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1 Introduction

1.1 Overview

This thesis focuses on extremal and probabilistic combinatorics and Ramsey theory.
We start with an overview of these areas and their ties to each other, highlighting
were the obtained results fit in. The overview is followed by more in-depth
introductions to the individual results. We will consider simple undirected graphs
and hypergraphs G “ pV,Eq, where V and E are the vertex set and edge set
respectively and usually n “ |V |, the size of a considered graph, is large. We
assume that the reader is familiar with basic notions of graph theory and standard
notation like, e.g., the minimum and maximum degree δpGq and ∆pGq or the
chromatic number χpGq. The reader is referred to one of the standard text books
([6, 9, 15]) for an introduction to graph theory.

Turán’s theorem and resilience

A large part of extremal graph theory traces back to the landmark result of
Turán [59]: any graph on n vertices not containing Kr, the clique or complete
graph on r vertices, as a subgraph has at most

`

1´ 1
r´1

˘

n2

2 edges. In other words,
if the edge density of a graph is at least 1´ 1

r´1 , one is guaranteed to find a clique
of size r as a subgraph. Erdős and Stone [22] generalised Turán’s theorem from
cliques to complete partite graphs and later Erdős and Simonovits [21] generalised
it to all graphs: any graph on n vertices not containing a given graph F as a
subgraph contains at most

´

1´ 1
χpF q´1

¯

n2

2 ` opn
2q edges. Again, an edge density

of 1´ 1
r´1 `op1q implies the existence of a chosen r-colourable graph as a subgraph.

This result might also be viewed as a “resilience” of the complete graph; one may
delete a sizeable fraction of edges from it and one may yet find cliques or really
any chosen graph as a subgraph.
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Dirac’s theorem and local resilience

A slightly different question is which conditions force the existence of a spanning
subgraph, that is, one covering all vertices. Clearly, a bound on the edge density
may not be sufficient as a graph can have

`

n
2

˘

´pn´1q edges and contain an isolated
vertex, which would make it impossible to find any spanning connected subgraphs.
So studying minimum vertex degree conditions instead of density conditions is
one natural way to obtain results on the existence of spanning subgraphs. One
of the first results of this type is Dirac’s theorem on Hamiltonian cycles [16]:
any graph G on n vertices with a minimum degree of at least n{2 contains a
Hamiltonian cycle, that is, a cycle containing all vertices. Corradi and Hajnal [14]
proved that a graph on n vertices with a minimum degree of at least 2n{3 contains
a triangle factor, that is, a set of disjoint triangles covering all but at most two
of the vertices. A result of Hajnal and Szemerédi [25] generalises this and gives
optimal degree conditions guaranteeing the existence of a Kk-factor, that is, a
set of disjoint cliques Kk covering all but at most k ´ 1 vertices of the graph: a
minimum vertex degree of k´1

k
n implies the existence of a Kk-factor. These types

of results represent a “local resilience” of the complete graph as one may delete
some fraction of edges at each vertex and yet find some spanning substructures.
In what be can considered a combination of spanning cycles and small cliques,

Pósa (see [19]) conjectured that any graph with minimum degree at least 2n{3
contains the square of a Hamiltonian cycle, where a square (a pk ´ 1q-st power) is
obtained from a cycle by connecting vertices at distance at most two (at most k´1).
This was generalised by Seymour [57] who conjectured that a minimum degree k´1

k
n

suffices for the existence of the pk ´ 1q-st power of a Hamiltonian cycle. Komlós,
Sárközy, and Szemerédi [39] resolved this conjecture. The main tools in their proof
are the regularity lemma, which was first introduced in the proof of Szemerédi’s
theorem on arithmetic progressions, and the blowup lemma, which was a new
tool by these authors. These two tools enabled proofs of a range of results on
the existence of spanning subgraphs, such as trees, H-factors, and planar graphs
(see, e.g., [40, 41, 43, 45]). Bollobás and Komlós [37] generalised the conjecture
of Pósa and Seymour and conjectured that a similar minimum degree allows the
embedding of subgraphs of chromatic number k that have bounded maximum
degree and small bandwidth, where small bandwidth means that the vertices of the
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graph can be linearly ordered so that no edge connects vertices that are far apart
in the linear order. This so-called bandwidth conjecture can be seen as a common
generalisation of some of the results on spanning subgraphs that were proved using
the blowup lemma. The bandwidth conjecture was proved by Böttcher, Schacht,
and Taraz [11], mostly solving the question of the local resilience of the complete
graph with respect to embedding spanning subgraphs.

Resilience and local resilience in hypergraphs

Both resilience and local resilience results can have generalisations to hypergraphs.
Turán already considered the generalisation of his theorem to hypergraphs and
conjectured that for Kp3q

4 , the complete 3-uniform hypergraph on four vertices,
the required edge density is 5{9. This conjecture is still open and in contrast
to the graph case where most Turán-type questions are solved, very little is
known. However, there has been more process on minimum degree conditions in
hypergraphs forcing the existence of spanning subhypergraphs.
Rödl, Ruciński, and Szemerédi [53, 54] were able to extend Dirac’s theorem

to hypergraphs using (and introducing) the so-called absorbing method. For 3-
uniform hypergraphs they proved that a minimum pair-degree of at least n{2`opnq
implies the existence of a Hamiltonian tight cycle, that is, a cycle where any two
consecutive edges intersect in two vertices. For 3-uniform hypergraphs one may
consider vertex- and pair-degree conditions as well as tight and loose cycles, where
in loose cycles consecutive edges intersect in single vertices. Kühn and Osthus [44]
proved that a minimum pair-degree of at least n{4` opnq implies the existence of
a loose Hamiltonian cycle. Buß, Han, and Schacht [12] proved that a minimum
vertex-degree of at least 7

16

`

n
2

˘

` opn2q implies the existence of a loose Hamiltonian
cycle. The remaining case was recently solved by Reiher, Rödl, Ruciński, Schacht,
and Szemerédi [49], who proved that a minimum vertex degree of 5

9

`

n
2

˘

` opn2q

implies the existence of a tight Hamiltonian cycle.
As one can see from the described results, there are various degree conditions and

types of cycles to consider in hypergraphs and the absorbing method has helped
prove several Dirac-type results in hypergraphs. Whereas there are often many
extremal examples for Turán problems in hypergraphs, for Dirac-type questions
the picture is usually somewhat easier which has allowed optimal bounds to be
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proved. We contribute an optimal minimum pk ´ 2q-degree condition for loose
Hamiltonian cycles in k-uniform hypergraphs (see Section 1.2 in the introduction
and Chapter 2).

The random graph and transference

In probabilistic combinatorics, the random graph Gpn, pq and other random models
have over time evolved from a mere tool used in proofs to a subject of study itself.
One of the first uses of Gpn, pq, the random graph on n vertices where each
edge is included with probability p independently of all other edges, and the
probabilistic method in general was Erdős’s proof [17] of an exponential lower
bound for symmetric Ramsey numbers. Another early application was the proof
by Erdős [18] of the existence of graphs both containing no short cycles and having
high chromatic number.
A more recent development in probabilistic combinatorics has been the “trans-

ference” of properties from complete graphs to random graphs: understanding how
much the random graph behaves like a complete graph or more formally, finding
the threshold probability p “ ppnq that is required for Gpn, pq to have a property
that the complete graph Kn “ Gpn, 1q has. Rödl and Ruciński [50,51] obtained the
threshold for the Ramsey property, one of the first transference results. The Turán
problem in sparse random graphs was recently solved by Conlon and Gowers [13]
and independently by Schacht [56].

Finding sparse transferences of spanning local resilience results however is a more
open area of research. Lee and Sudakov [46] obtained the sparse analogue of Dirac’s
theorem. The main tools to prove more general local resilience statements for sparse
random graphs are the sparse version of the regularity lemma by Kohayakawa
and Rödl [32, 36] and the so-called blowup lemma for sparse graphs by Allen,
Böttcher, Hàn, Kohayakawa, and Person [3]. Extending a result of Allen, Böttcher,
Ehrenmüller, and Taraz [2], who proved a sparse analogue of the bandwidth
theorem for almost spanning subgraphs, we contribute a sparse analogue of the
bandwidth theorem for spanning subgraphs (see Section 1.3 in the introduction
and Chapter 3).
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Ramsey theory

Recall the theorem of Ramsey [48]: for any n, k and r there exists R such that for
every r-colouring of rRspkq, the k-subsets of the first R integers, there existsN Ă rRs

of size n such that N pkq is monochromatic. If one does not want to restrict the
number of colours that can be used, one cannot hope to have a monochromatic
clique but in its absence there is still some structure to be found, as evidenced by
the canonical Ramsey theorem of Erdős and Rado [20]: for every n there exists R
such that for every colouring of the edges of the complete graph KR there exists a
subset N of t1, . . . Ru of size n satisfying the following. All edges on N are of the
same colour or their colours are uniquely and distinctly determined either by their
left vertices, by their right vertices or by both vertices. If one only considers proper
colourings, i.e., colourings where no edges of the same colour meet in a vertex,
only the last alternative can occur which implies the rainbow Ramsey theorem:
for every n there exists R such that for every proper colouring of KR there exists
a rainbow Kn, i.e., one where no two edges are of the same colour.

As mentioned above, Rödl and Ruciński proved the threshold of Gpn, pq for the
Ramsey property. Apart from a few exceptions, for a given graph H this threshold
is roughly the value ppnq for which the expected number of copies of H in Gpn, pq
exceeds the expected number of edges in Gpn, pq. There is no known result for the
threshold for the canonical Ramsey property, one obstacle in this direction being
that the proof of Erdős and Rado for the graph version of the canonical Ramsey
theorem requires Ramsey’s theorem for 4-uniform hypergraphs and no direct proof
is known. The rainbow Ramsey theorem however can also be proved without
resorting to higher uniformities and Kohayakawa, Konstadinidis, and Mota [33]
proved an upper bound on the threshold, which is of the same order of magnitude
as the threshold for the Ramsey property. Nenadov, Person, Škorić and Steger [47]
proved the matching lower bound for cliques on at least 19 vertices and cycles on
at least 7 vertices. We contribute a matching lower bound for cliques on at least
five vertices and a new upper and matching lower bound for K4 (see Section 1.4 in
the introduction and Chapter 4).
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1.2 Hamiltonian cycles

A frequent question in graph theory is which abstract graph properties force the
existence of a Hamiltonian cycle, that is, a cycle containing all vertices of the
graph. Recall Dirac’s theorem on Hamiltonian cycles in graphs.

Theorem 1 (Dirac [16]). Any graph G with minimum degree δpGq ě |G|
2 contains

a Hamiltonian cycle.

For simple graphs, this result has been generalised to give optimal conditions
for the existence of a Hamiltonian cycle based on the degree sequence of a graph.
Obtaining minimum degree conditions forcing the existence of Hamiltonian cycles
for hypergraphs is a more recent area of study. In the following, we will work
with the following notion of cycle in a hypergraph. We say that a k-uniform
hypergraph C is an `-cycle if there exists a cyclic ordering of its vertices such that
every edge of C is composed of k consecutive vertices, two (vertex-wise) consecutive
edges share exactly ` vertices, and every vertex is contained in an edge. Moreover,
if the ordering is not cyclic, then C is an `-path and we say that the first and last `
vertices are the ends of the path. Just like in the graph case, we say that an `-cycle
in a hypergraph is Hamiltonian if it contains all vertices of the hypergraph.
Given a k-uniform hypergraph H “ pV,Eq and a set S P V psq of s vertices, we

denote by dpSq the number of edges in E containing S and we denote by NpSq
the pk ´ sq-element sets T P V pk´sq such that T Ÿ S P E, so dpSq “ |NpSq|. The
minimum s-degree of H is denoted by δspHq and it is defined as the minimum
of dpSq over all sets S P V psq.

In a k-uniform hypergraphs there are k´ 1 different types of `-cycles to consider,
namely for all values of ` between 1 and k´1. Similarly, there are various minimum
degrees δs to consider, for all values of s between 1 and k ´ 1, since the edge
density δ0 is not sufficient to find a spanning structure. Different types of `-cycles
might require different minimum degree conditions, so for any k there are pk ´ 1q2

possible generalisations of Dirac’s theorem to k-uniform hypergraphs. One would
expect that `-cycles are somewhat “harder” to find for higher values of `, i.e.,
they require a higher minimum degree, since for example a 2-cycle in a 3-uniform
hypergraph contains a 1-cycle if the number of vertices is even. Similarly, having
a minimum degree condition on larger sets of vertices is “stronger”: for example a
minimum 2-degree implies a minimum vertex degree.
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If one obtains a minimum degree condition for the existence of a Hamiltonian
cycle, ideally it should be optimal in the following sense: There is an extremal
example, that is, a hypergraph that does not contain a Hamiltonian cycle, with
minimum degree just below the obtained bound. We say that a δs-degree condition
for k-uniform hypergraphs is asymptotically optimal if there is an example not
containing a Hamiltonian cycle with just opnk´sq fewer edges. To see that the
minimum degree condition in Dirac’s theorem is optimal, one may consider a
complete bipartite graph where one side has just below n{2 vertices. Clearly a
cycle in a bipartite graph needs to contain the same number of vertices from both
sides of the bipartion, so an unbalanced bipartite graph contains no Hamiltonian
cycle.
The problem of finding minimum degree conditions that ensure the existence

of Hamiltonian cycles in hypergraphs has been extensively studied over the last
years (see, e.g., the surveys [52, 60]). Katona and Kierstead [30] started the study
of this problem, posing a conjecture that was later confirmed by Rödl, Ruciński,
and Szemerédi, who proved the following result.

Theorem 2 (Rödl, Ruciński, Szemerédi [53, 54]). For every k ě 3, if H is a
k-uniform n-vertex hypergraph with δk´1pHq ě p1{2` op1qqn, then H contains a
Hamiltonian pk ´ 1q-cycle.

This result is an asymptotically optimal generalisation of Dirac’s theorem to
hypergraphs. Kühn and Osthus [44] proved the asymptotically optimal condi-
tion δ2pHq ě p1{4` op1qqn for 1-cycles in 3-uniform hypergraphs H. Hàn and
Schacht [26] (see also [31]) generalised this result to a pk ´ 1q-degree condition for
arbitrary k and `-cycles with 1 ď ` ă k{2. In [42], Kühn, Mycroft, and Osthus
generalised this result to 1 ď ` ă k, settling the problem of the existence of
Hamiltonian `-cycles in k-uniform hypergraphs with large minimum pk´ 1q-degree.
The first conditions for minimum pk ´ 2q-degree were obtained by Buß, Hàn,

and Schacht who obtained the following result.

Theorem 3 (Buß, Hàn, Schacht [12]). For every γ ą 0 there exists an n0 such
that every 3-uniform hypergraph H “ pV,Eq on |V | “ n ě n0 vertices with n P 2N
and

δ1pHq ě
ˆ

7
16 ` γ

˙ˆ

n

2

˙

contains a Hamiltonian 1-cycle.
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|A| “ tn{4u B

epBq “ 0

Figure 1.1: The 3-uniform extremal hypergraph X3,1pnq

(one edge per size of intersection with A drawn)

Recently, Reiher, Rödl, Ruciński, Schacht, and Szemerédi [49] showed the
asymptotically optimal minimum 1-degree condition δ1pHq ě p5{9` op1qq

`

n
2

˘

for
the existence of 2-cycles in 3-uniform hypergraphs. In Theorem 4 below we have a
generalisation of Theorem 3 to higher uniformities.

Theorem 4 (Bastos, Mota, Schacht, S., Schulenburg [4]). For all integers k ě 3
and 1 ď ` ă k{2 and every γ ą 0 there exists an n0 such that every k-uniform
hypergraph H “ pV,Eq on |V | “ n ě n0 vertices with n P pk ´ `qN and

δk´2pHq ě
ˆ

4pk ´ `q ´ 1
4pk ´ `q2

` γ

˙ˆ

n

2

˙

contains a Hamiltonian `-cycle.

All the theorems seen so far for hypergraphs were only asymptotically optimal.
The example showing the optimality of Dirac’s theorem can be extended to
hypergraphs by choosing a vertex subset of a small enough size and taking all
edges incident to it: The construction of the example varies slightly depending on
whether n, the size of the example hypergraph, is an odd or an even multiple of k´`.
We first consider the case that n is an odd multiple of pk´ `q here, the (minimally)
different constuction for even multiples is given below. Let Xk,`pnq “ pV,Eq be a
k-uniform hypergraph on n vertices such that an edge belongs to E if and only if
it contains at least one vertex from A Ă V , where |A| “

Y

n
2pk´`q

]

(see Figure 1.1).
It is easy to see that Xk,`pnq contains no Hamiltonian `-cycle for ` ă k{2, as it
would have to contain n

k´`
edges and each vertex in A is contained in at most two

of them.
Let us now consider the case that n is an even multiple of k ´ `. Similarly,

let Xk,`pnq “ pV,Eq be a k-uniform hypergraph on n vertices that contains all edges
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incident to A Ă V , where |A| “ n
2pk´`q ´ 1. Additionally, fix some ` ` 1 vertices

of B “ V r A and let Xk,`pnq contain all edges on B that contain all of these
vertices, that is, an p`` 1q-star. Again, of the n

k´`
edges that a Hamiltonian `-cycle

would have to contain, at most n
k´`

´ 2 can be incident to A. So two edges would
have to be completely contained in B and be disjoint or intersect in exactly `
vertices, which is impossible since the induced subhypergraph on B only contains
an p`` 1q-star. Note that for the minimum pk ´ 2q-degree the p`` 1q-star on B is
only relevant if ` “ 1, in which case this star increases the minimum pk´ 2q-degree
by one.
In [28], Han and Zhao proved the optimal version of Theorem 3. We extend

this to k-uniform hypergraphs in the following theorem, i.e., we prove the optimal
version of Theorem 4.

Theorem 5. For all integers k ě 4 and 1 ď ` ă k{2 there exists n0 such that
every k-uniform hypergraph H “ pV,Eq on |V | “ n ě n0 vertices with n P pk´ `qN
and

δk´2pHq ą δk´2pXk,`pnqq

contains a Hamiltonian `-cycle. In particular, if

δk´2pHq ě
4pk ´ `q ´ 1

4pk ´ `q2
ˆ

n

2

˙

,

then H contains a Hamiltonian `-cycle.

The proof of Theorem 5 is the topic of Chapter 2.

1.3 Spanning subgraphs in sparse graphs

A main area of study in extremal graph theory has been the transference of
extremal results in dense graphs to sparse graphs. Another way to think about
Dirac’s theorem is the following: In Kn, the complete graph on n vertices, one
may delete about half the edges, tn{2u to be precise, at each vertex and will
obtain a graph containing a Hamiltonian cycle. We define the local resilience of a
graph G with respect to a monotone increasing graph property P as the minimum
number of edges m such that one may obtain a graph not having the property P
by deleting at most m edges at each vertex of G. So, again rephrasing Dirac’s

9



theorem, the complete graph Kn “ Gpn, 1q has local resilience tn{2u with respect
to Hamiltonicity. Sudakov and Vu [58] initiated the study of resilience in random
(and pseudo-random) graphs and Lee and Sudakov resolved their following question
concerning the local resilience of Gpn, pq with respect to Hamiltonicity. We say
that a property P holds asymptotically almost surely (a.a.s.) for Gpn, pq if the
probability that Gpn, pq P P tends to 1 as n tends to infinity.

Theorem 6 (Lee, Sudakov [46]). For every positive ε, there exists a constant
C “ Cpεq such that for p ě C logn

n
asymptotically almost surely every subgraph of

Gpn, pq with minimum degree at least p1{2` εqnp is Hamiltonian.

Note that this result is best possible (up to the constant C), as for p ď logn
n

the random graph Gpn, pq will almost surely contain vertices of degree at most
one. In addition to Hamiltonian cycles, resilience results for Gpn, pq have been
obtained for a wide range of graphs such as powers of Hamiltonian cycles, trees,
or F -factors for any fixed F . What all these graph have in common is bounded
degree and small bandwidth; the bandwidth of a graph H is the minimum b such
that there is an injective labelling of the vertex set of H by integers with |i´ j| ă b

for every edge ti, ju in H. It was conjectured by Bollobás and Komlós that these
resilience results for the complete graph could be extended to guarantee existence
of subgraphs of small bandwidth, bounded maximum degree and chromatic number.
This conjecture was resolved by Böttcher, Schacht, and Taraz who proved the
following, which is also known as the bandwidth theorem.

Theorem 7 (Böttcher, Schacht, Taraz [11]). For every γ ą 0, ∆ ě 2, and k ě 1,
there exist β ą 0 and n0 ě 1 such that for every n ě n0 the following holds. If G
is a graph on n vertices with minimum degree δpGq ě

`

k´1
k
` γ

˘

n and if H is a
k-colourable graph on n vertices with maximum degree ∆pHq ď ∆ and bandwidth
at most βn, then G contains a copy of H.

Similar to the transference obtained for Dirac’s theorem, one would like to
generalise it by transferring the bandwidth theorem to random graphs. This
was done by Allen, Böttcher, Ehrenmüller, and Taraz who proved the following
statement.

Theorem 8 (Allen, Böttcher, Ehrenmüller, Taraz [2]). For each γ ą 0, ∆ ě 2,
and k ě 1, there exist constants β˚ ą 0 and C˚ ą 0 such that the following
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holds asymptotically almost surely for Γ “ Gpn, pq if p ě C˚
` logn

n

˘1{∆. Let G be
a spanning subgraph of Γ with δpGq ě

`

k´1
k
` γ

˘

pn, and let H be a k-colourable
graph on n vertices with ∆pHq ď ∆, bandwidth at most β˚n, and with at least
C˚p´2 vertices which are not contained in any triangles of H. Then G contains a
copy of H.

Note that this is not a straightforward transference of the bandwidth theorem
as it contains the additional restriction that some vertices are not contained in
any triangles, or, alternatively one only finds an almost spanning embedding
of low-bandwidth k-colourable graphs of maximum degree ∆. The additional
restriction is necessary however, which can be seen as follows if p ! n. By deleting
all edges in the neighbourhood of a vertex v P Gpn, pq, which ensures that v is
contained in no triangle, one would only remove Opnp2q ! np edges at each vertex.
Indeed one can, only removing a small fraction of the edges at each vertex, ensure
that Ωpp´2q vertices have independent sets as neighbourhoods. Similarly, one could
make neighbourhoods of Ωpp´2q vertices bipartite, again by only removing a tiny
fraction of edges at each vertex, which would prevent the existence of a K4-factor.
So keeping neighbourhoods non-independent is not enough to drop the requirement
that some vertices are not contained in any triangles, but the following statement
along those lines holds.

Theorem 9. For each γ ą 0, ∆ ě 2, k ě 2 and 0 ď s ď k ´ 1, there exist
constants β˚ ą 0 and C˚ ą 0 such that the following holds asymptotically almost
surely for Γ “ Gpn, pq if p ě C˚

` logn
n

˘1{∆. Let G be a spanning subgraph of Γ with
δpGq ě

`

k´1
k
` γ

˘

pn, such that for each v P V pGq there are at least γpp
s
2qppnqs

copies of Ks in NGpvq. Let H be a graph on n vertices with ∆pHq ď ∆, bandwidth
at most β˚n and suppose that there is a proper k-colouring of V pHq and at least
C˚p´2 vertices in V pHq whose neighbourhood contains only s colours. Then G

contains a copy of H.

The proof of Theorem 9 is the topic of Chapter 3.
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1.4 Anti-Ramsey

Recall Ramsey’s theorem.

Theorem 10 (Ramsey [48]). For any positive integers n, k, and r there exists R
such that the following holds. For any r-colouring of the k-subsets of rRs, the first
R integers, there exists a subset N Ă rRs of size n such that all k-sets on N are
of the same colour.

This result initiated Ramsey theory, the study of obtaining large homogeneous
substructures in graphs and other combinatorial structures. For this topic, we will
only consider 2-graphs. Let r be a positive integer and let G and H be graphs.
We denote by GÑ pHqr the property that any colouring of the edges of G with
at most r colours contains a monochromatic H in G. Ramsey’s theorem states
that for every n and r there exists R such that KR Ñ pKnqr. If one were to drop
the requirement that only a bounded number of colours is used, it is clearly futile
to hope that one might find a large monochromatic subgraph. One of the oldest
generalisations of Ramsey’s theorem is the so-called canonical Ramsey theorem,
which we state here for the graph case.

Theorem 11 (Erdős, Rado [20]). For any n there exists R such that the following
holds. Suppose that the edges of the complete graph KR are arbitrarily coloured.
Then there exists a subset N of V pKRq of size n such that one of the four conditions
holds for all a ă b, c ă d P N .

(i) All edges on N are of the same colour.

(ii) ta, bu and tc, du are of the same colour if and only if a “ c.

(iii) ta, bu and tc, du are of the same colour if and only if b “ d.

(iv) ta, bu and tc, du are of the same colour if and only if a “ c and b “ d.

If we require that the colouring be proper, i.e., the colours of edges containing
any fixed vertex are all distinct, only item (iv) is possible. Note that item (iv)
means that the colouring is rainbow on N , that is, all pairs in N are given distinct
colours. Given graphs H and G, we are interested in the following ‘anti-Ramsey’
notion, denoted by G rb

ÝÑp H: for every proper edge-colouring of G, there exists
a rainbow H in G, i.e., a copy of H with no two edges of the same colour. The
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term ‘anti-Ramsey’ can be understood as follows: rather then trying to obtain a
colouring which is constant on a large subgraph, we want to obtain a colouring
which is injective on a large subgraph.

For fixed G, the graph properties G Ñ pHqr and G
rb
ÝÑp H are monotone, i.e.,

if they hold in a subgraph of G1 Ď G then they also hold in G. Since they hold
in large enough complete graphs one could hope to obtain the threshold for this
property. We say that pP “ pPpnq is the threshold for a graph property P if the
following holds.

PpGpn, pq P Pq Ñ

$

&

%

1, if p " pPpnq,

0, if p ! pPpnq,

Rödl and Ruciński determined the threshold for the property Gpn, pq Ñ pHqr

for all graphs H. The maximum 2-density mp2qpHq of a graph H on at least three
vertices is denoted by

mp2q
pGq “ max

"

|EpJq| ´ 1
|V pJq| ´ 2 : J Ă H, |V pJq| ě 3

*

.

Theorem 12 (Rödl, Ruciński [50, 51]). Let H be a graph that is not a forest
of stars or if r “ 2, paths of length 3. Then, the threshold pH “ pHpnq for the
property Gpn, pq Ñ pHqr is given by pHpnq “ n´1{mp2qpHq.

Since the property Gpn, pq rb
ÝÑp H is monotone for every fixed graph H, we know

that it admits a threshold function prb
H “ prb

H pnq [8]. The study of anti-Ramsey
properties of random graphs was initiated by Rödl and Tuza, who proved in [55]
that for every ` there exists a fairly small p, such that Gpn, pq rb

ÝÑp C` almost surely.
The following result gives an upper bound for the threshold prb

H for any fixed
graph H.

Theorem 13 (Kohayakawa, Konstadinidis, Mota [33]). Let H be a fixed graph.
Then there exists a constant C ą 0 such that for p “ ppnq ě Cn´1{mp2qpHq we have
Gpn, pq

rb
ÝÑp H almost surely.

In particular, Theorem 13 implies prb
H ď n´1{mp2qpHq. For the Ramsey property

Gpn, pq Ñ pHqr, the graphs for which the threshold is not given by the 2-density
are forests of stars or if r “ 2, paths of length 3. For example for a star with k
edges, the threshold is determined by the appearance of a star with rpk ´ 1q ` 1
edges. For the rainbow Ramsey property, the triangle is the only example for
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which the threshold is easily seen to be below the function given by the 2-density
as any properly coloured triangle is rainbow. In [34] it was proved that there are
infinitely many graphs H for which the threshold is asymptotically smaller than
n´1{mp2qpHq. These graphs consist of the “amalgamation” of a triangle and a sparse
graph like a cycle, i.e., a cycle where two adjacent vertices have been connected to
a new additional vertex. Recently, it was proved that for sufficiently large cycles
and complete graphs the lower bound on the threshold matches the upper bound
given in Theorem 13.

Theorem 14 (Nenadov, Person, Škorić, Steger [47]). Let H be a cycle on at least
7 vertices or a complete graph on at least 19 vertices. Then prb

H “ n´1{mp2qpHq.

The authors of the above result remark that it could hold for all cycles and
complete graphs of size at least 4. We prove that Theorem 14 can be extended
to complete graphs of size at least 5, but not for K4. In fact, we can show that
if H is a connected graph on 4 vertices, then prb

H is asymptotically smaller than
n´1{mp2qpHq.

Theorem 15. For k ě 5, prb
Kk
“ n´1{mp2qpKkq. Furthermore, prb

K4 “ n´7{15.

The proof of Theorem 15 is the topic of Chapter 4.
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2 Hamiltonian cycles in hypergraphs

In this chapter, we will prove the following result.

Theorem 16. For all integers k ě 4 and 1 ď ` ă k{2 there exists n0 such that
every k-uniform hypergraph H “ pV,Eq on |V | “ n ě n0 vertices with n P pk´ `qN
and

δk´2pHq ą δk´2pXk,`pnqq (2.1)

contains a Hamiltonian `-cycle. In particular, if

δk´2pHq ě
4pk ´ `q ´ 1

4pk ´ `q2
ˆ

n

2

˙

,

then H contains a Hamiltonian `-cycle.

The following notion of extremality is motivated by the extremal example
hypergraph Xk,`pnq. A k-uniform hypergraph H “ pV,Eq is called p`, ξq-extremal
if there exists a partition V “ A ŸB such that

|A| “

R

n

2pk ´ `q ´ 1
V

, |B| “

Z

2pk ´ `q ´ 1
2pk ´ `q n` 1

^

,

and epBq “ |E XBpkq| ď ξ
`

n
k

˘

. We say that A ŸB is an p`, ξq-extremal partition
of V . Theorem 16 follows easily from the next two results, the so-called extremal
case (see Theorem 18 below) and the non-extremal case (see Theorem 17).

Theorem 17 (Non-extremal case). For any 0 ă ξ ă 1 and all integers k ě 4 and
1 ď ` ă k{2, there exists γ ą 0 such that the following holds for sufficiently large
n. Suppose H is a k-uniform hypergraph on n vertices with n P pk´ `qN such that
H is not p`, ξq-extremal and

δk´2pHq ě
ˆ

4pk ´ `q ´ 1
4pk ´ `q2

´ γ

˙ˆ

n

2

˙

.

Then H contains a Hamiltonian `-cycle.

The non-extremal case was the main result of [4].
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Theorem 18 (Extremal case). For any integers k ě 3 and 1 ď ` ă k{2, there
exists ξ ą 0 such that the following holds for sufficiently large n. Suppose H is a
k-uniform hypergraph on n vertices with n P pk´`qN such that H is p`, ξq-extremal
and

δk´2pHq ą δk´2pXk,`q.

Then H contains a Hamiltonian `-cycle.

In Section 2.1 we give an overview of the proof of Theorem 18 and state Lemma 19,
the main result required for the proof. In Section 2.2 we first prove some auxiliary
lemmas and then we prove Lemma 19.

2.1 Overview

Let H “ pV,Eq be a k-uniform hypergraph and let X, Y Ă V be disjoint subsets.
Given a vertex set L Ă V we denote by dpL,XpiqY pjqq the number of edges of the
form LY I Y J , where I P Xpiq, J P Y pjq, and |L| ` i` j “ k. We allow for Y pjq

to be omitted when j is zero and write dpv,XpiqY pjqq for dptvu, XpiqY pjqq.
The proof of Theorem 18 follows ideas from [27], where a corresponding result

with a pk ´ 1q-degree condition is proved. Let H “ pV,Eq be an extremal
hypergraph satisfying (2.1). We first construct an `-path Q in H (see Lemma 19
below) with ends L0 and L1 such that there is a partition A˚ŸB˚ of pVrQqYL0YL1

composed only of “typical” vertices (see (ii) and (iii) below). The set A˚ Y B˚

is suitable for an application of Lemma 20 below, which ensures the existence
of an `-path Q1 on A˚ Y B˚ with L0 and L1 as ends. Note that the existence of
a Hamiltonian `-cycle in H is guaranteed by Q and Q1. So, in order to prove
Theorem 18, we only need to prove the following lemma.

Lemma 19 (Main lemma). For any % ą 0 and all integers k ě 3 and 1 ď ` ă k{2,
there exists a positive ξ such that the following holds for sufficiently large n P
pk ´ `qN. Suppose that H “ pV,Eq is an p`, ξq-extremal k-uniform hypergraph
on n vertices and

δk´2pHq ą δk´2pXk,`pnqq.

Then there exists a non-empty `-path Q in H with ends L0 and L1 and a partition
A˚ ŸB˚ “ pV rQq Y L0 Y L1 where L0, L1 Ă B˚ such that the following hold:
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(i) |B˚| “ p2k ´ 2`´ 1q|A˚| ` `,

(ii) dpv,Bpk´1q
˚ q ě p1´ %q

`

|B˚|
k´1

˘

for any vertex v P A˚,

(iii) dpv, Ap1q˚ B
pk´2q
˚ q ě p1´ %q|A˚|

`

|B˚|
k´2

˘

for any vertex v P B˚,

(iv) dpL0, A
p1q
˚ B

pk´`´1q
˚ q, dpL1, A

p1q
˚ B

pk´`´1q
˚ q ě p1´ %q|A˚|

`

|B˚|
k´`´1

˘

.

The next result, which we will use to conclude the proof of Theorem 18, was
obtained by Han and Zhao (see [27, Lemma 3.10]).

Lemma 20. For any integers k ě 3 and 1 ď ` ă k{2 there exists % ą 0 such
that the following holds. If H is a sufficiently large k-uniform hypergraph with a
partition V pHq “ A˚ Ÿ B˚ and there exist two disjoint `-sets L0, L1 Ă B˚ such
that (i)–(iv) hold, then H contains a Hamiltonian `-path Q1 with L0 and L1 as
ends.

2.2 Proof of the main lemma

We will start this section by describing the setup for the proof, which will be fixed
for the rest of the chapter. Then we will prove some auxiliary lemmas and finally
prove Lemma 19. Let % ą 0 and integers k ě 3 and 1 ď ` ă k{2 be given. Fix
constants

1
k
,
1
`
, % " δ " ε " ε1 " ϑ " ξ,

where “" x” denotes that x is chosen sufficiently small with respect to all constants
to its left. Let n P pk ´ `qN be sufficiently large and let H be an p`, ξq-extremal
k-uniform hypergraph on n vertices that satisfies the pk ´ 2q-degree condition

δk´2pHq ą δk´2pXk,`pnqq.

Let A Ÿ B “ V pHq be a minimal extremal partition of V pHq, i.e. a partition
satisfying

a “ |A| “

R

n

2pk ´ `q

V

´ 1, b “ |B| “ n´ a, and epBq ď ξ

ˆ

n

k

˙

, (2.2)

which minimises epBq. Recall that the extremal example Xk,`pnq implies

δk´2pHq ą
ˆ

a

2

˙

` apb´ k ` 2q. (2.3)

17



Since epBq ď ξ
`

n
k

˘

, we expect most vertices v P B to have low degree dpv,Bpk´1qq

into B. Also, most v P A must have high degree dpv,Bpk´1qq into B such that the
degree condition for pk ´ 2q-sets in B can be satisfied. Thus, we define the sets Aε
and Bε to consist of vertices of high respectively low degree into B by

Aε “

"

v P V : dpv,Bpk´1q
q ě p1´ εq

ˆ

|B|

k ´ 1

˙*

,

Bε “

"

v P V : dpv,Bpk´1q
q ď ε

ˆ

|B|

k ´ 1

˙*

,

and set Vε “ V r pAε YBεq. We will write aε “ |Aε|, bε “ |Bε|, and vε “ |Vε|. It
follows from these definitions that

if AXBε ‰ ∅, then B Ă Bε, while otherwise A Ă Aε. (2.4)

For the first inclusion, consider a vertex v P A X Bε and a vertex w P B r Bε.
Exchanging v and w would create a minimal partition with fewer edges in epBq, a
contradiction to the minimality of the extremal partition. The other inclusion is
similarly implied by the minimality.

Actually, as we shall show below, the sets Aε and Bε are not too different from A

and B respectively:

|Ar Aε|, |B rBε|, |Aε r A|, |Bε rB| ď ϑb and |Vε| ď 2ϑb. (2.5)

Note that by the minimum pk ´ 2q-degree
ˆ

a

2

˙ˆ

b

k ´ 2

˙

` a

ˆ

b

k ´ 1

˙

pk ´ 1q ă
ˆ

b

k ´ 2

˙

δk´2pHq ď
ÿ

SPBpk´2q

dpSq.

Every vertex v P |Ar Aε| satisfies dpv,Bpk´1qq ă p1´ εq
`

b
k´1

˘

, so we have

ÿ

SPBpk´2q

dpSq ď

ˆ

a

2

˙ˆ

b

k ´ 2

˙

` a

ˆ

b

k ´ 1

˙

pk ´ 1q

` epBq

ˆ

k

2

˙

´ |Ar Aε|ε

ˆ

b

k ´ 1

˙

pk ´ 1q.

Consequently |Ar Aε| ď ϑb, as epBq ă ξ
`

n
k

˘

and ξ ! ϑ, ε.
Moreover, |B r Bε| ď ϑb holds as a high number of vertices in B r Bε would

contradict epBq ă ξ
`

b
k

˘

. The other three inequalities (2.5) follow from the already
shown ones, for example for |Aε r A| ă ϑb observe that

Aε r A “ Aε XB Ă B rBε.
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Although the vertices in Bε were defined by their low degree into B, they also
have low degree into the set Bε itself; for any v P Bε we get

dpv,Bpk´1q
ε q ď dpv,Bpk´1q

q ` |Bε rB|

ˆ

|Bε| ´ 1
k ´ 2

˙

ď ε

ˆ

b

k ´ 1

˙

` ϑb|Bε|
k´1

ă 2ε
ˆ

|Bε|

k ´ 1

˙

.

Since we are interested in `-paths, the degree of `-tuples in Bε will be of interest,
which motivates the following definition. An `-set L Ă Bε is called ε-typical if

dpL,Bpk´`qq ď ε

ˆ

|B|

k ´ `

˙

.

If L is not ε-typical, then it is called ε-atypical. Indeed, most `-sets in Bε are
ε-typical; denote by x the number of ε-atypical sets in Bε. We have

x ¨ ε
`

|B|
k´`

˘

`

k
`

˘ ď epB YBεq ď ξ

ˆ

n

k

˙

` ϑ|B|k, implying x ď ε1
ˆ

|Bε|

`

˙

. (2.6)

Lemma 21. The following holds for any Bpmqε -set M if m ď k ´ 2.

dpM,Ap1qε Bpk´m´1q
ε q `

k ´m

2 dpM,Bpk´mqε q ě p1´ δq |Aε|
ˆ

|Bε| ´m

k ´m´ 1

˙

.

In particular, the following holds for any ε-typical Bp`q-set L.

dpL,Ap1qε Bpk´`´1q
ε q ě p1´ 2δq|Aε|

ˆ

|Bε| ´ `

k ´ `´ 1

˙

.

In the proof of the main lemma we will connect two ε-typical sets only using
vertices that are unused so far. Even more, we want to connect two ε-typical sets
using exactly one vertex from A. The following corollary of Lemma 21 allows us
to do this.

Corollary 22. Let L and L1 be two disjoint ε-typical sets in Bε and U Ă V

with |U | ď εn. Then the following holds.

(a) There exists an `-path disjoint from U of size two with ends L and L1 that
contains exactly one vertex from Aε.

(b) There exist a P Aε r U and a set pk ´ ` ´ 1q-set C Ă Bε r U such that
LY aY C is an edge in H and every `-subset of C is ε-typical.
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Proof of Corollary 22. For (a), the second part of Lemma 21 for L and L1 im-
plies that they both extend to an edge with at least p1 ´ 2δq|Aε|

`

|Bε|´`
k´`´1

˘

sets
in Ap1qε Bpk´`´1q

ε . Only few of those intersect U and by an averaging argument we
obtain two sets C,C 1 P Ap1qε Bpk´`´1q

ε such that |C X C 1| “ ` and L Y C as well
as L1 Y C 1 are edges in H, which yields the required `-path. In view of (2.6), (b)
is a trivial consequence of the second part of Lemma 21.

Proof of Lemma 21. Let m ď k ´ 2 and let M P Bpmqε be an m-set. We will make
use of the following sum over all pk ´ 2q-sets D Ă Bε that contain M .

ÿ

MĂDĂBε
|D|“k´2

dpDq “
ÿ

MĂDĂBε
|D|“k´2

´

dpD,Ap1qε Bp1qε q ` dpD, pAε Y Vεq
p2q
q

` dpD,Bp2qε q ` dpD, V
p1q
ε Bp1qε q

¯

(2.7)

Note that we can relate the sums
ř

dpD,Ap1qε Bp1qε q and
ř

dpD,Bp2qε q in (2.7) to
the terms in question as follows.

dpM,Ap1qε Bpk´m´1q
ε q “

1
k ´m´ 1

ÿ

MĂDĂBε
|D|“k´2

dpD,Ap1qε Bp1qε q,

dpM,Bpk´mqε q “
1

`

k´m
2

˘

ÿ

MĂDĂBε
|D|“k´2

dpD,Bp2qε q.
(2.8)

We will bound some of the terms on the right-hand side of (2.7). It directly follows
from (2.5) that dpD, pAε Y Vεqp2qq ď

`

a`3ϑb
2

˘

; moreover, dpD, V p1qε Bp1qε q ď 2ϑbbε.
Using the minimum pk ´ 2q-degree condition (2.3) we obtain

ÿ

MĂDĂBε
|D|“k´2

dpDq ą

ˆ

bε ´m

k ´m´ 2

˙ˆˆ

a

2

˙

` apb´ k ` 2q
˙

.

Combining these estimates with (2.7) and (2.8) yields

dpM,Ap1qε Bpk´m´1q
ε q `

k ´m

2 dpM,Bpk´mqε q

ě
1

k ´m´ 1

ˆ

bε ´m

k ´m´ 2

˙ˆˆ

a

2

˙

` apb´ k ` 2q ´
ˆ

a` 3ϑb
2

˙

´ 2ϑbbε
˙

ě p1´ δq aε
ˆ

bε ´m

k ´m´ 1

˙

.

For the second part of the lemma, note that the definition of ε-typicality and ε ! δ

imply that k´`
2 dpL,Bpk´`qε q is smaller than δaε

`

bε´`
k´`´1

˘

for any ε-typical `-set L,
which concludes the proof.
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For Lemma 19, we want to construct an `-path Q, such that Vε Ă V pQq and the
remaining sets Aε rQ and Bε rQ have the right relative proportion of vertices,
i.e., their sizes are in a ratio of one to p2k ´ 2`´ 1q. If |AXBε| ą 0, then B Ă Bε

(see (2.4)) and so Q should cover Vε and contain the right number of vertices
from Bε. For this, we have to find suitable edges inside Bε, which the following
lemma ensures.

Lemma 23. Suppose that q “ |A X Bε| ą 0. Then there exist 2q ` 2 disjoint
paths of size three, each of which contains exactly one vertex from Aε and has two
ε-typical sets as its ends.

Proof. We say that an p` ´ 1q-set M Ă Bε is good if it is a subset of at least
p1 ´

?
ε1qbε ε-typical sets, otherwise we say that the set is bad. We will first

show that there are 2q ` 2 edges in Bε, each containing one ε-typical and one
good p`´ 1q-set. Then we will connect pairs of these edges to `-paths of size three.

Suppose that q “ |A X Bε| ą 0. So B Ă Bε by (2.4) and consequently
|Bε| “ |B| ` q and q ď ϑ|B|. It is not hard to see from (2.6) that at most a

?
ε1

fraction of the p`´ 1q-sets in Bpl´1q
ε are bad. Hence, at least

ˆ

1´
ˆ

k ´ 2
`

˙

ε1 ´

ˆ

k ´ 2
`´ 1

˙

?
ε1
˙ˆ

b

k ´ 2

˙

pk ´ 2q-sets in Bε contain no ε-atypical or bad subset. Let B Ă Bpkqε be the set
of edges inside Bε that contain such a pk ´ 2q-set. For all M P Bpk´2q

ε , by the
minimum degree condition, we have dpM,Bp2qε q ě qpb´ k ` 2q `

`

q
2

˘

and, with the
above, we have

|B| ě
ˆ

1´
ˆ

k ´ 2
`

˙

ε1 ´

ˆ

k ´ 2
`´ 1

˙

?
ε1
˙ˆ

b

k ´ 2

˙

qpb´ k ` 2q
`

k
2

˘

“

ˆ

1´
ˆ

k ´ 2
`

˙

ε1 ´

ˆ

k ´ 2
`´ 1

˙

?
ε1
˙ˆ

b

k ´ 1

˙

2q
k
ě
q

k

ˆ

b

k ´ 1

˙

.

On the other hand, for any v P Bε we have dpv,Bpk´1q
ε q ă 2ε

`

bε

k´1

˘

which implies
that any edge in B intersects at most 2kε

`

bε

k´1

˘

other edges in B. So, in view
of ε ! 1

k
we may pick a set B1 of 2q ` 2 disjoint edges in B.

We will connect each of the edges in B1 to an ε-typical set. Assume we have
picked the first i´ 1 desired `-paths, say P1, . . . ,Pi´1, and denote by U the set of
vertices contained in one of the paths or one of the edges in B1. For the rest of
this proof, when we pick vertices and edges, they shall always be disjoint from U
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and everything chosen before. Let e be an edge in B1 we have not considered yet
and pick an arbitrary ε-typical set L1 Ă Bε r U .
We will first handle the cases that 2`` 1 ă k or that ` “ 1, k “ 3. In the first

case, a pk ´ 2q-set that contains no ε-atypical set already contains two disjoint
ε-typical sets. In the second case, an `-set tvu is ε-typical for any vertex v in Bε by
the definition of ε-typicality. Hence in both cases e contains two disjoint ε-typical
sets, say L0 and L1. We can use Corollary 22 (a), as |U | ď 6kq, to connect L1

to L1 and obtain an `-path Pi of size three that contains one vertex in Aε and has
ε-typical ends L0 and L1.

So now assume that 2`` 1 “ k and k ą 3, in particular k ´ 2 “ 2`´ 1 and we
may split the pk ´ 2q-set considered in the definition of B into an ε-typical `-set L
and a good p`´ 1q-set G. Moreover, let w P er pLYGq be one of the remaining
two vertices and set N “ GY w.
First assume that dpN,Ap1qε Bp`qε q ě

δ
3aε

`

bε

`

˘

. As ϑ ! δ, at most δ
3aε

`

b
`

˘

sets
in Ap1qε Bp`qε intersect U . So it follows from Lemma 21 that there exist Ap1qε Bp`qε -
sets C, C 1 such that NYC and L1YC 1 are edges, |CXC 1| “ ` and |CXC 1XAε| “ 1.

Now assume that dpN,Ap1qε Bp`qε q ă
δ
3aε

`

bε

`

˘

. As the good set G forms an ε-typical
set with most vertices in Bε, there exists v P Bε r U such that

dpN Y tvu, Ap1qε Bp`´1q
ε q ă δaε

ˆ

bε
`´ 1

˙

and GY tvu is an ε-typical set. Lemma 21 implies that

dpN Y tvu, Bp`qε q ě
2
`

ˆ

p1´ δqaε
ˆ

bε ´ p`` 1q
`´ 1

˙

´ δaε

ˆ

bε
`´ 1

˙˙

ě
2
`

ˆ

1
2 ´ 2δ

˙

aε

ˆ

bε
`´ 1

˙

ě δ

ˆ

bε
`

˙

.

So there exists an ε-typical `-set L˚ Ă pBεrUq such that N YL˚Ytvu is an edge
in H. Use Lemma 22 (a) to connect L˚ to L1 and obtain an `-path Pi of size three
that contains one vertex in Aε and has ε-typical ends GY tvu and L1.

If the hypergraph we consider is very close to the extremal example then
Lemma 23 does not apply and we will need the following lemma.

Lemma 24. Suppose that B “ Bε. If n is an odd multiple of k´` then there exists
a single edge on Bε containing two ε-typical `-sets. If n is an even multiple of
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k ´ ` then there either exist two disjoint edges on Bε each containing two ε-typical
`-sets or an `-path of size two with ε-typical ends.

Proof. For the proof of this lemma all vertices and edges we consider will always
be completely contained in Bε. First assume that there exists an ε-atypical `-set L.
Recall that this means that dpL,Bpk´`qq ą ε

`

|B|
k´`

˘

so in view of (2.6) and ε1 ! ε

we can find two disjoint pk ´ `q-sets extending it to an edge, each containing an
ε-typical set, which would prove the lemma.
So we may assume that all `-sets in Bp`qε are ε-typical. We infer from the

minimum degree condition that Bε contains a single edge, which proves the lemma
in the case that n is an odd multiple of k ´ ` and for the rest of the proof we
assume that n is an even multiple of k ´ `.
Assume for a moment that ` “ 1. Recall that in this case any pk ´ 2q-set in B

in the extremal hypegraph Xk,`pnq is contained in one edge. Consequently, the
minimum degree condition implies that any pk ´ 2q-set in Bε extends to at least
two edges on Bε. Fix some edge e in Bε; any other edge on Bε has to intersect e
in at least two vertices or the lemma would hold. Consider any pair of disjoint
pk´ 2q-sets K and M in Bε r e to see that of the four edges they extend to, there
is a pair which is either disjoint or intersect in one vertex, proving the lemma for
the case ` “ 1.
Now assume that ` ą 1. In this case the minimum degree condition implies

that any pk ´ 2q-set in Bε extends to at least one edge on Bε. Again, fix some
edge e in Bε; any other edge on Bε has to intersect e in at least one vertex or the
lemma would hold. Applying the minimum degree condition to all pk ´ 2q-sets
disjoint from e implies that one vertex v P e is contained in at least 1

2k2

`

|Bε|

k´2

˘

edges.
We now consider the pk ´ 1q-uniform link hypergraph of v on Bε. Since any two
edges intersecting in `´ 1 vertices would finish the proof of the lemma, we may
assume that there are no such pair of edges. However, a result of Frankl and
Füredi [23, Theorem 2.2] guarantees that this pk ´ 1q-uniform hypergraph without
an intersection of size `´ 1 contains at most

`

|Bε|

k´`´1

˘

edges, a contradiction.

The following lemma will allow us to handle the vertices in Vε.

Lemma 25. Let U Ă Bε with |U | ď 4kϑ. There exists a family P1, . . . ,Pvε of
disjoint `-paths of size two, each of which is disjoint from U such that for all
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i P rvεs

|V pPiq X Vε| “ 1 and |V pPiq XBε| “ 2k ´ `´ 1,

and both ends of Pi are ε-typical sets.

Proof. Let Vε “ tx1, . . . , xvεu. We will iteratively pick the paths. Assume we
have already chosen `-paths P1, . . . ,Pi´1 containing the vertices v1, . . . , vi´1 and
satisfying the lemma. Let U 1 be the set of all vertices in U or in one of those
`-paths. From vi R Bε we get

dpvi, B
pk´1q
ε q ě dpvi, Bq ´ |B rBε| ¨

ˆ

|B|

k ´ 2

˙

ě
ε

2

ˆ

bε
k ´ 1

˙

.

From (2.6) we get that at most k`ε1
`

bε

k´1

˘

sets in Bpk´1q
ε contain at least one ε-

atypical `-set. Also, less than ε
8

`

bε

k´1

˘

sets in Bpk´1q
ε contain one of the vertices

of U 1. In total, at least ε
4

`

bε

k´1

˘

of the Bpk´1q
ε -sets form an edge with vi. So we may

pick two edges e and f in V p1qε Bpk´1q
ε that contain the vertex vi and intersect in `

vertices. In particular, these edges form an `-path of size two as required by the
lemma.

We can now proceed with the proof of Lemma 19. Recall that we want to prove
the existence of an `-path Q in H with ends L0 and L1 and a partition

A˚ ŸB˚ “ pV rQq Ÿ L0 Ÿ L1

satisfying properties (i)–(iv) of Lemma 19. Set q “ |A X Bε|. We will split the
construction of the `-path Q into two cases, depending on whether q “ 0 or not.

First, suppose that q ą 0. In the following, we denote by U the set of vertices of
all edges and `-paths chosen so far. Note that we will always have |U | ď 20kϑn and
hence we will be in position to apply Corollary 22. We use Lemma 23 to obtain
paths Q1, . . . ,Q2q`2 and then we apply Lemma 25 to obtain `-paths P1, . . . ,Pvε .
Every path Qi, for i P r2q ` 2s, contains 3k ´ 2` ´ 1 vertices from Bε and one
from Aε, while every Pj , for j P rvεs, contains 2k ´ `´ 1 from Bε and one from Vε.

As the ends of all these paths are ε-typical, we apply Corollary 22 (a) repeatedly
to connect them to one `-path P. In each of the vε ` 2q ` 1 steps of connecting
two `-paths, we used one vertex from Aε and 2k´ 3`´ 1 vertices from Bε. Overall,
we have that

|V pPq X Aε| “ vε ` 4q ` 3,
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as well as

|V pPq XBε| “ p4k ´ 4`´ 2qvε ` p5k ´ 5`´ 2qp2q ` 2q ´ p2k ´ 3`´ 1q.

Furthermore |V pPq| ď 10kϑb.
Using the identities aε ` bε ` vε “ n and aε ` q ` vε “ a, we will now establish

property (i) of Lemma 19. Set spPq “ p2k´2`´1q|AεrV pPq|´ |BεrV pPq|´2`,
so

spPq “ p2k ´ 2`´ 1q|Aε r V pPq| ´ |Bε r V pPq| ´ 2`

“ p2k ´ 2`´ 1qpaε ´ pvε ` 4q ` 3qq ´ bε
` p4k ´ 4`´ 2qvε ` p5k ´ 5`´ 2qp2q ` 2q ´ p2k ´ 3`´ 1q ´ 2`

“ p2k ´ 2`´ 1qaε ´ bε ` p2k ´ 2`´ 1qvε ` 2pk ´ `qq ` 2k ´ 3`

“ 2pk ´ `qpaε ` vε ` q ` 1q ´ n´ `

“ 2pk ´ `qpa` 1q ´ n´ `.

If n{pk ´ `q is even, spPq “ ´` (see (2.2)) and we set Q “ P. Otherwise
spPq “ k ´ 2` and we use Corollary 22 (b) to append one edge to P to obtain Q.
It is easy to see that one application of Corollary 22 (b) decreases spPq by k ´ `.
Setting A˚ “ AεrV pQq and B˚ “ pBεrV pQqqYL0YL1 we get from spQq “ ´`
that A˚ and B˚ satisfy (i).
Now, suppose that q “ 0. Apply Lemma 25 to obtain `-paths P1, . . . ,Pvε .

If B “ Bε, apply Lemma 24 to obtain one or two more `-paths contained in Bε.
We apply Corollary 22 (a) repeatedly to connect them to one `-path P .

Since q “ 0, we have that Bε Ă B and aε ` vε “ |V rBε| “ a` |B rBε|. We
can assume without loss of generality that Vε ‰ ∅, otherwise just take Vε “ tvu
for an arbitrary v P V pHq. If B “ Bε let x be 2pk ´ `q or k ´ ` depending on
whether n is an odd or even multiple of k ´ `; otherwise let x “ 0. With similar
calculations as before and the same definition of spPq we get that

spPq “ 2pk ´ `qa` x` 2pk ´ `q|B rBε| ´ n´ ` ” ´` mod pk ´ `q.

Extend the `-path P to an `-path Q by adding spPq``
k´l

edges using Corollary 22 (b).
Thus spQq “ ´`, and we get (i) as in the previous case.

In both cases, we will now use the properties of the constructed `-path Q to
show (ii)-(iv). We will use that vpQq ď 20kϑb, which follows from the construction.
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Since A˚ Ă Aε, for all v P A˚ we have dpv,Bpk´1qq ě p1´ εqBpk´1q. Thus

dpv,Bpk´1q
˚ q ě dpv,Bpk´1q

q ´ |B˚ rB|

ˆ

|B˚| ´ 1
k ´ 2

˙

ě p1´ 2εq
ˆ

|B˚|

k ´ 1

˙

,

which shows (ii).
For (iii), Lemma 21 yields for all vertices v P B˚ Ă Bε that

dpv, Ap1qε Bpk´2q
ε q `

k ´ 1
2 dpv,Bpk´1q

ε q ě p1´ δq |Aε|
ˆ

|Bε| ´ 1
k ´ 2

˙

.

The second term on the left can be bounded from above by 2kε
`

bε

k´1

˘

. So, as
δ, ε ! % and aε ´ |A˚| ! %|A˚| as well as bε ´ |B˚| ! %|B˚|, we can conclude (iii).
By Lemma 21, we know that

dpL0, A
p1q
ε Bpk´1q

ε q, dpL1, A
p1q
ε Bpk´1q

ε q ě p1´ δqaε
ˆ

bε ´ `

k ´ `´ 1

˙

.

As δ ! % and aε ´ |A˚| ! %|A˚| as well as bε ´ |B˚| ! %|B˚|, we can conclude (iv),
concluding the proof of Lemma 19.
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3 Spanning subgraphs in sparse random
graphs

In this chapter, we will prove the following result.

Theorem 26. For each γ ą 0, ∆ ě 2, k ě 2 and 0 ď s ď k ´ 1, there exist
constants β˚ ą 0 and C˚ ą 0 such that the following holds asymptotically almost
surely for Γ “ Gpn, pq if p ě C˚

` logn
n

˘1{∆. Let G be a spanning subgraph of Γ with
δpGq ě

`

k´1
k
` γ

˘

pn, such that for each v P V pGq there are at least γpp
s
2qppnqs

copies of Ks in NGpvq. Let H be a graph on n vertices with ∆pHq ď ∆, bandwidth
at most β˚n and suppose that there is a proper k-colouring of V pHq and at least
C˚p´2 vertices in V pHq whose neighbourhood contains only s colours. Then G

contains a copy of H.

We prove Theorem 26 by making use of the sparse regularity lemma of Ko-
hayakawa and Rödl [32,36], the sparse blowup lemma of [3], and several lemmas
from [2]. In Section 3.1 we give the definitions and results necessary to state
and use the sparse regularity lemma and the sparse blowup lemma, and conclude
with a few probabilistic lemmas. In Section 3.2 we give a somewhat more general
statement (Theorem 43) than Theorem 26, which allows for graphs H which are
not quite k-colourable, and outline briefly how to prove it using various lemmas.
The basic strategy, and most of the lemmas, are taken from [2]. The exception is
Lemma 46, which replaces the ‘common neighbourhood lemma’ of [2]. Proving
this lemma is the main work of this chapter, and we do it in Section 3.3. We give
the proof of Theorem 43 in Section 3.4; we should stress that this proof is a fairly
minor modification of the corresponding proof in [2] which we include here mainly
for completeness’ sake. Finally, we give some remarks on the optimality of the
results in Section 3.5.
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3.1 Preliminaries

Throughout the chapter log denotes the natural logarithm. We assume that the
order n of all graphs tends to infinity and therefore is sufficiently large whenever
necessary. Let G “ pV,Eq be graph. For disjoint vertex sets A,B Ď V we denote
the number of edges between A and B by epA,Bq. For a vertex v P V pGq we
write NGpvq for the neighbourhood of v in G and NGpv, Aq :“ NGpvq X A for the
neighbourhood of v restricted to A. Finally, let degGpvq :“ |NGpvq| be the degree
of v in G. For the sake of readability, we do not make any effort to optimise the
constants in our theorems and proofs.

Now we introduce some definitions and results of the regularity method as well
as related tools that are essential in our proofs. In particular, we state a minimum
degree version and a refining version of the sparse regularity lemma (Lemma 30
and Lemma 31) and the sparse blowup lemma (Lemma 34). These lemmas use
the concept of regular pairs. Let G “ pV,Eq be a graph, ε, d ą 0, and p P p0, 1s.
Moreover, let X, Y Ď V be two disjoint nonempty sets. The p-density of the pair
pX, Y q is defined as

dG,ppX, Y q :“ eGpX, Y q

p|X||Y |
.

The pair pX, Y q is called pε, pqG-regular if |dG,ppX 1, Y 1q ´ dG,ppX, Y q| ď ε for all
X 1 Ď X and Y 1 Ď Y with |X 1| ě ε|X| and |Y 1| ě ε|Y |. Whereas this definition of
regular pairs is used for instance in Lemma 31, we will mainly use the following
definition of (super-)(lower-)regular pairs, the density of which only has to be
bounded from below.

Definition 27 (pε, d, pq-(super-)(lower-)regular pairs). The pair pX, Y q is called
pε, d, pqG-lower-regular if for every X 1 Ď X and Y 1 Ď Y with |X 1| ě ε|X| and
|Y 1| ě ε|Y | we have dG,ppX 1, Y 1q ě d´ ε.
It is called pε, d, pqG-regular if there exists d1 ě d such that for every X 1 Ď X

and Y 1 Ď Y with |X 1| ě ε|X| and |Y 1| ě ε|Y | we have dG,ppX 1, Y 1q “ d1 ˘ ε.
If pX, Y q is either pε, d, pqG-lower-regular or pε, d, pqG-regular, and in addition

we have

|NGpx, Y q| ě pd´ εqmax
`

p|Y |, degΓpx, Y q{2
˘

and

|NGpy,Xq| ě pd´ εqmax
`

p|X|, degΓpy,Xq{2
˘
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for every x P X and y P Y , then the pair pX, Y q is called pε, d, pqG-super-regular.
When we use super-regularity it will be clear from the context whether pX, Y q is
lower-regular or regular.

Note that a regular pair is by definition lower-regular, though the converse does
not hold. Although the definition of super-regularity of G, which we need to use
the results of [3], contains a reference to Γ, at each place in this chapter where
we use super-regularity, we will see that the first term in the maximum is larger
than the second. When it is clear from the context, we may omit the subscript G
in pε, d, pqG-(super-)regular which is used to indicate with respect to which graph
a pair is (super-)regular. A direct consequence of the definition of pε, d, pq-lower-
regular pairs is the following proposition about the sizes of neighbourhoods in
lower-regular pairs.

Proposition 28. Let pX, Y q be pε, d, pq-lower-regular. Then there are less than
ε|X| vertices x P X with |Npx, Y q| ă pd´ εqp|Y |.

The following proposition is another immediate consequence of Definition 27.
It states that an pε, d, pq-regular pair is still regular if only a linear fraction of its
vertices is removed.

Proposition 29. Let pX, Y q be pε, d, pq-regular and suppose X 1 Ď X and Y 1 Ď Y

satisfy |X 1| ě µ|X| and |Y 1| ě ν|Y | with some µ, ν ą 0. Then pX 1, Y 1q is
p ε

mintµ,νu , d, pq-regular.

In order to state the sparse regularity lemma, we need some more definitions.
A partition V “ tViuiPt0,...,ru of the vertex set of G is called an pε, pqG-regular
partition of V pGq if |V0| ď ε|V pGq| and pVi, Vi1q forms an pε, 0, pqG-regular pair for
all but at most ε

`

r
2

˘

pairs ti, i1u P
`

rrs
2

˘

. It is called an equipartition if |Vi| “ |Vi1 | for
every i, i1 P rrs. The partition V is called pε, d, pq-(lower-)regular on a graph R with
vertex set rrs if pVi, Vi1q is pε, d, pqG-(lower-)regular for every ti, i1u P EpRq. The
graph R is referred to as the pε, d, pqG-reduced graph of V , the partition classes Vi
with i P rrs as clusters, and V0 as the exceptional set. We also say that V is
pε, d, pqG-super-regular on a graph R1 with vertex set rrs if pVi, Vi1q is pε, d, pqG-
super-regular for every ti, i1u P EpR1q. Again, when we talk about reduced graphs
or super-regularity, whether we are using lower-regularity or regularity will be clear
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from the context. We will however always specify whether a partition is regular or
only lower-regular on R.
Analogously to Szemeredi’s regularity lemma for dense graphs, the sparse

regularity lemma, proved by Kohayakawa and Rödl [32,36], asserts the existence
of an pε, pq-regular partition of constant size of any sparse graph. We state a
minimum degree version of this lemma, whose proof (following [10]) can be found
in the appendix of [2].

Lemma 30 (Minimum degree version of the sparse regularity lemma). For each
ε ą 0, each α P r0, 1s, and r0 ě 1 there exists r1 ě 1 with the following property.
For any d P r0, 1s, any p ą 0, and any n-vertex graph G with minimum degree
αpn such that for any disjoint X, Y Ă V pGq with |X|, |Y | ě εn

r1
we have epX, Y q ď

`

1` 1
1000ε

2˘p|X||Y |, there is an pε, pqG-regular equipartition of V pGq with pε, d, pqG-
reduced graph R satisfying δpRq ě pα ´ d´ εq|V pRq| and r0 ď |V pRq| ď r1.

We will need the following version of the sparse regularity lemma (see, e.g., [2,
Lemma 29] for a proof), allowing for a partition equitably refining an initial
partition with parts of very different sizes. Given a partition V pGq “ V1 Ÿ . . . ŸVs,
we say a partition tVi,juiPrss,jPrts is an equitable pε, pq-regular refinement of tViuiPrss
if |Vi,j| “ |Vi,j1 | ˘ 1 for each i P rss and j, j1 P rts, and there are at most εs2t2 pairs
pVi,j, Vi1,j1q which are not pε, 0, pq-regular.

Lemma 31. For each ε ą 0 and s P N there exists t1 ě 1 such that the following
holds. Given any graph G, suppose V1 Ÿ . . . Ÿ Vs is a partition of V pGq. Suppose
that epViq ď 3p|Vi|2 for each i P rss, and epVi, Vi1q ď 2p|Vi||Vi1 | for each i ‰ i1 P rss.
Then there exist sets Vi,0 Ă Vi for each i P rss with |Vi,0| ă ε|Vi|, and an equitable
pε, pq-regular refinement tVi,juiPrss,jPrts of tVi r Vi,0uiPrss for some t ď t1.

A key ingredient in the proof of our main theorem is the so-called sparse blowup
lemma developed by Allen, Böttcher, Hàn, Kohayakawa, and Person. Given a
subgraph G Ď Γ “ Gpn, pq with p " plog n{nq1{∆ and an n-vertex graph H with
maximum degree at most ∆ with vertex partitions V and W, respectively, the
sparse blowup lemma guarantees under certain conditions a spanning embedding
of H in G which respects the given partitions. In order to state this lemma we
need to introduce some definitions.
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Definition 32 (pϑ,R1q-buffer). Let R1 be a graph on r vertices and let H be a
graph with vertex partition W “ tWiuiPrrs. We say that the family ĂW “ tĂWiuiPrrs

of subsets ĂWi Ď Wi is an pϑ,R1q-buffer for H if

(i) |ĂWi| ě ϑ|Wi| for all i P rrs, and

(ii) for each i P rrs and each x P ĂWi, the first and second neighbourhood of x
go along R1, i.e., for each tx, yu, ty, zu P EpHq with y P Wj and z P Wk we
have ti, ju P EpR1q and tj, ku P EpR1q.

Let G and H be graphs on n vertices with partitions V “ tViuiPrrs of V pGq and
W “ tWiuiPrrs of V pHq. We say that V and W are size-compatible if |Vi| “ |Wi|

for all i P rrs. If there exists an integer m ě 1 such that m ď |Vi| ď κm for every
i P rrs, then we say that pG,Vq is κ-balanced. Given a graph R on r vertices, we
call pG,Vq an R-partition if for every edge tx, yu P EpGq with x P Vi and y P Vi1
we have ti, i1u P EpRq.

Definition 33 (Restriction pair). Let ε, d ą 0, p P r0, 1s, and let R be a graph
on r vertices. Furthermore, let G be a (not necessarily spanning) subgraph of
Γ “ Gpn, pq and let H be a graph given with vertex partitions V “ tViuiPrrs and
W “ tWiuiPrrs, respectively, such that pG,Vq and pH,Wq are size-compatible R-
partitions. Let I “ tIxuxPV pHq be a collection of subsets of V pGq, called image
restrictions, and J “ tJxuxPV pHq be a collection of subsets of V pΓqr V pGq, called
restricting vertices. For each i P rrs we define Ri Ď Wi to be the set of all vertices
x P Wi for which Ix ‰ Vi. We say that I and J are a p%, ζ,∆,∆Jq-restriction pair
if the following properties hold for each i P rrs and x P Wi.

(RP 1) We have |Ri| ď %|Wi|.

(RP 2) If x P Ri, then Ix Ď
Ş

uPJx
NΓpu, Viq is of size at least ζpdpq|Jx||Vi|.

(RP 3) If x P Ri, then |Jx| ` degHpxq ď ∆ and if x P Wi rRi, then Jx “ ∅.

(RP 4) Each vertex in V pGq appears in at most ∆J of the sets of J .

(RP 5) We have
ˇ

ˇ

Ş

uPJx
NΓpu, Viq

ˇ

ˇ “ pp˘ εpq|Jx||Vi|.

(RP 6) If x P Ri, for each xy P EpHq with y P Wj,

the pair
´

Vi X
č

uPJx

NΓpuq, Vj X
č

vPJy

NΓpvq
¯

is pε, d, pqG-lower-regular.
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Suppose V is an pε, d, pqG-regular partition of V pGq with reduced graph R. We
say pG,Vq has one-sided inheritance with respect to R if for every ti, ju, tj, ku P
EpRq and every v P Vi the pair

`

NΓpv, Vjq, Vk
˘

is pε, d, pqG-regular, and Vi P V
has two-sided inheritance with respect to Vj, Vk P V if for every v P Vi the pair
`

NΓpv, Vjq, NΓpv, Vkq
˘

is pε, d, pqG-regular.
Now we can finally state the sparse blowup lemma.

Lemma 34 ([3, Lemma 1.21]). For each ∆, ∆R1, ∆J , ϑ, ζ, d ą 0, κ ą 1 there
exist εBL, % ą 0 such that for all r1 there is a CBL such that for p ě CBLplog n{nq1{∆

the random graph Γ “ Gn,p asymptotically almost surely satisfies the following.
Let R be a graph on r ď r1 vertices and let R1 Ď R be a spanning subgraph

with ∆pR1q ď ∆R1. Let H and G Ď Γ be graphs given with κ-balanced, size-
compatible vertex partitions W “ tWiuiPrrs and V “ tViuiPrrs with parts of size
at least m ě n{pκr1q. Let I “ tIxuxPV pHq be a family of image restrictions, and
J “ tJxuxPV pHq be a family of restricting vertices. Suppose that

(BUL 1) ∆pHq ď ∆, for every edge tx, yu P EpHq with x P Wi and y P Wj we
have ti, ju P EpRq and ĂW “ tĂWiuiPrrs is an pϑ,R1q-buffer for H,

(BUL 2) V is pεBL, d, pqG-lower-regular on R, pεBL, d, pqG-super-regular on R1, has
one-sided inheritance on R1, and two-sided inheritance on R1 for ĂW,

(BUL 3) I and J form a p%, ζ,∆,∆Jq-restriction pair.

Then there is an embedding ϕ : V pHq Ñ V pGq such that ϕpxq P Ix for each
x P H.

Observe that in the blowup lemma for dense graphs, proved by Komlós, Sárközy,
and Szemerédi [38], one does not need to explicitly ask for one- and two-sided
inheritance properties since they are always fulfilled by dense regular partitions.
This is, however, not true in general in the sparse setting. The following two
lemmas will be very useful whenever we need to redistribute vertex partitions in
order to achieve some regularity inheritance properties.

Lemma 35 (One-sided lower-regularity inheritance, [3]). For each εOSRIL, αOSRIL ą 0
there exist ε0 ą 0 and C ą 0 such that for any 0 ă ε ă ε0 and 0 ă p ă 1
asymptotically almost surely Γ “ Gpn, pq has the following property. For any
disjoint sets X and Y in V pΓq with |X| ě C max

`

p´2, p´1 log n
˘

and |Y | ě
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Cp´1 log n, and any subgraph G of ΓrX, Y s which is pε, αOSRIL, pqG-lower-regular,
there are at most Cp´1 logpen{|X|q vertices z P V pΓq such that pX XNΓpzq, Y q is
not pεOSRIL, αOSRIL, pqG-lower-regular.

Lemma 36 (Two-sided lower-regularity inheritance, [3]). For each εTSRIL, αTSRIL ą 0
there exist ε0 ą 0 and C ą 0 such that for any 0 ă ε ă ε0 and 0 ă p ă

1, asymptotically almost surely Γ “ Gn,p has the following property. For any
disjoint sets X and Y in V pΓq with |X|, |Y | ě C maxtp´2, p´1 log nu, and any
subgraph G of ΓrX, Y s which is pε, αTSRIL, pqG-lower-regular, there are at most
C maxtp´2, p´1 logpen{|X|qu vertices z P V pΓq such that

`

X XNΓpzq, Y XNΓpzq
˘

is not pεTSRIL, αTSRIL, pqG-lower-regular.

Finally, we need a statement about random subpairs of regular pairs.

Corollary 37 ([24, Corollary 3.8]). For any d, β, ε1 ą 0 there exist ε0 ą 0 and
C such that for any 0 ă ε ă ε0 and 0 ă p ă 1, if pX, Y q is an pε, d, pq-lower-
regular pair in a graph G, then the number of pairs X 1 Ď X and Y 1 Ď Y with
|X 1| “ w1 ě C{p and |Y 1| “ w2 ě C{p such that pX 1, Y 1q is an pε1, d, pq-lower-
regular pair in G is at least p1´ βminpw1,w2qq

`

|X|
w1

˘`

|Y |
w2

˘

.

We close this section with two of Chernoff’s bounds for random variables that
follow a binomial (Theorem 39) and a hypergeometric distribution (Theorem 40),
respectively, and the following useful observation. Roughly speaking, it states that
a.a.s. nearly all vertices in Gpn, pq have approximately the expected number of
neighbours within large enough subsets.

Proposition 38 ([2]). For each ε ą 0 there exists a constant C ą 0 such that
for every 0 ă p ă 1 asymptotically almost surely Γ “ Gpn, pq has the fol-
lowing properties. For any disjoint X, Y Ă V pΓq with |X| ě Cp´1 log n and
|Y | ě Cp´1 logpen{|X|q, we have epX, Y q “ p1 ˘ εqp|X||Y | and epXq ď 2p|X|2.
Furthermore, for every X Ď V pΓq with |X| ě Cp´1 log n, the number of vertices
v P V pΓq with

ˇ

ˇ|NΓpv,Xq| ´ p|X|
ˇ

ˇ ą εp|X| is at most Cp´1 logpen{|X|q.

Note that in most of this chapter we will use the upper bound logpen{|X|q ď
log n when applying this proposition, and Lemmas 35 and 36, valid since (in all
applications) we have |X| ě e. The full strength of these three results is only
needed in the proof of the Lemma for G (Lemma 44).
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The proof of Proposition 38 in [2] uses the following version of Chernoff’s
inequalities (see, e.g., [29, Chapter 2] for a proof).

Theorem 39 (Chernoff’s inequality, [29]). Let X be a random variable which is
the sum of independent Bernoulli random variables. Then we have for ε ď 3{2

P
“

|X ´ ErXs| ą εErXs
‰

ă 2e´ε2ErXs{3 .

Furthermore, if t ě 6ErXs then we have

P
“

X ě ErXs ` t
‰

ď e´t .

Finally, let N ,m, and s be positive integers and let S and S 1 Ď S be two sets with
|S| “ N and |S 1| “ m. The hypergeometric distribution is the distribution of the
random variable X that is defined by drawing s elements of S without replacement
and counting how many of them belong to S 1. It can be shown that Theorem 39
still holds in the case of hypergeometric distributions (see, e.g., [29, Chapter 2] for
a proof) with ErXs :“ ms{N .

Theorem 40 (Hypergeometric inequality, [29]). Let X be a random variable that
follows the hypergeometric distribution with parameters N , m, and s. Then for
any ε ą 0 and t ě εms{N we have

P
“

|X ´ms{N | ą t
‰

ă 2e´ε2t{3 .

We require the following technical lemma, which is a consequence of the hyper-
geometric inequality stated in Theorem 40.

Lemma 41. For each ε`0 , d` ą 0 there exists ε` ą 0 such that for each ε, d ą 0
there exists ε´ ą 0 such that the following holds. For each η ą 0 and ∆ there
exists C such that the following holds for each p ą 0. Let W Ă rns, let t ď 100n∆,
and let T1, . . . , Tt be subsets of W . For each m ď |W | there is a set S Ă W of size
m such that

|Ti X S| “
m
|W |
|Ti| ˘

`

η|Ti| ` C log n
˘

for every i P rts .

Suppose furthermore that for each i P rts there is a pair pXi, Yiq which is ei-
ther pε`, d`, pq-lower-regular, or pε´, d, pq-lower-regular, in a graph G on W . If
m|Xi|{|W |,m|Yi|{|W | ě 2Cp´1 log n for each i P rts, then we may choose S such
that in addition the pair

`

Xi X S, Yi X S
˘

is
`

ε`0 , d
`, p

˘

-lower-regular, or pε, d, pq-
lower-regular (respectively) in G for each i P rts.
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Proof. Given ε`0 , d`, let ε` be returned by Corollary 37 for input d`, β “ 1
2 and

ε`0 . Given ε, d, let ε´ be returned by Corollary 37 for input d, β “ 1
2 and ε. Let

C ě 30η´2∆ be large enough for these applications of Corollary 37.
Observe that for each i, the size of Ti X S is hypergeometrically distributed. By

Theorem 40, for each i we have

P
“

|Ti X S| ‰
m
|W |
|Ti| ˘

`

η|Ti| ` C log n
˘‰

ă 2e´η2C logn{3
ă

2
n1`∆ ,

so taking the union bound over all i P rts we conclude that the probability of
failure is at most 2t{n1`∆ ď 200{nÑ 0 as nÑ 8, as desired.
To obtain the ‘furthermore’ statement, observe that the same application of

Theorem 40 implies that we have |XiXS|, |YiXS| ě Cp´1 log n for each i P rts with
probability tending to one as nÑ 8. Conditioning on the size of |Xi X S|, the set
XiXS is a uniformly distributed subset of Xi of size |XiXS|, and the same applies
to YiXS. Now Corollary 37 says that, conditioning on |XiXS|, |YiXS| ě Cp´1 log n,
the probability that

`

XiXS, YiXS
˘

fails to have the desired lower-regularity in G
is at most 2´Cp´1 logn, and taking a union bound over the choices of i the result
follows.

3.2 Main lemmas

As in [2], we deduce Theorem 26 from a slightly more technical statement, see
Theorem 43 below. As there, this result is more general (if harder to parse) in
that it allows for an extra colour, zero, in the colouring of H, provided that this
colour does not appear too often.

Definition 42 (Zero-free colouring). Let H be a pk ` 1q-colourable graph on n

vertices and let L be a labelling of its vertex set of bandwidth at most βn. A proper
pk`1q-colouring σ : V pHq Ñ t0, . . . , ku of its vertex set is said to be pz, βq-zero-free
with respect to L if any z consecutive blocks contain at most one block with colour
zero, where a block is defined as a set of the form tpt ´ 1q4kβn ` 1, . . . , t4kβnu
with some t P r1{p4kβqs.

We can now state the following technical statement, from which one can easily
deduce Theorem 26.
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Theorem 43. For each γ ą 0, ∆ ě 2, k ě 2 and 1 ď s ď k ´ 1, there exist
constants β ą 0, z ą 0, and C ą 0 such that the following holds asymptotically
almost surely for Γ “ Gpn, pq if p ě C

` logn
n

˘1{∆. Let G be a spanning subgraph of Γ
with δpGq ě

`

k´1
k
` γ

˘

pn such that for each v P V pGq there are at least γpp
s
2qppnqs

copies of Ks in NGpvq and let H be a graph on n vertices with ∆pHq ď ∆ that
has a labelling L of its vertex set of bandwidth at most βn, a pk ` 1q-colouring
that is pz, βq-zero-free with respect to L and where the first

?
βn vertices in L are

not given colour zero and the first βn vertices in L include Cp´2 vertices whose
neighbourhood contains only s colours. Then G contains a copy of H.

The proof of this theorem is quite similar to the corresponding [2, Theorem 23].
Eventually, we will apply Lemma 34 to embed H into G, and we need to obtain
the necessary conditions for this lemma. As in [2], this is as such not possible;
whatever regular partition of G we take, there may be some exceptional vertices
which are ‘badly behaved’ with respect to this partition. Our first main lemma,
the following Lemma for G, states that there is a partition with only few such
vertices.

Lemma 44 (Lemma for G, [2, Lemma 24]). For each γ ą 0 and integers k ě 2
and r0 ě 1 there exists d ą 0 such that for every ε P

`

0, 1
2k

˘

there exist r1 ě 1 and
C˚ ą 0 such that the following holds a.a.s. for Γ “ Gpn, pq if p ě C˚ plog n{nq1{2.
Let G “ pV,Eq be a spanning subgraph of Γ with δpGq ě

`

k´1
k
` γ

˘

pn. Then
there exists an integer r with r0 ď kr ď r1, a subset V0 Ď V with |V0| ď C˚p´2, a
k-equitable vertex partition V “ tVi,juiPrrs,jPrks of V pGq r V0, and a graph Rk

r on
the vertex set rrs ˆ rks with Kk

r Ď Bk
r Ď Rk

r , with δpRk
r q ě

`

k´1
k
`

γ
2

˘

kr, and such
that the following is true.

(G 1) n
4kr ď |Vi,j| ď

4n
kr

for every i P rrs and j P rks,

(G 2) V is pε, d, pqG-lower-regular on Rk
r and pε, d, pqG-super-regular on Kk

r ,

(G 3) both
`

NΓpv, Vi,jq, Vi1,j1
˘

and
`

NΓpv
1, Vi,jq, NΓpv, Vi1,j1q

˘

are pε, d, pqG-lower-
regular pairs for every tpi, jq, pi1, j1qu P EpRk

r q and v P V r V0,

(G 4) |NΓpv, Vi,jq| “ p1˘ εqp|Vi,j| for every i P rrs, j P rks and every v P V r V0.

Following the proof strategy in [2], the next step is to find a partition of H which
more or less matches that of G. In other words, we colour V pHq with the colours
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pi, jq which are the indices of the partition V, such that about |Vi,j| vertices get
colour pi, jq and all edges of H are given colours corresponding to edges of Rk

r .

Lemma 45 (Lemma for H, [2, Lemma 25]). Given D, k, r ě 1 and ξ, β ą 0 the
following holds if ξ ď 1{pkrq and β ď 10´10ξ2{pDk4rq. Let H be a D-degenerate
graph on n vertices, let L be a labelling of its vertex set of bandwidth at most
βn and let σ : V pHq Ñ t0, . . . ku be a proper pk ` 1q-colouring that is p10{ξ, βq-
zero-free with respect to L, where the colour zero does not appear in the first
?
βn vertices of L. Furthermore, let Rk

r be a graph on vertex set rrs ˆ rks with
Kk
r Ď Bk

r Ď Rk
r such that for every i P rrs there exists a vertex zi P

`

rrsr tiu
˘

ˆrks

with
 

zi, pi, jq
(

P EpRk
r q for every j P rks. Then, given a k-equitable integer

partition tmi,juiPrrs,jPrks of n with n{p10krq ď mi,j ď 10n{pkrq for every i P rrs and
j P rks, there exists a mapping f : V pHq Ñ rrs ˆ rks and a set of special vertices
X Ď V pHq such that we have for every i P rrs and j P rks

(H 1) mi,j ´ ξn ď |f
´1pi, jq| ď mi,j ` ξn,

(H 2) |X| ď ξn,

(H 3) tfpxq, fpyqu P EpRk
r q for every tx, yu P EpHq,

(H 4) y, z P Yj1Prksf´1pi, j1q for every x P f´1pi, jqrX and xy, yz P EpHq, and

(H 5) fpxq “
`

1, σpxq
˘

for every x in the first
?
βn vertices of L.

During the pre-embedding, we embed a vertex x of H onto a vertex v of V0, and
we also embed all vertices at distance at most s from x. This creates restrictions on
the vertices of G to which we can embed the vertices at distance s` 1, and for the
application of the sparse blowup lemma (Lemma 34) we need certain conditions
to be satisfied. The next lemma states that we can find vertices in G, to which
we can embed the vertices at distance at most s from x in H, satisfying these
conditions. This is the main difference in the proof in comparison to [2] and the
place where we need that the neighbourhood of every vertex in G has a certain
density of Ks’s.

Lemma 46 (Partial embedding lemma). For ∆, k ě 2, 2 ď s ď k ´ 1, and
γ, d ą 0 with d ď γ

32 there exists ζ ą 0 such that for every ε1 ą 0 there exists
ε0 ą 0 such that for all 0 ă ε ă ε0, all µ ą 0 and r ě 1, there exists a constant
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C˚ ą 0 such that the random graph Γ “ Gpn, pq a.a.s. has the following property
if p ě C˚

` logn
n

˘1{∆.
Suppose that G1 is a subgraph of Γ with |V pG1q| “ p1˘εqµn, with δpG1q ě

`

k´1
k
`

γ
˘

p|V pG1q|, and such that for a vertex v P V pG1q there are at least γpp
s`1

2 qpµnqs

copies of Ks in NG1pvq and |NG1pT q| ď 2µnpt for any set T Ă V pG1q of size t ď ∆.
Suppose that G is a spanning subgraph of Γ with δpGq ě

`

k´1
k
` γ

˘

pn, and
we have an pε, pq-lower-regular partition V pGq “ V0 Ÿ V1 Ÿ . . . Ÿ Vr with pε, d, pq-
reduced graph R, such that |Vi X V pG1q| “ p1 ˘ εqµ|Vi| for each i, and such that
V0 X V pG1q, . . . , Vr X V pG1q is also an pε, pq-lower-regular partition of G1 with
pε, d, pq-reduced graph R. Suppose that n

4r ď |Vi| ď
4n
r

for all i P rrs.
Suppose that H 1 is a graph with ∆pH 1q ď ∆, with a root vertex x, and no vertex

at distance greater than s` 1 from x. Let % be a proper k-colouring of V pH 1q in
which Npxq receives at most s colours, and let T be the set of vertices in H 1 at
distance exactly s` 1 from x.

Then there exists ϕ : V pH 1qrT Ñ V pG1q which is a partial embedding of H 1 into
G1, and a subset tV 11 , . . . , V 1ku Ă tV1, . . . , Vru with the following properties (where
we let Πpuq “ ϕ

`

NH 1puq XDompϕq
˘

for each u P T ).

(P 1) ϕpxq “ v,

(P 2) V 11 , . . . , V 1k form a clique in R,

(P 3) for all u P T we have
ˇ

ˇNΓ
`

Πpuq
˘

X V 1%puq
ˇ

ˇ “ p1˘ ε1qp|Πpuq||V 1%puq|,

(P 4) for all u P T we have
ˇ

ˇNG

`

Πpuq
˘

X V 1%puq
ˇ

ˇ ě ζp|Πpuq||V 1%puq|,

(P 5) for all u P T and j P rks with j ‰ %puq the pair
`

NΓpΠpuq, V 1%puqq, V 1j
˘

is
pε1, d, pqG-lower-regular, and

(P 6) for all uu1 P H 1 with u, u1 P T the pair
`

NΓpΠpuq, V 1%puqq, NΓpΠpu1q, V 1%pu1qq
˘

is
pε1, d, pqG-lower-regular.

Returning to the proof strategy of [2], the sizes of the clusters Vi,j from Lemma 44
do not quite match the sizes of the sets Xi,j from Lemma 45. Also, Lemma 46
embeds some vertices, creating a little further imbalance, and we need to slightly
alter the mapping f from Lemma 45 to accommodate these pre-embedded vertices.
The next lemma allows us to change the sizes of the clusters Vi,j slightly to match
the partition of H, without destroying the properties of the partition of G and of
the pre-embedded vertices we worked to achieve.
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Lemma 47 (Balancing lemma, [2, Lemma 27]). For all integers k ě 1, r1,∆ ě 1,
and reals γ, d ą 0 and 0 ă ε ă mintd, 1{p2kqu there exist ξ ą 0 and C˚ ą 0 such
that the following is true for every p ě C˚ plog n{nq1{2 and every 10γ´1 ď r ď r1

provided that n is large enough. Let Γ be a graph on the vertex set rns and let
G “ pV,Eq Ď Γ be a (not necessarily spanning) subgraph with vertex partition
V “ tVi,juiPrrs,jPrks that satisfies n{p8krq ď |Vi,j| ď 4n{pkrq for each i P rrs, j P rks.
Let tni,juiPrrs,jPrks be an integer partition of

ř

iPrrs,jPrks |Vi,j|. Let Rk
r be a graph on

the vertex set rrs ˆ rks with minimum degree δpRk
r q ě

`

pk ´ 1q{k ` γ{2
˘

kr such
that Kk

r Ď Bk
r Ď Rk

r . Suppose that the partition V satisfies the following properties
for each i P rrs, each j ‰ j1 P rks, and each v P V .

(B 1) We have ni,j ´ ξn ď |Vi,j| ď ni,j ` ξn,

(B 2) V is
`

ε
4 , d, p

˘

G
-lower-regular on Rk

r and
`

ε
4 , d, p

˘

G
-super-regular on Kk

r ,

(B 3) both
`

NΓpv, Vi,jq, Vi,j1
˘

and
`

NΓpv, Vi,jq, NΓpv, Vi,j1q
˘

are
`

ε
4 , d, p

˘

G
-lower-regular pairs, and

(B 4) we have |NΓpv, Vi,jq| “
`

1˘ ε
4

˘

p|Vi,j|.

Then, there exists a partition V 1 “ tV 1i,juiPrrs,jPrks of V such that the following
properties hold for each i P rrs, each j ‰ j1 P rks, and each v P V .

(B 1’) We have |V 1i,j| “ ni,j,

(B 2’) We have |Vi,j4V 1i,j| ď 10´10ε4k´2r´2
1 n,

(B 3’) V 1 is pε, d, pqG-lower-regular on Rk
r and pε, d, pqG-super-regular on Kk

r ,

(B 4’) both
`

NΓpv, V
1
i,jq, V

1
i,j1

˘

and
`

NΓpv, V
1
i,jq, NΓpv, V

1
i,j1q

˘

are
pε, d, pqG-lower-regular pairs, and

(B 5’) For each 1 ď s ď ∆ and vertices v1, . . . , vs P rns we have

ˇ

ˇNΓpv1, . . . , vs;Vi,jq4NΓpv1, . . . , vs;V 1i,jq
ˇ

ˇ

ď 10´10ε4k´2r´2
1 degΓpv1, . . . , vsq ` C

˚ log n .

Furthermore, if for any two disjoint vertex sets A,A1 Ă V pΓq with |A|, |A1| ě
1

50000kr1
ε2ξpn we have eΓpA,A

1q ď
`

1 ` 1
100ε

2ξ
˘

p|A||A1|, and if ‘lower-regular’ is
replaced with ‘regular’ in (B 2), and (B 3), then we can replace ‘lower-regular’ with
‘regular’ in (B 3’) and (B 4’).
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After applying Lemma 47 it remains only to check that the conditions of
Lemma 34 are met to complete the embedding of H.

3.3 Proof of the partial embedding lemma

To prove Lemma 46, we proceed as follows. After choosing the constants required
for the lemma and its proof, we select a bounded number of clusters of the regular
partition of G so that we can refine the partition on W “ NG1pvq and those
chosen clusters with Lemma 31. The chosen clusters should behave like the whole
partition in some ways which we can get by picking them at random. The lower
bound on the number of Ks in W will then allow us to find a clique of size s
in the refined reduced graph on W . This would already allow us to embed the
s-coloured NH 1pxq to W . However, it would yield image restrictions that are too
small for the remaining vertices of H 1 and so we need to embed all vertices up
to distance s. The minimum degree of G1 allows us to find clusters extending
the Ks to a Kk`1 in the refined reduced graph and iteratively we find cliques
in the refined reduced graph, swapping out the clusters in W one by one with
subclusters of the regular partition of G1. We can then embed the vertices of H 1

up to distance s iteratively, following a certain order defined by the colouring,
maintaining properties that allow us to keep the embedding going and ensuring
that what we end up with valid image restricting sets for the vertices at distance
s` 1 from x.

Proof of Lemma 46. First we fix all constants that we need throughout the proof.
As before, “x !” (“x !”) denotes that x is chosen sufficiently small (big) with
respect to all constants to its right. Let ∆, k ě 2 and γ, d ą 0 be given.
Let d1 “ minpd, 10´kγq and choose a small ξ ! γ, 1

k
and an integer ` " 1

ξ
, 1
γ
, k.

Let ν˚˚∆ “ 1
100∆2k and for every i P p∆´ 1, . . . , 1, 0q, let ν˚˚i ď ν˚˚i`1 be returned by

Lemma 35 with input εOSRIL “ ν˚˚i`1 and αOSRIL “ d1. Next, let ν˚∆´1,∆´1 “ ν˚i,∆ “

ν˚∆,i “ 1 for i P r∆s. For each pi, jq P t0, . . . ,∆´ 1u2 r tp∆´ 1,∆´ 1qu in reverse
lexicographic order, we choose ν˚i,j ď ν˚i`1,j, ν

˚
i,j`1, ν

˚
i`1,j`1 not larger than the ε0

returned by Lemma 35 for both input ν˚i`1,j and d1, and for input ν˚i,j`1 and d1, and
not larger than the ε0 returned by Lemma 36 for input ν˚i`1,j`1 and d1. Choose
ν0 ! ν˚˚0 , ν˚0,0, γ, d

1, 1
k
. Now, Lemma 31 with input ν2

0{`
2 and ` returns t1.

40



Set ζ “
`

d1

4

˘∆
{2t1. Given ε1, let ε˚˚∆ “ ε1 and for every i P p∆´ 1, . . . , 1, 0q, let

ε˚˚i ď ε˚˚i`1 be returned by Lemma 35 with input εOSRIL “ ε˚˚i`1 and αOSRIL “ d. Next,
let ε˚∆´1,∆´1 “ ε1 and ε˚i,∆ “ ε˚∆,i “ 1 for i P r∆s. For each pi, jq P t0, . . . ,∆´1u2r
tp∆´1,∆´1qu in reverse lexicographic order, we choose ε˚i,j ď ε˚i`1,j, ε

˚
i,j`1, ε

˚
i`1,j`1

not larger than the ε0 returned by Lemma 35 for both input ε˚i`1,j and d, and for
input ε˚i,j`1 and d, and not larger than the ε0 returned by Lemma 36 for input
ε˚i`1,j`1 and d.
We choose ε0 ď ε˚˚0 , ε˚0,0,

ν0
t1

small enough such that p1 ` ε0q
∆ ď 1 ` ε1 and

p1 ´ ε0q
∆ ě 1 ´ ε1. Given r ě 1, ε with 0 ă ε ď ε0, and µ ą 0, let C be a

large enough constant for all of the above calls to Lemmas 35 and 36, and for
Proposition 38 with input ν0 and ε0. Finally, we choose

C˚ " k, t1, r,
1
µ
,
1
ε
,∆, C.

Let Γ “ Gpn, pq with p ě C˚plog n{nq1{∆. Then Γ satisfies a.a.s. the properties
stated in Lemma 35, Lemma 36, Proposition 38 and Lemma 31 with the parameters
specified above. We assume from now on that Γ satisfies these good events and
has these properties. Let G1, v P V pG1q, G, tViuiPt0,...,ru, H 1, and x P V pH 1q be as
in the statement of the lemma.

To be able to apply Lemma 31 we need to choose a suitable subset of the clusters
tViu of bounded size. As the clusters tViu might be of different sizes and we will
want to have a minimum degree condition on the reduced graph, we will consider
a weighted version of this degree that takes the cluster sizes into account.

Claim 48. There exists L Ă rrs of size ` satisfying the following. The pε0, d, pq-
regular graph R˚ on to the sets tViu indexed by L, satisfies the following weighted
minimum degree condition.

@i P L :
ÿ

jPNRpiqXL

|Vj|

|V ˚|
ě

ˆ

k ´ 1
k

`
γ

5

˙

,

where V ˚ “
Ť

iPL Vi. Additionally, we have that

W :“
"

w P NG1pvq : |NG1pwq X V
˚
| ě

ˆ

k ´ 1
k

`
γ

5

˙

p|V ˚ X V pG1q|

*

has size at least p1´ ξq|NG1pvq| and there are at least 1
2γp
ps`1

2 qpµnqs copies of Ks

in W .
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Proof. We choose a subset L Ă rrs of size ` at random. First, we will transfer the
minimum degree of G to the reduced graph and show that with high probability
the minimum degree is preserved on the chosen clusters. Recall that G satisfies a
minimum degree of δpGq ě pk´1

k
` γqpn and that we have the following bounds on

the sizes of the clusters.

4n
r
ě |Vi| ě

n

4r ě Cp´1 log n (3.1)

Without loss of generality, we may assume that no Vi forms an irregular pair
with more than

?
ε of the clusters, otherwise, add it to V0, which over all clusters

increases the size of V0 by at most 4
?
εn. Fix i P rrs. Proposition 38 applied to

the edges between Vi and V0 implies that

epVi, V0q ď 2ppε` 4
?
εqn|Vi| and epViq ď 2p|Vi|2 ď 2p16

r
n|Vi|

Also, we can bound the number of edges from Vi to other clusters that are in pairs
which are not dense or pε, pq-lower-regular as follows.

epVi,
ď

jPRrNRpiq

Vjq ď dpn|Vi| ` 2p ¨ 4
?
εn|Vi|.

Putting the above together, we obtain that

epVi,
ď

jPNRpiq

Vjq ě

ˆ

k ´ 1
k

` γ ´ 2ε´ 16
?
ε´ d´

32
r

˙

pn|Vi|

As, again by Proposition 38, the number of edges between any Vi and Vj is at most
p1` ε0q|Vi||Vj|, we get that

ÿ

jPNRpiq

|Vj|r

|V pGq|
ě

ˆ

k ´ 1
k

` γ ´ 2ε´ 16
?
ε´ d´

32
r

˙

p1` ε0q
´1r

ě

ˆ

k ´ 1
k

`
γ

2

˙

r.

By the size conditions on the clusters the relative sizes wj :“ |Vj |r

|V pGq|
take values in

p1
4 , 4q. We now consider

w1j “ ξ twj{ξu ,

the discretisation of wj into steps of size ξ. Of these discretised weights, we will
ignore those that occur fewer than ξ2r times. We lose at most a factor of 4ξ due
to the discretisation as all weights are at least 1

4 . Also weights in p1
4 , 4q occuring
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fewer than ξ2r times contribute at most 16ξr to the sum, so we get the following
lower bound.

ÿ

jPNRpiq

w1j ě p1´ 4ξq
ˆ

k ´ 1
k

`
γ

2

˙

r ´ 16ξr ě
ˆ

k ´ 1
k

`
γ

3

˙

r.

We can now apply the hypergeometric inequality (Theorem 40) to all possible
rounded weight values separately. For any j P rrs the probability that j is in
L is `{r and so for a given density in p1

4 , 4q, which occurs, say, ϑr times, the
probability that this density is chosen fewer than p1 ´ ξqϑ` times is at most
2e´ξ2¨ξϑ`{3 ď 2e´ξ5`{3. This implies by the union bound that with probability at
most 4ξ´12e´ξ5`{3 we do not have have

ÿ

jPNRpiqXL

wj ě p1´ ξq
ˆ

k ´ 1
k

`
γ

3

˙

`

r
r ě

ˆ

k ´ 1
k

`
γ

4

˙

`. (3.2)

So by the union bound the expected number of vertices in R˚ that do not sat-
isfy (3.2) is at most `8ξ´1e´ξ

5`{3 ă 1{10. By Markov’s inequality, the probability
that there is any such vertex in R˚ is thus at most 1{10. By the same discretisation
of wj and application of the hypergeometric inequality to the discretised weights,
we can also deduce that

|V ˚| “
|V pGq|

r

ÿ

iPL

wi “ p1˘ 100ξq `
r

ÿ

iPrrs

wi “ p1˘ 100ξqp1˘ εq`|V pGq|
r

(3.3)

with probability at least 9{10. Putting (3.2) and (3.3) together implies that with
probability at least 8{10 the first claimed statement holds.

For the claim, we also require that the minimum degree condition of the vertices
in NG1pvq carries over to the chosen clusters for most vertices. Fix w in NG1 . For
j P rrs we consider the following weighted p-density, which may take values in
p0, 5q.

dw,j “ dG,pptwu, Vj X V pG
1
qq
|Vj X V pG

1q|r

|V pG1q|
.

Accounting for the exceptional set V0 with Proposition 38, the minimum degree
condition on G1 of pk´1

k
`γqp|V pG1q| implies that these weighted p-densities satisfy

ÿ

jPrrs

dw,j ě

ˆ

k ´ 1
k

` γ ´ 2pε` 4
?
εq

˙

r ě

ˆ

k ´ 1
k

`
γ

2

˙

r.

Similarly to before, we consider d1w,i “ ξtdw,i{ξu, the discretisation of dw,i into
steps of size ξ. Of these discretised weighted densities, we ignore those that occur
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fewer than ξ2r times and those that are smaller than
?
ξ. The small densities

contribute at most
?
ξr to the sum and we lose a factor of at most

?
ξ due to the

discretisation for larger values. Also weights in p
?
ξ, 5q occuring fewer than ξ2r

times contribute at most 25ξr to the sum, so we get the following lower bound.
ÿ

iPrrs

d1w,i ě p1´
a

ξq

ˆ

k ´ 1
k

`
γ

2 ´
a

ξ ´ 25ξ
˙

r ě

ˆ

k ´ 1
k

`
γ

3

˙

r.

Applying the hypergeometric inequality to all density values separately as before,
we get that for any w P NG1pvq with probability at most 5ξ´12e´ξ5`{3 ě ξ{10 we
do not have

ÿ

iPL

d1w,i ě p1´ ξq
ˆ

k ´ 1
k

`
γ

3

˙

`

r
r ě

ˆ

k ´ 1
k

`
γ

4

˙

`

r
r. (3.4)

So the expected number of vertices in NG1pvq not satisfying (3.4) is at most
ξ|NG1pvq|{10. By Markov’s inequality, with probability at least 9{10 at most a
fraction ξ of vertices in NG1pvq violate (3.4). In particular all vertices satisfying (3.4)
have at least

p1´ 100ξqp1´ εq
ˆ

k ´ 1
k

`
γ

4

˙

p1´ εqµp|V ˚| ě
ˆ

k ´ 1
k

`
γ

5

˙

p|V ˚ X V pG1q|

neighbours in V ˚ X V pG1q if (3.3) holds. So indeed with probability at least 7{10
the first two claimed statements hold, so assume we chose L such that they do.

For the claim it only remains to show the lower bound on the number of cliques
in W . It follows, by inductively building up cliques, from the assumption in the
lemma that any t ď ∆ vertices of G1 have at most 2ptµn common neighbours in
G1, that v and each w P NG1pvq are contained in at most

s
ź

t“2
2ptµn “ pp

s`1
2 q´1

p2µnqs´1

copies of Ks`1. The choice of L implies |NG1pvqrW | ď ξ2µnp and so there are at
least

γpp
s`1

2 qpµnqs ´ ξ2µnppp
s`1

2 q´1
p2µnqs´1

ě 1
2γp
ps`1

2 qpµnqs

copies of Ks in W . l

Let tWiuiPr`s be an arbitrary equipartition ofW into ` parts. We apply Lemma 31
to G1 and tpVi X V pG1qq rW uiPL Y tWiuiPr`s with input parameter ν2

0{s
2. This

returns a partition refining each of these sets into 1 ď t ď t1 clusters together
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with small exceptional sets tWi,0, Vi,0u. It follows directly from the definition of
a regular refinenment that at most ν0t “

a

ν2
0{`

2`t of the clusters do not form a
regular pair with more than ν0t of the clusters. Include the vertices of all those
clusters in the exceptional sets, which now make up a fraction of at most 2ν0 of
the vertices.

We now want to obtain s clusters W 1
1, . . . ,W

1
s in tW 1

i,juiPr`s,jPrts
that are pairwise

pν0, d
1, pq-regular. Assume for a contradiction that no such clique exists in the

reduced graph. So each clique in W must either contain an edge meeting an
exceptional set, one which does not lie in a pν0, d

1, pq-regular pair or one that is
contained completely in a W 1

i,j. Note that we have for all i P r`s and j P rts that

|Wi,j| ě
1

2`t1
|W | ě

µnp

4`t1
ě Cp´1 log n.

So we may apply Proposition 38 to bound the number of edges within and between
clusters. Using the upper bound on common neighbourhoods in G1 given in the
lemma to bound the number of edges meeting the exceptional sets, we obtain that
deleting at most

2ν0|W |2p2µn` 2ppν0 ` d
1
q|W |2 ` `2pp|W |{`q2 ď p8ν0 ` 8ν0 ` 8d1 ` 2{`qp3µ2n2

edges would remove all cliques from W . By the upper bound on common neigh-
bourhoods in G1 given in the lemma any of these edges is contained in at most

s
ź

t“3
2ptµn “ pp

s`1
2 q´3

p2µnqs´2

copies of Ks`1 together with v. So there would be at most

p16ν0 ` 8d1 ` 2{`qp3µ2n2pp
s`1

2 q´3
p2µnqs´2

ă 1
2γp
ps`1

2 qpµnqs

copies of Ks in W , a contradiction. So let W 1
1, . . . ,W

1
s in tW 1

i,juiPr`s,jPrts
be pairwise

pν0, d
1, pq-regular.

Just like in the proof of Claim 48, the minimum degree condition on the vertices
in W implies that each W 1

i satisfies
ÿ

Vi1,j1 : pW 1
i ,Vi1,j1 q is pν0,d1,pq´regular

|Vi1,j1 |

|V ˚ X V pG1q|
ě

ˆ

k ´ 1
k

`
γ

8

˙

. (3.5)

Also if pVi, Vi1q is pε0, d, pq-regular then so is pViXV pG1q, Vi1XV pG1qq as the reduced
graphs are assumed to be identical in the lemma and by the choice of ε0 and
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d1 ď d it follows that pVi,j, Vi1,j1q is pν0, d
1, pq-regular for all j, j1 P rts. So a weighted

minimum degree of
`

k´1
k
`

γ
8

˘

on the pν0, d
1, pq-reduced graph on the clusters tVi,ju

is inherited from R˚, i.e., (3.5) holds for Vi,j too.
Now we can choose the clusters into which we will embed the vertices of H 1.

Note that (3.5) allows one to find, for every clique of size at most k, a pk`1q-clique
containing it. So we can choose

pis`1, js`1q, . . . , pik`1, jk`1q P Lˆ rts

such that
W 1

1, . . . ,W
1
s, Vis`1,js`1 , . . . , Vik`1,jk`1

are a clique in the pν0, d
1, pq-reduced graph and is`1, . . . , ik`1 are all distinct. Next,

we choose pairs pis, jsq, . . . , pi1, j1q in that order sequentially such that for each
a P ts, . . . , 1u the clusters

W 1
1, . . . ,W

1
a´1, Via,ja , Via`1,ja`1 , . . . , Vik`1,jk`1

form a Kk`1 in the pν0, d
1, pq-reduced graph. Since the degree condition was

inherited from R˚ we may assume that Vi1 , . . . , Vik`1 are pairwise pε0, d, pq-regular
too.

Let H 1, % be as in the statement of the lemma. We define a proper pk` 1q-vertex
colouring %1 : V pH 1q Ñ rk` 1s inductively as follows. Initially we set %1pwq “ %pwq

for all w in H 1. Let

U%1 “
s´1
ď

i“2

 

w P N i
pxq : %1pwq ď s´ i` 1

(

,

where N ipxq refers to the vertices at distance i from x. If U%1 contains a vertex
w with no neighbour in %1´1

piq for some i P ts ` 1, . . . , k ` 1u, we set %1pwq “ i.
We repeat this step until U%1 contains no such vertices. With this recolouring
procedure we ensure that every vertex in H 1 at distance i ě 2 from x with colour
at most s´ i` 1 has at least two neighbours in the colour classes s` 1, . . . , k ` 1.
Note that the colouring remains unchanged on Npxq and the vertices at distance
s` 1 from x.

We define an order ă%1 on H 1 given by the following enumeration of its vertices.
First, we take an arbitrary enumeration of the vertices in N spxq X %1´1p1q, then
for i P rs ´ 1s, we continue with the vertices in N s´ipxq X %1´1pri ` 1sq. The
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rest of the vertices in H 1 we then enumerate arbitrarily. With the colouring %1

defined as above, this gives us, for all u at distance at least two from x with
%1puq ` dpx, uq ď s` 1:

|predă%1
puq XNpuq| “ |tu1 : u1 ă%1 u, u1 P Npuqu| ď ∆´ 2. (3.6)

Now we can assign the vertices of H 1 to clusters. For u P V pH 1q, let

Vu “ Vi%1puq and Cu “

$

&

%

W 1
%1puq if %1puq ` dpx, uq ď s` 1

Vi%1puq,j%1puq otherwise.

We now iteratively embed the vertices of H 1 in the order specified above respecting
the assignments to clusters. More precisely, we claim the following. Here, as in
the statement of the lemma, we set Πpuq “ ϕ

`

NH 1puq XDompϕq
˘

and let T be the
vertices in H 1 at distance exactly s` 1 from v.

Claim 49. For each integer 0 ď z ď |H 1r pT Y txuq| there exists an embedding ϕ
of the first z vertices of H 1 r pT Y txuq (w.r.t. to the order ă%1) into G such that
the following holds. For every u, u1 P H 1 r pDompϕq Y txuq, where u1 P NH 1puq we
have the following.

(I 1) For all u2 P Dompϕq we have ϕpu2q P Cu2,

(I 2)
`

NΓpΠpuq, Cuq, Cu1
˘

is pν˚˚|Πpuq|, d1, pqG-lower-regular,

(I 3) |NGpΠpuq, Cuq| ě
`

d1

4

˘|Πpuq|
p|Πpuq||Cu|,

(I 4) |NΓpΠpuq, Cuq| “ p1˘ ν0q
|Πpuq|p|Πpuq||Cu|,

(I 5)
`

NΓpΠpuq, Cuq, NΓpΠpu1q, Cu1q
˘

is pν˚|Πpuq|,|Πpu1q|, d1, pqG-lower-regular.

Also,

(L 1)
`

NΓpΠpuq, Vuq, Vu1
˘

is pε˚˚|Πpuq|, d, pqG-lower-regular,

(L 2) |NΓpΠpuq, Vuq| “ p1˘ ε0q
|Πpuq|p|Πpuq||Vu|,

(L 3)
`

NΓpΠpuq, Vuq, NΓpΠpu1q, Vu1q
˘

is pε˚|Πpuq|,|Πpu1q|, d, pqG-lower-regular.

Proof. We prove the claim inductively and start with the empty embedding.
If ϕ “ ∅, then Πpuq “ ∅ for all u P H 1, so (I 1), (I 3), (I 4), and (L 2) are trivial
statements. By construction, for every edge uu1 the clusters pCu, Cu1q form an
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pν0, d
1, pqG-regular pair so (I 2) and (I 5) hold. Similarly pVu, Vu1q is pε0, d, pqG-

lower-regular, which implies (L 1) and (L 3).
Assume we have already embedded the first z vertices such that (I 1)-(I 5)

and (L 1)-(L 3) hold and let w be the pz ` 1qth vertex. We will now prove there
exists an embedding ϕ1 extending ϕ with ϕ1pwq P Cw such that the statement of
the claim holds for z ` 1. For this we will show that the number of choices ϕ1pwq
in Cw for which one of (I 2)-(I 5) or (L 1)-(L 3) does not hold is smaller than |Cw|.
By the construction we can use the following lower bounds on the sizes of W 1

a,
V 1ia,ja , and Vu.

|W 1
a| ě

µnp

4`t1
ě

µnp

5`rt1
, |V 1ia,ja | ě

µn

5rt1
ě

µn

5`rt1
, and |Vu| ě

µn

5r .

For (I 2), consider an edge uu1 in H 1 r pDompϕq Y tw, xuq. We only need to
check (I 2) if w P Npuq, as Πpuq does not change otherwise. In particular, this
implies that |Πpuq| ă ∆ ´ 1 and if Cu P tW 1

iuiPrss, then even |Πpuq| ă ∆ ´ 2,
by (3.6) if u is at distance two or more from x and otherwise by the fact that x
is not in Dompϕq for u P Npxq. We want to apply Lemma 35 to NΓpΠpuq, Cuq
and Cu1 . By the inductive assumption (I 2) this pair is pν˚˚|Πpuq|, d1, pqG-lower-regular
and

|NΓpΠpuq, Cuq|
(I 4)
ě p1´ ν0q

|Πpuq|p|Πpuq||Cu| ě p1´ ν0q
∆´2p∆´2 µn

5`rt1
ě C maxpp´2, p´1 log nq.

So we can apply Lemma 35, obtaining that for at most Cp´1 log n vertices v, the pair
pNΓpΠpuq XNpvqq, Cu1q is not pν˚˚|Πpuq|`1, d

1, pqG-lower-regular. Summing this over
all possible uu1 P H 1, at most |H 1|2Cp´1 log n choices for ϕ1pwq would violate (I 2).
By the same argument with a similar calculation, at most |H 1|2Cp´1 log n choices
for ϕ1pwq would violate (L 1).
For (I 3), consider u P H 1 r pDompϕq Y tw, xuq. As before, we only need to

consider the case w P Npuq for (I 3). The inductive assumption (I 2) implies that
pNΓpΠpuq, Cuq, Cwq is pν˚˚|Πpuq|, d1, pq-lower-regular. Also,

|NGpΠpuq, Cuq|
(I 3)
ě

`

d1

4

˘|Πpuq|
p|Πpuq||Cu|

(I 4)
ě 1

2

`

d1

4

˘|Πpuq|
|NΓpΠpuq, Cuq|

ě ν˚˚|Πpuq||NΓpΠpuq, Cuq|

and so, using the lower-regularity of the pair, at most ν˚˚|Πpuq||Cw| ď ν˚˚∆ |Cw| choices
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for ϕ1pwq violate the inequality in (I 3) for some u. So in total at most |H 1|ν˚˚∆ |Cw|

choices would violate (I 3).
For (I 4), consider u P H 1 r pDompϕq Y tw, xuq. Once again, we only need to

consider the case w P Npuq for (I 4), so |Πpuq| ă ∆ and if Cu P tW 1
iuiPrss, then

|Πpuq| ă ∆ ´ 1. Similarly to above, we have that |NΓpΠpuq, Cuq| ě Cp´1 log n.
Therefore, by Proposition 38, there are at most Cp´1 log n vertices v such that

|NΓpΠpuq XNpvq, Cuq| ‰ p1˘ ν0qp|NΓpΠpuq, Cuq|
(I 4)
“ p1˘ ν0q

|Πpuq|`|p|Πpuq|`1
|Cu|

Summing this over all u P H 1, at most |H 1|Cp´1 log n choices for ϕ1pwq would
violate (I 4). And again by a similar calculation at most |H 1|Cp´1 log n choices for
ϕ1pwq would violate (L 2).

For (I 5), consider an edge uu1 in H 1r pDompϕq Y tw, xuq. Here, three cases are
to be considered; w P Npuq, w P Npu1q, or both. First, assume that w P Npuq and
w R Npu1q. By the same arguments as before, we obtain that

|NΓpΠpuq, Cuq| ě C maxpp´2, p´1 log nq and |NΓpΠpu1q, Cu1q| ě Cp´1 log n.

So using the induction hypothesis and Lemma 35, for at most Cp´1 log n ver-
tices, (I 5) would be violated. It follows from symmetry that only Cp´1 log n
vertices violate (I 5) for u and u1 if w R Npuq and w P Npu1q. Now, assume that
w P Npuq and w P Npu1q, which implies that ∆ ě 3 as tu, u1, wu would yield an
isolated triangle for ∆ “ 2 which cannot exist in H 1, so

|NΓpΠpuq, Cuq| ě C maxpp´2, p´1 log nq

and

|NΓpΠpu1q, Cu1q| ě C maxpp´2, p´1 log nq.

We use the induction hypothesis of (I 5) and, hence, we can apply Lemma 36,
obtaining that for at most C maxpp´2, p´1 log nq choices, (I 5) would not hold for
u and u1. In total, if ∆ “ 2, then at most 2|H 1|2Cp´1 choices violate (I 5), and
if ∆ ě 3, at most 2|H 1|2Cpp´1 `maxpp´2, p´1 log nqq choices would. Again, the
number of choices that violate (L 3) can be bounded by the same number.
To wrap up the proof of the claim, we will now sum the number of all bad

choices described above. This yields a total of

2|H 1
|
2Cp´1 log n` |H 1

|ν˚˚∆ |Cw| ` 2|H 1
|
2Cp´1 log n` 4|H 1

|
2Cp´1 log n.
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if ∆ “ 2 and otherwise a total of

2|H 1
|
2Cp´1 log n` |H 1

|ν˚˚∆ |Cw| ` 2|H 1
|
2Cp´1 log n

` 4|H 1
|
2Cpp´1

`maxpp´2, p´1 log nqq.

Note that we can bound the size of H 1 by ∆s`1 ` 1 ď ∆2k, so the second term is
at most 1

100 |Cw|. The other terms can be bounded similarly, which implies that
the total number of bad choices is smaller than Cw{2. Hence, there is a suitable
choice of ϕpwq in Cw, concluding the proof of the claim. l

Now we can conclude the proof of Lemma 46. We complete the embedding by
setting ϕpxq “ v, which is valid since we embedded all neighbours of x to W , so
clearly (P 1) holds. By setting V 1j “ Vij for j P rks, we get (P 2). For every vertex
u in T we have that Cu “ Vi%1puq,j%1puq and |Cu| ě |Vi%1puq |{2t1. So by the choice
of ζ, (P 4) follows from (I 3). The choice of constants ensures that the remaining
statements in the lemma are a direct consequence of (L 1)-(L 3).

3.4 Proof of the main theorem

The proof of Theorem 43 is broadly similar to the proof of [2, Theorem 23]. Again,
basically the idea is that we apply the lemmas of Section 3.2 in order to first
find a well-behaved partition of G and a corresponding partition of H. We then
deal with the few badly-behaved vertices of G by sequentially pre-embedding
onto them some vertices of H whose neighbourhoods contain at most s colours.
Lemma 46 deals with this pre-embedding, and sets up for the vertices which are
not pre-embedded but which have pre-embedded neighbours restriction sets in the
sense of Definition 33. We then adjust the partition of H to fit this pre-embedding,
and balance the partition of G to match. Finally, we see that the conditions of
Lemma 34 are met, and that lemma completes the desired embedding of H in G.

As in [2], there are two slightly subtle points. The first is that for ∆ “ 2 we can
have Cp´2 ą pn, so that we should be worried that we come to some badly-behaved
vertex of G onto which we wish to pre-embed and discover that all its neighbours
have already been used in pre-embedding. As in [2], this is easy to handle: at each
step we choose the badly-behaved vertex with most neighbours already embedded
to. It is easy to check that this ordering avoids the above problem. The second,
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more serious, problem is that we need restriction sets fulfilling the conditions
of Definition 33. Although Lemma 46 gives us pre-embeddings satisfying these
conditions, we might destroy the conditions when we pre-embed later vertices.
The condition we could destroy is simply that we need each restriction set to
be reasonably large; the danger is that we pre-embed many vertices to some
restriction set. The solution to this is (as in [2]) to select a set S, whose size is
linear in n but small, using Lemma 41 to avoid large intersections with any possible
restriction set. When we apply Lemma 46 to cover a badly-behaved vertex v, we
will pre-embed to v and to some vertices chosen from S, and not to any other
vertex. The badly-behaved vertices are not (by construction) in any restriction
set, while S has small intersection with all restriction sets, so that even removing
all of S would not make the restriction sets too small.

The only point in the proof where we really need to do more than in [2] (apart
from using Lemma 46 to pre-embed) is that we need to ensure the conditions of
Lemma 46 are met. When we wish to cover a badly-behaved v, its neighbourhood
within the set S must contain many copies of Ks. Further, some vertices of S
will have been used in earlier pre-embeddings, and we need to ensure that these
used vertices do not hit too many of the copies of Ks. For this, we apply the
sparse regularity lemma, Lemma 31, to G

“

NGpvq
‰

before choosing S. We will
see that (since NGpvq contains many copies of Ks) we find a set of s clusters
in NGpvq such that all the pairs are relatively dense and regular. When we use
Lemma 41 to choose S, we also insist that S contains a significant fraction of each
of these clusters. The order in which we cover badly-behaved vertices ensures that
a (slightly smaller but still) significant fraction of each cluster is not used by the
previous pre-embedding; and we find the desired many copies of Ks in NGpvq X S

as a result.

Proof of Theorem 43. Given γ ą 0, we set d` “ 2´s´5γ and ε`s´2 “ 16´spd`q2s{s.
For each i “ s ´ 3, s ´ 4, . . . , 0 sequentially, let 0 ă ε`i ď ε`i´1 be sufficiently
small for Lemma 36 with input d` and ε`i`1. Let ε` ď ε`0 be small enough for an
application of Lemma 41 with input d` and ε`0 . Let t`1 be returned by Lemma 31
for input ε` and r1{d`s, and let α` “ 1

4d
`{t`1 . Let γ` “ 2´4s2

pd`q´2s2
pt`1 q

´s.
Note we have γ` ă γ.

We now choose d ď γ`

32 not larger than the d given by Lemma 44 for input γ, k
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and r0 :“ 10γ´1. We let α be the ζ returned by Lemma 46 for input ∆, k,
s, γ` and d. We set D “ ∆ and let εBL be returned by Lemma 34 for input
∆, ∆R1 “ 3k, ∆J “ ∆, ϑ “ 1

100D , ζ “
1
4α, d and κ “ 64. Next, putting

ε˚ :“ 1
8εBL into Lemma 46 (with earlier parameters as above) returns ε0 ą 0. We

set ε “ minpε0, d, ε
˚{4∆, 1{100kq, and set ε´ ď ε small enough for Lemma 41 with

input as above and d, ε. Now Lemma 44, for input ε´ and earlier constants as
above, returns r1. At last, Lemma 47, for input k, r1, ∆, γ, d and 8ε, returns
ξ ą 0. Without loss of generality, we may assume ξ ă 10p10kr1q, and set
β “ 10´12ξ2{p∆k4r2

1q. Let µ “ ε2{p100000kr1q. Next, suppose C˚ is large enough
to play the rôle of C in each of these lemmas, and also for Proposition 38 with
input ε, for Lemma 36 with input d` and each of ε`i for i “ 1, . . . , s´ 2, and for
Lemma 41 with input εµ2, ε, minpd, d`q and ∆.
We set C “ 10100k2r2

1ε
´2ξ´1∆1000k3

µ´∆C˚ and z “ 10{ξ. Given p ě C
` log
n

˘

,
a.a.s. Γ “ Gpn, pq satisfies the good events of each of the lemmas and propositions
listed above with each of the specified inputs.
In addition, for each set W of at most ∆ vertices of Gpn, pq, the size of the

common neighbourhood NGpn,pqpW q is distributed as a binomial random variable
with mean p|W |pn ´ |W |q. By Theorem 39, the probability that the outcome is
p1˘ εqp|W |n is at least 1´ n´p∆`1q for sufficiently large n. By the union bound,
we conclude that a.a.s. Gpn, pq satisfies

for each W Ă V
`

Gpn, pq
˘

with |W | ď ∆ we have
ˇ

ˇNGpn,pqpW q
ˇ

ˇ “ p1˘ εqp|W |n .
(3.7)

Suppose that Γ “ Gpn, pq satisfies these good events. Let G be a spanning
subgraph of Γ such that δpGq ě

`

k´1
k
` γ

˘

pn and such that for each v P V pGq

the neighbourhood NGpvq contains at least δpp
s
2qppnqs copies of Ks. Let H be a

graph on n vertices with ∆pHq ď ∆. Let σ be a proper colouring of V pHq using
colours t0, . . . , ku, and let L be a labelling of V pHq with bandwidth at most βn
with the following properties. The colouring σ is pz, βq-zero-free with respect to L,
the first

?
βn vertices of L do not use the colour zero, and the first βn vertices of

L contain Cp´2 vertices whose neighbourhood contains only s colours.
We now claim that for each v P V pGq we can find s large subsets of NGpvq all

pairs of which are dense and regular in G. This forms a ‘robust witness’ that each
vertex neighbourhood in G contains many copies of Ks.
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Claim 50. For each v P V pGq, there exist sets Qv,1, . . . , Qv,s Ă NGpvq each of size
at least α`pn such that for each i ă j the pair pQv,i, Qv,jq is pε`, d`, pq-regular in
G.

Proof. We apply Lemma 31 with input ε` and r1{d`s to G
“

NGpvq
‰

, with an
arbitrary equipartition into r1{d`s sets as an initial partition. Note that the
conditions of Lemma 31 are satisfied because the good event of Proposition 38
holds. We obtain an pε, pq-regular partition of NGpvq whose non-exceptional parts
are of size between α`pn and 8α`pn, by choice of α` and since

ˇ

ˇNGpvq
ˇ

ˇ ą 1
2pn.

If there exist s parts in this partition all pairs of which form pε`, d`, pq-regular
pairs, then these parts form the desired Qv,1,. . . ,Qv,s. So we may assume for a
contradiction that no such s parts exist. It follows that when we delete all edges
within parts, meeting the exceptional sets, in irregular pairs, and in pairs of density
less than d`p, we remove all copies of Ks from G

“

NGpvq
‰

.
The total number of such edges is, since the good event of Proposition 38 holds,

at most

pd`q´1
¨ 8p3n2

pd`q2 ` 2pp2ε`pnqp2pnq ` 4ε`p3n2
` 4d`p3n2

ď p12ε` ` 12d`qp3n2

ď 2´sγp3n2 ,

where the final inequality is by choice of d` and ε`. We now estimate simply how
many copies of Ks`1 a given edge e, together with v, can make in Γ. Since by (3.7)
any `-tuple of vertices of Γ has at most 2p`n common neighbours, the number of
copies of K4 containing e and v is at most 2p3n, and inductively the number of
copies of Ks`1 containing e and v is at most

s
ź

`“3
2p`n “ 2s´2pp

s`1
2 q´3ns´2 .

Putting these estimates together we see that the total number of copies of Ks in
G
“

NGpvq
‰

is at most 1
2γp
ps`1

2 qns. This is the desired contradiction, completing the
proof. l

We apply Lemma 44 to G, with input γ, k, r0 and ε´, to obtain an integer r
with 10γ´1 ď kr ď r1, a set V0 Ă V pGq with |V0| ď C˚p´2, a k-equitable partition
V “

 

Vi,j
(

iPrrs,jPrks
of V pGqrV0, and a graph Rk

r on rrsˆrks with minimum degree
δpRk

r q ě
`

k´1
k
`

γ
2

˘

kr, such that Kk
r Ă Bk

r Ă Rk
r and such that the following hold.
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(G 1a) n
4kr ď |Vi,j| ď

4n
kr

for every i P rrs and j P rks,

(G 2a) V is pε´, d, pqG-lower-regular on Rk
r and pε´, d, pqG-super-regular on Kk

r ,

(G 3a) both
`

NΓpv, Vi,jq, Vi1,j1
˘

and
`

NΓpv, Vi,jq, NΓpv, Vi1,j1q
˘

are pε´, d, pqG-lower-
regular pairs for every tpi, jq, pi1, j1qu P EpRk

r q and v P V r V0, and

(G 4a) |NΓpv, Vi,jq| “ p1˘ εqp|Vi,j| for every i P rrs, j P rks and every v P V r V0.

Given i P rrs, because δpRk
r q ą pk´ 1qr, there exists v P V pRk

r q adjacent to each
pi, jq with j P rks. This, together with our assumptions on H, allow us to apply
Lemma 45 to H, with input D, k, r, 1

10ξ and β, and with mi,j :“ |Vi,j| ` 1
kr
|V0| for

each i P rrs and j P rks, choosing the rounding such that themi,j form a k-equitable
integer partition of n. Since ∆pHq ď ∆, in particular H is ∆-degenerate. Let
f : V pHq Ñ rrs ˆ rks be the mapping returned by Lemma 45, let Wi,j :“ f´1pi, jq,
and let X Ď V pHq be the set of special vertices returned by Lemma 45. For every
i P rrs and j P rks we have

(H 1a) mi,j ´
1
10ξn ď |Wi,j| ď mi,j `

1
10ξn,

(H 2a) |X| ď ξn,

(H 3a) tfpxq, fpyqu P EpRk
r q for every tx, yu P EpHq,

(H 4a) y, z P
Ť

j1Prks f
´1pi, j1q for every x P f´1pi, jqrX and xy, yz P EpHq, and

(H 5a) fpxq “
`

1, σpxq
˘

for every x in the first
?
βn vertices of L.

We let F be the first βn vertices of L. By definition of L, in F there are at
least Cp´2 vertices whose neighbourhood in H receives at most s colours from σ.

Next, we apply Lemma 41, with input εµ2 and ∆, to choose a set S Ă V pGq of
size µn. We let the Ti of Lemma 41 be all sets which are common neighbourhoods
in Γ of at most ∆ vertices of Γ, together with the sets Vi,j for i P rrs and j P rks,
and the sets Qv,i for v P V pGq and i P rss. We let the regular pairs pXi, Yiq of
Lemma 41 be the pairs pQv,i, Qv,jq for 1 ď i ă j ď s and v P V pGq, and all regular
pairs pVi,j, Vi1,j1q P Rk

r .
The result of Lemma 41 is that for any 1 ď ` ď ∆ and vertices u1, . . . , u` of

V pGq, we have
ˇ

ˇ

ˇ
S X

č

1ďiď`
NΓpuiq

ˇ

ˇ

ˇ
“ p1˘ εµqµ

ˇ

ˇ

ˇ

č

1ďiď`
NΓpuiq

ˇ

ˇ

ˇ
˘ εµp`n , and

ˇ

ˇS X Vi,j
ˇ

ˇ “ p1˘ 1
2εqµ|Vi,j| for each i P rrs and j P rks,

(3.8)
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where we use the fact p ě C
` logn

n

˘1{∆ and choice of C to deduce C˚ log n ă εµp∆n.
Furthermore, for each v P V pGq and 1 ď i ă j ď s the pair

`

Qv,i X S,Qv,j X S
˘

is
`

ε`0 , d
`, pq-regular in G, and for each pVi,j, Vi1,j1q P Rk

r the pair
`

Vi,j XU, Vi1,j1 XU
˘

is pε, d, pq-regular in G.
Our next task is to create the pre-embedding that covers the vertices of V0.

We use the following algorithm, starting with ϕ0 the empty partial embedding.
Suppose this algorithm does not fail, terminating with t “ t˚. Then the final ϕt˚ is

Algorithm 1: Pre-embedding
Set t :“ 0 ;
while V0 r Impϕtq ‰ ∅ do

Let vt`1 P V0 r Impϕtq maximise
ˇ

ˇNGpvq X S X Impϕtq
ˇ

ˇ over
v P V0 r Impϕtq ;
Choose xt`1 P F such that

ˇ

ˇσ
`

NHpxq
˘ˇ

ˇ ď s and
dist

`

xt`1,Dompϕtq
˘

ě 100k2 ;
Set Ht`1 :“ H

“ 

y P V pHq : distpxt`1, yq ď s` 1
(‰

;
Set G1t`1 the maximum subgraph of G

“

pS Y tvt`1uqr Impϕtq
‰

with
minimum degree

`

k´1
k
`

γ
4

˘

µpn ;
Let ϕ be given by Lemma 46 with input G1t`1, H 1

t`1 and colouring
σ|V pH 1q ;
Set ϕt`1 :“ ϕt Y ϕ ;
t :“ t` 1 ;

end

an embedding of some vertices of H into V pGq which covers V0 and is contained in
V0 Y S. We will see that, because ϕt˚ is obtained by successively using Lemma 46
and by (3.8), the vertices of H r Dompϕt˚q which have neighbours in Dompϕt˚q
have image restriction sets matching the requirement of Definition 33. Before we
justify this, we first claim that the algorithm does not fail, and the requirements
of Lemma 46 are met at each iteration.

Claim 51. Algorithm 1 does not fail, and the conditions of Lemma 46 are met at
each iteration.

Proof. Observe that in total we embed at most ∆s`2 vertices in each iteration,
and the number of iterations is at most |V0| ď C˚p´2, so that the total number of
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vertices we embed is at most C˚∆s`2p´2.
We begin by discussing the choice of vt`1. Suppose that at some time t we

pick a vertex v “ vt`1 such that
ˇ

ˇNGpvq X S X Impϕtq
ˇ

ˇ ą 1
2α
`µpn. For each

t´ 1
4∆´s´2µα`pn ď t1 ă t, we have

ˇ

ˇNGpvq X S X Impϕt1q
ˇ

ˇ ą 1
4α
`µpn, yet at each

of these times v is not picked, so that the vertex picked at each time t1 has at
least 1

4α
`µpn neighbours in Impϕtq X S, and in particular in Impϕtq, a set of size

at most C˚∆s`2p´2. Let Z be a superset of Impϕtq of size at least C˚p´1 log n.
Now the good event of Proposition 38 states that in Γ at most C˚p´1 log n vertices
of Γ have more than 2p|Z| ă 1

4α
`µpn neighbours in Z. Since 1

4∆´s´2µα`pn ą

C˚p´1 log n by choice of p, this is a contradiction. We conclude that at each time t,
the vertex vt`1 picked at time t satisfies

ˇ

ˇNGpvq X S X Impϕtq
ˇ

ˇ ď 1
2α
`µpn.

From this point on we consider a fixed time t, and write v rather than vt`1,
and ϕ for ϕt, and so on.

Since we cover at most C˚∆s`2p´2 vertices, so we have |Sr Impϕq| “ p1˘ 1
2εqµn.

Now, to obtain the maximum subgraph of G
“

pS Y tvuqr Impϕq
‰

with minimum
degree

`

k´1
k
`

γ
4

˘

µpn, we successively remove vertices whose degree is too small
until no further remain. We claim that less than 1

8µα
`pn vertices are removed,

and v is not one of the vertices removed. To see this, observe that every vertex
has at least

`

k´1
k
`

γ
2

˘

µpn neighbours in S by (3.8). Suppose for a contradiction
that there is a set Z of 1

8µα
`pn vertices which are the first removed from S in

this process. Then each vertex of Z has at least 1
4γµpn neighbours in Z Y Impϕq,

which by choice of α` is a contradiction to the good event of Proposition 38.
We conclude

ˇ

ˇpSYtvuqr Impϕq
ˇ

ˇ “ p1˘ εqµn. Since v has at least
`

k´1
k
`

γ
2

˘

µpn

neighbours in S, of which at most 1
2α
`µpn are in Impϕq and at most |Z| are in

Z, v is not removed. Furthermore, for each i P rss we have |Qv,i X V pG1q
ˇ

ˇ ě

1
2

ˇ

ˇQv,i X S
ˇ

ˇ. We now use this to count copies of Ks in NG1pvq. We choose for
i “ 1, . . . , s sequentially vertices in Qv,i X V pG1q, at each step choosing a vertex
wi which is adjacent to the previous vertices, and which is such that w1, . . . , wi

have at least pd` ´ ε`s´2q
ipi|Qv,j| common G-neighbours in each Qv,j for j ą i,

and have p1 ˘ εqipi|Qv,j| common Γ-neighbours in each Qv,j for j ą i, and the
pair

`

NΓpw1, . . . , wi;Qv,jq, NΓpw1, . . . , wi;Qv,j1q
˘

is pε`i , d`, pq-lower-regular in G

for each i ă j ă j1 ď s. Note that all these properties hold when i “ 0 vertices
have been chosen. Assuming these properties hold when we come to choose wi,
there are at least 21´ipd`qi´1pi´1|Qv,i| vertices of Qv,i which are adjacent to all
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previously chosen vertices. If i “ s then all of these are valid choices. If i ă s, by
Propositions 28 and 29, and because the good event of Proposition 38 holds, at
most

s ¨ 4ipd`q1´iε`s´2p
i´1
|Qv,i| ` s ¨ C

˚p´1 log n

vertices of Qv,i cause the numbers of G- or Γ-common neighbours in some Qv,j for
j ą i to go wrong. Finally, if i “ s´1 then there is no choice of i ă j ă j1 ď s and
so no failure of lower-regularity can occur, while if i ă s´1 then by the good event
of Lemma 36 the number of vertices which cause a failure of lower-regularity is at
most s2C˚p´2 log n. By choice of ε`s´2 and p, in total at least 2´ipd`qi´1pi´1|Qv,i|

vertices of Qv,i are thus valid choices for wi. Finally, by choice of γ` the total
number of copies of Ks in NG1pvq is at least 2γ`pp

s
2q
`

p|S|
˘s
ě γ`pp

s`1
2 qpµnqs, as

desired.
The remaining conditions of Lemma 46 are simpler to check. By (3.8) we have

ˇ

ˇNG1pW q
ˇ

ˇ ď
ˇ

ˇNΓpW q X S
ˇ

ˇ ď 2µnp|W | for any W Ă V pG1q of size at most ∆. The
graph G with the regular partition pVi,jqiPrrs,jPrks, with reduced graph Rk

r , has the
required minimum degree. By (3.8) the intersection of the part Vi,j with S has
size p1˘ 1

2εqµ|Vi,j|, so that |Vi,j X V pG1q| “ p1˘ εqµ|Vi,j| as required. Furthermore
the regular pairs of R intersected with S are regular, and so by Proposition 29 the
subpairs obtained by intersecting with V pG1q (which is, except for v, contained
in S; and v is in V0 hence not in any of these pairs) are also sufficiently regular.
Finally, the graph Ht`1 chosen at each time t satisfies the conditions of Lemma 46
by definition. Note that we can at each step choose xt`1 and hence Ht`1 because
there are at least Cp´2 vertices of F whose neighbourhood is coloured with at
most s colours; even after embedding all of V0, the domain of ϕ contains at most
C˚∆s`2p´2 vertices, and hence at most C˚∆s`100k2`3p´2 ă Cp´2 vertices of H are
too close to Dompϕq. l

Let ϕ :“ ϕt˚ and H 1 “ H r Dompϕq. We next define image restricting vertex
sets and create an updated homomorphism f˚ : V pH 1q Ñ rrs ˆ rks. The former is
easier. The vertices of Dompϕq are partitioned according to the xt chosen at each
time in Algorithm 1, and because these vertices are chosen far apart in H, any
vertex of V pH 1q with a neighbour in Dompϕq is at distance s` 1 from some xt. Its
neighbours in H 1 are either also at distance s` 1 in H from xt and not adjacent
to any vertices of Dompϕq corresponding to other xt1 , or they are not adjacent to
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any vertex of Dompϕq at all. Now items (P 3), (P 4), (P 5) and (P 6) immediately
give valid image restriction sets for all the vertices NH

`

Dompϕq
˘

X V pH 1q, with
the image restricting vertices for each such image restricted y being the vertices
Jy :“ ϕ

`

NHpuq XDompϕq
˘

.
We construct the updated homomorphism as follows. We will have f˚pyq “ fpyq

for all vertices which are not within distance s`
`

k`1
2

˘

of Dompϕq in H. Given a
vertex x of H chosen at some time t in Algorithm 1, we set f˚pyq for each y at
distance between s ` 1 and s `

`

k`1
2

˘

from x in H as follows. We will generate
a collection Z1, . . . , Zpk`1

2 q
of copies of Kk in Rk

r , each labelled with the integers
1, . . . , k. For each i “ 1, . . . ,

`

k`1
2

˘

, if y is at distance s ` i from x in H, then
we set f˚pyq to be the label σpyq cluster of Zi. The properties of the sequence
Z1, . . . , Zpk`1

2 q
we require are the following. First, Z1 is the clique returned by the

application of Lemma 46 at x with the labelling given by that lemma. Second,
Zpk`1

2 q
is the clique

`

V1,1, . . . , V1,k
˘

, labelled 1, . . . , k in that order. Third, for each
i “ 2, . . . ,

`

k`1
2

˘

, each cluster of Zi is adjacent in Rk
r to each differently-labelled

cluster of Zi´1. Assuming such a sequence of cliques exists, the resulting f˚ has
the properties that each neighbour of Dompϕq in H is assigned by f˚ to the cluster
of Rk

r in which Lemma 46 created an image restriction set, that each edge of
H 1 is mapped by f˚ to an edge of Rk

r , and that f and f˚ disagree on at most
C˚p´2∆s`pk`1

2 q`3 vertices of H 1, all in the first
?
βn vertices of L. These will be

the properties we need of f˚. Note that this definition is consistent, in that it does
not attempt to set f˚pyq to two different clusters for any y, because the vertices
chosen at each step of Algorithm 1 are at pairwise distance at least 100k2. It
remains only to show that the desired sequence of cliques always exists.

Claim 52. For any k-cliques Z1 and Zpk`1
2 q

in Rk
r a sequence Z1, . . . , Zpk`1

2 q
with

the above properties exists.

Proof. By the minimum degree of Rk
r , any k-set in V pRk

r q has at least one common
neighbour. We will use this fact at each step in the following algorithm. Set t “ 2.
We loop through j “ 1, . . . , k ´ 1 sequentially. For each value of j we perform the
following operation.

For each i “ j`1, . . . , k sequentially, choose a cluster wt of Rk
r which is adjacent

to all the clusters of Zt´1 except possibly that labelled i, and which is also adjacent
to the cluster of Zpk`1

2 q
labelled j. We let Zt be the clique obtained from Zt´1 by
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replacing the label i cluster with wt, which we label i; all other clusters keep their
previous label. We increment t.
After performing the i “ k operation, we let Zt be obtained from Zt´1 by

replacing the label j cluster of Zt´1 with the label j cluster of Zpk`1
2 q

, and increment
t. We now proceed with the next round of the j-loop.
Observe that after the completion of each j-loop, the clusters of Zt´1 labelled

1, . . . , j are the same as those of Zpk`1
2 q

. In particular the given Zpk`1
2 q

has the
required adjacencies in Zpk`1

2 q´1 (the final clique constructed in the j “ k´1 loop),
while the remaining required adjacencies hold by construction. l

At this point we complete the proof almost exactly as in [2]. What follows is
taken from there, with only trivial changes, for completeness’ sake.
For each i P rrs and j P rks, let W 1

i,j be the set of vertices w P V pH 1q with
f˚pwq P Vi,j , and let X 1 consist of X together with all vertices of H 1 at H-distance
100k2 or less from some xt with t P rt˚s. The total number of vertices z P V pHq
at distance at most 100k2 from some xt is at most 2∆200k2

|V0| ă
1

100ξn. Since
Wi,j4W 1

i,j contains only such vertices, we have

(H 1b) mi,j ´
1
5ξn ď |W

1
i,j| ď mi,j `

1
5ξn,

(H 2b) |X 1| ď 2ξn,

(H 3b) tf˚pxq, f˚pyqu P EpRk
r q for every tx, yu P EpH 1q, and

(H 4b) y, z P
Ť

j1PrksW
1
i,j1 for every x P W 1

i,j rX 1 and xy, yz P EpH 1q.

where (H 2b), (H 3b) and (H 4b) hold by (H 2a) and definition of X 1, by definition
of f˚, and by (H 4a) and choice of X 1 respectively.
Furthermore, we have

(G 1a) n
4kr ď |Vi,j| ď

4n
kr

for every i P rrs and j P rks,

(G 2a) V is pε, d, pqG-lower-regular on Rk
r and pε, d, pqG-super-regular on Kk

r ,

(G 3a) both
`

NΓpv, Vi,jq, Vi1,j1
˘

and
`

NΓpv, Vi,jq, NΓpv, Vi1,j1q
˘

are pε, d, pqG-lower-
regular pairs for every tpi, jq, pi1, j1qu P EpRk

r q and v P V r V0, and

(G 4a) |NΓpv, Vi,jq| “ p1˘ εqp|Vi,j| for every i P rrs, j P rks and every v P V r V0.

(G 5a)
ˇ

ˇVf˚pxq X
Ş

uPJx
NGpuq

ˇ

ˇ ě αp|Jx||Vf˚pxq| for each x P V pH 1q,

(G 6a)
ˇ

ˇVf˚pxq X
Ş

uPJx
NΓpuq

ˇ

ˇ “ p1˘ ε˚qp|Jx||Vf˚pxq| for each x P V pH 1q, and
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(G 7a)
`

Vf˚pxqX
Ş

uPJx
NΓpuq, Vf˚pyqX

Ş

vPJy
NΓpvq

˘

is pε˚, d, pqG-lower-regular for
each xy P EpH 1q.

(G 8a)
ˇ

ˇ

Ş

uPJx
NΓpuq

ˇ

ˇ ď p1` ε˚qp|Jx|n for each x P V pH 1q,

Properties (G 1a) to (G 4a) are repeated for convenience (replacing ε´ with the
larger ε). Properties (G 5a), (G 6a) and (G 8a), are trivial when Jx “ ∅, and
are otherwise guaranteed by Lemma 46. Finally (G 7a) follows from (G 2a) when
Jx, Jy “ ∅, and otherwise is guaranteed by Lemma 46.

For each i P rrs and j P rks, let V 1i,j “ Vi,j r Impϕt˚q, and let V 1 “ tV 1i,juiPrrs,jPrks.
Because Vi,j r V 1i,j Ă S for each i P rrs and j P rks, using (3.8) and Proposition 29,
and our choice of µ, we obtain

(G 1b) n
6kr ď |V

1
i,j| ď

6n
kr

for every i P rrs and j P rks,

(G 2b) V 1 is p2ε, d, pqG-lower-regular on Rk
r and p2ε, d, pqG-super-regular on Kk

r ,

(G 3b) both
`

NΓpv, V
1
i,jq, V

1
i1,j1

˘

and
`

NΓpv, V
1
i,jq, NΓpv, V

1
i1,j1q

˘

are p2ε, d, pqG-lower-
regular pairs for every tpi, jq, pi1, j1qu P EpRk

r q and v P V r V0, and

(G 4b) |NΓpv, V
1
i,jq| “ p1˘ 2εqp|Vi,j| for every i P rrs, j P rks and every v P V r V0.

(G 5b)
ˇ

ˇV 1f˚pxq X
Ş

uPJx
NGpuq

ˇ

ˇ ě 1
2αp

|Jx||V 1f˚pxq|,

(G 6b)
ˇ

ˇV 1f˚pxq X
Ş

uPJx
NΓpuq

ˇ

ˇ “ p1˘ 2ε˚qp|Jx||V 1f˚pxq|, and

(G 7b)
`

V 1f˚pxq X
Ş

uPJx
NΓpuq, V

1
f˚pyq X

Ş

vPJy
NΓpvq

˘

is p2ε˚, d, pqG-lower-regular.

(G 8b)
ˇ

ˇ

Ş

uPJx
NΓpuq

ˇ

ˇ ď p1` 2ε˚qp|Jx|n for each x P V pH 1q,

We are now almost finished. The only remaining problem is that we do not
necessarily have |W 1

i,j| “ |V
1
i,j| for each i P rrs and j P rks. Since

|V 1i,j| “ |Vi,j| ˘ 2∆200k2
|V0| “ mi,j ˘ 3∆200k2

|V0|,

by (H 1b) we have |V 1i,j| “ |W 1
i,j| ˘ ξn. We can thus apply Lemma 47, with input k,

r1, ∆, γ, d, 8ε, and r. This gives us sets V 2i,j with |V 2i,j| “ |W 1
i,j| for each i P rrs and

j P rks by (B 1’). Let V2 “ tV 2i,juiPrrs,jPrks. Lemma 47 guarantees us the following.

(G 1c) n
8kr ď |V

2
i,j| ď

8n
kr

for every i P rrs and j P rks,

(G 2c) V2 is p4ε˚, d, pqG-lower-regular on Rk
r and p4ε˚, d, pqG-super-regular on Kk

r ,

(G 3c) both
`

NΓpv, V
2
i,jq, V

2
i1,j1

˘

and
`

NΓpv, V
2
i,jq, NΓpv, V

2
i1,j1q

˘

are p4ε˚, d, pqG-lower-
regular pairs for every tpi, jq, pi1, j1qu P EpRk

r q and v P V r V0, and
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(G 4c) we have p1 ´ 4εqp|V 2i,j| ď |NΓpv, V
2
i,jq| ď p1 ` 4εqp|V 2i,j| for every i P rrs,

j P rks and every v P V r V0.

(G 5c)
ˇ

ˇV 2f˚pxq X
Ş

uPJx
NGpuq

ˇ

ˇ ě 1
4αp

|Jx||V 2f˚pxq|,

(G 6c)
ˇ

ˇV 2f˚pxq X
Ş

uPJx
NΓpuq

ˇ

ˇ “ p1˘ 4ε˚qp|Jx||V 1f˚pxq|, and

(G 7c)
`

V 2f˚pxq X
Ş

uPJx
NΓpuq, V

2
f˚pyq X

Ş

vPJy
NΓpvq

˘

is p4ε˚, d, pqG-lower-regular.

Here (G 1c) comes from (G 1b) and (B 2’), while (G 2c) comes from (B 3’) and
choice of ε. (G 3c) is guaranteed by (B 4’). Now, each of (G 4c), (G 5c) and (G 6c)
comes from the corresponding (G 4b), (G 5b) and (G 6b) together with (B 5’). Fi-
nally, (G 7c) comes from (G 7b) and (G 8b) together with Proposition 29 and (B 5’).

For each x P V pH 1q with Jx “ ∅, let Ix “ V 2f˚pxq. For each x P V pH 1q with Jx ‰
∅, let Ix “ V 2f˚pxq X

Ş

uPJx
NGpuq. Now W 1 and V2 are κ-balanced by (G 1c), size-

compatible by construction, partitions of respectively V pH 1q and V pGqr Impϕt˚q,
with parts of size at least n{pκr1q by (G 1c). Letting ĂWi,j :“ W 1

i,j rX 1, by (H 2b),
choice of ξ, and (H 4b), tĂWi,juiPrrs,jPrks is a

`

ϑ,Kk
r

˘

-buffer for H 1. Furthermore since
f˚ is a graph homomorphism from H 1 to Rk

r , we have (BUL 1). By (G 2c), (G 3c)
and (G 4c) we have (BUL 2), with R “ Rk

r and R1 “ Kk
r . Finally, the pair

pI,J q “
`

tIxuxPV pH 1q, tJxuxPV pH 1q
˘

form a
`

%, 1
4α,∆,∆

˘

-restriction pair. To see
this, observe that the total number of image restricted vertices in H 1 is at most
∆2|V0| ă %|Vi,j| for any i P rrs and j P rks, giving (RP 1). Since for each x P V pH 1q

we have |Jx| ` degH 1pxq “ degHpxq ď ∆ we have (RP 3), while (RP 2) follows
from (G 5c), and (RP 5) follows from (G 6c). Finally, (RP 6) follows from (G 7c),
and (RP 4) follows since ∆pHq ď ∆. Together this gives (BUL 3). Thus, by
Lemma 34 there exists an embedding ϕ of H 1 into Gr Impϕt˚q, such that ϕpxq P Ix
for each x P V pH 1q. Finally, ϕY ϕt˚ is an embedding of H in G, as desired.

3.5 Remarks on the optimality

In Theorems 8 and 26, the requirement for C˚p´2 vertices in H whose neighbour-
hood contains few colours is optimal up to the value of C˚. However the value
of C˚ we obtain derives from (multiple applications of) the sparse regularity lemma
and is hence very far from optimal. One can use the methods of this proof to
obtain an improved (but still far from sharp) constant, and we expect that one
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can use the methods of this proof to determine an optimal C˚ asymptotically, at
least for special cases.
The way to obtain this improvement is the following. We work exactly as in

the proof of Theorem 43, except that for each v P V pGq we identify the largest
1 ď s ď k ´ 1 for which there are many copies of Ks in NGpvq, and obtain a
robust witness for this property as in that proof. Now when we come to cover
the vertices of the set V0 returned by Lemma 44, we use vertices from zero-free
regions of L which are not in the first few vertices of L whenever possible: in
particular this is always possible when we are to cover a vertex which is in many
copies of Kk. Our proof, with trivial modification, shows that this pre-embedding
method succeeds. The result is that we can reduce C˚ to a quantity on the order
of ∆100k2 ; this number comes from our requirement to choose vertices in L which
are widely separated in H for the pre-embedding onto the vertices of V0 which are
not in many copies of Kk.
When H contains many isolated vertices, this requirement disappears and we

can further improve. We believe (but have not attempted to prove) that there
is some Ck with the following property. Let Γ be a typical instance of Gpn, pq,
where p " n´1{k. Suppose G Ă Γ has minimum degree

`

k´1
k
` op1q

˘

pn. Then
any choice of G contains at most

`

Ck ` op1q
˘

p´2 vertices which are in o
`

pp
k
2qnk´1˘

copies of Kk; on the other hand there is a choice of G which has
`

Ck ´ op1q
˘

p´2

vertices not in any copy of Kk.
Assuming the above statement to be true, it follows that Ck is the asymptotically

optimal C˚ whenever all vertices of H are either isolated or contained in a copy
of Kk; for example when H consists of a pk ´ 1qst power of a cycle together with
some isolated vertices. Further generalisation to (for example) try to establish an
optimal value of C˚ in Theorem 8 would be possible; but it would also presumably
depend on the graph structure of H. If the vertices of H which are not in triangles
are far apart in H, then the generalisation is easy (and the answer is the same)
but if they are not generally far apart it seems likely that one would have to use
several such vertices to cover one badly-behaved vertex of G, and hence C˚ would
need to be larger than the above Ck.
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4 Anti-Ramsey thresholds in sparse
random graphs

In this chapter, we will prove the following result.

Theorem 53. For k ě 5, prb
Kk
“ n´1{mp2qpKkq. Furthermore, prb

K4 “ n´7{15.

We give the proof for complete graphs with at least 5 vertices in Section 4.1.
The proof for K4 is given in Section 4.2.

4.1 Complete graphs on at least five vertices

In this section we describe a strategy to prove lower bounds for prb
H when H is a

complete graph with at least five vertices. The aim of this section is to prove the
following result.

Lemma 54. If H is a complete graph on at least five vertices, then prb
H ě n´m

p2qpHq.

Beside the maximum 2-density of a graph, we will also need the maximum
density mpHq of a graph H, defined by

mpHq “ max
"

|EpJq|

|V pJq|
: J Ă H, |V pJq| ě 1

*

.

Theorem 14 is limited to complete graphs on at least 19 vertices only because of
the following lemma [47, Lemma 24].

Lemma 55. Let H be a complete graph on at least 19 vertices, then for any
graph G with mpGq ă mp2qpHq we do not have G rb

ÝÑp H.

We extend this for complete graphs by proving Lemma 56 below. Lemma 54
then follows by replacing Lemma 55 with Lemma 56 in the proof of [47, Theorem
7].
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Lemma 56. Let H be a complete graph on at least five vertices, then for any G
with mpGq ă mp2qpHq we do not have G rb

ÝÑp H.

In the remainder of this section we prove Lemma 56. In what follows we outline
the ideas of our proof, analysing the structure of some subgraphs that will be
important in our proof strategy (see Proposition 58 and Definition 59). We finish
by proving an inductive result (Lemma 60) that directly implies Lemma 56.

From now on, let k ě 5 and let G be a connected graph withmpGq ă mp2qpKkq “

pk ` 1q{2. Since we are interested in obtaining a colouring such that every Kk is
non-rainbow, we may assume that all vertices and edges of G are contained in a Kk.
We say that a subgraph of G is a Kk-component if any edge and vertex is contained
a Kk and any pair of Kk’s is Kk-connected in the following sense: two Kk’s
are Kk-connected if they are connected in the auxiliary graph that has Kk’s in G
as vertices and edge-intersecting Kk’s as edges. Clearly, we may assume that G
contains only a single Kk-component, as we might otherwise combine colourings
of all its Kk-components to a colouring of G.
Let v be a vertex of minimum degree. A simple but important observation is

that since the average degree in G is less than k ` 1, the vertex v has degree at
most k. The following induced subgraphs of v and its neighbourhood in G play a
special role in our proof:

• Kpvq: on tvu YNpvq;

• Rpvq: on tvu Y tw P Npvq : every Kk that contains w also contains vu;

• Spvq: on V pKpvqqr V pRpvqq.

We denote by G˚v the induced graph on the vertices V pGqrV pRpvqq and by Gv the
graph obtained from G˚v by removing all edges that are not contained in a Kk. In
the inductive colouring strategy for Lemma 60, the induction step will be from Gv

to G. The following simple fact provides useful information about the structure
of Gv.

Fact 57. Let k ě 5 and let G be a graph on at least k ` 1 vertices with mpGq ă
mp2qpKkq “ pk ` 1q{2 such that all vertices and edges of G are contained in a Kk.
Let v be a vertex of minimum degree in G. Then the following hold.

(i) If vpGvq ď k then Gv is a Kk;
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(ii) |Rpvq| ď k ´ 1.

Proof. First suppose that |Rpvq| “ k`1. Thus, since dpvq ď k, we know that v has
exactly k neighbours (recall that v is a vertex of minimum degree). A clique Kk

on Npvq would contradict the definition of Rpvq so there is a non-edge in Rpvq, say
between u and w. Since w has degree at least k, there is an edge tw, zu between w
and a vertex z outside of Npvq. However, tw, zu must also be contained in a Kk,
so w cannot be in Rpvq, a contradiction, so |Rpvq| ăď k.
For item (i), it is enough to show that any vertex that is contained in Gv is

contained in a Kk. Since |V pGq| ě k ` 1 and at most k vertices are removed, at
least one vertex is left and if Gv contains at most k vertices, it is actually a Kk.
For item (ii), suppose now that |Rpvq| “ k. If dpvq “ k ´ 1, then all vertices

in Rpvq have no neighbour outside of tvuYRpvq and henceG is aKk, a contradiction.
If dpvq “ k, then all vertices in Rpvq have no neighbour outside of Rpvq and since
they have degree at least k, there is a clique Kk on Npvq, contradicting the
assumption that |Rpvq| “ k.

Note that since dpvq ď k and all vertices and edges are in a Kk, the sub-
graph Kpvq is either a Kk, a K´

k`1, or a Kk`1. In the following proposition we
categorise Kpvq according to its structure.

Proposition 58. Let k ě 5 and let G be a connected graph on at least k ` 1
vertices with mpGq ă pk ` 1q{2 such that all vertices and edges of G are contained
in a single Kk-component. Let v be a vertex of minimum degree in G. We say
that Kpvq is either X`, Y` or U1 according to the following, which are all possible
configurations of Kpvq.

• X`: Kpvq “ Kk, and Rpvq “ K`, and Spvq “ Kk´` p1 ď ` ď k ´ 2q;

• Y`: Kpvq “ K´
k`1, and Rpvq “ K`, and Spvq “ K´

k´``1 p1 ď ` ď k ´ 2q;

• U1: Kpvq “ Kk`1, and Rpvq “ K1, and Spvq “ Kk.

Proof. Clearly we have Rpvq “ K1 when Kpvq “ Kk`1. So we only have to worry
about the cases Kpvq “ Kk and Kpvq “ K´

k`1.
First, we will show that since G is a singleKk-component on at least k`1 vertices,

we have |Rpvq| ď k ´ 2. In fact, from 57(ii) we already know that |Rpvq| ď k ´ 1.
Suppose that |Rpvq| “ k ´ 1. In this case, Kpvq is either a Kk or a K´

k`1.
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If Kpvq “ Kk, then |Spvq| “ 1 and G is not a single Kk-component, since Kpvq
is not Kk-connected with the other Kk’s of G. If Kpvq “ K´

k`1, then |Spvq| “ 2.
Moreover, Spvq is an edge as otherwise G would not be a single Kk-component.
But then, there is a missing edge xy with x P Rpvq and y P Spvq, which implies
dpxq ă dpvq, a contradiction. Therefore, we conclude that |Rpvq| ď k ´ 2.
It is left to show that if Kpvq “ K´

k`1 and Rpvq has ` vertices (for any 1 ď
` ď k ´ 2), then Rpvq “ K`, and Spvq “ K´

k´``1. Suppose that Rpvq is not a K`.
Then, since there is only one missing edge in Kpvq, we have that Rpvq “ K´

` , from
where we conclude that there is a vertes in Rpvq with degree smaller than dpvq,
a contradiction. Then, Rpvq “ K`. Now, we just note that if Spvq is not a
Spvq “ K´

k´``1, then the missing edge xy of Kpvq is such that x P Rpvq and
y P Spvq, which implies dpxq ă dpvq, a contradiction, which concludes the proof.

In Figure 4.1 we show all possible structures for Kpvq when k “ 5. We will
use the fact that mpGq ă pk ` 1q{2 to bound the number of occurrences of X`, Y`,
and U1 as Kpvq in the induction. Let dpvq “ epG˚vq ´ epGvq, i.e., the number of
edges that are not contained in a Kk after removing Rpvq. Recall that Gv is the
graph obtained by removing Rpvq and all these edges.

Using the characterisation given in Proposition 58 the number of vertices removed
is given in the subscripts and we can write the change in the number of edges
from Gv to G as follows.

epGq ´ epGvq ´ d
pvq
“

$

’

’

’

’

&

’

’

’

’

%

k if Kpvq is U1,
`

`
2

˘

` `pk ´ `q if Kpvq is X`,
`

`
2

˘

` `pk ´ `` 1q if Kpvq is Y`.

(4.1)

We will use the following measure of how close G is to the upper bound pk`1q{2
on the density mpGq. Set

bpGq :“ 2epGq ´ pk ` 1qvpGq ` 2k.

Clearly, from epGq{vpGq ď mpGq ă pk ` 1q{2 we have

bpGq ă 2k
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v

(a) X1

v

(b) X2

v

(c) X3

v

(d) Y1

v

(e) Y2

v

(f) Y3

v

(g) U1

Figure 4.1: Possible configurations of Kpvq for k “ 5. Dotted lines represent
non-edges, the vertices of Rpvq are white and the vertices of Spvq are
black.
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and using (4.1) we get

bpGq ´ bpGvq ´ 2dpvq “

$

’

’

’

’

&

’

’

’

’

%

k ´ 1 if Kpvq is U1,

pk ´ `´ 2q` if Kpvq is X`,

pk ´ `q` if Kpvq is Y`.

(4.2)

Note that there can be an arbitrary number of Xk´2’s in G (they contribute 0
to bpGq), but all other types of Kpvq are limited to a small number of occurrences.
We will describe an inductive colouring strategy, which will always lead to

an edge-colouring of G with no rainbow Kk. To keep track of some additional
properties of the colouring that will help us during the induction, we introduce
five stages P0, . . . , P4.

Definition 59 (Stages). Let 0 ď j ď 4. We say that G is in stage Pj or G P Pj if
there exists a partial proper colouring of G such that the following properties hold.

(i) Any Kk in G is non-rainbow;

(ii) If G P P0 then any K3, K4, and Kk contains at most 2 coloured edges, each
colour is used exactly twice and any 4 vertices span at most 3 coloured edges;
Also, any two Kk’s intersect in at most one edge;

(iii) If G P Pj p1 ď j ď 3q then any 4 vertices span at most j ` 2 coloured edges;

Property (i) is the main property of the colouring we want to ensure. Proper-
ties (ii) and (iii) will allow us to keep the induction proof for Lemma 60 going.
We will show that G is in some stage and that a certain amount of bpGq is needed
for G to not be in a smaller stage. Lemma 56 follows trivially from Definition 59(i)
and Lemma 60 below.

Lemma 60. Let k ě 5 and let G be a connected graph on at least k vertices with
mpGq ă pk ` 1q{2 such that all vertices and edges of G are contained in a single
Kk-component. There exists 0 ď j ď 4 and a proper partial edge-colouring of G
such that G is in stage Pj under this colouring. Furthermore,

• bpGq ě 0;

• If bpGq ă 2, then G P P0;

• If bpGq ă k ´ 1, then G P P1;
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• If bpGq ă k ` 1, then G P P2;

• If bpGq ă 2k ´ 2, then G P P3;

Proof. We prove the lemma by induction on the size of the graph. If |G| “ k

then G is a Kk by Fact 57 and we can colour two non-adjacent edges of G with
the same colour and therefore G is in P0. Also, bpKkq “ 0, so the lemma holds.

Now consider a graph G on at least k ` 1 vertices satisfying the assumptions of
the lemma. Depending on bpGq, we have to show that G is in a certain stage. Let j
be the maximal index in t0, . . . , 4u such that the lemma holds if we prove G P Pj.
Let v be a vertex of minimum degree in G. Fact 57(i) implies that Gv has at
least k vertices. We will first handle the case that Gv is a single Kk-component, so
by the inductive hypothesis the lemma holds for Gv and Gv is in some stage Pj1 .
If dpvq ą 0 and j1 “ 0, then bpG˚vq ě bpGvq ` 2 and it is easy to see that G˚v

is in stage P1. In this case we set j˚ “ 1, otherwise we set j˚ “ j1. As no edge
in EpG˚vqr EpGvq is contained in a Kk, the partial edge-colouring of Gv ensures
that G˚v is in Pj˚ under the same partial edge-colouring.
For most graphs Kpvq, we will get an increase in bpGq from bpG˚vq which tells

us that G˚v is in a lower stage. The graph Xk´2 is the only configuration where j
might be equal to j˚, because it contributes zero to bpGq, and in this case we
will show that G is also in Pj˚ . The information about the possible transitions
between stages is encapsulated in (4.2). Note that the difference in the bound
on bpGq between two consecutive stages Pi and Pi`1 in Lemma 60 is at most k´ 3
and between two stages Pi and Pi`2 it is at most k ´ 1. In other words, if bpGq ě
bpG˚vq ` k ´ 3, we have j˚ ď j ´ 1 and we advance at least one stage from G˚v

to G. Since pk ´ `´ 2q` ě k ´ 3 for 1 ď ` ă k ´ 2 we have that if Kpvq is an X`

then j˚ ď j ´ 1. Since pk ´ `q` ě k ´ 1 for ` ě 2 we advance two stages, i.e.,
j˚ ď j ´ 2, for all but X`. We will now give the desired partial edge-colouring that
extends the edge-colouring of G˚v to G such that G P Pj.
If Kpvq “ Xk´2 then Kpvq intersects G˚v in exactly one edge. We colour two

disjoint edges, one contained in Rpvq and the other with one endpoint in Rpvq,
with a new colour. These two edges do not close a coloured triangle and no K4

intersecting both Kpvq and G˚v in more than one edge exists, and clearly all K4’s
and Kk’s in Kpvq contain at most two coloured edges. Also any four vertices
containing one of the newly coloured edges can contain at most three coloured
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edges, so if G˚v was in P0 then Property 59(ii) still holds. By the last part of this
argument, Property 59(iii) holds in G if it did in G˚v , so G is in Pj.
If Kpvq “ X` for 2 ď ` ă k ´ 2, then we extend the current colouring in the

following way: if there is any coloured edge in Spvq, then we give this colour to one
of the edges in Rpvq, which contains an edge since ` ě 2. Otherwise we choose a
new colour and colour two disjoint edges that both intersect Rpvq with this colour.
In the first case it is trivial that G is in Pj˚`1 and in the second it is easy to see
as the only set of four vertices where we added two edges contains at most three
coloured edges.
If Kpvq “ X1, recall that we advance one stage. If G˚v P P0 and Spvq already

contains two coloured edges, they must be of the same colour and we are done.
Since in P0 any two Kk’s in G˚v intersect in at most one edge, any Kk´1 must be
contained in a Kk and hence Spvq, a Kk´1, contains at least one coloured edge,
say e. As any colour is used at most twice, there is an edge incident to v that we
can colour with the colour of the edge e. Now any four vertices containing this
newly coloured edge can contain at most three coloured edges and G is in P1. If
G˚v P P1, P2, P3 we choose an uncoloured edge in Spvq and, disjoint from the first
one, an edge that is incident to v. We colour these two edges with a new colour.
On any four vertices not containing v we increase the number of coloured edges by
at most one, and any four vertices containing v have at most four coloured edges.
Therefore, G P Pj˚`1.

In the remaining cases, we always advance two stages so G˚v is at most in stage P2.
Also note that unless G˚v is in stage P0, we are allowed to colour two or three
disjoint edges: on any four vertices the number of coloured edges can increase by
at most two, which is fine with Property 59(iii) as j increases by two. In case
that G˚v is in P0 we will separately verify that Property 59(iii) holds for j “ 2 in G,
i.e., that any four vertices contain at most three edges.

If Kpvq “ Y` for 2 ď ` ă k ´ 2, we have to deal with two Kk’s. There exist two
disjoint edges incident to Rpvq that are contained in both Kk’s that we colour with
a new colour.
If Kpvq “ Y1, we have Spvq “ K´

k . We have to deal with two Kk’s that are
created by v and Spvq and which intersect in a Kk´2. If G˚v is in stage P0, this Kk´2

contains a triangle and hence an uncoloured edge. We colour this edge and the edge
between v and the third vertex in the triangle with a new colour, which ensures
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that both Kk’s are non-rainbow. Now any four vertices that contain v contain at
most three coloured edges; also, any other four vertices we only added one coloured
edge so the number of coloured edges might have increased from three to four,
so G is in P2. For G˚v P P1, no matter how the coloured edges are distributed, only
using Property 59(iii), we can always find three disjoint uncoloured edges such
that each of the Kk’s contains two of them. These three edges we colour with
a new colour. Finally, if G˚v P P2, it follows from Property 59(iii) that there are
two edges not incident to v (but not necessarily disjoint) that hit both Kk’s. For
both Kk’s we can choose an additional edge incident to v such that colouring the
two pairs of edges makes both K5’s non-rainbow. This is the only property we
have to ensure for P4, which completes the case that Kpvq “ Y1.
We now deal with the case that Kpvq “ U1. Recall that in this case G˚v is at

most in stage P2 and we advance two stages. It is easy to show that if any four
vertices contain at most four coloured edges then five or more vertices contain two
disjoint uncoloured edges. So Property 59(iii) implies that together with an edge
incident to v we find three disjoint uncoloured edges that we colour with a new
colour. Note that for G˚v P P0, all four-sets of vertices where we added two edges
either contain v or were K4’s in G˚v already, so they contain at most four coloured
edges in G. For G˚v P P1, P2 we observe as before that G is in Pj˚`2.
Finally, we have to handle the case that Gv contains more than one Kk-

component, so removing Kpvq splits into edge-disjoint Kk-components G1, . . . , Gm.
First note that this cannot happen if Kpvq is Xk´2 or U1, so we only have to
deal with the other configurations. We apply the induction hypothesis to these
Kk-components and without loss of generality, we may assume that the com-
ponents are vertex-disjoint in Gv rKpvq: intersecting in vertices would yield a
denser graph and since all Kk-components can use different colours, combining
the partial colourings would still yield a proper colouring at the vertices in which
they intersect.

If one of the components, say G1, is in P0, we will use the induction hypothesis
in a slightly stronger version. By the colouring procedure outlined above for Xk´2,
which is the only Kpvq that can occur if the graph is in P0, note that we may
pick any edge e P G1 and ensure that it is uncoloured. So for all components Gi

that are in P0 and intersect Spvq in a single edge, we can ensure that this edge is
uncoloured.
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As any component Gi intersects Kpvq in at least one edge we get the following
lower bound on bpGq.

bpGq ě bpKpvqq `
m
ÿ

i“1
pbpGiq ` riq,

where ri ě 0 accounts for the edges and vertices in the intersection of Gi and Spvq
that we would otherwise double-count. It is easy to calculate that ri is zero if
Spvq XGi consists of a single edge and is at least k´ 3 otherwise, because starting
with Gi and then adding Kpvq would not be Xk´2. Since we have

bpGq ě max
iPrms

bpGiq,

the properties of the colouring are ensured in all Kk-components. In Kpvq we
also cannot have any four-set of vertices with too many coloured edges, as any
coloured edge in Kpvq belongs to a Kk-component Gi with bpGiq at least k ´ 3
or with ri ě k ´ 3, which also contributes at least k ´ 3 to bpGq. If Kpvq is X`

then any four vertices in Kpvq contain at most j ` 1 coloured edges. So the same
colouring strategy as in the case with one Kk-component can be used to obtain
a colouring with no rainbow Kk such that on any four vertices there are at most
j ` 2 coloured edges and hence G P Pj. If Kpvq is Y` then bpKpvqq ě k ´ 3 so we
even get that any four vertices in Kpvq contain at most j coloured edges. Again,
the same colouring strategy as in the one Kk-component case can be used to show
that G P Pj.

4.2 Complete graph on four vertices

In this section we analyse the anti-Ramsey threshold for K4, showing that prb
K4 “

n´7{15. For the upper bound on prb
K4 , let J be the graph obtained from K3,4 with

partition classes ta, b, cu and tw, x, y, zu by adding the edges ab, ac and bc. It is
easy to see that in any proper colouring of J there is a rainbow K4. Therefore the
upper bound

prb
K4 ď n´7{15 (4.3)

follows from Theorem 61 below applied with H “ J .

Theorem 61 (Bollobás [7]). Let H be a fixed graph. Then, p “ n´1{mpHq is the
threshold for the property that G contains H.
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To show that prb
K4 ě n´7{15 we follow a similar strategy as before, but we do not

need the framework of [47], because we now have an even smaller upper bound
p ! n´7{15 ! n´2{p4`1q.
Let G be a K4-component with mpGq ă 15

7 . Observe that there always is a
vertex v of degree 4 in G and that the assertion of Fact 57 still holds. The only
options for Kpvq are X1, X2 and U1. Theoretically Y1 and Y2 would also be
possible, but Y1 could only occur alone and Y2 is already to dense. We define
bK4pGq :“ 7epGq´15vpGq`18 and note that bK4pGq ă 18 and bK4pK4q “ 0. Then

bK4pGq ´ bK4pGvq ´ 7dpvq “

$

’

’

’

’

&

’

’

’

’

%

6 if Kpvq is X1,

5 if Kpvq is X2,

13 if Kpvq is U1.

Thus we can bound the number of occurences ofX1, X2 and U1. ConfigurationX1

is the only case where Gv could contain more than one K4-component and there
can be at most two different K4-components, which both have one edge in common
with Kpvq. It is thus easy to see, that any K4-component G with mpGq ă 15

7

contains at most 10 vertices.
Now consider Gpn, pq with p ! n´7{15. It follows from Markov’s inequality and

the union bound, that Gpn, pq asymptotically almost surely does not contain a sub-
graph G such that mpGq ě 15

7 and |V pGq| ď 12. Therefore Gpn, pq asymptotically
almost surely does not contain a K4-component G with mpGq ě 15

7 .
It remains to give the colouring of G depending on the sequence of Kpvq’s.

If Kpvq is U1 then we are left with a single K4 and it is easy to colour the whole K5.
Now we claim that if bK4pGq ă 6 at most one edge is coloured in any K3 and
if bK4pGq ă 12 at most two edges are coloured in any K3. If Kpvq is X2 we repeat
the colour of the edge in Kpvq YGv if that edge is coloured or otherwise we colour
two new disjoint edges with a new colour, which both is fine with the above. Only
the case that Kpvq is X1 is left to check. If Gv consists of only one K4-component,
than we colour one edge on the triangle Kpvq YGv and a new edge with the same
colour. Since X1 adds 6 to bK4pGq this is fine with our condition. If Gv splits in
more than one K4-component it is enough to observe that either we can ensure
that the intersecting edges are uncoloured or we already have bK4pGvq ą 5 and
thus bK4pGq will be at least 11.
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Appendix

Summary

This thesis contains three theorems in graph theory and their proofs. The first
result is a optimal pk ´ 2q-degree condition for the existence of Hamiltonian cycles
in hypergraphs. We describe a well-known extremal example Xk,` for k ě 3
and ` ă k{2, a k-uniform hypergraph which contains no Hamiltonian `-cycle, and
prove that any sufficiently large hypergraph H with δk´2pHq ě δk´2pXk,`q contains
a Hamiltonian `-cycle.

The second result is a transference of the bandwidth theorem to sparse random
graphs. For p "

` logn
n

˘1{∆, we show that asymptotically almost surely for any
subgraphG ofGpn, pq with a minimum degree of at least

`

k´1
k
` opnq

˘

pn and where
each vertex neighbourhood contains at least Ωppp

s
2qppnqsq copies of Ks the following

holds: Let H be a graph on n vertices with ∆pHq ď ∆, bandwidth at most β˚n
and suppose that there is a proper k-colouring of V pHq and at least Ωpp´2q vertices
in V pHq whose neighbourhood contains only s colours. Then G contains H.
The third result gives the thresholds for Gpn, pq to have the rainbow Ramsey

property for cliques. An upper bound on the threshold for general graphs was
proved before and for cliques on at least 19 vertices the matching lower bound was
also known. We prove a matching lower bound on the threshold for all cliques on
at least 5 vertices and prove matching lower and upper bounds for K4.
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Zusammenfassung

Diese Dissertation enthält drei graphentheoretische Sätze und deren Beweis. Das
erste Ergebnis ist eine optimale pk ´ 2q-Gradbedingung für die Existenz von
Hamiltonkreisen in Hypergraphen. Wir beschreiben ein bekanntes Beispiel Xk,`
für k ě 3 und ` ă k{2, einen k-uniformen Hypergraphen der keinen Hamilton-
`-Kreis enthält und beweisen, dass jeder hinreichend große Hypergraph H mit
δk´2pHq ě δk´2pXk,`q einen Hamilton-`-Kreis enthält.
Das zweite Ergebnis ist eine Übertragung des Bandbreitensatzes auf dünne

Zufallsgraphen. Für p "
` logn

n

˘1{∆ zeigen wir, dass asymptotisch fast sicher jeder
Teilgraph G von Gpn, pq mit Minimalgrad mindestens

`

k´1
k
` opnq

˘

pn folgendes
erfüllt, wenn jede Eckennachbarschaft in G mindestens Ω

´

pp
s
2qppnqs

¯

Kopien
von Ks enthält: Sei H ein Graph auf n Ecken mit ∆pHq ď ∆ und Bandbre-
ite höchstens β˚n mit einer k-Färbung, so dass für Ωpp´2q Ecken in V pHq die
Nachbarschaft höchstens s Farben enthält. Dann enthält G eine Kopie von H.

Das dritte Ergebnis bestimmt den Schwellenwert für Gpn, pq für die Regenbogen-
Ramsey-Eigenschaft für vollständige Graphen. Eine obere Schranke für alle
Graphen war bereits bekannt und für vollständige Graphen auf mindestens 19
Ecken gab es auch eine passende untere Schranke. Wir zeigen eine passende untere
Schranke für vollständige Graphen auf mindestens fünf Ecken und beweisen obere
und untere Schranken für den K4.
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