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Abstract
A standard method of reconstructing the structure of a protein in its crystalline

phase is by x-ray diffraction. New generation x-ray sources, the X-ray free-electron

lasers (XFEL), provide novel opportunities for biomolecular structure determina-

tion. The extreme intensity and ultrashort pulse duration of an XFEL pulse make it

feasible to extend the diffraction technique towards nano sized crystals. However,

during a high-intensity measurement, significant atomic and electronic dynamics

occur that affect the diffraction signal. Simulations of the ionization dynamics of

an irradiated nanocrystal and the diffraction pattern formed are computationally

expensive. To overcome this bottleneck, I have developed a methodology imple-

mented as computer codes. I have applied the methodology for specific problems:

for identifying the characteristic features of the spatial beam profile imprinted on

the scattering pattern, analyzing effective form factors at high intensity and in stud-

ies of high energy density plasma formation.

Deutsche version: Eine Standardmethode für die Rekonstruktion der Protein-

struktur in seiner kristallinen Phase ist die Röntgenbeugung. Eine neue Genera-

tion von Röntgenstrahlungsquellen, wie der Freie-Elektronen-Laser für Röntgen-

strahlung (XFEL), bietet neue Möglichkeiten für die biomolekulare Strukturbestim-

mung. Die extreme Intensität und die ultrakurze Pulsdauer eines XFEL-Pulses er-

möglicht es, die Beugungstechnik auf Nanokristalle zu erweitern. Jedoch treten

bei diesen Hochintensitätsmessungen signifikante atomare und elektronische Dy-

namiken auf, die das Beugungssignal beeinflussen. Die Simulation der Ionisa-

tionsdynamik eines bestrahlten Nanokristalls und das gebildete Beugungsmuster

sind rechnerisch kostenintensiv. Um diesen Nachteil zu überwinden, habe ich eine

Methodik entwickelt in Form speziell implementierter Computercodes. Diese Methodik
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habe ich auf spezifische Probleme angewandt: Zur Identifizierung von charakteris-

tischen Merkmalen des räumlichen Strahlprofils geprägt durch das Streuungsmuster,

die Analyse effektiver Formfaktoren bei hoher Intensität und in Studien zur Plas-

mabildung bei hohen Energiedichten.
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Chapter 1

Introduction

Unraveling the structural changes in photo-triggered biomolecules has evoked great

interest for decades [7, 8, 9, 10]. Recent advances in X-ray free electron laser (XFEL)

sources [11, 12] have opened new horizons in the field of time-resolved x-ray crys-

tallography. XFELs provide intense radiation of wavelengths comparable to atomic

scales. They deliver intense femtosecond pulses that promise to yield high-resolution

diffraction data of nanocrystals (∼200 nm to 2 µm in size) before the destruction of

the nanocrystal by radiation damage [13, 14]. The characteristics of XFEL radiation

and associated sample environments have triggered the development of new data

collection methods such as serial femtosecond crystallography (SFX) [15]. SFX is

also an important step towards the ultimate goal and dream – to perform atomic-

resolution single-particle imaging [16, 17, 18, 19, 20, 21].

Sample damage by x-rays and low signal-to-noise ratio at high photon momen-

tum transfer limit the resolution of structural studies on non-repetitive structures

such as individual biomolecules or cells. Therefore, at high resolution, SFX is cur-

rently still a better option to use. In SFX, a complete data-set can be obtained by

exposing thousands of randomly oriented, individual nanocrystals of proteins to

the x-ray beam.



2 Chapter 1. Introduction

Imaging nanocrystals of proteins and viruses at atomic resolution calls for high-

intensity and short-duration x-ray pulses [22, 23, 16, 24, 25, 26]. The shortcoming

of using high intensities is the rapid ionization of the atoms on a few-femtosecond

timescale, which affects the structure of the protein. This radiation-induced damage

changes the atomic form factors [27, 28] and may induce significant atomic displace-

ment on longer timescales, which leads to the annihilation of the Bragg spots.

In an XFEL experiment, the biomolecular nanocrystals are injected in a jet and

the individual XFEL pulses typically irradiate single nanocrystals at a time in ran-

dom orientations, while the scattering pattern is recorded. In principle, using phase-

retrieval algorithms [29, 30, 31, 32], the electron density may be determined and the

positions of the atomic species predicted, although this often poses a serious chal-

lenge. The scattered electromagnetic field is directly related to the electron density

through a mathematical operation (Fourier transform). However, in an imaging

experiment, information about the phases of the scattered field is lost. In order to

overcome this so-called “phase problem”, various techniques are in use. One ex-

ample is that of isomorphous replacement, in which few of the atoms are replaced

by heavy atomic species so that they can perturb the scattering pattern. Conse-

quently, one can estimate the positions of the heavy atomic species and can thereby

obtain possible values for the phase angle. Another similar technique is that of

multi-wavelength anomalous diffraction or dispersion [33, 34, 35, 36, 37, 38] (MAD),

which uses embedded atomic species known as anomalous scatterers. By using x-

rays of different wavelengths around the absorption edge of the species, one can

change the degree of perturbation of the scattering pattern due to the anomalous

scatterers. In order to improve the scattering signal due to the diffraction, nanocrys-

tals and highly symmetric molecules are often used [16, 20, 39, 40, 18].

For a comprehensive theoretical study of signal formation in an SFX experiment,
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one needs to simulate the radiation-induced dynamics of the sample and pattern-

formation based on the dynamics. During the past decade, several models have

been developed for studying the time evolution of small and large samples irra-

diated by XFEL pulses [41, 42, 31, 43, 44, 45, 46, 47, 48]. The bottleneck one faces

is that it is computationally not feasible to simulate a nanocrystal (other systems

can be simulated) with realistic size using tools that are capable of following the

dynamics of each atom, required for imaging studies.

In order to give a complete description of the evolution of the atomic states in

a sample, one needs to account for the possible occurrence of all electronic config-

urations of the atoms/ions. A computationally demanding situation arises when a

sample consists of heavy atomic species [49, 50]. For example, at a photon energy

of 5.5 keV, the number of electronic configurations accessible in a heavy atom such

as xenon (Z=54) is about 20 million [50]. If one wants to describe the accessible

configuration space of two such atoms, one must deal with (2 × 107)2 = 4 × 1014

electronic configurations. It is clear that following the population of all electronic

configurations in a polyatomic sample as a function of time is a formidable task.

To avoid this problem, the approximation of using superconfigurations has long

been used [51, 52, 53]. Moreover, the approach of using a set of average configura-

tions [54, 55] and the approach of limiting the available configurations by using a

pre-selected subset of configurations in predominant relaxation paths [4] has been

applied.

In Chapter 2, I will discuss the theoretical framework used to simulate the effect

of ultrafast XFEL pulses incident on a nanocrystal. To follow the time-evolution of

the nanocrystal, I have developed an extension of XMDYN [1, 56, 57], which is a

complex simulation tool for modeling dynamics of molecular systems (e.g. biologi-

cal molecules) irradiated by an intense hard x-ray pulse. Using the original XMDYN
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code, simulation of a large number of particles in a nanocrystal is too expensive. I

present a model, employing our extension of XMDYN, that is capable of describing

this challenging situation. Moreover, in the last section of Chapter 2, I will briefly

explain the theoretical formalism to calculate rates and cross-sections for different

atomic processes using the XATOM toolkit. I will also explain an approach based

on concepts of average-atom models [58] used in plasma physics [59, 60, 61, 62, 63].

Chapter 3 is based on a publication [2]. It includes the results and discussions

based on the theoretical formalism defined in Chapter 2. I simulate the effect of in-

dividual ultrafast XFEL pulses of different intensities incident on a model system of

carbon atoms placed on a lattice and analyze the quasi-equilibrium plasma state of

the material reached through ionization and electron-plasma thermalization. To this

end, I use two different tools. One is XMDYN with a periodic boundary condition

extension and the other is the XATOM average-atom model (AA). I compare the

electron temperatures and ion charge-state distributions provided by XMDYN and

AA. I also make a comparison between predictions for the ionization dynamics in

an irradiated diamond nanocrystal, obtained by the XMDYN particle approach, and

results from a Boltzmann continuum approach published recently [4]. With these

comparisons, I demonstrate the potential of the XMDYN code for the description of

high-energy-density bulk systems in and out of equilibrium. Moreover, I consider

a complex system of 5-amino-2,4,6-triiodoisophthalic acid (I3C in crystalline form),

consisting of heavy and light atomic species. I demonstrate that XMDYN can sim-

ulate the dynamics of x-ray-driven complex matter with all the possible electronic

configurations without pre-selecting any pathways in the electronic configuration

space.

Chapter 4 is comprised of a publication based on a code XSINC [64, 5] – a tool

based on a generalized method to describe the x-ray scattering intensity of the
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Bragg reflections in a diffraction pattern from nanocrystals exposed to intense x-

ray pulses. I present an approach that involves the division of a nanocrystal into

smaller units (super-cells) and the calculation of their dynamics individually using

periodic boundary conditions (PBC). In order to investigate the effect of inhomoge-

neous spatial fluence distribution, the super-cells are subjected to different fluences.

Subsequently, I combine all the super-cells to form a nano-crystal and construct the

scattering pattern under the influence of uniform (within the irradiated part of the

sample) and non-uniform spatial beam profiles. I study and compare these two

scenarios. The last section of this chapter is based on publication Ref. [6]. I will

redefine the effective-form-factors, emphasizing their implications for the interpre-

tation of the scattering patterns. A time-integrated pattern does not correspond to a

static electron density via Fourier transform in a mathematically rigorous manner.

It is formed by an incoherent sum of non-identical, individually coherent patterns.

Therefore, it is not straightforward that conventional pattern-processing schemes

can be expected to work. However, if the temporal-variance-aided effective-form-

factor description is proven to be accurate under relevant damage conditions, it

also ensures that the time-integrated pattern can be treated as a coherent pattern

to good accuracy and image processing algorithms can be expected to converge

and deliver a solution. By using a realistic radiation damage model including both

atomic and environmental effects, I theoretically investigate the limitations of the

simple effective-form-factor concept on the example of a glycine (C2H5NO2) organic

nanocrystal. By calculating Bragg intensities we analyze the contribution of the

temporal variance and the threshold pulse intensity up to which the constructed

effective form factors are valid to describe the non-ideal patterns, thus allowing for

the use of conventional crystallography processing methods.

Chapter 5 is based on an experiment that was performed at the Linac Coherent
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Light Source (LCLS), a hard X-ray FEL in USA. I will demonstrate the start-to-end

simulations for calculating scattering patterns from a nanocrystal exposed to in-

tense XFEL pulses.

Chapter 6 comprises the conclusions of the work presented in this thesis.
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Chapter 2

Theoretical framework

In this chapter, I present the theoretical background to understand the radiation

damage in bulk systems. The first section proceeds towards our in-house tool

XATOM, an ab-initio x-ray atomic physics toolkit. In the second section, I will ex-

plain in detail XMDYN, our in-house Monte-Carlo (MC)-molecular dynamics (MD)

code. In order to proceed within the framework of this thesis, the next section in-

cludes the extensions of XMDYN for the spatial periodic boundary conditions.

2.1 XATOM

XATOM [28, 65] is a toolkit for X-ray atomic physics. It gives a theoretical descrip-

tion of the fundamental processes in X-ray-atom interactions. It calculates atomic

data-orbitals and the orbital energies, cross sections and rates for x-ray-induced pro-

cesses like photoionization, x-ray fluorescence, Auger decay, elastic x-ray scattering

along with its dispersion correction [35], Compton scattering [66] and shake-off

branching ratios [67].
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FIGURE 2.1: Diagrams of x-ray-induced processes calculated by
XATOM. P: photoionization; A: Auger decay; F: fluorescence; SO:
shake-off; S: Rayleigh and Compton x-ray scattering; RS: resonant elas-

tic x-ray scattering. This figure is taken from Ref. [1]

.

2.1.1 Theoretical and numerical procedure

In order to implement the ab-initio framework [68], the Hartree-Fock-Slater (HFS) [69,

70] model is used. Local density approximation to the exact exchange interaction

is employed. In this approximation, the many-particle Schrödinger equation is re-

duced to an effective single-electron Schrödinger equation:

[
−1

2
∇2 + V (r)

]
ψ(r) = εψ(r), (2.1)

where ψ(r) represents an atomic orbital and ε is the corresponding orbital energy.

The potential is given by

V (r) = −Z
r
+

∫
ρ(r′

)

|r − r′ | d
3r

′ − 3

2

[
3

π
ρ(r)

]1/3
, (2.2)

whereZ is the nuclear charge of the atom, ρ(r) represents the electron density, which

is assumed to be spherically symmetric, and the spin polarization is averaged. The

last term in the above equation is the exchange term, which is approximated by the
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Slater exchange potential [69]. In addition, for numerical convergence reasons, the

potential includes the Latter tail correction [71]. The electronic density ρ(r) is given

by

ρ(r) =
Nelec∑

i

ψ†
i (r)ψi(r), (2.3)

where i is the spin-orbital index and Nelec is the number of electrons. The problem

becomes spherically symmetric once angular momentum averaging is done. Each

solution of Eq. (2.1) can be expressed in terms of the product of a radial wave func-

tion and a spherical harmonic. As an example, a bound-state spatial orbital with

quantum numbers (n, l,m) may be written as

ψnlm(r) =
Pnl(r)

r
Y m
l (θ, φ). (2.4)

The radial wavefunction Pnl(r) is solved by the generalized pseudospectral method

[72, 73] for bound states using a non-uniform grid. For continuum states, Pε(r) is

numerically solved by the fourth-order Runge-Kutta method for a given energy ε on

a uniform grid [74, 75]. To evaluate integrals involving both bound and continuum

states, spline interpolation is used to map the bound-state orbitals from the non-

uniform grid to the denser uniform grid, employed for the continuum states. For

the bound state calculations, the theoretical procedure here is similar to Herman-

Skillman code [76]. The numerical part of the present toolkit utilizes a different

grid method, as it has the following advantages:

1. It is easy to control convergence with respect to the grid parameters.

2. One can avoid truncation of the maximum radius internally imposed by the

Herman-Skillman code.
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3. The matrix eigenvalue problem is solved by a modern linear algebra pack-

age [77].

XATOM toolkit is capable of calculating cross sections and rates for any possible

electronic configuration. For example, a neutral carbon atom has 1s22s22p2 ground

state configuration. The total number of possible electronic configurations for car-

bon is 27. XATOM performs a separate HFS calculation for each configuration. In

other words, the orbitals are optimized in the presence of core and/or valence va-

cancies. Thus, orbital relaxation for the core-hole configurations is automatically

included, a strategy which is known to be in good agreement with multiconfigura-

tional self-consistent-field calculations [78].

2.1.2 X-ray absorption cross-section

The cross-section for ionizing an electron in the ith subshell by absorbing an x-ray

photon with energy ω is given by [68]

σP(i, ω) =
4

3
απ2 ωNi

li+1∑

lj=|li−1|

l>
2 li + 1

∣∣∣∣
∫ ∞

0

Pnili(r)Pε lj(r)rdr

∣∣∣∣
2

, (2.5)

where α is the fine-structure constant, Ni represents the occupation number of the

ith subshell, l> = max(li, lj), and ε = ω − Ei is the photoelectron energy. Ei is the

ionization energy of the ith subshell (Ei = −εi) by Koopmans’ theorem [79], which

is approximately valid in the HFS model. The orbital energy εi and the radial wave

functions Pnili(r) and Pε lj(r) are calculated for a given electronic configuration. It

should be noted that the XATOM toolkit does not consider orbital hole alignment

after ionization by linearly polarized x-ray pulses and hence assumes that the den-

sity of bound electrons remains spherically symmetric throughout.
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2.1.3 Auger decay

The Auger decay rate that an electron from the jth subshell fills the ith subshell and

another electron from the j′th subshell is ejected into the continuum may be written

as [68, 80]

ΓA(i, jj
′) = π

NH
i Njj′

2li + 1

lj+lj′∑

L=|lj−lj′ |

1∑

S=0

∑

li′

(2L+ 1) (2S + 1)|MLS(j, j
′, i, i′)|2, (2.6)

where i′ indicates the continuum state with Auger electron energy ε = Ei−Ej−Ej′ ,

NH
i is the number of the holes in the ith subshell, and

Njj′ =





NjNj′
(4lj+2)(4lj′+2)

for non-equivalent electrons,

Nj(Nj−1)

(4lj+2)(4lj+2−1)
for equivalent electrons.

(2.7)

Here, averaging schemes over initial and final states to compute transition rates are

adopted from Refs. [80, 81, 82]. The matrix element MLS is given as

MLS(j, j
′, i, i′) = τ(−1)L+lj+li′

∑

K

[RK(j, j
′, i, i′)AK(j, j

′, i, i′)

+(−1)L+SRK(j
′, j, i, i′)AK(j

′, j, i, i′)], (2.8)

where τ = 1/
√
2 if j and j′ are equivalent electrons and τ = 1 otherwise. AK is a

coefficent related to 3j and 6j symbols [83],

AK(j, j
′, i, i′) = 〈li||CK ||lj〉 〈li′ ||CK ||lj′〉




li li′ L

lj′ lj K




, (2.9)
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where

〈l||CK ||l′〉 =
(−1)l√

(2l + 1)(2l′ + 1)



l′ K L

0 0 0


 , (2.10)

and RK is a double-radial integral defined as

RK(j, j
′, i, i′) =

∫ ∞

0

∫ ∞

0

Pnj lj(r1)Pnj′ lj′ (r2)
rK<
rK+1
>

×Pnili(r1)Pεli′ (r2)dr1dr2 (2.11)

2.1.4 Fluorescence

The fluorescence rate for the electric dipole transition of an electron from the jth

subshell to a hole in the ith subshell is given by [68, 80]

ΓF (i, j) =
4

3
α3(Ii − Ij)

3N
H
i Nj

4lj + 2

l>
2li + 1

∣∣∣∣
∫ ∞

0

Pnili(r)Pnj lj(r)rdr

∣∣∣∣
2

. (2.12)

2.1.5 Coherent x-ray scattering

The coherent x-ray scattering form factor for a given electronic density ρ(r) is given

by [68]

f 0(Q) =

∫
ρ(r)eiQ.rd3r, (2.13)

where Q is the photon momentum transfer. Here it is assumed that the atomic

electron density is spherically symmetric. Then the atomic form factors depend

only on the magnitude of the momentum transfer, so the above Eq. (2.13) can be
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simplified to

f 0(Q) = 4π

∫ ∞

0

r2ρ(r)
sin(Qr)

Qr
dr, (2.14)

where Q = |Q| = 2αωsin(θ/2) and θ is the polar angle of the momentum of the

scattered photon with respect to the propagation axis of the incoming x rays. For

unpolarized x rays, the differential cross section for coherent scattering is given by

dσS
dΩ

= α4|f 0(Q)|21 + cos2θ

2
, (2.15)

and for linearly polarized x rays, the differential cross section is given by

dσS
dΩ

= α4|f 0(Q)|2(1− cos2φ sin2θ), (2.16)

where φ is the azimuthal angle of the scattered photon momentum with respect to

the x-ray propogation and polarization axes.

2.1.6 Average-atom model

The average-atom model (AA) uses a finite-temperature Hartree-Fock-Slater cal-

culation, which is implemented as an extension of XATOM [58]. AA corresponds

to the first step of the two-step model that was used to describe ionization poten-

tial depression in dense plasmas [58]. For a single atomic species, the effect of the

solid/plasma environment on an electron is taken into account via a muffin-tin-type

potential given as

V (r) =





−Z
r
+
∫
ŕ≤rs

d3ŕ ρ(ŕ)
|r−ŕ| − 3

2

[
3
π
ρ(r)

] 1
3 for r ≤ rs

V (rs) for r > rs,

(2.17)
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where Z is the nuclear charge, ρ(r) is the electronic density, and rs is the Wigner-

Seitz radius that is given by the number density ni of the atomic ions in the solid,

using the expression rs = (3/(4πni))
1
3 . Using this potential, we solve the effective

single-electron Schrödinger equation,

[
−1

2
∇2 + V (r)

]
ψp(r) = εpψp(r), (2.18)

where p is a one-particle state index and εp is the corresponding orbital energy.

The average-atom calculation treats the electronic system using a grand-canonical

ensemble. The electronic density then becomes

ρ(r, T ) =
∑

p

|ψp(r)|2ñp(µ, T ). (2.19)

Here ñp(µ, T ) stands for the fractional occupation numbers given by the Fermi-

Dirac distribution at chemical potential µ,

ñp(µ, T ) =
1

e(εp−µ)/T + 1
. (2.20)

In order to ensure charge neutrality, the average number of electrons Nelec within

the Wigner-Seitz sphere,

Nelec =

∫

r≤rs

d3r ρ(r, T ), (2.21)

is fixed to the atomic number Z. Then we obtain µ by solving the following equa-

tion:

Z −
∑

p

(∫

r≤rs

d3r|ψp(r)|2
)
ñp(µ, T ) = 0. (2.22)

With the chemical potential µ obtained from Eq. (2.22), one can construct ρ(r, T )

from Eq. (2.19). Using ρ(r, T ), the new updated atomic potential is obtained from
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Eq. (2.17). Afterwards, orbitals ψp(r) and orbital energies ǫp are calculated from

Eq. (2.18) using the new potential, and then a new µ is calculated. Thus, orbitals and

orbital energies are determined self-consistently until the results are converged. In

our calculations, the input parameters are the atomic number Z, the Wigner-Seitz

radius rs via the solid density, and the temperature T of the system.

After completing an average-atom calculation, one obtains the zeroth-order total

energy within the Wigner-Seitz sphere (i.e., the total energy per atom),

E(T ) =
∑

p

εpñp(µ, T )

∫

r≤rs

d3r |ψp(r)|2 . (2.23)

Within the grand-canonical ensemble, one can calculate the probability distribu-

tion of all possible electronic configurations. If we consider a fixed bound-electron

configuration [nb] = (n1, . . . , nB), where B is the number of bound one-electron

(spin-orbital) states, then the probability distribution at temperature T is given by

P[nb](T ) =
bound∏

b

e−(εb−µ)nb/T

1 + e−(εb−µ)/T
, (2.24)

where b runs over all bound states (1 ≤ b ≤ B) and nb is an integer occupation num-

ber (0 or 1) in the bound-electron configuration. Then the charge-state distribution

is given by

PQ(T ) =

Q∑

[nb]

P[nb](T ), (2.25)

where [nb] runs over all possible bound-state configurations satisfying
∑bound

b nb =

Z −Q.



16 Chapter 2. Theoretical framework

2.2 XMDYN

2.2.1 Overview

XMDYN [1, 56, 57] has been originally developed for modeling finite-size systems

irradiated by an XFEL pulse. It unites a MC description of ionizations with a clas-

sical MD treatment of real-space particle dynamics. XMDYN keeps track of the

configuration of the bound electrons in neutral atoms and atomic ions individually.

These configurations change dynamically because of different atomic processes like

inner and outer-shell photoionization, Auger and fluorescence decay and collisional

(secondary) ionization and recombination. In order to treat x-ray–atom interac-

tions, XMDYN uses the XATOM toolkit, which is an ab-initio framework based on

non-relativistic quantum electrodynamics and perturbation theory. XATOM pro-

vides rates and cross-sections of x-ray-induced processes such as photoionization,

Auger decay and x-ray fluoresence. XMDYN employs XATOM data, keeps track

of all the ionization events along with the electron configuration of each atom, cal-

culates impact ionization and recombination and follows the trajectories of all the

ionized electrons and atoms, solving the classical equations of motion numerically.

The system is propagated with discrete timesteps and snapshots are saved for later

analysis.

2.2.2 Molecular Dynamics

Molecular dynamics is a numerical technique to track the real space dynamics of

classical particles. The popular Verlet algorithm [84] is used to evaluate the time

evolution of a system by integrating the equations of motions. It calculates, for tim-

step t + ∆t, the coordinates r(t + ∆t), velocities v(t + ∆t) of all particles from the

corresponding values of these quantities at the previous timestep. This algorithm
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belongs to the class of finite-difference methods. XMDYN uses velocity Verlet algo-

rithm [85], which gives improved accuracy over the Verlet scheme. Equations used

in the algorithm are as follows:

v(t+∆t/2) = v(t) + (0.5/m) F(t)∆t, (2.26)

r(t+∆t) = r(t) + ∆t v(t+∆t/2), (2.27)

F(t+∆t) = F(r(t+∆t)), (2.28)

v(t+∆t) = v(t+∆t/2) + (0.5/m) F(t+∆t)∆t. (2.29)

In Eqs. (2.26)- (2.29), m represents the mass of the particle. It can be seen above

that the velocity of the system at step (t + ∆t/2) is calculated first, followed by the

calculation at step (t+∆t). On the basis of the new coordinates, the potential energy

function is evaluated and new forces are determined. One of the key parameters in

the above equation is the timestep ∆t, which determines how frequently integration

is performed. ∆t controls the accuracy of the method for the price of the calculation

time.

2.2.3 XMDYN code structure

XMDYN is structured into several blocks. A flowchart diagram of XMDYN struc-

ture is shown in Fig. 2.2. Within one cycle of the time loop, different blocks are
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executed accordingly in sequence. Photoionization, Auger and fluorescent relax-

ation evaluation is performed within the MC-block and the real-space propagation

of the classical particles in the MD-block. Electron impact ionization (secondary

ionization) and electron recombination occur in the collisional block (CO-block) and

recombination block (RE-block), respectively.

FIGURE 2.2: Flowchart of XMDYN, showing the separation and the
sequence of different blocks. It also shows on the fly connection with
XATOM to calculate various atomic parameters. This figure is taken

from Ref. [1].

2.2.4 Monte Carlo block

A Monte Carlo algorithm is used to determine whether an event of a stochastic

process such as photoionization, Auger or fluorescent relaxation occurs within a

discrete timestep. For each process, the time of occurence is generated randomly

at each timestep based on the exponential probability distribution. If a generated
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value lies within the time interval, the corresponding event happens. Rate and

cross-section data parameterize the probability of photoionization, Auger and fluo-

rescent decay. These atomic parameters are calculated with XATOM.

2.2.5 Impact ionization and recombination

Within the XMDYN particle approach, electron impact ionization is not a stochastic

process (i.e., no random number is needed in the algorithm), but it depends solely

on the real space dynamics (spatial location and velocity) of the particles and on the

cross-section. When a classical free electron is close to an atom/ion, its trajectory

is extrapolated back to an infinite distance in the potential of the target ion by us-

ing energy and angular momentum conservation. Impact ionization occurs only if

the impact parameter at infinity is smaller than the radius associated with the total

electron impact ionization cross-section. The total cross-section is the sum of the

partial cross sections evaluated for the occupied orbitals, using the asymptotic ki-

netic energy of the impact electron. In the case of an ionization event, the orbital to

be ionized is chosen randomly, according to probabilities proportional to the sub-

shell partial cross sections. XMDYN uses the binary-encounter-Bethe (BEB) cross

sections [3] supplied with atomic parameters calculated with XATOM. Similarly, in

XMDYN, recombination is a process that evolves through the classical dynamics of

the particles. The code checks for the ion that has the strongest Coulomb potential

for each electron and calculates for how long this condition is fulfilled. Recombina-

tion occurs when an electron remains around the same ion for n full periods (e.g.,

n = 1) [86]. While recombination can be identified based on this definition, the

electron is still kept classical if its classical orbital energy is higher than the orbital

energy of the highest considered orbital i containing a vacancy. When the classi-

cal binding becomes stronger, the classical electron is removed and the occupation
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number of the corresponding orbital is increased by one.

2.2.6 Electron plasma analysis

Electron plasma is formed when electrons are ejected from atoms in ionization

events and stay among the ions through an extensive period, e.g. in the bulk. The

plasma dynamics are governed not only by the Coulomb interaction between the

particles, but also by collisional ionization, recombination, and so on. XMDYN fol-

lows the system from the very first photoionization event through non-equilibrium

states until thermalization is reached asymptotically. In order to quantify the equi-

librium properties reached, we fit the plasma electron velocity distribution using a

Maxwell-Boltzmann distribution,

f(v) =

√(
1

2πT

)3

4πv2e−
v2

2T , (2.30)

where T represents the temperature (in units of energy) and v is the electron speed.

Atomic units are used unless specified. With the function defined in Eq. (2.30), we fit

the temperature, which is used later to compare with equilibrium-state calculations.

2.3 Extensions of XMDYN

In order to extend XMDYN for calculating trajectories for larger systems like nanocrys-

tals of, for example, a biological system like proteins (note that one protein could

be calculated), one needs to come up with a strategy that makes the capturing of

the dynamics of millions of particles feasible. The dimensions of the interaction

volume are defined by the intersection of the x-ray beam and the crystal; therefore
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its dimensions are determined by the focal area (∼ 100 × 100 nm2) and the thick-

ness of the crystal along the beam propagation direction (∼ µm). The number of

atoms within this volume is of the order of 109. This number is formidably large

– it is not feasible to simulate the whole system by a single XMDYN run. In order

to overcome this barrier, the procedure of dividing the whole crystal into smaller

units (that are experiencing different fluences because of the spatial beam inten-

sity profile) is proposed. These super-cells may contain several crystallographic

unitcells, for which we calculate the dynamics separately using periodic boundary

conditions (PBC). For this purpose, I have developed an extension to XMDYN that

applies PBC [87, 88] to a super-cell, accounting also for the effect of the environment

surrounding it.

2.3.1 Periodic boundary conditions (PBC) using minimum image

convention

Within the concept of PBC, a hypothetic crystal is constructed as a periodic exten-

sion of a selected super-cell. The total Coulomb interaction energy for a super-cell

includes all the interactions within the given cell as well as pair interactions when

one particle is in the cell while the other is in a periodic image within the super-cell

based hypothetical lattice (PBC-crystal). Formally,

E =
1

4πε0

1

2

∑

n

N∑

i=1

N∑

j=1

′ qiqj
|rij + nL| , (2.31)

where N represents the total number of particles in the super-cell, qi is the charge

of the ith particle, ε0 is the dielectric constant, L represents the dimension of the cell

(here assumed to be a cube), nL = n1c1 +n2c2 +n3c3, where c1, c2, c3 represent basis

vectors of the PBC-crystal, and n1, n2, n3 are integers indexing the periodic images.
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Hence, |rij + nL| is the distance between the ith particle in the central super-cell

(n = 0) and the jth particle in the super-cell indexed by n. The symbol ′ represents

the exclusion of the term j = i if and only if n = 0. The summation in Eq. (2.31)

is not only computationally very expensive because of the formally infinite sum,

but is also conditionally convergent, which states that the result depends upon the

order of summation. To overcome this problem, we follow a route used often in the

literature for spatially periodic systems – the method of minimum image conven-

tion [89]. According to the convention,

1. when evaluating Eq. (2.31), we do not use the same super-cell division of the

PBC crystal for all particles, but we always shift the boundaries so that the

selected particle appears in the center;

2. we consider only n = 0 terms.

The former choice ensures that no jump happens in the potential energy when a

particle crosses a super-cell boundary and therefore ’jumps’ in the evaluation from

one border of the cell to the opposite. The latter is a minimum choice considering

interactions between a selected particle with the closest copy of the others only.

2.3.2 PBC using Ewald summation

This section will provide a useful insight for PBC using Ewald summation [87, 90].

As the summation in Eq. (2.31) is conditionally convergent, therefore using Ewald

method, one can evaluate E by transforming it into a summation that converges

rapidly and absolutely. The potential field generated by an ion having a charge qi

at a location ri is given as

φi(r) =
1

4πε0

qi
|r − ri|

. (2.32)
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The potential field generated by all N ions along with the periodic images using

PBC is

φ(r) =
1

4πε0

∑

n

N∑

j=1

qj
|r − rj + nL| . (2.33)

The potential field generated by all the ions including their images, excluding ion i

is given as

φ[i](r) ≡ φ(r)− φi(r) =
1

4πε0

∑

n

N∑

j=1

′ qj
|r − rj + nL| . (2.34)

By comparing Eq. (2.31) and Eq. (2.34), we get

E =
1

2

N∑

i=1

qiφ[i](ri). (2.35)

The charge density for a point charge is given as

ρi(r) = qiδ(r − ri). (2.36)

If one considers a more general problem, where all the ions do not necessarily have

charge distribution as a delta function, but can spread out in space, then the po-

tential field generated by this charge distribution is the solution of the Poisson’s

equation:

φi(r) =
1

4πε0

∫
ρi(r

′
)

|r − r′ |d
3r

′
. (2.37)
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The total Coulomb interaction energy E can be written as

E =
1

4πε0

1

2

∑

n

N∑

i=1

N∑

j=1

′
∫ ∫

ρi(r)ρj(r′)
r − r′ + nL

d3rd3r′, (2.38)

whereas the potential field excluding ion i becomes

φ[i](r) =
1

4πε0

∑

n

N∑

j=1

′
∫

ρj(r′)
|r − r′ + nL|d

3r′. (2.39)

If the charge density is given by Eq. (2.36), then Eq. (2.38) and Eq. (2.39) reduce to

Eq. (2.31) and Eq. (2.34) respectively.

The charge distribution in our case is described in terms of a delta function. But

we can split it into two terms by adding and subtracting a Gaussian distribution:

ρi(r) = ρSi (r) + ρLi (r)

ρSi (r) = qiδ(r − ri)− qiGσ(r − ri)

ρLi (r) = qiGσ(r − ri), (2.40)

where

Gσ(r) =
1

(2πσ2)3/2
exp

[
− |r|2

2σ2

]
, (2.41)

the standard deviation of the distribution function is given by σ, and S and L rep-

resent short-range and long-range terms respectively. Similar to the splitting of the
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charge, one can split the potential field φi(r) also:

φi(r) = φS
i (r) + φL

i (r)

φS
i (r) =

qi
4πε0

∫
δ(r − ri)−Gσ(r − ri)

|r − ri|
d3ri

φL
i (r) =

qi
4πε0

∫
Gσ(r − ri)
|r − ri|

d3ri. (2.42)

Similarly, the potential field generated by all the ions excluding the ith ion can be

written as

φ[i](r) = φS
[i](r) + φL

[i](r). (2.43)

Moreover, the Coulomb interaction energy can also be splitted likewise:

E =
1

2

N∑

i=1

qiφ
S
[i](ri) +

1

2

N∑

i=1

qiφ
L
[i](ri). (2.44)

The above equation can also be further splitted by adding and subtracting a self-

interaction term:

E =
1

2

N∑

i=1

qiφ
S
[i](ri) +

1

2

N∑

i=1

qiφ
L(ri)−

1

2

N∑

i=1

qiφ
L
i (ri) (2.45)

ES =
1

2

N∑

i=1

qiφ
S
[i](ri) (2.46)

EL =
1

2

N∑

i=1

qiφ
L(ri) (2.47)

Eself = −1

2

N∑

i=1

qiφ
L
i (ri). (2.48)
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The potential field due to the Gaussian charge distribution can be obtained using

Poisson’s equation:

∇2φσ(r) = −Gσ(r)
ε0

. (2.49)

Solving the above equation, we get

φσ(r) =
1

4πε0|r|
erf

(
|r|√
2σ

)
. (2.50)

Therefore,

φS
i (r) =

1

4πε0

qi
|r − ri|

erfc

(
|r − ri|√

2σ

)
(2.51)

φL
i (r) =

1

4πε0

qi
|r − ri|

erf

(
|r − ri|√

2σ

)
. (2.52)

Here, φL
i (r) is a long-range non-singular potential and φS

i (r) is a short-range singular

potential. Excluding the contribution from the ith ion, the potential can be rewritten

as

φS
[i](r) =

1

4πε0

∑

n

N∑

j=1

′ qj
|r − rj + nL| erfc

(
|r − rj + nL|√

2σ

)
. (2.53)

Similarly, the short-range term Eq. (2.46) of the Coulomb interaction energy can be

written as

ES =
1

2

1

4πε0

∑

n

N∑

i=1

N∑

j=1

′ qiqj
|ri − rj + nL| erfc

(
|ri − rj + nL|√

2σ

)
. (2.54)

The above equation differs from the total Coulomb interaction energy E due to the

erfc term, which truncates the potential function at large distances. Therfore, ES
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can be computed from the sum in real space, controlling the error by introducing

a finite cutoff. As we have the expression Eq. (2.52) for the long-range potential,

therefore the self energy term can be computed as follows:

φL
i (ri) =

qi
4πε0

√
2

π

1

σ
(2.55)

Eself = − 1

4πε0

1√
2πσ

N∑

i=1

q2i . (2.56)

φL(r) represents the potential field generated by a periodic array of ions, which in-

cludes the contributions from all the ions. The total charge density field is a periodic

function and is given as:

ρL(r) =
∑

n

N∑

i=1

ρLi (r + nL). (2.57)

Therefore, φL(r) can be Fourier transformed into its reciprocal space:

φ̂L(k) =
∫

V

φL(r) exp(−ik · r) d3r (2.58)

ρ̂L(k) =
∫

V

ρL(r) exp(−ik · r) d3r, (2.59)

where φ̂L(k) and ρ̂L(k) are the Fourier transforms of φL(r) and ρL(r) respectively.

Reciprocal vector is represented by k. In order to compute EL, first the Fourier

transform of the charge density is calculated. Then the long-range potential in real

space is calculated by using its inverse Fourier transform. Hence the potential be-

comes

φL(r) =
1

V ε0

∑

k 6=0

N∑

j=1

qj
k2

exp(ik · (r − rj)) exp(−σ2k2/2), (2.60)
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where k = |k|. The contribution to the k = 0 term is zero as the supercell is charge

neutral, i.e.
∑N

i=1 qi = 0. Therefore,

EL =
1

V ε0

∑

k 6=0

N∑

i=1

N∑

j=1

qiqj
k2

exp(ik · (ri − rj)) exp(−σ2k2/2). (2.61)

Hence, the final equation can be written as

E = ES + EL + Eself ,

or equivalently

E =
1

2

1

4πε0

∑

n

N∑

i=1

N∑

j=1

′ qiqj
|ri − rj + nL| erfc (α|ri − rj + nL|) +

1

V ε0

∑

k 6=0

N∑

i=1

N∑

j=1

qiqj
k2

exp(ik · (ri − rj)) exp(−k2/4α2)−

1

4πε0

α√
π

N∑

i=1

q2i . (2.62)

In the above Eq. (2.62), α represents the Ewald splitting parameter and is given

as α = 1/
√
2σ. In practice, the sum over ES and EL are computed considering

cutoffs given by Rcut = θ(σ) for real-space contribution and Kcut = θ(α) for k-space.

Optimal value for α parameter should be considered in order to make Ewald sum-

mation computationally inexpensive. In general one chooses α large enough so one

can employ minimum image convention in Eq. (2.54). The inverse length α, which

is also known as the splitting parameter, tunes the relative weights of the real- and

the reciprocal-space contributions. The cutoffs Rcut and Kcut are optimized with re-

spect to α such that the required computer time scales likeN3/2 as given in Ref. [91].
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TABLE 2.1: CPU timings for 1000 particles

α

(1/Å)
Rcut Kcut

CPU R-space timing CPU K-space timing
Potential (sec) Force (sec) Potential (sec) Force (sec)

1.0 1 25 0.885 3.1825 12.2903 10356.6
0.2 1 6 0.885 3.1825 0.1996 176.108
0.05 3 1 45.567 76.827 0.0022 2.1467
0.025 5 1 208.51 325.04 0.0022 2.1467
0.0125 10 1 1222.8 2057.4 0.0022 2.1467

TABLE 2.2: GPU timings for 1000 particles

α

(1/Å)
Rcut Kcut

GPU R-space timing GPU K-space timing
Potential (sec) Force (sec) Potential (sec) Force (sec)

1.0 1 25 1.109 0.054 12.29 125.9
0.2 1 6 1.129 0.053 0.199 2.096
0.05 3 1 2.332 0.582 0.002 0.0324
0.025 5 1 6.103 2.225 0.002 0.0324
0.0125 10 1 36.51 15.36 0.002 0.0324

However, it is required that Rcut > length/2 restricting the minimum image conven-

tion in the real-space. For given finite real- and reciprocal-space cutoffs there exists

an optimal α value such that the accuracy of the approximated Ewald summation

is the highest possible. The optimal value can be determined easily with the help

of the estimates for the cutoff errors given in Ref. [87], which essentially is done

by demanding that the real- and reciprocal-space contribution to the error should

be equal. The computational cost using Ewald summation and minimum image

convention are given in Table 2.1

2.3.3 Construction of a nanocrystal

Finally, one can assemble the entire real crystal from the individually simulated

super-cells to model the whole dynamics. While in this way, modeling becomes fea-

sible even without the need of supercomputers, we should also note a shortcoming

of this approach: we do not allow particle transport, in particular electron transport
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between the super-cells. For biologically relevant light elements, Auger and sec-

ondary electrons have energies Ekin . 300 eV, which yield a short mean free path

in a dense environment. Therefore, such electrons may travel only to neighboring

super-cells experiencing similar fluences during the irradiation, so that the effect of

net transport may be negligible. On the other hand, photoelectrons have an energy

almost as high as the photon energy. Hence, they are fast and have a long mean

free path. They can leave super-cells located at high-fluence regions and can affect

super-cells at larger distances experiencing lower fluences. We will overcome this

shortcoming of the model in the future. Both of the approaches explained in Sec. 2.3

are implemented in XMDYN. I only choose minimum image convention rather than

Ewald summation in our simulations as it is computationally less expensive.
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Chapter 3

Radiation damage in solid-density

matter

This chapter is centered on a publication [2] that is based on the theoretical frame-

work explained in Chapter 2. In order to have a theoretical insight into the cal-

culation of the scattering patterns from a nanocrystal, one needs to investigate the

radiation damage in nanocrystals exposed to intense x-ray pulses. Therefore, the

non-equilibrium evolution of the warm-dense plasma towards the equilibrium state

needs to be analyzed.

3.1 A molecular-dynamics approach for studying ther-

malization properties of x-ray-heated solid-density

matter

3.1.1 Motivation

When matter is exposed to a high-intensity x-ray free-electron-laser pulse, the x rays

excite inner-shell electrons leading to the ionization of the electrons through vari-

ous atomic processes and creating high-energy-density plasma, i.e., warm or hot
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dense matter. The resulting system consists of atoms in various electronic configu-

rations, thermalizing on sub-picosecond to picosecond timescales after photoexci-

tation. I present a simulation study of x-ray-heated solid-density matter. For this, I

use XMDYN, a Monte-Carlo molecular-dynamics-based code with periodic bound-

ary conditions, which allows one to investigate non-equilibrium dynamics. XM-

DYN is capable of treating systems containing light and heavy atomic species with

full electronic configuration space and 3D spatial inhomogeneity. For the validation

of the approach, I compare for a model system the electron temperatures and the

ion charge-state distributions from XMDYN to results for the thermalized system

based on the AA model implemented in XATOM. Furthermore, I compare the av-

erage charge evolution of diamond with the predictions of a Boltzmann continuum

approach. I demonstrate that XMDYN results are in good quantitative agreement

with the above mentioned approaches, suggesting that the current implementation

of XMDYN is a viable approach to simulate the dynamics of x-ray-driven non-

equilibrium dynamics in solids. In order to illustrate the potential of XMDYN for

treating complex systems, I present calculations on the triiodo benzene derivative 5-

amino-2,4,6-triiodoisophthalic acid (I3C), a compound of relevance to biomolecular

imaging, consisting of heavy and light atomic species.

3.1.2 Molecular dynamics with super-cell approach

My focus here is the bulk properties of highly excited matter. XMDYN uses the con-

cept of periodic boundary conditions (PBC) to simulate bulk behavior [64, 5]. In the

PBC concept, I calculate the irradiation-induced dynamics of a smaller unit, called

a super-cell. A hypothetical, infinitely extended system is constructed as a periodic
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extension of the super-cell. The driving force of the dynamics, the Coulomb inter-

action, is then calculated for all the particles inside the super-cell within the mini-

mum image convention [89]. Therefore, the total Coulomb force acting on a charge

is given by the interaction with other charges within its well-defined neighborhood

containing also particles of the surrounding copies of the super-cell.

While core-excited states of atoms decay typically within a few femtoseconds,

electron impact ionization and recombination events occur throughout the thermal-

ization process and are in dynamical balance in thermal equilibrium.

3.2 Validation of the methodology

I first consider a model system consisting of carbon atoms. For a reasonable com-

parison of the results from XMDYN and AA, one should choose a system that can

be addressed using both tools. AA does not consider any motion of atomic nuclei.

Therefore, I had to restrict the translational motion of atoms and atomic ions in XM-

DYN simulations as well. In order to do so, I set the carbon mass artificially so large

that atomic movements were negligible throughout the calculations. Furthermore,

I increased the carbon-carbon distances to reduce the effect of the neighboring ions

on the atomic electron binding energies. In XMDYN simulations, I chose a super-

cell of 512 carbon atoms arranged in a diamond structure, but with a 13.16 Å lat-

tice constant (in case of diamond, it is 3.567 Å). The number density of the carbon

atoms is ρ0 = 3.5 × 10−3Å
−3

, which corresponds to a mass density of 0.07g/cm3.

Plasma is generated by choosing different irradiation conditions typical at XFELs.

Three different fluences, Flow = 6.7×109 ph/µm2 , Fmed = 1.9×1011 ph/µm2, and

Fhigh = 3.8×1011 ph/µm2, are considered. In all the three cases, the photon energy

and pulse duration are 1 keV and 10 fs (full width at half maximum), respectively.
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FIGURE 3.1: Time evolution of the temperature of the electron plasma
within XMDYN simulation during and after x-ray irradiation at differ-
ent fluences: (a) Flow = 6.7×109 ph/µm2, (b) Fmed = 1.9×1011 ph/µm2

and (c) Fhigh = 3.8×1011 ph/µm2. In all three cases, the pulse duration
is 10 fs FWHM; the pulse is centered at 20 fs, and the photon energy is 1
keV. The black curve represents the gaussian temporal envelope. Note
that in all cases, equilibrium is reached within 100 fs after the pulse.

This figure is taken from Ref. [2].

From XMDYN plasma simulations shown in Fig. 3.1, the time evolution of the tem-

perature of the electron plasma is analyzed by fitting to Eq. (2.32). Counterintu-

itively, right after photon absorption has finished, the temperature is still low, and

then it gradually increases, although no more energy is pumped into the system.

The reason is that during the few tens of femtoseconds’ irradiation, the fast pho-

toelectrons are not yet part of the free electron thermal distribution. Initially, only

the low-energy secondary electrons and Auger electrons that have lost a signifi-

cant part of their energy in collisions determine the temperature. The fast electrons

thermalize on longer timescales as shown in Figs. 3.1(b) and (c), contributing to the

equilibrated subset of electrons. In all cases, equilibrium is reached within 100 fs

after the pulse.

AA calculates only the equilibrium properties of the system, which means that

it does not consider the history of the system’s evolution through non-equilibrium

states. I first calculate the total energy per atom, E(T ), as a function of temperature
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FIGURE 3.2: Relation between plasma temperature and energy ab-
sorbed per atom in AA calculations for a carbon system of mass den-

sity 0.07g/cm3. This figure is taken from Ref. [2].

T within a carbon system of density ρ0:

E(T ) =
∑

p

εpñp(µ, T )

∫

r≤rs

d3r |ψp(r)|2 , (3.1)

where p is a one-particle state index, εp and ψp are the corresponding orbital en-

ergy and orbital respectively, and ñp stands for the fractional occupation number at

chemical potential µ. Details are found in Ref. [58]. In this way, I obtain a relation

between the average energy absorbed per atom, ∆E = E(T )−E(0), and the electron

temperature (see Fig. 3.2). From XMDYN, the average number of photoionization

events per atom, nph, is available for each fluence point, and therefore the energy

absorbed on an average by an atom is known (= nph × ωph, where ωph is the pho-

ton energy). Using this value, I can select the corresponding temperature that AA

yields. This temperature is compared with that fitted from XMDYN simulations.

All these results are in reasonable agreement, as shown in Table 3.1. Later, I use this

temperature for calculating the charge-state distributions.

Figure 3.3 shows the kinetic-energy distribution of the electron plasma (in the
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Parameters Low fluence Medium flu-
ence

High fluence

Fluence
(ph/µm2)

6.7× 109 1.9× 1011 3.8× 1011

Energy ab-
sorbed per
atom (eV)

29 665 1170

XMDYN tem-
perature (eV)

7 57 91

AA tempera-
ture (eV)

6 60 83

TABLE 3.1: Final temperatures obtained from XMDYN runs after 250
fs propagation and from AA calculations. XMDYN temperatures are
obtained from fitting using Eq. (2.32), while AA temperatures are ob-
tained from the absorbed energy–temperature relation (Fig. 3.2). This

table is taken from Ref. [2].

left panels) and the charge-state distributions (in the right panels) for the three dif-

ferent fluences. The charge-state distributions obtained from XMDYN at the final

timestep (250 fs) are compared to those obtained from AA at the temperatures spec-

ified in Table 3.1. Although similar charge states are populated using the two ap-

proaches, differences can be observed: AA yields consistently higher ionic charges

than XMDYN (20%–30% higher average charges) for the cases investigated.

This is probably for the following reasons. XMDYN calls XATOM on the fly to

calculate re-optimized orbitals for each electronic configuration. In this way, XM-

DYN accounts for the fact that ionizing an ion of charge Q costs less energy than

ionizing an ion of charge (Q + 1). However, in the current implementation of AA,

this effect is not considered. At a given temperature, AA uses the same orbitals

(and therefore the same orbital energies) irrespective of the charge state. A likely

consequence is that AA gives more population to higher charge states, simply be-

cause their binding energies are underestimated. That could also be the reason why
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AA produces wider charge-state distributions and predicts a somewhat higher av-

erage charge than XMDYN does. The other reason for the discrepancies could be

the fact that XMDYN treats only those orbitals as being quantized that are occu-

pied in the ground state of the neutral atom. For carbon, these are the 1s, 2s, and

2p orbitals. All states above are treated classically in XMDYN, resulting in a con-

tinuum of bound states. As a consequence, the density of states is different and it

may yield different orbital populations and therefore different charge-state distri-

butions. Moreover, while free-electron thermalization has been ensured, the bound

electrons are not necessarily fully thermalized in XMDYN. In spite of the discrep-

ancies observed, XMDYN and AA equilibrium properties are in reasonably good

agreement.

I also performed simulations under the conditions that had been used in a recent

publication using a continuum approach [4]. In these simulations, nuclear motions

are not restricted. A Gaussian x-ray pulse of 10 fs FWHM was used. The intensi-

ties considered lie within the regime typically used for high-energy-density exper-

iments : Imax = 1016 W/cm2 for ωph = 1000 eV, and Imax = 1018 W/cm2 for ωph =

5000 eV. I employed a super-cell of diamond (mass density = 3.51 g/cm3) containing

1000 carbon atoms within the PBC framework. In this study, 25 different Monte-

Carlo realizations were calculated and averaged for each irradiation case in order

to improve the statistics of the results. For a system of 1000 carbon atoms, each XM-

DYN trajectory takes 45 minutes of runtime on Intel (R) Xeon (R) CPU E5-2609 @

2.40 GHz. The average energy absorbed per atom [Fig. 3.4] is ∼ 28 eV and ∼ 26 eV,

respectively, for the 1000-eV and 5000-eV photon-energy cases, in agreement with

Ref. [4]. Figure 3.5 shows the time evolution of the average charge for the two dif-

ferent photon energies. Average atomic charge states of +1.1 and +0.9, respectively,

were obtained long after the pulse was over. Although the rapid increase of the
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FIGURE 3.3: Kinetic-energy distribution of the electron plasma and
charge-state distributions from AA and XMDYN simulations (250 fs
after the irradiation) for low fluence (a,b), medium fluence (c,d), and

high fluence (e,f). This figure is taken from Ref. [2].
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figure is taken from Ref. [2].
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FIGURE 3.5: Average charge within diamond irradiated with a Gaus-
sian pulse of hard and soft x rays of (a) ωph = 5000 eV, Imax =
1018W/cm2 and (b) ωph = 1000 eV, Imax = 1016W/cm2, respectively.
In both cases, a pulse duration of 10 fs FWHM was used. This figure is

taken from Ref. [2].
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average ion charge is happening on very similar times, the charge values at the end

of the calculation are 30% and 40% higher than those in Ref. [4] for the 1000-eV and

5000-eV cases, respectively [Fig. 3.5(a,b)].

I can name two reasons that can cause such differences in the final charge states.

One is that two different formulae for the total impact ionization cross section were

used in the two approaches. In Ref. [4], the cross sections are approximated from

experimental ground state atomic and ionic data [92], while XMDYN employs the

semi-empirical BEB formula taking into account state-specific properties. Figure 3.6

compares these cross sections for neutral carbon atom. It can be seen that the cross

section and, therefore, the rate of the ionization used by XMDYN are larger, which

can shift the final average charge state higher as well. The second reason is the

evaluation of the three-body recombination cross section. In Ref. [4], recombination

is defined using the principle of microscopic reversibility, which states that the cross

section of impact ionization can be used to calculate the recombination rate [93].

In the current implementation of the Boltzmann code, the two-body distribution

function is approximated using one-body distribution functions in the evaluation of

the rate for three-body recombination, whereas in XMDYN, correlations at all levels

are naturally captured within the classical framework due to the explicit calculation

of the microscopic electronic fields. Besides the fundamental differences in the two

approaches, one can see a good agreement between the final average charge states.

3.3 Application

In order to demonstrate the capabilities of XMDYN, I investigate the complex sys-

tem of crystalline form I3C (chemical composition: C8H4I3NO4 · H2O) [94] irradi-

ated by intense x rays. I3C contains the heavy atomic species iodine, which makes
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FIGURE 3.6: Comparison of impact ionization cross sections for neutral
ground-state carbon atom used in the current work within XMDYN
based on the BEB formula [3], and the cross sections used in the con-
tinuum approach of Ref. [4] based on experimental data. This figure is

taken from Ref. [2].

it a good prototype for investigations of experimental phasing methods based on

anomalous scattering [33, 34, 35, 36, 37, 38]. I considered pulse parameters used

at an imaging experiment recently performed at the Linac Coherent Light Source

(LCLS) free-electron laser [95]. The photon energy was 9.7 keV and the pulse dura-

tion was 10 fs FWHM. Two different fluences were considered in the simulations,

Fhigh = 1.0×1013 ph/µm2 (estimated to be in the center of the focus) and its half

value Fmed = 5.0×1012 ph/µm2. In these simulations, I do not restrict nuclear mo-

tions.

The computational cell used in the simulations contained 8 molecules of I3C (184

atoms in total). The time propagation ends 250 fs after the pulse. For the analysis,

50 XMDYN trajectories are calculated for both the fluence cases. These trajecto-

ries sample the stochastic dynamics of the system without any restriction of the

electronic configuration space that possesses (2.0 × 107)24 possible configurations,

considering the subsystem of the 24 iodine atoms only. The calculation of such an

XMDYN trajectory takes approximately 150 minutes on a Tesla M2090 GPU, while
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the same calculation takes 48 hours on Intel Xenon X5660 2.80GHz CPU (single

core).

Figure 3.7 shows the average charge for the different atomic species in I3C as

a function of time. Both fluences pump enormous energy in the system predomi-

nantly through the photoionization of the iodine atoms due to their large photoion-

ization cross section. In both the cases, almost all the atomic electrons are removed

from the light atoms, but mainly via secondary ionization. The ionization of iodine

is very efficient; when applying the weaker fluence Fmed, the iodine atoms already

lose on average roughly half of their electrons, whereas for the high fluence case,

the average atomic charge goes even above +40. Furthermore, I investigate the

free electron thermalization. The plasma electrons reach thermalization via non-

equilibrium evolution within approximately 200 fs. The Maxwellian distribution of

the kinetic energy of these electrons corresponds to very high temperatures: 365 eV

for Fmed and 1 keV for Fhigh (see Fig. 3.8). Hence, we have shown that XMDYN is a

tool that can treat systems with 3D spatial inhomogeneity, whereas the continuum

models usually deal with uniform or spherically symmetric samples. If the sam-

ple includes heavy atomic species, pre-selecting electronic configurations can affect

the dynamics of the system. XMDYN allows for a flexible treatment of the atomic

composition of the sample and, particularly, easy access to the electronic structure

of heavy atoms with large electronic configuration space.
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FIGURE 3.7: Average atomic charge in I3C as a function of time for
(a) Fmed = 5.0×1012 ph/µm2 and (b) Fhigh = 1.0×1013 ph/µm2, respec-
tively. In both cases, a pulse duration of 10 fs FWHM was used. The

photon energy was 9.7 keV. This figure is taken from Ref. [2].
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Chapter 4

XSINC: X-ray scattering in

nanocrystals

In this chapter, following a publication [5], I present a generalized method to de-

scribe the x-ray scattering intensity of the Bragg spots in a diffraction pattern from

nanocrystals exposed to intense x-ray pulses. The methodology involves the subdi-

vision of a crystal into smaller units. In order to calculate the dynamics within every

unit cell, XMDYN hybrid framework using real space periodic boundary conditions

is employed. By combining all the units, I simulate the diffraction pattern of a crys-

tal larger than the transverse x-ray beam size, a situation commonly encountered

in femtosecond nanocrystallography experiments with focused x-ray free-electron

laser radiation. The last section is also based on a publication [6], which describes

a precise construction of the effective form factors for the reconstruction of protein

structures.
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4.1 Calculation of x-ray scattering patterns from nanocrys-

tals at high x-ray intensity

4.1.1 Motivation

For imaging nano size sample of proteins and viruses at atomic resolution, one calls

for high intensity and short x-ray pulses. The shortcoming of high intensities is the

rapid ionization of the atoms on the few femtosecond timescale, which affects the

structure of the system. This radiation-induced damage changes the atomic form

factors and may induce significant atomic displacement on longer times. Finally,

radiation damage changes the scattering pattern. The bottleneck one faces is that

it is computationally not feasible to simulate a system with realistic (e.g. microm-

eter) size using software tools that are capable of following the dynamics of each

atom, required for imaging studies. Here, I present a methodology to overcome

this computational bottleneck.

4.1.2 Methodology of simulating scattering pattern

For a comprehensive theoretical study of signal formation in an SFX experiment,

one needs to simulate

(i) the radiation-induced dynamics of the sample and

(ii) the pattern formation based on the dynamics.

In the theoretical study presented here, I consider a micron-sized crystal in a

100 nm focus beam, a scenario where a nanocrystalline sample experiences fluences

as high as those typically used in single-particle imaging experiments. As a con-

sequence, the x-ray fluence is non-uniform throughout the sample. This may also
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have its imprint on the scattering pattern. However, it is computationally not fea-

sible to simulate a system with realistic size while following the dynamics of each

atom, required for imaging studies. Therefore, I present an approach that involves

the divison of a crystal into smaller units (super-cells) and the calculation of their

dynamics individually using periodic boundary conditions (PBC). In order to inves-

tigate the effect of inhomogeneous spatial fluence distribution, the super-cells are

subjected to different fluences. Then, combining all the super-cells, a nano-crystal

is formed and the scattering pattern is constructed under the influence of uniform

(within the irradiated part of the sample) and non-uniform spatial beam profiles.

4.1.3 Super-cell approach for scattering signal evaluation

The dimensions of the interaction volume are defined by the intersection of the x-

ray beam and the crystal. Therefore, its dimensions are determined by the focal

area (∼ 100× 100 nm2) and the thickness of the crystal along the beam propagation

direction (∼ µm). The number of atoms within this volume is of the order of 109.

This number is formidably large; it is not feasible to simulate the whole system by

a single XMDYN run. In order to overcome this barrier, a procedure of dividing the

whole crystal into smaller units is employed. These super-cells may contain several

crystallographic unit cells. The dynamics within each super-cell driven by the local

fluence (assumed to be uniform throughout the super-cell) individually is followed.

For this purpose, an extension to XMDYN is used that applies PBC [87, 88] to a

super-cell, accounting also for the effect of the environment surrounding it.

Scattering intensity

Although, during a single shot experiment, the sample may undergo significant

changes, the scattering patterns are static. They accumulate diffracted signal over
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the whole pulse. Further, the signal may contain an imprint of a spatially non-

uniform intensity profile. Formally, the scattering intensity at a specific reflection

described by the reciprocal vector Q, including the integration over time and the

subdivision of the crystal volume into super-cells, according to the approach intro-

duced in Sec. 4.1.3, reads:

dI(Q,F , ω)
dΩ

= C(Ω)

∫ ∞

−∞
dt g(t)

∑

I,r

PI,r(F , ω, t)

∣∣∣∣∣
∑

µ

√
Fµ e

iQ·Rµ

[∑

X

NX∑

j=1

fX,IµX,j
(Q, ω) eiQ·rµX,j +

Ne∑

l=1

eiQ·rµe,l

]∣∣∣∣∣

2

. (4.1)

In this equation, Q is the momentum transfer, F = {Fµ} is the x-ray fluence dis-

tribution throughout the crystal, the index µ runs over all super-cells and ω is the

photon energy. C(Ω) is a factor depending on the polarization of the x-ray pulse,

and g(t) represents the normalized temporal envelope. fX,IµX,j
is the atomic form fac-

tor of the jth atom of species X in the µth super-cell, IµX,j is the associated electronic

configuration, I = {IµX,j} denotes a global electronic configuration, rµX,j represents

the position vector of the jth atom of species X in the µth super-cell, and r = {rµX,j}

indicates the set of all atomic positions. NX represents the total number of atoms

for species X within a super-cell. PI,r represents the probability distribution of elec-

tronic configuration I and atomic positions r, and Rµ represents the position of the

µth super-cell. Ne represents the total number of free electrons in the µth super-cell,

and rµe,l represents the position vector of the lth electron in the µth super-cell. The

atomic form factor

fX,IXj
(Q, ω) = f 0X,IµX,j

(Q) + f
′

X,IµX,j
(ω) + i f

′′

X,IµX,j
(ω) (4.2)
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includes the dispersion corrections f
′

X,IµX,j
(ω) and i f

′′

X,IµX,j
(ω). This dispersion correc-

tion can be neglected when the applied photon energy is high above the ionization

edges, which is fulfilled in our study. Note that the summation over
√
Fµ appears

inside the modulus square in Eq. (4.1). The scattering amplitude from the µth super-

cell is proportional to the x-ray field amplitude (∝
√
Fµ) in that super-cell. A key

assumption when performing the coherent sum in Eq. (4.1) is that the entire crys-

tal is illuminated coherently, a condition that is fulfilled considering realistic XFEL

beam parameters and crystal sizes.

XSINC: Scattering pattern simulation code

In order to construct the scattering pattern, Eq. (4.1) cannot be used directly as

the PI and r configuration space is too large. However, by calculating realizations

of super-cell dynamics with XMDYN, a Monte-Carlo sampling of the distribution

PI,r(F , ω, t) represented in Eq. (4.1) becomes feasible. To construct the time evolu-

tion of the crystal through global configurations and to calculate patterns, I used

the following strategy, implemented in the code XSINC (x-ray scattering in nano-

crystals).

Firstly, I discretized the fluence space and calculated many super-cell trajectories

for each fluence value with XMDYN. XSINC selects randomly a trajectory for each

super-cell within the crystal (a local realization), so that the corresponding fluence

values are matching the best. These trajectories describe the local time evolution

of the super-cells and together, they form a global realization of the crystal. Then,

taking into account the spatial and temporal pulse profiles, XSINC calculates the

scattering amplitudes and intensities for the global configuration at different times

based on the corresponding snapshots. Finally, the incoherent sum of these patterns

corresponds to a time integrated pattern measured in a single-shot experiment. In



50 Chapter 4. XSINC: X-ray scattering in nanocrystals

the calculation, I perform a dense sampling of the fluence space. As a consequence,

two neighboring super-cells experience very similar fluence. Therefore, it is a good

approximation to take into account the direct effect of the neighboring cells by ap-

plying periodic boundary conditions and this construction leads to a realistic global

trajectory.

4.1.4 Results and Discussion

Simulation setup

In my investigations, I consider a diamond cube of a size of 1µm. I investigate the

cases of flattop and gaussian beam profiles (Fig. 4.2). Other parameters of the pulses

are the same in both the cases: photon energy is 10 keV, total number of photons per

x-ray pulse is 1×1012, the temporal pulse envelope is gaussian with a duration of

10 fs FWHM, focus size is 100×100 nm2 FWHM. The size of the diamond unit cell is

a = b = c = 3.57 Å containing 8 carbon atoms. The parameter choices listed in Ta-

ble 4.1 yield converged results. In the scheme mentioned above, several parameters

are convergence parameters of the method (Table 4.1). Results are considered con-

verged when characteristic properties of the Bragg peaks, such as the width and the

height of the intensity distribution in reciprocal space, converge during a monotonic

increase (or decrease) of the parameter. As an example, Figures 4.1(a) and 4.1(b) il-

lustrate the convergence of the time integrated peak intensity as a function of the

number of local (super-cell) realizations per fluence point for the reflection (1 1 1)

for the gaussian and the flattop spatial profile cases. We note that convergence im-

plicitly depends on the total number of different realizations used to build a global

realization. Therefore, in the gaussian case, where 350 different fluence points are

used, convergence starts at a much smaller value.
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Convergence Parameters Gaussian Case Flattop Case
Number of crystallographic unit cells
in a super-cell

5× 5× 5 5× 5× 5

Number of fluence points 350 1
Number of local realizations (XM-
DYN trajectories) per fluence point

5 150

Number of assembled global realiza-
tions

10 10

Depth of the crystal in beam propaga-
tion direction

1×Thickness of the
super-cell lattice con-
stant

1×Thickness of the
super-cell lattice con-
stant

Number of snapshots 28 28

TABLE 4.1: Convergence parameters for calculating scattering inten-
sity with XSINC and their values in the current study. This table is

taken from Ref. [5]
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FIGURE 4.1: Convergence of time integrated peak intensity for the re-
flection (1 1 1) as a function of the number of realizations per fluence
point: (a) for the gaussian and (b) for the flattop spatial pulse profile.
For the gaussian case, 350 different fluence points are used to calculate

the time integrated intensity. This figure is taken from Ref. [5]
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FIGURE 4.2: Radial fluence distributions in the current study: gaussian
profile (spatially non-uniform case) and flattop profile (uniform within
the irradiated part of the crystal). The focal size is 100 nm in both cases
and the pulse energy is also considered to be same. This figure is taken

from Ref. [5].

Radiation damage

The coherent scattering patterns depend on the presence of the atomic bound elec-

trons as well as on the atomic positions. The XMDYN and XATOM simulations

allow to analyze their change due to radiation damage for both diamond and iso-

lated carbon atom cases. Radiation damage is initiated by atomic photoionization

events. In case of isolated carbon atoms, Auger decays contribute approximately

to the same extent to the overall ionization. At the maximum fluence in our study,

∼ 35% of the atoms are photoionized (Fig. 4.3.a). Although the absorbed energy

is 10 keV per photon, almost all of this energy is taken away from the atom by the

high-energy photoelectron. The picture is different when the atom is embedded in

a crystal environment (Fig. 4.3.c). The high-energy photoelectrons stay within the

medium and distribute their energy by causing further ionization via secondary

ionization events. As a consequence, neutral atoms disappear early in the pulse and

by the end, even fully stripped carbon ions (C6+) appear. Many electrons are pro-

moted to (quasi-)free states within the sample. This also illustrates the importance
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FIGURE 4.3: Ionization dynamics of carbon atoms at different flu-
ences: time dependent charge state populations of isolated carbon
atoms calculated with XATOM for (a) Fhigh = 1 × 1014 µm−2 and (b)
Fmid = 4.5×1013 µm−2. Similarly, time dependent charge state popula-
tions of carbon atoms in diamond calculated with XMDYN for (c) Fhigh
and (d) Fmid. Secondary ionization events enhance the overall ioniza-
tion in a dense environment. The x-ray pulse with 10 fs FWHM tem-
poral profile is centered at t = 0 fs. This figure is taken from Ref. [5].

of secondary ionization processes in the progress of radiation damage in a dense

environment [96, 97, 98]. In the center of the focus, the sample absorbs 3.5 keV en-

ergy per atom that heats up the plasma electrons besides the ionization. Despite the

high charge states, recombination remains negligible during the pulse (number of

events less than 1 % per atom in the simulation) due to the extreme conditions.

Figure 4.4 represents the mean displacement of the carbon atoms during the

pulse. The average atomic displacement is much below the maximum achievable
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resolution, ∼ 1.2Å at 10 keV, even at the highest fluence. This suggests that the pat-

terns are affected predominantly due to the bound-electron loss through the mod-

ification of atomic scattering form factors. Despite the heavy ionization, atomic

displacements remain negligible during the ultrashort pulse duration due to the

highly symmetrical sample environment. We note here again that in my calcula-

tions, I neglected the chemical bonds. In low fluence regions, bonds may survive

and stabilize the structure against the emerging Coulomb forces. As the observed

displacements are far below the resolution even without any stabilization due to

bonds, bondless modeling of the current scenario is applicable.

Effect of the PBC approach on the dynamics

While ionic motion is negligible during the pulse, fast photoelectrons can travel

long distances. However, PBC confines all plasma electrons artificially within the

supercell they have been created in. Neglecting particle transport may lead to er-

ror in (i) local plasma electron density and (ii) local energy density. Whenever a

photoelectron is ejected, it leaves behind a positive charge located on an ion. If

I consider Coulomb interaction only, a positive space charge would build up in a

central cylinder because of photoelectron escape. Photoelectron trapping within the

interaction volume would start early in the pulse, at an average ion charge as low

as +0.005. An analogous phenomenon is discussed for finite samples in the litera-

ture [47]. However, photoelectrons cause secondary ionization as well, so an atomic

bound electron is promoted to a low energy continuum state. If this slow electron is

created in an outer region, it can efficiently contribute to the screening of the space

charge the photoelectron left behind. Based on these arguments, one can conclude

that (i) considering the interaction region to be neutral is a good approximation
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FIGURE 4.4: Mean displacement of the atoms for fluences Fhigh =
1×1014 µm−2 (red dots), Fmid = 4.5×1013 µm−2 (blue dots) and Flow =
6.0×1012 µm−2 (green dots). The gaussian temporal pulse envelope is
also depicted with the dashed black line. Fhigh is the fluence for the
flattop profile, which is also the maximum fluence in the present study.
Fmid and Flow are two values representing intermediate and low flu-
ences taken from the gaussian profile case. The mean atomic displace-
ment remains below the achievable resolution (∼ 1.2Å) at 10keV for all

the cases. This figure is taken from Ref. [5].

and (ii) in all regions, I overestimate the energy density by confining fast photoelec-

trons within a supercell. Similarly, as the Coulomb forces are the driving forces of

the ionic motions, I may also overestimate the atomic/ionic displacements. In my

study, eventually the effect on the scattering signal is relevant, as will be discussed

in the next section.

Scattering with damage

In this section, I analyze the changes of the Bragg peak intensity profiles in recipro-

cal space due to the severe radiation damage. In Fig 4.5(a) and 4.5(b), snapshots of

the 1D Bragg peak profiles in reciprocal space are depicted for the reflection Q= (1

1 1) for Gaussian and flattop spatial beam profiles, respectively. Two apparent fea-

tures can be seen, valid for other reflections as well.
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1. The width of the Bragg peak does not change during the pulse. This is con-

sistent with the expectation based on the negligible ion displacements – no

visible Debye-Waller-like broadening occurs. However, the widths are differ-

ent for the gaussian and flattop cases. The reason is the difference between

the size of the illuminated parts of the crystal. In the flattop profile case, the

focus size defines strictly the region exposed. On the other hand, a gaussian

profile has no sharp edge and therefore illuminates a larger region, yielding a

narrower Bragg peak and a larger effective crystal size.

2. Snapshots of the Bragg peak intensities behave differently for flattop and gaus-

sian beams. The snapshots of the Bragg intensities depend not only on the

scattering power of the sample, but also on the instantaneous x-ray intensity.

However, as the instantaneous x-ray intensities are equal at the same time

before and after the maximum of the pulse, a direct comparison of the cor-

responding snapshots of the Bragg profiles reflects exclusively the effect of

different damage extents. In the gaussian profile case, these corresponding

curves show small difference only, indicating that a significant contribution

is coming from regions in the crystal suffering little damage (Fig. 4.5.a). In

contrast, applying a flattop pulse profile, the scattering pattern is formed only

from extensively ionized parts of the crystal. A consequence of the loss of

atomic bound-electrons is the decrease of the atomic form factors yielding

significant signal drop for longer times (Fig. 4.5.b). The above findings are

reflected by the time integrated signals that correspond to the situation one

would encounter in an experiment (1D cut:Fig. 4.5.c,d; 2D cut: Fig. 4.6). Note

that for the gaussian spatial profile there is only a small decrease of the signal

compared to the ideal (no damage) case.
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[Å
−
2
]

×10 19

Gaussian Ideal
Gaussian Damaged

0.995 0.997 1 1.003 1.005
Qx[Å
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FIGURE 4.5: Snapshots of the scattering intensity for reflection (1 1 1)
along the Qy = Qz = 1Å

−1
line in reciprocal space: (a) gaussian spa-

tial beam profile, (b) flattop spatial beam profile. Solid and dashed
lines with the same color correspond to the same instantaneous irradi-
ating x-ray intensities. Note that the negative and the corresponding
positive times are of equal intensity during the rise and fall of the pulse
envelope. (c,d) Total time integrated scattering signal for gaussian and
flattop spatial beam profiles, respectively. Note the different vertical

axis scales. This figure is taken from Ref. [5].
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FIGURE 4.6: Contour plot for the Bragg spot of reflection (1 1 1) in the
Qz = 1Å

−1
plane in reciprocal space: (a) Gaussian beam profile; (b)

flattop beam profile. This figure is taken from Ref. [5].
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Effect of the PBC approach on the x-ray scattering patterns

Previously, I have discussed that the PBC approximation overestimates ionization

and atomic displacements, and therefore radiation damage throughout the sample.

It means that the method gives an upper bound to the effect of radiation damage

on the scattering patterns. A trivial lower bound is the case without any radiation

damage.

4.2 Towards the theoretical limitations of x-ray nanocrys-

tallography at high intensity: the validity of the

effective-form-factor description

4.2.1 Motivation

X-ray free-electron lasers (XFELs) broaden horizons in x-ray crystallography. Fa-

cilitated by the unprecedented high intensity and ultrashort duration of the XFEL

pulses, they enable us to investigate structure and dynamics of macromolecules

with nano-sized crystals. A limitation is the extent of radiation damage in the

nanocrystal target. A large degree of ionization initiated by the incident high-

intensity XFEL pulse alters the scattering properties of the atoms leading to per-

turbed measured patterns. I discuss the effective-form-factor approximation ap-

plied to capture this phenomenon and show the importance of temporal configura-

tional fluctuations at high intensities, shaping these quantities besides the average

electron loss. I analyze theoretically the applicability of the approach to targets con-

sisting of several atomic species and also via realistic radiation damage simulations.
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4.3 Theoretical methods

The scattering pattern of a crystal affected by severe radiation damage at high x-ray

intensity is calculated by an incoherent summation over all possible electronic and

nuclear configurations weighted by the corresponding probabilities of occurrence

at a given time and then accumulated over the whole x-ray pulse. When a crystal

is exposed to a high-intensity x-ray beam with fluence F and photon energy ω (I

employ atomic units), the scattering intensity at the momentum transfer Q, based

on Eq. (4.1) is given by

dI(Q,F , ω)
dΩ

= FC(Ω)
∫ ∞

−∞
dt g(t)

∑

Î,R̂

PÎ,R̂(F , ω, t)
∣∣∣∣∣
∑

X

NX∑

j=1

fX,IXj
(Q, ω) eiQ·RX

j

∣∣∣∣∣

2

, (4.3)

where X indicates the atomic species and j represents the atomic index of that

species. C(Ω) represents a factor depending on the polarization of the x-ray pulse,

while g(t) is the normalized temporal envelope of the pulse. I assume a uniform

fluence distribution within the irradiated part of the crystal [5]. Î =
{
IXj
}

is the

global electronic configuration of the crystal, which is given by specifying the elec-

tronic configuration IXj of all individual atoms, and R̂ =
{
RX

j

}
is the global nuclear

configuration of all atomic positions RX
j in the nanocrystal. The atomic form factor

differs for different atomic species X and different electronic configurations, so it

is given by fX,IXj
. PÎ,R̂ is the time-dependent probability of Î and R̂, which also

depends on F and ω. Note that it is critical to obtain the time evolution of PÎ,R̂ in

order to evaluate the scattering intensity of equation (4.3).

In contrast, the scattering intensity for an undamaged sample is calculated sim-

ply by using a coherent sum (the dependence on Q, F , and ω is omitted for the sake
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of convenience),

dI

dΩ
= FC(Ω)

∣∣∣∣∣
∑

X

f 0
X

(
NX∑

j=1

eiQ·RX
j

)∣∣∣∣∣

2

, (4.4)

where f 0
X is the atomic form factor of the atomic species X in the neutral ground

state. Here I consider nonresonant x-ray scattering only.

Our goal is to approximate the scattering intensity for XFEL-irradiated crystals

by using a simple coherent form as in equation (4.4). The simplest solution can be

obtained by replacing f 0
X with the time-averaged atomic form factor,

f̄X =

∫ ∞

−∞
dt g(t)f̃X(t), (4.5)

where f̃X(t) =
∑

IX
PIX (t) fIX is the time-dependent atomic form factor during the

x-ray pulse and fIX is the atomic form factor of the IXth electronic configuration

of the given atomic species X . PIX (t) is the configurational population at a given

time t, which was considered within the independent-atom model [35, 36]. The

time-averaged atomic form factor f̄X is typically interpreted by the effective charge

for the given atomic species during the x-ray pulse. The effective charge (time-

averaged electron loss) is enhanced as the intensity increases (see Fig. 4.8) because

of ionization dynamics, thus reducing the time-averaged form factor.

On the other hand, it has been suggested that the time-averaged atomic form

factor is not enough to describe the scattering intensity in the case of high-intensity

x-ray fields [35, 36, 38]. Since the time-dependent atomic form factor varies dramat-

ically during an intense x-ray pulse, one needs to take into account the temporal

variance [36]. For a single atomic species, it is trivial to derive the following effec-

tive form factor from the generalized Karle-Hendrickson equation [35, 36]:

f eff
X =

√∣∣f̄X
∣∣2 + V time

X , (4.6)
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where V time
X =

(∫∞
−∞ dt g(t)|f̃X(t)|2

)
−
∣∣∣
∫∞
−∞ dt g(t)f̃X(t)

∣∣∣
2

. If the XFEL-irradiated

crystal consists of more than one atomic species, one can show that the scattering

intensity may be approximated by a coherent sum as in equation (4.4), with the

effective atomic form factors defined in equation (4.6) (see Appendix for details).

With this definition, one can clearly see the distinction between the effective form

factor and that derived from the effective charge. Since V time
X > 0, the time-averaged

form factor f̄X always underestimates the effective form factor f eff
X . I will present

a detailed numerical analysis for those form factors in the following section, based

on realistic radiation damage simulations of nanocrystals irradiated by intense x-

ray pulses. Note that the form of equation (4.6) is equivalent to that proposed in

Ref. [99]: f eff
X =

√∫∞
−∞ dt g(t)

∣∣∣f̃X(t)
∣∣∣
2

.

4.4 Numerical analysis

4.4.1 Simulation methods

In order to perform a simulation of a nanocrystal exposed to an intense x-ray pulse,

I subdivide the nanocrystal into supercells and simulate the ionization and nuclear

dynamics for the supercells using XMDYN [1, 56, 57], applying periodic boundary

conditions. To construct a scattering pattern from the nanocrystal, I employ the

code XSINC [5].

In our investigation, for each Bragg reflection, XSINC analyzes the scattering in-

tensity in equation (4.3) with PÎ,R̂(t) obtained from realistic simulations of XMDYN,

including both impact ionization and recombination, which are critical in a dense

matter environment [5]. With PIX (t) derived from PÎ,R̂(t), the time-averaged atomic

form factor f̄X in equation (4.5) and the effective atomic form factor f eff
X in equa-

tion (4.6) are calculated using XSINC.
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4.4.2 Results

In my analysis, I consider a nanocrystal of the amino acid glycine. I use a photon

energy of 10 keV and four different x-ray peak intensities: I1 = 1.5 × 1018 W/cm2,

I2 = 1.5 × 1019 W/cm2, I3 = 1.5 × 1020 W/cm2 and I4 = 1.5 × 1021 W/cm2. The tem-

poral pulse envelope is Gaussian with 10 fs full width at half maximum (FWHM)

and I assume spatially uniform irradiation. In the simulation I choose a supercell

consisting of 105 glycine molecules. For each peak intensity, 150 XMDYN trajecto-

ries are calculated. Figure 4.7 shows real-space snapshots of the atoms in a single

supercell undergoing ionization as a function of time, for the intensities I3 and I4.

It can be seen that the crystal structure is substantially modified by the end of the

pulse for the I4 case. Figure 4.8 shows the time evolution of the charge for dif-

ferent atomic species at different intensities. For the lowest intensity (I1), almost

all the species remain neutral (charges < +0.3) after irradiation, whereas for the

highest intensity (I4), carbon, nitrogen and oxygen are ionized up to charge states

of +4.7, +5.2 and +6.0, respectively. To saturate single-photon absorption for light

atoms (carbon, nitrogen and oxygen) at 10 keV, the intensity at 10 fs FWHM must

be larger than 1021 W/cm2. Therefore, x-ray multiphoton ionization does not play

a significant role in the intensity regime under consideration, except for the highest

intensity. The drastic changes in the charge states shown in the high-intensity cases

in Fig. 4.8 are mainly due to electron impact ionization [5], resulting in severe radia-

tion damage. The accuracy of the effective-form-factor approximation is verified by

the crystallographic R-factor, which is widely used as a measure of the agreement

between calculated patterns based on a crystallographic model and the experimen-

tal ones. In Fig. 4.9 I compare the goodness of two different approximations using
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FIGURE 4.7: Real-space snapshots of ionization dynamics of a su-
percell comprising 105 molecules of glycine. The photon energy is
10 keV; the peak intensities are I3 = 1.5 × 1020W/cm2 and I4 =
1.5× 1021W/cm2. The temporal pulse envelope is Gaussian with 10 fs
full width at half maximum (FWHM). This figure is taken from Ref. [6]
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FIGURE 4.8: Average charge as a function of time at the intensity of
(a) I1 = 1.5 × 1018W/cm2, (b) I2 = 1.5 × 1019W/cm2, (c) I3 = 1.5 ×
1020W/cm2 and (d) I4 = 1.5 × 1021W/cm2. The red curve represents
the temporal Gaussian envelope of 10 fs FWHM. This figure is taken

from Ref. [6]
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FIGURE 4.9: Crystallographic R-factor in two different cases as a func-
tion of intensity. The black bars represent Reff,re, the brown bars repre-

sent Rf̄X,re. This figure is taken from Ref. [6]

the R-factor at several intensities. Reff,re is defined by

Reff,re =

∑
Q

∣∣∣
√
Ieff(Q)−

√
Ire(Q)

∣∣∣
∑

Q

√
Ire(Q)

, (4.7)

where the real intensities Ire(Q) are calculated from the incoherent sum, with full dy-

namics calculations, in equation (4.3) and Ieff(Q) is calculated from the coherent sum

in equation (4.4) by replacing f 0
X with the effective form factors f eff

X [equation (4.6)].

Similarly, If̄X(Q) is obtained by replacing f 0
X with f̄X . Then, Rf̄X,re is calculated from

If̄X(Q) and Ire(Q). The R-factor value required for successful structural determi-

nation is suggested to be R ≤ 0.15 as a rule of thumb [16]. The minimum possi-

ble value of R-factor is zero, indicating perfect agreement between the considered

cases. It can be seen that for the highest intensity (I4), Reff,re is still only about 0.05,

which indicates good agreement between Ieff and Ire. Hence, the coherent sum with

the effective atomic form factors used here can describe the radiation damage in a

nanocrystal even for the highest intensity (I4). On the other hand, Rf̄X,re increases
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FIGURE 4.10: Relative differences of the effective form factor (f eff
X ) as

compared to the ideal form factor (f0
X ) for different atomic species. The

peak intensity for each panel is the same as used in Fig. 4.8. This figure
is taken from Ref. [6]

much more rapidly as a function of the intensity, indicating that the time-averaged

atomic form factor f̄X is a poor choice when attempting to approximate the non-

ideal pattern in terms of a coherent pattern; f eff
X [equation (4.6)] provides a much

better fit, particularly at the highest intensities considered here. To further explore

the changes due to radiation damage dynamics using the effective form factors, I

analyze the relative difference between the effective and ideal (undamaged) form

factors,
(
f eff
X − f 0

X

)
/f 0

X , as shown in Fig. 4.10. The effective atomic form factors are

always reduced because of the radiation damage, so all plots in Fig. 4.10 are neg-

ative. The relative differences are almost negligible at low intensities [see (a) and

(b)], but not anymore at high intensities; the maximum difference is about 10% in



4.4. Numerical analysis 67

(c) and 30% in (d), respectively. Moreover, these relative differences are not con-

stant for different Bragg reflections and different atomic species. For example, at

the lowest intensity in (a), the effective form factors of carbon at the (1 0 1) and (2

0 1) reflections are more reduced than those of oxygen, even though the percentage

is very small. At the highest intensity in (d), the f eff
X of oxygen are more reduced

than those of carbon, and the relative differences fluctuate between 10% and 30%

for different Bragg reflections. Hence, the effective form factors cannot in general be

obtained by multiplying the standard form factors f 0
X by a single uniform scaling

factor.
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Chapter 5

Application: imaging of progressing

radiation damage in real time

This chapter is based on an experiment that was performed at the LCLS [95]. It

includes the complete methodology of the simulations that I have explained in the

course of this thesis. The chapter focuses exclusively on my simulation work, i.e.,

without including any experimental results as the experimental data analysis is still

in progress at the time of preparing this thesis.

The goal of the experiment was to image the evolution of the radiation damage

using two-color time-delayed pulses. The first pulse initiates the dynamics, but the

elastically scattered photons are filtered out. The second pulse has a slightly lower

frequency, so that the elastically scattered photons can pass through the filter and

can be detected, imprinting the progressive damage on the scattering pattern. I will

start with the radiation damage simulations and will finally proceed towards the

calculation of the scattering patterns.
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5.1 Setup: sample and simulation conditions

In order to do the simulation of the damage of an irradiated complex system of 5-

amino-2,4,6-triiodoisophthalic acid (I3C) in crystalline form consisting of heavy and

light atomic species, I have used XMDYN, in junction with XATOM. It is not feasi-

ble to simulate the dynamics of a ∼micron-sized irradiated crystal when each atom

is followed individually. Therefore, I used the following approach. I picked a few

representative fluence values between zero and the maximum fluence (local fluence

at the center of the Gaussian focus). I calculated the dynamics of the atoms and elec-

trons within individual crystal unit cells subjected to these fluences applying PBC. I

repeated the calculations with different random seeds several times in order to sam-

ple the stochastic dynamics for better statistics. For irradiation simulations, I con-

sidered pulse parameters used for the experiment recently performed at the LCLS

free-electron laser [95]. The computational cell used in the simulations contained 8

molecules of I3C (184 atoms in total). The photon energy for both pump and probe

pulses was 9.7 keV (I neglected the small difference in the photon energy of the two

pulses) and the pulse duration was 10 fs (FWHM). Two different fluences were con-

sidered in the simulations – a high fluence of Fhigh = 1.0×1013 ph/µm2 (estimated

to be at the center of the focus), and a medium fluence of Fmed = 5.0×1012 ph/µm2.

The beam focus is considered to be 150 nm. Different time delays were considered

between 0 fs and 110 fs. But for the sake of convenience, only the results for 0 fs,

20 fs, 40 fs, 80 fs and 110 fs time delays are shown. For the analysis, 50 XMDYN

trajectories are calculated for both the fluence cases.
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FIGURE 5.1: Average charge as a function of time, representing (a) 0 fs
delay, where the two pulses are coincident, (b) 20 fs delay, (c) 40 fs de-
lay, (d) 80 fs delay and (e) 110 fs delay. The black curve represents the
temporal Gaussian envelope of 10 fs FWHM. The fluence considered
is Fmed = 5.0×1012 ph/µm2; the average charge is calculated using 50

trajectories for each delay.

5.1.1 Results and Discussion on radiation damage

Figure 5.1 shows the time evolution of charges for Fmed. Extreme ionization of the

system even during the pump pulse is observed for Fmed. Almost all the light atoms

are fully ionized and the average charge state of iodine goes up to +34. The average

charge state increases further to +41 during the probe pulse. The main ionization

channel observed at Fmed is photoionization and the subsequent Auger decay for io-

dine atoms. Impact ionization also played an important role in ionizing iodine and

this is the predominant process to ionize the light atoms such as carbon, nitrogen

and oxygen. For different time delays, the real time propagation is only considered

until the probe pulse is over.

Figure 5.2 shows the time evolution of charges for Fhigh. The average charge

state goes up to +41 for iodine, which increases further to +47 during the probe
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FIGURE 5.2: Average charge as a function of time, representing (a) 0 fs
delay, where the two pulses are coincident, (b) 20 fs delay, (c) 40 fs de-
lay, (d) 80 fs delay and (e) 110 fs delay. The black curve represents the
temporal Gaussian envelope of 10 fs FWHM. The fluence considered
is Fhigh = 1.0×1013 ph/µm2; the average charge is calculated using 50

trajectories for each delay.

pulse. Impact ionization after photoionization and Auger decay play an impor-

tant role in stripping off electrons from iodine atoms. Even at the end of the probe

pulse, simulations show ionization due to impact ionization for iodine atoms. This

shows that highly energetic photo-electrons still exist and can induce more damage

at longer time scales. It may be noted that the system after the probe pulse is not

yet thermalized.

Figure 5.3 represents the mean displacement as a function of time delay for

Fmed. Hydrogen atoms are already displaced ∼0.5 Å during the pump pulse. The

mean displacement increases further to ∼1.2 Å during the probe pulse. The heav-

iest atomic species, namely iodine, is displaced on average, ∼0.25 Å. Other atoms

like carbon, nitrogen and oxygen are displaced up to ∼0.5 Å for the maximum delay

case.

Figure 5.4 represents the mean displacement as a function of time delay for Fhigh.
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FIGURE 5.3: Mean displacement as a function of time, representing (a)
0 fs delay, where the two pulses are coincident, (b) 20 fs delay, (c) 40 fs
delay (d) 80 fs delay and (e) 110 fs delay. The black curve represents the
temporal Gaussian envelope of 10 fs FWHM. The fluence considered is
Fmed = 5.0×1012 ph/µm2; the mean displacement is calculated using

50 trajectories for each delay.
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[Å

]

High Fluence
Delay 110fs

(a) (b) (c)

(d) (e)

FIGURE 5.4: Mean displacement as a function of time, representing (a)
0 fs delay, where the two pulses are concident, (b) 20 fs delay, (c) 40 fs
delay, (d) 80 fs delay and (e) 110 fs delay. The black curve represents the
temporal Gaussian envelope of 10 fs FWHM. The fluence considered is
Fhigh = 1.0×1013 ph/µm2; the mean displacement is calculated using

50 trajectories for each delay case.
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FIGURE 5.5: Time and volume integrated scattering intensity as a func-
tion of time delay, corresponding to Bragg reflections (a) (1 1 1), (b)
(2 2 2), (c) (3 3 3), (d) (4 4 4), (e) (5 5 5) and (f) (6 6 6). The red
curve represents the scattering intensity without the contribution of
the free electrons, whereas the blue curve represents the scattering in-
tensity from both bound and free electrons. The fluence considered is

Fmed = 5.0×1012 ph/µm2.

The trend is similar to that of Fmed case. It can be seen that for 0 fs delay, carbon,

nitrogen and oxygen atoms are already displaced up to ∼ 0.5Å. Iodine atoms are

displaced by ∼0.25 Å on an average. Displacement for iodine atoms is not siginifi-

cant, which is basically due to the following reasons:

(1) the heavy nuclues of the iodine atoms,

(2) the charge screening, which restricts the motion of the iodine atoms.

5.1.2 Results and Discussion on scattering intensity and patterns

In order to calculate the scattering pattern, I used a fixed fluence scenario; i.e., I as-

sumed a uniform spatial fluence distribution within the illuminated volume. I con-

structed a crystal with a diameter of the focal size by choosing randomly from the
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FIGURE 5.6: Time and volume integrated scattering intensity as a func-
tion of time delay, corresponding to Bragg reflections (a) (1 1 1), (b)
(2 2 2), (c) (3 3 3), (d) (4 4 4), (e) (5 5 5) and (f) (6 6 6). The red
curve represents the scattering intensity without the contribution of
the free electrons, whereas the blue curve represents the scattering in-
tensity from both bound and free electrons. The fluence considered is

Fhigh = 1.0×1013 ph/µm2.
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calculated unit cell trajectories (driven by the same fluence) as its building blocks.

I calculated the time integrated scattering signal for different reflections (Q-vectors

in reciprocal space) based on the time evolution of the constructed crystal using XS-

INC. The scattering signal has contribution from the bound electrons of the atoms

as well as from the free electrons released during ionization events according to Eq.

4.1. The dispersion correction of the atomic form factors is also included.

Figure 5.5 represents the time and volume integrated scattering intensity as a

function of time delay for different Bragg reflections. The fluence is set to Fmed =

5.0×1012 ph/µm2. Considering only the scattering from the bound electrons only,

the scattering intensity goes down significantly as a function of time delay for all

the Bragg reflections. This is due to the decrease in the number of bound electrons

due to photoionization, Auger decay and secondary ionization processes. When

including the contribution from the free electrons, besides the enhancement of the

background, an increase of the Bragg intensities can be observed for some reflec-

tions. This increase is due to the fact that strong correlation develops between the

highly charged ions and the plasma electrons via the Coulomb forces. This corre-

lation yields an increase of plasma electron density around the ions, enhancing the

scattering power at the ionic positions. The density enhancement is a dynamical

effect and depends on the number of localized electrons.

For Fhigh = 1.0×1013 ph/µm2, Fig. 5.6 represents the scattering intensity for dif-

ferent Bragg reflections as a function of time delay. The trends are very similar to

that of the medium fluence case, but the effects are enhanced. One can see a more

drastic decrease of intensity as a function of time and a stronger contribution of the

free electrons to the Bragg reflections in Fig. 5.6. The reason is the higher depletion

of the bound electrons and therefore stronger correlation effects between the ions

with higher charge and the plasma electrons at higher density.
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FIGURE 5.7: Contour plot for the Bragg reflection (1 1 1) in the Qz =

1Å
−1

plane in reciprocal space for Fmed = 5.0×1012 ph/µm2. Figures
(a-e) correspond to the scattering intensity including the free-electron
term, whereas Figs. (f-j) illustrate the scattering intensity without the

free-electron term.

FIGURE 5.8: Contour plot for the Bragg reflection (3 3 3) in the Qz =

1Å
−1

plane in reciprocal space for Fmed = 5.0×1012 ph/µm2. Figures
(a-e) correspond to the scattering intensity including the free-electron
term, whereas Figs. (f-j) illustrate the scattering intensity without the

free-electron term.
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FIGURE 5.9: Contour plot for the Bragg reflection (1 1 1) in the Qz =

1Å
−1

plane in reciprocal space for Fmed = 1.0×1013 ph/µm2. Figures
(a-e) correspond to the scattering intensity including the free-electron
term, whereas Figs. (f-j) illustrate the scattering intensity without the

free-electron term.

FIGURE 5.10: Contour plot for the Bragg reflection (3 3 3) in the Qz =

1Å
−1

plane in reciprocal space for Fmed = 1.0×1013 ph/µm2. Figures
(a-e) correspond to the scattering intensity including the free-electron
term, whereas Figs. (f-j) illustrate the scattering intensity without the

free-electron term.
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The scattering signal increases due to the contribution of the free electrons. But

it is not clear from the volume and time integrated signals whether this contribution

is from the background or the Bragg peaks are actually enhanced. Figures 5.7 and

5.8 show contour plots of Bragg peaks (1 1 1) and (3 3 3) as a function of time delay

for the medium fluence case, visualizing the scattered intensity distribution around

the Bragg peak in reciprocal space rather than its volume integrated value.

It can be seen that for both low Q and high Q-values, the scattering intensity

as a function of time delay decreases. But when including the free-electron term,

the background as well as the peak intensity increases, compared to the contribu-

tion from the bound electrons only. Similarly, for the high fluence case, Figs. 5.9

and 5.10 represent the contour plots of time integrated scattering intensity. As a

function of time delay, it can be seen that the scattering signal from bound elec-

trons only almost disappears, whereas the Bragg peak is still visible when the free

electron contribution is taken into account. These findings demonstrate the impor-

tance of the free- (or plasma-) electron contribution in the theoretical analysis of the

scattering patterns.
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Chapter 6

Conclusions

My research contributes to the field of high energy density plasma physics as well

as the new emerging field of nanocrystallography, which also motivated this re-

search. The thesis focuses on theoretical investigations of high intensity x-ray re-

lated scientific topics: (i) plasma formation and progression of radiation damage

within micron sized crystals and bulk systems of organic molecules and carbon

model systems due to an intense x-ray pulse and (ii) scattering pattern formation

during irradiation. My work includes methodological and code developments (XS-

INC and periodic boundary condition extension to XMDYN) as well as applications

of the simulation tools.

In Chapter 3, I have investigated the thermalization dynamics of x-ray-heated

bulk carbon systems using the simulation tool XMDYN and compared its predic-

tions to two other conceptually different simulation methods – the average-atom

model and the Boltzmann continuum approach. Analyzing thermalization times,

temperature and ionic charge state distributions within irradiated carbon systems,

we found reasonable agreement between the model predictions. Such comparisons

are important validation steps of the XMDYN approach that allows one to follow in-

homogeneous non-equilibrium systems of ions of any species (e.g., heavy elements)

with arbitrary electronic configuration.
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In Chapter 4, I presented a methodology for the simulation of x-ray scattering

patterns from serial femtosecond crystallography experiments with a high-intensity

x-ray beam. My approach includes the simulation of radiation damage within the

sample with the codes XMDYN and XATOM as well as the calculation of the pat-

terns using the code XSINC. According to this approach, the time evolution (the ra-

diation damage process) is calculated within sub-units of the crystal independently

using periodic boundary conditions. Then, a nanocrystal is assembled from the

sub-units for the calculation of the time integrated patterns. As a demonstration

of the method, I investigated the spatial pulse profile effects on the Bragg peaks

for a diamond nanocrystal. I found that if a gaussian profile is used (assuming

realistic XFEL parameters, such as tight focus and ultrashort pulse duration), the

time integrated signal intensity is reduced only by a small amount compared to the

damage-free case. For a flattop profile (at the same pulse energy), the decrease is

much more significant. The intensity reduction is primarily due to the change of

the form factors caused by ionizations. In both cases, the width of the Bragg peak

was connected to the size of the illuminated region in the crystal but was not af-

fected by the damage. As our approach overestimates the radiation damage in the

interaction region, it gives an upper bound to the effect of the radiation damage on

the patterns.

Moreover, I have discussed the generalization of the effective-form-factor ap-

proximation applied to describe scattering patterns from XFEL-irradiated samples

consisting of multiple atomic species. I have shown that these quantities are mainly

shaped by the average electron loss caused by stochastic ionization events and dy-

namical configurational fluctuations. I have demonstrated via realistic numerical

simulations that the role of the latter contribution becomes more prominent with
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increasing x-ray intensity. Still, up to intensities relevant for XFELs, the effective-

form-factor description is acceptable, also implying that conventional structure-

reconstruction algorithms dealing with purely coherent scattering signals can be

expected to work in this intensity regime as well.

InChapter 5, motivated by an experiment, I have investigated the progression of

the radiation damage within an I3C nanocrystal by applying a realistic pump-probe

scheme in the calculations. Under the experimental conditions, the ionization dam-

age increases fast in time, driven by the photoionization of iodine atoms; therefore,

the scattering signal strength decreases. The scattering signal is lost after 20 fs in

the simulations. The reason is the depletion of the bound electrons as well as the

motion of the nuclei. Furthermore, I have investigated the effect of free-electron

contribution to the scattering signal. A significant increase of the Bragg intensities

can be observed when including this contribution due to the ion-free electron cor-

relations; a dynamical electron density enhancement can be observed around the

highly charged heavy ions. This result demonstrates that theoretical predictions

without the free-electron contribution underestimate the scattering signal.





85

Appendix A

Effective-form-factors derivation

In a similar fashion as in Ref. [38], the effective atomic form factor is defined by

the square root of the scattering intensity given by only one atomic species X after

averaging over time and configurations:

f eff
X =

√√√√√√
FC(Ω)

∫∞
−∞ dt g(t)

∑
Î,R̂ PÎ ,R̂(F , ω, t)

∣∣∣
∑NX

j=1 fX,IXj
eiQ·RX

j

∣∣∣
2

FC(Ω)
∫∞
−∞ dt g(t)

∑
Î,R̂ PÎ ,R̂(F , ω, t)

∣∣∣
∑NX

j=1 e
iQ·RX

j

∣∣∣
2 . (A.1)

I assume that the nanocrystal is exposed to a homogeneous fluence distribution [5].

Assuming that no nuclear motions are involved during the short pulse duration and

radiation damage dynamics of individual atoms happen individually, the global

population is given by the product of the individual atomic populations with the

corresponding electronic configuration,

PÎ,R̂(F , ω, t) =
∏

X

NX∏

j=1

PIXj
(F , ω, t). (A.2)

Also I assume the dynamical profiles of individual atomic populations to be sim-

ilar to each other for a given atomic species, PIXj
(F , ω, t) ≈ PIX (F , ω, t). Then the
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effective atomic form factor goes over into

f eff
X =

√√√√√
∫ ∞

−∞
dt g(t)

∣∣∣f̃X(t)
∣∣∣
2

+


NX

(∑

IX

P̄IX |fIX |2 −
∫ ∞

−∞
dt g(t)

∣∣∣f̃X(t)
∣∣∣
2
)/∣∣∣∣∣

NX∑

j=1

eiQ·RX
j

∣∣∣∣∣

2



≈
√∫ ∞

−∞
dt g(t)

∣∣∣f̃X(t)
∣∣∣
2

=

√∣∣f̄X
∣∣2 + V time

X , (A.3)

where P̄IX =
∫∞
−∞ dt g(t)PIX (t) (the dependence of F , Q and ω is omitted). A similar

analysis was performed in Ref. [35]. The term within the brackets in equation (A.3)

diminishes whenNX becomes large, because at Bragg peaks
∣∣∣
∑NX

j=1 e
iQ·RX

j

∣∣∣
2

∝ (NX)
2.

It is worthwhile to note that this definition of the effective atomic form factor is di-

rectly connected to the MAD coefficient ãX in Ref. [35]: f eff
X = f 0

X

√
ãX .

Next, I demonstrate how the scattering intensity may be approximated by a co-

herent sum using the effective form factors. I start from equation (2) in Appendix A

in Ref. [37]. For simplicity, I consider only two atomic species, A and B (an exten-

sion to many atomic species is straightforward):

dI

dΩ
= FC(Ω)

∫ ∞

−∞
dt g(t)

∑

Î

PÎ(F , ω, t)
∣∣∣∣∣
NA∑

j=1

fA,IAj
(Q, ω)eiQ·RA

j +

NB∑

k=1

fB,IBk
(Q, ω)eiQ·RB

k

∣∣∣∣∣

2

.

(A.4)

Following the expressions in Ref. [37], the scattering intensity is written as the ex-

tended Karle–Hendrickson equation,

dI

dΩ
= FC(Ω)

[ ∣∣F 0
A

∣∣2 ãA +NA

∣∣f 0
A

∣∣2 (aA − ãA) +
∣∣F 0

B

∣∣2 ãB +NB

∣∣f 0
B

∣∣2 (aB − ãB)

+
∣∣F 0

A

∣∣ ∣∣F 0
B

∣∣BAB cos∆φ0
AB +

∣∣F 0
A

∣∣ ∣∣F 0
B

∣∣CAB sin∆φ0
AB

]
, (A.5)
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where the molecular form factor is defined by

F 0
X = f 0

X

NX∑

j=1

eiQ·RX
j =

∣∣F 0
X

∣∣ eiφ0
X , (A.6)

and the phase difference is ∆φ0
AB = φ0

A − φ0
B . Note that the dependence on Q and ω

is omitted for simplicity. The atom-specific MAD coefficients are given by

aX =
1

(f 0
X)

2

∑

IX

P̄IX |fIX |2 , (A.7)

ãX =
1

(f 0
X)

2

∫ ∞

−∞
dt g(t)

∣∣∣f̃X(t)
∣∣∣
2

, (A.8)

and the biatom-specific MAD coefficients are defined by

BAB =
2

f 0
Af

0
B

∫ ∞

−∞
dt g(t)

[
ℜ(f̃A(t))ℜ(f̃B(t)) + ℑ(f̃A(t))ℑ(f̃B(t))

]
, (A.9)

CAB =
2

f 0
Af

0
B

∫ ∞

−∞
dt g(t)

[
ℜ(f̃A(t))ℑ(f̃B(t))−ℑ(f̃A(t))ℜ(f̃B(t))

]
. (A.10)

After plugging the effective form factor f eff
X into equation (A.5), the scattering

intensity is recast as

dI

dΩ
= FC(Ω)

[ ∣∣∣∣
F 0
A

f 0
A

f eff
A +

F 0
B

f 0
B

f eff
B

∣∣∣∣
2

+NAV̄
config
A +NBV̄

config
B

+
∣∣F 0

A

∣∣ ∣∣F 0
B

∣∣
(
BAB − 2f eff

A f eff
B

f 0
Af

0
B

)
cos∆φ0

AB +
∣∣F 0

A

∣∣ ∣∣F 0
B

∣∣CAB sin∆φ0
AB

]
,

(A.11)

where V̄ config
X = (f 0

X)
2
(aX − ãX) [36]. Under Bragg conditions, the terms with V̄ config

X

are smaller than others asNX becomes larger. When anomalous scattering contribu-

tions are small enough (for example, light atoms at hard x-rays), the term with CAB
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may be neglected. In addition, let us assume that time profiles of the dynamical be-

havior of different atomic species are proportional to h(t), such that f̃A(t) = f 0
Ah(t)

and f̃B(t) = f 0
Bh(t). The factor

(
BAB − {2f eff

A f eff
B }/{f 0

Af
0
B}
)

then becomes

BAB − 2f eff
A f eff

B

f 0
Af

0
B

=
2

f 0
Af

0
B
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2
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0
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2
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2

= 2
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dt g(t) (h(t))2 − 2
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−∞
dt g(t) |h(t)|2

)2

= 0. (A.12)

Consequently, if I assume small anomalous scattering signals and similar dynamical

behavior for different atomic species, and neglect small NX V̄
config
X terms, then the

scattering intensity may be expressed as the conventional coherent sum,

dI

dΩ
= FC(Ω)

∣∣∣∣
F 0
A

f 0
A

f eff
A +

F 0
B

f 0
B

f eff
B

∣∣∣∣
2

= FC(Ω)
∣∣∣∣∣f

eff
A

(
NA∑

j=1

eiQ·RA
j

)
+ f eff

B

(
NB∑

j=1

eiQ·RB
j
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2

. (A.13)
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