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Abstract

The amplification of light has had an exceptional impact on both science

and technology. The amplification of other bosonic excitations, like phonons

or magnons, is also believed to uncover new important physical phenomena.

In particular, the amplification of resonantly driven optical phonons which

are of great interest due to their connection to structural phase transitions

has not been experimentally demonstrated yet. The aim of this thesis is the

investigation of the possibility to amplify optically driven lattice vibrations.

To this end, coherent mid-infrared optical pulses were used to resonantly

excite large amplitude oscillations of the Si-C stretching mode in silicon

carbide. Upon this excitation, the reflectivity at all wavelengths throughout

the reststrahlen band was observed to increase above one, as probed by

second time-delayed pulses. This striking result evidences the amplification

of the probe pulse, and, by extension, that of the optical phonon itself.

The microscopic mechanism for this phonon amplification is understood

in terms of the anharmonic response of the driven mode. Because of the

large amplitude ionic displacement, the high frequency permittivity and the

phonon oscillator strength, which are constant in the linear regime, reveal

quadratic dependence on the phonon coordinate. This makes them oscillate

at twice the frequency of the exciting light field and act as a parametric

drive in the equation of motion for the lattice dynamics. This model was

implemented in finite difference time domain simulations, which reproduced

well the experimental results.

Overall, the present study reports on the first experimental evidence of

optical phonons parametric amplification, and provides a deeper insight into

nonlinear lattice dynamics.
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Zusammenfassung

Die Verstärkung von Licht beeinflusst Wissenschaft und Technik in einer

außergewöhnlichen Weise. Ähnlich wichtige neue physikalische Phänomene

werden von der Möglichkeit der Verstärkung anderer bosonischer Quan-

tenobjekte wie zum Beispiel Phononen und Magnonen erwartet. Insbeson-

dere die Verstärkung resonant getriebener optischer Phononen, die aufgrund

ihrer Verbindung zu strukturellen Phasenübergänge von besonderer Bedeu-

tung sind, wurde bis heute nicht experimentell nachgewiesen. Das Ziel der

vorliegenden Arbeit ist es, diese Möglichkeit der Verstärkung optisch an-

geregter Gitterschwingungen zu erforschen.

Zu diesem Zweck wurden kohärente mittelinfrarote Lichtpulse zur reso-

nanten Anregung der Si-C Dehnungsmode in Siliziumcarbid genutzt. Diese

Anregung führte zu einer Erhöhung der Reflektivität größer als eins bei allen

Wellenlängen innerhalb des Reststrahlenbandes, wie durch zeitverzögerte

optische Pulse gemessen wurde. Dieses Ergebnis beweist die Verstärkung

der Abfragepulse, und damit einhergehend die Verstärkung des optischen

Phonons selbst.

Der mikroskopische Mechanismus dieser Phononverstärkung kann im

Sinne einer anharmonischen Antwort der angeregten Mode verstanden wer-

den. Aufgrund der großen Amplitude der Auslenkung der Gitterionen er-

fahren sowohl die Dielektrizitätszahl bei hohen Frequenzen als auch die

Oszillatorstärke des Phonons, die in der linearen Systemantwort jeweils

konstant sind, eine quadratische Abhängigkeit von der Phononkoordinate.

Dadurch oszillieren diese Größen bei der doppelten Frequenz des einges-

trahlten Lichtfeldes und wirken entsprechend als parametrische Kraft auf

das Kristallgitter. Dieses Modell wurde in einer Simulation nach der Finite-
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Differenzen-Methode im Zeitbereich implementiert, welche die experimentellen

Ergebnisse reproduzierte.

Insgesamt berichtet die vorliegende Arbeit den ersten experimentellen

Nachweis der parametrischen Verstärkung optischer Phononen und gibt

damit einen tiefen Einblick in die nichtlineare Gitterdynamik von Festkörpern.
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Introduction

Amplification of light has changed dramatically the 20th century science

and technology. Stimulated emission of photons led for example to the

development of lasers [1], which are nowadays ubiquitous in the everyday

life of billions of people. Shortly after the construction of the first laser,

the drastically increased available light intensities allowed to uncover other

mechanisms for light amplification. Such mechanisms are based on the

nonlinear response of optical media [2], like optical parametric amplification,

and are routinely employed for the frequency conversion of intense laser

pulses and in four wave mixing processes.

The amplification of other bosonic excitations like phonons or magnons

is likely to have an equally transformative impact on modern condensed

matter physics and technology.

In particular, the ability to amplify and control such collective excita-

tions with light fields paved the way for the explorations of new interesting

physical phenomena. For example the amplification of spin waves through

parametric pumping with microwaves has led to remarkable fundamental

discoveries, leading to the high-temperature condensation of magnons [3],

as well as to applicative spintronics-oriented studies aimed at the control of

spin currents on the micrometer scale [4].

Phonons and their fluctuations are related to fundamental quantum
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physical phenomena like squeezed states [5, 6], and to structural phase

transitions [7] that can in principle be functionalized. The manipulation

of phonon fluctuations close to such phase transitions, as well as their am-

plification, is therefore a possible new way of controlling interesting material

properties. The amplification of acoustic [8, 9] and optical [10] phonons un-

der intense laser and magnetic fields has been long studied theoretically.

Acoustic mode amplification has been reported experimentally, for exam-

ple in semiconductor superlattices driven by electrical currents [11] or bias

voltages [12], and in optically excited ruby [13]. Optical phonons, on the

other hand, have been successfully amplified only by drifting electrons in

semiconductor nanostructures [14].

It is the aim of this thesis to investigate the possibility of amplifying opti-

cally driven lattice vibrations. The amplification of resonantly driven optical

phonons is notably interesting, as the lattice vibrations amplitude plays a

pivotal role in strong-field optical excitation capable of controlling mate-

rial’s functionalities. The melting of magnetic order [15, 16], light induced

superconductivity [17, 18, 19, 20] and insulator to metal transitions [21, 22]

have been induced by the strong resonant excitation of optical phonons with

intense light fields. Additionally, pairs of lattice vibrations optically driven

to large amplitudes were proven to induce effective magnetic fields to con-

trol magnons [23]. Many of these results are understood in the framework

of nonlinear phononics [24, 25, 26, 27], a recently disclosed rich playground

where the anharmonic coupling of the pumped phonon modes to other de-

grees of freedom allows for the material’s control. In this context, however,

the possible anharmonic response of the driven mode itself has so far been

overlooked.

Indeed, for very large vibrational amplitudes in the range of few per-
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cent of the interatomic distances, the response of the driven phonon can

be expected to become anharmonic [28]. Such anharmonic response might

uncover a series of higher order nonlinear phononics phenomena, among

which the parametric amplification of the mode itself. This effect could

increase the vibrational lattice oscillations, with potential performative im-

provements of the nonlinear-phononics-based material control.

In a more general context, phononic parametric amplification would

extend the parallelism between the amplification of phonons and that of

photons.The anharmonic phonon response may be conducive to a series of

phononic counterparts of various optical nonlinearities, such as phononic

four wave mixing or soliton formation, capable of coherently transferring

energy among lattice modes or leading to mechanical waves propagating

without damping inside materials.

Structure of the thesis

In this thesis the nonlinear response of optically driven phonons is investi-

gated in the Si-C stretching mode of the prototypical dielectric silicon car-

bide. Chapter 1 presents the optical properties of infrared active phonons

as they are deduced from the Lorentz model. In chapter 2 the nonlinear

phonon response is modeled as an higher order expansion of such model

supported by first principle DFT calculations, and is shown to suggest the

onset of phonon amplification. This theoretical prediction is validated ex-

perimentally in chapter 3 with time-resolved time-domain-spectroscopy, a

technique suitably extended to cover the interesting frequency region ex-

tending up to 33 THz. In chapter 4 the pump-probe response of SiC based

on the model of chapter 2 is simulated in the framework of FDTD, showing
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good agreement with the experimental results and confirming the hypothesis

of optical phonon amplification.

Details on the experimental methods and on the implementation of

FDTD to simulate the pump-probe response of SiC are to be found in

appendices A and B, respctively.

Finally, appendices C and D report optical developments aimed at the

control of the spectral phase and bandwidth, respectively, of laser pulses

analogous to those used in the experiments presented in the main body of

the thesis.



Chapter 1

Linear optical properties of

IR-active phonons

The interaction of light with an infrared active optical phonon in the linear

regime is described by the Lorentz model, where the phonon is treated like

a charged harmonic oscillator which is set in motion by the light alternat-

ing electric field. This lays the foundation stone for the investigation of

the nonlinear phonon dynamics carried out in this thesis, as the response

of the lattice to very intense laser pulses will be studied in terms of an

extension to this model. For this reason, the first chapter describes the lin-

ear light-phonon interaction, reporting the equations governing the lattice

dynamics and the resulting optical properties that can be measured in the

experiments.

1.1 Infrared active phonons

Crystals are characterized by a periodic arrangement of atoms in the three

dimensional space, known as the crystal lattice. If one atom is displaced

5
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from its equilibrium position, it is subjected to interatomic restoring forces,

which maintain the solid together [29]. In the harmonic approximation, valid

for small displacments x, such restoring forces F are considered linearly

proportional to the displacement, F = −γ x. Thus, upon displacement,

the atoms oscillate around their equilibrium positions with some specific

frequencies. Furthermore, because of the interatomic forces the atoms can-

not vibrate independently from one another, and can be treated as a set

of coupled oscillators whose vibrations can be described as superposition of

normal modes, often referred to as phonons. A phonon is formally defined

as a quantum of vibrational energy arising from the oscillation of atoms

within a crystal. However, when crystals interact with light, the occupa-

tion number is usually high enough so that the phonon population can be

treated classically. For this reason from now on the term phonon will be

used referring to vibrational normal modes.

The behavior of atoms vibrating along one normal mode coordinate can be

described by a simple model, consisting of a set of spheres connected by

springs. Figure 1.1 shows the example case of a diatomic chain in which

neighbouring spheres have different masses. Assuming that each sphere is

only interacting with its nearest neighbours, the equations of motions for

the spheres of the n-th cell can be written as follows:

m
∂2an
∂t2

= γ (bn + bn−1 − 2an)

M
∂2bn
∂t2

= γ (an+1 + an − 2bn) .

(1.1)

These equations allow for travelling wave solutions of the form:

an = aei(nkd−ωt) bn = bei(nkd−ωt) (1.2)
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Figure 1.1: Diatomic chain of atoms represented as a set of spheres with

different masses m and M, connected by springs with force constant γ. The

unit cells are labeled by the index n, and the displacement of the spheres

within each cell with respect to their equilibrium positions are labeled a

and b.

where d is the distance between two spheres with the same mass, k is the

wavevector and ω the frequency. Substituting these into equations 1.1 leads

to:

−mω2a = γb
(
1 + e+ikd

)
− 2γa (1.3)

−Mω2b = γa
(
1 + e−ikd

)
− 2γb. (1.4)

The solution of these equations gives:

mMω4 − 2γ(m+M)ω2 + 2γ2 [1− cos (kd)] = 0, (1.5)

which is the phonon dispersion curve. The solutions relevant for the de-

scription of the phonons interaction with light are those for which k ≈ 0,

since the momentum carried by light is very small. In this approximation

cos (kd) ≈ 1− 1
2
k2d2 and the two roots become:

ω2 =
γ

2 (m+M)
k2d2 (1.6)

ω2 = 2γ

(
1

m
+

1

M

)
. (1.7)
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Figure 1.2: Schematic representation of the masses movement in (a)

acoustic and (b) optical modes. The masses movement is always the same

in all the unit cells. In the acoustic modes the masses within one unit cell

move in phase, while in the optical modes they move out of phase.

These two branches of solutions allow to separate the normal modes in two

categories, depending on the relative motions of the spheres. In the solu-

tions of equation 1.6, adjacent spheres are moving in the same direction,

i.e. in phase, as shown in Fig. 1.2(a). This is easily seen by substitut-

ing equation 1.6 into equation 1.3 in the limit of k = 0, which leads to

a = b. In this case the normal modes are at very low frequency, and are

called acoustic. Equation 1.7 describes solutions in which the spheres are

moving in opposite directions, i.e. out of phase [see Fig. 1.2(b)], as can

be seen substituting equation 1.7 into equation 1.3 in the limit of k = 0,

which leads to a = −M
m
b. Such normal modes are at higher frequencies and

are called optical. The nomenclature comes from the fact that if the two

ions in the unit cell are positively and negatively charged, when they are

displaced they create a dipole, and the mode can couple to the electric field

of a light wave. These subset of optical phonons are called infrared active

because their eigenfrequencies span the infrared portion of the electromag-

netic spectrum, typically from a few to tens of THz. Since electromagnetic
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Figure 1.3: (a) Schematic representation of a transverse optical infrared

active phonon. The wave is propagating in the z direction, while the pos-

itive (red) and negative (blue) ions are displaced in the y direction. The

black solid line depicts the external electric field E due to the light wave.

(b) Displacement of the ions within one unit cell. The positive ions have

mass m, charge Z, and are displaced by a vector a, while the negative ions

have mass M , charge −Z, and are displaced by a vector b.

waves are transverse, they can couple to transverse infrared active modes,

in which the displacement of the ions is perpendicular to the propagation

direction, as shown in Fig. 1.3(a). This situation can be modeled as shown

in Fig. 1.3(b), with ions of mass m and charge Z displaced by a distance

a in one direction, and ions of mass M and charge −Z displaced in the

opposite direction by a distance b. The equations of motion for the ions can

be written (in a similar fashion to Eq. 1.1) as:

m
∂2a

∂t2
= −γ (a− b) + ZE

M
∂2b

∂t2
= γ (a− b)− ZE,

(1.8)

where γ is the spring constant and E the applied electric field. It is con-

venient to describe the system in terms of a single equation, accounting for

the response of the mode as a whole. Defining the effective displacement
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W , the effective mass µ and the mode eigenfrequency ΩTO as:

W := a− b
1

µ
:=

1

m
+

1

M

ΩTO :=
γ

µ
,

(1.9)

equations 1.8 can be rewritten as:

∂2W

∂t2
+ Ω2

TOW =
Z

µ
E. (1.10)

This equation describes the motion of an undamped oscillator driven by a

force proportional to E. Such oscillator, once set in motion, would perpet-

ually oscillate. This un-physical scenario is due to the harmonic approxi-

mation, which assumes that the ions are moving in a parabolic potential,

i.e. their restoring force is linearly proportional to the displacement.

In real solids, anharmonicities of the lattice potential allow for the energy

transfer among different modes and result in a finite lifetime of the phonon

oscillations. These effects can be introduced here via a phenomenological

damping term, which leads to a new equation of motion of the form

∂2W

∂t2
+ Γ

∂W

∂t
+ Ω2

TOW =
Z

µ
E, (1.11)

where Γ is a coefficient inversely proportional to the lifetime of the phonon

mode. This equation successfully describes the interaction of an infrared

active mode with an external electric field.

1.2 Optical properties of IR-active phonons

The direct interaction of infrared active phonons with light is reflected in the

optical properties of the solid under consideration. These can be evaluated
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by considering the interaction of the phonon with a monochromatic light

wave of frequency ω. When dealing with solids, it is common to define a

phonon coordinate:

Q =
√
NµW, (1.12)

where N is the number of unit cells per unit volume. This allows to rewrite

eq. 1.11 as:
∂2Q

∂t2
+ Γ

∂Q

∂t
+ Ω2

TOQ =
√
N/µZE. (1.13)

The electromagnetic wave can be written as:

E(t) = E0

(
e−iωt

)
, (1.14)

where the phase term has been incorporated in the complex parameter E0.

For a driving frequency ω, Q takes solutions of the form

Q(t) = Q0

(
e−iωt

)
, (1.15)

where |Q0| is the amplitude of the phonon oscillations. The phonon response

to the field is therefore calculated by substituting Eq. 1.14 and 1.15 in Eq.

1.13:

−ω2Q0e
−iωt − iΓωQ0e

−iωt + Ω2
TOQ0e

−iωt =
√
N/µZE0e

−iωt (1.16)

which gives:

Q(t) =

√
N/µZ

Ω2
TO − ω2 − iΓω

E0e
−iωt. (1.17)

Equation 1.17 describes the behavior of the phonon oscillator in response

to a monochromatic wave. In order to describe the material optical prop-

erties, this has to be incorporated into Maxwell’s equations, which allow to

propagate the effect of the interaction between E and Q in the far field.

This is done by taking into account the polarization P , which in a medium
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is defined as the dipole moment per unit volume. A single oscillator carries

a dipole given by the product between the charge Z and the displacement

W , therefore the polarization in the material due to the phonon is:

Pphonon = NZW =
NZQ√
µN

=
NZ2

µ

1

Ω2
TO − ω2 − iΓω

E. (1.18)

The overall polarization in the sample comprises also other contributions,

for example due to the electrons which are being polarized by the applied

electric field. Since these contributions are not resonant with the phonon,

they can be treated as a background polarization proportional to E, P∞ =

ε0χE where χ is the electric susceptibility. The optical properties of the

material are then inserted into Maxwell’s equations through the constitutive

relation:

~D = ε0 ~E + ~P = ε0 ~E + ~P∞ + ~Pphonon. (1.19)

1.2.1 Relative permittivity

It is convenient to incorporate the overall sample response in the relative

permittivity εr, defined such as ~D = ε0εr ~E. This leads to:

εr(ω) = 1 + χ+
NZ2

ε0µ

1

Ω2
TO − ω2 − iΓω

(1.20)

which can be split into real and imaginary part, so that εr = ε1 + iε2:

ε1(ω) = 1 + χ+
NZ2

ε0µ

Ω2
TO − ω2

(Ω2
TO − ω2)

2
+ (Γω)2

, (1.21)

ε2(ω) =
NZ2

ε0µ

Γω

(Ω2
TO − ω2)

2
+ (Γω)2

(1.22)
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Figure 1.4: Frequency dependent real (ε1) and imaginary (ε2) parts of

the relative permittivity. The material parameters used for the plots are

those of hexagonal silicon carbide, with ε0 = 9.66, ε∞ = 6.52, ΩTO = 24.9

THz and Γ = 0.2 THz.

which are displayed in Fig. 1.4. It is important to notice that the frequency

dependence of the permittivity εr is all due to the last term of Eq. 1.20,

which is ultimately ascribed to the response of the phonon coordinate Q, as

can be seen from Eq. 1.17. The real part of the permittivity, starting from

a constant value for low frequencies, is strongly reshaped around the reso-

nance, reaching a maximum when approaching ΩTO from low frequencies.

This reflects the fact that when the driver approaches the phonon eigen-
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frequency, Q starts oscillating closer and closer to its mechanical resonance

and therefore its amplitude is increased. Also, as expected from a mechani-

cal oscillator, when driven just above resonance the phonon responds out of

phase, resulting in the negative value of ε1 above ΩTO. The real part of εr

then recovers and crosses zero at a characteristic frequency ΩLO, that will

be discussed later. In the region between ΩTO and ΩLO, the phonon oscil-

lating out of phase with respect to the impinging electric field is responsible

for the screening of the latter, and results in a region in which light cannot

propagate into the material. ε2, on the other hand, has a Lorentzian peak

at ΩTO, related to the absorption, whose width is given by the damping

parameter Γ. In an oscillator without damping (Γ = 0), ε1 would diverge

at ΩTO, and ε2 would be zero at all frequencies. The asymptotic values of

εr can be defined as:

ε0 := εr(0) = 1 + χ+
NZ2

ε0µΩ2
TO

ε∞ := εr(∞) = 1 + χ

(1.23)

so that the relative permittivity

εr(ω) = ε∞ +
Ω2
TO (ε0 − ε∞)

Ω2
TO − ω2 − iΓω

(1.24)

can be described in terms of the experimentally measurable quantities ε0,

ε∞, ΩTO and Γ. Assuming for simplicity a very small damping (i.e. Γ = 0),

ΩLO can be calculated from from eq. 1.24:

Ω2
LO =

ε0

ε∞
Ω2
TO. (1.25)

The name ΩLO comes from the electromagnetic theory, and in particular

from Maxwell’s equation:

∇ · ~D = 0, (1.26)
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which is valid in absence of free charges. If we consider an electromagnetic

wave of the form ~E = E0e
−i(~kx−ωt), Eq. 1.26 implies that ~k · ε0εr ~E = 0.

When εr 6= 0, like in vacuum, this implies that ~k · ~E = 0 and therefore

electromagnetic waves must be transverse, i.e. the electric field is perpen-

dicular to the propagation direction. If εr = 0, Maxwell’s equations also

allow for longitudinal solutions, in which the electric field can be parallel to

the propagation direction.

1.2.2 Refractive index

The electrical permittivity ε encapsulates the phonon coordinate Q dynam-

ics, as discussed in in section 1.2.1. However, the quantities directly mea-

sured in experiments are usually the refractive index n, and the absorption

coefficient α. These two quantities can be encapsulated in the complex re-

fractive index ñ = n + ik, where k = αc/2ω, whose real and imaginary

parts are plotted in Fig. 1.5. A monochromatic wave of frequency ω and

initial amplitude E0 would propagate in a material with refractive index ñ

according to

E (z, t) = E0e
i(ωñz/c−ωt). (1.27)

It is easily shown than the electric field amplitude reduces as e−zα/2, and

therefore its intensity as e−zα, as expected from Beer’s law which defines

the absorption coefficient. The real part n of the refractive index, which

is constant at low frequencies, has a sharp maximum around ΩTO. This

reflects the fact that close to resonance the high amplitude of the phonon

oscillations make the material optically more dense. In fact the speed of
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Figure 1.5: Frequency dependent real (n) and imaginary (k) parts of the

complex refractive index. The material parameters used for the plots are

those of hexagonal silicon carbide, with ε0 = 9.66, ε∞ = 6.52, ΩTO = 24.9

THz and Γ = 0.2 THz.

light in the material, proportional to c/n, is significantly reduced close to

ΩTO, as will be discussed in more details in section 1.3. The small value

(which would be zero without damping Γ) of n for frequencies between ΩTO

and ΩLO is another manifestation of the fact that in such region light cannot

propagate in the material. The behavior of k is somehow complementary,

being zero for frequencies outside the ΩTO - ΩLO region. In such region, k

has a maximum close to ΩTO, where the absorption of light is ascribed to

the high amplitude of the phonon coordinate, leading to energy dissipation
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towards other phonons through lattice anharmonicities.

The measured complex refractive index can be compared to the permit-

tivity arising from the Lorentz model via the relations:

ε1 = n2 − k2 (1.28)

ε2 = 2nk. (1.29)

1.2.3 Reflectivity

Another relevant optical property of infrared active phonons is the reflec-

tivity, which can also be measured experimentally. The peculiar reflectivity

of an infrared active phonon is shown in Fig. 1.6. R, constant at low fre-

quency, is highly enhanced towards ΩTO, where it reaches values close to

one, and remains very high up to ω ≈ ΩLO. This high reflectivity region

is called Reststrahlenband, because the light that cannot enter the material

(as already mentioned when discussing εr and ñ) gets mostly reflected. At

a frequency slightly higher than ΩLO, where εr is crossing one, R drops to

zero. This happens because εr = 1 implies that light can propagate in the

material like it was in air, and therefore no light gets reflected at the sample

surface.

The reflectivity is related to the refractive index by the relation:

R =

∣∣∣∣1− ñ1 + ñ

∣∣∣∣2 . (1.30)

R, unlike ñ and εr, is a real rather than complex quantity and therefore

does not completely describe the interaction of light with the phonon. The

complete information is instead contained in the reflection coefficient r,
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Figure 1.6: Frequency dependent reflectivity. The material parameters

used for the plots are those of hexagonal silicon carbide, with ε0 = 9.66,

ε∞ = 6.52, ΩTO = 24.9 THz and Γ = 0.2 THz.

which is the ratio between the incoming and reflected electric field. These

two quantities are related by

R = |r|2 (1.31)

which shows that the phase information is lost when going from r to R. The

reflectivity, albeit containing only part of the material properties, is easy to

measure, since in most cases the detectors used in the experiments can only

measure the light intensity, and not the electric field profile. The full mate-

rial properties can still be retrieved, in the case of infrared active phonons,

by fitting R with the model presented here. All the optical constants ε0,
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ΩTO, and Γ of silicon carbide used throughout this thesis were obtained in

this manner, with ε∞ taken from literature data [30, 31].

1.3 Phonon-Polaritons

The optical properties of infrared active phonons introduced in section 1.2

describe the interaction of the lattice with light. In particular, the complex

refractive index and the reflectivity allow for retrieving the parameters of a

phonon by looking in the far field characteristics of the light reflected by it.

All these quantities display peculiar features around ΩTO, and this is due to

the fact that at this frequency the light and the phonon are strongly coupled.

When this happens, the system cannot be described anymore like a light

wave nor like a phonon, and is usually referred to as phonon-polariton. In

this region, the propagation of light inside the material is strongly affected

by the interaction with the lattice, and experiences a very strong dispersion.

In order to take a closer look at the behavior of the light propagating inside

the material, Maxwell’s equations must be taken into account. In a non

magnetic material (µr = 1) without free charges:

∇ · ~E = 0

∇ · ~H = 0

∇× ~E = −µ0
∂ ~H

∂t

∇× ~H = ε0εr
∂ ~E

∂t
.

(1.32)

Taking the curl of the third equation and substituting the fourth, together

with the identity ∇ ×
(
∇× ~E

)
= ∇

(
∇ · ~E

)
− ∇2 ~E leads to the wave
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equation

∇2 ~E =
εr
c2

∂2 ~E

∂t2
(1.33)

where c is the speed of light in vacuum. The deviation of the propagation

of light in the material with respect to that in vacuum is encapsulated in

εr. The dispersion of the phonon polariton can therefore be evaluated by

inserting the frequency dependent εr of Eq.1.24 in the dispersion relation

ω2 = c2k2/εr. In the simplified case in which Γ = 0, this leads to:

ε∞ +
Ω2
TO (ε0 − ε∞)

Ω2
TO − ω2

=
c2k2

ω2
, (1.34)

which is a fourth order equation in ω with solutions of the type;

ω2 =
Ω2
TOε0 + c2k2

2ε∞
± 1

ε∞

√(
Ω2
TOε0 + c2k2

2

)2

− c2k2Ω2
TOε∞. (1.35)

Taking the positive root of ω2 gives two solutions, known as the upper and

lower polariton branches.

The phonon polariton dispersion is shown in Fig. 1.7. The thin purple

line represents the dispersion of light in vacuum according to ω = ck, and

the thin blue and red lines depict the dispersion of light in the material far

away from the resonance at low and high frequency, respectively. Without

resonance, ε∞ would be equal to ε0, and the light would be propagating at

a speed c/
√
ε0. The phonon resonance is depicted in Fig. 1.7 by the dashed

line, and it has no dispersion, i.e. can be represented by a horizontal line,

because the plot is only depicting a very small fraction of the Brillouin zone.

This is consistent with equation 1.7 which shows that, for an optical mode in

the limit of k = 0 where the light momentum is comparable with that of the

phonon, the latter has no dispersion.The phonon-polariton dispersion then
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Figure 1.7: Dispersion of the upper (thick red line) and lower (thick blue

line) polariton branches. The dashed line represents the optical phonon,

which close to k = 0 does not disperse. The grey shaded area is the rest-

strahlenband, in which light cannot propagate. The thin red and blue lines

represent the dispersion of light in the solid far away from the resonance

at high and low frequencies, respectively. The purple line is the dispersion

of light in vacuum.

arises from an avoided crossing between the phonon line and the thin blue

photon line. The phonon-polariton displays different behaviors in different

regions of the dispersion map. The lower branch, for example, has a photon-

like behavior at low frequencies, while it behaves in a phonon-like fashion,

with a very small velocity, when approaching ΩTO. The upper branch, on

the other hand, starts from a phonon-like behavior in its lowest frequency

region, i.e. just above ΩLO, and then has a photon-like character at high

frequencies. The reststrahlen band region between ΩTO and ΩLO shown

by the grey shading in Fig. 1.7 is effectively a bandgap, and arises from
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the aforementioned avoided crossing. This corresponds to the frequency

region in which ε1 is negative, and the real part n of the refractive index

is zero. Even if it is called ΩLO, the upper limit of the reststrahlen band

does not correspond to a longitudinal mode to which the light is coupling

to. As a matter of fact light, propagating in air as a transverse wave,

cannot couple to longitudinal modes in a bulk crystal (note that in Fig.

1.7 no line is displayed at ΩLO). An important feature of the phonon-

polariton dispersion relations is the fact that at frequencies close to the

reststrahlen band, where the behavior is phonon-like, the group velocity

vg = ∂ω/∂k is very small. This implies that at those frequencies polaritons

can propagate in the material, but very slowly. These aspect has to be

taken into account when the optical properties are measured in the time

domain, like in the experiments described in this thesis. The electric field

reflected from the material at these frequencies it is going to be detected at

later times compared to that reflected in reststrahlen band.

1.4 Energy density functional description

The linear optical properties of infrared active phonons are usually derived

from the Lorentz model, as previously discussed. This starts from the mod-

eling of phonons as charged harmonic oscillators, and allows to calculate

the permittivity εr starting from their equation of motion, in a bottom-up

approach. A more formal top-down approach, based on a phenomenological

energy density functional, is useful to describe the light-phonons interaction

in a way easier to extend to the nonlinear regime which will be discussed

later in this thesis [32, 33]. Such energy density functional can be written

as:



Linear optical properties of IR-active phonons
Energy density functional description 23

L =
1

2
Ω2
TOQ

2 − 1

2
ε0 (ε∞ − 1)E2 − ΩTO

√
ε0 (ε0 − ε∞)QE. (1.36)

In this equation, the first term is the energy of the mechanical oscillator

with eigenfrequency ΩTO and normalized coordinate Q. The second term

accounts for the energy of the electric field in the solid at frequencies far

away from the oscillator eigenfrequency. This can be easily shown recalling

that from eq. 1.23 follows ε∞ − 1 = χ, which is the susceptibility leading

to the background polarization introduced in section 1.2. Finally, the third

term in eq. 1.36 is taking into account the linear interaction between the

oscillator Q and the electric field E.

From this energy density functional it is possible to retrieve the force

acting on the mechanical oscillator:

FQ = −∂L
∂Q

= −Ω2
TOQ+ ΩTO

√
ε0 (ε0 − ε∞)E. (1.37)

Combining the definitions of ε0 and ε∞ from eq. 1.23 it is possible to write:

Ω2
TOε0 (ε0 − ε∞) =

NZ2

µ
(1.38)

and substituting into 1.37 leads to:

FQ = −Ω2
TOQ+

√
N/µZE, (1.39)

which is equivalent to Eq. 1.13 derived in section 1.2 for the case of an

undamped oscillator.

The polarization P can also be derived from the energy density func-

tional via the relation:

P = − ∂L
∂E

= ε0 (ε∞ − 1)E + ΩTO

√
ε0 (ε0 − ε∞)Q. (1.40)
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The first term in this equations gives a polarization equivalent to P = ε0χE,

which in section 1.2 was referred to as P∞. The second term in eq. 1.40

leads, substituting eq. 1.38, to:

P =
√
N/µZQ =

√
N/µ

√
NµWZ = NZW, (1.41)

which is equivalent to Pphonon introduced in section 1.2.



Chapter 2

Phonon nonlinearities and

amplification

The focus of this thesis is the investigation of the phonon response to very

intense laser pulses, capable of displacing the ions by up to a few percent

of the equilibrium interatomic distances. Under these circumstances, the

lattice response is expected to exhibit a nonlinear behavior that the Lorentz

model fails to describe. Therefore, an expansion of such model capable of

describing the nonlinear optical properties of an infrared active mode is

presented.

First principle DFT calculations are used to explore the nonlinear re-

sponse of the lattice to very large applied static electric fields and conse-

quently large ionic displacements.

These results are then incorporated in a model describing the dynamic

response of the phonon to electric fields oscillating at frequencies close to

its resonance and showing that a parametric amplification of the phonon

coordinate oscillation is expected.

25
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2.1 Nonlinear expansion of the polarization

The polarization induced in a material by an applied electric field entails

two contributions, namely the resonant contribution Pphonon due to the dis-

placement of the charged ions and the background contribution P∞ ascribed

to the screening of other phonons and electrons. When the electric fields

interacting with the solid are very intense and ions displacement Q be-

comes large, the polarization becomes non-linear, and both these polariza-

tion terms have to be expanded.

Figure 2.1: (a) Resonant phonon contribution to the polarization,

Pphonon. For small phonon coordinate displacements, the polarization is

linear in Q, and the Born effective charge Z∗ = ∂P/∂Q (b) is constant.

When the displacement increases, the polarization deviates from linear,

with a consequent increase of Z∗. It is important to note that the Born

effective charge increase is quadratic in Q, i.e. it is independent on the

direction of the phonon coordinate displacement.

The first contribution to the nonlinear polarization, Pphonon, is proportional

to the mode coordinate Q through the effective dipolar charge Z∗ that

embodies the oscillator strength of the phonon. Such Born effective charge

is defined as Z∗ = ∂Pphonon/∂Q and is a constant for small values of Q,
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where the polarization Pphonon is linear in the phonon coordinate, as shown

in Fig. 2.1. In this case:

Pphonon = Z∗Q, (2.1)

which is equivalent to eq. 1.41, where the charge Z of the Lorentz model has

been re-normalized to account for the mode effective mass µ and the num-

ber of oscillators per unit volume N , leading to the Born-effective-charge

Z∗ =
√

(N/µ)Z. For very high driving electric fields, Pphonon depends non-

linearly on the lattice displacement Q, as calculated from first principles

DFT calculations and shown in Fig. 2.1a. Correspondingly, the Born ef-

fective charge becomes a function of Q as shown in Fig. 2.1b. For SiC Z∗

depends quadratically on the lattice coordinate Q as

Z∗ =
∂P

∂Q
= Z∗0 + αQ2. (2.2)

Importantly, the sign of the change in Z∗ does not depend on the direction

of the phonon displacement Q. Hence, an oscillating lattice mode will result

in a net average change of the Born effective charge.

The second contribution to the polarization, P∞, is in linear response de-

scribed by:

P∞ = ε0χE = ε0 (ε∞ − 1)E, (2.3)

as detailed in chapter 1. Similarly to the Born effective charge Z∗, the

permittivity ε∞ is constant only for small lattice displacements Q, while it

increases for large amplitudes. This effect is captured by Fig. 2.2a, in which

the slope χ = ε∞−1 of P∞, calculated from DFT, increases with the lattice

displacement Q. Just like the Born effective charge, ε∞ scales quadratically

with Q:
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Figure 2.2: (a) Non-resonant contribution P∞ = ε0χE to the polariza-

tion for different lattice displacements. The susceptibility χ increases as

the displacement Q becomes larger. (b) Dependence of the non-resonant

permittivity ε∞ on the phonon coordinate Q.

ε∞ = 1 + χ = 1 +
∂P∞
∂E

= ε∞,0 + 2βQ2, (2.4)

where the pre-factor 2 descends from a formal derivation of the polarization

from the energy density functional that will be described in section 2.3. The

correction to the permittivity for large values of the phonon coordinate is

sketched in Fig. 2.2b, hence oscillations of Q result in a net average increase

of ε∞.

Summarizing, the nonlinear polarization of a strongly driven normal

mode includes two corrections quadratic in Q, one to the phonon effec-

tive dipolar charge Z∗ and one to the dielectric constant ε∞. The overall

nonlinear polarization can be written as:

P = Pphonon + P∞ =
(
Z∗0 + αQ2

)
Q+ ε0

(
ε∞,0 + 2βQ2 − 1

)
E. (2.5)

These two terms are typically neglected in the linear lattice response but

must be included when studying the dynamics of an infrared active mode

subject to a strong resonant optical field E0 sin (ωt).
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2.2 Nonlinear equation of motion

The Q-dependent Z∗ and ε∞ do not only affect the polarization in the

material, but also the phonon coordinate Q equation of motion. For small

driving electric fields, the time dependent phonon coordinate Q(t) follows

the equation of motion of a periodically-driven damped harmonic oscillator

∂2Q

∂t2
+ Γ

∂Q

∂t
+ Ω2

TOQ = Z∗E0 sin (ωt) , (2.6)

where Z∗ = Z∗0 and ε∞ = ε∞,0. The familiar linear response solution to this

equation is Q = Q0 sin (ωt) e−Γt.

The modifications to the ionic motions arising from the modulations of the

Born effective charge and the dielectric constant are conveniently discussed

by considering the effect of the two effects independently.

The nonlinear response of Pphonon alone (α 6= 0, β = 0), will be discussed

first. In this case, the equation of motion becomes:

∂2Q

∂t2
+ Γ

∂Q

∂t
+ Ω2

TOQ =
[
Z∗0 + 3αQ2

]
E0 sin (ωt) , (2.7)

where the pre-factor 3 descends from a formal derivation of the equation of

motion from the energy density functional that will be discussed in section

2.3. Qualitatively, this can be thought of as a correction to the force term

in the equation of motion. For a driving electric field at frequency ω, the

phonon coordinate oscillates as Q0 sin (ωt), and the force term is modulated

as

3αQ2 = 3αQ2
0

(
1

2
− 1

2
cos (2ωt)

)
(2.8)

acquiring a positive offset and more importantly oscillating at frequency 2ω,

as sketched in FIg. 2.3. The driver on the right hand side of eq. 2.7 then
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Figure 2.3: Dynamical response of a chain of Silicon (blue) and Carbon

(red) atoms to a strong periodic electric field driver E = E0 sin (ωt). The

phonon coordinate Q is also oscillating at frequency ω (blue line). The Born

effective charge, sketched as a shaded area around the ions, is oscillating

at frequency 2ω, as well as the non-resonant permittivity ε∞ (grey line).

becomes

(
Z∗0 +

3

2
αQ2

0

)
E0 sin (ωt)− 3

2
αQ2

0E0 sin (ωt) cos (2ωt) , (2.9)

which can be simplified to

(
Z∗0 +

3

4
αQ2

0

)
E0 sin (ωt)− 3

4
αQ2

0E0 sin (3ωt) . (2.10)

This equation shows that to leading order the modulation of the Born ef-

fective charge adds a 3ω component to the oscillator driver. Adding higher

order terms on the right hand side of the oscillator equation is a process

analogous that used to describe optical nonlinearities in dispersive materials
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[2]. Thus, equation 2.7 is expected to support amplification of the phonon

coordinate Q based on the Born effective charge modulation.

Next, the influence of the ε∞ modulation on the ionic motion is discusses.

As shown in eq. 2.5, P∞ is increased by a factor 2ε0βQ
2E, which results in

a correction to the energy of the system as

∆L = −
∫
P dE ∝ −βQ2E2. (2.11)

This energy term leads to an additional force on the oscillator

∆Fq = −∂∆L

∂Q
∝ +2βQE2, (2.12)

and the equation of motion 2.6 becomes

∂2Q

∂t2
+ Γ

∂Q

∂t
+ Ω2

TOQ = Z∗E0 sin (ωt) + 2βQE2, (2.13)

which is conveniently rewritten as

∂2Q

∂t2
+ Γ

∂Q

∂t
+
[
Ω2
TO − 2βE2

]
Q = Z∗E0 sin (ωt) . (2.14)

Clearly, the modulation of the dielectric function is qualitatively reflected

into a modulation of the oscillator eigenfrequency ΩTO = ΩTO,0 − 2βE2.

With E = E0 sin (ωt), the modulation of ΩTO can be written as

2βE2 = 2βE2
0

(
1

2
− 1

2
cos (2ωt)

)
(2.15)

and the oscillator frequency renormalizes to

Ω2
TO(t) = Ω2

TO,0

(
1− βE2

0

Ω2
TO,0

+
βE2

0

Ω2
TO,0

cos (2ωt)

)
(2.16)

i.e. acquires a negative offset and oscillates at frequency 2ω. The equation

of motion becomes
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∂2Q

∂t2
+ Γ

∂Q

∂t
+ Ω2

TO(t)Q = Z∗E0 sin (ωt) , (2.17)

which is that of a forced parametric oscillator, expected to support para-

metric amplification of the phonon coordinate Q. It should also be noted

that the 2ω oscillation of Ω2
TO makes this equation very similar to a Math-

ieu equation ∂2y
∂x2 +(a− 2q cos(2x)) y = 0 which is routinely used to describe

the parametric resonance problems, reinforcing the expectation of phonon

amplification.

In a situation where both the Born effective charge and the permittivity

are modulated (i.e. α 6= 0 and β 6= 0), the ionic motions are governed by

∂2Q

∂t2
+ Γ

∂Q

∂t
+
[
Ω2
TO − 2βE2

]
Q =

[
Z∗0 + 3αQ2

]
E0 sin (ωt) . (2.18)

In this case, the oscillator frequency is modulated at frequency 2ω and the

driver on the right hand side of the equation is simultaneously acquiring

a 3ω component. The net effect on the phonon dynamics depends on the

relative strengths and the interplay between the modulations of Z∗ and ε∞.

However, net parametric amplification of the phonon coordinate Q can be

expected in any case, and this prediction will be tested in the present thesis

by performing experiments on the prototypical dielectric SiC.

2.3 Energy density functional description

In the following, the nonlinear optical properties of an infrared active phonon

will be described with a more formal approach, starting from an expansion

of the phenomenological energy density functional introduced in section 1.4.

This approach allows for a consistent derivation of the nonlinear polariza-

tion and the nonlinear equation of motion.
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According to eq. 1.36, the linear energy functional reads:

L =
1

2
Ω2
TOQ

2 − 1

2
ε0 (ε∞ − 1)E2 − ΩTO

√
ε0 (ε0 − ε∞)QE. (2.19)

For intense light fields, driving the phonon coordinate to large amplitude,

this energy functional needs to be expanded to higher orders in both Q and

E.

The first expansion order of eq. 2.19 includesQ2E andQE2 terms, which

are symmetry-forbidden for the Si-C stretching mode of 4H-SiC studied

here. The first relevant expansion is of the fourth order, leading to an

energy functional of the form:

L =
1

2
Ω2
TOQ

2 − 1

2
ε0 (ε∞ − 1)E2 − ΩTO

√
ε0 (ε0 − ε∞)QE

− αQ3E − βQ2E2 − θQE3 − ξE4 − φQ4,

(2.20)

where expansion coefficients α, β, θ, ξ and φ. Equation 2.20 can be rear-

ranged to express the various nonlinear expansion terms as a correction to

the coefficients in Eq. 2.19, leading to:

L =

[
1

2
Ω2
TO + φQ2

]
Q2 −

[
1

2
ε0 (ε∞ − 1) + βQ2 + ξE2

]
E2

−
[
ΩTO

√
ε0 (ε0 − ε∞) + αQ2 + θE2

]
QE.

(2.21)

The φ, β and α terms can be seen as Q2-modulations of the linear in-

teraction terms, namely the oscillator frequency Ω2
TO, the non-resonant

contribution to the permittivity ε∞ and the Born effective charge Z∗ =

ΩTO

√
ε0 (ε0 − ε∞), respectively. The ξ and θ terms, on the other hand, can

be seen as E2-modulations of ε∞ and Z∗, respectively.
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Coefficient Variable Value Energy %

ΩTO Q2 23 THz 92.6

ε∞ E2 5.91 0.2

Z∗ QE 2.61e 6.7

α Q3E 3.00× 105 eV/(u3/2
√
ÅMV ) 0.4

β Q2E2 1.75× 1011 eV/(uMV 2) 0.1

θ QE3 6.24× 1014 eV
√

(Å)/(MV 3
√
u) � 0.1

ξ E4 3.26× 1013 cm eV/MV 4 � 0.1

φ Q4 1.20× 10−3 eV/(u2Å) � 0.1

Table 2.1: Values of the coefficients used to fit with Eq. 2.20 the energy

landscape resulting from DFT calculations . The relative energy contribu-

tions are shown in the last column.

The relative strengths of the various expansion terms was evaluated from

first principles density functional theory (DFT) calculations of the total

energy density of 4H-SiC as a function of the phonon displacement Q and

applied static electric field E. The two-dimensional energy landscape ob-

tained from DFT was then fitted with eq. 2.20, allowing to estimate the

value of the expansion coefficients, shown in Tab. 2.1. The contribution to

the energy density for each of the expansion terms can also be extracted

from the DFT calculations, and is reported in Tab. 2.1. These relative

contributions were calculated for a 10 MV/cm driving field (on the order

of those used in the experiments described in this work), and show that

the α and β terms dominate the expansion. The nonlinear energy density

functional, considering only these two terms reads
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L =
1

2
Ω2
TOQ

2 −
[

1

2
ε0 (ε∞ − 1) + βQ2

]
E2

−
[
ΩTO

√
ε0 (ε0 − ε∞) + αQ2

]
QE,

(2.22)

from which the nonlinear polarization

P = − ∂L
∂E

= ε0 (ε∞ − 1)E + ΩTO

√
ε0 (ε0 − ε∞)Q+ αQ3 + 2βQ2E, (2.23)

can be rearranged like

P = ε0
([
ε∞ + 2βQ2

]
− 1
)
E +

[
ΩTO

√
ε0 (ε0 − ε∞) + αQ2

]
Q. (2.24)

The nonlinear force acting on the phonon coordinate on the other end reads

FQ = −∂L
∂Q

= −Ω2
TOQ+ ΩTO

√
ε0 (ε0 − ε∞)E + 3αQ2E + 2βQE2, (2.25)

leading to the equation of motion

∂2Q

∂t2
+ Γ

∂Q

∂t
+
[
Ω2
TO − 2βE2

]
Q =

[
Z∗0 + 3αQ2

]
E0 sin (ωt) . (2.26)

The nonlinear equations 2.23 and 2.26 formally calculated from the non-

linear energy density functional are equivalent to equations 2.5 and 2.18

introduced earlier.
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Chapter 3

Time resolved SiC reflectivity

measurements

Driven to very large amplitudes, the infrared active mode of a dielectric

material is expected to induce a parametric amplification of the phonon

coordinate oscillations. This theoretical prediction based on first principles

DFT calculations is experimentally validated here in silicon carbide. This

material was chosen because it exhibits a single infrared active mode in the

mid-infrared, and hence can be modeled with a single Lorentz oscillator. Its

response to very large excitations can be evaluated in the framework of the

model presented in chapter 2.

The phonon response was investigated in this thesis by measuring the

time-dependent change of the amplitude and phase of weak probe pulses

reflected from the sample after intense mid-infrared excitation. Because the

Si-C stretching mode reflectivity features lay in the range between 22 and

33 THz, this probing technique usually employed in the few-THz portion of

the electromagnetic spectrum was extended here to the mid-infrared.

37
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3.1 Silicon Carbide

Silicon carbide (SiC) is a wide band gap indirect semiconductor, with in-

teresting electronic properties for high-power electronic devices. It exhibits

high electron mobility, high breakdown field and high thermal conductivity.

For this reason SiC has been studied since the end of the 19th century. For

example, the phenomenon of electroluminescence was discovered for the first

time in SiC in 1907 [34], and the first commercial LEDs in the 1970s were

also based on SiC. More recently, SiC became popular again as a substrate

for the epitaxial grow of graphene [35]. In the present thesis, SiC was chosen

because of its textbook-like optical properties in the mid infrared spectral

region, making it ideal to study the phononic response of a dielectric to

intense resonant light pulses.

3.1.1 Crystal structure and optical properties of SiC

Silicon carbide has a strong covalent bonding between the Si and C atoms,

and the basic arrangement of atoms in the crystal is a tetrahedron with a

Si (C) atom in the middle of four C (Si) atoms, with a Si-C distance of 1.89

Å, and a Si-Si (C-C) distance of 3.08 Å.

The crystal basis is a pair of Si and C atoms displaced along the c axis, and

such bases are arranged on the ab plane forming a honeycomb structure,

as shown by the red circles in Fig. 3.1a (labeled with the letter A). The

tetrahedra are then formed by stacking these bilayers of Si and C along the

c axis. Because of the honeycomb arrangement of the Si-C basis within

each bilayer, the adjacent bilayers can be stacked in two different ways,

as shown by the black squares and green triangles in Fig. 3.1a, labelled

with the letters B and C, respectively. For this reason, SiC can crystallize
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Figure 3.1: a) Red: hexagonal real space distribution of the Si-C bases

in one bilayer of SiC. The Si and C atoms in the bases are stacked on the

c axis, and the honeycomb distribution of such bases in on the a-b plabe.

Black and green: different possibilities for the stacking of the Si-C basis in

the adjacent layers. b) Unit cells of some SiC polytypes. The layers are

stacked along the c axis in different orders. c) Unit cell of 4H-SiC. Carbon

and silicon atoms are depicted in blue and red, respectively.

in different configurations, called polytypes 1. The polytypes of SiC are

more than 200, and exhibit cubic, hexagonal and rhombohedral structures,

depending on the layers stacking scheme. An example of the different layer

arrangements is shown in Fig. 3.1b, giving rise to some of the most common

SiC polytypes. 3C-SiC is cubic, and results from an ABC(A) stacking of the

planes. Polytype 2H, instead, is hexagonal, and results from layers ordered

in AB(A) sequence. The sample studied here was 4H-SiC, also hexagonal,

with layers stacked in ABAC(A) sequence, and whose unit cell is shown in

1Materials crystallizing in different forms are usually referred to as polymorphs. For

SiC, because of the particular two-dimensional nature of the polymorphism, the different

compounds are called polytypes.
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Fig. 3.1c (space group C4
6ν-P63mc). The 4H nomenclature comes from the

fact that the unit cell is made of 4 Si-C bilayers, and that the crystal is

hexagonal.

Figure 3.2: a) Displacement from their equilibrium position of the Carbon

(blue) and Silicon (red) atoms in the 24 THz infrared active mode of 4H-

SiC. The two species move in opposite directions along one of the in-plane

crystallographic axes. b) Frequency dependent reflectivity ascribed to the

mode of panel a.

The Si-C stretching vibrational mode studied in this thesis is displayed in

Fig. 3.2a, with the carbon (blue) and silicon (red) atoms moving in opposite

directions along one of the in-plane crystallographic axes. The fingerprint

of this infrared-active mode in the optical reflectivity is shown in Fig. 3.2b,

with a very wide reststrahlenband extending from ΩTO = 24 THz to ΩLO

= 29 THz. Such reflectivity makes SiC ideal to study the response of the

phonon mode when driven to very large amplitude oscillations. First of all,

the absence of other infrared active phonons in the same frequency range

makes it possible to model the system with a single Lorentz oscillator, and

its nonlinear response can be modeled with the modulation of the Born

effective charge and high frequency permittivity presented in this thesis.

Additionally, the frequency range of interest, extending from 22 to 33 THz,

is covered by current femtosecond mid-infrared pulses generation techniques,
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allowing to investigate the phonon response using time domain spectroscopy.

3.2 Nonlinear spectroscopy in the mid-infrared

The mid-infrared (MIR) portion of the electromagnetic spectrum, extend-

ing from a few to some tens of microns wavelengths, allows to investigate

the vibrational degrees of freedom of molecular and solid state materials.

In particular phonons, which are tied to functionally relevant electronic

and magnetic properties of condensed matter, can be investigated by op-

tical spectroscopy in the MIR. Traditionally, this spectral region has been

investigated with Fourier transform infrared (FTIR) spectroscopy, which

allows to measure the materials linear optical properties in a broad fre-

quency range. These measurements are usually performed with commercial

spectrometers, employing different incoherent light sources covering differ-

ent portion of the spectrum. This technique allows to measure for example

the reflectivity R, and the retrieval of the complex optical properties such

as the dielectric function or the refractive index is indirect, as it relies on

Kramers-Kronig transformations.

The development of THz optical technologies over the last decades opened

up the path to time-domain spectroscopy. This technique is based on the

generation of carrier-envelope-phase (CEP) stable THz pulses which are

then characterized using optical gating. This allows for the measurement

of their electric field profiles in the time domain. Because these entail both

amplitude and phase information, the complex optical properties are readily

obtained without employing Kramers-Kronig transformations.

Time-domain spectroscopy started in the low THz portion of the electro-

magentic spectrum (THz-TDS, ranging from 0.1 to 2-3 THz), where CEP
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stable pulses are easier to achieve. In such spectral region, photoconductive

antennae are viable sources, and nonlinear optical crystals can be used both

for the pulses generation as well as for free-space electro-optical sampling

(EOS) detection. Because these generation processes are all based on opti-

cal rectification (OR), the THz CEP stability is granted independently on

that of the generating pulses. The main requirement for the implementa-

tion of THz-TDS are laser pulses short enough to support the desired THz

bandwidth and to optically gate the electric fields transients. Typically this

is achieved by sub-100 fs laser pulses, which are nowadays easily obtained

by commercial laser systems.

More recently, more complex techniques for the generation of CEP sta-

ble pulses arising from generation processes other than OR have been de-

veloped. For example, CEP stable pulses in the MIR can be generated

exploiting optical parametric amplification (OPA) and difference frequency

generation (DFG) processes. These allow to generate pulses in the 7 to 80

µm wavelength range, paving the way for an increase of the TDS frequency

reach.

The advantages of TDS over traditional FTIR spectroscopy are not lim-

ited to the direct reconstruction of the complex optical properties. In the

context of this thesis, a far more important aspect is the pulsed nature

of the employed electric field profiles, which makes this technique suitable

for the materials nonlinear optical properties investigation. Combining the

THz/MIR pulses used in TDS with an additional pump pulse, it is possible

to determine the induced changes to the optical properties. This powerful

technique is called time-resolved TDS (TR-TDS) as it allows track the evo-

lution of the optical properties as a function of time after photoexcitation.

In this thesis, TR-TDS was extended for the first time to the MIR
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up to 33 THz, to study the time-dependent optical properties of the Si-C

stretching mode in SiC.

3.2.1 CEP stable MIR pulses generation and detec-

tion

The wavelengths of mid-infrared light are more than one order of magnitude

larger than that of commercially available femtosecond laser systems . Typ-

ically, two subsequent frequency conversion steps are employed to generate

MIR pulses starting from Ti:Sapphire based amplifier systems that produce

femtosecond pulses at 800 nm wavelength. Thanks to the properties of the

nonlinear optical processes involved, CEP stability can be obtained under

certain circumstances as will be described below.

Figure 3.3: Frequency and phase summation rules for Optical Parametric

Amplification and Difference Frequency Generation. Formally these two

processes are identical, but they are employed in two different ways. In

OPA a very week seed at frequency ωs is amplified by an intense pulse at

frequency ωp, generating a pulse at frequency ωi as a byproduct. In DFG

the pulses at frequency ωs1 and ωs2 have comparable intensities, and they

generate a pulse at frequency ωMIR.

The first conversion step relies on OPA, in which a weak seed at fre-
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quency ωs is amplified by an intense pump pulse at frequency ωp in a non-

linear optical medium. In this process, high energy photons are converted

in pairs of lower energy ones, leading to pulses in the 1-2.5 µm wavelength

range. The energy conservation imposes that ωp = ωs + ωi, where ωi is the

frequency of a pulse generated as a byproduct (see Fig. 3.3, left panel).

Furthermore, the ratio ωs/ωi can be adjusted by making use of momentum

conservation which itself can be controlled by the birefringence of the op-

tical medium. Such adjustable ratio is particularly important because it

allows to select, within a certain range, the desired value of ωs.

The second frequency conversion process is called Difference Frequency

Generation (DFG) and takes place in another nonlinear optical crystal. In

this process, MIR light is generated at the difference frequency between

two input pulses (see Fig. 3.3, right panel). If the frequency of the DFG

input pulses can be changed on demand, for example using the outputs

of two OPAs tuned at frequencies ωs1 and ωs2, the MIR frequency can be

arbitrarily changed. This allows to generate short pulses in the 7-80 µm

range. In both the OPA and DFG processes, the involved pulses spectral

phases are regulated by well defined relations, reported in Fig. 3.3. Such

relations can be exploited to generate CEP stable MIR pulses starting from

pulses at frequency ωp that are non-CEP stable (more information on this

topic can be found on the appendix section A.1).

For their characterization, the MIR (i.e. sampled) pulses are mixed with

a short (i.e. gate) laser pulse in a nonlinear crystal through the Pockels effect

which induces birefringence in an electro-optic medium in the presence of

an intense electric field [2]. If the sampled and gate pulses propagate in the

medium at the same speed, the latter experiences a constant birefringence

imparted by the field of the former. Thus the gate pulse polarization is
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rotated by an angle proportional to the instantaneous electric field of the

MIR. Scanning the time delay between the two pulses and measuring the

polarization rotation of the gate allows then to reconstruct the electric field

of the MIR pulse in the time domain (see the appendix A.4 for more details).

Because the EOS requires scanning the MIR-gate delay, it is not a single-

shot pulse characterization method. This is the reason why the MIR pulses

employed in time-domain spectroscopy need to be CEP stable, i.e. they

must have a shot-to-shot reproducible electric field profile. An example

EOS trace of the MIR probe pulses used in this work is shown in Fig. 3.4

together with the corresponding ampltide spectrum.

Figure 3.4: a) Time domain profile of a MIR probe pulse with a dura-

tion of roughly 100 fs (intensity FWHM) measured with EOS. b) Fourier

transform of the EOS trace, showing a broad spectrum centered at 26 THz

and with bandwidth ranging from 20 to 32 THz.

3.2.2 Determining the reflectivity

The peculiarity of TDS is its capability of measuring both amplitude and

phase of the reflection and transmission coefficients of the investigated sam-

ple by directly measuring the electric fields. As mentioned earlier, this al-

lows for the complete reconstruction of the complex optical properties of the
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sample. Since this thesis aims at studying the optical properties of SiC close

to the phonon resonance, where most of the light is reflected by the rest-

strahlenband, the following will discuss the measurement of the frequency-

resolved reflection coefficient, defined as the ratio between the reflected and

incident electric fields Eref and Einc. Assuming the measurement of the

electric field profiles in the time domain, the frequency dependent reflection

coefficient is calculated from:

r(ω) =

∫ +∞
−∞ Eref (t)e

iωt dt∫ +∞
−∞ Einc(t)eiωt dt

. (3.1)

In a real experiment, the incident electric field is generally not known. The

electric field profile of the incident pulse can be measured, for example by

freely propagating it towards an EOS setup, but doing this does not preserve

the phase difference between the incident and reflected field, therefore de-

feating the main purpose of TDS. Instead, it is possible to retrieve rsample(ω)

by comparing the electric field reflected from the sample with that reflected

from a reference material with a known reflection coefficient r0(ω). Because

the incident field impinging on the two materials is the same, it can be

simplified in the ratio between the two reflection coefficients, leading to:

rsample(ω) =

∫ +∞
−∞ Eref (t)e

iωt dt∫ +∞
−∞ E0(t)eiωt dt

r0(ω), (3.2)

where E0(t) is the electric field reflected by the reference. This technique

has been successfully applied in the past to investigate the low-THz optical

properties of semiconductors [36, 37, 38, 39]. However, the phases of the

reflected pulses can shift when changing from the sample to the reference [38,

39], for example due to misalignment or to shifts in position. An optical path

difference ∆z between the sample and reference reflections leads to a phase
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shift of 2ω∆z/c. In some cases ∆z is known, and the shift can be corrected

for in the analysis process [37, 40], in some other cases it can be iteratively

adjusted using as benchmark some known optical properties of the sample.

If the phase shifts cannot be corrected using one of these methods, they

are indistinguishable from real shifts due to the sample optical properties,

and therefore affect the reliability of the results. It should also be noted

that the phase shift is proportional to the frequency ω, therefore the same

optical path change is more detrimental for the MIR frequencies used here

than for the low-THz examples in the references.

However, the precise measurement of the static optical properties of the

sample is not the aim of this thesis. Instead, the focus here is on the pump-

induced time-dependent changes to the static optical properties. These can

be obtained from the measurement of the electric field Eoff (t) reflected from

the sample at equilibrium and the changes induced by the pump excitation

∆E(t). Such measurements can be alternated without moving the sample or

changing the alignment, hence they are not affected by the phase problems

mentioned above. The pump induced change in the reflection coefficient r

is directly related to the change in the reflected electric field by the relation:

∆r(ω)

roff (ω)
=

∆E(ω)

Eoff (ω)
, (3.3)

where roff (ω) is the equilibrium reflection coefficient and ∆r(ω) the change

induced by the pump pulse. Because the equilibrium property roff (ω) is

known from literature data measured with FTIR techniques, Eq. 3.3 can

be used to calculate the non-equilibrium reflection coefficient ron(ω) as:

ron(ω) = roff (ω)

(
1 +

∫ +∞
−∞ ∆E(t)eiωt dt∫ +∞
−∞ Eoff (t)eiωt dt

)
. (3.4)

Once the complex non-equilibrium reflection coefficient is known, all the
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other optical properties can be calculated using the relation reported in

chapter 1. In particular, the pump induced reflectivity can be calculated

recalling that Ron(ω) = |ron(ω)|2.

3.2.3 Time-resolved measurements on SiC

The combination of the MIR generation and detection schemes presented

in section 3.2.1 with an additional pump pulse allows for the reconstruction

of the frequency-dependent optical properties as a function of time after

excitation of the investigated material.

Figure 3.5: Schematic representation of a time-resolved MIR time domain

spectrometer (TR-MIR-TDS). OAP - off axis parabolic mirror.

The schematic representation of the time-resolved MIR time-domain

spectrometer (TR-MIR-TDS) developed in this work, involving 3 pulses,

is reported in Fig. 3.5. The pump is an intense MIR pulse impinging at

normal incidence on the sample to drive the SiC infrared active mode to

large amplitudes. A weak MIR pulse is used to measure the optical proper-

ties in the frequency region of interest. Finally, a third pulse acts as a gate
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in the EOS setup which allows for the measurement of the probe electric

field profile.

The reconstruction of the time-delay-dependent and frequency-dependent

optical properties of the sample requires the two dimensional mapping of

the probe electric field as a function of two time coordinates: the pump-

probe delay t and the internal EOS time τ [41]. This technique is borrowed

from the experiments performed in the low THz frequency range[41, 42],

and requires two of the three pulses to be appropriately delayed by mechan-

ical delay stages. Because the path of the probe pulses was fixed, the stage

on the pump beam allowed to determine the pump-probe delay t, which

is the the real time coordinate of the sample optical properties evolution.

Once t was set at the beginning of each scan, both stages were moved to-

gether to scan the EOS time coordinate τ . This second time coordinate can

be thought of as an inverse of the frequency. For each pump-probe delay

t, the probe pulse can be characterized by Fourier transforming along the

time coordinate τ , to extract the frequency-dependent optical properties.

Repeating different τ -scans for each of the desired pump-probe delays t al-

lowed to reconstruct the frequency dependent optical properties at all time

delays.

The pump pulses used to drive the SiC stretching mode to large ampli-

tudes were generated by a pair of OPAs seeded by the same whitle light

continuum and a DFG setup (see the appendix section A.2 for a detailed

description of the setup). This allowed to generate CEP stable MIR pulses

of 130 fs duration, 29 THz center frequency, and up to 10 µJ energy, capable

of applying peak electric fields up to roughly 9 MV/cm at the sample sur-

face. The center frequency of 29 THz was chosen to maximize the driving

of the phonon mode, as discussed in the following.
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Figure 3.6: a) Maximum value reached by the phonon coordinate Q just

below the sample surface as a function of the pumping frequency. These

data were calculated with the simulations described in chapter 4, using

pump pulses with the same bandwidth as those used in the experiments.

b) Frequency dependent penetration depth of 4H-SiC, extracted from a

Lorentz fit to literature reflectivity data [30].

Figure 3.6a shows the pump frequency dependent maximum phonon

amplitude Q at the sample surface, calculated with the numerical code

described in chapter 4. The plot shows that Q has a flat top response in

correspondence with the reststrahlenband of the phonon mode. Two relative

maxima are evident within such broad peak, one at 24 THz, corresponding

to ΩTO, and one at 29 THz, corresponding to ΩLO. The first maximum is due

to the mechanical response of the phonon oscillator, which at ΩTO is driven

exactly at resonance. The second maximum, on the other hand, is due to a

divergence of the electric field in the sample given by the zero crossing of εr

happening at ΩLO. In this case, even if the mechanical oscillator is driven

farther from resonance, the very large E driver is responsible for the high

amplitude reached by Q, which is 90 % of that at ΩTO. The large bandwidth

of the pump pulses is then responsible for the merging of these two effects

in the flat top profile of Fig. 3.6a. To determine the frequency at which
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the effect of the pump pulses is maximized, the value of Q discussed so

far has to be combined with the light penetration depth inside the sample,

shown in Fig. 3.6b. At ΩTO (24 THz) the phonon can very efficiently

screen the incoming radiation, and the penetration depth is only of order

100 nm. At ΩLO instead, the large amplitude driving of Q is combined with

a penetration depth of around 4 µm. Thus, even in if the phonon amplitude

is comparable, in the latter case the pumped volume is higher, resulting in

an higher measured effect.

The probe pulses, used to measure the time-dependent optical response,

were also generated by a double OPA and DFG setup (more information on

the setup can be found in the appendix section A.3). The 100 fs long pulses

had a center frequency of 26 THz, an broad bandwidth extending from 20 to

32 THz covering the entire reststrahlenband. To achieve a non-perturbative

probing of the sample properties, the peak electric field was kept two orders

of magnitude smaller than that of the pump pulses. A typical probe pulse

was shown in Fig. 3.4.

The calculation of the sample time-delay and frequency dependent re-

flectivity requires the measurement of both the probe electric field reflected

at equilibrium as well as the pump induced changes without changing the

setup alignment. The straightforward way of doing this, often employed in

THz-TDS, is by measuring the equilibrium field Eoff (τ) at the beginning of

the measurement, and afterwards measuring ∆E(t, τ) for the desired pump-

probe delays t. It is possible to switch between these measurements by al-

ternatively chopping the probe or the pump beam with a mechanical wheel,

and by blocking or opening the pump beam, respectively. This measure-

ment approach is correct under the assumption that the probe electric field

is reproducible (i.e. the pulse is CEP stable) on a time scale long enough to
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perform the whole measurement. Additionally, the position of the sample

should remain constant within a small fraction of the probe wavelength, to

avoid phase shifts problems that would make the measurements unreliable.

In general, these assumptions are realistic in the low-THz regime of

TDS, where the CEP stability is relying on OR and the wavelengths are

of order 100 µm, but become unrealistic when dealing with MIR pulses.

First of all, the MIR generation process and CEP stability rely on several

cascaded nonlinear optical processes, rather than just OR. Therefore, even

small thermal drifts leading to path-length changes of a few microns can lead

to seizable phase shifts. The pulses employed in the experiments reported

here are usually CEP stable on a few minutes time scale, while drifts should

be expected on the few-hours time scale which is necessary to perform a

complete pump-probe measurement. The slow CEP drifts can be detected

and compensated for by a feedback loop [43], but this requires a significant

experimental effort. Furthermore, the shorter wavelengths typical of MIR-

TDS require the position of the sample to be stable on the sub-micron scale,

a condition significantly more demanding than that of THz-TDS. For these

reasons, the experiments reported here were performed chopping both the

pump and probe beams at different frequencies with the same mechanical

wheel, and simultaneously measuring Eoff (τ) and ∆E(t, τ) with two lock-in

amplifiers in parallel [44].

Figure 3.7a shows an example of raw data for the measured probe pulses,

after reflection from the sample, as a function of the EOS time coordinate

τ . As mentioned above, both the equilibrium (dashed black) reflected pulse

and the pump induced changes (solid red) are recorded simultaneously, and

the ratio ∆E(τ)/Eoff (τ) can be calculated for each EOS measurement. This

is then used to calculate the non-equilibrium reflection coefficient ron(ω) as
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Figure 3.7: a) Example of raw data measured with the TR-MIR-TDS.

The dashed line represents the probe electric field Eoff (τ) reflected by the

sample ad equilibrium as a function of the EOS internal time coordinate

τ . The red line is the simultaneously measured change ∆E(τ) induced by

the pump pulse at some pump probe delay t. b) Equilibrium (dashed line)

and pump-induced (solid red line) reflectivity calculated from the data in

panel a.

shown in section 3.2.2. Figure 3.7b shows the non-equilibrium reflectivity

Ron(ω) (solid red) calculated from the data of Fig. 3.7a, together with the

equilibrium one (dashed black).

To sample the electric field transients in EOS, the gate pulses must be

shorter than the optical cycle of the sampled pulse. For the frequencies up

to 32 THz used in this thesis, the optical period is of order 30 fs. Thus,

the gate pulses were generated with a non-collinear OPA and compressed

to about 20 fs by a set of chirp mirrors.
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3.3 Time-resolved reflectivity of 4H-SiC and

phonon amplification

Time-resolved MIR-TDS was employed in this thesis to investigate the re-

sponse of the Si-C stretching mode of 4H-SiC to an intense resonant exci-

tation and to validate the hypothesis of phonon amplification.

Figure 3.8: Measured pump-probe time-delay dependent and frequency-

dependent reflectivity R(t, ω) for driving peak electric fields of (a) 3.7, (b)

4.9 MV/cm. The color scale is chosen to emphasize in red the areas in

which the reflectivity is larger than one. The lower panels represent cuts in

the color plots corresponding to the dashed lines in the upper panels. The

red shaded area highlights the region of the plots where the reflectivity is

larger than one.

Figure 3.8a shows the results time-dependent reflectivity for a pump peak

electric field of 3.7 MV/cm. In the color plot the vertical axis represents the

pump-probe time delay, and the horizontal axis the frequency. For the cho-
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sen pump intensity the reflectivity did not change significantly, especially

at times different from zero pump-probe delay. The reststrahlenband, in

which the reflectivity is close to one, appears in this plot as the bright area,

extending from 24 THz (ΩTO) to 29 THz (ΩLO). A slightly enhanced reflec-

tivity, characterized by a bright white area in the center of the reststahlen-

band can be seen at zero pump-probe delay (highlighted by the horizontal

dashed line). This feature is more evident in the lower panel, showing the

frequency-resolved reflectivity at the maximum of the pump-probe response

(green) compared to the equilibrium one (black).

Strikingly, for a peak pump field of 4.9 MV/cm the reflectivity exceeded

one, as reported in Fig. 3.8b. The area with R > 1, emphasized in red in

the color plot, developed in the center of the reststrahlenband, around 27

THz, and was persisting for approximately 0.2 ps around the pump pulse

arrival time. This feature is further apparent in the lower panel, where the

pump-induced reflectivity (blue) reaches the red shaded area, equivalent to

R > 1. The reflectivity larger than one evidences the amplification of the

electric field of the probe pulse. Because the reflectivity in the reststrahlen-

band is mainly due to the electric field being screened by the phonon, the

probe amplification strongly suggests the onset of phonon amplification, as

discussed later in more detail.

For the even higher pump peak electric fields of 5.9 MV/cm and 8.7

MV/cm , the area with R > 1 broadened in frequency and persisted for

longer times, as shown in Figs. 3.9a and 3.9b, reaching values as high as

R ≈ 1.15.

The frequency-dependent non-equilibrium reflectivities at the maximum

of the pump-probe responses, corresponding to the lower panels in Fig. 3.8

and 3.9 are reported together in Fig. 3.10a. It is important to note that
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Figure 3.9: Measured pump-probe time-delay dependent and frequency-

dependent reflectivity R(t, ω) for driving peak electric fields of (a) 5.9 and

(b) 8.7 MV/cm. The color scale is chosen to emphasize in red the areas in

which the reflectivity is larger than one. The lower panels represent cuts in

the color plots corresponding to the dashed lines in the upper panels. The

red shaded area highlights the region of the plots where the reflectivity is

larger than one.

the reflectivity, compared to the equilibrium one, was increased throughout

the reststrahlenband, with the position of the maximum slightly increasing

in frequency as the pump field was increased. Additionally, the maximum

value of the measured reflectivity scaled quadratically with the pump peak

electric field, as shown in Fig. 3.10b, where two additional data points cor-

responding to pump peak fields of 2.0 MV/cm and 2.6 MV/cm are reported.

This plot shows that the amplification mechanism scales quadratically with

the pump field, highlighting its nonlinear nature. Furthermore, it is possi-

ble to identify a threshold of around 4 MV/cm above which the reflectivity
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Figure 3.10: a) Frequency-dependent measured reflectivity at the maxi-

mum of the pump-probe response. These line-outs correspond to the lower

panels in Fig. 3.8 and 3.9. The black dashed line represents the equilibrium

reflectivity. b) Pump peak field dependence of the maximum measured re-

flectivity value. In this plot, two additional data points with respect panel

a) are shown, corresponding to 2.0 MV/cm and 2.6 MV/cm.

became larger than one.

The amplification of the probe field evidenced here is connected to that

of the Si-C stretching mode, as discussed in detail in the next chapter.
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Chapter 4

Nonlinear reflectivity and

phonon amplification

simulations

The most striking experimental result reported in this thesis is the increase

above one of the SiC reflectivity in the Si-C stretching mode reststrahlen

band. There, the reflectivity is mainly due to the electric field being screened

by the phonon, suggesting that the phonon itself is being amplified together

with the probe pulses. However, the amplification of the probe and that of

the phonon are difficult to compare one-to-one, in particular when the latter

is driven to large amplitude and expected to reveal a nonlinear response.

Therefore, the model for the phonon amplification presented in this

thesis was implemented in finite difference time domain (FDTD) simula-

tions aimed at reproducing the experimental results. These could provide

a deeper insight on the role of the Born effective charge and high frequency

permittivity modulations on the lattice dynamics.
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4.1 The FDTD method

The FDTD method is a technique commonly used to numerically solve

Maxwell’s equations in order to describe phenomena in electrodynamics.

The name FDTD derives from the fact that Maxwell’s equations are solved

in the time domain, and that the time and space derivatives present in the

equations (in particular Faraday’s and Ampere’s laws) are approximated

with finite differences. The finite differences method considers the Taylor

expansion of a function f(x) around x = x0 by a small quantity ±δ/2

f

(
x0 +

δ

2

)
= f (x0) +

δ

2
f ′(x0) +

1

2!

(
δ

2

)2

f ′′ (x0) + ... (4.1)

f

(
x0 −

δ

2

)
= f (x0)− δ

2
f ′(x0) +

1

2!

(
δ

2

)2

f ′′ (x0) + ... (4.2)

Subtracting the equations and dividing by δ leads to

df(x)

dx

∣∣∣∣
x=0

≈
f
(
x0 + δ

2

)
− f

(
x0 − δ

2

)
δ

(4.3)

where the higher orders in the Taylor expansion have been ignored. It

should be noted that the derivative is evaluated at x = x0, while the func-

tion is being sampled at x = x0 − δ/2 and x = x0 + δ/2. This plays an

important role in the discretization of time and space for the solution of

Maxwell’s equations, as will be discussed later. The approximation of eq.

4.3 becomes exact in the limit of δ going to zero, and is accurate if δ is

sufficiently small compared to the scale at which f(x) is changing. When

dealing with electromagnetic waves, this means that time and space must

be discretized in steps which are small compared to the full periods and

wavelengths involved. Furthermore, the Courant-Friedrichs-Lewy stability
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condition must be satisfied, which implies that the time step used in the

discretization must be smaller than the actual time a wavepacket takes to

propagate from one spatial point in the grid to the next:

∆t ≤ n∆z

c
(4.4)

where ∆t and ∆z are the time and space grid steps, respectively, c is the

speed of light in vacuum and n is the refractive index of the medium in which

the material propagates. The Courant stability condition leads to one of

the major drawbacks of FDTD, which gets computationally expensive and

requires large memory when the space computed is very large compared

to the light wavelength, or if very small spatial structures as compared to

the wavelength need to be taken into account. In particular, according to

eq. 4.4, ∆t has to be very small when dispersive or resonant materials are

simulated, because in such cases the refractive index can become smaller

than one, as discussed in section 1.2.2.

FDTD, on the other hand, is particularly convenient for problems involv-

ing few-cycle light pulses because their spatial extent is only a few tenths

of the wavelength (i.e. their time extent is only a few tents of the inverse

carrier frequency), and when dealing with propagation in bulk materials, for

which no small spatial structure is present. In addition, the time domain

nature of this framework allows for its natural application to the simulation

of time-resolved experiments.

4.1.1 The Yee algorithm

The FDTD simulations used in this thesis are based on the implementation

of the algorithm first proposed by Kane Yee in 1966 [45]. In this algorithm,
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Figure 4.1: Positions at which the electric and magnetic fields are cal-

culated in the Yee cell. The electric field ~Ex, ~Ey and ~Ez components are

calculated in the middle of the edges, while the magnetic field components

~Hx, ~Hy and ~Hz are calculated in the center of the faces.

Maxwell’s curl equations (Faraday’s and Ampere’s laws) are replaced by a

set of finite difference equations, with a very practical choice of the grid

used to discretize time and space.

The minimum unit of the numerical mesh used to discretize the space is

called Yee cell, and is shown in Fig. 4.1. The electric and magnetic fields are

defined at staggered positions within the cell, whose boundaries are along

the directions of the electric field. In this way, each electric field point is

surrounded by four magnetic field points, creating a contour along which

the Ampere’s law must be satisfied. Analogously, Faraday’s law must be

satisfied in the contours created by the four electric field points surrounding

each magnetic point. It can be shown that the points at which the elec-

tric and magnetic fields are calculated are such that the finite difference

approach of eq. 4.3 naturally satisfies the Gauss’ laws for both the electric
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Figure 4.2: Leap-frog updating scheme for the electric and magnetic

fields in the FDTD algorithm. The fields at two subsequent half-integer

time steps are used to calculate the field at the subsequent time step, and

the process is repeated for the desired amount of steps.

and magnetic field in the absence of free charges, i.e. if the divergences of

both ~E and ~B are zero [46, 47] like in a non-magnetic, dielectric material.

This is a consequence of the fact that with finite differences, as pointed out

while describing eq. 4.3, if a quantity is evaluated at two given positions, its

derivative is evaluated in the middle point. When discretizing space with

the Yee grid, the electric field is calculated at integer grid steps, in the mid-

dle point of two magnetic fields (which are at half-integer grid steps) and

vice versa.

The time derivatives are handled in a similar manner, i.e. with center dif-

ference approximations, with the electric and magnetic fields also staggered

in time. This means that while the electric field is calculated at integer time

steps, the magnetic field is calculated at half-integer time steps.

Once electric and magnetic fields have been staggered in both space and

time, and the derivatives have been replaced by finite differences, Maxwell’s

curl equations can be solved to obtain some update equations which express

the fields at a certain time step in terms of the fields at the previous time

step.

The electric field at time t and the magnetic field at time t + ∆t
2

are used
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to calculate the electric field at time t+ ∆t. Afterwards, the magnetic field

at time t+ ∆t
2

and the electric field at time t+ ∆t are used to calculate the

magnetic field at time t + 3∆t
2

. This update scheme sketched in Fig. 4.2 is

called leap-frog, and can be repeated in a loop as many times as necessary

to let the fields propagate for the desired amount of time.

In the Yee algorithm, the electric rather than the magnetic field is chosen

to be along the cell boundaries, as shown in Fig. 4.1. This is a somehow

arbitrary choice which is convenient when treating non-magnetic materi-

als, since boundary conditions for the electric field are more common to

encounter. For example, one of the advantages of the Yee grid is that if

there is an interface between two different dielectric materials, as long as

such interface is perpendicular to one of the grid axes, no ad-hoc boundary

conditions are required: it is sufficient to define two different values of the

electrical permittivity εr for two subsequent grid positions, and the interface

is properly simulated.

4.1.2 Discretization of Maxwell’s equations in 1D

The FDTD method is a full wave technique, meaning that it solves the full

set of Maxwell’s equations, which in absence of free charges and currents

read:

∇ · ~E = 0 (4.5)

∇ · ~H = 0 (4.6)

∇× ~E = −µ ∂
~H

∂t
(4.7)

∇× ~H = ε
∂ ~E

∂t
(4.8)
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where ε and µ are the permittivity and the permeability of the medium in

which the fields are propagating. Equations 4.5 and 4.6 are intrinsically

satisfied by the Yee grid, while eq. 4.7 and 4.8 must be discretized using

finite differences. The curl equations can be simplified by considering a one-

dimensional space, with the electromagnetic waves propagating along the z

direction. This means that along the x and y directions the materials and

the fields are uniform, and therefore the partial derivatives ∂/∂x and ∂/∂y

in the curl operators vanish. Maxwell’s equations then reduce to two inde-

pendent set of equations describing two different propagating modes, one

with ~E directed along y and ~H directed along x, and a second vice versa.

These two modes propagate independently and are numerically equivalent,

thus it is convenient to solve only one of them. This is equivalent to consid-

ering linearly polarized light, with the electric field either along x or along

y. Considering the electric field along the y direction, eq. 4.7 and 4.8 are

reduced to:

∂ ~Ey
∂z

= µ
∂ ~Hx

∂t
(4.9)

∂ ~Hx

∂z
= ε

∂ ~Ey
∂t

. (4.10)

The partial derivatives of eq. 4.9 and 4.10 can be replaced with finite

differences, keeping into account that the electric field in the Yee grid is

defined at integer time and space coordinates, while the magnetic field is

defined at half integer coordinates, leading to:

Ey|z+∆z
t − Ey|zt

∆z
= µ

Hx|
z+ ∆z

2

t+ ∆t
2

− Hx|
z+ ∆z

2

t−∆t
2

∆t
(4.11)

Hx|
z+ ∆z

2

t+ ∆t
2

− Hx|
z−∆z

2

t+ ∆t
2

∆z
= ε

Ey|zt+∆t − Ey|zt
∆t

. (4.12)
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The spatial position z can be labeled in the numerical grid with the index

k. With the fields staggered in the grid, the same numerical k grid position

corresponds to the real position z for the electric field and z + ∆z
2

for the

magnetic field. Similarly, z− ∆z
2

is labeled k− 1 (together with z−∆z that

does not appear in the equations), and z + ∆z is labeled k + 1 (together

with z+ 3∆z/2 that does not appear in the equations). Equations 4.11 and

4.12 can therefore be implemented in the spatial grid in the form:

Ey|k+1
t − Ey|kt

∆z
= µ

Hx|kt+ ∆t
2
− Hx|kt−∆t

2

∆t
(4.13)

Hx|kt+ ∆t
2
− Hx|k−1

t+ ∆t
2

∆z
= ε

Ey|kt+∆t − Ey|kt
∆t

. (4.14)

These equations can be solved for the future values of the fields, leading to:

Hx|kt+ ∆t
2

= Hx|kt−∆t
2

+
∆t

µ∆z

(
Ey|k+1

t − Ey|kt
)

(4.15)

Ey|kt+∆t = Ey|kt +
∆t

ε∆z

(
Hx|kt+ ∆t

2
− Hx|k−1

t+ ∆t
2

)
. (4.16)

Equations 4.15 and 4.16, called update equations, depict the fields at position

k in the grid at times t+ ∆t
2

and t+∆t as a function of the fields in the same

or adjacent position at previous times. If the fields are known in all the grid

at a certain time, it is possible to calculate the fields in all the grid one step

in the future. This is achieved with a loop that scans all the k positions

and updates the fields. The whole procedure is then repeated in an external

loop that cycles through time (labeled with an index T ) for as many steps as

desired. This is the basic procedure used to propagate electromagnetic fields

in the grid solving Maxwell’s equations in linear dielectric media without

resonances. When practically implementing these equations into an FDTD
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simulation, several other aspects must be taken into account, as discussed

in the appendix section B.1.

4.1.3 Introduction of a phonon resonance

The FDTD simulations described so far are considering linear, non-resonant

materials. In order to simulate the optical properties of a material in the

vicinity of a lattice vibrational mode, it is convenient to introduce the aux-

iliary field ~D which is defined as

~D = ε ~E (4.17)

and accordingly rewrite Maxwell’s curl equations as

∇× ~E = −µ∂
~H

∂t
(4.18)

∇× ~H =
∂ ~D

∂t
(4.19)

together with the constitutive relation

~D = ε0 ~E + ~P (4.20)

where ~P is the polarization due to bound charges.

The introduction of the phonon resonance in the FDTD algorithm re-

quires the equation of motion for the phonon oscillator (eq. 1.13), which

considering eq. 1.37 can be written as:

∂2Q

∂t2
+ Γ

∂Q

∂t
+ Ω2

TOQ = ΩTO

√
ε0 (ε0 − ε∞)E. (4.21)

The feedback of the oscillator coordinate Q on the electric field is given by

eq. 4.20, which combined with eq. 1.40 reads
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D = ε0ε∞E + ΩTO

√
ε0 (ε0 − ε∞)Q. (4.22)

These two equations must be introduced in the FDTD loop, upon being

expressed in terms of finite differences. Equation 4.21 contains a second

order time derivative, which is implemented by splitting it in two subsequent

steps, defining a displacement current J and rewriting eq. 4.21 as a system

of two equations:

J =
∂Q

∂t
(4.23)

∂J

∂t
+ ΓJ + Ω2

TOQ = ΩTO

√
ε0 (ε0 − ε∞)E. (4.24)

It is convenient to define J and Q at the spatial grid positions where E is

defined, while in time they must be staggered to be updated in a leap-frog

fashion. Since Q and E will be combined in equation 4.22, they must be

defined at the same grid positions. Thus, the former is defined at integer

time steps, while J is defined at half integer time steps. The discretization

of eq. 4.23 with finite differences leads to:

J |kt+ ∆t
2

=
Q|kt+∆t − Q|kt

∆t
(4.25)

which can be solved to obtain the update equation for Q:

Q|kt+∆t = Q|kt + ∆t J |kt+ ∆t
2
. (4.26)

The finite difference approximation of eq. 4.24 reads:

J |kt+ ∆t
2
− J |kt−∆t

2

∆t
+Γ

J |kt+ ∆t
2

+ J |kt−∆t
2

2
+Ω2

TO Q|
k
t = ΩTO

√
ε0 (ε0 − ε∞) Ey|kt ,

(4.27)



Nonlinear reflectivity and phonon amplification simulations
The FDTD method 69

where the value of J at time t has been approximated by the average between

its values at t − ∆t
2

and t + ∆t
2

. This equation can be solved for the future

value of J to obtain the update equation:

J |kt+ ∆t
2

=

[
2− Γ∆t

2 + Γ∆t

]
J |kt−∆t

2
−
[

2Ω2
TO∆t

2 + Γ∆t

]
Q|kt +

+

[
2ΩTO

√
ε0 (ε0 − ε∞)∆t

2 + Γ∆t

]
Ey|kt .

(4.28)

The last equation to discretize for the implementation of the phonon reso-

nance is eq. 4.22, which does not contain any derivative and can therefore

directly be solved to obtain an update equation for E:

Ey|kt =
1

ε0ε∞
Dy|kt −

ΩTO

√
ε0 (ε0 − ε∞)

ε0ε∞
Q|kt . (4.29)

Equations 4.26, 4.28 and 4.29 are solved together with Maxwell’s curl equa-

tions in the FDTD loop to account for the propagation of light in resonant

materials. The detailed equations implemented in the FDTD loop are re-

ported in the appendix section B.2.

4.1.4 Calculation of the optical properties from FDTD

simulations

The FDTD framework allows to simulate the propagation a light pulse trav-

elling from vacuum through a slab of material. Since interfaces are properly

handled, part of the field is going to be reflected, and part of it is going to

enter the material. When reaching the end of the slab, this process is re-

peated, with some of the light exiting the material and propagating again in

vacuum towards the end of the grid. Knowing the simulated reflected and

transmitted fields as well as the incident one, the material reflection and

transmission coefficients can be calculated. This allows then to calculate all
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the other optical properties.

The reflected and transmitted fields are extracted from the simulations at

the edges of the grid, where the detector cells are defined. Because the

reflection and transmission coefficients r and t are in general complex quan-

tities, they depend on the relative phase between the incident and reflected

or transmitted fields. To properly calculate r, for example, the reflected

field must be divided by the incoming one after the time axis have been

properly shifted with respect to each other. This is equivalent to dividing

the reflected field by the field Einc,r that would have been reflected by a per-

fect electric conductor placed in the same position as the studied material.

If the electric field inserted at the source is g(τ) and the field measured at

the detector positioned at k = 1 is f(τ), the reflection coefficient is given

by:

r(τ) =
Eref
Einc,r

=
f (τ)

−g
(
τ +

[
2s
∆z

+ 1
]

∆z
c

) , (4.30)

where s is the empty space between the source and the material. The

delay in the time axis of Einc,r can be easily understood considering the

structure of the grid used in the simulations, depicted in Fig. 4.3. The

source is injected at the second grid position, and needs to travel two times

the distance s before reaching again the source cell, therefore travelling 2s
∆z

cells, plus one cell to reach the detector at k = 1. Since all the cells in

which light is travelling are in vacuum, multiplying the number of cells

by ∆z
c

gives the time shift required to properly calculate r. The minus

at the denominator of eq. 4.30 accounts for the fact that a field reflected

by a perfect conductor is flipped. Similarly, the transmission coefficient is
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Figure 4.3: Structure of the grid used for the simulations. The source is

injected in the second cell, marked with src (orange). The reflected and

transmitted light is measured in the first (blue) and last (red) grid cells,

marked with r and t, respectively. The total length of the gird is l, and the

distance from the source to the surface of the material is s. The white cells

are those in which the light propagates in vaccum, while the grey ones are

those where the material is present. Outside the grid there are perfectly

absorbing boundary conditions (PAB), with light propagating outwards

without being reflected (more details can be found in the appendix section

B.1).

calculated from

t(τ) =
Etr
Einc,t

=
h (τ)

g
(
τ +

[
l

∆z
− 3
]

∆z
c

) (4.31)

where h(τ) is the field measured at the transmission detector and l is the

total grid size.

4.2 Simulation of the linear reflectivity of

SiC

The 1D-FDTD framework was used to simulate the optical properties of

SiC in the spectral region around the Si-C stretching mode, extending from

approximately 20 to 32 THz. This is done simulating the reflection of a

light pulse with central frequency in the middle of the reststrahlenband and

a bandwidth broad enough to cover the desired spectral range.
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Figure 4.4: Frequency dependent reflectivity calculated from the results

of the FDTD simulation (dashed blue) compared to that calculated ana-

lytically from the Lorentz model (red). The material parameters used for

both the curves are those of hexagonal silicon carbide, with ε0 = 9.66,

ε∞ = 6.52, ΩTO = 24.9 THz and Γ = 0.2 THz.

The frequency dependent reflectivity of SiC is then calculated from the

Fourier transform of the reflection coefficient r(τ). Here, it is convenient to

Fourier transform the incident and reflected fields before calculating their

ratio:

r(ω) =
Eref (ω)

Einc,r(ω)
=

FT [f (τ)]

FT
[
−g
(
τ +

[
2s
∆z

+ 1
]

∆z
c

)] (4.32)

where FT indicates the Fourier transform. The result of this calculation is

shown in Fig. 4.4, where R(ω) = |r(ω)|2 is compared to the analytical curve

obtained from the Lorentz model described in section 1.2: the agreement

between the two curves is very good. The dielectric function εr(ω) or the
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complex refractive index ñ(ω) can also be calculated from the simulations,

as shown in the appendix section B.3.

4.3 Introduction of nonlinearities in FDTD

The linear phonon resonance was introduced in the FDTD framework in

section 4.1.3 using the equation of motion for the phonon coordinate Q (see

Eq. 4.21) together with the constitutive equation (see Eq. 4.22), which is

incorporating the polarization P .

When the electric field is strong enough to drive the system in the non-

linear regime, both these equations have to be expanded to take into account

the quadratic dependence on Q of the Born effective charge Z∗ = Z∗0 +αQ2

and of the high frequency dielectric constant ε∞ = ε∞,0 + 2βQ2. The fol-

lowing sections will discuss the implementation of the nonlinear equations

for P and Q in the FDTD framework.

4.3.1 Nonlinear Polarization

The expansion for the nonlinear polarization of SiC reads, according to eq.

2.23:

P = ε0 (ε∞ − 1)E + ΩTO

√
ε0 (ε0 − ε∞)Q+ αQ3 + 2βQ2E (4.33)

and the constitutive equation D = ε0E + P therefore becomes:

D = ε0ε∞E + ΩTO

√
ε0 (ε0 − ε∞)Q+ αQ3 + 2βQ2E. (4.34)

This equation does not contain time or space derivatives, and can therefore

be directly solved for the electric field E before its implementation in the

FDTD loop. The discretization gives:
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Ey|kt =
1

ε0ε∞ + 2β
(
Q|kt
)2 Dy|kt −

ΩTO

√
ε0 (ε0 − ε∞)

ε0ε∞ + 2β
(
Q|kt
)2 Q|kt

− α

ε0ε∞ + 2β
(
Q|kt
)2

(
Q|kt
)3

,

(4.35)

which replaces eq. 4.29 in the FDTD loop.

4.3.2 Nonlinear equation of motion

The nonlinear equation of motion for the phonon oscillator reads, according

to eq. 2.25 and 2.26

∂2Q

∂t2
+ Γ

∂Q

∂t
+ Ω2

TOQ = ΩTO

√
ε0 (ε0 − ε∞)E + 3αQ2E + 2βQE2. (4.36)

This equation, containing time derivatives, needs to be discretized in order

to calculate an update equation for the future values of Q, with a process

similar to that described in section 4.1.3. First of all, the second order time

derivative is handled with two subsequent differentiations solving the two

equations:

J =
∂Q

∂t
(4.37)

∂J

∂t
+ ΓJ + Ω2

TOQ = ΩTO

√
ε0 (ε0 − ε∞)E + 3αQ2E + 2βQE2. (4.38)

Equation 4.37 can be easily discretized and solved for future values of Q, as

shown in section 4.1.3, leading to the update equation:

Q|kt+∆t = Q|kt + ∆t J |kt+ ∆t
2
. (4.39)
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The finite difference approximation of eq. 4.38 reads

J |kt+ ∆t
2
− J |kt−∆t

2

∆t
+ Γ

J |kt+ ∆t
2

+ J |kt−∆t
2

2
+ Ω2

TO Q|
k
t

= ΩTO

√
ε0 (ε0 − ε∞) Ey|kt + 3α

(
Q|kt
)2

Ey|kt + 2β Q|kt
(
Ey|kt

)2

,

(4.40)

and can be solved for future values of J to obtain the update equation:

J |kt+ ∆t
2

=

[
2− Γ∆t

2 + Γ∆t

]
J |kt−∆t

2
−
[

2Ω2
TO∆t

2 + Γ∆t

]
Q|kt +

+

[
2ΩTO

√
ε0 (ε0 − ε∞)∆t

2 + Γ∆t

]
Ey|kt +

+

[
6α∆t

2 + Γ∆t

](
Q|kt
)2

Ey|kt +

[
4β∆t

2 + Γ∆t

]
Q|kt

(
Ey|kt

)2

,

(4.41)

which is inserted in the FDTD loop instead of eq. 4.28 to take into account

the nonlinear terms. The FDTD loop updated with the nonlinear equations

is described in detail in the appendix section B.4.

4.4 Pump-probe measurements simulations

The implementation of the nonlinear phonon response in the FDTD frame-

work allows to simulate the results of pump-probe measurements, in which

the strong pump pulse drives the system into the nonlinear regime that is

probed by a weak probe pulse in linear response. The simulation of the

pump-probe response, and its comparison with the experimental results

shown in chapter 3 allows then to test the physical model based on first

principle calculations presented in chapter 2.

The simulation of the time-dependent and frequency-dependent optical

properties of SiC is performed conceptually in the same way as in the ex-

periment. For each time delay t between the pump and probe pulses, the
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reflected probe pulse at equilibrium (i.e. without the sample being excited

by the pump) must be compared to that reflected out of equilibrium (i.e.

after the sample has been excited by the pump). Experimentally this is

achieved by mechanically chopping at different frequencies both the pump

and probe beams. Numerically the same information is obtained by per-

forming sets of three simulations for each pump-probe delay.

In the first simulation, an electric field profile entailing both the pump

and the probe pulses separated by a time t is injected in the grid, as depicted

in Fig. 4.5a. This electric field Eppp impinges on the sample, gets partially

reflected, reaches the detector cell placed at the position k = 1 of the grid

(see Fig. 4.3) and gets recorded as Er, ppp. In the second simulation, only

the pump pulse Epum is injected in the grid, as shown in Fig. 4.5b, and the

reflected field Er, pum is recorded by the detector. Finally, a third simulation

in which only the probe pulse Epro impinges on the sample (Fig. 4.5c) is

performed, and the reflection Er, pro is recorded. The three reflected quan-

tities Er, ppp, Er, pum and Er, pro can be used to retrieve the nonlinear optical

properties of the sample. At first, the probe electric field Eon reflected from

the excited sample is calculated from

Eon = Er, ppp − Er, pum. (4.42)

This equation 4.42 allows to isolate the probe reflected field from that of

the pump, under the assumption that the probe field is weak enough to only

interrogate the state of the sample without further perturbing it. This is

a general assumption at the basis of the pump-probe technique, which was

tested for the simulation scheme presented here (see the appendix section

B.5). With Eoff = Er, pro, the change in the sample reflection coefficient r

due to the pump pulse can be calculated as
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Figure 4.5: Schematic representation of the three simulations performed

to calculate the nonlinear optical properties for each pump-probe delay

t. The first simulation (a) entails both the pump and the probe pulses

propagating in the z direction and impinging on the sample surface. The

electric field injected in the grid is Eppp. The second simulation (b) entails

only the pump pulse Epum, and the third simulation (c) involves only the

probe pulse Epro. The intensity of the probe pulse, usually two orders

of magnitude smaller than the pump, has been increased for illustrative

purposes.

∆r

r
=

∆E

E
=
Eon − Eoff

Eoff
. (4.43)

It is important to note that the probe electric field is recorded in the FDTD

algorithm as a function of the simulation time. This corresponds to the

experimental EOS delay τ , and must not be confused with the pump-probe
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delay time t. The frequency dependent change in the reflection coefficient

is calculated by Fourier transforming Eon(τ) and Eoff (τ) to obtain Eon(ω)

and Eoff (ω). The Fourier transform is performed before the calculation of

∆r/r to avoid dividing two quantities oscillating around zero. The non-

equilibrium value of the reflection coefficient ron(ω) can then be calculated

as

ron(ω) = roff (ω)

(
1 +

∆r(ω)

roff (ω)

)
(4.44)

where roff (ω) is the equilibrium reflection coefficient of eq. 4.30. Once the

complex reflection coefficient is known, all the other optical properties can

be analytically computed, as described in chapter ??.

Figure 4.6: Example of frequency-dependent non-linear reflectivity

Ron(ω) = |ron(ω)|2 calculated from eq. 4.44 for one specific pump-probe

delay t (red line) compared to the equilibrium reflectivity Roff (ω) =

|roff (ω)|2 (dashed black).

An example of simulated non-equilibrium reflectivity Ron(ω) = |ron(ω)|2 is

shown in Fig. 4.6, together with the equilibrium one Roff (ω) = |roff (ω)|2.

The pump-probe measurements can therefore be simulated by repeating a
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set of three simulations, as discussed above, for each of the desired pump-

probe time delays t.

4.5 Simulation of phonon amplification in SiC

The pump-probe FDTD simulations were used to simulate the amplification

of the Si-C stretching mode in silicon carbide. To replicate the experimental

conditions, the pump pulses were tuned at 29 THz, with a time duration of

130 fs, and their peak electric field was adjusted from 2 to roughly 9 MV/cm.

The probe pulses, on the other hand, were 100 fs long and centered at 26.5

THz, with spectral content covering the whole Reststrahlenband. The peak

field of the probe pulses was kept at a constant value of 86.8 kV/cm for

all simulations. This is two orders of magnitude smaller than the highest

simulated pump field, and small enough to be in the regime of linear probing,

as shown in the appendix section B.5. The investigated pump-probe delay

ranged from -0.3 ps to 0.3 ps in steps of 50 femtoseconds, defining time-zero

as the peak of the pump-probe response.

4.5.1 Time and frequency dependent reflectivity

The key experimental result of this thesis is the amplification of the Si-C

stretching mode in silicon carbide induced by a strong-field resonant exci-

tation. This striking phenomenon is manifesting in the measurements as

an increase of the reflectivity above one, evidencing an amplification of the

probe pulse. The simulations presented here show that the probe amplifi-

cation is an indication of that of the phonon, and provide a deeper insight

on the role played by the lattice anharmonicities.

When describing the model for the phonon amplification in chapter 2,
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the two nonlinear contributions resulting from the Q2-modulations of the

Born effective charge Z∗ and dielectric constant ε∞ were introduced sepa-

rately. While these two effects cannot be experimentally isolated, in the sim-

ulations it is possible to switch the nonlinearities on and off independently,

to elucidate their effect on the time and frequency dependent reflectivity

and on the phonon coordinate oscillations amplitude.

Figure 4.7: Results of the simulations where only the Born effective

charge Z∗ is modulated, with α = 7.1 · 1027 A·s√
m·Kg3

and a driving peak

electric field of 8.7 MV/cm. The value of nonlinear coefficient was adjusted

to reach a maximum reflectivity of approximately 1.15, analogous to that

measured experimentally. (a) Color plot: pump-probe time-delay depen-

dent and frequency-dependent reflectivity R(t, ω). The color scale is chosen

to emphasize in red the areas in which the reflectivity is larger than one.

Lower panel: frequency cut corresponding to the dashed line in the color

plot. (b) Oscillations of Q at the sample surface induced by the probe

pulse with (red) and without (black) the pump at the delay indicated by

the dashed line in the color plot.

The results of a simulation accounting for the sole modulation of the
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Born effective charge are shown in Fig. 4.7. In particular, the color plot of

Fig. 4.7a displays the time and frequency dependent reflectivity, showing

areas in which R > 1 and proving that a change in Z∗ proportional to Q2 can

lead to the amplification of the probe pulses. However, as depicted in the

lower panel of Fig. 4.7a, the simulated increase in R has a prominent peak at

ΩLO = 29 THz, and is therefore different from that measured experimentally,

which shows a maximum in the center of the reststrahlenband. This implies

that the modulation of Z∗ alone cannot explain the experimental results.

Nonetheless, this simulation corroborates the fact that an amplification of

the probe pulse in the reststrahlenband is related to an amplification of the

phonon coordinate. This is shown in Fig. 4.7b, displaying the oscillations

of the phonon coordinate at the sample surface induced by the probe pulse

both at equilibrium and in the pumped state, where the amplitude is clearly

amplified.

Figure 4.8 shows the results of another simulation, taking into account

only the modulation of the high frequency dielectric constant ε∞. Also in

this case, the color plot reporting the time and frequency dependent reflec-

tivity (Fig. 4.8a, upper panel) shows areas in which the reflectivity exceeds

one. In this case though, the frequency cut of the lower panel displays a

rather featureless increase of the reflectivity, with the maximum at ΩTO =

24 THz, and a smaller feature at ΩLO = 29 THz. This reflectivity is also

different from that measured experimentally, implying that also the modula-

tion of ε∞ alone cannot properly explain the experimental results. However,

also in this case the amplification of the probe pulse is accompanied by that

of the phonon, as shown in Fig. 4.8b.

The different effects of the Z∗ and ε∞ modulations on the time and

frequency dependent reflectivity can be understood with the model for the
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Figure 4.8: Results of the simulations where only the high frequency

dielectric constant ε∞ is modulated, with β = 8.6·108 A2·s4
m2·Kg2 and a driving

peak electric field of 8.7 MV/cm. The value of nonlinear coefficient was

adjusted to reach a maximum reflectivity of approximately 1.15, analogous

to that measured experimentally. (a) Cclor plot: pump-probe time-delay

dependent and frequency-dependent reflectivity R(t, ω). The color scale is

chosen to emphasize in red the areas in which the reflectivity is larger than

one. Lower panel: frequency cut corresponding to the dashed line in the

color plot. (b) Oscillations of Q at the sample surface induced by the probe

pulse with (red) and without (black) the pump at the delay indicated by

the dashed line in the color plot.

phonon amplification described in chapter 2. According to such model, the

modulation of Z∗ leads to an additional driving term in the lattice equation

of motion at three times the frequency of the pump. On the other hand, the

modulation of ε∞ causes a modulation of the oscillator eigenfrequency at

twice the frequency of the pump. Thus, these two effects are affecting the

dynamics of Q in rather different ways, and a different outcome is therefore

unsurprising. However, both these effects are expected to entail phonon
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amplification, as confirmed by the simulations shown here. It should be

noted that the effects on the pump-probe of the two modulations are some-

how complementary: the change of Z∗ increases the reflectivity in the areas

where that of ε∞ decreases it, and vice-versa. An interplay between these

two effects is therefore likely to reproduce the experimental results, with

both modulations active at the same time.

Figure 4.9: Simulated (a-d) and experimental (e-h) pump-probe time-

delay dependent and frequency-dependent reflectivity R(t, ω) for the dif-

ferent driving peak electric fields written above. The values of the non-

linear coefficients in the simulations are α = 2.48 · 1028 A·s√
m·Kg3

and

β = 3.04 · 109 A2·s4
m2·Kg2 . The color scale is chosen to emphasize in red the

areas in which the reflectivity is larger than one.

The simultaneous modulation of Z∗ and ε∞ allows to reproduce the ex-

perimental results, confirming the amplification of the Si-C stretching mode.

The agreement between the simulations and experiments is evidenced in
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Figure 4.9a-d that shows the time and frequency dependent reflectivity re-

sulting from simulations in which the modulation coefficients were adjusted

to fit the experimental results. These simulations reproduce well the main

features of the experimental pump-probe traces of panels (e) to (h), with

the reflectivity increasing and exceeding one for pump peak electric fields

above 4 MV/cm. The area in which R > 1 emerges from the center of

the reststrahlenband, and expands in both frequency and time as the pump

field is increased.

Figure 4.10: Frequency-dependent simulated (a) and experimental (b)

reflectivity at the maximum of the pump-probe response. These line-outs

correspond to the dashed lines in the 2D plots in Fig.4.9. The black dashed

lines represent the equilibrium reflectivity.

The simulated frequency-dependent reflectivity at the maximum of the

pump-probe response is shown in Fig. 4.10a, with the reflectivity maximum

between 27 and 28 Thz, also replicating the experimental results of Fig.

4.10b. Additionally, the maximum simulated reflectivity Rmax, defined as

the maximum of the curves in Fig. 4.10 scales quadratically with the pump

peak electric field, as shown in Fig. 4.11 where the red lines represents

parabolic fits to the data.
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Figure 4.11: Peak field dependence of the maximum calculated (a) and

experimental (b) reflectivity value. In this plot, two additional data points

with respect to Fig. 4.9 and 4.10 are shown, corresponding to 2.0 and 2.6

MV/cm.

Figure 4.12: Simulated electric field Esurf (τ) (panel a) and phonon coor-

dinate Qsurf (τ) (panel b), driven by a weak probe pulse, with (colored solid

lines) and without (black lines) pump excitation. The blue shaded areas

represent the difference between the to curves, highlighting amplification

of both the electric field and the phonon coordinate .

The amplification of the phonon coordinate Q oscillations together with

that of the electric field of the probe is confirmed also when both Z∗ and

ε∞ are modulated, as shown in Fig. 4.12. In particular, Fig. 4.12a shows

the electric field just below the sample surface as a function of time, due
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to the impinging probe pulse. When the sample is pumped (blue line) the

electric field in the sample is higher than at equilibrium (black line). The

same holds for the oscillations of the phonon coordinate Q shown in Fig.

4.12b.

In general, the results of these simulations match quite well the main

features of the experiment, as discussed above. Nonetheless, for the highest

pump peak field of 8.7 MV/cm the simulated curves show some discrepancies

with the measurement. In Fig. 4.9d, for example, some red areas (i.e. with

R > 1) appear at negative time delays, as well as a pronounced depletion

of the reflectivity around ΩLO at 0.2 ps pump-probe delay, all features not

present in panel (g). Figure 4.10a (purple line) is also affected, with the

reflectivity showing some depletion around ΩLO which is not present in

panel (b). These discrepancies might be ascribed to both limitations of the

simulation scheme or the relatively simple physical model presented here.

From a physical point of view, the quadratic modulation of the Born ef-

fective charge Z∗ and dielectric constant ε∞ might not be accurate enough

for completely reproducing the experimental nonlinear optical properties of

SiC. These two expansion terms of the phenomenological energy density

functional were chosen among the five symmetry allowed ones because they

were entailing the highest energy contributions in the DFT calculations.

A more complex model, including the effects of the remaining expansion

coefficients might help improve the simulations results. Furthermore, the

oscillator damping was considered constant throughout all the simulations

presented here. However, Γ is a phenomenological term introduced in the

Lorentz model to embody the lattice nonlinearities leading to energy flow

among phonon modes, which is reasonable to imagine changing when the

phonon is driven to large amplitude. The introduction of an oscillator damp-
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ing that depends on the pump might for example smooth the features of

the simulated reflectivity, increasing the time extent of the amplification in

Fig. 4.9a-d, which is always shorter than the corresponding experimental

one.

In addition, the discrepancies between the simulations and the exper-

iment could partly be assigned to the one-dimensional nature of the sim-

ulations performed here. The angle between the pump and probe beams,

present in the experiment but not in the simulations, could indeed play a

role in the shape of the pump-probe traces. This can be thought of as a

phase-matching problem, in which the non-trivial interaction between the

pump and the probe in the strongly driven regime might be re-shaped in

different ways along different propagation directions. In this case the same

physical model presented here, together with a 2D simulation environment,

could better reproduce the experimental results.

The implementation of other nonlinear terms, as well as the extension

of the FDTD algorithm to a 2D space, could be introduced in future imple-

mentations of the simulations presented here.
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Summary

This thesis reports the first experimental demonstration of the parametric

amplification of an optical phonon. The amplification of phonons was so far

limited to the case of acoustic modes, either driven by electrical currents

[11] or microwaves [13], and to optical phonons driven by drifting electrons

[14]. The results of this thesis extend the phononic amplification to reso-

nantly driven optical modes, which are connected to many interesting phase

transitions and whose amplification may be conducive to new physics and

applications.

In detail, the response of an infrared active mode driven to very large

amplitudes by a strong resonant excitation was studied in the dielectric

silicon carbide. The Si-C stretching mode was driven with very intense laser

pulses at mid-infrared frequencies, and its optical response was investigated

by measuring the time-resolved and frequency-resolved reflectivity across

the reststrahlenband with a weak probe pulse. The reflectivity was found

to increase above one, evidencing the probe pulse amplification, and strongly

suggesting that of the optical phonon.

The nonlinear phononic response was modeled with an anharmonic ex-

pansion of the lattice potential in the Lorentz model. This approach was

89
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supported by first principle calculations showing that the dielectric prop-

erties of the material are modulated under intense applied electric fields

and consequently large ionic displacements. In particular, the Born ef-

fective charge Z∗ and the high frequency dielectric constant ε∞ increase

proportional to the square of the lattice displacement Q. When the phonon

mode is driven to large amplitude by a strong resonant excitation, these

are modulated at twice the frequency of the driver, and act themselves as

a parametric drive for the lattice oscillations.

The amplification of the optical phonon together with that of the probe

pulse were validated by numerical simulations in which the interaction of

both the pump and probe pulses with the sample were taken into account.

If the quadratic dependence on the phonon coordinate Q of both Z∗ and ε∞

were introduced, the simulations reproduced well the main features of the

experimental results and showed the amplification of the phonon coordinate.

Outlook

The optical phonon amplification presented in this thesis is in fact a para-

matric gain resulting from phononic four wave mixing, a generic mechanism

that could be extended to all polar modes in solids and may be conducive

to new interesting physical phenomena and applications.

The physics presented here can be steered towards the amplification

or attenuation of phonons on demand, allowing for the manipulation of

the lattice response, with natural application to the control of structural

phase transitions and of many body states that rely on electron-phonon or

spin lattice interactions. For example a recent theory has emerged [48, 49]

suggesting that amplification of pairs of squeezed phonons may play a key
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role in the context of light enhanced superconductivity in cuprates [17, 18,

19] and in the doped fullerites [20]. Such amplification process may be the

result of a four wave vibrational mixing analogous to that described here.

Moreover, the extension of the nonlinear phononics to higher orders pre-

sented here may reveal a broader set of phononic analogies of the well known

nonlinear optical properties, paving the way for the realization phononic de-

vices. These physics could be extended to the control of phonon-polariton

waves, interesting in the context of information transport [50]. For example,

the lattice anharmonicities may lead to the formation of mechanical solitons

propagating without damping in the materials.

The fast growing field of lattice dynamics control with light calls for

the development of new techniques aimed at the manipulation of intense

mid-infrared pulses. The main goal of the experiments presented in this

thesis was to drive the lattice vibrations to the largest possible amplitude,

therefore requiring very short pulses leading to the highest peak fields. Nev-

ertheless, in the more general context of lattice dynamics manipulation,

appropriately tailored pulses are expected to be a powerful tool. Their tem-

poral shaping, for example, would allow to investigate the effects on the

lattice of pulses with the same energy but different peak fields. In addition,

complex pulse shapes entailing different time delayed sub-pulses could al-

low for the reversible control of phase transitions on ultrafast time scales.

Moreover, the control on the pulses bandwidth would allow for a more se-

lective photoexcitation, targeting single vibrationals mode among closely

frequency-spaced ones.

However, because of the long wavelengths, the manipulation of mid-

infrared pulses is a challenge from the technological point of view. Two

optical developments aimed at the control of the spectral phase and band-
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width of pulses at wavelengths longer than 10 µm are reported in the ap-

pendices C and D, respectively. These sources, albeit not directly employed

in the experiments described in the main body of this thesis, are likely to

help advancing the filed of condensed matter control with light.



Appendix A

Experimental methods

This appendix reports additional details on the generation and characteri-

zation of the carrier envelope phase stable mid-infrared pulses employed in

the experiments discussed in chapter 3, as well as a schematic overview of

the complete experimental setup.

A.1 Passive CEP stability

The carrier envelope phase (CEP) of a laser pulse is the relative phase that

the electric field profile has with respect to its envelope. Figure A.1 shows

two examples of pulses with the same envelope but different CEPs.

A laser source is called CEP stable if all the generated pulses have the

same CEP. The CEP stability is a fundamental requirement for the pulses

characterization through gating techniques like EOS, that require the elec-

tric field profile to be reproducible among several pulses. However, most

commercially available laser sources are not CEP stable.

CEP stable pulses can be generated starting from non-CEP stable sources

by exploiting the existing phase relations between the pulses involved in
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Figure A.1: Esample of pulses with the same intensity envelope (red

lines) but different electric field profiles (blue lines) because of the different

CEP.

nonlinear optical processes 1.

The nonlinear optical properties of interest for the generation of MIR

pulses are four wave mixing (FWM), which is the process leading to the

generation of the white light continuum (WLC), and OPA/DFG.

FWM involves pulses at four different frequencies, which are related by

energy conservation so that ω4 = ω1 − ω2 + ω3. The relation between the

pulses CEPs, on the other hand is, φ4 = φ1 − φ2 + φ3 − π/2. The spectral

broadening that leads to WLC generation is due to self phase modulation,

which is a FWM process among different spectral component of the same

pulse, that have the same spectral phase. Thus, if the CEP of the pulse

before the spectral broadening is φ0, the white light continuum will have

phase φWLC = φ0 − φ0 + φ0 − π/2 = φ0 − π/2. This means that the phase

of the WLC is locked to that of the starting pulse.

The WLC is then used as a seed and amplified in the OPA process,

1These CEP stabilization mechanisms are referred to as passive, because they rely

only on fundamental properties of nonlinear optics and not on feedback loops acting

back on the source [51].
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becoming the singnal output. In OPA, the spectral phases also have a well

defined relation: φi = φp−φs− π/2, where i, p and s stand for idler, pump

and signal, respectively, and the signal mantains the spectral phase of the

seed. If two OPAs are seeded by the same WLC, the signal outputs will

therefore have both phase φs1,s2 = φ0 − π/2.

The DFG process also has a fixed phase relation between the interacting

pulses: φDFG = φ1 − φ2 − π/2 where φ1 and φ2 are the phases of the input

pulses. If these are the OPA signal outputs s1 and s2, the DFG pulses will

have phase φDFG = −π/2 = const., i.e. they will be CEP stable.

A.2 MIR pump generation setup

The MIR pump pulses used in the experiments reported in this thesis were

generated by a pair of two-stages OPAs seeded by the same white light con-

tinuum. The system was pumped with 4.5 mJ pulses at 800 nm wavelength

and 100 fs pulse duration from a commercially available Ti:sapphire ampli-

fied laser system. A small portion of the input pulses energy (on the order

of a few µJ) was tightly focused with a lens on a 2 mm thick sapphire plate,

where self-phase modulation (SPM) lead to a broadening of the spectrum

and to the generation of a white light continuum (WLC). The WLC was

then collimated by a second lens and divided in two equal portions by a

50% beam splitter, to feed the two OPAs first stages.

The first stages of parametric amplification took place in 2 mm thick

type-II BBO crystals. The 800 nm pump pulses had 120 µJ energy and

were focused on the BBO crystals to reach tens of GW/cm2 peak intensi-

ties. The WLC was also focused, to match the pump spot sizes, and was

combined with the pump by means of dichroic mirrors. Amplification of
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selected wavelengths witnhin the WLC spectrum was achieved by fulfilling

the non-collinear phase matching condition by rotating the BBO crystals.

The signals output energies were in the 9 to 11 µJ in each of the first stage

OPAs, depending on the desired wavelength, and were spatially separated

from the residual pump and idler pulses.

The second stages of amplification took place in 3 mm thick type-II BBO

crystals. In this case, both the seeds (i.e. the signal outputs from the first

stages) and the pump pulses were collinear and collimated on the BBOs.

The pump energies for the second stages was 1.8 mJ, allowing to amplify the

signals up to hundreds of microjoules. Because of the collinear geometry,

the signals were separated from the residual pumps and idlers with dichroic

mirrors. The experiments reported in this thesis were performed tuning

the two OPAs at 1.28 µm and 1.46 µm, as shown in Fig. A.2. At these

wavelengths the output pulses had 280 µJ and 300 µJ energy, respectively,

and the pulse duration was approximately 70 fs for both.

Figure A.2: Spectra of the output pulses of the OPAs used to generate

the MIR pump pulses, tuned at 1.28 µm and 1.46 µm.

The collinear and collimated difference frequency generation (DFG) be-
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tween the OPA outputs was performed in a 600 µm thick z-cut GaSe crystal.

This delivered MIR pulses of 130 fs duration, 29 THz center frequency, and

up to 10 mJ energy. These pulses were transmitted through a pair of KRS-5

broadband wire grid polarizers (used to vary their intensity) and focused

at normal incidence onto the sample with a 150 mm effective focal length

off-axis parabolic mirror. The beam diameter at the sample position, mea-

sured by its transmission through a calibrated pin-hole, was about 240 µm,

yielding to a maximum fluence of 13 mJ/cm2, corresponding to 8.7 MV/cm

peak electric field.

A.3 MIR probe generation setup

The MIR probe pulses were generated by a setup conceptually similar to

that employed for the pump ones, but pumped with 750 µJ energy. Because

of the lower energy involved, the BBO crystals employed in the first OPAs

stages were 1.5 mm thick, and those used for the second stages were 2.5 mm

thick.

In the experiments reported on this thesis, these OPAs were tuned at

1.45 µm and 1.29 µm, generating 60 fs pulses with 31 µJ and 40 µJ energy,

respectively. The DFG between the signal outputs produced MIR probe

transients at 26.5 THz, with 100 fs duration and energy of 0.6 µJ. A typical

MIR pulse generated by this setup is shown in Fig. 3.4 in the main body

of this thesis. These pulses were then transmitted through a pair of free-

standing gold wire grid polarizers (to reduce their intensity) and focused

on the sample with an angle of 15 deg from normal incidence. The probe

spot size on the sample, measured by its transmission through a calibrated

pin-hole, was 170 µm.
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A.4 Electro Optical Sampling

The characterization of the MIR pulses employed in this thesis was per-

formed by means of electro optical sampling, a technique that allows for

the direct measurement of their electric field profile in the time domain.

Because of the Pockels effect, the MIR electric field causes a rotation of the

polarization of a gate pulse which is propagating at the same speed inside a

nonlinear optical medium (in the experiments reported in this thesis GaSe

was used). Scanning the delay between the MIR and gate pulses and mea-

suring the gate polarization rotation therefore allows for the reconstruction

of the MIR electric field.

Figure A.3: Schematic representation of the EOS pulse characterization

apparatus. GaSe: nonlinear optical medium; HW: half waveplate; WP:

Wollaston prism; BPD: Balanced photodiodes.

This is achieved by propagating the gate pulses through a λ/2 waveplate

and a Wollaston prism that spatially separates the two orthogonal polar-

ization components of the incoming radiation, as sketched in Fig. A.3. The

waveplate is aligned in such a way that in the absence of MIR radiation the

gate pulses are split in two equally intense parts hitting a pair of balanced

photodiodes. When the MIR is present, the gate pulses acquire a rotated
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polarization and are split in different intensity parts, resulting in a photodi-

odes signal linearly proportional to the intensity of the MIR field. Because

the EOS requires scanning the MIR-gate delay, it is not a single-shot pulse

characterization method. This is the reason why the MIR pulses employed

in time-domain spectroscopy need to be CEP stable, i.e. they must have a

reproducible electric field profile.

A.5 Setup overview

Figure A.4: Schematic overview of the complete setup used to gener-

ate the pump, probe and gate pulses and to perform the time-resolved

nonlinear reflectivity measurements on silicon carbide. Optical paramet-

ric amplifiers (OPA), white light continuum generation (WLC), difference

frequency generation (DFG), experiment (EXP).
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Appendix B

Detailed implementation of

FDTD

B.1 Implementation of 1D-FDTD

The basic update equations 4.15 and 4.16 for the electric and magnetic fields

shown in section 4.1.2 allow for the propagation of electromagnetic waves

in the simulation grid, and are the direct result of Maxwell’s equations dis-

cretization. This means that if the fields are defined in all the grid positions

at a given time, these equations propagate the fields at subsequent time

steps. However, when the fields are inserted in the grid ath the beginning

of the simulations, or when they reach the boundaries of the grid, things

must be handled in a slightly different way. Furthermore, the properties of

the materials in the grid can be analyzed by looking for example at their

transmission or reflection coefficients, for which some detectors must be

simulated in the grid. In this section these aspects of the FDTD method

implementation [52, 53] will be briefly discussed.
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Implementation of 1D-FDTD

B.1.1 Perfectly absorbing boundary conditions

When the fields propagate to the end of the grid, equations 4.15 and 4.16

fail. For example, at the first grid position k = 1, eq. 4.16 would generate

an error, because the position k − 1 = 0 is not defined. Similarly, eq.

4.15 cannot handle the last position of the grid. For this reason, some

additional boundary conditions must be introduced to deal with the grid

edges. This is a general problem of FDTD (in particular in 2D and 3D),

and can be tackled in different ways. In this thesis, perfectly absorbing

boundary conditions, meaning that a field reaching the end of the grid is

completely absorbed, were used. This is practically equivalent to having

the field propagate further ”outside the grid” without being reflected back.

To achieve this, the values of the fields at the grid edges for the past two

time loop iterations are stored in the memory. This allows the algorithm

to know what the fields would be in two hypothetical cells outside the grid,

therefore giving the proper input to the update equations. For this to be

feasible, the grid boundaries must be linear, isotropic and non-dispersive

materials, with the same refractive index. Furthermore, the time step must

be chosen so that physical waves travel one cell in two time steps [46, 47]

and this translates to

∆t =
nb∆z

2c
(B.1)

where nb is the refractive index at the grid edges. Note that this equation

is compatible with the Courant-Friedrichs-Lewy stability condition of eq.

4.4. It is worth mentioning that due to some numerical truncation error, a

very small amount of light is reflected by the grid boundaries. In the code

presented here, the reflected light at the boundaries is 10−6 times smaller

than the incident one, and for all practical purposes can be ignored.
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B.1.2 Vacuum impedance

The absolute values of the electric and magnetic fields at any point in the

grid are related by the impedance of the medium, which in vacuum is

η0 =
E

H
=

√
µ0

ε0
≈ 380 Ω. (B.2)

Having more than two orders of magnitude difference between the fields is

not advisable, since it can give rise to numerical truncation errors. This

problem can be overcome by re-normalizing the magnetic field so that the

magnitudes of E and H are the same. In the FDTD implementation used

int his thesis the magnetic field has been replaced with

~H∗ = η0
~H. (B.3)

This re-normalization affects Maxwell’s curl equations, which become

∇× ~E = −µ0

c

∂ ~H∗

∂t
(B.4)

∇× ~H∗ =
ε0
c

∂ ~E

∂t
(B.5)

leading to re-normalized coefficients in the update equations

H∗x|
k
t+ ∆t

2
= H∗x|

k
t−∆t

2
+

c∆t

µ0∆z

(
Ey|k+1

t − Ey|kt
)

(B.6)

Ey|kt+∆t = Ey|kt +
c∆t

ε0∆z

(
H∗x|

k
t+ ∆t

2
− H∗x|

k−1

t+ ∆t
2

)
. (B.7)

This normalization has a purely numerical purpose, and does not affect

in any way the physics of the problem since non-magnetic materials are

considered, and all the resonances and nonlinearities are introduced in the

electric field. For this reason in the rest of the thesis we referred to H∗ as

H.
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B.1.3 Introduction of a unidirectional source

The electromagnetic waves are usually not present in the grid at the first

time step of the simulations. Instead, they injected into the grid at later

times, while the simulation is running. This is done by choosing one point

in the grid to act as a source, in which the values of the fields are arbitrarily

assigned as a function of time. Here, the fields are injected in the second

grid position ksrc = 2. The fields Esrc and Hsrc are defined as a function

of time t to be pulses with the desired frequencies and durations, and are

then calculated as a function of the time loop index T through the relation

t = T ∆t. When defining Esrc and Hsrc, particular care has to be taken

because the source terms which are defined at staggered positions in space

and time must be consistent with each other, i.e. they must describe the

electric and magnetic field components of the same electromagnetic pulse.

For example, if the electric field source is defined as

Esrc
y

∣∣ksrc
t

= g(t) (B.8)

the magnetic fields source has to be defined as

Hsrc
x |

ksrc−1

t+ ∆t
2

= −
√
εsrcr
µsrcr

g

(
t+

nsrc∆z

2c
+

∆t

2

)
. (B.9)

where nsrc is the refractive index at ksrc. In the Ey/Hx mode, the electric

and magnetic fields have opposite signs, and their ratio depends on the per-

mittivity εsrcr and permeability µsrcr of the medium at the source position.

Furthermore, in order for the fields to be defined at proper relative times

and grid positions, two terms must be added in the parenthesis of eq. B.9.

The first term shifts the magnetic field in time by the amount light takes

to travel from one grid position to the next, and the second shifts it to take

into account that they are defined at different times in the Yee grid.
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When the source is injected in the simulation, oscillating electric and mag-

netic fields are externally imposed at ksrc. According to Maxwell’s equations

such fields start propagating both in the positive and negative z directions.

To make the source directional and reproduce a real light source, the update

equation for the cells ksrc and ksrc− 1 must be modified to subtract at each

time step the back propagating light from the previous step [46].

B.1.4 Reflected and transmitted fields detection

The optical properties of the materials simulated in the grid can be eval-

uated starting from the reflection and transmission coefficients, which are

calculated as the ratio between the reflected or transmitted and incident

light field. While the incident light field is known as it is arbitrarily defined

and injected in the grid by the user, the unknown reflected and transmit-

ted fields are results of the simulations. For these fields to be recorded,

some detectors must be introduced in the grid. In the code presented here,

the detector for the reflected field is positioned at the first grid position

k = 1, while the detector for the transmitted field is positioned at the last

grid position. The values of the electric field at these positions is saved in

the memory as the simulation loops through the time steps T, and is then

expressed as a function of t = T∆t. Since the source introduced in our

simulations is unidirectional as discussed in section B.1.3, the light reach-

ing the detector at k = 1 is only due to the reflection form the materials

present in the grid, and not to the source. This is the reason why the source

is positioned at the second grid cell and not at the first.
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B.2 Complete FDTD loop for resonant ma-

terials

The update equations described in section 4.1.3 must be solved together

with Maxwell’s curl equations in the time loop to simulate the propagation

of electromagnetic waves in materials with resonances.

The coefficients multiplying the physical quantities in the update equations

have constant values throughout the time loop iterations, and are therefore

calculated only once to reduce the computation time. Such coefficients are

defined as

mEy Hx|k =
c∆t

µ|k ∆z
see footnote1

mJ J |k =
2− Γ|k ∆t

2 + Γ|k ∆t

mQ J |k =
2 Ω2

TO|
k

∆t

2 + Γ|k ∆t

mEy J |k =

2 ΩTO|k
√
ε0

(
ε0|k − ε∞|k

)
∆t

2 + Γ|k ∆t

mHx Dy|k =

√
ε0
µ0

∆t

∆z

mDy Ey|k =
1

ε0 ε∞|k

mQ Ey|k =

ΩTO|k
√
ε0

(
ε0|k − ε∞|k

)
ε0 ε∞|k

.

(B.10)

The coefficients labeled with the spatial index k because while being con-

stant in time, they have different values depending on the properties of the

1According to eq. 4.18, c should not be in this coefficient. It is present here because of

the magnetic field re-normalization due to the vacuum impedance mentioned in section

B.1.2. The same applies for the square root in mHx Dy|k.
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materials simulated at various positions in the grid. The complete set of

equations for the FDTD loop therefore becomes

Hx|k = Hx|k + mEy Hx|k ·
(

Ey|k+1 − Ey|k
)

J|k = mJ J |k · J|k − mQ J |k · Q|k + mEy J |k · Ey|k

Q|k = Q|k + ∆t · J|k

Dy|k = Dy|k + mHx Dy|k ·
(

Hx|k − Hx|k−1
)

Ey|k = mDy Ey|k · Dy|k − mQ Ey|k · Q|k

(B.11)

where the physical quantities have been highlighted in bold to separate

them from the update coefficients. It should be noted that the time index

disappeared from the update equations B.11, and this is due to the fact

that the time index T is the one on which the loop is cycling. In equation

4.28, the left hand side is time indexed with t + ∆t
2

which corresponds for

example to time step T , and the terms on the right hand side are indexed

with t and t− ∆t
2

which both correspond to the time step T − 1 thanks to

the time grid staggering. This applies to all the update equations (except

for the last one which does not include any time derivative), and when they

are looped all the physical quantities are advanced one step in time leading

to the proper light propagation.

In the grid positions where there is vacuum, ΩTO = Γ = 0 and ε0 =

ε∞ = 1, reducing the update equations B.11 to those for the propagation

in linear materials. To introduce a dielectric with a phonon in the grid, it

is sufficient to define the values of ΩTO, Γ, ε0 and ε∞ for the cells in which

such material is placed. As mentioned in section 4.1.1, no further boundary

conditions are required for the interfaces between materials.
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B.3 Complex linear optical properties of SiC

The linear reflectivity R of SiC simulated with the code presented in this

thesis is described in section 4.2 of the thesis main body. In this appendix

section the simulated complex optical properties of SiC are shown, and com-

pared to those calculated analytically using the same oscillator parameters

input in the simulations.

B.3.1 Refractive index

The refractive index as a function of frequency can be calculated from the

reflection coefficient r(ω) through the relation

ñ(ω) =
1− r(ω)

1 + r(ω)
(B.12)

and the real and imaginary parts n and k resulting from the FDTD simu-

lation can be compared to the analytical ones, as shown in Fig. B.1.

The agreement between the simulated and analytical quantities is fairly

good, and the behaviors are properly reproduced throughout the interest-

ing spectral region. Some quantitative discrepancy appears in both n and

k around ΩTO, and this is probably due to numerical approximation be-

coming detrimental when the quantities tend to diverge. The fact that the

reflectivity, which depends only on the square modulus of r(ω) is properly

simulated in the entire frequency region, suggests that the mismatch should

be ascribed to some phase effect. In fact, when shifting the time axis of

Einc,r to calculate r(ω), the numerical grid is assumed to be dispersion-

less, which is just an approximation. Some numerical dispersion is actually

present in the FDTD algorithm, and this is probably causing a small addi-

tional phase-shift in Eref , which is not taken into account in Einc,r. Some
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Figure B.1: Frequency dependent real (n) and imaginary (k) parts of

the complex refractive index calculated from the results of the FDTD sim-

ulation (blue) compared to those calculated analytically from the Lorentz

model (red). The material parameters used for the plots are those of hexag-

onal silicon carbide, with ε0 = 9.66, ε∞ = 6.52, ΩTO = 24.9 THz and Γ =

0.2 THz.

modifications to the FDTD algorithm allowing for the grid dispersion com-

pensation have been developed. These corrections are only working for one

specific frequency, and therefore not ideal for very broad pulses. However,

a grid dispersion compensation designed for ΩTO might still improve the

reconstruction of the complex optical properties, and could be implemented

in future iterations of these simulations. Another possibility to overcome

these problems would be to run pairs of simulations, replacing the dielectric

with a perfect electric conductor in the second ones, and then compare the

two reflected fields. In this case the grid dispersion should affect both fields

in the same way, therefore allowing for a better reconstruction of n and k.
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The drawback of this solution is that the computational time required to

calculate the optical properties would basically double.

B.3.2 Relative permittivity

The real and imaginary parts of the relative permittivity εr can also be

calculated from the FDTD simulation through the relations of eq. 1.28 and

1.29, and are compared to the analytical curves in Fig. B.2.

Figure B.2: Frequency dependent real (ε1) and imaginary (ε2) parts of the

relative permittivity calculated from the results of the FDTD simulation

(blue) compared to those calculated analytically from the Lorentz model

(red). The material parameters used for the plots are those of hexagonal

silicon carbide, with ε0 = 9.66, ε∞ = 6.52, ΩTO = 24.9 THz and Γ = 0.2

THz.

Similarly to n and k, ε1 and ε2 calculated from FDTD are affected by the
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grid dispersion, and show a small quantitative mismatch with the analytical

ones in the proximity of ΩTO.

B.4 Complete nonlinear FDTD loop

This section describes the updated version the FDTD loop of section B.2,

including the nonlinear expansions described in section 4.3. It is important

to notice that eq. 4.35 contains the +2βQ2 term in all the denominators.

For this reason, the fractions on the right hand side of the equation are not

coefficients remaining constant throughout all the FDTD loop iterations,

and cannot be calculated only once in the simulations like in eq. 4.29.

Instead, eq. 4.35 has to be inserted in the FDTD loop as it is, so that the

value of +2βQ2 can be updated for every grid position k at every time t.

In equation 4.41 instead, the α and β terms in the square brackets are

constant throughout the simulation, and can be calculate only once to save

computation time, as shown in section B.2 for the linear update coefficients.

The new update coefficients are defined as:

mQ2E J |k =
6 α|k ∆t

2 + Γ|k ∆t

mQE2 J |k =
4 β|k ∆t

2 + Γ|k ∆t

(B.13)

and are equal to zero outside the sample, i.e. for values of k where α|k and

β|k are zero.

The complete set of equations for the nonlinear FDTD loop, including eq.

4.35 and eq. 4.41, and with the explicit dependence of all the parameters

on the k grid position becomes:
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Hx|k = Hx|k + mEy Hx|k ·
(

Ey|k+1 − Ey|k
)

J|k = mJ J |k · J|k − mQ J |k · Q|k + mEy J |k · Ey|k+

+ mQ2E J |k ·
(

Q|k
)2

· Ey|k+

+ mQE2 J |k · Q|k ·
(

Ey|k
)2

Q|k = Q|k + ∆t · J|k

Dy|k = Dy|k + mHx Dy|k ·
(

Hx|k − Hx|k−1
)

Ey|k =
1

ε0 ε∞|k + 2 β|k ·
(

Q|k
)2 · Dy|k−

−
ΩTO|k

√
ε0

(
ε0|k − ε∞|k

)
ε0 ε∞|k + 2 β|k ·

(
Q|k

)2 · Q|
k−

− α|k

ε0 ε∞|k + 2 β|k ·
(

Q|k
)2 ·

(
Q|k

)3

(B.14)

where the physical quantities have been highlighted in bold to separate them

from the constant coefficients. If the material has a linear response, i.e. if

α = 0 and β = 0, the coefficients mQ2E J |k and mQE2 J |k are equal

to zero, and the update equation for J|k simplifies to that reported in eq.

B.11. The same applies to the update equation for Ey|k, since the last term

vanishes and the β-correction terms in the denominators also vanish. This

updated version of the FDTD loop can therefore be used for both linear and

nonlinear phonon-light interactions, depending on the values of the input

parameters. The extensive use of this loop for linear materials is anyway not

advisable, since it requires more memory and more computing time. The

higher memory consumption is allocated to the empty α|k, β|k, mQ2E J |k

and mQE2 J |k vectors, while higher computation time is required because
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of the update equation for Ey|k in which the values of the update coefficients

are calculated at each time iteration of the loop, albeit being constant.

B.5 Linearity of the probe

One of the general assumption at the basis of the pump-probe technique is

that the probe pulse is weak enough not to drive the system in a nonlinear

regime, being instead just a way to investigate the status of the sample.

This needs to be tested for the simulation scheme presented here.

Figure B.3: (a) Light pulse with 86.8 kV/cm peak electric field reflected

from a sample with the linear (solid blue) and non-linear (dashed red) light-

phonon interaction models. (b) Difference between the two curves of panel

a, multiplied by four orders of magnitude. .

Such important test can be carried out comparing the probe electric field re-

flected by the sample considering both a linear and a nonlinear light-phonon

interaction model. If the two results are the same, for the given values of the

sample nonlinearities, the probe field is proven weak enough not to drive the

phonon coordinate Q or the polarization P in the nonlinear regime, and the

assumption behind equation 4.42 is correct. Figure B.3a shows the simu-

lated probe electric fields reflected from the sample considering both a linear
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(solid blue) as well as non-linear (dashed red) light-phonon interaction. The

impinging peak electric field for both the curves was 86.8 kV/cm, but in

the linear case the α and β coefficients described in section 4.3 were set to

zero, while in the nonlinear case the values required to reproduce the SiC

nonlinear optical properties were used. The difference between the curves

in Fig. B.3a is reported in Fig. B.3b (please note that it is multiplied by

104). Such difference is of order 10−5, and can be ignored for all practical

purposes.



Appendix C

Mid-infrared pulse shaper

In this thesis, coherent femtosecond MIR pulses were used to drive the

Si-C stretching mode of SiC to large amplitudes and unveil its nonlinear

response. To do this, the employed pump pulses had peak electric fields of

up to 9 MV/cm, achieved by generating pulses of order 10 mJ energy and

a duration of about 130 fs. These pulses were close to the transform limit,

i.e. their temporal duration was close to the shortest obtainable given their

bandwidth, granting the highest possible peak fields.

However, in the more general context of the phonon dynamics manipu-

lation with light, pulses with a controllable temporal electric field profiles

rather than high peak fields might prove as a powerful tool. Moreover, these

pulses could be employed in different contexts like small molecule photo-

chemistry and vibrational ladder climbing [54, 55].

This appendix reports on the realization of a pulse shaper capable of ma-

nipulating the temporal shape of MIR pulses in the 10 to 20 µm wavelength

range by means of a deformable mirror1.

1This appendix is based on the results of the published paper ”Pulse shaping in the

mid-infrared by a deformable mirror” by A. Cartella et al [56]. The author contributed
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Mid-infrared pulse shaper

The manipulation of the temporal shape of an ultrashort pulse is achieved

by controlling the amplitude and phase of its electric field in the frequency

domain. This is usually done manipulating the individual frequency com-

ponents in the Fourier plane of a 4f zero-dispersion pulse shaper. Successful

control of the pulse shape in the visible and near-infrared spectral regions

[57] was achieved in the past by means of acousto-optic modulators (AOMs)

or Liquid Crystal Spatial Light Modulators (LC-SLMs).

Phase and amplitude manipulation is not straightforward in the MIR

because LC-SLMs do not transmit wavelengths longer than 1.6 µm. Com-

plex pulse shaping is instead possible with Germanium(Ge)-based AOMs,

although Ge begins to absorb at 12 µm [58].

Because MIR pulses are usually generated by difference frequency gener-

ation (DFG) between two near-infrared (NIR) beams, the absorption prob-

lem can be overcome by shaping the NIR pulses and then transferring the

phase modulation to the MIR through the DFG process [59, 60, 61, 62].

However, this technique is rather indirect, and the efficiency of the DFG is

strongly influenced by the desired pulse shape.

The direct manipulation of the MIR pulse is generally advisable, albeit

more challenging, and calls for the development of modulators capable of

handling long wavelengths. A first attempt in this direction was shown

by placing patterned masks at the Fourier plane of a 4f pulse shaper [63],

allowing for the control of the spectral amplitude alone.

On the other hand, phase-only modulations can be introduced by de-

formable mirrors (DMs) placed in the Fourier plane of a reflection-based 4f

setup [64, 65, 66]. DMs show high throughput and are substantially achro-

to the publication by performing the measurements, analyzing the data and writing the

manuscript, with help from all co-authors
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matic, allowing to extend the spectral coverage to the MIR, limited only by

the reflectivity of the metallic coating. However, phase shifts φ as high as

5-10 optical cycles are typically required for successfully shaping ultrashort

laser pulses. In the 10 to 20 µm wavelength region, this corresponds to

a very large mirror deformation, because a phase shift at a component λ

requires a mirror deformation ∆z = λ · φ/4π.

The pulse shaper presented here is based on a DM designed to handle

the high deformations required by the MIR wavelengths. The DM con-

sists of a rectangular (10mm × 90mm) gold coated silicon substrate which

can be bent by a series of 32 piezo-electric actuators. Both concave and

convex curvatures are achieved, depending on the polarity of the voltage

applied to the actuators that locally distort the mirror surface. This DM

introduces continuous and smooth phase modulation, which are software

controlled and applied in less than one second. The simultaneous actuation

of all the piezoelectric elements with the maximum allowed voltage induces

a movement of the mirror center of 220 µm (+/− 110 µm from the flat

position). Because the actuators are controlled in 256 steps, the minimum

applicable deformation is about one micrometer, limiting the employment

of this device to wavelengths larger than 10 µm.

The scheme of the pulse shaper is sketched in Fig.C.1. A diffraction

grating (40 lines/mm, blazed at 15 µm) disperses the different spectral

components, which are then collected by a spherical mirror with 50 cm focal

length. Each wavelength is then mapped on one precise spatial coordinate

of the deformable mirror and reflected back to the spherical mirror at a

slightly lower position. All the spectral components are then combined

together by a second bounce on the grating and are picked up by a flat

mirror. The design with the DM on top of the grating and the focal length
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Figure C.1: Side (a) and top (b) view of the pulse shaper: DM, de-

formable mirror; SM, spherical mirror; G, grating.

of the spherical mirror were carefully chosen to minimize aberrations. The

overall throughput of the shaper, including the DM, the other mirrors and

the grating, is close to 50%.

The capabilities of this pulse shaper were demonstrated with CEP stable

MIR pulses [51, 43] generated by DFG between two NIR pulses from optical

parametric amplifiers (OPAs) at 1kHz repetition rate seeded by the same

white light continuum. This configuration is similar to that used for the

experiments on SiC presented in this thesis. However, the MIR could be

gated in the EOS directly employing the pulses from the Ti:sapphire laser

amplifier, that in this case had a 30 fs duration. The system could generate

MIR pulses tunable up to 20 µm (i.e. down to 15 THz) [67].

Figure C.2(a) displays a Wigner distribution map [68] of a typical 19-
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Figure C.2: Wigner maps of (a) a typical MIR pulse measured with the

deformable mirror set to flat, i.e. unaffected by the shaper and (b) after a

single iteration of phase compensation.

THz MIR pulse transmitted through the shaper. With the deformable mir-

ror set to flat, this pulse was nominally unaffected by the shaper. The

pulse duration was 417 fs, and the bandwidth 2 THz (FWHM). From this

measurement, the spectral phase of the pulse was retrieved, and the mirror

deformation required to compensate for it was calculated. This deforma-

tion then defined the required electrode voltages that were imparted to the

electrodes. The result of a single iteration of this procedure is shown in Fig.

C.2(b), where the pulse duration was reduced to 389 fs.

The capabilities of the shaper to impart a desired spectral phase to

the MIR pulses was tested next. A parabolic phase corresponding to a

group delay dispersion (GDD) of +0.2ps2 and therefore to a linear group

delay was introduced first. The Wigner map deduced from the EOS of the

shaped pulse is shown in Fig. C.3(a). The solid line represents the target

group delay, in very good agreement with the measurement. The shaper

capability of applying both positive and negative GDDs is demonstrated in

C.3(b), where the measured spectral phases (open symbols) are shown to be

in good agreement with the corresponding target dispersions (solid lines).
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Figure C.3: (a) Wigner map of a measured pulse where a quadratic

spectral phase with GDD = +0.2ps2 was applied. (b) Measured spectral

phases of pulses with +0.2 ps2 (blue circles), +0.1 ps2 (red squares) and -

0.1 ps2 (green triangles) GDDs. (c) Characterization of +6 × 10−3 ps3 (blu

circles) and -6 × 10−3 ps3 (red triangles) TODs. The solid lines represent

the target spectral phases.

Third order dispersion (TOD) were also properly imparted, as shown in

Fig. C.3(c). Again, the solid lines represent the target spectral phases,

demonstrating the excellent capability of this shaper to introduce specified

spectral phases in a single iteration.

Finally, sub-pulses with different spectral content were generated with

the shaper, splitting the starting pulses. This was obtained applying a

V-shaped spectral phase, i.e. different linear phases to two portions of the

staring pulse spectrum. This resulted in two different group delays imparted

to the two wings of the spectrum, and therefore in the generation of two sub-

pulses. The time delay between the sub-pulses could be tuned by varying
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Figure C.4: (a) Wigner map of a double pulse. (b) Target (solid red)

compared with measured (green circles) spectral phase. (c) Double pulse

intensity profile in the time domain.

the slope of the two arms. The Wigner map of a double pulse obtained in

this way is shown in Fig. C.4(a). The measured spectral phase is shown

in panel (b), matching very well the target. The temporal spacing between

the two pulses associated with the given slope is expected to be 3.5 ps. The

measured delay, reported in panel (c), where the intensity profile of the two

pulses is displayed, shows a very good agreement with the target value.
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Appendix D

Narrowband mid-IR generation

Optical pulses in the 6 to 20 µm wavelength range are a powerful tool to

control solids and molecular systems functionalities [69, 27], for example by

driving lattice vibrations to large amplitudes [24, 23] like in the experiments

reported in the main part of this thesis.

Tunable MIR pulses at these frequencies are usually obtained by differ-

ence frequency generation (DFG) between two femtosecond near-infrared

(NIR) pulses [67, 63], and have bandwidths of 10 to 30 % ∆ω/ω0. These

bandwidths are much larger than the linewidths of vibrational modes in

condensed matter, which are often of the order of a few percent only. The

pulses broad bandwidths are therefore a limiting factor for the spectral se-

lectivity of the photoexcitation.

This appendix reports on the generation of narrowband (down to less

than 2% ∆ω/ω0) MIR carrier envelope phase (CEP) stable pulses in the 10

to 15 µm wavelength range1.

1This appendix is based on the results of the published paper ”Narrowband carrier-

envelope phase stable mid-infrared pulses at wavelengths beyond 10 µm by chirped-pulse

difference frequency generation” by A. Cartella et al [70]. The author contributed to
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Narrowband mid-IR generation

The most straightforward method to reduce the bandwidth either of the

interacting NIR pulses or of the resulting MIR light consists in linear spec-

tral filtering by bandpass filters or by slits placed in the Fourier plane of

a zero-dispersion pulse shaper [71]. This approach is however intrinsically

inefficient because the pulse energy lost is proportional to the achieved spec-

tral narrowing.

A more efficient approach for the generation of narrowband pulses is

based on the nonlinear interaction between suitably chirped broadband

pulses. This has been successfully applied in the visible, where narrow-

band pulses have been obtained via sum frequency generation of broadband

NIR pulses with opposite chirp [72]. Analogously, the DFG between NIR

pulses having chirp with the same sign was used to generate narrowband

MIR pulses with wavelengths shorter than 10 µm [73, 74, 75].

The principle of narrowband MIR generation through DFG between

chirped pulses is shown in Fig. D.1. The time-frequency Wigner maps [68] of

the interacting NIR pulses are shown in panels (a) to (c), with the MIR light

generated at the difference frequency (DF) between frequency components

interacting at the same time in the nonlinear medium. To leading order, the

difference between the closest/farthest interacting frequency components

Ω1/2 allow to estimate the bandwidth of the MIR pulses as ∆Ω = Ω2 −Ω1.

If the two NIR pulses are transform limited (TL), like in Fig. D.1a, all

their spectral components interact simultaneously resulting in the broadest

MIR pulse (red line in Fig. D.1d). If the two NIR pulses are linearly

chirped with different group delay dispersion (GDD), as depicted in Fig.

D.1b, only a subset of their frequency components can interact, leading to

the publication by performing the measurements, analyzing the data and writing the

manuscript, with help from all co-authors
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Figure D.1: Principle of the narrowband MIR pulse generation: (a)-

(c) Time-frequency maps of the interacting NIR pulses, for various chirp

configurations: MIR components are generated at the DF between NIR

spectral frequencies at the same time delay. Ω1 and Ω2 are the lowest and

highest MIR frequencies, respectively. (d) Corresponding MIR spectra.

When going from the configuration (a) to (c), Ω1 and Ω2 get closer to each

other, resulting in a narrower MIR spectrum.

a decrease in the MIR bandwidth (blue line in Fig. D.1d). Finally, if the

two NIR pulses are chirped with exactly the same amount of GDD like in

Fig. D.1c, the spectral components involved in the DFG process are all at

the same distance, and ∆Ω = Ω2−Ω1 ≈ 0 is minimized, with the generated

MIR pulses ideally quasi-monochromatic. However, because a cut at any

time t’ of the NIR pulses time-frequency maps has a finite bandwidth, the

MIR spectrum is inevitably broadened. An estimation of the of the MIR

bandwidth is obtained recalling that the its time duration cannot be bigger
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λI = 1.31µm λII = 1.46µm

Material GDDI/L TODI/L GDDII/L TODII/L TODI/

fs2/cm fs3/cm fs2/cm fs3/cm TODII

ZnSe 4741 4277 4131 3992 0.93

CdTe 10530 11500 8938 10080 0.96

Si 16865 60530 12330 17320 2.55

Table D.1: Dispersion at the pump λI and signal λII wavelengths in-

troduced by propagation in 1 cm of highly dispersive materials. The last

column is the ratio between TODIand TODII at plates thicknesses where

GDDI = GDDII . The dispersion was calculated with Sellmeier coefficients

from [76, 77, 78].

than those of the generating pulses. Thus, fixing a desired ∆ω corresponds

to choosing the MIR pulse duration, and therefore the NIR stretching.

Here, the extension of this approach to wavelengths larger than 10 µm

is reported. The narrowband MIR pulses were generated with the same

experimental setup used in the main part of this thesis to generate the pump

pulses for the SiC experiment. The OPAs were tuned at λI = 1.31 µm ('

229 THz) and λII = 1.46 (' 205 THz) µm, targeting a MIR wavelength of

12.5 µm (24 THz).

The NIR pulses were stretched by propagating them in highly dispersive

materials, that could be easily inserted or removed in the optical path to

switch between broadband and narrowband MIR generation.

The material taken under consideration as NIR stretchers were zinc se-

lenide (ZnSe), cadmium telluride (CdTe) and silicon (Si). The required

optical properties were transparency and high dispersion in the NIR, and

high bandgap to reduce two-photon absorption processes.
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Figure D.2: Experimental time-frequency Wigner maps of the NIR OPA

pulses, retrieved from the measured SHG-FROG. (a) Pulses as generated

(close to the TL). (b) Pulses chirped by one ZnSe plate in each optical

path. Dashed line: the target spectral chirp with GDD = 22500 fs2 and

TOD = 20000 fs3.

The dispersion properties of the aforementioned materials are reported

in Tab. D.1. The minimum possible MIR bandwidth is achieved by in-

troducing the same dispersion in the two NIR beams. For any of these

materials, rods of different thicknesses LI and LII are required to obtain

the same GDD at λI and λII . Once LI and LII are set, the material with

the optimum dispersion properties is the one for which TODI and TODII

are closest to each other, making TODI/TODII a good figure of merit. Ta-

ble D.1 then shows that Si is by far the worst of the listed materials, while

CdTe and ZnSe have very similar performances. However, ZnSe was chosen

because of its bandgap of 2.8 eV, much bigger than that of CdTe (1.5 eV)

that would be detrimental due to two-photon absorption. ZnSe rods of LI =

4.7 cm and LII = 5.2cm thickness were used to obtain GDD of about 22500

fs2, which chirps the 60 fs NIR pulses to approximately 1 ps. The amount

of dispersion could be easily doubled to GDD = 45000 fs2 by introducing

two ZnSe rods into each NIR beam.
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Figure D.3: Normalized EOS traces (a) and spectra (b) of the MIR

pulses for different amounts of NIR chirp. The data in panel (a) are offset

for clarity. The percentage in the legend of panel (b) indicates the relative

bandwidth ∆ω/ω0.

The time-frequency Wigner maps of the NIR pulses before (a) and after

(b) stretching with one ZnSe rod, retrieved from frequency-resolved optical

gating (FROG) measurements [79] are shown in Fig. D.2. After inserting

ZnSe rods of thickness LI and LII , as expected, the time-frequency traces of

both the NIR pulses became parallel to each other and to the dashed line,

which represents the frequency chirp with GDD = 22500 fs2 and TOD =

20000 fs3.

Figure D.3a shows the MIR pulses obtained by DFG of the NIR pulses

in the different stretching configurations. Stretching the NIR pulses by one

or two pairs of ZnSe rods results in an increase in MIR pulse duration from

0.12 to 0.92 and 1.65 ps, concomitant with a bandwidth reduction from 15%

∆ω/ω0 to 2.5% and 1.6%, respectively, as shown in Fig. D.3b.

The two stretching steps reduced the bandwidth to 16% and 10% of

the starting value, respectively. For spectral filtering techniques, this corre-

sponds to the maximum theoretical energy efficiency, without keeping into

account further losses introduced by the optical elements. Here, the energy
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efficiency was 35% and 15% , respectively. This efficiency, already much

higher compared to spectral filtering, could in principle be increased by

employing thicker MIR generation crystals. This would however be detri-

mental for the generation of the broadband pulses, and would therefore limit

the possibility of switching between the broadband and narrowband MIR

generation configurations.

Figure D.4: Delay-dependent frequency tuning. NIR pulses delays that

allow for the interaction of the closest (a) and farthest (b) frequency com-

ponents. (c) Black line: spectrum of the broadband MIR pulse generated

from TL NIR light (taken from Fig. D.3). Color lines: spectra of the MIR

pulses obtained for different NIR pulses delays, normalized to their relative

intensity.

Delay-dependent frequency tuning of the MIR output is reported in Fig.
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D.4c, where the colored lines depict the narrow spectra obtained for different

NIR pulse delays (with one ZnSe rod pair), rescaled according to the relative

measured energy. If the delay between the incoming pulses is changed, the

DFG frequency changes [75], because the subset of frequencies that can

interact at any time t’ in the DFG is shifted. An illustrative example is

shown in Fig. D.4a where the delay between the NIR pulses is such that

only the frequencies close to each other (red arrow) interact. Similarly,

Fig. D.4b shows the situation where the pulse delay only allows for the

interaction of the NIR frequency components farther from each other (blue

arrow), resulting in a MIR central wavelength on the high-frequency wing

of the corresponding broadband pulse.
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