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1. Introduction

1.1. Motivation

This thesis is concerned with the dynamical reconstruction of image sequences. Before
formulating the concrete mathematical problem, we first motivate it with some practical
applications:

Medicine: In 2013, a quarter of all cases of death in Germany were due to cancer.
Among the various kinds of cancer, lung and bronchial cancer had been second
most frequently detected [23].

Radiotherapy is often applied to combat the tumour. In this treatment, the lung
tumour is simultaneously irradiated from all sides. At any time, we have to ensure
that the tumour receives the necessary dose rate. However, this is hard to realize,
since the lung tumour is moved by the respiratory act. Therefore, a larger security
domain around the contour of the tumor is often used in radiotherapy. But this
may have the consequence that also healthy tissue, lying directly next to the
tumour, is destroyed. Hence, we are interested in minimizing this security domain.

Thus, the aim is to reconstruct the periodical movement of a lung to ensure a
precise localisation of the tumour at each time. To be more precise, we are given 3-
dimensional radiographs of a lung at discrete points in time, and we are interested
in reconstructing a continuous movement of this lung. This way, we obtain a
(3 + 1)-dimensional reconstruction problem (in space + time).

Animation: An animation consists of a sequence of single frames differing slightly from
each other which is displayed rapidly, i.e., around 24 frames per second. This
rapid display gives the illusion to the observer that this is a smooth motion.

However, an animation with a running time of 90 minutes consists of 129,600
pictures. Hence, the effort for the animators to draw all these single frames is very
large. This effort can be reduced by a factor k if we only draw every k-th single
frame and generate the remaining single frames by using a sequence interpolation.

Video restoration: If we play old VHS cassettes, we often observe strokes on the video.
If only a few sequential single frames per video scene are affected, then one possi-
bility to denoise the video could be to use a sequence interpolation. This means
we reconstruct each perturbed video scene by interpolating the unperturbed single
frames of this video scene.

ix



1. Introduction

In summary, we observe that we have to solve a sequence interpolation problem in any
of these different applications which reads.

Problem (Sequence Interpolation Problem).
Given a sequence of image samples In : Ω → R with domain Ω := [0, 1]d of dimension
d > 1 at discrete time points 0 = t0 < t1 < ... < tN = T , we seek a continuous function
I : [0, T ]× Ω→ R which interpolates these samples, i.e.,

I(tn, x) = In(x) for n = 0, ..., N and all x ∈ Ω. (1.1)

There are, of course, many ways this could be done.

1.2. Introduction to Optical Flows

A convenient way to solve the sequence interpolation problem (1.1) is to use optical
flows, as we will show in this thesis. For further explanation, an optical flow describes
the projection of a (d + 1)-dimensional movement onto a d-dimensional hyperplane.
Mathematically, an optical flow can be represented by a vector field which describes
the speed and direction of the motion of each pixel point in a sequence of images. In
Figure 1.1, the optical flow is illustrated for the Hamburg taxi sequence, which is a
famous benchmark in the context of optical flows, see e.g. [4, 8, 9, 18, 46].

Nowadays, optical flows are already used in many application fields, for example:

In robot navigation, the optical flow gives important information about the motion of
surrounding objects, such that the robot is able to orientate and navigate au-
tonomously in space. Consider for example a river and a bridge to cross it. In
this case, we observe a nonzero optical flow along the river, but a zero optical flow
at the location of the bridge. Hence, the robot is able to locate the bridge and to
cross it autonomously [13].

In video compression, the optical flow allows us to find redundant information in a
video sequence. These are areas where no motion appears in the optical flow.
Thus, we can compress the video size by storing these redundant information only
once [13].

In computer science, the motion of an optical mouse is scanned by identification of the
optical flow [47].

Unfortunately, the optical flow is a function which is not physically measurable. But we
know the intensity function I : [0, T ]×Ω→ R at discrete time points tn. This intensity
function I measures the grey value of an image pixel point x ∈ Ω at time t ∈ [0, T ].
Hence, the aim is to set the optical flow in relation to the intensity function I. For
this purpose, we require I ∈ C1([0, T ] × Ω). Moreover, we assume that the intensity

x



1.3. Horn and Schunck’s Approach

of an image pixel point does not change during its movement, which is described by a
C1-curve

(
t, x(t)

)
with x : [0, T ]→ Ω. Thus, we obtain

I
(
t, x(t)

)
= I
(
0, x(0)

)
=: I0

(
x0

)
, (1.2)

or, equivalently,

d

dt
I
(
t, x(t)

)
= 0. (1.3)

Applying the chain rule, we get

0 =
d

dt
I
(
t, x(t)

)
= It

(
t, x(t)

)
+ ẋ(t) · ∇I

(
t, x(t)

)
(1.4)

where It(t, x) := ∂
∂tI(t, x), ∇I(t, x) := ( ∂

∂x1
I(t, x), ..., ∂

∂xd
I(t, x))T and ẋ(t) = d

dtx(t).

Altogether, from (1.2) and (1.4) we obtain the optical flow constraint

It(t, x) + ω(t, x) · ∇I(t, x) = 0 with I(0, x) = I0(x), (OFC)

where ω = ω(t, x(t)) := ẋ(t) denotes the optical flow. Alternatively, this optical flow
constraint (OFC) can be derived by using a Taylor expansion series, see [33].

Next, we observe that the optical flow constraint (OFC) is characterized by a semi-linear
transport equation. Hence, for given ω ∈ C([0, T ] × Ω;Rd) and I0 ∈ C1(Ω) we deduce
existence of a solution I ∈ C1([0, T ]× Ω) from Peano’s theorem (cf. Chapter 3).

Regarding the assumption I ∈ C1([0, T ] × Ω) in the derivation of the optical flow con-
straint (OFC), we note that image samples are not necessarily differentiable or at least
continuous (in space). But in Chapter 5 we show that the optical flow constraint
(OFC) is also reasonable in a weak sense for I ∈ C([0, T ], Lp(Ω)), 1 ≤ p < ∞. In
particular, we prove that the optical flow constraint (OFC) admits a unique weak so-
lution I ∈ C([0, T ], Lp(Ω)), 1 ≤ p < ∞, if the vector field ω lies in the Bochner space(
L1((0, T ),W 1,1

0 (Ω))
)d and the initial value I0 is bounded in L∞(Ω).

As a consequence, if we know the optical flow ω corresponding to the given sequence of
images In, we can solve the sequence interpolation problem (1.1) by solving the optical
flow constraint (OFC).

1.3. Horn and Schunck’s Approach

For solving the sequence interpolation problem (1.1), we first have to solve the in-
verse problem, i.e., we have to reconstruct ω from a given sequence of image samples
In, n = 0, ..., N, with In(x) = I(x, tn). Considering the optical flow constraint (OFC)
more carefully, we observe that this problem is under-determined for d > 1. In fact, we
have one equation, but d unknown velocity components. Hence, this inverse problem

xi



1. Introduction

has in general no unique solution.

This inverse problem was first analysed by Horn and Schunck in 1981 [33]. They pro-
posed a linear Tikhonov regularization (cf. Chapter 4),

min
ω∈U

J(ω) =

∫
Ω

(
It + ω · ∇I

)2
dx+ αR(ω) for t ∈ [0, T ] and α > 0, (1.5)

to reduce the space of admissible vector fields. Here, U denotes the space of admis-
sible vector fields ω and R(ω) is a regularization term. More concretely, Horn and
Schunck used R(ω) = ‖ω‖2U with U = H1

0 (Ω) as regularization term. Since the recon-
struction quality of the optical flow depends essentially on the choice of regularization,
further regularization terms were suggested in the last few decades, for instance a BV-
regularization, see [4, 16, 18]. Further regularization terms are collected in [46]. In
[46], it is also suggested to exploit the complete discrete sequence of image samples
In, n = 0, ..., N, to reconstruct the optical flow, i.e., to solve

min
ω∈U

J(ω) =

∫
Ω

T∫
0

(
It + ω · ∇I

)2
dx dt+ αR(ω) for α > 0, (1.6)

where U denotes again the space of admissible vector fields ω.

Figure 1.1.: Reconstruction of the optical flow using Horn and Schunck’s algorithm:
Here the 5th, 10th and 15th image frame of the Hamburg taxi sequence
with corresponding optical flow are pictured.

A frequently used method for solving numerically problem (1.5) for an H1-regularization
term is Horn and Schunck’s algorithm given in [33]. The reconstructed optical flow for
the Hamburg taxi sequence obtained by this algorithm is depicted in Figure 1.1.

We observe that the motion of the white car is well identified, whereas the motion of
the two black cars and the pedestrian are not clearly distinguishable from the noise in
the image frames. Moreover, the optical flow is computed in real time. This efficiency
is of particular importance in robot navigation or in scanning the motion of an optical
mouse.

xii



1.4. Sequence Interpolation Problem

1.4. Sequence Interpolation Problem

A disadvantage of Horn and Schunck’s approach is that any algorithm for solving nu-
merically problem (1.5) or (1.6) needs to compute approximate time derivatives It from
the samples In. Hence, the reconstruction results are depending on the sampling time
∆tn := tn+1 − tn since

It(t, ·) =
In+1 − In

∆tn
+O(∆tn) for t ∈ [tn, tn+1].

Consequently, the sampling rate ∆tn has to be chosen small for accurate reconstruction
results of the optical flow ω. Therefore, Horn and Schunck’s approach (1.5) is inappro-
priate to solve the sequence interpolation problem (1.1), where we do not necessarily
have a sufficiently high sampling rate.

Introducing the solution operator of the optical flow constraint (OFC),

T : U × Z → Y
(ω, I0) 7→ I

with appropriate function spaces U ,Y and Z, we can reformulate the sequence interpo-
lation problem (1.1) as follows:

Problem (Sequence Interpolation Problem).
Given a sequence of image samples In ∈ Z at discrete time points

0 = t0 < t1 < ... < tN = T,

we seek a vector field ω ∈ U such that

T (ω, I0)(tn, ·) = In for n = 0, ..., N. (SIP)

In Chapter 6, we show that this problem is not stable. This means small errors in the
input samples In, caused, e.g., by physical measurements, can generate arbitrarily large
errors in the reconstruction. Hence, we also use a Tikhonov regularization in this case
to stabilize this problem and obtain

min
(ω,I)∈U×Y

J(ω, I) =

N∑
n=0

‖I(x, tn)− In‖2L2(Ω) + αR(ω) (1.7)

subject to the optical flow constraint

It(t, x) + ω(t, x) · ∇I(t, x) = 0 with I(0, x) = I0(x). (OFC)

This optimal control formulation for computing the optical flow was already suggested by
Borzi, Ito and Kunisch in 2002 [8, 9]. A benefit of this approach is that the image samples
In and the corresponding intensity function I are different quantities. Consequently, in

xiii



1. Introduction

numerical methods we are able to use for I and ω a finer time discretisation than induced
by the given sampling rate ∆tn.

In [8, 9], it is illustrated by a few numerical experiments that this optimal control
approach (1.7) leads indeed to better reconstruction results of the optical flow ω in
comparison to Horn and Schunck’s algorithm. But on the other hand, the computational
costs are much higher. Hence, this approach is inappropriate in real time applications,
like robot navigation. Moreover, in 2011, the optimal control approach (1.7) was applied
by Chen [15] for solving the sequence interpolation problem (SIP).

A similar approach was proposed by Hinterberger and Scherzer in 2001 [30] to solve the
sequence interpolation problem (SIP). They consider the minimization problem

min
(ω,I)∈U×Y

J(ω, I) =

T∫
0

‖I(x, τ)− IN‖2L2(Ω) dτ + αR(ω) (1.8)

subject to the optical flow constraint (OFC).

In this approach (1.8), we seek for a solution I which approaches the final state IN as
fast as possible. However, this approach is inappropriate if we want to interpolate more
than two images frames because intermediate image frames are not involved into the
solution process.

Therefore, in the following we use for solving the sequence interpolation problem (SIP)
ansatz (1.7). However, proving existence of a solution to problem (1.7) is much more
complicated than for the Horn and Schunck approach (1.5). The squared term in (1.5)
is a linear equation in ω (for given I).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

(a) I0

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

(b) 2 T (ω, I0)(1, ·)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

(c) T (2ω, I0)(1, ·)

Figure 1.2.: Graphical Visualisation of the Non-Linearity of the solution operator T

On the contrary, we have a non-linear solution operator T in ω in problem (1.7). In fact,
if we consider a constant and nonzero vector field ω, then we obtain (cf. Section 3.2)

2 T (ω, I0) = 2 I0(x− ω t) 6= I0(x− 2ω t) = T (2ω, I0).

This inequality is also graphically illustrated in Figure 1.2. Hence, for proving existence
of a solution to problem (1.7) a crucial step is to analyse the non-linear operator T of
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1.5. Optical Flow vs. Motion Field

the optical flow constraint (OFC) (cf. Chapter 5).

In [15], existence of a solution to problem (1.7) for an H3- and a smoothened TVε-
regularization was discussed for divergence-free optical flows. This means for example
that deformations are excluded as solutions. However, we show in Chapter 6 existence
and stability of a solution to problem (1.7) for an H1-regularization in space (and time),
as well as for a W 1,1+τ -regularization without any restriction on the divergence of the
optical flow.

1.5. Optical Flow vs. Motion Field

In this section, we want to emphasize that the optical flow only represents the movement
of brightness patterns in a sequence of image samples and is, in particular, a different
quantity as the motion field. To illustrate this fact we consider the following examples.

Barber Pole Illusion: Consider a cylinder with spiral lines on the surface. If we now
rotate this object around the z-axis, we will observe a motion in vertical direction,
although the movement is in horizontal direction. An animation can be found on
Wikipedia [48].

Rotating ball: Consider a ball with an arbitrary uniform surface. If we now rotate this
ball through its balance point along an arbitrary axis, we obtain a zero optical
flow, although there is a movement.

Ball in equilibrium: Consider the same ball, but this time in equilibrium. If we now
illuminate it by a moving light source, we will observe a non zero optical flow,
although there is no motion of the ball.

Nevertheless, the optical flow is in many situations a good representation of the real
motion field.

1.6. Outline of the Thesis

The outline of this thesis is divided into three parts. In the first part we introduce some
basics, which are useful for the following discussion. To be more precise, in Chapter 2
we briefly introduce the function spaces occurring in the later discussion and state some
useful properties of these spaces. In Chapter 3, we present the solution theory on various
kinds of partial differential equations appearing later on in the analysis of the sequence
interpolation problem (SIP). In Chapter 4, we show how to stabilize a linear inverse
problem, like problem (1.5). Here, in particular, we motivate the H1-regularization and
the BV-regularization, which we also like to use for the stabilization of the non-linear
sequence interpolation problem (SIP).

In the main theoretical part of this thesis, we present in Chapter 5 the weak solution
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1. Introduction

theory on transport equations. Here, we adapt the work of [10] to show existence and
uniqueness of a weak solution to the transport equation (OFC), as well as the weak-*
sequential closedness of the solution operator T , without restriction on the divergence
of the optical flow ω. Finally, this theory enables us to show in Chapter 6 existence of
an optimal solution to problem (1.7) for an H1-regularization in space (and time) and
a W 1,1+τ -regularization in space. Moreover, we show in Chapter 6 that problem (1.7)
is a stable approximation of the sequence interpolation problem (SIP).

In the last part of this thesis we present in Chapter 7 the gradient method for solving
problem (1.7) numerically. Since the computation of the gradient of the cost functional
J defined in (1.7) requires to solve sequentially several kinds of partial differential equa-
tions, we also discuss in Chapter 7 how to numerically solve these partial differential
equations. In particular, we present some new results in the numerical analysis of a
transport equation with variable coefficient vector field ω. Furthermore, in Chapter 8,
we test the regularized reconstruction method (1.7) with sequences of synthetic and real
image frames.

Finally, in Chapter 9, we give a conclusion of this thesis.

xvi
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2. Function Spaces

This chapter briefly introduces the function spaces occurring in the analysis of the
sequence interpolation problem (SIP). Here, we start with the notation of continuous
function spaces. Subsequently, we define Lebesgue, Sobolev and Bochner spaces, as well
as the space of functions with bounded variation. Additionally, we state some important
properties of these function spaces, for use in the following chapters. For more details
on these function spaces, we refer to [2, 3, 7, 10, 11, 26, 49].

2.1. Continuous Functions

Notations 2.1.
Let Ω ⊂ R be an open set. Then:

• Ck(Ω) denotes the set of all functions u : Ω → R which are k-times continuously
differentiable.

• Ck(Ω;Rd) denotes the set of all functions u : Ω → Rd which are k-times continu-
ously differentiable.

• C0,1(Ω) denotes the set of all Lipschitz continuous functions u : Ω→ R.

• Ckc (Ω) denotes the set of all functions u : Ω→ R with compact support in Ω which
are k-times continuously differentiable.

2.2. Lebesgue Spaces

Definition 2.2 (Lebesgue Spaces).
Let Ω be an open set and 1 ≤ p ≤ ∞. Then the Banach space

Lp(Ω) :=
{
u : Ω→ R : with u Lebesgue integrable and ‖u‖Lp(Ω) <∞

}
with norm

‖u‖Lp(Ω) :=


(∫

Ω

|u(x)|p dx

) 1
p

, for 1 ≤ p <∞,

ess sup
x∈Ω

|u(x)| = inf
N⊂Ω
|N |=0

sup
x∈Ω\N

|u(x)|, for p =∞

is called Lebesgue or Lp-space.
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2. Function Spaces

2.3. Sobolev Spaces

Definition 2.3 (Sobolev Spaces).
Let Ω be an open set, k ≥ 0 and 1 ≤ p ≤ ∞. Then the Sobolev space W k,p(Ω) is defined
by

W k,p(Ω) :=
{
u ∈ Lp(Ω) : with Dαu ∈ Lp(Ω) for all |α| ≤ k},

where Dαu denotes the weak derivative of u with multi-index α. The Sobolev space W k,p

equipped with the norm

‖u‖Wk,p(Ω) :=


( ∑
|α|≤k

‖Dαu‖pLp(Ω)

) 1
p

, for 1 ≤ p <∞,∑
|α|≤k

‖Dαu‖L∞(Ω), for p =∞

is a Banach space.
Moreover, in the case p = 2 we set Hk(Ω) := W k,2(Ω) and we have W 0,p(Ω) = Lp(Ω)
for k = 0.

Definition 2.4.
We denote by W k,p

0 (Ω) the closure of C∞c (Ω) in W k,p(Ω). Equivalently, the space can be
characterized as

W k,p
0 (Ω) =

{
u ∈W k,p(Ω) : with Dαu = 0 on ∂Ω for |α| ≤ k − 1

}
,

where "Dαu = 0 on ∂Ω" is defined in the sense of traces, see e.g. [22].

Theorem 2.5.
The spaces W k,p(Ω) and W k,p

0 (Ω) are reflexive, if and only if 1 < p <∞.

Proof.
A proof can be found in [11].

Theorem 2.6 (Generalized Poincaré Inequality).
Let Ω be a bounded, connected, Lipschitz domain of Rn. Let Γ1 be a part of the boundary
∂Ω with a nonzero surface measure. For 1 ≤ p <∞ we define

W 1,p
0,Γ1

(Ω) := {u ∈W 1,p(Ω) : with u = 0 on Γ1}.

Then there exists a constant C > 0, such that for all functions u ∈W 1,p
0,Γ1

(Ω) there holds

‖u‖Lp(Ω) ≤ C ‖∇u‖Lp(Ω).

Proof.
A proof can be found in [10].
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Remark 2.7.
As a consequence of Theorem 2.6, we can equip the space W 1,p

0,Γ1
(Ω) with the norm

‖u‖
W 1,p

0 (Ω)
= ‖∇u‖Lp(Ω),

too. In fact, this norm is equivalent to the Sobolev-norm ‖ · ‖W 1,p(Ω), since there exists
a constant C > 0 with

‖∇u‖Lp(Ω) ≤ ‖u‖W 1,p ≤ (1 + C) ‖∇u‖Lp .

Theorem 2.8 (Sobolev Imbedding Theorem).
Let Ω ⊂ Rn be an open and bounded set with Lipschitz boundary. Assume k1, k2 ≥ 0,
1 ≤ p1, p2 <∞ and

m1 −
d

p1
≥ m2 −

d

p2
and m1 ≥ m2, (2.1)

then we have the continuous embedding

W k1,p1(Ω) ↪→W k2,p2(Ω).

Additionally , the embedding is compact, denoted by

W k1,p1(Ω) ↪→↪→W k2,p2(Ω),

if strict convexity holds in (2.1), i.e.,

m1 −
d

p1
> m2 −

d

p2
and m1 > m2.

The same statements hold for the space W k,p
0 (Ω) instead of W k,p(Ω).

Proof.
A proof can be found in [2].

Theorem 2.9.
Let Ω ⊂ Rd be an open set and u : Ω → R be a bounded Lipschitz continuous function.
Then it holds that u ∈W 1,∞(Ω).

Proof.
A proof can be found in [10].
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2. Function Spaces

2.4. Bochner Spaces

Definition 2.10 (Bochner Spaces).
Let X be a Banach space, 0 < T < ∞ and u : [0, T ] → X be a Lebesgue measurable
function on [0, T ] with values in X .

(i) Then we define the Banach space

Lp((0, T );X ) :=
{
u : [0, T ]→ X : with ‖u‖Lp((0,T );X ) <∞

}
with norm

‖u‖Lp((0,T );X ) :=


(
T∫
0

‖u(t)‖pX dt

) 1
p

, for 1 ≤ p <∞,

ess sup
t∈[0,T ]

‖u(t)‖X , for p =∞.

(ii) Then we define the Banach space

C([0, T ];X ) :=
{
u : [0, T ]→ X is continuous

}
with norm

‖u‖C([0,T ];X ) = max
t∈[0,T ]

‖u(t)‖X .

The spaces Lp((0, T );X ) and C([0, T ];X ) are called Bochner spaces.

Theorem 2.11.
Let X be a reflexive space. Then the Bochner spaces Lp((0, T );X ) are reflexive for
1 < p <∞.

Proof.
A proof can be found in [49].

Theorem 2.12 (Aubin-Lions Lemma).
Let 1 < α, β < ∞. Let X be a Banach space and let X0,X1 be separable and reflexive
Banach spaces. Provided that X0 ↪→↪→ X ↪→ X1, we have{

u ∈ Lα((0, T );X0);
du

dt
∈ Lβ((0, T );X1)

}
↪→↪→ Lα((0, T );X ).

Proof.
A proof can be found in [10].
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2.5. Functions of Bounded Variation

Definition 2.13.
Let Ω ⊂ Rd be an open set. Then we define the space of functions with bounded variation
by

BV(Ω) :=
{
u ∈ L1(Ω) : with TVΩ(u) <∞

}
,

with total variation

TVΩ(u) := sup


∫
Ω

udivϕdx : with ϕ ∈ C1
c (Ω;Rd) and ‖ϕ‖L∞(Ω) ≤ 1

 .

The space BV(Ω) equipped with the norm

‖u‖BV(Ω) := ‖u‖L1(Ω) + TVΩ(u)

is a Banach space.

Moreover we define

BV0(Ω) :=
{
u ∈ BV(Ω) : with u = 0 on ∂Ω

}
,

where "u = 0 on ∂Ω" is defined in the sense of traces, see e.g. [3, 26].

Furthermore, any function u ∈ BVΩ admits a derivative Du in the distributional sense
and there holds ∫

Ω

|Du|dx = TVΩ .

Theorem 2.14 (Poincaré-Wirtinger Inequality).
Let Ω ⊂ Rn be an open subset of Rn. Then there exists a constant C > 0 such that for
all u ∈ BV0(Ω) the following inequality holds

‖u‖L1(Ω) ≤ C TVΩ(u).

Proof.
A proof can be found in [7].

Remark 2.15.
As a consequence of Theorem 2.14, we can equip the space BV0(Ω) with the norm

‖u‖BV0(Ω) = TVΩ(u),

too. In fact, this norm is equivalent to the BV-norm ‖ · ‖BV(Ω), since there exists a
constant C > 0 with

TVΩ(u) ≤ ‖u‖BV(Ω) ≤ (1 + C) TVΩ(u).
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3. Differential Equations

In this chapter we introduce a few partial differential equations (PDEs), which appear
later on in this thesis. In practice, differential equations are used for instance to formu-
late laws of nature or to model population dynamics or electric circuits. Mathematically,
a PDE is an equation that relates a multivariate function u with its partial derivatives.
In abstract form, a PDE of k − th order is given by

F
(
Dku(x), Dk−1u(x), ..., Du(x), u(x), x

)
= 0, (3.1)

where

F : Rd
k × Rd

k−1 × ...× Rd × R× Ω→ R

is a given function, Ω ⊂ Rd an open set and u : Ω→ R is the unknown function. In the
univariate case, i.e., d = 1, we call (3.1) ordinary differential equation (ODE).
An example for a PDE is the so called transport equation

ut(t, x) + a · ∇u(t, x) = 0 in R× Rd,

where a ∈ Rd is given. Here, t denotes the time and x the space variable.

A (classical) solution of a differential equation of k − th order is a sufficiently smooth
function u, i.e., u ∈ Ck(Ω), which satisfies the differential equation. Later we will also
introduce the concept of weak solutions. Moreover, in many cases boundary and / or
initial conditions are additionally prescribed by the model, which have to be satisfied
by the solution, too. In fact, these conditions are also necessary to ensure uniqueness.
But these are not sufficient, as we will see in the following section.

However, a general solution theory on differential equations is not available, since the
range of various differential equations is too large. Therefore, we restrict our presentation
only on the PDEs occurring later on. More precisely, we introduce in the following the
solution theory on elliptic PDEs, transport and Stokes equations.

3.1. Ordinary Differential Equations

Since we will show in the next section that we can solve a transport equation by solving a
system of ODEs, we briefly introduce ODEs before starting the analysis of the transport
equation, for more details on the solution theory of ODEs we refer to [29, 37, 40]. An
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3. Differential Equations

ODE (of first order) is given by

ẋ(t) = f
(
t, x(t)

)
(3.2a)

x(t0) = x0 (3.2b)

with f : R×Ω→ R, t0 ∈ R and x0 ∈ Ω, where Ω ⊂ R denotes an open set. In this case
x : R → Ω is denoted as state (variable) at time t ∈ R. In the case Ω ⊂ Rd with d > 1
and f : R× Ω→ Rd, (3.2) is called system of ODEs.

We ask ourselves about assumptions on f and x0 that guarantee solvability of this
problem (3.2). Before discussing the solvability of the initial value problem (3.2), we
consider two examples which demonstrate the difficulties of finding a solution to problem
(3.2).

Example 3.1.
Let f = x2 and x(0) = 1. Then by using the method of separation of variables we find

x(t) =
1

1− t
as solution to the initial value problem (3.2). Thus, we observe that the solutions exists
only locally on (−∞, 1).

Example 3.2.
For f = 3x

2
3 and x0 = 0 the initial value problem (3.2) admits two different solution.

In fact, x(t) = t3 and x(t) = 0 solve the problem.

In summary, we have seen that solutions to the initial value problem (3.2) are not
necessarily unique or globally defined. Indeed, in many cases there exist only a local
solution x : I → Ω to problem (3.2) defined on an interval I around the initial time
t0. Additionally, for many ODEs it is not so easy to find a solution. But Peano has
shown in 1890, that the initial value problem (3.2) admits at least a local solution, if
f is continuous, see e.g. in [29, 37]. Moreover, at the end of the 19th century Picard
and Lindelöf have shown, that Lipschitz continuity of the function f is sufficient for
uniqueness of a solution to problem (3.2).

Theorem 3.3 (Picard-Lindelöf).

1) (Local version) Let f : [t0−a, t0 +a]×BR(x0)→ Rd be a continuous function, where
BR(x0) := {x ∈ Rd; with ‖x− x0‖ ≤ R} denotes a closed ball around x0 with radius
R > 0. Assume that f is locally Lipschitz continuous with respect to x, i.e., there
exists a constant L with

‖f(t, x)− f(t, x̃)‖ ≤ L ‖x− x̃‖ for all (t, x), (t, x̃) ∈ [t0 − a, t0 + a]×BR(x0).

Then there exists a local unique solution x : [t0 − α, t0 + α] → Ω to the initial value
problem (3.2), where

α := min
(
a,
R

M

)
with M := max

(t,x)
|f(t, x)|.
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3.1. Ordinary Differential Equations

2) (Global version) Let f : [a, b]× Rd → Rd be continuous with t0 ∈ [a, b]. Assume that
f is globally Lipschitz continuous with respect to x, i.e.,

‖f(t, x)− f(t, x̃)‖ ≤ L ‖x− x̃‖ for all (t, x), (t, x̃) ∈ [a, b]× Rd.

Then the initial value problem (3.2) admits a global unique solution x : [a, b]→ Rd.

Proof.
A proof can be found in [29, 37].

Next, we introduce the concept of flows. For the sake of convenience, we only consider
the global case, i.e., Ω = Rd, which is the only relevant one in the later discussion.

Definition 3.4.
Assume that f satisfies the (global) assumption of Picard-Lindelöf ’s theorem. Further-
more, we denote by x : [a, b]→ Rd the unique solution of the initial value problem (3.2).
Then for t+ t0 ∈ [a, b] the mapping

Φ: Rd × [a, b]× [a, b]→ Rd,
(x0, t0, t) 7→ x(t+ t0)

is called flow of the differential equation (3.2).

Moreover, it is customary to write Φt
t0(x0) instead of Φ(x0, t0, t).

The flow of a differential equation possesses the following useful properties.

Theorem 3.5.
Let Φt

t0(x0) define the flow of the initial value problem (3.2) on the time interval [a, b].
Moreover, we assume t+ t0 ∈ [a, b] and s+ t+ t0 ∈ [a, b]. Then it holds:

(i) Φ0
t0(x0) = x0,

(ii) Φs
t+t0(Φt

t0(x0)) = Φs+t
t0

(x0),

(iii) Φ−tt0 (Φt
t0(x0)) = x0.

Proof.
In [40], it is shown that the mapping

φ :
(
Rd × [a, b]

)
× [a, b]→ Rd × [a, b],

(x0, t0, t) 7→ (Φt
t0(x0), t+ t0)

satisfies the following properties:

(i) φ(x0, t0, 0) = (x0, t0),

(ii) φ(φ(x0, t0, t), s) = φ(x0, t0, s+ t),

(iii) φ(φ(x0, t0, t),−t) = (x0, t0).

From these properties of the mapping φ, we immediately follow the statement of the
theorem.
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3. Differential Equations

3.2. Transport Equation with Variable Coefficients

This section introduces the transport equation with variable coefficients. The classical
transport equation with constant vector field a ∈ Rd is defined by

It(t, x) + a · ∇I(t, x) = 0 with I(0, x) = I0(x), (3.3)

where I0 : Rd → R denotes an initial state and I : R+×Rd → R is the unknown function.
It is well known that this problem (3.3) admits a unique solution, which is given by

I(t, x) = I0(x− at) ∈ C1(R+ × Rd)

under the assumption that I0 ∈ C1(Rd).

Now, we generalize the transport equation (3.3) such that we have a variable vector
field ω : R+×Rd → Rd depending on time and space instead of the constant vector field
a ∈ Rd. However, this generalization is not unique. In fact, both the transport equation
in conservative form,

pt(t, x) + div
(
ω(t, x) p(t, x)

)
= 0 with p(0, x) = p0(x), (cTPE)

and the transport equation in non-conservative form,

It(t, x) + ω(t, x) · ∇I(t, x) = 0 with I(0, x) = I0(x), (OFC)

are generalizations to equation (3.3).

3.2.1. The Non-Conservative Transport Equation

A standard ansatz for solving problem (OFC) is the method of characteristics, for more
details on this method we refer to [22]. For the transport equation with constant vector
field (3.3) we have seen that the solution is constant along the curve

(
t, x(t)

)
with

x(t) = x0 + a t. Thus, the idea is now to find also for problem (OFC) an appropriate
curve

(
t, x(t)

)
, such that we can compute the solution I(t, x) along this curve.

For this aim, we initially assume that I ∈ C1(R+ ×Rd) is a solution to problem (OFC)
and define

z(t) = I
(
t, x(t)

)
. (3.4)

Furthermore, we suppose that x(t) solves

ẋ(t) = ω
(
t, x(t)

)
.

Next, we compute

ż(t) = It
(
t, x(t)

)
+ ẋ(t) · ∇I

(
t, x(t)

)
= It

(
t, x(t)

)
+ ω

(
t, x(t)

)
· ∇I

(
t, x(t)

)
= 0
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3.2. Transport Equation with Variable Coefficients

and

z(0) = I
(
0, x(0)

)
= I0(x0).

Altogether, we have converted the PDE problem (OFC) into a system of ODEs

ẋ(t) = ω
(
t, x(t)

)
with x(0) = x0, (3.5a)

ż(t) = 0 with z(0) = I0(x0), (3.5b)

which is called system of characteristics. The solution
((
t, x(t)

)
, z(t)

)
is called charac-

teristic.

On the other hand, any solution z(t) = I
(
t, x(t)

)
to the system of characteristics (3.5),

solves also the transport equation (OFC), since

0 = ż(t) = It
(
t, x(t)

)
+ ẋ(t) · ∇I

(
t, x(t)

)
= It

(
t, x(t)

)
+ ω

(
t, x(t)

)
· ∇I

(
t, x(t)

)
and

I(0, x0) = I
(
0, x(0)

)
= z(0) = I0(x0).

Consequently, we conclude that problem (OFC) admits a (unique) solution, if and only if
the characteristic system (3.5) admits a (unique) solution. Thus, existence and unique-
ness of a solution to problem (OFC) can be deduced from Picard-Lindelöf’s theorem.

Theorem 3.6.
Let I0 ∈ C1(Rd) and ω ∈ C(R+ × Rd;Rd). Assume that the vector field ω is addition-
ally Lipschitz continuous in the space variable. Then problem (OFC) admits a unique
solution, which is given by

I(t, x) = I0(Φ−tt (x)) ∈ C1(R+ × Rd),

where Φ−st (x) = Φ−st (Φt
0(x0)) = Φt−s

0 (x0) for s ∈ [0, t] denotes the flow to the differential
equation (3.5a).

Proof.
The vector field ω satisfies the assumptions of Picard-Lindelöf’s theorem. As a conse-
quence equation (3.5a) admits a unique solution and we denote the flow of (3.5a) by
Φt

0(x0). Moreover, the unique solution to (3.5b) is given by

z(t) = z(0) = I0(x0) = I0(Φ−tt (x)).

Finally, we deduce the statement from (3.4).
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3.2.2. The Conservative Transport Equation

For solving the conservative transport equation (cTPE), we first rewrite the equation
as

pt(t, x) + ω(t, x) · ∇p(t, x) = −div(ω(t, x)) p(t, x) with p(0, x) = p0(x).

We observe, that we obtain a non-conservative transport equation with source term

−div(ω(t, x)) p(t, x).

As a consequence, a solution to problem (cTPE) is only constant along a characteristic
if and only if the vector field ω is divergence free. Instead of that, we can show at
least that a solution to (cTPE) is conservative. We exploit this property later on to
design a finite difference scheme for solving the conservative transport equation (cTPE)
(cf. Section 7.4.2) numerically .

Theorem 3.7.
The solution of the conservative transport equation (cTPE) is conservative, i.e.,∫

Rd

p(t, x) dx =

∫
Rd

p0(x) dx.

Proof.
A proof can be found in [10].

Remark 3.8.
Assume that the conservative transport equation is only defined on a bounded domain
Ω ⊂ Rd. If the vector field ω vanishes on the boundary [0, T ]× ∂Ω, then the statement
is still valid, i.e., ∫

Ω

p(t, x) dx =

∫
Ω

p0(x) dx ∈ C1(R+ × Rd).

However, the procedure for solving the conservative transport equation (cTPE) is anal-
ogous to the non-conservative case (OFC) and we obtain as characteristic system

ẋ(t) = ω
(
t, x(t)

)
with x(0) = x0, (3.6a)

ż(t) = −div
(
ω(t, x(t))

)
p
(
t, x(t)

)
with z(0) = p0(x0), (3.6b)

Finally, we again deduce the solvability from Picard-Lindelöf’s theorem.
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Theorem 3.9.
Let I0 ∈ C1(Rd) and ω ∈ C(R+ × Rd;Rd). Assume that the vector field ω is addition-
ally Lipschitz continuous in the space variable. Then problem (cTPE) admits a unique
solution, which is given by

p(t, x) = p0

(
Φ−tt (x)

)
exp

(
−

t∫
0

div
(
ω
(
s,Φs−t

t (x)
))

ds

)

where Φ−st (x) = Φ−st (Φt
0(x0)) = Φt−s

0 (x0) for s ∈ [0, t] denotes the flow to the differential
equation (3.6a).

Proof.
The proof is analogous to the non-conservative case (cf. Theorem 3.6). But in this case,
the unique solution to (3.6b) is given by

z(t) = z(0) exp

(
−

t∫
0

div
(
ω
(
s, x(s)

)))

= p0

(
Φ−tt (x)

)
exp

(
−

t∫
0

div
(
ω
(
s,Φs−t

t (x)
))

ds

)
,

where we used the method of separation of variables.

At the end, we remark that we can also apply the method of characteristics, if (OFC)
and (cTPE) are only defined on an open and bounded domain Ω ⊂ Rd. In this case,
the only difference is, that the problem is solved along characteristics starting either at
initial time t = 0 or at the boundary [0, T ]× ∂Ω.

3.3. Elliptic Partial Differential Equations

In this section we present two elliptic PDEs appearing later on in this thesis and discuss
their solution theory. In the following Ω ⊂ Rd denotes an open and bounded set.

3.3.1. Poisson Equation

We start with the Poisson problem

−α∆u = f in Ω, (3.7a)
u = 0 on ∂Ω, (3.7b)

where α > 0 and f ∈ L2(Ω). First, note that for a given discontinuous function f it
is not possible to find a classical solution u ∈ C2(Ω) ∪ C(Ω). Therefore, we seek for

15



3. Differential Equations

a weak solution to the Poisson Problem (3.7). For this purpose, we initially assume,
that problem (3.7) admits a classical solution u. Then we multiply equation (3.7a) by
a smooth test function v ∈ C∞0 (Ω) and integrate over Ω, i.e.,

−α
∫
Ω

∆u v dx =

∫
Ω

f v for all v ∈ C∞0 (Ω).

Integration by part leads to

α

∫
Ω

∇u · ∇v dx =

∫
Ω

f v for all v ∈ C∞0 (Ω). (3.8)

Since C∞0 (Ω) is dense in H1
0 (Ω), equation (3.8) is valid for all v ∈ H1

0 (Ω), too. Moreover,
equation (3.8) is still reasonable, if u ∈ H1

0 (Ω).

Thus, a function u ∈ H1
0 (Ω) satisfying the weak formulation

α

∫
Ω

∇u · ∇v dx =

∫
Ω

f v for all v ∈ H1
0 (Ω). (3.9)

is called weak solution to the Poisson problem (3.7).

Note, that the Dirichlet boundary condition (3.7b) is incorporated in the function space
H1

0 (Ω). For proving existence and uniqueness of a weak solution to the Poisson problem
(3.7) we use Lax Milgram’s Theorem.

Theorem 3.10 (Lax Milgram).
Let U be a Hilbert space. Assume that a : U × U → R is a bilinear-form satisfying:

(i) the continuity condition: |a(u, v)| ≤ α ‖u‖U ‖v‖U for all u, v ∈ U ,
(ii) the coercivity condition: a(u, u) ≥ β ‖u‖2U for all u ∈ U ,

for given constants α, β > 0. Furthermore, let F : U → R be a bounded linear functional.

Then there exists a unique element u ∈ U such that

a(u, v) = F (v) for all v ∈ U .

Proof.
A proof can be found in [11, 22].

For applying Lax Milgram’s theorem, we define the bilinear form

a : H1
0 (Ω)×H1

0 (Ω)→ R, a(u, v) := α

∫
Ω

∇u · ∇v dx

16



3.3. Elliptic Partial Differential Equations

and the linear functional

F : H1
0 (Ω)→ R, F (v) :=

∫
Ω

f v dx.

We easily verify

|a(u, v)| ≤ α ‖∇u‖L2(Ω) ‖∇v‖L2(Ω) = α ‖u‖H1
0 (Ω) ‖v‖H1

0 (Ω)

a(u, u) ≥ α ‖∇u‖2L2(Ω) = α ‖u‖2H1
0 (Ω) (3.10)

and

|F (v)| ≤ ‖f‖L2(Ω) ‖v‖L2(Ω) ≤ C ‖f‖L2(Ω) ‖v‖H1
0 (Ω)

by using Poincore’s inequality (Theorem 2.6) in the last estimate. Finally, we obtain
existence and uniqueness of a solution by using Lax Milgram’s theorem.

Theorem 3.11.
Assume f ∈ H−1(Ω). Then the Poisson problem (3.7) admits a unique weak solution
u ∈ H1

0 (Ω).

For more details to the Poisson problem, like higher regularity of the weak solution than
H1-regularity, we refer to [11, 22].

3.3.2. Time-Dependent Elliptic PDE

Next, we consider a time-dependent elliptic PDE problem given by

−β utt − α∆u = f in ΩT := (0, T )× Ω, (3.11a)
u = 0 on Γx := (0, T )× ∂Ω, (3.11b)
ut = 0 on Γt := {0, T} × Ω, (3.11c)

where α, β > 0 and f ∈ L2(ΩT ). To obtain the weak formulation of the problem, we
multiply (3.11a) by a test function C1(ΩT ) and integrate over ΩT , i.e.,

−β
∫

ΩT

utt v dx− α
∫

ΩT

∆u v dx =

∫
ΩT

f v dx for all v ∈ C1(ΩT ),

where we assume that u ∈ C2(ΩT ) ∩ C1(ΩT ) is a classical solution to problem (3.11).

By using integration by parts formula we obtain

17



3. Differential Equations

β

∫
ΩT

ut vt dx− β
∫
Γt

ut︸︷︷︸
=0

v dS

+α

∫
ΩT

∇u · ∇v dx− α
∫
Γx

(∇u · η) v dS =

∫
ΩT

f v dx

(3.12)

for all v ∈ C1(ΩT ), where η denotes the outer unit normal vector of Γx. Since C1(ΩT ) is
dense in H1(ΩT ), equation (3.12) is valid for v ∈ H1(ΩT ), too, and makes sense even if
we only have u ∈ H1(ΩT ). Moreover, to incorporate the Dirichlet boundary condition
(3.11b), we additionally require u, v ∈ H1

Γx
(ΩT ) ⊂ H1(ΩT ), where

H1
Γx(ΩT ) :=

{
u ∈ H1(ΩT ) : with u|Γx = 0

}
=
{
u ∈ L2

(
(0, T ), H1

0 (Ω)
)

: with ut ∈ L2
(
(0, T ), L2(Ω)

)}
equipped with the norm

‖u‖H1
Γx

(ΩT ) := ‖u‖L2((0,T ),H1
0 (Ω)) + ‖ut‖L2((0,T ),L2(Ω))

is a Hilbert space (see [10]). The Neumann boundary condition (3.11c) do not need to be
incorporated in the solution space, since we have already exploited it for the derivation
of the weak formulation (3.12).

Consequently, we call a function u ∈ H1
Γx

(ΩT ) weak solution of the elliptic problem
(3.11), if it satisfies the weak formulation

β

∫
ΩT

ut vt dx+ α

∫
ΩT

∇u · ∇v dx =

∫
ΩT

f v dx for all v ∈ H1
Γx(ΩT ).

To apply Lax Milgram’s theorem, we define the linear functional F : H1
Γx

(ΩT )→ R by

F (v) :=

∫
ΩT

f v dx

and the bilinear form a : H1
Γx

(ΩT )×H1
Γx

(ΩT )→ R by

a(u, v) := β

∫
ΩT

ut vt dx dt+ α

∫
ΩT

∇u · ∇v dx dt.
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3.4. Stokes Equation

A simple calculation shows, that the bilinear form is bounded and coercive:

|a(u, v)| ≤ β
T∫

0

‖ut‖L2(Ω) ‖vt‖L2(Ω) dt+ α

T∫
0

‖u‖H1
0 (Ω) ‖v‖H1

0 (Ω) dt

≤ β ‖ut‖L2((0,T ),L2(Ω)) ‖vt‖L2((0,T ),L2(Ω))

+α ‖u‖L2((0,T ),H1
0 (Ω)) ‖v‖L2((0,T ),H1

0 (Ω))

≤ max(α, β) ‖u‖H1
Γx

(ΩT ) ‖v‖H1
Γx

(ΩT )

and

a(u, u) = β ‖ut‖2L2((0,T ),L2(Ω)) + α ‖u‖2L2((0,T ),H1
0 (Ω)) ≥ min(α, β) ‖u‖2H1

0 (ΩT ).

Moreover, the linear functional F is bounded, since

F (v) ≤ ‖f‖L2((0,T ),L2(Ω)) ‖v‖L2((0,T ),L2(Ω))

≤ C ‖f‖L2((0,T ),L2(Ω)) ‖v‖L2((0,T ),H1
0 (Ω))

≤ C̃ ‖v‖H1
Γx

(ΩT ),

where we used Poincore’s inequality (Theorem 2.6) in the second estimate. Finally, by
applying Lax Milgram’s theorem we obtain existence and uniqueness of a solution.

Theorem 3.12.
Let f ∈

(
H1

Γx
(ΩT )

)∗. Then problem (3.11) admits a unique weak solution u ∈ H1
Γx

(ΩT ).

3.4. Stokes Equation

Finally, we present the Stokes problem defined by

−∆u+∇λ = f in Ω, (3.13a)
−div(u) = 0 in Ω, (3.13b)

u = 0 on ∂Ω, (3.13c)

where Ω ⊂ Rd denotes an open and bounded set. First, note that the problem can-
not have a unique solution pair (y, λ) ∈

(
C2(Ω;Rd) ∩ C0(Ω;Rd)

)
× C1(Ω) because the

solution λ can only be uniquely determined up to an additive constant. Therefore, we
additionally impose the normalization condition∫

Ω

λ dx = 0. (3.14)

Now, analogous to the examinations of the elliptic PDEs, we derive the weak formulation
of the Stokes problem. Hence, we initially assume that the problem admits a classical
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3. Differential Equations

solution (y, λ) ∈
(
C2(Ω;Rd)∩ C0(Ω;Rd)

)
× C1(Ω). Multiplying equation (3.13a) by a

smooth test function v ∈ C∞0 (Ω;Rd) and integrating lead to∫
Ω

(
∇u · ∇v − λ div(v)

)
dx =

∫
Ω

f v dx for all v ∈ C∞0 (Ω;Rd). (3.15)

Since C∞0 (Ω;Rd) is dense in
(
H1

0 (Ω)
)d, equation (3.15) is valid for v ∈

(
H1

0 (Ω)
)d, too.

Moreover, equation (3.15) is still valid if u ∈
(
H1

0 (Ω)
)d and λ ∈ L2(Ω). Additionally, to

incorporate the normalization condition (3.14) we require

λ ∈ L2
0(Ω) :=

{
ϕ ∈ L2(Ω) : with

∫
Ω

ϕdx = 0
}
.

Next, we multiply (3.13b) with a test function µ ∈ L2
0(Ω) and integrate equation to

obtain

−
∫
Ω

div(u)µ dx = 0 for all µ ∈ L2
0(Ω).

In summary, a function pair (u, λ) ∈
(
H1

0 (Ω)
)d×L2

0(Ω) satisfying the weak formulation∫
Ω

(
∇u · ∇v − λ div(v)

)
dx =

∫
Ω

f v dx for all v ∈
(
H1

0 (Ω)
)d

and −
∫
Ω

div(u)µ dx = 0 for all µ ∈ L2
0(Ω)

is called weak solution of the Stokes problem (3.13).

Introducing the bilinear forms

a : H1
0 (Ω)×H1

0 (Ω)→ R, a(u, v) =

∫
Ω

∇u · ∇v dx

b : H1
0 (Ω)× L2

0(Ω)→ R, b(u, λ) = −
∫
Ω

λ div(u) dx

and the linear functional

F : H1
0 (Ω)→ R, F (v) =

∫
Ω

f v dx,

we observe, that the weak formulation of the Stokes Problem can be characterized by a
saddle point problem,

a(u, v) + b(v, λ) = F (v) for all v ∈
(
H1

0 (Ω)
)d
, (3.16a)

b(u, µ) = 0 for all µ ∈ L2
0(Ω). (3.16b)
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3.4. Stokes Equation

Hence, existence and uniqueness of a weak solution can be deduced from the following
theorem.

Theorem 3.13.
Let U and Λ be two Hilbert spaces. Assume that a : U × U → R and b : U × Λ → R are
two bilinear-forms satisfying

(i) the inf-sup condition: inf
λ∈Λ

sup
u∈U

b(u, λ)

‖u‖U ‖λ‖Λ
≥ α > 0

(ii) the coercivity condition: a(u, u) ≥ β‖u‖2U for all u ∈ U

for given constants α, β > 0. Furthermore, let F : U → R be a bounded linear functional.

Then the saddle point problem

a(u, v) + b(v, λ) = F (v) for all v ∈ U ,
b(u, µ) = 0 for all µ ∈ Λ

admits a unique solution pair (u, p) ∈ U × Λ.

Proof.
A proof can be found in [25].

Remark 3.14.
The inf-sup condition is also known as Babuška-Brezzi condition or the LBB condition
(for Ladyzhenskaya-Babuška-Brezzi).

Hence, for proving existence and uniqueness of a weak solution to the Stokes problem
(3.13) we have to check the assumptions of Theorem 3.13. The coercivity condition we
have already verified for the Poisson problem (cf. inequality (3.10)). For the inf-sup
condition we use the following lemma.

Lemma 3.15 (Ladyzhenskaya).
Let µ ∈ L2

0(Ω). Then there exists a v ∈
(
H1

0 (Ω)
)d with

µ = −div v and ‖v‖(
H1

0 (Ω)
)d ≤ C ‖µ‖L2(Ω).

Proof.
A proof can be found in [25].

Using this lemma, we compute

sup

u∈
(
H1

0 (Ω)
)d b(u, µ)

‖u‖(
H1

0 (Ω)
)d ≥ b(v, µ)

‖v‖(
H1

0 (Ω)
)d =

‖µ‖2L2(Ω)

‖v‖(
H1

0 (Ω)
)d ≥ 1

C
‖µ‖L2(Ω)
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and, consequently, we obtain

inf
µ∈L2

0(Ω)
sup

u∈
(
H1

0 (Ω)
)d b(u, µ)

‖u‖(
H1

0 (Ω)
)d ‖µ‖L2(Ω)

≥ 1

C
> 0.

In conclusion, we have shown.

Theorem 3.16 (cf. [25]).
Let f ∈

(
H−1(Ω)

)d. Then the Stokes problem (3.13) admits a unique weak solution pair
(u, p) ∈

(
H1

0 (Ω)
)d × L2

0(Ω).
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4. Inverse Problems

In engineering disciplines, as well as in natural and social sciences mathematical models
are used to study systems. A mathematical model is a mapping

A : U → Y,

where U denotes the set of causes (parameters) and Y the set of effects (observations).
We speak of a direct problem, if we calculate the effect Au = y ∈ Y for given parameters
u ∈ U . Conversely, we have an inverse problem if we conclude the cause u ∈ U from the
observation y ∈ Y.

In the context of optical flows the model equation is given by the optical flow constraint

It(t, x) + ω(t, x) · ∇I(t, x) = 0 with I(0, x) = I0(x). (OFC)

In this case, for a given vector field ω and an initial image I0 the computation of the
intensity function I is denoted as the direct problem. Conversely, the inverse problem is
given by the estimation of the optical flow ω for a given intensity function I (cf. Chapter
1).

In the following we analyse linear inverse problems, i.e, we restrict ourselves to the case
that A is a linear operator.

In general, inverse problems are more difficult to solve than the corresponding direct
problem. In fact, inverse problems often tend to be ill-posed in the sense of Jacques
Hadamard. This means, at least one of the following conditions is violated:

(i) The problem admits a solution.

(ii) The solution is unique.

(iii) The solution depends continuously on the input data.

Usually, this ill-posedness is caused by violation of the third condition. This has the
effect, that small noises in the input data, which are unavoidable by physical measure-
ments, can generate arbitrary large errors in the solution. Consequently, the calculated
solution is completely useless. This instability is illustrated in the following example.
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Example 4.1 (cf. [42]).
Let U = L2(0, 1) and Y = {y ∈ L2(0, 1) : y′ exists in the weak sense}. Then we consider
the integration operator

A : U → Y, u(t) 7→
t∫

0

u(s) ds

and the differentiation operator

A−1 : Y → U , y(t) 7→ y′(t).

These two problems are inverse to each other. The integration operator admits a unique
solution and is continuous since it is linear and bounded by

‖Au(t)‖2L2(0,1) =

1∫
0

(
Au(t)

)2
dt =

1∫
0

( t∫
0

u(s) ds
)2

ds

≤
1∫

0

( 1∫
0

|u(s)|ds
)2

dt =
( 1∫

0

|u(s)| ds
)2

≤

( 1∫
0

12 ds
) 1

2
( 1∫

0

|u(s)|2 ds
) 1

2

2

=

1∫
0

|u(s)|2 ds

= ‖u‖2L2(0,1).

For the differentiation operator and a given y ∈ Y we consider the sequence of perturbed
data

yk(t) = y(t) +
1

kπ
sin(k2πt)

and compute

uk(t) = y′k(t) = u(t) + k cos(k2πt),

where we set u(t) = y′(t). Then, we obtain

‖yk − y‖2L2(0,1) =
1

(kπ)2

1∫
0

| sin(k2πt)|2 dt =
1

2(kπ)2
→ 0

for k →∞, but on the other hand it holds that

‖A−1(yk)−A−1(y)‖2L2(0,1) = ‖uk − u‖2L2(0,1) = k

1∫
0

| cos(k2πt)|2 dt =
k

2
→∞
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for k →∞, i.e., A−1 is discontinuous. Hence, the direct problem of integration is well-
posed (all the three conditions of Hadamard are satisfied), whereas the inverse problem
of differentiation is ill-posed.

Due to the instability, we have to stabilize the solution process. For this purpose, the
idea is to approximate the problem by a suitable stable model.

The outline of this chapter is as follows: In Section 4.1 we introduce a generalized solu-
tion of an inverse problem to guarantee existence and uniqueness of the solution. This
generalization leads to the so called Moore-Penorse inverse. Additionally, we state an
explicit representation of the Moore-Penrose inverse of a compact linear operator. With
the help of this representation we analyse the instability of an inverse problem and mo-
tivate the classical Tikhonov regularization for stabilizing the solution. In particular, in
Section 4.2 we show existence, uniqueness and stability of the solution for the Tikhonov
regularization.

At the end of the chapter we are focussing on inverse problems, where U and Y are func-
tion spaces. Here, we discuss that the Tikhonov regularization is inappropriate, if we
seek for a discontinuous solution. Therefore, we also introduce the BV-Regularization
in Section 4.3.

4.1. Moore-Penrose Inverse

Before generalizing the solution of an inverse problem, we want to mention that the
well-posedness of the problem depends on the operator A as well as on the function
spaces U and Y. Obviously, the existence and uniqueness rely on the function spaces
U and Y. But also the continuity of the operator depends on the metric in which we
measure the distance. In fact, if we use the function space Y = H1(0, 1) in Example
4.1, then the differentiation operator A−1 is continuous since

‖A−1(y)‖L2(0,1) = ‖y′‖L2(0,1) ≤ ‖y‖L2(0,1) + ‖y′‖L2(0,1) = ‖y‖H1(0,1).

However, the function spaces are usually prescribed by the application. Hence, we
cannot artificially define the function spaces U and Y to obtain well-posedness of the
inverse problem.

In the following, we restrict our discussion on Hilbert spaces U and Y. To guarantee the
existence of a solution, we only seek for a least-squares solution of the inverse problem,
i.e., we consider the surrogate problem

u = argmin
ϕ∈U

‖Aϕ− y‖Y . (LSS)

In fact, we can show that this problem admits a solution if and only if y ∈ R(A)⊕R(A)⊥.
Moreover, the set of solutions to problem (LSS) is closed and convex. As a consequence,
we can find a unique element of minimal norm in the set of solutions to problem (LSS),
see e.g. [21, 38, 42]. This motivates the following definition.
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Definition 4.2 (Moore-Penrose inverse).
Let A ∈ L(U ,Y) with Hilbert spaces U and Y. Then the mapping A† which maps
y ∈ D(A†) := R(A)⊕R(A)⊥ onto the unique minimal-norm-solution u† ∈ U to problem
(LSS) is called (generalized) Moore-Penrose inverse.

For further properties of the (generalized) Moore-Penrose inverse we refer to [21, 42]

We just mention that, for compact linear operators K ∈ K(U ,Y) we can derive an
explicit representation of the Moore-Penrose inverse. Indeed, by using the spectral
theorem we can represent the Moore-Penrose inverse by a singular value decomposition.

Theorem 4.3.
Let K ∈ K(U ,Y) with Hilbert spaces U and Y. Moreover, we denote by

K∗Ku =
∞∑
j=0

λj
(
u, ϕj

)
U ϕj

the eigenvalue expansion of K∗K, where {ϕj} ⊂ U denotes an orthonormal sequence of
eigenvectors and {λj} ⊂ R denotes the corresponding zero sequence of eigenvalues with
λ1 ≥ λ2 ≥ ... > 0. Then, the Moore-Penrose inverse of K is given by

u† = K†y =

∞∑
j=1

σ−1
j

(
y, ψj

)
Yϕj for y ∈ D(K†), (4.1)

where σj =
√
λj and {ψj} ⊂ Y is defined by ψj = σ−1

j K ϕj and forms an orthonormal
sequence. The set {(σj , ϕj , ψj)} ⊂ R× U × Y is called singular value system of K.

Proof.
A proof can be found in [21, 42].

Remark 4.4.
For K ∈ K(U ,Y) with N := dim(R(K)) <∞ we have

u† = K†y =
N∑
j=1

σ−1
j

(
y, ψj

)
Yϕj .

With the help of the singular value representation of K† (4.1) we are in a position to
analyse the stability of the corresponding inverse problem. In practical applications we
usually have noisy measurements, i.e., we are only given yε ∈ Y with ‖y − yε‖Y ≤ ε. If
we assume a finite singular value system we can estimate the reconstruction error by

‖x† −K†yε‖U = ‖K†y −K†yε‖U =

∥∥∥∥∥∥
N∑
j=1

σ−1
j

(
y − yε, ϕj

)
Yψj

∥∥∥∥∥∥
U

≤ 1

σN
‖y − yε‖Y ≤

ε

σN
.

(4.2)
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Thus, the reconstruction error is bounded, even though it can be very large. On the
other hand, for an infinite singular value system {(σj , ϕj , ψj)} ⊂ R×U ×Y we consider
the sequence of perturbed measurements {yε} ⊂ Y given by yε = y+ εψj . In this case,
the reconstruction error is given by

‖K†y −K†yε‖U =
ε

σj
→∞ for j →∞.

Altogether, we conclude that the Moore-Penrose inverse of a compact linear operator is
continuous if and only if the range R(K) is finite dimensional.

4.2. Tikhonov Regularization

We have seen that the generalized inverseK† is discontinuous if the range ofK is infinite
dimensional. Therefore, we have to stabilize the solution process. For this purpose, the
idea is to approximate the Moore-Penrose inverse by a suitable family of linear operators
Rα. The question is now: What does suitable mean? To answer this, we estimate the
reconstruction error by

‖u† −Rαyε‖U ≤ ‖u† −Rαy‖U + ‖Rα(y − yε)‖U
= ‖(K† −Rα)y‖U + ‖Rα(y − yε)‖U ,

where u† denotes the exact solution, i.e. u† = K†y. We observe that we can divide
the reconstruction error into an approximation error, caused by the approximation of
K† by Rα, and a data error, which occurs due to noisy measurements. To control both
errors terms, we require that the family of approximations Rα satisfies the following
conditions:

Stability: Rα ∈ L(Y,U) for all α > 0 (4.3)

Pointwise convergence: Rαy
α→0−−−→ K†y for all y ∈ D(K+). (4.4)

However, we note that both conditions typically exclude each other. Indeed, the smaller
α the smaller the approximation error ‖(K† − Rα)y‖, but the larger the data error
‖Rα(y − yε)‖, since ‖Rα‖ → ∞ for α → 0. The behaviour of both error terms is
illustrated in Figure 4.1. Therefore, the regularization parameter α has to be chosen
appropriately such that the summation of approximation and data error is minimized.
An a priori parameter choice rule is presented at the end of this section.

First, we introduce two approximations satisfying the conditions (4.3) and (4.4), namely
the truncated singular value decomposition and the Tikhonov regularization. Consider-
ing the singular value representation of the Moore-Penrose inverse (4.1) more carefully,
we observe that error components (with respect to the basis {ϕj}) are amplified by the
factor σ−1

j . These amplifications are harmless for large singular values. But for small
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4. Inverse Problems

singular values, these amplifications are severe. Hence, the idea of the truncated singular
value decomposition is to omit these severe summands and, thus, the regularization is
given by

Rαy =
∑
σj≥α

σ−1
j

(
y, ψj

)
Yϕj with α > 0.

This regularization is linear and bounded (cf. (4.2)). To argue the pointwise convergence,
we interpret Rαy as a series of partial sums which converge to K†y since the limit exists
for y ∈ D(K†).

In contrast, the so called Tikhonov regularization is given by

Rαy =
∞∑
j=1

σj
σ2
j + α

(
y, ψj

)
Yϕj with α > 0. (4.5)

The motivation of this regularization is to damp the amplifications by translating the
eigenvalues σj from zero to the positive part of the real axis.

Obviously, the Tikhonov regularization is linear and pointwise convergent to K†. To
show the boundedness we estimate

‖Rαy‖U ≤

∥∥∥∥∥∥σ1

α

∞∑
j=1

(
y, ψj

)
Yϕj

∥∥∥∥∥∥
U

≤ σ1

α
‖y‖Y .

In comparison to the truncated singular value decomposition, an advantage of the
Tikhonov regularization is that we do not need to compute the singular value system of
K. In fact, we can formulate (4.5) as a minimization problem (cf. [21]):

u∗ = argmin
u∈U

J(u) := ‖Ku− y‖2Y + α‖u‖2U with α > 0.

Regularization paramter α →

Approximation error
Reconstruction error
Data error
minimal Reconstruction error

Figure 4.1.: Typical behaviour of the approximation and data error
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4.2. Tikhonov Regularization

In particular, this formulation enables us to generalize the Tikhonov regularization also
to operators A : U → Y which are not necessarily linear or compact. For this, we set

u∗ = argmin
u∈U

J(u) := ‖Au− y‖2Y + α‖u‖2U with α > 0. (4.6)

Indeed, in a moment we show existence, uniqueness and stability of a solution for op-
erators A, which are just linear and bounded. Moreover, we discuss the Tikhonov reg-
ularization for the non-linear solution operator T of the optical flow constraint (OFC)
in Chapter 6.

For the following analysis let A ∈ L(U ,Y) with Hilbert spaces U and Y. We show
existence and uniqueness of an optimal solution to problem (4.6) by using standard
techniques from optimization theory, see [31, 44]. These techniques exploit the strict
convexity and the weak lower semicontinuity of the cost functional J(u).

Lemma 4.5 (Strict convexity).
Let A ∈ L(U ,Y) with Hilbert spaces U and Y. Then the cost functional J(u) defined in
(4.6) is strictly convex.

Proof.
We have

vTJ ′′(u)v = ‖Av‖2Y + α‖v‖2U > 0 for all v ∈ U \ {0}.

Thus, we conclude that J ′′(u) is positiv definit and, consequenlty, J(u) is strictly convex.

Lemma 4.6 (Weakly lower semicontinuity).
Let A ∈ L(U ,Y) with Hilbert spaces U and Y. Then the cost functional J(u) defined in
(4.6) is weakly lower semicontinuous, i.e.,

uk ⇀ u ∈ U =⇒ lim inf
k→∞

J(uk) ≥ J(u).

Proof.
By using the linearity of the inner product we compute

‖Au− y‖2Y =
(
Au− y,Au− y

)
Y

=
(
A(u− uk + uk)− y,Au− y

)
Y

=
(
Auk − y,Au− y

)
Y +

(
u− uk, A∗(Au− y)

)
U

≤ ‖Au− y‖Y‖Auk − y‖Y +
(
u− uk, A∗(Au− y)

)
U .

Letting k →∞ and by exploiting the weak convergence of the sequence {uk}, we obtain

‖Au− y‖Y ≤ lim inf
k→∞

‖Auk − y‖Y .
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4. Inverse Problems

With the same argumentation we conclude

‖u‖U ≤ lim inf
k→∞

‖uk‖U .

In summary, we get

J(u) = ‖Au− y‖2Y + ‖u‖2U ≤ lim inf
k→∞

(
‖Auk − y‖2Y + ‖uk‖2U

)
= lim inf

k→∞
J(uk).

Remark 4.7.
In [20] it is shown that any continuous convex functional F : U → R is weakly lower
semicontinuous if U is a Banach space.

Finally, we are in a position to prove the existence and uniqueness of an optimal solution
to problem (4.6).

Theorem 4.8.
Let A ∈ L(U ,Y) with Hilbert spaces U and Y. Then the minimization problem (4.6)
admits a unique solution u∗ ∈ U .

Proof.
For existence, we consider a monotone minimizing sequence {uk} with

J(uk)→ inf
u∈U

J(u) =: d > 0.

This sequence is bounded by

‖uk‖2U ≤
1

α
J(uk) ≤ 1

α
J(u0).

Consequently, we conclude that there exists a subsequence {uki} which weakly converges
towards u∗ ∈ U since U is reflexive.

Finally, we deduce the existence of an optimal solution from the weak lower semiconti-
nuity of J ,

d = lim
k→∞

J(uk) = lim inf
ki→∞

J(uki) ≥ J(u∗) ≥ d.

For uniqueness, we assume that there exist two distinct optimal solution u∗1 and u∗2.
Then by exploiting the strict convexity of J , we get

J(λu∗1 + (1− λ)u∗2) < λJ(u∗1) + (1− λ) J(u∗2) for λ ∈ (0, 1).

But this is a contradiction to the optimality of u∗1 and u∗2. Thus, problem (4.6) admits
a unique solution.
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4.3. BV Regularization

Next, we state a result on how to choose the regularization parameter such that the
Tikhonov regularization converges towards the Moore-Penrose inverse if the noise level
ε tends to zero, i.e., if ‖y − yε‖Y ≤ ε→ 0.

Theorem 4.9 (Stability).
Assume ‖y − yε‖Y ≤ ε with y ∈ D(A†). Moreover, we choose α : (0,∞) → (0,∞) such
that

α(ε)→ 0 and ε2/α(ε)→ 0 for ε→ 0.

Then,

‖u† −Rα(ε)y
ε‖U = ‖K†y −Rα(ε)y

ε‖U → 0 for ε→ 0.

Proof.
This statement is a special case of Corollary 6.13.

Finally, we exemplify the Tikhonov-regularization by considering the (linear) optical
flow problem (cf. Section 1.3).

Example 4.10.
Determine ω ∈ U such that

∇I(t, x) · ω(t, x) = −It(t, x) for t ∈ [0, T ],

where I ∈ C1((0, T )× Ω) ⊂ H1((0, T ) × Ω) is a measured observation. First note, that
in this case the linear operator ∇I(t, x) is perturbed, too, if the measured function I
is noisy. However, in [39] the Tikhonov-regularization (4.6) is also analysed for noisy
operators.

In [33] Horn and Schunck proposed to seek for a solution ω in the space U =
(
H1

0 (Ω)
)d.

This is motivated by the fact that image pixels belonging to the same object are moving
with the same speed and in the same direction. Hence, it is reasonable to seek for a
smooth solution. Additionally, for the computation of the optimality system it is useful to
require that ω vanishes on the boundary. Altogether, by using a Tikhonov-regularization
we obtain the minimization problem

ω∗ = argmin
ω∈U

J(ω) := ‖∇I · ω − (−It)‖2L2(Ω) + α‖ω‖2H1
0 (Ω) for t ∈ [0, T ],

which we have already mentioned in Section 1.3.

4.3. BV Regularization

For a general linear operator A : H1
0 (Ω) → L2(Ω) and observation y ∈ L2(Ω) the

Tikhonov- or H1-regularization reads as

u∗ = argmin
u∈H1

0 (Ω)

J(u) :=
1

2
‖Au− y‖2L2(Ω) +

α

2
‖u‖2H1

0 (Ω) with α > 0. (4.7)
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4. Inverse Problems

An essential benefit of a Tikhonov regularization is its differentiability. Hence, we can
easily compute the optimality condition of the solution,

0 = J ′(u)ũ =

∫
Ω

A∗
(
Au− y

)
ũdx+ α

∫
Ω

∇u · ∇ũdx

=

∫
Ω

A∗
(
Au− y

)
ũdx− α

∫
Ω

∆u ũdx for all ũ ∈ U .
(4.8)

As a consequence, we can use for instance gradient method (cf. Chapter 7) for solving
the problem numerically. Nevertheless, from (4.8) we conclude that the optimal solution
u to problem (4.7) satisfies the Poisson equation

α∆u = A∗
(
Au− y

)
, (4.9)

which can be interpreted as the limit of a diffusion process. Consequently, discontinuities
in the solution u are smoothed out. However, if we consider for example a sequence of
two objects touching each other but moving in different directions, then we observe that
the optical flow is represented by a discontinuous vector field (cf. Section 8.5). Thus,
a H1-regularization is inappropriate in this case. For preserving discontinuities in the
solution, a BV-regularization, given by

u∗ = argmin
u∈U

J(u) :=
1

2
‖Au− y‖2L2(Ω) + α

∫
Ω

|∇u|dx with α > 0,

is more suited. In the following we motivate the BV-regularization for the 2-dimensional
case, i.e., Ω ⊂ R2, by adopting the work of [5], as well as [4] and [18]. As a starting
point, we consider the regularized problem

u∗ = argmin
u∈U

J(u) :=
1

2
‖Au− y‖2L2(Ω) + α

∫
Ω

Φ(|∇u|) dx with α > 0, (4.10)

where Φ: R+ → R+ is for now an arbitrary function and U a function space which we
suitably design later on. Again, we derive the optimality condition

α div

(
Φ′(|∇u|)
|∇u|

∇u
)

= A∗
(
Au− y

)
(4.11)

and observe, that the Laplacian term in (4.9) is replaced by a divergence term, i.e.,

α∆u→ α div

(
Φ′(|∇u|)
|∇u|

∇u
)
.

This replacement allows us to design the function Φ in such away, that we have a
smoothing process inside homogeneous regions, while we preserve discontinuities in in-
homogeneous regions. Here, the key idea is to separate the divergence term into two
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4.3. BV Regularization

parts, where one part describes the smoothing process in gradient direction ξ =
(ωx,ωy)T

|∇ω|

and the other part describes the smoothing process in direction η =
(−ωy ,ωx)T

|∇ω| orthogonal
to ξ. This separation is given by the following theorem.

Theorem 4.11.
Let u be a twice continuously differentiable function. Then, the following identity holds

div

(
Φ′(|∇u|)
|∇u|

∇u
)

=
Φ′(|∇u|)
|∇u|

uξξ + Φ′′(|∇u|)uηη,

where

ξ =
(ux, uy)

T

|∇u|
and η =

(−uy, ux)T

|∇u|
⊥ ξ. (4.12)

Proof.
By applying the chain and product rule for differentiation we obtain

div

(
Φ′(|∇u|)
|∇u|

∇u
)

=
d

dx

(
Φ′(|∇u|)
|∇u|

ux

)
+

d

dy

(
Φ′(|∇u|)
|∇u|

uy

)
=

Φ′′(|∇u|)
|∇u|2

(
(u2
x uxx + ux uy uxy) + (uy ux uxy + u2

y uyy)
)

+
Φ′(|∇u|)
|∇u|

(uxx + uyy)

− Φ′(|∇u|)
|∇u|2

(u2
x uxx + ux uy uyx) + (uy ux uxy + u2

y uyy)

|∇u|
.

A simplification of this expression leads to

div

(
Φ′(|∇u|)
|∇u|

∇u
)

= Φ′′(|∇u|)
u2
x uxx + 2ux uy uxy + u2

y uyy

|∇u|2

+
Φ′(|∇u|)
|∇u|

u2
y uxx − 2ux uy uxy + u2

x uyy

|∇u|2
.

Finally, we deduce the statement from the following Lemma 4.12.

Lemma 4.12.
Let u = u(x, y) be twice continuously differentiable. Then the second order derivatives
of u = u(x, y) in direction ξ and η defined in (4.12) are given by

uξξ =
u2
x uxx + 2ux uy uxy + u2

y uyy

|∇u|2
,

uηη =
u2
y uxx − 2ux uy uxy + u2

x uyy

|∇u|2
.
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Proof.
By a simple calculation we get

uξξ = ξT D2u ξ =
1

|∇u|2
(ux, uy)

[
uxx uxy
uyx uyy

](
ux
uy

)
=
u2
x uxx + 2ux uy uxy + u2

y uyy

|∇u|2
,

uηη = ηT D2u η =
1

|∇u|2
(−uy, ux)

[
uxx uxy
uyx uyy

](
−uy
ux

)
=
u2
y uxx − 2ux uy uxy + u2

x uyy

|∇u|2
.

Now, with this separation we are in the position to design the function Φ. First, note
that the gradient is small in homogeneous regions, whereas it is large in inhomogeneous
regions, i.e., |∇u| → 0 or |∇u| → ∞, respectively. In order to achieve the diffusion in
homogeneous regions we require

lim
s→0

Φ′(s)

s
= lim

s→0
Φ′′(s) = Φ′′(0) = c > 0, (RTC1)

because in this case equation (4.11) using Theorem 4.11 leads to a Poisson equation

α div

(
Φ′(|∇u|)
|∇u|

∇u
)

= c α∆u = A∗
(
Au− y

)
.

On the other hand, in inhomogeneous regions we would like to smooth only parallel to
the edges, but not across them. We enforce this by stopping the diffusion in gradient
direction η, while keeping a stable diffusion along the direction ξ being parallel to the
edge. Thus, we impose

lim
s→∞

Φ′(s)

s
= 0, (4.13)

lim
s→∞

Φ′′(s) = b > 0, (4.14)

which by using Theorem 4.11 leads to

α div

(
Φ′(|∇u|)
|∇u|

∇u
)

= b α uηη = A∗
(
Au− y

)
.

However, the two conditions (4.13) and (4.14) exclude each other. Therefore, we require,
that we have much more diffusion in direction ξ than along the gradient direction η, i.e.,

lim
s→∞

Φ′′(s) = lim
s→∞

Φ′(s)

s
= 0, (RTC2)

lim
s→∞

Φ′′(s)
Φ′(s)
s

= 0. (RTC3)
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A function which satisfies the conditions (RTC1) to (RTC3) is given by Aubert [4, 18],

Φ(s) =
√
s2 + δ. (4.15)

In fact, by calculating

Φ′(s) =
s√

s2 + δ
and

Φ′′(s) = ε (s2 + δ)−
3
2 ,

we verify that the conditions (RTC1) to (RTC3) are satisfied:

lim
s→0

Φ′′(s) = lim
s→0

Φ′(s)

s
=

1√
δ
> 0,

lim
s→∞

Φ′′(s) = lim
s→∞

Φ′(s)

s
= 0,

lim
s→∞

Φ′′(s)
Φ′(s)
s

= 0.

Inserting Aubert’s function (4.15) in the generalized regularized problem (4.10) leads to

u∗ = argmin
u∈U

Jδ(u) :=
1

2
‖Au− y‖2L2 +

∫
Ω

√
|∇u|2 + δ dx. (4.16)

Letting ε→ 0, we obtain the total variation as regularization term

u∗ = argmin
u∈U

J(u) :=
1

2
‖Au− y‖2L2 +

∫
Ω

|∇u| dx. (4.17)

Note, that the total variation is not differentiable. However, from the inequality

J(u) =
1

2
‖Au− y‖2L2 +

∫
Ω

|∇u|dx

≤ 1

2
‖Au− y‖2L2 +

∫
Ω

√
|∇u|2 + δ dx = Jδ(u)

≤ 1

2
‖Au− y‖2L2 +

∫
Ω

(√
|∇u|2 +

√
δ
)

dx = J(u) +
√
δ |Ω|

we conclude that both regularizations (4.16) and (4.17) admit comparable optimal solu-
tions for δ > 0 sufficiently small. Hence, (4.16) can be interpreted as a smoothened total
variation, which gives certain advantages in numerical calculations, like differentiability.

Now the question is: What is an appropriate control space U for finding a solution to
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4. Inverse Problems

problem (4.17) or (4.16), respectively? As a reminder, the aim of this section was to
design a regularization which allows discontinuous solution. Hence, classical Sobolev
spaces are inappropriate in this case. Additionally, we are not able to find a solution
to problem (4.16) or (4.17) in the space W 1,p(Ω), 1 ≤ p ≤ ∞ (cf. discussion in Section
6.2.3), respectively. Therefore, in the following we seek for a solution in the space of
bounded variational functions. Indeed, in [1] it is shown that we can find a unique
solution in the space U =

(
BV0(Ω)

)d.
Theorem 4.13.
Let U :=

(
BV0(Ω)

)d and Y be a Hilbert space. Assume that A : U → Y is a linear
operator. Then the minimization problems (4.16) and (4.17) admit unique solutions
u∗δ ∈ U and u∗ ∈ U , respectively.

Proof.
We deduce the statement from Theorem 3.1 in [1], which additionally requires that the
cost functional J is BV -coercive. The BV -coercivity assumption can be verified by
using the Poincoré inequality for functions of bounded variation (cf. Theorem 2.14).

Moreover, also the stability of the BV-regularization is analysed in [1].

Theorem 4.14 (Stability).
Let U :=

(
BV0(Ω)

)d, Y be a Hilbert space and u∗ be the exact solution to problem (4.17).
Assume ‖y − yε‖Y ≤ ε with y, yε ∈ Y. We denote by u∗ε the unique solution to problem

min
u∈U

J(u) :=
1

2
‖Au− yε‖2L2 +

∫
Ω

|∇u| dx

Moreover, we choose α : (0,∞)→ (0,∞) such that

α(ε)→ 0 and ε2/α(ε)→ 0 for ε→ 0.

Then, u∗ε converges towards u∗ in Lp(Ω) if 1 ≤ p < d
d−1 . The convergence is weak in

Lp(Ω) if p = d
d−1 .

Analogously, the statement holds for problem (4.16).
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Theory
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5. Weak Solutions of Transport
Equations

In this chapter we analyse the solution operator

T : U × Z → Y
(ω, I0) 7→ I

of the optical flow constraint

It + ω · ∇I = 0 with I(0, x) = I0(x) (OFC)

with I : (0, T ) × Ω → R, ω : (0, T ) × Ω → Rd and I0 : Ω → R, where Ω ⊂ Rd denotes
an open and bounded set. In particular, we will argue a suitable choice for the function
spaces U ,Y and Z.

If I0 is a C1-function and ω is a Lipschitz continuous vector field, then a standard
ansatz for solving a transport equation analytically is the method of characteristics,
see Section 3.2. In fact, in this case existence and uniqueness of a solution follows by
Picard-Lindelöf’s theorem, as we have shown in Theorem 3.6. However, in our case the
samples In, n = 0, ..., N , are not necessarily differentiable. Furthermore, also the vector
fields ω which we consider in the next chapter are not necessarily Lipschitz continuous.
This means Picard-Lindelöf’s theorem is not applicable. Therefore in the following we
consider weak solutions of transport equations. The weak formulation is obtained by
multiplying the transport equation (OFC) by a test function ϕ and integration by parts.

Definition 5.1 (Local Weak Solution).
Let ω ∈

(
L1((0, T ) × Ω)

)d, div(ω) ∈ L1((0, T ) × Ω) and I0 ∈ L1(Ω). A function
I ∈ L∞((0, T ) × Ω) is said to be a local weak solution of (OFC), if it satisfies the
equation

T∫
0

∫
Ω

I
(
ϕt + ω · ∇ϕ+ div(ω)ϕ

)
dx dt = −

∫
Ω

I0(x)ϕ(0, x) dx,

for any Lipschitz continuous test function ϕ ∈ C0,1((0, T )× Ω) such that ϕ(T, ·) = 0 and
ϕ = 0 on [0, T ]× ∂Ω.

In this chapter we show existence and uniqueness of a weak solution, as well as the
weak-* sequential closedness of the solution operator T , which is useful for proving the
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5. Weak Solutions of Transport Equations

weak lower semicontinuity of the cost functional J(ω) in problem (NP) or (1.7).

A useful tool for proving the uniqueness of weak solutions is the renormalization property
of weak solutions. This renormalization property was originally introduced by DiPerna
and Lions in 1989 [19]. However, in the following we will adapt the work of Boyer and
Fabrie [10], which is also based on [19]. They in a simplified version showed the following
properties of weak solutions to (OFC).

Theorem 5.2 (Existence, Uniqueness & Stability [10]).
Let

ω ∈
(
L1((0, T ),W 1,1

0 (Ω))
)d
,

div(ω) ∈ L1((0, T ), L∞(Ω)) and
I0 ∈ L∞(Ω).

Then the transport equation (OFC) admits a unique solution

I ∈ C0([0, T ], Lr(Ω)), 1 ≤ r <∞.

Moreover the solution I is stable, too. This means, if {Ik} ⊂ C0([0, T ], Lr(Ω)) denotes
the unique sequence of weak solutions corresponding to the sequence {ωk} with

ωk ∈
(
L1((0, T ),W 1,1

0 (Ω))
)d and

div(ωk) ∈ L1((0, T ), L∞(Ω)),

then the sequence {Ik} converges strongly towards I ∈ C0([0, T ], Lr(Ω)), if ωk → ω ∈ U .

Remark 5.3.
To be more precise, in [10] existence, uniqueness and stability is shown for the more
general transport equation

It(t, x) + div
(
ω(t, x) I(t, x)

)
+ c(t, x) I(t, x) = 0

with initial and inflow boundary conditions

I(0, x) = I0(x) and

I(t, x) = Iin(t, x) on ∂ΩIn,

where ∂ΩIn := {(t, x) ∈ [0, T ] × ∂Ω : with ω(t, x) · ν(t, x) < 0} with outer unit normal
vector ν on [0, T ]× ∂Ω.

In particular, the vector field does not necessarily vanish on the spatial boundary ∂Ω.

However, with the regularity condition div(ω) ∈ L1((0, T ), L∞(Ω)) it is difficult to show
existence of an optimal solution to problem (NP) without any additional assumptions.
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To prove existence of an optimal solution to problem (NP), one possibility is to addi-
tionally assume div(ω) = 0 as in [15]. But this would mean to exclude deformation
vector fields as solutions.

Therefore, we will show next that we can omit the L∞- boundedness assumption on
the divergence of ω, if we require instead that the vector field ω vanishes on the spatial
boundary ∂Ω. We remark at this point, that this requirement is not really a restriction,
because for the computation of the optimality system to problem (NP) we will require
it anyway, as in [15] (or in [8, 9]).

5.1. Existence

We start with analysing existence of a local weak solution. For this we require that
the vector field ω is a Bochner function with values in the Sobolev space W 1,1

0 (Ω), i.e.,
ω ∈

(
L1((0, T ),W 1,1

0 (Ω))
)d. The fact that ω vanishes on the spatial boundary ∂Ω allows

us to use a continuation of ω from (0, T )× Ω to (0, T )× Rd given by

ω̄(x, t) =

{
ω(x, t) if x ∈ Ω

0 if x ∈ Rd \ Ω
.

Hence, the procedure for proving existence is as follows. Firstly, we look for a global
weak solution. Here, the idea is to approximate ω and I0 by smooth functions and,
subsequently, to conclude the existence of a solution from the global version of Picard
Lindelöf’s theorem. Secondly, we deduce from global existence also local existence of a
weak solution by using the continuation above.

We now define a global weak solution.

Definition 5.4 (Global Weak Solution).
Let ω ∈

(
L1
loc((0, T )× Rd)

)d, div(ω) ∈ L1
loc((0, T )× Rd) and I0 ∈ L1

loc(Rd). A function
I ∈ L∞((0, T ) × Rd) is said to be a global weak solution of (OFC), if it satisfies the
equation

T∫
0

∫
Rd

I
(
ϕt + ω · ∇ϕ+ div(ω)ϕ

)
dx dt = −

∫
Rd

I0(x)ϕ(0, x) dx,

for any test function ϕ ∈ C0,1
c ([0, T )× Rd).

For proving existence of a global weak solution to (OFC), we adapt the proof in [17].

Theorem 5.5 (Existence).
Let ω ∈

(
L1((0, T ),W 1,1

loc (Rd))
)d and I0 ∈ L∞(Rd) with compact support. Then there

exists a global weak solution I ∈ L∞((0, T )× Rd) to the transport equation (OFC).
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5. Weak Solutions of Transport Equations

Proof.
First we smoothen the vector field ω and the initial value I0 by using a mollifier function,
i.e, we define ωε = ω ∗ρε and Iε0 = I0 ∗ηε, where ρε denotes a mollifier function on Rd+1

and ηε a mollifier function on Rd (cf. Appendix A.1). Then we deduce from the theorem
of Picard and Lindelöf (cf. Theorem 3.6), that for every ε > 0 the regularized problem

It + ωε · ∇I = 0 with I(0, ·) = Iε0

has a (unique) solution on [0, T ]×Rd. We denote this solution by Iε. Furthermore, we
know from the method of characteristics (cf. Section 3.2.1), that

‖Iε‖L∞((0,T )×Rd) ≤ ‖Iε0‖L∞(Rd) ≤ ‖I0‖L∞(Rd).

Thus, we deduce that there exists a subsequence Iεk which converges weakly-* towards
a function I ∈ L∞((0, T )× Rd). Finally we show that the pair (ω, I) satisfies the weak
formulation of a transport equation:

T∫
0

∫
Rd

I
(
ϕt + ω · ∇ϕ+ div(ω)ϕ

)
dx dt

−
T∫

0

∫
Rd

Iεk
(
ϕt + ωεk · ∇ϕ+ div(ωεk)ϕ

)
dx dt

+

∫
Rd

I0(x)ϕ(0, x) dx−
∫
Rd

Iεk0 (x)ϕ(0, x) dx

=

T∫
0

∫
Rd

(I − Iεk)
(
ϕt + ω · ∇ϕ+ div(ω)ϕ

)
dx dt

+

T∫
0

∫
Rd

Iεk
(

(ω − ωεk) · ∇ϕ+ div(ω − ωεk)ϕ
)

dx dt

+

∫
Rd

(
I0(x)− Iεk0 (x)

)
ϕ(0, x) dx,

The first integral vanishes for εk → 0, since the sequence Iεk converge weakly-* towards
I in L∞((0, T )× Rd).

Denoting by K ⊂ [0, T )×Rd the compact support of the test function ϕ we can estimate

42



5.1. Existence

the second integral by

T∫
0

∫
Rd

Iεk
(

(ω − ωεk) · ∇ϕ+ div(ω − ωεk)ϕ
)

dx dt

=

∫
K

Iεk
(

(ω − ωεk) · ∇ϕ+ div(ω − ωεk)ϕ
)

dx dt

≤ ‖I0‖L∞(Rd)‖∇ϕ‖L∞((0,T )×Rd)

∫
K

|ω − ωεk | dx dt

+‖I0‖L∞(Rd)‖ϕ‖L∞((0,T )×Rd)

∫
K

∣∣ div(ω − ωεk)
∣∣ dx dt,

From this estimate we conclude that the second integral also vanishes when εk → 0,
because of the strong convergence of ωεk towards ω in

(
L1((0, T ),W 1,1

loc (Rd))
)d (cf. The-

orem A.5).

For the third integral we have the estimate∫
Rd

(
I0(x)− Iεk0 (x)

)
ϕ(0, x) dx =

∫
K0

(
I0(x)− Iεk0 (x)

)
ϕ(0, x) dx

≤ ‖ϕ‖L∞((0,T )×Rd)

∫
K0

(
I0(x)− Iεk0 (x)

)
dx,

where K0 ⊂ Rd denotes the compact spatial support of the test function ϕ at initial
time t = 0. Thus, also the third integral vanishes for εk → 0, because of the strong
convergence of Iεk0 → I0 in L1

loc(Rd) (cf. Theorem A.5).

Since (ωεk , Iεk) solves the transport equation, we conclude that the pair (ω, I) is a weak
solution of the transport equation, too.

Remark 5.6.
In contrast to [17] we do not need the assumption that ω ∈

(
L∞((0, T )× Rd)

)d.
Finally, existence of a local weak solution is deduced from Theorem 5.5 by using a
continuation of ω and I0 from (0, T )×Ω to (0, T )×Rd and from Ω to Rd, respectively.

Corollary 5.7.
Let ω ∈

(
L1((0, T ),W 1,1

0 (Ω))
)d and I0 ∈ L∞(Ω). Then there exists a local weak solution

I ∈ L∞((0, T )× Ω) to the transport equation (OFC).
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5. Weak Solutions of Transport Equations

Proof.
We define the continuations

ω̄(x, t) =

{
ω(x, t) if x ∈ Ω

0 if x ∈ Rd \ Ω
and Ī0(x) =

{
I0(x) if x ∈ Ω

0 if x ∈ Rd \ Ω
.

Then ω̄ and Ī0 satisfy the assumptions of Theorem 5.5 and we deduce a global weak
solution in [0, T ]×Rd. If we now only use test functions ϕ ∈ C0,1((0, T )× Ω) such that
ϕ(0, ·) = ϕ(T, ·) = 0 and ϕ(t, x) = 0 for x ∈ Rd \ Ω, then we immediately obtain the
statement of the corollary.

Remark 5.8.
This technique for proving existence of a solution cannot be applied to vector fields with
nonzero boundary values. Therefore, in [10] the assumption div(ω) ∈ L∞(Ω) is necessary
to prove the existence of a solution for vector fields with nonzero boundary values.

5.2. Uniqueness

Next, we analyse uniqueness of a weak solution. We begin with two useful properties of
weak solutions to the optical flow constraint (OFC).

Theorem 5.9 (cf. [10]).
Let ω ∈

(
L1((0, T ),W 1,1

0 (Ω))
)d
, I0 ∈ L∞(Ω) and I ∈ L∞((0, T ) × Ω), be any weak

solution of the transport equation (OFC). Then the following properties hold:

1. For any 1 ≤ r <∞, we have I ∈ C0([0, T ], Lr(Ω)).

2. I is a renormalized solution, this means that for any C1-function β : R 7→ R, for
any ϕ ∈ C0,1([0, T ]× Ω) and any [t0, t1] ⊂ [0, T ], we have

0 =

t1∫
t0

∫
Ω

β(I)
(
ϕt + ω · ∇ϕ

)
dx dt+

t1∫
t0

∫
Ω

div(ω)β(I)ϕdx dt

+

∫
Ω

β
(
I(·, t0)

)
ϕ(t0) dx−

∫
Ω

β
(
I(·, t1)

)
ϕ(t1) dx

(RenSol)

Lemma 5.10 ([10]).
For any δ > 0 the function βδ : R→ R defined by

βδ(ξ) =
ξ2√
ξ2 + δ

is of class C∞ and satisfies

|βδ(ξ)| ≤ |ξ| for all ξ ∈ R,
|β′δ(ξ)| ≤ 2 for all ξ ∈ R and
βδ(ξ)→ |ξ| for δ → 0 and ξ ∈ R.
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5.2. Uniqueness

Proof of Theorem 5.9.
The proof is essentially based on the proof of Theorem VI.1.3. in [10]. For the first
part of the proof we have to introduce the concept of mollifier operators. Since we can
adopt this part of the proof from [10], we only sketch this part and refer to [10] for more
details.

First we consider a family of mollifier operators {Sε}, which were introduced in [10], and
set Iε(·, t) = SεI(·, t) for all t ∈ [0, T ]. Then from the properties of mollifier operators
we know that

Iε ∈ L∞((0, T ), Ck(Ω)) for all k ≥ 0,

‖Iε‖L∞((0,T )×Ω) ≤ ‖I‖L∞((0,T )×Ω) (5.1)

and that

Iε(t)→ I(t) in Lr(Ω) for any r <∞ and any t ∈ [0, T ], and
Iε → I in Lr((0, T )× Ω) for any r <∞.

Further Iε solves the following equation in the distributional sense:

Iεt + ω · ∇Iε = Rε, (5.2)

where Rε ∈ L1((0, T ) × Ω) satisfies ‖Rε‖L1((0,T )×Ω) → 0 as ε → 0. Since Iε is smooth
in space, we deduce from (5.2) that

Iεt = Rε − ω · ∇Iε ∈ L1((0, T )× Ω) (5.3)

holds for any ε > 0. From (5.3) we get

Iε ∈W 1,1((0, T )× Ω) ⊂ C0([0, T ], L1(Ω)).

Finally by using (5.1) we conclude that

Iε ∈ C0([0, T ], Lr(Ω)), for 1 ≤ r <∞.

In order to prove the convergence of the sequence {Iε} for ε → 0 towards a function
I ∈ C0([0, T ], L1(Ω)), we show that {Iε} is a Cauchy sequence in C0([0, T ], L1(Ω)). Let
ε1, ε2 > 0, then by using equation (5.2) we obtain

Iε1t − I
ε2
t + ω · ∇(Iε1 − Iε2) = Rε1 −Rε2 .

Next we multiply the equation by β′δ(I
ε1 − Iε2), with βδ as defined in Lemma 5.10:

β′δ(I
ε1 − Iε2) (Rε1 −Rε2)

= β′δ(I
ε1 − Iε2)

(
Iε1t − I

ε2
t + ω · ∇(Iε1 − Iε2)

)
=

∂

∂t

(
βδ(I

ε1 − Iε2)
)

+ div
(
βδ(I

ε1 − Iε2)ω
)
− div(ω)βδ(I

ε1 − Iε2).
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5. Weak Solutions of Transport Equations

Now we multiply the equation by a time independent Lipschitz continuous test function
ϕ ∈ C0,1(Ω), which satisfies ϕ = 0 on the boundary ∂Ω and 0 ≤ ϕ ≤ 1 in Ω, integrate
over Ω and get ∫

Ω

β′δ(I
ε1 − Iε2)(Rε1 −Rε2)ϕdx

=
d

dt

∫
Ω

βδ(I
ε1 − Iε2)ϕdx

− ∫
Ω

βδ(I
ε1 − Iε2)ω · ∇ϕ

−
∫
Ω

div(ω)βδ(I
ε1 − Iε2)ϕdx.

Then we integrate the equation over [0, s] ⊂ [0, T ] and obtain∫
Ω

(
βδ(I

ε1 − Iε2)ϕ
)
(s, ·) dx−

s∫
0

∫
Ω

div(ω)βδ(I
ε1 − Iε2)ϕdx dt

=

∫
Ω

(
βδ(I

ε1 − Iε2)ϕ
)
(0, ·) dx+

s∫
0

∫
Ω

β′δ(I
ε1 − Iε2)(Rε1 −Rε2)ϕdx dt

+

s∫
0

∫
Ω

βδ(I
ε1 − Iε2)ω · ∇ϕdx dt

≤
∫
Ω

(
|Iε1 − Iε2 |

)
(0, ·) dx+ C

s∫
0

∫
Ω

|Rε1 −Rε2 |dx dt

+

s∫
0

∫
Ω

|Iε1 − Iε2 | |ω · ∇ϕ|dx dt,

where we use in the estimation the properties of βδ which are given in Lemma 5.10 and
that 0 ≤ ϕ ≤ 1. Finally, by using the dominated convergence theorem we pass to the
limit in this inequality for δ → 0 and obtain∫

Ω

(
ϕ |Iε1 − Iε2 |

)
(s, ·) dx

≤
∫
Ω

(
|Iε1 − Iε2 |

)
(0, ·) dx+ C

s∫
0

∫
Ω

|Rε1 −Rε2 | dx dt

+

s∫
0

∫
Ω

|Iε1 − Iε2 | |ω · ∇ϕ| dx dt+

s∫
0

∫
Ω

div(ω) |Iε1 − Iε2 |dx dt.

(5.4)
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5.2. Uniqueness

Next we define for h > 0 a function ϕh via

ϕh(x) :=
1

h
min(h, δ(x)), for all x ∈ Ω,

where δ(x) denotes the distance from x to the boundary ∂Ω. This function is Lipschitz
continuous and satisfies 0 ≤ ϕh ≤ 1. Further we have

|∇ϕ| =

{
0 in Ωh := {x ∈ Ω, δ(x) > h}
1
h in Oh := {x ∈ Ω, δ(x) < h}

.

Then the estimate∫
Ω

(1− ϕh) |Iε1 − Iε2 |(s, ·) dx ≤ 2 ‖I‖L∞((0,T )×Ω)

∫
Ω

(1− ϕh) dx

≤ 2 ‖I‖L∞((0,T )×Ω)| Oh|

holds for any h, ε1, ε2 > 0, which by using (5.4) leads us to

‖(Iε1 − Iε2)(s, ·)‖L1(Ω) ≤ 2 ‖I‖L∞((0,T )×Ω) |Oh|+ ‖ (Iε1 − Iε2) (0, ·)‖L1(Ω)

+C ‖Rε1 −Rε2‖L1((0,T )×Ω)

+
1

h

s∫
0

∫
Oh

|Iε1 − Iε2 | |ω| dx dt

+

s∫
0

∫
Ω

div(ω) |Iε1 − Iε2 | dx dt.

Here we only have to estimate the last two integrals on the right-hand side. To this end,
let v ∈

(
C∞((0, T )× Ω)

)d, and by using the inequality |ω| ≤ |ω − v|+ |v| we get

‖(Iε1 − Iε2)(s, ·)‖L1(Ω) ≤ 2 ‖I‖L∞((0,T )×Ω) |Oh|+ ‖ (Iε1 − Iε2) (0, ·)‖L1(Ω)

+C ‖Rε1 −Rε2‖L1((0,T )×Ω)

+
2

h
‖I‖L∞(Ω) ‖ω − v‖L1((0,T )×Ω)

+
1

h
‖ω‖L∞((0,T )×Ω) ‖Iε1 − Iε2‖L1((0,T )×Ω)

+ 2 ‖ div(ω − v)‖L1((0,T )×Ω) ‖I‖L∞((0,T )×Ω)

+ ‖ div(v)‖L∞((0,T )×Ω) ‖Iε1 − Iε2‖L1((0,T )×Ω).

Finally, for a given ξ > 0, we can choose v, h, ε1, ε2 such that

‖(Iε1 − Iε2)(·, s)‖L1(Ω) ≤ ξ,
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5. Weak Solutions of Transport Equations

because of the convergence of Rε → 0 in L1((0, T ) × Ω), the convergence of Iε → I in
Lp((0, T )×Ω) and the density of

(
C∞((0, T )× Ω)

)d in
(
L1((0, T )×Ω)

)d. We conclude
that {Iε} is a Cauchy sequence in C0([0, T ], L1(Ω)). Together with the convergence of
{Iε} in L1((0, T )× Ω) it follows that

I ∈ C0([0, T ], L1(Ω)),

Iε →I in C0([0, T ], L1(Ω)) for ε→ 0.

Further from (5.1) we deduce that this convergence also holds in C0([0, T ], Lr(Ω)) for
1 ≤ r <∞.

In the next step, we show the renormalization property by multiplying the equation
(5.2) by β′(Iε), where β : R→ R is a C1-function, and get

β′(Iε)Rε = β′(Iε) Iεt + β′(Iε)ω · ∇Iε =
∂β(Iε)

∂t
+ ω · ∇β(Iε).

Next we multiply the equation by a test function ϕ ∈ C1((t0, t1)× Ω) and, using inte-
gration by parts, we obtain

t1∫
t0

∫
Ω

β(Iε)

(
∂ϕ

∂t
+ ω · ∇ϕ

)
dx dt+

t1∫
t0

∫
Ω

div(ω)β(Iε)ϕdx dt

+

∫
Ω

β
(
Iε(0, ·)

)
ϕ(0, ·) dx−

∫
Ω

β
(
Iε(T, ·)

)
ϕ(T, ·) dx

=

t1∫
t0

∫
Ω

β′(Iε)Rε ϕdx dt.

Due to the convergences we have shown above, we finally obtain equation (RenSol) by
passing to the limit for ε→ 0.

Remark 5.11.
Note that the proof is similar to the proof of Theorem VI.1.3. in [10], except that we
have to estimate the integral

T∫
0

∫
Ω

div(ω) |Iε1 − Iε2 |ϕdx dt

in inequality (5.4) differently.
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5.2. Uniqueness

Corollary 5.12. [10]
The renormalization property given in (RenSol) also holds for β(s) = |s|.

Proof.
We use the smooth approximation βδ given in Lemma 5.10 and pass to the limit for
δ → 0.

With these two properties we are prepared to prove the uniqueness of the weak solution.

Theorem 5.13 (Uniqueness).
Let ω ∈

(
L1((0, T ),W 1,1

0 (Ω))
)d and I0 ∈ L∞(Ω). Then there exists a unique weak

solution I ∈ C([0, T ], Lr(Ω)), 1 ≤ r <∞, to the transport equation (OFC).

In comparison to [10], the proof is more technical in this case, since we cannot exploit
that the divergence of ω is bounded in L1((0, T ), L∞(Ω)). Therefore, we need the
following lemma.

Lemma 5.14.
Let ϕ ∈ L∞((0, T )× Ω)) with ‖ϕ(t, ·)‖L1(Ω) ≥ ε > 0 for all t ∈ [0, T ]. Then there exists
a constant Cε (depending on ε), such that

‖ϕ(t, ·)‖L∞(Ω) ≤ Cε‖ϕ(t, ·)‖L1(Ω) for all t ∈ [0, T ].

Proof.
It holds that

‖ϕ(t, ·)‖L∞(Ω) ≤ ‖ϕ‖L∞((0,T )×Ω) ≤
1

ε
‖ϕ‖L∞((0,T )×Ω)︸ ︷︷ ︸

:=Cε

‖ϕ(t, ·)‖L1(Ω)

for all t ∈ [0, T ].

Proof of Theorem 5.13.
From Corollary 5.7 and Theorem 5.9 we already know that problem (OFC) admits a
weak solution I ∈ C0([0, T ], Lr(Ω)) ∩ L∞((0, T )× Ω), 1 ≤ r <∞.

We assume that there exist two distinct weak solutions I1, I2, and set Ī = I1− I2. Since
Ī is continuous in time by Theorem 5.9, we can find an interval [δ, s] ⊂ [0, T ] for which
‖Ī(t, ·)‖L1(Ω) ≥ ε > 0 holds for all t ∈ [δ, s].

Then by using the renormalization property (RenSol), we obtain

s∫
δ

∫
Ω

|Ī|
(

1

s− δ

)
dx dt−

s∫
δ

∫
Ω

div(ω) |Ī|
(
t− δ
s− δ

)
dx dt−

∫
Ω

|Ī(s)| dx = 0,
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5. Weak Solutions of Transport Equations

where we have chosen β(Ī) = |Ī| and ϕ(t, x) = t−δ
s−δ . Then it follows that

‖Ī(s, ·)‖L1(Ω) =

∫
Ω

|Ī(s, ·)| dx dt

≤
s∫
δ

∫
Ω

|Ī|
∣∣∣∣div(ω)

t− δ
s− δ

− 1

s− δ

∣∣∣∣ dx dt

≤ 1

s− δ

s∫
δ

∫
Ω

|Ī|
(
| div(ω) s|+ 1

)
dx dt

≤ 1

s− δ

s∫
δ

s ‖Ī(t, ·)‖L∞(Ω) ‖div(ω)‖L1(Ω) + ‖Ī(t, ·)‖L1(Ω) dt

≤ 1

s− δ

s∫
δ

(
sCε ‖ div(ω)‖L1(Ω) + 1

)
‖Ī(t, ·)‖L1(Ω) dt,

where we used Lemma 5.14 in the last inequality. Finally, by using Gronwall’s Lemma
(cf. Theorem A.1), we obtain

‖Ī(s, ·)‖L1(Ω) ≤ 0 · exp

 1

s− δ

s∫
δ

sCε ‖div(ω)‖L1(Ω) + 1 dt

 = 0,

but this is a contradiction to ‖Ī(t, ·)‖L1(Ω) > 0 in [δ, s]. Hence Ī = 0, and thus the
solution I is unique.

5.3. Weak-* Sequential Closedness

Finally, we show that the solution operator T is weakly-* sequentially closed.

Theorem 5.15 (Weak-* Sequential Closedness).
Let ω ∈ U :=

(
Lp((0, T ),W 1,q

0 (Ω))
)d
, 1 < p, q < ∞, {ωk} ⊂ U , I0 ∈ Z := L∞(Ω) and

{Ik0 } ⊂ Z with ‖Ik0 ‖L∞(Ω) ≤ C ‖I0‖L∞(Ω) for a given constant C > 0. Then the solution
operator T of the transport equation (OFC) is weakly-* sequentially closed, i.e.,

ωk ⇀ ω in U and Ik0 ⇀ I0 in Lr(Ω), 1 < r <∞,

imply

T (ωk, Ik0 ) = Ik
∗
⇀ I = T (ω, I0) in L∞((0, T )× Ω).
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5.3. Weak-* Sequential Closedness

Proof.
First we note that the sequence {Ik} is bounded by

Ik(t, x) ≤ ‖Ik0 (x)‖L∞(Ω) ≤ C ‖I0(x)‖L∞(Ω).

Thus, we deduce that there exists a subsequence {Ikj} and an R ∈ L∞((0, T )×Ω), such
that

Ikj
∗
⇀ R in L∞((0, T )× Ω).

Now we show that the pair (R,ω) satisfies the weak formulation of the transport equation
(OFC), too:

T∫
0

∫
Ω

R
(
ϕt + ω · ∇ϕ+ div(ω)ϕ

)
− Ikj

(
ϕt + ωkj · ∇ϕ+ div(ωkj )ϕ

)
dx dt

+

∫
Ω

(
I0 − I

kj
0

)
ϕ(0, ·) dx

=

T∫
0

∫
Ω

(R− Ikj )
(
ϕt + ω · ∇ϕ+ div(ω)ϕ

)
dx dt

+

T∫
0

∫
Ω

Ikj
(

(ω − ωkj ) · ∇ϕ+ div(ω − ωkj )ϕ
)

dx dt+

∫
Ω

(
I0 − I

kj
0

)
ϕ(0, ·) dx

For the first integral there holds

T∫
0

∫
Ω

(R− Ikj )
(
ϕt + ω · ∇ϕ+ div(ω)ϕ

)
dx dt→ 0 for k →∞,

because of the weak-* convergence of Ikj towards R in L∞((0, T )× Ω).

For the second integral we have that

T∫
0

∫
Ω

Ikj
(

(ω − ωkj ) · ∇ϕ+ div(ω − ωkj )ϕ
)

dx dt

≤‖I0‖L∞(Ω)

T∫
0

∫
Ω

(ω − ωkj ) · ∇ϕ+ div(ω − ωkj )ϕdx dt→ 0 for k →∞,

due to the weak convergence ωkj ⇀ ω in
(
Lp((0, T ),W 1,q

0 (Ω))
)d
, 1 < p, q < ∞. Note

that ϕ ∈ C0,1((0, T )× Ω) ⊂W 1,∞((0, T )× Ω) by Theorem 2.9.
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5. Weak Solutions of Transport Equations

For the third integral we obtain∫
Ω

(
I0 − I

kj
0

)
ϕ(0, ·) dx→ 0 for k →∞,

because of the weak convergence Ikj0 ⇀ I0 in Lr(Ω), 1 < r <∞.

We conclude that the pair (R,ω) solves the transport equation (OFC). Finally, from
the uniqueness of the weak solution (Theorem 5.13) it follows that R = I.
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6. Sequence Interpolation Problem

With the help of the previous chapter, we now have at hand all the tools to analyse the
sequence interpolation problem, which we recall from Section 1.4.

Problem (Sequence Interpolation Problem).
Let U ,Y and Z be Banach spaces specified below. Given image samples In ∈ Z at
discrete times 0 = t0 < t1 < ... < tN = T , find a vector field ω ∈ U , such that

T (ω, I0)(tn, ·) = In for n = 0, ..., N (SIP)

where T : U × Z → Y, (ω, I0) 7→ I denotes the solution operator of the optical flow
constraint

It(t, x) + ω(t, x) · ∇I(t, x) = 0 with I(0, x) = I0(x). (OFC)

In view of the discussion in the previous chapter we initially set:

U :=
(
Lp((0, T ),W 1,q

0 (Ω)
)d
, for 1 < p, q <∞, (6.1a)

Y := C([0, T ], Lr(Ω)), for 1 ≤ r <∞ and (6.1b)
Z := L∞(Ω). (6.1c)

With the established theory on weak solutions in the previous chapter, we show next
that the sequence interpolation problem (SIP) is ill-posed. Hence, we have to regularize
the problem. In [15], an H3- and a smoothened TVε-regularization were discussed for
divergence-free optical flows. This means for example that deformations are excluded
as solutions. However, we introduce in the following an H1-regularization in space (and
time), as well as a W 1,1+τ -regularization, without any restriction on the divergence of
the optical flow. In particular, we show for these regularizations the existence of a
solution. Additionally, we show the stability of a solution for the H1-regularization.

6.1. Local Ill-Posedness

Let us start with the ill-posedness of the sequence interpolation problem (SIP). Since
in general a non-linear problem has no unique solution, we have to redefine the well-
posedness of a non-linear problem. Moreover, we assume in this chapter that the se-
quence interpolation problem (SIP) admits a solution ω+ for given (unperturbed) image
samples In, n = 0, ..., N .
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Definition 6.1 (Local well-posedness, [42]).
Let U and Y be Banach spaces. A non-linear operator equation Aω = y with A : U → Y
is called locally well-posed at ω+ ∈ U , if there exists an r > 0, such that for all sequences
{ωkr } ⊂ Br(ω+) there holds

lim
k→∞

‖A(ωkr )−A(ω+)‖Y = 0 =⇒ lim
k→∞

‖ωkr − ω+‖U = 0.

Otherwise the problem is called locally ill-posed, for each r > 0 there exists a sequence
{ωkr } ⊂ Br(ω+), such that

lim
k→∞

‖A(ωkr )−A(ω+)‖Y = 0, but wkr 6→ ω+ in U for k →∞.

In particular, a non-linear problem is locally ill-posed:

• if ω+ is not locally unique or

• if ω+ does not depend continuously on the input data.

In [21, 42] it is shown that a non-linear inverse problem Aω = f is locally ill-posed, if
A : U → Y is a continuous, compact operator, which additionally is weakly sequentially
closed. Basically, this proof exploits that continuity, compactness and weak sequential
closedness of the operator A imply that

ωk ⇀ ω in U =⇒ Aωk → Aω ∈ Y (6.2)

and, consequently, the ill-posedness of A, if ωk 6→ ω in U . However, in our case we
cannot ensure the compactness of the operator T . But we can show that property (6.2)
holds at least for a suitably chosen subspace of U by using the Aubin-Lions Lemma
(Theorem 2.12) and the stability result of Boyer and Fabrie (Theorem 5.2).

Theorem 6.2.
Let U ,Y and Z be given as in (6.1) with p = q = 2. Moreover, we define the func-
tion space V :=

(
{ϕ ∈ L2((0, T ), H1

0 (Ω)) : with ϕt ∈ L2((0, T ), L2(Ω))}
)d, which is a

Banach space (cf. [10]) equipped with the norm

‖v‖V := ‖v‖L2((0,T ),H1
0 (Ω)) + ‖vt‖L2((0,T ),L2(Ω)).

Note that V ⊂ U . Then the sequence interpolation problem (SIP) is (at least) locally
ill-posed at any point ω+ ∈ V with div(ω+) ∈ L1((0, T ), L∞(Ω)).

Proof.
We set Vdiv := {v ∈ V : with div(v) = 0} and assume that {ϕk} is an orthonormal
basis of Vdiv.

Moreover, let ω+ ∈ V ⊂ U with div(ω+) ∈ L1((0, T ), L∞(Ω)) be an inner point of V,
i.e., there exists an r, such that Br(ω+) ⊂ V. Then we consider the sequence

ωkr = ω+ + r ϕk,
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which weakly converges towards ω+ in V. Note that div(wkr ) ∈ L1((0, T ), L∞(Ω)) for
k ∈ N0.

Next, by applying the Aubin-Lions Lemma (Theorem 2.12) we obtain

ωkr → ω+ in
(
L2((0, T ), L2(Ω))

)d
.

Finally, by using the stability result of Boyer and Fabrie (Theorem 5.2) we get

T (ωkr , I0) = Ikr → I = T (ω+, I0) in C0([0, T ], Lr(Ω)),

for 1 ≤ r <∞, but

‖ωkr − ω+‖V = r.

As a consequence, we conclude that the problem is locally ill-posed at ω+ ∈ V with
div(ω+) ∈ L1((0, T ), L∞(Ω)).

6.2. Regularization of the Problem

As we have seen the sequence interpolation problem (SIP) is locally ill-posed. Hence,
small errors in the image samples In, n = 0, ..., N , can lead to large errors in the recon-
struction of the optical flow ω and the video sequence I. As discussed in Chapter 4,
we can counteract this error amplification by adding one or more regularization terms,
which involve a priori information of the solution, to the objective functional. Finally,
this regularization leads to the minimization problem

(
ω∗, I∗

)
= argmin

(ω,I)∈U×Y
J(ω, I) :=

N∑
n=0

∫
Ω

|I(tn, x)− In(x)|2 dx

+ αRx(ω) + β Rt(ω)

(NP)

subject to

It(t, x) + ω(t, x) · ∇I(t, x) = 0 with I(0, x) = I0(x), (OFC)

where α > 0, β ≥ 0 and In ∈ Z, n = 0, ..., N . Here, Rx : U → R denotes a regularization
in space and Rt : U → R a regularization in time. In the last chapter we have shown
that the optical flow constraint (OFC) admits a unique solution I = I(ω), thus, problem
(NP) is equivalent to the reduced problem

ω∗ = argmin
ω∈U

Ĵ(ω) := J(ω, I(ω)) =

N∑
n=0

∫
Ω

|I(tn, x)− In(x)|2 dx

+ αRx(ω) + β Rt(ω).

(N̂P)

The existence of a solution to problem (NP) can be ensured under the following assump-
tions, as we will see.
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Assumptions 6.3.

(i) U is a reflexive space and there exist 1 < p, q <∞ such that

U ↪→
(
Lp((0, T ),W 1,q

0 (Ω)
)d
,

(ii) Y := C([0, T ], L2(Ω)),

(iii) In ∈ Z := L∞(Ω), for n = 0, ..., N ,

(iv) Rx, Rt : U → R are continuous and convex functionals,

(v) Rx +Rt : U → R is U-coercive, i.e.,

‖ω‖U →∞ =⇒ Rx(ω) +Rt(ω)→∞.

If β = 0, we demand the preceding conditions with Rt(ω) := 0.

The procedure for proving the existence of a solution to problem (NP) is similar to the
linear case (cf. Theorem 4.8). However, note that for an arbitrary non-linear and non-
convex operator A : U → Y and f ∈ Y the term ‖Aω − f‖Y is not necessarily weakly
lower semicontinuous. But with the help of the weak-* sequential closedness of T we
can still ensure the weak lower semicontinuity of Ĵ .

Lemma 6.4.
Let Assumptions 6.3 hold. Then the cost functional Ĵ defined in (N̂P) is weakly lower
semicontinuous, i.e.,

ωk ⇀ ω in U =⇒ Ĵ(ω) ≤ lim inf
k→∞

Ĵ(ωk).

Proof.
Let {ωk} be a sequence, weakly convergent towards ω in U . Then from the weak-*
sequential closedness of T (cf. Theorem 5.15) it follows that

T (ωk, I0) = Ik
∗
⇀ I = T (ω, I0) in L∞((0, T )× Ω)

and, consequently, we conclude

T (ωk, I0) = Ik ⇀ I = T (ω, I0) in L2((0, T )× Ω).

Furthermore, since a continuous convex functional mapping from a Banach space to R
is weakly lower semicontinuous (cf. [20]), we have

N∑
n=0

‖I(tn, x)− In(x)‖2L2(Ω) ≤ lim inf
k→∞

N∑
n=0

‖Ik(tn, x)− In(x)‖2L2(Ω)

and

αRx(ω) + β Rt(ω) ≤ lim inf
k→∞

(
αRx(ωk) + β Rt(ωk)

)
.

Thus, we immediately deduce the statement of the lemma.
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Finally, we show, similarly to the linear case, the existence of an optimal solution to
problem (NP) or (N̂P), respectively.

Theorem 6.5.
Let Assumptions 6.3 hold. Then the optimization problem

(
ω∗, I∗

)
= argmin

(ω,I)∈U×Y
J(ω, I) :=

N∑
n=0

∫
Ω

|I(tn, x)− In(x)|2 dx

+ αRx(ω) + β Rt(ω)

(NP)

subject to

It(t, x) + ω(t, x) · ∇I(t, x) = 0 with I(0, x) = I0(x), (OFC)

where α > 0 and β ≥ 0, admits a solution (ω∗, I∗) ∈ U × Y.

Proof.
Consider a monotone minimizing sequence {ωk} with

Ĵ(ωk)→ inf
ω
Ĵ(ω) =: d ≥ 0.

From the estimate

αRx(ωk) + β Rt(ωk) ≤ Ĵ(ωk) ≤ Ĵ(ω0)

and the U-coercivity of αRx + β Rt we deduce the boundedness of the sequence {ωk}.

Thus, there exists a subsequence {ωkj}, which converges weakly towards ω∗ ∈ U , since
U is reflexive.

Hence, from the weak lower semicontinuity of Ĵ we conclude

d = lim
k→∞

Ĵ(ωk) = lim inf
kj→∞

Ĵ(ωkj ) ≥ Ĵ(ω∗) ≥ d.

Therefore, ω∗ is a solution to problem (N̂P). Finally, from Theorem 5.13 we deduce
that (ω∗, I∗) = (ω∗, T (ω∗, I0)) ∈ U × Y is a solution to problem (NP).

Remark 6.6.
Basically, we use the same techniques as in the existence proof of Chen for the TVε-
regularization (cf. Theorem 4.5. in [15]). Both proofs only differ in their theories on
weak solutions of transport equations, which enables us to show the existence of a solution
without restriction on divergence-free vector fields. However, in [15] the weak sequential
closedness of T is deduced from a stability result on weak solutions established by DiPerna
and Lions (cf. Theorem II.4. in [19] or Theorem 4.4. in [15]). Unfortunately, this
stability result requires the strong convergence of the subsequence ωkj and consequently
is not applicable. But by using the more general Theorem II.7. in [19] the statement of
Theorem 4.5. in [15] still holds.
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In the following we introduce an H1-regularization in space (and time), as well as a
W 1,1+τ -regularization. Here, if not stated otherwise, we restrict ourselves to the case
β = 0, i.e., without regularization in time.

6.2.1. H1-Regularization in Space

We start with the H1-regularization in space given by

Rx(ω) :=
1

2

T∫
0

∫
Ω

|∇ω|2 dx dt. (6.3)

As control space, we choose U :=
(
L2((0, T ), H1

0 (Ω))
)d, because in this case the solution

operator T , as well as the integrals in the cost functional, are well-defined and the
regularization term defined in (6.3) is U-corecive, since 1

2‖ω‖
2
U = Rx(ω). Thus, we

deduce the existence of an optimal solution from Theorem 6.5.

Corollary 6.7 (Existence).
Consider U :=

(
L2((0, T ), H1

0 (Ω))
)d, Y := C([0, T ], L2(Ω)) and In ∈ Z := L∞(Ω) for

n = 0, ..., N . Then the optimization problem

(ω∗, I∗) = argmin
(ω,I)∈U×Y

J(ω, I) =

N∑
n=0

∫
Ω

|I(tn, x)− In(x)|2 dx

+
α

2

T∫
0

∫
Ω

|∇ω|2 dx dt

subject to

It(t, x) + ω(t, x) · ∇I(t, x) = 0 with I(0, x) = I0(x), (OFC)

where α > 0, admits a solution (ω∗, I∗) ∈ U × Y.

6.2.2. H1-Regularization in Space and Time

In this section, we consider the case of additional regularization in time, that is β > 0.
To be more precise, we use an H1-regularization in space and time, i.e.,

Rx(ω) :=
α

2

T∫
0

∫
Ω

|∇ω|2 dx dt and Rt(ω) :=
β

2

T∫
0

∫
Ω

|ωt|2 dx dt. (6.4)
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In this case, we choose as the space of admissible vector fields ω

U :=
(
H1

Γx((0, T )× Ω)
)d

:=
({
u ∈ H1((0, T )× Ω) : with u|Γx = 0

})d
=
({
u ∈ L2

(
(0, T ), H1

0 (Ω)
)

: with ut ∈ L2
(
(0, T ), L2(Ω)

)})d
,

where Γx = [0, T ]× ∂Ω. This space equipped with the norm

‖u‖U := ‖u‖L2((0,T ),H1
0 (Ω)) + ‖ut‖L2((0,T ),L2(Ω))

is a Hilbert space (cf. [10]). Note that we only have a spatial boundary condition, which
is necessary due to the theory of weak solutions of transport equations (cf. Chapter 5).
For the U-coercivity of the regularization αRx(ω)+β Rt(ω) defined in (6.4) we estimate

αRx(ω) + β Rt(ω) ≥ 1

2
min(α, β)

 T∫
0

∫
Ω

|∇ω|2 dx dt+

T∫
0

∫
Ω

|ωt|2 dx dt


=

1

2
min(α, β)‖ω‖2U .

Consequently, we obtain the existence of an optimal solution from Theorem 6.5.

Corollary 6.8 (Existence).

Consider U :=
(
H1

Γx
((0, T ) × Ω)

)d
, Y := C([0, T ], L2(Ω)) and In ∈ Z := L∞(Ω) for

n = 0, ..., N . Then the optimization problem

(ω∗, I∗) = argmin
(ω,I)∈U×Y

J(ω, I) =
N∑
n=0

∫
Ω

|I(tn, x)− In(x)|2 dx

+
α

2

T∫
0

∫
Ω

|∇ω|2 dx dt+
β

2

T∫
0

∫
Ω

|ωt|2 dx dt

subject to

It(t, x) + ω(t, x) · ∇I(t, x) = 0 with I(0, x) = I0(x), (OFC)

where α, β > 0, admits a solution (ω∗, I∗) ∈ U × Y.

6.2.3. W 1,1+τ -Regularization

In Chapter 8, we illustrate with numerical test examples, that the H1-regularization
leads to accurate reconstruction results, if we seek a smooth optical flow. But if we look

59



6. Sequence Interpolation Problem

for a discontinuous vector field, then the reconstruction is very imprecise (cf. Section 8.5).
This is caused by the fact, that we can only obtain smooth solutions with an H1-
regularization, as we have already discussed in Chapter 4. However, in Chapter 4 we
have also motivated, that a total variation term, i.e.,

Rx(ω) :=

T∫
0

∫
Ω

|∇ω| dx dt,

is more suitable for the regularization of the sequence interpolation problem (SIP).

Unfortunately, for this regularization term we are not able to show existence of a solu-
tion. In fact:

• For U :=
(
L1((0, T ), BV0(Ω))

)d we do not have established a theory of weak
solutions for the transport equation.

• For U :=
(
L1((0, T ),W 1,1

0 (Ω)
)d

the control space is not dual or reflexive, which
we would need to exploit in the existence proof.

• For U :=
(
Lp((0, T ),W 1,q

0 (Ω))
)d
, 1 < p, q < ∞, the cost functional J is not

U-coercive, which we need for the existence proof.

In [15] it is suggested to use a smoothened total variation as regularization term, i.e.,

Rx(ω) :=

T∫
0

∫
Ω

√
|∇ω|2 + δ dx dt (6.5)

for some δ > 0, and to seek a solution ω in the space U =
(
L2((0, T ),W 1,1+τ

0 (Ω))
)d

for
τ > 0 sufficiently small. This is motivated in [15] by the claim, that for a given δ > 0
there exist constants τ > 0 and C > 0, such that the following inequality hold∫

Ω

√
|∇ω|2 + δ dx ≥ C ‖ω‖

W 1,1+τ
0

for all ω ∈W 1,1+τ
0 . (6.6)

But this inequality does not necessarily hold as the following counterexample shows.
Therefore, the existence proof in [15] for a minimizer of problem (NP) with regularization
term (6.5) is incorrect since in [15] the U-coercivity of the regularization term Rx(ω) is
deduced from inequality (6.6).

Counterexample 6.9.
Let Ω := [−1, 1] ⊂ R. We define for 0 < ε < 1 a sequence of functions

ωε(x) =

{
1−

∣∣x
ε

∣∣ , x ∈ [−ε, ε]
0 , x ∈ Ω \ [−ε, ε]

.
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Then the weak derivative ω′ε is given by

ω′ε(x) =


1
ε , x ∈ [−ε, 0]

−1
ε , x ∈ [0, ε]

0 , else
.

Finally, we obtain

‖ωε‖W 1,1+τ
0 (Ω)

=

 ε∫
−ε

∣∣∣∣1ε
∣∣∣∣1+τ

dx

 1
1+τ

=

(
2

ετ

) 1
1+τ

→∞, for ε→ 0, and τ > 0,

but on the other hand it holds that∫
Ω

√
|ω′ε|2 + δ dx ≤

∫
Ω

(
|ω′ε|+

√
δ
)

dx

=

ε∫
−ε

∣∣∣∣1ε
∣∣∣∣ dx+

1∫
−1

√
δ dx = 2 + 2

√
δ → 2 , for δ → 0.

Hence, there exist no constants τ > 0 and C > 0 such that inequality (6.6) holds.

As a remedy, we propose to use a (1+τ)-energy functional as regularization term given
by

Rx(ω) :=

T∫
0

∫
Ω

|∇ω|1+τ dx dt (6.7)

or a smoothened (1+τ)-energy functional given by

Rxδ (ω) :=

T∫
0

∫
Ω

(
|∇ω|2 + δ

) 1+τ
2 dx dt (6.8)

for τ > 0 and δ > 0 sufficiently small. Due to the inequality

Rx(ω) =

T∫
0

∫
Ω

|∇ω|1+τ dx dt

≤
T∫

0

∫
Ω

(
|∇ω|2 + δ

) 1+τ
2 dx dt = Rxδ (ω)

≤
T∫

0

∫
Ω

(
|∇ω|1+τ + δ

1+τ
2

)
dx dt = Rx(ω) + δ

1+τ
2 |Ω|T
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both regularization terms (6.7) and (6.8) differ only slightly and thus are supposed to
lead to comparable optimal solutions. We note that the second inequality holds for
0 < τ ≤ 1. Regarding to the calculation of the optimality system (cf. Theorem 6.14)
we prefer the smoothened (1+τ)-energy functional in the following discussion, since this
term is differentiable.

Subsequently, we look for a solution ω in the space U :=
(
L1+τ ((0, T ),W 1,1+τ

0 (Ω))
)d.

Indeed, this regularization term is U-coercive, as the following estimate shows

‖ω‖1+τ
U =

T∫
0

∫
Ω

|∇ω|1+τ dx dt

=

T∫
0

∫
Ω

(
|∇ω|2

) 1+τ
2 dx dt ≤

T∫
0

∫
Ω

(
|∇ω|2 + δ

) 1+τ
2 dx dt.

In particular, it is reasonable to use this regularization term in order to preserve discon-
tinuities. We show this by verifying the conditions (RTC1) to (RTC3), which we have
derived in Section 4.3. With the notation in Section 4.3 we have

Φ(s) = (s2 + δ)
1+τ

2 ,

and calculate

Φ′(s) = (1 + τ)(s2 + δ)
τ−1

2 s, and

Φ′′(s) = (τ2 − 1)(s2 + δ)
τ−3

2 s2 + (1 + τ)(s2 + δ)
τ−1

2

= (δ + τ s2) (1 + τ) (s2 + δ)
τ−3

2 .

Finally, we obtain

lim
s→0

Φ′′(s) = lim
s→0

Φ′(s)

s
= (1 + τ)δ

τ−1
2 ,

lim
s→∞

Φ′′(s) = lim
s→∞

Φ′(s)

s
= 0, for τ < 1 and

lim
s→∞

Φ′′(s)
Φ′(s)
s

= τ.

Hence, all the conditions (RTC1) to (RTC3) are (approximately) satisfied for τ suffi-
ciently small.

Furthermore, we deduce the convexity of the regularization term Rx(ω) from the fact
that Φ′ : [0,∞)→ R is non-negative.

Finally, the existence of a solution follows from Theorem 6.5.
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Corollary 6.10 (Existence).
Consider the spaces U :=

(
L1+τ ((0, T ),W 1+τ

0 (Ω))
)d for some τ > 0 sufficiently small,

Y := C([0, T ], L2(Ω)) and Z := L∞(Ω). Assume In ∈ Z for n = 0, ..., N . Then the
optimization problem

(ω∗, I∗) = argmin
(ω,I)∈U×Y

J(ω, I) =
N∑
n=0

∫
Ω

|I(tn, x)− In(x)|2 dx

+ α

T∫
0

∫
Ω

(
|∇ω|2 + δ

) 1+τ
2 dx dt

subject to

It(t, x) + ω(t, x) · ∇I(t, x) = 0 with I(0, x) = I0(x), (OFC)

where α > 0 and δ ≥ 0, admits a solution (ω∗, I∗) ∈ U × Y.

6.3. Stability of the Regularized Problem

In this section we analyse the stability of problem (NP) by adapting the more general
work of Engl, Hanke and Neubauer [21] to our concrete non linear inverse problem (SIP).
Stability shall be understood as follows:

Iεn → In in Z, for all n = 0, ..., N =⇒ ωε → ω+ ∈ U ,

where ω+ ∈ U denotes an exact solution of the sequence interpolation problem (SIP) for
given (unperturbed) image samples In ∈ Z, n = 0, ..., N , and ωε denotes a solution of
the regularized problem (NP) for given perturbed image samples Iεn ∈ Z, n = 0, ..., N .

For the stability analysis, we set

I# =
(
I0, I1, ..., IN

)
∈ ZN+1

Iε# =
(
Iε0 , I

ε
1 , ..., I

ε
N

)
∈ ZN+1

and define

Iε# → I# in ZN+1, if and only if Iεn → In in Z, for all n = 0, ..., N.

In a first step, we now show that a solution to the regularized problem (NP) for fixed
α > 0 and β ≥ 0 depends continuously on the input data Iε#.
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Theorem 6.11.
Let Assumptions 6.3 hold and let Iε# be a sequence of image samples which converges
towards I# in ZN+1. Furthermore, we denote by {ωε} ⊂ U a corresponding sequence of
minimizers of

Ĵ(ω; Iε#) :=
N∑
n=0

∫
Ω

|I(x, tn)− Iεn(x)|2 dx+ αRx(ω) + β Rt(ω),

where α > 0 and β ≥ 0, which exists by Theorem 6.5. Then there exists a conver-
gent subsequence {ωεk} and any convergent subsequence converges towards a minimizer
ω∗ ∈ U of Ĵ(· ; I#). Additionally, if the optimal solution ω∗ is unique, then the complete
sequence {ωε} converges towards ω∗.

Proof.
Since ωε is a minimizer of Ĵ(· ; Iε#), we get, by using the coercivity of Ĵ ,

N∑
n=0

‖T (ωε, Iε0)(tn, ·)− Iεn‖2Y + αRx
(
ωε
)

+ β Rt
(
ωε
)

= Ĵ(ωε; Iε#)

≤ Ĵ(ω; Iε#) =
N∑
n=0

‖T (ω, Iε0)(tn, ·)− Iεn‖2Y + αRx(ω) + β Rt(ω)

≤
N∑
n=0

(
‖T (ω, Iε0)(tn, ·)− In‖2Y + ‖In − Iεn‖2Y

)
+ αRx(ω) + β Rt(ω)

for all ω ∈ U . Hence, the sequence {ωε} is bounded due to the coercivity of Ĵ and we
deduce the existence of a subsequence {ωεk} which weakly converges towards ω̃ ∈ U ,
since U is reflexive. Next, by using the weak-* sequential closedness of T (see Theorem
5.15), we get

T (ωεk , Iεk0 ) = Iεk
∗
⇀ Ĩ = T (ω̃, I0) in L∞((0, T )× Ω)

and, consequently, we conclude

T (ωεk , Iεk0 ) = Iεk ⇀ Ĩ = T (ω̃, I0) in L2((0, T )× Ω).

Finally, by using the weak lower semicontinuity of Ĵ , we obtain

Ĵ(ω̃; I#) ≤ lim inf
k→∞

Ĵ(ωεk ; Iεk# ) ≤ lim sup
k→∞

Ĵ(ωεk ; Iεk# )

≤ lim
k→∞

Ĵ(ω; Iεk# ) = Ĵ(ω; I#)

for all ω ∈ U . In particular, ω̃ is a minimizer of J(· ; I#) and

lim
j→∞

J(ωεk , Iεk# ) = J(ω̃, I#). (6.9)
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For proving strong convergence, we define

R(ω) := αRx(ω) + β Rt(ω)

and assume {ωεk} does not converge strongly towards ω̃. Then

D := lim sup
k→∞

R
(
ωεk
)
> R

(
ω̃
)

and there exists a subsequence {ωεkj} which satisfies ωεkj ⇀ ω̃, T (ωεkj , I
εkj
0 ) ⇀ T (ω̃, I0)

and R
(
ωεkj

)
→ D. As a consequence of equation (6.9) we obtain

N∑
n=0

‖T
(
ω̃, I0

)
(tn, ·)− In‖2U = lim

k→∞

N∑
n=0

‖T
(
ωεkj , I

εkj
0

)
(tn, ·)− I

εkj
n ‖2U +D −R(ω̃)

> lim
k→∞

N∑
n=0

‖T
(
ωεkj , I

εkj
0

)
(tn, ·)− I

εkj
n ‖2U .

But this is a contradiction to the weak lower semicontinuity of the ‖ · ‖U -norm. Hence,
the sequence {ωεk} converges strongly towards ω̃ in U .

Finally, if ω∗ is unique, then any subsequence {ωεk} converges strongly towards ω∗ and,
consequently, the complete sequence {ωε} converges towards ω∗.

Secondly, we now show how to choose the regularization parameters α and β, such
that solutions ωεα,β to the regularized problem (NP) converge towards a minimal energy
solution ω+ of the sequence interpolation problem (SIP), if the noise level ε tends to zero.
A good choice of α and β is necessary, because the larger the regularization parameters
α and β are, the more stable is the problem (NP) is, but, on the other hand, the larger
is the distance of the regularized solution ωεα,β to an exact solution ω+ of the sequence
interpolation problem (SIP).

Theorem 6.12.
Let Assumptions 6.3 hold, let {Iε#} ⊂ ZN+1 be a sequence of (perturbed) image samples

satisfying
N∑
n=0
‖Iεnn −In‖2L2(Ω) < ε2, and let ω+ be a solution to the sequence interpolation

problem (SIP) with minimal energy

R(ω) := Rx(ω) +
β

α
Rt(ω),

i.e, R(ω+) ≤ R(ω) for all ω ∈ U solving the sequence interpolation problem (SIP).

Furthermore, we choose the regularization parameters α, β : (0,∞)→ (0,∞) such that

α(ε)→ 0,
ε2

α(ε)
→ 0 and

β(ε)

α(ε)
= const for ε→ 0, (6.10)
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and denote by ωεαε,βε a minimizer of

Jαε,βε(·, Iε#) :=

N∑
n=0

‖T
(
ω, Iε0

)
(tn, ·)− Iεn‖2L2(Ω) + α(ε)Rx

(
ω
)

+ β(ε)Rt
(
ω
)
.

Then {ωεαε,βε} admits a weak convergent subsequence and any weak convergent subse-
quence converges weakly towards a solution of the sequence interpolation problem (SIP)
with minimal energy.

Proof.
Since ωεαε,βε is a minimal energy solution of Jαε,βε(· ; Iε#), we have

N∑
n=0

‖T
(
ωεαε,βε , I

ε
0

)
(tn, ·)− Iεn‖2L2(Ω) + α(ε)Rx

(
ωεαε,βε

)
+ β(ε)Rt

(
ωεαε,βε

)
= Jαε,βε(ω

ε
αε,βε ; I

ε
#) ≤ Jαε,βε(ω+; Iε#) ≤ ε2 + α(ε)Rx

(
ω+
)

+ β(ε)Rt
(
ω+
)
.

Using assumptions (6.10) this implies

lim
ε→0

N∑
n=0

‖T
(
ωεαε,βε , I

ε
0

)
(tn, ·)− In‖2L2(Ω) = 0 (6.11)

and

lim sup
ε→0

R
(
ωεαε,βε

)
≤ R(ω+). (6.12)

In particular, the sequence {ωεαε,βε} is bounded due to the coercivity of R and, conse-
quently, there exists a subsequence {ωεkαεk ,βεk} which converges weakly towards ω̃ ∈ U ,
since U is reflexive. Moreover, from the weak-* sequential closedness of T and equation
(6.11) we conclude

T
(
ω̃, I0

)
(tn, ·) = In, for all n = 0, ..., N. (6.13)

From (6.12) and the weak lower semicontinuity of R we obtain

R
(
ω̃
)
≤ lim inf

k→∞
R
(
ωεkαεk ,βεk

)
≤ R

(
ω+
)
. (6.14)

Thus, from (6.13) and (6.14) we conclude that ω̃ is a minimal energy solution of the
sequence interpolation problem (SIP), too.
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Corollary 6.13 (Stability).
The statements of Theorem 6.12 hold with strong convergence, if there exists a bilinear
form (·, ·)R such that

(ω, ω)R = R(ω) = Rx(ω) +
β

α
Rt(ω) for all ω ∈ U .

Moreover, if the minimal energy solution denoted by ω+ is unique, then we have

lim
ε→0
‖ωεαε,βε − ω

+‖R = 0.

Proof.
From Theorem (6.12) we know that {ωεαε,βε} admits a subsequence {ωεkαεk ,βεk} which
weakly converges towards a minimal energy solution of the sequence interpolation prob-
lem (SIP), which we denote by ω+.

Now, we show the strong convergence of the sequence {ωεkαεk ,βεk} towards ω
+ in U . Here,

we need the identity

‖ωεkαεk ,βεk − ω
+‖2R = ‖ωεkαεk ,βεk‖

2
R + ‖ω+‖2R − 2 Re

(
ωεkαεk ,βεk

, ω+
)
R
, (6.15)

and obtain, together with equation (6.12) and (6.15), the statement

lim sup
k→∞

‖ωεkαεk ,βεk − ω
+‖R ≤ 2 ‖ω+‖2R − 2 lim

k→∞
Re
(
ωεkαεk ,βεk

, ω+
)
R

= 0.

Thus, we conclude the strong convergence.

Finally, if ω+ is unique, then any subsequence {ωεkαεk ,βεk} converges strongly towards ω+

and, consequently, the complete sequence {ωεαε,βε} converges towards ω
+.

The assumptions of Corollary 6.13 are satisfied for bothH1-regularizations introduced in
Section 6.2.1 and 6.2.2. In particular in these cases, the sequence {ωεα(ε),β(ε)} converges
also strongly towards a minimal norm solution, i.e. with respect to the ‖ · ‖U -norm,
since ‖ · ‖U and ‖ · ‖R are norm equivalent.

6.4. Optimality System

After proving the existence and stability of a solution to problem (NP), we have to
compute it numerically. For this purpose we characterize a solution by a system of
optimality conditions.

Theorem 6.14 (Optimality System, cf. [8, 9]).
Let (ω, I) be a solution to problem (NP) with regularization term defined by (6.3), (6.4)
or (6.8), then there exists an adjoint variable p ∈ Q :=

(
C0,1((0, T )× Ω)

)∗∗, such that
the following (optimality) conditions hold:
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1. The transport equation

It + ω · ∇I = 0 with I(0, ·) = I0 (OFC)

2. The adjoint equation

pt +∇(ω p) =

N−1∑
n=1

[δ(t− tn)(I(tn, ·)− In)]

with p(T, ·) = −(I(T, ·)− IN )

(adjEq)

where δ denotes the Dirac delta distribution.

3. Depending on the choice of regularization term

for (6.3): α∆ω = p∇I, (6.16)
for (6.4): β ωtt + α∆ω = p∇I, (6.17)

where we additionally have assumed that ωt = 0 for t ∈ {0, T},

for (6.8): α div

 (1 + τ)∇ω(
|∇ω|2 + ε

) 1−τ
2

 = p∇I. (6.18)

Proof.
First we introduce the Lagrange functional

L(ω, I, p) = J(ω, I) +

T∫
0

∫
Ω

p
(
It + ω · ∇I

)
dx dt.

From the optimization theory, we know if there exists some p ∈ Q such that the deriva-
tive of the Lagrange functional vanishes at (ω, I, p), then (ω, I) is a local extremum of
the cost functional J .

(i) From

0 = Lp(ω, I, p)p̃ =

T∫
0

∫
Ω

p̃ (It + ω · ∇I) dx dt for all p̃ ∈ Q,

we conclude equation (OFC).
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(ii) We obtain the adjoint equation (adjEq) by differentiating the Lagrange functional
with respect to I:

0 = LI(ω, I, p)Ĩ =

∫
Ω

N∑
n=0

(I(tn, ·)− In))Ĩ(tn, ·) dx+

T∫
0

∫
Ω

p (Ĩt + ω · ∇Ĩ) dx dt

=

T∫
0

∫
Ω

N∑
n=0

(I(t, ·)− In))δ(t− tn)Ĩ(t, ·) dx dt

+

T∫
0

∫
Ω

p Ĩt dx dt+

T∫
0

∫
Ω

pw · ∇Ĩ dx dt

=

T∫
0

∫
Ω

N∑
n=0

(I(t, ·)− In))δ(t− tn)Ĩ(t, ·) dx dt

+

∫
Ω

(
p(T, ·)Ĩ(T, ·)− p(0, ·)Ĩ(0, ·)

)
dx−

T∫
0

∫
Ω

pt Ĩ dx dt

−
T∫

0

∫
Ω

∇(ω p)Ĩ dx dt,

for all Ĩ ∈ Y which satisfy Ĩ(0, x) = 0, because I(0, x) + Ĩ(0, x) = I0(x) has to
satisfy the initial condition of the transport equation. In the last equality we also
used the fact that ω is zero on the boundary. Therefore, we obtain

0 = LI(ω, I, p)Ĩ =

T∫
0

∫
Ω

N∑
n=1

(I(t, ·)− In)δ(t− tn)Ĩ(t, ·) dx dt

−
T∫

0

∫
Ω

(pt +∇(ω p))Ĩ dx dt+

∫
Ω

p(T, ·)Ĩ(T, ·) dx.

Next, we test the equation with an arbitrary Ĩ ∈ Y which satisfies the boundary
condition Ĩ(0, x) = Ĩ(T, x) = 0 and get

T∫
0

∫
Ω

N−1∑
n=1

(I(t, ·)− In))δ(t− tn)Ĩ(t, ·) dx dt =

T∫
0

∫
Ω

(pt +∇(ω p))Ĩ dx dt.

Finally, by testing with an arbitrary Ĩ ∈ Y which satisfies Ĩ(0, ·) = 0 we obtain

−(I(tN , ·)− IN ) = p(tN , ·),

and thus condition (adjEq).
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(iii) The equations (6.16) to (6.18) are obtained by differentiating the Lagrange func-
tional with respect to ω.

For the H1-regularization we have

0 = Lω(ω, I, p)ω̃

= α

T∫
0

∫
Ω

∇ω · ∇ω̃ dx dt+ β

T∫
0

∫
Ω

ωt ω̃t dx dt+

T∫
0

∫
Ω

p ω̃ · ∇I dx dt

= −α
T∫

0

∫
Ω

∆ω ω̃ dx dt− β
T∫

0

∫
Ω

ωtt ω̃ dx dt+

T∫
0

∫
Ω

p ω̃ · ∇I dx dt

since ω̃ ∈ U is zero on (0, T )× ∂Ω and ωt = 0 on {0, T} × Ω. From this equation
we deduce (6.16) and (6.17).

For the W 1,1+τ -regularization (6.8) we obtain

0 = Lω(ω, I, p)ω̃

= α

T∫
0

∫
Ω

1 + τ(
|∇ω|2 + ε

) 1−τ
2

∇ω · ∇ω̃ dx dt+

T∫
0

∫
Ω

p ω̃ · ∇I dx dt

= −α
T∫

0

∫
Ω

div

 (1 + τ)∇ω(
|∇ω|2 + ε

) 1−τ
2

 ω̃ +

T∫
0

∫
Ω

p ω̃ · ∇I dx dt,

where we used the fact that ω̃ ∈ U is zero on the boundary (0, T )× ∂Ω. From this
equation we finally obtain equation (6.18).

Remark 6.15.
In the proof of Theorem 6.14 we have not shown the solveability of the adjoint equation
(adjEq). Interpreting the delta impulse in the adjoint equation (adjEq) as in [8, 9] or in
Section 7.1, respectively, we can prove, analogously, to the existence of a weak solution to
the optical flow constraint (OFC) (cf. Corollary 5.7) that the adjoint equation (adjEq)
admits a weak solution p ∈ L∞((0, T ) × Ω). Nevertheless, the

(
C0,1((0, T )× Ω)

)∗∗-
regularity of this weak solution still needs to be verified.

Remark 6.16.
The additional assumption ωt = 0 on {0, T} ×Ω is necessary to eliminate the boundary
integral in the computation of Jω. Theoretically, it would also be possible to require
ω = 0 on {0, T} × Ω, but this requirement would exclude vector fields being constant in
time as solutions.
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Numerical Simulation
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7. Numerical Algorithm

In this chapter we discuss how to numerically solve problem (NP). We start with
presenting the gradient method. Subsequently, we show that the computation of the
gradient of the cost functional J(ω) defined in (NP) withH1-regularization term involves
solving a conservative and a non-conservative transport equation, as well as an elliptic
PDE. Moreover, in the case, where we seek for a divergence free optical flow we use a
projected gradient method. In this case, we additionally have to solve a Stokes equation.
Hence, in the main part of this chapter we develop for each of these appearing PDEs a
finite difference scheme for solving these PDEs numerically.

7.1. Gradient Method

A standard scheme for solving a minimization problem of the form

min
ω∈U

J(ω),

where U is a Banach space and J : U → R is Fréchet-differentiable, is the method of
deepest descent. The idea of this algorithm is very simple: We start with an initial value
ω0 ∈ U and seek for a descent direction d0, which satisfies

J(ω0 + t d0) < J(ω0) for all t ∈ (0, t̄] (7.1)

with t̄ > 0. Then we set ω1 := ω0 + t d0 and seek again for a descent direction. We do
this procedure iteratively until we converge towards a solution (cf. Algorithm 7.4).

Now the question is, how to compute a descent direction? If we assume that U is a
Hilbert Space, then a descent direction at the point ωk is given by dk = −∇J(ωk). In
fact, using Riesz representation theorem (Theorem A.2) and a Taylor expansion series
we obtain

J(ωk + t dk)− J(ωk)

t
+O(t) =

〈
J ′(ωk), dk

〉
U∗,U = −‖∇J(ωk)‖2U ≤ 0. (7.2)

We conclude that dk = −∇J(ωk) is indeed a descent direction for a sufficiently small
t > 0.

At this point, we recall that we are interested in solving the minimization problem

(
ω+, I+

)
= argmin

(ω,I)∈U×Y
J(ω, I) :=

N∑
n=0

∫
Ω

|I(x, tn)− In(x)|2 dx+ αR(ω) (NP)
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subject to

It(t, x) + ω(t, x) · ∇I(t, x) = 0 with I(0, x) = I0(x). (OFC)

For this problem the gradients of the cost functional J(ω) for an H1-regularization in
space (6.3), as well as for an H1-regularization in space and time (6.4), are given by the
following theorem.

Theorem 7.1 (Gradient of J).
Consider the minimization problem (NP). Let ω ∈ U be given, where U denotes the
control space depending on the regularization term (cf. Theorem 6.7 and Theorem 6.8).
Moreover, we denote by I ∈ C([0, T ], Lr(Ω)), for 1 ≤ r <∞, and p ∈

(
C0,1((0, T )× Ω)

)∗∗
the solutions of the optical flow constraint

It + ω · ∇I = 0 with I(0, ·) = I0 (OFC)

and the adjoint equation

pt +∇(ω p) =

N−1∑
n=1

[δ(t− tn)(I(tn, ·)− In)]

with p(T, ·) = −(I(T, ·)− IN ),

(adjEq)

respectively. Then we obtain the gradient ∇J ∈ U by solving an elliptic PDE problem.

(i) For the H1-regularization in space (6.3) we solve the Poisson equation

−∆
(
∇J(ω)

)
= −α∆ω + p∇I (7.3)

with ω,∇J(ω) ∈ U :=
(
L2((0, T ), H1

0 (Ω)
)d.

(ii) For the H1-regularization in space and time (6.4) we solve the time-dependent
elliptic PDE problem

−
(
∇J(ω)

)
tt
−∆

(
∇J(ω)

)
= −β ωtt − α∆ω + p∇I (7.4)

with ω,∇J(ω) ∈ U :=
({
ϕ ∈ H1

Γx
((0, T ) × Ω) : with ϕt = 0 on {0, T} × Ω

})d
,

where we recall that the function space H1
Γx

((0, T ) × Ω) consists of all functions
u ∈ H1((0, T )× Ω) which vanish on the spatial boundary Γx := (0, T )× ∂Ω.

We remark that the solvability of (7.3) and (7.4) was already shown in Section 3.3.

We proof this theorem by using the following Lemma.
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Lemma 7.2 (Riesz Isomorphism).
The Riesz isomorphism R : F 7→ f which maps an element from U∗ onto U , such that〈

F,ϕ
〉
U∗,U =

(
f, ϕ

)
U for all ϕ ∈ U ,

is given by solving an elliptic PDE problem:

(i)F = −∆f for U := L2((0, T ), H1
0 (Ω)),

(ii)F = −ftt −∆f for U :=
{
ϕ ∈ H1

Γx((0, T )× Ω) :

with ϕt = 0 on {0, T} × Ω
}
.

Proof.
In the case U =

{
ϕ ∈ H1

Γx
((0, T ) × Ω) : with ϕt = 0 on {0, T} × Ω

}
we compute by

using Riesz representation theorem (Theorem A.2)

〈
F,ϕ

〉
U∗,U =

(
f, ϕ

)
U =

T∫
0

∫
Ω

(
∇f · ∇ϕ+ ft ϕt

)
dx dt

= −
T∫

0

∫
Ω

(
∆f + ftt

)
ϕdx dt =

〈
−∆f − ftt, ϕ

〉
U∗,U

for all ϕ ∈ U .
Analogously, we can calculate the Riesz isomorphism for U = L2((0, T ), H1

0 (Ω)).

Proof of Theorem 7.1.
In the derivation of the optimality system (cf. proof of Theorem 6.14) we have shown
that the derivative J ′(ω) ∈ U∗ for the H1-regularization in space and time (6.4) is given
by

J ′(ω) = −β ωtt − α∆ω + p∇I,

where I and p denote the solutions of the optical flow constraint (OFC) and the adjoint
equation (adjEq), respectively.

Hence, applying the Riesz isomorphism we immediately deduce the statement of the
theorem. Analogously, we can show the statement for the H1-regularization in space
(6.3).

Remark 7.3.
For the W 1,1+τ -regularization (6.8) we cannot use the gradient as descent direction,
since this space is not a Hilbert space. However, the computation of a descent direction
for the W 1,1+τ -regularization is not discussed in this thesis.
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In the following, for solving the adjoint equation (adjEq) we use a linear transformation
in time, τ := T − t, and obtain

pτ +∇(−ω p) = −
N−1∑
n=1

[δ(τ − τn)(I(τn, ·)− IN−n)]

with p(0, ·) = −(I(T, ·)− IN )

with τn := T − tn = tN−n for equidistant time points.

Moreover as in [8, 9], the delta impulse in the adjoint equation (adjEq) can be interpreted
as follows

pτ +∇
(
− ω p

)
= 0 on τ ∈ (τn, τn+1) for n = 0, ..., N − 1

p(τ+
n , ·)− p(τ−n , ·) = −

(
I(τn, ·)− In

)
for n = 1, ..., N − 1.

Hence, for solving the adjoint equation (adjEq) we iteratively solve on each interval
[τn, τn+1) a conservative transport equation of the form

pt + div
(
− ω p

)
= 0

with initial condition

p(τn, x) =

{
−(I(T, ·)− IN ) for n = 0

p(τ−n , ·)− (I(τn, ·)− IN−n) for n = 1, ..., N − 1

where p(τ−n , ·) for n = 1, ..., N − 1 is given as solution of the previous time interval
[τn−1, τn).

Step size t →

g(t)
h(t)

Figure 7.1.: Armijo step size rule: Here, the set of feasible step sizes is given by the set
of all t ∈ (0,∞) for which the graph g(t) := J(ω+ tkdk) is below the linear
function h(t) := J(ω) + σ tk

〈
J ′(ωk), dk

〉
U∗U .

After computing a descent direction we have to choose an appropriate step size tk.
From (7.2) we conclude that the step size cannot be chosen too large, because otherwise
condition (7.1) is not satisfied. On the other hand, if we choose the step size too small,
then we need a lot of iterations, until we converge to a solution, and, consequently, the
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computational costs are too large. Therefore, we use in the following the Armijo step
size rule. For a given descent direction dk of J at the point ωk the Armijo step size is
defined as the maximum tk ∈ {γl, l ∈ N0} which satisfies

J(ωk + tk dk)− J(ωk) ≤ σ tk
〈
J ′(ωk), dk

〉
U∗U ,

where σ, γ ∈ (0, 1) are given constants. The Armijo step size rule is also graphically
illustrated in Figure 7.1.

Finally, we need a criterion for stopping the iterative process, if we are close enough to
the solution. Here, we use a stopping criterion ‖∇J(ωk)‖ < Tol for a given Tol > 0. In
summary, we have presented the following algorithm:

Algorithm 7.4 (Gradient method).

(S1) Set σ ∈ (0, 1), γ ∈ (0, 1) # parameter of Armijo step size rule

(S2) Set Tol > 0 # for stop criterion

(S3) Set ω0 # initial vector field

(S4) repeat

(S5) Compute ∇J(ωk)

(S6) Set dk = −∇J(ωk)

(S7) Determine step size tk by using Armijo step size rule

(S8) Set ωk+1 = ωk + tk dk

(S9) until
∥∥∇J(ωk)

∥∥ < Tol

Remark 7.5.
We remark that in our case the algorithm only converge to a local minimum in the
neighbourhood of the initial value ω0, since the problem is non-linear. Nevertheless, in
chapter 8 it is illustrated that we still obtain reasonable reconstruction results.

For more details on the gradient method with Armijo step size rule, like convergence
analysis, or for further optimization methods we refer to [24] and [34].

7.2. Projected Gradient Method

In comparison to [15] an essential improvement of our existence analysis to problem (NP)
(cf. Chapter 6) is that we do not need to restrict the optical flow ω to be divergence
free. Thus, the aim is to illustrate with numerical experiments that this benefit leads
indeed to better reconstruction results. For this purpose, we also have to solve problem
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(NP) for divergence free optical flows ω. However, we note that ω ∈ U with div(ω) = 0
does not necessarily imply div

(
∇J(ω)

)
= 0. Therefore, we use in this case a projected

gradient method [31], i.e., line (S8) in Algorithm 7.4 is substituted by

ωk+1 = P
(
ωk + tk dk

)
, (7.5)

where P denotes the orthogonal projection from U onto its divergence free subspace
Udiv := {ω ∈ U ; div(ω) = 0}. Moreover, we have to use a projected Armijo rule, too.
This means for a given descent direction dk of J at the point ωk we choose the maximum
tk ∈ {γl, l ∈ N0} which satisfies

J
(
P
(
ωk + tk dk

))
− J

(
ωk
)
≤ − σ

tk

∥∥∥P(ωk + tk dk
)
− ωk

∥∥∥2

U
, (7.6)

where σ, γ ∈ (0, 1) are given constants and U is a Hilbert space.

For the H1-regularization in space (6.3) the orthogonal projection P onto the divergence
free subspace is given by the following theorem.

Theorem 7.6.
Let U :=

(
L2((0, T ), H1

0 (Ω))
)d and Udiv := {u ∈ U : with div(u) = 0}. Then the

orthogonal projection

P : U → Udiv

u 7→ z

at each time t is given as solution of the Stokes problem

−∆z +∇λ = −∆u

−div(z) = 0,
(7.7)

where λ ∈ Λ := L2((0, T )× Ω).

Proof.
By using the definition of an orthogonal projection, we seek for a vector field z which
satisfies

min
z∈Udiv

H(z) = ‖z − u‖2U

or, equivalently,

min
z∈U

H(z) = ‖z − u‖2U subject to div(z) = 0.

This problem admits a unique solution, since the function H(z) is strictly convex and
Udiv is a convex set.
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As a consequence, we can find the optimal solution by solving the corresponding opti-
mality system. For this purpose, we use the Lagrange ansatz. We define

L(z, λ) = ‖z − u‖2U −
T∫

0

∫
Ω

λ div(z)

with λ ∈ Λ.

Differentiating the Lagrange functional L with respect to z and λ leads to

0 =
〈
Lz(z, λ), z̃

〉
U∗U =

T∫
0

∫
Ω

∇
(
z − u

)
· ∇z̃ − λ div(z̃) dx

=

T∫
0

∫
Ω

(
−∆

(
z − u

)
+∇λ

)
z̃

and

0 =
〈
Lλ(z, λ), λ̃

〉
Λ∗Λ

= −
T∫

0

∫
Ω

div(z) λ̃dx.

Consequently, the orthogonal projection is given by solving the weak formulation of the
Stokes problem. Finally, we remark, that existence of a solution to the Stokes problem
was already shown in Section 3.4.

Finally, we observe that this orthogonal projection is linear. As a consequence (7.5) and
(7.6) can be simplified to

ωk+1 = ωk − tk P
(
∇J(ωk)

)
and

J
(
ωk − tk P

(
∇J(ωk)

))
− J

(
ωk
)
≤ −σ tk

∥∥∥P(∇J(ωk)
)∥∥∥2

U
,

respectively.

Here, due to Theorem 7.6 the orthogonal projection P
(
∇J(ωk)

)
∈ Udiv is given by

solving the Stokes problem

−∆
(
P
(
∇J(ωk)

))
+∇λ = −∆

(
∇J(ωk)

)
in Ω, (7.8a)

−div
(
P
(
∇J(ωk)

))
= 0 in Ω, (7.8b)

∇J(ωk) = 0 on ∂Ω. (7.8c)
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7.3. Discretisation of the Mesh

As we have seen in Theorem 7.1, we have to numerically solve three PDEs for computing
the gradient of J , namely a conservative, a non conservative transport equation and an
elliptic PDE. In the case, where we seek for a divergence free optical flow, we additionally
have to solve a Stokes equation. We solve each of these PDEs by using the method of
finite differences. The numerical treatment of these PDEs is discussed in detail in the
following sections.

(a) mesh of I and p (b) mesh of u (c) mesh of v

Figure 7.2.: Staggered grid in space at time level m for the functions I, p, u and v

For this purpose, we first have to discretise the domain. For the discretisation we
assume, that we are given a sequence of images In at discrete time points 0 = t0 < t1 <
... < tN = T of size Nx × Ny pixels. Then we set Ω = [0, Nx ∆x] × [0, Ny ∆x] with
mesh size ∆x = 1

max(Nx,Ny) . Moreover, we use M time steps, i.e., T = M ∆t. Later we
show, that M cannot be choosen arbitrarily, since the mesh size ratio λ = ∆x

∆t has to
satisfy a CFL-condition. Hence, we assume for the following discussion that the mesh
ratio λ remains constant, if we refine the mesh size ∆x. Finally, we obtain the following
discretisation for the 2-dimensional case, i.e., x ∈ Ω ⊂ R2:

Imi+1/2,j+1/2 = I
(
(i+ 1/2) ∆x, (j + 1/2) ∆x,m∆t

)
with i = 0, ..., Nx − 1

j = 0, ..., Ny − 1

m = 0, ...,M

pmi+1/2,j+1/2 = p
(
(i+ 1/2) ∆x, (j + 1/2) ∆x,m∆t

)
with i = 0, ..., Nx − 1

j = 0, ..., Ny − 1

m = 0, ...,M

umi,j+1/2 = u
(
i∆x, (j + 1/2) ∆x,m∆t

)
with i = 1, ..., Nx − 1

j = 0, ..., Ny − 1

m = 0, ...,M
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and

vmi+1/2,j = v
(
(i+ 1/2) ∆x, j∆x,m∆t

)
with i = 0, ..., Nx − 1

j = 1, ..., Ny − 1

m = 0, ...,M.

Here, u and v denotes the two velocity components of the optical flow ω. This kind of
discretisation, where the functions I and p are stored in the cell centres and the velocity
components are stored on the cell boundaries, is called staggered grid. The discretisation
is also visualized in Figure 7.2. Note, that we do not have any degree of freedom on
the boundary [0, T ] × ∂Ω, since the optical flow vanishes on the spatial boundary. We
remark at this point, that the numerical schemes presented in the following sections can
be generalized straightforward to higher dimensions.

Figure 7.3.: Collocated grid in space at time level m for the functions I, p, u and v

In comparison to [8, 9, 15] we emphasize that we use for the discretisation of the functions
I and p another grid as for the velocity components u and v. Indeed, in [8, 9, 15] a
collocated grid arrangement is used, i.e., the functions I, p, u and v are discretised at the
same grid points (m∆t, i∆x, j∆x) for i = 0, ..., Nx, j = 0, ..., Ny and m = 0, ...,M , see
Figure 7.3.

This fact, that we use a staggered grid, has two reasons. The first reason is that we
find it more reasonable to evaluate the function I representing the grey of an image
pixel at the cell midpoints. Whereas, we prefer to evaluate the optical flow at the cell
boundaries to incorporate with the boundary conditions of the elliptic PDEs (7.3) and
(7.4). The second and more significant reason is that the velocity components u and
v has to be discretised for numerical stability on different grids for solving the Stokes
equation, as we will discuss in Section 7.6.

7.4. Finite Difference Scheme for the Transport Equation

We start with the numerical treatment of the optical flow constraint

It(t, x) + ω(t, x) · ∇I(t, x) = 0 with I(0, x) = I0(x), (OFC)

81
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as well as the conservative transport equation

pt(t, x) +Div
(
ω(t, x) p(t, x)

)
= 0 with p(0, x) = p0(x). (cTPE)

Note that the adjoint equation (adjEq) can be reformulated in the form (cTPE) due to
the discussion in Section 7.1.

In the literature, there are many finite difference schemes for solving a transport equa-
tion, see for instance [32, 35, 36]. However, the theory on finite differences is only well
established for transport equations with constant vector field ω(t, x) = a ∈ Rd.

Hence, the outline of this section is as follows: Firstly, we introduce the concept of
finite differences for the constant case by orientating to the work of [32, 36]. Here, we
define a finite difference scheme and derive sufficient conditions for the convergence of
this scheme. These conditions are illustrated with two examples, namely the first order
Upwind scheme and the second order Lax-Wendroff scheme.

Secondly, we show that in the Upwind scheme discontinuities of the exact solution are
smoothened out, whereas in the Lax-Wendroff scheme oscillations occur around discon-
tinuities. Therefore, we introduce also the concept of flux limiters, which combine both
schemes to obtain more accurate results. In this part, we adopt the work of [32].

Thirdly, we generalize the Upwind and Lax-Wendroff scheme straightforward for solving
transport equations with variable vector fields, i.e., ω depends on t and x. In this way
we obtain in each case for solving the conservative (cTPE) and the non-conservative
transport equation (OFC) a generalized Upwind and Lax-Wendroff scheme, which were
originally introduced by LeVeque in 2004 [35]. However, in [35] the schemes were only
motivated for time-independent and monotone vector fields, i.e., ω(x) ≥ 0 or ω(x) ≤ 0
for all x ∈ Ω ⊂ Rd, by considering the analytical solution of the Riemann problem at
the cell boundaries. In the following, we show that these generalized schemes are also
reasonable for time-dependent and non-monotone vector fields by doing a consistency
analysis for the more general case. Moreover, in contrast to [35] we do a stability analysis
for the generalized Upwind schemes, which is sufficient for convergence of the Upwind
schemes due to Lax’s Equivalence theorem. Since discrete solutions of the generalized
Upwind and Lax-Wendroff admit the damping or oscillating behaviour, we also general-
ize the concept of flux limiters for non constant vector fields. Basically, we only have to
redefine in this case the so called gradient ratios, which measure the local smoothness
of a function.

Finally, we want to emphasize that in our case the conservative (cTPE) and the non-
conservative transport equation (OFC) are numerically solved by different FD schemes,
whereas in [8, 9, 15] both equations are solved with the same conservative FD scheme.
Hence, for a non divergence free vector field ω the numerical solution of the non-
conservative transport equation (OFC) obtained by the FD scheme in [8, 9, 15] will
not be constant along a characteristic.
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7.4. Finite Difference Scheme for the Transport Equation

7.4.1. Transport Equation with Constant Vector Field

Now, we start with the numerical treatment of the transport equation with constant
vector field a ∈ R in the 1-dimensional case, i.e.,

It(t, x) + a Ix(t, x) = 0 with I(0, x) = I0(x), (TPE)

with x ∈ Ω ⊂ R and t ∈ [0, T ]. For higher dimensions d we use a directional splitting
approach, see Section 7.4.4, which reduces the problem to d 1-dimensional problems.
Moreover, for simplification in the notation we propose Ω = R. Because in this case we
do not need to take care about inflow boundary conditions.

In the following the aim is to find a discrete solution I∆x, which approximates the
exact (analytical) solution Ĩ of the transport equation (TPE). For this purpose, for a
given time step size ∆t we discretise the time interval [0, T ] by an equidistant mesh,
0 = t0 < t1 < ... < tM = T . Subsequently, for a given mesh size ∆x we define on each
time level m a piecewise constant function

I∆x(m∆t, x) =
∑
j∈Z

Imj+1/2χ[j∆x,(j+1) ∆x), (7.9)

where the coefficients Imj+1/2 ∈ R, j ∈ Z are approximations to cell average values

Ĩmj+1/2 =
1

∆x

(j+1) ∆x∫
j∆x

Ĩ(m∆t, x) dx (7.10)

of the exact solution Ĩ. Thus, I∆x(m∆t, ·) is an approximation to the exact solution Ĩ
at time t := m∆t. Finally, we define the approximation I∆x to the exact solution Ĩ at
any time t by

I∆x(t, x) =
M∑
m=0

∑
j∈Z

Imj+1/2χ[(m−1/2) ∆t,(m+1/2) ∆t)×[j∆x,(j+1) ∆x). (7.11)

At this point we would like to mention that the values Imj+1/2 are often interpreted as
approximations to the exact solution Ĩ at the grid points (m∆t, (j + 1/2) ∆x), too.

For the computation of the approximations Imj+1/2 we use the method of finite differences.
A finite difference scheme (FD scheme) is defined by

Im+1
j+1/2 = Hj+1/2(Im∆x) :=

∑
k∈Z

bk+j+1/2 I
m
k+j+1/2, (7.12)

where Im∆x = {Imj+1/2, j ∈ Z}, bk+1/2 ∈ R for k ∈ Z and H is called a finite difference
operator. Moreover, we set Im+1

∆x = H(Im∆x) := {Hj+1/2(Im∆x), j ∈ Z}.
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In relation (7.12) we observe, that the coefficients Imj+1/2,m = 1, ...,M are recursively
computed from the values Im−1

j+1/2, j ∈ Z of the previous time level m− 1. Hence, for the
computation of the coefficients Imj+1/2 we only need to know the coefficients I0

j+1/2 at
initial time t = 0. But these are given by the initial value condition of the differential
equation (TPE), i.e.,

I0
j+1/2 =

1

∆x

(j+1) ∆x∫
j∆x

I0(x) dx.

Next we derive two established FD-Schemes. In the case α > 0, we replace in the
transport equation (TPE) the time and spatial derivative by forward finite difference
quotients and obtain the discrete equation

Im+1
j+1/2 − I

m
j+1/2

∆t
+
Imj+1/2 − I

m
j−1/2

∆x
= 0

or, equivalently,

Im+1
j+1/2 = Imj+1/2 − λ a

(
Imj+1/2 − I

m
j−1/2

)
, (7.13)

with mesh size ratio λ = ∆t
∆x . Relation (7.13) is called forward Upwind scheme. Anal-

ogously, if a < 0, we use a forward finite difference quotient in time and a backward
finite difference quotient in space to obtain the backward Upwind scheme

Im+1
j+1/2 = Imj+1/2 − λ a

(
Imj+3/2 − I

m
j+1/2

)
. (7.14)

A combination of both cases leads to the Upwind scheme

Im+1
j+1/2 = Imj+1/2 −

λ a

2

(
Imj+3/2 − I

m
j−1/2

)
+

∣∣λa∣∣
2

(
Imj+3/2 − 2 Imj+1/2 + Imj−1/2

)
.

(7.15)

Next, we derive the Lax-Wendroff scheme. Here, we consider a second order Taylor
expansion series of I in time, i.e.,

I(t+ ∆t, x) = I(t, x) + It(t, x) ∆t+ Itt(t, x)
(∆t)2

2
+O((∆t)3) (7.16)

and substitute the time derivative Itt in (7.16) by spatial derivatives via

Itt = (−a Ix)t = −a Itx = −a (−a Ix)x = a2 Ixx (7.17)
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by exploiting the transport equation (TPE). Moreover, we replace the spatial derivatives
Ix in (TPE) and Ixx in (7.17) by central finite differences and obtain, finally, the Lax-
Wendroff scheme

Im+1
j+1/2 = Imj+1/2 −

λ a

2

(
Imj+3/2 − I

m
j−1/2

)
+

(
λa
)2

2

(
Imj+3/2 − 2 Imj+1/2 + Imj−1/2

)
.

(7.18)

For further examples of FD schemes, like the method of Lax-Friedrich or Leapfrog, we
refer to [32, 35, 36].

Now the question is: Is the discrete solution I∆x defined by the Upwind (7.15) or
Lax-Wendroff scheme (7.18) convergent towards the exact solution Ĩ of the transport
equation (TPE)? Here, convergence means,

‖I∆x − Ĩ‖ → 0 for ∆x,∆t→ 0

in some suitable norm ‖ · ‖, which we discuss explicitly later on. For proving the con-
vergence, we use Lax’s Equivalence theorem. This theorem states that consistency and
stability of a linear FD scheme is necessary and sufficient for convergence. Here, roughly
speaking, consistency means that the FD scheme approximates the differential equation
(TPE) and stability means, that the summation of the unavoidable discretisation errors
at each time step remains bounded, if we use infinite many time steps, i.e., if ∆t→ 0.

Conservativity

However, before analysing these two properties, we first discuss the conservativity prop-
erty of a FD scheme. This conservativity property is useful later on for the generalization
of the Upwind and Lax-Wendroff scheme for solving the conservative transport equa-
tion (cTPE). In Theorem 3.7 we have shown that the exact solution Ĩ to the transport
equation (TPE) is conservative, i.e.,∫

R

Ĩ(t, x) dx =

∫
R

I0(x) dx for all t ∈ [0, T ].

This property written in the discrete sense∑
j∈Z

Imj+1/2 =
∑
j∈Z

I0
j+1/2 for m = 0, ...,M.

Integrating the transport equation (TPE) over a grid cell (m, j + 1/2) defined by

(m, j + 1/2) := [(m− 1/2) ∆t, (m+ 1/2) ∆t)× [j∆x, (j + 1) ∆x)

and multiplying by 1
∆x leads to
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Ĩm+1
j+1/2 = Ĩmj+1/2 − λ

 1

∆t

(m+1/2) ∆t∫
(m−1/2) ∆t

f(Ĩ(t, (j + 1) ∆x)) dt

− 1

∆t

(m+1/2) ∆t∫
(m−1/2) ∆t

f(Ĩ(t, j∆x)) dt

 ,

where we have used the notation (7.10). Here, the integral on the right hand side
describes the mass, which flows into or rather out of the grid cell (m, j + 1/2) during
one time step. However, in general we cannot exactly compute these flows. Therefore,
we have to approximate them by numerical flux functions

Fj(I
m
∆x) ≈ 1

∆t

(m+1/2) ∆t∫
(m−1/2) ∆t

f(Ĩ(t, j∆x)) dt.

Altogether, this motivates the following definition of a conservative finite difference
scheme.

Definition 7.7.
A FD scheme is called conservative, if we can rewrite the scheme (7.12) as

Im+1
j+1/2 = Imj+1/2 − λ

(
Fj+1(Im∆x)− Fj(Im∆x)

)
, (7.19)

where

Fj(I
m
∆x) :=

∑
k∈Z

ck+j+1/2I
m
k+j+1/2 with ck+1/2 ∈ R, k ∈ Z

is called the numerical flux function.

A simple calculation

∫
R

Im+1
∆x = ∆x

∑
j∈Z

Im+1
j+1/2

= ∆x
∑
j∈Z

Imj+1/2 − λ

(∑
k∈Z

ck+j+3/2I
m
k+j+3/2 −

∑
k∈Z

ck+j+1/2I
m
k+j+1/2

)
︸ ︷︷ ︸

=0


= ∆x

∑
j∈Z

Imj+1/2 =

∫
R

Im∆x.
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shows, that a FD scheme (7.12) which can be rewritten in the form (7.19) is indeed
conservative. Here, we have exploited in the calculation, that there is a telescoping sum
in the second line.

Furthermore, we can rewrite the Upwind (7.15) and Lax-Wendroff scheme (7.18) in
conservative form (7.19) by using the Upwind flux

FUpj (Im∆x) =

{
a Imj−1/2 , for a ≥ 0

a Imj+1/2 , for a < 0

=
1

2
a
(
Imj+1/2 + Imj−1/2

)
− 1

2
|a|
(
Imj+1/2 − I

m
j−1/2

)
,

(7.20)

and the Lax-Wendroff flux

FLWj (Im∆x) =
1

2
a
(
Imj+1/2 + Imj−1/2

)
− 1

2
a2 λ

(
Imj+1/2 − I

m
j−1/2

)
, (7.21)

respectively.

Consistency

Next, we analyse the consistency of a FD scheme. For this purpose we assume that Ĩ
is a smooth solution of the differential equation (TPE). Hence, we compute the Taylor
epansion series given as

Ĩm+1
j+1/2 = Ĩ(t, x) + Ĩt(t, x) ∆t+ Ĩtt(t, x)

(∆t)2

2
+ ... and

Ĩmk+j+1/2 = Ĩ(t, x) + Ĩx(t, x) k∆x+ Ĩxx(t, x)
(k∆x)2

2
+ ...

(7.22)

at the points (t, x) = (m∆t, (j + 1/2) ∆x).

Now a substitution of the approximations Imj+1/2 in the FD scheme (7.12) by the Taylor
expansion series (7.22) leads to

0 =
Ĩm+1
j+1/2 −H(Ĩm)

∆t
= Ĩt + a Ĩx + Lmj+1/2

or, equivalently,

Ĩt + a Ĩx = −Lmj+1/2 (7.23)

with local truncation error Lmj+1/2 = L∆x(m∆t, (j + 1/2) ∆x) = O((∆x)p) for p ∈ N0.
Here, we recall the assumption that the mesh ratio λ = ∆x

∆t remains constant, if we
refine ∆x or ∆t. Therefore, the local truncation error depends alone on ∆x rather than
on both ∆x and ∆t.
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We observe, that we do not exactly solve the transport equation (TPE), but the equation
(7.23), which is called equivalence differential equation (EDE) or modified differential
equation. Moreover, from (7.23) we conclude that the FD scheme approximates the
differential equation (TPE) at the point (m∆t, (j + 1/2) ∆x), if the truncation error
Lmj+1/2 tends to zero for ∆x→ 0. In summary, we define:

Definition 7.8.
Let (7.12) be a FD scheme with truncation error

Lmj+1/2 =
1

∆t

(
Ĩm+1
j+1/2 −H(Ĩm∆x)

)
= O((∆x)p). (7.24)

Then the FD scheme is consistent, if and only if p ≥ 1. Moreover, p is called the
consistency order.

Let us exemplify the consistency at the Upwind (7.15) and Lax-Wendroff scheme (7.18).
Using the relation (7.17) we calculate

Ĩt(t, x) + a Ĩx(t, x) = |a| ∆x
2

(
1− |a λ|

)
Ĩxx (7.25)

as EDE for the Upwind scheme, where we assumed that Ĩ ∈ C2((0, T )×R) is the exact
solution to the transport equation (TPE). For the Lax-Wendroff scheme we assume
Ĩ ∈ C3((0, T )× R) and compute

Ĩt(t, x) + a Ĩx(t, x) = a
(∆x)2

6

(
1− (a λ)2

)
Ĩxxx (7.26)

as EDE. Consequently, we conclude that the Upwind scheme is first order accurate,
whereas the Lax-Wendroff scheme is second order accurate.

Stability

Lastly, we discuss the stability of a FD scheme. This means, that errors which are
unavoidable due to discretisation should not grow to infinity, i.e., there exists a constant
C > 0 with

‖Im∆x‖ = ‖H(Im−1
∆x )‖ = ... = ‖Hm(I0

∆x)‖ ≤ ‖Hm‖ ‖I0
∆x‖ ≤ C ‖I0

∆x‖ for m = 0, ...,M.

Sufficient for the stability of a FD scheme is, that

‖H‖ ≤ 1 +D∆t.

In fact, in this case we obtain

‖Hm‖ ≤ (1 +D∆t)m ≤ emD∆t ≤ eDT ≤ C.
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Now the question is: What is a suitable norm for analysing the stability and, conse-
quently, also the convergence of a FD scheme due to Lax’s Equivalence theorem? An
ideally norm is usually the L∞-norm, but convergence in the L∞-norm is unrealistic
for discontinuous solutions. For conservation laws, like the transport equation (TPE),
the L1-norm is a natural norm. As an illustration, we derive for the forward Upwind
scheme (7.13) that it is conditionally L1-stable for 0 ≤ a λ ≤ 1:

∥∥Im+1
j+1/2

∥∥
L1 = ∆x

∑
j∈Z

∣∣Im+1
j+1/2

∣∣ = ∆x
∑
j∈Z

∣∣Imj+1/2 − a λ
(
Imj+1/2 − I

m
j−1/2

)∣∣
≤ ∆x

∑
j∈Z

∣∣(1− a λ) Imj+1/2

∣∣+
∣∣a λ Imj−1/2

∣∣
= ∆x

(
(1− a λ)

∑
j∈Z

∣∣Imj+1/2

∣∣+ a λ
∑
j∈Z

∣∣Imj−1/2

∣∣)
= ∆x

∑
j∈Z

∣∣Imj+1/2

∣∣ =
∥∥Imj+1/2

∥∥
L1 .

Analogously, we can show that the backward Upwind scheme (7.14) is conditionally L1-
stable for −1 ≤ a λ ≤ 0. The stability condition for a FD scheme (7.12) is often called
CFL-condition (for Courant-Friedrich-Lewy). However, for FD schemes, where also
negative coefficients bj+1/2, j ∈ Z appear in the definition (7.12) of the finite difference
operator H, like in the Lax-Wendroff scheme (7.18), it is more difficult to show the
L1-stability. Therefore, the L2-norm is more frequently used. Because, in this case
Parseval’s identity is used to show stability in the frequency domain. This technique for
proving stability is called von Neumann analysis. By using a von Neumann analysis, we
can show that both the Upwind and Lax-Wendroff scheme are conditionally L2-stable
for |a λ| ≤ 1, for more details we refer to [32].

Convergence

Finally, we deduce the convergence of the Upwind (7.15) and Lax-Wendroff (7.18)
scheme from Lax’s Equivalence theorem.

Theorem 7.9 (Lax’s Equivalence theorem).
Consistency and stability are necessary and sufficient for the convergence of a linear FD
scheme. Moreover, the convergence order is equal to the consistency order of the FD
scheme.

Proof.
We only show by adopting the work of [36], that consistency and stability is sufficient
for convergence. For the necessity we refer to [41].

We define the local approximation error function by

E∆x(t, x) = I∆x(t, x)− Ĩ(t, x),
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where we recall that I∆x defined in (7.11) denotes the discrete and Ĩ the exact solution.
Furthermore, we set Em(x) = E(m∆t, x).

Next by using the linearity of the FD scheme and the formulation of the local truncation
error (7.24) we can express the local approximation error by

Em+1
∆x (x) =

(
H(Em∆x)

)
(x)−∆t L∆x(m∆t, x).

Applying this relation recursively, we obtain

Em∆x(x) =
(
Hm(E0

∆x)
)
(x)−∆t

m∑
l=1

(
Hm−l L∆x(l∆t, ·)

)
(x).

Now, for global convergence of the FD scheme we have to show that ‖Em∆x‖ → 0 for all
m = 0, ...,M , if ∆x tends to zero. By exploiting the stability,

‖HM−l‖ ≤ CS for all l = 0, ...,M,

and consistency,

‖L∆x(m∆t, ·)‖ ≤ CL (∆x)p for all m = 0, ...,M

of the FD scheme we estimate

‖Em∆x‖ ≤ ‖Hm‖ ‖E0
∆x‖+ ∆t

m∑
l=1

‖Hm−l‖ ‖L∆x(l∆t, ·)‖

≤ CS
(
‖E0

∆x‖+ ∆t
m∑
l=1

‖L∆x(l∆t, ·)‖
)

≤ CS
(
‖E0

∆x‖+ T CL (∆x)p
)

for m∆t ≤ T . Hence, letting ∆x → 0 we deduce the statement, if there is no error in
the initial data.

Flux Limiters

However, the convergence order is not significant for the quality of the numerical solu-
tion. In fact, in Figure 7.4 we observe that in the Upwind scheme (7.15) discontinuities
of the exact solution are smoothened out, whereas in the Lax-Wendroff scheme (7.18)
oscillations occur around discontinuities. Therefore, we use flux limiters to limit these
oscillations.

The damping and oscillatory behaviour of the Upwind and Lax-Wendroff scheme, re-
spectively, can be explained by analysing their corresponding EDE’s. Indeed, for the
Upwind scheme (7.15) we have calculated in (7.25) a convection diffusion equation with
numerical viscosity term

|a| ∆x
2

(
1− |a λ|

)
Ixx.
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Consequently, for positive viscosity terms oscillations and strong gradients are damped,
whereas for negative viscosity terms disturbances are amplified exponentially. Alto-
gether, we again observe, that the scheme is stable if and only if |a λ| ≤ 1.

On the other hand, for the Lax-Wendroff scheme (7.18) we have computed in (7.26) a
dispersive equation with dispersion error

a
(∆x)2

6

(
1− (a λ)2

)
Ixxx,

which leads to oscillations in the solution.

However, for an accurate scheme there should be neither a damping nor an oscillatory
behaviour. In a moment, we derive a sufficient condition for a non oscillating behaviour
of a discrete solution to the transport equation (TPE). For this purpose, we recall that
the exact solution Ĩ to (TPE) is given by

Ĩ(t, x) = I0(x− at).

Consequently, it holds

min I0(x) ≤ Ĩ(t, x) ≤ max I0(x) for all (t, x) ∈ [0, T ]× R. (7.27)

Moreover, by considering the case, where I0 is a constant function, we conclude, that
the coefficients bj+1/2, j ∈ Z of a consistent FD scheme have to satisfy the consistency
condition ∑

j∈Z
bj+1/2 = 1. (7.28)

Finally, to prevent the oscillatory behaviour of a solution, we require that the scheme is
monotone, i.e.,

Imj+1/2 ≥ J
m
j+1/2 ⇒ Hj+1/2(I) = Im+1

j+1/2 ≥ J
m+1
j+1/2 = Hj+1/2(J) (7.29)

for all j ∈ Z and m = 0, ...,M − 1. As a consequence, in this case we obtain

Immin =
∑
j∈Z

bj+1/2I
m
min ≤

∑
j∈Z

bj+1/2I
m
j+1/2 = Im+1

j+1/2

≤
∑
j∈Z

bj+1/2I
m
max = Immax,

(7.30)

where

Immin = min(Im∆x) and Immax = max(Im∆x).
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Subsequently, by an iteratively application of the estimate (7.30), we obtain the discrete
formulation of (7.27), i.e.

min(I0
∆x) ≤ Imj+1/2 ≤ max(I0

∆x)

for all j ∈ Z and m = 0, ...,M .

Moreover, there is a simple condition to check, if a FD scheme is monotone.

Lemma 7.10.
Let

Im+1
j+1/2 =

∑
k∈Z

bk+j+1/2 I
m
k+j+1/2. (7.31)

be a FD scheme, which satisfies the consistency condition (7.28). Then the scheme is
monotone, if

bj+1/2 ≥ 0 for all j ∈ Z (7.32)

Proof.
It holds

Imj+1/2 ≤ J
m
j+1/2 ⇒ bj+1/2I

m
j+1/2 ≤ bj+1/2J

m
j+1/2.

Thus, we immediately deduce the statement.

Remark 7.11.
Note, that the formulation (7.31) is equivalent to

Im+1
j+1/2 = Imj+1/2 +

∑
k∈Z

bk+j+1/2

(
Imk+j+1/2 − I

m
j+1/2

)
,

if the consistency condition (7.28) is satisfied.

For the Upwind scheme (7.15) we easily compute

bj−1/2 =
1

2

(
a λ+ |a λ|

)
, bj+1/2 = 1− |a λ| and bj+3/2 =

1

2

(
− a λ+ |a λ|

)
.

Hence, the Upwind scheme (7.15) is monotone, if the CFL condition |a λ| ≤ 1 is satisfied.
In contrast, the Lax-Wendroff scheme (7.18) is non-monotone, since either

bj−1/2 =
λ a

2
(λ a− 1) or bj+3/2 =

λ a

2
(λ a+ 1)

is negative.

More general, Godunov states that all linear monotone schemes are of first order [32].
Therefore, we present now the concept of flux limiter to obtain a second order monotone
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scheme. Here, the main idea is to combine the benefits of the Upwind (7.15) and the
Lax-Wendroff scheme (7.18). More precisely, we would like to use the second order
accurate Lax-Wendroff scheme in domains, where the solution is smooth. Whereas, in
domains, where the solution is discontinuous, we would like to use the monotone Upwind
scheme. Unfortunately, we do not know a priori, where the solution is smooth or not.
Therefore, we introduce gradient ratios to measure the local smoothness of the solution.
The gradient ratios at each cell boundary are defined by

Rj =
Ij−1/2 − Ij−3/2

Ij+1/2 − Ij−1/2
, for a > 0

and

Rj =
Ij+3/2 − Ij+1/2

Ij+1/2 − Ij−1/2
, for a < 0.

We remark, that the gradient ratios are depending on the flow direction due to symmetry
reasons in the solution. Finally, by using the measure of the gradient ratios we can locally
characterise the behaviour of the solution:

Rj ≈ 1 ⇒ smooth solution
Rj = ε > 0 ⇒ discontinuity
Rj =∞ ⇒ discontinuity
Rj < 0 ⇒ local extremum.

Finally, we define a numerical flux function by

Fj = FUpj + Φ(Rj)
(
FLWj − FUpj

)
, (7.33)

where Φ is a flux limiter function, which has to be suitably chosen. Ideally, we have
Φ ≈ 1 in domains, where the solution is smooth and Φ ≈ 0 in domains, where the
solution is discontinuous. However, in [32] it is discussed, that the flux limiter Φ should
satisfy:

0 ≤ Φ(r) ≤ min(2r, 2) and Φ(r) = 0, for r ≤ 0.

This inequality is satisfied for instance by the Superbee limiter defined by

Φ(r) := max(0,min(2r, 1),min(r, 2)). (7.34)

For a list of further flux limiter functions, we refer to [32].

Finally, we show that the scheme defined by the numerical flux function (7.33) is indeed
monotone. We consider the case, where a > 0. Then the numerical flux function is
given by

Fj = a Imj−1/2 + Φ(Rj)
(a

2

(
Imj+1/2 − I

m
j−1/2

)
− a2 λ

2

(
Imj+1/2 − I

m
j−1/2

))
= a Imj−1/2 +

a

2

(
1− a λ

)
Φ(Rj)

(
Imj+1/2 − I

m
j−1/2

)
.

(7.35)
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(a) Exact solution
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(b) Solution with Upwind scheme
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(c) Solution with LW scheme
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(d) Solution with flux limiter scheme

Figure 7.4.: Solution behaviour of FD schemes for the constant transport equation
(TPE): Here, problem (TPE) is solved for initial condition I0(x) = χ[0.5,1.5]

and constant vector field a = 1. We use as mesh size ∆x = 0.0001 and
as step size ∆t = 0.00005. The exact solution at time t = 1 is plotted in
(a). The discrete solutions at time t = 1 for the different FD schemes are
plotted in (b) - (d).

Inserting (7.35) in the conservative formulation (7.19) of a FD scheme leads to

Im+1
j+1/2 = Imj+1/2 − a λ

(
Imj+1/2 − I

m
j−1/2

)
− a λ

2
(1− a λ)

(
Φ(Rj+1)

(
Imj+3/2 − I

m
j+1/2

)
− Φ(Rj)

(
Imj+1/2 − I

m
j−1/2

))
= Imj+1/2 − a λ

(
Imj+1/2 − I

m
j−1/2

)
− a λ

2
(1− a λ)

(Φ(Rj+1)

Rj+1
− Φ(Rj)

) (
Imj+1/2 − I

m
j−1/2

)
= Imj+1/2 − a λ

(
1 +

1− a λ
2

(Φ(Rj+1)

Rj+1
− Φ(Rj)

))(
Imj+1/2 − I

m
j−1/2

)
= Imj+1/2 + bj−1/2

(
Imj−1/2 − I

m
j+1/2

)
.

Regarding to the monotonicity condition (7.32), we finally conclude that the scheme is
monotone, since

bj−1/2 = a λ
(

1 +
1− a λ

2

(Φ(Rj+1)

Rj+1
− Φ(Rj)

))
≥ 0,
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if the CFL condition |a λ| ≤ 1 is satisfied.

Considering Figure 7.4 we observe, that the flux limiter scheme defined by the numer-
ical flux (7.33) approximates the exact solution of the transport equation (TPE) very
good. In particular, there are no oscillations in the solution and discontinuities are only
smoothened out very slightly.

However, note that this scheme is not linear anymore, since the coefficients bj+1/2 for
j ∈ Z are dependent on Im∆x.

7.4.2. Conservative Transport Equation

Now we want to generalize the Upwind (7.15) and Lax-Wendroff (7.18) scheme, such
that we are also able to solve numerically the optical flow constraint

It(t, x) + ω(t, x) · ∇I(t, x) = 0 with I(0, x) = I0(x), (OFC)

as well as the conservative transport equation

pt(t, x) +Div
(
ω(t, x) p(t, x)

)
= 0 with p(0, x) = p0(x), (cTPE)

where x ∈ R. We start with the numerical treatment of the conservative transport
equation (cTPE). Because in this case, we use the numerical fluxes of the Upwind
(7.20) and Lax-Wendroff schemes (7.21) to generalize these schemes straightforward. In
fact, we only substitute in the numerical flux functions the constant vector field a by
the function value of the variable vector field ω evaluated at the current cell boundary.
This substitution leads to the following conservative FD scheme:

pm+1
j+1/2 = pmj+1/2 − λ

(
Fmj+1(pm∆x)− Fmj (pm∆x)

)
(7.36)

with Upwind flux

Fmj (pm∆x) =

{
ωmj p

m
j−1/2 , for ωmj ≥ 0

ωmj p
m
j+1/2 , for ωmj < 0

=
1

2
ωmj
(
pmj+1/2 + pmj−1/2

)
− 1

2

∣∣ωmj ∣∣ (pmj+1/2 − p
m
j−1/2

) (7.37)

or Lax-Wendroff flux

Fmj (pm∆x) =
1

2
ωmj
(
pmj+1/2 + pmj−1/2

)
− 1

2

(
ωmj
)2
λ
(
pmj+1/2 − p

m
j−1/2

)
, (7.38)

respectively.
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Consistency

In fact, the conservative Upwind scheme is a first order approximation of the conservative
transport equation (cTPE), as the following theorem shows:

Theorem 7.12.
Let ω ∈ C1((0, T ) × R) and p̃ ∈ C2((0, T ) × R) the exact solution to the conservative
transport equation (cTPE). Then the conservative Upwind scheme defined by (7.36)
with numerical flux (7.37) admits a consisteny order 1.

Proof.
Letting (t, x) = (m∆t, (j+1/2) ∆x), we calculate the following Taylor expansion series:

p̃m+1
j+1/2 = p̃(t, x) + p̃t(t, x) ∆t+ p̃tt(t, x)

(∆t)2

2
+O((∆t)3),

p̃mj+3/2 = p̃(t, x) + p̃x(t, x) ∆x+ p̃xx(t, x)
(∆x)2

2
+O((∆x)3),

p̃mj−1/2 = p̃(t, x)− p̃x(t, x) ∆x+ p̃xx(t, x)
(∆x)2

2
+O((∆x)3),

ωmj+1 = ω(t, x) + ωx(t, x)
∆x

2
+ ωxx(t, x)

(∆x)2

8
+O((∆x)3) and

ωmj−1 = ω(t, x)− ωx(t, x)
∆x

2
+ ωxx(t, x)

(∆x)2

8
+O((∆x)3).

Next, we insert these Taylor expansion into the conservative Upwind scheme. However,
since the definition of the conservative Upwind flux (7.37) depends on the sign of the
vector field ω at the cell boundaries, we use a case analysis and obtain as truncation
errors:

(i) For ωmj ≥ 0 and ωmj+1 ≥ 0 we obtain

Lmj+1/2 =
1

2
(ω p̃xx + ωx p̃x)∆x− 1

2
p̃tt ∆t+O((∆x)2) +O((∆t)2).

(ii) For ωmj ≥ 0 and ωmj+1 < 0 we obtain

Lmj+1/2 = −ω p̃x −
1

2
p̃tt ∆t+O((∆x)2) +O((∆t)2).

Since there exists a root denoted by ξ in the time interval [j∆t, (j+1) ∆t], we can
use a Taylor expansion

ω(x, t) = ω(ξ, t) +O(∆x) = O(∆x)

and obtain

Lmj+1/2 = −1

2
p̃tt ∆t+O(∆x) +O((∆t)2).
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(iii) For ωmj < 0 and ωmj+1 ≥ 0 we obtain

Lmj+1/2 = ω p̃x − p̃tt
∆t

2
+O((∆x)2) +O((∆t)2).

Since there exists a root denoted by ξ in the time interval [j∆t, (j+1) ∆t], we can
use again a Taylor expansion

ω(x, t) = ω(ξ, t) +O(∆x) = O(∆x)

and obtain

Lmj+1/2 = −1

2
p̃tt ∆t+O(∆x) +O((∆t)2).

(iv) For ωmj < 0 and ωmj+1 < 0 we obtain

Lmj+1/2 = −1

2
(ω p̃xx + ωx p̃x)∆x− 1

2
p̃tt ∆t+O((∆x)2) +O((∆t)2).

Altogether, by recalling λ = ∆t
∆x = const we obtain

Lmj+1/2 = O(∆x).

Next, we analyse the consistency order of the conservative Lax-Wendroff scheme defined
by the numerical flux function (7.38). Here, we use the same Taylor expansion series as
in the proof above and obtain as EDE

p̃t + div(ω p̃) =
∆t

2

(
2ω ωx p̃x + ω2 p̃xx − p̃tt

)
,

where we assumed that ω ∈ C1((0, T )× R) and p̃ ∈ C2((0, T )× R). Analogously to the
constant case (7.17), we substitute the time derivatives by spatial derivatives via

p̃tt =
(
− ω p̃x − ωx p̃

)
t

= −ωt p̃x − ω p̃xt − ωxt p̃− ωx p̃t
= −ωt p̃x − ω

(
− ω p̃x − ωx p̃

)
x
− ωxt p̃− ωx

(
− ω p̃x − ωx p̃

)
= −ωt p̃x + ω ωx p̃x + ω2 p̃xx + ω ωxx p̃+ ω ωx p̃x − ωxt p̃+ ω ωx p̃x + ω2

xp̃

=
(
ω ωxx − ωxt + ω2

x

)
p̃+

(
− ωt + 3ω ωx

)
p̃x + ω2 p̃xx.

and obtain

p̃t + div(ω p̃) =
∆t

2

(
ωxt − ω2

x − ω ωxx
)
p̃+

∆t

2

(
ωt − ω ωx

)
p̃x.

We conclude, that the conservative Lax-Wendroff scheme is only first accurate, too.
However, by adopting the thoughts of LeVeque [35], we can rewrite the EDE as
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p̃t(t, x) + div

(
ω
(
t− 1

2
∆t, x+

1

2
ω(t, x) ∆t

)
p̃(t, x)

)
= 0,

where we have ignored higher order terms. We observe, that we still solve a conservative
transport equation, but with a velocity field which is shifted by less than a grid cell.
Hence, under the assumption that the correct conservative transport equation (cTPE)
admits a smooth solution, we expect that we obtain with the conservative Lax-Wendroff
scheme a discrete solution which looks similar to the exact solution, but slightly offset.
In particular, in contrast to the Upwind scheme the solution is not smoothened out (or
at least not at O(∆x) level).

Stability

Next, we analyse the stability of the Upwind scheme.

Theorem 7.13 (Stability).
The conservative Upwind scheme defined by the numerical flux function (7.37) is L1-
stable, if the following two conditions are satisfied for all j ∈ Z and m = 0, ...,M − 1:

(i) |λωmj | ≤ 1, (7.39a)

(ii) |λ(ωmj+1 − ωmj )| ≤ 1, for ωmj+1 < 0 and ωmj > 0. (7.39b)

Proof.
It holds∥∥pm+1

∆x

∥∥ = ∆x
∑
j∈Z

∣∣pm+1
j+1/2

∣∣

= h

 ∑
ωmj+1≥0

ωmj ≥0

∣∣pm+1
j+1/2

∣∣+
∑

ωmj+1<0

ωmj <0

∣∣pm+1
j+1/2

∣∣+
∑

ωmj+1≥0

ωmj <0

∣∣pm+1
j+1/2

∣∣+
∑

ωmj+1<0

ωmj ≥0

∣∣pm+1
j+1/2

∣∣


For the first sum we estimate

∑
ωmj+1≥0

ωmj ≥0

|pm+1
j+1/2| =

∑
ωmj+1≥0

ωmj ≥0

∣∣pmj+1/2 − λ
(
ωmj+1 p

m
j+1/2 − ω

m
j p

m
j−1/2

)∣∣
≤

∑
ωmj+1≥0

ωmj ≥0

∣∣(1− λωmj+1

)
pmj+1/2

∣∣+
∣∣λωmj pmj−1/2

∣∣
=

∑
ωmj+1≥0

ωmj ≥0

(
1− λωmj+1

) ∣∣pmj+1/2

∣∣+ λωmj
∣∣pmj−1/2

∣∣.
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For the second sum we estimate

∑
ωmj+1<0

ωmj <0

∣∣pm+1
j+1/2

∣∣ =
∑

ωmj+1<0

ωmj <0

∣∣pmj+1/2 − λ
(
ωmj+1 p

m
j+3/2 − ω

m
j p

m
j+1/2

)∣∣
≤

∑
ωmj+1<0

ωmj <0

∣∣(1 + λωmj
)
pmj+1/2

∣∣+
∣∣λωmj+1 p

m
j+3/2

∣∣
=

∑
ωmj+1<0

ωmj <0

(
1 + λωmj

) ∣∣pmj+1/2

∣∣− λωmj+1

∣∣pmj+3/2

∣∣.
For the third sum we estimate∑

ωmj+1≥0

ωmj <0

∣∣pm+1
j+1/2

∣∣ =
∑

ωmj+1≥0

ωmj <0

∣∣pmj+1/2 − λ
(
ωmj+1 p

m
j+1/2 − ω

m
j p

m
j+1/2

)∣∣
=

∑
ωmj+1≥0

ωmj <0

(
1− λωmj+1 + λωmj

) ∣∣pmj+1/2

∣∣
For the fourth sum we estimate∑

ωmj+1<0

ωmj ≥0

∣∣pm+1
j+1/2

∣∣ =
∑

ωmj+1<0

ωmj ≥0

∣∣pmj+1/2 − λ
(
ωmj+1 p

m
j+3/2 − ω

m
j p

m
j−1/2

)∣∣
≤

∑
ωmj+1<0

ωmj ≥0

∣∣pmj+1/2

∣∣+
∣∣λωmj+1 p

m
j+3/2

∣∣+
∣∣λωmj pmj−1/2

∣∣
=

∑
ωmj+1<0

ωmj ≥0

∣∣pmj+1/2

∣∣− ∑
ωmj+1<0

ωmj ≥0

λωmj+1

∣∣pmj+3/2

∣∣+
∑

ωmj+1<0

ωmj ≥0

λωmj
∣∣pmj−1/2

∣∣.
Altogether, we get∥∥pm+1

∆x

∥∥ = ∆x
∑
j∈Z

∣∣pm+1
j+1/2

∣∣
≤ ‖pm∆x‖+ λ∆x

− ∑
ωmj+1≥0

ωmj+1

∣∣pmj+1/2

∣∣+
∑
ωmj <0

ωmj
∣∣pmj+1/2

∣∣
+
∑
ωmj ≥0

ωmj
∣∣pmj−1/2

∣∣− ∑
ωmj+1<0

ωmj+1

∣∣pmj+3/2

∣∣
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= ‖pm∆x‖+ λ∆x

− ∑
ωmj ≥0

ωmj
∣∣pmj−1/2

∣∣+
∑
ωmj <0

ωmj
∣∣pmj+1/2

∣∣
+
∑
ωmj ≥0

ωmj
∣∣pmj−1/2

∣∣− ∑
ωmj <0

ωmj
∣∣pmj+1/2

∣∣
=
∥∥pm∆x∥∥.

Thus, we conclude the stability with

‖H‖ ≤ 1.

Finally, due to Lax’s Equivalence theorem we follow from consistency and stability the
convergence of the conservative Upwind scheme.

Unfortunately, we are not able to do a stability analysis for the conservative Lax-
Wendroff scheme defined by the numerical flux function (7.38).

Monotonicity

Before analysing the monotonicity of the schemes, we remark that we have to redefine
the consistency condition (7.28). Because in contrast to the solution of the transport
equation (TPE) with constant velocity field, the solution of the conservative transport
equation (cTPE) is not necessarily constant along a characteristic. In fact, in Section
3.2.2 we have shown that the exact solution to the conservative transport equation
(cTPE) is given by

p(t, x) = I0(y(0)) exp

(
−

t∫
0

ωx
(
y(s), s

))
,

where y : [0, t]→ Rd denotes the solution of the differential equation

ẏ(τ) = a
(
τ, y(τ)

)
with y(t) = x.

By considering the conservative Upwind (7.37) and Lax-Wendroff scheme (7.38) we
observe that in this case the consistency condition is given by∑

k∈Z
bmk+j+1/2 = 1− ωmj+1/2 λ+ ωmj−1/2 λ. (7.40)

For a further motivation of this consistency condition, consider the case, where I0 and
ωx are constant. Then it holds

λ
(
ωmj+1/2 − ω

m
j−1/2

)
= ∆t ωx
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for all j ∈ Z and m = 0, ...,M −1. As a consequence, we obtain for the discrete solution

pMj =
(

1−∆t ωx

)
pM−1
j =

(
1−∆t ωx

)M
p0
j =

(
1− T

M
ωx

)M
p0
j .

Letting ∆x→ 0, leads to

pMj = exp
(
− T ωx

)
p0
j = exp

(
−

T∫
0

ωx dt

)
p0
j .

Thus, the consistency condition (7.40) is reasonable for the conservative transport equa-
tion (cTPE). Nevertheless, also in this case the monotonicity condition

bmj+1/2 ≥ 0 for all j ∈ Z and m = 0, ...,M − 1

is sufficient for the same L∞-boundedness of the discrete solution as for the exact solu-
tion.

Theorem 7.14.
The conservative Upwind scheme defined by the numerical flux function (7.37) is mono-
tone, if it satisfies the stability conditions (7.39).

Proof.
We do a case analysis:

(i) for ωmj ≥ 0 and ωmj+1 ≥ 0 we have:

bmj−1/2 = ωmj λ ≥ 0 and

bmj+1/2 = 1− ωmj+1 λ ≥ 0.

(ii) for ωmj < 0 and ωmj+1 < 0 we have:

bmj+1/2 = 1 + ωmj λ ≥ 0 and

bmj+3/2 = −ωmj+1 λ ≥ 0.

(iii) for ωmj < 0 and ωmj+1 ≥ 0 we have:

bmj+1/2 =
(
1− ωmj+1 λ+ ωmj λ

)
≥ 0.

(iv) for ωmj ≥ 0 and ωmj+1 < 0 we have:

bmj−1/2 = ωmj λ ≥ 0,

bmj+1/2 = 1 ≥ 0 and

bmj+3/2 = −ωmj+1 λ ≥ 0.
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In summary, we have shown that the conservative Upwind scheme is monotone.

On the other hand, the Lax-Wendroff scheme defined by the numerical flux function
(7.38) is not monotone, as in the constant case. The non-monotonicity of the Lax-
Wendroff scheme is also illustrated in Figure 7.5. Here, we observe for the conservative
Upwind and Lax-Wendroff scheme the same damping and oscillating behaviour as in
the constant case.

Flux limiters

In this case we also want to combine both schemes by using flux limiters to obtain more
accurate approximations. However, to detect jumps in the vector field, we redefine the
gradient ratios by

Rmj =
ωm,+j−1

(
pmj−1/2 − p

m
j−3/2

)
ωm,+j

(
pmj+1/2 − p

m
j−1/2

) , for ωmj ≥ 0 (7.41a)

or

Rmj =
ωm,−j+1

(
pmj+3/2 − p

m
j+1/2

)
ωm,−j

(
pmj+1/2 − p

m
j−1/2

) , for ωmj ≤ 0, (7.41b)

respectively, where

ωm,+j = max(ωmj , 0), and ωm,−j = min(ωmj , 0).

Finally, we use the Superbee flux limiter function (7.34) to combine both schemes, i.e.,

Fj(p
m
∆x) = FUpj (pm∆x) + Φ(θj)F

HOT
j (pm∆x), (7.42)

where

FHOTj (pm∆x) = FLWj (pm∆x)− FUpj (pm∆x)

=
1

2

∣∣ωmj ∣∣ (1−
∣∣ωmj ∣∣λ) (pmj+1/2 − p

m
j−1/2

)
.

(7.43)

Theorem 7.15.
The scheme defined by (7.19) with numerical flux (7.42) is monotone, if the stability
conditions (7.39) of the conservative Upwind scheme are satisfied.

Proof.
We do a case analysis:
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(i) for ωmj ≥ 0 and ωmj+1 ≥ 0 we have:

pm+1
j+1/2 = pmj+1/2 − ω

m
j+1 λ pj+1/2 + ωmj λ pj−1/2

− 1

2
Φ
(
Rmj+1

)
ωmj+1 λ

(
1− ωmj+1 λ

) (
pmj+3/2 − p

m
j+1/2

)
+

1

2
Φ
(
Rmj
)
ωmj λ

(
1− ωmj λ

) (
pmj+1/2 − p

m
j−1/2

)
= pmj+1/2 − ω

m
j+1 λ pj+1/2 + ωmj λ pj−1/2

− 1

2

Φ
(
Rmj+1

)
Rmj+1

ωmj λ
(
1− ωmj+1 λ

) (
pmj+1/2 − p

m
j−1/2

)
+

1

2
Φ
(
Rmj
)
ωmj λ

(
1− ωmj λ

) (
pmj+1/2 − p

m
j−1/2

)
= bmj−1/2 p

m
j−1/2 + bmj+1/2 p

m
j+1/2

with

bmj−1/2 = ωmj λ

[
1− 1

2

(
Φ
(
Rmj
) (

1− ωmj
)
−

Φ
(
Rmj+1

)
Rmj+1

(
1− ωmj+1 λ

))]
≥ ωmj λ

(
1− 1

2
2
)
≥ 0

and

bmj+1/2 = 1− ωmj+1 λ

− 1

2
ωmj λ

(
Φ
(
Rmj+1

)
Rmj+1

(
1− ωmj+1 λ

)
− Φ

(
Rmj
) (

1− ωmj
))

≥ 1− ωmj+1 λ−
1

2
ωmj λ

(
2
(
1− ωmj+1 λ

)
− 0
)

≥ 1 +
(
λωmj

) (
λωmj+1

)
− λ

(
ωmj+1 + ωmj

)
≥ 0.

(ii) for ωmj < 0 and ωmj+1 < 0 we have:

pm+1
j+1/2 = pmj+1/2 − ω

m
j+1 λ pj+3/2 + ωmj λ pj+1/2

+
1

2
Φ
(
Rmj+1

)
ωmj+1 λ

(
1 + ωmj+1 λ

) (
pmj+3/2 − p

m
j+1/2

)
− 1

2
Φ
(
Rmj
)
ωmj λ

(
1 + ωmj λ

) (
pmj+1/2 − p

m
j−1/2

)
= pmj+1/2 − ω

m
j+1 λ pj+3/2 + ωmj λ pj+1/2

+
1

2
Φ
(
Rmj+1

)
ωmj+1 λ

(
1 + ωmj+1 λ

) (
pmj+3/2 − p

m
j+1/2

)
− 1

2

Φ
(
Rmj
)

Rmj
ωmj+1 λ

(
1 + ωmj λ

) (
pmj+3/2 − p

m
j+1/2

)
= bmj+1/2 p

m
j+1/2 + bmj+3/2 p

m
j+3/2
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with

bmj+1/2 = 1 + ωmj λ

+
1

2
ωmj+1 λ

(
Φ
(
Rmj
)

Rmj

(
1 + ωmj λ

)
− Φ

(
Rmj+1

) (
1 + ωmj+1 λ

))
≥ 1 + ωmj λ+

1

2
ωmj+1 λ

(
2
(
1 + ωmj λ

)
− 0
)

≥ 1 +
(
λωmj

) (
λωmj+1

)
+ λ

(
ωmj+1 + ωmj

)
≥ 0.

and

bmj+3/2 = −ωmj+1 λ

[
1− 1

2

(
Φ
(
Rmj
)

Rmj

(
1 + ωmj λ

)
− Φ

(
Rmj+1

) (
1 + ωmj+1

))]
≥ −ωmj+1 λ

(
1− 1

2
2
)
≥ 0

(iii) For ωmj ≥ 0 and ωmj+1 < 0 we have:

pm+1
j+1/2 = pmj+1/2 − ω

m
j+1 λ pj+3/2 + ωmj λ pj−1/2

+
1

2
Φ
(
Rmj+1

)
ωmj+1 λ

(
1 + ωmj+1 λ

) (
pmj+3/2 − p

m
j+1/2

)
+

1

2
Φ
(
Rmj
)
ωmj λ

(
1− ωmj λ

) (
pmj+1/2 − p

m
j−1/2

)
= bmj−1/2 p

m
j−1/2 + bmj+1/2 p

m
j+1/2 + bmj+3/2 p

m
j+3/2

with

bmj−1/2 = ωmj λ
(

1− 1

2
Φ
(
Rmj
)
ωmj λ

(
1− ωmj λ

))
≥ ωmj λ

(
1− 1

2
2
)
≥ 0,

bmj+1/2 = 1− 1

2

(
Φ
(
Rmj+1

)
ωmj+1 λ

(
1 + ωmj+1 λ

)
− Φ

(
Rmj
)
ωmj λ

(
1− ωmj λ

))
≥ 1− 1

2
2 ≥ 0

and

bmj+3/2 = −ωmj+1 λ
(

1− 1

2
Φ
(
Rmj+1

)
ωmj+1 λ

(
1 + ωmj+1 λ

))
≥ −ωmj+1 λ

(
1− 1

2
2
)
≥ 0.
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(iv) For ωmj < 0 and ωmj+1 ≥ 0 we have Φ
(
Rj
)

= Φ
(
Rj+1

)
= 0. As a consequence, we

obtain the monotone, conservative Upwind scheme.

Altogether, we have shown that the scheme defined by (7.19) with numerical flux (7.42)
is monotone.
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(c) solution with LW scheme
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(d) solution with flux limiter scheme

Figure 7.5.: Solution behaviour of FD schemes for the conservative transport equa-
tion (cTPE): Here, problem (cTPE) is solved for initial condition I0(x) =
χ[−0.3,0.3] and vector field ω(t, x) = x. We use as mesh size ∆x = 0.0001
and as step size ∆t = 0.00005. The exact solution at time t = 1 is plotted
in (a). The discrete solutions at time t = 1 for the different FD schemes are
plotted in (b) - (d).

Finally, in Figure 7.5 we observe that we obtain very accurate approximations to the
exact solution of the conservative transport equation (cTPE), if we use the flux limiter
scheme defined by the flux function (7.42).

7.4.3. Non-Conservative Transport Equation

Next, we want to generalize the Upwind (7.15) and Lax-Wendroff scheme (7.18), such
that we are able to numerically solve the non-conservative transport equation (OFC).
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Non-Conservative Upwind Scheme

For the generalization of the Upwind scheme we first rewrite the scheme for the constant
case (7.20) as

Im+1
j+1/2 = Imj+1/2 − λ

(
a+Gj(I

m
∆x) + a−Gj+1(Im∆x)

)
,

where

a+ = max(a, 0), a− = min(a, 0)

and

Gj(I
m
∆x) = Imj+1/2 − I

m
j−1/2.

Then we generalize the scheme by substituting a by the function value of the vector
field ω evaluated at the current cell boundary. This generalization leads to the following
non-conservative Upwind scheme:

Im+1
j+1/2 = Imj+1/2 − λ

(
ωm,+j Gj(I

m
∆x) + ωm,−j+1 Gj+1(Im∆x)

)
, (7.44)

where

ωm,+j = max(ωmj , 0), ωm,−j+1 = min(ωmj+1, 0)

and

Gj(I
m
∆x) = Imj+1/2 − I

m
j−1/2.

In fact, this scheme approximates the non-conservative transport equation (cTPE).

Theorem 7.16.
Let ω ∈ C1((0, T )×R) and Ĩ ∈ C2((0, T )×R) the exact solution of the non-conservative
transport equation (OFC). Then the non-convervative Upwind scheme defined by (7.44)
admits a consistency order 1.

Proof.
Analogously to the consistency analysis of the conservative Upwind scheme (Theorem
7.12) we find the truncation errors for the different cases:

(i) For ωmj ≥ 0 and ωmj+1 ≥ 0 we obtain

Lmj+1/2 =
1

2
(ω Ĩxx + ωx Ĩx)∆x− 1

2
Ĩtt ∆t+O((∆x)2) +O((∆t)2).

(ii) For ωmj ≥ 0 and ωmj+1 < 0 we obtain

Lmj+1/2 = −1

2
Ĩtt ∆t+O(∆x) +O((∆t)2).
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(iii) For ωmj < 0 and ωmj+1 ≥ 0 we obtain

Lmj+1/2 = −1

2
Ĩtt ∆t+O(∆x) +O((∆t)2).

(iv) For ωmj < 0 and ωmj+1 < 0 we obtain

Lmj+1/2 = −1

2
(ω Ĩxx + ωx Ĩx)∆x− 1

2
Ĩtt ∆t+O((∆x)2) +O((∆t)2).

Altogether, by recalling λ = ∆t
∆x = const we obtain

Lmj+1/2 = O(∆x).

Non-Conservative Lax-Wendroff Scheme

Comparing the truncation errors of the conservative and the non-conservative Upwind
scheme (cf. Theorem 7.12 and Theorem 7.16) we observe that both schemes have the
same first order error terms. This fact motivates us to add in the non-conservative case
the same error corrections terms to the Upwind scheme as in the conservative case.
Consequently, we define the non-conservative Lax-Wendroff scheme as follows

Im+1
j+1/2 = Imj+1/2 − λ

(
ωm,+j Gj(I

m
∆x) + ωm,−j+1 Gj+1(Im∆x)

)
− λ
(
FHOTj+1 (Im∆x)− FHOTj (Im∆x)

)
,

where FHOTj is defined in (7.43). Moreover, by using

Ĩtt =
(
− ω Ĩx

)
t

= −ωt Ĩx − ω Ĩxt
= −ωt Ĩx − ω

(
− ω Ĩx)x = −ωt Ĩx + ω ωx Ĩx + ω2 Ĩxx

we obtain as EDE

Ĩt + ω Ĩx =
∆t

2

(
ωt + ω ωx

)
Ĩx,

where we assumed that ω ∈ C1((0, T )×R) and Ĩ ∈ C2((0, T )×R) is the exact solution to
the non-conservative transport equation (OFC). This EDE can be rewritten (ignoring
higher order terms) as

Ĩt(t, x) + ω
(
t− 1

2
∆t, x− 1

2
ω(t, x) ∆t

)
Ĩx(t, x) = 0.

Hence, by using the same argumentation as for the conservative Lax-Wendroff scheme
(see page 98), we expect that the solution of the non-conservative Lax-Wendroff scheme
is less smoothened out than the solution of the non-conservative Upwind scheme.
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Stability

Next, we analyse the stability of the Upwind scheme.

Theorem 7.17 (Stability).
Let ω ∈ C1((0, T )× R). Then the non-conservative Upwind scheme (7.44) is L1-stable,
if the following condition is satisfied:

|λωmj | ≤ 1, for all j ∈ Z and m = 0, ...,M − 1. (7.45)

Proof.
Analogously to the stability analysis of the conservative Upwind scheme, we obtain by
using the stability condition (7.45)

∥∥Im+1
∆x

∥∥ = ∆x
∑
j∈Z

∣∣Im+1
j+1/2

∣∣

= h

 ∑
ωmj+1≥0

ωmj ≥0

∣∣Im+1
j+1/2

∣∣+
∑

ωmj+1<0

ωmj <0

∣∣Im+1
j+1/2

∣∣+
∑

ωmj+1≥0

ωmj <0

∣∣Im+1
j+1/2

∣∣+
∑

ωmj+1<0

ωmj ≥0

∣∣Im+1
j+1/2

∣∣


=
∥∥Im∆x∥∥+ λ∆x

− ∑
ωmj ≥0

∣∣ωmj ∣∣ ∣∣Imj+1/2

∣∣+
∑
ωmj ≥0

∣∣ωmj ∣∣ ∣∣Imj−1/2

∣∣
−
∑

ωmj+1<0

∣∣ωmj+1

∣∣ ∣∣Imj+1/2

∣∣+
∑

ωmj+1<0

∣∣ωmj+1

∣∣ ∣∣Imj+3/2

∣∣ .

With the help of the Taylor estimation∣∣ωj∣∣ ≤ ∣∣ωj+1

∣∣+ C ∆x, with C := max
(ξ,τ)
|ωx(ξ, τ)|,

we obtain

∥∥Im+1
∆x

∥∥ ≤ ∥∥Im∆x∥∥+ λ∆x

− ∑
ωmj ≥0

∣∣ωmj ∣∣ ∣∣Imj+1/2

∣∣+
∑
ωmj ≥0

∣∣ωmj−1

∣∣ ∣∣Imj−1/2

∣∣
−
∑

ωmj+1<0

∣∣ωmj+1

∣∣ ∣∣Imj+1/2

∣∣+
∑

ωmj+1<0

∣∣ωmj+2

∣∣ ∣∣Imj+3/2

∣∣
+
∑
ωmj ≥0

C ∆x
∣∣Imj−1/2

∣∣+
∑

ωmj+1<0

C ∆x
∣∣Imj+3/2

∣∣
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=
∥∥Im∆x∥∥+ λ∆x

 ∑
ωmj+1≥0

ωmj <0

∣∣ωmj ∣∣ ∣∣Imj+1/2

∣∣− ∑
ωmj+1<0

ωmj ≥0

∣∣ωmj ∣∣ ∣∣Imj+1/2

∣∣
+
∑

ωmj+1≥0

ωmj <0

∣∣ωmj+1

∣∣ ∣∣Imj+1/2

∣∣− ∑
ωmj+1<0

ωmj ≥0

∣∣ωmj+1

∣∣ ∣∣Imj+1/2

∣∣

+
∑
ωmj ≥0

C ∆x
∣∣Imj−1/2

∣∣+
∑

ωmj+1<0

C ∆x
∣∣Imj+3/2

∣∣ = (∗),

where we have exploited in the last step, that there are two telescoping sums.
For each of the sums in the second and third last line we note, that ω admits a root
in the interval [(j − 1/2)∆x, (j + 1/2)∆x], which we denote by ξ. Hence, by using the
Taylor estimate

∣∣ωj±1/2

∣∣ ≤ ∣∣ω(ξ)
∣∣+ C

∆x

2
≤ C ∆x, with C := max

(ξ,τ)

∣∣ωx(ξ, τ)
∣∣

we obtain

(∗) ≤
∥∥Im∆x∥∥+ C λ (∆x)2

 ∑
ωmj ≥0

∣∣Imj−1/2

∣∣+
∑

ωmj+1<0

∣∣Imj+3/2

∣∣+
∑

ωmj+1≥0

ωmj <0

∣∣Imj+1/2

∣∣

+
∑

ωmj+1<0

ωmj ≥0

∣∣Imj+1/2

∣∣+
∑

ωmj+1≥0

ωmj <0

∣∣Imj+1/2

∣∣+
∑

ωmj+1<0

ωmj ≥0

∣∣Imj+1/2

∣∣


≤
∥∥Im∆x∥∥+ 6C ∆xλ

∥∥Im∆x∥∥
=
(
1 + C̃ ∆t

) ∥∥Im∆x∥∥,
where C̃ = C λ2. Consequently, we conclude the stability with

‖H‖ ≤ 1 + C̃ ∆t.

Finally, we follow from consistency and stability the convergence of the conservative
Upwind scheme due to Lax’s Equivalence theorem.
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Flux limiter

In Figure 7.6 the solution behaviour of the non-conservative Upwind and Lax-Wendroff
scheme is illustrated. As in the constant case, we observe that in the non-conservative
Upwind scheme discontinuities of the exact solution are smoothened out, whereas in
the non-conservative Lax-Wendroff scheme oscillations occur around the discontinuities.
Therefore, also in this case, we want to combine both schemes by using flux limiters to
obtain more accurate approximations.
For the non-conservative transport equation (OFC) the exact solution Ĩ is given by

Ĩ(t, x) = I0(y(0)),

where y : [0, t]→ Rd denotes the solution of the differential equation

ẏ(τ) = a
(
τ, y(τ)

)
with y(t) = x.

Hence, analogous to the transport equation with constant vector field (TPE), the scheme
is monotone if

∑
j∈Z

bmj+1/2 = 1 and bmj+1/2 ≥ 0 for all j ∈ Z.

For the combination of the non-conservative Upwind and Lax-Wendroff scheme we use
the same gradient ratios given by (7.41) as in the conservative case. Finally, we define
the following monotone scheme

Im+1
j+1/2 = Imj+1/2 − λ

(
ωm,+j Gj(I

m
∆x) + ωm,−j+1 Gj+1(Im∆x)

)
− λ

(
Φ
(
Rj+1

)
FHOTj+1 (Im∆x)− Φ

(
Rj
)
FHOTj (Im∆x)

)
,

(7.46)

where FHOTj is defined in (7.43) and Φ denotes the Superbee flux function (7.34).

In fact, we can show that this scheme is monotone.

Theorem 7.18.
Let ω ∈ C1((0, T )× R). Then the scheme defined by (7.46) is monotone, if the stability
condition (7.45) of the non-conservative Upwind scheme is satisfied

Proof.
We do a case analysis:
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(i) For ωmj ≥ 0 and ωmj+1 ≥ 0 we have:

Im+1
j+1/2 = Imj+1/2 − ω

m
j λ

(
Ij+1/2 − Ij−1/2

)
− 1

2
Φ
(
Rmj+1

)
ωmj+1 λ

(
1− ωmj+1 λ

) (
Imj+3/2 − I

m
j+1/2

)
+

1

2
Φ
(
Rmj
)
ωmj λ

(
1− ωmj λ

) (
Imj+1/2 − I

m
j−1/2

)
= Imj+1/2 + ωmj λ

(
Ij−1/2 − Ij+1/2

)
+

1

2

Φ
(
Rmj+1

)
Rmj+1

ωmj λ
(
1− ωmj+1 λ

) (
Imj−1/2 − I

m
j+1/2

)
− 1

2
Φ
(
Rmj
)
ωmj λ

(
1− ωmj λ

) (
Imj−1/2 − I

m
j+1/2

)
= Imj+1/2 + bmj−1/2

(
Imj−1/2 − I

m
j+1/2

)
with

bmj−1/2 = ωmj λ

[
1− 1

2

(
Φ
(
Rmj
) (

1− ωmj λ
)
−

Φ
(
Rmj+1

)
Rmj+1

(
1− ωmj+1 λ

))]
≥ ωmj λ

(
1− 1

2
2
)
≥ 0.

(ii) For ωmj < 0 and ωmj+1 < 0 we have:

Im+1
j+1/2 = Imj+1/2 − ω

m
j+1 λ

(
Ij+3/2 − Ij+1/2

)
+

1

2
Φ
(
Rmj+1

)
ωmj+1 λ

(
1 + ωmj+1 λ

) (
Imj+3/2 − I

m
j+1/2

)
− 1

2
Φ
(
Rmj
)
ωmj λ

(
1 + ωmj λ

) (
Imj+1/2 − I

m
j−1/2

)
= Imj+1/2 − ω

m
j+1 λ

(
Ij+3/2 − Ij+1/2

)
+

1

2
Φ
(
Rmj+1

)
ωmj+1 λ

(
1 + ωmj+1 λ

) (
Imj+3/2 − I

m
j+1/2

)
− 1

2

Φ
(
Rmj
)

Rmj
ωmj+1 λ

(
1 + ωmj λ

) (
Imj+3/2 − I

m
j+1/2

)
= Imj+1/2 + bmj+3/2

(
Imj+3/2 − I

m
j+1/2

)
with

bmj+3/2 = −ωmj+1 λ

[
1− 1

2

(
Φ
(
Rmj+1

) (
1 + ωmj+1 λ

)
−

Φ
(
Rmj
)

Rmj

(
1 + ωmj λ

))]
≥ −ωmj+1 λ

(
1− 1

2
2
)
≥ 0.
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(iii) For ωmj ≥ 0 and ωmj+1 < 0 we have:

Im+1
j+1/2 = Imj+1/2 − ω

m
j λ

(
Ij+1/2 − Ij−1/2

)
− ωmj+1 λ

(
Ij+3/2 − Ij+1/2

)
+

1

2
Φ
(
Rmj+1

)
ωmj+1 λ

(
1 + ωmj+1 λ

) (
Imj+3/2 − I

m
j+1/2

)
+

1

2
Φ
(
Rmj
)
ωmj λ

(
1− ωmj λ

) (
Imj+1/2 − I

m
j−1/2

)
= Imj+1/2 + bmj−1/2

(
Imj−1/2 − I

m
j+1/2

)
+ bmj+3/2

(
Imj+3/2 − I

m
j+1/2

)
with

bmj−1/2 = ωmj λ
(

1− 1

2
Φ
(
Rmj
) (

1− ωmj λ
))

≥ ωmj λ
(
1− 1

2
2
)
≥ 0

and

bmj+1/2 = −ωmj+1 λ
(

1− 1

2
Φ
(
Rmj+1

) (
1 + ωmj+1 λ

))
≥ −ωmj+1 λ

(
1− 1

2
2
)
≥ 0.

(iv) For ωmj < 0 and ωmj+1 ≥ 0 we have Φ(Rj) = Φ(Rj+1) = 0 and, consequently,
Im+1
j+1/2 = Imj+1/2.

In Summary, we have shown that the scheme defined by (7.46) is monotone

Corollary 7.19.
The non-conservative Upwind scheme (7.15) is monotone, if the stability condition
(7.45) is satisfied.

Proof.
By setting ΦR = 0 in the proof of theorem 7.18.

Finally, in Figure 7.6 we observe that we obtain very accurate approximations to the
exact solution of the non-conservative transport equation (OFC), if we use the flux
limiter scheme defined in (7.46).

7.4.4. Directional Splitting Approach

This section presents a splitting approach for solving a transport equation in the multi-
dimensional case [36]. We exemplify it with the two dimensional case, i.e., we consider
the non-conservative transport equation

0 = It(t, x, y) + ω(t, x, y) · ∇I(t, x, y)

= It(t, x, y) + u(t, x, y) Ix(t, x, y) + v(t, x, y) Iy(t, x, y)
(7.47a)
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(d) solution with flux limiter scheme

Figure 7.6.: Solution behaviour of FD schemes for the non-conservative transport equa-
tion (OFC): Here, problem (OFC) is solved for initial condition I0(x) =
χ[−0.3,0.3] and vector field ω(t, x) = x. We use as mesh size ∆x = 0.0001
and as step size ∆t = 0.00005. The exact solution at time t = 1 is plotted
in (a). The discrete solutions at time t = 1 for the different FD schemes are
plotted in (b) - (d).

with initial condition

I(0, x, y) = I0(x, y), (7.47b)

where x, y ∈ R and t ∈ R+.

We can solve this problem by splitting the problem into two 1-dimensional problems:
Firstly, we solve

I∗t (t, x, y) + u(t, x, y) I∗x(t, x, y) = 0 with I∗0 (0, x, y) = I0(x, y) (7.48)

and secondly, we solve

I∗∗t (t, x, y) + v(t, x, y) I∗∗x (t, x, y) = 0 with I∗∗0 (0, x, y) = I∗(t, x, y). (7.49)

Indeed, the following theorem shows, that I∗∗(t, x, y) is a solution to problem (7.47).

Theorem 7.20 (cf. [36]).
Let I0 ∈ C1(R2) and ω ∈ C(R+ × R2;R2). Assume that the vector field ω is addition-
ally Lipschitz continuous in the space variable. If I(t, x, y) denotes the unique solution
to problem (7.47) and I∗∗(t, x, y) denotes the unique solution to problem (7.49), then
I∗∗(t, x, y) = I(t, x, y).
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Proof.
From the Lipschitz continuity of ω = (u, v)T follows that the problem(

ẋ(s)
ẏ(s)

)
=

(
u(s, x, y)
v(s, x, y)

)
, with

(
ẋ(t)
ẏ(t)

)
=

(
x
y

)
(7.50)

is uniquely solvable. We denote the flow of this differential equation (7.50) by

Φ−st (x, y) =

(
Φ−st,x(x, y)

Φ−st,y (x, y)

)
.

Next, from Section 3.2.1 we deduce that

I∗(t, x, y) = I0(Φ−tt,x(x, y), y)

is the exact solution of problem (7.48). Subsequently, we compute

I∗∗(t, x, y) = I∗∗(0, x,Φ−tt,y(x, y))

= I∗(t, x,Φ−tt,y(x, y))

= I0(Φ−tt,x(x, y),Φ−tt,y(x, y))

= I(t, x, y).

Finally, we can transfer the splitting approach straightforward to the discrete case. For
this purpose, we introduce the 1-dimensional finite difference operators

Hxi+1/2,j+1/2(Im∆x) :=
∑
k∈Z

bk+i+1/2 I
m
k+i+1/2,j+1/2

and

Hyi+1/2,j+1/2(Im∆x) :=
∑
k∈Z

bk+j+1/2 I
m
i+1/2,k+j+1/2

in x- and y-direction, respectively.

Subsequently, we numerically solve the non-conservative transport equation (7.47) by
solving firstly

I∗∆x = Hx(Im∆x) (7.51a)

and secondly

Im+1
∆x = Hy(I∗∆x). (7.51b)

For a constant vector field ω(t, x) = a ∈ Rd we can show that the splitting approach
(7.51) is p − th order accurate, if the finite difference operators Hx and Hy admit a
consistency order p [36].

Analogously, we can develop a splitting approach for the conservative transport equation
(cTPE).
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7.5. Finite Difference Schemes for the Elliptic PDEs

In this section we present FD schemes for solving the elliptic PDE problems (7.3) and
(7.4) appearing in the computation of the gradient ∇J(ω) (cf. Theorem 7.1). Here,
we only discuss in detail the discretisation of the elliptic PDEs corresponding to the
velocity component u. For the velocity component v we only state the discretisation at
the end.

As we have already mentioned in Section 7.3, we approximate each velocity component
of ω = (u, v)T at the grid points

umi,j+1/2 = u
(
m∆t, i∆x, (j + 1/2) ∆x

)
for i = 1, ..., Nx − 1,

j = 0, ..., Ny − 1,

m = 0, ...,M,

and

vmi+1/2,j = v
(
m∆t, (i+ 1/2) ∆x, j∆x

)
for i = 0, ..., Nx − 1,

j = 1, ..., Ny − 1,

m = 0, ...,M.

Moreover, we recall that I and p are discretised solutions of the optical flow constraint
(OFC) and the adjoint equation (adjEq). Thus, these are only given at the grid points

Imi+1/2,j+1/2 = I
(
m∆t, (i+ 1/2) ∆x, (j + 1/2) ∆x

)
with i = 0, ..., Nx − 1,

j = 0, ..., Ny − 1,

m = 0, ...,M,

and

pmi+1/2,j+1/2 = p
(
m∆t, (i+ 1/2) ∆x, (j + 1/2) ∆x

)
with i = 0, ..., Nx − 1,

j = 0, ..., Ny − 1,

m = 0, ...,M.
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For the following discussion, we define at each time level m = 0, ...,M the vectors

um∆x =
(
um1,1/2, ..., u

m
1,Ny−1/2, u

m
2,1/2, ..., u

m
2,Ny−1/2, ...,

umNx−1,1/2, ..., u
m
Nx−1,Ny−1/2

)T
,

(7.52)

vm∆x =
(
vm1/2,1, ..., v

m
1/2,Ny−1, v

m
3/2,1, ..., v

m
3/2,Ny−1, ...,

vmNx−1/2,1, ..., v
m
Nx−1/2,Ny−1

)T
,

(7.53)

Im∆x =
(
Im1/2,1/2, ..., I

m
1/2,Ny−1/2, I

m
3/2,1/2, ..., I

m
3/2,Ny−1/2, ...,

ImNx−1/2,1/2, ..., I
m
Nx−1/2,Ny−1/2

)T (7.54)

and

pm∆x =
(
pm1/2,1/2, ..., p

m
1/2,Ny−1/2, p

m
3/2,1/2, ..., p

m
3/2,Ny−1/2, ...,

pmNx−1/2,1/2, ..., p
m
Nx−1/2,Ny−1/2

)T
.

(7.55)

Additionally we set

u∆x =

u
0
∆x
...

uM∆x

 , v∆x =

v
0
∆x
...

vM∆x

 , I∆x =

I
0
∆x
...
IM∆x

 and p∆x =

p
0
∆x
...

pM∆x

 (7.56)

7.5.1. Poisson Equation

We start with the approximation of the Poisson equation (7.3). For reducing the com-
putational costs, we use the substitution ω̃ = ∇J(ω) − αω. This leads to the Poisson
problems

−∆ũ = p Ix1 in Ω, (7.57a)
u = 0 on ∂Ω (7.57b)

and

−∆ṽ = p Ix2 in Ω, (7.58a)
v = 0 on ∂Ω (7.58b)

for each velocity component of ω = (u, v)T .

Laplace Operator

For the discretisation of the Laplace operator −∆ũ at the inner mesh points of ũ (cf. Fig-
ure 7.7) we use central finite differences to obtain
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inner points

outer points

ghosts points

Figure 7.7.: Inner, outer and ghost points for the grid of ũ

−∆ũ
(
m∆t, i∆x, (j + 1/2) ∆x

)
≈

4 ũmi,j+1/2 − ũ
m
i−1,j+1/2 − ũ

m
i+1,j+1/2 − ũ

m
i,j−1/2 − ũ

m
i,j+3/2

(∆x)2

(7.59)

for i = 2, ..., Nx − 2, j = 1, ..., Ny − 2 and m = 0, ...,M .

This approximation (7.59) we also like to use at the outer mesh points of ũ (cf. Figure
7.7), i.e., for i = 1, ..., Nx − 1, j = 0, ..., Ny − 1 and m = 0, ...,M . But in this case the
approximations

ũm0,j+1/2, ũmNx,j+1/2, ũmi,−1/2 and ũmi,Ny+1/2 (7.60)

appear in equation (7.59) at points which do not belong to the mesh grid of ũ (cf. Figure
7.7). These points in (7.60) are called ghost points. However, by exploiting the Dirichlet
boundary condition (7.57b) we can eliminate these ghost points. Indeed, in the x-
direction we immediately obtain

ũm0,j+1/2 = ũmNx,j+1/2 = 0.

In the y-direction we use a quadratic extrapolation, as in the MAC scheme [45] for solving
the Stokes problem numerically, see Section 7.6. This means, we compute for the ghost
points ũmi,−1/2 with i = 1, ..., Nx − 1 and m = 0, ...,M an interpolant of ũmi,0, ũ

m
i,1/2 and

ũmi,3/2 and evaluate this interpolant at umi,−1/2 to obtain the approximation

ũmi,−1/2 ≈
1

3
ũmi,3/2 − 2 ũmi,1/2 +

8

3
ũmi,0

=
1

3
ũmi,3/2 − 2 ũmi,1/2.

(7.61)
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Analogously, we obtain for the ghost points ũmi,Ny+1/2 the approximation

ũmi,Ny+1/2 ≈
1

3
ũmi,Ny−3/2 − 2 ũmi,Ny−1/2 +

8

3
ũmi,Ny

=
1

3
ũmi,Ny−3/2 − 2 ũmi,Ny−1/2

(7.62)

for i = 1, ..., Nx − 1 and m = 0, ...,M .

Inserting (7.61) and (7.62) into the Laplace approximation (7.59) leads to

−∆ũ
(
m∆t, i∆x, 1/2 ∆x

)
≈

6 ũmi,1/2 − ũ
m
i−1,1/2 − ũ

m
i+1,1/2 −

4
3 ũ

m
i,3/2

(∆x)2

and

−∆ũ
(
m∆t, i∆x,Ny − 1/2 ∆x

)
≈

6 ũmi,Ny−1/2 − ũ
m
i−1,Ny−1/2 − ũ

m
i+1,Ny−1/2 −

4
3 ũ

m
i,Ny−3/2

(∆x)2
,

respectively.

Using notation (7.52), we can formulate the discretisation of the Laplace operator −∆ũ
at all grid points of ũ for each time level m = 0, ...,M as a matrix-vector multiplication,[

−∆ũ
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

≈ Lu · ũm∆x.

Here, the matrix Lu is given by

Lu =
1

(∆x)2


Au −Iu
−Iu Au −Iu

. . . . . . . . .
−Iu Au −Iu

−Iu Au

 ∈ R(Nx−1)Ny×(Nx−1)Ny

where

Au =



6 −4
3

−1 4 −1
−1 4 −1

. . . . . . . . .
−1 4 −1

−1 4 −1
−4

3 6


∈ RNy×Ny
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and Iu ∈ RNy×Ny denotes the identity matrix.

Analogously, we find for the Laplace operator −∆ṽ in (7.58a) the approximation

[
−∆ṽ

(
m∆t, (i+ 1/2) ∆x, j∆x

)]
i=0,...,Nx−1
j=1,...,Ny−1

≈ Lv · ṽm∆x.

for m = 0, ...,M , where

Lv =
1

(∆x)2



Av −4
3Iv

−Iv Bv −Iv
−Iv Bv −Iv

. . . . . . . . .
−Iv Bv −Iv

−Iv Bv −Iv
−4

3Iv Av


∈ RNx (Ny−1)×Nx (Ny−1)

with

Av =


6 −1
−1 6 −1

. . . . . . . . .
−1 6 −1

−1 6

 ∈ R(Ny−1)×(Ny−1),

Bv =


4 −1
−1 4 −1

. . . . . . . . .
−1 4 −1

−1 4

 ∈ R(Ny−1)×(Ny−1)

and identity matrix Iv ∈ R(Ny−1)×(Ny−1).

Differentation operator

After discretising the Laplace operators −∆ũ and −∆ṽ we have to discretise the right
hand sides of the Poisson equations (7.57a) and (7.58a). For the approximation of the
spatial derivative Ix in (7.57a) we use central finite differences to obtain

Ix
(
m∆t, i∆x, (j + 1/2) ∆x

)
≈
Imi+1/2,j+1/2 − I

m
i−1/2,j+1/2

∆x

for i = 1, ..., Nx − 1, j = 0, ..., Ny − 1 and m = 0, ...,M . Using the notation (7.54), we
can formulate the discretisation of the spatial derivative Ix at all grid points of ũ for
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each time level m = 0, ...,M as a matrix-vector multiplication,[
Ix
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

≈ Dx · Im∆x.

Here, the matrix Dx is given by

Dx =
1

∆x


−dx dx

−dx dx
. . . . . .

−dx dx

 ∈ R(Nx−1)Ny×NxNy ,

where dx ∈ RNy×Ny denotes the identity matrix.

Analogously, we compute for the spatial derivative Iy in (7.58a) the approximation[
Iy
(
m∆t, (i+ 1/2) ∆x, j∆x

)]
i=0,...,Nx−1
j=1,...,Ny−1

≈ Dy · Im∆x,

where

Dy =
1

∆x


dy

dy
. . .

dy

 ∈ RNx (Ny−1)×NxNy ,

with

dy =


−1 1

−1 1
. . . . . .

−1 1

 ∈ R(Ny−1)×Ny .

Interpolation operator

Lastly, we have to evaluate the adjoint variable p at the grid points of ũ and ṽ, respec-
tively. However, p̃ is a discretised function, too, and is defined on a different grid as ũ
and ṽ. Therefore, in equation (7.57a) we have to interpolate p at the grid points of ũ.
Hence, by using a linear interpolation in x-direction we obtain

p(m∆t, i∆x, (j + 1/2) ∆x) ≈
pmi+1/2,j+1/2 + pmi−1/2,j+1/2

2

for i = 1, ..., Nx − 1, j = 0, ..., Ny − 1 and m = 0, ...,M . Again, we can formulate the
interpolation of p at all grid points of ũ for each time level m = 0, ...,M as a matrix-
vector multiplication,[

p
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

≈ Px · pm∆x.
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Here, Px is given by

Px =
1

2


px px

px px
. . . . . .

px px

 ∈ R(Nx−1)Ny×NxNy ,

where px ∈ RNy×Ny is the identity matrix.

Analogously, for the Poisson equation (7.58a) we obtain as interpolation of p in y-
direction [

p
(
m∆t, (i+ 1/2) ∆x, j∆x

)]
i=0,...,Nx−1
j=1,...,Ny−1

≈ Py · pm∆x,

where

Py =
1

2


py

py
. . .

py

 ∈ RNx (Ny−1)×NxNy ,

with

py =


1 1

1 1
. . . . . .

1 1

 ∈ R(Ny−1)×Ny .

Consistency

Altogether, we obtain as approximation of the Poisson problems (7.57) and (7.58) the
linear systems

Lu · ũm∆x =
(
Px · pm∆x

)
�
(
Dx · Im∆x

)
and (7.63a)

Lv · ṽm∆x =
(
Py · pm∆x

)
�
(
Dy · Im∆x

)
, (7.63b)

where � denotes the component wise vector-multiplication. Hence, we obtain the dis-
crete solutions ũ and ṽ by solving the linear systems in (7.63). These linear systems can
be solved with a complexity of O((Nx−1)Ny) or O(Nx (Ny − 1)), respectively, by using
a multigrid method [12, 27]. However, numerical tests shows that a Gauss elimination is
comparable in the computational effort, if we compute the LU factorization beforehand,
since the systems are relatively small in this case.

Remark 7.21.
For numerical calculations it is reasonable to multiply the first and the last Nx equations
in (7.63a) by a factor of 3

4 , because then the system matrix Lu becomes symmetric.
Analogously, we have to rearrange some equations in the linear system (7.63b).

121



7. Numerical Algorithm

Now the question is: Do the discrete solution ũ and ṽ converge to the exact solution of
the Poisson problems (7.57) and (7.58). As for the transport equation, the convergence
can be deduced from the consistency and stability of the scheme. By using Taylor
expansion series, we easily compute the consistency order for the different discretisation
operators.

Theorem 7.22 (Consistency).

(i) Let ũ, ṽ ∈ C4(Ω). Then the approximations Lu ·ũ and Lv ·ṽ of the Laplace operators
−∆ũ and −∆ṽ are second order accurate at the inner grid points and first order
accurate at the outer grid points of ũ and ṽ, respectively.

(ii) Let I ∈ C3(Ω). Then the approximations Dx · I and Dy · I of the spatial derivatives
Ix and Iy are second order accurate.

(iii) Let p ∈ C2(Ω). Then the interpolations Px · p and Py · p̃ of p are second order
accurate.

Proof.

(i) For the approximation order of the operator Lu we compute at each time level
m = 0, ...,M

εui,j+1/2 =
[
∆ũ
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

− Lu ·
[
ũ
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

.

with

εui,j+1/2 =



(
uxxxx + uyyyy

) (
m∆t, i∆x, (j + 1/2) ∆x

) (∆x)2

12 +O((∆x)3),

for i = 1, ..., Nx − 1 and j = 1, ..., Ny − 2,

uxxx
(
m∆t, i∆x, (j + 1/2) ∆x

)
∆x
6 +O((∆x)2),

for i = 1, ..., Nx − 1 and j = {0, Ny − 1}

.

Analogously, we can show the consistency order of the operator Lv.

(ii) For the approximation order of the differentiation operator Dx we compute at each
time level m = 0, ...,M[

Ix
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

−Dx ·
[
I
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

=
[
Ixxx

(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

(∆x)2

12
+O((∆x)3).

Analogously, we can show the consistency order of the differentiation operator Dy.
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(iii) For the approximation order of the interpolation operator Px we compute at each
time level m = 0, ...,M[

p
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

− Px ·
[
p
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

=
[
pxx

(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

(∆x)2

8
+O((∆x)3).

Analogously, we can show the consistency order of the interpolation operator Py.

Stability

For proving the stability of the FD scheme, we use the theory of L0 and M -matrices.

Definition 7.23.

(i) A matrix A is called L0-matrix, if aij ≤ 0 for i 6= j.

(ii) A matrix A is called M -matrix, if A is a regular L0-matrix and any entry of A−1

is non negative.

In particular, helpful for the stability analysis is the following theorem.

Theorem 7.24.
A L0-matrix is a M -matrix, if and only if a vector e > 0 exists with Ae > 0. Addition-
ally, in this case, we have the estimate

‖A−1‖∞ ≤
‖e‖∞

min
k

(Ae)k
.

Proof.
A proof can be found in [27].

With the help of this theorem we can show the stability of the FD schemes defined in
(7.63). Here, we adapt the thoughts of [27].

Theorem 7.25.
The matrices Lu and Lv are M -matrices, with

‖L−1
u ‖∞ ≤ 1/4 and ‖L−1

v ‖∞ ≤ 1/4.
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Proof.
We start with the matrix Lu. In this case, we consider the function e∗(x, y) = x (1−x).
Applying the Laplace operator to this function gives

∆e∗ = e∗xx = 2 > 0.

Next, we define a vector e by evaluating the function e∗(x, y) at the grid point of ũ. For
this vector it holds that

e > 0 and Lu e = 2 > 0. (7.64)

Here, we have exploited the consistency order of the operator Lu. More precisely, we
used that the approximation of the function e∗xx is exact for a quadratic function e∗ with
zero boundary values and that e∗ is constant in the y-direction.

As a consequence of (7.64), we deduce from Theorem 7.24 that Lu is a M -matrix.
Moreover, we have

‖L−1
u ‖∞ ≤

1

2
‖e‖∞ =

1

4
.

Analogously, we show that Lv is a M -matrix with ‖L−1
v ‖∞ ≤ 1

4 by using the function
e∗(x, y) = y (1− y).

Convergence

Finally, we obtain the convergence of the FD schemes defined in (7.63).

Theorem 7.26 (Convergence, cf. [27]).
Let p ∈ C2(Ω), I ∈ C3(Ω) and ũ, ṽ ∈ C4(Ω) be the exact solutions of the Poisson problems
(7.57) and (7.58). Then the discrete solutions ũm∆x defined in (7.63) converges towards ũ
and the discrete solutions ṽm∆x defined in (7.63) converges towards ṽ in the ‖ · ‖∞-norm.
The convergence is of second order at the inner grid points and of first order at the outer
grid points of ũ and ṽ, respectively.

Proof.
We first consider the Poisson problem (7.57). Let ũ denote the exact solution of (7.57),
f = p Ix the continuous and fm∆x =

(
Px ·pm∆x

)
�
(
Dx · Im∆x

)
the discretised representation

of the right hand side in (7.57a). Moreover, we define the error by

em∆x = ũm∆x −
[
ũ
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

for each time level m = 0, ...,M . For convergence, we have to show ‖em∆x‖∞ → 0 for
∆x→ 0.

124



7.5. Finite Difference Schemes for the Elliptic PDEs

At each time level m = 0, ...,M we calculate

Lu · em∆x = Lu · ũm∆x − Lu ·
[
ũ
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

= fm∆x −
[
∆ũ
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

+
[
∆ũ
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

− Lu ·
[
ũ
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

.

Consequently , we obtain

‖em∆x‖∞ ≤ ‖L−1
u ‖∞

(∥∥∥∥∥fm∆x − [f(m∆t, i∆x, (j + 1/2) ∆x
)]
i=1,...,Nx−1
j=0,...,Ny−1

∥∥∥∥∥
∞

+

∥∥∥∥∥[∆ũ(m∆t, i∆x, (j + 1/2) ∆x
)]
i=1,...,Nx−1
j=0,...,Ny−1

−Lu ·
[
ũ
(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

∥∥∥∥∥
∞

)
.

Finally, by using the stability and consistency of the scheme, we deduce the statement.

Analogously, we can show the convergence for the Poisson problem (7.58).

7.5.2. Time-Dependent Elliptic PDE

Next, we discuss the approximation of the time-dependent elliptic PDE (7.4), which
appears in the calculation of the gradient ∇J(ω), if we use an H1-regularization in
space and time (compare Theorem 7.1). For reducing the computational costs we use
in this case the substitution

ω̃ = ∇J(ω)− β ω.

This substitution leads to the following two time-dependent elliptic PDEs

−ũtt −∆ũ = (β − α) ∆u+ p Ix1 in ΩT = (0, T )× Ω (7.65a)
u = 0 on Γx = (0, T )× ∂Ω, (7.65b)
ut = 0 on Γt = {0, T} × Ω (7.65c)

and

−ṽtt −∆ṽ = (β − α) ∆v + p Ix2 in ΩT = (0, T )× Ω (7.66a)
v = 0 on Γx = (0, T )× ∂Ω, (7.66b)
vt = 0 on Γt = {0, T} × Ω (7.66c)

for each velocity component of ω = (u, v)T .
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Elliptic PDE Operator

We start with the approximation of the elliptic PDE operator −ũtt − ∆ũ. For the
approximation of the Laplace operator −∆ũ we use the same discretisation as in Section
7.5.1. This discretisation also includes the approximation of the Dirichlet boundary
condition (7.65b) in space. The second order time derivative −utt is discretised by
central finite differences, too, i.e.,

−ũtt
(
m∆t, i∆x, (j + 1/2) ∆x

)
≈

2 ũmi,j+1/2 − ũ
m+1
i,j+1/2 − ũ

m−1
i,j+1/2

(∆t)2

for i = 1, ..., Nx − 1, j = 0, ..., Ny − 1 and m = 1, ...,M − 1.

Altogether, as in Section (7.5.1), we can formulate the approximation of the elliptic
PDE operator at each time level m = 1, ...,M − 1 as a summation of matrix-vector
multiplications

[
(−ũtt −∆ũ)

(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

≈ 2 ITu · ũm − ITu · ũm+1 − ITu · ũm−1

(∆t)2
+ Lu · ũm,

(7.67)

where ITu ∈ R(Nx−1)Ny×(Nx−1)Ny denotes the identity matrix.

Next, we have to discretise the Neumann boundary condition (7.65c). Clearly, it is
intuitively to approximate the time derivative at initial and final time by the following
approximations

ũt
(
0, i∆x, (j + 1/2) ∆x

)
≈
ũ1
i,j+1/2 − ũ

0
i,j+1/2

∆t

and

ũt
(
T, i∆x, (j + 1/2) ∆x

)
≈
ũMi,j+1/2 − ũ

M−1
i,j+1/2

∆t
.

for i = 1, ..., Nx − 1 and j = 0, ..., Ny − 1.

But, in this case numerical tests shows that the resulting stiffness matrix is ill-conditioned.

Hence, for stability reasons we introduce the ghost points ũ−1
i,j+1/2 and ũM+1

i,j+1/2 and ap-
proximate the Neumann boundary condition (7.65c) at initial and final time by

0 = ũt
(
0, i∆x, (j + 1/2) ∆x

)
≈
ũ1
i,j+1/2 − ũ

−1
i,j+1/2

2 ∆t
(7.68)
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and

0 = ũt
(
T, i∆x, (j + 1/2) ∆x

)
≈
ũM+1
i,j+1/2 − ũ

M−1
i,j+1/2

2 ∆t
. (7.69)

for i = 1, ..., Nx − 1 and j = 0, ..., Ny − 1.

From (7.68) and (7.69) we conclude

ũ−1
i,j+1/2 ≈ ũ

1
i,j+1/2 and ũM+1

i,j+1/2 ≈ ũ
M−1
i,j+1/2. (7.70)

Inserting (7.70) in (7.67) leads to[
(−ũtt −∆ũ)

(
0, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

≈ 2 ITu · ũ0 − 2 ITu · ũ1

(∆t)2
+ Lu · ũ0,

(7.71)

and [
(−ũtt −∆ũ)

(
T, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1

≈ 2 ITu · ũM − 2 ITu · ũM−1

(∆t)2
+ Lu · ũM .

(7.72)

Altogether, we can express (7.67), (7.71) and (7.72) as matrix-vector multiplication

[
(−ũtt −∆ũ)

(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=1,...,Nx−1
j=0,...,Ny−1
m=0,...,M

≈
(
LTu + Tu

)
· ũ∆x,

with matrices LTu, Tu ∈ R(M+1) (Nx−1)Ny×(M+1) (Nx−1)Ny defined by

LTu =


Lu

Lu
. . .

Lu


and

Tu =
1

(∆t)2



2ITu −2ITu
−ITu 2ITu −ITu

−ITu 2ITu −ITu
. . . . . . . . .

−ITu 2ITu −ITu
−2ITu 2ITu


.
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Analogously, we can express the approximation of the elliptic operator −ṽtt − ∆ṽ in
equation (7.66a) as matrix-vector multiplication

[
(−ṽtt −∆ṽ)

(
m∆t, i∆x, (j + 1/2) ∆x

)]
i=0,...,Nx−1
j=1,...,Ny−1
m=0,...,M

≈
(
LTv + Tv

)
· ṽ∆x,

with matrices LTv, Tv ∈ R(M+1)Nx (Ny−1)×(M+1)Nx (Ny−1) defined by

LTv =


Lv

Lv
. . .

Lv



and

Tv =
1

(∆t)2



2ITv −2ITv
−ITv 2ITv −ITv

−ITv 2ITv −ITv
. . . . . . . . .

−ITv 2ITv −ITv
−2ITv 2ITv



Right Hand Side

Regarding to the previous discussion in this and the last subsection, we approximate
the right hand side by

[(
p Ix

)(
m∆t, (i+ 1/2) ∆x, j∆xt

)]
i=1,...,Nx−1
j=0,...,Ny−1
m=0,...,M

≈
(
PTx · p∆x

)
�
(
ITx · I∆x

)

and

[(
p Iy
)(
m∆t, (i+ 1/2) ∆x, j∆x

)]
i=0,...,Nx−1
j=1,...,Ny−1
m=0,...,M

≈
(
PTy · p∆x

)
�
(
ITy · I∆x

)
.
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Here the matrices are given by

PTx =


Px

Px
. . .

Px

 ∈ R(M+1) (Nx−1)Ny×(M+1)NxNy ,

ITx =


Ix

Ix
. . .

Ix

 ∈ R(M+1) (Nx−1)Ny×(M+1)NxNy ,

PTy =


Py

Py
. . .

Py

 ∈ R(M+1)Nx (Ny−1)×(M+1)NxNy ,

and

ITy =


Iy

Iy
. . .

Iy

 ∈ R(M+1)Nx (Ny−1)×(M+1)NxNy .

In summary, we obtain as approximations of the time-dependent elliptic PDEs the linear
systems(

LTu + Tu
)
· ũ∆x = (β − α)LTu · u∆x +

(
PTx · p∆x

)
�
(
ITx · I∆x

)
(7.73a)

and (
LTv + Tv

)
· ṽ∆x = (β − α)LTv · v∆x +

(
PTy · p∆x

)
�
(
ITy · I∆x

)
. (7.73b)

We solve these large linear systems by using the multigrid method [12, 27]. In particular,
we apply the algebraic multigrid method PyAMG [6].

Remark 7.27.
For numerical calculations it is reasonable to multiply the equations (7.73a) and (7.73b)
for the first and last time step by a factor of 1

2 , because then the system matrices(
LTu + Tu

)
and

(
LTv + Tv

)
become symmetric.

Convergence

Analogously to the discretisation of the Poisson equation, we can show that the discreti-
sation of the time-dependent elliptic PDE is at least first order accurate and stable.
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Theorem 7.28 (Convergence).
Let p ∈ a∇}∞2((0, T )×Ω), I ∈ a∇}∞3((0, T )×Ω) and ũ, ṽ ∈ a∇}∞4((0, T )×Ω) be the
exact solutions of the time-dependent elliptic PDE problems (7.65) and (7.66). Then the
discrete solutions ũ∆x defined in (7.73a) converges towards ũ and the discrete solutions
ṽ∆x defined in (7.73b) converges towards ṽ in the ‖ · ‖∞-norm. The convergence is of
second order at the inner grid points and of first order at the outer grid points of ũ and
ṽ, respectively.

Sketch of the proof.

1. We show the consistency of the schemes (7.73a) and (7.73b).

2. We show the stability of the schemes. For this purpose, we use the function
e∗(t, x, y) = x (1 − x) or, respectively, e∗(t, x, y) = y (1 − y) to show, that the
matrices (Tu + LTu) and (Tv + LTv) are M -matrices, with

‖(Tu + LTu)−1‖∞ ≤ 1/4 and ‖(Tv + LTv)
−1‖∞ ≤ 1/4.

3. Finally, from stability and consistency we deduce the statement analogous to The-
orem 7.26

7.6. MAC Scheme for the Stokes Equation

In Section 7.2 we have discussed, that we have to solve the Stokes problem (7.8) at each
time t = m∆t, if we seek for a divergence free optical flow. For the sake of simplification
we set

ω̃ =

(
ũ
ṽ

)
:=

(
P(∇uJ(ω))
P(∇vJ(ω))

)
and f =

(
g
h

)
:=

(
∇uJ(ω)
∇vJ(ω)

)
.

This way, we obtain the Stokes problem

−∆ω̃ +∇λ = −∆f in Ω,

−div(ω̃) = 0 in Ω,

ω̃ = 0 on ∂Ω.

Next, we discretise the functions ũ, ṽ, g, h and λ at the following grid points
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ũmi,j+1/2 = ũ
(
i∆x, (j + 1/2) ∆x,m∆t

)
with i = 1, ..., Nx − 1

j = 0, ..., Ny − 1

m = 0, ...,M

ṽmi+1/2,j = ṽ
(
(i+ 1/2) ∆x, j∆x,m∆t

)
with i = 0, ..., Nx − 1

j = 1, ..., Ny − 1

m = 0, ...,M

gmi,j+1/2 = g
(
i∆x, (j + 1/2) ∆x,m∆t

)
with i = 1, ..., Nx − 1

j = 0, ..., Ny − 1

m = 0, ...,M

hmi+1/2,j = h
(
(i+ 1/2) ∆x, j∆x,m∆t

)
with i = 0, ..., Nx − 1

j = 1, ..., Ny − 1

m = 0, ...,M

and

λmi+1/2,j+1/2 = λ
(
(i+ 1/2) ∆x, (j + 1/2) ∆x,m∆t

)
with i = 0, ..., Nx − 1

j = 0, ..., Ny − 1

m = 0, ...,M.

Moreover, we define the vectors ũm∆x, ṽ
m
∆x, g

m
∆x, h

m
∆x and λm∆x by combining the function

values for each time step m = 0, ...,M in a vector, for instance we have

ũm∆x :=
(
ũm1,1/2, ..., ũ

m
1,Ny−1/2, ũ

m
2,1/2, ..., ũ

m
2,Ny−1/2, ...,

ũmNx−1,1/2, ..., ũ
m
Nx−1,Ny−1/2

)T
,

Finally, regarding to the discussion in the previous section, we can discretise the Stokes
problem by Lu 0 Dx

0 Lv Dy

DT
x DT

y 0

 ·
ũm∆xṽm∆x
λm∆x

 =

gm∆xhm∆x
0

 . (7.74)

This discretisation of the Stokes problem is known as MAC-scheme [28, 45]. In [45]
a multigrid method is developed for solving the discrete saddle point problem (7.74)
efficiently.
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Analogous to the discretisation of the transport equation in Section 7.4 and the elliptic
PDEs in Section 7.5, the convergence of the MAC-scheme follows from the consistency
and stability of the scheme, the consistency of the matrices Lu, Lv, Dx and Dy we have
already shown in Section 7.5. A stability proof can be found in the references of [45].
Hence, the discrete solution of problem (7.74) converges to the exact solution of the
Stokes problem, if ∆x tends to zero.
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In Chapter 6, we have shown that problem (NP) is a stable approximation of the ill-
posed sequence interpolation problem (SIP). Moreover, in Chapter 7, we have developed
an algorithm to solve problem (NP) numerically in the case of an H1-regularization in
space (and time). In collaboration with Thrän [43], this algorithm was efficiently im-
plemented in the coding language Julia.

In this chapter we validate the algorithm at sequences of synthetic and real image
frames. In particular, at the sequences of synthetic image frames we critically study
the behaviour of the algorithm. Furthermore, we numerically solve problem (NP) both
with and without the restriction that the optical flow is divergence-free. In this way, we
want to validate numerically that we obtain more accurate reconstruction results, if we
do not restrict the optical flow to be divergence-free. Here, we emphasize that this is an
essential improvement of our theoretical work (see Chapter 5 and 6), in comparison to
[15], where the assumption of a divergence-free optical flow is needed to show existence
of a solution to problem (NP).

In the following, the test cases are described: Firstly, we generate a reference (or com-
plete) sequence of image frames Sj , j = 0, ...,K with K = kN for given k,N ∈ N. Here,
each image frame is of size Nx×Ny pixel. Secondly, from the sequence of image frames
Sj we take every k-th image frame as input sequence In, n = 0, ..., N , which we aim
to interpolate in the sequence interpolation problem (SIP). The relation between both
sequences is graphically illustrated in Figure 8.1.

S1 S2 S3 S4 S5 S6 SK-1 SK

I1 I2 IN

I

Figure 8.1.: Sampling points of the sequences of reference image frames Sj and input
frames In; time discretisation points of the reconstructed intensity function
I.

To measure the approximation quality of the reconstruction results, we compare the
reference sequence of image frames Sj with the reconstructed intensity function I ob-
tained by solving problem (NP). For this aim, we use in the FD schemes as time step

133



8. Numerical Examples

size ∆t = 1
M with M = LK and L ∈ N, such that ∆t and ∆x = 1

max(Nx,Ny) satisfy
the CFL-condition. In doing so, we can evaluate the reconstructed intensity function I
at time discretisation points corresponding to the sampling time points of the reference
sequence of images Sj , see Figure 8.1. As a consequence, we can measure the qual-
ity of the reconstruction I in the L2-norm with respect to the reference image frames
S# := (S0, ..., SK) by

εL2(I, S#) :=
K∑
j=0

‖I(j L∆t, ·)− Sj‖2L2(Ω). (8.1)

Moreover, we introduce the peak signal to noise ratio given by

PSNR(I, S#) := 10 log10

(
1

MSE(I, S#)

)
with

MSE(I, S#) :=
1

NxNy

Nx−1∑
i=0

Ny−1∑
l=0

(Ii,lj − S
i,l
j )2,

where

Ii,lj := I
(
j L∆t, (i+ 1/2) ∆x, (l + 1/2) ∆x

)
and

Si,lj := Sj
(
(i+ 1/2) ∆x, (l + 1/2) ∆x

)
.

The peak signal to noise ratio is usually used to measure the quality of reconstruction
in image processing. Here, large peak to noise ratios correspond to accurate approxima-
tions. However, note that we can only measure the peak signal to noise ratio for each
image frame separately.

Furthermore, analogously to (8.1), we define the L2-approximation error of the input
samples In by

εL2(I, I#) :=
N∑
n=0

‖I(nk L∆t, ·)− In‖2L2(Ω)

with I# := (I0, ...., IN ).

In the gradient method for solving problem (NP) numerically we use for almost any test
simulation the parameters Tol = 1.0e−8, σ = 1.0e−4 and γ = 0.9. The only exception
is the Hamburg taxi sequence, in this case we use γ = 0.6.
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In the following we examine our regularized image sequence interpolation method for
various regularization parameters. For the best parameter setting, which we find em-
pirically, the reconstruction sequences are pictured at the end of this chapter. Moreover
in Appendix A.2, we list the L2-reconstruction error εL2(I, S#), the L2-approximation
error of the input samples εL2(I, I#), as well as the value of the regularization terms
Rx(ω) and Rt(ω) for several parameter settings.

Finally, we want to mention that some of the following numerical results are already
presented in [43], for the case where the functions I and p and the velocity components
u and v are discretised on a collocated grid, whereas we use a staggered grid (cf. discus-
sion at the end of Section 7.3). However, by comparing the numerical results for both
kinds of discretisation, we conclude that it is not essential for the reconstruction quality,
if we use a staggered or a collocated grid. Hence, it is only necessary to discretise the
functions I and p and the velocity components u and v on different grids, if we seek for
a reconstruction I corresponding to a divergence free optical flow ω.

8.1. Reconstruction of Translational, Rotational and
Deformational Motions

In this section we demonstrate at sequences of synthetic image frames that the al-
gorithm is able to reconstruct translational, rotational and deformational motions of
objects. Here, we first introduce a different test sequence for each kind of motion and,
subsequently, we discuss the numerical results of all the three test cases.

Shifted square Rotated slotted disc Deformed slotted disc

Figure 8.2.: Displacements of the first and second input sample of three different se-
quences.
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As example for the translation we consider a sequence of a shifted square. Here, the
K + 1 = 9 reference image frames Sj are of size 60× 60 pixel. Between two sequential
image frames the square is shifted to the left by a distance of one pixel. As input
samples In we take the first and the last image frame. The displacement of these two
input samples is visualized in Figure 8.2. Furthermore, for the reconstruction we use
M = 32 time steps in the FD schemes.

As example for the rotation we consider a sequence of a rotated slotted disc. Here, the
K+1 = 13 reference image frames Sj are of size 100×100 pixel. Between two sequential
image frames the slotted disc is rotated around the lower left edge by the radian 0.003π.
As input samples In we take the first and the last image frame. The displacement of
these two input samples is visualized in Figure 8.2. Furthermore, for the reconstruction
we use M = 72 time steps in the FD schemes.

As example for the deformation we consider a sequence of a deformed slotted disc.
Here, the K + 1 = 13 reference image frames Sj are of size 100 × 100 pixel. Between
two sequential image frames the slotted disc is deformed by the deformation matrix

A =

(
1.04 0.04

0 0.96

)
.

As input samples In we take the first and the last image frame. The displacement of
these two input samples is visualized in Figure 8.2. Furthermore, for the reconstruction
we use M = 72 time steps in the FD schemes.

For all these three examples the reconstruction results are visualized in Figure 8.6 - 8.8.
We observe, that we obtain for translational, rotational and deformational motions very
accurate reconstructions. The structure of the objects are well preserved. Only the
edges of the objects are slightly smoothened out.

From Table A.1, A.3 and A.5 we conclude that we obtain better reconstruction results,
if we additionally regularize in time. However this improvement is so minimal that it
does not satisfy the essentially higher computational costs. The computational costs are
much higher in the case of additional time regularization, since the linear systems (7.73)
are larger than the linear systems (7.63) for the computation of the gradient ∇J(ω).
Note, that the linear systems (7.63) arising without time regularization can be solved
simultaneously for each time step.

8.2. Reconstruction of Motions Using Divergence Free
Optical Flows

Next, we reconstruct the same sequences as in the previous section, but in this case,
we seek a reconstruction I corresponding to a divergence-free optical flow ω. The re-
construction results of the translational, rotational and deformational motions are illus-
trated in Figure 8.9 - 8.11.
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We observe that we not only obtain worse reconstruction results for the deformational
movement, but also for the translational and rotational movement, if we seek for a
divergence-free optical flow. In fact, in the example of the shifted square we observe,
that the square is strongly deformed at the intermediate frames. In the two examples
of the slotted disc we observe that edges are less sharp than in the case where we do
not restrict the optical flow to be divergence-free.

The fact, that we obtain worse reconstructions, if we seek for a divergence free opti-
cal flow, can be explained by considering the corresponding optical flows. In Figure
8.12 - 8.14, these are visualized at time t = 0.5, where time point t is representative
for the complete time interval. In these figures, we detect undesired rotations in the
optical flows. These are caused by the requirement, that the optical flow should vanish
on the boundary. Hence, due to the Dirichlet boundary condition we cannot obtain for
instance a constant translational vector field, which is a divergence-free optical flow for
the sequence of a shifted square.

However, in the deformational example the numerical reconstruction results look better
as we have expected. Therefore, in the following, we consider a sequence of a zoomed
and translated square. Here, the K + 1 = 17 reference image frames Sj are of size
60 × 60 pixel. Between two sequential image frames the square is shifted and zoomed
in by one pixel. As input samples In we take every eighth image frame. Furthermore,
for the reconstruction we use M = 64 time steps in the FD schemes. Note that this
example can model for instance the respiratory act of a lung (cf. applications of the
sequence interpolation problem in Section 1.1).

From Figure 8.15 we conclude that we obtain reasonable reconstruction results, if we do
not restrict the optical flow to be divergence-free. However, we cannot reconstruct the
zoomed motion, if we use divergence-free optical flows. This is caused by the fact that
for representing a zoomed motion, there has to be a source in the optical flow. But in
a divergence-free vector field can neither exist a source nor a sink.

8.3. Reconstruction of the Hamburg Taxi Sequence

This section demonstrates that our algorithm is also able to reconstruct sequences of
real image frames. As benchmark we consider the Hamburg taxi sequence, consisting
of 41 image frames of size 256 × 190 pixel. For the following numerical simulations we
use as reference sequence the first K + 1 = 21 image frames Sj , which are displayed
in Figure 8.16. From this sequence, we take every fifth image frame as input sequence.
Furthermore, for the reconstruction of the Hamburg taxi sequence we use M = 60 time
steps.

The reconstruction results of the Hamburg taxi sequence are pictured in Figure 8.17
and 8.18. We observe that the approximation of the motions of the white car and the
pedestrian are very accurate. But the reconstruction of the motions of the two black
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cars driving into the picture are very imprecise.

Exact frame Reconstructed image frame
α = 0.01

Reconstructed image frame
α = 0.0001

Figure 8.3.: Reconstruction of the 21-th image frame of the Hamburg taxi sequence using
an H1-regularization in space.

The question is, why the algorithm is not able to capture accurately the motion of the
two black cars. To answer this question, we first consider Figure 8.3, which displays the
last image frame of the reconstructed sequence for two different regularization param-
eters. From this figure we conclude, that the algorithm is not able to detect a motion
of the two black cars for a large regularization parameter α. This behaviour is caused
by the requirement that the optical flow should vanish at the boundary of the image,
as high velocities in the optical flow close to the boundary imply large gradients of the
optical flow at the boundary. But these gradients are penalized stronger by the H1-
regularization term for a larger regularization parameter α. Therefore, the algorithm is
only able to detect motions close to the boundary for small regularization parameters
α. However, since we do not have any inflow boundary conditions even for small regu-
larization parameters α, the algorithm is not able to preserve the structure of the two
black cars. A further problem could be that the two black cars do not provide a large
contrast in relation to the background.

Considering the peak to noise ratios in Figure 8.17 and 8.18 we observe that the recon-
structions are the best at the sample time points of the input samples In.

Moreover, watching the complete reconstructed sequence I on a computer, we observe
that we obtain essentially better reconstruction results, if we additionally regularize in
time, as without regularization in time, we can observe jumps in time at the sampling
time points of the input samples In for n = 1, ..., 4.

However, solving problem (NP) with an H1-regularization in space and time is very
expensive. This high computational effort is caused by solving the large linear systems
in (7.73). The dimension of these linear systems depends on the number of discreti-
sation points in space and time. Hence, to reduce the computational costs, we first
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solve a small reconstruction problem (NP) for two sequential image frames In and
In+1, with n = 0, ..., N − 1, to obtain a good estimate of the optical flow between
these two sequential images frames, which we denote by ωn,n+1. Subsequently, we set
ω0 = (ω0,1, ω1,2, ..., ωn−1,n+1) as initial vector field to solve problem (NP) for all input
samples In, n = 0, ..., N . Since ω0 is a very accurate approximation to an optimal so-
lution we need less iteration steps in the gradient method (Algorithm 7.4) to converge
into this. Consequently, the computational costs are reduced, since we have to solve the
large linear systems (7.73) less often, for all M + 1 time levels.

Finally, we also try to reconstruct the Hamburg taxi sequence using divergence-free
optical flows, see Figure 8.19. In this case the reconstruction results are less accurate,
since for instance the rear window of the white car and the centre strip of the street are
deformed.

8.4. Reconstruction of a Non-Uniform Motion in Time

Up to now one can get the impression that an additional regularization in time leads
always to better reconstruction results. To refute this impression we consider a sequence
of a square shifted non-uniformly in time. This sequence consists of K+1 = 17 reference
image frames Sj of size 60×60 pixel. In the first nine images the square is shifted to the
left and in the last nine images it is shifted to the bottom. The speed of the square is
again one pixel between two sequential image frames. As input samples In we consider
every eighth image frame. Furthermore, for the reconstruction we use M = 64 time
steps in the FD schemes.

Considering the reconstruction results in Figure 8.20, we observe that the numerical
results with and without additional regularization in time look similar. However, con-
sidering the complete reconstructed sequence I as video on a computer, we observe that
the square is moving on a curve with a small radius if we additionally regularize in time.
This behaviour can also be observed in the related optical flows, see Figure 8.21 and
8.22. Here, we detect a discontinuous optical flow in time for the H1-regularization in
space only, but a continuous optical flow in time for the H1-regularization in space and
time.

8.5. Reconstruction of Image Sequences with
Discontinuous Optical Flows

After presenting many positive reconstruction results, we also want to demonstrate
that the algorithm is not able to reconstruct any movement accurately. In Section
6.2.3, we have already discussed that we can only reconstruct continuous optical flows
with an H1-regularization. Therefore, we consider in the following a sequence of two
squares touching each other but moving in different directions. This sequence consists
of K+1 = 33 reference image frames Sj of size 60×60. As input samples In we consider
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every eighth image frame. Furthermore, for the reconstruction we use M = 128 time
steps in the FD schemes.

In Figure 8.23 we observe, as expected, that we do not obtain accurate approximations
of the intermediate image frames. Hence, in this case a BV or W 1,1+τ -regularization,
allowing also discontinuous optical flows, is more suitable to solve the sequence interpo-
lation problem (SIP), as discussed in Section 6.2.3.

However, for solving problem (NP) with BV or W 1,1+τ -regularization numerically there
are two challenges. Firstly, for the gradient method we have to discuss how to compute
a descent direction in the Non-Hilbert space setting, as already mentioned in Remark
7.5. Secondly, in the consistency analysis of the Upwind and Lax-Wendroff schemes
for the numerical solution of the optical flow constraint (OFC) and the adjoint equa-
tion (adjEq), we have required that the vector field ω is continuously differentiable. In
fact, numerical tests show that the FD schemes developed in Section 7.4.2 and 7.4.3 are
not able to locally resolve the transport problem exactly or at least approximately in
surroundings where the vector field ω admits a discontinuity.
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Figure 8.4.: Solution behaviour of FD schemes for the non-conservative transport equa-
tion (OFC) with discontinuous vector field ω: Here, problem (OFC) is
solved for an initial condition I0(x) = χ[−0.3,0.3] and a vector field ω(t, x) =
χx∈[0,∞) − χx∈(−∞,0). We use as mesh size ∆x = 0.0001 and as step size
t = 0.00005. The discrete solution at time t = 1 is obtained by using the
flux limiter FD scheme (7.46).

In Figure 8.4, we have numerically solved the 1-dimensional optical flow constraint
(OFC) for a given discontinuous vector field

ω(t, x) =

{
1 for x ≥ 0,

−1 for x < 0,

but the numerical solution corresponds to the vector field

ωε(t, x) =


1 for x ≥ ε,
x
ε for − ε < x < ε,

−1 for x ≤ ε,

with ε > 0 sufficiently small, which is a continuous approximation of ω.
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8.6. Reconstruction of Image Sequences with Small
Sampling Rates

In Remark 7.5, we have mentioned that the gradient method (Algorithm 7.4) converges
only to a local minimum, which is not necessarily a global minimum. As a consequence,
our numerical method has problems to reconstruct a sequence, if the sampling rate of
the input samples are too small.

Displacement of 20 pixel Displacement of 24 pixel

Figure 8.5.: Displacements of the first and second input sample of sequences of a shifted
square with small sampling rates.

We demonstrate this fact at the sequence of a shifted square. Here, the image frames
are of size 60 × 60 pixel and the pixel itself of size 20 × 20 pixel. In the first case, the
square is shifted to the left from the first to the second input sample with constant
speed by a distance of 20 pixel and in the second test case by a distance of 24 pixel. The
displacement of both test cases are pictured in Figure 8.5. In particular, we note that
in the first test case the supports of the squares in the first and the second image frame
are touching each other, whereas in the second case, there is no interaction between the
supports. Furthermore, we use in each of these test cases two different initial vector
fields in the gradient method (Algorithm 7.4) to reconstruct numerically the sequences.
In fact, we use both a zero vector field as initial vector field, ω0(t, x) = 0, and a constant
vector field ω0(t, x) = (−1, 0)T , which is a good estimation of the exact optical flow.

The reconstruction results are illustrated in Figure 8.24 and 8.25. We observe in the
case where we use a zero initial vector field, that we are only able to reconstruct the
sequence, if the supports of the two squares in the first and second image frame are
overlapping or at least touching each other. On the other hand, in the case where we
use an initial vector field close to the exact optical flow in the gradient method, we are
able to reconstruct the sequence in both cases. However, the reconstruction in the first
case is much better.
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In summary, to be able to reconstruct a sequence, we have to guarantee either that the
supports of corresponding objects in two sequential image frames are overlapping or at
least touching each other, or that we use in the gradient method (Algorithm 7.4) a close
estimate to the exact optical flow as initial vector field. Otherwise, the algorithm has too
less information to reconstruct the sequence accurately. In particular, the reconstruction
results are the better the more a priori information we put into the solution process.

8.7. Reconstruction of Perturbed Image Sequences

In the last section we show numerically that problem (NP) with an H1-regularization
in space is a stable approximation of the sequence interpolation problem (SIP). In
particular, we verify empirically the parameter choice rule stated in Corollary 6.13.

As test example we consider the sequences of a shifted square and a rotated slotted disc
introduced in Section 8.1. Moreover, in this case, we add to the input samples In a
normally distributed noise with variance ε and mathematical expectation 0.

However, due to the requirement that the optical flow vanishes on the spatial boundary,
a constant vector field may not be used as minimal norm solution for the sequence of
a shifted square (with unperturbed image samples). Also, for the sequence of a rotated
slotted disc we do not know a priori a minimal norm solution. Therefore, we can only
verify the stability empirically.

As analysed in Corollary 6.13, for a given noise level ε > 0, we have to choose the
regularization parameter α, such that

α(ε)→ 0, and
ε2

α(ε)
→ 0 for ε→ 0. (8.2)

In the following, we test α(ε) = ε, α(ε) = ε2 and α(ε) = 0.01 as parameter choices.
We note that α = 0.01 is the regularization parameter for which we obtain the best
reconstruction results for the unperturbed sequence of a shifted square (cf. Section 8.1).
Moreover, we note that only the parameter choice rule α(ε) = ε satisfies the requirement
(8.2) for all noise levels ε > 0.

The reconstruction of the optical flow, for various noise levels ε > 0 and regularization
parameters α, is illustrated for the sequences of a shifted square in Figure 8.26 and for
the sequence of a rotated slotted disc in Figure 8.27. Considering the reconstruction
results of both test examples for ε = 0.02 and ε = 0.03 with α = 0.01, we conclude that
the reconstruction of the optical flow tends to be unstable, if α(ε) < ε. Moreover, for
small noise levels, i.e., for instance ε = 0.01, the reconstruction results of the optical
flow are also unstable for α(ε) = ε2. Furthermore, in the case of α(ε) = ε for the
regularization parameter, we obtain for all noise levels ε > 0 a stable reconstruction of
the optical flow.

In summary, we have empirically verified Corollary 6.13, which states how to choose the
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8.7. Reconstruction of Perturbed Image Sequences

regularization parameter α depending on the noise level ε. At this point, we also remark
that for unperturbed image sequences the best reconstruction parameter α is nonzero,
since numerical discretisation errors have similar effects on the solution process as noise
in the measurements.

Finally, in Figure 8.28 we also picture the corresponding reconstructed sequences for a
noise level ε = 0.03 with regularization parameter α = 0.03. Here, we observe that the
method is also able to reconstruct the intensity function I of perturbed image sequences,
but it is not able to regularize the noise in the images. Indeed, the noise is only slightly
denoised, but this is caused by the damping behaviour of the FD scheme, or to be more
precise by the Upwind scheme, for solving the optical flow constraint (OFC) numerically.
Therefore, it is reasonable to denoise the input samples a priori, for instance by using
variational or filter methods [14], before we reconstruct the image sequences.

143



8. Numerical Examples

t = 0

t = 0.25

PSNR = 28.13 dB

t = 0.5

PSNR = 27.03 dB

t = 0.75

PSNR = 27.39 dB

Exact
sequence

Reconstructed
sequence

Error between exact
and reconstructed

sequence

t = 1

PSNR = 28.60 dB

Figure 8.6.: Reconstructed sequence of a shifted square by using an H1-regularization in
space and time with regularization parameters α = 0.00001 and β = 0.01.
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t = 0

t = 0.25

PSNR = 24.17 dB

t = 0.5

PSNR = 24.03 dB

t = 0.75

PSNR = 24.29 dB

Exact
sequence

Reconstructed
sequence

Error between exact
and reconstructed

sequence

t = 1

PSNR = 25.75 dB

Figure 8.7.: Reconstructed sequence of a rotated slotted disc by using an H1-
regularization in space and time with regularization parameters α = 0.00001
and β = 0.01.
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t = 0

t = 0.25

PSNR = 23.49 dB

t = 0.5

PSNR = 21.99 dB

t = 0.75

PSNR = 22.55 dB

Exact
sequence

Reconstructed
sequence

Error between exact
and reconstructed

sequence

t = 1

PSNR = 35.97 dB

Figure 8.8.: Reconstructed sequence of a deformed slotted disc by using an
H1-regularization in space and time with regularization parameters
α = 0.000001 and β = 0.0001.
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t = 0

t = 0.25

PSNR = 27.54 dB

PSNR = 22.87 dB

t = 0.5

PSNR = 26.44 dB

PSNR = 21.55 dB

t = 0.75

PSNR = 26.82 dB

PSNR = 22.80 dB

Exact sequence Non-divergence-free
α = 0.01

Divergence-free
α = 0.001

t = 1

PSNR = 28.35 dB

PSNR = 26.27 dB

Figure 8.9.: Reconstructed sequences of a shifted square corresponding to a divergence-
free and a non-divergence-free optical flow with H1-regularization in space.
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t = 0

t = 0.25

PSNR = 23.67 dB

PSNR = 21.39 dB

t = 0.5

PSNR = 23.52 dB

PSNR = 20.68 dB

t = 0.75

PSNR = 23.71 dB

PSNR = 21.02 dB

Exact sequence Non-divergence-free
α = 0.01

Divergence-free
α = 0.001

t = 1

PSNR = 26.72 dB

PSNR = 25.09 dB

Figure 8.10.: Reconstructed sequences of a rotated slotted disc corresponding to
a divergence-free and a non-divergence-free optical flow with H1-
regularization in space.
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t = 0

t = 0.25

PSNR = 23.79 dB

PSNR = 22.86 dB

t = 0.5

PSNR = 23.19 dB

PSNR = 22.47 dB

t = 0.75

PSNR = 23.25 dB

PSNR = 22.99 dB

Exact sequence Non-divergence-free
α = 0.1

Divergence-free
α = 0.01

t = 1

PSNR = 23.30 dB

PSNR = 25.23 dB

Figure 8.11.: Reconstructed sequences of a deformed slotted disc corresponding to
a divergence-free and a non-divergence-free optical flow with H1-
regularization in space.

149



8. Numerical Examples

Non-divergence-free
α = 0.01

Divergence-free
α = 0.001

Figure 8.12.: Divergence-free and non-divergence-free optical flow of a shifted square at
time t = 0.5 with an H1-regularization in space.

Non-divergence-free
α = 0.01

Divergence-free
α = 0.001

Figure 8.13.: Divergence-free and non-divergence-free optical flow of a rotated slotted
disc at time t = 0.5 with an H1-regularization in space.

Non-divergence-free
α = 0.1

Divergence-free
α = 0.01

Figure 8.14.: Divergence-free and non-divergence-free optical flow of a deformed slotted
disc at time t = 0.5 with H1-regularization in space.
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Exact Sequence Non-divergence-free
α = 0.0001

Divergence-free
α = 0.01

Divergence-free
α = 0.0001

Figure 8.15.: Reconstructed sequences of a zoomed and translated square correspond-
ing to a divergence-free and a non-divergence-free optical flow with H1-
regularization in space.
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Frame 1 Frame 2 Frame 3 Frame 4

Frame 5 Frame 6 Frame 7 Frame 8

Frame 9 Frame 10 Frame 11 Frame 12

Frame 13 Frame 14 Frame 15 Frame 16

Frame 17 Frame 18 Frame 19 Frame 20

Frame 21

Figure 8.16.: Hamburg taxi sequence: Illustration of the first 21 frames of the Hamburg
Taxi sequence line by line.
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Exact PSNR: 34.75 dB PSNR: 33.18 dB PSNR: 33.60 dB

PSNR: 34.48 dB PSNR: 36.77 dB PSNR: 34.18 dB PSNR: 34.02 dB

PSNR: 33.77 dB PSNR: 34.62 dB PSNR: 35.98 dB PSNR: 34.39 dB

PSNR: 33.70 dB PSNR: 34.08 dB PSNR: 34.01 dB PSNR: 36.10 dB

PSNR: 34.51 dB PSNR: 34.28 dB PSNR: 33.40 dB PSNR: 33.98 dB

PSNR: 35.55 dB

Figure 8.17.: Reconstructed Hamburg taxi sequence by using an H1-regularization in
space and time with regularization parameters α = β = 0.0001. The
reconstructed image frames are displayed line by line.
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Exact PSNR: 33.68 dB PSNR: 32.55 dB PSNR: 32.98 dB

PSNR: 34.16 dB PSNR: 35.82 dB PSNR: 33.34 dB PSNR: 32.51 dB

PSNR: 32.40 dB PSNR: 33.21 dB PSNR: 34.33 dB PSNR: 33.34 dB

PSNR: 32.82 dB PSNR: 32.34 dB PSNR: 32.43 dB PSNR: 33.96 dB

PSNR: 32.93 dB PSNR: 32.06 dB PSNR: 31.08 dB PSNR: 31.81 dB

PSNR: 32.76 dB

Figure 8.18.: Reconstructed Hamburg taxi sequence by using an H1-regularization in
space with regularization parameter α = 0.001. The reconstructed image
frames are displayed line by line.
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Exact PSNR: 34.05 dB PSNR: 31.13 dB PSNR: 30.94 dB

PSNR: 32.27 dB PSNR: 34.21 dB PSNR: 31.37 dB PSNR: 29.54 dB

PSNR: 29.39 dB PSNR: 30.78 dB PSNR: 31.95 dB PSNR: 30.26 dB

PSNR: 29.02 dB PSNR: 29.37 dB PSNR: 29.73 dB PSNR: 30.71 dB

PSNR: 29.53 dB PSNR: 28.64 dB PSNR: 28.26 dB PSNR: 28.92 dB

PSNR: 29.26 dB

Figure 8.19.: Reconstructed Hamburg taxi sequence corresponding to a divergence-free
optical flow by using an H1-regularization in space with regularization
parameter α = 0.0001. The reconstructed image frames are displayed line
by line.

155



8. Numerical Examples

t = 0

t = 0.25

PSNR = 24.45 dB

PSNR = 25.63 dB

t = 0.5

PSNR = 22.21 dB

PSNR = 19.70 dB

t = 0.75

PSNR = 23.34 dB

PSNR = 22.51 dB

Exact sequence
Regularization

in space
α = 0.1

Regularization
in space and time
α = β = 0.1

t = 1

PSNR = 22.24 dB

PSNR = 21.43 dB

Figure 8.20.: Reconstructed sequence of a square shifted non-uniformly in time with
H1-regularization in space (and time).
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t = 0.40625 t = 0.5 t = 0.515625 t = 609375

Figure 8.21.: Reconstructed optical flow of a square shifted non-uniformly in time by
using an H1-regularization in space with regularization parameter α = 0.1.

t = 0.21875 t = 0.3125 t = 0.40625 t = 0.5

t = 0.515625 t = 609375 t = 0.703125 t = 0.796875

Figure 8.22.: Reconstructed optical flow of a square shifted non-uniformly in time by us-
ing an H1-regularization in space and time with regularization parameters
α = β = 0.1.
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t = 0

t = 0.125

t = 0.25

t = 0.375

t = 0.5

t = 0.625

t = 0.75

t = 0.875

Exact α = 0.1 α = 0.01 α = 0.001

t = 1

Figure 8.23.: Reconstructed sequence of two squares touching each other but moving in
different directions with H1-regularization in space.
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8.7. Reconstruction of Perturbed Image Sequences

t = 0

t = 0.25

PSNR = 22.30 dB

PSNR = 25.36 dB

t = 0.5

PSNR = 21.55 dB

PSNR = 24.30 dB

t = 0.75

PSNR = 23.14 dB

PSNR = 24.99 dB

Exact sequence Reconstructed seq.
s = 0.0

Reconstructed seq.
s = −1.0

t = 1

PSNR = 26.03 dB

PSNR = 26.43 dB

Figure 8.24.: Reconstructed sequence of a shifted square with a displacement of 20 pixel
between the first and second input frame. For the reconstruction we use
an H1-regularization in space and time with regularization parameters
α = 0.001 and β = 0.01. As initial vector field in the gradient method
(cf. Algorithm 7.4) we use ω0 = (s, 0)T .
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8. Numerical Examples

t = 0

t = 0.25

PSNR = 11.18 dB

PSNR = 26.33 dB

t = 0.5

PSNR = 9.24 dB

PSNR = 24.48 dB

t = 0.75

PSNR = 9.42 dB

PSNR = 23.42 dB

Exact sequence Reconstructed seq.
s = 0.0

Reconstructed seq.
s = 1.0

t = 1

PSNR = 9.54 dB

PSNR = 22.64 dB

Figure 8.25.: Reconstructed sequence of a shifted square with a displacement of 24 pixel
between the first and second input frame. For the reconstruction we use
an H1-regularization in space and time with regularization parameters
α = 0.001 and β = 0.01. As initial vector field in the gradient method
(cf. Algorithm 7.4) we use ω0 = (s, 0)T .
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8.7. Reconstruction of Perturbed Image Sequences

α = 0.01 α = 0.0001 α = 0.1

ε = 0.01

α = 0.01 α = 0.0025 α = 0.05

ε = 0.05

α = 0.01 α = 0.01 α = 0.1

ε = 0.1

α = 0.01 α = 0.04 α = 0.2

ε = 0.2

α = 0.01 α = 0.09 α = 0.3

ε = 0.3

Figure 8.26.: Reconstructed optical flows at time t = 0 of a sequence of a shifted square
perturbed by various noise levels ε. For the reconstruction we use an H1-
regularization in space with parameter choices α(ε) = 0.01, α(ε) = ε2 and
α(ε) = ε.
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8. Numerical Examples

α = 0.01 α = 0.0001 α = 0.1

ε = 0.01

α = 0.01 α = 0.0025 α = 0.05

ε = 0.05

α = 0.01 α = 0.01 α = 0.1

ε = 0.1

α = 0.01 α = 0.04 α = 0.2

ε = 0.2

α = 0.01 α = 0.09 α = 0.3

ε = 0.3

Figure 8.27.: Reconstructed optical flows at time t = 0 of a sequence of a rotated slotted
disc perturbed by various noise levels ε. For the reconstruction we use an
H1-regularization in space with parameter choices α(ε) = 0.01, α(ε) = ε2

and α(ε) = ε.
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8.7. Reconstruction of Perturbed Image Sequences

t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

Figure 8.28.: Reconstruction of a perturbed sequence of a shifted square and a rotated
disc: The H1-regularization parameter α is equal to the noise level ε = 0.3
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9. Conclusion and Outlook

Adapting the work of [10], we have shown that the solution operator

T : U × Z → Y,
(ω, I0) 7→ I

of the optical flow constraint (OFC) with U :=
(
Lp((0, T ),W 1,q

0 (Ω))
)d
, Z := L∞(Ω)

and Y := C([0, T ], Lr(Ω)), for some 1 < p, q <∞ and 1 ≤ r <∞, admits a unique weak
solution and is weak-* sequentially closed. For proving these properties, we emphasize
in comparison to [10] that we have omit the assumption div(ω) ∈ L1((0, T ), L∞(Ω)) by
requiring instead that the vector field ω vanishes on the spatial boundary ∂Ω.

With this established theory on weak solutions to the optical flow constraint (OFC), we
have shown the local ill-posedness of the sequence interpolation problem (SIP). There-
fore, in the following, we have considered the regularized problem (NP). For this regular-
ized problem (NP), we have shown that convexity and U-coercivity of the regularization
term is sufficient for the existence of an optimal solution, if the function spaces U ,Y
and Z are specified as above. In particular, in comparison to [15], we do not need the
requirement that the optical flow ω is divergence-free. Assuming additionally the exis-
tence of a bilinear form (·, ·)R with (·, ·)R = R(ω), where R(ω) denotes the energy of the
solution, we have shown that the regularized problem (NP) is a stable approximation
of the sequence interpolation problem (SIP).

Furthermore, we have verified the existence and stability condition for an H1-regulari-
zation in space (and time). Since we are not able to reconstruct a discontinuous optical
flow with an H1-regularization, we have also motivated a W 1,1+τ -regularization. How-
ever, for this W 1,1+τ -regularization we can only verify the existence condition, but not
the stability condition. Thus, a next step is to analyse the stability of problem (NP)
also for a W 1,1,+τ -regularization.

For solving problem (NP) with H1-regularization in space (and time) numerically we
have presented the gradient method. Moreover, we have shown that the calculation of
the gradient of the cost functional defined in (NP) involves the solution of a conserva-
tive, a non-conservative transport equation and an elliptic PDE.

In the literature, the first order Upwind and the second order Lax-Wendroff scheme
are well known for the numerical solution of a transport equation with constant vector
field. Generalized Upwind and Lax-Wendroff schemes are motivated in [35] to solve
the conservative (cTPE) or the non-conservative transport equation (OFC) with vari-
able coefficient vector field, respectively, but these schemes are only motivated for
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9. Conclusion and Outlook

time-independent and monotone vector fields, i.e., ω(x) ≥ 0 or ω(x) ≤ 0 for all
x ∈ Ω ⊂ Rd. However, we have shown that these generalized schemes are reason-
able for time-dependent and non-monotone vector fields, too, by doing a consistency
analysis. Additionally, in contrast to [35], we have proven the L1-stability of the gen-
eralized Upwind schemes and, consequently, the convergence of these schemes due to
Lax’s Equivalence theorem. Nevertheless, we were not able to show the stability of the
generalized Lax-Wendroff schemes. Since the Upwind and the Lax-Wendroff schemes
admit a damping or an oscillatory behaviour for discontinuous solutions, respectively,
we have also generalized the concept of flux limiters to obtain, finally, very accurate
approximations of the exact solution.

For solving the Poisson equation (7.3) or the time-dependent elliptic PDE (7.4), respec-
tively, depending on the kind of H1-regularization, we have presented finite difference
schemes on a staggered grid and have additionally analysed the convergence of these
schemes.

Moreover, we have used a projected gradient method to numerically solve problem (NP)
with H1-regularization in space for divergence-free optical flows. Here, the orthogonal
projection is given by solving a Stokes problem, for which we used the MAC scheme
[28, 45].

Finally, we have tested the developed reconstruction method with sequences of synthetic
and real image frames. We have seen that we obtain accurate reconstruction results for
various kinds of test sequences. In particular, the reconstructed sequences look much
more accurate, if we do not restrict the optical flow to be divergence-free. An addi-
tional regularization in time usually leads to more accurate reconstruction results, but
the computational costs are much higher. Moreover, we have seen that we are also
able to reconstruct perturbed image sequences, however, to obtain more accurate recon-
structions it is reasonable to denoise the input samples a priori, for instance by using
variational or filter methods [14], before we reconstruct the image sequences.

Nevertheless, we have also presented negative reconstruction results. We have demon-
strated that a sufficiently large sampling rate is necessary to reconstruct the sequence.
Furthermore, we have observed that we obtain imprecise reconstruction results, if we
try to reconstruct a sequence corresponding to a discontinuous optical flow. Thus, in
this case, it seems to be more appropriate to use a W 1,1+τ -regularization instead of a
H1-regularization. However, for solving problem (NP) with W 1,1+τ -regularization nu-
merically, there are two challenges: Firstly, for applying a descent method we have to
discuss how to compute a descent direction in the Non-Hilbert space setting. Secondly,
in the consistency analysis of the finite difference schemes for the two semi-linear trans-
port equation we have assumed that the vector field is continuously differentiable. In
particular, we have numerically illustrated that it is necessary to have at least a contin-
uous vector field in order to obtain for convergence.

In future research, it is of interest to show existence and stability of an optimal solution
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to problem NP with BV-regularization. However, for this aim one has to generalize
the theory on weak solutions to the transport equation presented in Chapter 5. Fur-
thermore, it is appropriate to construct more application-oriented regularization terms.
For instance, in the case of the reconstruction of a periodical lung movement, see Sec-
tion 1.1, it is reasonable to incorporate the periodicity into the construction of a suitable
regularization term.
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A. Appendices

A.1. Mathematical Tools

Gronwall’s Inequality

Theorem A.1 (Gronwall’s Inequality).
Let us consider a function y ∈ L∞((0, T )), a non-negative function g ∈ L1((0, T )) and
y0 ∈ R, such that

y(t) ≤ y0 +

t∫
0

g(x)y(s) ds, for almost all t ∈ [0, T ],

we then have

y(t) ≤ y0 exp

(∫ t

0
g(s) ds

)
, for almost all t ∈ [0, T ].

Proof.
A proof can be found in [10].

Riesz Representation Theorem

Theorem A.2 (Riesz Representation Theorem).
Let U be a Hilbert space. Then for each u∗ ∈ U∗ there exists a unique element u ∈ U
such that 〈

u∗, v
〉
U∗U =

(
u, v
)
U for all v ∈ U .

Proof.
A proof can be found in [22].

Mollifier Functions

Definition A.3 (Mollifying Kernel).
A function ηε : Rd → R satisfying

(i) ηε ∈ C∞(R),

(ii) ηε(x) = 0 if ‖x‖ ≥ ε and
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(iii)
∫
Rd
ηε(x) dx = 1

is called mollifying kernel.

Example A.4.

An example for a mollifying kernel function is given by

ηε(x) =
1

εd
η
(x
ε

)
with η(x) =

{
C exp

(
1

‖x‖−1

)
, if ‖x‖ < 1,

0 if ‖x‖ ≥ 1
,

where C > 0 is chosen such that
∫
Rd
η(x) dx = 1.

Theorem A.5.

Let f : Ω → R be locally integrable, where Ω ⊂ Rd denotes an open set. Then the
mollification

f ε := ηε ∗ f =

∫
Ω

ηε(y − x) f(x) dx =

∫
Bε(0)

ηε(x) f(y − x) dx

satisfies the following properties:

(i) f ε ∈ C∞(Ω),

(ii) If f ∈W k,p
loc (Ω) for k ≥ 0 and 1 ≤ p <∞, then f ε → f in W k,p

loc (Ω),

(iii) If f ∈ L∞(Ω) then

‖f ε‖L∞(Ω) ≤ ‖f‖L∞(Ω).

Proof.

A proof can be found in [10, 22].
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A.2. Reconstruction Error Tables

A.2. Reconstruction Error Tables

Sequence of a shifted square

α β εL2(I, I#) Rx(w) Rt(w) εL2(I, S#)
1.0 0 0.0408894 0.0195241 — 0.1687872
0.1 0 0.0016856 0.0904738 — 0.0103012
0.01 0 0.0007934 0.1215116 — 0.0088547
0.001 0 0.0004609 0.2736055 — 0.0251710
0.0001 1.0 0.0426604 0.0238407 0.0000126 0.1738395
0.0001 0.1 0.0034537 0.0808816 0.0003115 0.0162044
0.0001 0.01 0.0007676 0.1101567 0.0005925 0.0076095
0.0001 0.001 0.0002939 0.6842077 0.0083964 0.0299832
0.0001 0.0001 0.0001990 1.0506960 0.0092256 0.0249581
0.0001 0 0.0003227 0.6046728 — 0.0266026
0.00001 1.0 0.0426604 0.0238407 0.0000126 0.1738395
0.00001 0.1 0.0034557 0.0808732 0.0003115 0.0162122
0.00001 0.01 0.0007689 0.1100615 0.0005898 0.0075905
0.00001 0.001 0.0002991 0.6702750 0.0087828 0.0308453
0.00001 0.0001 0.0000546 3.2234587 0.0586445 0.0199274
0.00001 0 0.0001685 2.2470854 — 0.0230358
0.000001 1.0 0.0426604 0.0238407 0.0000126 0.1738395
0.000001 0.1 0.0034559 0.0808724 0.0003115 0.0162130
0.000001 0.01 0.0007690 0.1100533 0.0005898 0.0075909
0.000001 0.001 0.0002998 0.6679422 0.0087916 0.0308981
0.000001 0.0001 0.0000570 3.1604764 0.0581509 0.0199347
0.000001 0 0.0001675 2.3003158 — 0.0230356

Table A.1.: Reconstruction errors of the sequence of a shifted square with H1-
regularization in space (and time).

α εL2(I, I#) Rx(w) εL2(I, S#)
1.0 0.0766965 0.0036079 0.3331124
0.1 0.0210634 0.2674898 0.0972726
0.01 0.0015624 0.5979424 0.0281177
0.001 0.0013551 0.6443516 0.0272281
0.0001 0.0013676 0.6493764 0.0274012
0.00001 0.0013691 0.6498385 0.0274221
0.000001 0.0013693 0.6498738 0.0274245

Table A.2.: Reconstruction errors of the sequence of a shifted square corresponding to
divergence-free optical flows with H1-regularization in space.
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Sequence of a Rotated Slotted Disc

α β εL2(I, I#) Rx(w) Rt(w) εL2(I, S#)
1.0 0 0.0530422 0.0274057 — 0.3333650
0.1 0 0.0023306 0.1187019 — 0.0347119
0.01 0 0.0010456 0.1715070 — 0.0289935
0.001 0 0.0004327 0.4624819 — 0.0335455
0.0001 1.0 0.0715671 0.0134948 0.0000019 0.4725609
0.0001 0.1 0.0041077 0.1084378 0.0005221 0.0437760
0.0001 0.01 0.0013458 0.1554576 0.0006009 0.0251414
0.0001 0.001 0.0003977 0.5270669 0.0106730 0.0438550
0.0001 0.0001 0.0002103 1.4270353 0.0151329 0.0407300
0.0001 0 0.0001946 1.2625379 — 0.0373066
0.00001 1.0 0.0715677 0.0134942 0.0000019 0.4725650
0.00001 0.1 0.0041098 0.1084289 0.0005221 0.0437896
0.00001 0.01 0.0013470 0.1554290 0.0006013 0.0251411
0.00001 0.001 0.0004081 0.5066461 0.0104281 0.0438572
0.00001 0.0001 0.0001248 2.9633698 0.0509185 0.0388167
0.00001 0 0.0001236 3.0675683 — 0.0386363
0.000001 1.0 0.0715678 0.0134941 0.0000019 0.4725654
0.000001 0.1 0.0041100 0.1084280 0.0005221 0.0437910
0.000001 0.01 0.0013471 0.1554121 0.0006013 0.0251422
0.000001 0.001 0.0004092 0.5047413 0.0104040 0.0438637
0.000001 0.0001 0.0001274 2.8873269 0.0496286 0.0389513
0.000001 0 0.0001214 3.2675397 — 0.0388214

Table A.3.: Reconstruction errors of the sequence of a rotated slotted disc with H1-
regularization in space (and time).

α εL2(I, I#) Rx(w) εL2(I, S#)
1.0 0.095817 0.0045192 0.6491899
0.1 0.029228 0.3327146 0.1975529
0.01 0.002204 0.8336318 0.0672619
0.001 0.001662 0.9774344 0.0594704
0.0001 0.001663 1.0274754 0.0687344
0.00001 0.001664 1.0345181 0.0703559
0.000001 0.001665 1.0351035 0.0704735

Table A.4.: Reconstruction errors of the sequence of a rotated slotted disc corresponding
to divergence-free optical flows with H1-regularization in space.
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Sequence of a Deformed Slotted Disc

α β εL2(I, I#) Rx(w) Rt(w) εL2(I, S#)
1.0 0 0.0541446 0.0154944 — 0.3507497
0.1 0 0.0030686 0.1437075 — 0.0347495
0.01 0 0.0007967 0.2241521 — 0.0396388
0.001 0 0.0003966 0.4499184 — 0.0419242
0.0001 1.0 0.0556237 0.0191065 0.0000029 0.3633331
0.0001 0.1 0.0079759 0.1149621 0.0004178 0.0600367
0.0001 0.01 0.0011012 0.1873393 0.0012604 0.0387245
0.0001 0.001 0.0003378 0.5542712 0.0039807 0.0450397
0.0001 0.0001 0.0002410 1.0126889 0.0053151 0.0415047
0.0001 0.00001 0.0002384 1.0391236 0.0052561 0.0425266
0.0001 0.000001 0.0002386 1.0379240 0.0052230 0.0426698
0.0001 0 0.0002572 1.0056332 — 0.0400081
0.00001 1.0 0.0556237 0.0191065 0.0000029 0.3633331
0.00001 0.1 0.0079822 0.1149337 0.0004177 0.0600712
0.00001 0.01 0.0011038 0.1871399 0.0012566 0.0386234
0.00001 0.001 0.0003374 0.5940005 0.0048613 0.0466787
0.00001 0.0001 0.0001206 4.5450961 0.0642661 0.0366305
0.00001 0.00001 0.0000514 10.394610 0.1383527 0.0389100
0.00001 0.000001 0.0000745 8.4994390 0.0910993 0.0423499
0.00001 0 0.0000793 7.2240719 — 0.0374487
0.000001 1.0 0.0556237 0.0191065 0.0000029 0.3633331
0.000001 0.1 0.0079829 0.1149307 0.0004176 0.0600751
0.000001 0.01 0.0011041 0.1871159 0.0012557 0.0386032
0.000001 0.001 0.0003369 0.6037685 0.0050650 0.0470821
0.000001 0.0001 0.0001236 4.4252753 0.0625341 0.0366030
0.000001 0.00001 0.0000550 9.7496855 0.1346559 0.0376110
0.000001 0.000001 0.0000478 11.124098 0.1454806 0.0414245
0.000001 0 0.0000558 8.5173526 — 0.0387115

Table A.5.: Reconstruction errors of the sequence of a deformed slotted disc with H1-
regularization in space (and time).

α εL2(I, I#) Rx(w) εL2(I, S#)
1.0 0.07348 0.0071287 0.4769818
0.1 0.01366 0.2409445 0.0943595
0.01 0.00166 0.4548931 0.0367352
0.001 0.00149 0.5076143 0.0486661
0.0001 0.00150 0.5266466 0.0561469
0.00001 0.00150 0.5312745 0.0581530
0.000001 0.00150 0.5313846 0.0581957

Table A.6.: Reconstruction errors of the sequence of a deformed slotted disc correspond-
ing to divergence-free optical flows with H1-regularization in space.
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Hamburg Taxi Sequence

α β εL2(I, I#) Rx(w) Rt(w) εL2(I, S#)

0.1 0 0.002960 0.0318061 — 0.0125639
0.01 0.1 0.004472 0.0224558 0.0001521 0.0188795
0.01 0.01 0.001643 0.0754064 0.0002613 0.0073241
0.01 0.001 0.001975 0.0975452 0.0005261 0.0088826
0.01 0.0001 0.002011 0.0981767 0.0005387 0.0090426
0.01 0 0.001625 0.0776516 — 0.0073495
0.001 0.1 0.004832 0.0209534 0.0001428 0.0205293
0.001 0.01 0.001848 0.0580432 0.0002260 0.0080981
0.001 0.001 0.000876 0.3391609 0.0018302 0.0045319
0.001 0.0001 0.000966 0.3639413 0.0018683 0.0049124
0.001 0 0.000865 0.4000184 — 0.0057658
0.0001 0.1 0.004525 0.0221229 0.0001609 0.0190382
0.0001 0.01 0.001871 0.0567308 0.0002233 0.0081940
0.0001 0.001 0.000925 0.2730913 0.0018145 0.0046653
0.0001 0.0001 0.000497 1.5191372 0.0117026 0.0037903
0.0001 0 0.000646 1.1200451 — 0.0058440
0.00001 0 0.000596 2.0220189 — 0.0062645

Table A.7.: Reconstruction errors of the Hamburg taxi sequence with H1-regularization
in space (and time).

α εL2(I, I#) Rx(w) εL2(I, S#)
0.1 0.0066085 0.0506745 0.0276675
0.01 0.0034784 0.1392780 0.0149428
0.001 0.0025952 0.3777087 0.0121350
0.0001 0.0018757 1.6042912 0.0116976
0.00001 0.0015862 4.8558390 0.0125374

Table A.8.: Reconstruction errors of the Hamburg taxi sequence corresponding to
divergence-free optical flows with H1-regularization in space.
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A.2. Reconstruction Error Tables

Sequence of a Shifted Square with Small Sampling Rates

α β εL2(I, I#) Rx(w) Rt(w) εL2(I, S#)
0.1 0 0.0087668 0.5449230 — 0.1560610
0.01 0.1 0.0412068 0.3553432 0.0058322 0.5121763
0.01 0.01 0.0010915 0.7199260 0.0170612 0.0842981
0.01 0.001 0.0017685 1.0393142 0.0102129 0.1616442
0.01 0.0001 0.0018473 1.0578231 0.0102708 0.1680175
0.01 0 0.0010850 0.7265789 — 0.0897608
0.001 0.1 0.0461224 0.3318105 0.0050671 0.5677260
0.001 0.01 0.0015001 0.6669125 0.0162611 0.0696352
0.001 0.001 0.0007254 1.0819721 0.0160256 0.1274802
0.001 0.0001 0.0007614 1.1535154 0.0148010 0.1450653
0.001 0 0.0007140 1.0948725 — 0.1141870
0.0001 0.1 0.0465915 0.3296218 0.0049998 0.5729969
0.0001 0.01 0.0015407 0.6644622 0.0162914 0.0704683
0.0001 0.001 0.0005343 1.3635645 0.0359247 0.1278299
0.0001 0.0001 0.0002658 2.8478479 0.0657637 0.1275120
0.0001 0 0.0003364 2.3795128 — 0.1092872

(a) s = 0.0

α β εL2(I, I#) Rx(w) Rt(w) εL2(I, S#)
0.1 0 0.0086804 0.5456315 — 0.1525052
0.01 0.1 0.0352665 0.3864818 0.0069553 0.4139140
0.01 0.01 0.0010273 0.7086062 0.0163091 0.0528549
0.01 0.001 0.1111271 429.2333333 0.0 2.5264803
0.01 0.0001 0.1111271 429.2333333 0.0 2.5264805
0.01 0 0.0010220 0.7151667 — 0.0568795
0.001 0.1 0.0395952 0.3727236 0.0059550 0.4526643
0.001 0.01 0.0013747 0.6731850 0.0158545 0.0373767
0.001 0.001 0.1108414 60.7535360 0.1546196 1.9884821
0.001 0.0001 0.1111271 429.2333333 0.0 2.5264797
0.001 0 0.0009663 61.6021579 — 0.8948088
0.0001 0.1 0.1161107 274.8218915 0.0002631 2.3755303
0.0001 0.01 0.0017456 12.8713526 0.0443369 0.0872941
0.0001 0.001 0.0008605 13.5221351 0.4709798 0.7612734
0.0001 0.0001 0.1111271 351.4933660 0.0 2.4763118
0.0001 0 0.1111271 351.4933693 — 2.4763097

(b) s = −1.0

Table A.9.: Reconstruction error of the sequence of a shifted square with a displacement
of 20 pixel between the first and second input frame. For the reconstruction
we use an H1-regularization in space (and time). As initial vector field in
the gradient method (cf. Algorithm 7.4) we use ω0 = (s, 0)T .
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α β εL2(I, I#) Rx(w) Rt(w) εL2(I, S#)
0.1 0 0.1233588 0.2106779 — 2.4315137
0.01 0.1 0.1356338 0.1289962 0.0004600 2.5369626
0.01 0.01 0.1118213 0.4696491 0.0045157 2.2789681
0.01 0.001 0.1124093 0.5899820 0.0010273 2.3033771
0.01 0.0001 0.1124249 0.5963778 0.0010113 2.3038625
0.01 0 0.1118026 0.4705484 — 2.2881158
0.001 0.1 0.1367454 0.1236507 0.0004268 2.5464423
0.001 0.01 0.1125601 0.4128740 0.0051687 2.2899354
0.001 0.001 0.1111796 0.6640022 0.0046871 2.2583180
0.001 0.0001 0.1112166 0.8015708 0.0019366 2.2680534
0.001 0 0.1111781 0.6647838 — 2.2638409
0.0001 0.1 0.1368577 0.1231224 0.0004233 2.5474019
0.0001 0.01 0.1126451 0.4080816 0.0050695 2.2918230
0.0001 0.001 0.1112260 0.6088675 0.0068410 2.2601270
0.0001 0.0001 0.1111391 0.8953971 0.0027032 2.2562945
0.0001 0 0.1111387 0.9002893 — 2.2610964

(a) s = 0.0

α β εL2(I, I#) Rx(w) Rt(w) εL2(I, S#)
0.1 0 0.0143404 0.7572673 — 0.3189827
0.01 0.1 0.0653838 0.4296010 0.0074990 0.9455068
0.01 0.01 0.0011125 1.0110308 0.0322261 0.0960655
0.01 0.001 0.1111271 430.1388889 0.0 2.9420984
0.01 0.0001 0.1111271 430.1388889 0.0 2.9420987
0.01 0 0.0011145 1.0159514 — 0.0965659
0.001 0.1 0.0107878 68.3399336 0.0032978 0.1223610
0.001 0.01 0.0015608 0.9726897 0.0321679 0.0652380
0.001 0.001 0.0009507 62.3399153 0.4458951 1.1370688
0.001 0.0001 0.1111271 430.1388889 0.0 2.9420970
0.001 0 0.0007153 62.1918545 — 0.8431889
0.0001 0.1 0.0038804 75.6061937 0.0033047 0.0564983
0.0001 0.01 0.0019162 22.7863000 0.0326374 0.1103731
0.0001 0.001 0.0009270 13.7750578 0.5286805 0.7435570
0.0001 0.0001 0.1111276 352.2775196 0.0000193 2.8346096
0.0001 0 0.1111275 352.2784745 — 2.8336539

(b) s = −1.0

Table A.10.: Reconstruction error of the sequence of a shifted square with a displacement
of 24 pixel between the first and second input frame. For the reconstruction
we use an H1-regularization in space (and time). As initial vector field in
the gradient method (cf. Algorithm 7.4) we use ω0 = (s, 0)T .
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A.2. Reconstruction Error Tables

Sequence of a Non-Uniform Shifted Square

α β εL2(I, I#) Rx(w) Rt(w) εL2(I, S#)
1.0 1.0 0.0168745 0.0202187 0.0000215 0.139581
1.0 0.1 0.0123704 0.0314041 0.0000139 0.126878
1.0 0.01 0.0123704 0.0314041 0.0000139 0.126874
1.0 0.001 0.0123704 0.0314041 0.0000139 0.126873
1.0 0.0001 0.0123704 0.0314041 0.0000139 0.126873
1.0 0 0.0155400 0.0211992 — 0.137396
0.1 1.0 0.0123704 0.0314041 0.0000139 0.126943
0.1 0.1 0.0018991 0.0467318 0.0000684 0.100665
0.1 0.01 0.0023064 0.0567916 0.0000369 0.102811
0.1 0.001 0.0022594 0.0590211 0.0000371 0.102639
0.1 0.0001 0.0022586 0.0592458 0.0000373 0.102641
0.1 0 0.0019204 0.0462407 — 0.101279
0.01 1.0 0.0123704 0.0314041 0.0000139 0.126945
0.01 0.1 0.0025928 0.0450368 0.0000305 0.102833
0.01 0.01 0.0009349 0.0906686 0.0007613 0.100889
0.01 0.001 0.0015556 0.0630102 0.0000523 0.101425
0.01 0.0001 0.0015471 0.0628872 0.0000527 0.101433
0.01 0 0.0014582 0.0610583 — 0.101888

Table A.11.: Reconstruction errors of the sequence of a square shifted non-uniformly in
time with H1-regularization in space (and time).

Sequence of a Zommed In and Translated Square

α εL2(I, I#) Rx(w) εL2(I, S#)
1.0 0.1502174 0.0229685 0.7879874
0.1 0.0093030 0.3946709 0.0571559
0.01 0.0021992 0.5775282 0.0345540
0.001 0.0010034 1.0760683 0.0376729
0.0001 0.0004997 2.6106347 0.0365505
0.00001 0.0000438 15.1928514 0.3342139
0.000001 0.0000251 18.8350627 0.9556858

Table A.12.: Reconstruction errors of the sequence of a zoomed and translated square
with H1-regularization in space
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α εL2(I, I#) Rx(w) εL2(I, S#)
1.0 0.1881278 0.0024436 1.0200542
0.1 0.1082107 0.3187858 0.5613986
0.01 0.0961134 0.6080348 0.4939423
0.001 0.0804334 3.2771032 0.4188005
0.0001 0.0792281 4.9593496 0.4161314
0.00001 0.0789296 6.0930110 0.4188976
0.000001 0.0788969 6.1607504 0.4189676

Table A.13.: Reconstruction errors of the sequence of a zoomed and translated square
corresponding to divergence-free optical flows with H1-regularization in
space.

Sequence of 2 Squares

α β εL2(I, I#) Rx(w) Rt(w) εL2(I, S#)
0.1 0.1 0.1580246 3.5969446 0.2804023 0.9966773
0.1 0.01 0.8029649 1.5095130 0.0397222 5.7206019
0.1 0.001 0.8012935 1.5798865 0.0407218 5.7089464
0.1 0.0001 0.8043194 1.5482181 0.0396037 5.7314469
0.1 0 0.1344879 3.7854122 — 0.8597478
0.01 0.1 0.63373140 1.2983100 0.1294037 4.5162212
0.01 0.01 0.0186932 7.6175590 0.7941471 0.2176909
0.01 0.001 0.2498397 14.0477121 1.5004131 1.8367867
0.01 0.0001 0.2631647 13.7954890 1.4397018 1.9268570
0.01 0 0.0118425 6.8706031 — 0.1776370
0.001 0.1 0.6659123 1.1778707 0.1210922 4.7427469
0.001 0.01 0.0315497 6.5316704 0.8511410 0.3087130
0.001 0.001 0.0122320 21.0542835 3.1831973 0.5685495
0.001 0.0001 0.0151115 28.2647311 3.8723581 0.6456766
0.001 0 0.0051925 23.0014706 — 0.5069380
0.0001 0.1 0.6726119 1.1503725 0.1168902 4.8015562
0.0001 0.01 0.0335007 6.4729011 0.8700972 0.3263297
0.0001 0.001 0.0091589 20.3245727 3.3519227 0.3469311
0.0001 0.0001 0.0060490 44.6464421 6.4345632 0.6252176
0.0001 0 0.0026752 40.3241770 — 0.5584646

Table A.14.: Reconstruction errors of the sequence of two squares touching each other
but moving in different directions with H1-regularization in space (and
time).
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Abstract
In this thesis, we study a sequence interpolation problem: Given a sequence of image
frames at discrete points in time, find a continuous function in time, which interpolates
these image frames. We solve this problem by using optical flows. Since the recon-
struction problem is unstable, we regularize it. This regularization leads to a non-linear
minimization problem subject to the optical flow constraint, which is characterized by
a semi-linear transport equation.

To analyse existence and stability of a solution to the regularized reconstruction prob-
lem, we first discuss weak solutions of transport equations. Here, we adapt the work of
[10] to show – without any restriction on the divergence of the vector field – that the
non-linear solution operator of the transport equation is weak-* sequentially closed and
admits a unique weak solution.

Finally, with the help of this theory we state sufficient conditions on the regularization
term and the involved function spaces, which guarantee existence and stability of an op-
timal solution to the regularized reconstruction problem. Here, we do not need to restrict
the optical flow to be divergence-free, in contrast to [15]. We verify the existence condi-
tion for an H1-regularization in space (and time), as well as for a W 1,1+τ -regularization
in space. Moreover, we verify the stability condition for both H1-regularizations.

For solving the reconstruction problem with H1-regularization numerically we apply the
gradient method. However, the computation of the gradient involves the solution of a
conservative, a non-conservative transport equation and an elliptic partial differential
equation. Therefore, we present numerical efficient finite difference schemes for solving
these differential equations. In particular, in the numerically analysis of the finite dif-
ference schemes for the two semi-linear transport equations we obtain new results.

Finally, we test the robustness of the developed reconstruction method with sequences
of synthetic and real image frames. In particular, we compare our reconstruction results
with reconstructions correspondig to divergence-free optical flows.



Zusammenfassung
In dieser Arbeit untersuchen wir folgendes Rekonstruktionsproblem: Zu einer gegebe-
nen Sequenz von Bildern zu diskreten Zeitpunkten suchen wir eine stetige Funktion
in der Zeit, welche diese Bilder interpoliert. Wir lösen dieses Problem mit Hilfe von
optischen Flüssen. Da das Rekonstruktionsproblem instabil ist, regularisieren wir die-
ses. Diese Regularisierung führt zu einem nichtlinearen Minimierungsproblem unter der
Nebenbedingung einer optischen Fluss Restriktion, welche durch eine semilineare Trans-
portgleichung charakterisiert wird.

Um die Existenz und Stabilität einer Lösung für das regularisierte Rekonstruktionspro-
blem zu analysieren, diskutieren wir zunächst schwache Lösungen von Transportglei-
chungen. Hierbei modifizieren wir die Resultate in [10], um auch ohne Restriktionen
an die Divergenz des Vektorfeldes zu zeigen, dass der nichtlineare Lösungsoperator der
Transportgleichung schwach-* folgenabgeschlossen ist und eine eindeutige Lösung be-
sitzt.

Mit Hilfe dieser Theorie geben wir schließlich hinreichende Bedingungen an den Re-
gularisierungterm und die involvierten Funktionenräume an, welche die Existenz und
Stabilität einer optimalen Lösung zum regularisierten Rekonstruktionsproblem gewähr-
leisten. Hierbei benötigen wir, im Gegensatz zu [15], nicht die Restriktion, dass der opti-
sche Fluss divergenzfrei ist. Wir verifizieren die Existenz-Bedingung sowohl für die H1-
Regularisierung im Ort (und in der Zeit) als auch für dieW 1,1+τ -Regularisierung im Ort.
Außerdem, verfizieren wir die Stabilitäts-Bedingung für beide H1-Regularisierungen.

Um das Rekonstruktionsproblem mit H1-Regularisierung numerisch zu lösen, verwen-
den wir das Gradientenverfahren. Die Berechnung des Gradienten erfordert allerdings
das Lösen einer konservativen, einer nicht konservativen Transportgleichung und einer
elliptischen partiellen Differentialgleichung. Daher präsentieren wir numerisch effizien-
te finite Differenzen-Verfahren, um diese Differentialgleichungen zu lösen. Insbesondere
erhalten wir in der numerischen Analyse der finiten Differenzenverfahren für die zwei
semilinearen Transportgleichungen neue Resultate.

Schließlich testen wir die Robustheit des entwickelten Rekonstruktionsverfahrens an
künstlichen und realen Bildsequenzen. Insbesondere vergleichen wir unsere Rekonstruk-
tionsergebnisse mit Rekonstruktionen, welche zu divergenzfreien optischen Flüssen kor-
respondieren.
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