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Summary 

This cumulative thesis is composed of two parts. The first part consists of a general 

background on tropical forests and deforestation: it introduces us to the state of the art of 

the REDD+ program and presents the thematic context of the thesis. The second part 

integrates the articles into the thematic context and describes the concepts of innovation, 

efficiency, and inclusion in the domain of this thesis. The second part includes a summary 

and discussions into the thematic context for each article. A short explanation of the 

personal contribution of the author to the articles is also provided. Finally, the last section 

of the second part includes the overall conclusions of the thesis. The full versions of the 

two articles are attached in Annex 1. 

The vast contribution of forests to the well-being of all living organisms is widely 

recognized. For example, people depend on forests for a remarkable variety of goods and 

services, such as provision of food and water, maintenance of biodiversity, regulation of 

water flow, air quality and climate. Keeping forests vigorous and healthy is paramount 

to ensuring long-lasting and stable provision of the goods and services. Climate 

regulation is one of the most important ecosystem services for its global impact and 

because climate change is projected to affect, directly and indirectly, all aspects of 

ecosystem services provision over the next century. Thanks to their capacity to regulate 

climate, forests represent the cornerstone of any global climate change mitigation 

strategy. For the first time, in the 1992 Conference of the Parties of the UN Framework 

Convention on Climate Change (UNFCCC), forests achieved a prominent position in the 

international negotiations on climate change. Since then, supporting forests and their 

management has gained increasing broad public attention. A number of measures have 

been taken to address threats that forests face and to preserve their capacity of regulating 

global climate. 

Reducing Emissions from Deforestation and forest Degradation (REDD) is the 

major international political achievement to protect tropical forests’ carbon stocks. The 

basic idea of REDD+ is to pay forest owners (either through national government funds 

or directly) to reduce forest emissions and increase forest carbon sequestration. Such a 

simple idea is facing a number of challenges. This thesis analyses some of the forest 

monitoring technical challenges that countries can face, particularly during the early 

phases of REDD+ projects. The objective of this thesis is to provide a better 

understanding on approaches that could enable effective planning and implementation of 

monitoring activities. In doing so, this cumulative thesis focuses on three main concepts 

related to monitoring, reporting, and verification (MRV) systems: innovation, inclusion, 

and efficiency. Scientific and technological innovations support MRV systems, 

providing effective instruments to design and execute REDD+. Inclusion refers to the 

possibility of tropical countries or provinces to participate in REDD+; in fact, the 

capacity to implement a reliable MRV system determines the possibility of joining and 
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executing an effective REDD+ program. Finally, pursuing efficiency is paramount, since 

most developing countries grapple with a shortage of resources, and the REDD+ 

mechanism copes even with a critical lack of finance. 

The first article presents a model, which using only available and easily accessible 

data and software, predicts the risk of deforestation. To predict the risk of deforestation, 

the model uses ten independent variables (called predictors), extracted from remotely 

sensed data. Environmental, social, demographic, and economic variables were 

incorporated in the model and used as proxies of deforestation. The model combines a 

machine learning approach and GIS. The machine learning approach is random forests; 

it is a decision tree–based method, which combining many classification trees produces 

a prediction of the variable of interest. We adopted random forests due to the strong non-

linear relationships between the variables and because it supports evidence-based, data-

driven decisions and is therefore often used in decision-making processes. We tested the 

model using data from Nicaragua. Results show that the accuracy of the model in 

predicting areas under moderate and high risk of deforestation can be considered 

satisfactory for some REDD+ purposes, e.g., when identifying potential target areas for 

REDD+ projects. Furthermore, the adoption of the model may be effective in the first 

phase of projects: when a country is still developing the capacity to build its own sound 

and accurate datasets. Therefore, the model is suitable for a stepwise implementation 

approach of REDD+ projects in regions with limited availability of data, capital, 

technical infrastructure, or human capacities. Stepwise approaches are needed to 

overcome existing data and capacity gaps and enable a wider participation to REDD+. 

Adopting an innovative model can improve efficiency and promote inclusion by 

exploiting already available data, by applying powerful methods to handle data, and by 

using open source software. 

The second article examines three key factors affecting the generation of forest 

carbon credits from REDD+. The factors are (i) setting Reference Levels (RLs); (ii) 

supplying of emission reduction due to REDD+; (iii) uncertainties in forest carbon 

emissions estimates. This article includes two analyses: a simulation study and a 

sensitivity analysis . In the simulation study, the interrelationships between the costs of 

forest carbon monitoring, the associated reliability, and the resulting accountable carbon 

credits were investigated. We assumed the employment of both Lidar data and passive 

optical data. Findings of the simulation study highlight that combining statistically 

rigorous sampling methods with Lidar data can significantly boost the accountable 

amount of forest carbon credits that can be claimed. In fact, the generation of carbon 

credits is mainly affected by the uncertainties of the estimate of forest area and carbon 

stock changes per unit of area. We found that innovative monitoring techniques have a 

positive effect on the efficiency of MRV systems, and that despite having a larger initial 

cost, the investment in MRV system, based on Lidar, could be paid-off by the potential 

result-based payments. Conceiving an MRV system as an investment can encourage the 
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implementation of well-defined, long-term monitoring strategies. In the sensitivity 

analysis, the above-mentioned three factors are ranked according to their impact on the 

generation of carbon credits. Findings show that the amounts of avoided emissions under 

a REDD+ scheme mainly vary according to the monitoring technique adopted; 

nevertheless, RLs have a nearly equal influence. The target for reduction of emissions 

showed a relatively minor impact on the generation of carbon credits, particularly when 

coupled with low RLs. 

  



 

x 

 

 

  



 

xi 

 

Contents 

Acronyms ......................................................................................................................... 1 

Part 1. Thematic context .................................................................................................. 3 

Why do tropical forests matter? ................................................................................... 3 

Tropical forests’ threats: deforestation and degradation drivers .................................. 4 

Solutions to reverse deforestation and forest degradation: the REDD+ approach ...... 7 

REDD+ Safeguards ...................................................................................................... 8 

Forest reference (emission) levels .............................................................................. 10 

Measuring, reporting and verification ........................................................................ 11 

Funding for REDD+................................................................................................... 12 

The cost of REDD+.................................................................................................... 14 

Part 2. Integration of the articles into the thematic context ........................................... 16 

First article ................................................................................................................. 17 

Summary ................................................................................................................ 17 

Discussion in the thematic context ......................................................................... 19 

Second article ............................................................................................................. 21 

Summary ................................................................................................................ 21 

Discussion in the thematic context ......................................................................... 22 

Part 3. Conclusion of the cumulative dissertation .......................................................... 24 

References ...................................................................................................................... 27 

Annex 1. Scientific articles ............................................................................................ 34 

REDD+: Quick Assessment of Deforestation Risk Based on Available Data .......... 35 

Understanding Measurement Reporting and Verification systems for REDD+ as an 

investment for generating carbon benefits ................................................................. 53 

 

 

  



 

xii 

 

 



Acronyms 

COP    Conference of the Parties 

FAO    Food and Agriculture Organization  

GHG     Greenhouse gas 

GFRA    Global Forest Resources Assessment 

IPCC     Intergovernmental Panel on Climate Change 

Lidar     Light Detection And Ranging 

REDD+ Reducing emissions from deforestation and forest degradation 

RL Reference Level 

UNFCCC United Nations Framework Convention on Climate Change 

  



 

2 

 

  



 

3 

 

 

Part 1. Thematic context 

Why do tropical forests matter? 

Answering the question “why is the health status of forests so important for the 

whole planet?” is simple: forests provide a number of vital services to all living 

organisms. Past human experiences teach that large-scale forest clearance can have 

irreversible consequences for people and, along with other factors, can drive societies to 

collapse (Abrams and Rue, 1988; Diamond, 2005). Environmental degradation, as a 

consequence of deforestation, generates devastating effect on soil erosion and further 

depletion of soils. Deforestation can influence the survival of societies, especially those 

that base their economies on agriculture. The importance of forests is associated to the 

wide set of services that they offer. An exhaustive classification of the forest 

environmental services is complex. For simplicity and clarity, four categories of services 

can be described: ecological, economic, socio-cultural, and scenic and landscape (Table 

1). 

Table 1 Overview of forest services by typology (Source: TEEB). 

Provisioning 

services 
Regulating services 

Habitat or 

supporting 

services 

Cultural services 

Food 
Local climate and air 

quality 

Habitats for 

species 

Recreation and mental 

and physical health 

Water 
Carbon sequestration 

and storage 

Maintenance of 

genetic diversity 
Tourism 

Raw materials 
Moderation of 

extreme events 
 

Aesthetic appreciation 

and inspiration for 

culture, art and design 

Medicinal 

resources 

Waste-water 

treatment 
 

Spiritual experience and 

sense of place 

 

Erosion prevention 

and maintenance of 

soil fertility 

  

 Pollination   

 Biological control   

 

All types of forests can potentially provide the services reported in Table 1. 

However, tropical forests’ contribution to global climate regulation and to biodiversity 

richness is far larger than other forest ecosystems. “Certainly the tropics, and particularly 

tropical moist forests, stand out as highly significant reservoirs of global biodiversity” 

(Dirzo and Raven, 2003); they contain the majority of the world's biodiversity hotspots 
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and the largest concentration of species densities. Despite covering less than 2% of the 

planet’s surface, they house over 50% of its biodiversity. A number of plant and animal 

species living in tropical ecosystems are classified as critically endangered by the 

International Union for the Conservation of Nature and Natural Resources (IUCN). 

Tropical deforestation and forest degradation represent the greatest threat to biodiversity, 

with potentially irreversible effects (Vieira et al., 2008). In fact, the cascade effect on 

human activities can be dramatic when the loss of tropical biodiversity leads to the 

extinction of living species (Bradshaw et al., 2009). 

Another pivotal role of tropical forests —which has brought them to the top of the 

international agenda on climate change— is the capacity to sequester and stock carbon 

dioxide: they sequester more carbon at faster rates than temperate and boreal forests 

(Bonan, 2008). From 1750 to 2011, the human-induced CO2 emissions to the atmosphere 

were 555 ± 85 PgC (1 Pg = 1015 g). With 180 ± 80 PgC, changes in land use represent 

the second largest anthropogenic source of CO2 to the atmosphere —it mainly includes 

deforestation, though afforestation and reforestation also have a role. The 

Intergovernmental Panel on Climate Change’s (IPCC) fifth assessment report states that 

it is between 90-100% certainty that “more than half of the observed increase in global 

mean surface temperature from 1951 to 2010 is due to the observed anthropogenic 

increase in greenhouse gas (GHG) concentrations” (Intergovernmental Panel on Climate 

Change, 2014). In fact, one effect of the release of anthropogenic carbon (i.e. the carbon 

released by human activities) into the atmosphere is the increase of the Earth’s 

temperature. It clearly appears the decisive influence of forests on climate, and why any 

global climate change agreement has to put them at its core. In fact, without any 

mitigation efforts, emissions from the forest sector are likely to increase throughout the 

XXI century (Eliasch, 2008). 

Tropical forests’ threats: deforestation and degradation drivers 

In 1990, forests represented about 31.6% of the global land surface. Twenty-five 

years later, the Global Forest Resources Assessment (GFRA), issued by the Food and 

Agriculture Organization (FAO), reported that forests covered 30.6% of the global land 

surface, which is about 0.6 ha per every person on the planet (Keenan et al., 2015). 

Overall, considering the global forest area, there was a net decrease of 3% between 1990 

and 2015 (Keenan et al., 2015). However, this percentage results from a combination of 

a loss of natural forests and an increase in planted forests, therefore does not supply 

information on the actual net loss of natural forests, which is indeed far higher. 

The annual rate of net forest loss nearly halved over the 25-year period between 1990 

and 2015. At a first glance, one may deduce from these figures that world forests are, 

despite everything, rather healthy or that, perhaps, the heated international debate on 
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deforestation is overemphasizing the need to protect forests. However, turning the 

spotlight on the national level, the situation varies dramatically. Before the 1980s, 

deforestation and other land use changes mainly occurred in mid-northern latitudes; 

while since the 1980s, the tropics, particularly tropical America and Asia with smaller 

contributions from tropical Africa, registered alarming deforestation rates (Ciais et al., 

2014). Currently, the vast majority of forest area loss occurs in the tropics. In 142 tropical 

countries, the area of natural forest decreased by 11% between 1990 and 2015 (FAO, 

2015). Tropical rainforests experienced the largest share of deforestation: 32% of the 

global forest loss occurred there, of which nearly half took place in South America 

(Hansen et al., 2013) (Figure 1). It is estimated that up to 50% of the world’s tropical 

forests have been cleared, representing one of the most significant anthropogenic land 

use changes in history (Lewis, 2006). A recently published study states that intact forest 

landscape extent has been reduced by 7.2% from 2000 to 2013, of which 60% occurred 

in tropical regions (Potapov et al., 2017). 

 

 

Figure 1 Annual change in forest area from 1990 to 2015 (Source: FAO 2015). 

A wide definition of deforestation describes it as a long-term or permanent 

conversion of forested land to non-forested land (UNFCCC, 2006). Deforestation causes 

are commonly classified as direct (also named proximate) and indirect (named 

underlying). Direct causes involve any human activity, at local level, that directly and 

immediately drives to forest clearance. Indirect causes can affect forest decline both at 

local and global level, because they include underlying societal dynamics. Indirect causes 

drive the direct causes. Geist and Lambin (2002) analyzed 152 subnational case-study 

reports and described three dominant direct causes of deforestation: infrastructural 
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extension, agricultural expansion, and wood extraction. Direct causes are driven by five 

underlying factors: demographic, economic, technological, policy and institutional, and 

cultural. Most of the causes are region specific and, in most cases, deforestation is 

determined by their different combination. As one can expect, deforestation drivers vary 

spatially and temporally: each country and region has its own intricate set of economic, 

social, and political circumstances determined by public and individual decisions. Under 

these assumptions, “no universal policy for controlling tropical deforestation can be 

conceived” (Geist and Lambin, 2002). 

Forest degradation is even harder to define, and therefore to identify, than 

deforestation. In fact, it has different facets, often difficult to define by a single measure 

(Morales-Barquero et al., 2014; Thompson et al., 2013). A number of different 

definitions of forest degradation exist. A 2003 IPCC report reviews nearly 50 definitions 

of degradation in use and in the end suggests a definition that can meet the criteria 

discussed in the context of the Kyoto protocol: “A direct human-induced, long-term loss 

(persisting for X years or more) of at least Y% of forest carbon stocks [and forest values] 

since time T and not qualifying as deforestation or an elected activity under Article 3.4 

of the Kyoto Protocol”. 

Since the acknowledgement by the 2007 Conference Of the Parties (COP) that forest 

degradation also leads to emissions and needs to be addressed (UNFCCC, 2008), it has 

been a topic of discussion (Mertz et al., 2012; Plugge and Köhl, 2012). At present, no 

certain estimates of carbon emissions from forest degradation exist for the entire tropics, 

though Houghton (2012) assessed that it may vary from 10% to 40% of the total net 

emissions from tropical forests between 1990 and 2012 (∼1.4 PgC year−1). The 2015 

GFRA (FAO, 2015) defines the partial canopy cover loss (PCCL) as a proxy of 

degradation and assesses that the total area of PCCL in tropical climatic domain was 185 

million ha from 2000 to 2012.  

Complexities faced in defining degradation are even more profound when it comes 

to monitoring degradation. While deforestation is relatively simple to detect using space- 

or air-borne remote sensing platforms, degradation is far more challenging to observe 

remotely, even with high-resolution optical imagery (Morales-Barquero et al., 2014). 

Active sensors, such as RAdio Detection And Ranging (Radar) and Light Detection And 

Ranging (Lidar), which are able to penetrate both cloud and canopy cover, offer a good 

solution for monitoring stock level change in tropical forests (Ryan et al., 2012). 

However, the costs still hamper their application to vast tropical areas, even though their 

adoption in forest inventory is more efficient and convenient than field-based 

assessments alone (Tomppo et al., 2008). 

It is also important to clarify that different forms of forest degradation exist. In many 

cases, forest degradation does not lead to deforestation. For example, one area can remain 

degraded for years, as for example local communities get fuel wood from it, and then, if 

the local wood extraction finishes, the forest will naturally re-increase its carbon stock 

http://www.sciencedirect.com/science/article/pii/S1877343512000723
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level. Therefore, forest degradation drivers are often different from deforestation drivers. 

The GOFC-GOLD Sourcebook (2013) and Hosonuma et al. (2012) indicated four main 

causes of forest degradation: timber extraction and logging, fuelwood collection and 

charcoal production, uncontrolled fires, and livestock grazing. Deforestation and forest 

degradation differ for their driving forces and their consequences, so different actions 

have to be implemented to address them. 

Solutions to reverse deforestation and forest degradation: the REDD+ 

approach 

The REDD+ programme (Reducing Emissions from Deforestation and Forest 

Degradation) is an innovative approach to reduce CO2 emissions from the forest sector. 

It is the most important action concerning the association between tropical forests and 

climate change. The innovativeness of REDD+ holds in its holistic approach in 

addressing deforestation and forest degradation drivers. The core ideas of REDD+ have 

never been executed nor conceived by previously implemented mechanisms.  

At least three key features characterize REDD+ (Sunderlin and Atmadja, 2009). The 

first one is that REDD+ is a marked-based mechanism: it gives a monetary value to forest 

carbon. Since the first pilot initiatives aimed at avoiding deforestation and forest 

degradation, REDD+ projects have generated carbon credits traded in voluntary carbon 

markets. The basic idea is to pay forest-rich countries for preserving and enhancing their 

forest carbon stocks. In order to comply with the commitments made in the international 

negotiations and to compensate their emissions, developed countries have to provide 

developing ones with the finance to do so, by buying carbon credits produced through 

REDD+. The second key feature of REDD+ is the result-based approach; it means that 

payments to forest-rich countries (named non-annex I parties) depend on the actual 

abatement of carbon emissions from forests. Each ton of CO2 equivalent not emitted in 

the atmosphere thanks to the REDD+ programme will generate a tradable carbon credit, 

only if its generation is measured, reported and verified, in accordance with the Bali 

Action Plan (UNFCCC, 2008). Finally, a new pivotal feature of REDD+ is the large 

amount of money that governments are committing to this mechanism (Sunderlin and 

Atmadja, 2009). Nevertheless, complex challenges remain to be resolved for effectively 

implementing each of the above-reported features. 

REDD+ constitutes an achievement of the United Nations Framework Convention 

on Climate Change (UNFCCC), which has given importance to tropical forests on the 

global climate regime in the international community debate. UNFCCC parties started 

the discussion during the 11th COP held in Montreal, in 2005 (when the Kyoto Protocol 

came into force). Initially, only the reduction of emissions from deforestation (RED) was 

part of the debate. Two years later, in 2007, REDD+ was fully integrated into the global 

climate agenda with the addition of the second ‘D’ and the term ‘plus’. The ‘+’ allowed 
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for four more activities to be added as eligible for support and funding under a REDD+ 

mechanism: reducing emissions from forest degradation, conservation of forest carbon 

stocks, sustainable management of forests, enhancement of forest carbon stocks. 

Non-annex I countries willing to participate in REDD+ under either the Forest 

Carbon Partnership Facility (FCPF) or the UN-REDD Programme have to develop four 

core components in accordance with national circumstances and respective capabilities. 

The Readiness Preparation Proposal template provided by the FCPF and the UN-REDD 

Programme is a document designed to assist a country to prepare itself for involvement 

in REDD+. This document defines the following four core components: a national 

strategy or action plan; forest reference emission level (FREL) and/or reference level 

(RL); a robust and transparent national forest monitoring system; a plan for establishing 

a safeguard information system (Figure 2). 

 

 

Figure 2 Core components to be developed by non-annex I countries that aim to undertake 

REDD+ activities under either the Forest Carbon Partnership Facility (FCPF) or the UN-REDD 

Programme. 

The national strategy (also called action plan) provides a comprehensive 

understanding of political, social and economic dynamics affecting the activities to be 

undertaken. It is commonly designed in the readiness phase of REDD+ (i.e. the first 

phase), involving all the relevant stakeholders. The national strategy or action plan have 

to address, inter alia, “the drivers of deforestation and forest degradation, land tenure 

issues, forest governance issues, gender considerations and the safeguards” (UNFCCC, 

2011). 

REDD+ Safeguards 

Along with benefits, REDD+ can also have environmental and social detrimental 

effects, named “risks”. To prevent and mitigate risks that can occur during the execution 

National strategy 
or action plan

Monitoring 
reporting and 

verification

Reference levels
Social and 

environmental 
safeguard

REDD+
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of REDD+ activities, appropriate measures have to be planned and implemented. 

REDD+ ‘Safeguards’ refer to policies, processes and measures that identify, analyze and 

manage risks and opportunities of REDD+ (Murphy 2011). Nine socio-economic and 

environmental risks of REDD+ implementation can be described, as reported in Figure 

3 (Huettner, 2012). 

 

 

Figure 3 Potential risks from REDD+ policies and programmes (adapted from Huettner, 2012). 

Seven safeguards should be promoted and supported when undertaking REDD+ 

activities to prevent or mitigate potential risks and boost benefits (UNFCCC, 2011). The 

seven safeguards can be grouped into three categories (Barquín et al., 2014): 

1) Governance 

a) REDD+ activities are compatible with national and/or international 

programmes, conventions, and agreements. 

b) National forest governance structures are transparent and effective. 

c) All the relevant stakeholders are fully and effectively involved in REDD+ 

activities. 

2) Social and environmental impact (including non-carbon benefits) 

d) Respect for the knowledge and rights of indigenous peoples and members 

of local communities according to the United Nations Declaration on the 

Rights of Indigenous Peoples. 

e) Protect and conserve, through REDD+, natural forests, biological diversity 

and their ecosystem services, in order to enhance social and environmental 

benefits. 
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3) GHG emissions integrity 

  f) Actions to address the risks of reversals. 

  g) Actions to reduce displacement of emissions. 

Forest reference (emission) levels 

The UNFCCC requests non-annex I parties to assess national forest reference 

emission level (REL) and/or reference level (RL). These benchmark the actual reduction 

of emissions ascribable to the implemented REDD+ activities. Hence, RELs and RLs —

expressed in tons of carbon dioxide equivalent per year— gauge the progresses of 

REDD+ participant countries and will be technically assessed in the context of result-

based payments. 

Establishing RLs according to the IPCC principles for reporting of national 

emissions and removals of GHGs is one of the most complex and challenging REDD+ 

elements; they can decisively determine the success of REDD+ because they “affect the 

quantity, credibility, and equity of credits generated from efforts to reduce forest carbon 

emissions” (Griscom et al., 2009). The necessity to setting RLs is tightly linked to the 

concept of additionality, which envisages that REDD+ projects should go beyond 

business-as-usual, enabling emission reductions that would have not taken place 

otherwise. As a result, financial support is only available for avoiding emissions that 

would occur in the absence of REDD+. 

There is no internationally standardized method for the setting of RLs under 

UNFCCC; several techniques can be implemented, as long as five principles are applied: 

transparency, completeness, consistency, comparability, and accuracy. However, the 

lack of a standardized method creates the potential risk that would lead to 

overcompensation and therefore reduces the cost-efficiency of REDD+ payments 

(Hargita et al., 2016).  

Two categories of methods can be applied to design RLs: retrospective and 

prospective approaches (Huettner et al., 2009). Retrospective approaches take into 

account historical GHG emissions and removals and assume a linear trend; under these 

approaches adjustment factors for national circumstances are considered to allow 

inclusion of social and economic variables (Mollicone et al., 2007). Prospective methods 

use land-use-change models to predict the risk of deforestation and forest degradation 

(Brown et al., 2007). In any case, RL methods should be selected in accordance with 

national circumstances and capabilities. Until now, twenty-five countries have submitted 

a proposed forest reference emission level and/or forest reference level and are 

undergoing technical assessment processes (according to the UNFCCC website, visited 

on the 31st May 2017);  
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Measuring, reporting and verification 

Any valid national, sub-national or local REDD+ project has to possess the tools to 

assess the amount of forest carbon, including its changes over time. The measurement of 

the reduction of emissions accomplished by the REDD+ project, as well as the system 

for reporting and verifying the emissions reductions, constitute the frame of MRV-

systems (Measurement, Reporting, and Verification). The Bali Action Plan of the 

UNFCCC encourages all non-annex I parties to measuring, reporting and verifying 

emission reduction (Box 1). Measurements include activities of data collection 

concerning forest carbon inventory and land-use change analysis over the project 

lifetime. Precision and accuracy of the collected data have to be rigorously quantified. 

The IPCC reporting guidelines suggest transparent, consistent, accurate, comparable, and 

complete methods for reporting GHG emissions (IPCC, 2003). The reporting process 

entails calculating emissions and removals from the forest carbon inventory and the land 

use change analysis. The data collected over time have to be formally reported and finally 

will go through a process of verification that evaluates and, eventually, validates the 

information that is presented. Two land-use change experts, selected from the roster of 

the UNFCCC experts, perform this process (UNFCCC, 2013). The MRV system is one 

of the four fundamental components that countries willing to participate in REDD+ have 

to elaborate (Figure 2). Implementing a reliable MRV system is crucial; in fact, result-

based payments are tightly linked to the quality of field assessments and remotely sensed 

data (Plugge et al., 2013). 

 

Box 1 – MRV definitions  

Measurement 

 

Refers to two types of data: (i) data on land-cover change, usually assessed 

through remote sensing technology, termed 'Activity data'; (ii) data on forest 

carbon stocks, commonly derived from in-situ assessments based on 

statistical sampling design, are termed ‘Emission factors’ (Goetz et al., 2015). 

Reporting The measured forest-related emissions have to be periodically reported to 

the UNFCCC, in order to track REDD+ progresses. The reporting 

mechanism, that covers the whole project extension, utilizes a common 

reporting format and methodology, in order to ensure that information 

provided is complete, transparent, comparable and accurate (UNFCCC, 

2013). 

Verification 

 

A panel of experts performs a thorough quality control to identify potential 

errors, flaws, and omissions. Results of the technical assessment are issued 

in a report (UNFCCC, 2013). 

 

The measurements and reporting can be performed with different levels of accuracy 

and complexity. The IPCC propose a hierarchical structure, called the tiered approach: it 

implies increasing levels of accuracy of the method for estimating GHG emissions and 

removals for each source. The tier 1 approach employs default data and simple equations 
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easily obtainable from IPCC guidelines or other international sources. Tier 2 uses region- 

or country-specific activity data and emission factors, with higher temporal and spatial 

resolution and disaggregated land-use category. Under tier 3, models and techniques 

specifically conceived to address national circumstances are applied; the great reduction 

of uncertainties requires very good forest inventory capacities. Tier 3 approaches 

envisage the combination of remotely sensed data calibrated over field measurements. 

This combination provides a reliable, practical, and cost-effective solution for developing 

and maintaining REDD+ MRV systems (De Sy et al., 2012). Optical sensors, Radar, and 

Lidar  remote sensing techniques are the main sources of remotely sensed data used to 

extract information for forest biomass. Lidar helps to predict biomass in tropical forests 

with satisfactory accuracy. The mutually supportive combination of ground- and Lidar-

based data was successfully applied in various forest biomes to estimate forest carbon 

stock (Mauya et al., 2015). Kaasalainen et al. (2015) analysed various aspects on the 

combined use of Lidar and Radar, highlighting their potential use for continuous global 

biomass mapping with improved accuracy. 

Funding for REDD+ 

Finding a reliable source of financing is the key issue of REDD+ (Angelsen and 

Wertz-Kanounnikoff, 2008). The COP 19 established a work programme on REDD+ 

finance, and, in decision 9/CP.19, reaffirmed that finance may come from a wide variety 

of sources: public and private, bilateral and multilateral, including alternative sources. A 

conservative estimate reported that pledges and investments from public and private 

account for US$9.8 billion for the period between 2006 and 2014 (Norman and 

Nakhooda, 2015). The public sector committed the vast majority of funding (over 90%), 

which were channelled into bilateral country programmes and multilateral funds. 

Bilateral programmes represent two thirds of all internationally supported REDD+ 

activities (Streck, 2012); they facilitated the allocation of most of the resources to 

national governments in developing countries (Buizer et al., 2014). Norway is the largest 

contributor, followed by the United Kingdom, Germany, Japan and the United States.  

Multilateral funds represent the second largest allocation of public financing. The 

latter includes, inter alia, the Amazon Fund, the Forest Carbon Partnership Facility and 

the UN-REDD programme. From 2008 to 2016, about US$4 billion  was pledged to five 

multilateral climate funds that support REDD+ (Watson et al., 2016). Bilateral and 

multilateral schemes cover about 89% of total finance, while the remaining 11% is 

covered by private finance. 

A much stronger engagement of the private sector is needed to meet the financial 

needs of REDD+. In fact, to support performance based payments at an effective level 

about US$ 30 billion per year required (UNEP, 2014). Another estimate reports that for 
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halving global forest emissions between 2005 and 2030, from $17.2 to $28 billion per 

year could be necessary (Eliasch, 2008). To raise such a large amount of money, a new 

funding model comprising public-private partnerships is indispensable. This new model 

could be part of a new paradigm based on the principles of the Green Economy (UNEP, 

2014). While achieving an inclusive green economy is a long-term challenge, filling the 

REDD+ financial gap needs urgent action, and a relatively faster way to involve the 

private sector could be to trade forest carbon credits both in voluntary and compliance 

markets. At present, carbon credits can only be traded in voluntary markets, but the vast 

majority of finance flows into compliance markets, which have prohibited the trading of 

forest carbon credits. 

According to the market-based architecture of REDD+, part of the money for the 

result-based payments should come from the returns derived from the selling of credits 

on carbon markets. However, the financial market-based transactions and commitments 

to reducing carbon emissions from forestry and land-use practices still remain 

substantially insufficient (Goldstein, 2016). This drawback may compromise the success 

of the mechanism, considering that a global market-based framework was expected to 

financially support most of the activities. REDD+ funds are limited, furthermore, their 

effective allocation might be hampered by institutional, legal, political and economic 

barriers. For example, delays in the short-term disbursement of REDD+ funds and a 

mismatch of donor requirements and recipient needs render its fast progresses to be hardy 

achievable (Streck, 2012). These unfavorable economic conditions might improve: after 

the COP 21 held in Paris in December 2015, REDD+ has stepped into the spotlight and 

some positive signs emerged. Article 5 of the agreement reads, “Parties should take 

action to conserve and enhance, as appropriate, sinks and reservoirs of greenhouse gases 

[…] including forests” and suggests a market approach for financing REDD+ activities. 

The formal inclusion of forests in the UNFCCC agreement is certainly a positive 

accomplishment; however, it is a starting point rather than an end goal. The Paris 

Framework neither allocates funding nor provides certain information on the source for 

result-based finance. Now it will be up to the next COP to figure out how to implement 

and boost actions on the ground. On the other hand, the ongoing activities that are being 

carried out under the REDD+ framework must go on; countries that have already started 

REDD+ national actions must be permitted to keep implementing measures and 

achieving their objectives, while alternative solutions to cope with the lack of resources 

must be found. Inter alia, a solution could be to take full advantage of the available 

resources, for example by adopting innovative techniques that improve the capability of 

achieving greater efficiency. 
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The cost of REDD+ 

REDD+ costs are grouped into three categories: opportunity cost, transaction costs, 

and implementation costs. 

Opportunity cost: besides the negative environmental impacts of converting forests 

to other land uses, deforestation can generate a series of associated benefits. The 

opportunity cost is the forgone profit that deforestation would have generated, for 

example from timber and agricultural commodity sales. The opportunity cost of REDD+ 

defines the lost net benefit for not continuing with the business-as-usual logging or 

converting forestland. 

Transaction costs: They are the costs involved in setting in motion and managing 

REDD+ policies, from the very early phases until the end of the project, e.g. identifying 

and selecting the project, partners and consultants; upfront capacity building; feasibility 

studies; negotiation, such as obtaining permits, arranging financing and transactions with 

carbon buyers; measuring, reporting and verification. These costs, usually expressed in 

$/tCO2, cover the necessary expenses to establishing an operative REDD+ programme 

and display economies of scale.  

Implementation costs: They are directly associated with the actions that reduce 

emissions. Some examples are: concrete actions that prevent logging, restoring 

vegetation in degraded areas, providing capacity building, infrastructure or equipment to 

develop alternative livelihoods to communities. 

In reality, the categories of implementation and transaction costs are not always 

distinct; however, implementation costs are typically associated with reducing 

deforestation directly, whereas transaction costs are indirectly associated with it.  

Even though several research studies have defined opportunity costs as the largest 

portion of REDD+ costs (The World Bank, 2011), trying to provide a general ranking of 

costs that applies to all countries constitutes a futile exercise for two reasons. First, 

assessing costs at global level is rather hard and “estimates are made less accurate by 

uncertain methodologies and untested assumptions” (Fosci, 2013). Second, costs can 

substantially vary according to the national context and specific location, for example 

the opportunity costs of land in remote areas may be less than transaction and 

implementation costs (Pagiola and Bosquet, 2009). Antinori and Sathaye (2007) 

presented an analysis of transaction costs for eleven forestry projects concerning forest 

preservation, restoration and afforestation projects (not REDD+ projects). The average 

transaction cost was 0.38 $/tCO2; monitoring and verification costs represent 35% of the 

weighted transaction costs —which is the main component— ranging from 4%, for 

afforestation to 67% for forest restoration projects. 

It is also possible to classify REDD+ costs according to the institution or the person 

that bears the costs. Overall, costs are incurred by buyers and sellers of REDD+ actions. 

These two broad categories can include countries, government agencies, international 
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donors or buyers in carbon market, non-governmental organizations, research 

institutions, consultants-service providers, and individual actors (e.g. landholders) 

(Angelsen et al., 2013; Graham et al., 2016). 

The present thesis investigates aspects related to MRV costs. The latter are 

conventionally included in the transaction costs and are incurred by the parties that 

implement the REDD programme (e.g. national and sub-national institutions) and third 

parties, such as verifiers, certifiers, and lawyers (Pagiola and Bosquet, 2009). Transaction 

costs are commonly considered minor compared to the other categories of costs; 

nonetheless, their importance could be substantially underestimated (Fosci, 2013). 

Moreover, implementing an effective MRV system will directly affect the generation of 

carbon credits, and so it influences the overall budget of the programme. 
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Part 2. Integration of the articles into the thematic context  

The objective of the thesis is to provide a better understanding on approaches that 

could enable effective planning and implementation of monitoring activities. This thesis 

relies on three main pillars: innovation, inclusion, and efficiency in REDD+. 

1) Scientific and technological innovations support MRV systems and provide 

appropriate instruments to design and execute REDD+. They can make a difference in 

generating carbon credits. At present, the considerable digital divide between developed 

and developing countries remains high, particularly concerning technologies used in 

forest inventorying and monitoring. Spreading innovation is a key intervention to 

promote both efficiency and inclusion.  

2) The second pillar —inclusion— refers to the possibility that every country or 

province is given the opportunity of participating in REDD+. In the context of this thesis, 

inclusion is about the barrier to participation associated to low monitoring capacities and 

to limited availability of data, capital, technical infrastructure, or human capacities. 

3) The third pillar concerns efficiency, which is fundamental, because most 

developing countries grapple with a shortage of resources, and there is  a critical lack of 

finance in the REDD+ mechanism. The concepts of efficiency that are covered in this 

thesis are (i) techniques that enable a wise use of available data and resources, (ii) the 

analysis and description of approaches that produce large result-based payments (i.e. 

carbon credits generation) with minimum expense. 
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First article 

The first article, published in January 2017 in the Forests journal volume 8, issue 1, 

was written by Di Lallo, with a substantial contribution made by Köhl. Köhl conceived 

the original idea that was developed by Di Lallo, who designed the study, created the 

model, and analyzed and interpreted the data. Köhl also helped to structure the study and 

develop the method; he coordinated the study, and substantially contributed to the quality 

control and critical revision of the manuscript. Lopez helped with the case study and the 

interpretation of some data. Mundhenk suggested the application of random forests and 

also provided technical content and revised the manuscript. Marchetti helped to 

coordinate the study and revised the manuscript. 

Summary 

The article presents a novel modelling approach that predicts the spatial location of 

forests threatened by near-future deforestation. Simulating forest-clearing dynamics is a 

key step in the context of REDD+. The importance of adopting reliable methods to 

simulate trends of business-as-usual deforestation scenarios is linked to the fact that 

result-based payments are made for improvements over business-as-usual scenarios. 

Modelling techniques using mathematical and statistical methods are also useful for 

identifying areas where REDD+ initiatives will have the greatest impact and for 

supporting domestic political measures to implement an informed and transparent 

funding-allocation mechanism. Moreover, combining forest-clearing dynamics with data 

on forest carbon stock enables the prediction of carbon-rich areas under the risk of losing 

their ecological values. 

Several spatial modelling tools and approaches exist, or have been proposed, for 

identifying areas at risk of deforestation. However, many of the existing models can be 

not easily implemented in some tropical countries, due to limited data availability, 

organizational structure, or monetary resources. For this reason, we created a model, 

which using only available and easily accessible data, predicts the risk of deforestation 

with satisfactory accuracy for potential application in beginning phases of REDD+ 

projects. We tested the model using national-scale data from Nicaragua. The model is 

named PREDIT (PREdicting Deforestation In the Tropics). 

PREDIT integrates inputs from different data layers (i.e. maps) using the random 

forests algorithm. The random forests algorithm is a decision tree–based method 

belonging to the family of machine learning. Decision tree-based methods are used in 

decision-making processes because they enable evidence-based, data-driven decisions. 

We adopted random forests given the strong non-linear relationships between the 

variables. We used available data sources from the time interval 1983–2011. Data from 

t1–t2 (i.e., 1983–2000) were used to calibrate the model and data from t2–t3 (i.e., 2000–

2011) to test its accuracy. Ten independent variables (also called predictors) were used 
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as a proxy of deforestation (Figure 4). They were selected by reviewing the available 

literature and according to the author’s knowledge of the country; nevertheless, the 

availability of data was the major limitation in selecting the predictors. The dependent 

variables consist of two classes: ‘forest areas’ and ‘deforested areas’. We performed 

PREDIT using two sets of predictor variables. In the first session, referred to as FourPA 

(Four Predictors Alternative), we included only the four predictors that mostly affect 

deforestation in Nicaragua. In the second session, referred to as TenPA (Ten Predictors 

Alternative), the set of all 10 available predictors was used (Figure 4). 

 

Figure 4 Predictors used in PREDIT model. The model was run on two alternatives: (i) TenPA, 

which uses 10 predictors; (ii) FourPA, which uses four predictors, i.e. those that substantially 

influence forest-clearing dynamics. 

The classification error for the two modeling alternatives (with four and ten 

predictors) was similar, so adding six predictors to the FourPA-model did not improve 

the overall accuracy, which was 76%. However, the overall accuracy is not an exhaustive 

indicator of model performance. Assuming the application of PREDIT in REDD+ 

projects, FourPA would be the preferred alternative, because it does not overestimate the 

risk of deforestation (i.e. it applies a conservative approach). In fact, one significant 

difference between TenPA and FourPA is that TenPA overestimate the risk of 

deforestation; it also explains the high value of Producer’s accuracy (which defines the 

pixels correctly classified as “deforestation”) (Table 2). 

FourPA

• Altitude

• Distance to cropland areas

• Slope

• Distance to pasture areas

TenPA

• Altitude

• Distance to cropland areas

• Slope

• Distance to pasture areas

• Forest density

• Population density

• Protected areas

• Forest type

• Distance to roads

• Distance to urban areas
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Table 2 Performance of the model in predicting areas subject to deforestation. The table shows 

statistics for the alternatives that use ten predictors (TenPA) potentially associated with 

deforestation and four predictors (FourPA) that certainly affect deforestation dynamics. 

 Ten Predictors (TenPA) Four Predictors (FourPA) 

Overall accuracy 76% 76% 

Producer’s accuracy 0.80 0.69 

User’s accuracy 0.64 0.71 

Figure of merit 55% 53% 

 

We conclude that this modelling approach could find applications in REDD+. It can 

support countries involved in the early phases of REDD+. Particularly those countries 

that grapple with a critical lack of data, and that, while developing the capacity to build 

their own sound and accurate dataset, can take advantage of already available and easily 

accessible data. 

Discussion in the thematic context 

Forecasting future land-cover dynamics based on direct and indirect drivers of 

deforestation does not necessarily require extensive and expensive studies. Reliability 

and level of detail depend on the scope of the assessment and on local circumstances, 

such as financial availability and local technical capacity. Countries with low capacity in 

assessing and monitoring its forest resources, and the associated socio-economic 

dynamics, face serious challenges to join REDD+ due to the large investment at the 

beginning of the project. A lack (or inability) of access to financing can principally hinder 

REDD+ readiness implementation (Maniatis et al., 2013). Reforming forestry-related 

policies and building technical capacity are hard challenges as well; for example, 

investigating deforestation drivers and implementing a robust MRV system imply the 

existence of a well-tuned national forestry department. It may take years and large 

monetary investment. A stepwise approach —which envisages a gradual improvement 

of countries capacities as they progress toward more advanced REDD+ phases— could 

facilitate the implementation of REDD+ in countries lacking such capacities. This would 

enable a country to start implementing REDD+ activities while building its own internal 

structure; accordingly, it could reach a higher level of detail at advanced stages of the 

project. This stepwise approach is often necessary since the majority of tropical countries 

still lack capacities to implement a complete and accurate mechanism for measuring 

forest area change and performing a national forest inventory on growing stock and forest 

biomass (Food and Agricultural Organization, 2015).  

While big challenges remain in developing forest inventory and carbon pool 

reporting capacities, important improvements have been accomplished in forest area 

change monitoring and remote sensing capacities: a recent study evaluated the capacities 

of 99 countries, reporting that 54 of the 99 have good to very good capacities (Romijn et 
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al., 2015). A meaningful contribution to the improved capacity is ascribable to the 

increased availability of earth-observation data and the open access data policies; at 

present, as never before, a number of remotely sensed data are freely available over the 

internet to any user (Wulder et al., 2012). Countries willing to participate in REDD+ can 

benefit from the open policies. However, an increasingly large volume of data needs 

specific approaches; specifically, handling non-linear data with complex interactions, 

such as forest and environmental data, requires appropriate tools and software. Data 

mining, machine learning, and statistical methods possess the ability to analyze very 

large amounts of data, and are useful in creating predictive and inference models.  

The innovative modelling approach (named PREDIT) presented in the first article 

combines open access remotely sensed data with open source software. The three pillars 

(efficiency, innovation, and inclusion) are perfectly embedded in the methodological 

approach presented in the first article. PREDIT is suited to a stepwise framework for 

developing REDD+. This effective combination can support countries involved in the 

early phase of REDD+ and would enable wider REDD+ participation: “it represents a 

starting point for countries that struggle with a critical lack of data, higher uncertainties, 

and competing interests” (Di Lallo et al., 2017). It is highly efficient as it uses free and 

open access data. Freely available techniques, such as PREDIT, can also have a critical 

role in promoting synergies across nations and can boost countries to agree to 

international treaties, such as REDD+ (Wulder et al., 2012).  
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Second article 

The second article included in the cumulative thesis (Understanding Measurement 

Reporting and Verification Systems for REDD+ as an Investment for Generating Carbon 

Benefits) was published in July 2017 in the Forests journal, volume 8, issue 8. It was 

written by Di Lallo with a substantial contribution made by Köhl. Di Lallo and Köhl 

developed the idea, which was originally conceived by Köhl. Köhl also coordinated the 

study. Di Lallo analyzed the data and performed the simulation study. Mundhenk 

contributed to the analysis of data, the simulation study and revised the quality of the 

manuscript. Marchetti helped to coordinate the study, and critically revised the quality 

of the manuscript. 

Summary 

This article examines three key factors affecting the generation of forest carbon 

credits from REDD+. The factors are (i) setting Reference Levels (RLs); (ii) carbon 

credits supplying from emission reductions due to REDD+; (iii) uncertainties in forest 

carbon emission estimates. We conducted two analysis: a sensitivity analysis and a 

simulation study.  

In the sensitivity analysis, the three factors affecting the avoided emissions (i.e. the 

forest carbon credits) were ranked according to their impact on the generation of carbon 

credits. We found that the generation of carbon credits mostly varies as a function of 

uncertainties in forest carbon monitoring (i.e. according to the monitoring technique 

adopted). Clearly, RLs influence the number of carbon credits that can be generated and 

the result-based payment that project managers or countries could receive, however, their 

actual weight in the mechanism was uncertain. Findings show that RLs impact on the 

accountable avoided emissions is almost as important as the uncertainties; while the 

amount of emissions actually reduced has a relatively minor impact. 

In the simulation study, we analyzed the interrelationships between the cost of forest 

carbon monitoring, the associated precision, and the resulting accountable carbon credits. 

We explored the potential of two approaches for monitoring forest carbon in terms of 

reliability and costs. The first approach makes use of Lidar data and adopts a model-

assisted technique; while the second consists of passive optical data and the use of 

stratified sampling. 

Combining statistically rigorous sampling methods with Lidar data can significantly 

boost the accountable amount of forest carbon credits that can be claimed. Then we 

compared the potential result-based payments derived from the adoption of a model-

assisted technique using Lidar data with a set of realistic costs. We found that investing 

in sound, recurrent MRV systems critically determines a country’s potential to generate 

result-based payments. Therefore, potential result-based payments could pay-off the 

necessary investment in technology that would enable an accurate estimate of activity 
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data and emission factors. Conceiving an MRV system as an investment can encourage 

the implementation of well-defined, long-term monitoring strategies. 

 

Discussion in the thematic context 

We investigated three factors that influence the generation of carbon credits: setting 

reference levels (RLs), supplying emission reduction from avoided deforestation and 

degradation, and implementing an efficient monitoring system. A thorough 

understanding of the dynamics between these three factors helps to set up efficient 

projects —i.e. projects that produce large result-based payments. Findings of the second 

article show that: (i) uncertainties in forest monitoring mostly influence the potential 

credits received for reducing emissions and the resulting reward; (ii) uncertainties can be 

significantly reduced by adopting statistically sound sampling techniques and Lidar-

based methods.  

We indicated plausible and convenient options useful to analysts and decision-

makers to understand how to take full advantage of the REDD+ opportunity. However, 

whether the MRV system is an effective investment or not can depend on several other 

factors; countries that decide to invest in innovative monitoring techniques have to 

carefully evaluate the tradeoff between reliability of a sound MRV and accountable 

carbon credits produced. 

In the second paper, we also pointed out the pivotal role of innovative monitoring 

techniques, and their positive effect on efficiency of MRV systems. However, innovation 

is neither simply about the use of high-tech products or big data, nor just about external 

support and adoption of foreign technology. Innovation means promoting a well-

designed, long-lasting strategy and a solid research and development programme. 

Conceived like this, innovation also promotes inclusion, as it can reduce gaps between 

developed and developing countries (OECD, 2012). However, it implicates a strong 

support from both private and public sectors. Even though the engagement the private 

sector has increased over the last few years, it is still far from being sufficient to cover 

the near-future REDD+ financial needs. Supporting a greater engagement of privates by 

introducing cost-effective measures is key for a successful execution of the REDD+ 

programme (Savaresi, 2016; Streck, 2012). 

Developing countries rely on external sources of financing for implementing 

conservation policies through the REDD+ programme. The monetary support under the 

REDD+ regime is delivered at the readiness (ex ante) and at the verification phase (ex 

post), for the emissions effectively avoided. Ex ante funding is necessary, as preparing 

to perform long, extensive and expensive projects imply a strong engagement and 

substantial investments. Ex post payment is one novel feature that REDD+ has 

introduced in international forestry processes aimed at reducing tropical deforestation. 
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MRV costs (which are part of transaction costs) are mainly afforded at the beginning of 

projects, hence are charged on readiness funding. They can be very high and greatly 

influence the overall REDD+ budget. In addition, MRV systems influence uncertainties, 

which mainly determine the amount of accountable carbon credits, and thus the result-

based payments. For this reason, adopting accurate, precise, long-term monitoring 

strategies is crucial, and conceiving MRV systems as an investment can encourage and 

incentivize tropical countries to do so. 
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Part 3. Conclusion of the cumulative dissertation 

The debate on the reduction of emissions from deforestation (RED) emerged during 

the 11th COP, in 2005. Since the 2007 COP, held in Bali, tropical countries (non-annex 

1 countries) started developing national strategies for Reducing Emissions from 

Deforestation and forest Degradation (Pistorius, 2012). In some cases, too high 

expectations were created, as many countries saw REDD+ as a fast, big transfer of 

resources to developing countries, or as a cheap way to reduce CO2 emissions. This 

vision has never materialized, though REDD+ remains an effective and efficient climate 

change mitigation strategy. Following the enthusiastic reaction for the entrance of 

REDD+ in the international policy arena, many researchers, politicians, leaders, 

technicians and various stakeholders have raised concerns that the REDD+ programme 

will fail to deliver positive results. Clearly, those who expected that REDD+ would have 

been a quick and simple mechanism for climate mitigation were disappointed. After ten 

years of activity, is probably time to take stock of the key achievements of REDD+. 

However, we should not ask, “What are the right measures to reduce emissions from 

forests?” but rather “What makes REDD+ successful and able to deliver beneficial 

outcomes?”. Bearing this question in mind, the doctoral research was mainly focused on 

technical challenges for measuring and monitoring forest areas and carbon stock. In 

particular, the thesis tried to answer the question by investigating innovative and cost-

efficient techniques designed to help developing countries facing the first stages of 

REDD+. 

Pursuing efficiency (representing the third pillar of this thesis) is vital considering 

the limited government budgets, development aids and the status of REDD+. On the one 

hand, developing countries involved in REDD+, which often struggle with scarcity of 

resources, aim to reduce emissions from deforestation and forest degradation and to 

improve their forest-related policies and governance; though it sometimes means to 

challenge deep-rooted national development paradigms and existing policy frameworks 

or policy objectives (Murdiyarso et al., 2012). On the other hand, there is the financial 

framework of REDD+, which remains uncertain, though some promising signs have 

emerged, such as the inclusion of the forest sector in the Paris agreement. However, 

REDD+ dependence on public funding is strong, and considering that it hardly provides 

adequate and predictable support, private investments are desirable. To encourage the 

involvement of the private sector as a key partner in REDD+, some parts of the 

programme would probably need to be redesigned in order to increase cost-effectiveness 

and reliability.  

For an efficient allocation of funds, national and local institutions should identify 

areas that are prone to near-future deforestation. With the first article we highlighted that 

projects can take advantage from three elements: available data, methods to handle data, 

and free and open source software. The open access data policies lead to an increasing 



 

25 

 

availability of freely and easily accessible forest-related data, which facilitate the 

participation to REDD+ of developing countries that still have to develop their own data 

sets. These countries can elaborate their own business-as-usual scenarios to identify and 

rank potentially suitable areas for REDD+ interventions by adopting the model presented 

in the first article. We are fully aware that our modelling approach does not shed light on 

the complex interrelationships amongst the multiple drivers underlying the deforestation 

processes, neither does it explain links between land-use change processes, their drivers 

and the involved actors —though understanding them is necessary for a correct 

implementation of REDD+ (Visseren-Hamakers et al., 2012). We proposed an objective, 

rapid and efficient way of checking on potential future forestland cover by using 

available geo-spatial information as a proxy for stakeholder activities. 

Efficiency tightly relates to innovation: a key element to shift towards efficiency is 

the adoption of innovative techniques. For example, the use of big data by adopting novel 

and innovative types of analytics such as machine learning and artificial intelligence can 

improve the efficiency and effectiveness of REDD+. 

The idea of efficiency formulated in the second paper is different, as it explores 

monitoring techniques that aim for a maximum generation of carbon credits with 

minimum expense. We found that Lidar-based monitoring techniques have a positive 

effect on the efficiency of MRV systems, as the uncertainties are reduced and, 

consequently, revenues flow derived from result-based payments can be larger than those 

achievable by using passive optical remote sensing. Supporting the use of Lidar in forest 

monitoring for the scope of REDD+ needs large investments. Promoting a fertile ground 

for investments and innovations can expand access to Lidar technology in developing 

countries. In addition to remote sensing-based forest monitoring methods and 

technologies, a number of studies have highlighted that the involvement of local people 

in monitoring activities (e.g. community-based forestry monitoring) can help to 

safeguard sustainability and equity in forest programmes, such as REDD+ (DeVries et 

al., 2016; Pratihast et al., 2014).  

The third pillar introduced in this thesis is inclusion. The process to take part in 

REDD+ is long, several steps need to be taken, as well as having to meet rigorous 

requirements to access international funding opportunities. Strict regulations and 

protocols seek to ensure the effectiveness of REDD+. Whether a country is eligible as a 

‘REDD+ country’ or not depends on a number of factors. For example, good governance, 

a sound legal framework for protecting the rights of indigenous people and clear land 

tenure laws are prerequisites for successful REDD+ project (Engel et al., 2010; Pettenella 

and Brotto, 2012). However, this thesis only focused on aspects concerning forest 

monitoring. Possessing an MRV system is one essential factor that can determine the 

successful planning and implementation of REDD+. Given the weak monitoring 

capacities, many tropical countries still use traditional forest inventories for forest 

monitoring systems (Mbatu, 2016). This can hinder the access to REDD+ to those 
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countries that lack an effective accounting system to monitor and keep track of forest 

cover change and carbon emissions. However, to contribute effectively to climate change 

mitigation, the REDD+ mechanism needs to involve almost all tropical developing 

countries. The articles included in this thesis demonstrate that even countries with low 

monitoring capacities can start developing a project; furthermore, conceiving an MRV 

system as an investment can encourage them to implement a well-defined, long-term 

monitoring strategy. 
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Abstract: The evaluation of the future dynamics of deforestation is essential to creating the basis 

for the effective implementation of REDD+ (Reducing Emissions from Deforestation and forest 

Degradation) initiatives. Such evaluation is often a challenging task, especially for countries 

that have to cope with a critical lack of data and capacities, higher uncertainties, and competing 

interests. We present a new modeling approach that makes use of available and easily accessible 

data sources to predict the spatial location of future deforestation. This approach is based on 

the Random Forest algorithm, which is a machine learning technique that enables evidence-

based, data-driven decisions and is therefore often used in decision-making processes. Our 

objective is to provide a straightforward modeling approach that, without requiring cost-

intensive assessments, can be applied in the early stages of REDD+, for a stepwise implementation 

approach of REDD+ projects in regions with limited availability of data, capital, technical 

infrastructure, or human capacities. The presented model focuses on building business-as-usual 

scenarios to identify and rank potentially suitable areas for REDD+ interventions. For 

validation purposes we applied the model to data from Nicaragua. 

Keywords: REDD+; tropical forests; spatial targeting; random forests; carbon; land-use  

change modelling 

 

1. Introduction 

Deforestation and forest degradation are the largest anthropogenic sources of CO2 

emissions into the atmosphere [1] other than fossil fuel combustion. Tropical forests are the 

cornerstones of climate change mitigation—they sequester more carbon at faster rates than 

temperate and boreal forests [2]. Carbon released from loss of forests accounts for at least 12%–

20% of the global anthropogenic emissions of greenhouse gasses (GHGs) [3,4]. REDD+ (Reducing 

Emissions from Deforestation and forest Degradation) aims to mitigate climate change by 

abating carbon emissions from forests in developing countries (named non-Annex I Parties) 

through a wide set of activities [5]. A system of economic incentives prompts non-Annex I Parties 

to participate in the program [6]. Countries willing to participate have to adhere to a REDD+ 

national strategic plan providing a comprehensive understanding of the political, social, and 

https://doi.org/10.3390/f8010029
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economic dynamics affecting land-use change. The plan also provides guidance on the efficient 

allocation of the limited amount of available funding. To efficiently allocate funds, it is necessary 

to identify areas that are prone to near-future deforestation. 

Three key criteria must be considered for effective and operational implementation of 

REDD+: the level of threat to service provision, the benefits, and the costs [7,8]. The decisive 

environmental service to consider when designing a REDD+ project on the ground is the 

reduction of GHG emissions [9]. Such a reduction has to be accretive, i.e., the progress must be 

achieved as part of the project and not be achievable without it, and it cannot result in leakage. 

To provide an advantageous cost-to-benefit ratio while ensuring accretion, it is important to 

locate projects in areas where forest carbon loss has already occurred or where significant 

deforestation and forest degradation are expected, i.e., areas where the level of threat to service 

provision is higher. Otherwise, no benefits will be generated, especially in countries in which 

business-as-usual projections show a low deforestation risk [10–12]. 

An accurate identification of deforestation risk requires, inter alia, data availability. 

Although the capacities of tropical non-Annex I countries to monitor forests and forest cover 

change are likely to improve over the next years, there are still a number of countries unable to 

implement the basic measures needed in the REDD+ context [13]. Hence, there is a lack of forest-

related data for specific assessments of suitable REDD+ activity areas. 

Several tools have been developed and used since the 1990s to simulate forest-clearing 

dynamics and to predict which areas are subject to the risk of losing carbon due to deforestation 

[14–19]. However, limited data availability can hamper their use in some developing countries 

[20–22]. In this paper we present a new approach based on the Random Forest algorithm [23]. 

Random Forest is a decision tree–based method belonging to the family of machine learning. 

Decision tree–based methods are used in decision-making processes because they enable 

evidence-based, data-driven decisions. Because a lack of data in developing countries may 

represent a barrier to the success of REDD+ projects, we adopted an approach that integrates a 

powerful machine learning technique (such as Random Forest), available geo-spatial layers, and 

easily accessible data sources. We call our model PREDIT (PREdicting Deforestation In the 

Tropics). Our approach attempts to overcome some of the current challenges in assessing 

locations of deforestation risk. Data from Nicaragua were used to evaluate the performance of 

our approach. 

2. Materials and Methods 

2.1. Random Forests 

We selected a model approach that integrates inputs from different data layers using the 

Random Forest algorithm. Random Forest is a supervised technique, conceptually simple, and 

suitable for both regression and classification problems. Decision tree-based models recursively 

partition the entire dataset (i.e., all the predictors’ possible attributes) into fairly homogeneous 

regions. In the terminology of tree models, such homogeneous regions are referred to as terminal 

nodes or leaves of the tree (Figure 1). When no further partitioning is required, the process of 

tree growing is concluded and the tree assigns a class to the dependent variable of interest. In 

machine learning terminology, it is said the decision tree ‘votes’ for a class. 

While for regression trees the overall objective is to reduce the mean square error (i.e., the 

difference between the true value and the value predicted by the model), the objective of 

classification trees is to create nodes having a maximum homogeneity, also called the purity of 

the node. In fact, having impure nodes increases the probability of misclassification error. Node 

purity is expressed by the Gini index [24]: 

𝐺 = ∑ 𝑝𝑚𝑥

𝑋

𝑥=1

(1 − 𝑝𝑚𝑥) (1) 
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where p represents the training observations (i.e., those used to calibrate the model) of the X 

classes in the mth region. The lower the Gini index, the more homogeneous the node is, and 

consequently the probability to assign an incorrect class to a test observation belonging to that 

node decreases. Thus, during the process of tree growing, the best split is the alternative 

providing the lowest Gini index value. 

 

Figure 1. In this illustrative example land cover is predicted based on distance from cropland 

and road. Both pictures display the same decision problem using different representation 

systems: (a) shows the classification tree with three internal nodes and four terminal nodes; (b) 

shows the partition of the two-dimensional predictor space. In (b) the regions are entirely 

deforested or forested, a situation that is quite unusual in real-world models. 

The random forests algorithm basically involves building a large number of classification 

trees on bootstrapped training samples. It is expressed by: 

𝑓(𝑥) =
1

𝑅
∑ 𝑓𝑟(𝑥)

𝑅

𝑟=1

 (2) 

where f(x) is the function of the dependent variable and R is the number of generated 

bootstrapped training trees, so fr(x) represents the rth bootstrapped training tree. This can also 

be expressed in a matrix form: 

𝑆𝑛 = [
𝑃𝑎𝑆1

⋮
𝑃𝑎𝑆𝑛

𝑃𝑏𝑆1

⋮
𝑃𝑏𝑆𝑛

… 𝑃𝑘𝑆1

⋮
… 𝑃𝑘𝑆𝑛

] (3) 

where Sn is the nth bootstrap dependent variable, PaS1 is the predictor a of sample 1, PkS1 is the 

predictor k of sample 1, and {PaSn…PkSn} are the respective predictors {a…k} of the nth sample. 

Finally, the class for which the greatest number of R individual training trees “vote” is used 

to predict the class for new observations that fall within the same region. Each prediction is 

expressed as a probability vector. 

When using Random Forest, each decision tree is generated based on a random sub-sample 

(usually two-thirds) of the available observations. The remaining third of the data (not applied 

to calibrate the model) is called “out-of-bag” and serves as test data for computing an error rate. 

When trees are built, only a random subset of available k predictors is considered. Typically the 

number of predictors in the subset equals the square root of the total number of predictors. By 

defining m ≈ √k (where m is the number of predictors considered in a bootstrap sample), 

randomness is introduced into the tree-growing process, which assigns each predictor the same 

probability of being selected. This lowers the likelihood that stronger predictors will 

systematically affect the first split of the trees, a condition that would result in a series of highly 

similar and correlated trees [25]. The calibrated model that results is then used to predict the out-
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of-bag observations. The likelihood of classification error is therefore obtained from the out-of-

bag estimation, which is an objective cross-validation-based accuracy estimate. 

Some parameters must be defined by the user when calibrating Random Forests, including 

the total number of trees and the number of predictors sampled as candidates at each internal 

node. Another parameter is the “cut-off”, which is the threshold value above which the 

probability of class A (e.g., deforestation) occurring is predicted and below which the occurrence 

of class B (e.g., forest) is predicted. 

The Random Forest algorithm is widely used for data mining in many fields, but has been 

used only relatively recently in ecology and environmental studies [26]. However, to the best of 

our knowledge, there has so far been no study of its use in predicting the risks of future 

deforestation. For our study a decision tree-based model was adopted because the underlying 

relationships between the variables are not linear, and the categorical scale of attributes used is 

suitable for tree-based evaluation methods [24]. 

2.2. Data Used and Variable Selection 

We used available data sources from the time interval 1983–2011. We included data from 

t1–t2 (i.e., 1983–2000) to calibrate the model and data from t2–t3 (i.e., 2000–2011) for validation. 

The whole dataset used for this study included 11 maps of Nicaragua: (1–3) three land cover 

maps for 1983, 2000, and 2011 respectively; (4–5) two population density maps; (6) a map of 

protected areas; (7–8) two road network maps; (9) one map of the urban settlements; (10) an 

elevation map; and (11) a slope map (Table 1). The 1983, 2000, and 2011 land cover maps are 

referred to as the ‘t1 reference’, ‘t2 reference’, and ‘t3 reference’ maps, respectively. The predicted 

map for the year 2011 is called ‘t3 simulated map’. 

The t1 reference map has a scale of 1:250,000. It was derived from 1977 and 1978 Landsat 

images classified by a supervised classification technique and complemented with ground 

observations [27]. Details of the methods used for adding the ground-based observations to the 

t1 reference map are not at our disposal. Although the quality of the t1 reference map has some 

drawbacks in comparison with more recent maps, the t1 reference map is the main map used for 

estimating land-use changes in Nicaragua of the last 30 years. This map is used by Nicaraguan 

institutions for official reports and statistics (e.g., the readiness preparation proposal). The t2 

reference map was derived from 20 satellite images: 17 Landsat TM5 from many different years, 

and 3 Landsat TM7 from 2000 [28]. The classification was carried out by the ISODATA (Iterative 

Self-Organizing Data Analysis Technique Algorithm) unsupervised classification algorithm. 

Remotely-sensed data were supplemented by 120 field-plot observations [29]. The t3 reference 

map was derived from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite imagery. The 

satellite images, from 2011, were not ground-truthed; however, trained staff experienced in 

interpreting Nicaraguan vegetation from satellite images were employed in creating them [30]. 

The t1, t2 and t3 reference maps were officially released by the Ministry of Agriculture and 

Forestry (MAGFOR) and the Ministry of Environment and Natural Resources (MARENA) in 

Nicaragua. 

Altitude and slope maps were extracted from the Digital Elevation Model (DEM) provided 

by HydroSHEDS [31]. The DEM has a resolution of three arc-seconds (approximately 90 m at the 

equator). Population density data were obtained from the Gridded Population of the World, 

Version 3, where density is expressed in terms of persons per square kilometre [32]. The World 

Database on Protected Areas [33], which is a global database of protected marine and terrestrial 

areas comprising both spatial vector data and attribute data (i.e., descriptive information), was 

used for data on protected areas. 
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Table 1. List of variables used to calibrate and validate the model. 

Source Map 
Data 

Format 

Years 

Covered 
Variable Extracted Reference Unit Source 

Land cover Vector 1983 

- Distance to pasture 

areas  
Meters 

[27] 

- Distance to cropland 

areas 
Meters 

- Forest type Broadleaved/coniferous 

- Forest density 
Closed forest/open 

forest 

Land cover Vector 2000 

- Distance to pasture 

areas 
Meters 

[28] 

- Distance to cropland 

areas 
Meters 

- Forest type Broadleaved/coniferous 

- Forest density 
Closed forest/open 

forest 

- Forest cover change Forest/deforestation 

Land cover Vector 2011 - Forest cover change Forest/deforestation [30] 

Digital Elevation 

Model 
Raster - - Altitude Meters above sea level [31] 

Gridded Population 

of the World 
Raster 1990, 2000 

- Population density Persons/km2 
[32] 

- Slope Degrees 

Protected areas Raster 
From 1980 

to 2000 

- Presence/absence of 

protected areas 
Protected/No protected [33] 

Road network Vector 1983, 2000 - Distance to road Meters [34,35] 

Urban settlement Vector - - Distance to urban areas Meters [36] 

Ten independent variables (also called predictors in this article) and one dependent variable 

were extracted from the maps listed in Table 1. In Random Forest terminology, independent 

variables are called predictors and dependent variables are called response variables. The 

dependent variable, derived from the three land cover maps, is categorical and consists of two 

classes: (i) forest area and (ii) deforested area. Data from the three land cover maps of Nicaragua 

(1983, 2000, and 2011) were integrated through a GIS polygon-overlay analysis; the maps were 

overlaid to obtain the 1983–2000 and 2000–2011 forest cover change maps. The nominally-scaled 

dependent variable, i.e., the category of the dependent variable of each pixel, was binary: it was 

defined either as “forest” or “deforestation,” according to the changes observed, with forests is 

defined as land with an area of more than 0.5 ha, trees higher than 5 m, and canopy cover of 

more than 10% [37]. The widely accepted definition of deforestation as “a long-term or 

permanent conversion of land from forest use to other non-forest uses” was adopted [38]. 

The independent variables consist of 10 spatially explicit predictors of deforestation. The 

availability of data was the major limitation in selecting the predictors. The predictors were 

chosen by reviewing the available literature and according to the author’s knowledge of the 

country. While information on deforestation drivers at the continental level was taken from 

Hosonuma et al. [39], national information on Nicaragua was derived from the National Forest 

Inventory [40] and other sources [41–44]. The 10 predictors (Table 1) were chosen on the basis of 

the supposed relevant drivers of deforestation. Although some of the selected predictors may 

not be relevant to Nicaragua, we decided to include all of them to test the responsiveness of the 

model. 

The proximity variables were computed using the Euclidean distance from each feature to 

the closest pixel. Three out of the 10 predictor variables were extracted from the national land 

cover maps available for 1983, 2000, and 2011: forest type, distance to cropland, and distance to 

pasture. The other predictors, such as road network and urban settlements, were extracted from 

remotely-sensed imagery and from publicly available sources (see Table 1 for references). 

2.3. Modeling Using 10 and Four Predictors 
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We performed PREDIT using two sets of predictor variables. The processes of calibration 

and validation—which are explained in the next two sections—were carried out twice, each time 

using a different number of predictors (Table 2). Based on our knowledge, and on the of 

Readiness Preparation Proposal (RPP) developed by the Nicaraguan Ministry of Environment 

and Natural Resources [43], four predictors were selected as the most useful for inclusion in the 

model for predicting deforestation dynamics. In the first run, referred to as FourPA (Four 

Predictors Alternative), we included only these predictors. In the second run, referred to as 

TenPA (Ten Predictors Alternative), the set of all 10 available predictors was used. 

Table 2. Ten predictors used in PREDIT model. The model was run on two alternatives: (i) 

TenPA, which uses 10 predictors; (ii) FourPA, which uses four predictors substantially 

associated with the dependent variable. 

Screened Predictor Variables 

Used in TenPA Used in FourPA 

Forest density Altitude 

Population density Distance to cropland areas 

Distance to cropland areas Slope 

Protected areas Distance to pasture areas 

Forest type  

Altitude  

Distance to roads  

Distance to urban areas  

Slope  

Distance to pasture areas  

2.4. Model Calibration 

The analysis was run using the Random Forest package of R, version 3.2.1 (R Foundation 

for Statistical Computing, Vienna, Austria) [45] and ArcMap 10.2.2 (Esri, Redlands, CA, USA). 

Three hundred data trees were grown using the Random Forest. Two and three predictors were 

sampled as candidates at each internal node to calibrate the model for FourPA and TenPA, 

respectively. Since our aim was to evaluate the model’s ability to predict the risk of deforestation 

in the time interval t2–t3 (i.e., 2000–2011), we used training data from t1–t2 (i.e., 1983–2000) to 

calibrate the model (Figure 2). In total, approximately 105,000 pixels were sampled in forest areas 

from the reference t1 map; the shortest distance allowed between any of them was 90 m. For each 

sample pixel, we extracted data from the maps of predictor variables at time point t1 (Figure 3) 

and from the land-use class at time point t2, but no data about forest types at t1 were collected. 

The model was calibrated using observations for the predictor variables in 1983 and with the 

assumption that those conditions affected the dependent variable in 2000. An important aspect 

considered during the calibration phase was the imbalance in the relative frequencies of the 

classes, i.e., if one class of the dependent variable has fewer observations compared to the other 

classes. This issue can significantly influence model results. Considering that the area covered 

by the dependent variable class ‘deforestation’ is much smaller than the class ‘forest’, we applied 

post-stratification based on the dependent variable at t2 to reduce this class imbalance. 
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Figure 2. Summary of methods and data used in model building. The four steps were carried out 

twice: the first time including four and the second time 10 reference independent variables. Dark 

grey squares represent independent variable maps, light grey squares represent dependent 

variables, and white squares are maps of forest cover and forest cover change. 

2.5. Model Validation 

The validation process, which was carried out using data from the time interval t2–t3, 

included the following steps: 

1. Approximately 95,000 sample pixels were generated by adopting a random sampling from 

the class “forest” at time t2. 

2. For each pixel randomly selected, the corresponding value from every map of the 

independent variables at t2 was extracted. 

3. The calibrated model and the fitted parameters used in the calibration procedure were 

used to predict the dependent variable at time t3 for the 95,000 pixels. 

4. The t3-simulated map, which displays the predicted risk of deforestation, was created by 

interpolating the entire set of pixels using kriging. 

5. The performance of the model was assessed by applying the three-map comparison 

technique and other statistical indicators [46]. 

Given that the aim of the procedure is to assess the risk of a pixel changing from “forest” to 

another land cover class, the validity of our model was assessed by random sampling of forest 

area at t2. Changes between t2 and t3 were estimated using the Random Forest algorithm and 

data fitted in the calibration phase. To predict the t3 map we used data preceding time t3. The 

predicted response of the dependent variable was expressed as the risk probability—ranging 

from 0 to 1—of each pixel in terms of undergoing deforestation. Risk is expressed in four 

probability classes—very low, low, moderate, and high. The probability threshold values that 

determine the risk class were applied as follows: very low (p < 0.2), low (0.2 ≤ p < 0.4), moderate 

(0.4 ≤ p < 0.8), and high (0.8 ≤ p < 1). The thresholds were empirically derived considering the 

maximization of the overall accuracy of prediction for each risk class. In the analysis of the 

accuracy of the model, pixels belonging to the third and fourth classes of risk (i.e., moderate and 

high risk, respectively) are considered to be predicted as ‘deforested’. 
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Figure 3. Spatial independent variables of Nicaragua used in the calibration of the model. 
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Ordinary linear kriging was applied to predict the risk of the dependent variable at a non-

sampled location, i.e., for the whole forested areas in 2000 [47]. The simulated t3 map created 

using kriging has a pixel resolution of 150 m—higher resolution was not possible due to 

computational limitations. This map was validated using a technique that involves the overlay 

of three maps, which in this study were the t2 reference map, the t3 reference map, and the t3 

simulated map. This three-map comparison [48] provides four components, two of which 

express correctness while the other two express prediction error: (i) reference deforestation 

correctly predicted (i.e., hits); (ii) reference forest permanence correctly predicted (i.e., correct 

rejections); (iii) reference change simulated as forest permanence (i.e., misses); (iv) reference 

forest permanence simulated as deforestation (i.e., false alarm). This validation technique 

compares the performance of the developed model with that of a null model that predicts pure 

persistence (i.e., no deforestation) [49]. Several methods based on these components describe and 

measure the performance of classification models. In this study we consider the following 

measures: figure of merit, allocation disagreement, quantity disagreement, producer’s accuracy, 

and user’s accuracy [47]. 

2.6. Study Area 

Nicaragua is the largest Central American country, both in terms of land and rainforest area 

[41]. According to its national forest inventory, forests cover 25% of the total land area [40]. 

Despite some attempts to preserve its natural heritage, e.g., by establishing a number of 

protected areas over the past four decades [50], Nicaragua has lost almost half its forest cover 

since the 1950s and is still affected by deforestation, which has implications for local climate 

trends and agricultural productions [42,51]. 

The prime deforestation drivers in Nicaragua are animal husbandry and agriculture 

expansion, while agroforestry plays a minor role [43,52]. As in other Latin American countries 

such as Ecuador or Honduras, deforestation mainly follows an agricultural frontier, affecting 

considerable areas along the Caribbean and in the central north, which are still the regions with 

the largest stretches of natural forest. In September 2007, Hurricane Felix struck the northern 

region, or “Región Autónoma del Atlántico Norte”; over one million hectares of forests were 

affected and 512,165 ha were identified as strongly damaged, i.e., about 15% of the total forest 

cover of the country. PREDIT does not take into account climatic disturbances, and considering 

the extraordinarily large impact of Hurricane Felix, the three mostly affected municipalities were 

not included in the study area, i.e., Prinzapolka, Puerto Cabezas and Rosita. 

3. Results 

In all, 300 data trees were grown using the Random Forest algorithm. The maps in Figure 4 

are the result of the three-map comparison technique (explained in Section 2.6); these maps 

visually represent model performances by showing the accuracy distribution of the land-change 

model. Areas characterized by a high risk of deforestation coincide with lowland forests, 

relatively gentle slopes, dense road networks and proximity to pasture and cropland areas. 
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Figure 4. Distribution of agreement and disagreement for Four Predictors Alternative (a) and 

Ten Predictors Alternative (b), resulting from the comparison of three maps: the t2 reference 

map, the t3 reference map, and the t3 simulated map. 

Accuracy is also reported in numerical terms in Table 3, which represents the confusion 

matrix between the simulated land-use changes and the reference changes. The classification 

error for the two modeling alternatives was similar. The additional six predictors included in 

TenPA did not improve the overall accuracy, which in both alternatives was 76%. However, the 

predictions of the two alternatives were different, as described through the measures of accuracy 

considered in this study. The deforestation correctly predicted by FourPA was lower than that 

predicted by TenPA (26% versus 30.6%), but the number of “false alarms” (i.e., persisting forest 

predicted as deforestation) was also higher in TenPA (17.3% versus 10.8%) (Figure 5). This means 

that TenPA classified more pixels as deforested and, accordingly, detected more deforestation 

than FourPA. The larger number of pixels classified as “deforestation” by TenPA was also 

evidenced by calculating the producer’s and user’s accuracy; in fact, the proportion of pixels 

incorrectly classified as “deforestation” (as defined by the user’s accuracy) was higher in TenPA 

(Table 4). Figure 5 shows the four components of agreement and disagreement resulting from 

the validation process; values are expressed as the percentage of forest at t2 and are divided by 

classes. 

Table 3. Error matrix obtained by the three-map comparison for FourPA and TenPA. Values are 

expressed in percentages. 

 

Reference 

TenPA FourPA 

Forest Deforestation 
Simulated 

Total 
Forest Deforestation 

Simulated 

Total 

Forest 44.7 7.5 52.2 51.2 12 63.2 

Deforestation 17.3 30.5 47.8 10.8 26 36.8 

Reference Total 62 38 100 62 38 100 
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Table 4. Performance of the model in assessing the risk of future deforestation using a set of 10 

predictors and using four out of 10 predictors. 

 Ten Predictors (TenPA) Four Predictors (FourPA) 

Overall accuracy 76% 76% 

Producer’s accuracy 0.80 0.69 

User’s accuracy 0.64 0.71 

Figure of merit 55% 53% 

 

Figure 5. Elements of agreement and disagreement divided by the four classes of risk (i.e., very 

low, low, moderate and high). The accuracy components for both the modeling alternative with 

10 (TenPA) and four (FourPA) predictors are reported for each risk class. 

The performances obtained from the two variations (FourPA and TenPA) are summarized 

in Table 4, which shows the measures of the model accuracy assessment derived from the error 

matrix. The quantity of disagreement was obtained by counting the total simulated pixels that 

did not match their actual category in the reference maps. The quantity of disagreement 

accounted for 3% (FourPA) and 25.8% (TenPA) of the total number of pixels classified as 

observed deforestation in 2011. The higher value of the quantity of disagreement for TenPA is 

attributable to the overestimation of deforestation by this alternative (depicted in Figure 4 by the 

yellow-colored “false alarms”). For assessing the allocation disagreement, in addition to the 

absolute number of pixels, their spatial allocations in their respective categories was also 

considered. In other words, the allocation disagreement is the discordance between a pixel 

allocated into the simulated maps and a corresponding pixel in the reference maps. The 2011 

map simulated with TenPA had a lower allocation disagreement than the map simulated with 

FourPA; the difference is attributable to the larger portion of deforestation correctly predicted 

by TenPA. In absolute terms, there were 674,001 total pixels in the reference map belonging to 

the category “deforestation”; the allocation disagreement was 383,606 and 264,220 for FourPA 

and TenPA, respectively. 
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The “figure of merit” is a statistical measurement used to assess the accuracy of land change 

models; it can range from 0% to 1%, where 100% indicates perfect prediction. In this study it is 

defined as follows: 

Figure of Merit = Hits/False alarms + Misses + Hits (4) 

The figure of merit was 55% for TenPA and 53% for FourPA. The 2% difference can be 

considered negligible in this case; it would be incorrect to judge the accuracy of prediction of one 

alternative with respect to the other on the basis of this percentage. To comprehensively assess 

the performance of the model, all the statistical measurements reported in this paper must be 

considered and evaluated with reference to the final scope of the modeling application. Including 

10 predictors does not increase or decrease the accuracy significantly, though one important 

difference is that in TenPA, the number of “false alarms” is higher. In REDD+ projects, adopting 

a conservative approach that does not overestimate the risk of deforestation is recommended; 

therefore, FourPA would be the preferred alternative. 

4. Discussion 

The risk of deforestation is generally assessed using data about the respective drivers of 

deforestation. Addressing them involves understanding the complex processes affecting 

interrelationships among political, institutional, economic, and cultural factors [53]. We present 

here a novel approach, called PREDIT, which is based on available data and which focuses on 

building business-as-usual scenarios to predict potentially suitable areas for REDD+ 

interventions. A strong point of this approach lies in its versatility and potential reproducibility 

in countries with limited available data or human, technical, or monetary resources. The 

approach does not focus on capturing the interrelationships of multiple drivers underlying the 

deforestation processes, which would be both time- and cost-intensive. However, it is an 

objective and rapid way of checking on potential future forest cover by using available geo-

spatial information as a proxy for stakeholder activities. 

We applied Random Forests which outperform classical methods (e.g., discriminant 

analysis or logistic regression) when there are strong interactions among variables, especially if 

they are non-linear [54]. Spatial autocorrelation, a problem common to parametric linear models, 

is reduced by the Random Forest algorithm (which is non-parametric). Based on a machine 

learning technique, PREDIT is highly flexible as it can handle categorical and continuous 

variables. Flexibility is an appreciable characteristic in spatial prediction models [25,55], though 

flexibility comes at the expense of interpretability. We are, however, not interested in making 

inferences or in creating a model that investigates and displays relationships among the 

dependent variable and the set of predictors for which interpretability is of significance; our goal 

is a pragmatic prediction of future events. 

Performing the process twice, using two sets of predictors, also allowed us to screen the 

most relevant biophysical and demographic predictors affecting deforestation in Nicaragua. 

Considering our purposes, using four predictors (FourPA) provided better results than using 10 

(TenPA), even though quantity disagreement was higher for FourPA. We seek to accurately 

identify areas where both deforestation and forest persistence might occur in the future. 

However, if the study had been aimed at predicting total carbon emissions, without referring to 

the location where they might occur, then knowing the allocation disagreement (i.e., the area 

where emissions would take place) would not have been fundamental. The reason including 10 

predictors did not improve the prediction accuracy is likely related to the fact that the six 

predictors added in TenPA were not relevant drivers of deforestation in Nicaragua during the 

considered time interval. However, some drivers of deforestation can change over time, so a 

good predictor in 1983 might be a bad predictor in 2000. To analyze and explain all the potential 

reasons related to the different performances of the two alternatives (FourPA and TenPA), a 

comprehensive investigation of the land-use dynamics from 1983 to 2011 should be carried out, 

though such analysis goes beyond the scope of this paper. 
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To streamline the validation phase, we decided to categorize the probability of deforestation 

into four classes, though this also meant losing some information concerning risk. The threshold 

probability values assigned to determine the risk classes are subjective and should be evaluated 

by considering the final application of the model. For example, if the model is used to project a 

business-as-usual scenario to build reference levels (RLs), a conservative estimate should be used 

to minimize the possibility of overestimating deforestation. However, the creation of baseline 

scenarios useful to preparing RLs involves a series of complex and—often—”stochastic” 

circumstances. These circumstances increase uncertainties and can undermine the credibility and 

effectiveness of the mechanism [56]. In order to minimize uncertainties, improve accuracy, and 

provide completeness, field assessments are strongly recommended when preparing RLs. 

We calibrated the model with data covering a time interval of 17 years (1983–2000), during 

which crucial political, social, and natural events took place in Nicaragua that led to 

extraordinary land-use changes. Nonetheless, the calibrated model exhibited satisfactory 

predictive accuracy within its domain of applicability; we expect that applying it in a less 

unstable context could yield better results. It must be underlined that predictive accuracy is only 

one of the various criteria used to assess the performance of a land change model and its potential 

applicability. To evaluate the actual applicability and the predictive performance of PREDIT to 

another area, several other environmental, political, economic and technical factors that might 

influence the performance of PREDIT [22] must be considered. 

PREDIT has some limitations that could compromise its accuracy. Deforestation drivers 

may vary over a long time period, e.g., new driving forces not relevant in the calibration phase 

could, at a later time, become more important, and as a result the predictor variables used might 

lead to an error in predicting the location of future forest loss. PREDIT also does not predict the 

risk of deforestation for reforested and afforested areas. 

The agreement between the simulated map and the reference map can be considered 

satisfactory for some payment for ecosystem services purposes, e.g., when identifying potential 

target areas for REDD+ projects. However, the model may perform differently depending on the 

location, time, and format of the data [46]. Nicaragua experienced a high deforestation rate for 

the period considered in this study; this situation might have facilitated a predictive model. In 

fact, recording small deforestation patches is far more challenging than detecting substantial 

changes of forest cover [57]. Thus it will be important to also test the model in areas where forest 

cover changes affect smaller areas. 

5. Conclusions 

Modeling deforestation is a key first step towards creating the basis for successful REDD+ 

initiatives, although it is, of course, only one of the numerous circumstances that determine 

whether a REDD+ project will be effective or not [58,59]. Our research was prompted by the 

necessity of forecasting the likelihood of deforestation, without reference to further complex 

assessments such as field measurements, social surveys, and stakeholder involvement. 

Predictive models focus on the general network of interaction among variables rather than 

investigating the roles and relationships of each one. This is different from how inference models 

work; with those models, the main objective is to understand how a dependent variable changes 

as a function of the independent variables [24,60]. 

PREDIT can be applied by decision-makers, researchers, and other stakeholders involved 

in REDD+. Besides its direct use in determining areas that risk losing their ecological importance, 

it has further potential functions. Using the model approach jointly with tools for estimating 

carbon stock and emissions will allow the identification of high-value areas where activities 

advocating forest monitoring should be strengthened. Significantly, the model can support 

countries involved in the early phases of REDD+. As developing a REDD+ program requires, 

inter alia, high-quality data, it is hoped that countries lacking data and technical capacity can 

adopt a gradual approach to engaging in REDD+ [22,61]. The approach presented in this article 
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is suited to a stepwise framework for developing REDD+ [62]. It can aid in the operational 

implementation of REDD+ projects and in the design of action responses. Its adoption may be 

effective in the first phase of projects, when a country is still developing the capacity to build its 

own sound and accurate dataset. Adopting PREDIT or other similar tools would enable wider 

REDD+ participation; it represents a starting point for countries that grapple with a critical lack 

of data, higher uncertainties, and competing interests. 
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Abstract: Reducing emissions from forests—generating carbon credits—in return for REDD+ 

(Reducing Emissions from Deforestation and forest Degradation) payments represents a 

primary objective of forestry and development projects worldwide. Setting reference levels 

(RLs), establishing a target for emission reductions from avoided deforestation and 

degradation, and implementing an efficient monitoring system underlie effective REDD+ 

projects, as they are key factors that affect the generation of carbon credits. We analyzed the 

interdependencies among these factors and their respective weights in generating carbon 

credits. Our findings show that the amounts of avoided emissions under a REDD+ scheme 

mainly vary according to the monitoring technique adopted; nevertheless, RLs have a nearly 

equal influence. The target for reduction of emissions showed a relatively minor impact on the 

generation of carbon credits, particularly when coupled with low RLs. Uncertainties in forest 

monitoring can severely undermine the derived allocation of benefits, such as the REDD+ 

results-based payments to developing countries. Combining statistically-sound sampling 

designs with Lidar data provides a means to reduce uncertainties and likewise increases the 

amount of accountable carbon credits that can be claimed. This combined approach requires 

large financial resources; we found that results-based payments can potentially pay-off the 

necessary investment in technologies that would enable accurate and precise estimates of 

activity data and emission factors. Conceiving of measurement, reporting and verification 

(MRV) systems as investments is an opportunity for tropical countries in particular to 

implement well-defined, long-term forest monitoring strategies. 

Keywords: Reducing Emissions from Deforestation and Forest Degradation; MRV; Lidar; 

remote sensing; carbon accounting systems; reference emission level; uncertainty; sensitivity 

analysis 

 

1. Introduction 

Since the first REDD-style project (the Noel Kempff Mercado Climate Action Project) 

initiated in 1997, the focus of REDD+ has broadened from the avoidance of deforestation as the 

“single largest opportunity for cost-effective and immediate reductions of carbon emissions” [1] 
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to a holistic concept for sustainable development. Protecting biodiversity, enhancing local 

livelihoods, strengthening local people’s rights, and improving forest governance are some of 

the widely discussed co-benefits that are embedded in REDD+ activities. However, the primary 

focus of REDD+ remains the reduction of carbon emissions associated with deforestation and 

forest degradation. For countries adopting a REDD+-regime, the most significant asset is to 

receive financial rewards for reducing emissions and enhancing carbon sinks. Results-based 

payments—also known as “carbon benefits”—constitute a key element that distinguishes 

REDD+ from other initiatives [2]. To generate payments, for any national or sub-national REDD+ 

initiative, the associated emission reductions have to be assessed. This includes the assessment 

of both changes of forest area (activity data) and changes of forest carbon stocks (emission 

factors). Activity data and emission factors have to be estimated by countries participating in 

REDD+ through the implementation of reliable measurement, reporting and verification (MRV) 

systems [3,4]. 

MRV systems have to be implemented in a challenging environment of reliable estimates 

on the one hand and of adequate assessment costs on the other. The reliability of any MRV 

system is driven by the quality of remotely sensed data, the intensity of in-situ assessments (i.e., 

sample size) and the soundness of models utilized, and is, thus, directly linked to cost. 

Consequently, increasing reliability is necessarily associated with increasing cost. Thus, the 

development and implementation of any MRV system can be considered as an optimization 

problem: which MRV-design results in the highest level of reliability for a given cost, or in the 

lowest cost for a desired level of reliability. 

The Warsaw framework for REDD+ requires a country to implement a combined 

assessment approach that utilizes remote sensing data and in-situ assessments [4]. Associating 

field data and remote sensing provides an efficient solution to monitor the state and changes of 

forest carbon stocks [5,6]. Remote sensing of forest biomass involves different sensor types (e.g., 

Lidar, optical and radar), platforms (air- and space-borne), and processing techniques (e.g., 

unsupervised, supervised, and hybrid classification approaches) which substantially differ with 

respect to costs and performances. Even though these techniques gradually become more 

accessible, their implementation is still not viable, especially in vast tropical forest areas, due to 

poor investments in capacity building [7]. Overall, countries participating in REDD+ are 

developing their forest monitoring capacities, however, national forest inventories still need to 

be further improved [7,8]. The critical lack of funding in the REDD+ system restricts the 

possibilities to build capacities and to utilize high-resolution remote sensing sensors [9]. 

Although monitoring costs may be relatively small with respect to other categories of costs, they 

directly affect the success of REDD+ mechanisms; an effective monitoring system will reduce 

uncertainties and, as a result, eventually generate larger results-based payments [10].  

From this perspective, a country may consider REDD+ as an investment providing long-

term benefits and that will produce returns, and thus, exploit the opportunity that would allow 

a country to establish a monitoring system. Investing in sound, recurrent MRV systems critically 

determines a country’s potential to generate results-based payments. Moreover, such 

investments can support forest policies reforms and promote sustainable forest management. 

REDD+ can be an opportunity for tropical countries to establish a better forest-related 

institutional framework and to improve management of forests at different levels [11,12]. 

Besides uncertainties in carbon estimates, other variables affect the amount of accountable 

carbon credits. A decisive role is played by the reference levels (RLs) and the planned reduction 

of business-as-usual emissions as a result of REDD+ activities. The reduction of past emissions 

rates results from the implementation on the ground of the five REDD+ mitigation actions 

(reduction of emissions from deforestation and forest degradation, conservation of forest carbon 

stocks, sustainable management of forests and enhancement of forest carbon stocks). A country 

should establish a target of emissions reduction according to its capacity to plan and execute the 

REDD+ activities and to the national RL [3]. The reduction of emissions actually determines the 



 

55 

 

real removal of CO2 from the atmosphere; however, payments depend on the generation of 

measurable, monitored, and verified tons of CO2 emissions and removals. 

The RLs, which are used as business-as-usual baselines, benchmark the quantity of emission 

reductions and removals–due to REDD+ activities–that can be estimated to evaluate progress of 

countries participating in REDD+. Therefore, the quantity of avoided emissions against the 

agreed RL stipulates the total amount of accountable carbon credits. Establishing reliable RLs 

(used throughout this paper as synonym for “REDD baselines”) is crucial and challenging. 

Commonly used methods for establishing RLs include: 

 historical rates of deforestation, degradation and emission factors, also using 

adjustment factors to allow inclusion of social and economic variables (named 

“national circumstances”) [13], and 

 projected deforestation and forest degradation rates using land-use-change 

models [14,15]. 

The debate on the implications of different methods is intense; the common view is that the 

selected RL method shapes the success of REDD+ and it should be selected according to the local 

circumstances, e.g., specific capabilities and data availability [16,17]. 

This paper analyzes the links between financial resources invested in MRV systems, the 

achievable reliability and the resulting amount of accountable carbon credits. Furthermore, in a 

simulation study, we investigated implications of different (i) reference levels, (ii) emission 

reductions due to REDD+ and (iii) uncertainties in emissions estimates, on the generation of 

carbon credits and the consequent potential financial benefits from alternative MRV systems. In 

addition, we studied investments in Lidar-based monitoring systems as a cost-efficient option 

for REDD+ projects. 

1.1. State of the Art 

1.1.1. Model-assisted design-based AGB estimation using remote sensing  

Integrating ground-based observations with remotely sensed data is the most cost-efficient 

way to monitor the national state of forests [5]. Remotely sensed data —calibrated over field 

measurements— contribute to improve precision and to provide spatially explicit information 

[18]. When remote sensing data are used as auxiliary information, and are incorporated in a 

design-based framework by using a model, the resulting approach is called design-based model-

assisted, or simply model-assisted approach [19]. In model-assisted approaches, auxiliary data 

from remote sensing are incorporated in the estimation process through regression models; it 

reduces the design variance of the field sample-based estimator of the population total above-

ground biomass (AGB). When auxiliary data are highly correlated with AGB, the cost-efficiency 

of the estimation could be improved [6]. Particularly, for large-scale monitoring activities (e.g. at 

national and sub-national level), the combined approach (i.e. remote sensing and field 

measurements) reduces costs while ensuring accuracy and reliability [20]. Optical sensors, 

Radar, and Lidar remote sensing techniques are the main sources of remotely sensed data used 

to extract information for forest biomass [21,22]. According to circumstances and needs one 

sensor type can be more suitable than another can: there is no “one-sensor-fits-all” approach [23]. 

However, Lidar performance is significantly better than passive optical or Radar sensor used 

alone [21]. The coefficient of determination, R2, provides a measure of (linear) regression 

performance, indicating the amount of variance explained by the model, and expressing the 

correlation between the auxiliary variable(s) and the variable(s) of interest. Therefore, the R2 is 

also a measure of the contribution of remotely sensed data to forest biomass estimation, i.e. it is 

related to the reduction of standard error achievable by linking remotely sensed data to pure in-

situ based estimation. A higher R2 value means better precision of biomass estimation. 

1.1.2. Cost-efficiency of Lidar-based methods 
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It is widely accepted that a combined Lidar and field-campaign approach provides precise 

estimates of AGB. However, the actual cost-effectiveness of such an approach is still intensively 

discussed. Due to its substantial cost, Lidar is still considered a hard alternative for large-scale 

forest monitoring in most tropical countries [24]. The application for large-scale assessments at 

successive occasions in tropical regions is apparently still far from being operational, and many 

countries may see the associated cost as a major obstacle for a routine application. However, only 

few studies have analyzed the actual trade-offs between efficiency and costs associated with the 

use of Lidar in carbon estimation [25,26]. There is uncertainty whether large investment in 

monitoring activities will result in higher returns through REDD+ results-based payments. 

Assessing the cost-effectiveness of model-assisted estimation of AGB using alternative remotely 

sensed data as auxiliary data will help to understand the actual feasibility and the major 

constraints for the design and implementation of targeted MRV systems. 

1.1.3. Addressing uncertainties in REDD+: the Reliable Minimum Estimate 

Quantifying uncertainties is of primary importance in the context of REDD+. The 

Intergovernmental Panel on Climate Change (IPCC) suggests the use of the reliable minimum 

estimate (RME) to quantify uncertainties in the estimates of emission factors and activity data 

[27]. Adopting the principle of conservativeness in REDD+ estimates was proposed by Grassi et 

al. [28] in order to “address the potential incompleteness and high uncertainties of REDD 

estimates, and thus to increase their credibility”. The RME reduces the risk of overestimating the 

emissions reduction derived by a REDD+ project, which could lead to an overcompensation of 

emission reduction. The RME is defined as the difference between the lower limit of the 

confidence interval at the reference period (time 1) and the upper limit of the confidence interval 

at the commitment period (time 2) (Figure 1). The RME is the minimum quantity to be expected 

with a given probability and is a conservative way to handle uncertainties, related to all error 

types (e.g., sampling errors, measurement errors and modeling errors). While on the one hand 

the RME supports the credibility of estimates, its efficacious application depends on several 

factors, such as baseline emissions and the method used to set such baselines [29,30]. 

 

Figure 1. Projections of carbon emission under a business-as-usual baseline and a REDD+ 

scenario. In the upper figure (a) a positive reduction of emissions is shown. In (b) the projected 

REDD+ scenario emission reduction is smaller and the magnitude of the total error is larger; this 

condition leads to no improvement over the business-as-usual scenario. RME is reliable 

minimum estimate. 
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2. Materials and Methods  

In the first part of the study, we estimated the aboveground carbon based on field-plot data 

from the national forest inventory of Puerto Rico. Starting from the forest inventory data, we 

simulated the integration of remotely sensed auxiliary data by adopting a model-assisted 

approach and a stratified sampling with optical data. In the second part of the study, we 

evaluated and compared a set of hypothetical scenarios, which differ for RLs, emission 

reductions, monitoring accuracy–derived from the first part–and costs. Finally, we analyzed 

implications of the various scenarios on the amount of carbon credits generated from reducing 

forest carbon emissions. 

2.1. Data used 

Two main sources of data were used: (i) forest inventory data from Puerto Rico and (ii) 

qualitative and quantitative data on the use of Lidar and passive optical sensors for biomass 

estimation extracted from peer-reviewed articles (Table S1). 

2.1.1. Field data 

The field plot data were collected during the third forest inventory of Puerto Rico [31,32]. 

The forested life zones in Puerto Rico are classified as subtropical dry, subtropical moist, 

subtropical wet and rain, subtropical lower montane wet, and subtropical lower montane rain. 

Totally 956 plots were sampled in the whole country, of which 288 were located within forested 

areas. In this study, we only considered plots located in moist forests and in wet and rain forests, 

which were 141 and 82, respectively (table 1). These two forested life zones would be the most 

suitable target areas for local REDD+ projects, as they are the most important in terms of area 

covered and carbon content. The permanent sampling unit installed is a cluster of four subplots, 

within which all trees with DBH ≥ 2.5 cm were measured [31]. Each subplot has a radius of 7.3 

m, resulting in a sample plot area of 0.067 ha. We did not carry out any biomass and carbon 

assessment for each individual tree. For the simulations, we utilized aggregated plot level 

information, as reported in the forest inventory. Accordingly, the sample mean of the 

aboveground biomass (Eq. 1), the sample variance (Eq. 2), and the relative standard error (Eq. 3) 

were estimated as follows: 

�̂�  =  
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
 (1) 

𝑣(�̂�)  =  
∑ (𝑦𝑖 − �̂�)𝑛

𝑖=1
2

(𝑛 − 1)
 (2) 

𝑆𝐸�̂�  =  (
𝑆𝐷�̂� √𝑛⁄

�̂�
) × 100 (3) 

𝑆𝐷�̂� =  √
∑ |𝑦𝑖 − �̂�|𝑛

𝑖=1

𝑛
 (4) 

where 𝑦𝑖  is an observation on field plot, n is the sample size and SD is the standard 

deviation. Table 1 summarizes key statistics of interest for this study. 

Table 1. Summary statistics for carbon stock in aboveground biomass of living trees with DBH 

≥ 2.5 cm. Measurement and model error are not considered. 
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Forest Type Plot (n) Mean (tC ha−1) Standard Error 

Moist forests 141 56.84 4.77 

Wet and rain forests 82 82.35 7.52 

Total 223 66.22 4.17 

Data are from third forest inventory of Puerto Rico. Measurement and model error are not considered. 

DBH: diameter at breast height. 

2.1.2. Lidar data extraction 

Field estimates of aboveground carbon density were used as a ground reference dataset to 

assess the potential gain in precision through the adoption of Lidar. The reduction in variance 

achievable with the integration of the regression estimator was assessed estimating the variance 

of the regression estimator: 

�̂�𝑠𝑟𝑠(�̂�𝑟𝑒𝑔) =   𝑆�̂�
2(1 − 𝑅2) (5) 

�̂�𝑟𝑒𝑔 is the regression estimator of Y, 𝑣𝑠𝑟𝑠 is the design variance estimator of �̂�𝑟𝑒𝑔  under the 

simple random sampling, and 𝑆�̂�
2 is the variance of �̂�. 

No Lidar flight was conducted for the purpose of this study. We surveyed twenty refereed 

papers that used AGB estimation with Lidar sensors in tropical and subtropical rainforest 

biomes. We did not aim to provide a comprehensive review of Lidar applications in tropical 

forests; rather we collected sufficient information to provide our analysis with realistic and 

reliable estimates. For each paper we recorded, inter alia, the coefficient of determination (R2), 

and used it to evaluate the contribution of remote sensing techniques to forest AGB and carbon 

densities prediction. The surveyed papers are listed in Table S1. The R2 values for the reviewed 

studies range from 0.54 to 0.94, with an approximate mean of 0.8 and standard deviation of 0.11 

[33–51]. This means that Lidar-based auxiliary variables correlate well with the field-based data. 

Firstly, we estimated the aboveground carbon stock based on field measurements alone and the 

variance (as in Equation (2)); secondly, we simulated the potential improvement in precision 

gained by using Lidar, assuming an R2 of 0.8 by applying Equation (5). 

2.1.3. Cost of carbon monitoring 

Trying to approximate the exact cost of Lidar is a difficult task: it varies according to several 

factors. Moreover, most studies do not report costs in forestry applications. Lidar acquisition cost 

mainly depends on the type of platform used, area coverage and pulse density (also called 

pulses, points, returns, and echoes) [52]. Flight speed determines pulse density, which affects the 

accuracy of the forest structure metrics detected. Therefore, pulse density—i.e., speed and time 

of the flight—and accuracy are tightly related. The relationship between these two is not linear: 

they increase constantly, and beyond a certain pulse density level, accuracy remains nearly the 

same [52,53]. Published studies have demonstrated that a relatively modest reduction of laser 

pulse density had no effect on the precision of stem volume estimates [54,55]. Also in tropical 

areas, studies using pulse densities varying from 25 pulses/m2 [40] to approximately 1.5 

pulses/m2 [20] reached similar results in terms of biomass prediction performance; however, 

several other factors can affect prediction performance, e.g., forest structure, terrain morphology, 

and models used. Overall, high pulse densities may not be necessary for estimation of forest 

biomass. Thus, relatively low-cost Lidar-data acquisition campaigns can lead to acceptable levels 

of accuracy for carbon stock estimates, and adopting low-pulse-density airborne laser scanner 

data for estimation of forest attributes at stand level could be cost efficient in forest inventorying 

[56]. Finally, a great impact on per unit area cost is attributable to economies of scales: the per-

hectare costs decrease as the spatial extent of the flight increases. 

We collected cost estimates from five studies and established accordingly two sets of costs 

to use in our study (Table 2). To show the effect of costs on aboveground carbon density 
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monitoring in REDD+ context, we considered two plausible alternative costs of monitoring. In 

the first alternative, we assumed a smaller area inventory, typical for a REDD+ project. As this 

scenario implies higher costs per unit area, we selected expenses of $5000 ha−1 for field-based 

sampling and $8 ha−1 for Lidar. In the second scenario we assume a large forested area as in 

regional or national REDD+ monitoring; in this case, considering the associated benefits from 

economies of scale, the per hectare costs are set to $500 and $0.5 ha−1, for field-based sampling 

and Lidar, respectively. 

Table 2. Lidar acquisition and processing costs for forest monitoring. 

Source 
Spatial Resolution or  

Lidar Pulse Density 

Coverage or  

Project Area (ha) 

Acquisition and  

Processing Costs 

(in US$) 

Hummel et al. [57] 6.3 points/m2 (mean pulse density) 12,650 5.6–9.3 US$ ha−1 

Patenaude et al. [58] - 2,800,000 4.15 US$ ha−1 (only acquisition costs) 

Wulder et al. [59] 
90 cm (average horizontal distance  

between Lidar returns) 
- 5 CND$ ha−1 

Böttcher et al. [60] - 13,600 
4–5 US$ ha−1 (plus additional  

160 h processing time) 

Asner et al. [20] 4 points/m2 (mean pulse density) National-scale (Perù) 0.01 US$ ha−1 

Asner et al. 2011 [61] 
50–70 kHz (pulse  

repetition frequency) 
253,744 0.16 US$ ha−1 

GOFC-GOLD [62] - - 0.5–1 $ ha−1 

2.2. Simulation approach 

We tested the adoption of two different approaches for MRV: the first approach assumes 

the use of Lidar data and the adoption of a model-assisted technique; the second approach 

utilizes stratified sampling with passive optical data. We evaluated costs-error implications of 

both approaches in accounting avoided emissions from deforestation and forest degradation in 

a REDD+ context under several potential scenarios. This resulted in three main methodological 

approaches and associated research questions: 

(1) We created a series of subsamples from the 223 plots via bootstrapping. We 

simulated sampling with replacement for each sample size with 1000 iterations, 

starting from a sample size of 20 plots and increasing the size by one unit at a time, 

up to 223 plots. This resulted in a total of 204 different sample sizes and 204.000 

iterations. Subsequently, the variance and the relative standard error of the estimate 

of aboveground carbon density (i.e., �̂� in Equation (1)) were calculated for each 

iteration. Finally, the relationship between the relative standard error and the 

number of field plots was assessed. 

(2) We investigated, by a scenario approach, how uncertainties expressed by the 

relative standard error obtained in step 1 determine the accountable avoided 

emissions. Each scenario is characterized by a different combination of (i) the 

accuracy of carbon monitoring (expressed by the relative standard error), (ii) the 

baseline carbon emissions from deforestation and forest degradation (i.e., RLs), and 

(iii) target for emission reductions as a result of REDD+ activities. The errors 

associated with the estimation of carbon stock changes were linked to the potential 

generation of carbon credits. Table 3 presents details of the scenarios implemented. 

(3) Finally, the results of steps 1 and 2 were combined with a set of realistic monitoring 

costs. For the alternative monitoring systems, as presented in step 2, different levels 

of uncertainty and cost frameworks (see section 3.1.3) were realized and the 

achievable amounts of accountable avoided emissions calculated. This allows to 

study the cost-efficiency of alternative MRV-designs. 

The above-described three steps were considered for two alternative monitoring 

approaches: (i) model-assisted estimation with Lidar remote sensing and (ii) stratified sampling 

with passive optical remote sensing. For each approach, the effect on the accountable generation 
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of carbon credits was studied. In the model-assisted simulation, we assumed the availability of 

an error-free land-cover map, which allowed stratifying total land area in forest and non-forest. 

The estimate of the area of a certain forest type was based on the proportional number of sample 

plots located on that forest type. We simulated the integration of the field data and Lidar data 

through a model-assisted regression estimator, assuming an r2 of 0.8. Lidar strips were assumed 

to be the same extension of the field plots.  

In the simulation of stratified sampling, we assumed a combination of field assessments and 

remotely sensed optical data, which were assumed to be available wall-to-wall, providing 

auxiliary information for stratification. The alternatives are in line with Dec 14/CP 15 [64], as they 

utilize a combination of remote sensing for activity data and in-situ assessments for emission 

factors. The effect of the inclusion of different types of passive optical data on the accountable 

avoided emissions was evaluated considering two levels of classification errors: 3% and 20%. For 

combining uncorrelated uncertainties in area change and in carbon stock deriving from 

classification and sampling error, respectively, Equation (6) was used [65]: 

𝐸𝑡𝑜𝑡 = √𝐸1
2 + 𝐸2

2 (6) 

where E1 is the classification error and E2 is the sampling error. 

Table 3. The defined set of values for the variables affecting the avoided emissions in the 

simulation study of Puerto Rico forestry data. 

Relative standard error (%) 
Baseline emission rate (or 

reference level) (%) 
Emission reduction under REDD+ (%) 

1.2-4 1 30 

7-28 3 50 

 5 75 

 8  

 10  

 20  

2.3. Sensitivity analysis 

Using results from the simulation study, the three variables affecting the avoided emissions 

were ranked according to their impact on the generation of carbon credits. In the sensitivity 

analysis, the “net avoided emission” is our variable of interest —i.e. the dependent variable— 

and is included as a function of three independent variables: standard error, RL, and target for 

emission reductions as a result of REDD+ activities. To describe and quantitatively assess the 

relationships between independent and dependent variables, we performed the Partial Rank 

Correlation Coefficient [66] using the sensitivity package of R, version 3.2.1 [67]. The Partial Rank 

Correlation Coefficient is based on regression analysis and measures the strength of the 

correlation between an input and an output variable, after removing any effect due to correlation 

of the other input variables. It ranges from -1 to 1, where -1 indicates a strong negative, 1 a strong 

positive, and 0 no correlation. 

3. Results 

The forest biomass carbon stock estimated from the 223 sample field-plots in the Puerto Rico 

forest dataset is 66.54 tons C ha-1. We used this amount as reference measure to conduct the 

analysis. Relative standard errors of carbon density estimates decrease with increasing sample 

size. The relative standard error achievable with the model-assisted method and with the 

stratified sampling and passive remote sensing ranges from 1.5 to 4% and from 7 to 28%, 

respectively. The introduction of auxiliary data correlated with the response variable (r2=0.8) in 

a model-assisted estimation significantly reduces the relative standard error (Figure 2).  
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Figure 2. Percent standard error versus number of field sample plots in carbon estimates. The 

black lines show the error distribution for the estimation based on stratified sampling with 

passive optical remote sensing. The red dashed line shows the standard error attainable with a 

model-assisted estimation, assuming the adoption of a regression model with a coefficient of 

determination (r2) of 0.8. 

Combining the set of values assigned to the three variables that affect the generation of 

carbon credits (Table 3), 468 scenarios—i.e., possible permutations–were derived. However, only 

52 out of 468 possible permutations had positive net avoided emissions at time 2 using the 

RME—i.e., generated carbon credits at the commitment period. It means that for the remaining 

416 scenarios, the accountable emissions reduction produced by a REDD+ regime is smaller than 

or equal to the business-as-usual emission; therefore, they do not generate any carbon credit. 

Figure 3 compares the relative standard error versus the accountable emissions reduction 

using Lidar data (Figure 3a) and passive optical data (Figure 3b,c). Results in Figure 3 are 

reported per hectare as this is the commonly adopted reference area used by scientists, field 

managers, and land-management professionals for carbon assessments [68]. The amounts of 

avoided emissions under a REDD+ scheme—which can be converted into accountable carbon 

credits—vary according to the MRV system adopted. Differences between Figures 3a–c 

demonstrate the effect of incorporating optical and Lidar-based auxiliary data in AGB 

estimation: the low relative standard error achieved under a model-assisted approach (Figure 

3a) allows generating larger amounts of accountable avoided emissions. For example, under a 

model-assisted approach, credits can be generated even if the baseline emission rate is relatively 

low (e.g., 3%); conversely, using passive remote sensing, the minimum emission rate that would 

allow carbon credits generation is 20% (Figure 3b). 

Larger amounts of credits are generated for larger quantities of baseline emission rates and 

emission reductions. Common to all scenarios is that when the baseline emission rate is 1% no 

carbon credit is generated (for that reason it is not displayed either in Figures 3 and 4). For low 

RLs (e.g., <10%), the accountable avoided emissions slightly vary as a function of emissions 

reduction. However, as the baseline emission rate increases, the accountable avoided emissions 

vary to a larger extent as emissions reduction change. This, concurring with findings from the 

sensitivity analysis (see last paragraph of Section 3), this demonstrates that the emission 

reduction has a relatively minor impact on the generation of carbon credits, particularly when 

the baseline emission rates are low. 
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Figure 3. Comparison between the accountable avoided emissions versus the relative standard 

error achievable adopting three monitoring systems: (a) model-assisted approach with Lidar; (b) 

stratified sampling with passive remote sensing considering a 3% classification error; and (c) 

stratified sampling with passive remote sensing considering a 20% classification error. The figure 

shows the monitoring performances under different baseline emission rates (3%, 5%, 8%, 10% 

and 20%) and targets of emission reduction (30%, 50% and 75%). The three values of emission 

reductions are considered as percentage of emission reduction with respect to the reference 

levels. Negative values of avoided emissions indicate that emissions at t2 (commitment period) 

are larger than those at t1 (reference period), taking into consideration the principle of RME. 

While Figure 3 shows per-hectare estimates, Figure 4 shows results for forested life zones 

considered in the study, i.e., Puerto Rico’s moist forests, and wet and rain forests. Figure 4, which 
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displays only the results of the model-assisted simulation, compares the cost of carbon 

monitoring and the accountable emission reductions generated for the respective costs. We did 

not include the simulation of stratified sampling with optical data in the analysis comparing 

monitoring costs and total avoided emissions, since there is no generation of carbon credits 

under such an approach, unless the classification error is 3% and the emission rate is above 20%. 

In fact, the simulation of stratified sampling with optical data that assumes a low classification 

error (3%) facilitates the generation of carbon credits only for emission rates above 20% (Figure 

3b), while, under high classification error (i.e., 20%) (Figure 3c) no carbon credits would be 

generated in any of the assumed circumstances. 

Figure 4 indicates that large amounts of avoided emissions are reached in all scenarios even 

with relatively low monitoring costs, i.e., when the monitoring costs are about $20,000 and 

$200,000, for low- and high-monitoring cost, respectively. The latter costs can be considered a 

turning point: beyond that, the avoided emissions do not increase significantly. For example, 

when the emission rate is 8% and the emissions reduction 50% (green line in the top right graph 

of Figure 4a), about 560 k tC can be accounted with an approximate cost of $225,000; considering 

the same circumstance, increasing the costs by 80% would only increase the accountable carbon 

by 25%. This trend is common to all the considered scenarios. It suggests that beyond that turning 

point, greater investment in monitoring activities produces a minor reduction of the 

uncertainties, which does not result in an efficient generation of carbon credits. 

  

Figure 4. Total avoided emissions versus monitoring costs adopting a model-assisted technique. 

The figure shows how many tons of carbon can be generated for each alternative scenario and at 

what cost in case of high- (a) and low-cost (b) alternative. 
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In order to evaluate the viability of an MRV system as an effective investment, we calculated 

a fictive carbon-market price for a single ton of carbon that is needed to pay off at least the MRV 

costs (Table 4). We divided the total estimated cost of monitoring activities of the Puerto Rico’s 

forest biomes considered in this study by the number of accountable avoided emissions (in tons 

of carbon) generated in any scenario. It allowed us to estimate the cost spent to monitor each ton 

of carbon and thus determine under which settings an MRV-system would be a useful 

investment. If the market price for a ton of carbon is higher than the costs reported in the fourth 

and fifth column, an MRV system would qualify as a useful investment for the given alternatives. 

Table 4. Price paid for monitoring a single ton of carbon under different emission rates and 

monitoring scenarios. 

Emission  

Rate (%) 

Relative  

Standard  

Error (%) 

Emission  

Reduction 

(%) 

Cost of Monitoring a Single  

Ton of Carbon ($): Small  

Area Monitoring 

Cost of Monitoring a Single  

Ton of Carbon ($): Large  

Area Monitoring 

3 

1.25 50 5.6 0.56 

1.25 75 1.4 0.14 

2 75 3.22 0.32 

5 

1.25 30 5.6 0.56 

1.25 50 1.12 0.11 

1.25 75 0.56 0.06 

2 50 1.61 0.16 

2 75 0.46 0.05 

3 75 0.41 0.04 

8 

1.25 30 1.22 0.12 

1.25 50 0.51 0.05 

1.25 75 0.29 0.03 

2 30 2.01 0.2 

2 50 0.4 0.04 

2 75 0.2 0.02 

3 50 0.3 0.03 

3 75 0.1 0.01 

4 75 0.08 0.01 

10 

1.25 30 0.8 0.08 

1.25 50 0.37 0.04 

1.25 75 0.22 0.02 

2 30 0.81 0.08 

2 50 0.27 0.03 

2 75 0.15 0.01 

3 50 0.15 0.02 

3 75 0.07 0.01 

4 50 0.17 0.02 

4 75 0.05 >0.01 

20 

1.25 30 0.29 0.03 

1.25 50 0.16 0.02 

1.25 75 0.1 0.01 

2 30 0.2 0.02 

2 50 0.1 0.01 

2 75 0.06 0.01 

3 30 0.1 0.01 

3 50 0.04 >0.01 

3 75 0.03 >0.01 

4 30 0.08 0.01 

4 50 0.03 >0.01 

4 75 0.02 >0.01 

The reported costs also indicate the minimum price that should be paid per each ton of carbon sold in the 

carbon market, to cover at least the MRV system costs. The table shows the findings for the model-assisted 

simulation of monitoring Puerto Rico’s moist forests, and wet and rain forests with Lidar remote sensing. 

The sensitivity analysis allowed assessing the sensitivity of carbon credits generation with 

respect to factors’ variation. The generation of carbon credits mostly varies as a function of errors. 

It confirms that the reduction of the standard error provides a decisive contribution in generating 
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carbon credits; the RL has also a significant impact on the final avoided emissions. It is important 

to note that the amount of emissions reduction is the element with the smallest impact on the 

outcome. 

4. Discussion 

Based on field plot data, derived from the third forest inventory of Puerto Rico, we made a 

set of realistic assumptions to investigate the relationships between emission reductions under a 

REDD+ regime and some variables affecting such emission reductions. Setting reference levels 

(RLs), supplying emission reduction from avoided deforestation and degradation, and 

implementing an efficient monitoring system underlie effective REDD+ projects, because these 

factors determine the accountable emission reductions, and thus the carbon credits generation. 

We ranked these factors by conducting a sensitivity analysis and found that uncertainties in 

forest monitoring represent the factor that mainly affects carbon credits generation. Findings 

highlight the fundamental role of Lidar sensors in forest carbon monitoring, particularly in 

REDD+; combining statistical features of forest sampling with Lidar data enables a significant 

generation of carbon credits. Investing in MRV systems based on statistically-sound sampling 

designs, with quantifiable precision, and remote-sensing techniques contributes to reduce 

uncertainties and to increase the amount of accountable carbon credits that can be claimed. 

Uncertainties in carbon estimates represent the factor that mainly affects the quantification 

of accountable emissions reduction and, therefore, can undermine the derived flow of benefits, 

such as the results-based payments to developing countries for avoiding deforestation [29,69]. 

The reduced uncertainties shown in the model-assisted simulation point out the potential 

contribution that Lidar data can give to REDD+ initiatives. Combining space- or air-borne 

imagery and field assessments offers an efficient way to monitor and map carbon stock, 

especially if large areas are considered [70,71]. This combination can have a twofold implication 

on REDD+ efficiency: for its lower costs of implementation–particularly in large-scale projects–

and for the reduced uncertainties, which have a positive effect on the generation of measurable 

tons of reductions in CO2 emissions. However, the efficiency and success of a national 

monitoring program rely on many elements, which can be grouped in four general areas of 

investigation: (i) measurement techniques and data collection; (ii) data compilation, analysis and 

processing; (iii) remote sensing techniques; and (iv) information management techniques [72]. 

Therefore, planning statistically rigorous sampling designs aimed at supporting field-

measurement campaigns integrated with remote sensing data, is fundamental in forest 

inventory, as well as in MRV. 

Even though we applied a conservative approach to estimate uncertainties of carbon stock 

change, monitoring avoided emissions through a model-assisted technique would enable 

generation of carbon credits under relatively low RLs as well. In fact, applying a 

conservativeness principle for MRV of carbon emissions–to not overestimate the reduction of 

emissions–can critically reduce the accountable amount of carbon credits that can be claimed 

[29,30]. We used the Reliable Minimum Estimate (RME) as a method to discount uncertainties, 

however, the presented results could have been significantly different if uncertainties were 

addressed using another method. Pelletier et al. [73] showed that the degree of conservativeness 

applied can strongly influence the overall creditable emission reductions, and stated that 

downstream discounts (i.e., conservative approaches) should only be applied if the uncertainties 

exceed a certain threshold. We used the RME method and did not test other ones (e.g., the FCPF 

Carbon Fund Approach, the KP Conservativeness Factors and the CDM Draft Proposal): 

comparing alternative approaches to address uncertainties and evaluating the effects on the 

potential carbon credits goes beyond the scope of this study but is an important subject for future 

studies. Additionally, at present, no internationally standardized regulations exist for the 

management of uncertainties in this field. 
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The relationship between monitoring costs and generation of carbon credits is not linear: 

increasing monitoring activities–and so the accuracy–beyond a certain threshold yields slightly 

larger generation of carbon credits. In this study, this threshold corresponds to a relative 

standard error of 2%. The relatively low error of carbon estimates assumed in this study depends, 

inter alia, on the biome homogeneity and the large sample size. However, the error trend 

simulated under the model-assisted approach is plausible [33,49]. We provided realistic figures 

of carbon monitoring costs according to data reported by the available literature. Clearly, these 

costs must be considered as indicative and should be interpreted with care because they might 

vary substantially from country to country; case-specific cost-benefit assessments are always 

essential. 

Another critical aspect affecting the successful implementation of REDD+ projects is the 

method used to set the RLs. RLs have a larger influence than the actual reduction of emissions 

on the generation of carbon credits, and the impact of RLs is almost as important as the approach 

used to monitor forest carbon. Findings highlight the crucial role of RLs, and bring a new insight 

on their effect on the accountable emissions reduction. The necessity of establishing RLs has been 

a key issue in the political agenda. While politicians and scientists have been mostly focusing on 

evaluating and investigating feasible, sound and effective methods to setting RLs [17,74,75], the 

extent to which RLs affect the performance of REDD+ projects remains uncertain. What is known 

is that incorrectly-determined RLs can generate under- or over-compensation, which would 

reduce both cost-efficiency and incentive to reduce emissions through the five REDD+ activities 

[76]. Sheng et al. [77] presented one of the few studies (to the best of our knowledge) that analyzes 

“how rate of carbon emissions from deforestation and degradation is influenced by 

underreported emissions caused by asymmetric information and RLs”. They claim that RLs are 

essential in the implementation of REDD+ and that overestimating RLs leads to an increase in 

actual emissions. 

Whether the REDD+ program will support forest carbon as a climate change mitigation 

strategy or not will depend on a number of aspects, which differ nationally and regionally. We 

only considered some factors that contribute to a successful implementation of REDD+ projects; 

we are fully aware that several other variables also have large impacts on the generation of 

carbon credits and deserve careful consideration. Our study does not take into consideration all 

the social, economic and policy aspects, which may often be of greater importance than technical 

and scientific matters. Nevertheless, our findings can represent a basic guidance for countries 

willing to design an MRV system, and provide new insights and a better understanding of some 

key elements that affect carbon credits generation, and thus results-based payments. 

5. Conclusions 

We analyzed some key factors underlying effective REDD+ projects and assessed, under 

various realistic circumstances, the potential generation of carbon credits. Three key factors 

mainly involved in the generation of carbon credits were investigated: defining reference levels, 

supplying emission reductions due to REDD+ and designing effective MRV systems. Carbon 

credit generation significantly depends on the MRV-system adopted to assess aboveground 

carbon density, and applying a model-assisted technique strongly influences the potential 

generation of carbon credits. 

Conceiving of an MRV system as an investment can encourage the implementation of well-

defined, long-term monitoring strategies. Concurring with Pelletier et al. [73] we believe that the 

results-based payments could pay-off the necessary investment in technology that would enable 

an accurate estimate of activity data and emission factors. However, several barriers hinder fast 

progress. For example, finding stable, long-term sources of REDD+ finance remains a key 

outstanding issue. 
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In conclusion, we believe that to understand MRV systems as an investment for generating 

carbon benefits, a REDD+ market-based architecture is necessary. This architecture would 

promote the reduction of emissions and gather the finances necessary to do so [78]. However, 

concerns over measurement and monitoring of forest-related activities prevent REDD+ carbon 

credits to be exchanged in compliance markets. To address these concerns and create favorable 

conditions for a market-based approach, transparent, robust, and consistent carbon accounting 

rules have to be established. To achieve low uncertainties in carbon estimates, like those reported 

in this study, important investments in MRV should be incentivized. In this connection, 

knowledge and technology transfer—such as statistical sampling methods and Lidar—from 

developed to developing countries should occur more widely and faster, and international 

programs (such as REDD+) could effectively boost innovative monitoring techniques in forest-

rich countries [79]. 

Supplementary Materials: The following are available online at www.mdpi.com/link, Table S1: Studies 

reviewed and key parameters collected. 
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