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Abstract

Data analysis, common to all empirical sciences, often requires complete data sets,
but real-world data collection will usually result in some values being not observed.
Many methods of compensation with varying degrees of complexity have been pro-
posed to perform statistical inference when the data set is incomplete, ranging from
simple ad hoc methods to approaches with refined mathematical foundation. Given
the variety of techniques, the question in practical research is which one to apply. This
dissertation serves to expand on a previous proposal of an imputation method based
on Generalized Additive Models for Location, Scale, and Shape. The first chapters of
the current contribution will present the basic definitions required to understand the
Multiple Imputation field. Then the work discusses the advances and modifications
made to the initial work on GAMLSS imputation. A quick guide to a software pack-
age that was published to make available the results is also included. An extensive
simulation study was designed and executed expanding the scope of the latest pub-
lished results concerning GAMLSS imputation. The simulation study incorporates a

comprehensive comparison of multiple imputation methods.
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Chapter 1
Introduction

Missing data is a problem that exists within virtually any discipline that makes use of
empirical data. When performing longitudinal or cross-sectional studies in psycholog-
ical research, it is not uncommon for data to be missing either by chance or by design.
For instance, in research involving multiple waves of measurements, missing data can
arise due to attrition, that is, subjects drop out before the end of the study.

Typically, researchers have many standard complete-data techniques available, many
of which were developed early in the twentieth century like the ordinary least-squares
regression and factor analysis (Seal, 1967), when there was just no solution for han-
dling missing values. More modern techniques like the random effects model (Hen-
derson et al., 1959) or the logistic regression (Cox, 1958) that became accessible
before 1970 were also intended for complete data sets. Software packages like R,
SAS, and SPSS provide these routines. However, these methods, being complete-data
techniques, are not able of dealing correctly with incomplete data sets.

Simple solutions were in use for decades (Schafer and Graham, 2002). These
strategies involved discarding incomplete cases or substituting missing data by some-
how plausible values. The most popular approach is complete case analysis (CCA) also
known as listwise deletion. The method is simple, and no particular modifications are
needed. The main difficulty is that not all missing values have the same reason for
not being observed, and there are situations in which missing data do not affect the
conclusions, but generally, no justification is provided for the assumptions underlying
the analysis at hand.

Neglecting the missing data problem can result in adverse consequences such as
the loss of statistical power of a given analysis due to the reduction of the sample size,
or even worse, missing values may invalidate the conclusions for the data and lead to
wrong statistical inference. Today, disadvantages of these methods are well known in
both the statistical and applied literature (Little and Rubin, 2002).



1.1 State of the Art

There are two primary schools about how to deal with the missing data problem.
On one side, there are model-based methods mainly built around the formulation of
the Expectation-Maximization (EM) algorithm made popular by Dempster, Laird, and
Rubin (1977). This technique makes the computation of Maximum Likelihood (ML)
estimator feasible in problems affected by missing data. In short, the EM algorithm
is an iterative procedure that produces maximum likelihood estimates. The idea is
to treat the missing data as random variables to be removed by integration from the
log-likelihood function as if they were not sampled. The EM algorithm allows dealing
with the missing data and parameter estimation in the same step. The major draw-
back of this model-based method is the requirement of the explicit modeling of joint
multivariate distributions and, thus, tend to be limited to variables deemed to be of
substantive relevance (Graham, Cumsille, and Elek-Fisk, 2003). Furthermore, this
approach requires the correct specification of usually high-dimensional distributions,
even of aspects which have never been the focus of empirical research and for which
justification is hardly available. According to Graham (2009), the parameter estima-
tors (means, variances, and covariances) from the EM algorithm are preferable over a
wide range of possible estimators, based on the fact that they enjoy the properties of
maximum likelihood estimation.

The second approach deals with model-based missing data procedures and was
introduced by Rubin (1987) with his concept of Multiple Imputation (MI). Instead of
removing the missing values by integration as EM does, MI simulates a sample of m
values from the posterior predictive distribution of the missing values given the ob-
served. Each missing value is replaced by this approach with m > 1 possible values,
accounting for uncertainty in the values predicting the true but unobserved values.
The substituted values are called “imputed” values, hence the term “Multiple Imputa-
tion.”

MI can be summarized in three steps. The first step is to create m sets of completed
data by replacing each missing value with m imputed values. The second phase con-
sists of using standard statistical methods for separate analysis of each completed data
set as if it were a “real” completely observed data set. The third step is the pooling
step where the results from m analyses are combined to form the final results and al-
lows statistical inference in the usual way. This technique has become one of the most
advocated methods for handling missing data.

The MI framework comprises three models: The complete data model, the nonre-
sponse model, and the imputation model. The complete data model is the one used

to make inferences of scientific interest. For example, a linear regression including



the outcome and explanatory variables of an experiment. The nonresponse model
represents the process that leads to missing data. The covariates in the nonresponse
model are not primarily of interest, and they are not necessarily part of the complete
data model. The imputation model is the model from which plausible values for each
missing datum are generated. A problematic step of MI procedures is the specifica-
tion of the imputation model because the validity of the analysis of the complete data
model strongly depends on how imputations are created. If the imputation model is
not correctly specified, then final inferences may be invalid.

There are two ways of specifying imputation models: Joint modeling (JM) and
fully conditional specification (FCS). Joint modeling involves specifying a multivari-
ate distribution for the variables whose values have not been observed conditional
on the observed data and then drawing imputations from this conditional distribu-
tion by Markov chain Monte Carlo (MCMC) techniques (Schafer, 1997). On the other
hand, with the fully conditional specification, also known as multivariate imputation
by chained equations (van Buuren and Groothuis-Oudshoorn, 2011), a univariate im-
putation model is specified for each variable with missings conditional on other vari-
ables of the data set. Initial missing values are imputed with a bootstrap sample, and
then subsequent imputations are drawn by iterating over conditional densities (van
Buuren, 2007; van Buuren and Groothuis-Oudshoorn, 2011).

Within the JM framework, Little and Rubin (2002), Rubin (1987), and Schafer
(1997) have developed imputation procedures for multivariate continuous, categor-
ical and mixed continuous and categorical data based on the multivariate normal,
log-linear and general location model, respectively. There has also been development
in univariate models for modeling semicontinuous data. Javaras and Dyk (2003) in-
troduced the blocked general location model (BGLoM), designed for imputing semi-
continuous variables with the help of EM and data augmentation algorithms.

Another device that can be used to generate imputations is nonparametric tech-
niques, like hot deck methods. Based on hot deck methods, the missing values are
imputed by finding a similar but observed unit, whose value serves as a donor for the
record of the similar but incompletely observed unit. The most popular are k-nearest-
neighbor algorithms from which the best known method for generating hot-deck impu-
tations is the Predictive Mean Matching (PMM) (Little, 1988), which imputes missing
values employing the nearest-neighbor donor distance base on expected values of the
missing variables conditional on observed covariates. There are several advantages
of kNN imputation. It is a simple method that seems to avoid strong parametric as-
sumptions, it can easily be applied to various types of variables to be imputed, and
only available and observed values are imputed (e.g., Andridge and Little, 2010; Lit-
tle, 1988; Schenker and Taylor, 1996). However, the final goal of the complete data



statistical analysis is to make inferences about the population represented by the sam-
ple; therefore, the plausibility of imputed values is not the defining factor in choosing
an imputation model over another. Instead, the proper criterion is the validity of the
final analysis of scientific interest.

Recent research on improving the performance of KNN methods focused on the dis-
tance function and the donor selection. Tutz and Ramzan (2014) proposed a weighted
nearest neighbor method based on Lq—distances and Siddique and Belin (2008) and
Siddique and Harel (2009) propose a multiple imputation method using a distance-
aided selection of donors (MIDAS). The latter technique was extended and imple-
mented in R by Gaffert, Meinfelder, and Bosch (2016). Harrell (2015) proposed the
aregIlmpute algorithm which combines aspects of model-based imputation methods in
the form of flexible nonparametric models with the predictive mean matching.

Modern methods like Amelia (Honaker, King, and Blackwell, 2011) or irmi (Templ,
Kowarik, and Filzmoser, 2011) and even hot deck methods like PMM (Little, 1988)
make use of linear imputation models explicitly or implicitly. However, the condi-
tional normality of the dependent variable in a homoscedastic linear model with in-
completely observed metric predictors alone is not sufficient to justify a linear imputa-
tion model for the incompletely observed variable. Thus, assumed linear imputation
models would not, in general, be compatible with the true data generating process.
Although it has been proposed to transform variables to assume multivariate normal-
ity more plausible (e.g., Honaker, King, and Blackwell, 2011; Schafer, 1997), this
technique does not work in general (e.g., Hippel, 2013). The distribution of variables
in the observed part of the data set might be very different from the distribution of
the same variables if there were no missing values. In an experiment, Hippel (2013),
showed that transformed imputation models led to biases in the estimators.

A newly proposed method by de Jong (2012) and de Jong, van Buuren, and
Spiess (2016) makes use of Generalized Additive Models for Location Scale, and Shape
(GAMLSS). The proposed method fits a nonparametric regression model with spline
functions as a way of specifying the individual conditional distribution of the vari-
ables with missing values which can be used in the framework of chained equations.
Roughly, the idea is to use semi-parametric additive models based on the penalized
log-likelihood and then fit the conditional parameters for location, scale, and shape
using a smoother. In principle, the specification of the conditional distribution can
be arbitrary, though de Jong, van Buuren, and Spiess (2016) mainly used the normal
distribution.



1.2 Strengths and weaknesses of multiple imputation

procedures

An important notion concerning the success of the method of multiple imputation is
the hypothesis of “proper” multiple imputation. The concept of proper imputations
is based on a set of conditions imposed on the imputation procedure. An imputation
method tends to be proper if the imputations are independent draws from an appropri-
ate posterior predictive distribution of the variables with missing values given all other
variables (Rubin, 1987). This implies, that both, the average of the m point estimators
is a consistent, asymptotically normal estimator of the parameter of scientific interest
and that an estimator of its asymptotic variance is given by a combination of the within
and between variance of the point estimators. Meng (1994) showed the consistency
of the multiple imputation variance estimator as the number of imputations tends to
infinity but restricted his analysis to “congenial” situations, in which imputation and
analysis models match each other in a certain sense. In contrast, Nielsen (2003) claims
that MI “is inefficient even when it is proper.”

According to Rubin (1996), there are two distinct points of interest about multiple
imputation. The first type focus on its implementation: operational difficulties for
the imputer and the ultimate user, as well as the acceptability of answers obtained
partially through the use of simulations. The second type concerns the frequentist
validity of repeated-imputation inferences when the multiple imputation is not proper
but seems “reasonable” in some sense. Rubin (1996) states that statistical validity,
according to the frequentist definition, is difficult because it requires both that the
imputation model with the assumptions considered by the imputer are correct and
the complete-data analysis would have been already valid if there were to missing
values (“Achievable Supplemental Objective”, Rubin, 1996).

Rubin (2003) acknowledged that there are reasons for concerns about the meth-
ods since it is not yet proven in a strict mathematical sense that the multiple impu-
tation method allows valid inferences in all situations of interest. Many statements
are based on heuristics and simulation results, and there is almost always some un-
certainty in choosing the correct imputation model. On the other hand, according
to Rubin (2003), multiply-imputed data analyses using a reasonable but imperfect
model can be expected to lead to slightly conservative inferences, that is, inferences
that have coverage that is slightly larger than the nominal (1 — a) percent. Theoret-
ical arguments, as well as some empirical results based on simulations, imply that
standard multiple imputation techniques may be rather robust concerning slight mis-
specifications of the imputation model, probably leading to larger confidence intervals

and overestimation of variances. This is called the “self-correcting” property of mul-
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tiple imputation methods (e.g., Little and Rubin, 2002; Rubin, 1996, 2003). Robins
and Wang (2000) question the validity of the variance estimator proposed by Rubin
(1987) and claim that in large samples the MI variance estimator may be downward
biased.

Most results about individual imputation methods rely on simulated experiments.
Schafer (1997) and Schafer and Graham (2002) argue that simulations or artificial
experiments are a helpful instrument to investigate the properties of MI-based infer-
ences since, by definition, these methods are based on random draws from a posterior
distribution, akin to the application of Markov chain Monte Carlo routines. There
are many examples of recent studies that based their results on simulations. Deng
et al. (2016) developed an imputation method based on regularized regressions that
presented a small bias but acceptable coverage rates in a simulation experiment. Don-
neau et al. (2015a,b) ran two comparison studies of multiple imputation methods for
monotone and non-monotone missings patterns in ordinal data which found that nor-
mal assumptions for MI resulted in biased results. Kropko et al. (2014) compared the
JM and FCS imputation approaches for continuous and categorical data, reporting
better results for FCS.

He and Raghunathan (2009) evaluated the performance and sensitivity of sev-
eral imputation methods to deviations from their distributional assumptions. They
found that, concerning the estimation of regression coefficients, currently used mul-
tiple imputation procedures can, in fact, give worse performance than complete case
analyses that ignore the missing mechanism about bias and variance estimation under
seemingly harmless deviations from standard simulation conditions. Yu, Burton, and
Rivero-Arias (2007) and then Vink et al. (2014) appraised the performance of multiple
imputation software on semicontinuous data with mixed results showing that depar-
tures from linear or normality assumptions yielded worse estimates in general. They
concluded that the most reliable methods were based on PMM, but de Jong (2012)
and de Jong, van Buuren, and Spiess (2016) show that this is not necessarily true.
They find that PMM can systematically underestimate the standard errors, leading to
invalid inferences. To sum up, it is not yet known which imputation technique is most
appropriate in which situation, and which is flexible and robust enough to work in a
broad range of possible applications. One goal of the current work is to enhance the
GAMLSS imputation method and perform extensive simulation experiments under a

broad spectrum of experimental and practically relevant conditions.



1.3 Research goals

The GAMLSS approach defined in de Jong, van Buuren, and Spiess (2016) models
additively individual location parameters like the conditional means of the variables to
be imputed based on spline functions, which allows more flexibility than with standard
imputation methods. An error term randomly selected from a normal distribution is
added to generate imputations.

Simulation results in de Jong (2012) and de Jong, van Buuren, and Spiess (2016)
imply that inferences tend to be valid adopting this imputation technique, even if
the real underlying distribution of the covariables is Poisson or Chi-square. De Jong
(2012) concluded that if the variable with missings is heavy-tailed like a Student’s t,
the imputation method may not be proper anymore, leading to severely underesti-
mated variances of the estimators of scientific interest. Posterior analyses show that
the same could happen with a missing mechanism thinning out specific regions in the
data set.

A solution to this problem could be to replace the normal model for the error term
with a more general family of distributions like the four-parameter Johnson SU family
that in addition to the mean and variance also accounts for skewness and kurtosis of
the actual error distribution.

Objective 1: Therefore, the first objective of this work is to relax the distributional
assumption of the error within the GAMLSS imputation method to distributions with
unknown mean, variance, skewness, and kurtosis.

A limiting feature of the simulation results in previous works for the GAMLSS im-
putation method is that the method was mostly tested in bivariate data sets and only
one multivariate experiment where the variables were all independent and normally
distributed. Also, there was always only one variable incompletely observed. Real-
world applications require robust methods capable of dealing with complex data sets,
where the variables are not independent of each other and interactions exist.

Objective 2: Thus, the second objective is to extend the GAMLSS-based imputa-
tion methods to the multivariate case and evaluate them concerning the validity of
parameter estimators of scientific interest.

For the developed methods and algorithms to be helpful, it is necessary to show
that they allow valid inference when used in applications. Analyzing the large-sample
properties of the new method in an MI scenario proves to be very difficult. However,
the growing use of computational statistics allows the use of Monte Carlo simulation
as an alternative way to analyze the properties of the proposed method.

Objective 3: The final objective is to perform extensive empirical comparisons of

the two GAMLSS approaches with available modern techniques via simulation exper-



iments to allow justified guidance in applied in empirical sciences.

This is an important point in current research since if a self-correcting property of
MI holds, misspecification of imputation models would have only a minor effect on
the validity of inferences with increasing sample sizes and therefore is of interest to

test such relationship.

1.4 Outline of the dissertation

The first two chapters of the dissertation discuss the basic theoretical inferential as-
pects of the missing data problem. Chapter 2 introduces the model of scientific in-
terest and taxonomy of the missing data mechanisms. The ignorability of the missing
mechanism and the validity of complete-data procedures are also discussed. Chapter
3 focuses on the validity of Rubin’s MI estimators and the steps required to perform
standard statistical inference. Some topics like the number of imputations and the
available methods for multivariate data sets are also discussed.

Chapter 4 describes some of the most used imputation methods imputation meth-
ods. Chapter 5 presents the GAMLSS-based imputation method. The experimental

design and results of the comparison will be discussed in Chapter 6.



Chapter 2

Statistical Inference with partially

observed data sets

Real-world data sets often are only partially observed. This chapter discuss aspects
of the statistical inference and general concepts related to the missing data problem.
Section 2.1 presents the model of scientific interest, and discusses how to address the
consistent and valid estimation of its parameters. Most importantly, the section intro-
duces the concepts of Complete Case Analysis and Multiple Imputation, and defines
the notation to be used in the manuscript. Section 2.2 formalizes a classification of the
Missing Data Mechanisms (MDM). Section 2.3 discusses the effect of assumptions of

the missing data mechanism when estimating the parameters in a regression model.

2.1 Why Multiple Imputation

Let’s suppose that given Y = (Y;;), i = 1,...,n and j = 1,...,p, a matrix with the
observations for n units on p variables we want to make inferences about the vector

of population parameters 67 = (0,,...,0,). We define the model
E[U(Y;, 0)]=0, 2.1)

where U is a (p x 1) real-valued function. This is actually a just-identified General-
ized Method of Moments (GMM) model and with different choices of U, encompasses
many common used applications like linear and nonlinear regression models, maxi-
mum likelihood estimation or instrumental variable regression (Cameron and Trivedi,
2005, Chapter 6).

The objective of statistical research is to provide valid inference about 6. Assuming

that the data is fully observed, Cameron and Trivedi (2005) show that consistent and



valid estimators O and ¥ for the model in equation (2.1) can be obtained as:
1 n T 1 n
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Let’s suppose that the data Y is only partially observed. The observed and miss-
ing parts of variable Y; are denoted by Yj"bs and ijis, respectively. Let’s define the
missing indicator, R, as binary matrix representing the missing data pattern. For each
individual unit i and variable j, letR;; = 1if }; is observed and R;; = 0 if Y}, is missing.

One naive approach to still perform the statistical analysis in the presence of miss-
ing values is to use complete case analysis (CCA). This method would delete all units
with missing values, i.e., remove unit Y; if 35 : R;; = 0. The estimators 6 and £ would
still be obtained through equations (2.2) and (2.3) replacing Y by the reduced, but
fully observed, data set Y°%. Whether CCA keeps consistency and validity of the es-
timators is a different matter. The answer to that problem depends on the specific
statistical analysis and the underlying mechanism that led to some values not being
observed. Example of this are discussed in section 2.3.

Using the Law of Iterated Expectations in model (2.1), a consistent estimator of
0 without ignoring incompletely observed data, as with CCA, can be obtained from
solving:

E(ymisjyors gy [U(Y %, Y™, 0)] = 0. (2.4)

where (Y%, Y™¥) is a partition of the data set into its observed and missing parts and
f(Y™s|y°b R) is the conditional predictive distribution of the missing data. If U(-)
is the score function, a consistent estimator of the covariance matrix of 6 using the
Fisher-information matrix. This can be obtained with Louis’s formula (Louis, 1982):

4(0) =E, [—aU(GY’Q)]

- Ef(ymis|yobs’R)[U(Y, Q)U(Y, Q)T]
+ Ef(ymislyobs’R)[U(Y, 9)]Ef(ymis|yobs’R)[U(Y, 9):|T (2.5)

The actual usefulness of equations (2.4) and (2.5) in specific applications differs
notably. Even for standard regression problems with incomplete data there are no gen-
eral solution methods and unique solutions have to be developed, often quite complex
and of limited use. For example, Elashoff and Ryan (2004) propose a solution based

on the EM algorithm that require the specification of additional moment conditions
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to characterize the conditional expectations of the missing data. Approaches like this
become quickly unmanageable as the models get more complex than a standard re-
gression (Carpenter and Kenward, 2012).

Multiple Imputation (Rubin, 1987) will provide an indirect way to solve the esti-
mation problem. The key idea behind it is to reverse the order of the expectation and

estimation in equation (2.4). The essence is to repeat the following steps:
1. draw Y™ from f(Y™*|Y°>,R),
2. solve E[U(Y°b, Y™, 0)] = 0.

and combine the results somehow to perform the inference. This provides an alterna-
tive to complex methods, allowing the use of the “complete data” methods given by
equations (2.2) and (2.3) in the estimation step. The ymis imputed values are draws
from the Bayesian conditional predictive distribution of the missing observations. The
model, f, used to produce the imputations is called the “imputation model”. One of
the advantages of the MI method is that the model of scientific interest and the impu-
tation model can be fitted separately. The combination rules and the justification of

this method is discussed in chapter 3.

2.2 Missing Data Mechanism

The performance of missing data techniques strongly depends on the mechanism that
generated the missing values. Standard methods for handling missing values usually
make implicit assumptions about the nature of these causes. The missing data mech-
anism can be defined as

P(R;|Y;,4), (2.6)

which is the probability of observing the values of Y; given their actual data and a vec-
tor of parameters, 1, of the underlying missing mechanism. An implicit assumption
being made is that the values of Y;; exist regardless of whether they are observed or
not.

The focus of the model of scientific interest in section 2.1 is estimation of 6. The
parameter v of the missing mechanism in equation (2.6) has no innate scientific value
and therefore it makes sense to ask if and when its estimation could be safely ignored.
Rubin (1976, 1987) formalized a system of missing mechanisms that classify missing
data problems in three categories: missing data either being missing completely at
random (MCAR), missing at random (MAR) or missing not at random (MNAR).

To exemplify the different classes, let’s consider an hypothetical clinical trial on the
effects of a given drug for the treatment of depression. In this study 200 patients with

11



depression are randomly assigned to one of two groups, one with an experimental drug
and the other with a placebo. Participants completed a depression scale, e.g., HAMD
(Hamilton, 1964) or BDI (Beck et al., 1996) after the end of treatment. Let Y; take on
values 0 and 1 if participants were in the placebo or treatment group respectively, and
Y, be the depression scores after the treatment. Some of the values of Y, are missing

according to the following mechanism

Y.
PRy =0) = o+ [03%, 4090~V )l + (1= 52 o, 27)
8+Y,
which is just an example that based on the values of v, v¢;, and ¢, will help to

illustrate the different types of missing mechanism.

2.2.1 Missing Completely At Random (MCAR)

Missing data is said to be MCAR if the probability of the observed pattern of observed
and missing data does not depend on any of the other variables relevant to the analysis

of scientific interest, observed or not. Mathematically this can be expressed as,

P(R;|Y;,y) = P(R;|¢)). (2.8)

The MCAR mechanism exemplifies an event where missing values happen entirely
by chance, and it is a rather strong assumption.

Suppose that, in the example, we wish to estimate the mean depression rating
at the end of the study given the treatment group. The participants flipped a coin,
and based on the outcome decided whether to fill out the questionnaire at the end of
the study. The same can be expressed with equation (2.7) by setting ¢ = (0.5,0,0)
leading to

P(R;, = 0) = 0.5.

In this scenario the missing values are MCAR and since the probability of not being
observed is unrelated to the values of Y; or Y,, the observed part of the data is non-
selective with respect to the population. Valid inferences can be obtained from the

observed values.

2.2.2 Missing at Random (MAR)

The missing mechanism is MAR if the probability does depend on observed values of
the relevant variables but not additionally on relevant unobserved values of variables.

If Y; is partitioned as (Yl.o”s, Y/"), representing the observed and unobserved parts of
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Y;, then
P(R,|Y;,¢) = P(R; Y%, ). (2.9)

The MAR mechanism is considerably weaker than the MCAR. Equation (2.9) doesn’t
imply that the probability of observing a variable is independent of its value. What
the MAR assumption means is that conditional on the observed data, the probability

of observing a variable doesn’t depends on its value.
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Figure 2.1: Plot of hypothetical depression rating scale values against treatment group

Let’s continue with the depression rating example. Figure 2.1 shows a scenario

where ¢ = (0, 1,0) in equation (2.7), leading to the missing mechanism
P(R;; =0) =0.3Y;; +0.9(1 —Y}y), (2.10)

meaning that participants in the placebo group are less likely to complete the ques-
tionnaire at the end of the study as compared with participants in the drug group, that
is, given the value of Y;;, the probability of missing Y;, is either 0.9 or 0.3 independent
of its value conditional on the treatment group. This means that the missing scores
at the end of the study are MAR conditional on the treatment group. A consequence

of this missing data mechanism is that the estimation of the marginal mean will be
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downward biased. A hypothetical data set was simulated with arbitrary mean depres-
sion scores of 9 and 15.5 for the drug and placebo groups respectively, so that the true

marginal mean is 12.25. However, the observed mean is
(94 x 8.96 + 33 x 14.47)/127 = 10.39. (2.11)

based on the values recorded in Figure 2.1.
Due to the missing depression scores being MAR conditional on the treatment
group, it can be shown that the distribution of unobserved and observed ratings is

the same within each treatment group. Mathematically,

P(Y;1, Y5, Y, Ri = 0)
P(Y;1,,R;, =0)
_ P(R;5 = 0]y, Yip, Y)P(Yiy, Yip, ¥)
P(R;, = 0[Y;1, Y)P(Yy, )
= P(Y, Yy, ), (2.12)

P(Yi2|Yi1,¢,Riz =0)=

using the fact that missing depression scores are MAR conditional on treatment group

in the last equality, since
P(R;, = 0[Y;, Yip, ¢) = P(Rip = 0[Y;y, 7). (2.13)

The same claim is valid for R;, = 1, so the distribution of depression scores given
treatment group is the same in the observed and unobserved data, and the population.

The argument presented is akin to say that within treatment groups, depression
rating is MCAR. We can use that fact to estimate the marginal mean, scaling up the

averages of the mean in each group to yield a better estimate,
(100 x 8.96 + 100 x 14.47)/200 = 11.71. (2.14)

This is equivalent to replace the missing values in each of the treatment groups by the
mean of the group.

Two further points need to be made. First, under the MAR assumption, the exact
details of the missing mechanism, such as the 1 parameter, don’t have to be specified
(Carpenter and Kenward, 2012). Second, it’s important to notice that the assump-
tion of the depression score being MAR (or MCAR) given the treatment group is an

untestable claim. The data needed to test is, of course, missing.
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2.2.3 Missing Not At Random (MNAR)

Finally, the unobserved data is MNAR if the probability of the pattern of observed
and missing data does depend not only on observed but also on unobserved values of

variables relevant to the research question, that is,
P(R,|Y;, ) # PR Y™, ). (2.15)

If in our depression study example, we let ¢» = (0,0, 1), the missing mechanism
(2.7) turns into

Y.
PR, =0)=1——2
8+,

which means that participants with higher values of depression scores, or side-effects
from the experimental drug are more likely not to be present at the end of the study.
Then the probability of observing a value it is dependent on the value itself, like in the
missing mechanism shown, where the response indicator of Y, depends on Y,. This
defines a MNAR mechanism.

Although it seems like the MNAR assumption could be more likely in real-world ap-
plications than MAR, statistical analyses are far more difficult. Under MAR, equation
(2.13) shows that the conditional distribution of partially observed variables coincide

for units with observed and unobserved values. This is not true under MNAR.

2.2.4 Ignorability

The classification system of Rubin (1976) define conditions under which 6 can be
accurately estimated without being affected by ignoring 1. According to Little and
Rubin (2002, Section 5.3), the missing data mechanism is ignorable if the missing
data are at least MAR and the joint parameter space (8,) is the product of the pa-
rameter spaces of 8 and v, that is, 8 and 1) are distinct. Since the model of scientific
interest is not the missing data mechanism itself and usually knowing 6 will add little
information about v and the other way around according to Schafer (1997), the MAR
requirement is considered the most important condition (van Buuren, 2012).

More precisely, a valid analysis can be constructed without the necessity of ex-
plicitly including the model for the missing data mechanism. In the context of this
analysis, the missing mechanism can be ignored when applying the method of impu-
tation to compensate for missing data.

A consequence of the concept of ignorability is represented by equation (2.12)

which implies that
P(YmiS|YObS,R — 1) — P(YmiS|YObS,R — O)
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Hence, if the missing data mechanism is ignorable, the conditional predictive distri-
bution in equation (2.4), f(Y™*|Y°> R) can be modeled with just the observed data.

On the other hand, if missing data are MNAR, then the missing mechanism can
not be ignored, and strong assumptions or external knowledge is usually necessary to
compensate for the missing data. The focus of the current research will be on ignorable

missing mechanisms.

2.3 Estimation of parameters with partially observed

data

It is of importance to analyze the connotations of the missing data mechanism for the
estimation of 0, the parameter in the scientific model of interest. The argument about
ignorability of v, the parameter of the MDM, does not imply a one-to-one relationship
between the type of missing mechanism and the validity of CCA.

Let’s assume that we have a data set with two variables, Y = (Y;,Y;) and the
estimating equations, U;, in equation (2.1) are U;(6,Y;) = Y;;(Y;, — 6, — Y;;0). This
formulation is equivalent to the scientific model of interest being the linear regression

of Y, on Y;. Simplifying, we wish to fit the model
Yo=0,+6,Y,+e, € ~N(0,0%). (2.16)

We will consider next, the consequences of missing values in the response or covariates
under different missing data mechanism with respect to bias and loss of information
of the CCA.

2.3.1 Incompletely observed response

Let’s suppose that Y;, in equation (2.16) is incompletely observed, while Y;; is fully

known. The share in the likelihood of 6 = (8,, 6,) from unit i conditional on Y;; is
L; =P(Ryp, Y;5|Yi1) = P(R;p|Yip, Vi1 )P(Y2 Vi) (2.17)

Typically, the parameters of P(Y;,|Y;;), 6, are distinct from the parameter 1 (see
Schafer, 1997). If in addition, Y, is at least MAR with respect to Y; then the units with
missing response carry no information about 6. First, the MAR assumption makes

P(Y;,|Y;;) the only term in the likelihood that involves Y,. Second, the contributions
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to the likelihood of the individual with missing response is

J P(Yi2|Yi1)in2 =1, (2.18)

integrating over all possible values of Y}, given 0 and Y;;, with the consequence of un-
observed values of Y, having no effect in the likelihood estimation. The consequence
is that CCA is valid in this scenario.

In case that the missing values of Y, are MNAR, the missing mechanism P(R;,|Y;,, Y;;)

can not be ignored in equation (2.17) and therefore CCA is no longer valid.

2.3.2 Incompletely observed covariates

Let’s reverse the scenario and assume that Y}, is fully observed while Y;; is not. Fol-
lowing the same procedure as in equation (2.12), for each unit i,
P(Y,lYi, Ry =1) = P(YiDYiZ,Ril: D
P(YiDRil - 1)
_ P(R;; = 1|V, Y;)P(Y;1, Vo)
P(R;; = 1|Y;1)P(Y;;)

P(Ril = 1|Yil>YiZ):|
= P(Y.,|Y:). 2.1
[ P(Ril = 1|Yi1) ( 12| ll) (219

This implies that if the missing mechanism for Y; includes the response Y,, CCA will
lead to biased estimation and invalid inference. This is true even if the missing mech-
anism is MAR with respect to Y,, regardless of the inclusion of Y;.

On the other hand, if the missing mechanism doesn’t depend on the response, Y,
then P(Y},|Y;;,R;; = 1) = P(Y},|Y;;) for all units, meaning that the distribution of the
complete cases is the same as that in the population. As a consequence, CCA is valid,
even if Y; is MNAR.

2.3.3 Discussion of assumptions

Subsections 2.3.1 and 2.3.2 show that restricting the regression analysis to the com-
plete cases is invalid in general if the missing mechanism depends on the response
variable. The presentation is illustrative of the importance of considering which vari-
ables are present in the missing mechanism, instead of only focusing on which are
incompletely observed. Furthermore, additional considerations must be also taken
into account when deciding to impute missing values. Ignoring altogether the miss-
ing mechanism requires the assumption that the missing values are MCAR or at least
MAR.
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An intrinsic problem of multiple imputation entails that the validity of the assump-
tions for the missing mechanism can not be tested. Taking ignorability for granted
when in fact the data is MNAR will make the inference invalid. Possible remedies
are the inclusion of additional predictors in the imputation models (Schafer, 1997) or
performing a sensitivity analysis (Carpenter and Kenward, 2012).

In this contribution it will be assumed that the missing values are MAR with respect
to the observed variables. In addition, the missing mechanism will generally include
the response, making CCA invalid.
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Chapter 3
Multiple Imputation

Rubin (1987) developed the theory of Multiple Imputation. The primary application
at the time was to missing data in sample surveys and therefore, his initial work was
formally directed to design based theory with some ideas on how to extend it to clas-
sical model based inference. Later, with the work of Meng (1994), Nielsen (2003),
Robins and Wang (2000), and Wang and Robins (1998), much work was done to
provide frequentist justification and results to the MI method.

This chapter defines the MI procedure to estimate the parameters of a model of
scientific interest and discuss its justification and properties. Section 3.1 introduces
the pooling rules of the MI method. Section 3.2 discusses the statistical validity of
the MI estimators, providing necessary and sufficient conditions. Sections 3.3 and 3.4
provide guidelines for frequentist inference of incomplete data sets and how many
imputations to create. Finally, section 3.5 extends the MI method to the analysis of

multivariate data sets.

3.1 Combining rules

To fit the model in equation (2.4) using MI, the missing observations are replaced
by imputed values, producing M complete data sets. The M complete data sets are
analyzed with a standard complete data procedure, giving é\l and &, i=1,...,M,
estimating of 6 and its covariance matrix X. Finally, the estimates are combined ac-
cording to Rubin’s rules (Rubin, 1987, p. 67).

The estimate of 6 is the mean of the 51 estimates:

) —lﬁﬁ (3.1)
MI_]\Ji:1 i’ .



M ’ )

where W is the within-imputation covariance matrix
1 M
W= >, (3.3)

i=1

and B the between-imputation covariance matrix of 6;

M

~ 1 N A

B = 577 2500 Bu (6~ 0" (3.4)
Rubin (1987) shows that the formulas for the estimators can be justified by writing

the posterior distribution of the 8 parameters given the observed data, P(0|Y°%) as
P(Qlyobs) — f P(9|Yobs’Ymis)P(Ymislyobs)deis’ (3.5)

where P(Y™#|Y°%) is the conditional predictive distribution of the missing data given
the observed data and P(0|Y°%, Y ™) is the posterior distribution of 8 given the com-
plete data.

Equation (3.5) suggests that the posterior distribution of 6 is the average of the
repeated draws of 0 given the completed data (Y°%,Y™*), where Y™ is drawn from
its posterior distribution given Y°%. This is the main reason in favor of MI inference,
since it expresses the posterior of 6 given the observed data as the combination of two
simpler posteriors, one being determined by a known complete data procedure and
the other by the imputation model.

The posterior mean of P(8|Y°%) can be written as
E(QlYObs) — E[E(Q|YObS’YmiS)|YObS:|’ (36)

which can be approximated by equation (3.1), considering that the values é\l are drawn
from P(0|Y°%, Y™*). Similarly, taking into account that the posterior variance can be
written as

Var(0]Y°) = E[Var(Q|Y %, Y™*)|Y°*] + Var[E(Q|Y °, Y ™) |y °>*]. 3.7)

The first term in the sum is the average of the variances from the complete data pos-
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terior ¥, which is estimated by W. The second component is the variance of the /9\1
values and is approximated by B. The extra term B/M in the MI variance estimator
in equation (3.2) was introduced by Rubin (1987) and follows from the fact that §M,
is by itself an estimate for finite M.

3.2 \Validity of the MI estimator

Let’s assume that a complete data procedure exists and that it yields estimators 6 and
S of the parameter 6 and its covariance matrix %, for example equations (2.2) and

(2.3). The estimators are said to be statistically valid if
E(O|Y) ~0, (3.8)

and
E(Z|Y) ~ Var(6]Y). (3.9)

The objective of the MI approach according to Rubin (1996) is to provide proce-
dures that lead to statistically valid results when applied to incomplete data sets, given
appropriate imputation and analysis models.

If we have an incomplete data set, it’s necessary to consider an extra analysis level
where the MI method is applied. In principle, the idea is to go from the incomplete
data set to a complete sample and then estimate the population parameters. That
means, for example, that 6 is not only an estimator for 6 but an estimand for §M1-
Rubin (1987) defines the concept of “proper imputation” (see also, Rubin, 1996) which
imposes conditions on the imputation procedure that leads to valid estimators §M ; and

S, An imputation procedure is said to be proper if

E(é\MLOO|Y°bS,Ymi5):E(A}ij&ié yobs Y”“s) ~ 0, (3.10)
M
E(W\OO|Y°1’S,Y'““)=E(A}%Z§I. YO“,Y”“’S) ~ 5, (3.11)
and
E(§w|Y°bs,Y’”is)=E( lim —Z(e 0,,1)(0. — 0,7 | YOS Y"“s)
= Var(By; 00| Y%, Y ™) (3.12)

The main result derived from the previous equations is that: if an imputation
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method is proper for the parameters 6 and ¥ and a complete data procedure based
on such parameters is valid for 6 then the inference based on MI estimators for large
M is also valid (Rubin, 1996).

Using equations (3.8) to (3.12) and with the help of the law of iterated expecta-

tions it follows that
E(Byi1.00Y) = E[E(By; 0o Y)Y ]~ E(B]Y) = 0 (3.13)
and

E(Shr00lY) = E(Weo|Y) + E(Boo V)
= E[E(Weo V)|V ] + E[E(B [V)|Y]
~ E(Z|Y) + E[Var(0y; o0 | Y)|Y ]
~ Var(0]Y) + E(Var(8y; o0 [Y)[Y)
2 Var(E(Oy 1 o0 Y)Y ) + E(Var(By; oo YY)
= Var(Oy; oo|Y) (3.14)

where Y = (Y™, Y°%) is the collection of completed data sets. This shows the validity
of the MI based estimators, as long as the assumptions are correct. Obtaining a valid
complete data procedure is usually not a problem in most applications since common
solutions use a OLS estimator. However, having an imputation that is always proper
is not guaranteed. Rubin (1996) suggests that a reasonable imputation method that
satisfies equation (3.12) would tend to satisfy equations (3.10) and (3.11).

On the other hand, Nielsen (2003) argues that the use of Bayesian or approxi-
mately Bayesian predictive distributions to generate imputations is inefficient even if
the method is proper. Meng and Romero (2003) and Rubin (2003) discussed that
issue reasoning that the relationship between the complete data procedure and the
imputation method can not be overlooked. In the critical examples of Nielsen (2003)
the relationship between the analysis and imputation models was ignored.

A simpler explanation is that there must be some connection between the analysis
and imputation models. They can be fitted separately and to some extent, consid-
ered independently from each other, but they are not. The concept of “congeniality”,
introduced by Meng (1994), establishes the required relationship between analysis
procedure and imputation method.

Let ., = (6,%) denote the complete data procedure, i.e., the statistical proce-
dure that applied to the complete data set estimates the population parameter 6 and
its associated variance. Analogously, 2, = (50 b» Sops) denotes an analysis procedure
based only on the observed data. According to Meng (1994) a Bayesian model f is
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said to be congenial to the analysis models {Z,,,,,?,,.} for a given observed data set
if:

(i) Given the completed data set, Y = (Y°%,Y ™), the analysis model 2., asymp-
totically gives the same mean and variance estimates as the posterior mean and

variance under f, for all possible values of Y™ i.e.

[E;(BIY), Var,(A]Y)]~(8, £) VY™, (3.15)

(ii) The posterior mean and variance of 8 under f given the incomplete data are
asymptotically the same as the estimate and variance from the partially observed

data model Z,, i.e.

[E£(B1Y°%), Var;(8]Y°%)] = (B35, Sope)- (3.16)

Then the analysis procedure {Z.,,, 2,,.} is said to be“congenial” to the imputation
model g(Y™5|Y°> A) if there is a Bayesian model f that (i) is congenial to {Z.,,., 2, ,.}
and (ii) the conditional posterior density for Y™* under f is identical to the imputation
model

f(Ymis|yobs) = g(y™mis|yobs A) Y y™s, (3.17)

where A represents possible additional data used in the imputation. This definition es-
tablishes sufficient conditions to obtain proper valid results. If the analysis procedure
is congenial to the imputation model, the MI estimators are valid.

Nielsen (2003) showed that a necessary and sufficient condition for an analysis
procedure to be congenial to an imputation procedure is that the complete data and
observed data estimators are maximum likelihood efficient and their matching vari-
ance estimators are equal to the inverse Fisher information. These results imply that
the congeniality assumption does not hold for some simple estimators, for example,
OLS for heteroscedastic errors. Other cases of uncongeniality can be given when dif-
ferent variables are used in the imputation as those used in the analysis of the scientific
model of interest. Alternative, although computationally more complex variance esti-
mators were proposed by Robins and Wang (2000) and Yang and Kim (2016, Theorem
2).

3.3 Frequentist Inference

Given certain regularity conditions in a congenial setting, MI approximates a full

Bayesian analysis (Carpenter and Kenward, 2012). Since in some fields of applica-
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tions a frequentist approach is more desirable, we will discuss how to perform fre-
quentist inference on 6, i.e., how to obtain valid estimations of the variance, sampling
distribution and confidence intervals. For a more extensive presentation Chapter 4 of
Rubin (1987) is recommended.

We want to estimate a uni-dimensional parameter 6 in our model of interest (2.1).
Let’s assume that the imputation and analysis models are congenial. Applying the
procedure explained in section 3.1 we create M imputed data sets {?n’fis, Y°¥}, m=
1,...,M using the conditional predictive distribution f(Y™*|Y°% R) and then use
those data sets to solve the estimating equation in the analysis model to obtain é;
and G,,.

In a first scenario, let’s assume that the number of imputations M is infinite. Then,

by virtue of equations (3.13) and (3.14), é\MI’OO is a consistent estimator of 6 and
Var(By1 00) = Woo + Boo (3.18)

as defined in equations (3.3) and (3.4). If the sample size is large enough such that
0 is normally distributed if the data were fully observed, the Bayesian posterior of 6

from a frequentist perspective gives

—~ —

0 ~ N(By11.00s Woo + Boo) (3.19)

Therefore a 100(1 — @)% confidence interval can be constructed as

(QMI,OO —Z1-a/21 L1005 Omr,00 T 21072/ ZMI,oo) (3.20)

3.3.1 Finite Imputations

Let’s assume now that the sample size is still large but the number of imputations M
is finite, then the normal approximation given by equation (3.19) may not be appro-
priate. Let S,, denote the finite set of complete data statistics {§m, . }. The objective
is to approximate the conditional distribution of 6 given S,,. This idea is developed
with rigor in Rubin, 1987, Section 3.3.

Using the fact that S, is an i.i.d. sample from the posterior mean and variance of
0, weak regularity conditions and using asymptotic theory it can be shown that the

distribution of 0y, ., and W, conditional on S,; and Bo

(Bur1.001Su Boo) ~ N(Byyp, Boo /M) (3.21)
(Weo|Sas» Boo) ~ (W, < Boo /M) (3.22)
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where, as per Rubin, 1987, Section 2.10, A ~ (B, < C) means that the distribution
of A tends to be centered at B with each component having variability substantially
less than each positive component of C. Combining equations (3.21) and (3.22) with
(3.19) we obtain

0 ~N(6y, W+ (1+M1B,). (3.23)

Using Cochran’s theorem (Cochran, 1934) and by virtue of equation (3.21), the
distribution of B, conditional on S,; is proportional to an inverted y random variable

with M — 1 degrees of freedom, that is:

((M—l)Ai
B

oo

SM) ~ e (3.24)

Then given S,,, the variance in equation (3.23) is the sum of an inverted y2 and a
constant. That implies that the distribution of 6 given S,, follows a Fisher-Behrens
distribution. Nevertheless Rubin (1987) provides an approximation of the conditional
distribution of the variance to an inverted y?, and then formulates the related t dis-

tribution. Specifically, the proposed approximation is:

(V W+(1+M "B

— 1S, |~ y? (3.25)
W+ (1+M-1)B,, M) Xy

being the numerator estimator of the variance, 3,,; as it was defined in equation (3.2),

and v the degrees of freedom

v=M-1)(1+r,'), (3.26)
where ( N
1+M)B

represents the relative increase in conditional variance due to the missing data (see
Rubin, 1987).

The use of Rubin’s approximation and its variance estimator in equation (3.23)
allows to perform statistical inference about 6 using a t distribution with v degrees of

freedom. For example, a 100(1 — a)% confidence interval can be constructed as

(@MI —t,(1—a/2) s, Oupr + £,(1— a/2)y/ EMI) (3.28)

If 6 is a p-dimensional vector, Li, Raghunathan, and Rubin (1991) propose to base
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the tests on the approximation:

(é\MI - Q)T/Z\:I\_/[ll(é\MI —0)

p(+7) o :29)
where
1 1\ oy
r=—(1+— |tr(BW™),
p M
and

4+(—a)(1+—20Y/r)" ift=pM—1)>4
t(l+p (A +r1)?/2 otherwise.

In the case of a small sample size, where the complete data statistic is already t
distributed, Barnard and Rubin (1999) discuss how to adjust the degrees of freedom.

3.4 Number of Imputations

It has been shown that multiple imputations can yield valid inference, even for values
of M between 3 and 5 (Carpenter and Kenward, 2012; van Buuren, 2012). This
practice is justified analyzing the loss of relative efficiency when using a finite value

of M instead of infinite imputations. The relative efficiency is, approximately
B = (142 Bt o (3.30)
M >

where
Ty +2/(v+3)

ry+1

(3.31)

is the estimated fraction of missing information, with v and r,, given by equations
(3.26) and (3.27) (Rubin, 1987). For example, if the fraction of missing information
is 0.3 and M is set to 5, the estimated variance ,,, will be only 1.06 times larger than
fIMI,OO yielding a confidence interval just +/1.06 = 1.03 times longer than ideal.

The problem with this argument is that, while it is valid in the estimation of 6,
it doesn’t work the same way when estimating p-values (Carpenter and Kenward,
2012). Graham, Olchowski, and Gilreath (2007) did a simulation study investigating
the effect of M on the statistical power of a test for detecting an effect size of less than
0.1. They found that in order to be closer than 1% of the theoretical power and for
fractions of missing information varying from 0.1 to 0.9, the number of imputations
M must range from 20 to values larger than 100.

Van Buuren (2012) suggests to use a small number of imputations when doing an

exploratory analysis to build the imputation model, and increase M when doing the
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final analysis.

3.5 Multivariate Missing Data

Real-world data sets with missing values will often have more than one incompletely
observed variable. So far, this chapter has focused on the justification and inferential
aspects of the MI estimator without considerations on how to select and specify the
imputation model. The following sections define the two main approaches available:
Joint Modeling (JM) and Fully Conditional Specification (FCS).

3.5.1 Joint Modeling

Joint Modeling supposes that the data can be described by a multivariate distribution
and assuming ignorability, imputations are created by drawing from said fitted distri-
bution. Common imputation models are based on the multivariate normal distribution
(Schafer, 1997). For simplicity, let’s assume that

Y ~N(u, ), (3.32)

where u = (us,...,u,) and X a p X p covariance matrix. Taking a flat prior distribution
for uand a W,(v,S,) prior for ¥, if Y were fully observed, the posterior distribution

of (u, %) given Y could be written as the product of
ulY, = ~N(Y,n %) (3.33)
and
Y ~ W, (n+ v, (5;1 +S)™) (3.34)

where Y and (n—1)"'S are the sample mean and covariance matrix respectively (Car-
penter and Kenward, 2012, Appendix B).

If Y is incompletely observed, the estimation of equations (3.33) and (3.34) can be
achieved with the use of the Gibbs sampler as described in algorithm 1. The procedure
will draw parameters in an alternate fashion, conditional on all others and the data.
In the first step the missing data is commonly initialized with a bootstrap sample of the
observed data. After the sampler reached its stationary distribution, multiple imputa-
tions can be generated by taking Y™ draws sufficiently spaced from each other. The
“x” symbol denotes that the variable or parameter is a random draw from a posterior
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Algorithm 1 Joint Modeling Gibbs Sampler

Fill in missing data Y™ bootstrapping the observed data Y °

Estimate Y and S

Draw 2:1 and u, using equations (3.34) and (3.33)

Draw Y™ ~ N(u,,%,)

Update the estimation of Y and S

Repeat steps 3 to 5 a large number of times to allow the sampler to reach its
stationary distribution.

a9 kW

conditional distribution.

This methodology is attractive if the multivariate distribution is a good model for
the data but may lack the flexibility needed to represent complex data sets encoun-
tered in real applications. In such cases, the joint modeling approach is difficult to
implement because the typical specifications of multivariate distributions are not suf-
ficiently flexible to accommodate these features (He and Raghunathan, 2009). Also,
most of the existing model-based methods and software implementations assume that
the data originate from a multivariate normal distribution (e.g., Honaker, King, and
Blackwell, 2011; Templ, Kowarik, and Filzmoser, 2011; van Buuren, 2007).

Demirtas, Freels, and Yucel (2008) showed in a simulation study, that imputations
generated with the multivariate normal model can yield correct estimates, even in the
presence of non-normal data. Nevertheless, the assumption of normality is inappro-
priate as soon as there are outliers in the data, or in the case of skewed, heavy-tailed
or multimodal distributions, potentially leading to deficient results (He and Raghu-
nathan, 2009; van Buuren, 2012). To generate imputations when variables in the
data set are binary or categorical, latent normal model (Albert and Chib, 1993) or the
general location model (Little and Rubin, 2002) are also alternatives.

3.5.2 Fully Conditional Specification

Sometimes the assumption of a joint distribution on the data can not be justified, espe-
cially with a complex data set consisting of a mix of several different continuous and
categorical variables. An alternative multivariate approach is given by the Fully Con-
ditional Specification. The method requires the specification of an imputation model
for each incompletely observed variable and impute values iteratively one variable at
a time. This is one of the great advantages of this method, since it decomposes a high
dimensional imputation model into one-dimensional problems, making it a general-
ization of univariate imputation (van Buuren, 2012).

This method is most commonly applied through the Multivariate Imputation by
Chained Equations (MICE) algorithm (van Buuren and Groothuis-Oudshoorn, 2011).
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This method is summarized in algorithm 2. For each variable with missings a density,
fi(Y;|Y;-,©;), conditional on all other variables is specified, where ©; are the impu-
tation model parameters. MICE, essentially a MCMC method, visits sequentially each
variable with missings and draws alternately the imputation parameters and the im-
puted values.

Algorithm 2 MICE (FCS)

1: Fill in missing data Y™ bootstrapping the observed data Y°"
2: Forj=1,...,p

a. Draw @;, from the posterior distribution of the imputation parameters.
b. Impute Yj* from the conditional model f;(Y;|Y;-, @Jf)

3: Repeat step 2 K times to allow the Markov chain to reach its stationary distribution.

The FCS approach splits high-dimensional imputation models into multiple one-
dimensional problems and is appealing as an alternative to joint modeling in cases
where a proper multivariate distribution can not be found or when it does not exist.
The choice of imputation models in this setting can be varied, for example, paramet-
ric models like the Bayesian linear regression, logistic regression, logit or multilevel
models. Liu et al. (2013) studied the asymptotic properties of this iterative imputation
procedure and provided sufficient conditions under which the imputation distribution
converges to the posterior distribution of a joint model.

van Buuren (2012) claims that, in practice, K in step 3 of algorithm 2 can be
set to a value between 5 and 20. This is a strong claim, since usual applications of
MCMC methods require a large number of iterations. The justification is based on
the fact that the random variability introduced by using imputed data in step 2, will
reduce the autocorrelation between iterations in the Markov Chain, speeding up the

convergence.

3.5.3 Compatibility

To discuss the validity of the FCS approach it is necessary to define the term “compat-
ibility” first. A set of density functions, {f},..., f;}, is said to be compatible if there is
a joint distribution f that generates such set.

The same flexibility of MICE that allows for very special conditional distributions
and imputation models has as a drawback the fact that the joint distribution is not
explicitly known, and there is the possibility that it doesn’t even exists. This is the
case if the conditional distributions specified are incompatible.

Incompatibility in MICE can be the result of imputing deterministic functions of
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variables in the data along with those same original variables. For example, there
could be interaction terms or nonlinear functions of the data in the imputation models,
introducing feedback loops and impossible combination in the algorithm which would
lead to invalid imputations (van Buuren and Groothuis-Oudshoorn, 2011). For that
reason, the discussion about the congeniality of the imputation and substantive models
is replaced by an analysis of their compatibility.

Although FCS is only justified to work if the conditional models are compatible,
Buuren et al. (2006) reports a simulation study with models with strong incompatibil-

ities where the estimates after performing multiple imputation were still acceptable.
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Chapter 4
Imputation Methods

Van Buuren (Appendix A, 2012) contains an overview of available MI libraries for
programming languages and statistical software like R, SPSS, SAS, S-Plus and Stata.
Salfran and Spiess (2015) described some of the most common imputation methods
included in these software packages. This chapter provides more details about the
imputing algorithms, incorporating also the methods that will be used later in Chapter
6 in the simulation experiment.

Section 4.1 illustrates the Bayesian Linear regression, one of the older and most
popular methods. Section 4.2 describes Amelia a method published in 2010. Section
4.3 outlines algorithms in the family of Hot Deck imputation methods, like the PMM
approach. Section 4.4 depicts a rather new method based on the software I[VEware.

Section 4.5 present a class of imputation methods based on recursive partitioning.

4.1 Bayesian Linear Regression

Imputation by parametric Bayesian regression models is one of the most common
methods of imputation for an univariate variable, Y;, with missing values (Rubin,
1987, see Examples 5.1 and 5.3). It is implemented in practically all imputation soft-
ware packages. It assumes that the posterior density of Y}, f (Y;|w, 1), can be specified
as

Y, ~N(wp,0%)  o>0, (4.1)

where w = (1,Y;-), n = (,log(c)), B is a vector of j components and o is a scalar.
If the prior density of 7 is proportional to a constant and the missing values are MAR
the imputation procedure is given by algorithm 3

Using the theory of generalized linear models (GLM, McCullagh and Nelder, 1989)

the Bayesian Linear Regression model can be also extended through a link function
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Algorithm 3 Bayesian Linear Regression - Part 1

1: Estimate E from the model Y; = wf8 + € using the observed data.
2: Draw 2%, a y, _ random variable and let

ol = Z(Yij — B/ %2

NMops

3: Draw Z, a N(0, 1) random variable and let

—1/2
B.=B+o. (Z[wi/wi]) z

Mops

where (Znobs[wi/wi])_l/z is the triangular square root obtained by the Cholesky
factorization of 3 = [w;/w;].
4: Impute Y™ as ’
Yl; =w;f,+&0,,

where &; are independently drawn from a standard normal distribution.
5: Repeat steps 2 to 4 M times to generate multiple imputations.

g(+) such as:

E(Yj|w) = g7 (wp) (4.2)
Var(Y;|w) = v(g" (wp)) (4.3)

where v is a skedastic function of the mean.
In case that g(x) = x and v(x) = o2, the GLM model is simplified to the linear
regression model in equation (4.1). If for example Y; is a binary variable, then using

a logit link function such as E(Y;|w) = logit ' (wp) equation (4.1) turns into:
Y; ~ Bernoulli(p), (4.4)

where p = logit *(wf). The imputation algorithm is the same as algorithm 3 except
the actual imputation step, where Yl; is a draw from a Bernoulli distribution with
parameter p; = logit ™! (w;,).

This imputation procedure is justified by Rubin (1987) and may be expected to
allow valid inferences not only if the assumptions underlying the imputation models
are correct but, due to the “self-correcting” property of MI Little and Rubin (2002) and
Rubin (1987, 1996, 2003), to a certain extent even in more general situations, like
non-linear or non-normal models in the case of continuous Y; or misspecified mean
models in the binary case.
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4.2 Amelia

Honaker, King, and Blackwell (2011) propose a joint modeling approach in the form
of an imputation method called Amelia IT.

Amelia assumes a normal multivariate distribution for the variables in the data
set, i.e., Y ~ N(6,%). The method avoids drawing from the posterior distribution
of the parameters, as in step 2 and 3 from algorithm 3 by combining the bootstrap
(Efron, 1979) with the EM algorithm (Dempster, Laird, and Rubin, 1977). The impu-
tation method is briefly described by algorithm 4. For more details on the expectation-

maximization with bootstrapping (EMB) algorithm see Honaker and King (2010).

Algorithm 4 EMB imputation (Amelia)
1: Bootstrap M incomplete data sets.
2: Estimate vector ; and matrix il\i, i=1,...,M, using the EM algorithm
3: Produce M imputed data sets drawing from N (lu;, fli), i=1,...,M.

This imputation algorithm is provided by the R package Amelia. If the variable Y;
to be imputed is non-normal, Honaker, King, and Blackwell (2011) suggest to trans-
form the data to make it look closer to a normally distributed variable. In particular,
if Y; is nominal variable, they propose to impute them as if it were continuous, scale it
into probabilities and draw values for the multinomial distribution using these proba-

bilities.

4.3 Hot Deck Imputation

Hot deck imputation is an alternative to fully parametric methods, which consists of
replacing the missing value with the response of a “similar” observed variable. One
common class of hot deck methods is constituted by k-nearest neighbor (kNN) tech-
niques with advantages that have been discussed by Andridge and Little (2010), Little
(1988), and Schenker and Taylor (1996). The method is simple, it seems to avoid
strong parametric assumptions, only eligible and observed values are imputed, and it
can easily be applied to various types of variables to be imputed.

The idea is to find, for each missing value Y;;, k completely observed neighbors,

somehow close with respect to Y;;-. From this pool of neighbors, one donor is ran-

i
domly selected and its value YJ is taken as an imputation for Y;;. Closeness is usually

expressed as a distance measure, one popular being based on the estimated condi-
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tional mean of Y}|Y;-,
— |F(ymi T(yob
di i = |E(Y; 1Y) = EQYYeg-) | (4.5)

where Yg‘is denotes case i of variable Y; whose value has not been observed, and K%bs

denotes case i’ of variable Y; whose value has been observed (i, i'=1,...,n).

4.3.1 Predictive Mean Matching

When the linear predictor of the regression of Y; on w = (1, Y;-) is used for the distance
in equation (4.5), the imputation technique is also called “predictive mean matching”
(PMM) imputation and goes back to Rubin (1986, 1987) and Little (1988) who coined
the name. The distance function transforms into:

4P = | (o, — w, Y B°

. (4.6)

where f8* is a random draw from the posterior distribution f in the standard linear
regression model Y; = wf3. Since the matching is based on the linear predictor and
only observed values are imputed, the method can also be applied to impute non-
continuous variables, e.g., binary variables (van Buuren and Groothuis-Oudshoorn,
2011). Algorithm 5 describes the imputation method.

Algorithm 5 Predictive Mean Matching

1: Draw parameter 3* from its posterior distribution using steps 1 to 3 of algorithm
3.
2: For each missing case i in variable Y;

a. Calculate df i’}“/’ for each observed case i’ of variable Y.

b. Sort the distances and create a set (donor pool) of the first k observed values
Y,; with smallest d/}".

c. Select Yl.,*]. at random from the donor pool.
d. Impute Y =Y.
J r]

3: Repeat steps 1 and 2 M times to generate multiple imputations.

Under the assumptions that the distance function in equation (4.5) is topologically
equivalent to the Euclidean distance and that k = n” with r € (0,1) as the sample
size n — oo, Dahl (2007) shows that imputations based on kNN techniques can be

interpreted as draws from the conditional distribution of the incompletely observed
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variable given observed values, that is:

* [y mis obs 2 mis [y mis obs
(Y7 1Ym0, Y7) —— (Y |y, vo)
with bounded correlations
p (Y, f (Y-, YP))| < n'4,

where f is any measurable function. This means that if the assumptions are true,
the given kNN method will produce imputations with the correct conditional distri-
bution and they will be asymptotically independent over observations. Dahl (2007)
proposes k(n) = 4/n as this is ‘canonical in the sense of representing the mid-point of
the interval’ defined by r € (0, 1) (Dahl, 2007, p. 5915).

Convergence rates to the true distribution may vary at different query points, de-
pending on whether regions are thinned out by the response mechanism or not, which
is not the case if the missing data are MCAR, as in the simulation study of Schenker
and Taylor (1996). In addition, mostly all imputation software implementation of the
kNN method provides PMM with k being a parameter that is set to be constant violat-
ar

ing the second assumption. Further, is not Euclidean, since it can be zero even

if w#w'.
The implementation of PMM in the R package mice uses a slightly different distance
measure, proposed by van Buuren and Groothuis-Oudshoorn (2011),

-~

dl e = o — wyBl, (4.7)

i,i’

where E is the posterior mean of the parameters of the imputation regression model,
and 3" is a draw from the corresponding posterior distribution (Vink et al., 2014).

Two notes are worth mentioning. First, by using observed Y;; values from some
donors as imputations, it is implicitly assumed, that they are random independent
draws from an approximate posterior distribution of Y].miS given Y]E‘is. Thus, the as-
sumption is, that the probability of observing Y; given Y]E“S is independent of differ-
ences between Yj‘lﬁs and Yj‘ibs, the values of Y;- of completely observed neighbors. Sal-
fran and Spiess (2015) discussed that this is equivalent to assuming, that the missing
data are MCAR within the cells implicitly defined by the k neighbors. Strictly speak-
ing, the assumption is, that the missing data are neither MCAR nor MAR, but missing
locally completely at random (MLCAR).

Second, a special case of kNN imputation is k = 1, i.e. the closest neighbor is the
donor. In this case, there is no random selection of the values to be imputed and even

appropriately taking into account the uncertainty in the parameter estimator of the
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imputation model does not make this method proper. Thus, k should always be larger
than one.

There has been simulation results implying that PMM versions of kNN imputation
seem to work well (e.g., Andridge and Little, 2010; Vink et al., 2014; Yu, Burton, and
Rivero-Arias, 2007). However, it is not clear if kNN imputation techniques are proper
imputation methods. In fact, Schenker and Taylor (1996) state, that if the number of
possible donors is too small, the M imputations will be correlated leading to a higher
variance of the estimator of interest. On the other hand, increasing the number of
neighbors of a case to be imputed (the query point), may lead to biased estimators due
to a violation of the MLCAR assumption. In a simulation study using fixed (three and
ten) possible donors they found a slight under-coverage of the interesting parameter
of two to three percent. The missing data in their study are MCAR. Similar results
are reported from a simulation study of de Jong, van Buuren, and Spiess (2016) with
missing data being MAR, who found no (obvious) bias but mild to moderate under-
coverage using the kNN imputation method with k = 3.

Most standard analysis software packages or functions offer one of these or a simi-
lar kNN technique, often with a default value for k, like k =5 (e.g., SAS Institute Inc.,
2015; van Buuren and Groothuis-Oudshoorn, 2011).

4.3.2 areglmpute

Unfortunately, a distance measure based on linear regression models ignores nonlin-
ear effects of Y;- on Y; and may hence still be too restrictive. Thus, a non-parametric
version of kNN imputation provided by function aregImpute as part of the R pack-
age Hmisc has been proposed by Harrell (2015). The suggested algorithm uses the

following distance function:

a2 = > (AV ) = £i(Yi ) B 4.8)
=1

where f;(-), L = 1,...,L is a cubic spline basis which lead to optimal prediction, ac-

cording to the coefficient of determination R?, of a linear transformation of Y; in the

following additive model:

L
C +Yv]d B a+Zfl(Y]_)[51 + v
=1

The values of 8] are obtained using a non-parametric bootstrap.

Afterwards, the imputed values are obtained exactly as described in the last part
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of Algorithm 5, or optionally by randomly selecting a donor from a neighborhood of
the query point with probability inversely proportional to their distance from the ob-
servation with a missing value. For a description, see Harrell (2015) and the literature

cited therein.

4.3.3 MIDAStouch

A rather new method for kNN imputation can be found in the R package midastouch
(Gaffert, Meinfelder, and Bosch, 2016) which is in turn based on MIDAS, a SAS macro
for multiple imputation using distance aided selection of donors (Siddique and Harel,
2009).

Gaffert, Meinfelder, and Bosch (2016) were concerned with the frequentist prop-
erties of the PMM method, specifically a systematic underestimation of the model vari-
ance. They propose a method based on the Approximate Bayesian Bootstrap which
uses a new distance function in combination with bootstrap weights to construct the
donor pool and select the imputed value.

The distance function used is

d%/T = |(wl - wi’)ﬂ:i/

(4.9)

where 8*, is a random draw from the posterior distribution of _;, as in the distance
function given by equation (4.6) but following the leave-one-out principle, so f_; is
not conditional on the observed case i’.

The donor pool consists of all observed values, defining a probability for every
donor of being used as the imputed value given by

v,d

i,i’

P(Y,=Y) =G o
’ Zi’:bl(vi’di,i’

(4.10)
where v denotes non-negative bootstrap weights of the donors, and k a “closeness”
parameter adjusting the importance of the distance. For a more detailed description

on how to set the bootstrap weights or other parameters, see Gaffert, Meinfelder, and
Bosch (2016).

4.4 Iterative Robust Model-based Imputation

Templ, Kowarik, and Filzmoser (2011) propose an algorithm called ‘Iterative Robust
Model-based Imputation’ (IRMI) implemented in the R package VIM (Alexander Kowarik
and Matthias Templ, 2016). The method copies the functionality of IVEware (Raghu-
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nathan et al., 2001), modifying the methodology by initializing missing values with
the median and adopting one of several robust estimation methods to reduce the in-
fluence of outlying observations on the regression parameter estimates.

The essence of the method is described by algorithm 6. It can be seen that it is
an imputation procedure like the Bayesian linear regression, but instead of drawing
parameters from their posterior distribution or bootstrapping the observed data set,
they are fixed at their posterior mean and variance. Supposedly the factor multiplying
the estimated variance accounts for the additional uncertainty in the imputations due
to the need of estimating the model, although no justification is given for the value of

this factor.

Algorithm 6 Iterative Robust Multiple Imputation

1: Estimate, using a robust method, /3 from the model Y; = w3 using the observed

data.
Y= wf 14+
ij t n

2: Impute Y™ as
where & is the robust variance estimator from the residuals in the model.
3: Iterate steps 1 and 2 until the imputed values stabilize, i.e., until

*,1 *,1—1
2 v <6

Mmis

for a small constant 6, where Yl;l and Yi;’l_l are the imputed values in the [-th and
(I —1)-th iterations respectively.
4: Repeat steps 1 to 3 M times to generate multiple imputations.

The default option for continuous dependent variables in IRMI is the MM-estimator
proposed by Yohai (1987), which is efficient in linear regression models with normally
distributed errors but at the same time largely ignores outliers. The principal prob-
lem of such an automatic method, however, is that it does not differentiate between
valid and invalid outliers. Thus, e.g., if the conditional distribution of a variable to be
imputed is skewed, valid values in a sparsely populated region may be ignored when
the model is fitted. This would lead to estimating the imputation model using system-
atically selective samples and thus to adopting an improper imputation method. The
same arguments apply to the robust imputation techniques for discrete variables.

A limited simulation study presented by Templ, Kowarik, and Filzmoser (2011) is
intended to show the good properties of the technique. However, coverage rates of the
true values in this study range between 0.882 and 0.906, given a = 0.05. In fact, this

imputation method seems not to be proper. In an additional study, imputation tech-
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niques are evaluated based on comparisons of true but unobserved and imputed val-
ues. With respect to these error measures, the technique proposed in Templ, Kowarik,
and Filzmoser (2011) performs better than an imputation method using Bayesian lin-
ear regression. However, for an imputation method to be proper, it is neither required
nor implied that some measure of distances between true and imputed values is min-
imal (see Rubin, 1987, 1996, 2003). Salfran, Jordan, and Spiess (2016) presented
simulation results showing the method regularly producing larger biases and lower
values of coverage than others methods. At the same time the reported mean square

errors were smaller than the remaining methods.

4.5 Recursive Partitioning

Let’s continue with the incompletely observed variable Y;. Assume that we want to use
Y; = h(Y;-), where h is a model that includes interactions among the Y- predictors.
The imputation methods described so far allow the use of such a model, although it
would make the matter of congeniality even harder to justify, to the point of getting
uncongenial models if the scientific model of interest does not include such interac-
tions.

An alternative approach is described by Doove, Van Buuren, and Dusseldorp (2014)
who define a new class of non-parametric multiple imputation methods based on Clas-
sification and Regression Tress (CART) or Random Forests (RF) algorithms. These two
methods fall into the umbrella concept of “recursive partitioning”, that allows for the
modeling of internal interactions in the data by sequentially partitioning the data set
into homogeneous subsets. Implementations of both methods for the language R can
be found in the packages mice (van Buuren and Groothuis-Oudshoorn, 2011) and
CALIBERrfimpute (Shah, 2014).

4.5.1 Classification and Regression Trees

CART methods uses a decision tree as a predictive model that represent the observa-
tions Y;- as branches from which conclusions about Y}, the leaves, can obtained. The
kind of tree is determined by the type of target variable, classification trees for discrete
Y; and regression trees for continuous Y;.

Algorithm 7 summarizes the imputation method. It can be seen that the idea is
similar to PMM, where the predictive mean is calculated by a tree model instead of
a regression model, and the donor pool is specified by all observations in the corre-

sponding leave. Note that the fitting step of the algorithm doesn’t specify the kind of
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Algorithm 7 Classification and Regression Trees

Draw a bootstrap sample {Yj"bs, Yj‘ibs} of size np, from {Yj(’bs, Yj‘ibs}.

Fit Yj‘)bs by a tree model h(Y;-) restricted to Yj‘lbs.

For each Yi;“is, i=1,..., Ny let Z; = {Yl.‘,’]'?S : h(Yi?}’f) = h(Yl.IJ?ﬁs), i'=1,..., N}
Draw one donor Yi,*j from Z; e

Impute Yl; = Y;j.

Repeat steps 1 to 5 M times to generate multiple imputations.

AN L

tree model, allowing the use of any type.

Van Buuren (2012) claims that CART methods are robust against outliers, can deal
with multicollinearity and swekwed distributions, and are able to fit interactions and
nonlinear relationships. Nevertheless, in a simulation study by Doove, Van Buuren,
and Dusseldorp (2014) it is shown that, even if the method is better in some cases
than PMM or the Bayesian Linear Regression when estimating the coefficient of an
interaction term, it fails to reach nominal coverage levels consistently. One the at-
tributed explanations is the sequential nature of the tree models leading to inexact

imputation models due to sub optimal and unstable trees.

4.5.2 Random Forest

Recursive partitioning algorithms, like CART, are commonly criticized for overreacting
to minor changes in the data and tend to overfit the models. Random forests (RF)
are an alternative that differ from CART by constructing a multitude (forest) of tree
models. The objective is to average many decision trees, reducing the variance and
recurrence of unstable trees (Doove, Van Buuren, and Dusseldorp, 2014).

The algorithm needed for RF imputation is a modification of algorithm 7. The
first two steps are replaced by a construction of k bootstrapped data sets, k being the
number of trees in the forest, and the fitting of k tree models. Optionally, each tree can
be fitted using the full bootstrapped data set or randomly selecting the input variables.
To avoid reduced variability by imputing based on an averaged tree, possibly due to
the higher stability of the individual trees, the imputed value is randomly selected
from the union of the k donor pools. For more details on the algorithm see Doove,
Van Buuren, and Dusseldorp (2014, Appendix A)
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Chapter 5

Robust imputation with GAMLSS and

mice

De Jong (2012) proposed a new imputation technique based on a class of generalized
additive models for location, scale, and shape (GAMLSS), which were introduced by
Rigby and Stasinopoulos (2005). The use of GAMLSS allows the flexible modeling
of the location (e.g., the mean), the scale (e.g., variance), and the shape (e.g., skew-
ness and kurtosis) of the distribution of the incompletely observed variable, given the
observed data.

The original work on the imputation technique was limited since the method was
only able to deal with missings in one variable, the implementation was numerically
unstable, and although it was published by de Jong (2012) and de Jong, van Buuren,
and Spiess (2016) there wasn’t any software library that allowed its use by the general
public. A new R library, named ImputeRobust, was created as part of this thesis,
extending the mice package with a class of GAMLSS imputation functions.

This chapter describes the GAMLSS-based imputation method and the referred
software library. Section 5.1 introduces the required model at the basis of the de-
veloped method. Section 5.2 shows how imputed values are obtained and explains
the algorithm. Section 5.3 provides details of the software and examines how it can
be adjusted. Section 5.4 presents an example of real usage of the ImputeRobust
library. Section 5.5 discusses theoretical considerations and limitations of the impu-

tation method.

5.1 GAMLSS

The assumptions made by the Bayesian linear regression method described in section

4.1 are quite strong, even if extended with the help of generalized linear models. Its
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most flexible formulation uses a linear prediction function to model the conditional
expectation and variance of the variable with missing values Y;.

The imputation technique developed by de Jong (2012) and de Jong, van Buuren,
and Spiess (2016) also proposes to impute missing values based on a model, not unlike
Bayesian linear regression. The main difference is that instead of assuming a Normal
model in the Bayesian Linear Regression proposed by Rubin (1987), the newer ap-
proach designed by de Jong, van Buuren, and Spiess (2016) uses a model belonging
to the class of GAMLSS (Rigby and Stasinopoulos, 2005).

Let Y; be the variable to be imputed, we assume that

Y~ 2(81(0)) =11,8(07) =1M,...,8c(0]) =1mg), j=1,....n, (5.1)

where 9 is a parametric distribution with K parameters 9}‘, k =1,...,K which are
connected to the additive predictors 1, by the known monotonic link functions g, ().

The parameters (6}, 9].2, 91.3, 9]4) are typically associated with the location, scale,
and shape parameters of the distribution 9. The actual value of K determining the
number of parameters depends on the distribution contemplated, being K = 4 the
maximum value considered. It should be clear from the notation that the distribu-
tion parameters are individually associated with each observation of Y;. Finally, the

additive predictors 7, take the form:

Ly
M = Py + Zhlk: (5.2)
=1

where Q, is a fixed known design matrix, ﬂkT a vector of linear predictors, and h;; =
h;(x;i) is the vector evaluation of a unknown smoothing function h;; of the explana-
tory variables x;,. Equation (5.2) is known as the semi-parametric additive formula-
tion of GAMLSS and for specific combinations of [ and k parametric, nonparametric
and random-effects terms could be modeled (Rigby and Stasinopoulos, 2005; Stasinopou-
los and Rigby, 2007).

The model presented relaxes the Bayesian linear regression model as described in
Section 4.1, the latter being just a particular case. If 9 is taken as the normal distri-
bution and the equation (5.2) is reduced to only a linear predictor, with appropriate

link functions, the model is reduced to the Bayesian linear regression model.

5.2 Imputation

The chosen distribution, 2, in model (5.1) defines the type and number of parame-

ters to be modeled. The default distribution was assumed to be normal by de Jong,
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van Buuren, and Spiess (2016) and de Jong (2012), but other alternatives may be
preferable. In principle, any family implemented in the gamlss package (Rigby and
Stasinopoulos, 2005) can be selected. This close relationship with the gamlss pack-
age is an advantage since a user of the imputation method could adopt any extension
of gamlss to restrict imputations to a certain range, e.g., by specifying a truncated or
censored version of any distribution.

For the default normal distribution, the mean and variance are estimated, but other
distributions may also require the estimation of the skewness and kurtosis. Adopting
models with more parameters increases their flexibility and thus may increase the
chance that the imputation procedure is proper in the sense of Rubin (1987). On
the other hand, larger sample sizes may be needed to identify the larger number of
parameters.

A caveat of the gamlss package is that it does not support Bayesian inference.
Hence it is not possible to obtain multiple imputations by drawing from the posterior
predictive distribution. De Jong, van Buuren, and Spiess (2016) and de Jong (2012)
overcame this issue approximating the predictive posterior distribution by the boot-
strap predictive distribution (Efron, 2012; Harris, 1989):

FrOyeyet, Y ) = f FOMEIR, Y (A, Yo))d, (5.3)

where 7) denotes the possible values of the imputation model parameters, 1“)(Yj°bs, Y_"]?”)
is an estimator of such parameters, and f (7} |ﬁ(1/j°bs, Y_"]?’s)) is the sampling distribution
of the imputation parameters evaluated at the estimated values. The sampling distri-
bution is simulated with a parametric bootstrap acting as a replacement for the poste-
rior distribution of the imputation parameters. Algorithm 8 shows how the imputation
process is realized after the distributional assumptions are made.

On the other hand, Umlauf, Klein, and Zeileis (2017) developed a conceptional
framework called Bayesian additive models for location, scale, and shape (BAMLSS)
because of the close similarities to GAMLSS. The key difference centers around a crit-
ical component of the fitting algorithm of GAMLSS: the maximization of a penalized
likelihood function of the parametric vectors f3, and hyperparameters of the smoothing
terms h;; in equation (5.2). The newly proposed method provides Bayesian analysis
features to GAMLSS by assuming the existence of sensible prior distributions for said
parameters, instead of them being fixed.

The use of BAMLSS opens an alternative way to generate imputations. The method
is very close to GAMLSS but with the selection of particular priors more general model

terms could be defined. Umlauf, Klein, and Zeileis (2017) also created a modular
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Algorithm 8 GAMLSS imputation

1: Fit model (5.1) using the observed data {Yj"bs, Y_";’S} obtaining estimates ﬁ{, ﬁ;,

7} and 7).
2: Resample Yj‘”’S as follows:

obs IN RS RS BN |
Y3 ~ 21, My, M3, 1) -

3: Define a bootstrap sample B = {Yj‘ibs, Y_";’S}
4: Refit model (5.1) using B. This leads to adapted estimates ﬁ{, ﬁé, ﬁJS and f)ﬂf.
5: Impute Y™ as follows:

T~ D 7).

6: Repeat steps 2 to 5 M times to generate multiple imputations.

computational architecture that is available in the R package bamlss. The driving
concept of the imputation with BAMLSS is the possibility of drawing posterior param-
eters with MCMC sampling. Algorithm 9 describes how imputations with BAMLSS can
be obtained.

Algorithm 9 BAMLSS imputation

1: Fit model (5.1) using the observed data {Yj"bs, Y_"J?’S} obtaining estimates ﬁ]i, ﬁé,
fpanddy. .
2: Draw estimates 77, M5, 7y and 7}, using MCMC sampling with estimates 1], 75,
13, and 1), as starting points.
3: Impute Yj’"“ as follows:
Y~ D, 11y, T 7).

4: Repeat steps 2 to 5 M times to generate multiple imputations.

How the two methods compare to each other is something that will be discussed
in the next chapter after the simulation results are presented. A relevant argument is
given by Fushiki (2005) who showed that the bootstrap predictive distribution works
better than the Bayesian predictive if the underlying model in the sampling distribution
is misspecified.

De Jong (2012) and de Jong, van Buuren, and Spiess (2016) presented simulations
results assuming a normal distribution when imputing a single incompletely observed
variable in a bivariate data set. The results were valid even if the variable to be im-
puted was non-normal or counted, except for heavy-tailed distributions where the re-
sults were unsatisfactory and instances where the algorithm failed to imputed values.
Salfran and Spiess (2015) expanded the scope of the initial research and showed that

the good properties hold for more complex missing data structures and multivariate
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data sets, although with the same problems.

To address the shortcomings of the previous research, Salfran and Spiess (2018b)
published an R package called ImputeRobust. The software library is integrated with
the popular imputation package mice (van Buuren and Groothuis-Oudshoorn, 2011)
increasing its functionality with the inclusion of both GAMLSS and BAMLSS impu-
tation algorithms. The package stabilizes gamlss enough to allow for more flexible
distributions other than the normal with the expectation of improved results. Specifi-
cally, the four-parameter Johnson’s SU distribution was extensively used, allowing for
better results when imputing very asymmetric or leptokurtic data. Also, the package
expands the distribution families provided by bamlss for fitting and MCMC sampling

algorithms. The following section describes its implementation.

5.3 Software Implementation

Two imputing functions, mice.impute.gamlss() and mice.impute.bamlss(), with
the addition of the fitting function ImpGamlssFit() represent the most important
software procedures in the ImputeRobust library (Salfran and Spiess, 2018a,b).

The function ImpGamlssFit() is internal, and its job is to read in the data and
model parameters to create a bootstrap predictive sampling function, i.e., it will work
through steps 1 to 4 of Algorithm 8. The fitting step makes use of the gamlss package
to fit model (5.1) based on (penalized) maximum likelihood estimation and adopt-
ing the default link functions. Rigby and Stasinopoulos (2005) and Stasinopoulos
and Rigby (2007) provide a detailed description of the fitting algorithms and their R
implementation.

For the smoothing functions hj;, in the additive predictors given by equation (5.2),
the choice is between cubic splines, penalized splines or local polynomial regression
surfaces. By default, and based on computational stability, we selected P-splines (pe-
nalized B-splines) to construct the smoothing terms. Specifically, the splines consist
of 20 knots, a piece-wise polynomial of second degree, a second order penalty with
smoothing parameters automatically selected using a local Maximum Likelihood cri-
terion. A theoretical explanation of the selected P-splines can be found in Eilers, Marx,
and Durbéan (2015).

Even if the P-splines smoothing functions are considered to be stable in the gamlss
package, sometimes the fitting algorithm may diverge. For example, if samples are
too small and the volume of the predictor space gets too large, computational prob-
lems like exploding variances could arise. To prevent abnormal termination of the
algorithm, the complexity of the model is automatically restricted, for instance, the
degree of the polynomial, the order of the penalty, or the stopping time of the fitting
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algorithm can be reduced.

The user can modify or increase further the degree of model simplification through
optional arguments that can be introduced in the top mice() function call. These
arguments, like cc or cyc, control the convergence criterion or number of cycles of
the inner GAMLSS fitting function, respectively. A more exhaustive description can
be found looking at the auxiliary functions glim.control () and gamlss.control()
provided by the gamlss package (Rigby and Stasinopoulos, 2005).

Alternatively, since the estimation of the distribution parameters is done on an indi-
vidual basis, the computational problems could be reduced to a subset of imputations
with extreme values. Then, instead of decreasing the complexity of the full model,
the simplification could be restricted to the extreme cases. In a worst-case scenario, a
different imputation method can be used for such data points. The Boolean argument
EV can be used to allow for extreme values correction.

The necessary R formula objects for the model are automatically created by the
function during execution time. The default and simplified imputation models can be
controlled with the arguments gam.mod and mod . planb. These take the form of a list
with elements specifying the type of smoother and its parameters. Another way of
adjusting the definition of the models is the 1in.terms argument. This last argument
can be used to define which variables should enter model (5.2) linearly.

To improve the stability of the software, distributional parameters can be modeled
as a constant term for all units, i.e. 1, = C, for some values of k where C, is a
constant, this is equivalent to say that gk(Gf) = C for j =1,...,n. The selected family
determines the value of K in equation (5.1) and therefore how many parameters are
to be modeled. The argument n. ind . par sets the maximum number of parameters to
be fitted with the semi-parametric additive model (5.2). For example, if the Johnson’s
SU family (a four parameter continuous distribution) is selected and n. ind.par = 2,
then the mean and the deviation are vectors, but the shape parameters are restricted
to be the same for all units. The numbers of individually fitted parameters in the
simplified model takes the same value as n.ind.par but can be set to a different
value through argument n.par.planb.

The function mice.impute.gamlss() has the same structure as the imputation
methods included in the mice package, meaning that method = "gamlss" is a valid
argument that can be directly passed to the mice() function. As it was established
in the previous section, the normal distribution is the default response distribution
family used by the fitting and imputation methods, but a different distribution family
can be utilized instead by changing the value of the argument family.

For convenience, additional functions are included in the package that are equal

tomice.impute.gamlss() but with family and n.ind.par arguments preset to non-
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default values. This allows users to mix different gamlss imputation methods within
one call to the function mice (). All functions are variants of mice. impute.gamlss()
where the "gamlss" part is replaced by a method from Table 5.1. The name of
the function is a reference to the corresponding family from gamlss.family (see
Stasinopoulos and Rigby, 2007)

Method Model distribution
gamlssNO Normal

gamlssBI Binomial
gamlssGA Gamma
gamlssJSU  Johnson’s SU
gamlssPO Poisson

gamlssTF Student’s t
gamlssZIBI Zero inflated Binomial
gamlssZIP  Zero inflated Poisson

Table 5.1: Included univariate gamlss imputation models.

The function mice.impute.bamlss() is very similar to its gamlss counterpart.
Arguments like gam.mod, lin.terms, n.ind.par, and family are still valid for this
function as a step of the algorithm is the fitting of a GAMLSS model. The argument that
controls the behavior of the MCMC sampler is the fundamental difference. This is done
with propose that sets the propose function for model terms. The default proposal
function is set to "iwlsC" which implies that the smoothing variances of univariate
terms are sampled assuming an inverse gamma prior. A detailed description of the

methods provided by bamlss can be found in Umlauf, Klein, and Zeileis (2017).

5.4 Usage

In what follows, we show with an example how ImputeRobust can be utilized in an
estimation task together with mice. Let us assume that we have a hypothetical data set
with 1000 incompletely observed units and five variables. We desire to estimate the
parameters in the linear regression of one dependent on four independent variables.

The four independent variables (X3, ...,X,) are weakly correlated and are random
samples from four specific distributions: the standard normal, the Chi-squared, the
Poisson and the Bernoulli distribution, respectively. The dependent variable, Y, is

created according to the linear regression model:

Y = o+ X1 +XoPy +XaPs + X,y +€, €~N(0,0%). (5.4)
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The vector of linear predictors, 3, and the error variance, o2, are chosen so that the
coefficient of determination, R?, is 0.5.

A non-monotone MAR mechanism dependent on Y and X; was used to delete
values in X,, X5 and X,. These three variables are missing between 24% and 48% of
their values. Appendix A contains the R code needed to replicate the incomplete data
set.

The imputation task can be performed with a simple call of the mice () function:

> require (ImputeRobust)
> imps <- mice(data, method = c("", "", "gamlssGA", "gamlssP0",
"gamlssBI"), seed = 8913)

iter imp variable
1 1 .4 X.3

N =~ O D 0N
Bd Bd Bbd bd B4 b4 B
N R R R
Bd B4 Bbd b4 b e
W W wWw w ww
Bd Bd Bd b4 B4 b4 B
BN N DNDDNDDNDDN

1
1
1
1
2
2

All output is generated by the mice package, for details see van Buuren and Groothuis-
Oudshoorn, 2011. The result is an object of class Multiply Imputed Data Set (mids)

with contents:
> print (imps)

Multiply imputed data set
Call:
mice(data = data, method = c("", "", "gamlssGA", "gamlssPO",
"gamlssBI"), seed = 8913)
Number of multiple imputations: b5
Missing cells per column:
y X.1 X.2 X.3X.4
0 0 477 461 242
Imputation methods:
y X.1 X.2 X.3 X.4
" " "gamlssGA" "gamlssPO" "gamlssBI"
VisitSequence:
X.2 X.3X.4
3 4 5
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PredictorMatrix:
y X.1 X.2 X.3 X.4

y 0 0 0 0 0
X.10 0 0 0 0
X21 1 0 1 1
X31 1 1 0o 1
X.41 1 1 1 0

Random generator seed value: 8913

The value of argument method in the mice function call implies that the distribu-
tion assumed is the Gamma for X,, the Poisson for X5, and the Binomial for X,. This
allows for the imputation of realistic values as compared to the default normal dis-
tribution. Nevertheless, the objective of MI is to achieve the statistical validity of the
estimated values (Rubin, 1996). Sometimes it may be better to use a more flexible
model even if the imputed values are “unrealistic”, for example using a distribution
with larger support, or one being continuous when the variable to be imputed is dis-
crete (see de Jong, 2012; de Jong, van Buuren, and Spiess, 2016; Salfran and Spiess,
2015). Figure 5.1 shows the distribution of the original and imputed data with one-
dimensional scatter plots, also known as strip plots.

The model of interest, as per equation (5.4), is the linear regression of Y on X;,
X,, X5, and X, that created the original data set. The true value of the regression
coefficientisc(1.8, 1.3, 1, -1). Theimputed data sets can be analyzed as follows:

> fit <- with(imps, Im(y ~ X.1 + X.2 + X.3 + X.4))
> round (summary (pool (fit)), 2)

est se t df Pr(>|tl) 1o 95 hi 95 nmis fmi lambda
(Intercept) 0.28 0.43 0.65 17.02 0.53 -0.62 1.17 NA 0.53 0.48
X.1 1.67 0.23 7.35 10.68 0.00 1.17 2.17 0 0.66 0.60
X.2 1.33 0.14 9.85 7.48 0.00 1.02 1.65 477 0.77 0.72
X.3 0.97 0.14 6.99 9.64 0.00 0.66 1.28 461 0.69 0.64
X.4 -0.92 0.41 -2.24 12.99 0.04 -1.81 -0.03 242 0.60 0.55

5.5 Discussion

The imputation method based on GAMLSS requires the selection of the conditional
distribution 2 for each of the variables to be imputed. The decision of which distribu-

tion family to use is a problem that could potentially result in deficient imputed values.
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Figure 5.1: Strip plot of the five variables in the original and the five imputed data
sets. Observed data values are blue and imputed data values are red.

There is no theory justifying a “universal” distribution that leads to valid results in all
cases.

De Jong (2012) reports that the misspecification of 2 can lead to invalid infer-
ences. We think that more malleable models would be more robust to a misspecified
distribution. Therefore, much emphasis has been made in the current iteration of the
GAMLSS imputation algorithm to relax the restrictions imposed on the distribution
employed and increase the complexity of the semi-parametric additive predictors.

The nonparametric part of model (5.2) makes the "curse of dimensionality” is par-
ticularly relevant for this imputation method. The additive specification allows to in-
corporate many predictors in the model, but possible interactions between them may
be ignored unless explicitly included.

Some computational problems, dependent on the sample size, degree of smooth-
ing, number of predictors in the model and other factors, will always be hard to fore-
see. In general, small data sets with several variables to be imputed might be ill-suited
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to be treated with the algorithm. In this regard, the most obvious symptoms of issues
are manifested as outliers in a set of imputed values, which may lead to a biased esti-
mation. With the higher flexibility allowed, some responsibility is put on the imputer
to explore the results obtained.
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Chapter 6
Simulation Experiment

In this chapter, the simulation experiments designed to explore the performance of
the imputation methods described in Chapters 4 and 5 are described.

The multiple imputation techniques described in Chapter 4 take advantage of Ru-
bin’s (1987) work, and they all share the property that no proof exists showing that
inferences based on the multiply imputed data sets are valid in all situations of poten-
tial interest. The properties of scientifically interesting estimators based on multiply
imputed data sets can therefore systematically be studied only in simulation experi-
ments.

De Jong (2012) compared the version of his GAMLSS imputation algorithm to the
Bayesian Linear regression algorithm (Section 4.1), PMM (Section 4.3.1) and aregIm-
pute (Section 4.3.2). His results show that these three methods were sensible to model
misspecification. In any case, recent approaches to missing value compensation still
develop and propose to use these methods or derivatives of them, PMM in particular
(e.g., Gaffert, Meinfelder, and Bosch, 2016; Morris, White, and Royston, 2014; Tutz
and Ramzan, 2014). Salfran and Spiess (2015) presented simulation results testing
the mentioned methods with different experimental conditions. They also included
most of the imputation methods described in Chapter 4 and GAMLSS.

6.1 Experimental Design

The goal of the simulation study is to explore if the inference based on multiply im-
puted data sets is valid under various experimental conditions. All simulation cases
focus on the estimation of the coefficients in a linear regression model when the predic-
tor variables are incompletely observed. This a particular case of the scientific problem
of interest discussed in Chapter 2. We decided to concentrate on this model for the

simulations because we intended to partly replicate the results of de Jong (2012) and
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de Jong, van Buuren, and Spiess (2016). Though, we extended the scope of the orig-
inal design to encompass more realistic research situations and test the imputation
algorithm with more general data sets.

All simulations were run with R (R Core Team, 2017). Algorithm 10 provides an
outline of how the simulations are done. The various experimental conditions are
controlled according to steps 1 and 2 of the algorithm. These distinct settings can be
divided into several groups which will be discussed in the next sections.

Algorithm 10 Simulation experiment

1: Generate the data set.

2: Delete values according to a missing data mechanism.

3: Multiply impute the incomplete data set using different imputation techniques.

4: Calculate point and variance estimates for the coefficients of a linear regression
using the initially complete data set, the completely observed part and the multiply
imputed data set.

5: Repeat steps 1-4 N times.

The imputation methods used in step 3, are the same as described in chapters 4
and 5. Table 6.1 summarizes the methods employed and the corresponding R library
that provides them. Like Salfran and Spiess (2015) also did, we include diverse copies
of the PMM method with different values of donors (1, 3, 5, 10 and 20). The square
root of the sample size is also considered as the number of donors (see Dahl, 2007).
To check the current state of the GAMLSS imputation software modifications, we also
evaluated several copies of the algorithm with different distribution families or fitting
parameters. All other methods use their default settings.

After the simulations are done we calculate the means of the estimates, the positive
square root of the mean of variance estimates, the sample variance of the estimates

over the simulations, and the proportion of cases for which the confidence intervals

Table 6.1: List of tested imputation methods

Method library (version)
Bayesian Linear Regression mice (2.46.0)
Amelia Amelia (1.7.4)
Predictive Mean Matching mice (2.46.0)
areglmpute Hmisc (4.0-3)
MIDAStouch mice (2.46.0)

IRMI VIM (4.7.0)

CART mice (2.46.0)
Random Forest mice (2.46.0)
GAMLSS imputation ImputeRobust (1.2)
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cover the true value. The assessment of the quality of the imputation methods is based
on four criteria:

* Bias, being the difference between the mean of the estimators of the regression

coefficient and the known true value. It should be as close as possible to 0.

» Coverage, based on the proportion of 95% confidence intervals covering the true
value. Every simulation could be thought of as an independent random draw of
a binary variable taking on the value one if the confidence interval covers the
true value and zero otherwise. When all assumptions are met, 95% confidence
intervals cover the true parameter value with probability 0.95. This means, for
example, that if 1000 simulations are performed, the coverage rate over the sim-
ulations should be in the confidence interval [0.936,0.964]. The ideal result is if
mean estimates are approximately unbiased with coverage within the above lim-
its. Under-Coverage (values below the interval) indicates an invalid inference.
Over-Coverage with an unbiased estimator illustrate what’s called confidence
validity (Rubin, 1996).

* Efficiency, as a measure of the standard deviation of the estimators over the
simulations. It is calculated by taking the positive square root of the mean of
the estimated variances in the simulations. While the bias and coverage de-
termine the validity of the imputation method, we are interested in the overall
performance of the imputation methods. This is an auxiliary benchmark. If two
imputation methods are equally valid, the one with smaller variance should be

preferred.

* Relative efficiency, given as the ratio of the mean variance estimates and the
sample variance across simulations. This criterion contrasts the values of Ru-
bin’s variance estimator with the estimated variance over the simulations. The
ideal result is a ratio close to 1. Values below or above 1 are symptoms of un-
derestimation or overestimation of the variance. Likewise the efficiency this is

a secondary criterion.

6.1.1 Single predictor

The first experimental condition partly includes and replicates the “simple design”
used by de Jong (2012) and de Jong, van Buuren, and Spiess (2016). The data gen-

erating process (DGP) is based on the linear regression given by

y:ﬂ0+ﬂlx+e) GNN(O:O-Z)J (61)
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where 3, = 0 and f; = 1. Three parameters are modified to generate diverse simu-
lations situations. These are the distribution of x, the coefficient of determination R?,
and the sample size n.

The distribution of the predictor variable x can be any option between a standard
normal, a skew-normal with shape parameter A = 5, uniform between 0 and 1, a
squared uniform (beta), student’s t with v = 3 degrees of freedom, a Poisson with rate
parameter A = 3, or a chi-squared with k = 3 degrees of freedom. The value of R? is
0.25, 0.5, or 0.75 and is adjusted with the variance o2 of the error in the linear model
once a distribution is selected. The sample size, n, varies between 50, 200, and 1000
units.

Every possible combination of distribution, coefficient of determination and sam-
ple size is analyzed. Each study is simulated N = 1000 times and m = 10 imputations
are realized for each replication. All distributions but the chi-squared were consid-
ered by de Jong (2012). The present design changes besides the rate parameter of the
Poisson distributed variable and the sample sizes. Considering 50 units instead of 500
makes more sense in psychological applications where the sample size is often small.
Also, it is a harder test for the stability of the GAMLSS imputation method.

For all cases, roughly 40% of x is deleted according to the missing data mechanism
(MDM):

P(R=0[y) = 03 ify<y 6.2)
0.9 a.o.c
where § is the sample median. This means that x is MAR with respect to y, with
probability of being missed equal to 0.3 if y is below the median and 0.9 otherwise.
The strength of the MAR mechanism is dependent on R? with higher values leading
to more selective thinning out of the sample space. This MDM is exactly the one that
de Jong (2012) and de Jong, van Buuren, and Spiess (2016) utilized.

6.1.2 Multivariate set

We extended the scope of the first experiment by moving into the analysis of multi-
variate data set with multiple incompletely observed variables. The main reason for
this is to test the robustness of the latest version of ImputeRobust in a more realistic
scenario. Besides the multivariate data sets, we also test for the effects of different
missing mechanisms and patterns of missingness. For this, we define two MDM with
a differing selectivity of the region from which values are deleted that we call “strong”
and “weak MDM.” Further, the missing pattern can be either monotone or not. The

combination of MDM and missing pattern applied to every multivariate data set define
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the four remaining experimental conditions tested.

The DGP chosen to simulate the multivariate data set is similar to the one already
used in the example of Section 5.4. It is based on the linear regression of four corre-
lated covariates (x;,...,X,) and normally distributed homoscedastic errors. In each
simulation, the distributions of x;, X5 and X, are fixed to be the standard normal, the
Poisson with rate parameter A = 3, and the Bernoulli with mean parameter = = 0.4,
respectively. The distribution of X, is continuous and may vary between a standard
normal, a chi-squared or a student’s t, these last two with 3 degrees of freedom each.

The four covariates are weakly correlated according to the correlation matrix:

1 015 0.1 -0.1
015 1 0.25 0.05
01 025 1 0
—0.1 0.05 O 1

(6.3)

To create the correlated structure, a sample from a four-dimensional multivariate nor-
mal distribution with mean zero and correlation matrix given by (6.3) is drawn. This
is transformed to the desired sample by calculating the values of the standard normal
cumulative distribution function (CDF) for each simulated value and then using the
inverse CDF corresponding to each target distribution.

A dependent variable y is generated according to the linear regression model,
Yi = Bo+ Xi1 1 + Xiao + X3 B3 + Xy + €, €, ~N(0,07%). (6.4)

As with the simple experiment the sample size is either 50, 200 or 1000 units. The true
values of the parameters weighting the predictors change depending on the distribu-
tion of X,, but are fixed at the beginning of each simulation experiment. If X, follows
a standard normal distribution the vector of parameters is f = (0,1.3,1.5,0.8,2.5).
If X, follows instead a t distribution then 8 = (0,1,1,0.95,1.5). Finally, if X, comes
from a chi-squared distribution then 8 = (0,2,1.1,1.5,4). The difference in regres-
sion coefficients is due to the desire of keeping the effect of each predictor at the
same level, as measured by the partial eta-squares. The error variance o2 is chosen so
that the coefficient of determination, R?, equals 0.5. The code in Appendix A can be
adapted to get the desired DGP

We define two MAR mechanism that deletes values on X,, X5 and X, dependent
on y and x;. The two mechanisms are called “strong” and “weak MDM.” Under both
conditions, the probabilities of not observing a value are the same, being 0.45 for
X,, 0.31 for X5, and 0.079 for X,, leading to a similar proportion of missing values.
The difference consists in the reduction of the selectivity, that is, the “strong MDM”
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deletes values in one specific region of the space more aggressively as compared to the
“weak MDM.” Figures 6.1 and 6.2 show this difference. In the first one, it can be seen
that values on the right half side of the distribution of the variables are systematically
deleted. On the other hand, in the second case values are more evenly deleted on both
sides.

Let R;; be the response indicator of x;;, where R;; = 1 if x;; is observed and R;; = 0

ijs
if x;; is missing. In the first part of the remaining simulation experiments, we es-
tablish monotone missing patterns to avoid possible incompatibility issues, e.g., the
non-existence of a regular distribution of the variables with missing values or numer-
ical issues concerning convergence of the MICE algorithm. This is achieved by condi-
tioning the MDM of a variable to the response indicator R of the previous one. First,
calculate the value r” = 2y, + x;;, then under the “strong MDM” conditions, values of

X,, X5 and X, are deleted according to the following rules:

0.1 if ri<rgs

P(R;, = Olri*) = , (6.5)
0.8 elsewhere
. 0.68 if r < r53 .
P(R;; = 0|7”l- »Rig = 0)= <, Pr(Rs= 0|7”l- »Rig = 1)=0 (6.6)
0.71 elsewhere
P(Ri4 = Olrl-*,Riz = O,Ri3 = O) = 0.25, PI‘(RM = 0|1’;,Ri3 = 1) == 0 (6.7)

where ry is the p-quantile of the r* values. In equations (6.7) points out that R, is
MCAR given r*, R, and R5. For the “weak MDM” equations (6.5) and (6.6) turn into:

0.35 ifrr <r),

PRy, =0|r) = (6.8)

0.55 elsewhere ’

. 0.695 ifr < r54 .
P(RiS = 0|’"i »Rip = 0)= T, Pr(Riz= O|rl. »Rip = 1)=0 (6.9
0.703 elsewhere

and the missings values for X, are still generated according to equation (6.7). Since
the parameters in the DGP and MDM do not depend on each other, and the mecha-
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Figure 6.1: Scatter plot of the missing and observed values using example data from
section 5.4. From left to right and from top to bottom: chi-squared (X,), Poisson (X3),
Binomial (X,) and dependent (y) variables. The independent variables are plotted
against the linear response tendency function r*. The dependent variable against the
linear predictor 3 x X. Values are missing according to the “strong” mechanism.

nisms are MAR, both missing mechanisms are ignorable.

An objective of the current work is to actually test the developed and existing
imputation methods in a scenario as realistic as possible. Thus, in the final part of the
simulation experiments we decided to drop the restriction on the monotonicity of the
MDM. We use two non-monotone missing mechanisms derived from the “strong” and
“weak MDM?”. In short, the dependency on whether the previous value is observed or

not is dropped. The “strong MDM” becomes:

. . 0.1 if ri<rg- .
P(R;; =0|r]) =P(R;3 =0|r]) = ®, Pr(Ry=0|r})=0.25,
0.8 elsewhere

and the “weak MDM”:

0.35 ifrr <1,
P(R;; =0|r]) =P(R;3 =0|r]) = ~, Pr(Ryy = 0|r]) = 0.25.
0.55 elsewhere
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Figure 6.2: Scatter plot of the missing and observed values using example data from
section 5.4. From left to right and from top to bottom: chi-squared (X,), Poisson (X3),
Binomial (X,) and dependent (y) variables. The independent variables are plotted
against the linear response tendency function r*. The dependent variable against the
linear predictor 3 x X. Values are missing according to the “weak” mechanism.

6.2 Single Predictor Results

In what follows the results of the simulation study described in section 6.1.1 are pre-

sented. The outcome of the experiments is summarized as shown in table 6.2.

Table 6.2: Example of results

n=>50 n =200 n = 1000
bias cov sd ratio bias cov sd ratio bias cov sd ratio
RZ2=0.25
COM 0.002 0.254 1.023 | 0.004 0.123 1.026 | 0.001 0.055 0.986
CCA -0.147 0.934 0.320 0.972 | -0.122 0.878 0.153 1.005 | -0.126 0.543 0.068 0.933
NORM | -0.068 0.346 1.056 | -0.008 0.156 1.038 | -0.004 0.069 0.985
AMELIA | -0.017 0.343 0.996 | 0.006 0.155 1.036 | -0.002 0.068 0.983
PMM-1 | -0.040 0.375 0.970 | -0.000 0.900 0.156 0.851 | -0.003 0.896 0.066 0.826

Note: If n = 50, results for al-kNN are based on 373, those for al-W on 372 successful simulations.

The first column shows the tested methods.

The complete data set and complete

case analysis are described as COM and CCA respectively. These are followed by NORM for
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Bayesian Linear Regression (section 4.1) and AMELIA (section 4.2). Next, several vari-
ants of hot deck imputation methods (section 4.3) are included, in particular, copies
with a different number of donors for the Predictive Mean Matching. These PMM vari-
ants are presented as PMM-N, where N is either 1, 3, 5, 10, 20 or D (meaning the square
root of the sample size). Areglmpute and Midastouch are given by AREG and MIDAS
respectively. The Iterative Robust Model-Based Imputation method (section 4.4) fol-
lows the list as IRMI. The recursive partitioning methods (Section 4.5 are included as
CART for classification and regression trees and RF for random forests. Finally, the list
is completed with differing alternatives of GAMLSS imputing methods: BAMLSS and
GAMLSS (both assuming a Normal distribution for the response variable), and GAMLSS-
JSU testing the assumption of the four parameters Johnson’s SU distribution for the
response variable (see chapter 5.1 for details).

The following twelve columns are divided into three groups of four, for each of
the tested sample sizes: 50, 200 and 1000. The four columns in each group report
the four criteria defined in section 6.1. The first column, indicated as bias, shows
the estimated mean bias of the imputation method. A gray gradient is used as the
background for the cells, starting in white for an estimated bias of 0 and getting darker
as it increases. The second column, indicated as cov, contains the coverage probability
of the imputation methods. Values in the acceptable range are colored green, under-
coverage is red and over-coverage, which is confidence valid is orange. The third
column, indicated by sd, presents the efficiency of the estimators. Finally, the fourth
column, denoted ratio, shows the values of relative efficiency between the mean
variance of the estimators and estimated variance across simulations.

The results for the different values of coefficient of determination are included in
the same table. In the first column a line with the text R2 = 0.25, 0.50 or 0.75 is
included to indicate said value.

6.2.1 Normal

The first simulation experiment adopts a normal distribution for the predictor vari-
able. Figure 6.3 represents the effects of the MDM given by equation (6.2) on the
distribution of the missing values where it is shown that the MDM selectively removes
observed values on one side of the data set. This simple condition is meant to serve
as a standard for all imputation methods. Table 6.3 presents the full results of this
simulation study:.

Since the MDM is MAR, CCA is expected to fail, and in fact, it does. Regardless

of the value R? complete case analysis leads to invalid results due to under-coverage
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Figure 6.3: Scatter plots of both the direct and reverse regression when the covariate
is normally distributed. The red circles are observed values, and the blue triangles are
missing. The coefficient of determination is 0.5.

with values ranging between 0.434 and 0.554 for n = 1000. With increasing sample
size the under-coverage problem only gets worse.

A quick glance at the table shows that the smallest sample size produces the largest
biases while at the same time it contains the largest proportion of methods with cov-
erage in the valid or confidence valid range. This result can be explained by the large
overestimation of the variances. This is known as the “self-correcting” property of
Multiple Imputation (Rubin, 2003) which is a form of compensation for the missing
information.

NORM results are almost perfect in all three cases. This is no surprise since X and y
are bivariate normally distributed fulfilling all required assumptions of the Bayesian
Linear Regression imputation method. The only virtual difference between this impu-
tation method and the analysis with COM is the larger standard errors which in the case
of R = 0.5 and n = 50 leads to over-coverage (cov = 0.966). AMELIA also relies on
normality assumptions and in this simple scenario should perform well. The results
are almost as good as NORM, but when R?> = 0.5 and n = 1000 it does suffer from
under-coverage.

There is a general pattern to the PMM methods. If we fix the number of donors
and increase the sample size, i.e., we move in a horizontal line in the table, the bias
of the imputation methods decreases, as do the mean estimated standard errors. The
problem is the drop in coverage probabilities leaving almost no valid PMM method for
n = 200 and none for n = 1000 (cov < 0.909). The standard errors are similar to NORM
but the ratio between the mean variance and estimated variance across simulations is
smaller. This indicates that the estimated variances decrease too fast in comparison
to the true variance, and it may explain the under-coverage. Moving in the other

direction, i.e., fixing the sample size and increasing the number of donors, there is not
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a perfect monotone relationship concerning bias and coverage. For a larger number of
donors, the bias increases but coverages start getting better up to a maximum and then
decrease again. For example, when R*> = 0.25 from 1 up to 10 donors the coverage
increase, and then for 20 and +/1000 ~ 31.6 donors decrease again. Practically, only
when n = 50, most PMM methods can provide estimates with valid coverage, thanks to
the “self-correcting” property and at the expense of large biases.

AREG and MIDAS perform similar to each other, being the former the best of the
two for R> = 0.25 and R? = 0.75 and the latter the best if R* = 0.5. Both methods
are almost unbiased for n > 200 but suffer from under-coverage and are thus invalid
(cov < 0.933). The only valid cases are provided by MIDAS when n = 50.

IRMI is the worst method overall with extreme results of bias and under-coverage,
being this latter statistic close to 0 for n = 200 and O for n = 1000. The standard
errors and the ratio constitute the largest values of these measures of all imputation
methods. The results are evidence of a severe issue in the theory or implementation
of this method. They may be caused by the wrong classification of “extreme” values
which are just outliers due to the thinning of regions with the MDM.

CART and RF perform almost identical to each other in terms of all considered
measures. Both methods suffer from under-coverage although the estimated bias is
relatively non existent. RF leads to valid results only in two cases, for n = 50 and
R*>0.5.

Next in the list of imputation methods are the GAMLSS algorithms. The BAMLSS
method suffers from under-coverage and fails to be valid (cov < 0.927). As the sam-
ple size increases the method becomes unbiased, and it shows the smallest standard
error of all imputation methods. A ratio of variances being approximately 0.86 implies
a systematic underestimation of the error. Both GAMLSS and GAMLSS-JSU are unbiased
and provide valid estimation or confidence valid in the case of the Johnson’s SU al-
ternative when R? = 0.75 and n > 200. They have the largest standard errors, after
IRMI, with GAMLSS-JSU producing the greater values of the two.

The difference between BAMLSS and GAMLSS is the use of the MCMC sampling to
simulate the Bayesian posterior and the Bootstrap Predictive Sampling. Seeing the
different results concerning the validity and the estimated errors and ratio statistics, a
reason for the problem of BAMLSS may be a lack of variability in the MCMC sampling
step of algorithm 9.

Table 6.3: Normal distribution

method n=>50 n=200 n=1000

| bias cov sd ratio bias cov sd ratio bias cov sd ratio
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Table 6.3: Continuation of table on previous page

method n=50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio

R%=0.25
COM 0.002 0.254  1.023 0.004 0.123  1.026 0.001 0.055 0.986
CCA -0.147 0934 0.320 0.972 -0.122 0.878 0.153 1.005 -0.126  0.543 0.068 0.933
NORM -0.068 0.346  1.056 | -0.008 0.156  1.038 | -0.004 0.069 0.985
AMELIA -0.017 0.343 0.996 0.006 0.155 1.036 -0.002 0.068 0.983
PMM-1 -0.040 0.375 0.970 | -0.000 0.900 0.156 0.851 | -0.003 0.896 0.066 0.826
PMM-3 -0.079 0927 0.348 0.935 -0.010 0.916 0.153 0.890 -0.004 0.900 0.066 0.860
PMM-5 -0.114 0.342 0950 | -0.017 0.918 0.152 0.901 | -0.005 0.906 0.066 0.864
PMM-10 -0.190 0.935 0.346 1.035 -0.037 0.930 0.153 0.910 -0.009 0.908 0.066 0.877
PMM-20 -0.314 0.907 0.358 1.229 | -0.082 0.914 0.156 0.953 | -0.018 0.898 0.065 0.868
PMM-D -0.143 0.343 0.976 -0.054 0.931 0.153 0.922 -0.027 0.889 0.066 0.874
AREG -0.177 0.919 0.387 0.928 | -0.040 0.169 0.933 | -0.013 0.923 0.068 0.892
MIDAS -0.059 0.373 1.036 -0.016 0.166  0.966 -0.012 0.919 0.072 0.906
IRMI -0.424 0.890 0.369 1.580 -0.417 0.278 0.177 1.701 -0.430 0.000 0.078 1.574
CART -0.040 0.935 0.306 0.926 -0.007 0.885 0.139 0.808 0.002 0.884 0.061 0.781
RF -0.043 0.923 0.311 0.870 0.009 0.895 0.140 0.816 0.010 0.878 0.061 0.793
BAMLSS -0.077 0.841 0.294 0.697 0.012 0.927 0.140 0.886 0.001 0.892 0.062 0.861
GAMLSS -0.002 0.925 0.377 0.963 0.029 0.168 1.013 0.005 0.072  0.989
GAMLSS-JSU 0.004 0.406 1.031 0.042 0.174 1.061 0.010 0.073  0.989

R? = 0.50
COM 0.001 0.146 1.023 0.003 0.071 1.026 0.001 0.032 0.986
CCA -0.103 0911 0.193 0.958 -0.085 0.841 0.092 0.986 -0.087 0.434 0.041 0.916
NORM -0.030 0.194 1.061 -0.004 0.085 1.028 -0.001 0.037 0.971
AMELIA 0.008 0.187 1.025 0.006 0.084 1.015 0.000 0.929 0.037 0.974
PMM-1 0.006 0.926 0.191 0.894 0.008 0.898 0.080 0.846 0.000 0.880 0.035 0.802
PMM-3 -0.022 0935 0.196 0.914 0.003 0.914 0.081 0.871 | -0.000 0.892 0.035 0.820
PMM-5 -0.049 0.202 0.939 0.001 0.917 0.083 0.881 -0.001 0.894 0.035 0.835
PMM-10 -0.111 0.219 1.052 -0.011 0.923 0.085 0.900 -0.002 0.897 0.036 0.839
PMM-20 -0.240 0.893  0.242 1.240 -0.040 0.918 0.091 0.954 -0.005 0.898 0.036 0.855
PMM-D -0.075 0.210 0.992 | -0.022 0.923 0.088 0.921 | -0.009 0.897 0.037 0.857
AREG -0.113 0.932 0.242 0.923 -0.017 0.925 0.091 0.904 -0.005 0.893 0.036 0.851
MIDAS -0.017 0.216 1.046 0.003 0.933 0.092 0.964 -0.001 0.926 0.040 0.911
IRMI -0.394 0.787 0.264 1.790 -0.395 0.025 0.126 1.866 -0.407 0.000 0.056 1.698
CART -0.052 0.189 0.994 | -0.005 0.885 0.080 0.828 0.001 0.881 0.035 0.804
RF -0.025 0.187 0.940 0.008 0.900 0.080 0.864 0.007 0.876 0.035 0.809
BAMLSS -0.062 0.849 0.173  0.565 0.008 0.914 0.079 0.889 0.002 0.911 0.035 0.875
GAMLSS 0.001 0.234 0974 0.019 0.093 1.065 0.004 0.040 1.010
GAMLSS-JSU 0.004 0.257 1.123 0.025 0.098 1.109 0.007 0.041 0.998

R? =0.75
COM 0.001 0.085 1.023 0.001 0.041 1.026 0.000 0.018 0.986
CCA -0.055 0.933 0.118 0.981 -0.045 0.867 0.055 0.987 -0.045 0.554 0.025 0.935
NORM -0.006 0.112 1.031 -0.001 0.052 1.028 -0.000 0.023  0.999
AMELIA 0.015 0.108 1.003 0.004 0.051 1.022 0.000 0.023 0.994
PMM-1 0.027 0.894 0.108 0.863 0.012 0.882 0.048 0.826 0.002 0.883 0.022 0.807
PMM-3 0.020 0.931 0.118 0.962 0.013 0.923 0.049 0.876 0.003 0.901 0.022 0.842
PMM-5 0.006 0.129 1.034 0.014 0.917 0.050 0.894 0.004 0.904 0.022 0.849
PMM-10 -0.038 0.153 1.204 0.013 0.926 0.053 0.931 0.005 0.904 0.022 0.863
PMM-20 -0.167 0.185 1.359 0.002 0.059 1.013 0.007 0.904 0.022 0.867
PMM-D -0.009 0.139 1.101 0.010 0.055 0.968 0.008 0.909 0.023 0.893
AREG -0.070 0.923 0.162 0.916 -0.005 0.929 0.058 0.944 0.001 0.919 0.023 0.890
MIDAS 0.016 0.132 1.082 0.012 0.922 0.054 0.947 0.003 0.912 0.024 0.904
IRMI -0.364 0.743 0.218 2.222 -0.370 0.002 0.104 2.290 -0.381 0.000 0.046 2.099
CART -0.059 0.918 0.135 1.033 -0.008 0.868 0.050 0.794 0.001 0.876  0.020 0.794
RF -0.009 0.121 1.010 0.006 0.904 0.048 0.856 0.005 0.880 0.020 0.797
BAMLSS -0.051 0.853 0.105 0.426 0.004 0.905 0.046 0.874 0.000 0.909 0.021 0.859
GAMLSS -0.016 0.170 0.913 0.001 0.065 1.122 -0.004 0.027 1.098
GAMLSS-JSU -0.007 0.180 1.095 0.003 0.066 1.170 -0.003 0.028 1.098
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6.2.2 Skew-Normal and Chi-squared distribution

The second and third simulation experiments adopt a skew-normal with shape param-
eter A =5 or a chi-squared distribution for the predictor variable. Figure 6.4 displays
the effects of the MDM on the observed data. These two distributions are selected
because of their skewness. In these cases, the reverse regression is not linear, and the
errors are heteroscedastic. It is expected that methods like NORM, that rely on normality

assumptions, will fail in this scenario.

15-

10-

-25 0.0 25 5.0 0 5 10 15

Figure 6.4: Scatter plots of both the direct and reverse regression when the covariate
is skew normally distributed with shape parameter A = 5 (top row) or chi-squared
with 3 degrees of freedom (bottom row). The red circles are observed values, and the
blue triangles are missing. The coefficient of determination is 0.5.

The results in tables 6.4 and 6.5 show that when n = 50 the “self-correcting” prop-
erty again leads to confidence valid results even if estimation is biased. The methods
show values of coverage higher than 0.872 for this sample size, except for BAMLSS
whose coverage is around 0.71.

Section 2.3.2 shows that CCA in the current experimental scenario is not valid,
and the tables support the statement, although it is as bad as in the Normal case. In

table 6.4 it can be seen that CCA has a small bias, with coverage values that are above
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0.813. In table 6.5 CCA is even better. The bias is smaller, and the coverage is the best
after COM, GAMLSS and GAMLSS-JSU, reaching validity even if n = 50 or n = 1000 with
R? = 0.75. Both the skew normal and the chi-squared distributions used, are skewed
to the right and, precisely, the MDM selectively deletes values on the right side of each
distribution. The consequence of this process seems to be that the missing values,
at least for these two distributions, don’t make CCA as bad as when X is normally
distributed.

NORM fails to produce valid results in most cases, being even worse than CCA es-
pecially if R*> > 0.5. For example, if X is skew normally distributed, R*> = 0.5 and
n = 1000 the coverage of NORM is 0.535 while CCA has coverage of 0.833. Given the
values of standard errors and the ratio, the problem of NORM seems to be caused by the
bias of the method when the MDM is more selective. In the case of X being chi-square
distributed coverage values of NORM can be as low as 0.107. Since AMELIA relies on the
same normality requirements of NORM, the simulation results are a close match. This
behavior is maintained throughout the remaining simulation experiments.

The Hot Deck methods: PMM, AREG, and MIDAS have negligible biases as the sample
size increases, but the results are generally invalid. Only two acceptable estimations
are obtained when n > 200. The first is provided by PMM-20 if R = 0.75 and n = 200,
for both simulation settings. The second is given by MIDAS if R* = 0.5 and n = 1000.
The coverage rates oscillate between 0.864 and 0.928. Concerning the number of
donors, the same pattern that was observed for PMM in the Normal case is noticed
again here. The coverage decrease in the horizontal direction together with a quick
reduction of the ratio of errors. In the vertical direction, the bias and the coverage
vary in a parabolic fashion, bias (coverage) decreasing (increasing) up to a certain
point and the moving in the opposite way.

IRMI shows again the same extreme behavior as in the previous experiment. This
happened too in all experimental settings. The method will be excluded in any further
discussion unless it is required by any special reason. The “robust” part emphasized
in the name of this method seems to be its weakness.

CART and RF are practically unbiased, but in the current scenario, the coverage
ranges from 0.854 to 0.935, below the nominal interval. RF provides its only valid
estimation if R* = 0.75 and n = 1000 when X is chi-square distributed while CART is
never valid. The have similar values in all criteria, the only difference is the slightly
smaller estimated standard error of CART.

While the true distribution of the data is not Normal the use of this assumption for
the response model in the GAMLSS-based imputation methods is not an unreasonable
choice. The main argument in favor is the flexible individual modeling of the mean

and variance for each data point. This should alleviate the problems caused by the
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departure from a linear model, like the heteroscedasticity. The expectation was not
fulfilled, at least with BAMLSS. The performance is worse than in the first experiment
with coverage values as low as 0.604 and biased estimation when R* = 0.25. The
most telling indicator of the flaws of this algorithm is the low ratio of the variances.
It ranges from 0.426 to 0.877 showing the underestimation of the variance.

In the case of GAMLSS and GAMLSS-JSU the results are good. The only cases of
under-coverage are seen when n = 50, which may be due to the effect of the low
sample size on a semi-parametric model. In the case of the chi-squared distributed
covariate, the method had the extra obstacle of a different domain for the imputed
values. In both experiments the results are valid if n > 200 although the estimated
variances are large. Because of the Johnson’s SU distribution allows for the inclusion of
skewness and kurtosis in the model is expected that GAMLSS-JSU is the better method
of its class and indeed it is.

Table 6.4: Skew normal distribution

method n=50 n=200 n=1000
bias cov sd ratio bias cov sd ratio bias cov sd ratio
R? =0.25
COM 0.016 0.255 1.020 | -0.007 0.124  0.987 0.001 0.055 1.016
CCA -0.083 0.933 0.349 0.964 | -0.090 0.884 0.165 0.934 | -0.073 0.813 0.073 0.922
NORM 0.022 0.391 1.055 0.040 0931 0.173 0.973 0.069 0.829 0.074 0.959
AMELIA 0.074 0932 0.399 1.055 0.052 0913 0.174 0.951 0.072 0.816 0.075 0.969
PMM-1 -0.032 0.906 0417 0.921 | -0.024 0.894 0.166 0.823 | -0.001 0.881 0.066 0.804
PMM-3 -0.071 0.922 0.385 0.940 | -0.035 0.912 0.162 0.860 | -0.003 0.897 0.066 0.836
PMM-5 -0.113 0.379 0.993 | -0.045 0.907 0.160 0.868 | -0.006 0.894 0.066 0.848
PMM-10 -0.198 0.384 1.100 | -0.068 0.894 0.159 0.874 | -0.011 0.898 0.066 0.858
PMM-20 -0.318 0.393 1.323 | -0.116 0.871 0.163 0.942 | -0.021 0.898 0.067 0.864
PMM-D -0.151 0.380 1.040 | -0.089 0.889 0.161 0.913 | -0.033 0.887 0.067 0.857
AREG -0.188 0.913 0.424 0.935 | -0.070 0.901 0.175 0.894 | -0.012 0.909 0.067 0.873
MIDAS -0.014 0.397 1.083 | -0.039 0.920 0.174 0.932 | -0.012 0.928 0.075 0.938
IRMI -0.375 0.413 1.562 | -0.399 0.438 0.192 1.557 | -0.389 0.000 0.084 1.556
CART -0.090 0.926 0.334 0.902 | -0.023 0.884 0.144 0.804 | -0.003 0.888 0.062 0.802
RF -0.033 0.923 0.338 0.883 | -0.015 0.878 0.145 0.785 0.011 0.869 0.062 0.791
BAMLSS -0.193 0.802 0.333 0.698 | -0.107 0.867 0.164 0.881 | -0.083 0.777 0.072 0.942
GAMLSS 0.007 0.890 0.436 0.952 | -0.029 0.202 1.059 | -0.017 0.086 1.033
GAMLSS-JSU 0.025 0.929 0.455 1.008 | -0.028 0.202 1.033 | -0.033 0.083 1.003
R? = 0.50

COM 0.009 0.147 1.020 | -0.004 0.071  0.987 0.000 0.032 1.016
CCA -0.056 0.934 0.213 0938 | -0.053 0.900 0.100 0.936 | -0.041 0.833 0.044 0.909
NORM 0.059 0.220 1.045 0.063 0.876 0.093 0.960 0.076 0.535 0.040 0.942
AMELIA 0.097 0.908 0.221 1.015 0.072 0.864 0.093 0.943 0.078 0.520 0.040 0.944
PMM-1 0.037 0.888 0.218 0.878 0.002 0.865 0.086 0.762 0.004 0.862 0.037 0.754
PMM-3 -0.004 0.911 0.224 0.917 | -0.003 0.889 0.087 0.813 0.003 0.889 0.037 0.795
PMM-5 -0.040 0.232 0.958 | -0.007 0.902 0.089 0.834 0.003 0.895 0.037 0.807
PMM-10 -0.130 0.255 1.112 | -0.023 0.903 0.094 0.872 0.003 0.898 0.037 0.827
PMM-20 -0.266 0.903 0.278 1.366 | -0.063 0.893 0.103 0.946 | -0.000 0.897 0.038 0.831
PMM-D -0.079 0.243 1.039 | -0.038 0.905 0.097 0.894 | -0.005 0.900 0.039 0.843
AREG -0.126 0.903 0.269 0.909 | -0.032 0.892 0.098 0.856 | -0.002 0.899 0.038 0.823
MIDAS 0.003 0.245 1.080 | -0.009 0.930 0.101 0.920 0.002 0918 0.044 0.910
IRMI -0.355 0.895 0.302 1.780 | -0.371 0.143 0.139 1.809 | -0.369 0.000 0.062 1.806
CART -0.085 0918 0.217 0980 | -0.019 0.885 0.086 0.829 | -0.001 0.880 0.036 0.790
RF -0.016 0.935 0.212 0.948 | -0.004 0.885 0.085 0.802 0.010 0.864 0.036 0.778
BAMLSS -0.147 0.785 0.213 0.538 | -0.049 0.879 0.101 0.744 | -0.029 0.847 0.043 0.803
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Table 6.4: Continuation of table on previous page

method n=50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio
GAMLSS 0.028 0.902 0.277 0.934 0.018 0.122 1.056 0.017 0.045 1.001
GAMLSS-JSU 0.038 0.299 1.078 0.019 0.123 1.040 0.008 0.049 1.045

R?=0.75
COM 0.005 0.085 1.020 | -0.002 0.041  0.987 0.000 0.018 1.016
CCA -0.033 0.930 0.130 0.946 -0.027 0.909 0.060 0.963 -0.022 0.859 0.026 0.932
NORM 0.060 0.918 0.127 0.970 0.049 0.847 0.056 0.904 0.052 0.457 0.024 0.916
AMELIA 0.084 0.921 0.127 0.944 0.056 0.845 0.058 0.918 0.053 0.452 0.025 0.952
PMM-1 0.057 0.856 0.122 0.776 0.014 0.862 0.052 0.748 0.005 0.868 0.023 0.785
PMM-3 0.044 0926 0.140 00914 0.018 0.879 0.054 0.806 0.007 0.885 0.024 0.834
PMM-5 0.018 0.159 1.018 0.021 0.889 0.057 0.834 0.008 0.889 0.024 0.842
PMM-10 -0.057 0.192 1.259 0.019 0915 0.062 0.903 0.012 0.878 0.024 0.845
PMM-20 -0.201  0.933  0.223  1.531 | -0.005 0.071  1.007 0.017 0.864 0.025 0.863
PMM-D -0.013 0.173 1.131 0.012 0.932 0.065 0.941 0.020 0.864 0.026 0.886
AREG -0.098 0.895 0.191 0.892 -0.012 0.907 0.064 0.886 0.002 0.912 0.025 0.892
MIDAS 0.028 0.166 1.147 0.012 0910 0.062 0.912 0.006 0913 0.027 0.918
IRMI -0.338 0.878 0.251 2.309 -0.355 0.026 0.115 2.322 -0.364 0.000 0.051 2.201
CART -0.086 0.884 0.162 0.977 -0.023 0.827 0.058 0.726 -0.002 0.837 0.022 0.721
RF -0.010 0.931 0.148  0.960 0.001 0.874 0.054 0.782 0.007 0.854 0.022 0.761
BAMLSS -0.078 0.788 0.138 0.426 0.022 0.872 0.059 0.752 0.033 0.718 0.025 0.877
GAMLSS 0.034 0.913 0.183 0.940 0.029 0.072 1.105 0.015 0.027 1.010
GAMLSS-JSU 0.060 0.934 0.206 1.238 0.008 0.084 1.025 -0.001 0.035 1.142

Table 6.5: Chi-squared distribution
method n=>50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio

R?=0.25
COM -0.005 0.261 1.001 -0.001 0.124 0.988 -0.000 0.055 1.012
CCA -0.082 0.920 0.378 0.909 -0.050 0912 0.175 0.903 -0.041 0.891 0.076 0918
NORM 0.016 0.437  0.997 0.102 0.886 0.186 0.936 0.119 0.644 0.079 0.945
AMELIA 0.053 0.922 0.456 1.000 0.113 0.868 0.188 0.926 0.121 0.657 0.079  0.969
PMM-1 -0.073  0.915 0.461 0.940 | -0.016 0.890 0.172 0.832 | -0.002 0.878 0.066 0.799
PMM-3 -0.122 0.929 0.420 0.960 -0.029  0.901 0.168 0.827 -0.004 0.881 0.066 0.826
PMM-5 -0.163 0.413 0.979 | -0.044 0.906 0.169 0.848 | -0.007 0.902 0.067 0.837
PMM-10 -0.243 0.418 1.094 -0.071 0.907 0.171 0.881 -0.014 0.895 0.067 0.845
PMM-20 -0.331  0.935 0.423 1.274 | -0.122 0.888 0.175 0.946 | -0.028 0.897 0.069 0.871
PMM-D -0.200 0.412 1.016 -0.093 0.903 0.173 0.909 -0.041 0.877 0.070 0.877
AREG -0.213 0913 0454 0946 | -0.071 0.917 0.184 0.903 | -0.019 0.910 0.069 0.887
MIDAS -0.061 0.437 1.051 -0.038 0.926 0.185 0.940 -0.018 0.927 0.078 0.945
IRMI -0.393 0.447 1.530 | -0.378 0.587 0.206 1.533 | -0.379 0.000 0.090 1.570
CART -0.116 0.920 0.370 0.886 -0.019 0908 0.152 0.831 -0.006 0.867 0.063 0.768
RF -0.091 0921 0.373 0.883 | -0.012 0.884 0.152 0.781 0.008 0.876 0.064 0.805
BAMLSS -0.343 0.708 0.372 0.678 -0.245 0.699 0.189 0.543 -0.228 0.478 0.083 0.261
GAMLSS -0.057 0.927 0.479 0.935 | -0.002 0.200 0.970 | -0.011 0.081 0.993
GAMLSS-JSU -0.053 0.922 0.498 0.999 -0.046 0.234 1.077 -0.020 0.099 1.059

R? = 0.50
COM -0.003 0.153 1.001 -0.001 0.073  0.988 -0.000 0.032 1.012
CCA -0.045 0.918 0.236 0.909 -0.018 0.920 0.108 0.906 -0.014 0926 0.047 0.942
NORM 0.086 0.929 0.263 1.046 0.129 0.738 0.102 0.865 0.129 0.178 0.043 0.875
AMELIA 0.116 0913 0.284 1.083 0.138 0.727 0.105 0.878 0.130 0.176 0.045 0.907
PMM-1 0.020 0.901 0.260 0.887 0.024 0.846 0.093 0.731 0.008 0.866 0.039 0.758
PMM-3 -0.033 0.919 0.260 0.917 0.017 0.864 0.096 0.767 0.009 0.879 0.040 0.808
PMM-5 -0.078 0.932 0.271 0.988 0.011 0.889 0.100 0.800 0.010 0.894 0.040 0.821
PMM-10 -0.158 0.290 1.167 -0.012 0.909 0.107 0.872 0.011 0.880 0.041 0.837
PMM-20 -0.274 0.927 0.309 1.373 -0.063 0.910 0.118 0.997 0.007 0.899 0.042 0.857
PMM-D -0.116 0.280 1.052 -0.031 0.914 0.112 0.915 -0.000 0915 0.044 0.879
AREG -0.145 0914 0.299 0.947 -0.025 0.906 0.110 0.858 -0.003 0911 0.043 0.881
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Table 6.5: Continuation of table on previous page

method n=50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio
MIDAS -0.018 0.286 1.121 0.003 0.934 0.115 0.931 0.001 0.048 0.957
IRMI -0.365 0.913 0.333 1.759 -0.359 0.282 0.154 1.819 -0.364 0.000 0.066 1.876
CART -0.113 0.885 0.250 0.968 -0.028 0.857 0.097 0.794 -0.006 0.838 0.039 0.721
RF -0.048 0.925 0.247 0.977 0.004 0.877 0.096 0.784 0.009 0.865 0.039 0.781
BAMLSS -0.286 0.713 0.259 0.572 -0.164 0.780 0.146 0.665 -0.107 0.604 0.061 0.596
GAMLSS 0.024 0.321 1.030 0.036 0.122 1.040 0.011 0.051 1.101
GAMLSS-JSU 0.037 0.369 1.140 -0.026 0.180 1.081 -0.047 0.076 1.102

R? =0.75

COM -0.002 0.086 1.001 -0.000 0.041 0.988 -0.000 0.018 1.012
CCA -0.024 0.142 0.930 | -0.008 0.935 0.063 0.950 | -0.005 0.027  0.980
NORM 0.101 0.911 0.148 0.925 0.094 0.643 0.059 0.746 0.087 0.107 0.025 0.768
AMELIA 0.129 0.877 0.157 0.936 0.103 0.682 0.065 0.825 0.089 0.172 0.029 0.876
PMM-1 0.078 0.831 0.144 0.758 0.033 0.796 0.056 0.669 0.009 0.858 0.025 0.747
PMM-3 0.052 0.921 0.171 0.937 0.041 0.836 0.062 0.754 0.014 0.871 0.026 0.811
PMM-5 0.010 0.194 1.099 0.045 0.854 0.065 0.802 0.019 0.855 0.026 0.826
PMM-10 -0.082 0.227 1.388 0.040 0.900 0.073 0.901 0.026 0.825 0.027 0.847
PMM-20 -0.216 0.254 1.647 0.004 0.085 1.053 0.035 0.760 0.028 0.858
PMM-D -0.028 0.210 1.230 0.029 0.930 0.078 0.973 0.039 0.740 0.029 0.894
AREG -0.103 0.891 0.210 0.870 -0.012 0.904 0.074 0.886 0.003 0.929 0.028 0.935
MIDAS 0.024 0.207 1.263 0.026 0912 0.072 0.918 0.010 0.933 0.029 0.945
IRMI -0.349 0.872 0.279  2.285 -0.353 0.074 0.127 2.327 -0.359 0.000 0.055 2.360
CART -0.109 0.856 0.198 0.987 | -0.041 0.804 0.073 0.714 | -0.011 0.787 0.027 0.643
RF -0.020 0.180 1.002 0.005 0.846 0.067 0.748 0.006 0.864 0.025 0.757
BAMLSS -0.243 0.708 0.194 0.447 -0.067 0.820 0.114 0.549 0.007 0.800 0.046 0.657
GAMLSS 0.044 0.935 0.214 1.074 0.036 0.078 1.082 0.002 0.034 1.147
GAMLSS-JSU 0.071 0.258  1.307 0.009 0.116 1.124 | -0.013 0.045 0.959

6.2.3 Uniform and Beta distribution

Figure 6.5 shows an example of the conditions of the fourth and fifth simulation stud-
ies. In these two cases, the domain of the predictor variable is limited to the unit
interval. The objective of this setting is to test the statistical properties of GAMLSS
imputation when the assumed response model has full support.

CCA performs similarly to the Normal case if X is uniformly distributed, with biased
and invalid results (cov > 0.578). If X is beta distributed instead, CCA behaves the
same way as it did when the covariate was chi-squared or skew normal distributed.
This may be, again, an effect of interaction between the shape distribution and the
MDM.

Table 6.6 shows that NORM, AMELIA, GAMLSS-JSU and GAMLSS-JSU are the only
meaningful methods if n > 200 when X is uniformly distributed. The estimation
results they provide is valid, with the exception of GAMLSS when R?> > 0.5 and n =
200 which has a coverage of 0.925 falling out of the acceptable range. GAMLSS-
based methods struggle when n = 50. The estimation is practically unbiased, but the
coverage is between 0.927 and 0.95.

Table 6.7 displays a not so good outcome for the imputation methods. The depar-
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Figure 6.5: Scatter plots of both the direct and reverse regression when the covariate
is uniformly between 0 and 1 (top row) of beta distributed (bottom row). The red
circles are observed values, and the blue triangles are missing. The coefficient of
determination is 0.5.

ture from normality seems to be too much for NORM and AMELIA which produce biased
estimates with coverages between 0.184 and 0.915. GAMLSS provides valid estima-
tion if R?> < 0.5, when R? = 0.75 remains unbiased but the coverage drops to 0.935.
GAMLSS-JSU is worse in this scenario, with under-coverage of 0.767 when n = 1000
and R?> = 0.75. A detailed look at the data that created the table suggests that the
problem lies in the imputation of values well below the unit interval. This is mainly
related to the support of the Johnson’s SU distribution and the fitted values of skew-
ness and kurtosis.

As in the previous simulations when n = 50 the “self-correcting” property allows
methods like MIDAS or PMM-5 to generate coverage values in the acceptable range.
From n = 200 onward, the only interesting method is MIDAS. The method is generally
invalid because of under-coverage, but with values which are close to being nominal
(cov €[0.925,0.935]).

It’s less clear in this two experimental conditions which method is better, especially
if X is beta distributed. Nevertheless, GAMLSS seems to outperform all other methods

as the sample size increases.

69



Table 6.6: Uniform distribution

method n=50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio

R? =0.25
COM -0.003 0.251 1.001 0.005 0.123  1.019 0.000 0.055 1.011
CCA -0.139 0.918 0.318 0.965 | -0.123 0.868 0.153 0.972 | -0.130 0.508 0.068 0.971
NORM -0.063 0.336 1.042 | -0.010 0.157 1.046 | -0.008 0.068 1.004
AMELIA -0.014 0.338 1.002 0.005 0.156 1.035 | -0.006 0.069 1.002
PMM-1 -0.052 0.927 0.368 0.919 0.003 0911 0.158 0.902 | -0.001 0.900 0.067 0.841
PMM-3 -0.090 0.344 0936 | -0.002 0.920 0.155 0.920 | -0.002 0.913 0.067 0.891
PMM-5 -0.123 0.338 0.959 | -0.012 0.921 0.155 0.920 | -0.003 0.913 0.067 0.885
PMM-10 -0.209 0.922 0.340 1.040 | -0.036 0.926 0.154 0.925 | -0.007 0.912 0.067 0.880
PMM-20 -0.340 0.892 0.347 1.241 | -0.085 0.918 0.155 0.948 | -0.014 0.912 0.066 0.882
PMM-D -0.160 0.339 0999 | -0.056 0.925 0.154 0.935 | -0.022 0.908 0.067 0.882
AREG -0.173 0.923 0.374 0901 | -0.035 0.928 0.164 0.910 | -0.009 0.922 0.066 0.886
MIDAS -0.038 0.349 1.023 | -0.011 0.932 0.163 0.961 | -0.007 0.933 0.072 0.922
IRMI -0.399 0.891 0.364 1.539 | -0.396 0.354 0.176 1.645 | -0.423 0.000 0.078 1.589
CART -0.044 0909 0.298 0.842 0.003 0.875 0.136 0.781 | -0.004 0.875 0.060 0.779
RF -0.053 0.923 0.303 0.865 0.016 0.890 0.138 0.831 0.011 0.884 0.061 0.802
BAMLSS -0.171 0.815 0.289 0.671 | -0.038 0.911 0.141 0.879 | -0.036 0.881 0.063 0.880
GAMLSS -0.001 0.927 0.375 0.961 0.031 0.167 1.036 0.001 0.071 0.958
GAMLSS-JSU 0.013 0935 0.399 1.041 0.001 0.200 1.103 | -0.049 0.090 1.174

R? =0.50
COM -0.002 0.143  1.001 0.003 0.070 1.019 0.000 0.031 1.011
CCA -0.094 0.892 0.192 0914 | -0.086 0.826 0.092 0.960 | -0.090 0.422 0.041 0.935
NORM -0.027 0.190 1.018 | -0.001 0.085 1.038 | -0.001 0.037 1.004
AMELIA 0.011 0.182 0.975 0.008 0.083 1.018 0.001 0.037 1.006
PMM-1 -0.002 0.911 0.181 0.868 0.008 0.907 0.078 0.861 0.001 0.901 0.034 0.825
PMM-3 -0.029 0.922 0.184 0.872 0.005 0.921 0.078 0.897 0.000 0.906 0.034 0.842
PMM-5 -0.053 0.929 0.189 0.907 0.002 0926 0.079 0.899 | -0.000 0.913 0.034 0.855
PMM-10 -0.132 0.916 0.210 1.004 | -0.009 0.935 0.081 0.927 | -0.001 0.914 0.034 0.859
PMM-20 -0.284 0.841 0.236 1.239 | -0.042 0.928 0.087 0.946 | -0.004 0.920 0.035 0.867
PMM-D -0.084 0930 0.197 0935 | -0.021 0.927 0.083 0.931 | -0.008 0.913 0.035 0.874
AREG -0.113 0.920 0.224 0.876 | -0.013 0.919 0.084 0.894 | -0.003 0.915 0.034 0.867
MIDAS -0.017 0.197 0.991 0.004 0930 0.086 0.968 0.000 0932 0.038 0.919
IRMI -0.371 0.795 0.259 1.709 | -0.379 0.053 0.125 1.850 | -0.396 0.000 0.056 1.785
CART -0.049 0.180 0.996 0.002 0.899 0.077 0.825 | -0.001 0.905 0.034 0.861
RF -0.029 0.932 0.175 0.905 0.010 0.909 0.076 0.888 0.007 0.894 0.034 0.830
BAMLSS -0.170 0.764 0.176 0.491 | -0.058 0.826 0.084 0.651 | -0.043 0.736 0.037 0.763
GAMLSS -0.002 0.224 0.941 0.022 0931 0.101 0.999 0.009 0.049 1.201
GAMLSS-JSU 0.000 0.240 1.059 | -0.001 0.110 1.074 | -0.021 0.046 0.671

R?=0.75
COM -0.001 0.085 1.001 0.002 0.042 1.019 0.000 0.019 1.011
CCA -0.050 0.904 0.121 0.921 | -0.044 0.873 0.058 0.957 | -0.045 0.578 0.026 0.945
NORM 0.001 0.115  1.006 0.007 0.054 1.032 0.008 0.024 1.017
AMELIA 0.020 0.110 0.975 0.012 0.053 1.017 0.009 0.023  1.007
PMM-1 0.017 0.905 0.101 0.845 0.005 0.897 0.046 0.837 0.001 0909 0.021 0.845
PMM-3 0.007 0930 0.109 0.916 0.005 0.901 0.047 0.864 0.001 0919 0.021 0.882
PMM-5 -0.006 0.119 0.970 0.004 0909 0.047 0.881 0.001 0917 0.021 0.883
PMM-10 -0.061 0.147 1.127 0.002 0.920 0.049 00912 0.001 0920 0.021 0.892
PMM-20 -0.222 0.865 0.185 1.344 | -0.009 0.054 0.983 0.001 0.922 0.021 0.895
PMM-D -0.024 0.130 1.034 | -0.002 0.934 0.051 0.937 0.000 0.928 0.021 0.900
AREG -0.068 0.904 0.146 0.858 | -0.005 0.920 0.050 0.899 | -0.000 0.919 0.021 0.892
MIDAS 0.009 0.121  1.028 0.006 0.930 0.051 0.935 0.002 0.023 0.946
IRMI -0.344 0.792 0.216 2.151 | -0.360 0.001 0.105 2.235 | -0.367 0.000 0.047 2.197
CART -0.043 0.121 1.160 | -0.001 0.879 0.044 0.834 | -0.000 0.899 0.020 0.848
RF -0.014 0.111  0.982 0.004 0911 0.046 0.863 0.004 0.901 0.020 0.850
BAMLSS -0.078 0.812 0.112 0.427 | -0.013 0.889 0.051 0.633 | -0.005 0.907 0.022 0.856
GAMLSS 0.013 0935 0.138 0.963 0.015 0.925 0.075 0.823 0.008 0.028 0.693
GAMLSS-JSU 0.006 0.151 1.111 | -0.000 0.073 0.759 | -0.001 0.027 1.124
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Table 6.7: Beta distribution

method n=50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio

R?=0.25
COM -0.003 0.123  0.975 | -0.003 0.123  0.975 0.001 0.055 1.038
CCA -0.084 0.887 0.163 0.917 | -0.084 0.887 0.163 0.917 | -0.078 0.798 0.072 0.944
NORM 0.047 0915 0.169 0.957 0.047 0915 0.169 0.957 0.064 0.846 0.074 0.976
AMELIA 0.059 0.904 0.170 0.957 0.059 0.904 0.170 0.957 0.066 0.837 0.074 0.974
PMM-1 -0.012 0.893 0.162 0.866 | -0.012 0.893 0.162 0.866 | -0.000 0.915 0.067 0.885
PMM-3 -0.025 0.920 0.159 0.908 | -0.025 0.920 0.159 0.908 | -0.001 0.915 0.067 0.904
PMM-5 -0.036 0.908 0.157 0.907 | -0.036 0.908 0.157 0.907 | -0.003 0.921 0.067 0.911
PMM-10 -0.061 0.909 0.156 0.899 | -0.061 0.909 0.156 0.899 | -0.006 0.923 0.067 0.917
PMM-20 -0.117 0.893 0.159 0.950 | -0.117 0.893 0.159 0.950 | -0.017 0.922 0.067 0.909
PMM-D -0.084 0.908 0.157 0.907 | -0.084 0.908 0.157 0.907 | -0.029 0.916 0.066 0.906
AREG -0.053 0910 0.165 0.883 | -0.053 0.910 0.165 0.883 | -0.008 0.923 0.067 0.917
MIDAS -0.032 0926 0.168 0.939 | -0.032 0.926 0.168 0.939 | -0.010 0.925 0.072 0.925
IRMI -0.379 0.487 0.189 1.506 | -0.379 0.487 0.189 1.506 | -0.391 0.000 0.084 1.589
CART -0.101 0928 0.319 0.905 | -0.013 0.878 0.140 0.787 0.002 0.876 0.060 0.784
RF -0.007 0.877 0.141 0.810 | -0.007 0.877 0.141 0.810 0.010 0.877 0.061 0.811
BAMLSS -0.231 0.729 0.168 0.769 | -0.231 0.729 0.168 0.769 | -0.165 0.406 0.073 0.901
GAMLSS -0.031 0.203  1.049 | -0.031 0.203  1.049 | -0.003 0.090 1.101
GAMLSS-JSU | -0.125 0.260 1.059 | -0.125 0.260 1.059 | -0.108 0.841 0.099 1.111

R? = 0.50
COM -0.002 0.071 0.975 | -0.002 0.071 0.975 0.001 0.032 1.038
CCA -0.032 0917 0.101 0915 | -0.032 0.917 0.101 0.915 | -0.026 0.901 0.044 0.930
NORM 0.085 0.844 0.094 0.973 0.085 0.844 0.094 0.973 0.093 0.374 0.041 0.963
AMELIA 0.094 0.829 0.094 0.966 0.094 0.829 0.094 0.966 0.094 0.374 0.041 0.969
PMM-1 0.004 0.894 0.081 0.819 0.004 0.894 0.081 0.819 0.003 0.885 0.035 0.807
PMM-3 0.000 0.902 0.082 0.848 0.000 0.902 0.082 0.848 0.003 0.909 0.035 0.849
PMM-5 -0.004 0916 0.083 0.854 | -0.004 0.916 0.083 0.854 0.002 0.911 0.035 0.859
PMM-10 -0.020 0.927 0.087 0.882 | -0.020 0.927 0.087 0.882 0.001 0914 0.035 0.874
PMM-20 -0.065 0.900 0.096 0.970 | -0.065 0.900 0.096 0.970 | -0.003 0.914 0.036 0.874
PMM-D -0.037 0.922 0.090 0.912 | -0.037 0.922 0.090 0.912 | -0.008 0.912 0.036 0.885
AREG -0.019 0910 0.088 0.856 | -0.019 0.910 0.088 0.856 | -0.001 0.918 0.035 0.890
MIDAS -0.002 0.095 0.964 | -0.002 0.095 0.964 0.002 0.935 0.040 0.946
IRMI -0.350 0.224 0.141 1.800 | -0.350 0.224 0.141 1.800 | -0.355 0.000 0.062 1.840
CART -0.093 0.932 0.204 0.996 | -0.003 0.899 0.080 0.832 0.002 0.907 0.034 0.848
RF 0.004 0.903 0.080 0.853 0.004 0.903 0.080 0.853 0.010 0.890 0.034 0.833
BAMLSS -0.304 0.485 0.124 0465 | -0.304 0.485 0.124 0.465 | -0.191 0.187 0.054 0.518
GAMLSS 0.006 0.143  0.960 0.006 0.143  0.960 0.012 0.064 0.663
GAMLSS-JSU | -0.024 0.152 0.872 | -0.024 0.152 0.872 | -0.028 0.924 0.054 0.915

R? =0.75
COM -0.001 0.041 0.975 | -0.001 0.041 0.975 0.000 0.018 1.038
CCA -0.007 0.928 0.061 0.940 | -0.007 0.928 0.061 0.940 | -0.005 0.927 0.027 0.945
NORM 0.072 0.784 0.057 0.949 0.072 0.784 0.057 0.949 0.072 0.184 0.025 0.946
AMELIA 0.078 0.765 0.058 0.967 0.078 0.765 0.058 0.967 0.073 0.198 0.025 0.984
PMM-1 0.005 0.872 0.049 0.780 0.005 0.872 0.049 0.780 0.002 0.879 0.022 0.805
PMM-3 0.007 0.900 0.049 0.819 0.007 0.900 0.049 0.819 0.003 0.899 0.022 0.847
PMM-5 0.007 0.902 0.050 0.849 0.007 0.902 0.050 0.849 0.003 0.905 0.022 0.854
PMM-10 0.004 0.919 0.053 0.882 0.004 0.919 0.053 0.882 0.003 0.911 0.022 0.853
PMM-20 -0.020 0.063 0.982 | -0.020 0.063 0.982 0.003 0913 0.022 0.865
PMM-D -0.002 0.922 0.057 0.917 | -0.002 0.922 0.057 0.917 0.003 0.919 0.023 0.881
AREG -0.007 0.908 0.055 0.849 | -0.007 0.908 0.055 0.849 0.001 0918 0.022 0.871
MIDAS 0.006 0.932 0.057 0.937 0.006 0.932 0.057 0.937 0.002 0.025 0.938
IRMI -0.338 0.048 0.117 2.343 | -0.338 0.048 0.117 2.343 | -0.341 0.000 0.052 2.399
CART -0.087 0.885 0.146 0.991 | -0.005 0.870 0.048 0.785 0.002 0.876 0.020 0.789
RF 0.002 0.890 0.047 0.811 0.002 0.890 0.047 0.811 0.005 0.875 0.020 0.793
BAMLSS -0.236 0.550 0.090 0.280 | -0.236 0.550 0.090 0.280 | -0.076 0.559 0.038 0.310
GAMLSS 0.007 0.934 0.085 0.628 0.007 0.934 0.085 0.628 0.004 0.935 0.044 0.519
GAMLSS-JSU | -0.041 0.111  1.127 | -0.041 0.111 1.127 | -0.060 0.767 0.045 1.232
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6.2.4 Poisson

In the sixth experiment, the goal was to test the performance of GAMLSS-based meth-
ods when dealing with counted data. The incompletely observed covariate is set to
follow a Poisson distribution with three degrees of freedom. In this scenario, not only
the support of the response models in GAMLSS and GAMLSS-JSU is different to the true
underlying distribution, but it is almost sure all imputed values will be “unrealistic.”
Figure 6.6 shows an example of the distribution of the missing and observed values

under the conditions defined in the experiment.
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Figure 6.6: Scatter plots of both the direct and reverse regression when the covariate
is Poisson distributed with rate parameter A = 3. The red circles are observed values,
and the blue triangles are missing. The coefficient of determination is 0.5.

The results in table 6.8 show that NORM, AMELIA and some of the Hot Deck impu-
tation methods are only valid if n = 50. As the sample size increases, the coverage of
these methods falls under the nominal interval. Exceptionally, NORM remains valid if
n = 200. The characteristic behavior of MIDAS, AREG, and PMM is observed too: The
bias goes towards O while the coverage drops below the acceptable limit.

Only GAMLSS and GAMLSS-JSU are valid if n = 200 or n = 1000. Furthermore,
GAMLSS-JSU is also valid for n = 50, which turns it into the best method in this sim-
ulation. The flexibility offered by the choice of a Johnson’s SU distribution instead of
the normal in the GAMLSS works well in this experiment.

Interestingly, CART and RF differ in their performance. They are both invalid but
the estimated bias of CART goes to 0 as the sample size increases. On the other hand,
the bias of RF actually increases. If R> < 0.5 and n = 1000 is between 0.059 and
0.123.
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Table 6.8: Poisson distribution

method n=50 n=200 n=1000

bias cov sd ratio | bias cov sd ratio | bias cov sd ratio

R? =0.25
COM -0.006 0.255 1.002 0.003 0.124  1.003 | -0.000 0.055 0.993
CCA -0.116 0.922 0.339 0.941 | -0.089 0.898 0.161 0.937 | -0.096 0.703 0.071 0.915
NORM -0.035 0.371 1.011 0.035 0.167 1.007 0.040 0.895 0.072 0.950
AMELIA 0.016 0.374 0.994 0.049 0925 0.166 1.001 0.042 0.882 0.073 0.968
PMM-1 -0.058 0.922 0.396 0.903 | -0.001 0.902 0.163 0.865 | -0.001 0.883 0.066 0.786
PMM-3 -0.092 0.935 0.367 0.932 | -0.009 0.917 0.160 0.900 | -0.002 0.896 0.066 0.823
PMM-5 -0.126 0935 0.366 0.964 | -0.016 0.923 0.160 0.911 | -0.004 0.906 0.066 0.824
PMM-10 -0.211 0.367 1.059 | -0.043 0.924 0.160 0.931 | -0.010 0.904 0.067 0.841
PMM-20 -0.330 0912 0375 1.244 | -0.092 0.923 0.163 0.963 | -0.021 0.894 0.067 0.843
PMM-D -0.164 0.934 0.366 0.998 | -0.064 0.929 0.161 0.944 | -0.031 0.884 0.067 0.851
AREG -0.187 0.927 0.402 0.925 | -0.043 0.931 0.171 0.912 | -0.012 0.903 0.068 0.848
MIDAS -0.045 0.381 1.036 | -0.015 0.931 0.172 0.966 | -0.012 0.920 0.074 0.895
IRMI -0.421 0.897 0.394 1.565 | -0.414 0.357 0.187 1.602 | -0.420 0.000 0.083 1.526
CART -0.062 0.919 0.322 0.876 | -0.009 0.885 0.141 0.778 | -0.005 0.889 0.061 0.787
RF -0.095 0.928 0.338 0.915 | -0.074 0.904 0.159 0.914 | -0.123 0.605 0.073  0.905
BAMLSS -0.174 0.793 0.311 0.645 | -0.042 0.914 0.154 0.820 | -0.046 0.873 0.068 0.878
GAMLSS -0.019 0.919 0.410 0.955 0.013 0.185 1.050 | -0.015 0.081 0.988
GAMLSS-JSU | -0.016 0.453 1.067 | -0.007 0.198 1.148 | -0.035 0.085 1.049

R? =0.50
COM -0.004 0.147  1.002 0.002 0.072 1.003 | -0.000 0.032 0.993
CCA -0.077 0.911 0.207 0.905 | -0.060 0.888 0.097 0.933 | -0.064 0.656 0.043 0.901
NORM 0.011 0.211 0.998 0.043 0916 0.090 0.982 0.044 0.794 0.039 0.956
AMELIA 0.050 0.934 0.206 0.973 0.054 0.895 0.090 0.984 0.046 0.780 0.039 0.957
PMM-1 0.009 0.890 0.209 0.812 0.014 0.865 0.084 0.775 0.002 0.868 0.036 0.759
PMM-3 -0.019 0.920 0.213 0.883 0.010 0.896 0.086 0.819 0.002 0.888 0.036 0.795
PMM-5 -0.052 0.220 0.946 0.006 0.898 0.087 0.837 0.002 0.892 0.037 0.811
PMM-10 -0.132 0.926 0.239 1.033 | -0.008 0.918 0.092 0.881 0.001 0.886 0.037 0.804
PMM-20 -0.269 0.889 0.263 1.291 | -0.046 0.915 0.099 0.953 | -0.002 0.896 0.038 0.822
PMM-D -0.085 0.230 0991 | -0.022 0.921 0.094 0.908 | -0.007 0.889 0.039 0.832
AREG -0.118 0.907 0.255 0.897 | -0.017 0.908 0.096 0.864 | -0.004 0.898 0.037 0.820
MIDAS -0.014 0.231 1.023 0.008 0.922 0.099 0936 | -0.000 0.922 0.043 0.903
IRMI -0.397 0.810 0.285 1.710 | -0.395 0.073 0.136 1.790 | -0.399 0.000 0.060 1.724
CART -0.073 0.929 0.206 0.981 | -0.008 0.880 0.083 0.797 | -0.002 0.875 0.036 0.796
RF -0.058 0.934 0.213 0.957 | -0.039 0.921 0.096 0.928 | -0.059 0.715 0.044 0.945
BAMLSS -0.113 0.806 0.190 0.521 | -0.011 0.905 0.090 0.834 | -0.013 0.872 0.039 0.800
GAMLSS 0.012 0918 0.259 0.970 0.027 0.108 1.062 0.007 0.044 0977
GAMLSS-JSU 0.022 0.287 1.102 | -0.001 0.125 1.130 | -0.009 0.051 1.028

R?=0.75
COM -0.002 0.085 1.002 0.001 0.041 1.003 | -0.000 0.018 0.993
CCA -0.043 0.915 0.126 0.914 | -0.033 0.906 0.059 0.938 | -0.034 0.712 0.026 0.928
NORM 0.028 0.121  0.980 0.032 0.909 0.055 0.962 0.031 0.742 0.024 0.967
AMELIA 0.050 0929 0.117 0.942 0.037 0.891 0.055 0.958 0.032 0.742 0.024 0.976
PMM-1 0.042 0.873 0.116 0.752 0.019 0.845 0.051 0.745 0.005 0.861 0.023 0.785
PMM-3 0.032 0915 0.130 0.877 0.021 0.879 0.053 0.822 0.006 0.893 0.023 0.843
PMM-5 0.011 0.145 0.973 0.023 0.881 0.055 0.844 0.007 0.897 0.023 0.856
PMM-10 -0.051 0.174 1.180 0.022 0.900 0.058 0.894 0.010 0.885 0.023 0.857
PMM-20 -0.197 0.920 0.206 1.436 0.003 0.067 0.998 0.014 0.875 0.024 0.864
PMM-D -0.014 0.158 1.080 0.017 0918 0.062 0.930 0.016 0.870 0.025 0.882
AREG -0.082 0.897 0.176 0.853 | -0.005 0.914 0.063 0.886 0.002 0.925 0.025 0.892
MIDAS 0.021 0.150 1.064 0.019 0911 0.059 0.915 0.006 0918 0.026 0.926
IRMI -0.375 0.779 0.239 2.159 | -0.378 0.003 0.112 2.231 | -0.380 0.000 0.050 2.130
CART -0.075 0.921 0.150 1.062 | -0.016 0.834 0.054 0.724 | -0.002 0.844 0.022 0.736
RF -0.023 0.934 0.144 0.986 | -0.010 0.909 0.059 0.887 | -0.018 0.867 0.026 0.925
BAMLSS -0.046 0.828 0.121 0.444 0.019 0.871 0.052 0.784 0.019 0.831 0.023 0.862
GAMLSS 0.026 0.929 0.165 1.014 0.021 0.070 1.138 0.008 0.027 1.026
GAMLSS-JSU 0.020 0.192 1.189 0.006 0.080 1.070 0.006 0.029 0.966

73



6.2.5 Student’st

The seventh experiment used a t distribution with three degrees of freedom for the in-
completely observed variable. De Jong (2012) found that GAMLSS did not perform well
if the underlying distribution is heavy-tailed. At that time, however, the imputation
method wasn’t stable enough to allow for the replacement of the Normal distribution
in the response model by a more general one. The current experiment aims to test
GAMLSS-JSU in a situation where GAMLSS failed. Figure 6.7 shows the distribution of
the observed and missing values and the effects of the MDM.

10-

10-

Figure 6.7: Scatter plots of both the direct and reverse regression when the covariate
is t distributed with three degrees of freedom. The red circles are observed values,
and the blue triangles are missing. The coefficient of determination is 0.5.

CCA is invalid with coverage values as low as 0.56 as the sample size increase.
This is a consequence of the conditions in the simulation experiment that favored the
deletion of values in one tail of the t distributed variable.

The results of the imputation methods are very similar to all other experiments
when n = 50. Beyond this sample size, the performance is dependent on the coeffi-
cient of determination. When R? = 0.25 the imputation methods produce their best
estimates for the largest sample size, even if they are generally invalid. This may be
caused by the lowest selectivity of the MDM here.

The only two non GAMLSS methods with interesting results are AREG and MIDAS.
Both methods are valid or very close to being valid if R> > 0.50 and n > 200 with
coverage over 0.93. Strangely if R*> = 0.25 their coverage range from 0.918 to 0.951,
close to methods like NORM or AMELTA.

Both GAMLSS and GAMLSS-JSU failed to provide valid results consistently. They
struggle, as expected, with the smallest sample size with coverage between 0.895
and 0.941 if n = 50. They also suffered from under-coverage when R?> = 0.75 and
n = 1000 (cov € [0.924,0.933]). In fact, for n = 1000 GAMLSS is only valid when
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R?>=0.25.

Something to look at is the fact that the imputation results if n = 200 are better

than when n = 1000. This has been a usual feature of Hot Deck methods, but it was

expected that GAMLSS, being a semi-parametric method, improved with larger sample

size. A posterior examination of the raw data showed that the problem might be due

the position of the missing values. When n = 1000 there is a higher likelihood of

simulating larger values of the t distributed random variable that, if deleted by the
MDM, could mislead the predictions of the GAMLSS model.

Table 6.9: Student’s t distribution

method n=50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio

R? =0.25
COM 0.003 0.279  0.993 0.005 0.129 0.972 -0.004 0.056 0.975
CCA -0.120 0.915 0.358 0.943 -0.109 0.854 0.162 0.915 -0.105 0.645 0.068 0.919
NORM -0.036 0.404 1.007 0.014 0.920 0.170 0.911 0.015 0.911 0.069  0.806
AMELIA 0.020 0.410 0.996 0.027 0.922 0.173 0.921 0.016 0.920 0.071 0.809
PMM-1 -0.020 0.916 0.426 0.927 0.006 0.871 0.174 0.843 0.005 0.861 0.067 0.756
PMM-3 -0.058 0.932 0.405 0.950 -0.005 0.894 0.173 0.877 0.001 0.879 0.068 0.812
PMM-5 -0.089 0.401 0.982 -0.011 0.909 0.173 0.890 -0.003 0.902 0.069 0.841
PMM-10 -0.158 0.403 1.048 -0.034 0.909 0.173 0.903 -0.009 0.901 0.069 0.857
PMM-20 -0.256 0.408 1.178 -0.073 0915 0.174 0.935 -0.018 0910 0.070 0.877
PMM-D -0.116 0.399 1.003 -0.050 0.909 0.173 0.910 -0.026  0.900 0.070 0.882
AREG -0.162 0.934 0.447 0.985 -0.074 0.919 0.203 0.965 -0.040 0918 0.083 0.938
MIDAS -0.077 0.457 1.089 -0.020 0.922 0.188 0.958 -0.016 0.925 0.077 0.924
IRMI -0.409 0.890 0.419 1.613 -0.415 0.350 0.189 1.565 -0.420 0.000 0.079 1.536
CART -0.080 0.924 0.380 0.918 -0.017 0.887 0.159 0.830 -0.017 0.862 0.070 0.723
RF -0.027 0918 0.366 0.878 0.012 0.873 0.160 0.821 0.004 0.873 0.070 0.813
BAMLSS -0.060 0.798 0.361 0.670 -0.044 0.724 0.163 0.428 -0.176  0.257 0.058 0.114
GAMLSS -0.004 0.903 0.448 0.936 0.037 0.931 0.199 1.017 0.004 0.095 1.173
GAMLSS-JSU 0.028 0.918 0.471 0.973 0.029 0.222 1.091 0.000 0.123 1.425

R? =0.50
COM 0.001 0.159  0.993 0.003 0.074 0.972 | -0.002 0.032  0.975
CCA -0.094 0.902 0.211 0.915 -0.078 0.845 0.095 0.920 -0.074 0.547 0.040 0.904
NORM -0.013 0.933 0.224 0.941 0.013 0.886 0.090 0.786 0.004 0.839 0.037 0.622
AMELIA 0.030 0.917 0.230 0.955 0.026 0.899 0.093 0.793 0.007 0.886 0.040 0.686
PMM-1 0.010 0.908 0.237 0.876 0.027 0.862 0.093 0.781 0.016 0.810 0.038 0.679
PMM-3 -0.010 0.935 0.241 0.956 0.020 0.901 0.099 0.870 0.015 0.857 0.039 0.770
PMM-5 -0.036 0.245 1.009 0.015 0.917 0.102 0.910 0.015 0.880 0.040 0.805
PMM-10 -0.096 0.259 1.081 0.000 0.927 0.104 0.973 0.012 0.912 0.041 0.849
PMM-20 -0.198 0.928 0.275 1.207 -0.029 0.935 0.109 1.036 0.006 0.922 0.042 0.877
PMM-D -0.059 0.250 1.042 -0.012 0.929 0.106 0.986 0.001 0.043 0.906
AREG -0.116  0.931 0.287 0.982 -0.034 0.118 0.985 -0.014 0.934 0.047 0.956
MIDAS -0.036 0.285 1.144 0.004 0.935 0.111 1.017 0.000 0.046 0.973
IRMI -0.395 0.759  0.292 1.796 -0.396 0.076 0.134 1.829 -0.400 0.000 0.056 1.716
CART -0.073 0.934 0.240 1.000 -0.030 0.877 0.103 0.797 -0.021 0.852 0.050 0.665
RF -0.016 0.231 0.965 0.011 0.906 0.102 0.871 0.006 0.874 0.048 0.814
BAMLSS -0.034 0.792 0.211 0.550 -0.058 0.660 0.088 0.254 -0.422 0.225 0.032 0.067
GAMLSS -0.040 0917 0.319 0.958 0.013 0.152 1.037 -0.114 0.902 0.160 0.610
GAMLSS-JSU 0.017 0.316 1.137 0.005 0.172 1.048 -0.062 0.126  0.658

R? =0.75
COM 0.001 0.091 0.992 0.002 0.042 0.972 -0.001 0.018 0.975
CCA -0.056 0.900 0.125 0.915 -0.045 0.852 0.056 0.911 -0.042 0.560 0.024 0.903
NORM 0.002 0.921 0.126  0.859 0.005 0.865 0.053 0.712 -0.005 0.785 0.022 0.616
AMELIA 0.028 0.919 0.123 0.828 0.013 0.911 0.056 0.758 -0.003 0.862 0.025 0.721
PMM-1 0.057 0.871 0.140 0.782 0.040 0.799 0.058 0.664 0.020 0.741 0.023  0.542
PMM-3 0.039 0.931 0.156 0.940 0.042 0.858 0.064 0.795 0.024 0.763 0.025 0.677

75




Table 6.9: Continuation of table on previous page

method n=50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio
PMM-5 0.021 0.168 1.077 0.041 0.883 0.067 0.876 0.026 0.767 0.026 0.710
PMM-10 -0.025 0.188 1.268 0.034 0.918 0.071 0.971 0.029 0.765 0.027 0.771
PMM-20 -0.131 0.215 1.453 0.015 0.076 1.124 0.029 0.787 0.028 0.833
PMM-D 0.002 0.177 1.191 0.027 0.074 1.063 0.028 0.822 0.028 0.898
AREG -0.078 0.935 0.200 0.923 -0.009 0.078 0.958 -0.001 0.032 0.984
MIDAS 0.015 0.193 1.265 0.020 0.075 1.106 0.009 0.930 0.030 1.023
IRMI -0.374 0.670 0.236 2.174 -0.376  0.023 0.109 2.212 -0.381 0.000 0.046 2.099
CART -0.065 0.910 0.173 0.981 -0.037 0.859 0.078 0.699 -0.020 0.819 0.041 0.594
RF -0.000 0.167 1.016 0.014 0.886 0.076  0.843 0.006 0.853 0.039 0.843
BAMLSS -0.044 0.788 0.126 0.415 0.018 0.764 0.050 0.387 -0.121 0.511 0.039 0.134
GAMLSS -0.075 0.895 0.219 0.742 -0.025 0.118 1.004 -0.035 0.924 0.040 0.882
GAMLSS-JSU -0.070 0.925 0.232 0.833 -0.033 0.126  0.885 -0.025 0.047 0.899

6.3 Multiple Incomplete Predictors

This section presents the outcome of the simulation experiments under the conditions
described in section 6.1.2. Three covariates will be incompletely observed. Two are
fixed to belong to a Poisson or Binomial distribution. The remaining one will be ei-
ther Normal, Student’s t or chi-square distributed. The performance when only one
variable had missing values was explored in the previous section.

The goal in this new set of experimental conditions is to test the robustness and
validity of the imputation methods when variables belonging to diverse distributions
have to imputed together. By fixing the counted and binary variable while we vary the
continuous variable, we want to also assess the impact of misspecified distributional
assumptions. The current simulations are an extension to the ones already described
by Salfran and Spiess, 2015.

The results of the experiments are summarized similarly as in the previous sec-
tion. One difference concerning previously presented results is that now the tables
are grouped according to the linear regression coefficients estimated: f3,, 55 or f,.
This corresponds to the variables incompletely observed, and it will be denoted in the
tables. Further, due to computational restrictions, the number of iterations per simu-
lation study is restricted to 500. This changes the interval of acceptable coverage rate
to [0.931,0.969].

6.3.1 Normal continuous predictor

Table 6.14 shows the results of using a standard Normal distribution for X,, a Pois-
son with three degrees of freedom for X; and a Binomial with parameter 0.4 for the
incompletely observed variables. The reason behind the selection of these probability

distributions is only to get a data set that looks more realistic.
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The results of COM are valid regardless of the distribution or sample size. As the
sample size increases the estimated bias goes to zero, and the ratio of variance oscillate
around one while the error decreases. The coverage is always in the acceptable range.
This is no surprise since the true model is linear and the estimation is being performed
with the full data set. On the other hand, CCA is invalid throughout. The bias is always
large and tends to be more or less the same given the distribution of the variable with
missing values. The coverage diminishes with increasing sample size. In one instance
(B, when n = 50) the problems of CCA are masked by a large estimated error which
results in good coverage.

The missing mechanism used deletes aggressively in one region of space with the
aim of deliberately stressing the imputation methods. This is more noticeable for the
continuous and counted variables, but less so in the binary which has less than 10%
of its values missing. Figure 6.1 shows an example of the distribution of missing and
observed values.

In the case of one single predictor with missings, NORM and AMELIA assumed both
a Normal distribution for the imputation model. In the current settings, they both still
assume a normal distribution when imputing the continuous and counted variables.
However, when imputing the binary variable NORM assumes correctly that the distri-
bution is Bernoulli (equation (4.4)) and uses a logistic imputation model. For this
reason, it is expected that imputations made with NORM yield acceptable estimation
results.

NORM works as expected in the case of 8, and f,, using correctly specified models.
The inferences are valid concerning the coverage. If n < 200 the estimator of f3, is
slightly biased and the coverage remains acceptable because of the overestimation
in the variance. Nevertheless, the bias disappears as the sample size increases. The
estimation of 3; provides a similar outcome as when imputing a single Poisson variable
with missing values. The method is almost unbiased but the coverage goes from valid
when n = 50 to invalid when n = 1000 (cov = 0.926).

The results of AMELIA are very similar, though the estimation of f, is slightly biased
even if they have acceptable coverage (bias € [—0.071,—0.049]). When n = 50 there
is a tendency to underestimate the true variance of the estimators, at least for the
Normal and Poisson covariates. This leads to under-coverage of f3, if n = 50.

PMM methods show the same behavior they did when imputing a single variable.
The bias of the estimated regression coefficients gets smaller as the sample size in-
crease, given a fixed number of donors and distribution of the covariate. For example,
if k = 20 (PMM-20) the bias of estimating 3, goes from 0.077 for n = 50 to 0.001 for
n = 1000. At the same time, the estimated error decreases, but too fast, as indicated

by the drop in the ratio between the mean estimated variance and variance over the
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simulations. The consequence is that the coverage rate diminishes from generally ac-
ceptable values when n = 50 to values below the limit if n = 1000. The coverage rate
for B, and n = 1000 is less than 0.898 and for f3; less than 0.924. The assessment is
also true for the estimation of f3, although the MDM being harmless in this variable
allows obtaining valid inference in this instance.

Moving in the other direction, i.e., increasing the number of donors given fixed
sample size and distribution of the covariate, there is not monotonicity to the values
of bias and coverage. The coverage rate could start from a possibly unacceptable low
value, increase up to a maximum, and then decrease again. In the case of the bias, it
can get smaller while the number of donors increases and then gets larger again after
reaching a maximum value. The main problem with this pattern is that the optimum
number of donors doesn’t have to be the same for all sample sizes or distributions of
the covariate.

The other two Hot Deck methods AREG and MIDAS are slightly better than the other
PMM techniques. Of this two MIDAS is almost perfect concerning bias and coverage rate.
Except if X, is normally distributed. Then it shows under-coverage when n = 200 and
has a small bias that remains for the largest sample size. AREG, on the other hand, has
a smaller bias but it suffers from under-coverage.

The method IRMI uses a different imputation model for the Poisson and Binomial
variables. For the Poisson, the model is based on a robust generalized linear regression
of Poisson family (Cantoni and Ronchetti, 2001) and for the Binomial on a robust
logistic linear regression. This leads to valid or confidence valid coverage rates in the
estimation of 3, and f3; (if n < 200). Nevertheless, the estimation is extremely biased
for all sample sizes. This is more noticeable in the estimation of 3, with an absolute
bias larger or equal than -0.698, when the true value of the parameter is 1.5. The bias
invalidates the inference due to its large values. Again, the reason for this severe ill
performance may be caused by the wrong classification of data points as outliers.

If n = 50, IRMI masks the biased estimation by a large overestimation of the vari-
ance with a ratio between 1.23 and 1.77. With increasing sample size the error de-
creases, leaving the ratio and bias more or less the same. This generates extreme
values of under-coverage. When n = 1000 the coverage of 3, and f3; is 0 and 0.440
respectively.

The two Recursive Partitioning methods perform very differently from each other.
RF performs as bad as IRMI with only a little less bias to its favor. The coverage can
be as low as 0.011 for f3, if n = 1000. Next CART is better than RF when estimating f3,
and f35, but it is worse due to bias with under-coverage for f3,. In general, CART-based
estimators seem to be biased, with the bias decreasing for larger sample sizes. The

problem seems to be the underestimation of the error variance, as seen in the low
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ratio, that leads to invalid coverages.

The GAMLSS-based methods assumed a Bernoulli distribution for the imputation
model of X,, exactly like NORM. This is handled via the mice () function’s arguments.
BAMLSS appears to be deficient, with a similar outcome as in the previous simulations.
It shows no bias or a very small one, but it systematically underestimates the variance
of the estimators. The only acceptable result is in the relatively harmless case of im-
puting the Binomial with n = 1000. On the contrary, both GAMLSS and GAMLSS-JSU
show good results most of the time: vanishing bias with increasing sample size and
nominal coverage rates. The exception is GAMLSS when n < 200 which shows coverage
of 0.912 and 0.925.

Table 6.10: Results for the estimation of f8,, f3 and 3, in model 6.4. The imputed
covariate x5 follows normal distribution.

method n=50 n=200 n=1000

bias cov sd ratio | bias cov sd ratio bias cov sd ratio

B> (Normal covariate)

COM 0.008 0.443 1.006 -0.013 0.209 1.029 -0.002 0.093 0.981
CCA -0.217 0.907 0.598 0.932 -0.257 0.826 0.268 0.981 -0.243 0.465 0.117 0.936
NORM -0.119 0.651 1.006 -0.051 0.294 1.009 -0.007 0.127 0.958
AMELIA 0.046 00911 0.673 0.936 -0.001 0.294 0.984 0.004 0.127  0.959
PMM-1 -0.028 0.899 0.671 0.867 -0.017 0.877 0.293 0.836 -0.004 0.886 0.125 0.793
PMM-3 -0.105 0.912 0.657 0.904 -0.049 0.892 0.286 0.835 -0.012 0.895 0.123 0.818
PMM-5 -0.171 0.658 0.950 -0.071 0.897 0.283 0.840 -0.016 0.898 0.123 0.822
PMM-10 -0.291 0.665 1.029 -0.117 0.886 0.283 0.874 -0.026  0.881 0.121 0.808
PMM-20 -0.538 0.685 1.260 -0.209 0.871 0.289  0.942 -0.045 0.882 0.121 0.810
PMM-D -0.223 0.665 0.989 -0.155 0.881 0.284 0.901 -0.067 0.862 0.121 0.815
AREG -0.366 0.906 0.701 0.973 -0.128 0.900 0.312 0.892 -0.027 0.915 0.128 0.873
MIDAS -0.373 0.765 1.170 -0.182 0.917 0.343 0.997 -0.055 0.147 0.954
IRMI -0.698 0.747 1.770 -0.716 0.417 0.339 1.854 -0.708 0.000 0.149 1.835
CART -0.287 0.903 0.613 0.913 -0.105 0.855 0.254 0.757 -0.039 0.816 0.108 0.698
RF -0.560 0.701 1.501 -0.605 0.598 0.332 1.691 -0.636 0.011 0.166 1.802
BAMLSS -1.347 0.125 0.269 0.615 -0.018 0.862 0.262 0.661 0.030 0.869 0.111 0.789
GAMLSS 0.016 0.912 0.735 0.906 0.086 0.925 0.337 1.003 0.039 0.144 1.001
GAMLSS-JSU -0.061 0.791 1.003 0.025 0.387 1.123 0.032 0.154 1.040
B3 (Poisson covariate)
COM -0.012 0.256 0.983 -0.001 0.121 1.022 -0.002 0.053 0.969
CCA -0.130 0.924 0.363 0.958 -0.104 0.879 0.163 0.936 -0.110 0.669 0.071 0.941
NORM -0.022 0.353  0.996 0.017 0.162  0.991 0.013 0.926 0.071 0.953
AMELIA 0.000 0.357 0.952 0.022 0.163 0.977 0.014 0.927 0.071 0.957
PMM-1 -0.000 0.923 0.345 0.904 0.002 0915 0.157 0.893 | -0.006 0.912 0.068 0.887
PMM-3 0.008 0.344 0.951 0.008 0.917 0.155 0.912 -0.004 0.924 0.068 0.903
PMM-5 0.005 0.347 0.981 0.011 0.923 0.155 0.923 | -0.003 0.922 0.067 0.898
PMM-10 -0.011 0.358 1.067 0.015 0.155 0.943 -0.001 0.924 0.067 0.890
PMM-20 -0.062 0.370 1.215 0.019 0.157 0.974 0.001 0.921 0.067 0.903
PMM-D 0.001 0.352 1.022 0.016 0.155 0.950 0.004 0.921 0.067 0.906
AREG -0.042 0.348 1.034 0.008 0.162 0.958 | -0.000 0.929 0.070 0.927
MIDAS -0.009 0.380 1.087 0.011 0.171 1.007 0.001 0.074 0.981
IRMI -0.170 0.408 1.512 | -0.167 0.186 1.543 | -0.167 0.440 0.082 1.511
CART -0.014 0.331 0.993 -0.002 0.911 0.143  0.865 -0.005 0.867 0.061 0.771
RF -0.108 0.380 1.374 | -0.114 0.179 1.440 | -0.123 0.787 0.087 1.503
BAMLSS -0.107 0.717 0.371 0.746 -0.028 0.912 0.158 0.863 -0.035 0.878 0.065 0.850
GAMLSS 0.012 0.930 0.381 0.987 | -0.001 0.172 1.004 | -0.021 0.077 1.012
GAMLSS-JSU 0.014 0.390 1.005 0.005 0.175 1.022 -0.021 0.076 1.000
f4 (Binomial covariate)
COM 0.039 0.855 1.010 | 0.026 0.414 1.021 0.003 0.183 0.997
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Table 6.10: Continuation of table on previous page

method n=50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio
CCA -0.352 1.175 0.976 -0.365 0.886 0.547 0.996 -0.381 0.631 0.239 0.961
NORM 0.016 1.047  0.999 0.010 0.494 1.030 -0.006 0.217  0.993
AMELIA -0.071 1.030 0.996 -0.049 0.489 1.044 -0.063 0.216 1.018
PMM-1 0.041 1.035 0.967 0.021 0.497 1.010 -0.004 0.217  0.992
PMM-3 0.058 1.033 1.005 0.027 0.493 1.010 -0.003 0.218 0.995
PMM-5 0.070 1.042 1.027 0.032 0.492 1.021 -0.002 0.218  0.995
PMM-10 0.085 1.055 1.065 0.042 0.493 1.026 -0.001 0.218 1.003
PMM-20 0.077 1.085 1.122 0.055 0.496 1.047 0.001 0.217 1.002
PMM-D 0.078 1.048 1.045 0.047 0.494 1.035 0.007 0.218 1.004
AREG 0.117 1.053 1.026 0.022 0.500 1.039 -0.013 0.220 1.010
MIDAS 0.076 1.076  1.091 0.046 0.503 1.037 0.005 0.220  0.996
IRMI -0.062 1.170 1.230 -0.095 0.551 1.215 -0.132 0.243 1.180
CART -0.119 1.004 1.056 | -0.137 0.914 0.461 0.927 | -0.092 0.851 0.200 0.803
RF 0.035 1.103 1.138 0.035 0.530 1.117 0.038 0.239 1.083
BAMLSS -0.420 0.868 1.057 0.886 | -0.048 0.912 0.465 0.867 | -0.020 0.206  0.955
GAMLSS -0.062 1.035 0.971 -0.011 0.491 1.006 -0.015 0.219 1.005
GAMLSS-JSU -0.020 1.055 1.013 0.003 0.494 1.022 -0.017 0.219 0.997

6.3.2 Non-Normal Predictors

The next experimental conditions tested kept fixed the distributions of X5 and X, al-
beit with different regression coefficients in model (6.4). Instead, X, is set to be either
the Student’s t or Chi-squared distributed. By using this design, we intended to mod-
ify the shape of the data cloud by either introducing extreme values or asymmetries.
Table 6.11 shows the result of estimating the regression coefficients of model (6.4)
when X, is t distributed.

The results are very similar to the case where X, is normal with some obvious
exceptions. NORM and AMELIA fail to properly estimate f3,. AMELIA has a small bias
and good coverage when n = 50. Besides that particular case, both methods generate
increasingly worse coverage rates while the sample size increases (cov < 0.914 if
n =1000).

All other methods perform as they did in the previous experiments. The estima-
tion of 3, is mostly fine with all methods yielding valid or confidence valid coverage
rates, with the exception of CCA and BAMLSS. The biases become increasingly smaller,
although for CCA, AMELTA, IRMI, RF, and BAMLSS the bias increases from n = 200 to
n = 1000.

The estimated values of PMM methods keep their usual tendency of vanishing bias
and higher precision at the expense of lower coverage rate. It gets to the point where
no PMM is valid for f3, if n > 200 and none for f3; if n = 1000. AREG performs close
to the parametric PMM methods. Furthermore, there is always a better PMM method
than AREG. The only promising Hot Deck method seems to be again MIDAS with valid

estimation of f3; (in addition to 3,) but it fails to be valid for f3,.
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Inference based on IRMI is horrible, especially if n = 1000. The bias of the esti-
mator of f3, is -0.446 with coverage rate of 0. RF is not far behind with an absolute
bias of -0.402 and coverage rate of 0.019. CART is biased for 3, and f3, but practically
unbiased for ;. Nevertheless, it suffers from under-coverage. Even so, as a conse-
quence of the overestimated variance, the three methods are valid or confidence valid
concerning coverage if n = 50.

GAMLSS is not valid for f3, if n < 200, but together with GAMLSS-JSU are the only
two valid imputation methods if n = 1000 for all variables with missings. GAMLSS-JSU
has 0 bias for 3, and f, if n = 1000 with nominal coverage, and only a bias of 0.014
for f35, still with nominal coverage.

Table 6.12 shows the results of the estimation of 3, when X, is chi-squared dis-
tributed. The simulation results related to 35 and 8, showed very similar results as
when X, is normal or t distributed, and led to the same conclusions. The table was
split and the results for f3; and 3, are presented in appendix B.

There are some differences between the estimation of f3, in this latest experiment.
CCA is still invalid, but the coverage is even better than the rest of the imputation meth-
ods (with the exceptions of MIDAS, GAMLSS, and GAMLSS-JSU). In general all methods
show a slight to moderate increase of the bias with an associated drop in coverage
rates.

GAMLSS and GAMLSS-JSU are the only methods that provide valid inference when
n = 1000 for all regression coefficients. When n < 200 one or both can show lower
than acceptable coverage rates. Also GAMLSS-JSU is markedly biased for 3, and f3; if
n < 200.

Table 6.11: Results for the estimation of 85, 83 and 4 in model 6.4 when the imputed
covariate follows a Student’s t with three degrees of freedom.

method n=50 n=200 n=1000

bias

cov

ratio | bias

cov

ratio

bias

cov

ratio

B, (t covariate)

COM 0.005 0.251 1.007 | -0.008 0.111  1.013 | -0.001 0.048 0.974
CCA -0.118 0.914 0.355 0.935 | -0.128 0.848 0.145 0.948 | -0.113 0.534 0.061 0.888
NORM -0.048 0.415 1.023 | -0.005 0.922 0.154 0.922 0.017 0.898 0.063 0.822
AMELIA 0.045 0923 0.433 1.001 0.021 0.929 0.156 0.938 0.022 0.914 0.065 0.862
PMM-1 0.015 0.896 0.434 0.931 | -0.001 0.869 0.154 0.786 0.007 0.841 0.062 0.706
PMM-3 -0.038 0.422 0.972 | -0.017 0.892 0.156 0.843 0.003 0.875 0.063 0.765
PMM-5 -0.065 0.431 1.012 | -0.027 0.898 0.158 0.859 | -0.001 0.880 0.063 0.776
PMM-10 -0.130 0.445 1.097 | -0.052 0.912 0.161 0.913 | -0.007 0.891 0.064 0.795
PMM-20 -0.256 0.460 1.301 | -0.091 0.908 0.167 0.981 | -0.017 0.887 0.065 0.816
PMM-D -0.096 0.439 1.057 | -0.068 0.915 0.163 0.944 | -0.027 0.881 0.066 0.838
AREG -0.189 0.465 1.050 [ -0.100 0.904 0.185 0.939 | -0.045 0.856 0.075 0.857
MIDAS -0.238 0.534 1.257 | -0.083 0.200 1.072 [ -0.023 0.929 0.080 0.972
IRMI -0.438 0.496 1.961 | -0.453 0.333 0.203 1.923 | -0.446 0.000 0.085 1.854
CART -0.146 0.406 1.027 | -0.094 0.831 0.152 0.790 | -0.060 0.760 0.067 0.619
RF -0.329 0.486 1.714 | -0.367 0.679 0.216 1.860 | -0.402 0.019 0.106 1.834
BAMLSS -0.888 0.133 0.180 0.562 | -0.097 0.660 0.153 0.360 | -0.254 0.298 0.059 0.117
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Table 6.11: Continuation of table on previous page

method n=50 n=200 n=1000

bias cov sd ratio | bias cov sd ratio bias cov sd ratio
GAMLSS 0.003 0.923 0.532 1.070 0.063 0.929 0.203 1.036 0.025 0.092 1.094
GAMLSS-JSU | -0.012 0.550 1.117 0.043 0.215 1.078 0.000 0.111 1.163

B3 (Poisson covariate)
COM -0.010 0.221  0.979 | -0.001 0.105 1.020 | -0.002 0.046  0.969
CCA -0.144 0909 0.325 0.931 -0.116  0.850 0.145 0.926 | -0.119 0.516 0.063 0.925
NORM -0.018 0.320 0.974 0.004 0.142 0.940 | -0.001 0.920 0.063 0.899
AMELIA 0.008 0.323  0.940 0.011 0.146  0.963 0.002 0.930 0.065 0.938
PMM-1 0.023 0.315 0.846 0.018 0.905 0.135 0.857 0.006 0.886 0.059 0.844
PMM-3 0.031 0.323  0.960 0.027 0919 0.136 0.903 0.012 0908 0.059 0.867
PMM-5 0.022 0.329  1.057 0.032 0917 0.135 0.912 0.014 0.909 0.059 0.880
PMM-10 -0.005 0.346 1.154 0.036 0921 0.138 0.933 0.019 0.907 0.059 0.885
PMM-20 -0.081 0.364 1.329 0.034 0.142 0.977 0.025 0.897 0.059 0.891
PMM-D 0.013 0.338 1.100 0.038 0.928 0.139 0.957 0.027 0.893 0.059 0.903
AREG -0.045 0.352  1.129 0.033 0.917 0.148 0.953 0.023 0.907 0.066 0.914
MIDAS 0.003 0.379 1.224 0.023 0.155 1.040 0.013 0.066 0.979
IRMI -0.210 0.415 1.736 | -0.201 0.910 0.182 1.615 | -0.205 0.175 0.079 1.581
CART -0.015 0.320 1.093 0.005 0.908 0.130 0.850 -0.007 0.881 0.056 0.790
RF -0.133 0.379 1.566 | -0.133 0.176  1.481 | -0.145 0.691 0.089 1.639
BAMLSS -0.129 0.682 0.323 0.581 0.005 0.827 0.136 0.638 -0.049 0.516 0.057 0.223
GAMLSS 0.020 0.380 1.058 0.015 0.163 1.019 0.000 0.073 1.052
GAMLSS-JSU 0.027 0.396 1.101 0.026 0.164 1.028 0.014 0.082 1.068
f4 (Binomial covariate)

COM 0.035 0.740 1.007 0.023 0.358 1.021 0.003 0.159  0.997
CCA -0.192 0.996 0.993 -0.202 0.925 0.465 1.002 -0.219 0.798 0.204 0.979
NORM 0.020 0.938 1.008 -0.011 0.436 1.003 -0.028 0.193  0.981
AMELIA -0.026 0.912 0.987 | -0.042 0.434 1.027 | -0.058 0.191 1.011
PMM-1 0.050 0.959  0.935 0.023 0.440 0.999 0.003 0.193  0.996
PMM-3 0.076 0.979 1.010 0.027 0.443 1.017 0.005 0.194 1.004
PMM-5 0.084 0.990 1.051 0.034 0.446  1.025 0.008 0.194 1.003
PMM-10 0.096 1.009 1.074 0.043 0.450 1.043 0.012 0.195 0.998
PMM-20 0.088 1.050 1.121 0.052 0.457 1.058 0.018 0.195 1.006
PMM-D 0.089 0.998 1.064 0.049 0.454 1.042 0.021 0.196 1.015
AREG 0.138 1.079 1.114 0.042 0.461 1.029 0.025 0.203 1.023
MIDAS 0.096 1.055 1.146 0.034 0.459 1.048 0.004 0.198 1.017
IRMI 0.004 1.153 1.253 -0.030 0.528 1.267 | -0.049 0.232 1.214
CART -0.049 0.969 1.077 | -0.108 0.422 0.974 | -0.083 0.874 0.182 0.846
RF 0.052 1.087 1.172 0.045 0.510 1.145 0.055 0.231 1.120
BAMLSS -0.071 0928 0.989 1.038 0.019 0.925 0.425 0.899 -0.069 0.726 0.183 0.380
GAMLSS 0.002 1.002 1.012 0.003 0.444 1.010 -0.007 0.198 1.007
GAMLSS-JSU 0.010 1.021 1.020 0.014 0.449 1.004 0.000 0.200 1.038

Table 6.12: Results for the estimation of 3, in model 6.4 when the imputed covariate

follows a Chi-squared distribution with three degrees of freedom.

method n=>50 n=200 n=1000
bias cov sd ratio | bias cov sd ratio bias cov sd ratio
B, (Chi-squared covariate)

COM 0.008 0.279  1.001 -0.008 0.129 1.004 | -0.002 0.057 0.981
CCA -0.078 0.915 0.476 0.895 | -0.086 0.913 0.201 0.925 | -0.072 0.836 0.087 0.878
NORM 0.032 0.927 0.552 0.972 0.100 0.893 0.223 0.943 0.137 0.675 0.093 0.909
AMELIA 0.141 0.897 0.592 0.955 0.132 0.868 0.231 0.961 0.144 0.653 0.096 0.939
PMM-1 0.015 0.890 0.546 0.855 -0.027 0.845 0.200 0.767 | -0.026 0.822 0.077 0.692
PMM-3 -0.079 0922 0.536 0.920 | -0.050 0.862 0.199 0.804 | -0.031 0.831 0.078 0.737
PMM-5 -0.147 0.541 0.971 -0.071 0.862 0.201 0.820 -0.034 0.825 0.078 0.733
PMM-10 -0.250 0.558 1.130 -0.118 0.872 0.206 0.884 | -0.044 0.819 0.079 0.748
PMM-20 -0.399 0.582 1.432 -0.192 0.852 0.216 1.016 | -0.064 0.794 0.081 0.766
PMM-D -0.194 0.548 1.042 -0.152 0.869 0.209 0.944 | -0.084 0.771 0.083 0.804
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Table 6.12: Continuation of table on previous page

method n=50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio
AREG -0.260 0.542 1.030 -0.120 0.885 0.223 0.894 -0.055 0.838 0.083 0.804
MIDAS -0.205 0.601 1.180 -0.130 0.923  0.250 1.067 -0.063 0.890 0.102 0.938
IRMI -0.480 0.650 1.858 -0.474 0.657 0.276 1.869 -0.458 0.001 0.119 1.826
CART -0.269 0.927 0.506 1.054 -0.148 0.801 0.184 0.795 -0.074 0.724 0.074 0.706
RF -0.391 0.582 1.618 | -0.397 0.726 0.256 1.696 | -0.424 0.034 0.128 1.888
BAMLSS -1.015 0.098 0.203 0.627 -0.490 0.546 0.217 0.565 -0.269 0.307 0.101 0.835
GAMLSS 0.006 0.927 0.636 0.941 -0.091 0.304 1.085 -0.024 0.133 1.296
GAMLSS-JSU -0.141 0.930 0.672 0.987 -0.052 0.930 0.317 1.220 -0.021 0.126 1.129

6.3.3 Weak MDM

Table 6.13 shows the results of estimating f3, in in model (6.4) under all three sim-
ulated conditions using the weak MDM. The results for 3; and f, are presented in
appendix B.

Under the weak MDM, the difference between classes of missingness is very small.
This translates into a mechanism which is almost MCAR. The lower selectivity cause
some instances of CCA to be valid, in particular if X, is t or chi-squared distributed.
When X, is normally distributed, CCA is biased with coverage rates between 0.924 and
0.93.

In the case where X, is normally distributed, all methods except IRMI, CART, RF
and BAMLSS provide valid estimators of the three linear regression coefficients. When
X, is t or chi-squared distributed, most of the imputation methods that were valid in
the first experiment still provide valid inference in general, but some coverage rates
fall below the acceptable range. For example, PMM-20 or PMM-D have a coverage rate
of 0.93 if n = 1000 and X, is chi-squared distributed. GAMLSS and GAMLSS-JSU suffer
from over-coverage if X, is t distributed.

As a rule, the weak MDM allows the imputation methods to systematically produce
valid or confidence valid results. In some cases the coverage falls below the nominal
confidence interval but it’s not extremely low. This does not applies to IRMI or RF,
although their bias is less in comparison to the strong MDM, is still large and the

coverage rates are very low.

Table 6.13: Results for the estimation of 35 in model 6.4 when the imputed covariate
follows a Normal, Student’s t or Chi-squared distribution, the last two with three degrees
of freedom. Weak MDM.

method n=50 n=200 n=1000
| bias cov sd ratio | bias cov sd ratio | bias cov sd ratio
f2 (Normal covariate)
COM -0.021 0.439 1.002 | 0.007 0.210 0.989 | -0.007 0.093 1.005
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Table 6.13: Continuation of table on previous page

method n=50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio
CCA -0.105 0.928 1.137 0.979 -0.094 0924 0.420 0.941 -0.084 0930 0.179 1.010
NORM -0.147 0.646 1.132 -0.037 0.293 1.072 -0.020 0.127  1.065
AMELIA 0.079 0.975 1.102 0.029 0.304 0.974 0.004 0.130 0.982
PMM-1 -0.042 0.649 1.030 -0.015 0.289 1.017 | -0.020 0.126  1.028
PMM-3 -0.062 0.649 1.050 -0.019 0.280 0.976 | -0.020 0.123 1.014
PMM-5 -0.077 0.651 1.050 -0.023 0.279  0.981 -0.020 0.123 1.019
PMM-10 -0.132 0.651 1.108 -0.034 0.279  0.999 -0.021 0.121 1.006
PMM-20 -0.304 0.668 1.303 -0.065 0.284 1.029 -0.026 0.121 1.005
PMM-D -0.093 0.652  1.066 | -0.044 0.281  1.004 | -0.030 0.121  1.006
AREG -1.201 0.216 0.325 0.516 -0.033 0.298 0.943 -0.016 0.125  0.969
MIDAS -0.241 0.701 1.192 | -0.083 0.305 1.040 | -0.034 0.129  1.026
IRMI -0.549 0.830 1.722 -0.591 0.694 0.354 1.715 -0.615 0.002 0.153 1.700
CART -0.117 0.591 1.003 -0.039 0.926 0.260 0.893 -0.029 0.910 0.113 0.899
RF -0.349 0.674  1.499 -0.374 0.868 0.326 1.576 | -0.405 0.264 0.161 1.704
BAMLSS -1.395  0.079 0.219 0.553 | -0.007 0.907 0.256 0.803 0.018 0.909 0.111 0.876
GAMLSS -0.118 0.737 1.161 0.053 0.312 1.074 0.013 0.129 1.047
GAMLSS-JSU | -0.156 0.758 1.149 0.043 0.328 1.135 0.018 0.130 1.077

B, (t covariate)
COM -0.012 0.302  0.990 0.005 0.136  0.982 -0.003 0.058 1.007
CCA -0.064 0.878 1.001 | -0.050 0.292  0.953 | -0.048 0.115 1.034
NORM -0.086 0.478 1.077 | -0.010 0.194 0.942 -0.015 0.906 0.081 0.857
AMELIA 0.029 0.789 1.163 0.030 0.213 0.898 0.003 0.920 0.084 0.853
PMM-1 -0.027 0.487 1.030 0.003 0.930 0.194 0.920 -0.006 0.080 0.900
PMM-3 -0.044 0.483 1.068 -0.001 0.194 0.961 -0.007 0.080 0.950
PMM-5 -0.046 0.481 1.047 | -0.002 0.195 0.968 -0.009 0.080 0.943
PMM-10 -0.068 0.491 1.113 -0.010 0.196 0.998 -0.011 0.079  0.942
PMM-20 -0.160 0.498 1.212 -0.025 0.201 1.038 -0.015 0.080 0.962
PMM-D -0.055 0.486 1.080 -0.015 0.198  0.999 -0.017 0.081 0.999
AREG -0.791 0.218 0.238 0.532 -0.037 0.209  0.920 -0.022 0.086 0.983
MIDAS -0.180 0.530 1.251 -0.051 0.216 1.061 -0.020 0.085 1.012
IRMI -0.372 0.612 1.724 | -0.396 0.670 0.243 1.688 -0.409 0.002 0.099 1.621
CART -0.077 0.443  0.995 -0.031 0.185 0.936 | -0.038 0.894 0.082 0.882
RF -0.217 0.507 1.484 | -0.227 0.922 0.236 1.659 -0.279 0.262 0.115 1.810
BAMLSS -0.927 0.079 0.143 0.540 -0.141 0.739 0.147 0.376 | -0.323 0.413 0.052 0.119
GAMLSS -0.099 0.543 1.125 0.012 0.227 0.971 -0.014 0.100 1.173
GAMLSS-JSU | -0.123 0.906  0.552 1.084 0.005 0.233 1.039 -0.037 0.109 0.956
B, (Chi-squared covariate)

COM -0.020 0.338  0.995 0.001 0.158 0.993 -0.006 0.069  0.995
CCA 0.002 1.024  0.937 | -0.001 0.359  0.925 -0.002 0.145 0.954
NORM -0.061 0.550 1.115 0.008 0.232 1.056 0.019 0.099 0.992
AMELIA 0.091 0.885 1.144 0.051 0.254  0.993 0.032 0.928 0.105 0.973
PMM-1 -0.027 0.554 1.056 -0.021 0.228 1.002 -0.025 0.096 0.988
PMM-3 -0.044 0.536 1.043 -0.027 0.223  0.979 -0.024 0.094 0.957
PMM-5 -0.065 0.543 1.076 | -0.027 0.224  0.999 | -0.025 0.093 0.959
PMM-10 -0.104 0.548 1.167 | -0.037 0.224 1.024 | -0.026 0.926 0.094 0.959
PMM-20 -0.217 0.553 1.306 | -0.057 0.229 1.062 | -0.030 0.930 0.093 0.958
PMM-D -0.085 0.541 1.106 -0.045 0.226  1.035 -0.036 0.930 0.095 0.969
AREG -0.862 0.224  0.266  0.542 | -0.039 0.237 1.001 | -0.030 0.096 0.936
MIDAS -0.189 0.572 1.213 -0.076 0.242 1.061 -0.037 0.101 1.014
IRMI -0.400 0.706 1.686 | -0.441 0.758 0.291 1.734 | -0.453 0.006 0.122 1.594
CART -0.098 0.487 1.001 -0.039 0.914 0.202 0.934 | -0.036 0.904 0.087 0.877
RF -0.235 0.554 1.457 | -0.244 0.928 0.258 1.561 -0.283 0.370 0.125 1.632
BAMLSS -1.047 0.054 0.148 0.621 -0.420 0.586 0.198 0.474 | -0.359 0.406 0.085 0.209
GAMLSS -0.130 0.612 1.188 | -0.039 0.272  1.216 | -0.063 0.113  1.095
GAMLSS-JSU | -0.084 0.647 1.140 -0.095 0.313 1.229 -0.042 0.123 1.199
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6.3.4 Non-monotone MDM

To address the task of imputing a multivariate set with non-monotone missing patterns
mice implements the Fully Conditional Specification algorithm (Section 3.5.2). Van
Buuren and Groothuis-Oudshoorn (2011) suggested that a low number of iterations
would be enough. In the simulations the number of iterations is set to the default
value of the function mice() which is five. The results of AMELIA, IRMI, and AREG
are omitted since they are oblivious the problems caused by non-monotone missing
patterns (see Rubin, 1987, Section 5.6). Due to the poor performance in all previous
simulation experiments BAMLSS is also removed from further computations.

Table 6.14 provides the results of estimating f3, in in model (6.4) when the continu-
ous incompletely observed variable in the multivariate data set was set to be normal, t
or chi-squared distributed. The MDM is non-monotone and very selective. The results
for B; and f3, are presented in appendix B.

If X, is normally distributed the results of the experiment are similar to the mono-
tone case. NORM, PMM-1, MIDAS, GAMLSS, and GAMLSS-JSU provide valid inference un-
der the specified condition.

Once X, is changed to be t or chi-squared distributed, the results of the methods
in the mice library remain stable concerning the estimated biases and coverage rates.
Due to the poor performance in all previous simulation experiments BAMLSS is also re-
moved from further computations. The GAMLSS-based imputation methods, which in
all previous simulations were valid or confidence valid, show coverage rates between
0.686 and 0.874. GAMLSS-JSU has an estimated bias of -0.233 if X, is chi-squared
distributed.

The results of the application of the weak non-monotone MDM don’t provide any
new insight in the performance of the imputation methods. The same conclusions as
in the weak monotone counterpart applied to this simulations. There is only a small
deviation to the results and is the performance of the GAMLSS-based methods. GAMLSS
and GAMLSS-JSU show the same estimation problems as in the strong non-monotone
MDM case if X, is t or chi-squared distributed.

Table 6.14: Results for the estimation of 8, in model 6.4 when the imputed covariate
follows a Normal, Student’s t or Chi-squared distribution, the last two with three degrees
of freedom. Strong non-monotone MDM.

method n=50 n=200 n=1000

bias cov sd ratio | bias cov sd ratio bias cov sd ratio

B, (Normal covariate)

COM -0.021 0.439 1.002 0.007 0.210 0.989 | -0.007 0.093  1.005
CCA -0.554 0.840 0.711 0934 | -0.563 0.532 0.299 0.878 [ -0.556 0.014 0.129 0.960
NORM -0.161 0.711 1.085 | -0.031 0.311 1.058 | -0.012 0.135 1.039
PMM-1 -0.058 0.746  1.020 | -0.007 0.330 0.988 | -0.013 0.147  0.966
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Table 6.14: Continuation of table on previous page

method n=50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio
PMM-3 -0.075 0.720 1.051 -0.021 0.311 0.961 -0.014 0926 0.135 0.905
PMM-5 -0.116 0.713 1.057 -0.029 0.928 0.309 0.962 -0.014 0.926 0.134 0.900
PMM-10 -0.221 0.711 1.120 -0.054 0.306 0.981 -0.016 0.926 0.131 0.882
PMM-20 -0.446 0.707 1.336 -0.123 0.308 1.027 -0.023 0918 0.130 0.882
PMM-D -0.158 0.704 1.072 -0.084 0.922 0.305 0.991 -0.036 0.908 0.129 0.877
MIDAS -0.323 0.804 1.229 -0.121 0.366 1.071 -0.038 0.159 1.008
CART -0.241 0.655 0.981 -0.079 0914 0.290 0.884 -0.038 0.900 0.135 0.852
RF -0.492 0.707 1.513 -0.517 0.774  0.340 1.662 -0.566 0.056 0.172 1.748
GAMLSS -0.843 0.448 0.555 0.646 | -0.116 0.832 0.377 0.617 0.050 0.149 1.038
GAMLSS-JSU -1.171 0.214 0.416 0.591 -0.233 0.750 0.365 0.510 0.044 0.150 1.062

B (t covariate)
COM -0.012 0.302  0.990 0.005 0.136  0.982 | -0.003 0.058 1.007
CCA -0.357 0.844 0.507 0.895 -0.322 0.598 0.197 0.812 -0.301 0.066 0.080 0.777
NORM -0.110 0.524  1.000 0.009 0.205 0.993 0.021 0.920 0.083 0.900
PMM-1 -0.050 0.916 0.550 0.911 0.008 0.922 0.222 0.962 0.001 0.906 0.093 0.875
PMM-3 -0.048 0.533 0.985 0.000 0.209 0.949 | -0.001 0.886 0.086 0.821
PMM-5 -0.060 0.530 1.007 -0.003 0.208 0.948 -0.003 0.880 0.085 0.818
PMM-10 -0.108 0.534 1.110 | -0.017 0.209 0972 | -0.005 0.886 0.085 0.823
PMM-20 -0.229 0.529 1.259 -0.043 0.213 1.025 -0.010 0.890 0.084 0.840
PMM-D -0.086 0.535 1.052 | -0.024 0.208 0.988 | -0.015 0.904 0.084 0.858
MIDAS -0.244 0.608 1.260 -0.067 0.252 1.068 -0.018 0.930 0.104 0.981
CART -0.125 0.490 0.986 -0.054 0.900 0.197 0.850 -0.048 0.844 0.092 0.776
RF -0.299 0.537 1.469 -0.314 0.832  0.248 1.738 -0.368 0.076 0.118 1.814
GAMLSS -0.695 0.306 0.352 0.640 -0.226 0.676 0.246 0.466 -0.043 0.874 0.115 0.398
GAMLSS-JSU -0.863 0.132 0.247 0.617 -0.463 0.480 0.220 0.388 -0.168 0.788 0.120 0.297
By (Chi-squared covariate)

COM -0.020 0.338 0.995 0.001 0.158 0.993 -0.006 0.069  0.995
CCA -0.421 0.864 0.752 0916 -0.419 0.660 0.295 0.823 -0.396 0.144 0.124 0.846
NORM -0.049 0.750 1.089 0.096 0.924 0.297 1.025 0.121 0.814 0.124 0.982
PMM-1 -0.034 0.918 0.736 1.021 -0.045 0.296 1.013 -0.050 0910 0.122 0.924
PMM-3 -0.074 0.709 1.078 -0.049 0.275 1.009 -0.052 0.886 0.112 0.880
PMM-5 -0.110 0.692 1.120 -0.062 0.271 1.003 -0.054 0.874 0.110 0.864
PMM-10 -0.209 0.682 1.207 -0.093 0.266 1.027 -0.059 0.864 0.109 0.845
PMM-20 -0.342 0.668 1.421 -0.140 0.266 1.093 -0.069 0.864 0.108 0.887
PMM-D -0.154 0.687 1.154 -0.109 0.266 1.061 -0.080 0.852 0.107 0.896
MIDAS -0.186 0.724 1.288 -0.112 0.308 1.126 -0.076 0.912 0.134 1.011
CART -0.226 0.612 1.055 -0.098 0.896 0.241 0.900 -0.062 0.862 0.112 0.844
RF -0.351 0.666 1.544 | -0.337 0.876 0.288 1.598 | -0.374 0.180 0.143 1.765
GAMLSS -0.681 0.418 0.560 0.806 -0.322  0.782 0.349 0.733 -0.133  0.898 0.159 0.993
GAMLSS-JSU -0.901 0.212 0.403 0.751 -0.443 0.712 0.345 0.734 -0.233 0.686 0.153 0.916
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Chapter 7
Conclusion & Summary

The first half of the current contribution provides an introduction to the missing data
problem and multiple imputation method. In Chapter 2 the problem was defined. The
basic theory of Multiple Imputation is presented in Chapter 3. These two chapters give
an overview of the foundation of MI and should help any interested reader to under-
stand the main ideas concerning the topic. Also useful for practitioners is Chapter 4.
This chapter summarizes in a clear way a wide range of imputation algorithms.

The second half of the dissertation focus on the research goals. Chapters 5 and 6
presented the theory and the experimental results of the GAMLSS-based imputation

methods. The following sections discuss the achievement of the research objectives.

7.1 Research Goals

7.1.1 Relaxation of the assumptions of GAMLSS-based imputation

models

The first objective was the relaxation of the distributional assumption of the error
within the GAMLSS imputation method to distributions with unknown mean, vari-
ance, skewness, and kurtosis.

Due to computational restrictions, when de Jong (2012) developed presented the
GAMLSS imputation method based on the model given by equation (5.1) and Algo-
rithm 8, the distribution in the imputation model was almost always set to be normal.
In other cases, the algorithm often failed if a family distributions more complex than
the normal were used for the error term of the semi-parametric model.

Section 5.2 explained that the imputation algorithm is not dependent on the dis-
tribution assumed, i.e., the justification for the method does not change if a different

distribution is used. This fact moved the solution to the software implementation of
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the method. The R library ImputeRobust was developed to address the software in-
stabilities (Salfran and Spiess, 2018a,b). Sections 5.3 and 5.4 described the details of
the implementation and how to use the software.

The software is stable and became available to the public in 2017 (Salfran and
Spiess, 2018a). It has been shown to work with distributions like the Student’s t with
three parameters and Johnson’s SU, with four. Any distribution available to the gamlss
library is also available to ImputeRobust. Furthermore, the published software is an
add-on to the mice library (van Buuren and Groothuis-Oudshoorn, 2011). Users have
the option to use GAMLSS-based imputation methods from within mice itself.

Alternatively, a parallel method to GAMLSS was also developed. It is based on
the MCMC sampling of the Bayesian posterior distribution of the model. The method
attempts to reduce the number of fitting steps of the original GAMLSS imputation
algorithm. The implementation is also described in Section 5.2, and it is available in
the ImputeRobust library. Not all distributions provided by gamlss can be used, but
it is possible to assume a normal or Johnson’s SU distribution.

7.1.2 Imputation of multiple incompletely observed variables

The second objective was to extend the GAMLSS-based imputation methods to the
multivariate case and evaluate them concerning the validity of parameter estimators
of scientific interest.

De Jong (2012) already showed that GAMLSS-based imputation produces valid
results when imputing one variable with missing values in several experimental con-
ditions. He also proposed to integrate the algorithm with mice, but it was not realized.
Furthermore, the imputation algorithm was never tested in combination with the Fully
Conditional Specification method.

The extension of the imputation methods to the multivariate case is accomplished
with the ImputeRobust library. The mice package takes care of pre-processing the
incomplete multivariate data set and then uses the FCS methodology and the func-
tions included in ImputeRobust to impute the missing values. The software design
decision of using mice was made to reach a broader user base for the GAMLSS-based
imputation methods.

The results in Section 6.2 support the statistical validity of GAMLSS-based methods
when imputing single variables with MAR values and from a wide range of probabil-
ity distributions. In particular, the method GAMLSS-JSU, which uses a Johnson’s SU
distribution for the imputation model, displayed to be valid or confidence valid if the
sample size was at least 200 in all experiments related to one variable with missing

values. These results imputing a single variable are essential since the FCS algorithm
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will transform the problem of imputing k incompletely observed variables into k prob-
lems of imputing a single variable with missing values. The simulation results for small
data sets (n = 50) showed that MI with semi-parametric GAMLSS could result in small
non zero estimated bias and under-coverage of the true parameter.

Section 6.3 presents the results of the simulation experiments that were defined to
test the validity of the GAMLSS-based imputation of multiple incompletely observed
variables simultaneously. The results show that GAMLSS-JSU was the only imputation
method that produced valid results if n = 1000 given that the MDM is monotone or
the continuous variable with missing values was normally distributed.

The results are less convincing if the continuous variable is t or chi-squared dis-
tributed and the MDM is non-monotone. Even so, the performance of the GAMLSS-
based methods seemed to improve with the increasing sample size. The failure to
reach statistical validity may be overcome by increasing the sample size. Another
point of attention could be the number of iterations of the Gibbs sampler in the mice
function. The results use the default amount of iterations which is 5. GAMLSS-based
imputation methods may require more iterations for the Gibbs sampler to get closer
to the stationary distribution.

Regardless of the issues with the non-monotone MDM, the parameter estimation
in the single predictor case and with monotone patterns was always acceptable. The
simulation experiments are not a mathematical proof for the statistical validity of im-
putation methods based on GAMLSS. However, the simulation results give evidence
supporting the statistical validity.

7.1.3 Comparison of the Imputation Methods

The third objective was to perform an extensive empirical study that compared the
GAMLSS-based imputation methods and available modern techniques via simulation
experiments.

Simulation studies were performed modifying the number of variables with miss-
ings, their distribution and the selectivity of MAR mechanisms. Sections 6.2, 6.3 and
Appendix B show the results of these experiments. The GAMLSS-based imputation
methods were compared to all methods described in Chapter 4. In general, the re-
sults favor the use of GAMLSS using a Johnson’s SU distribution over the remaining
parametric, semi- and nonparametric imputation methods.

The results support the “self-correcting” property of MI (Little and Rubin, 2002;
Rubin, 1987, 1996, 2003) for the smallest sample size tested (n = 50). In general,
this means an acceptable coverage rate, with a bias hidden by the over-estimated

variance. As the sample size increases, the “self-correcting” property seems not to be
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able to adjust the systematic underestimation of the variance.

The Bayesian linear regression and Amelia methods allowed valid inferences when
the imputation model was correctly specified. However, these two methods led to in-
valid inferences with biased estimations and low coverage rates when the distribution
of the DGP was not normal.

Other approaches like the hot deck methods were less sensible to variations of the
underlying distributions. Nevertheless, the simulations show that techniques based on
a given number of donors like PMM suffer from structural problems which are easier
to detect in large samples. As the sample size increases, the estimated bias moves
towards zero, but the estimated error decreases too fast and PMM present coverage
rates below acceptable limits. The nonparametric method aregImpute does not show
the same trend as PMM but still leads to invalid inference. Midastouch is the hot deck
method that looks more promising, especially with multivariate data sets, but more
often than not leads to invalid inference when n = 1000.

Concerning IRMI, the results show that an imputation method that automatically
identifying “outliers” is a terrible idea. If an MDM creates sparsely populated regions
in the observed sample space, values in that region will be treated as outliers and
imputations could introduce a systematic bias in the estimation.

The estimation based on recursive partitioning methods can be biased or not de-
pending on the distribution of the incompletely observed variables. Still, even when
the methods are unbiased, they both lead to invalid inference due to under-coverage.

Finally, the results based on GAMLSS are very good if the Bootstrap predictive dis-
tribution is used to generate the imputations (Algorithm 8). The technique allows
valid inferences in most scenarios presented in the current dissertation, especially if
a flexible distribution like the Johnson’s SU is used in the imputation model. How-
ever, in small samples, it may lead to biased estimators, which may be due to the
semi-parametric nature of the models. On the contrary, results based on the Bayesian
posterior (Algorithm 9) were unsatisfactory, the inference was generally invalid.

7.2 Recommendations

Mathematical proof of the validity of MI results is difficult to obtain due to the analyt-
ical complexity of the missing data problem. Empirical studies exploring the inferen-
tial validity can be used, but especial attention should be given to the criteria used to
evaluate the performance. The required goal for any imputation method is to provide
statistically valid results. This means that simulations studies should always look at
the estimated bias and coverage of imputation methods.

One aspect that is often neglected is that the validity of estimation results could
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depend on the strength of the MDM. A very selective mechanism could cause the
thinning out of certain regions in the sample space with ill consequences for the im-
putation techniques. It may be helpful to examine the distribution of observed and
imputed values graphically.

Based on the simulation results, users of imputation methods in real applications
should avoid blindly using available functions, including the ones provided by Imput-
eRobust. Some R libraries like mice or VIM provide diagnostics plots to explore the
results of multiply imputing missing values. The choice over which method is the most
appropriate based on a graphical representation may not be enough.

The source of the bad performance of GAMLSS-based methods with non-monotone
missing patterns is still unknown. Further simulation studies or large-sample results
could be needed to find an answer. On the other hand, the imputation algorithm is
considerably slower than available standard methods. Since ImputeRobust is pub-
lished under the GPL-3 license, users with the technical skills can contribute to the
improvement and optimization of the code.

The proposed method BAMLSS proved ineffective. Even so, the basic idea of using
MCMC sampling to simulate the Bayesian posterior is appealing. If the estimation
problem is solved, the method could be more efficient than plain GAMLSS. Sampling
with MCMC is still costly, but software implementation of MCMC can be made faster
than the backfitting algorithm of GAMLSS.

91



Appendix A

R code for the example

Data generating process:

set.seed(19394)

n <- 500

mu <- rep(0, 4)

Sigma <- diag(4)

Sigma[1,2] <- 0.15; Sigma[1,3] <- 0.1; Sigma[1,4] <- -0.1
Sigma[2,3] <- 0.25; Sigmal[2,4] <- 0.05
Sigma[lower.tri(Sigma)] = t(Sigma) [lower.tri(Sigma)]
require ("MASS")

rawvars <- mvrnorm(n, mu = mu, Sigma = Sigma)

pvars <- pnorm(rawvars)

X.1 <- rawvars/[,1]

X.2 <- gchisq(pvars, 3)[,3]

X.3 <- gpois(pvars, 2.5)[,2]

X.4 <- gbinom(pvars, 1, .4)[,4]

data <- cbind(X.1, X.2, X.3, X.4)

beta <- ¢(1.8, 1.3, 1, -1)

sigma <- 4.2

y <- data /*}), beta + rnorm(n, 0, sigma)

data <- data.frame(y, data)

VVVVVVVVVVVVVVVVVYVYV

Missing data mechanism:

r.s <- cbind(y, X.1) /*} c(2,1)

r.s <- scale(r.s)

pos <- cut(r.s, quantile(r.s, c(0, .5, 1)), include.lowest=TRUE)
p.r <- as.numeric(c(.9, .2))

p.r <- as.vector(p.r[pos])

R2 <- as.logical(rbinom(length(p.r),1,p.r))

r.s <- cbind(y[!R2], X.1[!R2]) 7*} c(2,1)

r.s <- scale(r.s)

pos <- cut(r.s, quantile(r.s, c(0, .4, 1)), include.lowest=TRUE)
p.r <- as.numeric(c(.32, .27))

V VVVVVVVVYV
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vV V.V Vv VvV

p.r <- as.vector(p.r[pos])

R3 <- as.logical(rbinom(length(p.r),1,p.r))
R4 <- runif(nrow(datal['R2,]J[!R3,]), 0, 1) >=
data$X.2[!R2] <- NA

data$X.3[!R2] ['R3] <- NA

data$X.4[!R2] [!R3] ['R4] <- NA
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Appendix B

Extra Tables

Table B.1: Results for the estimation of 3 and 8, in model 6.4 when the imputed
covariate follows a Chi-squared distribution with three degrees of freedom. Strong

MDM.
method n=>50 n=200 n=1000
| bias cov sd ratio | bias cov sd ratio | bias cov sd ratio
B3 (Poisson covariate)
COM -0.018 0.383 0.979 -0.002 0.181 1.020 -0.003 0.080 0.973
CCA -0.241 0.911 0.555 0.942 -0.202 0.848 0.249 0.929 -0.207 0.529 0.109 0.928
NORM -0.018 0.559  0.995 0.028 0.250 0.963 0.021 0.928 0.109 0.914
AMELIA 0.033 0.564 0.946 0.037 0.256 0.974 0.024 0.114 0.959
PMM-1 0.008 0.903 0.546 0.883 -0.006 0.926 0.248 0.896 -0.034 0.902 0.110 0.880
PMM-3 0.046 0.548 0.956 0.017 0.929 0.244 0.917 | -0.027 0.915 0.108 0.903
PMM-5 0.057 0.552 0.990 0.032 0.921 0.242 0.912 -0.021 0.920 0.108 0.903
PMM-10 0.027 0.575 1.075 0.059 0.926 0.242 0.952 -0.009 0.915 0.106 0.889
PMM-20 -0.095 0.606 1.243 0.072 0.248 0.996 0.010 0.915 0.105 0.887
PMM-D 0.052 0.563  1.043 0.070 0.245 0.971 0.025 0.923 0.105 0.905
AREG -0.093 0.551 1.022 0.019 0.257  0.950 -0.010 0.113  0.952
MIDAS -0.015 0.608 1.089 0.023 0.274 1.010 | -0.012 0.119 0.982
IRMI -0.333 0.678 1.578 -0.329 0.916  0.307 1.600 -0.323  0.281 0.134 1.570
RF -0.209 0.624  1.456 | -0.223 0.295 1.470 | -0.237 0.694 0.147 1.623
CART -0.013 0.539 1.059 -0.006 0.916 0.228 0.870 -0.022 0.859 0.096 0.757
BAMLSS -0.227 0.676  0.588 0.648 0.165 0.861 0.267 0.890 0.118 0.744 0.107 0.716
GAMLSS 0.061 0.926 0.618 0.989 0.100 0.285 1.038 0.050 0.130 1.039
GAMLSS-JSU 0.098 0.638 1.029 0.138 0.918 0.289 1.029 0.112 0.838 0.125 0.962
B4 (Binomial covariate)

COM 0.058 1.281 1.012 0.038 0.621 1.020 0.005 0.275  0.997
CCA -0.595 1.772 1.005 -0.591 0.895 0.824 0.994 -0.608 0.598 0.361 0.965
NORM -0.043 1.641 1.028 -0.071 0.766 1.015 -0.101 0.338 0.986
AMELIA -0.168 1.618 1.021 -0.172 0.766 1.049 -0.194 0.924 0.338 1.032
PMM-1 -0.008 1.670 0.988 -0.037 0.788 1.015 -0.067 0.350 1.022
PMM-3 0.081 1.666 1.033 -0.004 0.790 1.037 -0.062 0.348 1.017
PMM-5 0.119 1.675 1.054 0.016 0.789 1.053 -0.059 0.349 1.017
PMM-10 0.174 1.706 1.092 0.049 0.791 1.051 -0.047 0.349 1.019
PMM-20 0.158 1.756 1.154 0.092 0.800 1.065 -0.027 0.349 1.025
PMM-D 0.145 1.694 1.076 0.068 0.794 1.056 -0.012 0.349 1.040
AREG 0.110 1.705 1.101 -0.063 0.794 1.051 -0.162 0.351 1.047
MIDAS 0.115 1.747 1.125 0.025 0.807 1.073 -0.041 0.354 1.026
IRMI -0.102 1.909 1.277 -0.164 0.898 1.256 -0.232 0.394 1.194
RF 0.039 1.800 1.181 0.025 0.861 1.140 0.032 0.391 1.105
CART -0.220 1.626 1.086 -0.340 0.915 0.736 0.926 -0.213 0.798 0.314 0.742
BAMLSS -0.606 0.886 1.688 0.931 0.010 0.779  0.906 0.059 0.913 0.340 0.857
GAMLSS -0.127 1.645 0.994 -0.030 0.792 1.048 -0.074 0.354 1.044
GAMLSS-JSU -0.034 1.680 1.028 -0.001 0.797 1.049 -0.007 0.354 1.031
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Table B.2: Results for the estimation of ;3 and f4 in model 6.4 when the imputed

covariate follows a Normal distribution. Weak MDM.

method n=50 n=200 n=1000
bias cov sd ratio | bias cov sd ratio bias cov sd ratio
B3 (Poisson covariate)
COM -0.012 0.254 1.017 0.003 0.121 1.011 0.000 0.053 1.033
CCA -0.020 0.672  0.941 -0.031 0.249  0.991 -0.019 0.106 1.012
NORM -0.027 0.389 1.147 | -0.001 0.171 1.106 | -0.002 0.075 1.124
AMELIA 0.041 0.606 1.168 0.029 0.183 1.031 0.014 0.078 1.081
PMM-1 0.000 0.392 1.083 -0.006 0.168 1.029 -0.009 0.073 1.097
PMM-3 -0.017 0.384 1.076 -0.006 0.165 1.044 | -0.010 0.072 1.080
PMM-5 -0.032 0.382 1.086 -0.008 0.163 1.051 -0.011 0.072 1.087
PMM-10 -0.071 0.385 1.160 -0.013 0.162 1.048 -0.013 0.071 1.077
PMM-20 -0.178 0.392 1.355 -0.024 0.165 1.062 -0.015 0.071 1.073
PMM-D -0.049 0.385 1.104 | -0.018 0.163 1.028 -0.019 0.070 1.076
AREG -0.643 0.214 0.181 0.543 -0.015 0.175 0.953 -0.003 0.074 1.017
MIDAS -0.068 0.411 1.196 -0.019 0.176  1.068 -0.014 0.075 1.108
IRMI -0.226 0.480 1.747 | -0.223 0.910 0.201 1.672 -0.227 0.138 0.087 1.708
RF -0.177 0.397 1.591 -0.180 0.920 0.187 1.533 -0.200 0.426  0.092 1.719
CART -0.063 0.341 1.060 -0.019 0.150 0.957 | -0.018 0.920 0.065 0.926
BAMLSS -0.122 0.654 0.329 0.633 -0.018 0.148 0.849 -0.013 0.924 0.063 0.956
GAMLSS -0.010 0.426 1.098 0.004 0.183 1.148 -0.018 0.077 1.152
GAMLSS-JSU | -0.012 0.928 0.437 1.058 -0.006 0.189 1.147 | -0.025 0.079 1.173
B4 (Binomial covariate)
COM -0.028 0.926 0.857 0.936 0.023 0.413 1.015 -0.005 0.183 1.012
CCA -0.120 2.110 1.004 | -0.134 0.834 0.936 | -0.098 0.358 1.014
NORM -0.161 1.170 1.058 | -0.129 0.529 1.068 | -0.124 0.232  1.153
AMELIA -0.168 1.444 1.115 -0.126 0.525 1.038 -0.135 0.229 1.094
PMM-1 -0.142 1.151 1.000 -0.121 0.526 1.049 -0.120 0.231 1.111
PMM-3 -0.142 1.141 1.009 -0.124 0.529  1.060 -0.121 0.232 1.109
PMM-5 -0.135 1.122 0.995 | -0.119 0.529 1.073 | -0.121 0.232 1.110
PMM-10 -0.138 1.128 1.038 -0.124 0.524 1.051 -0.121 0.233 1.101
PMM-20 -0.144 1.137 1.085 | -0.124 0.530 1.083 | -0.118 0.232  1.124
PMM-D -0.130 1.130 1.024 | -0.124 0.530 1.076 | -0.119 0.233 1.116
AREG -1.936 0.214 0.542 0.466 | -0.034 0.527 0.973 | -0.016 0.230  1.065
MIDAS -0.153 1.159 1.036 -0.119 0.532 1.084 | -0.127 0.235 1.135
IRMI -0.418 1.266 1.251 | -0.381 0.571 1.348 | -0.368 0.728 0.247 1.324
RF -0.210 1.155 1.125 -0.169 0.547 1.190 -0.150 0.242 1.184
CART -0.348 1.030 1.015 -0.285 0.898 0.483 0.989 -0.208 0.836 0.214 0.996
BAMLSS -0.399 0.867 1.055 0.915 0.006 0.461 1.033 -0.020 0.204  0.955
GAMLSS -0.201 1.136  0.973 -0.131 0.529 1.054 | -0.125 0.232 1.147
GAMLSS-JSU | -0.241 0.922 1.149 0.982 -0.111 0.530 1.083 -0.118 0.232 1.137
Table B.3: Results for the estimation of 3 and f8; in model 6.4 when the imputed
covariate follows a Student’s t distribution with three degrees of freedom. Weak MDM.
method n=>50 n=200 n=1000
bias cov sd ratio | bias cov sd ratio bias cov sd ratio
B3 (Poisson covariate)
COM -0.012 0.269 1.017 0.002 0.128 1.011 -0.000 0.056 1.030
CCA -0.021 0.706  0.977 | -0.039 0.263 0.986 | -0.023 0.112  0.995
NORM -0.027 0.416 1.098 -0.006 0.182 1.062 -0.009 0.079 1.016
AMELIA 0.097 0.651 1.210 0.039 0.190 1.027 0.017 0.082 1.037
PMM-1 0.016 0.418 1.005 -0.000 0.175 0.982 -0.005 0.076 1.011
PMM-3 0.012 0.405 0.986 0.001 0.172  0.998 -0.004 0.075 1.028
PMM-5 -0.013 0.402 1.005 0.001 0.172 1.002 -0.002 0.075 1.031
PMM-10 -0.066 0.412 1.082 -0.005 0.173 1.016 | -0.001 0.074 1.020
PMM-20 -0.206 0.422 1.240 -0.015 0.176  1.034 | -0.001 0.074 1.028
PMM-D -0.034 0.405 1.021 -0.007 0.174 1.022 -0.004 0.074 1.022
AREG -0.760 0.216 0.195 0.497 | -0.006 0.182 0.896 0.010 0.078 1.004
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Table B.3: Continuation of table on previous page

method n=50 n=200 n=1000
bias cov sd ratio bias cov sd ratio bias cov sd ratio
MIDAS -0.053 0.453 1.152 -0.017 0.188 1.061 -0.007 0.079 1.041
IRMI -0.273 0.527 1.672 -0.283 0.850 0.217 1.683 -0.309 0.044 0.092 1.229
RF -0.192 0.436 1.483 -0.210 0.920 0.206 1.557 | -0.230 0.380 0.104 1.782
CART -0.045 0.367 0.988 -0.002 0.158 0.943 -0.012 0.930 0.069 0.923
BAMLSS -0.143 0.677 0.305 0.550 0.029 0.854 0.131 0.753 0.048 0.467 0.057 0.363
GAMLSS -0.004 0.930 0.464 1.027 0.013 0.201 0.977 0.004 0.083 1.123
GAMLSS-JSU | -0.040 0.900 0.475 0.978 0.009 0.207 1.053 0.003 0.099  0.859
B4 (Binomial covariate)
COM -0.030 0.926 0.909 0.933 0.024 0.438 1.017 | -0.006 0.194 1.013
CCA -0.118 2.209 0999 | -0.103 0.930 0.868 0.934 | -0.075 0.375 1.031
NORM -0.129 1.278 1.053 -0.074 0.569 1.043 -0.080 0.250 1.114
AMELIA -0.137 1.554 1.106 | -0.055 0.563  0.996 [ -0.082 0.247 1.086
PMM-1 -0.151 1.259  1.005 -0.074 0.572 1.033 -0.071 0.250 1.145
PMM-3 -0.135 1.236 1.013 | -0.071 0.571 1.039 | -0.069 0.250 1.126
PMM-5 -0.121 1.228 1.028 -0.070 0.572 1.049 -0.069 0.251 1.130
PMM-10 -0.101 1.220 1.053 | -0.072 0.571 1.060 | -0.068 0.249 1.116
PMM-20 -0.094 1.234  1.099 -0.070 0.568 1.061 -0.063 0.251 1.144
PMM-D -0.110 1.219 1.034 | -0.069 0.573 1.070 | -0.064 0.250 1.140
AREG -1.156 0.212 0.596 0.705 -0.017 0.573 0.966 | -0.004 0.251 1.054
MIDAS -0.103 1.266  1.047 | -0.095 0.576  1.058 | -0.089 0.253 1.131
IRMI -0.265 1.369 1.299 -0.214 0.606 1.297 | -0.205 0.928 0.263 1.271
RF -0.124 1.257 1.120 -0.087 0.593 1.186 | -0.078 0.261 1.200
CART -0.234 1.126  1.042 -0.193 0.928 0.517 1.016 | -0.147 0.906 0.228 1.052
BAMLSS -0.057 0.921 0.990 0.987 0.051 0.426  1.002 0.011 0.733 0.183 0.469
GAMLSS -0.116  0.928 1.235 1.005 -0.079 0.564 0.985 -0.068 0.252 1.173
GAMLSS-JSU | -0.191 0.896 1.213 0.988 -0.066 0.569 1.034 | -0.063 0.251 1.004
Table B.4: Results for the estimation of 3 and 8, in model 6.4 when the imputed
covariate follows a Chi-squared distribution with three degrees of freedom. Weak MDM.
method n=>50 n=200 n=1000
bias cov sd ratio | bias cov sd ratio bias cov sd ratio
B3 (Poisson covariate)
COM -0.022 0.466 1.015 0.006 0.221 1.014 0.000 0.098 1.029
CCA -0.085 1.214 1.001 -0.082 0.457 0.983 -0.057 0.194 0.994
NORM -0.042 0.710 1.107 | -0.002 0.312 1.071 -0.004 0.136  1.085
AMELIA 0.108 1.124 1.176 0.043 0.340 1.016 0.014 0.142 1.026
PMM-1 0.016 0.714 1.023 -0.018 0.310 1.033 -0.033 0.135 1.052
PMM-3 -0.004 0.698 1.029 -0.011 0.302 1.020 -0.030 0.131 1.040
PMM-5 -0.023 0.699 1.056 -0.010 0.303 1.018 -0.031 0.132 1.049
PMM-10 -0.115 0.703 1.110 -0.013 0.300 1.022 -0.030 0.131 1.056
PMM-20 -0.340 0.724 1.374 | -0.038 0.303 1.026 | -0.030 0.131 1.066
PMM-D -0.061 0.703 1.072 -0.020 0.301 1.030 -0.033 0.130 1.047
AREG -1.208 0.218 0.346 0.569 -0.031 0.321 0.965 -0.010 0.135 1.001
MIDAS -0.116 0.759  1.182 -0.043 0.328 1.056 | -0.036 0.138 1.068
IRMI -0.447 0.898 1.710 | -0.454 0.876 0.371 1.680 | -0.458 0.088 0.160 1.647
RF -0.321 0.722 1.526 -0.340 0.926 0.342 1.543 -0.379 0.368 0.171 1.784
CART -0.111 0.628 1.037 | -0.035 0.926 0.273  0.952 -0.040 0918 0.121 0.930
BAMLSS -0.260 0.692 0.555 0.641 0.147 0.852 0.239 0.878 0.152 0.654 0.102 0.737
GAMLSS 0.022 0.780 1.051 0.082 0.337 1.162 0.023 0.147 1.152
GAMLSS-JSU | -0.004 0.912 0.797 1.014 0.106 0.346 1.114 0.059 0.144 1.144
f4 (Binomial covariate)
COM -0.048 0.928 1.575 0.934 0.043 0.759 1.014 | -0.010 0.336 1.013
CCA -0.288 3.859  0.925 -0.319 0.926 1.525 0.936 | -0.199 0.653 1.004
NORM -0.335 2.117 0.976 -0.249 0.969 1.052 -0.216 0.423 1.104
AMELIA -0.344 2.748 1.109 -0.236 0.969 1.031 -0.227 0.425 1.125
PMM-1 -0.326 2.111  0.955 -0.220 0.971 1.042 -0.193 0.429 1.131
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Table B.4: Continuation of table on previous page

method n=50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio
PMM-3 -0.320 2.072 0.961 -0.216 0.973 1.058 -0.200 0.428 1.117
PMM-5 -0.265 2.078 0.987 | -0.223 0.974 1.068 -0.197 0.427 1.117
PMM-10 -0.233 2.071 1.020 -0.217 0.975 1.063 -0.195 0.428 1.130
PMM-20 -0.246 2.100 1.091 -0.214 0.979  1.081 -0.192 0.427 1.138
PMM-D -0.234 2.074  0.999 -0.219 0.970 1.061 -0.188 0.426 1.126
AREG -3.071 0.230 1.026 0.539 -0.105 0.966 1.006 | -0.068 0.418 1.069
MIDAS -0.244 2.130 1.012 -0.227 0.987 1.073 -0.207 0.429 1.117
IRMI -0.664 2.332 1.246 -0.622 1.036 1.294 | -0.599 0.790 0.451 1.283
RF -0.371 2.108 1.083 | -0.287 0.997 1.143 | -0.246 0.442  1.185
CART -0.593 1.897 0.991 -0.480 0.916 0.885 0.991 -0.347 0.864 0.393 1.032
BAMLSS -0.494 0918 1.677 1.018 0.105 0.757  0.948 0.067 0.925 0.332 0.938
GAMLSS -0.314 0928 2.085 0.952 -0.192 0.972 1.053 -0.201 0.429 1.144
GAMLSS-JSU | -0.420 0.896 2.084 0.930 | -0.143 0.969 1.037 | -0.147 0.426 1.121

Table B.5: Results for the estimation of 33 and 34 in model 6.4. The imputed covariate

X, follows a Normal distribution. Strong non-monotone MDM.

method n=>50 n=200 n=1000
bias cov sd ratio | bias cov sd ratio bias cov sd ratio
P3 (Poisson covariate)
COM -0.012 0.254 1.017 0.003 0.121 1.011 0.000 0.053 1.033
CCA -0.288 0.888 0.445 1.004 | -0.295 0.624 0.188 0.944 | -0.295 0.058 0.081 0.953
NORM -0.050 0.443 1.046 0.017 0.197 1.019 0.021 0.085 1.043
PMM-1 0.005 0914 0.461 0.987 0.006 0928 0.205 0.972 -0.003 0.087 0.991
PMM-3 -0.046 0.443  0.995 -0.002 0.926 0.190 0.928 -0.006 0.928 0.080 0.947
PMM-5 -0.069 0.438 1.032 -0.011  0.930 0.189 0.955 -0.008 0.922 0.079 0.931
PMM-10 -0.135 0.434 1.124 | -0.029 0.926 0.184 0.952 -0.012 0.077 0.915
PMM-20 -0.251 0.433 1.435 -0.069 0.184 1.022 -0.020 0.077 0.912
PMM-D -0.098 0.437 1.086 -0.044 0920 0.183 0.982 -0.029 0.906 0.076  0.892
MIDAS -0.162 0.490 1.276 -0.055 0.219 1.064 | -0.025 0.094 1.058
RF -0.268 0.433 1.622 -0.256 0.868 0.202 1.563 -0.277 0.136  0.100 1.746
CART -0.164 0.397 1.103 -0.055 0.904 0.173 0.886 | -0.035 0.924 0.082 0.913
GAMLSS -0.422 0.454 0.343 0.668 -0.089 0.832 0.220 0.661 -0.028 0.097 1.133
GAMLSS-JSU | -0.623 0.220 0.237  0.620 -0.189 0.762 0.212 0.574 | -0.049 0.095 1.106
f4 (Binomial covariate)

COM -0.028 0.926 0.857 0.936 0.023 0.413 1.015 -0.005 0.183 1.012
CCA -0.940 0.876 1.438 0.961 -0.937 0.668 0.612 0.995 -0.970 0.070 0.266 0.953
NORM -0.189 1.197 1.045 -0.091 0.544 1.058 -0.102 0.235 1.103
PMM-1 -0.059 1.210 0.983 0.000 0.556 0976 | -0.016 0.240  1.065
PMM-3 -0.028 1.178 1.004 | -0.001 0.551 0976 | -0.014 0.238 1.052
PMM-5 -0.012 1.164 1.006 0.003 0.546 0.986 | -0.016 0.239  1.070
PMM-10 0.008 1.163 1.038 0.014 0.540 0.996 | -0.015 0.237  1.050
PMM-20 -0.038 1.176  1.094 0.013 0.545 1.041 -0.014 0.238 1.059
PMM-D 0.003 1.160 1.002 0.012 0.543 1.015 -0.014 0.236 1.068
MIDAS -0.101 1.222 1.056 -0.026 0.562 1.040 -0.020 0.243 1.072
RF -0.152 1.192 1.132 -0.088 0.570 1.193 -0.040 0.255 1.202
CART -0.237 1.107 1.047 | -0.246 0.906 0.511 0.986 | -0.163 0.890 0.240 0.978
GAMLSS -1.382  0.460 0.823 0.586 | -0.331 0.822 0.507 0.519 | -0.035 0.236  1.069
GAMLSS-JSU | -1.995 0.218 0.574 0.520 -0.510 0.742 0.486 0.426 | -0.025 0.236 1.074
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Table B.6: Results for the estimation of ;3 and f3; in model 6.4. The imputed co-
variate x, follows a Student’s t distribution with three degrees of freedom. Strong
non-monotone MDM.

method n=50 n=200 n=1000
bias cov sd ratio | bias cov sd ratio bias cov sd ratio
B3 (Poisson covariate)
COM -0.012 0.269 1.017 0.002 0.128 1.011 -0.000 0.056 1.030
CCA -0.369 0.852 0.475 0.944 | -0.380 0.530 0.201 0.928 -0.375 0.016 0.086 0.933
NORM -0.055 0.484 1.027 0.014 0.204 0.943 0.016 0.089 0.983
PMM-1 0.024 0.908 0.511 0.929 0.022 0918 0.216 0.957 0.008 0.090 0.955
PMM-3 -0.019 0.482 0.964 0.011 0.910 0.199 0.910 0.011 0.924 0.083 0.904
PMM-5 -0.068 0.482 0.993 0.003 0912 0.195 0.916 0.010 0916 0.081 0.884
PMM-10 -0.148 0.480 1.105 -0.019 0.194 0.958 0.008 0.914 0.080 0.885
PMM-20 -0.310 0.484 1.361 -0.081 0.198 1.029 -0.002 0914 0.079 0.877
PMM-D -0.103 0.482 1.053 -0.047 0.195 0984 | -0.014 0.916 0.080 0.879
MIDAS -0.167 0.550 1.230 -0.056 0.234 1.048 -0.017 0.098 1.059
RF -0.321 0.486 1.585 -0.302 0.828 0.222 1.629 -0.329 0.100 0.114 1.822
CART -0.183 0.440 1.049 -0.039 0924 0.183 0.890 -0.020 0.902 0.084 0.878
GAMLSS -0.647 0.316 0.327 0.636 -0.259 0.686 0.226  0.479 -0.089 0.898 0.112 0.429
GAMLSS-JSU | -0.832 0.130 0.201 0.580 -0.489 0478 0.199 0.409 -0.219 0.790 0.157 0.426
B4 (Binomial covariate)
COM -0.030 0.926 0.909 0.933 0.024 0.438 1.017 | -0.006 0.194 1.013
CCA -0.616 0922 1417 0.960 | -0.569 0.852 0.610 1.014 | -0.596 0.388 0.265 0.937
NORM -0.165 1.269 1.017 | -0.061 0.574 1.006 | -0.083 0.252 1.094
PMM-1 -0.045 1.285 0.924 0.010 0.599 0.983 -0.011 0.259 1.070
PMM-3 -0.010 1.261 0.939 0.015 0.585 0.973 -0.008 0.255 1.034
PMM-5 -0.009 1.264 0.967 0.014 0.583 0.989 | -0.005 0.256  1.044
PMM-10 0.021 1.268 1.018 0.011 0.590 1.000 -0.005 0.255 1.031
PMM-20 -0.006 1.276  1.067 0.023 0.588 1.029 | -0.009 0.255 1.040
PMM-D 0.007 1.265 0.993 0.025 0.588 1.018 0.001 0.255 1.064
MIDAS -0.078 1.329 1.090 | -0.030 0.602 1.043 | -0.042 0.262 1.044
RF -0.061 1.309 1.110 -0.020 0.614 1.158 -0.002 0.274 1.199
CART -0.148 1.209 1.052 | -0.170 0.551 1.050 | -0.132 0.253  1.047
GAMLSS -1.001 0.312 0.716 0.697 | -0.411 0.670 0.495 0.576 | -0.136 0.888 0.249 0.548
GAMLSS-JSU | -1.326 0.132 0.454 0.714 | -0.710 0.472 0.430 0.485 | -0.291 0.804 0.311 0.503
Table B.7: Results for the estimation of 83 and 4 in model 6.4. The imputed co-
variate x, follows a Chi-squared distribution with three degrees of freedom. Strong
non-monotone MDM.
method n=>50 n=200 n=1000
bias cov sd ratio | bias cov sd ratio | bias cov sd ratio
P3 (Poisson covariate)
COM -0.022 0.466 1.015 0.006 0.221 1.014 0.000 0.098 1.029
CCA -0.585 0.880 0.812 0.981 | -0.589 0.592 0.342 0.942 | -0.589 0.024 0.146 0.949
NORM -0.093 0.849 1.073 0.026 0.928 0.370 0.997 0.037 0.157 0.978
PMM-1 -0.009 0930 0.879 1.009 | -0.017 0.397 0.988 | -0.056 0.174 1.017
PMM-3 -0.071 0.827 1.018 -0.018 0.916 0.365 0.949 -0.051 0.926 0.158 0.963
PMM-5 -0.115 0.819 1.066 | -0.023 0.928 0.359 0.956 | -0.049 0.154 0.931
PMM-10 -0.227 0.806 1.125 -0.037 0.348 0.959 -0.044 0.920 0.149 0.905
PMM-20 -0.474 0.801 1.405 | -0.110 0.346 1.012 | -0.049 0.146 0.921
PMM-D -0.168 0.818 1.098 -0.068 0.345 0.971 -0.058 0.920 0.144 0.903
MIDAS -0.318 0.903 1.272 | -0.133 0.416 1.092 | -0.078 0.181 1.085
RF -0.504 0.799 1.615 -0.482 0.858 0.374 1.529 -0.531 0.124 0.186 1.816
CART -0.288 0.742 1.109 | -0.089 0.910 0.325 0.895 | -0.060 0.902 0.154 0.909
GAMLSS -0.826 0.436 0.650 0.698 -0.187 0.744 0.403 0.535 0.026 0.185 0.913
GAMLSS-JSU | -1.187 0.216 0.457 0.629 -0.218 0.734 0.412 0.532 0.086 0.183 0.978
B4 (Binomial covariate)
COM -0.048 0928 1.575 0.934 0.043 0.759 1.014 | -0.010 0.336 1.013
CCA -1.616 0.888 2.568 0.962 -1.610 0.666 1.091 0.969 -1.626  0.090 0.473 0.951
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Table B.7: Continuation of table on previous page

method n=50 n=200 n=1000
bias cov sd ratio bias cov sd ratio bias cov sd ratio
NORM -0.398 2.203 1.009 -0.211 0.995 1.055 -0.218 0.930 0.436 1.087
PMM-1 -0.196 0.924 2.243  0.953 -0.098 1.046  0.992 -0.075 0.451 1.079
PMM-3 -0.087 2.189 0.962 -0.052 1.029  1.008 -0.071 0.447 1.071
PMM-5 -0.035 2.165 0.972 -0.063 1.020 0.997 | -0.072 0.446 1.068
PMM-10 0.025 2.160 0.997 | -0.027 1.005 1.017 | -0.065 0.445 1.058
PMM-20 -0.051 2.163 1.044 0.003 1.011 1.053 -0.057 0.445 1.087
PMM-D 0.007 2.166  0.998 | -0.006 1.016 1.034 | -0.047 0.445 1.089
MIDAS -0.224 2.284 1.070 -0.135 1.058 1.059 -0.085 0.452 1.070
RF -0.264 2.194 1.098 | -0.184 1.046 1.180 | -0.094 0.468 1.207
CART -0.407 2.045 1.021 -0.446 0960 1.027 | -0.322 0.868 0.448 0.978
GAMLSS -2.288 0.428 1.493 0.620 | -0.843 0.758 0.910 0.500 | -0.119 0.446 0.874
GAMLSS-JSU | -3.122 0.214 1.054 0.543 -0.847 0.736 0.910 0.478 0.010 0.447 0.982
Table B.8: Results for the estimation of f3,, 83 and B, in model 6.4. The imputed
covariate x, follows a Normal distribution. Weak non-monotone MDM.
method n=50 n=200 n=1000
bias cov sd ratio | bias cov sd ratio bias cov sd ratio
B, (Normal covariate)
COM -0.021 0.439 1.002 0.007 0.210 0.989 -0.007 0.093 1.005
CCA -0.105 0928 1.137 0.979 -0.094 0924 0.420 0.941 -0.084 0.930 0.179 1.010
NORM -0.112 0.709  1.140 -0.022 0.300 1.074 | -0.016 0.131 1.057
AMELIA 0.079 0.975 1.102 0.029 0.304 0.974 0.004 0.130 0.982
PMM-1 0.037 0.730 0.991 0.008 0926 0.300 0.963 -0.008 0.130 0.977
PMM-3 0.002 0.706  1.006 0.003 0.295 0.954 | -0.009 0.126  0.961
PMM-5 -0.029 0.686 1.028 0.003 0.291 0.954 | -0.009 0.125 0.940
PMM-10 -0.099 0.671 1.069 -0.014 0.292 0.962 -0.010 0.124  0.949
PMM-20 -0.294 0.673 1.282 -0.045 0.292  0.990 -0.014 0.124  0.955
PMM-D -0.056 0.693 1.058 -0.029 0.293  0.985 -0.020 0.123  0.953
AREG -1.201 0.216 0.325 0.516 -0.033 0.298 0.943 -0.016 0.125  0.969
MIDAS -0.175 0.736  1.152 -0.053 0.315 1.005 -0.021 0.132  0.998
IRMI -0.549 0.830 1.722 -0.591 0.694 0.354 1.715 -0.615 0.002 0.153 1.700
RF -0.345 0.684 1.506 -0.365 0.902 0.328 1.594 | -0.405 0.258 0.164 1.722
CART -0.118 0.622 1.043 -0.040 0.916 0.276 0.904 | -0.027 0.926 0.119 0.894
GAMLSS -0.628 0.552 0.614 0.675 -0.022 0.886 0.314 0.626 0.021 0.134 1.030
GAMLSS-JSU | -0.928 0.370 0.510 0.600 -0.028 0.898 0.326 0.686 0.029 0.133 1.001
B3 (Poisson covariate)
COM -0.012 0.254 1.017 0.003 0.121 1.011 0.000 0.053 1.033
CCA -0.020 0.672 0.941 -0.031 0.249 0.991 -0.019 0.106 1.012
NORM -0.043 0.422 1.175 0.000 0.178 1.099 0.005 0.077 1.091
AMELIA 0.041 0.606 1.168 0.029 0.183 1.031 0.014 0.078 1.081
PMM-1 0.009 0.443  0.998 0.003 0.176  0.968 0.003 0.077 1.048
PMM-3 -0.003 0.426 1.024 0.004 0.928 0.172 0.953 0.002 0.074 1.034
PMM-5 -0.016 0.411 1.054 0.001 0.170 0.944 0.001 0.074 1.022
PMM-10 -0.058 0.400 1.142 0.001 0.168 0.978 -0.002 0.073 1.026
PMM-20 -0.175 0.398 1.373 | -0.017 0.170  1.010 | -0.004 0.073 1.017
PMM-D -0.031 0.406 1.083 -0.005 0.169 0.978 -0.006 0.073 1.025
AREG -0.643 0.214 0.181 0.543 -0.015 0.175 0.953 -0.003 0.074 1.017
MIDAS -0.097 0.434 1.201 -0.027 0.183 1.021 -0.007 0.077  1.055
IRMI -0.226 0.480 1.747 | -0.223 0.910 0.201 1.672 -0.227 0.138 0.087 1.708
RF -0.190 0.402 1.594 | -0.182 0.930 0.188 1.532 -0.198 0.414  0.093 1.723
CART -0.107 0.370 1.118 | -0.042 0.161  0.970 | -0.025 0.071  0.969
GAMLSS -0.364 0.554 0.356 0.704 | -0.034 0.888 0.187 0.685 -0.006 0.081 1.073
GAMLSS-JSU | -0.504 0.366 0.298 0.645 | -0.039 0.914 0.193 0.741 | -0.013 0.081 1.088
B4 (Binomial covariate)
COM -0.028 0.926 0.857 0.936 0.023 0.413 1.015 -0.005 0.183 1.012
CCA -0.120 2.110 1.004 | -0.134 0.834 0.936 | -0.098 0.358 1.014
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Table B.8: Continuation of table on previous page

method n=50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio
NORM -0.120 1.181 1.043 -0.081 0.526  1.060 -0.078 0.229 1.123
AMELIA -0.168 1.444 1.115 -0.126 0.525 1.038 -0.135 0.229 1.094
PMM-1 -0.038 1.183  0.939 0.002 0.531 0.983 -0.004 0.230 1.072
PMM-3 -0.052 1.162 0.966 -0.001 0.527  0.992 -0.005 0.231 1.062
PMM-5 -0.044 1.148 0.968 -0.009 0.528 0.999 -0.005 0.232 1.082
PMM-10 -0.050 1.137  1.003 -0.004 0.525 1.005 -0.005 0.229  1.075
PMM-20 -0.106 1.144 1.079 -0.022 0.527 1.021 -0.008 0.231 1.084
PMM-D -0.052 1.143 0.981 -0.013 0.525 1.018 -0.008 0.230 1.072
AREG -1.936 0.214 0.542 0.466 | -0.034 0.527 0.973 | -0.016 0.230  1.065
MIDAS -0.137 1.180 1.043 -0.044 0.535 1.017 | -0.022 0.232 1.063
IRMI -0.418 1.266 1.251 | -0.381 0.571 1.348 | -0.368 0.728 0.247 1.324
RF -0.258 1.172 1.156 -0.178 0.553 1.205 -0.138 0.244  1.205
CART -0.329 1.059 1.025 -0.232 0.918 0.496 0.979 -0.129 0.922 0.221 1.002
GAMLSS -1.079 0.538 0.880 0.576 -0.154 0.878 0.502 0.614 | -0.007 0.229  1.063
GAMLSS-JSU | -1.574 0.352 0.725 0.518 | -0.135 0.886 0.513 0.647 | -0.006 0.230 1.063

Table B.9: Results for the estimation of f3,, 83 and 8, in model 6.4. The imputed

covariate x5 follows a Student’s t distribution with three degrees of freedom. Weak

non-monotone MDM.

method n=50 n=200 n=1000
bias cov sd ratio | bias cov sd ratio | bias cov sd ratio
B, (t covariate)
COM -0.012 0.302  0.990 0.005 0.136  0.982 -0.003 0.058 1.007
CCA -0.064 0.878 1.001 -0.050 0.292  0.953 -0.048 0.115 1.034
NORM -0.076 0.533 1.081 -0.002 0.203  0.942 -0.009 0.083 0.865
AMELIA 0.029 0.789 1.163 0.030 0.213  0.898 0.003 0.920 0.084 0.853
PMM-1 -0.002 0.558 0.978 0.021 0.202  0.905 0.008 0.928 0.082 0.891
PMM-3 -0.014 0.534 1.023 0.016 0.928 0.200 0.926 0.007 0.924 0.082 0.917
PMM-5 -0.029 0.520 1.031 0.011 0.201  0.951 0.005 0.926 0.081 0.900
PMM-10 -0.064 0.511 1.081 0.008 0.202 0.974 0.003 0.930 0.081 0.922
PMM-20 -0.151 0.498 1.183 -0.010 0.204 1.012 -0.001 0.081 0.945
PMM-D -0.048 0.511  1.057 0.000 0.203  0.980 | -0.002 0.082  0.969
AREG -0.791 0.218 0.238 0.532 -0.037 0.209  0.920 -0.022 0.086 0.983
MIDAS -0.144 0.558 1.193 | -0.029 0.221  1.015 | -0.008 0.088 0.982
IRMI -0.372 0.612 1.724 | -0.396 0.670 0.243 1.688 -0.409 0.002 0.099 1.621
RF -0.220 0.512 1.482 | -0.237 0.924 0.238 1.604 | -0.282 0.252 0.114 1.784
CART -0.085 0.462 1.018 -0.036 0.924 0.192 0.922 -0.040 0.922 0.086 0.901
GAMLSS -0.584 0.404 0.387 0.656 | -0.176 0.764 0.209 0.447 | -0.067 0.906 0.101  0.402
GAMLSS-JSU | -0.768 0.216 0.276  0.555 -0.355 0.602 0.198 0.374 | -0.196 0.796 0.099 0.261
B3 (Poisson covariate)

COM -0.012 0.269 1.017 0.002 0.128 1.011 -0.000 0.056 1.030
CCA -0.021 0.706  0.977 | -0.039 0.263 0.986 | -0.023 0.112  0.995
NORM -0.032 0.450 1.122 0.003 0.188 1.049 0.003 0.081 1.035
AMELIA 0.097 0.651 1.210 0.039 0.190 1.027 0.017 0.082 1.037
PMM-1 0.061 0930 0.466 0.973 0.018 0.186  0.990 0.012 0.079  0.999
PMM-3 0.038 0.444  0.995 0.018 0.180 0.984 0.014 0922 0.076 0.982
PMM-5 0.018 0.437 1.001 0.017 0.176  0.976 0.015 0930 0.076 0.986
PMM-10 -0.051 0.428 1.060 0.013 0.178 1.006 0.015 0.918 0.075 0.982
PMM-20 -0.196 0.427 1.251 -0.003 0.179 1.018 0.015 0.924 0.075 0.971
PMM-D -0.010 0.428 1.021 0.008 0.179  0.993 0.012 0.075 0.987
AREG -0.760 0.216 0.195 0.497 | -0.006 0.182 0.896 0.010 0.078 1.004
MIDAS -0.092 0.471 1.155 -0.017 0.193 1.033 0.005 0.081 1.012
IRMI -0.273 0.527 1.672 -0.283 0.850 0.217 1.683 -0.309 0.044 0.092 1.229
RF -0.208 0.439 1.486 -0.212 0918 0.205 1.552 -0.232 0.368 0.104 1.771
CART -0.086 0.396 1.061 -0.018 0.167 0.958 -0.015 0.926 0.074 0.950
GAMLSS -0.569 0.406 0.321 0.601 -0.166 0.762 0.193 0.443 -0.043 0.904 0.087 0.361
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Table B.9: Continuation of table on previous page

method n=50 n=200 n=1000
| bias cov sd ratio | bias cov sd ratio | bias cov sd ratio
GAMLSS-JSU | -0.733 0220 0228 0.499 | -0.343 0.598 0.181 0369 | -0.159 0.798 0.122 0.324
B4 (Binomial covariate)
COM -0.030 0.926 0.909 0.933 0.024 0.438 1.017 | -0.006 0.194 1.013
CCA -0.118 2.209 0.999 | -0.103 0.930 0.868 0.934 | -0.075 0.375 1.031
NORM -0.111 1.298 1.026 -0.043 0.570 1.023 -0.045 0.249  1.090
AMELIA -0.137 1.554 1.106 | -0.055 0.563  0.996 | -0.082 0.247 1.086
PMM-1 -0.076 1.302 0.934 0.009 0.574  0.983 0.005 0.251 1.045
PMM-3 -0.062 1.264 0.966 0.010 0.571 0.961 0.005 0.250  1.055
PMM-5 -0.039 1.245 0.987 0.004 0.571  0.975 0.006 0.249 1.056
PMM-10 -0.056 1.232 1.015 0.005 0.572  1.001 0.004 0.251  1.056
PMM-20 -0.061 1.234 1.085 -0.012 0.572 1.018 0.003 0.252 1.060
PMM-D -0.043 1.237 1.002 | -0.001 0.572  0.992 0.002 0.253 1.077
AREG -1.156 0.212 0.596 0.705 -0.017 0.573 0.966 | -0.004 0.251 1.054
MIDAS -0.116 1.292 1.074 | -0.050 0.578 1.017 | -0.031 0.256  1.040
IRMI -0.265 1.369 1.299 -0.214 0.606 1.297 | -0.205 0.928 0.263 1.271
RF -0.138 1.268 1.152 | -0.088 0.594 1.182 | -0.065 0.264 1.198
CART -0.226 1.162 1.067 | -0.159 0.537 1.041 -0.107 0.238 1.058
GAMLSS -0.879 0.390 0.812 0.726 | -0.298 0.740 0.509 0.622 | -0.080 0.898 0.245 0.575
GAMLSS-JSU | -1.130 0.210 0.576 0.632 -0.543 0.600 0.461 0.531 -0.255 0.786 0.251 0.408
Table B.10: Results for the estimation of f3,, f3 and 8, in model 6.4. The imputed
covariate x, follows a Chi-squared distribution with three degrees of freedom. Weak
non-monotone MDM.
method n=50 n=200 n=1000
| bias cov sd ratio | bias cov sd ratio | bias cov sd ratio
B (t covariate)
COM -0.020 0.338 0.995 0.001 0.158 0.993 | -0.006 0.069  0.995
CCA 0.002 1.024  0.937 | -0.001 0.359  0.925 -0.002 0.145 0.954
NORM -0.040 0.605 1.140 0.017 0.243  1.049 0.020 0.103 1.044
PMM-1 0.021 0.622  0.993 -0.011 0.241  0.951 -0.024 0.926 0.101 0.937
PMM-3 -0.011 0.595 1.007 | -0.014 0.233  0.924 | -0.023 0.930 0.099 0.924
PMM-5 -0.036 0.581 1.039 -0.017 0.234  0.955 -0.026  0.930 0.098 0.933
PMM-10 -0.084 0.565 1.126 | -0.024 0.235 0.998 | -0.024 0.097 0.918
PMM-20 -0.205 0.557 1.258 -0.042 0.234 1.013 -0.027 0.926  0.097 0.940
PMM-D -0.058 0.570  1.059 | -0.032 0.234 0989 [ -0.031 0.928 0.098 0.952
MIDAS -0.132 0.609 1.194 | -0.051 0.250 1.037 | -0.033 0.106 0.986
RF -0.232 0.566 1.482 -0.247 0916 0.260 1.546 -0.287 0.344 0.127 1.684
CART -0.111 0.527  1.055 -0.043 0.924 0.215 0.942 -0.033 0.910 0.091 0.883
GAMLSS -0.457 0.576  0.517 0.750 -0.133 0.863 0.263 0.662 -0.063 0.117 1.047
GAMLSS-JSU | -0.660 0.369 0.419 0.632 -0.121 0912 0.277 0.838 -0.103 0.873  0.115 1.018
B3 (Poisson covariate)
COM -0.022 0.466 1.015 0.006 0.221 1.014 0.000 0.098 1.029
CCA -0.085 1.214 1.001 -0.082 0.457 0.983 -0.057 0.194 0.994
NORM -0.063 0.772 1.118 -0.005 0.322 1.066 0.006 0.141 1.068
PMM-1 0.041 0926 0.811 0971 -0.011 0.331 0.979 -0.025 0.143 1.020
PMM-3 0.013 0.793 1.037 | -0.009 0.321 0.971 -0.022 0.138 0.983
PMM-5 0.002 0.757  1.039 -0.001 0.318 0.966 | -0.021 0.137 0.982
PMM-10 -0.093 0.741 1.115 -0.008 0.316 0984 | -0.021 0.138 1.005
PMM-20 -0.313 0.725 1.320 -0.024 0.315 1.023 -0.018 0.136  0.997
PMM-D -0.030 0.738 1.052 -0.015 0.314 0.979 -0.019 0.135 0.984
MIDAS -0.192 0.801 1.167 | -0.061 0.339 1.030 -0.033 0.145 1.032
RF -0.348 0.739 1544 | -0.342 0.928 0.342 1.514 | -0.376 0.406 0.173 1.704
CART -0.169 0.677 1.109 -0.068 0.295 0.983 -0.046 0.922 0.128 0.922
GAMLSS -0.614 0.568 0.653 0.687 | -0.043 0.861 0.334 0.595 0.041 0.147 1.081
GAMLSS-JSU | -0.902 0.369 0.519 0.587 0.037 0.912 0.357 0.771 0.077 0.917 0.147 1.077

B4 (Binomial covariate)
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Table B.10: Continuation of table on previous page

method n=50 n=200 n=1000

bias cov sd ratio bias cov sd ratio bias cov sd ratio
COM -0.048 0.928 1.575 0.934 0.043 0.759 1.014 -0.010 0.336 1.013
CCA -0.288 3.859  0.925 -0.319 0.926 1.525 0.936 -0.199 0.653 1.004
NORM -0.289 2.172  0.983 -0.162 0.968 1.036 -0.139 0.426 1.118
PMM-1 -0.170 0916 2.162 0.906 -0.019 0.973  0.994 -0.009 0.430 1.070
PMM-3 -0.123 2.128 0.928 -0.010 0.974 0.992 -0.008 0.429 1.074
PMM-5 -0.105 2.101 0.949 -0.025 0.975 1.006 -0.010 0.425 1.064
PMM-10 -0.091 2.080 0.979 | -0.046 0.974 1.001 | -0.013 0.427 1.068
PMM-20 -0.185 2.105 1.053 -0.051 0.971 1.020 -0.014 0.426 1.061
PMM-D -0.109 2.097 0.969 | -0.037 0.975 1.004 | -0.015 0.425 1.076
MIDAS -0.284 2.187 1.022 -0.134 0.988 0.996 -0.047 0.430 1.061
RF -0.406 2.132 1.138 -0.309 1.006 1.192 -0.225 0.445 1.199
CART -0.561 1.965 1.014 -0.405 0.930 0.914 1.023 -0.242 0.918 0.409 1.043
GAMLSS -1.756  0.542 1.614 0.627 | -0.400 0.859 0.920 0.614 | -0.030 0.424 1.073
GAMLSS-JSU -2.579 0.355 1.344 0.596 -0.175 0.906 0.950 0.751 0.018 0.424 1.075
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