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Abstract

Environmental and social sustainability of bioenergy feedstocks especially oil palm is being

controversially debated. The commercial cultivation of oil palms and other bioenergy crops have

been leading to competition with land and its derivatives causing one of the major challenges

confronting many Governments such as Nigeria.

This study shows the policy implications of oil palm as a bioenergy feedstock on social,

economic and environmental dynamics of Nigerian Niger Delta and compares it with other

feedstocks at the national level. This is achieved by coupling the output of a remote sensing

studies (Article I), process-based modeling (Article II) in an integrated assessment method

called mathematical inter-temporal partial equilibrium of Forest and Agricultural Sector Opti-

mization Model (NGA-FASOM) (Article III).

The results of the NGA-FASOM simulations reveal that subsidies alone is not sufficient tools

to achieve the government objectives defined in the Nigerian bioenergy initiatives; the Renew-

able Electricity Policy Guidelines (REPG) 2006, the Renewable Electricity Action Programme

(REAP) 2006, the Nigerian Biofuel Policy and Incentives 2007 (NBPI) and the National Renew-

able Energy and Energy Efficiency Policy (NREEEP) 2014. The impact categories consisted of

the greenhouse gas (GHG) emissions, direct and indirect land use changes and the aggregated

social welfare. The study showed that under the zero emission cost scenarios, with or without

bioenergy subsidies about 26 - 68 MtCo2e will be emitted from the Forest and Agricultural

Sector. The study also showed that the share of oil palm area will significantly become higher

by 2050 compared with other bioenergy feedstock under the zero emission cost scenarios. The

impact of bioenergy policies does not have any significant effect on the total social welfare.

In Nigeria, meeting emission reduction and the accompanying targets entail an implementa-

tion of carbon price of $80/ton complimented with initiation of other conservation instruments

such as payment for ecosystem services (PES) within the forest and agricultural sectors.

Following the results of this study, it would be ideal for the Government of Nigeria to estab-

lish a certification scheme aimed at assuring producer compliance with a set of sustainability

criteria within the bioenergy sector.
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In addition to the policy relevance, this study provides a detailed history on land use and

land cover changes in the Nigerian Niger Delta and also show the impacts of the anticipated

climate change on oil palm yields in the Niger Delta, Nigeria. It could serve as a source of

information for earth system modelers as well as an information source for regional and global

renewable energy modelers etc.
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Zusammenfassung

Die Ökologische und soziale Nachhaltigkeit von Bioenergie-Rohstoffen, insbesondere von Ölpalmen,

wird kontrovers diskutiert. Die kommerzielle Kultivierung von Ölpalmen und anderen Bioenergie-

Pflanzen hat zusammen mit anderen Landnutzungsformen zu einem Wettbewerb um Flächen

geführt und ist eine der größten Herausforderungen für viele Regierungen, zu denen auch die

Nigerianische zählt.

Die vorliegende Studie zeigt politische Auswirkungen von Ölpalmen als Bioenergie-Rohstoff auf

soziale, ökonomische und ökologische Dynamiken im nigerianischen Niger Delta und vergleicht

die Auswirkungen mit denen anderer Rohstoffe auf nationaler Maßstabsebene.

Dies wird durch die Kombination von Ergebnissen einer auf Fernerkundungsdaten basieren-

den Studie (Artikel I) und einer prozessbasierten Modellierung (Artikel II) in einer integrierten

Beurteilungsmethode erreicht (Artikel III). Diese Beurteilungsmethode wird ”mathematische

intertemporale Optimierung des partiellen Gleichgewichts im Agrar- und Forstsektor” (NGA-

FASOM) genannt.

Die Ergebnisse der NGA-FASOM-Simulationen zeigen, dass Subventionen alleine keine aus-

reichenden Manahmen zum Erreichen der Regierungsziele, die in den nigerianischen Bioen-

ergieinitiativen (Renewable Electricity Policy Guidelines (REPG) 2006, Renewable Electricity

Action Programme (REAP) 2006, Nigerian Biofuel Policy and Incentives 2007, National Re-

newable Energy and Energy Efficiency Policy (NREEEP) 2014) definiert wurden, darstellen.

Die Auswirkungen wurden wie folgt kategorisiert: Treibhausgasemissionen, direkte und in-

direkte Landnutzungsveränderungen und die aggregierte Soziale Wohlfahrt.

Die Studie zeigt, dass beim ”Zero-Emission”-Kostenszenario sowohl mit, als auch ohne Bioenergie-

Subventionen, circa 26 bis 68MtCo2e vom forst- und landwirtschaftlichen Sektor emittiert wer-

den. Darber hinaus zeigt die Studie, dass der Anteil der fr den Ölpalmenanbau genutzten

Fläche im Vergleich zu anderen Bioenergie-Rohstoffen bis zum Jahr 2050 beim ”Zero-Emission”-

Kostenszenario signifikant höher werden wird. Die Ergebnisse stellen dar, dass Subventionen

keinen substantiellen Effekt auf die aggregierte Soziale Wohlfahrt haben.

Das Erreichen der Emissionsreduzierungsziele und der genannten begleitenden Ziele be-

deutet für Nigeria die Implementierung eines Kohlenstoffpreises von 80 US$ pro Tonne sowie

die Einführung von anderen Naturschutzmaßnahmen wie zum Beispiel Zahlungen für
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Ökosystemdienstleistungen im Forst- und Landwirtschaftssektor.

Aufgrund der Ergebnisse dieser Studie könnte es für die nigerianische Regierung zielführend

sein, ein Zertifizierungsschema einzurichten, das die Befolgung der Regeln durch die Produzen-

ten innerhalb des Bioenergiesektors mit einem Satz von Nachhaltigkeitskriterien kontrolliert.

Abgesehen von der politischen Relevanz beinhaltet die Studie detaillierte Informationen

zurEntwicklung der Landnutzung und zu Landnutzungsänderungen der Region. Sie zeigt auch

den Einfluss des zu erwartenden Klimawandels auf die Erträge der Ölpalmen im nigerianischen

Niger Delta.

Die Ergebnisse können unter anderem für zum Beispiel Klimamodelle und Modelle erneuer-

barer Energien auf regionaler und globaler Ebene als Informationsquelle dienen.

v



Acknowledgements

I would first like to thank my advisor, Prof. Dr. Udo Schickhoff. Your guidance, wisdom,

perspective, and friendship has made this work possible. I also thank my second advisor, Prof.

Dr. Uwe A. Schneider for your guidance and support as I wondered through the world of partial

equilibrium modeling in GAMS. For all the hours that you invested. Without them, the black

box would have been a black hole. Thank you Prof. Dr. Jürgen Böhner for being the panel
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Chapter 1

Introduction

The oil palm, Elaeis guineensis Jacq. production is swiftly expanding worldwide, with a planted

area expansion of approximately 378% from 1961 to 2012 [20]. Oil palm production had been

part of mixed farming activity in West Africa. Currently, oil palm production practice is

being expanded to industrial-scale mono-cropping [13], thereby making the local communities

vulnerable to environmental and social risks, especially people with limited economic capacities

[12]. Oil palm was usually grown in tropical regions mostly for palm oil production, the world’s

largest yielding and least expensive vegetable oil. The derivatives of palm oil are common

ingredients in many packaged and fast foods cosmetic products etc [70]. Due to this multiple

use of the product, the demand for oil palm has increased over the last few decades, and it

is projected to rise further [13], attracting private and government sectors to invest heavily in

the oil palm industry. In recent years, the cultivation of oil palm is generally characterized

by large scale monocultures of uniform age structure, low canopy, sparse undergrowth, a low-

stability microclimate and intensive use of fertilisers and pesticides [57]. The oil palm tree

generates fruits from the third year, with yield per tree increasing gradually until it peaks at

approximately 20 years [13, 56]. Oil palm plantations are typically destroyed and replanted

at 25 to 30 year intervals. Palm oil production process tends to reduce fresh water and soil

quality, and adversely affects local communities which are dependent on ecosystem products

and services (such as regulation of the hydrological cycle and soil protection) provided by the
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1.1. Background 3

forests [22]. Ecologically, oil palm monocultures might form impervious barriers to species

migration and result in greater susceptibility to plant diseases. Conversion of natural forests to

oil palm plantations has been observed to increase habitat fragmentation and biodiversity loss

[70]. According to [12], the global market for palm oil is driving land acquisition in the form of

large blocks of land that has frequent link with problems related to tenure systems and land-use

rights. Thus, resulting in the exploitation of local communities and frequent abuse of human

rights [18]. UN reports have also established that oil palm plantations had caused widespread

forest destruction in Indonesia and Malaysia [5] where majority of the worlds plantations are

located today. Throughout the life-cycle of oil palm production, environmental impacts are the

object of concern. Emissions have to be taken into account from the raw material extraction

to the recycling or disposal stages. The environmental impact depends greatly on the land

use change conditions, the consumption of conventional fuels, fertilizers, pesticides and wastes

generated [70]. Therefore, the concern that palm oil production is largely unsustainable, with

issues relating to deforestation, biodiversity, soil degradation, water quantity, local people, land

rights and many other matters worth researching. Development of new plantations which has

resulted in the conversion of large areas of forests with high conservation value, has threatened

the rich biodiversity in these ecosystems. Many of these social, ecological and environmental

impacts of oil palm production linked to bioenergy could be associated with land cover and land

use change in connection to bioenergy production. Bioenergy-related land use decisions may

affect local, regional and global social and environmental systems. Therefore, sustainability is

a big challenge to increase development of bioenergy production. To this regards, this thesis

investigate the environmental and social impacts of bioenergy production and predict the future

impacts of ”business as usual” scenario based on current policies for bioenergy deployment in

Nigeria and oil palm as a contributing feedstock from the Nigerian Niger Delta.

1.1 Background

Today, climate change is a great challenge for the society. Human influence on the climatic

system is evident and predicted with a very high confidence level [38]. This has been linked to
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energy use thus posing a great challenge to energy security. The worlds energy consumption in

2015 amounted to about 606.65 billion GJ and was made up of about 81% fossil fuels (oil, gas

and coal), 10% biomass, 6% nuclear and 2.2 and 0.5% hydropower and other energy respectively

[35]. These results to an increase in demand for natural resources. These increase in demand

and pressure on natural resources, renewable and non renewable by growing human population

calls for efficient use of such resources and ecosystem services if sustainable development and

climate change mitigation must be achieved. The search for energy alternatives involving lo-

cally available renewable resources has been one of the main concerns of governments, scientists

and industries worldwide. Bioenergy is a renewable source of energy from biological materials

(biomass) such as trees, plants, manure, municipal waste etc. Using various transformation

processes such as combustion, gasification, or pyrolysis, the biomass is either transformed into

biofuels, bioheat or bioelectricity. It is a carbon-neutral renewable energy feedstock if the feed-

stocks are sourced sustainably. Biomass originates from forest, agricultural and waste streams.

Forest and wood-based industries produce wood, which is the largest resource of solid biomass.

The sector covers a wide range of different biofuels with different characteristics - wood logs,

bark, wood chips, sawdust and more recently pellets. Pellets, due to their high energy density

and standardised characteristics offer great opportunities for developing the bioenergy market

worldwide. Agriculture can provide dedicated energy crops as well as by-products in the form

of animal manure and straw. Available land can be used for growing conventional crops such

as rapeseed, wheat, maize, oil palm etc. for energy purposes or for cultivating new types of

crops such as poplar, willow, miscanthus, jatropha curcas and others. In recent years, many

countries around the world have been tapping renewable resources to secure stable sources of

energy. This was put to place by high fossil fuel prices, peak oil, rising demand for energy and

above all increasing concern about the implications of fossil fuel on the global climate system.

Biomass, the fourth largest energy source after non renewable (coal, oil and natural gas), is

currently seen as the most important renewable climate friendly energy option [65, 42]. Till

date, the availability of this product has been limited or threatening to food security, biodiver-

sity and related problems due to inadequate use of land for its production. The oil palm tree

is native to West Africa, where it was traditionally cultivated as a subsistence crop for food,
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fibre and medicine [37]. In the Niger delta of Nigeria, trees were traditionally inter planted

in small-scale agricultural production systems along with other annual and perennial crops

(mix-cropping). In Nigeria, Oil palm is one of the most important economic oil crops. As the

demand for vegetable oils has risen since the 1970s, the oil palm cultivation has been shifted

to large-scale plantations. And such plantations have become one of the fastest-growing mono

cropping plantations in the tropics of Africa, as well as in Asia-Pacific, Latin America and

the Caribbean. Much of this expansion has occurred in Malaysia and Indonesia but recently

becoming the case in Nigeria. By 2016, these two former accounted for just over half of the

world’s total plantation area (then about 14 million hectares), Nigeria accounted for 3.0 million

hectares [21].

Oil palm is among the most productive and profitable of tropical crops for biofuel production.

Oil palm products have very high energy content in the form of palm oil which undergoes

trans-esterification to become a biodiesel use in transportation. Palm kernel shells are virgin

biomass with a high energy content of about 17.58-19.25MJ/kg. High-yielding oil palm vari-

eties developed by breeding programmes can produce approximately over 20 tonnes of fresh

fruit bunches/ha/yr under ideal management, which is equivalent to 5 tonnes oil/ha/yr (ex-

cluding the palm kernel oil) [56]. The oils form 10% of the total dry biomass produced by

the palm, which can be directly processed as first generation biofuel but the 90% left might

be a source of fibre and cellulosic material for second-generation biofuel production [54, 65],

which is considered as a natural pellet and has high grade solid renewable fuel for burning as

received, both in co firing with steam coal or burned at biomass power plants. Production of

biodiesel from oil palm is increasing in recent years, particularly in Africa and Latin America

[11, 46, 68, 70, 24].

The sustainable use of oil palm as an energy source requires comprehensive management of

natural resources such as land and its biodiversity. Unsustainable use of this product prevails

in Asia can shift to West Africa (Nigeria), and is capable of eroding its climate-related envi-

ronmental advantages. Currently, United State of America leads the production of biodiesel

with an output of approximately 4983 million litres per annum as of 2016 [53], seconded by

Brazil with the production 2804 million litres in 2016 [53]. Studies have shown that African and
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Asian countries will grab the highest share of renewable energy market in the coming years [39],

thus posing a number of questions on its environmental and social consequences. Hence, high

emission burden, food insecurity and great loss of biodiversity that will be emanating from

these developing countries with increasing bioenergy production in the near future. These

Figure 1.1: Graphical representation of economic impacts of bioenergy deployment (adapted
from [27])

pose great challenge for the deployment of bioenergy. See Figures 1.1, 1.2, 1.3 for a general

overview of the threefold impacts. Thus a more practical model such as NGA-FASOM [58] was

developed to ascertain the state of land use, potential sustainable production capacity as well

as scenarios for future trend of the impacts.

1.2 Study Area

1.2.1 Geographic location

The study area, Niger Delta lies in the southern part of Nigeria (figure 1.4), and it is one of

the world’s largest acute fan-shaped river deltas [43]. The Niger Delta extends over Imo State,

Abia State, Bayelsa State, Rivers State, Ondo state, Akwa Ibom state, Edo State, Rivers State
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Figure 1.2: Graphical representation of social impacts of bioenergy deployment (adapted from
[27])

and Cross Rivers State. It is located between 4.01°and 7.90°North of the equator and between

4.50°and 10.56°East, bordering Cameroun in the South East, the South West Nigeria in the

West, Eastern Nigeria in the North East and the Atlantic Ocean in the South. The total land

area of the region is estimated at 70, 000km2 which is 7.5% of the Nigerias total land mass. The

extent covered by wetland is about 28.5% of the total area. The Niger Delta has an altitude

range of 0-791m see Figure 1.4.

1.2.2 Climate

The Niger Delta region has favorable climate conditions with monthly average rainfall rang-

ing from 200 mm to 400 mm during the rainy season extending April/May to October see

figure 1.5. Rainfall in the northern and north- western regions of the Delta may be delayed

by as much as four weeks, which results in an extension of dry season to late May, in recent

times may be up to four to five months [50]. Rainfall in the Niger Delta has been characterized

to exhibit no visible pattern in recent years as fluctuations with no trends has been observed

[36]. Temperature in the region is generally high with low variability across seasons. Average

monthly temperature ranges from 25°C to 29°C see figure 1.5. In most of the states of the

Niger Delta, the warmest months are February, March and early April. There is evidence that
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Figure 1.3: Graphical representation of environmental impacts of bioenergy deployment
(adapted from [27])

climate change is anticipated to change further the temperature pattern of the region [38]. This

potential climate change indicator (Temperature) is plausible and likely to increase further, see

[56] with a projected regional increase in temperatures of between 3°C and 8°C by 2100. There

are five agro-ecological zones (Rain forest, Savanna, Fresh water swamp, Mangrove, Montane)

in Niger Delta region see figure 1.7 with different soil characteristics, altitudes and precipitation

regimes. The rain forest is the the largest of the agro-ecological zones and it is characterized

by gentle plains with moderately sloping hills, sandy-loam soils [30]. The Mangrove extend

between Akwa Ibom state, Delta state and Cross Rivers state. The fresh water swamp lies

between Imo and Rivers state through Bayelsa to Ondo and some Savanna cover in Edo and

Cross Rivers state. About 40 different tribes have settled in the region including the Bini, Efik,

Esan, Ibibio, Igbo, Annang, Yoruba, Oron, Ijaw, Ikwerre, Itsekiri, Isoko, Urhobo, Ukwuani,

Kalabari, Okrika and Ogoni etc

1.2.3 Society

The Niger Delta region is experiencing a steady population growth see Table 1.1. The total

population of the region amounted to 23% the population of Nigeria, with population density

ranking among the highest in the world [50]. About 80% employed persons in the region engaged

in the informal sector. The major occupation of the people are agriculture and fishing [59].
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Figure 1.4: Map of Niger Delta Area with elevation

Akwa Ibom state account for the highest number of people engaged in agriculture, seconded

by Imo state and Abia state respectively (see Figure 1.6). Medium and large manufacturing

plants are only concentrated in Rivers state. The Petroleum industry which is the backbone of

the Nigerian economy accounting for about 90% of the country's total foreign exchange revenue

is situated in the region.

1.2.4 Agriculture

Recently, agriculture is playing a crucial role in the economy of the entire Nigeria. In Niger

Delta Nigeria about 80.25% of the land area is dedicated to cropland, 11.28% forest and 5.46%

is grassland, see Figure 1.8 [6, 57]. The staple foods in the region are cassava, maize, rice and

yam with palm oil and cocoa as cash crops.
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Figure 1.5: Average monthly rainfall amount (mm) and temperature (°C) over Niger Delta
Nigeria (source [26])

1.3 Oil palm industry in the Nigerian Niger Delta

Oil palm is indigenous to the people of the Niger Delta region of Nigeria [44], but has now

extended to other tropical countries. Oil palm industry in the Niger Delta Nigeria is dated

back to pre-colonial era. As at that era Niger Deltans had an established economic system

based largely on oil palm [3]. During the colonial era oil palm exploitation was preeminent

in the colonial administration motives [31]. Oil palm products is one of the the principal

export commodities during the colonial period, palm oil and palm-kernel have the longest

histories being some of the earliest commodities exported from the present day Nigeria. Oil
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Figure 1.6: Total Employment in Agricultural Sector by states (source [49])

palm products became more important in the late 19th century with the abolition of slave trade,

the inauguration of the industrial revolution, and the development of the railway which required

palm oil as a lubricant. Nigeria export volume of oil palm products increased with a factor of

2 between 1865 and 1910, she became the lead in West Africa with regards to export volume

[66]. Oil palm products export trend in Nigeria later began to decline with the emergence and

export of other products such as rubber and cocoa. The lead in the palm produce export trade

was further threatened with the growth of plantations in Sumatra, Malaya, and Belgian Congo

in the late 1950’s [31, 69]. Lately, Since the fall in fossil fuel prices and its volatility rate,

issues regarding the adverse effect of fossil fuel usage. Nigerian government has reconsidered

to diversify her foreign exchange earning choices. Currently, the central bank of Nigeria has

placed a ban on imported crude palm oil [2, 28]. These among other things were in line with

the quest for change in energy mix due to climate change. But the actualisation of these

multiple objectives required caution as oil palm production activities and its environmental
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Figure 1.7: Areas of ecological zones by states of the Niger Delta Nigeria

sustainability has been controversially argued [55, 33, 64]. To this regards, a global sustainable

palm oil strategy needs to be developed [5].

1.4 Bioenergy policies in Nigeria

The energy supply situation in Nigeria is critical and it is a key constraint for economic de-

velopment. Approximately 55% of the population has no access to electricity [67]. Traditional

biomass (firewood) account for about 70% of the total energy consumption in Nigeria [17]. The

exponential increase in demand for energy is attributed to the country's population growth and

economic development. Energy consumption is one of the indices used in measuring the develop-

ment and quality of life of a country, and the necessity of satisfying a forecasted energy demand

for a given period is the rationale for energy planning[14]. To this regard, various bioenergy

policies have been put in place by the government to enable the contribution of bioenergy to the
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Table 1.1: The population of Niger Delta States in 1000 Persons (source [49])

State 2011 2012 2013 2014 2015 2016

Imo 4609.038 4758.912 4913.66 5073.44 5238.416 5408.756
Bayelsa 1970.487 2028.468 2088.154 2149.597 2212.849 2277.961

Cross River 3344.409 3442.816 3544.12 3648.404 3755.757 3866.269
Akwa Ibom 4625.12 4785.078 4950.568 5121.781 5298.916 5482.177

Delta 4825.999 4982.928 5144.961 5312.262 5485.004 5663.362
Edo 3700.706 3801.987 3906.039 4012.938 4122.764 4235.595

Rivers 6162.063 6375.176 6595.659 56823.767 7059.764 7303.924
Ondo 4020.965 4143.422 4269.608 4399.637 4533.626 4671.695
Abia 3256.642 3345.769 3437.336 3531.408 3628.055 3727.347

country's energy mix. This includes; 1) The Renewable Electricity Policy Guidelines (REPG)

2006. The REPG mandated the Nigerian government to generate a minimum of 5% of the total

electricity generation and a minimum of 5TWh from the renewable sector. The REPG has other

objectives such as establishment of a stable and long term favorable pricing mechanisms and

unhindered access to the grid, guaranteed purchase and transmission of all electricity generated

from the renewable sector. Furthermore, the Construction of independent renewable electricity

systems in areas not covered by the national grid. The development of innovative, cost-effective

and practical measures to accelerate access to electricity services in rural areas through renew-

able sources. Setting up of a Renewable Electricity Trust Fund (RETF) to be governed by the

Rural Electrification Fund (REF). Creation of a multi-stakeholder partnership for the delivery

of renewable electricity to meet national development goals. Broadening international coop-

eration in expanding the role of renewable electricity for meeting national development goals

and contributing to global efforts in addressing climate change. 2) The Renewable Electricity

Action Programme- REAP (2006) was development for a clear roadmap for the implementation

of the REPG. 3) The Nigerian Biofuel Policy and Incentives-NBPI (2007); aimed at developing

and promoting domestic bioethanol industry. It was in line with the government's directive on

an Automotive Biomass Programme for Nigeria (ABPN) in August 2005 [19]. The Nigerian

National Petroleum Corporation (NNPC) was mandated to create an enabling environment for

the take-off of the bioethanol industry. Other aims of the policy includes; the reduction on

country's dependence on imported gasoline, climate change mitigation and other sustainable
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Figure 1.8: Forest and agricultural land use area of the Niger Delta Nigeria(Source [57] )

development goals. The NBPI policy targets are to;

• To develop an import duty waiver for biofuels granted for 10 years

• To ensure the contribution of all biofuel companies with 0.25% of their revenue towards

funding research into feedstock production, local technology development and improved

farming practice

• To launch a special kind of loan for investors in the biofuel industry aided at development

of large-scale schemes and large-scale integrated operation including plantation, a plant

and within-the-gate collocated power generating plants

• To achieve 100% domestic production of biofuels consumed in the country by 2020

• To ensure an off-take agreement by NNPC for biofuels as buyer of last resort
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• To achieve the blending of up to 10% of fuel ethanol with gasoline to achieve a blend to be

known as E-10 during the seeding phase of the programme

• An exemption from taxation, withholding tax and capital gains tax imposed in respect of

interest on foreign loans, dividends, services rendered from outside Nigeria to biofuel

companies by foreigners.

In addition, the stipulated targets are bio-diesel supply at 900 million liters for 2020, 2030, 2040

and 2050. Ethanol demand of 2 billion liters by 2020, 2030, 2040, 2050 for Gasoline 10% ethanol

blend ratio (E10) requirement. 4) The Renewable Energy Master Plan (REMP) (2005), (2012);

Energy Commission of Nigeria under the Federal Ministry of Science and Technology devel-

oped the Renewable Energy Master Plan (REMP), in collaboration with the UNDP in 2005,

reviewed in 2012 (REMP 2005, 2012). The REMP shows country's vision and sets out a frame-

work for increasing the role of renewable energy in achieving sustainable development. The

REMP revolves around the values, principles and targets as incorporated in the National Eco-

nomic Empowerment and Development Strategy (NEEDS), National Energy Policy, National

Policy on Integrated Rural Development, the Millennium Development Goals (MDGs), and

international conventions to reduce poverty and reverse global environmental change (REMP

2012). The REMP has a sub-programme termed the National Biomass Energy Programme

with a target of 5MW, 30MW and 100MW of electricity for its short term, medium term and

long term targets respectively. The stipulations that by 2025 the 10% nation's electricity con-

sumption should be from a renewable source. 5) The National Renewable Energy and Energy

Efficiency Policy (NREEEP) (2014). The Federal Ministry of Science and Technology in 2014

developed the National Renewable Energy and Energy Efficiency Policy [52]. The stipulated

objectives with regards to bioenergy include;

• To promote bioenergy production especially in the rural areas.

• To reduce adverse health effect arising from combustion of biomass fuel.

• To focus biomass utilization close to production, for community heating schemes and domestic

heating, particularly off the national grid network. With electricity demand target from
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biomass at 2273.08 GJ, 11560.10 GJ, 16201.61 GJ, 16201.61 GJ by 2020, 2030, 2040 and

2050, respectively.

Figure 1.9: Shift in demand equilibrium under subsidy action

1.4.1 Impact of subsidies for bioenergy on agricultural land use

change

The ultimate aim of subsidising bioenergy sector is to reduce the use of fossil fuels which has

adverse effect on the climate system. Subsidies such as tax credits or exemptions are grants

provided by many governments to encourage a particular sector of her economy. It provides a

wedge between the price recieved by the producers and price paid by the consumers. Figure 1.9

shows a representation of a the market equilibrium with and without subsidy where subscripts

1 and 2 represents pre & post subsidy respectively for demand and supply curves. Land use

change implications of subsidies on bioenergy have caused great concern for both researchers
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and the policy makers [41]. The amount of available land for agriculture converted to producing

energy crops affects the cost of other staple crops that are no longer being produced at the

same levels [61]. [41] stated that bioenergy impacts on land use evolves over time. The land use

impact of bioenergy depends on policy actions [41], thus necessitates a proper analysis before

deployment.

1.4.2 Environmental impacts of agricultural production

Agriculture is key to ensuring food security. The need to provide food for the growing population

has led to increase in agricultural activities which in turn puts pressure on the available arable

land. As a result a majority of forest is destroyed annually either through burning or logging to

create more land for food production, energy crop production as well as the creation of ranches

and grazing land for cattle.

Furthermore, agricultural activities have contributed enormously to the depletion of natural

ecosystems which threatens biodiversity and ecosystem services that directly contribute to

human well-being, such as water purification, air quality regulation and stable climate through

carbon storage [15, 48]. In the Niger Delta region, [57] estimated great decrease in forest

area due to oil palm cultivation. Land use change and forestry accounted to about 51.06%

(253.16MtCo2e) of the country's total emission in 2014 [20]. Agriculture was responsible for

about 13% of this anthropogenic emissions of greenhouse gases in Nigeria (64.24MtCo2e).

1.5 Motivation and Objectives

The global demand for modern bioenergy, and especially liquid biofuels, is rapidly growing.This

is driven mainly by climate change mitigation policies and increasing oil prices. This creates

both opportunities and risks for developing countries such as Nigeria [8]. Bioenergy potentially

offers developing countries many advantages such as enhanced energy security, reduces depen-

dency on fossil fuels and also can provide social economic welfares. Increase in energy security
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can in turn have positive effect on food security, create markets as well as employment op-

portunities and also contribute potentially to greenhouse gas reduction. Nevertheless, recently

bioenergy developments have also become a cause for deep concern. In many cases increased

bioenergy production had serious social, economic, and environmental implications due to the

potential negative impacts on food security and on the environment caused by food produc-

tion and natural resource competition [7, 45, 23]. Palm products are increasingly marketed for

the fast growing domestic and international markets and compliance with policy restrictions

from users is only grudgingly followed. For palm biofuels, the focus has mostly narrowed to

only specific regional Southeast Asian subsidies for blending. To satisfy the exponentially in-

creasing global demand for palm products, unlike traditional smaller plantations of thousands

of hectares, plantations are now scaling vast monocultures of tens of thousands of hectares

by clear-cutting swaths of tropical rainforest now becoming the case for African countries e.g.

Nigeria [71]. One of the missions of the Nigerian Institute for Oil Palm Research (NIFOR) is

to enable the nation attaining self sufficiency in palm oil production and regain the leading

position in international oil palm production and trade in the commodity [51]. Since the end of

Nigerias military rule in 1999, the government has been actively pursuing the commercializa-

tion of the agricultural economy through market-led reforms, as has been formally articulated

in the 2003 National Economic Empowerment and Development Strategy (NEEDS) and the

2012 Agricultural Transformation Agenda (ATA) [1]. This has involved among other things the

privatization of the states agricultural assets and the promotion of private-sector investment in

priority value chains [1]. According to [4], energy markets are a significant driver in the overall

trend of large scale land acquisition. A clear link can be established between the EU bioenergy

policy and the strong interest of European companies to acquire agricultural land in developing

countries, especially in Africa [16]. This also entails that the development of conventional bio-

fuel production has an impact on access to natural resources, such as land and water and often

leads to an increase in land concentration to the detriment of small holder farming practices.

[16] proposed that the Bioenergy impact analysis should be on regional basis rather than on a

global scale. Scientists who try to analyse the issues regarding oil palm plantation in the Nige-

ria's Niger Delta mostly emphasise on growth perspectives [60, 37], only [63] shed little light
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from the conservation point of view and focused on a particular state in this region.Therefore,

there is a knowledge gap on an integrated assessment analysis of oil palm as bioenergy feedstock.

Hence this dissertation project sheds light on the aforementioned issue by using an integrated

approach to address land use with respect to oil palm cultivation and sustainable development

issues. More specifically, the study aims at analysing effects of oil palm bioenergy development

on climate and environment, investigating how impacts of oil palm cultivation on food security

can be reduced, how Nigeria bioenergy policies could affect the environment of the Niger Delta

in Nigeria, revealing and elucidating the respective feedbacks.

1.5.1 Research Questions

• What could be the impact of Nigerian bioenergy policies with regard to energy crops culti-

vation (e.g.oil palm) on land use change and social welfare of the Niger Deltan Nigeria?

• How can land use with respect to energy crops cultivation (e. g. oil palm) be adapted to

climate change, be sustainable and at the same time allow for climate and environmental

protection?

• What are the main ways in which potential adverse impacts of bioenergy development on

land use change could be reduced?

1.6 Research Approaches

1.6.1 Spatial analysis (GIS analysis)

The spatial analysis address the issues regarding land use and land cover changes by employing

remote sensing techniques to identify the current land use situation. This is done to generate the

land use and land cover change data. The approach used also estimate the spatial distribution

of existing oil palm plantation and it's trajectories thereby generating secondary data that will

be applied to the Nigerian Forest and Agricultural Sector Optimization Model (NGA-FASOM).
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Remote sensing is defined as the science of deriving information about the earth's surface (land

and water areas) from images acquired at a distance [10]. It relies upon measurement of

electromagnetic energy reflected or emitted from the features of interest. This approach was

used to map the extent and distribution of oil palm plantation derived from land cover maps

of Niger Delta in Nigeria [57] with spatial resolution of 30 meters. These land cover maps

are based on Landsat mission of Landsat 5 7 and 8 images acquired from the Landsat's Earth

Observing System Data set. The multi-temporal Landsat data was accessed from Google Earth

Engine [25].

1.6.2 Process-based modeling analysis

Process-based models are mathematical (and mostly computer-based) representation of one or

several processes characterizing the functioning of well-delimited biological systems of funda-

mental or economical interest [9]. APSIM2015.06.22 next generation is process-based model

built on a dynamic daily time-step that combines biophysical and management modules within

a central engine to simulate crop or cropping systems. APSIM is a modeling framework with

the ability to integrate models derived in fragmented research efforts (www.apsim.info). This

facilitates research from one discipline or domain to be linked to the benefit of some other dis-

cipline or domain. It also enables comparison of models or sub-models on a common platform

[40, 32, 34]. This functionality uses a plug-in-pull-out approach to APSIM design. The user

can configure a model by choosing a set of sub-models from a suite of crop, soil, and utility

modules. Any logical combination of modules can be simply specified by the user “plugging

in” required modules and “pulling out” any modules no longer required. It's crop simulation

models share the same modules for the simulation of the soil, water, and nitrogen balances.

APSIM can simulate more than 20 crops and forests (e.g.,oil palm alfalfa, eucalyptus, cowpea,

pigeonpea, peanuts, cotton, lupin, maize, wheat, barley, sunflower, sugarcane, chickpea, and

tomato). APSIM is capable of simulating soil water, C, N, and P dynamics and their interaction

within crop and management system, based on daily solar radiation, maximum and minimum

temperature, and rainfall data [40, 32, 34, 56].
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1.6.3 Integrated assessment modeling analysis

Integrated assessment models (IAM's) are models that represents a broader set of information

than is normally derived from a standard research activity. Integrated assessments bring to-

gether and summarize information from diverse fields of study, they are often used as tools

to help decision makers understand very complex environmental problems. IAM's are mostly

mathematical computer models based on explicit assumptions about how the modeled system

behaves. IAM's are also seen as methodologies that can be used for gaining insight over arrays

of environmental problems spanning wide variety of spatial and temporal scales. They have

the ability to calculate the consequences of different assumptions and to interrelate may factors

simultaneously, but IAM's are constrained by the quality and character of the assumptions

and data that underlie the model. Within this project the Nigerian Forest and Agricultural

Model (NGA-FASOM) is developed [58]. NGA-FASOM include the analysis of cost-supply,

environmental or ecological impacts, thereby serving as an integrated assessment model that

will generally optimize the aforementioned research questions by making use of constraint op-

timization tool. The model is used to compute the competitive economic potential of oil palm

plantation for bioenergy production. NGA-FASOM is an inter-temporal partial equilibrium

model of the Nigerian Agricultural and Forestry Sectors, that is adapted to analyze economic

and environmental impacts of changing policies, technologies, resources, and markets. NGA-

FASOM is a model with the possibility to track net GHG emissions from all type of land uses

and productions/consumptions related to the products (integrated life cycle assessment). It

is a regional, multi-periodic model depicting land resource transfers between and within agri-

cultural and forest sectors. Land is transferred between sectors/type of land-use according to

its marginal profitability in all alternative forest and agricultural uses included in the model,

over the time horizon of the model. The model integrates observed land qualities and tech-

nologies with environmental impacts and regional market feedbacks e.g. the Nigeria market

for bioenergy. The approach enabled the quantification of economic potentials, environmen-

tal impacts mitigation and, also leakage effects. This was achieved by setting up scenarios,

e.g. bioenergy policies as stipulated in [52] targets. The model estimates proportion of palm

plantation required to generate an approximate percentage of the current total electricity con-
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sumption in each region. This modeling approach has successfully been used to analyze the

interdependencies between food and biofuel production [62, 47, 29].

1.6.4 Structure of the PhD thesis

The thesis is divided into three chapters. The first chapter presents the scientific background

and the overall research objectives of the dissertation project. Chapter two is the research

results written in form of journal articles representing the originality of the work with the

respective statement of contributions. While in chapter three the overall conclusions, future

work prospects and tools used within the project are presented.



Chapter 2

Statement of Originality

2.1 Statement of Originality

The objective of this dissertation project is to assessment the Environmental and Social Impacts

of Bioenergy from Oil Palm Cultivation in Nigerian Niger Delta. In this chapter, the different

original publications in the framework of the cumulative dissertation and the extent of my

contributions are presented. All papers were published in international journals, all under a

lead authorship [57, 56, 58]. Every publication underwent a peer review process to ensure a

high scientific standard.

2.2 Publications and Statement of contributions

List of Publications

Article I

A novel approach in monitoring land-cover change in the tropics: oil palm cultiva-

tion in the Niger Delta, Nigeria

Status: published in DIE ERDE Journal of the Geographical Society of Berlin Vol. 147, No. 1

22 March 2016

23
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Stanley U. Okoro designed the overall study, wrote the scripts, run the analysis, analysed the

results and wrote the manuscript. All authors discussed and commented on the manuscript.

Okoro, S. U., Schickhoff, U., Bhner, J. and Schneider, U. A., 2016. ’A novel

approach in monitoring land-cover change in the tropics: oil palm cultivation in

the niger delta nigeria’, DIE ERDE Journal of the Geographical Society of Berlin

147(1).
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Zusammenfassung
Die steigende Nachfrage nach Palmöl und Bioenergie fördert die Ausweitung von mit Ölpalmen (Elaeis  guineensis) 
bestandenen tropischen Nutzflächen und intensiviert zugleich Nutzungskonflikte mit der Nahrungsmittelproduk-
tion sowie Umweltdegradation. Des Weiteren erhöht die Abholzung von Regenwald zur Errichtung von Ölpalmen-
plantagen in der Regel den Ausstoß von Treibhausgasen. Umfassende Wirkungsanalysen zur Ausbreitung von Ölpal-
menplantagen benötigen Zeitreihen von Landnutzungskarten. Der Runde Tisch für nachhaltiges Palmöl (RSPO) hat 
bisher keine Leitlinien für die Evaluierung von Landnutzungsänderungen erstellt. Obwohl Fernerkundungsmetho-
den für die Beobachtung und Modellierung von Landnutzungsänderungen allgemein gut geeignet sind, wird die Nut-
zung von Landsat- Aufnahmen aus tropischen Regionen durch Bewölkung beeinträchtigt. Diese Studie präsentiert 
einen neuen Ansatz, welcher die Google Earth Engine (GEE) und das „System for Automated Geoscientific Analysis“ 
(SAGA) GIS nutzt. Zeitlich und räumlich aufgelöste Landnutzungs- und Landbedeckungsänderungen durch den An-
bau von Ölpalmen werden mit einem „median pixel composite mosaic“ von Landsat-5-, 7- und 8-Szenen für die Zeit-
räume 1999-2005 und 2009-2015 erfasst. Für die erste Periode erreicht das Verfahren eine Gesamtgenauigkeit von 
70,33 % und einen Kappa-Koeffizienten von 0,62. In der zweiten Periode  steigen diese Werte auf 84,5 % und 0,80.
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Abstract
The increasing demand for palm oil and bioenergy has promoted the expansion of tropical farmland covered with 
oil palms (Elaeis guineensis), resulting in increased competition with food production as well as environmental 
degradation. Moreover, oil palm cultivation may have increased greenhouse gas (GHG) emissions through defor-
estation. The overall impact estimation of oil palm related land-use change requires spatiotemporal land-use 
maps. So far, the Roundtable on Sustainable Palm Oil (RSPO) has not established guidelines on how to measure 
and evaluate oil palm related land-cover change. While remote sensing methods are suitable in general, the use 
of Landsat images in the tropics for the monitoring and modeling of land-cover changes has been restricted due 
to the influence of cloud cover. This study presents a novel approach for mapping tropical land-cover change 
 using the Google Earth Engine (GEE) cloud-based platform and the System for Automated Geoscientific Analysis 
(SAGA) GIS. Spatiotemporal land-use and land-cover changes in relation to oil palm cultivation are assessed 
using a median pixel composite mosaic of Landsat 5, 7 and 8 image scenes for the time periods 1999-2005 and 
2009-2015. The proposed approach yields an overall accuracy and kappa coefficient of 70.33 % and 0.62 for the 
first image composite period, and 84.5 % and 0.80 for the second image composite period respectively.
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1.  Introduction 

Traditionally, oil palm production has been a part of 
mixed farming activities in West Africa. However, in 
the current practice, most production has expanded 
as an industrial-scale mono-crop (Corley and Tinker 
2016). This imposes greater environmental risk on lo-
cal societies, particularly on those with limited eco-
nomic capacities (Colchester 2011). Currently, oil palm 
cultivation is characterized by large monocultures 
of uniform age structure, low canopy, sparse under-
growth, a low stability microclimate and intensive 
use of fertilizers and pesticides. Land-cover patterns 
reflect the underlying natural and social processes 
which, thus, helps to provide essential information 
for modeling and understanding many phenomena on 
Earth ( Liang 2008). Furthermore, understanding the 
complex interaction between human activities and 
global change requires the analysis of land cover data 
(Gong et al. 2013). The conversion of natural forest to 
agricultural uses such as oil palm etc., has been re-
flected in regional land-use maps in most of the tropical 
regions.  This conversion can result in a series of nega-
tive impacts (Carlson et al. 2012), e.g., forest estate loss, 
social cost (private cost plus externalities as a result of 
forest to oil palm estate conversion), loss of biodiversi-
ty and ecosystem services, alternative revenue loss and 
greenhouse gas emissions etc. (Sayer et al. 2012; Sheil 
et al. 2009).  To date, comprehensive regional land-use 
maps of the Nigerian Niger Delta which incorporate 
oil palm cultivation have not been produced. The lack 
of detailed land-use maps may be due to the limited 
availability of cloud-free satellite images and the unat-
tractiveness of such studies for most private actors and 
non-governmental sectors. Consequently, scientists 
have not been able to carry out such research, possibly 
a result of the cost of acquiring high-resolution satellite 
images like IKONOS etc. in the region.

Satellite remote sensing technology provides promis-
ing approaches for monitoring land-cover change. In 
many studies in southeastern Asia, continuous obser-
vations of the land surface have been used to map oil 
palm cultivation (Kamaruzaman and Setiawan 2003; 
Santoso et al. 2011; Tan et al. 2012). The classifications 
of satellite imagery for land-cover mapping, however, 
often require extensive skills of an experienced envi-
ronmental analyst (Aitkenhead and Aalders 2011). If 

such skills have not been available, land cover classi-
fication maps have been developed from ground sur-
veys and base maps such as digital topographic maps. 
In addition, land-use maps and soil suitability agricul-
tural maps (although not available for public use in the 
study area) have increased the accuracy of land-cover 
classification maps (Razali et al. 2014; Reichenbach and 
Geng 2003). Replacing or updating these maps with a 
large amount of remotely sensed data remains a very 
challenging task in land-use and land-cover mapping 
(Franklin and Wulder 2002). Different methods have 
been implemented; these can be divided into two cate-
gories: phenology and image-based approaches. The 
latter make use of spectral signatures to delineate 
different types of land cover, e.g. oil palm trees (e.g. 
Shafri et al. 2011; Thenkabail et al. 2004). The former 
relies on the temporal signal of optical sensors to iden-
tify various land covers using coarse resolution data 
from the Moderate-resolution Imaging Spectroradio-
meter (MODIS), e.g. Gutierrez-Velez et al. 2011. This is 
not ideal for monitoring oil palm distribution because 
the saturation of optimal images due to canopy closure 
causes a reduction in the possibility of detecting struc-
tural features (Shafri et al. 2011). Cloud cover issues 
are most common in tropical regions and have been a 
great challenge in land-cover monitoring. Due to the 
reduced monitoring options of cloudy images, Synthet-
ic Aperture Radar (SAR) data were frequently used as 
a major alternative in tropical studies (Koo et al. 2012; 
Li et al. 2015, Morel et al. 2011). The reason for this has 
been attributed to SAR’s all-weather and all-time capa-
bility. On the other hand, due to their coarse resolution 
of 50 m, SAR data are difficult to be used in a detailed 
monitoring of tropical land cover.

The GEE, which is an online environmental geoprocess-
ing platform that incorporates data from the National 
Aeronautics and Space Administration (NASA) and the 
Landsat Program, has created an avenue which allows 
users to assess records of Landsat imagery and process 
them over its online platform. This process reduces us-
ers’ computational processing times when analysing 
Landsat imagery, making global- and regional-scale 
Landsat projects achievable (e.g., Hansen et al. 2013).

The objective of this study is to provide a novel ap-
proach in monitoring and analyzing oil palm re-
lated land-cover issues in the tropics using Landsat 

Monitoring land-cover change in the tropics: oil palm cultivation in the Niger Delta, Nigeria
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data with a resolution of 30 m via GEE and SAGA GIS 
(Conrad et al. 2015). We implement the Voting Sup-
port Vector Machine (SVM) classifier in GEE to map 
oil palm plantation in the Nigerian Niger Delta. To 
investigate the biases of our classifier, the analysis 
of its error matrix which includes overall accuracy, 
user accuracy and producer accuracy and the com-
putation of its kappa coefficient were performed.

2.  Study area

The study area covers the southern part of Nige-
ria where the oil palm production is concentrated 
(see Fig. 1). Currently called the Niger Delta region, 
it is one of the world’s largest acute fan-shaped 
river deltas. The settlements that are covered in 
this study include: Imo State, Abia State, Bayelsa 
State, Rivers State, Ondo state, Akwa Ibom state, 
Edo State and Cross River State. The Niger Delta 
is defined officially by the Nigerian government 
to extend over about 70,000 km2 which is 7.5 % of 
Nigeria’s total land mass. The region lies between 

4.01°N and 7.90°N and between 4.50°E and 10.56°E 
in the West African section of the tropical rainfor-
est belt and has a humid tropical climate. The area 
homes the country’s wetlands which is also one the 
largest wetland in the world with a very high bio-
diversity rate. The riverine area of the Niger Delta 
is a coastal belt of swamps bordering the Atlantic 
Ocean. The swamps are vegetated tidal f lats formed 
by a reticulate pattern of interconnected meander-
ing creeks and tributaries of the River Niger. The 
Niger Delta has one of the highest population den-
sities in the world with approximately 265 inhab-
itants per square kilometer. The population in the 
delta produces crops that are in high demand in the 
world market, such as palm oil and cocoa.  

3. Materials and methods

3.1  Satellite data

Landsat 5, 7 and 8 orthorectified and coregistered 
scenes were used in this study, capturing identical 

 

 
Fig. 1    Map of the study area
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periods of calendar days (270-365) for 1999 through 
2005 and 2009 through 2015. We did not consider 
using surface reflectance data following Song et al. 
(2001), who stated that an atmospheric correction 
was unnecessary for a change detection based on a 
classification of multitemporal composites in which 
multiple dates of remotely sensed images are recti-
fied and placed in single dataset as long as the train-
ing dataset is derived from the image being classified.

We decided to work with the images of calendar 
days 270-365 in each year in order to avoid season-
ality issues of oil palm reflectance values that may 
arise from seasonal variation of chlorophyll con-
centration, foliar pigments and other reflectance 
properties. We consider the image collection com-
posite range used in this study as ideal for oil palm 
mapping studies. We worked with Landsat mosaic 
images only because they are consistent with a 
resolution of 30 m and the combination of different 
Landsat sensors has only minor effects on the out-
put of the images. Landsat has a high degree of simi-
larities among its different sensors (Li et al. 2014), 
a notable advantage compared to working with the 
fusion of Landsat and MODIS images with a coarser 
resolution of 50 m as in Bisquert et al. (2015).

3.2  Data pre-processing 

Landsat 5, 7 and 8 data of the time periods from 1999 
to 2005 and from 2009 to 2015 were combined in 
one mosaic by taking the median pixel from the en-
tire Landsat image collection. The overall procedure 
is graphically represented in Fig. 2 and involves nine 
steps. The first six steps were done in GEE and the re-
maining three in SAGA GIS.

Spectral band normalization: Due to differences 
in the spectral band numbering system among the 
different Landsat missions – Landsat Thematic Map-
per (TM), Enhanced Thematic Mapper Plus (ETM+) 
and Operational Land Imager & Thermal Infrared 
Sensor (TIRS) (Li et al. 2014) – a normalization pro-
cess is required. Therefore, we carried out a nor-
malization to make the images from the different 
sensors suitable for combination by matching the 
bands from the different Landsat sensors (e.g. red 
band from Landsat 5 to Landsat 7 red band).

Cloud score analysis: Cloud cover problems were 
tackled by using the simple cloud score algorithm 

implemented in the GEE. This algorithm computes a 
simple cloud likelihood score threshold that ranges 
from 0 to 100, making use of brightness, temperature 
and Normalized Difference Snow Index (NDSI). The 
algorithm is mainly intended to compare multiple 
looks at the same point for relative cloud likelihood. 
For this study, a cloud score threshold of 20 was used. 
The threshold is subjective; the choice, however, was 
based the visual interpretation of the Landsat images.

Training data: While focusing on oil palm plantation 
mapping, other land-cover types considered in this 
study include water (rivers, lakes, swamps), built-up 
areas (including bare lands), cropland (croplands that 

Fig. 2 Graphical representation of the processing approach
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are not covered by oil palm trees) and forest. We in-
corporated the ground truth data, Google Earth data 
and Landsat image data in our training sample. The 
ground truth data were collected during a field work 
between November and December 2014.

Reference data: Due to the costs of acquiring refer-
ence data for using our sampling approach at a region-
al scale, we collected our reference data by combining 
Landsat image and Google Earth imagery.  In a similar 
case, Pulighe et al. (2015) assess the horizontal accu-
racy of Google Earth images and conclude that they 
have an overall positional accuracy close to 1 m.  This 
suggests that this is sufficient for deriving a reference 
data set for land-cover mapping. The sampling method 
used is the stratified random sampling method (Husch 
et al. 2003). The points were stratified according to 
the distribution of land-use/cover classes, in order to 
lessen the possibility of biases from misclassification. 
The choice of this sampling method was based on the 
recommendations of Olofsson et al. (2014) regarding 
good practices for estimating area and assessing ac-
curacy of land cover and land use maps.

Signature analyses of reflectance values of land 
cover types: To determine and understand the spec-

tral separability of the Landsat reflectance bands of 
the various land-cover types, to enable the choice and 
order of spectral bands to be used, the Landsat image 
reflectance at known land-cover types against the 
bands were plotted. Furthermore, the reflectance val-
ues against the different wavelengths at various land-
cover types were also plotted.

Image classification: The approach is based on the 
supervised classification of multispectral, multisensor 
data, using the Landsat image collection of Landsat 5, 
7 and 8 combined in one mosaic. Supervised classifica-
tion is a method often used for the quantitative analy-
sis of remote sensing images. It aims at grouping the 
spectral domain into regions that can be associated 
with ground cover classes of interest for a particular 
application (Richards 2013). The Landsat image bands 
were chosen and their arrangements were Near Infra-
red (NIR), Shortwave Infrared 1 (SWIR1), Red, Green 
and the computed Normalized Difference Vegetation 
Index (NDVI) band. The NDVI is an index of plant green-
ness, which is also an indicator of density of plants. It is 
calculated using the formula in Equation 1. 

                                                              (Eq. 1)                     

Fig. 3 Screen shot of a Google Earth image showing the various land-cover classes analyzed in this study
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The classification scheme employed to create a 
land-cover/land-use map was a modification of 
Omodanisi (2013) to incorporate oil palm and crop-
land and to combine high forest and light forest in a 
single land-cover type (Fig. 3), thus differentiating 
between  i) water bodies, ii) a built-up areas class 
which also includes bare ground, roads and build-
ing facilities, iii) cropland which includes all agri-
cultural land that does not have oil palms planted 
as mixed crop, iv) forests, including primary and 
secondary forests, v) oil palms.  

Classifiers voting support vector machine (SVM): The 
concept of SVM is based on decision plains that de-
fine decision boundaries. The classifier takes inputs 
from training data and makes predictions based on 
given inputs. The classes input is formed by relating 
the training data set to each pixel in an image (Kav-
zoglu and Colkesen 2009). The algorithm was first in-
troduced as a machine learning method by Cortes and 
Vapnik (1995) based on a non-probability binary func-
tion because it predicts for each of a series of given 
inputs the possible input that the input belongs to. 
Originally, the approach was designed to solve binary 
problems. In remote sensing applications, however, 
the problem often involves multiclass/non-binary 
problems.  Various approaches have been proposed to 
address multiclass problems (m-class), e.g. Schölkopf 
and Smola (2002), where the problem is usually split 
into a set of binary classifiers before combining them. 
The one-against-all classification strategy splits the 
problem into multiple binary sub-problems. The one-
versus-one classification strategy creates Equation 2 
binary sub-problems and later combines the follow-
ing adopting a majority voting scheme. The approach 
has shown to be more suitable for large problems like 
ours (cf. Hsu and Lin 2002). Its operation is carried 
out in feature space, where classes are separated by 
a boundary that is as wide as possible. Our choice of 
choosing this algorithm as classifier algorithm was 
based on the finding that it performs well in mapping 
oil palm plantation (Li et al. 2015; Nooni et al. 2014).

                                                                    (Eq. 2)

3.3  Post-processing

Noise filtering (majority filter): In order to reduce 
noise in the classification result, we applied a major-
ity filter algorithm as implemented in SAGA GIS in the 
post-processing, which removes isolated cells. The 

majority filter considered a search radius of 3 x 3 cells 
to improve the homogeneity of the classified raster.

Accuracy assessment: Many factors affect the ac-
curacy of an image classification, this includes pre-
processing of remote sensing data, precision and 
resolution of remote sensing data and training sample 
selection. Accuracy assessment allows the analyst to 
compare certain pixel values in a raster layer to the 
reference pixels for which the class is known (Mani 
Murali et al. 2006), in order to establish the error 
margin of the classified image. This requires a sim-
ple cross-tabulation of the class labels allocated by a 
classification of the remotely sensed data against the 
reference data. The error matrix aids in quantifying 
image classification accuracy and its area estimation. 

The accuracy assessment computation we carried out 
includes: 

  –  Confusion matrix: The confusion matrix is cal-
culated by comparing the location and class of each 
reference pixel with the corresponding location and 
class in the classification image.

  –  Producer accuracy: This is the measure that in-
dicates the probability that the classifier has labeled 
an image pixel into class A given that the reference 
class is A.

  –  User accuracy: This measures the probability that 
a pixel is class A given that the classifier has labeled 
the pixel into class A.

  –  Overall accuracy: This is calculated by summing 
the number of pixels classified correctly,  divided by 
the total number of pixels in that land-cover class. 

  –  Kappa coefficient: The kappa coefficient (k) meas-
ures the agreement between the classification result 
with that of the reference pixels. Perfectly agreed 
means that the kappa coefficient tends to 1 or is very 
close to 1. It is calculated using the formula

                 k                                                          (Eq. 3)

where i is the class number, N is the total number of 
classified pixels that are compared to reference data, 
mi,i  is the number of pixels belonging to the reference 
class i, which have been classified with a class i, Ci is 
the total number of classified pixels belonging to class i, 
Gi is the number of reference pixels belonging to class i. 

Monitoring land-cover change in the tropics: oil palm cultivation in the Niger Delta, Nigeria
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Change detection: Change detection is a process of 
identifying differences in the state of an object or pheno-
menon by observing it at different times ( Jensen 1996). 
Change detection analyses can be deducted in many 
ways. In land-use/land-cover change analyses, three 
categories are mostly used: i) algebra-based approach 
image differencing, image regression, image  rationing, 
vegetation index differencing and change vector analy-
sis (Singh 1989); ii) transformation principal  component 
analysis, tassled cap, Gramm-Schmidt and Chi.square 
test (Nielsen and Canty 2008); iii) classification-based 
spectral-temporal combined analysis, post-classifica-
tion comparison, unsupervised change detection, hy-
brid change detection, artificial neutral networks and 

electromagnetic transformation (İlsever and Ünsalan 
2012). We decided to work with post-classification 
comparison because this technique makes use of the-
matic maps (classified images) as input and does image 
differencing on a pixel-wise basis. The main advantage 
of post-classification comparison is that it avoids prob-
lems encountered at the image original pixel level, for 
example shadows and reflections ( Jensen 1996).

4.  Results and discussion

A total of five land-cover types were identified and 
classified in this study. These were water, built-up 

Monitoring land-cover change in the tropics: oil palm cultivation in the Niger Delta, Nigeria
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Fig. 5 Landsat reflectance data for the various land-cover types plotted against wavelength
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 areas, cropland, forest and oil palm as shown in 
 Figure 4. Following our approach, we were able to get 
little or no cloud cover in our image composite.

The plot of the reflectance values against the chosen 
Landsat image bands and reflectance values against 
wavelengths of the land-cover types at known points 
in our study area (Figs. 4 and 5) show a very clear 
spectral separability of the land-cover types within 

our chosen image bands. The near-infrared band 
has the highest spectral separability to distinguish 
among the different land-cover types. Thus, the band 
arrangement of the classification follows the order of 
its separability among the land-cover types. 

In the 2005 land-cover map, cropland, oil palm, for-
est, built-up and water body occupy 37.66 %, 27.15 %, 
27.21 %, 4.36 % and 3.59 % respectively (cf. Table 1). 

Land-cover class 
1999-2005 2009-2015 Change 

Area (ha) % Area (ha) % ha % 

Water         384918.52   3.59   415545.38    3.87      30626.86      7.95 

Built-up area    468342.99   4.36      313990.09    2.92        -154352.90  -32.95 

Cropland    4037477.94      37.66     4318065.23 40.28    280587.29  6.94 

Forest      2917374.90 27.21 2824880.57 26.35 -92494.33 -3.17 

Oil palm    2910695.95      27.15   2846329.03     26.55 -64366.92   -2.21 
 

 

Table 1 Land-cover/land-use change in the Nigerian Niger Delta

Fig. 6 Land-use/land-cover map based on the 1999-2005 median composite
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According to the results obtained for the 2015 land-
cover map, cropland occupies 40.28 %, oil palm 
26.55 %, forest 26.35 %, built up area 2.92 %, and wa-
terbodies 3.87 % of the study area (cf. Table 1). It could 
be observed from our maps for both years that the oil 
palm plantation operations are mostly concentrated at 
the western and eastern parts of our study area (Fig. 6 
and Fig. 7). The larger forest extent was observed in 
the eastern part, where the altitude is slightly higher.

The result of the post-classification comparison ap-
proach employed for the detection of land-cover chang-
es is shown in Table 1 and Fig. 8.  It is clearly observed 
that forest had a decrease of 3.17 % from 2005 to 2015, 
which is very significant compared to the time interval. 
Field observations and research findings reveal that the 
high rate of change observed in the forest area has to be 
attributed to the conversion to cropland and to oil palm 
cultivation. Our findings are in line with those of Abbas 
(2012) in his study of a smaller area within our study 
area. Cropland experienced an increase, which has to 
be largely attributed to forest area decrease, reflect-
ing, according to the locals, the governmental policies 
on agriculture (see also Orimoogunje et al. 2013). The 

decrease in built-up area resulted from the conversion 
of bare lands into mostly agricultural land. According 
to our analysis the land-cover type that was most heav-
ily converted to oil palm cultivation and cropland was 
forested areas (cf. Fig. 8). Other land-cover changes 
encountered include: from cropland to forest, built-up 
areas to cropland (which is basically the cropland ar-
eas that were initially cleared for cultivation during 
the first image acquisition period), cropland to built-up 
areas which is due to the increase in urbanization. Our 
study also reveals an increase in water body area. 

The accuracy of the classification results for land-cover 
maps for 2005 and 2015 is reported in Tables 2 and 3 
respectively. The producer accuracy for all the land-
cover types for the 2015 land-cover map ranges from 
74.69 % to 90.00 % and the user accuracy from 72.72 % 
to 97.82 %. Our approach was able to produce an over-
all accuracy of 84.51 % with a Kappa coefficient of 0.80.

Global change and energy transition have triggered a 
lot of land-use/land-cover changes. The RSPO has not 
yet come up with a standard to map and monitor oil 
palm plantations. There is a serious concern that palm 

Monitoring land-cover change in the tropics: oil palm cultivation in the Niger Delta, Nigeria

Fig. 7 Land-use/land-cover map based on the 2009-2015 median composite
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oil production is largely unsustainable, with issues re-
lating to deforestation, biodiversity, soil degradation, 
water quantity, local people, land rights and many 
other aspects. The development of new plantations 
has resulted in the conversion of large areas of forests 
with a high conservation value and threatens the rich 
biodiversity in these ecosystems. Many of these social, 
ecological and environmental impacts of oil palm pro-
duction can be associated with land-cover and land-
use change in connection with bioenergy production 
(Elbehri et al. 2013). Bioenergy-related land-use deci-
sions may affect local, regional and global social, eco-
logical and environmental systems. Therefore, sustain-
ability is a big challenge with regard to the increased 
development of bioenergy production. It is important 
to develop a standard approach that aids in the deter-
mination of the main resource availability (land).

To investigate the environmental and social impacts 
of unsustainable oil palm cultivation for bioenergy 
production, the land-use/land-cover maps of oil palm 

production are among the data basically needed. To 
this end, our study has come up with an approach to 
get rid of cloudiness challenges in mapping oil palm 
trees in the tropical region at a regional scale using 
Landsat images. This tool is useful when the land cover 
is very heterogeneous, and thus requires a  medium- to 
fine-image resolution. Therefore, our approach could 
serve as a baseline for policy makers, land managers 
in the tropical region to map and monitor land-use/
land-cover change on a local to regional scale.

5.  Conclusions

Oil palm related land use/land cover change can be 
monitored in the tropics at a regional scale by using 
a median composite image, combining Landsat 5, 7 
and 8 data in a single mosaic via GEE and SAGA GIS. 
The approach assists in getting rid of cloud prob-
lems in tropical regions, which also helps in un-
derstanding the nature of change in the use of land 

Monitoring land-cover change in the tropics: oil palm cultivation in the Niger Delta, Nigeria

Fig. 8 Land-use/land-cover change 2005-2015
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resources. This approach can also facilitate proper 
planning, management and regulations of the use of 
land resources now that there is a quest for energy 
transition due to climate change. The change detec-
tion analysis shows that there is a decrease in the 

forested area in the study area, with a much greater 
forest area that changes to oil palm than other land-
cover types. The overall classification accuracy is 
sufficient in order to establish management strate-
gies based on the map results.

Monitoring land-cover change in the tropics: oil palm cultivation in the Niger Delta, Nigeria

 Water Built-up Cropland Forest Oil palm Classification 
overall 

Producer 
accuracy 

(%) 

Water 61 1 0 37 1 100 61.00 

Built-up 4 61 13 3 2 83 73.49 

Cropland 0 8 78 10 8 104 75.00 

Forest 2 1 3 66 21 93 70.96 

Oil palm 0 0 12 17 73 102 71.56 

Truth 
overall 67 71 106 133 105 483  

User 
accuracy 
(%) 

91.04 85.91 73.58 49.62 69.52   

 

Table 2 Confusion matrix for land-use/land-cover map 1999-2005 composite

 Water Built-up Cropland Forest Oil palm Classification 
overall 

Producer 
accuracy 

(%) 

Water 90 2 0 8 0 100 90.00 

Built-up 1 62 17 3 0 83 74.69 

Cropland 0 0 89 8 7 104 85.57 

Forest 1 0 0 80 8 89 89.88 

Oil palm 0 0 8 11 83 102 81.37 

Truth 
overall 92 64 144 110 98 478  

User 
accuracy 
(%) 

97.82 96.87 78.07 72.72 84.69 
  

 

Table 3 Confusion matrix for land-use/land-cover map 2009-2015 composite
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a  b  s  t  r  a  c  t

Palm  oil  production  has increased  in recent  decades  and  is  estimated  to increase  further  globally.  The
optimal  role  of  palm  oil production,  however,  is controversial  because  of conflicts  with  other  important
land  uses  and  ecosystem  services.  Local  conditions  and climate  change  affect  resource  competition  and
the  desirability  of  palm  oil  production  in the Niger  Delta,  Nigeria.

The  objectives  of  this  study  are  to (1)  establish  a  better  understanding  of  the  existing  yield potentials
of  oil  palm  areas  that could  be used  for  integrated  assessment  models,  (2)  quantify  for  the  first  time
uncertainties  in  yield  potentials  arising  from  the  use of  climate  output  data  from  different  Global  Circu-
lation  Models  (GCM’s)  with  varied  West  African  Monsoon  (WAM)  system  representations  forced  to the
same  Regional  Climate  Models  (RCM’s).  We  use  the biophysical  simulation  model  APSIM  (Agricultural
Production  Systems  Simulator)  to  simulate  spatially  variable  impacts  of  climate  change  on  oil  palm  yield
over the  Nigerian  Niger  Delta.  Our  results  show  that  the  impact  of  climate  change  on oil  palm  yield  is
considerable  across  our  study  region.  The  yield  differences  between  the IPCC  RCPs  were  small.  The  net
impact  of  climate  change  on  oil  palm  is positive  and  is  dynamically  inconsistent.  There  is  no  significant
change  in  the  simulated  yield  arising  from  the  differences  in  the  forcing’s  data.  We found  the  most  effec-
tive  strategy  for  oil  palm  yield  optimization  under  climate  change  to  be  shifting  of sowing  dates  and
introduction  of  irrigation.

Crown Copyright  © 2017  Published  by Elsevier  B.V.  All  rights  reserved.

1. Introduction

Earth’s ecosystems have been changing due to the emission of
anthropogenic greenhouse gases (GHG’s) which has resulted in an
increase of global mean temperature, a change in precipitation
regimes and an increasing frequency of extreme weather events
(IPCC, 2015; Padgham, 2009). The oil palm belt of the Niger Delta,
Nigeria, has been an area prone to climate change. Temporal air
temperature trend has remained on the increase for the past 105
years (since 1901); temperatures have increased by 1.2 ◦C in the
coastal cities of the Niger Delta during this period (Odjugo, 2010).

Climate change is predicted to have a great impact on agricul-
ture and thus on global food security in the coming decades (FAO,
2016). The impact of climate change on the main crops in West
Africa are controversial (Mereu et al., 2015), and the region had
been identified to be a hotspot of climate change (IPCC, 2015). Esti-
mates include both positive or negative impacts depending on the
employed GCM, the climate scenario, and the chosen crop model

∗ Corresponding author.
E-mail address: stanley.okoro@uni-hamburg.de (S.U. Okoro).

(Mereu et al., 2015; Roudier et al., 2011). Previous studies to under-
stand crop yield potentials under climate change regime in the
Niger Delta region have focused on statistical approaches and were
mostly based on single climate scenarios, not considering differ-
ences in GCM’s forcing data and rarely considering the range of
various IPCC (Intergovernmental Panel on Climate Change) Repre-
sentative Concentration Pathways (RCPs).

While there is general agreement among GCM’s about regional
temperature changes, large uncertainties remain regarding the
projections of the monsoon system which triggers precipitation
in the region (Niang et al., 2014). Many of the studied crops
were found to be more sensitive to water limitation than to tem-
perature change. So far, analyses of climate change impacts at
regional level in the Niger Delta have been done using statistical
models (Idumah et al., 2016), which are not able to capture the
entire sub-seasonal weather variability and are limited in their
ability to project changes into the future. Such statistical mod-
els often assume stationarity of the relation between crop and
weather and are not applicable outside the range of the historical
weather conditions within which they were developed (Challinor
et al., 2009). Furthermore, statistical models have limited explana-
tory power, and are not applicable to the development of climate

http://dx.doi.org/10.1016/j.eja.2017.02.002
1161-0301/Crown Copyright © 2017 Published by Elsevier B.V. All rights reserved.
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change adaptation measures (Challinor et al., 2009; Müller et al.,
2011; Rosenzweig et al., 2013). Improved understanding of cli-
mate change impacts can, however, be derived from outputs of
biophysical modelling approaches (Araya et al., 2015). These bio-
physical modelling approaches can facilitate the development of
potential adaptation and mitigation options that will benefit agri-
culture and enhance energy production when energy crops are
grown for bioenergy (Holzworth et al., 2014). Biophysical mod-
elling at various scales (e.g. Challinor et al., 2009; Holzworth et al.,
2014; Hoogenboom et al., 2004) have been deployed on various
occasions to assess the impacts of climate change on crop produc-
tion and/or to develop agro-management strategies for adaptation
to future climate change events (e.g., Challinor, 2009; Holzworth
et al., 2014; Kim et al., 2013; Lehmann et al., 2013; Masutomi
et al., 2009). Biophysical models have been widely used to evalu-
ate climate change impacts on crop production globally, but rarely
applied to the oil palm belt of the Niger Delta region. In response to
this research need, this study employs the biophysical simulation
model APSIM (Agricultural Production Systems Simulator) to (1)
investigate and present a better understanding of the regional vari-
ability of yield potentials of oil palm under different climate change
scenarios across the Nigerian Niger Delta based on existing oil palm
areas (Okoro et al., 2016) that could be used for integrated assess-
ment models, and (2) to examine the effect of output of different
GCM forcing data with varied West African Monsoon (WAM)  repre-
sentations in regional impact models (e.g. APSIM). APSIM had been
widely used in farming systems which includes agroforestry to
simulate yield, crop/tree growth and development based on envi-
ronmental variables (e.g. Amarasingha et al., 2015; Anwar et al.,
2015; Bayala, 2016; Holzworth et al., 2014; Huth et al., 2002; Lv
et al., 2015; Matere et al., 2015). Finally, several adaptation strate-
gies (e.g., full irrigation, adjustment of planting date, planting depth
and density, fertilization) are evaluated with the aim to reduce the
negative impact of climate change on palm oil production.

2. Study area

2.1. Description of study area

The Niger Delta region is located in the southern part of Nigeria.
The broader Niger Delta region consists of nine states (Abia, Akwa
Ibom, Bayelsa, Cross River, Delta, Edo, Imo, Ondo and Rivers) and
185 local government areas (Fig. 1). It covers an area of about
70,000 km2, i.e., about 7.5% of Nigeria’s total area. Ondo state has the
highest average altitude (183 m).  The Niger Delta region’s climate is
characterised by two distinct hygric seasons: the rainy season (April
to mid-October) and dry season (mid-October to end of March),
whilst seasonal temperature variations are low. The region has a
tropical savanna climate at higher elevations and rainforest climate
at middle and lower elevations. Daily average temperature within
the region is mostly above 18 ◦C and monthly temperatures show
a low range throughout the year. The annual rainfall is in the range
of 1500–3000 mm.

Oil palm grows well within the temperature range of this region
and requires about 120–150 mm of water per month to meet its
water needs. The planting of oil palm in this region mostly com-
mences around late March till June, and could as well be grown
during the summer period with sufficient irrigation. Harvesting
takes place throughout the year with an interval of 11–14 days.

3. Data and methods

We  used the APSIM model, which requires daily weather data,
and detailed soil and management information. Both the model and
data sources are described below.

3.1. Crop model

APSIM is a modelling framework that allows individual process-
based models to be combined into a farming system simulation.
The structure of APSIM includes biophysical modules, management
modules, data input and output modules (Keating et al., 2003), and
it is possible to add and remove modules based on the user’s inter-
est (Kirschbaum et al., 2001). Component-based design in APSIM
enables models to interact via a communication protocol (Moore
et al., 2007). APSIM has models for over thirty crop, pasture and
tree species as well as for the main soil processes affecting agricul-
tural systems. One of the main advantages of APSIM is its ability to
integrate models derived in fragmented research efforts.

3.2. APSIM Oil Palm

APSIM Oil Palm (Huth et al., 2014) has been developed to sim-
ulate the growth of fronds, stem, roots and bunches of oil palm in
response to inputs of daily weather, soil and management practices.
The climate data requirements include daily minimum and maxi-
mum  temperature, rainfall and solar radiation (Kirschbaum et al.,
2001). The Oil Palm model calculates the growth, development,
resource use and organic matter flows for the plant and communi-
cates this information to the soil and management models within
the simulation.

The existing parameterization of the APSIM Oil Palm model was
based upon data from Papua New Guinea. This model parameteri-
zation was adapted to Nigerian planting material using data from
the literature and local plantations. The potential frond appearance
rate and maximum bunch size were adapted using yield and bunch
size information for planting material used within the study region.
All other palm parameters were taken from Huth et al. (2014).

Further details on the individual modules within APSIM Oil
Palm are provided by Huth et al. (2014). Further information on
APSIM and the community development framework can be found
at www.apsim.info.

3.3. Model setup

We calculated daily weather data of rainfall, maximum tem-
perature (Tmax) and minimum temperature (Tmin) from 1997
to 2014 from monthly averages obtained from Okomu Oil Palm
Plc (5.07N–5.25N and 6.16E–6.23E). The scaling disaggregation
method was  employed using daily rainfall, Tmax, Tmin estimates
from National Aeronautics and Space Administration (NASA) Pre-
diction of Worldwide Energy Resource-POWER (Stackhouse et al.,
2014) while conserving the monthly totals. The daily solar radia-
tion data from 1997 to 2004 was  obtained from NASA POWER and
used uncorrected.

3.4. Soil data and soil properties

Soil textural data were obtained from the ISRIC—World Soil
Information/AfSIS project (Hengl et al., 2015). The soil volumet-
ric water content at −33 kPa and −1500 kPa as required by APSIM
were calculated from these data following Minasny and Hartemink
(2011) (see Table 1).

3.5. Crop data and management

Crop management data used for APSIM calibration were
obtained from Okomu Oil Palm Plc (See Table 2). APSIM valida-
tion was  undertaken using also data from the Okomu Oil Palm Plc
for the period 2003–2013. Data included fresh fruit bunch yield
(FFB, t/ha), mean bunch size (kg) and mean bunch number (/palm).
Plantation records were used to derive representative data for crop
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Fig. 1. Map  of the study area.

Table 1
Soil parameters used in APSIM for calibration.

Layer depth (cm) AirDry (mm/mm)  LL15 (mm/mm)  DUL (mm/mm)  SAT (mm/mm)  Bulk density (g/cc) OC (%) FBiom (0–1) Finert (0−1)

0–5 0.07 0.22 0.31 0.48 1.30 3.20 0.040 0.200
5–15  0.08 0.23 0.31 0.48 1.32 2.20 0.030 0.500
15–30  0.08 0.24 0.31 0.46 1.35 1.70 0.015 0.750
30–60 0.08 0.24 0.31 0.44 1.40 1.10 0.010 0.950
60–100 0.08 0.24 0.31 0.42 1.46 0.60 0.010 0.950
100–200 0.08 0.23 0.30 0.40 1.51 0.40 0.010 0.950
200–300 0.08 0.23 0.30 0.40 1.51 0.40 0.010 0.990

Table 2
Crop parameters used in APSIM for Current Tech simulation.

Description Value

Sowing date 01.05.Year
Plant population (plants/ha) 135
Cultivar Nigeria IRHO
Sowing depth (mm) 200
N  applied in year 1 (kg/palm) 0.14
N  applied in year 2 (kg/palm) 0.25
N  applied in year 3 (kg/palm) 0.5
N  applied in year 4 (kg/palm) 0.5
N  applied to mature palms (kg/palm) 0.5
Water source rainfed
Weekly water requirement young palms (mm)  20
Weekly water requirement mature palms (mm) 40

management, such as planting dates, plant populations and fertil-
izer rates. Yield data were aggregated for plantation blocks per year
of planting to provide mean yields for palms of similar ages. Simu-
lations were developed for each year of planting from 2000 to 2008
assuming a similar soil type of clay loam soil across the estate.

3.6. Climate scenarios and climate impact modelling

Climate impact was assessed using regional climate model
(RCM) simulations of the RCP 4.5 & RCP 8.5 scenarios, per-
formed with the regional climate model SMHI-RCA4 of the Swedish
Meteorological and Hydrological Institute, Rossby Centre. Model
simulations for the period 1951–2100 were conducted in the
framework of the Coordinated Regional Downscaling Experiment
(CORDEX, cf. Jones et al., 2011) available for Africa at a horizon-
tal resolution of 0.44 ◦ (lat/long). The RCP’s selection was  based on
authors choice. To enable an evaluation of uncertainties that could
arise due to different GCM forcings, we considered two  alternative
SMHI-RCA4 realizations, forced with 1) the MPI-ESM-LR coupled
model of the Max  Planck Institute (MPI) for Meteorology Ham-
burg and 2) the CanESM2 model of the Canadian Centre for Climate
Modelling and Analysis (CCCMA), thereafter referred to as MPI and
CCCMA respectively. Our choice of these forcings is based on the
model ability to simulate the WAM  system. Both GCMs differ in
their representation of seasonal cycle of the WAM  system simula-
tion (Niang et al., 2014; Roehrig et al., 2013; see also Figs. 3 and 4).
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Fig. 2. Time-series of the two GCMs for seasonal air temperature in the Niger Delta region.

As input climate data are the key drivers for crop yield simulation,
the climate data were quality controlled and bias corrected using
the WATCH Forcing Data methodology applied to ERA-Interim
reanalysis-WFDEI data (Weedon et al., 2014). For the temperature
and solar radiation data, we used the linear scaling approach to do
the bias correction following Hashino et al. (2006) using Climate

Data Operator (CDO) software of the Max  Planck Institute for Mete-
orology, Hamburg. The precipitation data were bias corrected using
quantile mapping approach following Gudmundsson et al. (2012)
as implemented in the R package qmap version 1.0–3. Assuming
a linear temperature evolution over 130 years from 1971 to 2100
the average yearly temperature increase from the two  GCM’s for
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Fig. 3. Time-series of the two GCMs for seasonal precipitation amount in the Niger Delta region.

RCP8.5 is estimated to be 0.04 ◦C/year and the average year to year
natural variability is 0.97 ◦C (see Fig. 2). The total seasonal precip-
itation trend for the two GCM’s and its model to model variability
are reported in Fig. 3. The total precipitation pattern showed a shift
towards early rain in the region.

3.7. Analysis

We  used the crop yield data obtained from Okomu Oil Palm Plc
(2000–2014) for validation of APSIM Oil Palm.

The goodness of fit of simulated- observed data was  assessed
using the coefficient of determination for linear regression (R2) and

43



S.U. Okoro et al. / Europ. J. Agronomy 85 (2017) 38–50 43

four other statistical measures in order to properly evaluate the
model performance. The four statistical measures include:

(i) Index of agreement (I) (Willmott, 1981)

I = 1 − �n
i=1(Pi − Oi)

2

�n
i=1(|Pi − Pm| + |Oi − Om|)2

(ii) Percentage of bias (PBias)

PBias = 100
�n

i=1(Pi − Oi)

�n
i=1 Oi

(iii) Mean Absolute Error (MAE)

MAE = i
n
�n

i=1|(Pi − Oi)|

(iv) Root Mean Square Error (RMSE) which is the overall relative
error and can be calculated as:

RMSE =
√
�n

i=1(Pi − Oi)
2

n

where Om and Pm are the means of observed and predicted yields,
and Oi and Pi are the corresponding observed and predicted yields
for year i.

We  explore the impact of climate change on palm oil produc-
tion in the different spatial zones delineated for our study according
to Homogenous response units (HRU) of Skalskỳ et al. (2008). The
impact of climate change on oil palm production in the different
spatial zones was determined by simulating future climate sce-
narios using two climate output based on one RCM but with two
different GCM forcings. We  ran two simulations for each of the
RCP’s: 1) Current Tech (current management practices); and 2)
High Tech (adapted management practices) (see Tables 2 and 3,
respectively). The Current Tech simulation uses all management
parameters as reported from Okomu Oil Palm Plc. The High Tech
simulation uses a planting date of 01.04.year instead of 01.05.year,

Table 3
Crop parameters used in APSIM for High Tech simulation.

Description Value

Sowing date 01.04.Year
Plant population (plants/ha) 135
Cultivar Nigeria IRHO
Sowing depth (mm) 200
N  applied in year 1 (kg/palm) 0.14
N  applied in year 2 (kg/palm) 0.25
N  applied in year 3 (kg/palm) 0.5
N  applied in year 4 (kg/palm) 0.5
N  applied to mature palms (kg/palm) 1.0
Water source irrigated
Weekly water requirement young palms (mm) 20
Weekly water requirement mature palms (mm) 40

introduction of irrigation and an increment in fertilizer use a nd
every other parameter remain the same like in the case of Current
Tech.

4. Results

4.1. Model performance

The model performance was evaluated by comparing the simu-
lated data with the observed data obtained from Okomu Oil Palm
Plc for FFB and bunch sizes for the period of 2003–2014 (Fig. 4).

For the annual FFB and annual bunch size our model was  able to
replicate the trend with an R2 of 0.66 and 0.95 respectively (Fig. 4).
The value of RMSE for FFB and bunch sizes are 3.99 t/ha and 1.20 kg
respectively implying that for both FFB and bunch size the model
performances are acceptable. The model efficiency is also sufficient
for bunch size, but is obviously less satisfactory for FFB. The MAE
for FFB is 3.83 t/ha and bunch size is 0.97 kg. The model index of
agreement with the observed yield is 0.85 t/ha and 0.97 kg for FFB

Fig. 4. Scatter plot of simulated versus observed yields from Okomu Oil Palm Plc.
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Fig. 5. Simulated yearly aggregated average oil palm yield for 1980–2004.

Fig. 6. Simulated change in yield (%) compared to 1980–2004 for MPI  forcing under RCP4.5 and RCP8.5 emission scenarios.
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Fig. 7. Simulated change in yield (%) compared to 1980–2004 for CCCMA forcing under RCP4.5 and RCP8.5 emission scenarios.

and bunch size respectively. The bias was higher for FFB (20.3%)
than for bunch size (3.5%).

4.2. Oil palm yield response to climate change

We  examined the oil palm yield response to principal meteo-
rological variables which include: solar radiation, minimum and
maximum daily temperature and precipitation. For the historical
period, the two simulations run using the two climate model out-
puts showed the same trend in FFB yield (Fig. 5). The outputs for
the periods of 2016–2040, 2041–2065 and 2066–2099 of the RCP
scenarios from both climate model setups followed essentially the
same patterns, with RCP 8.5 having slightly higher impact on yields
compared to RCP 4.5 (Figs. 6 and 7). The change in yield is expressed
in% of the aggregated average yield obtained compared to base
historical period (1980–2004 aggregated average).

The impact for this period is positive. In all cases, our High Tech
simulation followed the same pattern, after optimization of some

farming practices with slight difference noticed at the 2066–2099
simulation time interval. The change in yield is expressed

in% of the aggregated average yield obtained due to adap-
tive measure (High Tech) compared to current Tech (2016–2099
aggregated average). RCP8.5 showed lower yield difference in com-
parison with RCP4.5 for this same time interval (2066–2099). The
percentage change in yield under the two  climate outputs and its
respective RCP’s falls within the range of −40% to +100% for the
entire time interval (Figs. 8 and 9).

There is an increase in yield in the western part of the study
area. The highest yield decrease occurs in 2016–2040 for both
RCP’s, with RCP8.5 taking the lead. The difference between our High
Tech simulation and business as usual (Current Tech) showed in
all time intervals positive changes in yield across our study region
(Fig. 8 and 9), for both climate output simulations. Weighted aver-
age yields within our study area (Fig. 10) showed varying effects
across the different time intervals. The time interval of 2016–2040
showed a slightly negative to moderately positive climate change
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Fig. 8. Simulated change in yield (t) due to Tech for MPI  forcing under RCP4.5 and RCP8.5 emission scenarios.

effect on the simulated yield. RCP4.5 showed a positive moderately
spread range effect for time intervals 2041–2065 and 2066–2090.
Whereas, RCP8.5 showed a positive slightly spread range effect
for time interval 2041–2065 and positive moderately spread range
effect for 2066–2090. The net impact of climate change on oil palm
yield is positive.

5. Discussion

There are several possible reasons for the differences among
the FFB and the Bunch size in our model performance results. First,
bunch sizes reported in the observation data were consistent across
plantation blocks with similar ages. As a result, predictions were
able to closely follow the observations. However, observed yields
varied widely for both similarly aged blocks within the estate and
between years for any given block. This suggests large variations in
annual numbers of bunches produced, possibly due to large spatial
variability across the estate, localized impacts on palms during the

time period, or errors in attribution of fruit yield to blocks at the
mill. The model is only compared against average yields in each
year for blocks of a certain age because soil and management data
were not available at this finer scale. Among all the most likely error
in our case is attributed to the scale issue.

The argument behind the use of multiple models in climate
change research is to cover different sources of uncertainties (Deser
et al., 2012; Hawkins and Sutton, 2012), given that different mod-
els or model setups differ in terms of projected climate change
signals. Even though it is advisable to consider all climate model
data in impact analysis (Knutti et al., 2010), this is not feasible
in most cases. Our results show that the projected impact dif-
fers spatially within our study area and this is in line with results
of Idumah et al. (2016), thus making discussion on its projected
impact slightly controversial (i.e. it could be positive or negative).
The net impact of climate change had been projected to be negative
for cereal crops in our study region according to previous studies
(Abiodun et al., 2011). In contrast, we  found that the net impact
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Fig. 9. Simulated change in yield due to Tech for CCCMA forcing under RCP4.5 and RCP8.5 emission scenarios.

of climate change on oil palm is positive. However, understand-
ing adaptation measures and reducing uncertainties associated
with different crop yield projections within the agricultural con-
text requires detailed crop by crop analysis. Moreover, based on
our results, one may  argue that uncertainties associated with crop
yield simulations do not rely on different GCM forcing (only), even
if the GCM’s have differences in their representation of the sea-
sonal cycle of the WAM  system. Because, after the calibration of the
model across our study region using two different GCMs as forcings
for the same regional climate model, the differences in predicted
yields among different climate output for specific year intervals and
spatial points were not significant. We  can further argue that dif-
ferences in yield simulation under different GCM forcing could be
obtained based on the extent of climate change signal differences
of the GCM’s. Slight differences in climate variables insignificantly
influence the expected yield. Climate model ensembles with partic-
ipating models having higher range could potentially produce high

uncertainties. Therefore, care should be taken in choosing partici-
pating model in climate model ensemble projects.

However, based on the results of this study, we can support
the findings of Waongo et al. (2014) that one of the most effec-
tive adaptation measures in the West African region during this
climate change reign is planting date optimization together with
other management strategies like application of irrigation in order
to obtain a maximized yield.

We further emphasize the importance of accuracy in the ref-
erence observation dataset used in bias correction of the climate
model output, since this could be the way  the climate signal might
be altered (see also Macadam et al., 2016; Ruiz-Ramos et al., 2016).
Therefore, climate impact studies should verify the accuracy of ref-
erence observation data used for bias correction, as this may  help
capture the climate signal more correctly. This could help in the
correction of similarity in the yield simulations across GCMs and
RCPs in such studies by better reference observation data.
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Fig. 10. Oil palm grown area-weighted average yield (t) change in the Nigerian Niger Delta compared to 1980–2004.

The limitations of this study include non-incorporation of the
effects of CO2 fertilization in APSIM simulation. For further studies,
we recommend the investigation of the effect of CO2 fertilization on
oil palm yield in the Niger Delta. Furthermore, another limitation of
this study is that APSIM validation was done by simulating a block
and comparing it to the average of all the blocks obtained from
Okomu farm Plc. We  also recommend efforts that foster validation

data improvement and availability at finer scales. Notwithstand-
ing these uncertainties, the model provided realistic estimates of
production for the location.

Based on this, it is clear that the Nigerian palm oil industry
has the potential to reduce poverty and provide economic growth
for African nations as exemplified by improved livelihood condi-
tions of smallholder farmers having adopted oil palm production.
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We therefore strongly recommend that the government provides
enabling environment for the implementation and monitoring of
sustainable practices like those stipulated by the Round Table on
Sustainable Palm Oil (RSPO) in oil palm production. Current land
use systems which expose the country to the risk of land grabbing,
loss of other (food) crop lands, deforestation etc. might jeopardize
the positive climate change impacts on palm oil yields.

6. Conclusions

Climate change impacts on crop yields are projected to be
considerably different across the Niger Delta region. Our results
showed that the net impact of climate change on oil palm is pos-
itive and is dynamically inconsistent across the interval of our
simulations. In addition, we showed that oil palm yields are more
robust to an increase in precipitation compared to an increase in
temperature. Slight differences in GCM’s ability of capturing the
WAM system do not necessarily lead to differences in yield. Cli-
mate impact studies with climate model ensembles output and the
participating models having higher range could potentially produce
new sets of uncertainties.
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Abstract: In recent years, bioenergy policies have increased the competition for land as well as the
risk of adverse environmental impacts resulting from deforestation and greenhouse gas emissions
(GHGs). Primary land-use objectives confronting society today include meeting the growing demand
for agricultural products, especially energy crops, preserving essential ecosystem services for human
well-being and long-run agrarian production, and contributing to the climate policy target. Here,
future agricultural, societal and environmental consequences of bioenergy policies under different
global climate and societal development scenarios were assessed using a novel Forest and Agricultural
Sector Optimization Model for Nigeria (NGA–FASOM). The results reveal that, in Nigeria, meeting
emission reduction requires an implementation of a minimum carbon price of $80/ton within the
forest and agricultural sectors. A carbon price alone is not sufficient to preserve the remaining forests
and pasture land in Nigeria when bioenergy is subsidized. Furthermore, the result shows that subsidy
on bioenergy does not have any significant effect on the total social welfare. The findings in this study
provide a guide for policymakers in designing appropriate policies addressing bioenergy industry
issues in Nigeria.

Keywords: bioenergy mandates; bioenergy subsidies; carbon pricing; climate target

1. Introduction

One of the most significant challenges for sustainable development today is how to manage limited
land resources to achieve an optimal balance between market commodities production, especially
food production, and provision of non-market services. To meet the growing demand for agricultural
products while preserving essential ecosystem services on which human well-being depends, various
government policy actions are implemented. Many countries, including Nigeria, initiated different
bioenergy policies with the underlying aim of decarbonizing their economy [1–5]. Current bioenergy
policies in Nigeria include the Renewable Electricity Policy Guidelines (REPG, 2006), the Renewable
Electricity Action Program (REAP, 2006), the Nigerian Biofuel Policy and Incentives (2007), and others.
These Nigerian bioenergy policies are in line with the United Nations Framework Convention on
Climate Change entitled National Adaptation Strategy and Plan of Action on Climate Change for
Nigeria (NASPA–CCN) as part of its commitment to the Global Climate Action Plan [6]. There is
agreement that the mitigation efforts and investments over the next two to three decades will have a
substantial impact on opportunities to achieve lower stabilization levels of greenhouse gas emissions
(GHGs) [7]. Controversial opinions exist, however, about the feasibility of a decarbonized economy
with current policies. Many studies have debated the expected results of different bioenergy mandates,
which include its risks as related to indirect land-use impact concerning GHGs, food security, land
grabbing, etc. [7–12].
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In scenario assessments with high demand for crop-based bioenergy, food production is often
achieved by a substantial expansion of cropland area [13]. The projected global demand for
transportation fuel in 2050 requires about twice the land used to meet food demand under the
presumed 70% increase in per capita food demand [14]. Thus, in developing bioenergy policies,
the inclusion of land-use change (LUC) impacts is necessary [15].

Many developed countries and emerging economies have implemented biofuel development
initiatives; for instance, the European Union, United States of America, Brazil, etc. The adoption of
similar actions in Africa requires a proper assessment of the complex and heterogeneous interactions
between land use, society and environment. Currently, bioenergy policy impact assessments in Africa
involve only low-resolution studies or studies with limited scope. In Nigeria, however, significant
emphasis is placed on researching bioenergy potential. Integrated assessment review studies have
drawn their policy recommendations from reviews on modeling studies done in other countries. These
assessments have been made neglecting the uncertainties from the economic perspective of bioenergy
policies and only taking into consideration spatial and technological assessment methods, with little
impact scope [16].

Few studies shed light on LUC implications for Nigeria with a broader scope and higher-resolution
modeling framework [17]. Existing model-based studies on various energy demand and supply
pathways for Nigeria are limited by a low range and a coarse resolution [18]. While trade had
internalized agricultural products and welfare distribution, environmental impacts are not internalized.
Appropriate policies should be drawn from detailed scientific-modeling studies because their effects
can be heterogeneous.

To study bioenergy policies in Nigeria in a more comprehensive way, we develop here a
novel Forest and Agricultural Sector Optimization Model for Nigeria (NGA–FASOM). It is a partial
equilibrium model that combines complex natural conditions for agricultural and forest production
and aggregate commodity-market demand functions. It integrates engineering, geographical and
economical methods in addressing policy recommendations regarding bioenergy deployment. One of
the novelties of this modeling work is that it is among the few models of its kind that adequately
capture the biophysical aspect of oil palm as a bioenergy feedstock/crop by incorporating the model
output of [19]. The objectives of this study are to show trajectories of the future agricultural, societal,
and environmental outcomes of various bioenergy policies in Nigeria under different global climate
and societal development scenarios.

2. Methodology and Data

2.1. Description of Forest and Agricultural Sector Optimization Model for Nigeria (NGA–FASOM)

The Nigeria Forest and Agricultural Sector Model (NGA–FASOM) is a bottom-up approach
economic model which implies that supply is formed from the bottom (land cover, land use and
management systems) to the top (markets/trade/demand) (see Figure 1). NGA–FASOM is a recursive
dynamic partial equilibrium model which integrates bioenergy production processes, crop products as
well as livestock and forestry products. All land-cover types are explicitly represented in the model
across each time horizon. The optimal decision in time-step t depends on decisions that the agents
have taken in time-step t − 1. When each new time-step starts, the conditions for land use are updated
using the solutions of the simulations from the previous time-step. NGA–FASOM is brought up to
date for each time step using exogenous drivers such as population and bioenergy policies. Bioenergy
conversion processes in the model are also well represented according to the conversion processes,
technological cost, conversion efficiencies and their corresponding co-product.

The model design concept and structure is similar to the US Agricultural Sector and Mitigation of
Greenhouse Gas (ASMGHG) model [20], and its derivative the Global Biomass Optimization Model
(GLOBIOM) [8]. Market equilibrium is computed by choosing land use, processing, and trade activities
which maximize the sum of the producer and consumer surpluses as stated in the objective function
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(W) subject to resource, technological and policy constraints (see Appendix A for model equations) [21].
In NGA–FASOM, agricultural production faces a downward-sloped commodity-demand function (see
also Appendix A). Land-use equations are part of the block equations of NGA–FASOM. To restrict
extreme specialization in the model, we implemented the so-called crop mix equation which makes
the share of each crop mimic and stay within observed bounds. NGA–FASOM is based on the decision
and rational theory [22], consumer economics and law of demand [23], resource economics and law of
supply [21,22], as well as market equilibrium with trade [23–26]. Market prices and resource values
are endogenous outputs of the model. The model comprises 36 states of Nigeria plus the federal
capital territory. Trade with other countries is kept exogenous. Here, a spatial equilibrium approach
following [20] is used. Therefore, trade and demand adjustments occurred at the 37 economic units of
the model according to marginal production prices and transportation cost assuming homogeneous
goods across states. We represented the following bioenergy conversion processes in the model:
combined heat and power production, heat, fermentation of ethanol, power and gas production,
and gasification for methanol and heat production. NGA–FASOM is solved for 5 decadal time steps
(2011–2050). For more details about the model structure and philosophy see [8,20,21,27,28].
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2.2. NGA–FASOM Baseline

The NGA–FASOM baseline model is calibrated to reference data through a physical gap
parameter and a linear activity cost adjustment. The gap parameter corrects data deficiencies and
implicitly depicts all model-exogenous activities. For example, NGA–FASOM depicts eight important
agricultural crops. Resources used by other crops are exogenous to the model and are assigned to the
gap parameter. The linear cost adjustment is performed such that at baseline activity levels, marginal
cost equals marginal revenue according to microeconomic theory. The model assumes a $200/ha and
$500/ha cost for crop management change (CMC) and LUC respectively [29]. Furthermore, we assume
constant cost functions throughout the entire model horizon. The LUC impacts of the Nigeria REPG
(2006), REAP (2006), and the Nigerian Biofuel Policy and Incentives (2007) are assessed in comparison
to a policy baseline with and without emission tax. The baseline represents the way Nigeria develops
between 2011 (the model base year) and 2050 with our modeled bioenergy policy mix and no tax on
GHG emissions. We chose 2011 as the baseline because the National Bureau of Statistics of Nigeria
provides state-level data for this year on crop areas and crop yields, commodity-market indicators,
population, consumption patterns and exchange rates. Population is assumed to increase continuously
until 2050 with a growth rate equal to the averaged growth rate for the past 10 years in each state.
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The assumption and calculation result is in line with the projected population of Nigeria according
to [30]. Food commodity-demand functions are shifted in proportion to population growth. Other
factors that influence demand for land-based products, e.g., Gross Domestic Product (GDP) and dietary
patterns, are not explicitly modeled in this study because of insufficient data availability.

2.3. NGA-FASOM Scenarios

The main driving forces for the scenarios are the bioenergy mandates as stipulated in the Nigeria
REPG (2006), REAP (2006), the Nigerian Biofuel Policy and Incentives (2007), and the National
Renewable Energy and Energy Efficiency Policy (NREEEP, 2015). Tax abatement is modeled as a
subsidy which implies a reduction in the producer’s price of bioenergy products. Electricity demand
from biomass is 2273.08 GJ, 11,560.10 GJ, 16,201.61 GJ, 16,201.61 GJ by 2020, 2030, 2040 and 2050,
respectively [31]. Bio-diesel demand is planned at 900 million liters for 2020, 2030 and 2040 [32].
Ethanol demand is 2 billion liters by 2020, 2030, 2040, 2050 for the gasoline 10% ethanol blend ratio
(E10) requirement [32]. The assessed bioenergy support instruments include: (a) a 50% subsidy
at the price of $0.044097/GJ for electricity; and (b) a 50% subsidy for biodiesel and ethanol at the
price of $0.88/L. As an incentive to reduce GHG emissions from deforestation, we implemented and
compared three carbon tax levels of $40, $80 and $120 per ton of carbon. The combination of carbon
tax and bioenergy subsidies resulted in eight scenarios, which were simulated and compared to the
baseline of the bioenergy mandate. This analysis does not intend to evaluate the feasibility of Nigerian
government policies on the bioenergy target incorporated in the study. Instead, the scenarios aim to
assess the impacts of different policy actions on the LUC, GHG emission and agricultural welfare, with
future welfare being discounted at 5% following [33,34], and including the implications for Nigeria
under constrained technology. Our approach is in line with the findings of the Intergovernmental
Panel on Climate change (IPCC) [34], that the mitigation response of implementing carbon pricing
is consistent across models and studies. The opportunity costs of carbon sequestration (break-even
carbon price) for most countries in Africa is still unknown. In this study, the base year was calibrated
using the above carbon prices to help give more insight into the implications of the different carbon
prices for the case of Nigeria.

2.4. Data

Land resources are the only resources explicitly incorporated in the current version of the model; this
is crucial to this modeling. To enable regional biophysical process characterization modeling of agricultural
and forest production, a detailed land delineation was used [29]. The land-cover/land-use data of the
forest and agricultural area of Nigeria used is a combination of [30] and [31]. Three different land-cover
types were represented; forest land, grassland and cropland. The crop species disaggregation was
done using the crop-area statistical estimates from the National Bureau of Statistics of Nigeria at the
state level. The study chose to use remotely sensed data and survey statistics as a scaling factor in
disaggregation since political and economic pressure, combined with inconsistencies in reporting,
often results in over/underestimates of the quantity of agricultural land. Government statistics
underestimate agrarian area as well as the rate at which it is converted to non-agricultural use (see
also [32]). The biophysical model outputs used include those of the Environmental Policy Integrated
Climate Model (EPIC) [33] and the Agricultural Production Systems Simulator oil palm (APSIM) [19,34].
To explore different biophysical model output scenarios with the IPCC Representative Concentration
Pathway 4.5 (RCP4.5) scenario, three productivity pathways are considered which include subsistence
agriculture, low input, and high input (see Table 1 and [19] for a detailed description of the input
assumptions). In total, 8 crops were represented in the model; cassava, corn, cotton, dry beans,
millet, oil palm, rice, and sugarcane. The IPCC tier 3 digestion and metabolism model for ruminants
(RUMINANT) model output was used for livestock production representation in the model [35]. In the
current version of NGA–FASOM, we incorporated the updated International Livestock Research
Institute/Food and Agriculture Organization (FAO) production systems classification. Twelve
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livestock production systems from this nomenclature were represented: livestock-only systems,
arid and semi-arid (LGA); livestock-only systems, humid and sub-humid (LGH); livestock-only
systems, hyper-arid (LGHYP); livestock-only systems, highland/temperate (LGT); irrigated mixed
crop/livestock systems, arid and semi-arid (MIA); irrigated mixed crop/livestock systems, humid
and sub-humid (MIH); irrigated mixed crop/livestock systems, hyper-arid (MIHYP); rain-fed mixed
crop/livestock systems, arid and semi-arid (MRA); rain-fed mixed crop/livestock systems, humid
and sub-humid (MRH); rain-fed mixed crop/livestock systems, hyper-arid (MRHYP); rain-fed mixed
crop/livestock systems, highland/temperate (MRT); built-up areas (URBAN); and, root-crop based
and root-based mixed systems (Others) [36,37]. Seven livestock products are present in the model;
cow meat, cow milk, pig meat, poultry meat, poultry eggs and sheep and goat meat. We also used
the output of the Global Forest Model (G4M) model for that of the forestry sector [38]. The forest
products considered consist of saw logs, pulp logs, other industrial logs, traditional fuelwood, and
biomass for energy. Biomass, pulp logs and saw logs further undergo processing for their respective
bioenergy products. The processing cost and conversion coefficients for both forest and crop biomass,
and crop to ethanol and/or methanol are sourced from [39–41] and Brunus Enterprises Nigeria Ltd.
To enable quantitative comparison, all energy products were converted to gigajoules. LUC and
livestock CO2-equivalent emissions are derived from [8]. Market data are sourced from the National
Bureau of Statistics of Nigeria, FAO and from literature. Where market data is available at the national
level, disaggregation using state population was done. For more details on each of the input data, see
appropriate citations above.

Table 1. Input assumption for the different productivity pathways. Adapted from [42].

Productivity Input Pathways Crop Management

Fertilizer Adjustment Other Input Adjustment

High Yes Yes
Low No Yes

Subsistence No No

2.5. Model Uncertainties

The study model, NGA–FASOM is robust to input data; therefore, our analysis relies on the
available data which are plausible but might be a potential source of uncertainty. Future climate and
socioeconomic development pathways could be another source of uncertainty in the model.

3. Results and Discussion

3.1. Land-Use Change Implications of Bioenergy Policy in Nigeria

The relative area for bioenergy feedstocks becomes evenly distributed when the carbon tax
is implemented (Figures 2 and 3). The oil palm area is slightly larger with a low and high tax
scenario when there is subsidy action (Figures 2 and 3). The percentage change in land-use area
by 2050 compared to the base year of our model run shows that all the grassland area will be
converted to cropland across all model scenarios after the first model horizon. In all the scenarios,
the land-use change trajectory goes from cropland and grassland to forest within the first two decades
and afterwards entirely from forest and grassland to cropland by 2050. The introduction of carbon
tax shrinks the total area of oil palm (Figures 2 and 3). About 4.94% of the forest area will remain
forest under zero carbon taxation and carbon price of $40/ton. When carbon tax above $40/ton is
implemented, however, all the area will be converted to cropland. Interestingly, the study found that
carbon tax alone even with a relatively high conversion cost ($500/ha) of forest to another land-use type
is not sufficient to retain the existing forest area in Nigeria. A sensitivity analysis revealed that Nigerian
policymakers should place a much higher conversion cost for converting forest to other land-use types
in order not to allow the conversion of the remaining forest area to cropland due to bioenergy policy
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action. This result suggests that farmers are rational decision makers. However, several caveats
are worth commenting. For instance, land-use change restriction strategies, e.g., carbon pricing
(market-based instrument) are not appropriate for ecosystem conservation in Nigeria. Our result is in
agreement with that of [43], that market-based instruments can be controversial and may not signify
the setting as a priority of nature conservation. We further argue that multiple policy actions should be
put in place to enable the realization of the multiple objectives. If nature conservation takes precedence
for policymakers, facilitation of effort to map protected areas should follow alongside the bioenergy
mandates. Conservation instruments such as payment schemes and tradable land-use permits need
to be implemented. The study result also demonstrates that policymakers will be required to make
trade-offs between bioenergy production and nature conservation as the cost of carbon alone cannot
offset the profitability of subsidized bioenergy. High-incentive payments like payment for ecosystem
services (PES) and reduced transaction costs can improve the outcomes of forest conservation [44].
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The argument behind this is that the physical process of sequestering carbon can take several
years; the cost of carbon sequestration cannot be estimated without making assumptions (implicitly or
explicitly) about its fate over time [45]. This creates a massive vacuum for uncertainty although we
assume that the price of carbon remains constant in real time. The opportunity cost of converting land
from its current use to one with higher carbon sequestration may not be profitable when comparing
the rate of sequestration in the agricultural area that has been converted.

The study also finds that subsidy for the bioenergy industry in Nigeria does not mean that some
feedstock will have comparative advantages over others. The share of the total area for oil palm
in the baseline scenario will substantially become higher by 2050 compared with other feedstocks.
But when the carbon tax is implemented the other feedstocks will come into play in the bioenergy
feedstock mix as shown in Figures 2 and 3. This is also replicated in the total agricultural crop area
(see Figures 4 and 5).
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3.2. The Effect of Direct and Indirect Land-Use Change Greenhouse Gas Emissions (GHGs) as a Consequence of
Bioenergy Policy Mix

Total potential GHG emissions of the bioenergy scenarios (no carbon tax, low carbon tax, moderate
carbon tax, and high carbon tax) for both subsidy and no subsidy action (Figures 6 and 7) indicate
that the use of emission tax is an appropriate instrument for Nigeria if emission reduction is to be
achieved when compared to the baseline scenario of zero-emission cost. Therefore, implementation of
a carbon tax is essential for the slope of the land-use change emission supply function. Nevertheless,
policies that could allow a win–win situation are needed. We further argue that policies should aim
at subsidizing landowners for their below- and above-ground biomass because vegetation carbon
transpiring in the first two-time horizons of our result is very likely. This might happen because there
are no incentives to keep land-use areas such as grassland and shrubland. However, challenges such as
the proper measurement of below-ground biomass are an open research area for scientists. The result
of this study concurs with the consensus that carbon pricing will be a useful strategy for meeting the
Paris Agreement [46].
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Figure 6. Total greenhouse gas (GHG) emission under subsidy action.
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As shown in Figures 8 and 9, the indirect land-use change emissions reduction will only be
feasible if a carbon price of a minimum of $80/ton is implemented. The calculation of LUC emissions
is based on the assumptions from [8], that agricultural practices do not have an impact on soil carbon
emissions, and deforestation is defined as the expansion of cropland into the forest, so the total carbon
contained in above- and below-ground biomass is emitted. The study result shows that a substantial
amount of emission could be saved by implementation of a carbon tax whether there is a subsidy on
bioenergy production or not. However, another interesting point from this result is the break-even
carbon price of $80/ton. The result shows that support for the bioenergy industry does not have any
substantial effect on LUC emissions. NGA–FASOM is subject to limitation based on data availability.

Energies 2018, 11, 152  9 of 18 

 

As shown in Figures 8 and 9, the indirect land-use change emissions reduction will only be 
feasible if a carbon price of a minimum of $80/ton is implemented. The calculation of LUC emissions 
is based on the assumptions from [8], that agricultural practices do not have an impact on soil carbon 
emissions, and deforestation is defined as the expansion of cropland into the forest, so the total 
carbon contained in above- and below-ground biomass is emitted. The study result shows that a 
substantial amount of emission could be saved by implementation of a carbon tax whether there is a 
subsidy on bioenergy production or not. However, another interesting point from this result is the 
break-even carbon price of $80/ton. The result shows that support for the bioenergy industry does 
not have any substantial effect on LUC emissions. NGA–FASOM is subject to limitation based on 
data availability. 

 
Figure 8. GHG emissions due to land-use change (LUC) under subsidy action. 

 
Figure 9. GHG emissions due to LUC under no subsidy action. 

One of these limitations includes the limited data on crop-management system areas in Nigeria. 
This deficiency leads to an improper representation of the crop-management system within the 
crop-mix equation where we restricted the crop area to mimic the crop area share of the observation. 

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

zero low moderate high

 C
O

2 
E

m
is

si
on

(1
00

0 
T

on
ne

s)

2011
2021
2031
2041
2050

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

zero low moderate high

 C
O

2 
E

m
is

si
on

(1
00

0 
T

on
ne

s)

2011
2021
2031
2041
2050

Figure 8. GHG emissions due to land-use change (LUC) under subsidy action.

Energies 2018, 11, 152  9 of 18 

 

As shown in Figures 8 and 9, the indirect land-use change emissions reduction will only be 
feasible if a carbon price of a minimum of $80/ton is implemented. The calculation of LUC emissions 
is based on the assumptions from [8], that agricultural practices do not have an impact on soil carbon 
emissions, and deforestation is defined as the expansion of cropland into the forest, so the total 
carbon contained in above- and below-ground biomass is emitted. The study result shows that a 
substantial amount of emission could be saved by implementation of a carbon tax whether there is a 
subsidy on bioenergy production or not. However, another interesting point from this result is the 
break-even carbon price of $80/ton. The result shows that support for the bioenergy industry does 
not have any substantial effect on LUC emissions. NGA–FASOM is subject to limitation based on 
data availability. 

 
Figure 8. GHG emissions due to land-use change (LUC) under subsidy action. 

 
Figure 9. GHG emissions due to LUC under no subsidy action. 

One of these limitations includes the limited data on crop-management system areas in Nigeria. 
This deficiency leads to an improper representation of the crop-management system within the 
crop-mix equation where we restricted the crop area to mimic the crop area share of the observation. 

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

zero low moderate high

 C
O

2 
E

m
is

si
on

(1
00

0 
T

on
ne

s)

2011
2021
2031
2041
2050

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

zero low moderate high

 C
O

2 
E

m
is

si
on

(1
00

0 
T

on
ne

s)

2011
2021
2031
2041
2050

Figure 9. GHG emissions due to LUC under no subsidy action.

One of these limitations includes the limited data on crop-management system areas in Nigeria.
This deficiency leads to an improper representation of the crop-management system within the
crop-mix equation where we restricted the crop area to mimic the crop area share of the observation.
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On a sensitivity analysis, we find that a negative indirect land-use change GHG emission is
achievable with the implementation of a carbon tax of $40/ton if, and only if, the Nigerian government
places a land-use conversion cost of $10,000/ha with or without subsidy on the bioenergy industry.

3.3. Implications of Bioenergy Subsidies on Food Prices, Total Welfare and Bioenergy Consumption Pattern

The results reveal that combining a volume mandate with a carbon price policy does not
provide any substantial change in bioenergy consumption due to the energy products’ elasticity
(see Figures 10–13). Instead, at optimal control, a carbon tax tends to favor the disposable income
with regards to bioenergy at the expense of other competing agricultural products. Our results reveal
that by 2050 the biofuel and bioelectricity consumption trend by states showed very little difference
across the three tax scenarios with or without a subsidy on bioenergy (see Figures 10–13). Kogi state
showed the highest consumption share when a carbon price is implemented in scenarios for both
biofuel and bioelectricity by 2050. Bayelsa state consumes the highest bioenergy when there is no
carbon tax, and decreases its consumption share by almost a factor of 5 with the introduction of a
carbon tax. Putting this into perspective, one could translate this into changes in land use, principally
those associated with deforestation of the mangrove forest, land-use change emissions cost and the
trade cost with other states due to proximity challenges. The result also replicates the same issue as
with Bayelsa state in the case of Akwa Ibom state with a factor of 4 when a carbon tax is implemented.
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The study result also shows that a subsidy does not have any significant effect on the total welfare
due to deadweight loss (Figures 14 and 15). The economic inefficiency caused by the grant is because
of the cost of enacting the government support, which is more than the marginal benefit of the subsidy
to the producers and consumers.
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Our result shows that the bioenergy policy target in Nigeria will translate to very high food prices
by 2050 under all the scenarios with or without a carbon tax (see Figures 16 and 17). This result is in
accord with that of [47]. The food-price dynamics across the model horizon as seen in without subsidy
scenarios (Figure 17) are caused by the land-use change trajectories.
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4. Conclusions and Policy Implications

Public support for bioenergy deployment is widely debated, and it is agreed that the substitution
of traditional fossil-fuel energy sources by bioenergy can provide benefits for energy security and
potential for GHG mitigation. However, the rapid expansion of biofuels production from some
feedstocks (e.g., oil palm) has raised concerns regarding land use and the implications of cropland
expansion for net GHG emissions. Thus, the focus for future bioenergy use has shifted toward
second-generation feedstocks that may alleviate these issues of converting forest land to cropland.
However, there are some technological and logistical hurdles to overcome before second-generation
feedstocks can be used to generate large quantities of bioenergy at competitive costs [48]. Conclusions
from this study are that market-based instruments such as a carbon tax alone are not sufficient for
preserving the remaining forest area in Nigeria. Therefore, political willingness to support an infant
industry such as the bioenergy industry have to couple a carbon tax with conservation instruments
such as Payment for Ecosystem Services (PES). NGA–FASOM showed that, to achieve a negative
GHG reduction in the forest and agricultural sector in Nigeria, a carbon tax above $80/ton is required.
In Nigeria, a subsidy on bioenergy products does not have any significant effect on total social welfare.
Another general conclusion that emerges from this study is that a subsidy on the bioenergy industry
in Nigeria does not translate into any substantial comparative advantage on bioenergy feedstocks.
Furthermore, bioenergy consumption will not be significantly affected by a subsidy. In addition, we
conclude that following the stipulated bioenergy mandates will cause a substantial hike in food prices
in Nigeria. We recommend further studies to look at the potential and realization of the bioenergy
targets as stipulated above using second-generation feedstocks and placing a physical restriction on
land-use change.
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Appendix A. Model Equations
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Table A1. Description of Variables, Parameters, Functions and Indices.

Variable Description Unit

W Welfare million USD
D Domestic demand quantity 1000 tons
S Domestic supply quantity 1000 units
T Trade quantity 1000 tons
A Land-use activity 1000 ha
L Livestock production activity 1000 units
P Processing activity (also used to depict product substitutions) 1000 units
E Environmental impacts 1000 units
U Land-use change 1000 ha

Parameter Description Unit

a Technical coefficient containing productivities, input
coefficients, per-unit cost, environmental impact coefficients product or resource unit/activity unit

b Endowments 1000 units
c Objective function coefficients USD/activity unit
k Commodity coefficients attribute unit/product unit
δ discount factor unit less
ε elasticity unit less

Function Description

φ inverse demand/supply function
χ marginal cost function
ν marginal value function

Index Description Elements

t time decades
r region 36 States + FCT

y commodity food commodities, forest products,
and bioenergy

i input (resource) land and energy (implicitly represented)
e environmental impact GHG emissions (CO2eqv.)
s species ~8 Crops, ~1 forest type
a animal ~6 animal types

m management land, livestock production,
and processing alternatives

u land-use type cropland, forest land, and grassland

z commodity attribute food commodities, animal feedstuffs,
and bioenergy products
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Chapter 3

Conclusion

3.1 Overall conclusions

This thesis investigates the environmental and social impact of oil palm cultivation as a bioen-

ergy feedstock using an integrated assessment method. It concludes that from the oil palm

related land use/land cover change monitoring on a spatiotemporal scales, the proposed ap-

proach from the study in Article I could render a reliable outcome with an overall accurancy of

about 85%. The result of the study also show that the Niger Delta, Nigeria had experienced a

decrement in its forest reserve. The approach can enhance the facilitation of a proper planning,

management and regulations of the use of land resources especially during this time of energy

mix change due to climate change.

The conclusions from the study in Article II suggest that climate change which triggers the

bioenergy deployment will have impacts on crop yields and are projected to be considerably

different across the Niger Delta. Another conclusion from the study is that the net impact

of climate change on oil palm as bioenergy crop is positive and is dynamically inconsistent

across the interval of the study simulation. The study also showed that oil palm yields are

more robust to an increase in precipitation compared to an increase intemperature. Also, slight

differences in GCM's ability of capturing the WAM system do not lead to variations in yield.

The study further suggests that climate model ensembles output and the participating models
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72 Chapter 3. Conclusion

having higher range could potentially produce new sets of uncertainties in the projected yields.

Furthermore, the conclusions from the third study in Article III, which is the integrated

assessment modeling, coupling the outputs from Article I & II and putting the overall research

questions into perspectives. First, the impact of Nigerian bioenergy policies with regards to

energy crops cultivation (e.g.oil palm) on land use change and social welfare of the Niger Deltan

Nigeria based on the current Nigerian land use act of 1990 would be that, Nigerian Niger Delta

forest and Pasture land stand chance of being converted to cropland by 2050 according to the

findings of this study. The result showed that policy-induced comparative advantage among the

bioenergy feedstock is not substantially feasible with regards to the total area of the feedstocks.

Bioenergy consumption pattern in the Niger Delta will remain unchanged with or without

policy action. Following the stipulated bioenergy mandates will cause a hike in food prices in

the Niger Delta. Subsidy on bioenergy does not have any significant effect on the aggregated

social welfare.

In addition, the concepts of land use with respect to energy crops cultivation (e. g. oil

palm) can be adapted to climate change, be sustainable and at the same time allow protecting

climate and environment, as well as potential adverse impacts of biofuel development on land

use change could be reduced, if the political willingness to support nascent industries such as

bioenergy industry couple carbon tax with conservation instruments for instance Payment for

Ecosystem Services (PES).

The study also suggest that, potential adverse impacts of biofuel development on land

use change could be reduced and /or avoided, when a minimum carbon tax of $80/ton is

implemented. Another conclusion from the study is that market-based instruments such as

carbon tax alone are not sufficient in preserving the remaining forest area in Nigeria.

3.2 Future Work

Using NGA-FASOM to calculate the marginal abatement cost of agricultural management

change for CO2 emission reduction for Nigeria
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Tools and Resources

The results of this thesis rely on model-based computer analysis. A number of tools and

resources were used for preparing input data, source code management, running the model

simulations, and analysing and visualizing the results. Below is a lists these tools and resources.

Remote Sensing

The remote sensing analysis and GIS work was done using the SAGA GIS and the Google

earth engine API.

Modeling

The process based modeing was done using the APSIM2015.06.22 next generation. NGA-

FASOM is a mathematically programming model that is written in GAMS and uses the CPLEX

solver.

Data processing

The statistical programming software R was used for the preprocessing of input data (ag-

gregation and transformation etc.), Climate Data Operators (CDO) was used for part of the

climate data processing and the postprocessing of some output data (graphs, validation).

Source code management

The source code of the NGA-FASOM model and the data processing scripts were managed
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using the Subversion version control system.

Typesetting

This document was prepared with Microsoft Word 2011 and Latex

Literature management

Zotero was used for literature management and generating the bibliography of the entire

dissertation project.
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