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Introduction

The CMS experiment [1], together with the ATLAS experiment [2], represents the current

program on the Energy Frontier at the Large Hadron Collider [3] at CERN in Geneva,

Switzerland. The two general purpose experiments study the production of particles

in proton-proton interactions, aiming to better understand the fundamental forces in

nature. In 2012 they succeeded in finding the Higgs particle [4] [5], the last fundamental

particle predicted by the Standard Model of particle interactions. Both experiments

employ a complex setup of tracking, electromagnetic and hadronic calorimeter, and

muon detectors inside a strong magnetic field to record the produced particles and their

individual momentum and/or energy. Starting from 2017, during CMS Phase-1 [6] and

2 [7], the increased accelerator luminosity with the consequently increased number of

simultaneous proton-proton collisions (pile-up) will pose significant new challenges for

the CMS experiment.

The reconstruction of the trajectories of charged particles recorded in the silicon pixel and

silicon strip detectors is one of the most important components in the interpretation of the

detector information of a proton-proton collision [8]. It provides a precise measurement

of the momentum of charged particles (muons, electrons and charged hadrons), the

identification of interaction points of the proton-proton collision (primary vertex) and

decay points of particles with significant lifetimes (secondary vertices).

The increasing complexity of events, due to the growing number of simultaneous proton-

proton collisions, will make track reconstruction especially challenging. In fact, algorithms

have to explore many combinations before being able to connect traces left by the same

particle in the detector.

The quest of significantly reducing the 40 MHz data rate delivered by proton-proton

collisions to the detectors, together with the retention of those events which are potentially

interesting for searches of new physics phenomena, led to the evaluation of modern
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multi-cores and many-cores computer architectures for the enhancement of the existing

computing infrastructure used for the event selection, i.e. the High-Level Trigger (HLT)

[9]. The objective of the HLT is to apply a specific set of physics selection algorithms

and to accept the events with the most interesting physics content. To cope with the

incoming event rate, the online reconstruction of a single event for the HLT has to be

done within 220 ms on average.

In Chapter 2 of this thesis, the CMS experiment and its experimental apparatus, in the

context of which this work was carried out, are presented.

The track reconstruction problem and its application in the CMS online and offline

environments is described in Chapter 3. In particular, the implications of the upgrade of

the Pixel Detector on track reconstruction are described in this Chapter.

Heterogeneous parallel computing is described in Chapter 4, focusing on the concepts

used to develop the parallel algorithms running on Graphics Processing Units (GPUs).

GPUs are massively parallel computer architectures that can be programmed using

extensions to the standard C and C++ languages [10]. Their parallelism can be exploited

to explore many possible tracks at the same time, hence reducing the time spent in track

reconstruction in each event.

Chapter 5 focuses on the development of a parallel algorithm, the Hit-Chain Maker based

on the concepts of Cellular Automata and a fast nearest neighbor data structure, namely

FKDtree, for track seeding targeted for GPUs.

The results of the integration of the Hit-Chain Maker running on GPUs in the CMS

track seeding software framework are discussed in Chapter 6, both from the physics and

from the computing performance point of view. The integration of a traditional C++

version of the Hit-Chain Maker is discussed in this chapter.

The traditional version of this innovative algorithm is on average three to four times

faster than the existing implementation. It is also more robust with respect to growing

pile-up conditions. These innovative algorithms for track reconstruction use for the

first time concepts of parallel computing in the CMS experiment. As these algorithms

result in a significant improvement both, in physics and computing performance, they

have replaced the previous ones for event selection at the HLT as well as in offline track

reconstruction.
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Zusammenfassung/Einleitung

Das CMS-Experiment [1] repräsentiert, zusammen mit dem ATLAS-Experiment [2], das

aktuelle Forschungsprogramm am weltweit leistungsfähigsten Teilchenbeschleuniger, dem

Large Hadron Collider (LHC) [3] am CERN in Genf, Schweiz. Die beiden Allzweck-

Experimente untersuchen die Produktion von Teilchen in Proton-Proton-Kollisionen, um

die grundlegenden Kräfte in der Natur besser zu verstehen. Im Jahr 2012 gelang es ihnen,

das Higgs Boson, das letzte fundamentale, vom Standardmodell vorhergesagte Teilchen

nachzuweisen [4] [5]. Beide Experimente verwenden eine komplexe Zusammenstellung

von Siliziumspurdetektor, elektromagnetischen und hadronischen Kalorimetern und Muon-

Detektoren in starken Magnetfeldern, um die produzierten Teilchen und ihre individuellen

Impulse und / oder Energien aufzuzeichnen. Seit 2017, während der Umbauten der CMS

Phase-1 [6] und Phase-2 [7], stellt die erhöhte Intensität des Beschleunigers, mit der

damit verbundenen erhöhten Anzahl gleichzeitiger Proton-Proton-Kollisionen (“Pile-up”),

eine für das CMS Experiment bedeutende neue Herausforderung dar.

Die Rekonstruktion der Spuren der geladenen Teilchen, die in den Siliziumpixel- und Siliz-

iumstreifendetektoren aufgezeichnet werden, ist eine der wichtigsten Komponenten der

Interpretation der Detektorinformation einer Proton-Proton-Kollision [8]. Sie liefert eine

präzise Messung der Impulse der geladenen Teilchen (Myonen, Elektronen und geladene

Hadronen), die Identifizierung von Wechselwirkungspunkten der Proton-Proton-Kollision

(primärer Wechselwirkungspunkt) und Zerfallspunkte von Teilchen mit signifikanten

Lebensdauern (sekundäre Wechselwirkungspunkte).

Die auf Grund der wachsenden Zahl von gleichzeitigen Proton-Proton-Kollisionen zunehmende

Komplexität der Ereignisse macht die Spurrekonstruktion besonders anspruchsvoll. Die

Algorithmen müssen viele Kombinationen untersuchen, um die Signale, die von demselben

Teilchen im Detektor zurückgelassen werden, korrekt zu Spuren zu verbinden.

Die Notwendigkeit der signifikanten Verringerung der 40 MHz-Datenrate, die durch
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Proton-Proton-Kollisionen an die Detektoren geliefert wurde, unter gleichzeitiger Beibehal-

tung jener Ereignisse, die für die Suche nach neuen physikalischen Phänomenen potentiell

interessant sind, führte zur Untersuchung von modernen Mehr-Kern Rechnerarchitekturen

für die Erweiterung der vorhandenen Recheninfrastruktur, die für die Ereignisauswahl

verwendet wird, der so genannte “High-Level Trigger” (HLT) [9]. Das Ziel des HLT ist

es, einen bestimmten Satz von Auswahlalgorithmen anzuwenden und idealerweise nur

die Ereignisse mit dem interessantesten Physikinhalt zu akzeptieren. Um die eingehende

Ereignisrate zu bewältigen, muss die Rekonstruktion eines einzelnen Ereignisses im HLT

durchschnittlich in 220 ms durchgeführt werden.

In Kapitel 2 dieser Arbeit wird das CMS-Experiment, in dessen Rahmen diese Arbeit

durchgeführt wurde, vorgestellt.

Das Spurrekonstruktionsproblem und seine Anwendung in den CMS Online- und Offline-

Umgebungen wird in Kapitel 3 beschrieben. Insbesondere werden die Auswirkung des

Umbaus des Pixeldetektors auf die Spurrekonstruktion in diesem Kapitel beschrieben.

Heterogenes Parallelrechnen wird in Kapitel 4 beschrieben. Es konzentriert sich auf die

Konzepte, die zur Entwicklung der parallelen Algorithmen verwendet werden, die auf

den Grafikeinheiten (“Graphics Processing Units”, GPUs) laufen.

GPUs sind massiv parallele Rechnerarchitekturen, die mit Erweiterungen der Standard-C

und -C++ Sprachen [10] programmiert werden können. Ihre Parallelität kann genutzt

werden, um viele mögliche Spuren gleichzeitig zu erforschen und damit die Zeit zu

reduzieren, die mit der Spurrekonstruktion in jedem Ereignis verbracht wird.

Kapitel 5 konzentriert sich auf die Entwicklung eines neuen, parallelen Algorithmus (“Hit-

Chain Maker”) zum Finden der Startpunkte der Teilchenspuren, der auf den Konzepten

von Zellulären Automaten basiert, sowie eine schnelle, “nächster-Nachbar” Datenstruktur

(“FKDtree”).

Die Ergebnisse der Einbindung des Hit-Chain Maker, der auf GPUs innerhalb des Spurfind-

ungsprogramms des CMS-Software-Frameworks läuft, werden in Kapitel 6 diskutiert,

sowohl aus der Sicht der Rechenleistung als auch der des Einflusses auf die Physik-

Resultate. Die Integration einer traditionellen C++ -Version des Hit-Chain Makers wird

ebenfalls in diesem Kapitel besprochen.

Die traditionelle Version dieses innovativen Algorithmus ist durchschnittlich drei- bis
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viermal schneller als die bestehende Implementierung. Sie ist auch robuster in Bezug

auf die erhöhte Anzahl gleichzeitiger Proton-Proton-Kollisionen. Die in dieser Arbeit

entwickelten Algorithmen zur Spurrekonstruktion führen zum ersten Mal Konzepte zur

Nutzung paralleler Rechnerarchitekturen im CMS-Experiment ein. Diese neuen Algorith-

men haben die bisherigen Algorithmen zur Spurrekonstruktion sowohl im HLT als auch in

der Offline-Spurrekonstruktion ersetzt, da sie in allen Belangen deutlich leistungsfähiger

sind.
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Chapter 1

The Standard Model of Elementary

Particles

1.1 Brief History of Particle Physics

The Standard Model of particle physics (SM) is a theory that describes the elementary

particles and their interactions, except for the gravitational one, which has negligible

effects at microscopic scales.

The journey that has led mankind to develop the concepts of particles and eventually to

the formulation of the Standard Model started in the fifth century B.C. in Greece by

Leucippus and his pupil Democritus.

Their ontology was based on the concepts of atoms1 and vacuum, the fundamental

elements of which the universe is made.

Aristotle in the Metaphysics, writes about atoms and vacuum referring to them as being

and non-being [11]:

“Leucippus and his associate Democritus say that the full and the empty

are the elements, calling the one ‘being’ and the other ‘non-being’ — the full

and solid being ‘being’, the empty non-being (whence they say ‘being’ no

more is than ‘non-being’, because the solid no more ‘is’ than the empty); and

they make these the material causes of things.”

1ἄτομος, àtomos, the Greek word for indivisible.
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Chapter 1 The Standard Model of Elementary Particles

The theory of atoms was rejected by Aristotle and for this reason it was ignored for two

millennia.

The hypothesis of the discrete composition of things started to come back at the beginning

of the XIX-century, with the studies by R. Brown on the motion of particles contained

in the pollen of plants [12]. In 1799, the chemist Joseph-Louis Proust found out that

the elements which constitute a chemical compound are always present in fixed ratio of

mass [13]. This is nowadays known as the law of definite proportions.

In 1811, Italian physicist and mathematician A. Avogadro made a hypothesis which

stated that equal volumes of all gases, at the same temperature and pressure, have the

same number of molecules:

V = kN (1.1)

where V is the volume, N is the number of molecules and k a constant.

Starting from 1865, the hypothesis made by Avogadro was proved by Loschmidt, van der

Waals, Roentgen, Rayleigh, Plank, Wilson, Thomson, and Einstein, who, with different

experiments, were able to measure the Avogadro constant, as the number of Carbon-12

atoms in 0.012 kg of Carbon-12.

It is after the discovery of electricity that particle physics history started to move with

strong pace. During his studies on cathodic rays, J. J. Thomson noticed that these

rays were able to discharge electroscopes. He demonstrated that particles that make

up cathodic rays are deviated by electric and magnetic fields. Thomson was then able

to measure the ratio e/m between the charge e and the mass m of these particles [14].

The first elementary particle had been discovered and it was called electron, nowadays

indicated with e−. The experiment aimed to the absolute measurement of the charge of

the electron was carried out in 1910 by Millikan [15].

To justify the neutral charge and much higher mass of atoms with respect to electrons,

Thomson proposed a model in which electrons are enclosed in a positively charged paste.

However, this model was rejected with Rutherford’s experiments on scattering [16]. In

fact, the outcome of these experiments was that most of the mass is concentrated in the

center of atoms.

These experiments inspired Bohr’s model of the hydrogen atom [17], in which an

electron orbits around a positively charged particle called proton. This model showed

an unprecedented agreement with experimental data. However, discrepancies on the

2



1.1 Brief History of Particle Physics

value of the mass of heavier nuclei appeared. These discrepancies are explained in 1932

by Chadwick’s hypothesis on the existence of a heavy neutral particle in the nucleus of

atoms, called neutron [18]. In 1922, the Stern and Gerlach experiment demonstrated

the fact that the electron has an intrinsic angular momentum, i.e. spin [19].

Max Planck’ studies on black-body radiation [20] and Albert Einstein’s work on the

photoelectric effect [21] demonstrated that light is absorbed in quanta (discrete quantities)

of energy, called photons.

The theory of Special Relativity, created in 1905 by Albert Einstein postulates that

[22], [23]:

“...light is always propagated in empty space with a definite velocity [speed]

c which is independent of the state of motion of the emitting body.”

“If a system of coordinates K is chosen so that, in relation to it, physical laws

hold good in their simplest form, the same laws hold good in relation to any

other system of coordinates K ′ moving in uniform translation relatively to

K.”

It took more than two decades to combine Special Relativity and Quantum Mechanics

together. A fundamental step towards a unified theory was done in 1928 by Paul Dirac [24].

In order to describe the structure of the atoms with point-charge electrons, Dirac blends

concepts of the special relativity and quantum mechanics together. However, Dirac’s

equation admits negative energy solutions.

While studying the production of secondary particles produced by the interaction of

cosmic rays in a cloud chamber placed in the electromagnet of Caltech’s Guggenheim

Aeronautical Laboratory, Carl D. Anderson noticed something unexpected in the results.

Many pictures showed simultaneous ejection of an electron and a positive particle much

lighter than a proton. Further investigations led Anderson to the discovery of the positron

(anti-electron) [25] — what seemed to be a deficiency in Dirac’s equation became its

greatest success.

Quantum Electrodynamics (QED) was developed in the end of the 1940s thanks to

the contributions of Sin-Itiro Tomonaga [26], Julian Schwinger [27] [28] and Richard

Feynman [29] to describe, using quantum mechanics and special relativity, all those

phenomena that involve charged particles interacting by means of electromagnetic force.

3



Chapter 1 The Standard Model of Elementary Particles

It is one of the most accurate theories existing today, predicting quantities like the

anomalous magnetic moment of the electron and the Lamb shift of the energy levels of

hydrogen with great precision.

The first half of the XX-century gave birth to the research on the weak interaction and

neutrino physics. The existence of neutrinos ν was postulated by Wolfgang Pauli in 1930

in his famous “Open letter to radioactive persons” [30]. The existence of neutrinos was

required to ensure conservation of energy, momentum and angular momentum in the

continuous spectrum observed in beta decays.

In 1934, Enrico Fermi developed a comprehensive theory of radioactive decays [31]. This

theory includes Pauli’s hypothetical particle that was renamed neutrino, meaning in

Italian: “little neutral one”. With the inclusion of the neutrino, Fermi’s theory accurately

explains many experimentally observed results.

In 1946, Bruno Pontecorvo suggested a radiochemical method of detecting a free neutrino

after it had been emitted in a beta decay [32]. Pontecorvo’s method was based on the

observation of decay of daughter nucleus produced in the reaction:

ν + (A,Z) → e− + (A,Z + 1). (1.2)

In 1956, Clyde Cowan and Fred Reines discovered a particle fitting the expected charac-

teristics of the antineutrino produced in a nuclear reactor. The antineutrino was detected

using the inverse beta decay:

ν̄ + p→ e+ + n. (1.3)

The interaction keeping protons and neutrons together in nuclei was still mysterious at

that time. The Japanese physicist Hideki Yukawa made the hypothesis that a quantum

of the nuclear field had a similar nature to the quantum of the electromagnetic field, the

photon. His calculations predicted that the mass of this quantum had to be about 200

times larger than the mass of the electron.

In 1937, Anderson and Neddermeyer, while studying the interaction of cosmic rays with

matter in a magnetic field, found particles with a value of mass between the mass of the

electron and the mass of the proton. These particles were named mesotrons, and later

mesons.

However, the results of an experiment carried out by Marcello Conversi, Ettore Pancini

and Oreste Piccioni [33] were in disagreement with the hypothesis of a strongly interacting

4



1.1 Brief History of Particle Physics

Yukawa particle. In 1947, Enrico Fermi, Edward Teller and Victor Weisskopf [34] showed

that there were about 12 orders of magnitude difference between the predicted capture

time for a negative Yukawa particle and the results of the experiment for negative

particles.

It was found that the mesotron, renamed π meson (pion), is not the strongly interacting

Yukawa particle. Furthermore, Cesare Lattes, Beppo Occhialini and Cecil Powell [35],

discovered that the pions decay into muons, which decay to produce electrons.

In 1947, Bruno Pontecorvo suggested an analogy between beta processes and those of

emission and absorption of a muon [36] indicating a universality of the weak interaction.

In 1959, at the Kiev Conference, he expressed the idea that experiments with high-energy

accelerators could prove whether a neutrino produced in association with a muon νµ is

different from a neutrino produced in association with an electron νe.

Experiments at Brookhaven National Laboratory, carried out by Leon M. Lederman,

Melvin Schwartz and Jack Steinberger [37], demonstrated the doublet structure of the

through the discovery of the muon neutrino νµ.

The τ particle, a heavier version of the electron and muon, has been discovered at SLAC

almost fifteen years later [38]. Its corresponding neutrino ντ was discovered at Fermilab,

by the DONUT experiment in the year 2000 [39].

Following the World War II, research on cosmic rays and with accelerators started to

develop quickly. Tens of new particles had been discovered, making up the so called

“zoo of particles”. Physicists started to look for relations between particles, searching for

a “Table of Elements” for particle physics. This research revealed many approximate

symmetries and similarities.

Gell-Mann and Nishijima introduced a new quantum number, the strangeness s. Strangeness

is conserved in strong interactions but not in weak interactions. In 1961, Murray Gell-

Mann found out that many discovered particles could be arranged in a two-dimensional

schema called the Eightfold Way (Figure 1.1).

In 1964, Gell-Mann [40] and George Zweig proposed independently that the reason

for this symmetry is that strongly-interacting particles are made of three fundamental

entities. Gell-Mann called these fundamental particles quarks2. To distinguish the

2Gell-Mann took inspiration for the term quark from James Joyce’s Finnegans Wake phrase: “Three
quarks for Muster Mark”.
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Chapter 1 The Standard Model of Elementary Particles

Figure 1.1: Gell-Mann’s Eightfold Way which arranged the particles based on their charge and
strangeness. Particles on the same horizontal line have the same strangeness (s).
Particles on the same diagonal line have the same charge (q).

properties of these different elementary particles, they were called up (u), down (d),

strange (s). Protons and neutrons are combinations respectively of uud and udd. The

charge of quarks is a fraction of the charge e: 2
3
e for the u-quark, −1

3
e for the d- and

s-quarks.

The violation of Pauli’s exclusion principle in the case of the ∆++(uuu) particle, was

solved in 1965 by Moo-Young Han and Yoichiro Nambu [41]. They introduced three

different color charges that quarks could have. Conventionally these colors are called red,

green, blue. The evidence of the existence of an internal structure in nucleons, the so

called parton model, is given by deep inelastic scattering experiments.

In 1970, Sheldon Lee Glashow, John Iliopoulos and Luciano Maiani, made the hypothesis

of generations of quarks and leptons (νe, e), (νµ, µ), (u, d), (c, s). This hypothesis required

the existence of the quark charm. A bound state J/ψ(cc̄) was discovered independently

in 1974 by Samuel Ting at the Brookhaven National Laboratory [42] and by Burton

Richter at SLAC [43], in what has become the November Revolution. In 1977, Lederman

discovered a meson Υ, bound state (bb̄) of beauty-quarks [44].

The third quark generation was completed when the CDF [45] and D0 [46] collaborations

at the Tevatron collider at Fermilab, discovered the top-quark, in 1995.
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1.1 Brief History of Particle Physics

Figure 1.2: A three-jets event at the TASSO experiment, DESY.

In the 1970s the theory of quarks and colors, the Quantum Chromodynamics (QCD),

was the best candidate for describing the nuclear interactions. However, the proof of

the existence of its mediating boson, the gluon, was long in coming. Gluons carry color

charge, because they couple colored quarks. They exist in eight color configurations. In

a process like:

e+e− → qq̄, (1.4)

gluons can be radiated by a quark. As a result, the hadron shower (jet) produced by the

quark radiating the gluon would broaden, producing a third shower.

A proof of the existence of three-jets events was found by the TASSO collaboration [47]

at the PETRA accelerator at DESY in 1979 (Figure 1.2).

In 1967, to solve the discrepancy at high-energy between Fermi’s theory of weak inter-

action and experimental results, Sheldon Glashow, Steven Weinberg and Abdus Salam

independently propose a theory to unify weak and electromagnetic interaction. Their

theory required the existence of two electrically charged (W±) and one neutral massive

bosons (Z0).

In 1974, the Gargamelle experiment at CERN observed the weak neutral current [48].

The discovery of the W± and Z0 bosons came almost ten years later by Carlo Rubbia

who was leading the UA1 collaboration and Simon van der Meer who was working at the

CERN SPS accelerator [49].

7



Chapter 1 The Standard Model of Elementary Particles

Later experiments at CERN’s Large Electron-Positron (LEP) accelerator determined that

no additional light neutrinos beyond the three already known can exist, by measuring

the width of the Z0-boson [50].

The existence of massive bosons, communicators of the weak interaction and massive

fermions, could only be explained with the Spontaneous Symmetry Breaking mechanism

proposed by François B. Englert, Robert Brout [51], Gerald Guralnik, Carl Hagen,

Thomas Kibble [52] and Peter Higgs [53]. This mechanism required the existence of

a neutral particle, the Higgs boson H, discovered at CERN in 2012 by the CMS and

ATLAS collaborations [4] [5].

1.2 Particles and Fields in the Standard Model

The SM is a Quantum Field Theory (QFT) [54] in which matter is described in terms of

spin-1/2 fermions while their interactions are mediated by bosons with spin 1. These

bosons are photons, gluons, W and Z. They mediate respectively the electromagnetic,

strong, and weak interactions.

Fermions are distributed in three generations, each made of:

• two quarks with electric charge respectively 2
3
e and −1

3
e (Table 1.1),

• two leptons, one having electric charge −1e, the other with no electric charge

(Table 1.2).

Table 1.1: Quark properties [55].

Quark Mass Charge [e]

u 2.2+0.6
−0.4 MeV/c2 2

3

d 4.7+0.5
−0.4 MeV/c2 −1

3

c 1.27± 0.03 GeV/c2 2
3

s 96+8
−4 MeV/c2 −1

3

t 173.21± 0.51± 0.71 GeV/c2 2
3

b 4.18+0.04
−0.03 GeV/c2 −1

3

8



1.2 Particles and Fields in the Standard Model

Table 1.2: Lepton properties [55].

Lepton Mass Charge Le Lµ Lτ

e− 0.5109989461± 0.0000000031 MeV −1e 1 0 0
µ− 105.6583745± 0.0000024 MeV −1e 0 1 0
τ− 1776.86± 0.12 MeV −1e 0 0 1
νe < 2 eV 0 1 0 0
νµ < 0.19 MeV 0 0 1 0
ντ < 18.2 MeV 0 0 0 1

In the SM, the quark flavor is always conserved in electromagnetic and strong interactions,

but this is not always true in weak interactions. For leptons, flavor is conserved within

the same generation. However, only the total lepton number is conserved in neutrino

oscillation processes [56].

A gauge theory is a QFT in which particles have a local symmetry that operates on the

particles’ internal degrees of freedom.

The gauge group of the SM is given by the direct product:

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y. (1.5)

1.2.1 Strong interaction

The SU(3)C group is used to describe the Quantum Chromo-Dynamics (QCD).

In QCD, strongly interacting particles have a color charge.

The SU(3)C group is non-abelian. Corresponding to the 8 generators, gluons carry color

and are self-interacting. A possible representation of these eight gluons is the following:

rḡ, rb̄, gb̄, gr̄, br̄, bḡ,
1√
2
(rr̄ − gḡ),

1√
6
(rr̄ + gḡ − 2bb̄). (1.6)

In the ninth representation, 1√
3
(rr̄ + gḡ + bb̄), all the colors are neutralized by their

respective anti-colors, such that it does not exist.

Quarks and anti-quarks are represented by Dirac fields in the simplest representations of

this group 3 and 3̄. These can be multiplied to produce a gauge-invariant bilinear singlet

qq̄ (corresponding to mesons), and the octet q̄γµλaq (corresponding to baryons) [54].
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Chapter 1 The Standard Model of Elementary Particles

Given a massless quark spinor field ψ and the gluon field tensor Ga
µν , one can write

the Lagrangian for QCD, a function of the fields in the system and their derivatives as

follows:

LQCD = ψ̄iγµDµψ − 1

4
Ga

µνG
µν
a . (1.7)

The covariant derivative is given by:

Dµ = δµ +
i

2
gsλaG

a
µ (1.8)

where λa are the Gell-Mann matrices, and gs is the strong coupling constant. The

coupling constant αs =
g2s
4π

is called running constant because its value depends on the

value of the transferred momentum.

In the high-energy regime (at short distances), interactions between quarks and gluons

can be successfully described by a perturbative theory: color interaction becomes weak.

This weakness causes the so called asymptotic freedom.

The increased value of the coupling constant is the reason of the so-called Confinement

of quarks [57].

The confinement effect appears at the energy scale of ΛQCD ∼ 200 MeV, which is the

light hadrons mass scale. At low energies, the strong interaction becomes important

and perturbative methods become less useful. Non-perturbative approaches like Lattice

QCD [58], a gauge theory formulated on a grid of points in space and time, are used to

solve QCD approximately.

All the free particles observed are colorless and this is allowed by the hadronization

process. Hadronization is the process of formation of hadrons: when a quark or gluon is

extracted from the original hadron, it combines with quarks or anti-quarks produced in

pairs from the vacuum.

1.3 Electroweak interaction

As described in Section1.1, the electromagnetic and weak interactions can be treated

together. The gauge theory which describes the electroweak interaction is based on the

invariance for SU(2)L ⊗ U(1)Y gauge transformations.

The SU(2)L group is employed to describe the weak isospin. Three gauge bosons W j
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1.3 Electroweak interaction

correspond to the SU(2)L group’s three generators. Fermions are represented in the

constituents of the electroweak interaction:

• fermions of left-handed chirality form the isospin doublets (T = 1/2)

(

ν

eL

)

,

(

uL
dL

)

(1.9)

for each of the three fermionic generations;

• fermions of right-handed chirality form the isospin singlets (T = 0) and do not

interact with W j bosons:

eR, uR, dR. (1.10)

Charged leptons and quarks interact electroweakly with both the left-handed and

right-handed components. In the SM, only the left-handed chirality component is

present for neutrinos.

The weak hypercharge is described by the U(1)Y abelian group. The mediator of the

interaction is the B neutral boson.

The electric charge Q of a particle is hence given by the sum Q = T3 + Y .

The Lagrangian for the electroweak interaction can be finally written as:

LEW = ψ̄iγµDµψ − 1

4
W a

µνW
µν
a − BµνB

µν . (1.11)

The covariant derivative for the left-handed doublets is given by:

DL
µ = δµ +

i

2
gτaW

a
µ +

i

g′
Y Bµ, (1.12)

instead for the right-handed singlets:

DR
µ = δµ +

i

g′
Y Bµ, (1.13)

where g and g′ are the coupling constants of the W j and B bosons respectively. Physical

fields Aµ, W
±
µ and Z, arise as linear combinations of W j and B fields:

Aµ = sin θWW
3
µ + cos θWBµ, (1.14)
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Chapter 1 The Standard Model of Elementary Particles

Table 1.3: Properties of the gauge bosons [55].

Gauge Boson Mass [GeV/c2] Charge [e]

γ 0 0
g 0 0
Z0 91.1876± 0.0021 0
W± 80.385± 0.015 ±1

Zµ = − sin θWBµ + cos θWW
3
µ , (1.15)

W±
µ =

1√
2
(W 1

µ ±W 2
µ). (1.16)

The g and g′ coupling constants are connected through the Weinberg mixing angle θW as

follows:

e = g sin θW = g′ cos θW , (1.17)

where e is the electron electric charge.

The properties of the gauge bosons are summarized in Table 1.3.

1.3.1 Spontaneous symmetry breaking and the Higgs mechanism

The weak interaction acts at short distance. This requires the gauge bosons to be massive,

which makes them incompatible with the electroweak gauge symmetry demanding

fermions and gauge bosons to be massless.

Massless gauge bosons are evidently in contrast with the experimental observation of

W± and Z0 bosons [48] [49].

Their mass will be explained in the following by means of the Spontaneous Symmetry

Breaking mechanism.
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1.3 Electroweak interaction

U(1) spontaneous symmetry breaking

Consider a charged scalar particle described by the field φ in a theory with U(1) local

symmetry. The Lagrangian can be written as follows:

L = (Dµφ)
†(Dµφ) + µ2φ†φ− λ(φ†φ)2 − 1

4
FµνF

µν . (1.18)

with

Dµφ = (∂µ − igAµ)φ, (1.19)

and

Fµν = ∂µAν − ∂νAµ (1.20)

A local transformation in U(1) has the following form:

φ(x) → φ′(x) = e−iα(x)φ(x). (1.21)

The derivative instead does not transform as a phase U(1) transformation. In fact:

∂µφ(x) → ∂µφ
′(x) = e−iα(x)(∂µφ(x)− i∂µα(x)). (1.22)

Introducing a gauge field Aµ(x) that forms a covariant derivative

Dµφ = (∂µ − igAµ)φ, (1.23)

and by requiring that

Aµ(x) → A′µ(x) = Aµ(x)− ∂µα(x)), (1.24)

we now obtain that the covariant derivative transforms as a phase U(1) transformation

in Maxwell’s equations:

(Dµφ)
′ = e−iα(Dµφ). (1.25)

In this case the gauge field is massless because the mass term AµA
µ is not gauge

invariant.
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Chapter 1 The Standard Model of Elementary Particles

Figure 1.3: The Mexican hat potential for µ2 > 0.

The potential term V of the Lagrangian depends only on ρ2 = φ†φ,

V (ρ) = −µ2ρ2 + λρ4. (1.26)

If µ2 > 0, the minimum of the potential is found on the circumference ρ2 = µ2

2λ
(Fig-

ure 1.3).

By dividing the φ complex field into its real and imaginary components,

φ =
1

2
(φ1 + iφ2), (1.27)

the vacuum expectation values for the fields are 〈0|φ1|0〉 = v and 〈0|φ2|0〉 = 0, with

v2 = µ2

λ
. φ2 is a massless Goldstone boson [59].

The mass term for the gauge boson can be extracted from the covariant derivative

|Dµφ|2 = |(∂µ − igAµ)φ|2 = ...+
g2v2

2
AµAµ + ... (1.28)

hence giving a value of the mass m = gv.
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1.3 Electroweak interaction

The complex field φ can be written in terms of two scalar fields in polar coordinates:

φ =
1√
2
(v + η(x))eiξ/v (1.29)

One can introduce a gauge transformation, to remove the dependence over ξ.

In this case one obtains:

Bµ = Aµ −
1

gv
∂µξ, (1.30)

ξ has become the longitudinal component of Bµ, which has acquired mass by “eating”

the Goldstone boson.

1.3.2 Spontaneous symmetry breaking in SU(2)L ⊗ U(1)Y

The same conclusions can be extrapolated to the electroweak gauge group SU(2)L⊗U(1)Y.

The Higgs field Φ before symmetry breaking is a SU(2)L doublet with Y = 1
2

Φ =

(

φ+

φ0

)

(1.31)

The part of the Lagrangian containing Φ can be written as:

L⊕ = (DµΦ)
†(DµΦ) + µ2Φ†Φ− λ(Φ†Φ)2. (1.32)

The covariant derivative of Φ can be written as follows:

DµΦ = (∂µ −
i

2
gτaW

a
µ +

i

2
g′Bµ)Φ (1.33)

After spontaneous symmetry breaking, the evaluation of the minimum of the potential

gives:

−µ2 + 2(Φ†Φ) = 0. (1.34)

By choosing the unitary gauge for which:

〈0|Φ|0〉 = 1√
2

(

0

v

)

(1.35)
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Chapter 1 The Standard Model of Elementary Particles

where v =
√

µ2

λ
, the expansion of the fields around the minimum can be obtained:

Φ = Φ′ + 〈0|Φ|0〉 =
(

φ′+

φ′0 + v√
2

)

. (1.36)

The terms that have quadratic dependence from v in the Lagrangian will give mass to

the gauge bosons:

L⊕ =
v2

8
{g2((W 1

µ)
2 + (W 2

µ)
2) + (gA3

µ − g′Bµ)
2}+ ...

=M2
WW

+µW−
µ +

1

2
M2

ZZ
µZµ + ...

(1.37)

where:

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), with MW =

gv

2
,

Z0
µ =

1
√

g2 + g′2
(gW 3

µ − g′Bµ) with MZ =
v

2

√

g2 + g′2,

Aµ =
1

√

g2 + g′2
(gW 3

µ + g′Bµ) with MA = 0.

(1.38)

The W±
µ and Z0

µ fields describe the W and Z bosons. The Aµ field describes the photon.

Just like it was done in the case of the abelian group U(1), one can write the scalar field

Φ in the form:

Φ = ei~τ ·
~ξ(x)/v

(

0

v + η(x)

)

(1.39)

where ~ξ(x) are Goldstone bosons, and apply a gauge transformation such that:

Φ′ = U(~ξ)Φ =

(

0

v + η(x)

)

,

~τ · ~W ′
µ

2
= U(~ξ)

~τ · ~Wµ

2
U−1(~ξ)− i

g
(∂µU(~ξ))U

−1(~ξ),

B′µ =Bµ

(1.40)

where U(~ξ) = ei~τ ·
~ξ(x)/v.

Only one scalar component of the Φ field is left and it is referred to as the Higgs Boson.
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1.4 Production and decay channels of the SM Higgs boson

The Higgs mechanism can be applied to provide quarks and leptons with mass as well.

The coupling of the Higgs field with the fermion states leads to the mass term:

mf =

√
2gfMW sin θW

e
, (1.41)

where gf is the coupling constant between the Higgs boson and ff̄ , which is proportional

to mf .

1.4 Production and decay channels of the SM Higgs

boson

Figure 1.4: Feynman diagrams for the different Higgs production mechanisms: (a) gluon-gluon
fusion, (b) vector boson fusion, (c) associated production with vector boson, (d)
associated production with tt̄ pair.

In the SM, the production of Higgs bosons at hadron colliders happens with four

mechanisms (Figure 1.4):

• gluon fusion gg → H, mediated by a virtual quark loop in which the main

contribution comes from the top quark due to its large Yukawa coupling;
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Chapter 1 The Standard Model of Elementary Particles

• vector-boson fusion qq → H + 2 jets;

• associated production with a W or Z boson, which allows to measure the Higgs

boson couplings to weak gauge bosons;

• associated production with a tt̄ pair.
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Figure 1.5: a) The hierarchy of the production cross sections and their dependence on the Higgs
boson mass at a proton-proton collider with a center-of-mass energy

√
s = 13 TeV.

b) SM Higgs boson’s branching ratios as a function of the Higgs boson mass. For
both plots, the theoretical uncertainties are indicated as bands [60].

The hierarchy of the cross sections and their dependence on the Higgs boson mass at a

proton-proton collider with a center-of-mass energy
√
s = 13 TeV are shown on the left

in Figure 1.5.

The possible decay channels of the Higgs boson are shown on the right in Figure 1.5. The

Higgs boson can decay producing a pair of fermions, leptons or pairs of W and Z bosons.

A W or fermion loop cause the Higgs boson to decay into a pair of gluons or photons.
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Figure 1.6: a) Distribution of the four-lepton reconstructed invariant massm4l. Points with error
bars represent the data and stacked histograms represent expected distributions.
The SM Higgs boson signal with mH = 125 GeV, denoted as H(125), and the ZZ
backgrounds are normalized to the SM expectation, the Z +X background to the
estimation from data [61].
b) Diphoton mass spectrum weighted by the ratio S/(S +B) in each event class,
together with the background subtracted weighted mass spectrum [62].

The Higgs boson was recently discovered at the Large Hadron Collider at CERN by the

ATLAS and CMS experiments [4] [5], with a mass of [61]:

mH = 125.26± 0.20(stat.)± 0.08(syst.)GeV (1.42)

where the width is constrained to be ΓH < 1.10 GeV at 95% confidence level. The

γγ and 4l decay channels provide a clear signature in the reconstructed mass spectra

(Figure 1.6).

The study of the angular distributions of the H → ZZ → 4l decay channel (l = e, µ)

made possible the determination of the Higgs boson spin-parity. This is consistent with

a particle with spin 0 and even parity [63] [64].
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Physics Beyond the Standard Model

The hypothesis that the Standard Model is valid also for energies several orders of mag-

nitudes higher than the TeV scale leads to the naturalness problem [65], i.e. parameters

should be fine-tuned making the theory unnatural.

The Standard Model fails also at describing some characteristics of our Universe. Not all

the four fundamental forces are explained by the Standard Model. A Quantum Field

Theory for gravity is still missing. Moreover, the SM postulates massless neutrinos, but

their oscillation requires them to have a mass. Furthermore, astronomical observations,

including rotation of galaxies and gravitational lensing effect [66], have shown that only

around 5% of the total energy density in the Universe is in the form of baryonic matter,

while 26.8% is made of particles that do not interact via electromagnetic nor strong

interactions, the dark matter [67]. The Standard Model does not provide a stable Weakly

Interacting Massive Particle to explain dark matter.

By postulating the existence of new particles, theories Beyond the Standard Model (BSM)

can overcome some of the weak points of the Standard Model. BSM theories include:

• New quarks having a vector-like coupling to the W -boson, in contrast with SM

quarks coupling, which is vector-minus-axial (V-A). This implies that their interac-

tion via the weak force is identical for their left and right handed components [68].

• Unification of the fundamental forces through the additions of spatial extra dimen-

sions [69].

The discovery of the Higgs boson raises further questions on the origin of elementary

particle masses and on its role in the more fundamental theory underlying the Standard

Model, which may involve additional particles to be discovered around the TeV scale.
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Chapter 2

The Compact Muon Solenoid

Experiment at the Large Hadron

Collider

2.1 The Large Hadron Collider at CERN

The European Organization for Nuclear Research (CERN) has a very challenging program

at the Energy Frontier. This represents the priority program of the world’s most powerful

accelerator, the Large Hadron Collider (LHC) [3] and its detectors to work on the

following main experimental lines:

• Precision measurements of the observed Higgs boson.

• Verification of the compatibility of the observed Higgs boson with the Standard

Model.

• Improve our knowledge about the electroweak symmetry breaking mechanism and

provide evidence of physics beyond the Standard Model [70].

• Study of the the de-confined state of quarks and gluons called Quark-Gluon Plasma.

At the Intensity Frontier, precisions tests of the Standard Model are also being carried

out.
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Chapter 2 The Compact Muon Solenoid Experiment at the Large Hadron Collider

Figure 2.1: A schematic view of the CERN’s accelerator complex [71].

In the following, the CERN accelerator complex and the CMS detector, one of the

detectors pushing the Energy Frontier, are described.

The LHC is a superconducting circular accelerator hosted by the European Organization

for Nuclear Research (CERN), in Geneva, Switzerland, in a 26.7 km long tunnel located

at about 100 m below ground, which once accommodated the Large Electron Positron

Collider (LEP), a e+e− accelerator.

2.1.1 CERN’s accelerator complex

The LHC is the last element of an accelerator complex used to accelerate protons and

ions to increasingly higher energies, as shown in Figure 2.1.

Protons stripped from hydrogen gas enter the LINAC 2, where they get accelerated to the

energy of 50 MeV. The beam is then injected into the Proton Synchrotron Booster (PSB),

which accelerates the protons to 1.4 GeV. The next in chain is the Proton Synchrotron
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2.1 The Large Hadron Collider at CERN

Figure 2.2: Cross section of LHC dipole [72].

(PS), where the beam particles reach the energy of 25 GeV. Prior to the injection to the

LHC, the protons are accelerated in the Super Proton Synchrotron (SPS) to 450 GeV.

Protons are then injected into the LHC, where the two counter-rotating proton beams

reach an energy of 6.5 TeV per beam.

The LHC is divided into eight octants. Each octant comprises an arc and a straight

sections. In the arcs, dipolar, quadrupolar and corrective magnets steer and focus the

beams. The average radius of curvature in the arc is about 2.6 km.

Straight sections contain detectors, radio-frequency cavities (RF), beam cleaning systems,

injectors and the beam dump.

Overall, 1248 dipoles and 400 quadrupoles comprise the LHC. Dipoles are 15 meters

long, instead quadrupoles are much shorter with 3.3 m in length. Dipoles are designed

to operate up to a maximum flat top field of 8.33 T, which determines the maximum

energy per beam of 7 TeV. Dipoles form a optic lattice and the weakest one determines

the final energy of the beam. For this reason the bending strength of each dipole should

be the same within 0.01%.

In order to reach the nominal electric current of 11850 A, the LHC employs copper
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stabilized NbTi Rutherford cables operating in superfluid helium at 1.9 K [73] [74]. A

cross section of a LHC dipole is shown in Figure 2.2.

Figure 2.3: Different processes’ cross sections and event rates at a hadron collider, as a function
of the center-of-mass energy, for a value of the luminosity L = 1033 cm−2 s−1.

24



2.1 The Large Hadron Collider at CERN

2.1.2 Luminosity and pile-up

In order to produce enough statistics of interesting events and considering the orders of

magnitude separating the total p− p cross section and the cross section for interesting

events, the LHC has to provide a very high number of protons collisions every second.

This is motivated by the fact that the rate of interesting physics processes that need be

recorded compared to the inclusive pp cross section is many orders of magnitude smaller

than the total event rate (Figure 2.3). For this reason, during nominal conditions, the

LHC beam includes 2808 bunches, each made of 1.15 · 1011 protons. The time interval

between two consecutive bunches is 25 ns.

To quantify the rate of interesting physics processes produced by an accelerator and

to make design decisions or forecasts, the introduction of the concept of instantaneous

luminosity is needed. The instantaneous luminosity L is a measure for the efficiency of a

particle accelerator. It depends on the number of protons per bunch Np, the number k

of circulating particle bunches, the revolving frequency f and the Gaussian transverse

beam profiles in the horizontal and vertical directions σx and σy:

L = F
N2

pfk

4πσxσy

F is a geometric luminosity reduction factor. It depends on the crossing angle θc, the

RMS bunch length σz and the RMS bunch transverse size σxy:

F =
1

√

1 +
(

θcσz

2σxy

)2

The rate of a physics process dNi

dt
is directly proportional to its cross section and the

instantaneous luminosity.
dNi

dt
= Lσi (2.1)

The complexity of an event produced in a bunch crossing depends on the pile-up (µ),

which is the average number of simultaneous p-p collisions in an event.

The instantaneous luminosity includes the information on the number of protons and the
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Figure 2.4: Average pile-up for a LHC fill in 2016. A peak average pile-up of 49.357 was reached,
which corresponds to a value of the luminosity of 1.531 · 1034 cm−2 s−1[75].

size of the bunches. In fact, the pile-up is directly connected to it:

µ =
Lσinel
fBX

(2.2)

where σinel and fBX refer to the inelastic pp cross section and the frequency of bunch

crossings in the collision area respectively.

At
√
s = 13 TeV, the inelastic pp cross section as measured by CMS is [76]:

σinel = 71.3± 0.5(exp.)± 2.1(lum.)± 2.7(ext.)mb.

During a run the instantaneous luminosity is not constant, but decreases exponentially.

This decrease is caused by collisions, beam-beam interactions and scattering with gas

molecules in the beam-pipe. Therefore, the integrated luminosity in a run L depends

on the peak instantaneous luminosity Lpeak, the duration T of the run and the beam

lifetime τ :

L = Lpeakτ(1− e−T/τ ). (2.3)

26



2.1 The Large Hadron Collider at CERN

This behavior is visible in Figure 2.4 showing the measurements of the pile-up of the

LHC beam in time.

During the run shown in Figure 2.4, the peak of instantaneous luminosity reached the

value of 1.531 · 1034 cm−2 s−1, the maximum instantaneous luminosity ever recorded at

the LHC.
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Figure 2.5: Integrated luminosity versus day delivered by LHC (blue) in 2016; the luminosity
recorded by the CMS experiment is also reported (orange). The delivered luminosity
accounts for the luminosity delivered from the start of stable beams until the LHC
requests CMS to turn off the sensitive detectors to allow a beam dump or beam
studies [77].

The integrated luminosity recorded by the CMS experiment during 2016 is compared to

the luminosity delivered by the LHC in Figure 2.5.

Due to the demand of electric power needed to cool down the LHC superconductive

magnets, the LHC cannot operate during winters, limiting the days of operation to about

200 days per year. Winters are usually used for upgrades and maintenance operations.
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2.2 The Compact Muon Solenoid detector

Modern General-Purpose High-Energy Physics Detectors

General-purpose detectors at high-energy colliders have a cylindrical structure, built with

different layers around the beam line.

Interactions take place along the beam line. Charged particles produced enter a vertex

tracker detector first, leaving hits in the sensitive electronics.

Hits are used to reconstruct charged particles’ trajectories and their origins producing

tracks and vertices.

The measurement of the particles’ momentum and electric charge is made possible by

embedding the tracker in a magnetic field, which bends trajectories. The transverse

component of the momentum, pT, of a charged particle in a uniform magnetic field B is

given by:

pT = γmv = qBρ, (2.4)

where m is the mass of the particle, q its charge and ρ its bending radius. Under the

hypothesis that a particle traverses the full radius of the magnet L, the sagitta can be

written as:

s =
L2

8r
=
qBL2

8pT
. (2.5)

The resolution on the transverse momentum is related to the size of the magnet and its

strength by:
dpT
pT

∝ pT
BL2

. (2.6)

An electromagnetic calorimeter (ECAL) absorbs electrons and photons. Hadrons are

absorbed in a subsequent hadron calorimeter (HCAL). Clusters of firing cells are recon-

structed around showers. This allows the direction and the energy of the original particle

to be determined.

Muons and neutrinos can escape the calorimeters. Muons interact with another tracking

detector, usually called muon chamber. Neutrinos remain undetected.

The Compact Muon Solenoid Experiment (CMS) is one of the two multi-purpose ex-

periments at the LHC [1] together with ATLAS [2]. It is built to measure the various
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Figure 2.6: A schematic view of the CMS detector [78].

particles originating from proton-proton collisions provided by the LHC, covering as much

solid angle around the interaction point as possible. Thus, its design is forward-backward

symmetric with a cylindrical shape (Figure 2.6).

The CMS detector is located at Point 5 of the LHC, near the village of Cessy, in France.

CMS is 21.6 m long, 15 m in diameter and weighs about 14000 t. The innermost part of

CMS comprises two silicon tracking devices: the Pixel detector and the Strip detector.

Their 76 million read-out channels provide a coverage in the |η| < 2.5 pseudo-rapidity

interval.

The Electromagnetic Calorimeter (ECAL) is made of 76000 scintillating PbWO4 crystals.

Its coverage extends up to |η| = 3.

The Hadron Calorimeter (HCAL) is made of brass and plastic scintillators and provides

the same pseudo-rapidity coverage as the ECAL. The HCAL is complemented at very

high pseudo-rapidities (3 < |η| < 5) by the forward calorimeter (HF), made of steel and

quartz fibers.
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Table 2.1: Properties for the barrel of the CMS detector. The tracker thickness is given in
number of radiation lengths. The transverse segmentation is expressed in radians
and the energy in GeV [79].

Magnetic Field 3.8 T
Lever Arm 1.29 m
Bending Power 4.9 Tm
Pion reconstruction efficiency (pT = 5 GeV) 90− 95%
Tracker thickness at η = 0 0.35X0

ECAL Molière radius 2.2 cm
ECAL transverse segmentation ∆φ×∆η 0.017× 0.017

ECAL energy resolution σ(E)
E

= 2.8%√
E(GeV)

⊕ 12%
E(GeV)

⊕ 0.3%

ECAL longitudinal segmentation no
HCAL transverse segmentation 0.085× 0.085

HCAL energy resolution σ(E)
E

= 110%√
E(GeV)

⊕ 9%

The Tracker, the ECAL and the HCAL are immersed in a 3.8 T solenoidal magnetic

field, produced by a NbTi superconducting magnet operating at 4.5 K.

The Muon chambers and the 12500 t return steel return yoke, surround the supercon-

ducting magnet, providing pseudo-rapidity coverage up to |η| = 2.4.

The main properties of the CMS detector are described in Table 2.1.

CMS cylindrical coordinate system

The CMS coordinate system (Figure 2.7) is oriented such that the x-axis points south

to the centre of the LHC ring, the y-axis points vertically upward, and the z-axis, also

called beam axis, is in the direction of the beam to the west. The azimuthal angle φ is

measured from the x-axis in the (x, y) plane, while the radial coordinate in this plane is

denoted R. The polar angle θ is defined in the (R, z) plane.

The pseudo-rapidity is defined by:

η = − ln[tan

(

θ

2

)

]. (2.7)
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Figure 2.7: CMS coordinate system. The x-axis points south to the centre of the LHC ring,
the y-axis points vertically upward, and the z axis, also called beam axis, is in the
direction of the beam to the west.

The momentum component transverse to the beam axis, denoted pT, is computed from

the x and y components. The transverse energy is defined as:

ET = E sin θ (2.8)

The superconducting solenoid magnet [80], capable of reaching a magnetic field of

3.8 T in its contained volume, is a central element in the design of CMS. During regular

measurement mode, the magnet is cooled to 4.5 K in order to operate the NbTi material

in its superconducting regime.

2.2.1 Silicon Vertex Tracker

The first detector component which is traversed by particles emerging from proton

collisions is the silicon vertex tracker [82] [83]. Its mandate is to measure the trajectory

of charged particles in order to measure their momentum and find primary or secondary

vertices. Two different technologies have been employed to build the tracker.

The innermost part needs to be more granular, resistant to radiation and providing a
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Figure 2.8: Arrangement of the different detectors in the silicon tracker. PIXEL (blue) refers
to silicon Pixel detectors while Tracker Inner Barrel (TIB), Track Outer Barrel
(TOB), Tracker Inner Disc (TID) and the Tracker End Cap (TEC), in red, all refer
to silicon Strip detectors [81].

better position resolution. For these reasons the pixel technology has been used.

At a larger distance from the interaction point, the requirements on occupancy and

radiation hardness are less stringent, hence making silicon strips the most cost-effective

solution.

The geometric arrangement of these two sub-detectors is shown in Figure 2.8 and

Figure 2.9.

The tracker was designed to operate with a 3.8 T solenoidal magnetic field at the

luminosity of 1 · 1034 cm−2 s−1. At this luminosity, an average of 1000 particles is

expected from more than 20 overlapping proton-proton interactions traversing the tracker

every 25 ns. Hence, the Tracker has to be radiation-hard, fast and granular. These last

two requests are addressed by a high density of sensors along with its cooling system.

The material budget has to be as low as possible to reduce effects like multiple scattering,

which introduce uncertainties in the reconstruction of the propagation of the particles [81]

(Figure 2.10). Contributions to the material budget come from active materials (the

silicon sensors) or passive materials, e.g. support structures, cables, cooling pipes or

gas.
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Figure 2.9: CMS Tracker layers shown in the plane perpendicular to the beam line [81].

Figure 2.10: Material budget of the inner tracking system in number of interaction lengths (left)
and radiation lengths (right) [81]. Contributions to the material budget come from
active materials (the silicon sensors) or passive materials, e.g. support structures,
cables, cooling pipes or gas.
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Pixel Detector

Figure 2.11: Schematic view of the doped Silicon layer used in a Pixel detector chip. As an
example, a proton traversing a CMS Pixel module leads to the release of charge
carriers. These carriers are collected at the n-implant.
Charge sharing is due to the Lorentz force and to the incidence angle of the hitting
proton with respect to the Pixel module.

The innermost part of the Silicon Tracker, closest to the interaction point, is made of

Pixel detectors. Each pixel element is about 100× 150µm2 wide. Each sensor is 285 µm

thick with a planar n+-on-n configuration. High dose n-implants placed into a resistive

n-substrate form the pixels, while the junction is formed with a p-implant on the back-side.

The passage of an ionizing particle through the depleted region of the sensor leads to

the release of charge carriers which are then collected at the n-implant (Figure 2.11).

The Lorentz force deflects the carriers’ trajectory with respect to the electric field lines,

making adjacent pixels to share the carriers’ charge. If the pulse produced in a pixel

sensor exceeds a configurable threshold, the sensor passes the zero-suppression. In CMS,

this threshold is set to the equivalent charge of 3200 electrons. By interpolating the

charge deposit in a cluster of pixels, this charge sharing mechanism improves the spatial

resolution, which reaches a value of ∼ 10µm. This space resolution, an SNR of ∼ 70 and

a very low occupancy, enable CMS to achieve a good pT resolution up to TeV energies

and a good b-tagging efficiency.

A custom Readout Chip (ROC) handles the 40 MHz analog read-out for a rectangular

matrix made of 52× 80 pixels (Figure 2.12).
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Figure 2.12: Simplified scheme of the Pixel detector module.

The Pixel detectors are arranged in three barrel layers and two end-cap disks. The three

barrel layers are placed at a distance of 4.4 cm, 7.3 cm and 10.2 cm from the beam.

The end-cap layers are placed in correspondence of both the ends of the barrel layers.

With 6 cm and 15 cm of inner and outer radius, they are located at z = ±34.5 cm and

z = ±46.5 cm.

The position of the barrel and end-cap regions allows a three-hits coverage for tracks

in a pseudorapidity range up to |η| = 2.5. For this reason, Pixels play a crucial role in

track seeding. They are also used for fast tracking and vertexing at trigger level.

The short distance from the beam-spot makes the Pixel detectors absorb a high radiation

dose whose effects are leading to a lower charge collection or displacement damage [84].

For these reasons, the Pixel detector has been replaced by a new one at the beginning of

2017.

Strip Detector

At a radius of ∼ 20 cm from the beam line, the flux of particles is much lower than in the

Pixel detector and the occupancy requirement is also less rigid. Starting from r = 20 cm

to r = 130 cm, with ten layers in the barrel and twelve in the end-caps, the silicon Strip

Tracker surrounds the Pixel detector. Its working principle is very similar to the Pixel

detector’s one.
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Figure 2.13: Two sensors are mounted side-by-side and connected via bond wires. The effective
strip length is about 20cm. The signals are read-out at one end by front-end
electronics with dedicated read-out custom electronics. The sensors and the
electronics are supported by carbon fiber structures.

A detector module is the basic functional sub-unit of the silicon tracking system. Each

module consists of a set of single sided sensors, a mechanical support structure and the

readout hybrid, as shown in Figure 2.13.

The sensors are arranged in a total number of about 20000 modules.

The read-out system [85] comprises the analogue APV25 read-out chip , analogue optical

links and an Front-End Driver (FED) processing board. A single read-out chip receives

signals every 25 ns from 128 different channels of the same strip sensor. These signals

are amplified and buffered. When an external trigger is received, the height of the pulse

are transmitted to the FED. The FED digitizes these signals and a network packet is

created that is sent to the High-Level Trigger farm, described in Section 2.2.5. The FED

executes the zero-suppression which removes:

• Strips with a charge that does not exceed the expected noise by at least a factor 5.

• Pairs of adjacent strips, whose sum of charges does not exceed the expected noise

by at least a factor 2.

As illustrated in Figure 2.8, the Strip Tracker can be divided into four areas, depending

on the distance from the beam-spot and pseudorapidity: Tracker Inner Barrel (TIB),

Track Outer Barrel (TOB), Tracker Inner Disc (TID) and the Tracker End Cap (TEC).
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Table 2.2: Mechanical dimensions and numbers of the CMS silicon Strip detectors. The stated
radii from the beam are average values for barrel modules and measured in the center
for the disks.

Layer Radius [mm] Sides Modules Pitch [µm] Strips
TIB1 250 2 336 80 768
TIB2 340 2 456 80 768
TIB3 430 1 552 120 512
TIB4 520 1 648 120 512
TOB5 610 2 504 122-183 768-512
TOB6 696 2 576 122-183 768-512
TOB7 782 1 648 183 512
TOB8 868 1 720 183 512
TOB9 965 1 792 122 768
TOB10 1080 1 888 122 768
TID1 277 2 144 81..112 768
TID2 367 2 144 113..143 768
TID3 447 1 240 124..158 512
TEC1 277 2 144 81..112 768
TEC2 367 2 288 113..143 768
TEC3 447 1 640 124..158 512
TEC4 562 1 1008 113..139 512
TEC5 677 2 720 126..156 768
TEC6 891 1 1008 163..205 512
TEC7 991 1 1440 140..172 512
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2.2.2 Electromagnetic Calorimeter

The Electromagnetic Calorimeter (ECAL) [86] is the detector that follows the tracking

system. It is made of lead tungstate (PbWO4) crystals, 61200 in the barrel region, 7324

in the two end-cap regions (Figure 2.14). In the endcaps, a preshower detector is located

before the calorimeter to initiate electromagnetic cascades. Preshower detectors are made

of two lead radiators, of about two and one radiation lengths respectively. Each lead

radiator is followed by a silicon strip layer.

Lead tungstate is characterized by a fast response as ∼ 80% of light is emitted in 25 ns,

the time between two bunch crossings at the LHC.

The calorimeter must provide a very good measurement of energy from the low energy

region, ∼ 1GeV, up to the TeV scale. An estimate of the absolute calibration of the

ECAL response to electrons and photons was carried out with data collected at
√
s = 7

and 8 TeV [87]. Its energy resolution can be parametrized as follows:

σ(E)

E
=

2.8%
√

E(GeV)
⊕ 12%

E(GeV)
⊕ 0.3% (2.9)

The first term is due to stochastic sampling and amplification fluctuations, the second

one to electronic noise and pile-up while the last one to inhomogeneities of the material

in front of the calorimeter and the non-perfect inter-calibration of the cells.

Due to the different radiation profiles and magnetic field setups the barrel and the

end-caps use two different readout systems. The light in the barrel region is read by

avalanche silicon photo-diode (APD), while in the end-caps by vacuum photo-triodes

(VPT).
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Figure 2.14: Geometric view of one-quarter of the ECAL.

2.2.3 Hadronic Calorimeter

The Hadronic Calorimeter (HCAL) [88] is constituted by four elements, as described in

Figure 2.15.

The barrel HCAL (HB) covers the region |η| ≤ 1.3 and the end-caps HCAL (HE) covers

the region 1.3 < |η| ≤ 3. They are both sampling calorimeters made of scintillating tiles

and metal absorber plates.

The HB and HE are fully located within the 3.8 T magnetic field generated by the

solenoid magnet for which the absorber material is brass, except for the first and last

two plates for which stainless steel was used.

The outer HCAL (HO) is located outside of the magnetic solenoid in the central region

of the CMS detector and covers the region of |η| < 1.3. Its purpose is to measure the

energy of those particles that have not been stopped by the electromagnetic EB and the

HB.

The forward HCAL (HF), a steel and quartz fiber Cherenkov calorimeter placed outside

the magnet return yokes at 11 m from the interaction point, extends the calorimeter

coverage to |η| = 5.3.

The HCAL energy resolution was measured in a pion test beam [89] to be:

σ(E)

E
=

110%
√

E(GeV)
⊕ 9% (2.10)

39



Chapter 2 The Compact Muon Solenoid Experiment at the Large Hadron Collider

Figure 2.15: Geometric view of one-quarter of the CMS detector. The HCAL detector compo-
nents HB, HE, HO, HF are indicated.

2.2.4 Muon System

The Muon System [90] [91] is made of different detectors located around and between

the layers of the magnetic return yoke as shown in Figure 2.16.

Drift tubes (DT) cover the |η| < 1.2 barrel region in the innermost five slices of the return

yoke.

Tubes have been chosen over conventional drift chambers to keep each wire protected

from the noise produced in other cells and as a safety measure against possible wire

breaking.

Due to the noise from neutron punch-through, DTs cannot be employed in the end-caps

where Cathode Strip Chambers (CSC) are used: between 0.9 < |η| < 2.4. In CSCs, anode

wires are stretched between two cathodes: one is segmented in strips perpendicular to

the wires, instead the other is not (Figure 2.17).

The CSCs can reach a hit efficiency of 99% and determine the impact point of a muon

with a precision of 2 mm, which can become 75 µm in the first layer and 150 µm in the

others, after applying offline corrections.

The Resistive Plate Chambers (RPC) are gaseous parallel-plate detectors, which are used
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Figure 2.16: Geometric view of one-quarter of the muon system, showing drift tubes, cathodic
strip chambers (CSC) and resistive plate chambers (RPC).

as a very fast trigger system (Figure 2.18). RPCs are capacitors with parallel electrodes,

made of bakelite, a material with high resistivity, coated with conductive graphite paint.

When an ionizing particle traverses the region between the plates, a short discharge

happens, rapidly stopped when the free charge on the conductive surface is exhausted.

The readout is made using the induced charge in strips placed outside the capacitor

and isolated from the electrodes. RPCs are operated in avalanche mode, where charge

multiplication is not very high, to allow for high rates but requiring a strong amplification.

A very fast but approximate measurement of the muon momentum is given by a logic

processor which matches hits patterns which are associated with different momentum

intervals.
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Figure 2.17: Working principle of a CMS Cathodic Strip Chamber.

Figure 2.18: Scheme of a CMS Resistive Plate Chambers.
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2.2.5 Trigger and Data Acquisition System

The Trigger and Data Acquisition [92] system of the CMS experiment provides essential

preliminary online analysis of the raw data for the purpose of selecting potentially

interesting events and transfer them the data storage system. Real-time handling of raw

data at the design input rate of 40 MHz is required.

To keep the overall data rate within the current capability of the storage system of few

kHz, the trigger system must achieve a rejection ratio for background events of at least

10,000:1. The Trigger system is structured in two levels, as described in the following

sections.

Level 1 Trigger

The standard first level of trigger is completely based on programmable electronics,

typically FPGAs (Field Programmable Gate Arrays) and ASICs (Application Specific In-

tegrated Circuits), and in charge of reducing the 40MHz input rate to at most 100kHz [93].

It is completely synchronous, and trigger decisions must be taken within a few microsec-

onds. This time depends on the size of the buffers and on the trigger rate. Since the

response time is critical, the Level 1 exploits only information coming from the muon

system and calorimeters. This information is extracted in the form of so-called trigger

primitives which indicate the presence and the number of objects like electrons, photons,

muons, jets and Emiss
T .

High-Level Trigger

The events accepted by the L1 trigger are read-out by the front-end electronics, assembled

by the DAQ system and reconstructed, analyzed and filtered by the High-Level Trigger

(HLT).

The HLT represents the second level of the CMS trigger system [9]. In 2016, the HLT

runs on a cluster of commercial computers, made of ∼ 22000 Intel Xeon cores. This

cluster runs a streamlined version of CMSSW, the C++ offline reconstruction software,

processing many events in parallel [94]. Hence, the physics reconstruction at the HLT
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Figure 2.19: Data flow of the CMS Level 1 trigger [93].

should be as close as possible to the offline reconstruction: similar algorithms and cali-

bration are executed but optimized for lower latency and the selection criteria are looser

than those in the final analyses.

An HLT menu is a set of possible paths (Figure 2.20). Each path is an ordered progression

of filter or producer modules, which are arranged in blocks of increasing complexity.

In this way, faster modules are executed first and their products are filtered. If the

conditions of the filter are not satisfied, the filter fails and the path is aborted.
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Figure 2.20: A scheme of an HLT trigger path.

The design of an HLT menu has two main constraints:

• The time budget of the HLT farm, which is given by the average time between two

events at the same processing unit.

In 2016, 22000 cores and an input rate of 100 kHz gives a maximum average time

budget of 220 ms per event.

• The output rate to storage, which is limited to 1 kHz.

These constraints are a challenge for the development and operation of the HLT.

The expected increase of event complexity starting will require a fundamental redesign

of the online reconstruction algorithms and software architecture, which is discussed in

Chapters 3 and 5.
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2.3 Offline and Computing

In order to make resources and data available in many countries and institutes, CMS

employs a distributed computing model with services and resources communicating

in what is called the Worldwide LHC Computing Grid (WLCG) [95]. Independently

of the location of a user, the WLCG implements services to store and analyze data

produced by the experiments. These services come in form of a middleware layer, on top

of which experiments can build different software layers and interface with the WLCG

infrastructure.

Every WLCG site is organized in the following logical components:

• The User Interface is made of nodes where the interaction between the user and

the WLCG site happens.

• Data catalogs, workload management systems are some instances of the Central

Services.

• Jobs submitted by the user are managed by the Computing Element and eventually

executed by Worker Nodes.

• The Storage Element is used for managing the access to data. Usually, tapes are

used for long-term storage, while hard-drives and solid-state drives are used for

quick and short-term access to data.

The architecture of the WLCG is hierarchical with different responsibilities for different

sites [96]. The WLCG comprises:

• 1 logical Tier-0, distributed on two physical computing centers: the CERN Data

Center and the Wigner Institute computing center in Budapest, Hungary. The

responsibilities of the Tier-0 in the CMS computing model include the prompt

reconstruction of RAW data collected by the detector and the low-latency calibration

and validation work-flows needed to ensure high-quality data collection. RAW data

are archived on tape and distributed to the Tier-1s as well.

• 15 Tier-1 sites, are usually big national data centers and communication nodes

between Tier-2s. The main focuses of the Tier-1s’ resources utilization by CMS are

to archive and serve RAW and reconstructed data, while they process and skim

the data samples stored, and perform reconstruction and digitization on simulated
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samples. If resources are underutilized, Tier-1s can be also for user analysis and

for simulation.

• 168 Tier-2s are used primarily for user analyses and simulation activities. Although,

when available, user analyses can be executed at Tier-1s, Tier-2 sites still continue

to serve as the main analysis resource. In fact, in 2016 only 7% of the analysis jobs

were executed on a Tier-1 site.

• CMS computing resources can elastically expand for short periods of times by

exploiting opportunistic resources either via Cloud (e.g. Amazon Web Services [97]),

or by exploiting supercomputers draining time. The CMS HLT farm has also been

commissioned as an opportunistic resource for offline processing. During LHC

shutdowns, its 22000 cores become available for offline production activities. In

2016, the CMS HLT farm offered to CMS a sizable contribution corresponding to

14% of the 2016 CPU usage at all the Tier-1s.

Overall, CMS grid infrastructure comprises 150000 cores on the Working Nodes, 75 PB

of disk storage and 100 PB of used tape storage. The average volume of data which is

transferred every week amounts roughly to 6 PB [96].

As a comparison, the most powerful supercomputer in Germany today is Hazel Hen, at

the Höchstleistungsrechenzentrum in Stuttgart. About 102 different projects have been

executing on Hazel Hen’s 185,088 cores [98]. On the storage side, the daily incoming

data traffic of world’s largest social network today, Facebook, is roughly 600 TB [99].

2.3.1 Simulation

Simulation of specific physical processes is important to compare the predictions of

theoretical models with the experimental results.

The first step consists in simulating the physics using event generators like PYTHIA [100],

Herwig [101], MadGraph [102], Sherpa [103], Alpgen [104].

Then, the output of the event generators is then used by the software framework

GEANT4 [105] to simulate the interaction of the entire detector with particles and their

decays. Simulated energy deposits are then used to produce a response in the simulated

detector. This response will be the input of the standard reconstruction work-flow.

Reconstruction of simulated data can be executed at any level of the WLCG.

47



Chapter 2 The Compact Muon Solenoid Experiment at the Large Hadron Collider

Event generation and simulation (GENSIM) is executed at Tier-1s, Tier-2s. The HLT

farm can be used to produce GENSIM datasets during shut-down periods.

2.3.2 Particle Flow Event Reconstruction

The reconstruction of an event can be carried out combining two approaches together:

• A horizontal mode employs all the information coming from one detector to

reconstruct physics objects specific to that detector.

• A vertical mode exploits the information coming from a topological link between

physics objects of different detectors to reconstruct each particle in an event. The

vertical approach has other advantages such as the cross-calibration and validation

of different detectors or the identification of some kind of detector backgrounds.

This method is the basis of the Particle Flow reconstruction algorithm [106] [79].

Track Reconstruction

Precise reconstruction in the Silicon Tracker plays a crucial role in Particle Flow. This

is motivated by the fact that the granularity of sub-detectors limits the probability to

connect together the correct objects coming from different sub-detectors. The production

of high quality Particle Candidate is tightly connected to the purity of the Physics Objects

produced by the Silicon Tracker. These Particle Candidates are the input of downstream

algorithms like jet reconstruction. As an example, the τ lepton can be reconstructed by

studying three possible decay channels: one charged hadron, one charged hadron and a π0,

and three charged hadrons. The correct identification of τ leptons, with the minimization

of the mis-identification rate, relies heavily on the precision of the information coming

from the track reconstruction. More details about the CMS track reconstruction can be

found in Chapter 3.
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Cluster Reconstruction in Calorimeters

Cluster reconstruction consists in the collection of energy deposits in calorimeters and their

consequent aggregation and association to the particles that produced them. Clustering

is of paramount importance for several reasons:

• It allows to measure the direction of stable neutral particles such as neutrons and

photons, which would remain undetermined.

• The deposited energy can be measured by collecting the energy of nearby channels.

• Bremsstrahlung photons can be associated to the electron which produced them.

Clustering is performed in three steps [106]:

1. Seeding : local energy maxima are found. A minimum energy threshold may be set

as a requirement for a cell to become a seed.

2. Topological clustering : a PF Cluster is grown around each seed. The conditions

for adding a cell to the PF Cluster are based on its adjacency list, as a cell has to

share at least one side with a cell already belonging to the cluster, and its energy

should be at least two standard deviations of the noise.

3. Energy sharing : It can happen that a cell belongs to two or more PF Clusters. In

order not to account for its energy more than once, its energy is divided among

the sharing clusters. Energy fractions are calculated for each PF Cluster based on

the clusters’ energy and the distance between the cell and the clusters’ centers of

gravity.

The Silicon Tracker material (Figure 2.10), located upstream with respect to the calorime-

ters, and the magnetic field are taken into account in the Superclustering step. Superclus-

tering allows to associate radiation produced by bremsstrahlung photons and conversion

tracks to the particle that produced it.

Particle Flow Linking

Signals in different sub-detectors are linked using geometrical criteria. For instance, the

extrapolation of the trajectory of a particle, reconstructed in the Silicon Tracker, onto
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the calorimeter creates a window in η and φ. This search window accounts for multiple

scattering and other uncertainties, like gaps in a sub-detector. If a cell belonging to a

cluster lies inside the window, a link between the cluster and the track is created. In order

to avoid exploring all the possible linkings between elements of different sub-detectors, a

class of data structures called k-dimensional trees are used, which are described in more

details in Section 5.2.

Linked objects form PF Blocks. Blocks are used to reconstruct Particle Candidates based

on the combined information coming from the linked Physics Objects.

For instance, the Muon system, described in Section 2.2.4, allows the identification of

muons with high purity thanks to the absorption of the calorimeters. Standalone tracks

are created from hits in the Muon system. Standalone tracks are then matched to a track

in the Inner Tracker by comparing the track parameters propagated onto a common

surface.

Like for muons, also electrons receive a special treatment. Their reconstruction is seeded

by a cluster in the ECAL detector [107]. The position of the cluster defines the solid angle

where to match hits in the Silicon Tracker. However, due to the material budget, electrons

lose a considerable fraction of their energy producing bremsstrahlung photons. A precise

measurement of the energy of electrons require the collection of all the hits. However,

the bremsstrahlung energy loss distribution of electrons propagating in matter is not

Gaussian. Applying the same fitting techniques used for muons to electrons would lead

to a small number of hits and high χ2. For this reason a Gaussian-sum filter techniques

is employed, which models the bremsstrahlung energy loss with a mixture of Gaussian

distributions [108].

Jets Reconstruction

Jets are reconstructed by clustering objects together using the anti-kT clustering al-

gorithm [109] [110]. The anti-kT algorithm defines a distance between two objects as:

dij = min(p−2T (i), p−2T (j))
(ηi − ηj)

2 + (φi − φj)
2

R2
, (2.11)

where R = 0.4 is the radius parameter. The anti-kT algorithm proceeds hierarchically

starting to cluster together the two objects with the smallest distance and continuing

with larger distances. A cluster becomes a jet when its p−2T is smaller than any other
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Calo jet 

pT = 59 GeV 

Calo jet 

pT = 46 GeV 

PF jet 

pT = 81 GeV 

PF jet 

pT = 69 GeV 

Ref jet 

pT = 85 GeV 

Ref jet 

pT = 72 GeV 

Figure 2.21: Jet reconstruction in a simulated dijet event. The particles clustered in the two
PF jets are displayed with a thicker line. For clarity, particles with pT < 1 GeV
are not shown. The PF jet transverse momentum, indicated as a radial line, is
compared to the transverse momentum of the corresponding generated (Ref) and
calorimeter (Calo) jets. In all cases, the four-momentum of the jet is obtained
by summing the four-momenta of its constituents, and no jet energy correction is
applied [79].
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Figure 2.22: Jet angular resolution in the barrel (left) and endcap (right) regions, as a function
of the transverse momentum of the reference jet. The φ resolution is expressed in
radians [79].

remaining distance.

The anti-kT algorithm can cluster together either particles reconstructed using the Particle

Flow algorithm creating PF jets, and energy deposits in the calorimeters, producing Calo

jets. Figure 2.21 shows a comparison between the PF jets and Calo jets with respect to the

simulated reference (Ref jet) for a simulated dijet event. The reconstructed jet direction

and energy is closer to the reference for PF jets with respect to Calo jets thanks to the

PF interpretation using combined information coming from the tracker and calorimeters.

The improvements in the angular resolution on the jet direction, achieved by using the

PF algorithm, is shown in Figure 2.22. The different energy response between the Ref

jet energy and the PF jet energy is corrected in order to bring the ratio between the two

to unity [111]. The jet corrected energy resolution is then defined as the Gaussian width

of the ratio between the corrected and reference jet energies [79](Figure 2.23).
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Figure 2.23: Jet energy resolution as a function of the reference jet transverse momentum in
the barrel (left) and in the endcap (right) regions [79].

Missing Transverse Energy

The Particle Flow algorithm evaluates also the missing transverse energy (MET) Emiss
T ,

sometimes indicated as missing transverse momentum pmiss
T , defined as the negative

modulus of the vector sum of the transverse momenta of all the reconstructed particles in

one event [112]. MET has an important role for the identification of weakly interacting

particles, like neutrinos and for studies of invisible particles foreseen by theories beyond

the Standard Model. Reconstruction of MET requires the reconstruction of all the

particles in an event and a hermetic detector. Figure 2.24 shows the improvement in

relative pmiss
T resolution and direction resolution using the Particle Flow description with

respect to the reconstructed MET when using calorimetric information only [79].

Reconstruction in the Offline Software Infrastructure

Data coming from the HLT enters the CERN Tier-0 with a rate of 1 kHz. At the Tier-0,

data is reconstructed for monitoring and calibration in the express processing. In the

Prompt Calibration Loop (PCL), express data are used as input to automated calibration
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Figure 2.24: Relative pmiss
T resolution and resolution on its direction as a function of the

generated pmiss
T,Ref for a simulated tt̄ sample [79].

workflows running online or at the Tier-0. During the Prompt-RECO, Physics events

are reconstructed consuming calibrations computed by PCL using the CMS Software

(CMSSW).

Data from collisions are also reconstructed in Tier-1s and in part of the HLT farm. Data

is then grouped in datasets based on physics interests and stored on tape. These datasets

are also transmitted to the Tier-1s through a high-speed optical fiber network.

In order to have a small data format containing only the information that most of the

physics analyses could use, the Mini-AOD data format has been developed [113]. CMS

decides globally where data is placed dividing it in datasets, based on physics interests

and keeping track of the datasets’ locations.

2.4 LHC Upgrade Program

On May 30th 2013, at a special meeting of the European Commission in Brussels, the

CERN Council adopted an updated European Strategy for Particle Physics [114]:

“The discovery of the Higgs boson is the start of a major programme of

work to measure this particle’s properties with the highest possible precision

54



2.4 LHC Upgrade Program

for testing the validity of the Standard Model and to search for further new

physics at the energy frontier. The LHC is in a unique position to pursue

this programme. Europe’s top priority should be the exploitation of the full

potential of the LHC, including the high-luminosity upgrade of the machine

and detectors with a view to collecting ten times more data than in the initial

design, by around 2030.”

The update was required to set a schedule which takes in consideration the recent

discovery of the Higgs boson at the LHC. The ongoing LHC upgrade program spans over

20 years and aims at delivering an overall integrated luminosity of 3000 fb−1 by around

2030 (Figure 2.25), containing nearly 50 million Higgs bosons to analyze.

Upgrades and maintenance operations on the LHC and CMS are implemented during

four shutdowns:

1. 2013 → 2014, Long Shutdown 1 (LS1): Center-of-Mass energy increases from 8 TeV

to 13 TeV. Instantaneous luminosity reaches the value of 1.5 · 1034 cm−2 s−1, 50%

higher than the LHC nominal design value.

2. 12/2016 → 04/2017, Extended Year-End Technical Stop (EYETS): The CMS enters

its Phase-1 with the replacement of its Pixel detector and Hadron Calorimeter.

This upgrade of the Pixel detector is described in details in Section 2.5.

3. 2018 → 2019, Long Shutdown 2 (LS2): The LINAC4 [115] replaces LINAC2,

allowing instantaneous luminosity to reach 2.2 · 1034 cm−2 s−1, corresponding to a

pile-up of nearly 90 collisions per bunch crossing.

4. 2023 → 2025, Long Shutdown 3 (LS3): The LS3 will start the High Luminosity LHC

era (HL-LHC). The instantaneous luminosity will range between 5 · 1034 cm−2 s−1

and 7 · 1034 cm−2 s−1, producing between 140 and 200 collisions per bunch

crossing. CMS will enter its Phase-2: new tracking detectors [116] and new end-cap

instrumentation for calorimetry [117] along with an increase in the capability of

the online trigger and data acquisition systems.
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Figure 2.25: Time-line of the LHC scheduled upgrades and expected performance.

2.5 Phase-1 Pixel Detector upgrade

During the Extended Year-End Technical Stop (EYETS), occurring between the end of

2016 and the first half of 2017, the Pixel Detector was completely replaced (Figure 2.28).

The motivation for this upgrade is connected to the declining performance of the existing

detector in a high pile-up environment [118]:

• The pixel ROC starts to loose data because of insufficient buffer size and read-out

speed. At a luminosity of 1 · 1034 cm−2 s−1 with a bunch crossing time of 25 ns, the

estimated hit inefficiency is about 4%. This inefficiency raises to about 15% with
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Figure 2.26: Comparison between the Phase-0 and the Phase-1 CMS Pixel Detector. The
current and upgraded detectors are shown side by side in the transverse view (left).
A longitudinal view shows the current detector below the beam pipe, compared to
the upgraded detector on top (right) [118].

at a luminosity of 1 · 1034 cm−2 s−1. The replacement of the ROC will eliminate

this inefficiency.

• An increased event complexity in high pile-up events leads to higher difficulty in

track reconstruction. Requesting the same level of tracking efficiency would require

accepting more fake tracks. The new Pixel Detector includes four barrel layers

and three end-cap disks per direction (Figure 2.26). The four-hits coverage of the

new Pixel Detector would help in keeping the efficiency high while still keeping the

fake-rate under control.

• Hit efficiency deteriorates with radiation damage.

• The upgraded Pixel Detector has a lower material budget thanks to light support

structures and cooling (Figure 2.27).
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Figure 2.27: Material budget of the phase-0 (in green) and the upgraded phase-1 (black dots)
Pixel Detectors system in number of radiation lengths (left) and nuclear interaction
lengths (right) as a function of η [118]. Contributions to the material budget
come from active materials (the silicon sensors) or passive materials, e.g. support
structures, cables, cooling pipes or gas.

Figure 2.28: Installation of the Phase-1 Pixel Detector [119].
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Like in the Phase-0 Pixel Detector, the new geometry presents two main sub-detectors: a

barrel (BPix) and a forward (FPix) regions. These two sub-detectors provide an almost

hermetic four-hits coverage up to η = 2.5. The BPix region is made of 79 million pixels

(48 million pixels in Phase-0 BPix) distributed on four 548.8 mm long cylindrical layers,

at radial positions of R = {29.5, 68, 109, 160} mm. The FPix region comprises three

disks on each side of the BPix sub-detector, located at z = {± 29.1,± 39.6,± 51.6} cm.

Each disk contains an inner and outer ring that provide a radial coverage from 4.5 cm to

16.1 cm. The overall FPix pixels count is about 45 million pixels, compared to 18 million

pixels of the Phase-0 FPix layers. Figure 2.28 shows a picture of the installation of the

Phase-1 Pixel barrel.
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CMS Tracking: status and upgrade

A track is the result of the fit of a set of measurement points (hits) in the Tracker that

provides an estimate of a charged particle trajectory.

As it was previously described in Section 2.3.2, the reconstruction of many physics objects

depends on tracking:

• The momentum of charged particles (muons, electrons and charged hadrons).

• Primary and secondary vertices identification.

• Reconstruction and tagging of jets coming from b-quark hadronization.

• Reconstruction and tagging of jets coming from τ decay.

Precise track reconstruction becomes challenging when pile-up grows, as the number of

vertices and the number of tracks increase (Figure 3.1), making the classification of hits

produced by the same charged particle become a combinatorial problem.
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Figure 3.1: On the left the distribution of the number of reconstructed interaction points
(vertices) in each event for the run shown in Figure 2.4. On the right the distribution
of the number of tracks per event for the same run.

3.1 Local Reconstruction

Local Reconstruction in the Pixel Detector

Charged particles, traversing the layers of the Pixel Detector, release charge carriers, as

discussed in Section 2.2.1. An analog-to-digital converter (ADC) transforms the analog

pulse into a digitized value, which can be then used in the reconstruction software. To

mitigate the out of time pile-up, remnants of signals of a previous event, a threshold

on the signal-to-noise ratio is applied, and only those pixels whose signal exceeds this

threshold will be read in the next step.

Once in the computing system, the first step of the track reconstruction consists in

the local reconstruction. During the local reconstruction these digitized information

are unpacked and signals in neighboring pixels are grouped together in a process called

clusterization. All the side and corner adjacent pixels whose charge is above the readout

threshold will be included in the same pixel cluster. Each cluster’s total charge has to

exceed the equivalent charge of 4000 electrons in order to move on to the next step [81].
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Figure 3.2: Left: Geometry of the CMS barrel and forward Pixel Detectors and the corresponding
coordinate systems. Right: Charge deposition shown in thousands of electrons. In
green, the pixels whose charge does not exceed the threshold and are not included
in the cluster. The dotted red line shows the projection of the particle’s trajectory.
The red cross indicates the point in which the trajectory intersects the module’s
plane [120].

The shape of the clusters and the weights of the signals coming from each pixel are taken

into account for the determination of the hit position (the center of gravity of the cluster),

and its uncertainty along the local coordinates. An example of a cluster in the CMS

Pixel Detector is shown in Figure 3.2.

The reconstruction of the hit position from the cluster includes two steps:

• Simulated cluster shapes are projected along the x and y local coordinates. They

are extracted as function of the simulated global position of the cluster and track

impact angles. This step is repeated for a simulated large sample of tracks. The

generated cluster projection shapes are called templates.

• The results of the first steps are then used to generate information on biases, errors,

corrections and goodness-of-fit. The expected cluster shape is moved until it best

matches the observed cluster shape.

The result of this procedure is a bin number for each of the two dimensions and with the

value of χ2 [121].

The hit efficiency is defined as the probability to find a cluster in a sensor that has been

traversed by a charged particle. Figure 3.3 shows that every layer produces hits with

very good efficiency. However, the hit efficiency decreases as the instantaneous luminosity

increases, as the limits of the working specifications of the ROC are reached.
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Figure 3.3: On the left, the average hit efficiency for layers or disks in the Pixel Detector
excluding defective modules [122]. On the right, the average hit efficiency as a
function of instantaneous luminosity [122].

Local Reconstruction in the Strip Detector

As described in Section 2.2.1, the front-end driver (FED) receives pulses from the read-out

electronics of the strips and executes zero-suppression.

Clustering is seeded by sensors with a charge that is at least three times greater than

the strip noise. For each seed, neighboring strips are included in the cluster if the strip

charge is more than twice the strip noise. Eventually, a cluster produces a hit if its total

charge exceeds the cluster noise by at least a factor 5. The cluster noise is defined by:

σcluster =

√

∑

i

σi, (3.1)

where σi is the noise of the strip i of the cluster. The hit position is reconstructed from

the cluster information by correcting the charge-weighted average of its strip position by

10/20µm (TIB/TOB) to account for the Lorentz drift.
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3.2 Track Reconstruction

Hits are the output of the local reconstruction. The reconstruction of the trajectories of

the charged particles that left those hits is carried out in the track reconstruction.

3.2.1 Track Parameterization

In a solenoidal homogeneous magnetic field, the trajectory of a charged particle is a helix.

The helix can be described by five parameters, two for the position, two for the direction

and one for the curvature at a given reference position v = (vx, vy, vz) along the track.

This defines a state vector.

In the CMS track reconstruction, the perigee point v is the point of closest approach of

the helix to the z-axis.

The beam spot position bs = (bsx, bsy, bsz) is also used in the determination of the value

of helix parameters [123].

The parameterization used in the CMS tracking is the following [124]:

1. The signed inverse momentum in GeV−1

qoverp = q/|~p|. (3.2)

2. λ = π
2
− θ, where θ is the polar angle at the point v.

3. The azimuthal angle φ at the point v.

4. The signed distance dxy in the x-y plane between the straight line passing through

(vx, vy) with the azimuthal angle φ and the point (bsx, bsy), in cm:

dxy = −(vx − bsx) sinφ+ (vy − bsy) cosφ (3.3)

5. The signed distance dsz in the s-z plane between the straight line l passing through

v with angles (φ, λ), and the projection of the point bs on the s-z plane, in cm.

The s-axis is defined as the projection of the line l on the x-y plane:

dsz = (vz − bsz) cosλ− [(vx − bsx) cosφ+ (vy − bsy) sinφ] sinλ (3.4)
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In this parameterization, the transverse impact parameter becomes:

d0 = −dxy, (3.5)

the longitudinal impact parameter:

dz =
dsz
cosλ

. (3.6)

The transverse momentum is defined as:

pT = |p| sin θ. (3.7)

3.2.2 Estimation of track parameters using a Kalman filter

The track reconstruction is based on a combinatorial track finder relying on Kalman

filtering [8].

The Kalman filter (KF) is an iterative and adaptive process used for estimating the

states of dynamic systems. The KF can be applied to track reconstruction assuming that

the track can be interpreted as a discrete dynamic system [125] [126].

Consider a tracking device made of n sensitive surfaces. The state of the track at the

surface k will be described by the state vector pk.

Given the state vector pk−1, which describes the state of the track at the surface k − 1,

the propagated state vector at the next surface pk is defined by the system equation:

pk = fk(pk−1) +Pkδk. (3.8)

In the system equation the following contributions can be identified:

• fk is the model that describes a charged particle in a magnetic field between the

surfaces k − 1 and k.

• The effect of the interaction with the detector’s material on different track pa-

rameters is described by Pk. The term Pkδk is fundamental in order to take into

account energy loss in the detector material, where δk is a Gaussian distributed
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random variable with average 0. The knowledge of the detector and its material

budget distribution is used to derive the covariance matrix Qk of the noise.

In the following, it will be assumed that fk can be approximated with its first order

Taylor expansion with derivative matrix Fk:

fk(pk−1) ≈ Fkpk−1. (3.9)

A measurement mk is a function of the state vector pk:

mk = hk(pk) + ǫk. (3.10)

hk projects the state vector’s parameters onto the measurement.

The variable ǫk is Gaussian distributed noise with average 0 and its covariance matrix

Vk is assumed to be known. Also in this case, it will be assumed that hk is linear or can

be approximated with its first order Taylor expansion with derivative matrix Hk:

hk(pk) ≈ Hkpk. (3.11)

The KF offers three different functionalities depending on the relation between the

number j of measurements used to produce the estimate pk and k:

1. j < k: the state vector is extrapolated to a future surface k taking into account j

previous measurements. This step is called prediction.

2. j = k: the KF uses the previous and current measurements to estimate the present

state. This step is called filtering.

3. j > k: the KF estimates a past state based on the knowledge of the past, present

and future measurements. This step is called smoothing.

In the following, the footer A|B will indicate that an operand refers to the surface A and

its value was estimated using a number B of measurements. Therefore, the state vector

at the surface k based on j measurements will be indicated with pk|j and its covariance

matrix Ck|j.

Furthermore, the residual mk−Hkpk|j will be denoted with rk|j and its covariance matrix

with Rk|j.
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Figure 3.4: Progressive adjustment of the fitted parameters by propagation. The combinatorial
character is visible when multiple measurements are found on a surface.

Prediction

Suppose that pk−1|k−1 and Ck−1|k−1 have been evaluated.

In the prediction approach it is possible to calculate pk|k−1:

pk|k−1 = Fkpk−1|k−1 (3.12)

and its covariance matrix:

Ck|k−1 = FkCk−1|k−1F
T
k +PkQkP

T
k . (3.13)

Given the measurement mk the residuals can be computed:

rk|k−1 = mk −Hkpk|k−1 (3.14)
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and their covariance matrix:

Rk|k−1 = Vk +HkCk|k−1H
T
k (3.15)

Filtering

In the filtering approach, the state vector pk|k is evaluated given the knowledge of the

measurement mk from the state vector pk|k−1:

pk|k = pk|k−1 +Kkrk|k−1 = pk|k−1 +Kk(mk −Hkpk|k−1), (3.16)

where we have denoted with Kk the Kalman gain matrix :

Kk = Ck|k−1H
T
k (Vk +HkCk|k−1H

T
k )
−1. (3.17)

By denoting with Gk = V−1k and using the relation:

C−1k|k−1 = C−1k|k −HT
kGkHk, (3.18)

it is possible to write the Kalman gain matrix as follows:

Kk = Ck|kH
T
kGk. (3.19)

The covariance matrix can now be written as the sum of the prediction and a correction

term that takes into account the current measurement:

Ck|k = (I−KkHk)Ck|k−1. (3.20)

The size of this correction is given by the Kalman gain Kk.

The filtered residuals and their covariance matrix can also be written in terms of the

Kalman gain:

rk|k = mk −Hkpk|k = (I−HkKk)rk|k−1, (3.21)

Rk|k = (I−HkKk)Vk = Vk −HkCk|kH
T
k . (3.22)
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The total χ2, accounting for all the previous k− 1 filtering steps, can be updated as well:

χ2
k = χ2

k−1 + rTk|kR
−1
k|krk|k. (3.23)

Smoothing

The smoothing is usually applied once the last measurement mn has been obtained.

The state vector pn contains all the information coming from all the measurements and

can be used to update all the filtered estimates:

pk|n = pk|k +Ak(pk+1|n − pk+1|k). (3.24)

The matrix Ak is called smoother gain matrix :

Ak = Ck|kF
T
k+1C

−1
k+1|k (3.25)

The smoothed covariance matrix is given by:

Ck|n = Ck|k +Ak(Ck+1|n −Ck+1|k)A
T
k . (3.26)

The smoothed residuals and relative covariance matrix can be written as follows:

rk|n = mk −Hkpk|n = rk|k −Hk(pk|n − pk|k) (3.27)

Rk|n = Rk|k −HkAk(Ck+1|n −Ck+1|k)A
T
kH

T
k = Vk −HkCk|nH

T
k . (3.28)

As for the filtering approach, a χ2 can be written as:

χ2
k = rTk|nR

−1
k|nrk|n, (3.29)

which is χ2-distributed with dim(mk) degrees of freedom.

70



3.2 Track Reconstruction

Figure 3.5: Channel occupancy for the CMS silicon Tracker in events from randomly selected
non-empty LHC bunch crossings. The average number of pile-up events is nine [81].

Kalman filter in CMS track reconstruction

When multiple measurements are compatible with the propagated state vector, tracking

becomes a combinatorial problem. The CMS tracking strategy is based on the Combina-

torial Kalman filter. The hits which are closest to the prediction in a suitable χ2 statistics

are selected for the inclusion in the filter stage. This stage of the track reconstruction

goes under the name track building or pattern recognition.

The KF alternates the use of prediction and filter for each encountered layer. This process

continues until the propagation has reached the outermost layers, or a maximum number

of skipped layers is reached. If no hit is matched on a given layer, the KF prediction

is given the possibility to skip it and propagate to the next-to-next layer to improve

efficiency.

In order to reduce the initial number of combinations to update and propagate, a track

segment called track seed needs to be computed. The seed provides an initial estimate of

the track parameters to be used as initial state vector by the Kalman filter in the track

building. Track seeding requires at least two hits and a hypothesis of the beam-spot region

or vertex, or three hits. Hits coming from the Pixel Detector are the optimal candidates

for the track seeding step as they provide precise three-dimensional measurements and
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low occupancy (Figure 3.5). Once the track building is complete, smoothing can be

applied and the track parameters can be fitted. Eventually, a track selection, based on

the track’s normalized χ2, contributes to the rejection of those tracks built using hits

produced by different charged particles.

3.2.3 Reconstruction Quality Criteria

The main criteria for the quality of the track reconstruction that can be used to quantify

the performance in tracking procedures and algorithms are:

• efficiency,

• fake-rate,

• execution time.

The efficiency indicates the fraction of the simulated tracks, Nsim, that have been

associated with at least one reconstructed track, Nrec.

efficiency =
Nrec

Nsim

(3.30)

It can be estimated by studying simulated events: a reconstructed track is associated

with a simulated track if more than 75% of the hits that it contains come from the same

simulated track.

The fake-rate is defined as the fraction of all the reconstructed tracks which are not

associated uniquely to a simulated track. In the case of a fake-track the set of hits used

to reconstruct the track does not belong to the same simulated track. The execution

time is the CPU time spent in reconstructing tracks starting from hits.

Efficiency and fake-rate will hereby be referred to as physics performance; execution time

will also be referred to as computational performance.

3.2.4 Seed generation parameters

The criteria used to build seeds have a strong impact on timing and physics performance.

The seeding criteria are:
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• pmin
T : searching for low transverse momentum tracks can be very computationally

expensive. Setting a minimum threshold for pT limits the possible curvature, hence

reducing the number of possible combinations of hits.

• Rmax and zmax: the maximum transverse and longitudinal distance of closest

approach with respect to the beam-spot. Tracks produced within a radius of

less than 1 mm around the beam-spot are called prompt tracks. Searching for

detached tracks requires loosening the value of Rmax, which leads to an increase in

combinatorics.

• nhits: a request of a greater number of hits in the seeds leads to a more pure set

of tracks and cuts can be loosened. A lower number of hits in the seed produces

higher efficiency at the cost of a higher fake-rate.

nhits is controlled by the number of seeding layers. The seeding layers are sets of

detector layers whose hits can be used to create seeds.

In principle, seeding could be created in the Outer Tracker where the density of tracks is

lower. However there are several reasons why in the CMS track reconstruction, seeding

is done in the pixel layers.

First, even though the track density is higher, the channel occupancy is much lower in

the Pixel Detector (Figure 3.5). The channel occupancy is defined as the number of pixel

or strip measurements in an event divided by the number of all active pixels or strips.

Secondly, spatial measurements in the Pixel Detectors are three dimensional and their

resolution is better. Finally, particles traversing the Pixel Detector have interacted with

a smaller amount of material. Therefore, starting the seeding in the inner part of the

Tracker leads to a higher efficiency.

3.2.5 Iterative Tracking

In order to maximize the efficiency, reduce the fake-rate and minimize the execution time,

the tracking sequence seeding, building, fitting, selection is repeated in several iterations

reconstructing prompt tracks with high transverse momentum in earlier iterations and

searching for tracks that are more difficult to reconstruct in later stages (Figure 3.6).

At the end of each iteration, the hits belonging to already found tracks are masked, i.e.

removed from the pool of hits and the next iteration will start on a sample that does not
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Figure 3.6: Efficiency (a) and fake rate (b) versus simulated track transverse momentum of
different iterative tracking approaches for multijet events without pile-up interactions.
Only tracks with |η| < 2.5 are considered. The efficiency is determined only for
tracks originating from a cylinder of radius 3.5 mm around the beam-spot, extending
to z = ±30 cm along the beam-spot.
The plots shows respectively: in black a single iteration of the combinatorial track
finder, in green all the iterations seeded by a prompt seed (originating from a
cylinder of radius 200 µm around the beam-spot) having at least one hit in the
Pixel Detector, in red all the iterations included those with displaced seeds [79].

contain them.

As an example, in the first iteration, seeds should requested to be promptly produced, to

have three hits in the Pixel Detector and high pT. Once the hits found in this iteration

have been masked, seeds with looser constraints are produced (e.g. prompt triplets with

lower pT). Other iterations can be applied with more relaxed cuts depending on the

requests on efficiency, fake-rate and execution time.

Offline Iterative Tracking during 2016

The 2016 offline track reconstruction spans ten iterations (Table 3.1) and its performance

is shown in Figure 3.7.
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Figure 3.7: Performance of the offline iterative tracking in Run 2 during 2016 for simulated tt̄
events with 50 superimposed pile-up collisions: efficiency vs pT .

The Initial, DetachedTriplet and LowPtTriplet all target seeding layer sets made of

three layers, hence producing triplets. The Initial iteration targets prompt tracks with

high transverse momentum. Once the hits associated to tracks found in the Initial step

have been removed from the hits’ pool, the cut on the Rmax can be relaxed and the

DetachedTriplet can execute.

The LowPtTriplet step is then used to recover lower transverse momentum tracks.

PixelPair and MixedTriplet iterations are used to recover efficiency from tracks with a

missing hit in the Pixel Detector.

PixelLess and TobTec steps search for very displaced tracks. For reducing the combina-

torics complexity, they are executed after the previously described iterations.

The JetCoreRegional step addresses tracking in very high momentum jets. Track segments

produced in the Muon system are used during seeding to increase muon reconstruction

efficiency in the last two iterations.

Figures 3.8 and 3.9 show the track reconstruction performance for tt̄ events with 50
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Table 3.1: Offline Tracking iterations used during 2016 data taking.

Name Seeds Target Tracks

Initial pixel triplets prompt, pT > 0.6 GeV
DetachedTriplet pixel triplets displaced, Rmax = 5 cm
LowPtTriplet pixel triplets prompt, pT > 0.3 GeV
PixelPair pixel pairs recover, pT > 0.6 GeV
MixedTriplet pixel+strip triplets displaced, Rmax = 7 cm
PixelLess strip triplets/pairs displaced, Rmax = 25 cm
TobTec strip triplets/pairs displaced, Rmax = 60 cm
JetCoreRegional pixel+strip pairs pT > 10 GeV, inside high pT jets
MuonSeededInOut muon-tagged tracks muons
MuonSeededOutIn muon detectors muons

superimposed pile-up collisions. The efficiency grows for values of transverse momentum

between 0.1 GeV and 1 GeV. In this region, the fake rate decreases, as tracks start

satisfying the seeding criteria. A plateau of efficiency 83% is reached for values of pT below

100 GeV. For greater values of transverse momentum the efficiency drops, due mainly

to high-momentum jets. These boosted jets are very collimated and hits from different

tracks in the jet can merge and may be associated to a single track. Efficiency is limited

by the silicon detector pitch. Cluster splitting techniques are applied to disentangle hits

from overlapping particles [127].
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(a) Efficiency vs pT (b) Efficiency vs η

Figure 3.8: Offline track reconstruction efficiency during 2016 for simulated tt̄ events with 50
superimposed pile-up collisions. Only tracks with simulated pT > 0.9 GeV are used.

(a) Fake rate vs pT (b) Fake rate vs η

Figure 3.9: Offline track reconstruction fake rate using the experimental setup of 2016 for
simulated tt̄ events with 50 superimposed pile-up collisions. Reconstructed tracks
with reconstructed pT > 0.9 GeV are considered.
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Iterative Tracking at the High-Level Trigger during 2016

Section 2.2.5 described the HLT as a time-constrained computing system, with a maximum

average latency of tth = 220 ms. This implies that the average processing time for one

event cannot exceed tth, otherwise the L1 trigger would create back-pressure and part of

the incoming events would be lost.

Sequences of algorithms, paths, that require a greater amount of time to complete are

executed less often and quota is applied on the fraction of events that can run a specific

task in the unit time. The result is a time distribution for events, which peaks below

20 ms, with a tail that can exceed 3 s. The execution time does not increase linearly

with the luminosity, as events become more complex, hence increasing the number of

possible combinations that the track reconstruction needs to follow (Figure 3.10). An

example of the overall HLT time distribution is shown in Figure 3.11.

The three iterations that compose the online iterative tracking are described in Table 3.2.

All these iterations follow a fast tracking step, called Pixel Tracks, that uses only

the information coming from the Pixel Detector for quickly reconstructing tracks and

primary vertices. The Pixel Tracks step evaluates prompt triplets (Rmax = 2 mm and

zmax = 24 cm), having transverse momentum greater than pmin
T = 0.9 GeV.

The execution time of this algorithm grows with the number of possible combinations of

three hits satisfying seeding criteria. At an instantaneous luminosity of 1.5 · 1034 cm−2 s−1,
with a pile-up of about 50, evaluating PixelTracks for every event would require an increase

of the time threshold tth of about 100 ms.

The following techniques can be implemented in order to mitigate the execution time

requirements:

• Use a regional track reconstruction, where tracking is done only within regions-of-

interest. These regions are defined by a η − φ cone in the direction of an already

available Physics Object (e.g. muons, electrons, jet candidate seeded by calorimeters

or muon chambers);

• Increase the threshold on the minimum pT at the seeding step to values larger than

1 GeV to reduce the number of seeds produced;
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3.2 Track Reconstruction

Figure 3.10: Processing time distribution of the HLT menu as function of the non-calibrated
instantaneous luminosity. The timing was measured using events from fill 5393
[128].

• Select only the track phase-space in which tracks mostly come from the primary

interaction region;

• Sacrifice resolution on primary vertices and run a proto-tracking using only clusters’

positions. Clusters are projected in the direction of a jet candidate onto the beam-

spot and their frequency is added in a histogram. If a bin of the histogram exceeds

a threshold, then the corresponding z-position is used as primary vertex position

[129].

The performance of the online iterative tracking is shown in Figures 3.12 and 3.13. The

iter0 iteration makes use of the reconstructed Pixel Tracks as seeds. The seeding criteria

are tighter with respect to those used offline, due to the limited amount of time. For this

reason, the efficiency starts to grow for values of transverse momentum pT > 0.3 GeV,

reaching 50% around pT = 1 GeV. Hits used to build tracks in iter0, are masked and

a low momentum iteration, iter1 runs on the remaining hits. This iteration allows to
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Figure 3.11: Processing time distribution of one of the HLT menus used during the 2016 data
taking operations. The timing was measured using events from run 279975, with
an average instantaneous luminosity of 1.32 · 1034 cm−2 s−1 corresponding to a
pile-up of 42.5 [128].

recover efficiency for values of |η| > 1. Tracks with a missing pixel hit are recovered in

iter2 by loosening the requirement on the number of hits to two pixel hits. The limited

number of iterations and the absence of iterations targeting displaced tracks keeps the

efficiency from reaching 80% efficiency.

Table 3.2: Online Tracking iterations used during 2016 data taking.

Name Seeds Target Tracks

iter0 Pixel Triplets prompt, pT > 0.9 GeV

iter1 Pixel Triplets prompt, pT > 0.5 GeV

iter2 Pixel Pairs recover, pT > 1.2 GeV
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Figure 3.12: Online track reconstruction efficiency during 2016 for simulated tt̄ events with 50
superimposed pile-up collisions.
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Figure 3.13: Online track reconstruction fake rate during 2016 for simulated tt̄ events with 50
superimposed pile-up collisions.
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3.3 Pixel Tracking during CMS Phase-1

The already complex online and offline track reconstruction will have to deal not only

with a higher occupancy environment but also with data coming from a more complex

detector, described in Section 2.5. The new offline pixel-only iterations and the evolution

of the online track reconstruction to adapt to the upgraded Pixel Detector are shown

in Table 3.3. Quadruplets iterations replace those based on triplets. Iterations based

on pairs disappear to keep the fake-rate under control in high pile-up events. Track

seeding combinatorial complexity could easily be dominated by track density and become

the bottleneck of the High-Level Trigger and offline reconstruction execution times

(Figure 3.14). The CMS HLT farm and its offline computing infrastructure rely on

technologies that have evolved extremely rapidly but that cannot rely anymore on an

exponential growth of frequency guaranteed by the manufacturers (Section 4.2).

Innovative hardware and algorithmic solutions have been studied in the context of this

thesis work. These solutions are going to be described in the following chapters.
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Table 3.3: Evolution of Offline Pixel tracking iterations and Online track reconstruction to
adapt to the Phase-1 Pixel Detector.

Name Phase-0 Seeds Phase-1 Seeds

Offline Pixel Track reconstruction
InitialStep Pixel Triplets Pixel Quadruplets
LowPtQuad N/A Pixel Quadruplets
HighPtTriplet N/A Pixel Triplets
LowPtTriplet Pixel Triplets Pixel Triplets
PixelPair Pixel Pairs N/A
DetachedQuad N/A Pixel Quadruplets
DetachedTriplet Pixel Triplets Pixel Triplets

Online Pixel Track reconstruction
Pixel Tracks Pixel Triplets Pixel Quadruplets
iter0 Pixel Tracks Pixel Tracks
iter1 Pixel Triplets Pixel Quadruplets
iter2 Pixel Pairs Pixel Triplets

Figure 3.14: Total reconstruction time and track reconstruction time for Run 1 (orange) and for
Run 2 (blue) with respect to instantaneous luminosity. Tracking execution time
does not grow linearly because of increased event complexity and it is a major
contribution to the entire event reconstruction time [130].
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Chapter 4

Heterogeneous parallel computing

4.1 Introduction

In the next years CMS will collect a growing amount of data due to scheduled increase

in instantaneous luminosity at the LHC.

The CMS online and offline computing infrastructure used to rely on the industry to

deliver an exponential increase in processor performance per unit cost over time. An

application could have been written using simple models and achieve performance im-

provements as new generations of processors came out. However, this trend stopped for

technology problems connected to the power consumption, hence changing the evolution

of processors. Today, scaling performance with processors’ generations can be achieved

only via an application-level parallelism.

CMS started a dedicated R&D program because failing to adapt would imply an expo-

nential increase in costs for computing. The aim of this program is the identification

of new technologies and software design techniques needed to cope with the increasing

event complexity with an almost flat budget.

This chapter will describe trends in technology and the differences between serial and

parallel computing. It will also describe a particular kind of accelerators, GPUs, in the

past dedicated to rendering of 3D graphics. Today, it is possible to exploit massively

parallel architecture of GPUs for General Purpose GPU (GPGPU) computing.
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4.2 Serial and Parallel computing

Figure 4.1: Scaling of Intel transistors’ size and frequency vs time before hitting the Power
Wall [131].

In 1965, Gordon Moore, one of the co-founders of Intel, affirmed that the performance of

CPUs would have doubled every 12 months along with the number of their transistors [132].

This would have been called Moore’s Law a few years later. Moore’s Law was elaborated

in its final form, stating that microprocessor performance doubles every 18 months

(Figure 4.2). The main contribution to the gain in microprocessor performance at this

stage came by increasing the clock frequency. Applications’ performance doubled every

18 months without having to redesign the software or changing the source code.

The power dissipated by a processor scales as P = QCV 2f + V Ileakage, where Q is the

number of transistors, C is the capacity, V the voltage across the gate and f the clock

speed of the chip and Ileakage is the leakage current [134] [135]. To keep on the Moore’s

Law curve, the size of transistors had to be halved every 18 months [131]. However,

in the early 2000s, the layer of silicon dioxide insulating the transistor’s gate from the

channels through which current flows was just five atoms thick and could not be shrunk

anymore. This show-stopping problem is known as the Power Wall [136]: processors

with higher frequencies also dissipate more power.

The transistors count kept growing exponentially by increasing the overall number of

cores per chip (Figure 4.4). The concurrency revolution started.

86



4.2 Serial and Parallel computing

Figure 4.2: Moore’s Law. After 2004 the power consumption (TDP) and the frequency remained
uniform due to the Power Wall. Mainly because of heat dissipation issues, savings
generated by improved process technologies do not translate to major frequency
increases, but are typically re-invested in other areas. It should also be noted that
technologies auxiliary to the CPU such as cache memory — a low-latency memory
located on-chip — do not progress or scale at the same speed as raw compute
power [133].

The basic operation that every Processing Unit (PU) has to process is called instruction.

Whenever a PU is asked to perform an instruction, the address in memory containing

the instruction is saved. A Program Counter holds the address of the next instruction.

In general, an instruction can be modeled as a sequence of three operations:

• fetch: the content of the memory stored at the address pointed by the Program

Counter is loaded in a Instruction Register and the Program Counter is increased

to point to the next instruction’s address.

• decode: the content of the Instruction Register is interpreted to determine the

actions that need to be performed

• execute: an Arithmetic Logic Unit performs the decoded actions.

In serial computation, one PU executes the instructions in sequential order — one after
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Figure 4.3: Serial computing: Every chunk of the problem is executed serially by a single
Processing Unit (PU).

the other — and every instruction has to wait for the previous one to be completed

before its execution can start (Figure 4.3).

In parallel computation, if two instructions have no data dependency, they can be

executed in parallel, at the same time, by two PUs (Figure 4.4).

As the number of cores increases, problems of memory bus contention start to arise,

which go under the name of Memory Wall. There are different techniques that can be

used to mitigate the memory wall:

• Reuse data and instructions: data and instructions which are used often are stored

in a on-chip memory called cache.

• Increase the memory transfer speed: this can be done by increasing frequency,

which is limited by the power wall.

• Increase the amount of data to transfer: memory transfers have overheads, which

can become negligible if more memory is transferred in one instruction.

• Improve the access pattern to memory: if more processing units are reading adjacent

memory locations, they can all be fed by a single memory transfer.

4.2.1 Amdahl’s Law

One could hope of getting a boost in performance by a factor equal to the number of

processing units (CPUs). However, this is limited by the fraction of the code which

cannot run in parallel, due to initialization, I/O or synchronization. Given a program,
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Figure 4.4: A problem that can be divided in independent chunks is solved by more than one
Processing Unit concurrently.

Amdahl’s law indicates the maximum speed up that can be achieved for a variable number

of PUs [137].

Let Ts be the execution time of a serial program and Tp its execution time after par-

allelization when using a number p of processing units. The speedup obtained is then

given as the ratio:

S(p) =
Ts
Tp
. (4.1)

If we consider the fraction f of the program that has to run serially, and the time t

obtained when executing the parallel section serially, the parallel execution time Tp will

then be given by:

Tp = fTs + (1− f)Tp = fTs +
(1− f)t

p
. (4.2)

The speed up for a program, with a serial fraction f , that is running on p PUs is given

by:

S(p, f) =
Ts

fTs +
(1−f)t

p

→ 1

f
= Smax(f) (4.3)

The trend of Amdahl’s Law for different values of f and for a variable number of

Processing Units is shown in Figure 4.5. If the parallel part of the program is 95% of the

whole program, the maximum speedup one can obtain is Smax = 1
1−0.95 = 20.
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Figure 4.5: Amdahl’s law for different fractions of parallel code [138]

.

4.2.2 Gustafson’s Law

Amdahl’s Law assumes that a problem can be split in a number of independent chunks n

that can be processed in parallel and that this number is fixed. Often, increasing the size

of the problem does not change the time spent executing the sequential part, and only

affects the parallel portion. This is due to the fact that the number of independent chunks

n increases and so do the opportunities of parallelization. Under this assumption, let

f(n) be the sequential code fraction of the program. Then, this fraction f(n) decreases

to zero as the size of the problem n approaches infinity.

The speed up is given by Gustafson’s Law [139]:

S(n) = f(n) + p[1− f(n)]. (4.4)

The maximum speedup is then given by:

Smax ≡ lim
n→∞

S(n) = p. (4.5)
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Hence, one can increase the size of a problem and still solve it in the same amount of

time by making more parallel equipment available.

4.3 Computer Architectures

Today the computing industry facing the following challenges:

• Reducing power consumption.

• Reducing cooling costs.

• Improving performance.

• Managing ever-expanding volumes of data.

Industry is evolving to develop or employ heterogeneous parallel computing systems,

i.e. systems that use a variety of different types of specialized computational units.

Instead of increasing the number of the same kind of processing units, industry has

opened a new line of development of parallel architectures such as multi-core CPUs

and accelerators, that incorporate highly specialized processing capabilities to handle

particular tasks. These heterogeneous platforms can achieve higher energy efficiency and

improved performance by assigning the best architecture for a particular task. There exist

accelerators dedicated to random number generation, compression and decompression,

encryption and decryption, matching of regular expressions, decoding of video and audio

streams [140].

Central Processing Units (CPUs) comprise a relative small amount of cores per chip

(around 10), supporting a large instruction set. Instructions are not necessarily executed

in the same order they are issued in the program. This level of complexity is hidden

from the programmer thanks to the instruction-set architecture (ISA) and its hardware

implementation.

Microprocessors use traditional sequential-programming models and their design principles

pursue the goal of reducing instruction execution latency.

There are several important design choices for today’s CPUs (Figure 4.6a):
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(a) CPU (b) GPU

Figure 4.6: Simplified architectures of a traditional CPU and a GPU. GPUs tend to allocate
more transistors to execution units, whereas in CPUs more space resources are
dedicated to caches and control units.

• Large Arithmetic Logic Units (ALUs) can deliver the results of complex calculation

in a small amount of clock cycles.

• Caches are small memories with very low access latency that are usually found on

chip. The use of large caches can reduce slow memory access latency to memory

for repeatedly requested data elements.

• Large control units implement complex control mechanism like branch prediction,

which is used for anticipating the direction of a conditional statement in the code

based on its previous history. Control units allow multiple instructions from a

single thread to be executed at the same time or even out of their sequential order.

It is challenging for CPU designers to increase bandwidth to and from memory because

CPUs have to satisfy requirements from legacy operating systems and applications.

Graphic Processing Units (GPUs) are an example of accelerators. The design of GPUs

has been shaped in the years by the video game industry. GPUs have vector processing

capabilities that enable them to perform parallel operations on very large sets of data and

to do it with much lower power consumption relative to the serial processing of similar

data sets on CPUs (Figure 4.6b). Their throughput-oriented design aims to maximize the

throughput of instructions by executing as many of them at the same time as possible.
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This is achieved by assigning way more transistors to execution and less to caches, control,

sacrificing features like branch prediction.

In the High-Performance Computing sector, there are two major manufacturers of GPUs:

AMD and NVIDIA. GPU parallelism, on Graphic cards produced by NVIDIA, is exposed

for general-purpose computing thanks to an architecture called Compute Unified Device

Architecture (CUDA) [141]. On GPUs produced by AMD, parallelism is exposed by

OpenCL [142].

These GPUs are connected to the CPU via a high speed bus called PCI Express that in

its generation 3.0 can achieve a memory transfer speed of 985 MB/s per lane and usually

a motherboard can have up to 16 lanes per PCI Express slot.

In the following, only solutions based on NVIDIA architecture have been employed

because they can be programmed at a lower level allowing better control of the hardware

through the software. GPU designers can more easily achieve higher memory bandwidth

with respect to CPUs. This is due to the simpler memory models and fewer legacy

constraints. In fact, the more recent NVIDIA GPU architecture, GP100, can achieve

a bandwidth of 732 GB/s with respect to few tens of GB/s that a CPU can achieve

[143].

4.4 Parallel and heterogeneous computing in High

Energy Physics

The simulation and the reconstruction of events in High Energy Physics are blessed with

natural event-level parallelism. The Power Wall and the consequent stop in the increase

of the CPUs’ clock frequency happened during the period of preparation to the imminent

data taking. Chip manufacturers could only provide growing performance by increasing

the number of cores and experimental software frameworks had little time to adapt. The

strategy that has been pursued consists in executing as many different instances of an

application as the number of CPU cores, i.e. multi-processing.

Many times multi-processing implies that n independent copies of an application are

executed by different cores. In order to be able to support an application running in

multiprocessing, a machine needs an amount of memory which is at least n times the

memory needed to run a single instance of the application.
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Table 4.1: Speed and memory savings of multi-threaded task relative to single-threaded [144].

Configuration Speed-up Memory

Low PU High PU Low PU High PU
RECO 1.05 1.04 4.6 3.7
RECO and Monitoring 0.83 0.94 3.3 2.7

In order to reduce the memory footprint, utilize idle CPU cores and improve hardware

utilization, one needs to introduce thread-parallelism within the process, hence making the

application multi-threaded. Some of the benefits of the transition from multi-processing

to multi-threading in CMSSW are shown in Table 4.1. Two datasets were used, each

containing tt̄ events with 4 (low PU) and 40 (high PU) superimposed pile-up collisions.

Two configurations were executed: one with reconstruction only, the other adding

monitoring. The single-threaded performance was measured by running 64 processes, one

per core on a 64-cores machine, while the multi-threaded performance was measured by

executing 8 jobs with 8 threads each on the same machine. Both for low and high pile-up

datasets, if running the reconstruction only, a slight speed-up of the multi-threaded

application is measured with respect to the single-threaded one. This is motivated by

the better utilization of the memory hierarchy and of the common resources. In this

configuration, the multi-threaded application also achieves a factor 4 smaller memory

footprint with respect to the single-threaded one.

After including monitoring, both the speed-up and the memory saving are reduced. This

is due to the fact that monitoring contains many synchronization points the application

runs sequentially most of the time. The drop in speed-up is smaller for high pile-up, as the

fraction of time spent in reconstruction increases, mainly due to the track reconstruction

as shown in Figure 3.14 [144].

There are four main ecosystems in which parallel and heterogeneous computing can be

employed today:

• Trigger.

• Reconstruction.

• Simulation.

• Data analysis.
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Trigger

As described in Section 2.2.5, the amount of raw data produced by HEP experiments is

too high to be entirely saved and analyzed offline. A trigger system is used to record

only those events that contain potentially interesting physics. Event filtering has been

traditionally done in two levels:

• The Low-Level Trigger reduces the event rate of tens of MHz by three orders of

magnitude and the processing time has a maximum latency which is of the order

of ten microseconds.

• The High-Level Trigger reduces the event rate to the order of some kHz. The

maximum latency of the order of a hundred milliseconds is more relaxed, if compared

to the Low-Level trigger.

Traditionally, for their hard real-time requirements, Low-Level Triggers have been imple-

mented with programmable electronics performing a coarse local reconstruction. Many

FPGAs can be employed for solving small local problems in a deterministic number of

clock cycles. However, if an experiment can afford to buffer multiple events and run

the same algorithms on more events at the same time in parallel, event throughput can

be sustained using software and accelerators. This allows to use complex and flexible

algorithms and improve the physics potential of an experiment. Many experiments, like

NA62 [145] and ALICE [146] [147] at CERN, are moving along this direction by using

GPUs for accelerating the reconstruction of physics objects coming from one sub-detector.

Other experiments are developing trigger-less solutions, in which an almost offline-like

reconstruction is executed online. This is the case of LHCb that, during the shutdown

between 2018 and 2019, will upgrade its data acquisition system in order to provide

trigger-less readout system and the full software trigger [148].

The High-Level trigger farms are isolated and controlled environments. This feature

makes the High-Level Trigger a fertile ground for software optimization and adoption of

new technologies in order to retain better physics signal in an environment with latency

constrains.
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Simulation

A sustained effort in the optimization of simulation software is required in order to cope

with the steadily increasing need for computing resources. This is required in order to

take advantage of accelerators and modern CPU architectures. For this reason, CERN

concluded in 2012 that Geant4 had to be redesigned. A parallel simulation framework,

GeantV [149], is being developed at CERN with the long term objective of achieving an

order of magnitude faster performance with respect to Geant4.

In order to maximize the exploitation of vector units and threads coming with modern

processors, particles are collected in contiguous memory regions called baskets. Simulation

of transport is applied to particles in the same basket by a worker thread. In order to

maximize the occupancy of these baskets, particles belonging to different events can be

collected into the same basket.

Different baskets are assigned to different worker threads, while accelerators can be

assigned more than one basket.

Reconstruction

Reconstruction frameworks used by the LHC experiments have been developed in

C++ [150] with portability and functionality in mind. At the time of the initial design of

the software, optimization for the hardware using high-level languages was not possible

yet. As the CPUs clock frequency stopped growing and parallelism became the best

way of improving the performance of the software, event reconstruction did not keep the

industry’s pace (Section 4.2).

There are various reasons why HEP reconstruction was not able to benefit from modern

platforms, which are connected to data-locality and fetching of instructions. By not using

small kernels, opportunities for vectorization and parallelization of an algorithm become

unachievable. In fact, long functions mixing control with computation become a problem

of control-flow rather than data-flow. Control-flow is not something modern CPUs excel

at, and accelerators even less. Furthermore, data is sparse in memory making inefficient

the use of memory caches. In such a paradigm, by relying just on the number of cores

for scaling, the usage of multiple cores by multi-processing seems to be more beneficial

than exploiting the same number of cores for parallelization of the algorithms. In 2012,

CERN openlab estimated that HEP reconstruction can utilize efficiently only less than
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10% of what industry and High-Performance Computing communities can achieve [133].

Two general design criteria are being employed for designing new software:

• A good memory access pattern locates data which are frequently accessed (temporal

data locality) or adjacent data elements accessed linearly (spatial data locality)

close to each other, in order to improve the efficiency of caches in the memory

hierarchy.

• Compute-intensive loops should be contained in small branch-free kernels, instead

of long functions mixing computation and control.

Parallelization at algorithm level becomes beneficial in case algorithms are redesigned

with parallelism and efficient memory access pattern in mind.

Data analysis

At the LHC experiments, data analysis software is developed individually by groups,

many times on top of the common framework called ROOT [151]. The variety of the

performance of analysis software is very spread. Sometimes, although opportunities for

parallelism within algorithms exist, physicists prefer to rely only on processing different

chunks of data on different cores or different machines [152]. Sometimes, time-to-solution

is critical and packages like GooFit [153] are deemed reliable for parallelizing maximum

likelihood fit on GPUs.

One clear direction for the next decade computing lies in the need to exploit multiple

hardware architectures, in order to be able to utilize opportunistic resources of het-

erogeneous nature for the offline computing and data analysis, as well as many-core

co-processors (e.g. GPUs) at the Trigger stage.
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Development of parallel track seeding

algorithms and data structures

The possibility of offloading the complex and intrinsically parallel-friendly problem of the

CMS track seeding to GPUs has been explored and described in details in the following

sections.

Developing parallel software adds a level of complexity with respect to sequential appli-

cations:

• Parallelism has to be found and many times algorithms have to be redesigned.

• A software can occupy a high number of different states: different control flows,

data structures and memory management. The creation of additional threads

means not only a multiplication of the possible states by the number of threads,

but also possible interactions between threads should be taken into account. This

makes parallel programs much harder to design, debug and verify.

• Parallel programs have non-deterministic execution. In general, the scheduling

order of parallel executions is not managed by the programmer. Furthermore, as

the arithmetic between floating point operands is not necessarily associative, the

result of operations depends on their order [154].

• Enforcing an order often implies synchronization, resources contention and serial-

ization.
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This section describes the design of parallel algorithms aimed at executing the entire

HLT Pixel Tracks reconstruction from RAW data to tracks onto GPUs. A requirement

for all the algorithms described in this section is that the results produced are equivalent

to those obtained with a serial version of the algorithm executed on CPUs. The input

data to be sent to the GPU is the RAW data as it is read from the detector.

The following steps have to be performed on the GPU:

• Digitization of RAW data for the simulation of the detector’s electronics response.

• Clustering of adjacent firing pixels: clusters are formed.

• Estimation of cluster parameters: hits are created carrying the information about

their position and errors in the detector.

• Pair generation using FKDTree, which will be described in Section 5.2: given two

layers with their hits, for each hit on the outer layer, the pair generator searches

for hits on the inner layer that are compatible with the beam-spot hypothesis and

a momentum range.

• A Hit-Chain Maker based on the concepts of Cellular Automata will be described

in Section 5.3: given all the doublets generated in the pair generation step, it looks

for chains of four compatible hits.

• Final Fit: Found quadruplets are fitted with a helix and the final pixel tracks

parameters are found.

By introducing massive parallelism within the event, hence offloading the combinatorics

to an architecture that can execute thousands of threads in parallel, the effects of pile-up

would be mitigated.

5.1 CUDA threading model and memory hierarchy

A thread is a flow of control that can execute in parallel with others in the same process.

All the threads within a program can share the same address space, heap memory, signals

but not their private data, registers and stack. The coordination of a large number of

threads is of paramount importance in order to fully harness the potential of a GPU.

The design and flow of a parallel program usually follows several steps:
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• Initialization: localized data structures and communication channels are established.

• Identification: each thread acquires a unique identifier, typically ranging from 0 to

N − 1, where N is the number of threads.

• Data decomposition: decompose global data into chunks and localize them.

• Mapping: chunks of data are distributed and associated with threads that run the

kernel computation.

• Finalization: acquire results from threads hence reconciling the global data struc-

ture.

The CUDA architecture comprises a scalable array of multi-core Streaming Multipro-

cessors (SMs) which are designed to execute hundreds of threads concurrently. To

maximize throughput, the GPU can switch context between threads very efficiently and

instructions are heavily interlaced. In CUDA a grid of parallel threads executes the same

parallel kernel. Threads in the grid are grouped in work-groups called blocks (Figure 5.1).

Threads within the same block can cooperate, communicate and synchronize. When a

kernel is launched, each thread acquires three indices x,y,z that uniquely identify it

within the same block. Blocks inside a grid can be identified by three indices x,y,z as

well. The possibility of creating a three-dimensional grid of three-dimensional blocks

of threads is just a logical representation for easing the mapping of threads to the

particular data structure used in a problem. For example, one could use an index variable

like blockIdx.x * blockDim.x + threadIdx.x to uniquely map threads in a grid to

a linear data structure. These identifiers allow all the threads to distinguish among

themselves and to compute memory addresses and make control decisions.

When a CUDA program on the host CPU invokes a kernel grid, the blocks of the grid

are numbered and distributed to multiprocessors with available execution capacity. The

threads of a thread block execute concurrently on one multiprocessor, and multiple thread

blocks can execute concurrently on one multiprocessor. As thread blocks terminate, new

blocks are launched on the free multiprocessors.
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Grid 
B(0,0,0) B(1,0,0) B(2,0,0)

B(0,1,0) B(1,1,0) B(2,1,0)

Host Thread 

Kernel Launch 

Figure 5.1: Representation of the CUDA execution model. A single host thread is launching a
kernel which spawns a grid of blocks. Blocks can be arranged along three dimensions
—x, y and z —, and so do threads inside blocks. In the example shown in figure a
grid contains 6 blocks arranged in a configuration (3, 2, 1). Each block contains 16
threads arranged in a configuration (8, 2, 1).

5.2 FKDTree

In tracking or clustering in HEP, it is often the case that an algorithm needs to filter a

large collection of hits, for certain conditions. For example, for calorimeter clustering,

for each hit, algorithms have to search for other hits that lay within a certain distance

around it. This is known as the post office problem [154], as it is very similar to the

problem of assigning residences to a post office based on a properly defined distance.

Another example is the doublet generation at the beginning of track seeding shown in

Figure 5.2: consider two coaxial cylindrical layers in a solenoidal magnetic field. The

seed generator is asked to produce pairs of hits that are compatible with the beam-spot

width and length (in green), and pmin
T seeding criteria (Section 3.2.4). For each hit on
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Figure 5.2: A hit on an outer layer creates a search window in η − φ. The size of the window
depends on the seeding criteria described in Section 3.2.4.

the outer layer, a η − φ two-dimensional interval is created on the inner layer. Hits on

the inner layer are then filtered in the interval. This section describes the development

of a data structure, called FKDTree, needed to search for hits in a k-dimensional interval

in O(logN) optimal complexity1 and that can also be accessed efficiently in parallel.

If the dataset is not sorted at all, the complexity is O(kN2), because for every hit the

algorithm executes k comparisons on all the other N − 1 hits. If the dataset is sorted

along one dimension, the search complexity is O(kN logN), because k comparisons are

executed, but on one dimension the dataset can be traversed like a binary tree.

5.2.1 Original implementation of a k-d tree

A k-d tree is a space partitioning tree data structure used for storing multidimensional

points in a way which is efficient to traverse. Given a set of N points {p0, p1, ..., pN−1},
each having a number k of dimensions, the original implementation of a k-d tree present

in CMSSW can be described as follows:

1. Elements are ordered along the first dimension d0.

2. The median element is picked and elements are partitioned in two sub-spaces.

3. Recursively run from the beginning separately in the two sub-spaces on the next

dimensions d1, then d2 and so on.

1The Big-O notation is used to indicate the dominant term, without coefficients, contributing to the
execution time as the size N of the data structure grows to infinite.
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Figure 5.3: Original CMSSW implementation of a k-d tree for a set of two-dimensional points.

4. If the last dimension dk−1 is reached, the building process restarts from d0.

Figure 5.3 shows a k-d tree built for a set of 13 points distributed on a plane (x, y): the

point G is the median along the x -axis and it is identified as the root of the tree. The

node G splits the space into two sub-spaces. All the nodes whose x coordinate is less

than G will make the left sub-tree. The right sub-tree will comprise the other nodes.

To identify G ’s children nodes, the median node along the y coordinate is chosen. This

leads to the choice of nodes F and H, which in turn divide their sub-spaces into two

sub-spaces. The loop over the two dimensions is now over and it starts again from the

first, i.e. the x coordinate.

This implementation has the following properties:

• it allows for fast and efficient spatial queries of geometry data, e.g. a request for

all points that lie on a specific axis aligned box.

Searching for points within a box have a complexity which is O(logN) in the best

case, i.e. only one point falls within the box and O(N) in the worst case with all

points located inside the box.

• No node carries the information of where it is located in the tree.
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• The tree is always balanced2.

• Nodes are stored in scattered memory locations:

– Copying nodes to the GPU memory would require issuing many small copies

and many small allocations.

– Threads prefer a coalesced access to adjacent memory locations for maximizing

throughput. This will not be possible in a scattered linked-tree implementation.

• A visit of the parent node is required for accessing a node.

• The memory needed for storing the k-d tree is given by N × sizeof(Node), which

must include the memory needed for storing pointers to the left and right children.

The implementation described above has to be improved in order to make its porting to

GPUs possible and advantageous. This improved implementation, developed completely

in the context of the work described in this dissertation, goes under the name of FKDTree

[155], and it was developed in CUDA, OpenCL, TBB and OpenMP.

5.2.2 Building

The first and most important improvement consists in changing the building process. In

the FKDTree building process, the pivotal element does not need to be necessarily the

median. The pivot can be the element that makes the k-d tree complete [154], i.e.:

• All its levels before the last are filled completely.

• The last level is filled from left to right.

The only information required to select this pivotal element is just the number of elements

contained in the sub-space partition (Listing 5.1). Figure 5.4 shows a FKDTree built

from the same points distribution shown in Figure 5.3.

Another important observation comes from the fact that, for selecting the ith element

among n elements, sorting all the n elements completely along one dimension is not

required. In fact, in the following iteration, elements will be sorted along another

2A tree is balanced if, for every node, the number of nodes in its left sub-tree and in its right sub-tree
differs at most by one.

105



Chapter 5 Development of parallel track seeding algorithms and data structures

Listing 5.1: The selection of the pivotal element that makes the sub-tree complete.

1 unsigned int partition_complete_kdtree(unsigned int length)

2 {

3 if (length == 1) return 0;

4 unsigned int index = 1 << (FLOOR_LOG2(length));

5 if (( index / 2) - 1 <= length - index)

6 return index - 1;

7 else

8 return length - index / 2;

9 }
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Figure 5.4: FKDTree built out of points distributed on a plane.

dimension, making no use of the previous order. Furthermore, sorting is a quite expensive

operation. It has best-case complexity O(N · logN) [154]. It is not necessary to sort

the elements completely, as it is sufficient to select all the elements smaller than the

ith element and place them, unordered, to its left, and those greater to its right. This

selection has a time complexity of O(N) and it is achieved like follows (Figure 5.5):

• Choose a random pivotal element x.

• Create three partitions L for elements smaller, E for elements equal and G for

elements greater than x.

• If the ith element is contained in E stop the process, otherwise repeat recursively
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Figure 5.5: Elements in a partition of the space in a k-d tree don’t need to be ordered. In the
example in figure, the fourth element (indicated by x), can be found by using the
quick-select algorithm, which partially sorts the array: the elements smaller than x
make the L set, the elements greater than x are used to make the G set. The L
and G sets don’t need further sorting.

GFC BE AD LMK I JH
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.6: Array representation of a FKDtree. The information about the element’s position
in the tree can be deducted from the value of its index. The array is completely
filled: there are no holes to be masked.

only in the partition.

Now that the tree is complete (Figure 5.4) it is possible to use the array representation

based on integral indices:

• the left child of a parent, which is located at position j, is the node that is found

in position 2j + 2 in the array.

• The right child of the parent is at position 2j + 3 in the array.

• To find the parent of any element in the tree, the integer division can be used.

Given an element at the position m, its parent can be found at position floor(m−1
2

).

Figure 5.6 shows the array representation of a FKDTree. The array representation allows

an efficient traversal of the FKDTree using only simple and fast mathematical operations.

The array representation would have been possible even without building a complete tree.

However, elements would have been scattered in memory requiring a mask of non-valid

memory locations.
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Figure 5.7: Searching for hits within a 2-dimensional box with a FKDTree.

5.2.3 Searching

In CMS event reconstruction, tree building would be executed a small amount of times

per event.

On the other hand, it is not unusual to execute searching on the same pool of hits at

least once for every hit in the event.

Given a node of the tree and its splitting hyper-plane of the sub-space, the search

algorithm traverses either one or both the children. The decision of which child to

traverse depends on the position of the box with respect to the splitting hyper-plane

(Figure 5.7):

• if the box intersects the splitting hyper-plane, the node coordinates are checked for

compatibility with the box and both its children will be visited. In case the node

falls within the box boundaries, the node is added to the result.

• If the box is entirely located in one of the two sub-spaces defined by the splitting

hyper-plane, then only the child node situated in that sub-space will be visited.

Hence, a precise search using the FKDtree always reaches the leaves of the tree. However,

it could be possible to stop the search at a certain depth if one requires approximate
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results.

Parallel implementation

In the case of the pair generation in the CMS track seeding or in the case of the nearest-

neighbors search for clustering, parallelism comes naturally when the algorithm performs

a search query on the same tree for every hit. Parallelism can be achieved by mapping

one search query to one CUDA thread. Therefore, multiple queries can be executed in

parallel.

The first obvious implementation of the search algorithm would be recursive. However,

when conditional statements have different behavior for different threads, a parallel

implementation of a recursive search algorithm would certainly suffer from the presence

of control branches.

The new building implementation comes to aid: by making the FKDTree complete, it

is possible to evaluate the depth of the tree by just knowing the number of elements:

depth = floor(log2(N)).

Consider the code in Listing 5.2:

• lines 3-4: A box is represented by two points FKDPoints: minPoint represents the

corner of the box with minimum coordinates, while maxPoint points to the corner

with maximum coordinates. The vector foundPoints will store the result.

• lines 8-9: indicesToVisit is a queue. It is basically a ring buffer, in adjacent

memory locations, that supports insertion and extraction of elements at both its

ends. The first element to be pushed into the queue is the root node, which index

is 0. This queue is required in order to make the traversal of the tree branch-less:

unlike the recursive implementation that would have required visiting a new node

immediately, using a queue allows the storage of indices of the elements to be visited

at the end of the processing of one level of the tree. This kind of tree traversal is

also known in graph theory as Breadth-first search (BFS) [154].

• line 16:the depth of the tree is known at building time. This allows conversion of

the recursive approach to an iterative one, processing one level of the tree at a time

in a for-loop.
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Listing 5.2: Branchless search using BFS.

1 theDepth = FLOOR_LOG2(nPoints);

2
3 search(const FKDPoint minPoint ,

4 const FKDPoint maxPoint , vector foundPoints)

5 {

6 // a queue containing the ids of the elements to visit at each level of the tree

7 // a queue is a FIFO supporting push_back and pop_front operations

8 queue indicesToVisit;

9 indicesToVisit.push_back (0);

10 int index;

11 bool intersection;

12 int dimension , maxNumberOfSonsToVisitNext , numberOfSonsToVisitNext;

13 int numberOfindicesToVisitThisDepth;

14 int firstSonToVisitNext;

15 // iteratively loop over the levels of the tree.

16 for (int depth = 0; depth < theDepth + 1; ++ depth)

17 {

18 dimension = depth % numberOfDimensions;

19 numberOfindicesToVisitThisDepth = indicesToVisit.size();

20 for (int visitedindicesThisDepth = 0;

21 visitedindicesThisDepth < numberOfindicesToVisitThisDepth;

22 visitedindicesThisDepth ++)

23 {

24 index = indicesToVisit[visitedindicesThisDepth ];

25 intersection = intersects(index , minPoint , maxPoint , dimension);

26 firstSonToVisitNext = leftSonIndex(index);

27 // if the point intersects the box at this coordinate check if it is in the box ,

28 // otherwise save both its children (if available) for the next tree level

29 if (intersection)

30 {

31 if (is_in_the_box(index , minPoint , maxPoint))

32 {

33 foundPoints.emplace_back(theIds[index ]);

34 }

35 numberOfSonsToVisitNext = (firstSonToVisitNext < theNumberOfPoints)

36 + (( firstSonToVisitNext + 1) < theNumberOfPoints);

37 }

38 else

39 {

40 // decide which son to visit at the next level

41 firstSonToVisitNext += (theDimensions[dimension ][ index]

42 < minPoint[dimension ]);

43 numberOfSonsToVisitNext = min(( firstSonToVisitNext < theNumberOfPoints)

44 + (( firstSonToVisitNext + 1) < ←֓
theNumberOfPoints), 1);

45 }

46 // push the marked children in the queue of elements to visit at the next level

47 for (int whichSon = 0; whichSon < numberOfSonsToVisitNext; ++ whichSon)

48 {

49 indicesToVisit.push_back(firstSonToVisitNext + whichSon);

50 }

51 }

52 // extract elements to be check for compatibility with the search box

53 indicesToVisit.pop_front(numberOfindicesToVisitThisDepth);

54 }

55 }
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• line 18: the dimension that will be considered at this iteration cycles through the

possible dimensions.

• lines 20-26: the loop over the indices in the queue starts here. For each element,

its position relatively to the box is pre-computed.

• lines 27-37: if the box intersects the splitting hyper-plane, the maximum number

of children will be pushed into the queue. If the node is contained in the box, its

index is stored in the result.

• lines 40-45: if there is no intersection, only one of the children node will be pushed

into the queue.

• lines 47-49: the marked indices are pushed into the queue.

• line 53: the processing of one element has completed and the element is removed

from the queue.

By using a BFS and processing one level of the tree at a time, one ensures that multiple

threads are working together, not waiting for each other’s branches to complete.

The implementation is not specific to the number of dimensions, allowing for the analysis

of any k-dimensional point-cloud: for mitigating the ever-increasing pile-up in CMS

tracking and clustering one could create search queries that comprise not only the

traditional three spatial dimensions but also information like:

• The cluster shape for locating the vertex, or for having an initial identification of

the particle: tracks that are more inclined with respect to a layer produce clusters

whose shape is stretched (Figure 3.2).

• Timing information for reducing both the in-time and the out-of-time pile-up.

5.2.4 Tests and results

Sometimes there are not enough resources to execute a parallel algorithm with more than

one CPU thread. Even a good parallel algorithm could achieve slightly worse performance

with respect to a good sequential implementation. This is caused by overhead needed

to make data structures thread-safe and for parallel book-keeping. For this reason, the
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Table 5.1: Comparison between different implementations of the search algorithm running on
the same CPU Intel Core i7-4771 running with a clock frequency of 3.50 GHz. The
search has been used in a nearest-neighbor algorithm: the algorithm searches for
neighboring hits in a volume around each of the 50, 000 three-dimensional points.

Algorithm Time speed-up wrt naive search

naive search 23795 ms 1×
recursive FKDTree 145 ms 164×
BFS FKDTree (1 thread) 112 ms 212×
BFS FKDTree (4 threads) 30 ms 793×

sequential execution of FKDTree needs to be compared to the performance achieved by

other good sequential-only implementations.

Table 5.1 shows the result of the comparison for 50, 000 points when performing a

nearest-neighbors search. The sequential BFS implementation in FKDTree does not only

show no regression, but it’s actually 30% faster than the recursive one, due to the smaller

number of branches.

Note also that the parallel version launched using 4 threads does not guarantee a perfect

factor 4 improvement in computational performance, due to Amdahl’s law, as described

in Section 4.2.1.

Now that it has been proven that there is an advantage even when running sequentially

by adapting the algorithm for parallel computation, a measurement of how well the

parallel implementation performs on different architectures has been carried out.

The result of these measurements is summarized in Table 5.2: for measuring the perfor-

mance of the search algorithm on CPUs, the Intel TBB implementation has been used

assigning on search query to a different CPU thread. For GPUs instead, the CUDA

implementation was used, mapping one CUDA thread to a different search query. In this

benchmark, the measured throughput is the average number of searches in the unit time.

The throughput was measured by executing the same set of search queries on different

architectures, and the results were verified to be the same. Parallel implementations

running on traditional CPU architectures can achieve at most half of the throughput

achieved by GPUs. However, the performance of CPUs and GPUs should not be consid-

ered as exclusive. The real benefit of heterogeneous systems is that one or more GPUs

can execute high-throughput algorithms while the CPU can run something else or execute
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Table 5.2: Comparison between different architectures when running FKDTree BFS search
algorithm.

Architecture Frequency Physical cores Threads searches/ms

CPU: Intel i7 6700K 4.00 GHz 1× 4 8 1820
CPU: IBM Power8 Minsky 2.9 GHz 2× 10 160 2820
CPU: Intel KNL 7210 1.3 GHz 1× 64 256 1360
GPU: NVIDIA K40 745 MHz 2880 — 4400
GPU: NVIDIA P100 1.3 GHz 3584 — 9910

the same workload. In the case of FKDTree, the best performance can be achieved by

combining together on the same machine one or more IBM Power8 Minsky CPUs and

up to eight NVIDIA P100 GPUs.

5.3 Hit-Chain Maker using a Cellular Automaton

In this section, a solution to the problem of creating seeds with three or four hits,

namely triplets and quadruplets, in the upgraded Phase-1 pixel detector is discussed,

which includes four barrel layers and three end-cap disks per direction. This geometry

provides a four-hits coverage against the three-hits coverage of the 2016 Pixel Detector

(Section 2.5). In the event reconstruction software, a list of seeding layers is passed via a

configuration file. For the geometry shown in Figure 5.8, the layer list for the HLT Pixel

Tracks step would be:

1. BPix1+BPix2+BPix3+BPix4

2. BPix1+BPix2+BPix3+FPix1+

3. BPix1+BPix2+FPix1++FPix2+

4. BPix1+FPix1++FPix2++FPix3+

5. BPix1+BPix2+BPix3+FPix1−

6. BPix1+BPix2+FPix1−+FPix2−

7. BPix1+FPix1−+FPix2−+FPix3−
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Figure 5.8: Simplified Phase-1 Pixel detector geometry with layer names.

Figure 5.9: The Triplet Propagation algorithm is the natural continuation of the seeding
approach used up to 2016: propagate a triplet found with 2016 seeding to the fourth
layer and search for compatible hits.

where B is used to indicate a Barrel layer and F to indicate a forward one.

Triplet Propagation

The classical approach of track seeding in the Phase-1 detector would be to extend the

existing algorithms, that have been used until 2016, to propagate the triplets to a fourth

layer, hence creating quadruplets. However, this approach is not suitable for parallel

architectures and it is therefore used for comparison only. This method is called Triplet

Propagation (Figure 5.9).

The Triplet Propagation algorithm can be summarized as follows:

• One combination of four layers is picked from the layer list (e.g. combination

number 1).
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• Pairs of hits compatible with the region configuration are created between the first

two layers in the combination (e.g. between BPix1 and BPix2).

• Every created pair propagates to the third layer (e.g. BPix3), creating a two-

dimensional box where hits are searched. These hits, together with the already

formed hit doublet, form triplets.

• Every created triplet propagates to the fourth layer (e.g. BPix4), creating a two-

dimensional box where hits are searched. For each triplet, only the hit on the

fourth layer that produces the best fit is used for forming a quadruplet.

The entire process is repeated for every combination in the layer list.

There are some disadvantages with this approach:

• As the 2016 triplet seeding is a subset of the triplet propagation approach, the

latter will certainly be slower.

• Propagating a triplet to form a quadruplet does not make the algorithm easier to

parallelize, as it adds another iteration that has dependencies on the completing

previous one. Coarse-grained parallelism is still possible by associating one thread

to a triplet, but it will not be enough to exploit a massively parallel architecture like

a GPU, for which a fine-grained parallelism is desirable (Gustafson’s law described

in Section 4.2).

• Doublets and triplets from the same sub-set of layers in different combinations are

evaluated multiple times. As an example: triplets from BPix1+BPix2+BPix3 are

calculated in combinations 1, 2 and 5.

An implementation of quadruplet seeding that takes longer CPU time, would have to be

executed on a smaller number of events at the HLT due to limited computing resources.

This would lead to degraded physics performance. Furthermore, in offline reconstruction

this will create a higher demand of resources which is not sustainable.

5.3.1 Cellular Automata

The upgrade of the pixel detector is a good opportunity to restructure the mathematical

formulation of the problem and to introduce innovations at the algorithmic level.
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Figure 5.10: Conway’s Game of Life in consecutive steps of its evolution [157].

The class of mathematical models that worked as inspiration for a local and parallelizable

algorithm used to restructure the CMS track seeding goes under the name of Cellular

Automata (CA) [156]. One example of a Cellular Automaton is the Conway’s Game of

Life [157]. It is a game without any players, and its evolution is determined solely by its

initial state (Figure 5.10):

• A grid of square cells represents the world. Every cell has eight neighbors, its

adjacent cells.

• Each cell can be found in two states: dead or alive.

• The state of each cell evolves in discrete time intervals, called generations. There

can be four different states:

1. Under-population: a living cell dies if less than two neighbors are alive.

2. Overcrowding: a living cell dies if more than three neighbors are alive.

3. Stability: a living cell survives if two or three neighbors are alive.

4. Expansion: a dead cell becomes a living cell if exactly three neighbors are

alive.

• It is important to update the state of all the cells simultaneously going from one

generation to the next one.

What makes a Cellular Automaton easy to parallelize is the fact that a cell does not

need to have any knowledge of the world outside the neighboring cells. The interaction

between a cell and its neighbors is based on simple and local calculations.
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5.3.2 Graph of Seeding Layers

The Hit-Chain Maker based on the CA could have reused the infrastructure of the Triplet

Propagation, running once for each combination of four layers. This would have caused

the repetition of the evaluation of some parts of the algorithm, such as the pair generation

or the neighbor finding between cells belonging to adjacent layers. It is possible to avoid

all repetitions by parsing the entire layer list with all the desired combinations and

evaluate hit pairs exactly once.

Two graphs are created: one containing layer pairs (GLP), and one containing layers (GL).

When parsing a new combination of four layers, the algorithm proceeds as follows:

• The presence of each layer in GL is checked. If the layer is already contained in

GL, its index is considered, otherwise a new index is created.

• If this layer is not the first one in the combination of seeding layers, a layer pair

formed using the indices of this layer and the preceding one is considered. If this

layer pair is not contained in GLP, pairs of hits compatible with the seeding region

are evaluated and the layer pair is added to GLP.

• A layer which is the first one in the combination of the seeding layers is called Root

layer.

Connections between nodes of the GL and GLP graphs are created as follows:

• A layer is the outer layer of a layer pair, if it appears later in the layer combination.

• A layer is the inner layer of a layer pair, if it appears before in the layer combination.

• A layer pair is the outer layer pair of a layer, if the layer is one of the layer pair’s

inner layers.

• A layer pair is the inner layer pair of a layer, if the layer is one of the layer pair’s

outer layers.

As an example, connections and nodes of the two graphs for the specific case of HLT

Pixel Tracks are shown in Figure 5.11.
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Figure 5.11: CAGraph for layers and layer pairs.

Implementation

First, an instance of a container class called CAGraph is created (Listing 5.3). CAGraph

contains all the unique layers and the unique pairings of layers found in the configuration.

By looping over all the combinations and through all the layers in each combination,

parsing the whole layer list proceeds like follows:

• if a layer has never been found it is pushed to the list of layers in CAGraph.theLayers;

• if the layer is the first one in the combination and has never been found as a root

layer, its index is pushed into CAGraph.theRootLayers;

• whenever a new CALayer is created, the indices of adjacent layers and layer pairs

are stored in its containers theInnerLayers, theOuterLayers,

theInnerLayerPairs and theOuterLayerPairs.

• if two consecutive layers in a combination have never been found together, they

form a new CALayerPair and they are pushed into CAGraph.theLayerPairs;

5.3.3 Cell Creation

A Cell is the building block of the Hit-Chain Maker using the CA. It can be constructed

starting from two hits that are compatible with the track seeding criteria. Two cells are

said to be neighbors if:

• They have one hit in common.
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Listing 5.3: Simplified code of the CAGraph container. vector and concurrent vector are
containers developed in the context of this work.

1 struct CALayer

2 {

3 vector <int > theOuterLayerPairs;

4 vector <int > theInnerLayerPairs;

5 vector <int > theOuterLayers;

6 vector <int > theInnerLayers;

7 vector < concurrent_vector <CACell*> > isOuterHitOfCell;

8 };

9
10 struct CALayerPair

11 {

12 int theLayers [2];

13 vector <CACell > theFoundCells;

14 };

15
16 struct CAGraph

17 {

18 vector <CALayer > theLayers;

19 vector <CALayerPair > theLayerPairs;

20 vector <int > theRootLayers;

21 };

• They are compatible.

Compatibility between two cells will be discussed in Section 5.3.4. In addition to the

information of the two hits, it also contains:

• the state of the Cell, CAState, which is initially set to 0;

• the pointers to the inner and outer neighboring Cells.

The state of the cells and their neighbors will be used when the CA evolves. The creation

of a cell from a doublet is independent from the creation of another cell and allows to

map each cell to the hits that it connects.

For reducing the complexity of later parts of the algorithm, it is a useful choice to keep

track of the opposite connection as well, i.e. from hits to Cells.

Implementation

For this reason a container isOuterHitOfCell is introduced(line 7 of Listing 5.3). This

container stores the pointers to all the cells that have a hit as an outer hit in the doublet.

Filling this container is not straightforward in a concurrent environment. In fact, two
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Listing 5.4: A thread-safe push back method in CUDA.

1 __device__

2 int push_back_ts(const T& element)

3 {

4 auto previousSize = atomicAdd (&m_size , 1);

5 if(previousSize <maxSize)

6 {

7 m_data[previousSize] = element;

8 return previousSize;

9 }

10 else

11 {

12 atomicSub (&m_size , 1);

13 return -1;

14 }

15 };

different cells can share the same outer hit and a race condition could arise. A race

condition could occur when two threads access a shared variable at the same time and

they are not synchronized. In order to avoid that, the isOuterHitOfCell data structure

must become thread-safe, concurrent-friendly. Thread-safety is achieved by means of

atomic functions, which are capable of reading, modifying, and writing a value back

to memory without the interference of any other threads, hence guaranteeing that a

race condition will not occur. Listing 5.4 shows how the push back method becomes

thread-safe:

• line 1: device is a CUDA function attribute. It indicates that a function will

be called by the GPU code to be executed on the GPU itself;

• line 4: the size of the container is increased atomically by 1. However, the size is

checked to be smaller than the container maximum size, before any push operation

can be done;

• line 7: the element is pushed into the container;

• lines 10-13: The insertion fails in the case the insertion goes beyond the allocated

size for the container. In this case, the size is reset back to its original value.

All the data structures involved are now thread-safe and the creation kernel can be safely

parallelized.

In the HLT Pixel Tracks step, there are 13 unique pairs of layers (on the right in Fig-

ure 5.11). These layer pairs can be treated independently in parallel. A two dimensional
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Listing 5.5: A simplified version of the creation kernel.

1 __global__

2 void kernel_create(const GPULayerDoublets* gpuDoublets ,

3 const GPULayerHits* gpuHitsOnLayers , CACell ** cells ,

4 vector <CACell*> ** isOuterHitOfCell , int numberOfLayerPairs)

5 {

6
7 unsigned int layerPairIndex = blockIdx.y;

8 unsigned int cellIndexInLayerPair = threadIdx.x + blockIdx.x * blockDim.x;

9 if (layerPairIndex < numberOfLayerPairs)

10 {

11 int outerLayerId = gpuDoublets[layerPairIndex ]. outerLayerId;

12
13 auto& thisCell = cells[layerPairIndex ][ cellIndexInLayerPair ];

14 thisCell.init(& gpuDoublets[layerPairIndex], gpuHitsOnLayers ,

15 layerPairIndex , cellIndexInLayerPair);

16 isOuterHitOfCell[outerLayerId ][ thisCell.get_outer_hit_id ()]. push_back_ts (&(←֓
thisCell));

17 }

18 }

grid of one dimensional blocks of threads that work in parallel on all the graph of layers

is built as follows:

• blocks of threads are distributed in two dimensions: x and y.

• The y coordinate of a block is associated to the identifier of a unique layer pair in

the CAGraph. In the case of Pixel Tracks, its maximum value is 13.

• Each block contains threads distributed only along the x dimension.

• The number of threads in each block should be fixed and should be a multiple of

the warp size.

• A thread is uniquely associated with a Cell.

• The number of blocks used in a row depends on the number of cells in a layer pair.

Listing 5.5 shows a simplified version of the creation kernel:

• line 1: global is a CUDA function attribute. It indicates that this function is

a kernel, i.e. it is called from the CPU code and its content will be executed on the

device.

• lines 7-8: there is no for-cycle. This kernel is executed by the entire grid. Each

thread in each block, when reading built-in variables like blockIdx.x, sees a
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Figure 5.12: A cell (in green), looping over the three cells (in black) sharing its inner hit.

different version of it. As an example, thread 27 belonging to the block (4, 7) will

assign 7 to the variable layerPairIndex. The value of cellIndexInLayerPair

depends on the number of threads per block. In the case of blocks containing 128

threads, cellIndexInLayerPair will be assigned a value of 27 + 128 ∗ 4 = 539.

• line 14: every thread initializes the cell that it is assigned to. The state, CAState,

of the cell is initialized to 0.

• line 16: the pointer to the cell is stored into the isOuterHitOfCell in the location

which corresponds to the outer hit index.

5.3.4 Cells Connections

The second step consists in finding neighbors for each Cell. Two cells are said to be

Neighboring Cells if all of the following conditions are satisfied:

1. They belong to different layer pairs.

2. They have one hit in common, i.e. the inner hit for one cell is the outer hit for

another cell.

3. They are aligned along the R− z plane.

122



5.3 Hit-Chain Maker using a Cellular Automaton

Figure 5.13: The longitudinal plane compatibility between two cells depends on the angle θ.

4. They are compatible with a circular trajectory coming from the beam-spot in the

x− y plane.

Longitudinal plane compatibility

In the R−z plane, the alignment between two Cells, AB and BC, is enforced by requiring

the following conditions (Figure 5.13). The area (in green) between two cells can be

written as:

A = zA(RB −RC) + zB(RC −RA) + zC(RA −RB) (5.1)

The angle θ is related to A by the relation:

tan(θ) =
2A

dist2(A,C)
≈ θ (5.2)

for small values of θ. For multiple Coulomb scattering the following relation holds [158]:

θRMS ∝ 1

p
(5.3)

It is possible to find a threshold value for θRMS, for a given value of p, which is passed

via external configuration together with the seeding criteria:

2 · A · pmin < dist2(A,C) · κlong (5.4)
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Figure 5.14: Transverse plane compatibility.

where κlong is a constant that can be tuned as an external parameter, and depends on

the detector structure and region hypothesis.

Transverse plane compatibility

In the x− y plane, compatibility is calculated using the intersection between the circum-

ference (C, r) given by the beam-spot from external configuration and the circumference

(C ′, r′) passing through the three hits belonging to the two cells (Figure 5.14). Calculating

the intersection points between two circles can be computationally expensive and for this

reason, only the coordinates of the center C ′ and the radius r′ are computed.

Two circles intersect if the following condition holds:

r′ − r ≤ dist(C,C ′) ≤ r′ + r. (5.5)

Multiple scattering and displaced tracks are taken into account by adding a tolerance

ρtrans to the radius of the beam-spot r (shown in red in Figure 5.14).
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However, if the two cells are aligned, floating point precision could be insufficient to

evaluate correctly a very large radius. Therefore, the straight line between the innermost

point and the outermost point is required to intersect the beam-spot circumference.

Implementation

The grid of threads is still the same as for the creation kernel, where each thread is

mapped to a cell and the y-coordinate of a block indicates the layer pair. In the connection

kernel each cell loops over the cells that share its inner hit. The pointers to these cells

for each hit are stored in the isOuterHitOfCell container, which had been filled in the

creation phase. Figure 5.12 shows a cell (in green), looping over the three cells (in black)

sharing its inner hit.

Now that the set of cells to loop over has been restricted to those that satisfy the

condition number 1, it is possible to check the compatibility between those cells both in

the longitudinal and in the transverse planes.

Since the compatibility check is called many times per Cell, it is important to find

relations that do not involve slow transcendental function calls, square roots, divisions

that take a high number of clock cycles.

5.3.5 Evolution

The previous steps have created a graph of interconnected Cells.

The purpose of the evolution step is to propagate the information of the length of a

neighboring chain of cells to the innermost cells, in the least computationally expensive

way possible.

Initially, during the creation step, every Cells’ state has been set to 0. Consider two

Cells, A and B, where A is the inner neighbor of B. Then, the evolution rule states that

if CAStateA=CAStateB, then the state of the inner neighbor will increase by 1 in the

next generation: CAStateA = CAStateA + 1.

This evolution rule is repeated for a number G of generations. After G generations, a cell

with CAState = G, will start a chain of G more interconnected Cells. Therefore the n-

tuplet originating from that cell will contain G+2 hits. As an example, if one is interested

in quadruplets, the Cellular Automaton has to evolve at least twice (Figure 5.15).
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Figure 5.15: A Cellular Automaton that has evolved for two generations. Root cells are indicated
with R.

Parallelism is evident and it is achieved in two steps per generation, in order to avoid

race conditions. In the first step, for each cell satisfying the evolution rule, a flag

hasSameStateNeighbor is set from 0 to 1. Then, a synchronization marks the beginning

of the next generation. Finally, the CAState of each cell is increased by the value of its

hasSameStateNeighbor flag.

5.3.6 Quadruplet Finder

If a Cell’s CAState = 2 and its inner hit is on a root layer (BPix1, in the case of HLT

Pixel Tracks), it is certainly the origin of a quadruplet and it is therefore marked as a

Root cell (indicated by a blue letter R in Figure 5.15). A Depth-First Search (DFS)

starts from each Root cell and looks for quadruplets [154]. A DFS is used because, in

future implementations of the Hit-Chain Maker using the CA, one could prefer searching

for all the n-tuplets up to n hits. As an example, if the CA approach is extended to the

strip detector, it could be possible to fill different n-tuplet buckets: triplets, quadruplets,

pentuplets, et cetera. The advantage of this approach is that these different buckets are

disjoint sets: an element of the triplet bucket could not have been extended more and

become a quadruplet.

In the final implementation, searches starting from two different Root cells are independent

from each other and, therefore, they are performed by different threads.

After quadruplets have been found, they are fitted with a line in the longitudinal plane

and with a circle in the transverse plane. If the resulting χ2 does not exceed a threshold
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set by external configuration, then the quadruplet goes to the final track fit used to get

an estimate of the track parameters.

The pair of two hits is the building block of the algorithm, while a Graph is used

for keeping track of the connections between layer pairs. This structure allows the

implemented CA-based Hit-Chain Maker to be very flexible and it can be potentially

extended to any geometry with an arbitrary number of layers, and also to reduce the

number of duplicate seeds in case of overlapping modules within the same layer.
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Chapter 6

Performance and Results

In this chapter, the performance of the CMS Phase-1 Tracking using the Hit-Chain Maker

based on the CA track seeding algorithm described in Section 5.3 is evaluated.

6.1 Pixel Tracks using the CA-based Hit-Chain Maker

Referring to the definition used in Section 3.2.3, a reconstructed track contributes to the

increase of the efficiency if more than 75% of the hits it contains have been produced by

the same simulated particle. Therefore, in a quadruplet, the presence of one hit belonging

to another simulated track would cause the quadruplet to be labeled as fake. The Pixel

Tracks step at HLT is focused at reconstructing medium-high momentum prompt tracks,

with Rmax = 2 mm, zmax = 24 cm, and pT > 0.9 GeV/c. The tuning of the parameters of

the Hit-Chain Maker based on the CA has been done with the objective of keeping similar

efficiency, while rejecting more fake tracks if compared to the Triplet Propagation. The

resulting tuned values for the HLT Pixel Tracks are κlong = 0.0012 and ρtrans = 2 mm.

The performance of the Cellular Automaton-based Hit-Chain Maker running at the HLT

Pixel Tracks was evaluated with respect to the 2016 Pixel Tracking and the Triplet

Propagation algorithm, described in Section 5.3. The sample used to evaluate the

performance comprises 1000 simulated tt̄ events at an energy of
√
s = 13 TeV, with a flat

pile-up distribution with an average of 50 superimposed pile-up collisions. This sample

was reconstructed using CMSSW version 8.1.0.

Figure 6.1 shows the track reconstruction efficiency at the Pixel Tracks step for the
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Figure 6.1: Pixel Tracks reconstruction efficiency for simulated tt̄ events with a flat pile-up
distribution with an average of 50 superimposed pile-up collisions, showing in
blue the Cellular Automaton-based Hit-Chain Maker algorithm, in red Triplet
Propagation and in black the 2016 Pixel Tracking. The ratio pad underneath shows
the performance of each algorithm with respect to the CA-based Hit-Chain Maker.

Cellular Automaton algorithm compared to the Triplet Propagation and the 2016 Pixel

Tracking. The drop in efficiency for quadruplets algorithms in the pseudo-rapidity interval

1 < |η| < 1.5 is due to the passage from the barrel region to the forward region. Here,

the four-hits coverage is not complete. Possible later iterations that make use of triplets

could recover part of this inefficiency. Furthermore, the 2016 Pixel Tracking’s efficiency is

about 30% lower than the CA approach. This is mainly caused by the different detector

geometry.

The fake-rate is shown in Figure 6.2. The reduction of the fake-rate by almost two

orders of magnitude is an advantage coming from the upgrade of the Pixel Detector.

This is mainly due to the much higher purity of quadruplets with respect to triplets.

The main reason why the fake-rate grows with decreasing transverse momentum below

pT = 0.3 GeV/c is due to the minimum value of the transverse momentum configured

in the seeding region. For Pixel Tracks at HLT, this value is pmin
T = 0.9 GeV/c and
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Figure 6.2: Pixel Tracks reconstruction fake-rate for simulated tt̄ events with 50 superimposed
pileup collisions. In blue the Cellular Automaton algorithm, in red Triplet Propa-
gation and in black the 2016 Pixel Tracking. The ratio pad underneath shows the
performance of each algorithm with respect to the CA.

compatible hits are filtered following this hypothesis when computing seeds. This makes

the correct reconstruction of very low transverse momentum tracks difficult. If compared

to the Triplet Propagation algorithm, the CA Pixel Tracking shows a fake-rate which is

lower by up to 40%.

6.1.1 Latency measurements, configuration and results

A machine with the following configuration has been employed to carry out measurements

of the execution time:

• Intel Core i7-4771 CPU @ 3.50GHz, 4 cores, 8 hw-threads,

• 16 GByte main memory,

• Scientific Linux CERN release 6.7,
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Table 6.1: Timing performance of Pixel Tracks for different algorithms.

Algorithm Timing

GPU Cellular Automaton (1.2± 0.9) ms
CPU Cellular Automaton (14.0± 6.2) ms
Triplet Propagation (72.1± 25.7) ms
2016 Pixel Tracks (29.3± 13.1) ms

• NVIDIA GTX 1080,

• CUDA v8.0,

• CMSSW 8.1.0.

The sample used to measure timing is the same sample used for evaluating the physics

performance shown earlier in this section. In all the three cases, the time interval

measured are delimited by:

• The beginning of the seeding function.

• The found quadruplets or triplets are returned and are ready for the final fit.

The results of the measurements are shown in Table 6.1. The CA-based Hit-Chain Maker

executing on a GPU is about 60× faster than the Triplet Propagation and about 24×
faster than 2016 Pixel Tracking running on CPUs.

6.1.2 Integration and Demonstrators

Demonstrators of the GPU-based Cellular Automaton at the HLT Pixel Track step will

be created during 2017, once all the steps from RAW data to Pixel Tracks have been

developed to run on a GPU. Three approaches of integration have been identified, each

with its assets and liabilities.

GPU-enhanced Builder Units

Figure 6.3 shows the approach in which Builder Units are GPU-accelerated. This method

requires the evaluation of Pixel Tracks on GPUs to be executed on every event, with
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Figure 6.3: Simplified architecture of an HLT farm with GPU-enhanced Builder Units.

a number of GPUs that is constrained by the number of Builder Units. However, this

method would have the performance of standalone applications without requiring to

restructure the architecture of the farm.

A demonstrator for the GPU-enhanced Builder Units was created with the following test

configuration:

• 2 sockets x Intel(R) Xeon(R) CPU E5-2650v4 2.20GHz (12 physical cores).

• 256 GByte main memory.

• Scientific Linux CERN release 7.2.

• 8× GPUs NVIDIA GTX 1080Ti.

• CUDA v8.0.

A test was performed for measuring sustained event rate and energy efficiency. The

sample used to evaluate the performance comprises 100 simulated tt̄ events at an energy
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of
√
s = 13 TeV, with a flat pile-up distribution with an average of 50 superimposed

pile-up collisions. Before the test the following actions were performed:

• Hit doublets for 100 events were preloaded in the host memory.

• Each CPU core was assigned a host thread.

• Each GPU was assigned a host thread.

• Memory needed to process 8 events concurrently on each GPU is preallocated.

• A concurrent queue is filled with 25 million indices of events to process.

During the test, when a host thread becomes idle, it tries to pop a new event index from

the queue:

• If the host thread is associated to a GPU, doublets are copied to the GPU, the

GPU version of the Hit-Chain Maker is executed and quadruplets are copied back

to the host memory.

• If the host thread is associated to a CPU core, the CPU version of the Hit-Chain

Maker is executed.

The test goes one until the event queue is empty. During the test the number of events

processed by each host thread in the unit time was monitored, as well as the electric

power used by the processor using the tools turbostat for the CPU, nvidia-smi for the

GPU. The same test was also performed for a CPU-only configuration, with no host

thread associated to a GPU.

Results are shown in Table 6.2 and Table 6.3. The results of the test show that it

is possible to execute the Hit-Chain Maker on all the events with a low number of

GPU-enhanced Builder Units. The hybrid configuration, which uses the GPUs together

with the installed CPU cores can achieve a higher energy efficiency with respect to a

traditional CPU-only configuration. The amount of power needed to run 14 hybrid nodes

is about 17.2 kW, while the CPU-only configuration would need 24.7 kW to produce the

same results using 128 nodes.
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Table 6.2: Sustained event rate of the Hit-Chain Maker running in the GPU-enhanced Builder
Units demonstrator. The number of nodes required to be able to sustain an event
input rate of 100 kHz was also extrapolated.

Configuration GPU Rate (Hz) CPU Rate (Hz) Nodes to sustain 100 kHz

Hybrid 6527 613 14
CPU-only N/A 777 128

Table 6.3: Energy efficiency performance of the Hit-Chain Maker running in the GPU-enhanced
Builder Units demonstrator. The average power consumption was measured using
internal registers. The energy efficiency was calculated as the ratio between the
average event rate and the average power consumption.

Configuration GPU Power (W) CPU Power (W) Evts/J

Hybrid 1037 191 GPU: 6.3, CPU: 3.2
CPU-only N/A 191 4.1

Heterogeneous HLT farm

In the heterogeneous HLT farm approach, the Builder Units send packed events to the

Filter Units where the processing and filtering happens. However, the RAW data coming

from the Pixel Detector is sent to a dedicated GPU node, where the evaluation of the

Pixel Tracks is executed on GPUs. Then, the results are transmitted to the correct Filter

Unit for that event (Figure 6.4).

The communication protocol is be based on Message Passing Interface (MPI) [159], with

the addition of GPU Direct [160]. GPU Direct allows network packets to be read directly

from the network interface by bypassing the Linux kernel in a zero-copy fashion. In

the context of this thesis work a framework called PATATRACK has been developed

[161]. A circular buffer is allocated by the GPU Direct driver which contains pointers to

the incoming packets in the GPU memory. The trigger framework can read packets by

simply dereferencing those pointers and updating the index to the next slot that will

host the next incoming packets. Communication with the network adapter happen in

Direct Memory Access (DMA). This means that the network adapter can access system

memory independently of the CPU, generating only one interrupt per transferred block

(instead of one interrupt per transferred byte).
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Figure 6.4: Simplified architecture of a heterogeneous HLT farm.

The strengths of this approach are:

• The scale of the system is flexible, and can be adjusted based on needs independently

from the rest of the farm.

• The system can achieve better timing performance as it can run in a standalone

application and more events can be processed at the same time by the same kernel

increasing the overall throughput.

• The GPU machines can be used during the periods of time in which no data is

taken to train deep neural networks.

• The intermediate products (e.g. Pixel Clusters) never leave the GPU memory.

• It’s future-ready: when events will become more complex during LHC Run 4, it

would be possible to execute tracking or clustering for one event on different nodes

for different portions of the detector.

On the other side the weaknesses are the following:
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Figure 6.5: Simplified architecture of an HLT farm with GPU-enhanced Filter Units.

• Builder Units will have to send the RAW data along with an identifier of the Filter

Units that needs that results.

• Filter Units need to be able to offload computation to another node and compute

some other task while waiting for the processed Pixel Tracks.

• Detector conditions have to be received and interpreted by the standalone applica-

tion.

GPU-enhanced Filter Units

Another approach consists in equipping each Filter Unit with one or more GPUs (Fig-

ure 6.5). This method requires GPU code to be integrated in CMSSW with its limita-

tions:

• Process one event at a time per CPU thread.

• Memory traffic between CPU and GPU.

137



Chapter 6 Performance and Results

• It won’t be possible to run one event on many nodes/GPUs without MPI support.

However, a strong asset is that there would not be any need of redesign the architecture

of the farm.

The GPU-enhanced Builder Unit approach is the main candidate to be implemented at

the High-Level trigger farm during the LHC Run 3 and 4 [162].

6.2 Sequential CA-based Hit-Chain Maker in the online

tracking

The improved physics performance of the CA-based Hit-Chain Maker with respect

to the Triplet Propagation implementation and the possibility to enable fine-grained

parallelism within one event, lead to the introduction of a sequential version of the

Cellular Automaton during the LHC Run-2. This earlier introduction required the

porting of the CUDA implementation of the CA-based Hit-Chain Maker to C++.

Including the track seeding based on the Cellular Automaton during LHC Run-2 has

two main advantages. First, it would make the transition to the CA-based Hit-Chain

Maker running on GPUs during the LHC Run 3 in 2020 much easier. This is motivated

by the fact that the CUDA and the sequential implementations produce the same results.

Secondly, code designed to be executed in parallel can perform better than purely

sequential implementations, when executed on a CPU using one thread. This is due to

the attention paid to the development of parallel-friendly data structures and optimized

memory access pattern, which is required when developing a parallel program. The same

data structures used in the CUDA implementation have been reused and replaced by

their C++ Standard Template Library [163] equivalent. By running this version on the

same data samples reconstructed in Section 6.1, the same physics results were obtained.

An overview of the physics performance showing the result of a first tuning of the Cellular

Automaton at the Pixel Tracks step is shown in Figure 6.6. The Pixel Tracks seeding is

executed at Iter0 with the seeding region pmin
T = 0.9 GeV. Iter1 recovers efficiency in the

low momentum region below 1 GeV. By adding a triplet iteration, Iter2, efficiency can

reach a plateau around 80%.
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Figure 6.6: Stacked efficiency plot for the Online Iterative Tracking with the Cellular Automaton
Pixel Tracks.

The CPU timing, measured using the same methodology, is (14.0± 6.2) ms. This makes

the sequential version about 12 times slower than the GPU version, but respectively 15

and 2 times faster than the Triplet Propagation and 2016 Pixel Tracking.

6.3 Sequential CA-based Hit-Chain Maker in the offline

track seeding

The physics performance of the 2017 track reconstruction based on the Cellular Automaton

track seeding has been assessed and compared to the track reconstruction based on legacy

triplets and their propagation. All the iterations of the offline iterative tracking that

make use of pixel tracking (Table 6.4), have been ported to use the CA-based Hit-Chain

Maker algorithm.

Tuning the CA parameters for the offline track reconstruction is more complex than for

HLT Pixel Tracks. Not only the number of iterations is higher, but there are dependencies

between iterations, as the output of an iteration is the input of the following one. The
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resulting tuned parameters are shown in Table 6.4. The tuning of the parameters has

been achieved by tightening the cuts of one iteration until efficiency starts to be affected.

If two configurations give the same physics result, the one with the smallest execution

time has been chosen. Once the parameters of one iteration have been tuned, they are

fixed and the tuning of the next iteration can start. The performance of the offline

Table 6.4: Iterations of the 2017 offline iterative tracking ported to the CA-based Hit-Chain
Maker seeding.

Iteration Seeds κlong ρtrans [mm]

InitialStep1 pixel quadruplets 0.0012 2
LowPtQuad pixel quadruplets 0.0017 3
HighPtTriplet pixel triplets 0.004 0.7
LowPtTriplet pixel triplets 0.002 0.5
DetachedQuad pixel quadruplets 0.0011 0
DetachedTriplet pixel triplets 0.001 0

track reconstruction based on the Cellular Automaton has been compared to the 2016

track reconstruction (Figure 6.7). The reconstruction efficiency is increased, especially

in forward region. The fake-rate is significantly reduced in the entire pseudo-rapidity

range. The resolution of the determination of the transverse momentum does not benefit

much on the upgraded detector (Figure 6.8). On the other side, Figure 6.9 shows that

the impact parameters resolution is improved over all the η spectrum.

The physics performance of the track reconstruction which uses the CA-based Hit-Chain

Maker seeding has been compared to the best alternative, the Triplet Propagation seeding,

described in Section 5.3. The results of this comparison are shown in Figure 6.10. The

dataset used for the comparison comprises 10000 simulated tt̄ events with 35 superimposed

pileup collisions. The overall track reconstruction efficiencies are very similar while the

fake-rate when seeding uses the Cellular Automaton becomes lower by up to about 40%

when transitioning from the barrel to the forward region with |η| > 1.5.

It is important to study how the track reconstruction performance changes at different

pile-up conditions. The results of this study for the Triplet Propagation seeding are

shown in Figure 6.11 and Figure 6.12, while Figure 6.13 and Figure 6.14 show the

1In the original implementation, the Initial Step is based on triplet extension seeding: a triplet is found
and then a Kalman filter is used to find the fourth hit.
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Figure 6.7: Performance of the track reconstruction using the CA-based Hit-Chain Maker
seeding, compared to the 2016 track reconstruction. The performance has been
measured for 10000 simulated tt̄ events with 35 superimposed pileup collisions. Only
simulated tracks with transverse momentum greater than 0.9 GeV and transverse
impact parameter lower than 3.5 cm contribute to the efficiency. Only reconstructed
tracks with transverse momentum greater than 0.9 GeV contribute to the fake-
rate [164].

physics performance computed after replacing the Triplet Propagation algorithm with

the CA-based Hit-Chain Maker on the same input dataset. The efficiency is slightly

affected by the increasing pile-up. This is caused by the fact that more fake tracks pass

the track selection and their hits get removed from the pool of available hits, making

the reconstruction of other simulated tracks more difficult. The efficiency of the two

seeding algorithms is substantially the same. The CA-based Hit-Chain Maker shows a

fake rejection which is better than Triplet Propagation by few percent, especially in the

endcap region |η| > 1.
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Figure 6.8: Track pT resolution as a function of the simulated track pT (left) and η (right) for
2016 and 2017 tracking, this latter using the CA-based Hit-Chain Maker. The pT
resolution improves in 1.2 < |η| < 1.6, because the fourth pixel layer yields better
precision on the track extrapolation to the strip tracker in the pixel barrel-forward
transition.
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Figure 6.9: Resolutions of the track transverse impact distance d0 (left) and longitudinal impact
point dz (right) as a function of the simulated track η for 2016 and 2017 detectors.
The 2017 detector shows better performance than 2016 over all the η spectrum.
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Figure 6.10: Performance of the track reconstruction using the CA-based Hit-Chain Maker
seeding, compared to the Triplet Propagation tracking. The performance has been
measured for 10000 simulated tt̄ events with 35 superimposed pileup collisions.
Only simulated tracks with transverse momentum greater than 0.9 GeV and
transverse impact parameter lower than 3.5 cm contribute to the efficiency. Only
reconstructed tracks with transverse momentum greater than 0.9 GeV contribute
to the fake-rate [164].
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Figure 6.11: Performance of the track reconstruction using the Triplet Propagation seeding
as a function of η at different pile-up conditions. The performance has been
measured for 10000 simulated tt̄ events. Only simulated tracks with transverse
momentum greater than 0.9 GeV and transverse impact parameter lower than
3.5 cm contribute to the efficiency. Only reconstructed tracks with transverse
momentum greater than 0.9 GeV contribute to the fake-rate [164].
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Figure 6.12: Performance of the track reconstruction using the Triplet Propagation seeding as a
function of pT at different pile-up conditions. The performance has been measured
for 10000 simulated tt̄ events. Only simulated tracks with |η| < 2.5 and transverse
impact parameter lower than 3.5 cm contribute to the efficiency [164].

Figure 6.13: Performance of the track reconstruction using the CA-based Hit-Chain Maker
seeding as a function of η at different pile-up conditions. The performance has been
measured for 10000 simulated tt̄ events. Only simulated tracks with transverse
momentum greater than 0.9 GeV and transverse impact parameter lower than
3.5 cm contribute to the efficiency. Only reconstructed tracks with transverse
momentum greater than 0.9 GeV contribute to the fake-rate [164].
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Figure 6.14: Performance of the track reconstruction using the CA-based Hit-Chain Maker
seeding as a function of pT at different pile-up conditions. The performance
has been measured for 10000 simulated tt̄ events. Only simulated tracks with
|η| < 2.5 and transverse impact parameter lower than 3.5 cm contribute to the
efficiency [164].

Figure 6.15: Track seeding (left), track building (center) and total track reconstruction (center)
execution time as a function of average pile-up. The 2016 tracking (in blue), the
2017 tracking with Triplet Propagation seeding (in red) and the 2017 tracking
with the CA-based Hit-Chain Maker seeding (in black) are compared. All time
measurements are normalized such that 1 indicates the tracking time of 2016
tracking without pileup [164].
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The execution time of the full track reconstruction improves when using the CA-based

Hit-Chain Maker seeding (Figure 6.15). The execution time of the CA-based Hit-Chain

Maker seeding is at the same level of the 2016 seeding and increases slightly slower

with pile-up than 2016 track seeding despite the increased number of layer combinations

involved in the seeding phase with respect to the 2016 seeding. As expected, in pattern

recognition, the CA-based Hit-Chain Maker seeding brings no additional gain. The

slower increase of the Cellular Automaton’s execution time as a function of the pile-up

with respect to Triplet Propagation seeding, contributes to make the overall execution

time of the sequential track reconstruction about 20% faster than 2016 tracking for an

average pile-up of 70. If offline track seeding was running onto GPUs, its timing would

become negligible with respect to the rest of the track reconstruction, making the track

reconstruction up to two times faster with respect to 2016 tracking for an average pile-up

of 70.

An evaluation of the performance of the CA-based Hit-Chain Maker in the upgraded

Phase-2 CMS Tracker is being carried out during 2017, in conditions of pile-up going

from 140 and 200 simultaneous proton-proton collisions.
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The future runs of the Large Hadron Collider (LHC) at CERN will impose significant

challenge on the software performance, due to the increasing complexity of events. In fact,

many event reconstruction algorithms have to explore many combinations of possible

paths, making the performance not scaling linearly with the number of simultaneous

proton collisions.

The exploitation of massively parallel computer architectures and innovative software

design techniques can successfully be accomplished in order to cope with the increasing

event complexity.

This thesis work presents new ways to solve the compute intensive problem of track

seeding in the CMS Pixel Detector: a parallel k-d tree data structure, FKDTree, and a

Hit-Chain Maker algorithm based on the concepts of Cellular Automata.

A careful assessment of its physics and timing performance demonstrated that the Hit-

Chain Maker improves physics performance while being significantly faster than the

existing sequential implementation. For these reasons it has replaced the existing track

seeding algorithm starting from the 2017 data-taking.

This new algorithm has the potential of running on heterogeneous computing systems

exploiting massively parallel GPU architectures both in online trigger systems and offline

reconstruction software.
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