory lies at the heart of self-energy functional theory (SFT) [75]
and its recently developed generalization to nonequilibrium [76]. In a typical nonequilib-
rium SFT calculation [155], the reference cluster is of a small, constant size and can thus
efficiently be treated using the effective-medium-based algorithm developed in this thesis.
Therefore, the development of a fully time-local formulation of this important technique
suggests itself. Similar to the steps taken in developing the conserving CPT approach,
the main task would be to express the defining equations for the optimal parameters us-
ing the effective medium. To this end, a proper starting point seems to be given by the
Euler-Lagrange equations developed in Ref. 76. In developing a time-stepping algorithm,
it would again be necessary to carefully trace the order in which the optimal parame-
ters at the last time-step enter the self-consistency equation.1 From here, a worthwhile
endeavor would surely be the integration of the conserving CPT into the more versatile
framework of the nonequilibrium SFT. Concerning the latter, the local constraint for the
spin-dependent density is known to be fulfilled by construction [76]. The local constraint
for the doublon density, however, is violated such that there is no energy conservation.

1 This applies also to the time-nonlocal formulation of the SFT. Indeed, in Ref. 155, a different scaling in the
optimal parameter at the last time step of two otherwise equivalent formulations of the nonequilibrium
SFT was proven numerically. As a result, only one of the two formulations turned out to be numerically
stable.
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Yet, due to its variationally controlled character, the constraint for the doublon density
can straightforwardly be integrated into the formalism. The resulting theory would thus
be conserving, variationally controlled and formulated by means of the effective medium,
i.e., free from being bottlenecked by an inversion of Dyson’s equation on the Keldysh-
Matsubara contour.

To successfully employ such a theory numerically, however, substantial progress is
needed concerning the treatment of singular points which appear during the time-
evolution of both, the conserving CPT as well as the nonequilibrium SFT (private com-
munication with Felix Hofmann; cf. also the thesis summary in [155]). While concerning
the conserving CPT one might be tempted to attribute this complication to the somewhat
ad hoc construction, the construction of the nonequilibrium SFT from a variational prin-
ciple is highly systematic and suggests that there could be a hidden, deeper mechanism at
work. In Ref. 155 it was for example speculated, that non-analytic behavior expected for
observables at a dynamical phase transition might translate to divergent behavior of the
mean-field in an approximate cluster approach. Considering the still on-going evolution
of theory aimed at describing dynamic phase transitions [36], this is certainly a highly
interesting topic and important insights are to expected in the future.

Assuming a suitable solution to the singular-points problem can be found, our study
of the 2D Hubbard model using the conserving CPT should be revisited. Considering, for
example, that the nonequilibrium SFT proved the study of the dynamical Mott-transition
to be possible using a simple two-site cluster [78], it seems well conceivable that signs of
this transition can also be found in the conserving CPT approach if quenching to larger
Ufin. Furthermore, it should be clarified if a stationary state in the long-time limit can
be expected in the whole parameter range. Finally, the dependence of our results on
the cluster size and shape should be studied. To this end, it is important to note that
depending on the reference cluster this implies the necessity to optimize more than a
single parameter. Corresponding to the four local constraints (two for the spin-dependent
density, two for the doublon density), up to 4Lc parameters must be optimized for an
arbitrary cluster of sizeLc. In case of an insufficient number of free parameters, a possible
workaround is to couple additional uncorrelated “bath” sites to the reference cluster—
much in the spirit of dynamical mean-field theory.

Shifting our attention to the nonequilibrium two-pole approximation, the next step is
certainly a numerical implementation of the method. With the fully developed theory
at hand, we expect no severe complications in the process of this. Furthermore, verify-
ing the implementation for correctness should efficiently be possible since there exists a
non-trivial test case where the theory becomes exact—dynamics in a two-site cluster with
the initial state being at zero temperature and non-degenerate. Having the implementa-
tion up and running, already the influence of the symmetry-restoring averaging in our
Roth-like decoupling scheme compared to previous studies [81, 82, 84] will be interesting.
Concerning nonequilibrium dynamics, the comparison of the time-local conserving ver-
sus the time-non-local non-conserving variant raises interesting questions: How strong
is the violation of energy and particle-number conservation in the latter? Are there quali-
tative differences between the two approaches? Finally, as a first benchmark calculation,
the study of interaction quenches in the homogeneous Hubbard model suggests them-
selves due to the considerable amount of available data, e.g., Refs. 73, 78, 79 and 116.
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With a well-tested numerical apparatus in place, the door is opened up to aim at a
variety of intriguing, physical questions. As our Roth-like decoupling scheme includes
the effect of short-range correlations, one particular interesting route is the study of two-
dimensional systems where nonlocal terms of the self-energy are known to be of par-
ticular importance [63, 148]. Since furthermore inhomogeneous setups seem very well
tractable, one could, for example, explore the dynamics of interacting fermions on a 2D-
lattice under the influence of a confining potential—a scenario often realized in experi-
ments with ultracold atoms on optical lattices (e.g., Ref. 17). Another fascinating field is
the study of the interplay of strong correlations and disorder. In a recent work it was ar-
gued that in the limit of large disorder correlations are so short-ranged that evenHubbard-
I becomes a reasonable approximation [139]. Furthermore, the leading corrections to the
self-energy were shown to be non-local and might therefore be well approximated by
our Roth-like decoupling. As two-dimensional disordered interacting systems are hard to
access, our approach might be able to provide valuable insights especially regarding the
dynamics of such systems.

Inspired by the successes of the spectral density approach [83, 138, 143, 144, 150–152],
also the study of time-dependent magnetic effects seems an attractive endeavor. Un-
til now, the spectral density approach (SDA) has only been generalized for the study of
nonequilibrium steady states where it has successfully been applied to investigate the in-
duced switching of the magnetization by employing of a current [143, 144]. The nonequi-
librium two-pole approach developed in this thesis can be seen as a further generalization
which also captures transient dynamics. From the viewpoint of the SDA, it is selfconsis-
tent up to the fourth spectral moment. The importance of this fourth spectral moment for
magnetic properties has often been emphasized [152], as it introduces a spin-dependent
shift of the centers of gravity of the two Hubbard bands. Of course, also far from equi-
librium the description of magnetic systems can be expected to profit from correctly cap-
turing this spin-dependent feedback during the time evolution. Fascinating insights into
such system are to be revealed by future numerical investigations.

Lastly, our generalization of the two-pole approach to nonequilibrium lays the ground-
work to revisit and possibly generalize other n-pole approximations as well. Two inter-
esting examples are the modeling of quasi-particle damping [85] or the description of
Kondo-like singlets [153]. Depending on the details of a specific approach, a formulation
might again be possible within a effective-medium-based description. Otherwise, the nu-
merically more involved continued fraction representation of the nonequilibrium Green’s
function must be used. Nevertheless, the use of n-pole approaches for the description of
far-from-equilibrium dynamics has just begun and interesting new developments can be
expected in the future.
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A. Enforcing conservation laws in
nonequilibrium CPT

A.1. Local constraint on the doublon density

Within this subsection we will use the shorthand notation G(2l) ≡ G
(2l)
T,U and

G(2r) ≡ G
(2r)
T,U . To prove the local constraint on the doublon density, we consider

−i∂tdi(t) = ⟨[ĤT,U(t), n̂i↑(t)n̂i↓(t)]⟩HT,U

=
∑
σ

⟨

[∑
jk

Tjkσ(t)ĉ
†
jσ(t)ĉkσ(t), n̂iσ(t)

]
n̂iσ̄(t)⟩HT,U

,

where we used that the double occupation operator commutes with the interaction term
of the Hamiltonian HT,U . Using further that∑

jk

Tjkσ(t)
[
ĉ†jσ(t)ĉkσ(t), n̂iσ(t)

]
=
∑
jk

Tjkσ(t)
(
δkiĉ

†
jσ(t)ĉiσ(t)− δjiĉ

†
iσ(t)ĉkσ(t)

)
,

(A.1)

we find the final form by comparing with Eqs. (4.3) and (4.5) and using the relation
di(t) = −G(2l)

iiσ (t, t
+) = −G(2r)

iiσ′ (t, t+). This implies

−2i∂tdi(t) = i∂t

[
G

(2l)
iiσ (t, t

+) +G
(2r)
iiσ (t, t+)

]
(A.2)

= 2
∑
jσ

[
Tijσ(t)G

(2r)
jiσ (t, t

+)−G
(2l)
ijσ (t, t

+)Tjiσ(t)
]
,

which completes our derivation of Eq. (5.2).
To prove that Eq. (A.2) indeed ensures energy conservation, let us consider a time-

independent Hamiltonian with Tijσ(t) = Tijσ and U(t) = U . We consider the time-
derivative of the kinetic energy first. Since the kinetic part of the Hamiltonian trivially
commutes with itself, one obtains

i∂tEkin(t) = ⟨
∑
ijσ

Tijσ ĉ
†
iσ ĉjσ, U

∑
l

nl↑nl↓⟩HT,U
(A.3)

= U
∑
ijσ

[
TijσG

(2r)
jiσ (t, t

+)−G
(2l)
ijσ (t, t

+)Tjiσ

]
,

This term cancels with i∂tEint(t) = U
∑

i i∂tdi(t) assuming Eq. (A.2) holds thus proving
energy conservation for a time-independent Hamiltonian.
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A.2. Calculating the time-local variation of η
Let h′ = hT ′−λ,U denote the matrix elements of the effective Hamiltonian of the reference
systemHeff

T ′−λ,U , cf. Eq. (4.7). Through Eq. (4.11), or equivalently Eq. (4.8), a corresponding
matrix η′ ≡ ηT ′−λ,U is defined. We are interested in how it transforms under time-local
variations. Since η′ is an integrated quantity in λ, we first calculate its derivative with
respect to time. Eq. (4.8) implies

i∂tη
′
ixσ(t) = −

∑
y

η′iyσ(t)h
′
yxσ(t) +

∑
mn

[
i∂tR

′
iσ(m,n)(t)

]
[O′]†(m,n)xσ(t), (A.4)

where R′ ≡ RT ′−λ,U and O′ ≡ OT ′−λ,U . With H ′ = HT ′−λ,U , the time-local variation of
i∂tR

′
iσ(m,n)(t) is given by

δloc
[
i∂tR

′
iσ(m,n)(t)

]
= z(m,n)⟨m|δloc

[
n̂iσ̄(t)ĉiσ(t), Ĥ

′(t)
]
|n⟩ (A.5)

= −z(m,n)
∑
j

⟨m|δλijσ(t)n̂iσ̄(t)ĉjσ(t)

+ δλijσ̄(t)
[
ĉ†iσ̄(t)ĉjσ̄(t)− ĉ†jσ̄(t)ĉiσ̄(t)

]
ĉiσ(t)|n⟩,

wherewe further introduced z(m,n) =
√

(e−βEm + e−βEn)/Z and exploited δλijσ = δλjiσ .
The time-local variation of O′(t), on the other hand, vanishes since it is an integrated
quantity in λ. We define

γlσixσ(t) =
∑
mn

z(m,n)⟨m|n̂iσ̄(t)ĉlσ(t)|n⟩[O′]∗xσ(m,n)(t), (A.6)

γlσ̄ixσ(t) =
∑
mn

z(m,n)⟨m|
[
ĉ†iσ̄(t)ĉlσ̄(t)− ĉ†lσ̄(t)ĉiσ̄(t)

]
ĉiσ(t)|n⟩[O′]∗xσ(m,n)(t),

and therewith obtain Eq. (5.13).
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B. Nonequilibrium two-pole
approximation

B.1. Derivation of the matrix elements in the first
virtual sector

Within this subsection we suppress every explicit time-dependence to allow for a leaner
notation, i.e., Tijσ ≡ Tijσ(t), U ≡ U(t), Â ≡ Â(t), h

(1,1)
ikσ ≡ h

(1,1)
ikσ (t), . . . , and also use the

shorthand notation ⟨·⟩ ≡ ⟨·⟩H . To obtain h(1,1)ikσ = ⟨
{
i∂tγ̂iσ, γ̂

†
kσ

}
⟩, we first of all note that

the derivative of the norm alone can be written as

⟨
{
[n̂iσ̄ − ⟨n̂iσ̄⟩] ĉiσ, γ̂†kσ

}
⟩i∂t

1√
⟨n̂iσ⟩ − ⟨n̂iσ⟩2

= −1

2
δiki∂t [ln(Ciσ)] , (B.1)

Ciσ ≡ ⟨n̂iσ⟩ − ⟨n̂iσ⟩2.

We consider

h
(1,1)
ikσ = −δik

i∂t
2

ln(Ciσ) +
⟨
{
[i∂tn̂iσ̄]ĉiσ + n̂iσ̄[i∂tĉiσ]− ⟨n̂iσ̄⟩[i∂tĉiσ], γ̂†kσ

}
⟩√

⟨n̂iσ⟩ − ⟨n̂iσ⟩2

= −δik
i∂t
2

ln(Ciσ)− δikU⟨n̂iσ̄⟩+
⟨
{
[i∂tn̂iσ̄ ĉiσ], γ̂

†
kσ

}
⟩√

⟨n̂iσ⟩ − ⟨n̂iσ⟩2
(B.2)

= δik

[
−i∂t

2
ln(Ciσ) + hat

iσ

]
+
⟨
{
[n̂iσ̄ ĉiσ, ĤT ], γ̂

†
kσ

}
⟩√

⟨n̂iσ⟩ − ⟨n̂iσ⟩2
,

where we defined HT ≡
∑

i ̸=j Tijσ ĉ
†
iσ ĉiσ as well as hat

iσ ≡ Tiiσ − µ+ U (1−⟨n̂iσ̄⟩) which
includes all terms that arise in the atomic limit, i.e., when Tijσ = 0 for i ̸= j. Note that in
this caseCiσ = const. such that h(1,1)iiσ is real. To evaluate the remaining term, we consider
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separately

⟨
{
[n̂iσ̄, ĤT ]ĉiσ, n̂kσ̄ ĉ

†
kσ

}
⟩ = ⟨[n̂iσ̄, ĤT ]ĉiσn̂kσ̄ ĉ

†
kσ + n̂kσ̄ ĉ

†
kσ[n̂iσ̄, ĤT ]ĉiσ⟩ (B.3)

=
1

2
⟨
{
[n̂iσ̄, ĤT ], n̂kσ̄

}
ĉiσ ĉ

†
kσ +

[
[n̂iσ̄, ĤT ], n̂kσ̄

]
ĉiσ ĉ

†
kσ⟩

+
1

2
⟨
{
[n̂iσ̄, ĤT ], n̂kσ̄

}
ĉ†kσ ĉiσ +

[
n̂kσ̄, [n̂iσ̄, ĤT ]

]
ĉ†kσ ĉiσ⟩

= δik
1

2
⟨
{
[n̂iσ̄, ĤT ], n̂kσ̄

}
⟩+ 1

2
⟨
[
[n̂iσ̄, ĤT ], n̂kσ̄

]
[ĉiσ, ĉ

†
kσ]⟩

= δik
1

2
⟨[n̂iσ̄, ĤT ] +

[
[n̂iσ̄, ĤT ], n̂iσ̄

]
(1− 2 n̂iσ)⟩ − δi ̸=k⟨

[
[n̂iσ̄, ĤT ], n̂kσ̄

]
ĉ†kσ ĉiσ⟩.

Furthermore
⟨
{
[n̂iσ̄, ĤT ]ĉiσ, ĉ

†
kσ

}
⟩ = ⟨[n̂iσ̄, ĤT ]

{
ĉiσ, ĉ

†
kσ

}
⟩ = δik⟨[n̂iσ̄, ĤT ]⟩ (B.4)

⟨
{
n̂iσ̄[ĉiσ, ĤT ], n̂kσ̄ ĉ

†
kσ

}
⟩ = ⟨n̂iσ̄n̂kσ̄

{
[ĉiσ, ĤT ], ĉ

†
kσ

}
⟩ =

∑
l ̸=i

Tilσ⟨n̂iσ̄n̂kσ̄
{
ĉlσ, ĉ

†
kσ

}
⟩

= δi ̸=kTikσ⟨n̂iσ̄n̂kσ̄⟩,

⟨
{
n̂iσ̄[ĉiσ, ĤT ], ĉ

†
kσ

}
⟩ = ⟨n̂iσ̄

{
[ĉiσ, ĤT ], ĉ

†
kσ

}
⟩ = δi ̸=kTikσ⟨n̂iσ̄⟩.

We therefore find that
i∂t
2

ln(Ciσ) =
1
2
⟨[n̂iσ̄, ĤT ]⟩ − ⟨n̂iσ̄⟩⟨[n̂iσ̄, ĤT ]⟩

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2
(B.5)

cancels. Assuringly, the remaining terms are clearly hermitian. We find

h
(1,1)
iiσ = hat

iσ +
1

2

⟨
[
[n̂iσ̄, ĤT ], n̂iσ̄

]
(1− 2n̂iσ)⟩

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2
(B.6)

= hat
iσ −

1

2

⟨
∑

j ̸=i

(
Tijσ̄ ĉ

†
iσ̄ ĉjσ̄ + Tjiσ̄ ĉ

†
jσ̄ ĉiσ̄

)
(1− 2n̂iσ)⟩

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

= hat
iσ−

(
1

2
−⟨n̂iσ⟩

)∑
j ̸=i

⟨Tijσ̄ ĉ†iσ̄ ĉjσ̄ + cc.⟩
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

+
∑
j ̸=i

⟨
(
Tijσ̄ ĉ

†
iσ̄ ĉjσ̄ + cc.

)
(n̂iσ−⟨n̂iσ⟩)⟩

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

= hat
iσ−

(
1

2
−⟨n̂iσ⟩

)∑
j ̸=i

⟨Tijσ̄ ĉ†iσ̄ ĉjσ̄+cc.⟩
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

+

√
⟨n̂iσ⟩−⟨n̂iσ⟩2√
⟨n̂iσ̄⟩−⟨n̂iσ̄⟩2

∑
j ̸=i

⟨Tijσ̄γ̂†iσ̄ ĉjσ̄+cc.⟩√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

.

We consider the commutator separately[
[n̂iσ̄, ĤT ], n̂kσ̄

]
=

[(∑
j

−Tjiσ̄ ĉ†jσ̄ ĉiσ̄ + Tijσ̄ ĉ
†
iσ̄ ĉjσ̄

)
, n̂kσ̄

]
(B.7)

= −δki
∑
j ̸=i

(
Tijσ̄ ĉ

†
iσ̄ ĉjσ̄ + Tjiσ̄ ĉ

†
jσ̄ ĉiσ̄

)
+
∑
j ̸=i

δkj

(
Tijσ̄ ĉ

†
iσ̄ ĉjσ̄ + Tjiσ̄ ĉ

†
jσ̄ ĉiσ̄

)
= −δki

∑
j ̸=i

(
Tijσ̄ ĉ

†
iσ̄ ĉjσ̄ + Tjiσ̄ ĉ

†
jσ̄ ĉiσ̄

)
+ δk ̸=i

(
Tikσ̄ ĉ

†
iσ̄ ĉkσ̄ + Tkiσ̄ ĉ

†
kσ̄ ĉiσ̄

)
,
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such that we find for the off-diagonal elements (i ̸= k):

h
(1,1)
ikσ =

Tikσ [⟨n̂iσ̄n̂kσ̄⟩ − ⟨n̂iσ̄⟩⟨n̂kσ̄⟩]− ⟨
[
[n̂iσ̄, ĤT ], n̂kσ̄

]
ĉ†kσ ĉiσ⟩√

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2
√
⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2

(B.8)

=
Tikσ [⟨n̂iσ̄n̂kσ̄⟩ − ⟨n̂iσ̄⟩⟨n̂kσ̄⟩]− ⟨

(
Tikσ̄ ĉ

†
iσ̄ ĉkσ̄ + Tkiσ̄ ĉ

†
kσ̄ ĉiσ̄

)
ĉ†kσ ĉiσ⟩√

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2
√

⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2
.

B.2. Solution of Eq. (6.55) for the desired correlation
functions

Throughout this section, we use the shorthand notation Â ≡ Â(t) for operators in the
Heisenberg picture, as well as ⟨·⟩ ≡ ⟨·⟩H . Furthermore, we assume i ̸= k throughout the
entire section.

B.2.1. Solving for ⟨n̂iσ̄n̂kσ̄⟩
We start with density-density correlations. As it will turn out that solving for ⟨n̂iσ̄n̂kσ̄⟩
requires to obtain an expression for ⟨n̂iσ̄n̂kσ⟩ as well, our starting point is the following
symmetrized expression which we obtained from Eq. (6.55):

⟨n̂iσ̄n̂kσ̄⟩ =
1

4

(
⟨ĉ†kσ̄Γ̂

(1)
ikσ̄⟩+ ⟨ĉ†iσ̄Γ̂

(1)
kiσ̄⟩+ cc.

)
, (B.9)

⟨n̂iσ̄n̂kσ⟩ =
1

4

(
⟨ĉ†kσΓ̂

(2)
ikσ̄⟩+ ⟨ĉ†iσ̄Γ̂

(2)
kiσ⟩+ cc.

)
.

Here, we defined the following operators

Γ̂
(1)
ikσ̄ ≡ n̂iσ̄ ĉkσ̄, Γ̂

(2)
ikσ̄ ≡ n̂iσ̄ ĉkσ. (B.10)

We proceed by determining parts which lie within the active subspace. Starting with Γ(1)

yields

⟨
{
Γ̂
(1)
ikσ̄, ĉ

†
jσ̄

}
⟩ = ⟨

{
ĉ†jσ̄, ĉkσ̄

}
n̂iσ̄ − ĉkσ̄

[
ĉ†jσ̄, n̂iσ̄

]
⟩ (B.11)

= δjk⟨n̂iσ̄⟩ − δji⟨ĉ†iσ̄ ĉkσ̄⟩,

⟨
{
Γ̂
(1)
ikσ̄, γ̂

†
jσ̄

}
⟩ = ⟨δkj

{
γ̂†kσ̄, ĉkσ̄

}
n̂iσ̄ − δjiĉkσ̄

[
γ̂†iσ̄, n̂iσ̄

]
⟩

= δkj
⟨n̂kσn̂iσ̄⟩ − ⟨n̂kσ⟩⟨n̂iσ̄⟩√

⟨n̂kσ⟩ − ⟨n̂kσ⟩2
− δji⟨γ̂†iσ̄ ĉkσ̄⟩,

where we have made use of the relations{
γ̂†jσ̄, ĉkσ̄

}
= δkj

{
n̂kσ − ⟨n̂kσ⟩√
⟨n̂kσ⟩ − ⟨n̂kσ⟩2

ĉ†kσ̄, ĉkσ̄

}
= δkj

n̂kσ − ⟨n̂kσ⟩√
⟨n̂kσ⟩ − ⟨n̂kσ⟩2

, (B.12)

[
γ̂†iσ̄, n̂iσ̄

]
=

[
n̂iσ − ⟨n̂iσ⟩√
⟨n̂iσ⟩ − ⟨n̂iσ⟩2

ĉ†iσ̄, n̂iσ̄

]
= − n̂iσ − ⟨n̂iσ⟩√

⟨n̂iσ⟩ − ⟨n̂iσ⟩2
ĉ†iσ̄ = −γ̂†iσ̄.
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In the same fashion, we find for Γ(2):

⟨
{
Γ̂
(2)
ikσ̄, ĉ

†
jσ

}
⟩ = δkj⟨n̂iσ̄⟩, (B.13)

⟨
{
Γ̂
(2)
ikσ̄, γ̂

†
jσ

}
⟩ = ⟨

{
γ̂†jσ, ĉkσ

}
n̂iσ̄⟩ = δkj

⟨n̂kσ̄n̂iσ̄⟩ − ⟨n̂kσ̄⟩⟨n̂iσ̄⟩√
⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2

.

Eqs. (B.11) and (B.13) enable us to define operators â(1)ikσ̄ and â(2)ikσ̄ which are orthogonal to
the active subspace A, i.e., â(1)ikσ̄, â

(2)
ikσ̄ ∈ A⊥:

â
(1)
ikσ̄ ≡ Γ̂

(1)
ikσ̄ − ⟨n̂iσ̄⟩ĉkσ̄ + ⟨ĉ†iσ̄ ĉkσ̄⟩ĉiσ̄ −

⟨n̂kσn̂iσ̄⟩ − ⟨n̂kσ⟩⟨n̂iσ̄⟩√
⟨n̂kσ⟩ − ⟨n̂kσ⟩2

γ̂kσ̄ + ⟨γ̂†iσ̄ ĉkσ̄⟩γ̂iσ̄, (B.14)

â
(2)
ikσ̄ ≡ Γ̂

(2)
ikσ̄ − ⟨n̂iσ̄⟩ĉkσ −

⟨n̂kσ̄n̂iσ̄⟩ − ⟨n̂kσ̄⟩⟨n̂iσ̄⟩√
⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2

γ̂kσ.

Therefore, any expectation value ⟨ĉ†xâ
(n)
ikσ̄⟩, ĉx ∈ A, n ∈ {1, 2}, must vanish since the

effective medium does not connect operators from the active subspace and its orthogonal
complement, cf. Sec. 6.1.5. Insertion into Eq. (B.9) yields

⟨n̂kσ̄n̂iσ̄⟩ = ⟨n̂kσn̂iσ̄⟩ ×
1

2
ξkσ̄(t) + ⟨n̂iσn̂kσ̄⟩ ×

1

2
ξiσ̄(t) +

1

2

[
w

(1)
ikσ̄ + w

(1)
kiσ̄

]
, (B.15)

⟨n̂kσn̂iσ̄⟩ = ⟨n̂kσ̄n̂iσ̄⟩ ×
1

2
ξkσ(t) + ⟨n̂kσn̂iσ⟩ ×

1

2
ξiσ̄(t) +

1

2

[
w

(2)
ikσ̄ + w

(2)
kiσ

]
,

where we defined

w
(1)
ikσ̄ ≡ −⟨n̂kσ⟩⟨n̂iσ̄⟩ξkσ̄ + ⟨n̂iσ̄⟩⟨n̂kσ̄⟩ −

∣∣∣⟨ĉ†iσ̄ ĉkσ̄⟩∣∣∣2 − ∣∣∣⟨γ̂†iσ̄ ĉkσ̄⟩∣∣∣2 , (B.16)

w
(2)
ikσ̄ ≡ −⟨n̂kσ̄⟩⟨n̂iσ̄⟩ξkσ + ⟨n̂iσ̄⟩⟨n̂kσ⟩,

ξkσ ≡ 1

2

⟨ĉ†kσγ̂kσ⟩+ ⟨γ̂†kσ ĉkσ⟩√
⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2

.

Casting Eq. (B.15) into a matrix-vector multiplication and solving by matrix-inversion
yields the final result, Eq. (6.56), in the main text.

B.2.2. Solving for ⟨ĉ†kσĉkσ̄ĉ
†
iσ̄ĉiσ⟩

For the spin-flip correlation function we proceed analogously. Via Eq. (6.55) it is given as

⟨ĉ†kσ ĉkσ̄ ĉ
†
iσ̄ ĉiσ⟩ =

1

4

(
⟨ĉ†kσΓ̂

(3)
ikσ̄⟩+ ⟨ĉ†iσ̄Γ̂

(3)
kiσ⟩+ ⟨[Γ̂(3)

kiσ̄]
†ĉiσ⟩+ ⟨[Γ̂(3)

ikσ]
†ĉkσ̄⟩

)
, (B.17)

where we have defined
Γ̂
(3)
ikσ̄ ≡ ĉ†iσ̄ ĉiσ ĉkσ̄. (B.18)

94



B.2. Solution of Eq. (6.55) for the desired correlation functions

Determination of parts which are non-orthogonal to the active subspace yields:

⟨
{
Γ̂
(3)
ikσ̄, ĉ

†
jσ

}
⟩ = −δji⟨ĉ†iσ̄ ĉkσ̄⟩, (B.19)

⟨
{
Γ̂
(3)
ikσ̄, γ̂

†
jσ

}
⟩ = −⟨

{
γ̂†jσ, ĉkσ̄

}
ĉiσ ĉ

†
iσ̄ − ĉkσ̄

[
γ̂†jσ, ĉiσ ĉ

†
iσ̄

]
⟩

= −δkj
⟨ĉ†kσ ĉkσ̄ ĉ

†
iσ̄ ĉiσ⟩√

⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2

− δij

[√
⟨n̂iσ⟩ − ⟨n̂iσ⟩2√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

⟨γ̂†iσ̄ ĉkσ̄⟩ −
⟨n̂iσ̄⟩ − ⟨n̂iσ⟩√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

⟨ĉ†iσ̄ ĉkσ̄⟩

]
,

where we exploited the relation[
γ̂†jσ, ĉiσ ĉ

†
iσ̄

]
= δij

({
γ̂†iσ, ĉiσ

}
ĉ†iσ̄ − ĉiσ

{
γ̂†iσ, ĉ

†
iσ̄

})
= δij

(
n̂iσ̄ − ⟨n̂iσ̄⟩√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

ĉ†iσ̄ −
ĉiσ ĉ

†
iσ√

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2
ĉ†iσ̄

)

= δij

[√
⟨n̂iσ⟩ − ⟨n̂iσ⟩2√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

γ̂†iσ̄ −

(
⟨n̂iσ̄⟩ − ⟨n̂iσ⟩√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

ĉ†iσ̄

)]
. (B.20)

Components orthogonal to the active subspace are defined as the operator â(3)ikσ̄ ∈ A⊥:

â
(3)
ikσ̄ ≡ Γ̂

(3)
ikσ̄ + ⟨ĉ†iσ̄(t)ĉkσ̄(t)⟩ĉiσ +

⟨ĉ†kσ ĉkσ̄ ĉ
†
iσ̄ ĉiσ⟩√

⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2
γ̂kσ (B.21)

+

[√
⟨n̂iσ⟩ − ⟨n̂iσ⟩2√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

⟨γ̂†iσ̄(t)ĉkσ̄(t)⟩ −
⟨n̂iσ̄⟩ − ⟨n̂iσ⟩√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

⟨ĉ†iσ̄ ĉkσ̄⟩

]
γ̂iσ.

Therefore, expectation values of the form ⟨ĉ†xâ
(3)
ikσ̄⟩, ĉx ∈ A, must vanish since the ef-

fective medium does not connect operators from the active subspace and its orthogonal
complement, cf. Sec. 6.1.5. Insertion into Eq. (B.17) yields

⟨ĉ†kσ ĉkσ̄ ĉ
†
iσ̄ ĉiσ⟩ = −⟨ĉ†kσ ĉkσ̄ ĉ

†
iσ̄ ĉiσ⟩ ×

1

4
(ζkσ + ζ∗kσ̄ + ζiσ̄ + ζ∗iσ)

− 1

4

[
w

(3)
ikσ̄ + w

(3)
kiσ + [w

(3)
ikσ]

∗ + [w
(3)
kiσ̄]

∗
]

(B.22)

follows with the definitions

w
(3)
ikσ̄ ≡ ⟨ĉ†iσ̄ ĉkσ̄⟩⟨ĉ

†
kσ ĉiσ⟩+

[√
⟨n̂iσ⟩−⟨n̂iσ⟩2√
⟨n̂iσ̄⟩−⟨n̂iσ̄⟩2

⟨γ̂†iσ̄ ĉkσ̄⟩ −
⟨n̂iσ̄⟩−⟨n̂iσ⟩√
⟨n̂iσ̄⟩−⟨n̂iσ̄⟩2

⟨ĉ†iσ̄ ĉkσ̄⟩

]
⟨ĉ†kσγ̂iσ⟩,

ζkσ =
⟨ĉ†kσγ̂kσ⟩√

⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2
. (B.23)

Solving Eq. (B.22) for the spin-flip correlation function yields the final result, Eq. (6.58),
in the main text.
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B.2.3. Solving for ⟨ĉ†kσĉ
†
kσ̄ĉiσ̄ĉiσ⟩

The motion of doublons on the lattice is described by

⟨ĉ†kσ ĉ
†
kσ̄ ĉiσ̄ ĉiσ⟩ =

1

4

(
⟨ĉ†kσΓ̂

(4)
ikσ̄⟩+ ⟨ĉ†kσ̄Γ̂

(4)
ikσ⟩+ ⟨[Γ̂(4)

kiσ̄]
†ĉiσ⟩+ ⟨[Γ̂(4)

kiσ]
†ĉiσ̄⟩

)
, (B.24)

where we have defined

Γ̂
(4)
ikσ̄ ≡ ĉ†kσ̄ ĉiσ̄ ĉiσ. (B.25)

Determination of parts which are non-orthogonal to the active subspace yields:

⟨
{
Γ̂
(4)
ikσ̄, ĉ

†
jσ

}
⟩ = δji⟨ĉ†kσ̄ ĉiσ̄⟩ (B.26)

⟨
{
Γ̂
(4)
ikσ̄, γ̂

†
jσ

}
⟩ = −⟨

{
γ̂†jσ, ĉiσ

}
ĉiσ̄ ĉ

†
kσ̄ − ĉiσ

[
γ̂†jσ, ĉiσ̄ ĉ

†
kσ̄

]
⟩

= −δij
⟨n̂iσ̄⟩⟨ĉ†kσ̄ ĉiσ̄⟩√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

− δij⟨(n̂iσ − 1)ĉ†kσ̄ ĉiσ̄⟩√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

+
δkj⟨ĉ†kσ ĉ

†
kσ̄ ĉiσ̄ ĉiσ⟩√

⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2

= δij
(1− ⟨n̂iσ̄⟩ − ⟨n̂iσ⟩) ⟨ĉ†kσ̄ ĉiσ̄⟩√

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2
− δij

√
⟨n̂iσ⟩ − ⟨n̂iσ⟩2√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

⟨ĉ†kσ̄γ̂iσ̄⟩

− δkj⟨ĉ†kσ ĉ
†
kσ̄ ĉiσ̄ ĉiσ⟩√

⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2
.

where we used

ĉiσ

[
γ̂†jσ, ĉiσ̄ ĉ

†
kσ̄

]
= ĉiσ

{
γ̂†jσ, ĉiσ̄

}
ĉ†kσ̄ − ĉiσ ĉiσ̄

{
γ̂†jσ, ĉ

†
kσ̄

}
(B.27)

=
ĉiσ√

⟨n̂jσ̄⟩ − ⟨n̂jσ̄⟩2
({
n̂jσ̄ ĉ

†
jσ, ĉiσ̄

}
ĉ†kσ̄ − ĉiσ̄

{
n̂jσ̄ ĉ

†
jσ, ĉ

†
kσ̄

})
=

ĉiσ√
⟨n̂jσ̄⟩ − ⟨n̂jσ̄⟩2

(
−ĉ†jσ [ĉiσ̄, n̂jσ̄] ĉ

†
kσ̄ + ĉiσ̄

[
ĉ†kσ̄, n̂jσ̄

]
ĉ†jσ

)
=

ĉiσ√
⟨n̂jσ̄⟩ − ⟨n̂jσ̄⟩2

(
−δij ĉ†iσ ĉiσ̄ ĉ

†
kσ̄ − δkj ĉiσ̄ ĉ

†
kσ̄ ĉ

†
kσ

)
=
δij(1− n̂iσ)ĉ

†
kσ̄ ĉiσ̄√

⟨n̂jσ̄⟩ − ⟨n̂jσ̄⟩2
− δkj ĉ

†
kσ ĉ

†
kσ̄ ĉiσ̄ ĉiσ√

⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2
.

Components orthogonal to the active subspace are defined as the operator â(4)ikσ̄ ∈ A⊥:

â
(4)
ikσ̄ ≡ Γ̂

(4)
ikσ̄ − ⟨ĉ†kσ̄ ĉiσ̄⟩ĉiσ −

(1− ⟨n̂iσ̄⟩ − ⟨n̂iσ⟩) ⟨ĉ†kσ̄ ĉiσ̄⟩√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

γ̂iσ (B.28)

+

√
⟨n̂iσ⟩ − ⟨n̂iσ⟩2√
⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2

⟨ĉ†kσ̄γ̂iσ̄⟩γ̂iσ +
⟨ĉ†kσ ĉ

†
kσ̄ ĉiσ̄ ĉiσ⟩√

⟨n̂kσ̄⟩ − ⟨n̂kσ̄⟩2
γ̂kσ
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B.2. Solution of Eq. (6.55) for the desired correlation functions

Therefore, expectation values of the form ⟨ĉ†xâ
(4)
ikσ̄⟩, ĉx ∈ A, must vanish since the ef-

fective medium does not connect operators from the active subspace and its orthogonal
complement, cf. Sec. 6.1.5. Insertion into Eq. (B.24) yields

⟨ĉ†kσ ĉ
†
kσ̄ ĉiσ̄ ĉiσ⟩ ≡ −⟨ĉ†kσ ĉ

†
kσ̄ ĉiσ̄ ĉiσ⟩×

1

4

∑
σ′

[ζkσ′+ζ∗iσ′ ] +
1

4

[
w

(4)
ikσ̄+w

(4)
ikσ+[w

(4)
kiσ]

∗+[w
(4)
kiσ̄]

∗
]

(B.29)

where we defined

w
(4)
ikσ̄ ≡ ⟨ĉ†kσ̄ ĉiσ̄⟩⟨ĉ

†
kσ ĉiσ⟩ (B.30)

+

[
(1−⟨n̂iσ̄⟩−⟨n̂iσ⟩) ⟨ĉ†kσ̄ ĉiσ̄⟩√

⟨n̂iσ̄⟩ − ⟨n̂iσ̄⟩2
−
√

⟨n̂iσ⟩−⟨n̂iσ⟩2√
⟨n̂iσ̄⟩−⟨n̂iσ̄⟩2

⟨ĉ†kσ̄γ̂iσ̄⟩

]
⟨ĉ†kσγ̂iσ⟩.

Solving Eq. (B.29) for the spin-flip correlation function yields the final result, Eq. (6.60),
in the main text.
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