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Abstract

This work uses theoretical models �rst to analyse the recurrence behaviour

of e�ective single spins and their connection to magnetic tunneling, secondly

to study the magnetic tunneling dynamics of individual magnetic molecules,

and thirdly to investigate the magnetization behaviour of open and closed

exchange-coupled e�ective quantum spin chains. Regarding the recurrence

behaviour, we analyse, with the help of the time-dependent Schrödinger equa-

tion, the precession behaviour of e�ective single spins under the in�uence of

a uniaxial anisotropy. With regard to magnetic tunneling of single molec-

ular magnets, the tunneling behaviour of e�ective two-level systems, where

the Hamiltonian contains a transversal anisotropy and a transversal magnetic

�eld, is investigated with the aid of the time-dependent perturbation calcula-

tion. Finally, this work deals with the magnetization behaviour of open and

closed exchange-coupled e�ective quantum spin chains with the aim of repro-

ducing experimental results that have so far avoided a theoretical description

(open chain) and secondly with the search of stable con�gurations for ring-like

closed spin chains, for systems which are subject to a uniaxial anisotropy, an

exchange interaction and a dipolar interaction.



Zusammenfassung

Diese Arbeit untersucht mithilfe von theoretischen Modellen das Wiederkehr-

verhalten von e�ektiven Einzelspins und deren Verbindung zum magnetischen

Tunneln, die magnetische Tunneldynamik von einzelnen magnetischen Mole-

külen und das Magnetisierungsverhalten von o�enen und geschlossenen aus-

tauschgekoppelten e�ektiven Quantenspinketten. Bezüglich des Wiederkehr-

verhaltens wird, unter Zuhilfenahme der zeitabhängigen Schrödingergleichung,

das Präzessionsverhalten von e�ektiven Einzelspins, unter der Einwirkung ei-

ner uniaxialen Anisotropie, untersucht. Bezüglich des magnetischen Tunnelns

von Einzel-Molekül-Magneten wird, mit Zuhilfenahme der zeitabhängigen Stö-

rungsrechnung, das Tunnelverhalten von beliebigen e�ektiven zwei Niveau Sys-

temen, welche sich unter dem Ein�uss einer transversalen Anisotropie und

einem transversalen Magnetfeld be�nden, untersucht. Schlussendlich behan-

delt diese Arbeit das Magnetisierungsverhalten von o�enen und geschlossenen

austauschgekoppelten e�ektiven Quantenspinketten mit dem Ziel erstens ex-

perimentelle Befunde zu reproduzieren, welche sich bisher einer theoretischen

Beschreibung entzogen haben (o�ene Ketten) und zweitens stabile Kon�gura-

tionen für ringartige geschlossene Spinketten, für Systeme die einer uniaxialen

Anisotropie, einer Austschauschwechselwirkung sowie einer dipolaren Wechsel-

wirkung unterliegen, zu ermitteln.
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Chapter 1

Introduction

The importance of information storage was never so relevant as in today's mod-

ern times. Our information based societies needs vast capacities to conserve

all the di�erent kind of data, like texts, books, video and audio information.

In the past this information classes were conserved on di�erent platforms, like

on paper for books or on vinyl records for audio related content. The introduc-

tion of digital computers and thus the invention of digital information based

storage like magnetic hard drives led to a uni�cation of the storage platforms.

Nowadays, books, videos and audio information are digitalized and conserved

through bits on various storage media. This transition from di�erent platforms

to one uni�ed digitalized platform is still in progress since more and more so-

cieties adapt this concept. Especially the info/entertainment centric aspect

of video data storage consumes in our modern societies, due to the trend of

higher de�nition qualities, a lot of the available storage resources. The concept

of the magnetic hard drive is that it records data by magnetizing a thin �lm

of ferromagnetic material. Sequential changes in the direction of magnetiza-

tion represent binary data bits. The data extraction from the disk is done by

the detection of the transitions in magnetization. This means that the mag-

netization of thin �lms of ferromagnetic materials leads to discrete areas of

a speci�c magnetization direction which di�ers from the magnetization direc-

tion of areas which are in between. The principle is similar to the patterns of

a vinyl record, with the di�erence that instead of di�erent modulated spiral

grooves now di�erent magnetic direction areas are responsible for the informa-

tion storage. The density of such magnetic direction areas is responsible for the
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storage capacity. The research endeavoured to increase the memory density,

but with the problem of reading these increasingly �ne magnetic structures,

it had reached its limits. Here, the GMR e�ect turned out to be the solu-

tion to this problem. Through the read construction, which consists of two

magnetic layers, which are separated by a non-magnetic one, �ows current.

If the variable layer changes its magnetization direction, then the resistance

of the read head changes. If the two magnetic layers have a di�erent magne-

tization direction, the resistance is higher, which results in a decrease in the

current strength than if both point in the same direction. This phenomenon,

changing the current resistance depending on the direction of magnetization,

is the giant magneto-resistance e�ect (GMR). Even very weak magnetic �elds

can cause the magnetization directions to change and trigger the change in

the current intensity. Because of this, the size of the storage units (and thus

their magnetic �eld) on a hard drive could be massively reduced. Since the

areas of storage bits could consist of several hundred atoms, there is plenty

of room to improve the storage density further. The purpose of this thesis

is to investigate possibilities in order to store bits in single magnetic atoms

or single magnetic molecules from a quantum mechanical perspective. These

quantum dynamical phenomena become increasingly important also in solid

state physics. Particularly, quantum mechanical tunneling has been reported

for nanomagnets [20], molecules [21, 22] and single atoms [23].

Our �rst investigation is on the quantum revival, which is de�ned by the quan-

tum recurrence theorem [15, 16, 17, 18, 19], where the system return arbitrarily

close to the initial state. Here we analyse the correlation between the spin pre-

cession and the magnetization tunneling. Particular attention is given to the

non-linear character of the uniaxial anisotropy, which leads to non-harmonic

dynamics, when combined with a linear energy. Our second investigation is

related to single molecular magnets (SMM). This �eld is an actual topic in

today's research [37, 38, 49, 50, 51, 52, 53] on magnetic molecules for stor-

age purpose. These single molecule magnets are treated as e�ective two level

systems (ground doublets). The investigations concentrate on techniques to

switch the magnetization of those SMM controlled and hold them in a re-

quested magnetization orientation. This would allow us to store bits in form

of up and down oriented magnetic moments of the single molecule magnets and
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would increase the density of information storage extremely, relative to today's

standards. Our approach is to analyse the switching behaviour of SMM, from

a time dependent perturbative theory point of view. Further we analyse if

there is a switching correlation between single molecule magnets with di�erent

degrees of freedom, by studying SMM for arbitrary quantum numbers s.

The third and last investigation, documented in this thesis, is about the mag-

netization behaviour of exchange coupled open [57, 59] and closed spin chains.

For the case of open spin chains we analyse the magnetic behaviour of anti-

ferromagnetically coupled Fe spins on a Cu(111) substrate. These systems are

of interest, because the magnetization behaviour of the spin chains, from the

experimental data [57], can not be reproduced by theoretical models, like the

Ising model, for parameters given from the experiment. Here we investigate

if the Landau-Zener scenario is able to reproduce the data from the experi-

ment and further we analyse if a magnetic �eld dependence of the magnetic

moments of the edge spins can generate the magnetisation behaviour from the

experiment. For the case of closed spin chains we studied stationary equilib-

rium magnetic con�gurations of e�ective magnetic moments of closed magnetic

chains with uniaxial anisotropy coupled with anti-ferromagnetic exchange. The

main objective is to identify which kind of magnetic states, di�erent from the

collinear ground states, can be stabilized. Further we investigate at �nite tem-

peratures non-frustrated rings or other closed shapes with an even number of

sites, if they can be stabilized without the Dzyaloshinskii-Moriya interaction.

Again, we try to �nd ways to identify magnetic structures, consisting of a few

spins in the form of rings, which can be stabilized, regarding their magnetic

structure, in order to use them as a way to store data.
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Chapter 2

Theory

In this chapter we present theoretical models, which we used in our research

work, to obtain results on quantum revival in single spin systems, magneti-

zation tunneling in single magnetic molecules and on the magnetization be-

haviour of open and closed exchange coupled spin chains.

2.1 Equation of motion and equation of energy

2.1.1 Spin wave function

The complete wave function of magnetic systems, can be written as a product

of the wave function in position space and the spin wave function:

Ψ(~r, t) = φ(~r, t) · ψ(t). (2.1)

Equation (2.1) is valid, because the spatial behaviour of the electrons is inde-

pendent of their spin behaviour. Within this work we focus solely on the spin

wave function ψ(t). The equation of motion, which is used here is the time

dependent Schrödinger equation [72]:

i~
∂

∂t

∣∣ψ(t)
〉

= Ĥeff

∣∣ψ(t)
〉
, (2.2)

which is a linear ordinary di�erential equation of �rst order. The wave function∣∣ψ(t)
〉
in Eq.(2.2) de�nes the eigenstates of the spin system:

∣∣ψ(t)
〉

=
2s∑
i=0

ϕs−i(t)
∣∣êi+1

〉
=


ϕ+s(t)

...

ϕ−s(t)

 , (2.3)
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where s de�nes the spin quantum number [73, 74]. The normalization condition

is given by the expression

2s∑
i=0

∣∣〈ϕs−i(t)∣∣ϕs−i(t)〉∣∣2 = 1, (2.4)

and
∣∣〈ϕn(t)

∣∣ϕn(t)
〉∣∣2 is the probability to measure the system in the n'th state.

2.1.2 E�ective Hamiltonian

The e�ective Hamiltonian Ĥeff in Eq.(2.2) describes the energy landscape of

the spin systems and contains solely e�ective interactions between the spins

among themselves and with the environment [73, 74]:

Ĥeff =


〈
ϕs(t)

∣∣Ĥeff

∣∣ϕs(t)〉 · · ·
〈
ϕs(t)

∣∣Ĥeff

∣∣ϕ−s(t)〉
...

. . .
...〈

ϕ−s(t)
∣∣Ĥeff

∣∣ϕs(t)〉 · · · 〈
ϕ−s(t)

∣∣Ĥeff

∣∣ϕ−s(t)〉
 . (2.5)

The advantage of an e�ective Hamiltonian is the simplicity to model atomic

systems, because all interactions are de�ned in a reduced Hilbert space and

thus only a part of the eigenvalue spectrum of the complete Hamiltonian is

described. An example system could be a single spin on a substrate within an

external magnetic �eld:

Ĥ = − ~̂S ~B −KŜ2
z . (2.6)

The Hamiltonian in Eq.(2.6) describes such a situation. The �rst term de�nes

the Zeeman energy (through the external magnetic �eld ~B) and the second

term in Eq.(2.6) de�nes the uniaxial anisotropy with the anisotropy constant

K, which describes the e�ective interaction between the substrate and the

quantum spin. The ~̂S in Eq.(2.6) stands for the spin operator vector and Ŝz
is an element of it. The spin operator vector is de�ned by

~̂S =


Ŝx

Ŝy

Ŝz

 , (2.7)

and obeys the commutation relations [Ŝi, Ŝj] = i~εijlŜl, analogous to those of

the orbital angular momentum. For the special case of a spin 1/2 system, Ŝx,
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Ŝy and Ŝz are the three Pauli matrices [73, 74], given by

Ŝx =

(
0 1

2
1
2

0

)
, Ŝy =

(
0 − i

2
i
2

0

)
, Ŝz =

(
1
2

0

0 −1
2

)
, (2.8)

which are hermitian and unitary. This means that the Pauli matrices span

the space of observables of the 2-dimensional complex Hilbert space. The

generalized form of the spin operators Ŝi, with i ∈ [x, y, z], for arbitrary spin

quantum numbers s is given by [74]

(Sxa,b) =
~
2

(δa,b+1 + δa+1,b)
√

(s+ 1)(a+ b− 1)− ab

(Sya,b) =
i~
2

(δa,b+1 − δa+1,b)
√

(s+ 1)(a+ b− 1)− ab

(Sza,b) = ~(s− (a− 1))δa,b = ~(s− (b− 1))δa,b

1 ≤ a, b ≤ 2s+ 1,

(2.9)

where a and b are indices which de�ne positions of the matrix elements of the

spin operator Ŝi. The δa,b in Eq.(2.9) represent the Kronecker delta:

δa,b =

1 if a = b

0 if a 6= b

2.1.3 Many-spin systems

In order to model many-quantum-spin systems it is necessary to expand the

Hilbert space of the single spin systems:

Ĥ = Ĥ1 ⊗ ...⊗ Ĥn. (2.10)

This is done by the Kronecker product ⊗, which is de�ned by

Â⊗ B̂ =


a11 · B̂ · · · a1n · B̂

...
. . .

...

am1 · B̂ · · · amn · B̂

 . (2.11)

Â is an m×n matrix and B̂ is a p× q matrix in Eq.(2.11), then the Kronecker

product Â⊗B̂, which is in general non-commutative, is amp×nq block matrix.



8 CHAPTER 2. THEORY

The dimension of the spin operators Ŝi is equal to the dimension of the entire

many-spin Hilbert space:

dim(Ŝx, Ŝy, Ŝz) = dim(Ĥ1 ⊗ ...⊗ Ĥn). (2.12)

An example of a two spin system without interaction, based on the Hamiltonian

in Eq.(2.6), is

Ĥ1⊗Ĥ2 = −


Ŝx ⊗ I2

Ŝy ⊗ I2

Ŝz ⊗ I2

· ~B−

I1 ⊗ Ŝx
I1 ⊗ Ŝy
I1 ⊗ Ŝz

· ~B−K(Ŝz⊗I2)2−K(I1⊗Ŝz)2, (2.13)

where I1 and I2 in Eq.(2.13) are the identity matrices of their respective spin

operators Ŝi and may possess di�erent dimensions. In order to measure the

subsystem Ĥ1 of a composite system with density matrix ρS1S2 on the tensor-

product space Ĥ1⊗ Ĥ2 it is necessary to use the reduced density operator ρS1.

This means that in order to estimate the expectation values from the two spin

system, described by Eq.(2.13), separately for each spin it is required to use

the reduced density matrix

ρS1 = TrS2(ρS1S2). (2.14)

This leads to the following expression for the expectation values:

Tr(ρS1Ŝ1) =
〈
ψ(t)

∣∣Ŝi1 ⊗ I2

∣∣ψ(t)
〉
. (2.15)

The order of I and Ŝi in Eq.(2.15) is responsible for which spin is measured.

2.2 Quantum revival

The quantum revival is a periodic recurrence of the quantum wave function

towards its initial state∣∣Ψ(t)
〉

=
∣∣Ψ(t+ α∆t)

〉
α ∈ N. (2.16)

The most important term here is the periodicity, because for a given phase

space with a �nite volume, the recurrence is not necessarily a periodic re-

currency. This means that a return to a state arbitrary close to the initial

state, without a periodicity, is possible (even in systems with periodic orbits).



2.2. QUANTUM REVIVAL 9

The general principle for periodic and non-periodic recurrence is de�ned by

Poincaré's recurrence theorem, which states that if H is a Hamiltonian on a

phase space Ω, with �nite volume, then a trajectory exists for every open set

U ⊂ Ω which pass U an in�nite number of times. Due to the Liouville's theo-

rem all Hamiltonian systems are volume-preserving.

Beside the quantum revival of the wave function, the periodic recurrence of

the expectation values
〈
Sx
〉
,
〈
Sy
〉
and

〈
Sz
〉
, and the relation to the recurrence

of the quantum wave function is the main focus of the chapter: "Quantum re-

vivals and magnetization tunneling in e�ective spin systems". Especially the

revival of the expectation values
〈
Sx
〉
and

〈
Sy
〉
, which together de�nes the

spin precession, are a primary topic.

2.2.1 Larmor precession

A special case of spin precession is the Larmor precession, which is de�ned as

the precession of the magnetic moment of an object (atom or molecule) around

an external magnetic �eld. This means that the external magnetic �eld exerts

a torque on the magnetic moment,

τ = γ ~J × ~B. (2.17)

The τ in Eq.(2.17) represents the torque, whereby γ is the gyromagnetic ratio,
~J is the angular momentum vector and ~B is the external magnetic �eld. This

precession has a speci�c recurrence frequency, known as the Larmor frequency

ω = −γ ·B. (2.18)

The recurrence frequency ω in Eq.(2.18) solely depends on the external mag-

netic �eld and thus belongs to the harmonic oscillations. The situation changes

drastically, if the magnetic moment is on a substrate with a uniaxial anisotropy.

Because then the precession is not harmonic anymore, but instead non-harmonic,

which is one of the results of the chapter: "Quantum revivals and magnetiza-

tion tunneling in e�ective spin systems".
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2.2.2 Non-harmonic oscillation

A non-harmonic oscillation is a superposition of several harmonic oscillations

with di�erent frequencies ωi 6= ωj. The resulting frequency which describes a

non-harmonic oscillation is the fundamental frequency

ωf = gcd(ω1, ..., ωm), (2.19)

where "gcd" is the greatest common divider. The consequence of the "gcd" is

that the fundamental frequency ωf is always equal or lower than the lowest ωi
in Eq.(2.19), which can be expressed by an in�mum: ωf ≤ inf(ω1, ..., ωm).

The non-harmonic precession of a magnetic moment originates from the com-

bination of a linear term and a term with an even exponent Ŝ2n (n ∈ N \ {0}),
like a quadratic one, in the Hamiltonian:

Ĥ = −BzŜz −KŜ2
z . (2.20)

The linear term in Eq.(2.20) is the Zeeman term and the quadratic term is the

uniaxial anisotropy.

2.3 Quantum spin tunneling

Quantum spin tunneling [75, 76] is an e�ect, which occurs because of symmetry

breaking of an unperturbed system by perturbations which leads to a loss of

degeneracy of energy levels. It is a well known e�ect, with many experiments

especially on single-molecular magnets (SMM) [37, 38, 49, 50, 51, 52, 53, 76].

In order to understand this in more detail, an example of a single atomic

spin on a substrate, with no external magnetic �eld, will be introduced. The

simplest Hamiltonian of such a system is a spin 1/2 atomic system with a

uniaxial anisotropy:

Ĥ0 = −KŜ2
z . (2.21)

By writing the Hamiltonian Ĥ0 out, which is done in Eq.(2.22) it is obvious

that the system solely contains diagonal elements and thus the time dependent

Schrödinger equation with the Hamiltonian Ĥ0 in Eq.(2.21) is a system of

uncoupled linear di�erential equations.

Ĥ0 =

(
−1

4
K 0

0 −1
4
K

)
(2.22)
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The consequence of a such an Hamiltonian is that the eigenstates are time

invariant. In order to enable the system in Eq.(2.21) to change the eigenstates

a transversal perturbation is necessary:

Ĥ = Ĥ0 + Ĥp = −KŜ2
z − B̃xŜx. (2.23)

The transversal perturbation in Eq.(2.23) is realised by a transversal magnetic

�eld. This leads to a system of coupled linear di�erential equations

i~
∂

∂t
ψ(t) =

(
−1

4
K −1

2
B̃x

−1
2
B̃x −1

4
K

)
·

(
ϕ+1/2(t)

ϕ−1/2(t)

)
. (2.24)

Calculating the expectation value
〈
Sz
〉
using Eq.(2.24) leads to an oscillation

between the two eigenstates, shown in �gure 2.1. The ability of a system to

Figure 2.1: Oscillations between two eigenstates of a spin 1/2 system

execute such state transition, without the necessity of a thermal activation, in

order to overcome the energy barrier, is de�ned as quantum spin tunneling.

The energy landscape of the Hamiltonian in Eq.(2.23), extended by a Zeeman

term BzŜz, reveals an energy gap between the eigenvalues, shown in �gure

2.2. This avoided level crossing, caused by the transversal perturbation Ĥp =

−B̃xŜx, is known as the energy splitting of the ground doublet ∆Esplit. The

magnitude of the ground doublet energy splitting correlates with the frequency

of the eigenstate transitions, shown in �gure 2.1, in the way that a larger
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energy splitting ∆Esplit = 2~ω, caused by stronger transversal perturbations,

leads to higher frequencies within the eigenstate oscillations. The zero-�eld

Figure 2.2: The zero-�eld energy splitting ∆Esplit at an avoided level crossing.

energy splitting ∆Esplit for arbitrary spin quantum numbers s, which ful�l the

Hamiltonian in Eq.(2.23), is given by

∆Esplit = 8|K|s2
( B̃x

2|K|

)2s 1

(2s)!
. (2.25)

Perturbations, which lead to a loss of degeneracy of energy levels, are often

caused by small transversal anisotropies, especially in single-molecular magnets

(SMM):

Ĥ = Ĥ0 + Ĥp = −KŜ2
z − K̃(Ŝ2

x − Ŝ2
y). (2.26)

Energy contributions with operators of the form Ŝ2n
x , Ŝ

2n
y (n ∈ N \ {0}) in

the Hamiltonian, leads to the circumstance that, due to Kramers degeneracy

theorem, only integer quantum spins show quantum spin tunneling e�ects. The

zero-�eld energy splitting ∆Esplit, for arbitrary integer spin quantum numbers

s, de�ned by the Hamiltonian in Eq.(2.26), is given by

∆Esplit = 8|K|s2
( K̃

4|K|

)s (2s)!

(s!)2
. (2.27)
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2.3.1 Kramers degeneracy theorem

For every energy eigenstate of a time-reversal symmetric system with half-

integer spin, the Kramers degeneracy theorem states that each energy level

is at least doubly degenerated. This is only valid for electric �elds and does

not apply to magnetic �elds. From a matrix operator perspective, Kramers

degeneracy theorem means that, because of symmetry reasons, the ground

doublet states of half-integer spins can not be coupled directly or indirectly by

transversal perturbations with spin operators of the form Ŝ2n
x and Ŝ2n

y (n ∈ N\
{0}). Solely linear spin operators and operators of the form Ŝ2n−1

i (n ∈ N\{0})
can couple the ground doublet states of a half-integer spin system.

2.3.2 Quenched tunnel splitting

Quenched tunnel splitting describes an e�ect where the energy splitting ∆Esplit,

for the ground doublet is vanishing ∆Esplit = 0 for certain parameters of the

parameter space. This phenomenon occurs because of destructive interferences

between the tunneling paths. Tunneling paths are direct and indirect couplings

of ground doublet states, like of
∣∣+1/2

〉
and

∣∣−1/2
〉
by o�-diagonal elements in

the Hamilton operator. The �rst condition for destructive interferences of the

tunneling paths is the presence of at least two operators Ŝnx,y, with a di�erent

power of n, in the Hamiltonian. The second condition is that the signs of the

spin operators Ŝnx,y have to be opposite relative to each other. This means, for

example, that it is necessary to model a system with a hard-axis transversal

anisotropy (negative K̃) and a transversal magnetic �eld with an opposite sign

relative to K̃.

2.4 Heisenberg model

Magnetism is a pure quantum mechanical e�ect, which appears on a macro-

scopic scale. Werner Heisenberg explained the phenomenon of ferromagnetism

by a combination of the Coulomb interaction and the Pauli-principle, which

led to the model Hamiltonian

Ĥ = −
n∑

<i,j>

JijŜi ⊗ Ŝj, (2.28)
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where Jij is the exchange integral of the Coulomb interaction. The spin oper-

ators Ŝi represent the spins on the grid position i. For the case of Jij > 0 in

Eq.(2.28) there is a ferromagnetic coupling, while an anti-ferromagnetic cou-

pling is present for the case of Jij < 0. The brackets < i, j >, under the sum

symbol in Eq.(2.28), indicate that the sum is only valid for next neighbour

spins. The Heisenberg model describes a class of solid state systems, in which

magnetism occurs because of permanent local moments with direct or indirect

exchange interactions. This case can be found in insulator materials and in

some metals.

2.4.1 Exchange interaction

The question of the underlying principle of the spontaneous collective magnetic

order, below the Curie temperature, can be answered by taking into account

the Coulomb interaction in combination with the Pauli principle. In order to

understand how a spin-independent Coulomb interaction can be the reason

for collective magnetic order, an example of a two electron system will be

introduced[74]. Since the spatial behaviour of the electrons is independent of

their spin behaviour it is valid to state Ψ(~r1, ~r2, Sz1, Sz2) = φ(~r1, ~r2)·ψ(Sz1, Sz2),

where Sz = ±1/2. Since electrons are fermions their wave function has to

be anti-symmetric under exchange Ψ(~r1, ~r2) = −Ψ(~r2, ~r1). This leads to the

following form of the wave function in position space

Ψ(~r1, ~r2) = θA(~r1)θB(~r2)± θB(~r1)θA(~r2). (2.29)

The interaction between the electrons is de�ned by the Coulomb potential

ĤC = e2/(4πε0|~r1−~r2|). Thus the energy of the system is given by
〈
Ψ(t)

∣∣ĤC

∣∣Ψ(t)
〉

=

D ± A, with

D =
〈
θA(~r1)θB(~r2)

∣∣ĤC

∣∣θA(~r1)θB(~r2)
〉

=

∫∫
d3r1d3r2

e2

4πε0

|θA(~r1)|2|θB(~r2)|2

|~r1 − ~r2|
(2.30)

and

A =
〈
θB(~r1)θA(~r2)

∣∣ĤC

∣∣θA(~r1)θB(~r2)
〉

=

∫∫
d3r1d3r2

e2

4πε0

θA(~r1)θ∗B(~r1)θB(~r2)θ∗A(~r2)

|~r1 − ~r2|
,

(2.31)

where D is the direct Coulomb integral, which can be interpreted as the

classical Coulomb repulsion force of two cloud charges with spatial densities
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|θA(~r1)|2, |θB(~r2)|2, and where A is the exchange term, which occurs because

electrons are indistinguishable particles and because of the overlap of the or-

bitals θA(~r) and θB(~r). The consequence of the exchange term A is that the

degenerated energy level splits into two di�erent levels, although the two oc-

cupied orbitals of the electrons in both levels stay the same. The lower energy

level D − A belongs to the anti-symmetric wave function in position space

and the higher one D + A belongs to the symmetric case. Within the anti-

symmetric case the energy is lower, because the Coulomb repulsion is lower

(Ψ(~r1, ~r2) = −Ψ(~r2, ~r1) =⇒ Ψ(~r, ~r) = 0). The connection to the spin is given

by the condition that in case of an anti-symmetric wave function in position

space a symmetric spin wave function is mandatory and vice versa. The conse-

quence for the two spin 1/2 system is that the energy level is split into a singlet

level S = 0 and a triplet level S = 1. The triplet level, which is energetically

the lower one, occurs by a symmetric spin wave function and an anti-symmetric

wave function in position space and vice versa for the singlet level. By sum-

marizing, the exchange interaction causes, in this case, an e�ective reduction

of the potential energy (anti-symmetric wave function in position space). On

the other hand, according to the Pauli principle, the parallel spin electrons

(symmetric spin wave function) can not be in the same spatial state and must

occupy successively higher levels, and consequently increasing their kinetic en-

ergy ((Ψ(~r1, ~r2) = −Ψ(~r2, ~r1) =⇒ Ψ(~r, ~r) = 0)). The spontaneous parallel

position of the spins and thus a ferromagnetic order will only come about if the

lowering of the potential energy overcompensates the increase of the kinetic

energy.

2.5 Landau-Zener scenario

Transition dynamics of a 2-level quantum mechanical system, subject to an

external magnetic �eld with time-independent coupling elements in the o�-

diagonals of the system's Hamiltonian are described within the Landau-Zener

scenario. Assuming the magnetic-�eld dependence is linear, the simplest Hamil-

tonian, which enables Landau-Zener scenarios, is given by

Ĥ =

(
µBBz(t)

2
α

α −µBBz(t)
2

)
, (2.32)
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where α is some time-independent coupling between the two states. The diag-

onal elements in Eq.(2.32) represent the energies (E1, E2) of the diabatic states

(energies where α is virtually zero) with the corresponding diabatic states
∣∣1〉

and
∣∣2〉. However, as Ĥ is not a diagonal matrix, it follows that these energies

and states are not eigenvalues and eigenstates of the Hamiltonian. The eigen-

states will be de�ned as
∣∣ϕ1(t)

〉
and

∣∣ϕ2(t)
〉
with the respective eigenvalues

Ẽ1,2(t) = ±
√
α2 + (µBBz(t))2. (2.33)

If a system is initially in state
∣∣ϕ1(t)

〉
in zero magnetic �eld, shown in �gure

Figure 2.3: Adiabatic (curves) and diabatic (dotted lines) energy paths.

2.3 (on the red curve, from left), then an adiabatic increase in magnetic �eld
dB
dt
→ 0 will ensure that the system remains in an eigenstate

∣∣ϕ1(t)
〉
of the

Hamiltonian Ĥ. In contrast, an adiabatic increase in magnetic �eld dB
dt
→ ∞

will ensure that the system follows the diabatic path (the dotted blue line in

�gure 2.3), thus the system undergoes a transition to state
∣∣ϕ2(t)

〉
. For �nite

magnetic �eld sweep rates (0 < dB
dt

< ∞) there will be a �nite probability

of �nding the system in either of the two eigenstates, which is given by the

probability function:

PD = e−πΓ, (2.34)

where Γ = α2/~
∂
∂t

(Ẽ2−Ẽ1)
.
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Chapter 3

Simulation methods

3.1 Exact diagonalization

In order to estimate the eigenvalues of a n-dimensional Hamiltonian, it is

necessary to �nd the roots to the characteristic polynomial of degree n, for

which in general no exact solution can be found for n > 4. A strategy to

solve this is to �nd a unitary, or orthogonal, transformation that makes the

Hamiltonian diagonal

Ĥ → Û †ĤÛ . (3.1)

The purpose is to construct the matrix U in an iterative way,

Ĥ → Û †1ĤÛ1 → Û †2 Û
†
1ĤÛ1Û2 → · · ·, (3.2)

until the matrix becomes diagonal. The columns of Û = Û1Û2 · ·· contains the
eigenvectors of Ĥ. Here we used the c++ library "Eigen" in order to �nd the

eigenstates and eigenvalues of exchange coupled spin systems.

3.2 Classical Runge-Kutta-method

In order to solve the time dependent Schrödinger equation of motion, which is

given by

i~
∂

∂t

∣∣ψ(t)
〉

= Ĥeff

∣∣ψ(t)
〉
, (3.3)

for single spin systems as well as exchange coupled spin chains we used the clas-

sical Runge-Kutta-method. The bene�t of the Runge-Kutta approximation,
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here, is the ability to use non-linear, non-hermitian Hamiltonians, for example

in order to study damping e�ects. The classical Runge-Kutta-method is an

approximation, which includes the principles of the Euler method, albeit in

contrast to the Euler method it is using four increments instead of one, which

leads to greater accuracy. The general procedure of the classical Runge-Kutta-

method is: For ẏ = f(t, y), with the initial condition y(t0) = y0 it follows

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4),

k1 = f(tn, yn),

k2 = f(tn +
h

2
, yn + h

k1

2
),

k3 = f(tn +
h

2
, yn + h

k2

2
),

k4 = f(tn + h, yn + hk3),

(3.4)

where h (h > 0) is the step size.
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Chapter 4

Quantum revivals and

magnetization tunneling in

e�ective spin systems

This chapter is an extract from the publication:

M. Krizanac, D. Altwein, E. Y. Vedmedenko, and R. Wiesendanger, New J.

Phys. 18 033029 (2016).

4.1 Introduction

The wave-function of a quantum particle can decay over time, but its initial

state is not lost and can reappear in certain time windows. This phenomenon

of the wave-function reincarnation is known as the quantum revival [1, 2, 3, 4].

The analysis of the quantum revival reveals two types of systems. First, sys-

tems of excited localized wave packets in which the recovering of the complete

wave-function destroyed by the decay processes has been studied in the con-

text of two-level quantum systems [5, 6, 7], quantum wells [8, 9, 10, 11, 12] and

Bose-Einstein condensates [13, 14]. The second type discusses systems with

discrete energy eigenvalues in which, due to the quantum recurrence theorem,

the systems return arbitrarily close to the initial state [15, 16, 17, 18, 19].

Meanwhile, the quantum dynamical phenomena become increasingly impor-

tant also in solid state physics. Particularly, quantum mechanical tunneling
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or the non-classical �eld dependence of magnetization has been reported for

nanomagnets [20], molecules [21, 22] and single atoms [23]. Therefore, instead

of studies of time-averaged properties like, e.g., magnetization curves [23, 24],

nowadays the emphasis is put on the time-dependent behavior of magnetization

[25, 26, 27, 28, 29]. This trend is promoted further by the development of novel

pump-probe techniques [30] allowing for sub-femto-second time resolution of

magnetization dynamics, which might shed light on the revival phenomena in

nano-magnetic systems. Hence, theoretical predictions are urgently required.

Until now, however, the systematic theoretical description of quantum revival

in magnetic systems is lacking, while existing investigations come to controver-

sial conclusions. Particularly, an increase as well as a decrease of the quantum

revival time (QRT) with increasing spin s have been reported [25, 26].

Here, we studied the second type of the quantum revival analysis where an ex-

act expression for the time evolution of an e�ective quantum magnetic moment

has been derived analytically using the Schrödinger formalism. In contrast to

previous investigations, which do not di�erentiate between the revival of the

total wave function (state) and that of the expectation values of the wave-

function, we distinguish the quantum revival time of the total wave-function

(QRT) and the revival time of expectation values (EVRT) and show that

they are not identical. We concentrate on EVRT as only this quantity can

be measured experimentally. The analysis of the expression, which we obtain

for EVRT, shows that the time-dependent behaviour of spin operators can be

represented via the Fourier series of characteristic frequencies ωi. These fre-

quencies, in turn, de�ne the non-harmonic precession of expectation values of

spin components. Surprisingly, it doesn't depend on the angular momentum

as previously predicted, but rather is de�ned via the ratio of the anisotropy

constant K and the external magnetic �eld B. The shortest EVRT can be

found for B̃z = N · K with any integer N . For any other B̃z/K ratio the

EVRT is larger or even in�nite for an irrational ratio. Furthermore, our analy-

sis reveals that the quantum tunneling of magnetization occurs at B̃z = N ·K,

where N ≤ 2s, in the regime of small transversal �elds. Hence, the QRT and

the magnetization tunneling are closely related to one another.
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4.2 Time evolution of expectation values

The Quantum Recurrence Theorem [15] de�nes the QRT as the shortest time

interval ∆t after which the full wave-function
∣∣Ψ(t)

〉
of a system periodically

repeats
∣∣Ψ(t)

〉
=
∣∣Ψ(t + α∆t)

〉
α ∈ N. In experiment, however, only mea-

surements of expectation values of the magnetization components
〈
Sj
〉
t

(j :=

x, y, z) are possible. Consequently, the periodicity of
∣∣Ψ(t)

〉
recurrence is inac-

cessible, while that of the expectation values can be measured. The periodicity

of expectation values may be di�erent from the standard QRT as has been

shown for a particle in a quantum well [12]. However, systematic comparison

of these two quantities in quantum magnetic systems is still lacking.

For the sake of a systematic analysis of the dynamics of expectation values the

time-dependent equation of motion

i~
∂

∂t
Ψ(t) = ĤΨ(t) (4.1)

has been solved analytically. The Hamilton operator in (6.3) includes the

standard spin operators Ŝi, uniaxial on-site anisotropy K and a magnetic �eld
~B = (0, 0, Bz). This Hamiltonian models an e�ective quantum spin represent-

ing a nanoparticle, a molecule, or an atomic cluster [31, 24, 20].

Ĥ = −ŜzB̃z −KŜ2
z , (4.2)

where

B̃z = µBBz. (4.3)

The equations (6.3) and (4.2) de�ne a system of uncoupled linear ordinary

di�erential equations of �rst order

i~
∂

∂t
Ψ(t) =


−sB̃z − s2K · · · 0

...
. . .

0 sB̃z − s2K

 ·

ϕ+s(t)

...

ϕ−s(t)

 (4.4)

with the following solutions for the eigenstates

|Ψ(t)
〉

=


ϕ+s(t) = ϕ+s(t0) · e−i(−sB̃z−s2K)t/~

...

ϕ−s(t) = ϕ−s(t0) · e−i(sB̃z−s2K)t/~

 (4.5)
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where s is the spin quantum number and the initial conditions are

ϕ+s(t0), ..., ϕ−s(t0) ∈ C. (4.6)

The normalization condition is given by the expression

2s∑
i=0

|ϕs−i(t)|2 = |ϕ+s(t)|2 + . . .+ |ϕ−s(t)|2 = 1. (4.7)

With the knowledge of eigenstates, the time-dependent expectation values of

spin operators can be obtained as

〈Ŝi〉t = 〈Ψ(t)|Ŝi|Ψ(t)〉 i := x, y, z. (4.8)

An example of a real part of the expectation value for the spin operator Ŝx
with s = 1~ is given by (4.9).

〈
Sxreal

〉
t

=
2~√

2
·
[
(ϕ+1
real

(t0)ϕ0
real

(t0)) · cos
(
(−B̃z −K)

t

~
)

+ (ϕ−1
real

(t0)ϕ0
real

(t0)) · cos
(
(B̃z −K)

t

~
)]
. (4.9)

The complete solutions of the expectation values
〈
Sx
〉
,
〈
Sy
〉
and

〈
Sz
〉
for an

e�ective quantum spin s = 1~ de�ned by the Hamilton operator Ĥ = −ŜzB̃z−
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KŜ2
z are:〈

Sx
〉

=
2~√

2

·
[
(ϕ+1
real

(t0)ϕ0
real

(t0) + ϕ+1
imag

(t0) ϕ0
imag

(t0)) · cos[(−Bz − ~K)t]

+ (ϕ−1
real

(t0)ϕ0
real

(t0) + ϕ−1
imag

(t0) ϕ0
imag

(t0)) · cos[(Bz − ~K)t]

+ (−ϕ+1
real

(t0) ϕ0
imag

(t0) + ϕ+1
imag

(t0)ϕ0
real

(t0)) · sin[(−Bz − ~K)t]

+ (ϕ−1
imag

(t0)ϕ0
real

(t0)− ϕ−1
real

(t0) ϕ0
imag

(t0)) · sin[(Bz − ~K)t]
]

〈
Sy
〉

=
2~√

2

·
[
(ϕ+1
real

(t0)ϕ0
real

(t0) + ϕ+1
imag

(t0) ϕ0
imag

(t0)) · sin[(−Bz − ~K)t]

+ (−ϕ−1
real

(t0)ϕ0
real

(t0)− ϕ−1
imag

(t0) ϕ0
imag

(t0)) · sin[(Bz − ~K)t]

+ (−ϕ+1
real

(t0) ϕ0
imag

(t0)− ϕ+1
imag

(t0)ϕ0
real

(t0)) · cos[(−Bz − ~K)t]

+ (ϕ−1
imag

(t0)ϕ0
real

(t0)− ϕ−1
real

(t0) ϕ0
imag

(t0)) · cos[(Bz − ~K)t]
]

〈
Sz
〉

=
~
2

[
|ϕ+1
real

(t0)|2 − |ϕ−1
real

(t0)|2 + |ϕ+1
imag

(t0)|2 − |ϕ−1
imag

(t0)|2
]

(4.10)

These expressions have been obtained using 〈Ψ(t)|Ŝi|Ψ(t)〉 (i := x, y, z) where

|Ψ(t)
〉

=


ϕ+s(t) = ϕ+1(t0) · e−i(−B̃z−K)t/~

ϕ0(t) = ϕ0(t0)

ϕ−1(t) = ϕ−1(t0) · e−i(B̃z−K)t/~

 .
(4.11)

A remarkable peculiarity of the expression (4.9) is the superposition of two

characteristic frequencies ω1 = (−B̃z − K)/~ and ω2 = (B̃z − K)/~, which
appear due to the quadratic nature of the uniaxial anisotropy term in the

Hamilton operator of (4.2). The presence of two harmonics in (4.9) de�nes a

non-harmonic oscillation [34], which is characterized by time-dependent am-

plitudes. It reveals that for a Hamilton operator including anisotropy terms
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with an even exponent, for example, K · Ŝ2n
α (α = x, y, z and n ∈ N\{0}), the

expectation values
〈
Sj
〉
t

(j := x, y) can be represented in the form of Fourier

series, while
〈
Sz
〉
t
is a constant. A solution of

〈
Sx
〉
t
for an arbitrary value of

a quantum spin number is given by (4.12):

〈
Sx
〉
t

=
2s∑
i=1

(
αi · cos(ωit) + βi · sin(ωit)

)
(4.12)

where

αi = 2(Sx)i,i+1

(
ϕ(t0)reals−(i−1) · ϕ(t0)reals−i + ϕ(t0)imags−(i−1) · ϕ(t0)imags−i

)

βi = 2(Sx)i,i+1

(
− ϕ(t0)reals−(i−1) · ϕ(t0)imags−i + ϕ(t0)imags−(i−1) · ϕ(t0)reals−i

) (4.13)

and

(Sx)i,i+1 =
~
2

√
(s+ 1)2i− (i2 + i) (4.14)

ωi =

(
− B̃z − (2s− (2i− 1))K

)
~

. (4.15)

The derivation of expressions (4.12) can be found in the following sub-chapter

"Fourier series form".

Hence, the time evolution of the magnetization components of an arbitrary

quantum spin subject to quadratic terms in the Hamilton operator can be rep-

resented by a superposition of 2s characteristic frequencies ωi. Clearly, these

frequencies de�ne a general non-harmonic oscillation. An exception is given

by a spin ~/2 particle as in this case only one frequency B̃z/~ survives. The

spectrum of a general non-harmonic oscillation is discrete and is characterized

by its fundamental frequency ωf . The fundamental frequency ωf corresponds

to the greatest common divisor (gcd) of all harmonics gcd(ω1, ..., ωi). In our

case all these frequencies depend on the magnitudes of K and B̃z. In the sim-

plest case of spin 1~ there are only two of them, namely ω1 = (−B̃z −K)/~
and ω2 = (B̃z −K)/~. Quite generally, the shortest period of any oscillation
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Figure 4.1: Example of the time-evolution for an e�ective quantum spin 3~/2:
a) The time evolution of the expectation value

〈
Sx
〉
t
for B̃z = 0.5 [a.u] and

K = 0.05 [a.u] (B̃z/K = 10). The lowest possible periodicity of the expectation

value corresponds to Trep ≈ 62 [a.u]; b) The same
〈
Sx
〉
t
for B̃z = 0.18 · π [a.u]

and K = 0.05 [a.u], with B̃z/K ∈ I = R\Q leads to Trep → ∞; c) Time

evolution of the total wave-function |Ψ(t)
〉
. The Σψ(t)real represents the real

part of the total wave-function components. For the same magnitude of B̃z

and K as in (a), much larger values of Trep ≈ 500 [a.u] compared to (a) have

been obtained; d) Σψ(t)real for parameters used in (b) with Trep →∞.

corresponds to a reciprocal of the fundamental frequency de�ned above and is

known as the repetitive time Trep = 2π
ωf

Trep =
2π

gcd(ω1, ..., ωi)
, ωi ∈ Z (4.16)

In �gure 4.1(a, c) a portion of the time-dependent evolution of
〈
Sx
〉
and the

total wave-function with integer B̃z/K value are shown, while in Fig. 4.1 (b,

d) the signal for the case of an irrational B̃z/K ratio is presented. While both

cases represent the non-harmonic oscillation, their behaviour shows signi�cant

di�erences. Most importantly,
〈
Sx
〉
t
for B̃z/K = 10 of Fig. 4.1 (a) shows much

smaller periodicity Trep, than that of irrational B̃z/K (Fig. 4.1 (b)). In �gures
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4.1(c) and 4.1(d), which represent the time evolution of the sum Σψ(t) of the

wave-function |Ψ(t)
〉

= (ψs(t), ..., ψ−s(t))
T , the same values of B̃z and K have

been used. Nevertheless, much longer repetition periods of expectation values

have been obtained. For irrational B̃z/K ratio the periodicity of the total

wave-function is in�nite. In the next step, the relation between the repetitive

time, the QRT and the EVRT for a given Hamilton operator will be revealed.

4.2.1 Fourier series form

Here we present the derivation of Eq.(4.12). The expectation values
〈
Sx
〉
,
〈
Sy
〉

and
〈
Sz
〉
for a general e�ective quantum spin s, de�ned by a Hamilton operator

without o�-diagonal elements, can be generalized as:

〈
Sm
〉

=
〈
Ψ(t)|Sm|Ψ(t)

〉
m ∈ [x, y, z]

(4.17)

where |Ψ(t)
〉
is


ϕ+s(t) = ϕ+s(t0) · e−i(−sB̃z−s2K)t/~

...

ϕ−s(t) = ϕ−s(t0) · e−i(sB̃z−s2K)t/~

 (4.18)

The generalized spin matrices Sm are de�ned by

(Sxa,b) =
~
2

(δa,b+1 + δa+1,b)
√

(s+ 1)(a+ b− 1)− ab

(Sya,b) =
i~
2

(δa,b+1 − δa+1,b)
√

(s+ 1)(a+ b− 1)− ab

(Sza,b) = ~(s− (a− 1))δa,b = ~(s− (b− 1))δa,b

1 ≤ a, b ≤ 2s+ 1,

(4.19)
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The generalized components of the time dependent spin eigenstate vector∣∣Ψs(t)
〉
are

ϕs−j(t) = ϕs−j(t0) · e−i(−(s−j)B̃z−(s−j)2K) t~

0 ≤ j ≤ 2s
(4.20)

The generalized form of
∣∣Ψs(t)

〉
in (4.20) is a consequence of the fact that the

Hamilton operator Ĥ = −ŜzB̃z−KŜ2
z does not contain o�-diagonal elements.

Hence, it represents a system of uncoupled linear ordinary di�erential equations

of �rst order. Inserting (4.20) and (4.19) in (4.17) leads to

〈
Sm
〉

= ϕ∗s(t)(Sm1,2)ϕs−1(t)

+ ϕ∗s−1(t)
(

(Sm2,1)ϕs(t) + (Sm2,3)ϕs−2(t)
)

+ ϕ∗s−2(t)
(

(Sm3,2)ϕs−1(t) + (Sm3,4)ϕs−3(t)
)

+ ϕ∗s−3(t)
(

(Sm4,3)ϕs−2(t) + (Sm4,5)ϕs−4(t)
)

...

+ ϕ∗−s(t)(Sma,a−1)ϕ−s+1(t)

(4.21)

We remark that the eigenstates and components (Sma,a−1) of the spin matri-

ces Sm in (4.21) have a systematic structure, which can be extracted in the

following form:

〈
Sm
〉

= ϕ∗s(t)(Sm1,2)ϕs−1(t) + ϕ∗−s(t)(Sma,a−1)ϕ−s+1(t)

+
2s−1∑
j=1

(
ϕ∗s−j(t)

(
(Smj+1,j

)ϕs−(j−1)(t) + (Smj+1,j+2
)ϕs−(j+1)(t)

))

m ∈ [x, y]

(4.22)
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Repeating and sorting of the equation (4.22) leads to

〈
Sz
〉

=
2s−1∑
j=0

(
(Szj+1,j+1

)ϕ∗s−j(t) · ϕs−j(t)
)

(4.23)

and

〈
Sx
〉
t

=
2s∑
j=1

(
αj · cos(ωjt) + βj · sin(ωjt)

)
αj = 2(Sx)j,j+1

(
ϕ(t0)reals−(j−1) · ϕ(t0)reals−j + ϕ(t0)imags−(j−1) · ϕ(t0)imags−j

)
βj = 2(Sx)j,j+1

(
− ϕ(t0)reals−(j−1) · ϕ(t0)imags−j + ϕ(t0)imags−(j−1) · ϕ(t0)reals−j

)

〈
Sy
〉
t

=
2s∑
j=1

(
αj · sin(ωjt) + βj · cos(ωjt)

)
αj = 2(Sy)j,j+1

(
− ϕ(t0)reals−(j−1) · ϕ(t0)reals−j − ϕ(t0)imags−(j−1) · ϕ(t0)imags−j

)
βj = 2(Sy)j,j+1

(
ϕ(t0)reals−(j−1) · ϕ(t0)imags−j − ϕ(t0)imags−(j−1) · ϕ(t0)reals−j

)

ωj = −B̃z − (2s− (2j − 1))K

(4.24)

Equation (4.24) is particularly interesting because it has a Fourier series form.

This form occurs if the Hamilton operator contains terms with an even ex-

ponent Ŝ2n(n ∈ N \ {0}). It means the presented approach applies to all

terms which are quadratic in the spin operators, for example, di�erent kinds

of anisotropy.

4.3 Non-harmonic revival of expectation values

As the repetitive time gives the shortest period of oscillation it corresponds

to the revival time. Figure 4.1 demonstrates that the Trep for the time evolu-

tion of wave-functions (Figure 4.1(c,d)) and that of expectation values (Figure

4.1(a,b)) may be quite di�erent even for the same Hamiltonian. Addition-

ally, the frequencies ωi, which determine the Trep, depend on the ratio of the
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external magnetic �eld and the anisotropy. In the next step the reasons for

di�erences between QRT and EVRT as well as the role of the B̃z/K ratio for

Trep will be analyzed.

While expectation values are always real, the wave-functions and coe�cients

αi in (4.12) may be complex. For the sake of comparison between EVRT and

QRT analytically we �rst explore the real solution for Trep only. However, the

generalization to complex variables is straightforward and doesn't change our

conclusions. For that purpose we use the Bézout's identity [33] stating:

gcd(ω1, ..., ωm) =
m∑
i=1

ai · ωi (4.25)

where ai, ωi ∈ Z. With (4.25) Trep becomes

Trep =
2π

gcd(ω1, ..., ωm)
=

2π

a1ω1 + ...+ amωm
. (4.26)

The numerator and denominator of this expression can be expanded as

Trep =
2π · 10n

a1ω110n + ...+ amωm10n
=

2π · 10n

gcd(ω1 · 10n, ..., ωm · 10n)
, (4.27)

where ωi ∈ R, n ∈ N and ωi ·10n ∈ Z. The expansion of (4.27) leaves the period
Trep unchanged and Bézout's identity una�ected. It means that the initial

greatest common divider can be replaced by an equivalent expression using

simple multiplication of the characteristic frequencies and the numerator by

10n. For any irrational number B̃z/K ∈ R\Q the sequence in the denominator

of (4.27) and, hence, Trep is in�nite. This fact explains why we were not able

to �nd the quantum revival in �gure 4.1(b,d). For any integer or rational

B̃z/K ∈ Q, the Trep is �nite. Hence, the interesting question arises how the

revival time of expectation values is connected to the B̃z/K ratio in this case.

This question is addressed in detail in sub-section "Derivation of critical Bz/K

ratios for EVRT".

The fundamental frequency ωf = gcd(ω1 · 10n, ..., ωm · 10n) of EVRT is always

equal or lower than the lowest ωi in (4.12), which can be expressed by an

in�mum (inf) :

ωf ≤ inf(ω1 · 10n, ..., ωm · 10n). (4.28)
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For a given spin value s the allowed frequencies of individual harmonics ωi given

in (4.15) depend on the magnitude of B̃z and K only. De�ning B̃z/K = N for

a given s and replacing B̃z by N · K in (4.15) we end up with the following

expression:

ωi =

[
−N − (2s− (2i− 1))

]
·K

~
(4.29)

which leads to:

ωi =

(−N − 1)K, (−N − 3)K, ..., (−N − (2n+ 1))K for integer s

(−N)K, (−N − 2)K, (−N − 4)K, ..., (−N − 2n)K for half-integer s
(4.30)

with n-number of harmonics. Hence, the spin value s is not at all present in

the analytical expression (4.30). As i is an integer and s is an integer or half-

integer in (4.29) the fundamental frequency corresponds to the very speci�c

choices of B̃z/K = N . All possible values of the fundamental frequency ωf for

integer, rational or irrational N and di�erent spin numbers are derived in sub-

section "Derivation of critical Bz/K ratios for EVRT". The most important

results are summarized in the following.

Most importantly, the Trep corresponding to the fundamental frequency ωf is

di�erent for di�erent combinations of spin statistics (integer or half-integer)

and N ratios. The lowest possible Trep and, hence, the lowest EVRT among

all possible combinations of N and the spin statistics appears for any

B̃z

K
= N ∈ Z. (4.31)

Particularly,

Trep =


2π~
K

, (integer s and even N or N = 0) or (half-integer s and odd N)

π~
K

, (integer s and odd N) or (half-integer s and even N or N = 0)

(4.32)

Thus, there are only two possible values of the revival time for the expectation

values TEVRT
rep = 2π~

K
∨ π~

K
for any N ∈ Z. These EVRT do not depend on

the spin values as predicted before[25, 26], but only on the spin statistics.

Because of our analytical �ndings it becomes clear why it happens. As the
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spin dynamics is described by the superposition of harmonic frequencies there

is only one fundamental frequency for the given set of parameters.

If N is rational B̃z/K = N ∈ Q\Z, for example N = 3/5, the revival times

are still �nite but always somewhat larger than those in case of N ∈ Z,

Trep =


πb

K
, b > 2

2πb

K
, b > 1

(4.33)

where b is the denominator from the de�nition of N = a/b ∈ Q in sub-section

"Derivation of critical Bz/K ratios for EVRT". In summary,

TEVRT
N∈R\Q > TEVRT

N∈Q\Z > TEVRT
N∈Z

(4.34)

where R\Q are irrational numbers. The derivation of (4.56) and (4.34) can

be found in sub-section "Derivation of critical Bz/K ratios for EVRT". An

external �eld can easily be tuned experimentally. Therefore one can use the

time-dependent measurement of EVRT to determine the anisotropy of the

system. It can be done by experimental measurements of the revival times.

Knowing the value of the �eld at the shortest revival the anisotropy value can

be derived using (4.41).

Up to this point only the EVRT has been considered. The QRT have been

addressed in detail in sub-section "Derivation of critical �eld-anisotropy ratios

for QRT" using the procedure similar to that of sub-section "Derivation of

critical Bz/K ratios for EVRT". We �nd that EVRT and QRT are identical for

all e�ective quantum spins with integer spin number, while they are di�erent

for half-integer s. Particularly,

TEVRT
rep = TQRT

rep , for integer s

TEVRT
rep =

1

α
· TQRT

rep , α ∈ [1, 2, 4, 8], for half-integer s (4.35)

In contrast to EVRT for half-integer spins, TQRT
rep is shortest for B̃z/K = (2β−

1)/2 ∈ Q\Z with β ∈ Z. This means, that while the expectation values of

magnetization repeat fastest for any B̃z/K ∈ Z it is not the case for the wave-

functions as (2β − 1)/2 /∈ Z.



32 CHAPTER 4. QUANTUM REVIVALS AND MAGNETIZATION

TUNNELING IN EFFECTIVE SPIN SYSTEMS

In summary, the standard QRT and the EVRT of an e�ective spin are identical

for even spin numbers but very di�erent for half-integer spins. The EVRT

depends on the ratio N only but is independent of the magnitude of the spin

quantum number. The shortest revivals can be observed for N ∈ Z.

4.3.1 Derivation of critical Bz/K ratios for EVRT

In this section we want to present a proof for the statement that the relation

B̃z/K = N ∈ Z for constant K always leads to a lower time Trep than that

for N ∈ Q \ Z. We investigate the set of rational numbers Q only, because

the "gcd(...)" used for the de�nition of quantum revival of expectation values

(EVRT) given in the main text is only de�ned for integers. Due to the fact

that the irrational numbers (subset of R) can not be extended to become inte-

gers we can not use them for the "gcd(...)". First we formulate two Lemma's,

which are necessary for our proof.

Lemma 1:

If γ1 + γ2 = G, in which γ1, γ2, G ∈ Z, γ1/x ∈ Z, G/x ∈ Z and x ∈ Q, then
γ2/x ∈ Z. Otherwise it would lead to a contradiction. If only G/x ∈ Z is

given, then γ1/x and γ2/x are not necessarily an element of Z.

Proof 1. (Lemma 1):

G/x ∈ Z ∧ γ2/x ∈ Z
γ1 + γ2

x
=
G

x

⇒ γ1

x
=
G

x
− γ2

x

⇒ G

x
− γ2

x
∈ Z ⇒ γ1

x
∈ Z

(4.36)
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Proof 2. (Lemma 1):

G = 6 ∧ γ1 = 2 ∧ γ2 = 4 ∧ x = 3

γ1 + γ2 = G ⇒ 6 = 2 + 4

⇒ G

x
= 2 ∈ Z

⇒ γ1

x
=

2

3
/∈ Z

⇒ γ2

x
=

4

3
/∈ Z

(4.37)

Lemma 2:

If ω1 + ∆ω1,ω2 = ω2, in which ω1, ω2,∆ω1,ω2 ∈ Z then it follows for ω2/x ∈ Z,
ω1/x /∈ Z and ∆ω1,ω2/x /∈ Z that gcd(ω1, ω2) 6= x.

Proof (Lemma 2):

gcd(ω1, ω2) ≤ inf(ω1, ω2)

ω1 < ω2

x ≤ ω1

ωi/x ∈ Z (condition for gcd(ω1, ..., ωi))

if
ω2

x
∈ Z ∧ ω1

x
/∈ Z

⇒ gcd(ω1, ω2) 6= x

(4.38)

Lemma 1 and Lemma 2 enable us to use the structure of (4.43) to �nd all

possible greatest common divisors.

B̃z = NK
(4.39)

ωj = −B̃z − (2s− (2j − 1))K (4.40)

ωj =

(−N − 1)K, (−N − 3)K, ..., (−N − (2n+ 1))K for integer s

(−N)K, (−N − 2)K, (−N − 4)K, ..., (−N − 2n)K for half-integer s
(4.41)

n ∈ N0
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Equation (4.41) demonstrates that the frequencies ωj de�ned by (4.40) have

the form of series.

Based on (4.41) we substituteN viaN = a/b, where a, b ∈ Z. This substitution
enables us to create any element of Q. Further, we use the conclusion of the

series form of (4.41) and exchange the numbers through a variable Γn, which

contains all properties of (4.40) for N = 0.

N :=
a

b
, N ∈ Q⇒ a, b ∈ Z (4.42)

ωj := ξn :=
(a
b

+ Γn

)
K, Γn =

2n+ 1 for integer s

2n for half-integer s
(4.43)

n ∈ N0 (4.44)

Next, we expand the numerator and denominator of Trep with b in order to

obtain the necessary integer frequency condition for the greatest common di-

visor:

Trep =
2π

gcd(ξ0, ..., ξj)
⇒ Trep =

2π · b
gcd(ξ0b, ..., ξjb)

(4.45)

The expanded frequencies ξnb in (4.45) are de�ned by

ξnb =
(
a+ Γn · b

)
K (4.46)

Next, we substitute the �rst multiplier of (4.46) via Ω = 2m or Ω = 2m+ 1 to

distinguish between the even or odd solution for each frequency series ξnb:

ξ0b =
(
a+ Γ0 · b

)
K = ΩK

...

ξnb =
(
a+ Γn · b

)
K = (Ω + n · 2b)K

Ω :=

2m

2m+ 1
(4.47)

ξnb− ξ0b = n · 2b, m ∈ Z (4.48)

Equation (4.47) provides us with an expression which permits to use Lemma

1 and Lemma 2 in order to estimate the greatest common divisor.
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As ξ0b corresponds to the lowest frequency it follows that

gcd(ξ0b, ..., ξjb) ≤ ξ0 · b

⇒ gcd(ξ0b, ..., ξjb) ≤ ΩK
(4.49)

In order to estimate if ΩK is a common divisor of all ξnb we divide (4.47) by

ΩK, which leads to

ξn · b
ΩK

=
( a

Ω
+

Γn · b
Ω

)
=
(

1 +
n · 2b

Ω

)
. (4.50)

The ΩK in (4.50) is a common divisor of (4.47) for Ω ∈ [b, 2b, 1, 2]. Next, we

have to distinguish in which cases ΩK = bK, ΩK = 2bK, ΩK = 1K and

ΩK = 2K is the greatest common divisor of (4.47). The case Ω = b leads to

ξn · b
ΩK

=
(a
b

+ Γn

)
(4.51)

Because of Γn ∈ Z and Lemma 1 it follows from (4.51) that if ξn · b/ΩK ∈ Z
then a/b has to be an element of Z. The case Ω = 2b leads to

ξn · b
ΩK

=
( a

2b
+

Γn
2

)
, (4.52)

and it follows that ( a
2b

+
Γn
2

)
= σ ∈ Z

⇒ a

b
= 2σ − Γn (4.53)

Because of σ, Γn ∈ Z from (4.53) and Lemma 1 it follows that a/b ∈ Z. The
conclusion from (4.51) and (4.52) is that

gcd(ξ1 · b, ..., ξn · b) =

2bK

bK
(4.54)

for a/b ∈ Z, which leads to

Trep =


2π

K
π

K

(4.55)

Because of the result from (4.55) and Lemma 2 it follows by inserting Ω = 1

and Ω = 2 in (4.50) that the greatest common divisor of (4.47) has to be
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ΩK = 1K or ΩK = 2K for a/b /∈ Z, which leads to:

Trep =


πb

K
, b > 2

2πb

K
, b > 1

(4.56)

The estimation of the lower bound for the b in (4.56) is done using (4.47) by

permutation of even and odd Ω.

The consequence of (4.56) and (4.55) is that

TN∈Zrep < TN /∈Z
rep .

(4.57)

q.e.d.

Figure 4.2 represents a visualization of the result of (4.57).
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Figure 4.2: Revival times of expectation values (EVRT) of a spin 1~ for di�er-

ent Bz values and K = 0.2 [a.u] = const. Because the EVRT is not continuous

for any Bz we choose to give an example for discrete Bz values. This demon-

strates the result TN∈Zrep < TN /∈Z
rep .

4.3.2 Derivation of critical �eld-anisotropy ratios for QRT

In this section we derive the QRT for two scenarios: B̃z/K = N ∈ Z and

B̃z/K = N /∈ Z with K = const. We start with the wave functions from
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equation (4.5)

ϕ+s(t) = ϕ+s(t0) · e−i(−sB̃z−s2K) t~

...

ϕ−s(t) = ϕ−s(t0) · e−i(sB̃z−s2K) t~

(4.58)

where

ωj =
(−s− j)B̃z − (s− j)2K

~
, for j ∈ N0

(4.59)

ωj =

(−N − 1)K, (−2N − 4)K, (−3N − 9)K, ..., (−nN − n2)K for integer s

(−2N − 1)K, (−6N − 9)K, ..., (−(4n+ 2)N − (2n+ 1)2)K for half-integer s
(4.60)

n ∈ N0

The derivation follows the same principles like in sub-section "Derivation of

critical Bz/K ratios for EVRT". Lemma 1 and Lemma 2 are guidelines for the

following derivation.

Integer s case:

ξ0b = (a+ b)K = ΩK

ξ1b =
(

2(a+ b) + 2b
)
K = (2Ω + 2b)K

...

ξnb =
(

(n+ 1)(a+ b) + b
n∑
i=0

2n
)
K =

(
(n+ 1)Ω + b

n∑
i=0

2n
)
K

Ω :=

2m

2m+ 1

(4.61)

ξ1b

Ω
= (2 +

2b

Ω
)K

(4.62)

For a/b = N ∈ Z it follows that:

Trep =


2π

K
π

K

(4.63)
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For a/b = N /∈ Z equation (4.61) leads for the greatest common divisor

gcd(ξ0b, ..., ξjb) =

2K

K
(4.64)

⇒ Trep =


πb

K
, b > 2

2πb

K
, b > 1

(4.65)

Half-Integer s case:

ξ0b = (2a+ b)K = ΩK

ξ1b =
(

3(2a+ b) + 6b
)
K = (3Ω + 6b)K

...

ξnb =
(

(2n+ 1)(2a+ b)− 2nb+ b
n∑
i=0

8n
)
K

=
(

(2n+ 1)Ω− 2nb+ b
n∑
i=0

8n
)
K

Ω :=

2m

2m+ 1
(4.66)

For N ∈ Z it follows

ξ1b

Ω
=
(

3 +
6b

Ω

)
K

ξ2b

Ω
=
(

5 +
20b

Ω

)
K (4.67)

The result of (4.67) is that

gcd(ξ0b, ..., ξjb) = bK

⇒ Trep = 4 · 2π

K
for N ∈ Z (4.68)

For N /∈ Z one can write

ξ1b

Ω
=
(

3 +
6b

Ω

)
K =

(
3 +

6b

2a+ b

)
K

ξ2b

Ω
=
(

5 +
20b

Ω

)
K =

(
5 +

20b

2a+ b

)
K (4.69)
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6b

2a+ b
= β ∈ Z ⇒ a

b
=

(6− β)

2β

20b

2a+ b
= β ∈ Z ⇒ a

b
=

(20− β)

2β
(4.70)

(6− β)

2β
=

(20− β)

2β

⇒ 14 = 0 ⇒ gcd(ξ0b, ..., ξjb) 6= ΩK (4.71)

The next step is to estimate which of the values 2bK or bK is the greatest

common divisor. Because of the condition (2a + b)/2b ∈ Z for a = b(2γ−1)
2

it

follows that

gcd(ξ0b, ..., ξjb) = 2K

⇒ Trep = 4 · π
K

for N =
(2γ − 1)

2
/∈ Z (4.72)

For N 6= (2a+ b)/2b and N /∈ Z it follows

⇒ gcd(ξ0b, ..., ξjb) =

2K

K
(4.73)

⇒ Trep =


4 · 2πb

K
, b > 2

4 · πb
K

, b > 3

(4.74)

We can summarize the results for the half-integer s case as:

Trep =



4 · 2π

K
, N ∈ Z

4 · π
K

, N =
(2γ − 1)

2
/∈ Z

4 · 2πb

K
, b > 2 N /∈ Z

4 · πb
K

, b > 3 N /∈ Z

(4.75)
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By comparing (4.75) with (4.56) and (4.55) from sub-section "Derivation of

critical Bz/K ratios for EVRT" for the same values of K, a, and b it follows:

TEVRT
rep =

1

α
· TQRT

rep , α ∈ [1, 2, 4, 8], for half-integer s
(4.76)

We use this expression in the main text.

4.4 Quasi-quantum revival and magnetization tun-

neling
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Figure 4.3: Behaviour of expectation values within the tunneling regime

obtained using the numerical solution of the Schrödinger equation. For

B̃z/K = N ∈ Z with B̃z = 0.1 [a.u], K = 0.1 [a.u] and a small transver-

sal �eld B̃x = 0.001 [a.u]. The repetitive time Trep is equal for the expectation

values
〈
Sj
〉
t

(j := x, y, z) and it is two times the magnetization tunneling time

T q-EVRT
rep ≈ 2 · TMQT .

Previous considerations of quantum spin dynamics in the literature have been

performed for uncoupled and unperturbed systems [25, 26]. In the following

we want to analyze the behaviour of the EVRT under the in�uence of a small

time-independent perturbation. Such an investigation is important, because
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small perturbations like a transversal �eld or anisotropy break the rotational

symmetry about the z-axis and make the Ŝz spin operator and the energy non-

commuting. This symmetry breaking promotes the spontaneous transition

of magnetization from one energy well (expectation value of magnetization)

to another one under the energy barrier, known as the resonant quantum

tunneling of magnetization (MQT). The MQT have been measured in many

solid state and molecular magnetic systems and is of considerable technological

importance [22, 29, 23, 31, 27], because it is directly connected to the life-

times of the information bits. In zero external magnetic �eld ~Bz = 0, the

quantum mechanical levels m = ±s have the lowest energy. When a non-zero
~B = (0, 0, Bz) is applied, the levels with m > 0 decrease in energy, while those

with m < 0 increase. At certain B values the crossing of positive and negative

levels occurs. When a transversal �eld is added the avoided level crossing

appears [22, 31, 35]. This avoided level crossing promotes the MQT. However,

the probability of the MQT depends strongly on the velocity at which the

�eld B(t) is swept [35, 36]. Hence, it is reasonable to anticipate that some

connection between the EVRT and the probability of MQT exists. In the

following this connection will be explored.

The interplay between EVRT and QRT has been studied by the numerical

solution of (6.3). We used Simpson's rule, which is similar to the Runge-Kutta

procedure of third order for the numerical approximation of the solution of

(6.3). The Hamiltonian (4.2) has been modi�ed to

Ĥ = −ŜzB̃z −KŜ2
z − ŜxλB̃x (4.77)

with λB̃x � B̃z. Figure 4.3 gives the time evolution values of
〈
Sz
〉
,
〈
Sx
〉
and〈

Sy
〉
for s = 1~ and for B̃z/K = 1. In contrast to �gure 4.1, where

〈
Sz
〉
was

always constant, the vertical component of magnetization in the present case

oscillates between
〈
Sz
〉

= −1 and
〈
Sz
〉

= 0 values, while the y-component of

magnetization switches (tunnels) between
〈
Sy
〉
≈ −0.7 and

〈
Sy
〉
≈ 0.7. This

behaviour is typical for the MQT. The time, which is needed to switch the

magnetization
〈
Sz
〉
from the | − 1

〉
to the |0

〉
state is denoted in the following

as magnetization tunneling time TMQT .

The numerical analysis of the results obtained for several N -ratios has shown

that for B̃x � B̃z the TEVRT
rep is of the order of 2 · TMQT . This de�nition is
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not mathematically exact, because, strictly speaking, the EVRT cannot be de-

scribed analytically for perturbed arbitrary quantum spin systems. However,

the numerical data indicates that the MQT oscillation (see
〈
Sz
〉
t
in �gure 4.2),

with small B̃x, is similar to an harmonic oscillation. This means we describe

for small values of B̃x a non-harmonic oscillation as a harmonic oscillation, be-

cause the di�erences ∆<Sz> =
〈
Sz
〉
minima1

−
〈
Sz
〉
minima2

between two successive

minima of
〈
Sz
〉
t
decrease for decreasing B̃x and the non-harmonic behaviour

is not immediately obvious.

lim
B̃x→0

∆<Sz> = lim
B̃x→0

(〈
Sz
〉
minima1

−
〈
Sz
〉
minima2

)
= 0 (4.78)

The consequence of (4.78) for the experiment is that for small transversal B̃x-

�elds the non-harmonic dynamics is beyond the experimental resolution, but

it could be useful to de�ne a quasi-expectation value revival time (q-EVRT),

which treats the MQT oscillation as an harmonic oscillation and de�nes the

revival time T q-EVRT
rep as the time between two successive minima of

〈
Sz
〉
t
(see

�gure 4.2). To estimate the quasi-EVRT in the tunneling regime with reason-

able accuracy the standard ansatz of the time-dependent perturbation theory

can be used. De�ning

|Ψ(t)
〉

=
2s∑
n=0

σ(t)s−ne
−iE(s−n)t/~|ψs−n

〉
, (4.79)

where σ(t) are the time-dependent coe�cients and E are the energy eigenval-

ues, and substituting (4.79), (4.77) in (6.3) we utilize the standard perturbation

theory power series ansatz:

σ(t)s−n = σ(t)
(0)
s−n + λσ(t)

(1)
s−n + ... =

∞∑
i=0

λiσ(t)
(i)
s−n. (4.80)
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Using coe�cient comparison in �rst order perturbation theory, we obtain

σs(t)
(1) =

σs−1(t0)B̃x(Sx)1,2

Es−1 − Es
· (−ei(Es−1−Es)t/~ + 1)

...

σs−n(t)(1) = B̃x

(σs−(n−1)(t0)(Sx)a,b
Es−(n−1) − Es−n

· (−ei(Es−(n−1)−Es−n)t/~ + 1)

+
σs−(n+1)(t0)(Sx)a,c
Es−(n+1) − Es−n

· (−ei(Es−(n+1)−Es−n)t/~ + 1)
)
,

(4.81)

where (Sx)1,2 is an element of the Ŝx matrix from (4.14). The square of the

absolute value of σs(t)(1) leads to the well known Fermi's golden rule which

reads:

|σ(t)(1)
s |2 =

∣∣σs−1(t0)B̃x(Sx)1,2

∣∣2 · ∣∣∣∣∣ sin
(
Es−1−Es

2~ t
)

(Es−1 − Es)/2

∣∣∣∣∣
2

, |σs−1(t0)| = 1 (4.82)

Equation (4.82) describes the probability of quantum transitions between neigh-

bouring states |ψσ(t)s

〉
and |ψσ(t)s−1

〉
, and has a maximum for Es = Es−1, which

is only valid for times t

|σ(t)(1)
s |2 ≤ 1 =⇒ t <

~∣∣B̃x(Sx)1,2

∣∣ . (4.83)

Comparing t of (4.83) with TMQT , obtained in numerical simulations, leads

to a proportionality constant of TMQT/t ≈ π/2 within the tunneling regime,

which can be expressed as

lim
B̃x→0

TMQT

t
=
π

2
(4.84)

Furthermore, the analysis of the numerical data leads to

TMQT ≈
T q-EVRT
rep

2
≈ π~

2
∣∣B̃x(Sx)1,2

∣∣ , (4.85)



44 CHAPTER 4. QUANTUM REVIVALS AND MAGNETIZATION

TUNNELING IN EFFECTIVE SPIN SYSTEMS

which occurs for a B̃z/K = N ∈ Z ratio with N ≤ 2s. Hence, the magnetiza-

tion tunneling time TMQR at the avoided level crossing points is unambiguously

related to the repetitive time T q-EVRT
rep if nonegligible transversal perturbations

are present. In the limit of vanishing perturbations TMQR → ∞, that is, no

tunneling occurs and (4.41) for T q-EVRT
rep can be applied. The conditions for

magnetization tunneling B̃z/K = 2s for the Hamiltonian of (4.77) is a subset

of the condition B̃z/K ∈ Z de�ned in (4.31).

4.5 Conclusion

Analytical and numerical studies of the quantum dynamics of e�ective quan-

tum spins have revealed that the quantum revival of expectation values and

the total wave-function is identical for integer spin values, but very di�erent for

half-integer spins. This �nding permitted to resolve the contradicting conclu-

sions in the literature on the dependence of the revival time on the spin value.

It has been concluded that the QRT doesn't depend on the spin number but

only on the spin statistics (integer or half-integer). According to the derived

analytical expressions the EVRT is shortest for integer �eld-anisotropy ratios.

As the �eld can easily be tuned experimentally, and time-dependent measure-

ments have become available in the last years, we hope that this �nding will

permit a highly precise measurement of magnetic anisotropies. For that pur-

pose one should measure the EVRT as a function of external magnetic �eld

and de�ne the shortest one among all measured values.

An applied transverse �eld promotes the MQT. Our analysis shows that the

EVRT is strongly correlated with the MQT. By increasing the revival time

using speci�c combinations of material parameters and �elds one can increase

the life-times of the quantum states, which may be used as bits of information

in future data storage technologies.
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Chapter 5

Perturbative calculations of

quantum spin tunneling in

e�ective spin systems with a

transversal magnetic �eld and

transversal anisotropy

This chapter is an extract from the publications:

M. Krizanac, E. Y. Vedmedenko, and R. Wiesendanger, New J. Phys. 19

013032 (2017).

M. Krizanac, E. Y. Vedmedenko, and R. Wiesendanger, New J. Phys. 19

078001 (2017).

5.1 Introduction

Quantum tunneling in spin systems is the consequence of symmetry break-

ing of an unperturbed system by perturbations which leads to a loss of de-

generacy of energy levels. At a mesoscopic scale the quantum tunneling has

been extensively studied experimentally [37, 38, 49, 50, 51, 52, 53] by using

single-molecular magnets (SMM) and theoretically by path-integral methods

[39, 40, 41, 48] and perturbative approaches [42, 43, 44, 45, 46, 47]. Especially,
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the in�uence of a transversal magnetic �eld in combination with transversal

anisotropies on the tunnel splitting energy has been studied experimentally

[37, 38] and theoretically [39, 41]. The appearance of a transversal magnetic

�eld for a system which already contains a transversal anisotropy can be im-

portant, because for half-integer spin systems with a transversal anisotropy

the appearance of a transversal magnetic �eld enables tunneling e�ects which

otherwise would not be possible due to Kramers degeneracy theorem, which

states that every energy level is at least doubly degenerate if it is a half-integer

spin. This phenomenon is known as the spin parity e�ect [37, 38, 48], where

a sole transversal anisotropy enables spin tunneling for integer spin systems

but is not enough to enable tunneling in half-integer systems. It has also been

shown that half-integer spin systems are much more sensitive to transversal

magnetic �elds than integer spin systems [38].

A further important e�ect is the quenched tunnel splitting, which describes

the destructive interference of two quantum spin paths of opposite windings

[39, 54] (instantons). These destructive interferences lead to a vanishing of

the energy splitting for certain values of the transversal magnetic �eld and

are not related to the Kramers degeneracy theorem. So far, quenched tunnel

splitting has been described through spin-coherent-state path integrals which

leads to the two instanton path picture. Instantons, for example in a double

well potential, can be interpreted as solutions of the path integral which occurs

by minimizing the Euclidean action of the path integral. The potential energy

described within the Euclidean action change sign under the Wick rotation and

the minima of the double well potential transform into maxima which enables

a classical approach by minimizing the action. Regarding this, the perturba-

tive approach has the potential to reveal a more detailed quantum mechanical

understanding of the quenched tunnel splitting, beyond the two instanton path

picture. In order to understand the spin parity e�ect and the quenched tunnel

splitting from a perturbative point of view a perturbative approach with two

or more perturbations is necessary, which is still missing. In this paper, we

close this description gap by deriving a tunnel splitting energy formula for a

system which contains two perturbations, a transversal magnetic �eld and a

transversal anisotropy. The goal is to give a detailed theoretical description

of the quenched tunnel splitting and in general a description of the in�uence
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of the transversal magnetic �eld and the transversal anisotropy on the energy

splitting from a perturbation theory point of view.

5.2 Perturbative approach

In order to describe the in�uence of a transversal magnetic �eld and a transver-

sal anisotropy on the ground doublet energy splitting by a time-dependent

perturbative approach it is necessary to use two perturbations simultaneously

[46]. The simplest e�ective Hamiltonian which is capable of describing quan-

tum tunneling at a mesoscopic scale with two perturbations is

Ĥ = −KzŜ
2
z − ŜxB̃x + K̃(Ŝ2

x − Ŝ2
y), (5.1)

where B̃x and K̃ represents the two perturbations. In order to perform a

perturbative calculation with two perturbations it is necessary to de�ne a

shared coe�cient for B̃x and K̃, otherwise it would not be possible to use the

coe�cient comparison.

B̃x = λBx = λµBHx

K̃ = λK. (5.2)

The λ in Eq.(5.2) represent the shared coe�cient. It is worth mentioning that

the concept of the shared coe�cient is not limited to two perturbations. From

now on we performed the standard time-dependent perturbative approach to

obtain a formula for the energy splitting. The di�culty was to master the

sheer complexity, which arises when two or more perturbations occur. A short

introduction of the construction of a perturbative series with two perturbations

is shown in Appendix A. Due to the parity e�ect we obtained two formulas for

the energy splitting of the ground doublet energy splitting, one for the integer

spins and one for the half-integer ones. For the integer spin case the formula
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has the following structure

∆Esplit =

∣∣∣∣∣
2

2s∏
j=1

(Sx)j,j+1 · (∆Bx + ∆K + ∆BxK)

2s−1∏
j=1

|(Es−j − E−s)|

∣∣∣∣∣
∆Bx = B2s

x

∆K = (−1)s2sKs

s∏
j=1

|(Es−(2j−1) − E−s)|

∆BxK =
s−1∑
n=1

Bβ=2n
x ·Kγ=s−n · (−1)γ2γ

β+1∑
j1=1

...

β+2γ−1∑
jγ=jγ−1+2

γ∏
i=1

|(Es−ji − E−s)|

(Sxj,j+1
) =

1

2

√
(s+ 1)2j − j(j + 1)

|(Es−j − E−s)| = |j2 − 2s · j|Kz,

(5.3)

where Bx represents the transversal magnetic �eld energy, K the transversal

anisotropy and ∆BxK the mixed paths which occur when a transversal mag-

netic �eld interacts with a transversal anisotropy. (Sxj,j+1
) in Eq.(5.3) and

Eq.(5.4) de�ne matrix elements of the operator Ŝx, and |(Es−j − E−s)| repre-
sents the absolute value of the di�erence of energy levels.

The formula for the half-integer spin case, which is de�ned by Eq.(5.4) dif-

fers mainly from the integer spin formula by the absence of the transverse

anisotropy term ∆K , which is forbidden due to the Kramers degeneracy theo-

rem.

∆Esplit =

∣∣∣∣∣
2

2s∏
j=1

(Sx)j,j+1 · (∆Bx + ∆BxK)

2s−1∏
j=1

|(Es−j − E−s)|

∣∣∣∣∣
∆Bx = B2s

x

∆BxK =

s− 3
2∑

n=0

Bβ=2n+1
x ·Kγ=s− 1

2
−n · (−1)γ2γ

β+1∑
j1=1

...

β+2γ−1∑
jγ=jγ−1+2

γ∏
i=1

|(Es−ji − E−s)|

(5.4)
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To con�rm the accuracy of our derivations we have performed exact diagonal-

izations, where we estimated the energy splitting ∆EDiag of the ground doublet

by the di�erence between the two highest eigenvalues and compared them with

the results of the formulas of Eq.(5.3) and Eq.(5.4). The results, which are

listed in table I, show a very good agreement.

Table 5.1: Comparison between the energy splitting ∆E obtained by the for-

mulas and by exact diagonalizations. Parameters for spin s = 2 and s = 5/2:

Bx = 0.002[meV] (Hx = 0.035[T]), K = 0, 001[meV], Kz = 1.0[meV]. Pa-

rameters for spin s = 5: Bx = 0.02[meV] (Hx = 0.35[T]), K = 0, 01[meV],

Kz = 1.0[meV].

Spin s ∆EFormula ∆EDiag

2 2.99333 · 10−6 2.99334 · 10−6

5/2 6.65625 · 10−9 6.65917 · 10−9

5 1.50179 · 10−10 1.50223 · 10−10

5.2.1 Perturbative series derivation

Here we would like to introduce in a short form the construction of a pertur-

bative series with two perturbations:

Ĥ = −KzŜ
2
z − ŜxB̃x + K̃(Ŝ2

x − Ŝ2
y), (5.5)

We start with a Hamiltonian which contains two perturbations B̃x and K̃.

i~
∂

∂t

∣∣Ψ(t)
〉

= Ĥ
∣∣Ψ(t)

〉
(5.6)

∣∣Ψ(t)
〉

=
2s∑
n=0

a(t)s−ne
−iEs−nt/~|ψs−n

〉
(5.7)

We de�ne the coe�cient a from a general de�nition of a wave-function as

time-dependent a(t).

B̃x = λBx = λµBHx

K̃ = λK. (5.8)



50 CHAPTER 5. PERTURBATIVE CALCULATIONS OF QUANTUM SPIN

TUNNELING IN EFFECTIVE SPIN SYSTEMS WITH A TRANSVERSAL

MAGNETIC FIELD AND TRANSVERSAL ANISOTROPY

By inserting the wave-function with the time-dependent coe�cient (Eq.(5.7))

in the Schrödinger equation Eq.(5.6),

i~
∂

∂t

( 2s∑
n=0

a(t)s−ne
−iEs−nt/~|ψs−n

〉)
= Ĥ

( 2s∑
n=0

a(t)s−ne
−iEs−nt/~|ψs−n

〉)
(5.9)

we obtain Eq.(5.9).

i~ · e−iEst/~ ∂
∂t
a(t)s = Esa(t)se

−iEst/~ − (Sx)1,2B̃xa(t)s−1e
−iEs−1t/~

i~ · e−iEs−1t/~ ∂

∂t
a(t)s−1 = ...

...

(5.10)

By expanding Eq.(5.9) we obtain a system of ordinary di�erential equations,

demonstrated through Eq.(5.10).

i~
∂

∂t
a(t)s = −(Sx)1,2λBxa(t)s−1e

i(Es−Es−1)t/~ + 2(Sx)1,2(Sx)2,3λKa(t)s−2e
i(Es−Es−2t/~)

i~
∂

∂t
a(t)s−1 = ...

...

(5.11)

After rearranging Eq.(5.10) and using the de�nition of Eq.(5.8) we obtain

a system of di�erential equations with an expansion of the time-dependent

coe�cient a(t), demonstrated through Eq.(5.11).

a(t)s−n = a(t)
(0)
s−n + λa(t)

(1)
s−n + ... =

∞∑
i=0

λia(t)
(i)
s−n. (5.12)
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Now we utilize the standard perturbation theory power series ansatz (Eq.(5.12))

by inserting it in Eq.(5.11) and rearranging the λ's.

∂

∂t
a(t)(0)

s = 0

∂

∂t
a(t)(1)

s =
i

~

(
(Sx)1,2Bxa

(0)
s−1e

i(Es−Es−1)t/~ − 2(Sx)1,2(Sx)2,3Ka
(0)
s−2e

i(Es−Es−2t/~)
)

...

∂

∂t
a(t)

(0)
s−1 = 0

...

(5.13)

The next step is to use the coe�cient comparison to obtain systems of di�er-

ential equations for every order of the time-dependent coe�cients a(t)(i) from

the power series ansatz in Eq.(5.12). This is implied through Eq.(5.13.).

From here onwards we expand the series in the same way as we would do for

the Fermi's golden rule, by repeating the integration and the inserting of the

coe�cients a(t)(i) in Eq.(5.13) until the resonant case. The only di�erence

from the situation with only one perturbation is that we now have much more

direct paths which generate a resonant case.

5.2.2 Alternative formula

Here we want to introduce a more compact version of our formulas in Eq.(5.2)

and Eq.(5.3), derived by A.Garg [77]:

∆E =
4s

22s(2s− 1)!Kz
2s−1

2s∏
n=1

(Bx − (2s+ 1− 2n)Ba)

Ba =
√

2KKz,
(5.14)

which agrees very well with our equations (see table 5.2). The more com-

pact formula in Eq.(5.14) has the advantage that it enables a simpler and

faster calculation of the energy splitting ∆E, but on the other hand has the

disadvantage that it can not distinguish between the tunneling paths which

contribute to the energy splitting ∆E, without further transformations. These
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Table 5.2: Comparison between the energy splitting ∆E obtained by the for-

mula in Eq.(5.14) from A.Garg (∆EGarg) and by our formulas (∆Eours). Pa-

rameters for spin s = 3: Bx = 0.05[meV], K = 0, 002[meV], Kz = 1.0[meV].

Parameters for spin s = 4: Bx = 0.002[meV], K = 0, 01[meV], Kz = 1.0[meV].

Parameters for spin s = 5: Bx = 0.01[meV], K = 0, 06[meV], Kz = 1.0[meV].

Spin s ∆Eours ∆EGarg |∆Eours −∆EGarg|
3 7.65527 · 10−9 7.65527 · 10−9 4.96308 · 10−24

4 2.18699 · 10−8 2.18699 · 10−8 6.61744 · 10−24

5 1.19484 · 10−6 1.19484 · 10−6 2.11758 · 10−22

transformations would lead to a much more complicated form, similar to our

expressions in Eq.(5.2) and Eq.(5.3).

5.3 Tunneling paths

Figure 5.1: Illustration of tunneling paths from a perturbative point of view:

a.) Here we demonstrate a pure path where we only used energy contributions

from the transversal anisotropy to obtain a resonant case. b.) Here we show a

mixed path were we used energy contributions from the transversal magnetic

�eld energy Bx and the transversal anisotropy K.

Before we begin with the analysis of Eq.(5.3) and Eq.(5.4), we want to de�ne

�rst what we mean by paths. In Figure 5.1a and 5.1b we illustrate a matrix

which only contains the o�-diagonal elements of the Hamiltonian in Eq.(5.1) in

a simpli�ed form. In order to obtain an energy splitting of the ground doublet

through a perturbative calculation it is necessary to expand the perturbative

series to the order where we obtain a resonant case. The resonant case is a
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situation within the perturbative series where we obtain a perturbative term

with the energy di�erence between the highest state |s
〉
and its symmetric

opposite state | − s
〉
. This series expansion has a speci�c iterative structure

where we can choose a path to obtain a resonant case. A path which only con-

tains energy contributions of the transversal anisotropy K is shown in �gure

5.1a, where we expand the perturbative series only with transversal anisotropy

energies to obtain a resonant situation. Such a path is called a pure path be-

cause it contains only energies from one term of the Hamiltonian in Eq.(5.1).

In contrast to a pure path a so-called mixed path is shown in �gure 5.1b where

we used two energy contributions from di�erent sources to obtain a resonant

case (one source is from the magnetic transversal �eld energy Bx and the other

is from the transversal anisotropy K). It should be mentioned at this point

that a spin system will always take all possible paths, but as we will show it

is useful to distinguish between those. With these de�nitions of the paths we

are now in a position to explain the properties of Eq.(5.3) and Eq.(5.4).

5.4 Quenched tunnel splitting from a perturba-

tive point of view

The perturbative approach enables us to make conclusions complementary to

a path integral formalism [55]. Through Eq.(5.3) and Eq.(5.4) we are able

to distinguish separately between the energy splitting contributions from the

transversal magnetic �eld and the transversal anisotropy, represented by ∆Bx ,

∆K , and ∆BxK . With the ability to distinguish separately between the energy

splitting contributions we want to analyze here the quenched tunnel splitting

from a perturbative theory point of view. Figure 5.2a shows the well known

e�ect of the quenched tunnel splitting [54], where under certain values of the

transversal magnetic �eld the energy splitting of the ground doublet is van-

ishing. This is already explained through a two instanton paths model with

destructive interference [39, 54]. The perturbative approach we used here en-

ables us to analyze this e�ect from a more detailed perspective. Through

Eq.(5.3) and Eq.(5.4) we can identify the mixed path ∆BxK as the trigger for

the quenched tunnel splitting for half integer spins and even integer spins.
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Figure 5.2: Quenched tunnel splitting. a.) Here we show the well known

quenched tunnel splitting, where the energy splitting ∆E is vanishing for cer-

tain values of Bx[meV] (Bx = µB[meV/T] · Hx[T]) for a spin s = 5 system.

Used parameters: K = 0.01 [meV] and Kz = 1 [meV]. b.) In contrast to

�gure 2a, here we demonstrate the absence of the quenched tunnel splitting

for negative K. Used parameters: spin s = 5: K = −0.01 [meV] and Kz = 1

[meV].

This can be seen through the property that ∆BxK is an alternating series for a

positive K. Since ∆K in Eq.(4.14) is positive for even spin quantum numbers

the only term which can cause negative contributions is consequently ∆BxK .

The scenario of odd integer spins leads to a combined cause of ∆BxK and ∆K

for the quenched tunnel splitting. Instead of describing the quenched tunnel

splitting by only two instanton paths, we are now in a position to specify it

more as the destructive interference of many paths extracted from a perturba-

tive approach. The destructive interference nature arises primarily from the

alternating mixed paths ∆BxK (half-integer and even integer spins) or a com-

bination of the pure path ∆K and the mixed ∆BxK paths (odd integer spins).

So far we expanded the two instanton path model through a detailed many

path model with the corresponding important contributions to the quenched

tunnel splitting.

In order to demonstrate that Eq.(5.3) and Eq.(5.4) also describe the negative

K case correctly, we want to present this known behavior [54] in �gure 5.2b.

Figure 5.2b shows the situation where the transversal anisotropy K is nega-

tive. Here we see that no quenching of the tunnel splitting occurs, because

the former alternating series ∆BxK in Eq.(5.3) and Eq.(5.4) is not alternat-

ing any more, due to the Hamiltonian in Eq.(5.1). The consequence is that
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only positive contributions to the energy splitting are present, which makes it

impossible to obtain a zero energy splitting.

5.5 Transversal magnetic �eld in�uence on inte-

ger spins

Figure 5.3: The evolution of the ratio ∆BxK/∆K for higher integer spins. a.)

Here we show the evolution of the ∆BxK/∆K ratio for spin systems from s = 2

to s = 15. We see that for the same parameter set of Bx[meV], K[meV] and

Kz[meV] the ratio increases to spins s = 3 until it decreases and oscillates

asymptotically against one. Used parameters in �gure 4a: Bx = 0.1 [meV]

K = 0.0002 [meV] and Kz = 1 [meV]. b.) Here we show a plot of Eq.(5.16)

((blue, pink, yellow and red curves)), which de�nes the parameters Bx[meV]

andK[meV] forKz = 1[meV] where we obtain a ∆BxK/∆K = 1 ratio for higher

integer spins. The curves separate areas, where we obtain ∆BxK/∆K = 1 ratios

(curves) and where we obtain ∆BxK/∆K 6= 1 ratios (white areas between the

curves).

The derivation of Eq.(5.3) and Eq.(5.4) enabled us to analyze the in�uence of

the transversal magnetic �eld on the energy splitting of the ground doublet,

for larger integer quantum spin systems, from another perspective. Our main

concern related with Eq.(5.3) is to present conditions for obtaining a signi�cant

contribution of the transversal magnetic �eld to the quantum spin tunneling

for integer spins. Figure 5.3a and 5.3b show an interesting property of the ratio

∆BxK/∆K for several integer spin quantum numbers and for a positive K. In
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�gure 5.3a, where we used a transversal magnetic �eld energy of Bx = 0.1[meV]

(Hx = 1.7[T]) and a transversal anisotropy energy ofK = 0.0002[meV] which is

approximately three orders of magnitudes smaller than Bx, we see an increase

of the ratio ∆BxK/∆K up to a spin of s = 3. After s = 3 the ratio decreases

until it oscillates asymptotically against one ( lim
s→∞

= 1). This behaviour

is very fascinating because it indicates that for this set of parameters the

contribution of the transversal magnetic �eld to the energy splitting is equal to

the contribution of the transversal anisotropy. In �gure 5.4 we show a situation,

Figure 5.4: The evolution of the ratio ∆BxK/∆K for higher integer spins. Here

we show the evolution of the ∆BxK/∆K ratio for spin systems from s = 2 to

s = 15. In this �gure we demonstrate the more prominent situation where

for constant parameters Bx, K and Kz the ratio ∆BxK/∆K is decreasing with

increasing quantum spin number s. Parameters used in �gure C1: Bx = 0.1

[meV] (Hx = 1.75[T]), K = 0.00077 [meV] and Kz = 1 [meV].

which occurs for most parameters Bx, K, and Kz, where the ratio ∆BxK/∆K

is decreasing with increasing spin quantum number until the in�uence of the

transversal magnetic �eld (∆BxK) on the energy splitting becomes negligible

in contrast to that of transversal anisotropy (∆K).
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5.5.1 Shared quenching points

Considering that for most parameters Bx, K and Kz within the perturbative

regime the ratio ∆BxK/∆K is decreasing with increasing spin quantum number

the question arises if the parameter set used in �gure 5.3a is a unique one or

whether it is a general behaviour for a group of parameters. In order to answer

this question we permuted several parameters in Eq.(5.15) until we were able

to create a value table of parameters with the property ∆BxK/∆K = 1 (in the

limiting case of large quantum spins).

∆BxK

∆K

=

s−1∑
n=1

Bβ=2n
x ·Kγ=s−n · (−1)γ2γ

β+1∑
j1=1

...
β+2γ−1∑

jγ=jγ−1+2

γ∏
i=1

|(Es−ji − E−s)|

(−1)s2sKs
s∏
j=1

|(Es−(2j−1) − E−s)|

(5.15)

From this value table we were able to set up the following equation, which

reproduces the exact values of Bx, K and Kz to obtain a ∆BxK/∆K = 1 ratio

in the limiting case of higher integer spins:

1

αmKz

·B2
x = K

(5.16)

where

αm = 2 +
m∑
n=0

16n, m ∈ N0

αm ∈ [2, 18, 50, 98, 162, ...]
(5.17)

The values which satisfy Eq.(5.16) lead to a situation where the contribution to

the energy splitting of the mixed ∆BxK and the pure ∆K paths are nearly equal

in the limiting case of large quantum spins (∆BxK = −∆K), as demonstrated

in �gure 5.3a. Since the pure ∆Bx path is

∆Bx = −(∆BxK −∆K) (5.18)

we obtain a situation where the energy splitting is zero, ∆E = 0. This means

that our formula in equation(5.16)generates parameters (Bx, K and Kz) where
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we obtain shared quenching points (∆E = 0) for all quantum spin numbers.

This is interesting, because up till now we were solely in the position to calcu-

late quenching points for individual spins, which mostly di�er from each other.

But now we are able to estimate, the rarely, shared quenching points for all

spins, within the huge parameter space of not shared quenching points.

In summary, we found parabolic expressions (Eq.(5.16)), which enable us to es-

timate values of the transversal magnetic �eld, the transversal anisotropy and

the uniaxial anisotropy where we obtain shared quenching points (∆E = 0)

for all quantum spin numbers.

5.5.2 Negative uniaxial anisotropy K
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Figure 5.5: Here we show the evolution of the ∆BxK/∆K ratio for spin systems

from s = 2 to s = 15. We see that for the same parameter set of Bx, K and

Kz as in �gure 5.3, with the sole di�erence that the transversal anisotropy

K is negative, the ratio is constantly increasing with increasing spin quan-

tum number. The asymptotic oscillation against one does not appear. Used

parameters: Bx = 0.1 [meV] K = −0.0002 [meV] and Kz = 1 [meV].

The situation changes drastically when the transversal anisotropy energy K

is negative (hard axis), because then the series ∆BxK does not alternate and

there are no negative contributions to the energy splitting. The consequence

is that the ratio ∆BxK/∆K does not converge to one, which means that the
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contribution of the transversal magnetic �eld on the energy splitting can be

orders of magnitude larger than all other contributions for higher integer spins.

This is shown in �gure 5.5.

5.6 Vanishing of mixed ∆BxK paths

Figure 5.6: Vanishing of mixed ∆BxK paths under certain values of Bx. a.)

Here we show a spin s = 5 system, which is the smallest possible system

where the vanishing of the mixed ∆BxK paths appears. We see that for Bx =

0.021[arb.units] the value of ∆BxK is zero. Used parameters: spin s = 5,

K = 0.01 [arb.units] and Kz = 1 [arb.units]. b.) Here we show a spin s = 13

system to illustrate the spin quantum number dependence for the number of

the vanishing points. We see that the spin s = 13 system contains, in contrast

to the spin s = 5 system, �ve vanishing points for Bx. Parameters for spin

s = 13: Kz = 1 [arb.units], K = 0.001 [arb.units].

Here we want to introduce an e�ect, which is not described by the quenched

tunnel splitting and which was made visible by our perturbative approach.

This e�ect describes a unique situation where no mixing of tunneling paths

occurs but instead only pure paths exist. By plotting the ∆BxK term against

the transversal magnetic �eld demonstrated in �gure 5.6a and 5.6b we see that

the mixed ∆BxK paths are vanishing under certain values of Bx. In �gure 5.6a

we show a spin s = 5 system, which is the smallest possible system where this

e�ect appears. We see that under the value of Bx = 0.021[arb.units], which

depends on the parameters of Kz and K, the mixed ∆BxK paths are vanishing.

The spin s = 13 system in �gure 5.6b demonstrates that the number of these

certain values of Bx, where the mixed ∆BxK paths are vanishing, depends on
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the spin quantum number. It is important to mention that the number of these

Bx values has the tendency to increase with increasing spin quantum number.

Moreover, there seems not to be a systematic behind this increase. What we

see is that for spin s = 7 there are three certain values of Bx, but for spin

s = 8 only two.

This value di�ers for each spin and from the values of the quenched tunnel

splitting, and leads to a linear combination of two pure paths ∆Bx and ∆K

in Eq.(5.3) for integer spins and to the sole contribution ∆Bx in Eq.(5.4) for

the half-integer spins. This leads to the conclusion that in contrast to the

quenched tunnel splitting, where the energy splitting is vanishing and so the

quantum spin tunneling, here we have a situation where quantum spin tun-

neling occurs but the in�uence of the transversal magnetic �eld is drastically

reduced, both for integer and half-integer spins. We can interpret this situa-

tion as the destructive interference of the ∆BxK paths, which occurs because

of the alternating series structure for positive K.

5.7 Conclusion

In summary we derived an energy splitting formula of the ground doublet by

using a perturbative approach with two perturbations for a Hamiltonian which

contains a uniaxial anisotropy, a transversal magnetic �eld, and a transversal

anisotropy. The formula we derived enables a detailed understanding of the

quenched tunnel splitting and enables us to estimate exact parabolic equations

in which the in�uence of the transversal magnetic �eld on the energy splitting is

signi�cant for integer spins and a positive K. The situation changes drastically

for a negative K, where the contribution of the transversal magnetic �eld to

the energy splitting can be orders of magnitude larger for higher integer spins

than the contribution of the transversal anisotropy.
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Chapter 6

Magnetisation behaviour of open

and closed spin chains

6.1 Open spin chains

Nanomagnets, realized by antiferromagnetically exchange coupled Fe spin chains

on a Cu(111) substrate, show in the regime of low external magnetic �eld Bz

a magnetization behaviour, which cannot be explained by theoretical models,

using an e�ective Hamiltonian for the thermodynamic equilibrium [57]. The

purpose of this chapter is to analyse if Landau-Zener scenarios are responsi-

ble for this phenomenon and further to analyse if an external magnetic �eld

dependence of the magnetic moments of the edge spins is the cause of the

experimental observations. Before we explain our approaches we want to de-

scribe the system and its unexpected magnetization behaviour in more detail.

The e�ective Hamiltonian, which describes a system of three or more anti-

ferromagnetically exchange coupled quantum spins on a substrate within an

external magnetic �eld Bz, is:

Ĥ = J

n∑
<i,j>

Ŝi ⊗ Ŝj −Bz

n∑
i=1

Ŝzi −Kz

n∑
i=1

Ŝ2
zi
, (6.1)

whereby the dimension of the components of the spin operator is equal to the

dimension of the Kronecker product of the single-particle Hilbert spaces:

dim(Ŝx, Ŝy, Ŝz) = dim(Ĥ1 ⊗ ...⊗ Ĥn). (6.2)
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The �rst term of the Hamiltonian in Eq.(6.1) describes the anti-ferromagnetic

exchange interaction, the second term the interaction with the external mag-

netic �eld and the last term the uniaxial anisotropy. The competition between

the �rst and the second term of Eq.(6.1) de�nes the magnetisation curve char-

acteristics. The behaviour of a system described by the Hamiltonian in Eq.(6.1)

(with equal magnetic moments) can be generalized as follows:

I.) Within the regime, where the Zeeman energy is dominating, all spins are

oriented parallel to each other and are parallel relatively to the magnetic �eld

(saturation).

II.) Reducing the magnetic �eld energy adiabatically, until the anti-ferromagnetic

exchange interaction energy is dominant, leads to an anti-parallel orientation

of the spins relative to each other. Due to the linear spin chain geometry,

it is energetically favourable for the edge spins to have a parallel orientation

relative to the magnetic �eld, which is obvious by considering the Hamiltonian

in Eq.(6.1). The inner spins need to be oriented mostly anti-parallel to each

other and relative to the edge spins. Since for spin chains with an even number

of spins, the two edge spins cannot be both anti-parallel to the inner spins (if

the inner spins should have an anti-parallel orientation to each other), a second

con�guration exists in order to avoid a preferable con�guration. This is shown

in �gure 6.2b,d.

Now we want to demonstrate graphically what we described previously as

the general adiabatic behaviour of a spin chain de�ned by the Hamiltonian in

Eq.(6.1). Figure 6.1 shows a typical magnetisation curve for the Hamiltonian

in Eq.(6.1) for a spin quantum number s = 1/2 where we used a three quantum

spin chain for which we calculated the expectation values 〈Ŝz〉 by using the

stationary Schrödinger equation:

Ĥ|Ψ〉 = E|Ψ〉. (6.3)

In order to obtain the eigenvalues and eigenstates we solved the station-

ary Schrödinger equation for the not explicit time-dependent Hamiltonian in

Eq.(6.1) by using exact diagonalization. Hereby we changed the magnetic �eld

Bz adiabatically for each diagonalization iteration. With the knowledge of the
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Figure 6.1: Here we show the typical Ising-like magnetization behaviour of a

three spin 1/2 chain. a.) The magnetization curves for the edge spins are

identical. b.)The inner spin shows the expected anti-parallel orientation for

an antiferromagnetically coupled system.

eigenvalues and eigenstates, for each iteration, we calculated the thermody-

namically weighted expectation values by using the Boltzmann statistics:

〈Szj〉 =
n∑
i

pi〈ψi|Ŝzj |ψi〉, pi =
e−Ei/kBT

n∑
i

e−Ei/kBT
(6.4)

to obtain magnetisation curves for a system within the thermodynamic equi-

librium. The curves in �gure 6.1 are consistent with the results of the Ising

model. What can be seen in �gure 6.1 is that, in the regime of Bz > 0.5 [a.u],

all three spins are aligned parallel to each other and parallel to the external

magnetic �eld. By reducing the magnetic �eld adiabatically (0.0 < Bz < 0.5

[a.u]) the two edge spins, demonstrated through �gure 6.1a, still tend to be

oriented parallel to the magnetic �eld, but the middle spin in �gure 6.1b tends

to an anti-parallel orientation to the magnetic �eld and to the edge spins. This

kind of behaviour is well known and should be expected in every experiment

which is described by the Hamiltonian in Eq.(6.1) (within the thermodynamic

equilibrium). So far we described the adiabatic magnetisation behaviour of a

quantum spin chain de�ned by the Hamiltonian in Eq.(6.1). In contrast to this

behaviour the results from experimental measurements performed on a Fe chain

on a Cu(111) substrate show a di�erent magnetisation behaviour, although the

same Hamiltonian like in Eq.(6.1) was assumed. Figure 6.2 shows the measure-

ments, which are inconsistent with the theory. The di�erent behaviour occurs
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Figure 6.2: Reprinted by permission from nature publishing group (npg). This

�gure shows the experimental data[57] (dots), which does not �t with the

associated Ising-model calculations (lines)

within the regimes of lower magnetic �elds Bz, which are highlighted with grey

areas in �gure 6.2. Especially the three-spin chain system in �gure 6.2a, in the

regime of lower Bz �elds, shows clearly the opposite behaviour to the magneti-

sation curves derived from theoretical calculations in �gure 6.1. Now we want

to describe this di�erence in detail by using the three spin chain example in

�gure 6.1 and in �gure 6.2a. The main di�erence between the measurements

and the theory, by assuming that the Hamiltonian in Eq.(6.1) is valid, is that

the average orientation of the edge spins, within the experiment is anti-parallel

to the external magnetic �eld Bz whereby the middle spin is parallel to the

magnetic �eld in the regime of Bz ≈ 0.25 [T], shown in �gure 6.2a. The theory

predicts the opposite behaviour, since it is thermodynamically preferable that

the edge spins are on average parallel to the magnetic �eld Bz and the middle

spin should be most of the time anti-parallel to the �eld Bz, if we assume

that all magnetic moments within the spin chain are equal (�gure 6.1). This

circumstance forces us to make the following assumptions:
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1.) If the measurements represent the thermodynamic equilibrium state, then

it follows that the Hamiltonian in Eq.(6.1) is not complete and we are missing

some kind of e�ect.

2.) If the measurements do not represent the thermodynamic equilibrium

state, then we might be dealing with some kind of excited state behaviour,

where the Hamiltonian in Eq.(6.1) could be complete or still could be incom-

plete .

6.1.1 Landau-Zener dynamics on open spin chains

Our �rst approach is to assume that the Hamiltonian in Eq.(6.1) is com-

plete and that the measurements show some kind of excited magnetization

behaviour. In order to model non-equilibrium behaviour in general, we need

to decide by what kind of approach such an excited behaviour can be ob-

tained. Since we choose a quantum mechanical description, by using the time-

dependent Schroedinger equation, the Landau-Zener scenarios are a possibility

to generate transitions from one eigenstate into another eigenstate by sweeping

the external magnetic �eld diabatically. To observe diabatically transitions,

within the experiment, two conditions are necessary:

1.) an environment of low temperature

2.) and of low damping.

These conditions are mandatory, because otherwise strong environment e�ects

like a high damping would suppress diabatical transitions by nearly instan-

taneous relaxations into the "initial eigenstate". Since these conditions are

ful�lled within the experiment, we can assume the Landau-Zener transitions

as a realistic approach.
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Figure 6.3: Eigenvalues of a three spin 1/2 chain.

6.1.2 Landau-Zener transitions on spin 1/2 chains

The simplest example to start with is an anti-ferromagnetically exchange cou-

pled three spin 1/2 chain. Before we discuss our results we want to analyse

the energy landscape of this system shown in �gure 6.3. The energy landscape

is important in order to locate all possible state transition points. Figure 6.3

shows the eigenvalues of the anti-ferromagnetically exchange coupled three spin

1/2 chain. Since all crossing points in �gure 6.3 are not avoided, which means

that the energy is degenerated at these locations, it is not possible to obtain

diabatical state transitions. Within such a situation the system will not be

able to leave the initial eigenstate. In order to obtain transitions from the ini-

tial eigenstate into another eigenstate it is necessary to generate avoided level

crossing points by including o�-diagonal elements in the Hamiltonian, which

can be realised for example by a transversal magnetic �eld. The number and

locations of the avoided level crossing points, which are determinated by the

interaction term within the Hamiltonian, de�nes the degree of freedom which

we have to generate diabatic eigenstate transitions.

Figure 6.4a shows a situation where a small Bx �eld is able to avoid the energy

degeneration located at Bz = 0. To demonstrate an adiabatical case, at the

avoided level crossing point at Bz = 0, we prepare the system in the initial

diabatic state | ↑↑↑
〉
, which is the energetically lowest state at Bz = 0.5 [T].
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Figure 6.4: Simplest Landau-Zener scenario of an adiabatic behaviour of the

three spin 1/2 chain. a.) Eigenvalues of the three spin 1/2 chain with an adi-

abatic passage (red eigenvalue). The system remains in the initial eigenstate.

b.)The adiabatic passage leads to a spin �ip, from
∣∣1/2〉 to ∣∣− 1/2

〉
.

By changing the external magnetic �eld Bz adiabatically the system remains in

its eigenstate and thus undergoes a transition of the initial spin orientations to

the diabatic state | ↓↓↓
〉
, shown in �gure 6.4b. Since the magnetization curves

in �gure 6.4b, calculated by solving the time-dependent Schroedinger equation

with the classical Runge-Kutta method, does not look like the magnetization

curves in �gure 6.1, obtained by the Boltzmann statistics in Eq.(6.4), we can

assume that the o�-diagonal elements caused by the transversal magnetic �eld

is not su�cient to create a situation like the theory predicted magnetisation

curves in �gure 6.1 nor the experimental measurements in �gure 6.2a. It

follows that we need to create additional avoided level crossing points, in order

to obtain more diabatic state transition possibilities. An option to generate

additional avoided level crossing points in �gure 6.4a is to use an anisotropic

exchange interaction. Figure 6.5a shows clearly that by applying an anisotropic

exchange interaction, further avoided level crossing points occur.

Preparing the system in a | ↑↑↑
〉
diabatic state and changing the external

magnetic �eld Bz adiabatically, shown in �gure 6.5b, leads to qualitative simi-

lar magnetization curves like in �gure 6.1a,b (which are generated by applying

the Boltzmann distribution on the expectation values). This result shows that

we succeeded in creating conditions to generate a pure quantum mechanical

magnetisation behaviour which is similar to the thermodynamic statistical one.
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Figure 6.5: Adiabatic behaviour of the three spin 1/2 chain, with additional

avoided level crossings. a.) Eigenvalues of the three spin 1/2 chain with an

adiabatic passage (red eigenvalue). b.)The adiabatic passage leads to a magne-

tization behaviour similar to the behaviour of the Ising-like model calculation

from the experimental data.

This justi�es the e�orts to manipulate the avoided crossing points further in

order to approximate the magnetisation curves from the experiment, shown in

�gure 6.2.

Based on the energy landscape in �gure 6.5a we modify the parameters until

the �rst avoided level crossing gap is small enough that the system behaves

diabatically at this region. This means that the system does not have enough

time, during the magnetic �eld sweep, to remain in the initial eigenstate and

execute a transition to another eigenstate, which is from a thermodynamical

perspective unfavourable. Further we have to ensure that the second and

third energy gap is wide enough for an adiabatic behaviour. Figure 6.6 shows

a con�guration where the system, at the �rst energy gap, behaves diabatically

and at the second and third energy gab adiabatically relative to a certain

magnetic �eld sweep time. The corresponding expectation values, for the red

marked energy progression (energy path) from our dynamical calculations in

�gure 6.6, are shown in �gure 6.7a and 6.7b. By comparing the curves from

the experiment in �gure 6.2a with the expectation values from �gure 6.7a it is

evident that the magnetization behaviour of the �rst and third spins (atoms)

from our calculation is qualitatively similar to the �rst and third spins from

the experiment, which is desirable. However, the second (middle) spin from
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Figure 6.6: Eigenvalues of a three spin 1/2 chain, with a diabatic and adiabatic

magnetization behaviour. During the �rst very small avoided level crossing

the system undergoes a diabatic state transition, from the initial eigenstate to

another eigenstate. At the next, much wider, avoided level crossing the system

behaves adiabatically and remains in the new eigenstate. At the last small

avoided level crossing the system undergoes again a diabatic state transition,

but now from the new eigenstate back to the previous initial eigenstate (red

eigenvalue).

the experiment and from our dynamical calculation shows a notably di�erent

magnetization behaviour.

Unfortunately, all other con�gurations which we tried out in order to generate

new energy paths in �gure 6.7a, like other initial eigenstates or by changing

adiabatic and diabatic locations within the energy landscape, led to a disagree-

ment between the experimental results and our calculations. Since we did not

succeed in approximating the magnetization curves from the experiment with

a spin 1/2 chain, we moved to a spin 3/2 system. A higher quantum spin

number goes along with more degrees of freedom, especially for an interacting

many-particle system. In our case we start with an antiferromagnetically ex-

change coupled three spin 3/2 chain, described by the Hamiltonian in Eq.(6.1).

Compared to the 8 eigenstates from the previous spin 1/2 system, the spin 3/2
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Figure 6.7: Diabatic and adiabatic magnetization behaviour of a three spin

1/2 chain, with eigenvalues shown in �gure 6.6. a.) Here we see that the

magnetization curves of the edge spins agree very good with the magnetiza-

tion behaviour of the edge spins of the experimental data in �gure 6.2a. b.)

Unfortunately, the inner spin shows a completely di�erent behaviour relative

to the experimental behaviour.

chain possesses 64 eigenvalues and eigenstates which enables much more possi-

bilities to generate several energy paths. Unfortunately, we see similar results

like we obtained for the spin 1/2 case. The �rst spin and the last one of the

three spin 3/2 chain system show a good agreement with the experimental

results, but the middle spin shows a strongly divergent behaviour relative to

the measurements, similar to the spin 1/2 case in �gure 6.7. Spin 5/2 systems

do not change the situation which we had for the spin 1/2 and spin 3/2 cases.

6.1.3 Conclusion

We show that the Landau-Zener scenario is not able to reproduce magnetizan-

tion curves from the experimental data. We were able to reproduce the correct

behaviour of the edge spins but not of the inner spins. Other approaches, for

example the implementation of a DM-interaction, or a biquadratic exchange

interaction in the Hamiltonian were not successful either.



6.1. OPEN SPIN CHAINS 71

6.1.4 External magnetic �eld dependent magnetic mo-

ments of the edge spins

Our second approach is related to the following assumption: If the measure-

ments represent the thermodynamic equilibrium state, then it follows that

the Hamiltonian in Eq.(6.1) is not complete and we are missing some kind

of e�ect. Here, we assume an external magnetic �eld Bz dependence of the

magnetic moments µs(Bz(t)) of the edge spins:

Ĥ = µs(Bz(t))JŜ1 ⊗ Ŝ2 + µs(Bz(t))JŜn−1 ⊗ Ŝn + J
( n−1∑
<i+1,j+1>

Ŝi ⊗ Ŝj
)

− µs(Bz(t))BzŜz1 − µs(Bz(t))BzŜzn −Bz

( n−1∑
i=2

Ŝzi

)
− µs(Bz(t))KzŜ

2
z1
− µs(Bz(t))KzŜ

2
zn −Kz

( n−1∑
i=2

Ŝ2
zi

)
.

(6.5)

The �eld Bz dependent magnetic moments µs(Bz) are given by

µs(Bz(t)) = µs −
Bz(t)

|Bz(t)|
β · eγ

(
Bz−Bz(t)

Bz(t)
|Bz(t)|

)
, (6.6)

where β and γ are tuning parameters. The indirect time-dependent magnetic

Figure 6.8: Evolution of the magnetic moments µs(Bz(t)) of the edge spins for

a three spin 1/2 chain.

moments µs(Bz(t)) of the edge spins decrease with decreasing external mag-

netic �eld Bz(t). The slope of the magnetic moment increases with decreasing
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external magnetic �eld, which is shown in �gure 6.8. The Boltzmann weighted

expectation values of the eigenstates of the Hamiltonian in Eq.(6.5), for a three

spin 1/2 chain, with a time-dependent external magnetic �eld Bz(t) are shown

in �gure 6.9. We see that all three spins reproduce the experimental data well.

Since we succeeded for a three spin 1/2 chain, we tested the same procedure

Figure 6.9: Magnetization curves created with magnetic �eld dependent mag-

netic moments µs(Bz(t)) for a three spin 1/2 chain. a.) The magnetization

behaviour of the edge spins are in good agreement with the experimental data.

b.) The inner spin is in good agreement with the experimental data too.

for a four and �ve spin 1/2 chain, with results, which are in good agreement

with the experimental data. The �ve spin 1/2 chain case is shown in �gure

6.10. Similar to the three spin 1/2 chain case, we see in �gure 6.10b,c,d a

good agreement with the �ve spin chain from the experiment. In summary,

we succeded to reproduce the experimental results for the spin 1/2 case (for

three, four, and �ve spins) by reducing the magnetic moments, constantly with

the external magnetic �eld, solely for the edge spins. Since we succeeded to

reproduce the magnetization curves from the experiment, we tried the whole

concept on a spin 3/2 system instead of the already good working spin 1/2

system. We found that the results from the spin 3/2 system reproduce the

experimental results from �gure 6.2 much better than the calculations with a

spin 1/2 system. The very good agreement for the spin 3/2 case is shown in

�gure 6.11a,b for a system of three spin 3/2 chains. In �gure 6.12 we show the

corresponding evolution of the magnetic moments µs(Bz(t)) of the edge spins.

Up till now we were able to reproduce the magnetization curves from the ex-

periment by assuming a magnetic �eld dependent magnetic moment µs(Bz(t))
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Figure 6.10: Magnetization curves created with magnetic �eld dependent mag-

netic moments µs(Bz(t)) for a �ve spin 1/2 chain. a.) Evolution of the mag-

netic moments µs(Bz(t)) of the edge spins for a �ve spin 1/2 chain. b.) The

magnetization behaviour of the edge spins are in good agreement with the

experimental data. c.) The inner spins are in good agreement with the ex-

perimental data too. d.) The middle spin is also in good agreement with the

experimental data.

of the edge spins. Now the question arises what kind of physical e�ect can

cause such a dependence. Unfortunately, we can only speculate now. Our idea

is that the external magnetic �eld induces an opposing magnetic �eld within

the substrate, which indeed should happen, because Cu(111) is diamagnetic.

The opposing magnetic �eld is very low compared to the external �eld, and

saturates already at a very weak external magnetic �eld. Our assumption is

that this opposite magnetic �eld might shield the magnetic moments of the Fe

spin chains, and since the edge spins are much more exposed to the surrounding

Cu atoms, which generates the opposite magnetic �eld, the shielding should

be stronger than for the inner spins. We further assume that the shielding of

the magnetic moments depends on the strength of the external magnetic �eld,

because we expect that for high external magnetic �elds the opposite �eld
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Figure 6.11: Magnetization curves created with magnetic �eld dependent mag-

netic moments µs(Bz(t)) for a three spin 3/2 chain. a.) The magnetization

behaviour of the edge spins are in a much better agreement with the experi-

mental data than for the spin 1/2 calculations. b.) The inner spin also is in a

better agreement with the experimental data.

Figure 6.12: Evolution of the magnetic moments µs(Bz(t)) of the edge spins

for a three spin 3/2 chain.

is suppressed (stronger magnetic �eld lines tend to displace weaker magnetic

�eld lines). Only when the external magnetic �eld is weak enough that it can-

not suppress the opposite magnetic �eld (which at the same time needs to be

strong enough in order to induce it to saturation) we can observe the decrease

of the magnetic moments of the Fe atoms (especially the edge spins of the Fe

chain) with a decrease of the external magnetic �eld. In order to model such

a situation we chose a mathematical expression for the dependence, which is

presented in Eq.(6.6). The decrease of the magnetic moments, in particular

of the edge spins, leads to a point where it is energetically more favourable to

inverse the spin con�guration, relative to the con�guration which is expected
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for an Ising-like model which deals with constant magnetic moments.

6.1.5 Conclusion

We investigated the possibility of external magnetic �eld dependent magnetic

moments of the edge spins in order to explain the experimental data. We

analyse con�gurations of three, four, and �ve spin 1/2 chains and found good

agreement with the magnetization behaviour from the experiment. Further,

we analysed a three spin 3/2 con�guration and found that this con�guration

reproduces the experimental data much better than the spin 1/2 counterpart.
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6.2 Closed spin chains: Non-collinear metastable

states

This chapter is an extract from the publication:

S. Castillo-Sepúlveda, R. A. Escobar, and D. Altbir, M. Krizanac, and E.

Y. Vedmedenko, Phys. Rev. B 96 024426 (2017).

Our main contributions are the chapters "Analytical calculation of the low-

est excited states" and "Analytical calculation of the free energy".

6.2.1 Introduction

In addition to open linear chains [56, 57, 58], we studied stationary equilib-

rium magnetic con�gurations formed by e�ective magnetic moments of closed

magnetic chains with uniaxial anisotropy coupled with antiferromagnetic ex-

change and dipolar interactions. Such ring structures with di�erent anisotropy

axes can be experimentally prepared [59, 60, 61, 62, 63, 64, 65, 66, 67]. The

main objective is to identify which kind of magnetic states, di�erent from the

collinear ground states, can be stabilized. We show that there are many stable

stationary states and that these states correspond to the non-collinear spin spi-

rals for vanishing anisotropy or to kink solitons for high magnetic anisotropy.

Particularly, the non-collinear Möbius magnetic state can be stabilized at �-

nite temperatures in non-frustrated rings or other closed shapes with an even

number of sites without the Dzyaloshinskii-Moriya interaction.

6.2.2 Analytical calculation of the ground state

We use an atomistic Heisenberg-like model in our calculations. Each atom is

represented by a magnetic moment ~µi = µs · ~Si, with µs = 2.2µB, where ~Si is

the unit and dimensionless vector parallel to ~µi.

H =
∑
i 6=j

(
DEij − Jij ~Si · ~Sj

)
−K

∑
i

(
~Si · ẑ

)2
, (6.7)
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where Eij is the dipolar energy given by

Eij = ω
~Si · ~Sj − 3(n̂ij · ~Si)(n̂ij · ~Sj)

r3
ij

, (6.8)

with rij = |~ri − ~rj|, n̂ij = (~rj − ~ri)/rij, and ω = µ0µ
2
s/4π, with µ0 the mag-

netic permeability in the vacuum. In these expressions D is a constant that

allows to turn on or o� the dipolar interaction by taking the values 1 or 0, and

is dimensionless. The exchange interaction constant Jij is de�ned solely for

nearest-neighbour moments.

In the following S. Castillo-Sepúlveda, R. A. Escobar, and D. Altbir calculated

energies of the pure antiferromagnetic (AFM) state, the antiferromagnetic spin

spiral (AFSS) con�guration, and the antiferromagnetic (AFM) domains with

kink-like solitons (KS) in between (see Figure). By considering a closed chain

with N magnetic moments, a KS contains M magnetic moments, whereby

M < N . It follows that the AFM region is formed by (N − M) magnetic

moments. The internal energy is then given by contributions from the kink

solitons and the antiferromagnetic domains.

The �rst case which S. Castillo-Sepúlveda, R. A. Escobar, and D. Altbir dis-

cussed is the situation with M = N . The spatial dependence of magnetization

of such an AFSS con�guration can be described as

~S(i,∆θ
(N)
k ) = ~Sx(i,∆θ

(N)
k ) + ~Sz(i,∆θ

(N)
k )

~Sx(i,∆θ
(N)
k ) = sin

(
(i− 1)∆θ

(N)
k

)
x̂,

~Sz(i,∆θ
(N)
k ) = cos

(
(i− 1)∆θ

(N)
k

)
ẑ,

(6.9)

where i de�nes the coordinate along the ring and ∆θ
(N)
k is the angle between

two neighbouring moments. In order to obtain periodic boundary conditions
~S(1,∆θ

(N)
k ) = ~S(N +1,∆θ

(N)
k ), it is necessary that ∆θ

(N)
k = 2πk/N , with k an

integer value between 1 and N − 1. The energy of the system is de�ned by

E(∆θ
(N)
k ) =

N∑
i=1

~S(i,∆θ
(N)
k ) · ~S(i+ 1,∆θ

(N)
k )−K

N∑
i=1

S2
z . (6.10)

By inserting Eq.(6.9) in Eq.(6.10) it follows

E(∆θ
(N)
k ) = −JNcos(∆θ(N)

k )−K
N∑
i=1

cos2
(
(i− 1)∆θ

(N)
k

)
. (6.11)
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Minimizing Eq.(6.16) leads to

dE(∆θ
(N)
k )

d∆θ
(N)
k

= JNsin(∆θ
(N)
k ) + 2K

N∑
i=1

(
(i− 1)cos2

(
(i− 1)∆θ

(N)
k

)
· sin2

(
(i− 1)∆θ

(N)
k

))
= 0.

(6.12)

From the solutions of Eq.(6.12) S. Castillo-Sepúlveda, R. A. Escobar, and D.

Altbir obtained energy expressions for even N and for odd N . For even N the

energy is given by

E = −N(K − J), (6.13)

and for odd N the minimum energy is

E = JNcos(π/N)−K
N∑
i=1

cos2
(
(i− 1)π/N

)
. (6.14)

In �gure 6.13 they plotted Eq.(6.13) and Eq.(6.14) for even and odd N .

Figure 6.13: Reprinted by permission from APS physics. (a) Internal energy of

a pure AFSS state for even and odd number of magnetic momentsN whenK =

−J = 1 meV. When N is even, the AFSS state is identical to the AFM state.

(b) Internal energy normalized by N for the same parameters used in (a). They

observed that ifN increases, the di�erence |EN/N−EN+1/(N+1)| converges to
0.502 meV. We see that the AFSS state for odd number of magnetic moments

is not the minimum of the energy.

We can conclude that for low anisotropies (|K| < |J |) and D = 0, the lowest
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energy state for even N corresponds to an AFM con�guration, which is equiv-

alent to an AFSS with ∆θ = π. Any other kind of AFSS possesses higher

energy. The total energy of an AFSS in a chain with an odd number of sites is

always larger than that of the closest chain with an even number of moments.

The larger the length of those two chains, the more pronounced the total en-

ergy di�erence despite the almost identical length (±1) as seen in Fig. 6.13.

This e�ect occurs due to the frustration inherent to odd chains. Thus, longer

chains exhibit a higher degree of frustration, so it follows that their energy is

larger as compared to a chain with an even number of spins.

In the next step, they calculated the di�erence ∆EN between the energy of

an AFSS state [E(AFSSNM)] and a KS state [E(KSN)] as a function of kink

soliton length M . By minimizing Eq.(6.16) for the AFSS state and for the

KS state they obtained the following expression for the di�erence ∆EN for

the case of odd N (number of magnetic moments) and odd M (kink soliton

length):

∆E = κ(N)− κ(M)

κ(x) = −Jx
(
1− cos(π/x)

)
−K

x∑
i=1

cos2
(
(i− 1)π/x

)
+Kx. (6.15)

If ∆E < 0 then the lowest energy state is the AFSS, while if ∆E > 0, the lower

energy corresponds to a KS state. Figure 6.14 shows the results of Eq.(6.15)

for several anisotropy K values. They observed that larger anisotropy values

K are associated with smaller kink solitons.

The case for even N and even M as well as even N and odd M leads to an

energy which is the same as for the full AFM state,

E = −N(K − J). (6.16)

This leads to the conclusion that the ground state of rings with an even num-

ber of constituents is an AFM con�guration, while that of rings consisting of

an odd number of magnetic moments corresponds to the KS con�guration.

Herewith S. Castillo-Sepúlveda, R. A. Escobar, and D. Altbir have shown that

in closed rings with an odd number of particles the KS is the stable magnetic
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Figure 6.14: Reprinted by permission from APS physics. (a) Di�erence be-

tween the internal energies of the AFSS and KS states for N = 31, J = 1 meV,

and di�erent values for K. ∆E > 0 indicates that a knot is present. (b) Size

of a kink soliton (knot) as function of the anisotropy for N = 31.

con�guration. The ground state of closed rings with an even number of spins

is an ideal AFM con�guration.

6.2.3 Analytical calculation of the lowest excited states

Here, we analyze the lowest excited con�gurations of rings, de�ned by Eq.(6.7)

for D = 0, with an even number of spins. The lowest excited metastable con-

�gurations of non-collinear spin spirals can be observed in the phase space[68].

An example of such a phase space is given in Fig. 6.15a for a chain consisting

of four magnetic moments subject to a uniaxial anisotropy and the exchange

interaction J < 0. This example concerns the case of an AFSS with the angle

∆θ ⊂ [0, π] between nearest-neighboring spins. Only the angle between the

�rst and the last spins in a chain can di�er from ∆θ if N∆θ/π is not integer.

The abscissa gives the polar spherical angle θ1 of the �rst spin with respect to

the z-axis. The spiral is two-dimensional, i.e., the four spins have the following

Sz components: cos(θ1), cos(θ1 + ∆θ), cos(θ1 + 2∆θ), and cos(θ1 + 3∆θ). In

this simplest possible case the three non-trivial periodic con�gurations corre-

spond to ∆θ = π/4, π/2, 3π/4 de�ning π, 2π, 3π magnetization rotations

along a chain, respectively. For |K| � |J |, these con�gurations correspond to

the band of low-energy saddle points as seen in Fig. 4(a). Additionally, there

are 12 local energy minima [blue in Fig. 6.15a]. Six of them (dark blue) corre-
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Figure 6.15: Reprinted by permission from APS physics. Analytical calculation

of the internal (a) and Gibbs free energy (b)-(d) of the four e�ective magnetic

moments coupled by nearest-neighbor exchange interaction J and subject to

uniaxial anisotropy K for |K| � |J |. ∆θ is the angle between the nearest-

neighboring spins, while θ1 is the absolute polar spherical angle of the �rst

spin. The color scheme goes from dark blue (dark gray) for low energies to

light (light gray) for high energies. Panel (a) shows the internal energy map

in the θ1−∆θ coordinates. (b), (c) Gibbs energy G of the same sample in the

same phase space at kBT = 0.2K and kBT = 0.35K, respectively, with K the

anisotropy constant (density of states ρ = 100). (d) Cross section of the maps

(a)-(c) at ∆θ = π/2 and ∆θ = 2π/3. Cross-section line styles correspond to

those in (a)-(c).

spond to collinear ground states, but the other six (light blue) to non-collinear

metastable con�gurations with ∆θ = π/3 or 2π/3. Hence, already a very short

chain with an even number of magnetic moments at zero temperature can be

frozen in a non-collinear state if the anisotropy is high enough. Inclusion of

the dipolar coupling enhances this e�ect.

6.2.4 Analytical calculation of the free energy

In order to study the in�uence of the �nite temperature on these local energy

minima the free energy landscape has been calculated analytically. The free



82 CHAPTER 6. MAGNETISATION BEHAVIOUR OF OPEN AND

CLOSED SPIN CHAINS

energy can be de�ned as

G = E − TS = E − kBT · ln(ΩE), (6.17)

where E is the internal energy, kB the Boltzmann constant, S the entropy, and

ΩE the number of states with energy E. For non-collinear states the number

of states corresponds to the length of a circle made by the �rst spin on the

surface of a unity sphere: ΩE =
∫ 2π

0
ρ · cos(θ1)dθ1 = 2πρ · sin(θ1), where ρ is

the number of states per unit radian. The �rst magnetic moment can have

2πρsin(θ1) orientations, while orientations of other moments for a con�gura-

tion of an energy E are �xed by the angle ∆θ between them and the angle

θ1 + n∆θ with respect to the z-axis. Figures 6.15b and 6.15c give G(θ1,∆θ)

for two di�erent temperatures, while Fig. 6.15d shows the cross sections of

the energy landscape of Figs. 6.15a-6.15c for vanishing J . The two solid lines

in Fig.6.15d correspond to the internal energy of Fig.6.15a. The straight solid

line shows the band of saddle points at ∆θ = π/2, while the sine-shaped solid

line corresponds to local energy minimum at ∆θ = 2π/3. The dashed and

dotted lines correspond to the free energy for ∆θ = 2π/3 and kBT = 0.2K

and 0.35K, respectively. The density of states ρ in�uences the absolute value

of the free energy but does not change either positions or shapes of minima

and maxima. The total number of local energy minima is directly propor-

tional to the number of sites in a chain. Particularly, the minima appear

when ∆θ = 2πm/(N − 1) with integer m ∈ [1, N − 1]. Therefore, there are

nine local energy minima for the chain consisting of four e�ective magnetic

moments, while their number increases to twelve for the chain of �ve mo-

ments, etc. The inclusion of the dipolar interaction enhances the anisotropy

and, therefore, makes the local energy minima deeper. Thus, the number of

non-collinear con�gurations increases for longer chains. The entropy changes

the energy landscape signi�cantly and particularly, the entropy of the internal

energy minima corresponding to non-collinear con�gurations is much larger

than that of collinear states. As a consequence, the local energy minima at

θ1 = 0 split. The splitting increases with increasing temperature and corre-

sponds to complicated non-collinear magnetic states. Hence, the local minima

of the free energy in periodic chains might correspond to AFSS or KS and

are very important for the determination of magnetization con�gurations at

�nite temperatures. This e�ect is particularly important if the lifetime of a
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metastable state is comparable to or larger than the characteristic time of the

measurement. Another interesting observation from Fig. 6.15 is that the local

minima of the free energy correspond to the non-homogeneous spin spiral; that

is, in one part of the spiral the rotation happens quicker than in another. One

can regard such con�gurations as almost collinear antiferromagnetic domains

with knotlike solitons between those described above. Among other things

this �nding explains why one �nds domain walls in antiferromagnetic systems,

where the domain walls are energetically unfavourable.

6.2.5 Monte Carlo simulations

Figure 6.16: Reprinted by permission from APS physics. Equilibrium MC

con�guration of a chain consisting of 50 moments for D = 1, J = 0 meV and

K = 0 meV.

In realistic systems one has to consider three-dimensional Heisenberg spins as

well as dipolar interactions. This makes the phase space very complicated and

inaccessible by analytical calculations. To check the stability of the described

metastable solutions we have performed extended Monte Carlo (MC) simula-

tions of �nite magnetic chains of di�erent lengths. Particular attention has

been paid to the closed rings consisting of e�ective magnetic moments coupled

by dipolar and antiferromagnetic exchange interactions as well as subject to

the on-site uniaxial anisotropy, because in this case an additional aspect of

spin parity becomes important. To study the magnetic states of these struc-

tures we carried out MC simulations with the Metropolis algorithm under local

dynamics and the single spin �ip method [69]. Technical aspects of the MC
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procedure can be found in [69, 70]. The energy is given by Eq. (4). Since

we consider an antiferromagnetic coupling between neighboring sites J values

between −0.1 and −40 meV have been explored. This range of values includes

systems reported by Savina et al. [71] and references therein. The simulations

have been started with a random orientation of magnetic moments. The new

orientation of each randomly chosen magnetic moment has been accepted with

a Boltzmann probability p = min(1, exp(∆E/kBT )). The rings were relaxed

using a tempered annealing procedure until the equilibrium con�guration has

been achieved. Relatively low �nite temperatures kBT � |J | have been used

in the calculations. The number of Monte Carlo steps (MCS) considered in

each relaxation process was 3 · 107. To distinguish between e�ects induced by

di�erent energy contributions we started looking for equilibrium states of the

system considering the involved energies separately. To analyze the impact

of the di�erent variables S. Castillo-Sepúlveda, R. A. Escobar, and D. Altbir

looked at the purely dipolar case, that is, J = K = 0. In this case, inde-

pendently of the number of sites in the ring, the magnetic con�guration at

remanence is a closured-vortex-like state, as illustrated in Fig. 6.16. For J = 0

and D = 0 two cases can be distinguished: easy z-axis for K > 0 and easy

xy-plane for K < 0. For K = 0.1 meV, magnetic moments align themselves

parallel to the z-axis, while the orientation of each moment (up or down)

is random, as shown in Fig.6.17a. When K = −0.1 meV, the ring exhibits

an in-plane magnetization. Similarly to the previous case the orientation of

each moment in the plane is random, as evidenced in Fig.6.17b. In the purely

antiferromagnetic case, that is K = 0 and D = 0, di�erences appear when con-

sidering rings with odd and even numbers of sites, for example N = 100 and

N = 101. For even N and with no anisotropy and dipolar interaction involved,

a perfect antiferromagnetic ordering has been found as shown in Fig.6.18(a).

When an additional particle is included, N = 101, a knot soliton appears due

to geometrical frustration, as shown in Fig. 6.19(a). Hence, the local energy

minima described in Fig. 6.17 do not survive in the Monte Carlo simulations,

because their life-times are too short and the energy barriers can be easily

overcome. Once the role of every contribution to the energy has been analyzed

separately, S. Castillo-Sepúlveda, R. A. Escobar, and D. Altbir considered all

of them together, that is, D = 1, J = −40 meV, and K = ±0.4 meV. For the



6.2. CLOSED SPIN CHAINS: NON-COLLINEAR METASTABLE STATES 85

Figure 6.17: Reprinted by permission from APS physics. Equilibrium MC

con�guration of a chain consisting of 50 moments for D = 0, J = 0 meV and

(a) K = 0.4 meV, (b) K = −0.4 meV.

sake of generality the chain length has been varied between 10 and 110 sites.

Very short chains do not show any particularly surprising results. One �nds

a perfect AFM alignment for even N , while Möbius con�gurations for odd N .

Depending on the direction of the easy axis two di�erent orientations of KS can

be found as shown in Figs. 6.19 and 6.20. These two di�erent types of KS are

labeled KN and KB due to the similarity they showed to Néel (see Fig. 6.19)

and Bloch walls (see Fig. 6.20), respectively. For K = 0, both types of con-

�gurations, KB and KN, can be observed. The longer chains with anisotropy,

however, show AFSS as equilibrium states for even N . S. Castillo-Sepúlveda,

R. A. Escobar, and D. Altbir also observed a relation between the number of

knots, number of sites, and anisotropy. For an odd number of sites all rings

exhibit knots due to geometrical frustration. Most interestingly, however, they

found the Möbius-like structure also in antiferromagnetic rings with an even

number of e�ective moments. When they considered an even number of sites,

they saw that larger values of K are needed to observe knots at a lower num-

ber of sites. For example, for vanishing K, 100 sites are needed in the ring to

observe a �rst knot, while 80 sites are needed if K = ±0.01J , and 40 sites are

needed for K = ±0.1J . This means that the local energy minimum becomes

signi�cantly populated only at large N . MC simulations have been performed

to �nd the statistical averages by exploring the energy landscape. So, ideally
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Figure 6.18: Reprinted by permission from APS physics. Equilibrium MC

con�guration of a chain consisting of 100 moments for D = 0, K = 0 meV,

J = −40 meV: (a) closed AFM con�guration and (b) the same shown with

open ends for clarity.

Figure 6.19: Reprinted by permission from APS physics. Equilibrium MC

con�guration of a chain consisting of 100 moments for D = 1, K = −0.4 meV,

J = −40 meV: (a) closed KN con�guration and (b) the same shown with open

ends for clarity.

at the end of the simulation the averaging over the in�nitely long time should

result in the exact expectation values for the observables. At low temperatures

and for large systems, however, the time scale of simulations is much smaller

than the correlation times as S. Castillo-Sepúlveda, R. A. Escobar, and D. Al-

tbir have shown recently [71]. For the reason of insu�cient averaging and long

lifetimes of the excited states the deepest local minima with the lowest number

of knots can be observed in the MC simulations. A typical MC relaxation of a

KB state is shown in Fig. 6.21. Monte Carlo steps do not correspond to real

time steps and, hence, do not provide us with reliable information on the non-

equilibrium dynamics or the real relaxation time. However, it is important to

note that the lifetimes of the metastable non-collinear states described in this

paper might be �nite and, hence, lowest KB or KN con�gurations might be
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Figure 6.20: Reprinted by permission from APS physics. Equilibrium MC

con�guration of a chain consisting of 100 moments for D = 1, K = 0.4 meV

,J = −40 meV: (a) closed KB con�guration and (b) the same shown with open

ends for clarity.

detected experimentally. The investigation of the non-equilibrium dynamics

of these metastable spin helices, therefore, would be of great interest. Because

the strong anisotropy makes the local minima deeper, the non-collinear states

are more easily found for higher anisotropy values. This nicely corresponds to

the analytical considerations made above.

6.2.6 Conclusion

To conclude, in this paper we show analytically that closed chains coupled by

antiferromagnetic exchange and subject to perpendicular magnetic anisotropy

possess local energy minima corresponding to non-collinear topological spin

spirals. Analytical analysis of the free energy at �nite temperatures for chains

with dominating anisotropy has shown that anisotropy increases the depth of

the local energy minima. This makes the non-collinear con�gurations partic-

ularly stable for such chains (|K| � |J |). The large depth of the local energy

minima results, in turn, in the increase of the activation energy needed for

the relaxation towards the global energy minimum (collinear antiferromag-

netic con�guration). As the lifetimes of magnetic con�gurations exponentially

depend on the activation energy ∆E (τ ∝ exp[∆E/kBT ]) the lifetimes of the

non-collinear con�gurations strongly increase with increasing anisotropy and

decreasing temperature. Another important e�ect concerned with magnetic

anisotropy is that with increasing anisotropy the extended spin spirals become
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Figure 6.21: Reprinted by permission from APS physics. Typical MC relax-

ation of a chain consisting of 50 moments with D = 1, K = 0.4 meV, J = −40

meV at T = 0.0001K. The inset shows the fast part of the relaxation process.

In this case, the magnetic con�guration corresponds to the KB con�guration.

energetically less favourable than localized kink solitons. Depending on the

sign of the anisotropy constant two con�gurations for the kink soliton are possi-

ble: forK > 0, a Bloch-like KB soliton is stabilized, while forK < 0 a Néel-like

KN soliton appears. A similar e�ect is observed when the dipolar interaction is

introduced into the Hamiltonian: �rst, the dipolar interaction makes the local

minima deeper because it induces magnetic anisotropy and, second, it might

lead to a transformation of the spin spirals to kink solitons. The number of

the local energy minima increases with the number of magnetic moments, be-

cause the angle between neighboring magnetic moments for a con�guration

corresponding to an energy minimum in a spiral equals ∆θ = 2πm/(N − 1).

In a kink soliton this relation is more complicated but the tendency is similar.

Therefore, increase of the chain length and the anisotropy leads to a com-

plicated energy landscape with multiple local energy minima. Some of these

minima are very deep and the lifetimes of corresponding states are large. For

that reason the deepest local energy minima become populated also in the

Monte Carlo simulations in long closed structures. Particularly interesting is

the Möbius antiferromagnetic con�gurations with an even number of sites in

closed chains. While the existence of such a con�guration in chains with an

odd number of sites has been reported, a similar con�guration in chains with

an even number of sites was unknown up to now. The non-collinear states can
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be found in closed geometry of any shape. Although both methods, analytical

calculations and numerical simulations, have been performed independently,

they lead to consistent results and allowed us to validate the conclusions from

di�erent points of view.
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Chapter 7

Summary

In the chapter "Quantum revivals and magnetization tunneling in e�ective

spin systems" we analysed the correlation between the spin precession (quan-

tum revival) and the magnetization tunneling. Particular attention has been

given to the non-linear character of the uniaxial anisotropy, which leads to non-

harmonic dynamics, when combined with a linear energy term in the Hamil-

tonian. Our analytical and numerical studies of the quantum dynamics of

e�ective quantum spins have revealed that the quantum revival of expectation

values and the total wave-function is identical for integer spin values, but very

di�erent for half-integer spins. It has been concluded that the quantum revival

time (QRT) doesn't depend on the spin number but only on the spin statistics

(integer or half-integer). According to the derived analytical expressions the

expectation value revival time (EVRT) is shortest for integer �eld-anisotropy

ratios. As the �eld can easily be tuned experimentally, and time-dependent

measurements have become available in the last years, we hope that this �nd-

ing will permit a highly precise measurement of magnetic anisotropies. An

applied transverse �eld promotes the magnetization tunneling and it is shown

that the EVRT is correlated with the magnetization tunneling.

In chapter "Perturbative calculations of quantum spin tunneling in e�ective

spin systems with a transversal magnetic �eld and transversal anisotropy" the

tunneling behaviour of any e�ective two-level system has been investigated

with the aid of the time-dependent perturbation calculation. We derived an

energy splitting formula of the ground doublet by using a perturbative ap-

proach with two perturbations for a Hamiltonian which contains a uniaxial
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anisotropy, a transversal magnetic �eld, and a transversal anisotropy. The for-

mula we derived enabled us to estimate an exact parabolic equation in which

we obtain shared quenching points (∆E = 0) for all integer spins.

In chapter "Magnetisation behaviour of open and closed spin chains" we ob-

tained the following results: For open spin chains we studied the magnetization

behaviour of anti-ferromagnetically exchange-coupled e�ective quantum spins

with the aim of reproducing experimental results that have been lacking a the-

oretical explanation so far. We show that the Landau-Zener scenario is not

able to reproduce magnetizantion curves from the experimental data. We were

able to reproduce the correct behaviour of the edge spins but not of the inner

spins of the chains. Our studies on the external magnetic �eld Bz dependence

of the magnetic moments µs(Bz(t)) of the edge spins show good agreement

with the experimental data and provide a possible explanation for this phe-

nomenon.

For closed spin chains we show analytically that such chains coupled by an-

tiferromagnetic exchange and subject to perpendicular magnetic anisotropy

possess local energy minima corresponding to non-collinear topological spin

spirals. Analytical analysis of the free energy at �nite temperatures for chains

with dominating anisotropy has shown that anisotropy increases the depth of

the local energy minima. This makes the non-collinear con�gurations partic-

ularly stable for such chains (|K| � |J |). Another important e�ect concerned

with magnetic anisotropy is that with increasing anisotropy the extended spin

spirals become energetically less favourable than localized kink solitons. De-

pending on the sign of the anisotropy constant two con�gurations for the kink

soliton are possible: for K > 0, a Bloch-like KB soliton is stabilized, while

for K < 0 a Nel-like KN soliton appears. When the dipolar interaction is in-

troduced into the Hamiltonian then: the local energy minima become deeper

because it induces magnetic anisotropy. Furthermore, it might lead to a trans-

formation of the spin spirals to kink solitons. Particularly interesting is the

Möbius antiferromagnetic con�guration with an even number of sites in closed

chains. While the existence of such a con�guration in chains with an odd

number of sites has been reported, a similar con�guration in chains with an

even number of sites was unknown up to now.
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