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Abstract

Rationale refers to the reasoning and justification behind human decisions, opin-
ions, and beliefs. In software engineering, rationale is important for capturing
and documenting requirements and design decisions and consequently organiz-
ing and reusing knowledge in software organizations. While rationale knowledge
typically originates from professional stakeholders involved in a software project
(e.g., business analysts, developers, managers), nowadays there is a potential in
augmenting this knowledge with the rationale of users, posted e.g., in app stores
or social media. User feedback contains a significant amount of knowledge in-
cluding rationale that we can mine and use for software engineering purposes.
Unfortunately, studying and mining rationale from user feedback for software
engineering has been so far deficiently researched.
This thesis empirically studies rationale written by end users in online reviews

using grounded theory approach and peer content analysis. We studied users
reasoning and justification, for example how users explain their decisions, e.g.
on upgrading, installing, or switching the application. We also studied the
characteristics and frequency distribution of the identified rationale concepts,
such as issues encountered, alternatives considered, or criteria for assessment.
We found that criteria such as performance, compatibility, and usability, which
play an important role during requirements analysis, system design, and project
management activities, represent the most frequent user rationale concept. We
also found that users express and justify their stances by criteria assessments.
Using a manually labeled dataset of software reviews we studied how accu-

rately we can automatically mine rationale concepts from reviews using super-
vised machine learning and identified potentials and challenges. We also studied
whether we can augment an industrial criteria dataset with our user rationale
dataset to improve classification accuracy of non-functional requirements, by
handling class imbalances and by enlarging the industrial dataset. We also used
a dataset of pro and contra user comments on controversial issues to assess topic-
independent lexical features and significance of comment’s parts (e.g., sentence
position) for stance mining. We found classification and data insights for stance
miners and discuss their potential for software engineering.



Inspired from our studies and empirical findings, we introduce and discuss
the Rationalytics framework and two prototypes as a proof of concept for
rationale and stance mining tools for software engineering projects.



Zusammenfassung

Begründungen werden dazu verwendet um menschliche Entscheidungen, Mei-
nungen und Überzeugungen zu rechtfertigen. In der Softwareentwicklung sind
Begründungen wichtig, um Anforderungen und Designentscheidungen zu er-
fassen und zu dokumentieren, und das folglich entstandene Wissen in Software-
organisationen zu organisieren und wiederzuverwenden. Während Begründun-
genswissen hauptsächlich von professionellen Stakeholdern stammen, die an
einem Softwareprojekt beteiligt sind (z.B. Business-Analysten, Entwickler, Pro-
jektmanager), besteht heutzutage das Potenzial, dieses Wissen durch die Be-
gründungen der Softwarenutzer zu erweitern, die z.B. in App-Stores oder sozialen
Medien veröffentlicht werden. Nutzerfeedback enthält eine erhebliche Menge an
nützlichem Wissen, einschließlich Begründungen, die wir für die Softwareen-
twicklung extrahieren und verwenden können. Das Studium und die Extraktion
von Begründungen aus dem Nutzerfeedback für Softwareentwicklung-Zwecke
wurde bisher jedoch unzureichend erforscht.
Diese Arbeit untersucht empirisch Begründungen von Nutzern in Online-

Bewertungen unter Anwendung des Grounded-Theory Ansatzes und der Peer-
Inhaltsanalsyse. Wir haben Argumentationen und Rechtfertigungen studiert,
beispielsweise wie Nutzer ihre Entscheidungen erklären, über die Aktualisierung,
Installation oder den Wechsel der Anwendung. Außerdem untersuchten wir die
Merkmale und Häufigkeitsverteilung der identifizierten Begründungskonzepte,
z.B. aufgetretene Probleme, berücksichtigte Alternativen oder Bewertungskri-
terien. Wir haben festgestellt, dass Kriterien wie Leistung, Kompatibilität
und Benutzerfreundlichkeit, die bei Anforderungsanalyse, Systemgestaltung und
Projektmanagement-Aktivitäten eine wichtige Rolle spielen, die häufigsten ver-
wendeten Begründungskonzepte darstellen. Wir haben auch festgestellt, dass
Nutzer ihre Positionen durch Kriterienbewertungen ausdrücken und rechtferti-
gen.
Anhand eines manuell beschrifteten Datensatzes von Software-Bewertungen

haben wir untersucht, wie genau wir Begründungskonzepte aus Nutzerbewer-
tungen mit überwachtem maschinellem Lernen automatisch gewinnen können



und Potenziale und Herausforderungen identifiziert. Wir haben auch unter-
sucht, ob wir einen industriellen Kriteriendatensatz mit unserem Nutzerdaten-
satz ergänzen können, um durch Handhabung von Klassenungleichgewichten
und Erweiterung des Datensatzes, die Klassifikationsgenauigkeit von nicht-funk-
tionalen Anforderungen im Kriteriendatensatz zu verbessern. Wir verwende-
ten auch einen Datensatz von Pro-Contra Nutzerkommentaren zu kontroversen
Themen, um themenunabhängige lexikalische Merkmale sowie die Signifikanz
von Kommentarteilen (z.B. Satzpositionen) für automatische Identifikation von
Nutzerpositionen zu evaluiren. Wir fassten unsere Klassifikations- und Datenein-
blicke für die Erkennung von Nutzerpositionen zusammen und diskutieren ihr
Potenzial für Softwareentwicklung.
Inspiriert von unseren Studien und empirischen Ergebnissen, stellen wir das

Rationalytics-Framework vor, sowie zwei Prototypen als Konzeptnachweis
für Werkzeuge zur Extraktion von Nutzerbegründungen und -haltungen für
Softwareentwicklungs-Projekte.
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Chapter 1.

Introduction

This Chapter introduces the problems that motivate this thesis and summarizes
its objectives and its scope. It finally presents the overall thesis outline.

1.1. Problem Statement

Over the past decades, managing requirements and design rationale has been a
major concern in software engineering [1, 2, 3]. We elaborate on the importance
of rationale for requirements and software engineering, the user feedback as a
potential valuable source of rationale, and the need for novel tool support for
supporting critical requirements engineering tasks.

Importance of rationale for software engineering According to MerriamWeb-
ster [4] rationale is “the explanation of controlling principles of opinion, belief,
practice, or phenomena, or an underlying reason”. Rationale management fo-
cuses on capturing and sharing the reasons and justifications behind decisions.
Ideally, rationale should be captured in requirements and design artifacts to
document why certain project decisions were taken [5]. This includes the ques-
tions or issues encountered by designers and analysts, the alternatives explored
to solve the issues, and the criteria to evaluate the alternatives [6]. Rationale is
also often found in informal artifacts such as team conversations or sketches [7].
Capturing requirements and design rationale is crucial, especially for large-

scale development efforts [8, 9]. However, recording such decisions and their
rationale is a time consuming and expensive task [10]. One reason is the diffi-
culty of producing rationale as well as the differing perceptions of their value.
It is therefore not surprising that capturing of design rationale and its use have
still not made a significant transition from research to practice [11].

User feedback - a valuable source for rationale? In application distribution
platforms such as Apple’s App Store [12], Google Play [13], or Amazon Software

1



Chapter 1. Introduction

Market [14] users easily find, install, and comment on software applications. As
of June 2016, over 2 million applications are available in the App Store and
Google Play [15, 16], with over 75 billion downloads per month [17]. This
software distribution model is not exclusive to mobile apps anymore. Other
types of software such as desktop apps, plugins, and open source are nowadays
also available via “app stores”. For instance, the Eclipse Marketplace for the
Eclipse Development Environment [18] has over 25 million Plugins, Bundles,
and Products, while the Amazon Software Market has over 300,000 software
products [14]. Specialized user feedback platforms where users can propose,
comment, and vote on ideas are also becoming more popular. One such platform
is UserVoice [19].
The huge communities of registered users on such platforms and the diver-

sity of information available make them a very attractive source of information
for other users, developers, and vendors. In particular, with such an increas-
ing popularity of social media, user forums, and app stores, software vendors
started giving more attention to the input of users when making decisions about
software design, development, and evolution [20, 21]. Studies have shown that
a significant amount of the reviews include valuable information such as bugs
or issues [22], summary of the user experience with certain app features [23],
requests for enhancements [24], and even ideas for new features [25]. However,
app reviews also include much irrelevant and low quality information such as
praise or insults [22]. Beyond download numbers and star-ratings, which are
crucial to succeed in a highly competitive environment [20], user reviews repre-
sent a valuable source of knowledge, both for other users when deciding about
what apps to purchase and for developers and vendors when deciding about
what to build and release next [21].
While several researchers anticipate the trend that users’ voice and data will

have a major impact on how software vendors will decide about product re-
quirements and evolution [21, 26], we see a considerable lack of research focus
on how users argue in their reviews, what decisions and criteria they mention,
or how their debates can be synthesized, e.g., to consider counter-arguments,
different preferences, and technical limitations. This observation led to the main
question behind this work:

Is there a “user rationale” in feedback of users which can be valu-
able for requirements and software engineering and thus should be
captured and managed?

A quick browse through the software reviews on Amazon shows that users
not only share their opinions about software but also report issues (e.g. “there’s

2



1.1. Problem Statement

no driver for my multifunction laser printer/scanne Samsung CLX-3160FN”),
provide insights about the alternatives considered with their evaluation criteria
(e.g. “it does everything norton did and more – without weighting down your
processor speeds”), or describe their conclusive decisions (e.g. “did you know
that Quicken no longer offers phone support? For me that’s a huge negative,
and if I knew that I would not have purchased the product”)
Systematically identifying and managing rationale in users’ input might bring
several benefits.

• Capturing user rationale would make users’ tacit knowledge about prefer-
ences and needs more transparent. This would help software teams align
their decisions (that are influenced on tacit judgment and knowledge [27])
with users preferences and reasoning.

• Presence of rationale and particularly arguments significantly indicate the
usefulness of a user feedback [28, 29], and identifying them can support
filtering of irrelevant feedback or feedback of potentially low value.

• User rationale might reveal the alternatives considered (e.g. other prod-
ucts, configurations, workarounds) and the criteria used to evaluate these
alternatives: a useful knowledge for analysts, designers, and testers to
derive their own decision criteria, arguments, and even new requirements.

• User rationale might improve and extend requirements and design docu-
mentation and improve communication between stakeholders.

Need for novel tool support Users give their feedback on software in several
ways, e.g., by commenting, rating, or tweeting about a software. With the avail-
ability of massive amounts of user feedback it becomes unfeasible to manually
filter and mine it for valuable insights without automated support [21]. In other
words, the need for a better tooling becomes more and more evident.
In our study on the information needs of practitioners (N=307) in require-

ments engineering tasks such as requirements definition, understanding, eval-
uation, negotiation, and planning [30], we identified a significant gap between
the importance of the needed information and corresponding experienced level
of tool support. Figure 1.1 depicts an example result of this study – it shows
the relationship between needed information in a task and the experienced level
of support by existing requirements engineering tools. We identified a high gap
between the information needs and tool support for the tasks studied. The
study emphasizes the limitations of current approaches, particularly that tool
support for complex requirements engineering scenarios such as requirements

3



Chapter 1. Introduction

Figure 1.1.: Summary of respondent’s (N=307) assessments for information
needs and corresponding tool support ordered by the ratios of pos-
itive assessments. (Source: Maalej et al. [30])
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negotiation and planning was assessed by practitioners of RE tasks to be the
worst, compared to other studied RE scenarios. Rationale and particularly
arguments play an important role during requirements negotiation
and prioritization [3, 31, 32].

A Gartner report “Market Guide for Software Requirements Definition and
Management Solutions” from 2014, Gartner calls for requirements engineering
tools that focus on collaboration support and time-to-market. For example,
Seyff et al. [33] showed that popular social network sites such as Facebook or
Twitter can support practitioners to overcome the lack of collaboration sup-
port in traditional requirements engineering approaches. Also, research funding
institutions on software technologies centrally call for novel requirements engi-
neering approaches, big data analytics on user feedback, algorithms and
techniques for extracting knowledge from existing artifacts, and related
measures to increase software quality 1. Current tools lack the functionalities
supporting the close integration of large user communities in software
decision processes, for example, in release planning [21].

Many existing data analysis tools require (manually) labeled data to enable
application of sophisticated data analytics techniques. This manual processing
step is necessarily, due to the many challenges associated with natural language
processing (NLP). NLP is a hard problem because of the inherent ambiguity
and context-sensitive meaning of the natural language.

1http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/ict-
10-2016.html, accessed Nov. 2017

4



1.2. Thesis Objectives & Contribution

However, it is challenging to deal with the massive and heterogeneous amount
of user comments in a robust and scalable way [34]. Another challenge is the
lack of labeled data, that particularly supervised machine learning approaches
require. The task of labeling natural language text has been shown to be la-
borious and difficult, even for humans, due to the informal and complex nature
of the natural language, imperfect label definitions, as well as the differences in
perceptions of human coders.
We summarize the key points that motivate this thesis:

• Rationale plays an important role during the whole software lifecycle [6],
for example, during requirements analysis (e.g., requirements negotiation
and prioritization) and software design, but better tool support is needed.

• User provide a lot of feedback in unstructured way that includes infor-
mative content. User feedback is thus a potentially valuable resource for
studying rationale of users. One way of structuring user feedback is ac-
cording to the rationales it contains.

• The need for novel tool support is evident. Approaches that mine rationale
automatically from user feedback might contribute towards such a tool.

Based on this motivation, we formulate the following hypothesis:

User feedback contains a significant amount of knowledge including
rationale that we can mine and use for software and requirements
engineering.

1.2. Thesis Objectives & Contribution

The goal of the thesis is to qualitatively and quantitatively study user ra-
tionale in software reviews and investigate means for automated rationale
mining. We summarize contributions of the thesis in the following paragraphs:

Study of user rationale We introduce a novel, data-grounded rationale per-
spective of users for software engineering named user rationale. We studied
how users denote rationale in online reviews and which concepts they include.
Using content analysis, we developed a manually annotated dataset of user ra-
tionale from software reviews and studied the frequency distribution and collo-
cation of the various concepts identified. Study results show that user feedback
is rich of rationale information, provide evidence of their co-occurrences and
co-dependencies, and point out their individual importances by frequency and
meaning.
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Chapter 1. Introduction

Automated mining of user rationale We assessed automated mining ap-
proaches to identify user rationale concepts on the comment and sentence level.
We leverage lexical, syntactical, sentiments, and meta-data features to assess
how accurately we can extract rational concepts from user feedback. We com-
pared simple classifier configurations with only word-features and classifier con-
figurations employing different feature types and assessed most informative clas-
sification features. Our experiments showed, that user rationale can be mined
from reviews with promising accuracy reaching F1 scores up to . Capturing user
rationale through automated mining enables their effective use, allowing the in-
corporation of the rationale perspective of users into the system requirements
and design processes.

Automated mining of criteria and handling class imbalances We studied
how the labeled dataset of user rationale can augment an industrial criteria
dataset to a) handle class imbalances and b) improve the classification accuracy
of criteria classifier on that dataset from industry. Mining criteria such as non-
functional requirements can support their early identification and consideration
during software development. Our experiments on mining criteria showed, that
industrial datasets of criteria can be augmented with criteria mined from user
comments to handle class imbalances. This might improve the completeness of
industrial criteria datasets (e.g., by identifying missing non-functional require-
ments), provide data-grounded evidence of their importance, as well as improve
the applicability of machine learning approaches for their automatic mining.

Automated stance mining We studied lexical stance indicators and which
parts of comment contribute most towards an improved classification accuracy.
For this we used a dataset of pro and contra user comments on controversial
issues from diverse topics. We also assessed how well we can predict the stance
orientation of user comments using lexical, sentimental, and contextual classi-
fication features. With our experiments we revealed informative lexical, topic-
agnostic, features, that can contribute towards the development of more gener-
alizable stance miners. We also found differences of comment parts regarding
their contributions towards classification performance. The finding highlights
the potential trade-offs between the amount of text to process and classification
accuracy.

Rationalytics framework & prototypes We developed the Rationalytics

framework to support the development of rationale and stance mining approaches
for user feedback. We developed two prototypes using the framework as a proof

6



1.3. Thesis Scope

of concept, each targeting a different kind of user comments: a prototype for
mining user rationale from user feedback on software, and a stance miner focus-
ing on identifying pro and contra orientation of user comments on controversial
issues. The prototypes demonstrate the applicability of the Rationalytics

framework for the aimed purpose.

1.3. Thesis Scope

Type of data This thesis focuses on user comments on software and contro-
versial issues. It does not focus on studying text written by professionals (e.g.,
developers), such as articles describing a software or other text artifacts (e.g.,
requirements analysis documents).

Thematic focus We do not study rationale and particular arguments or ar-
gumentative units using an rationale or argumentation schema. Rather than
focusing on rationale capturing as presupposed by formal models [35], this thesis
takes a different and complementary approach to capturing rationale as it occurs
in online reviews. We developed the rationale concepts based on a bottom up
grounded approach and evidence in data. Our software engineering perspective
on rationale might differ to other domain perspectives, such as market research
or communication science.

Mining techniques This thesis describes applied supervised machine learning
techniques, that require a labeled dataset (i.e., truthset) for their training, that
were used for the development of the presented mining approaches. We did not
assess unsupervised techniques, such as nearest-neighbor classifier or unsuper-
vised neural networks.

1.4. Thesis Outline

This thesis is structured as follows. Chapter 2 introduces the foundations of
rationale and rationale management in software engineering, automated mining
techniques for feedback analytics, and their potentials and challenges. Chapter
3 reports the results of our grounded theory study of user rationale conducted
using a dataset of software reviews and manual content analysis that resulted
in a peer-coded dataset of user rationale. It also reports the results of a follow
up qualitative study of the peer-coded dataset. The quantitative study of user
rationale is described in Chapter 4, that includes the frequency distribution of
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the various identified rationale concepts. Chapter 5 presents classification ex-
periments on automatically mining user rationale from software reviews using
supervised machine learning, and compares and discusses the performance of
various classifier configurations. Chapter 6 presents classification experiments
on automatically mining criteria from an industrial dataset, and whether and
how this dataset can be augmented by the user rationale dataset of software re-
views, for an improved classification accuracy. Chapter 7 reports classification
experiments on stance mining using a dataset of pro and contra comments on
controversial issues, including the assessment of various types of classification
features, their importances, and which parts of a comment contribute most, for
an improved pro and contra classification performance. We substantiate the
study findings from the classification experiments and present the Rationalytics
framework in Chapter 8 and two implemented prototypes using the framework
in Chapter 9 as its proof of concept. In Chapter 10 we discuss coding and classi-
fication challenges, scenarios and mockups on the applicability of the presented
approach, and limitations and threats to validity. Finally, Chapter 11 concludes
the thesis by summarizing the contributions and future work.
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Chapter 2.

Foundation & Related Work

While design rationale is in focus of software engineering for decades, argumen-
tation and rationale mining are rather recent research endeavor with the goal
to mine rationale elements such as arguments from text automatically [36, 37].
Software engineering researchers have only recently started to mine rationale
information from text documents, however focusing mainly on artifacts created
by software practitioners. There are barely studies that focus on studying and
mining rationales for software engineering from user feedback.
This dissertation focuses on studying and mining rationale information of

users as found in user feedback. Its goal is to support decision making about
software by leveraging rationales of its users.
In this Chapter we discuss relevant literature in several research areas1. Sec-

tion 2.1 summarizes works on rationale and rationale management as well as
recent works on mining rationale from text. Section 2.2 summarizes relevant
works of opinion and argumentation mining, related work on stance mining,
and related work on mining criteria. Section 2.3 summarizes relevant work on
feedback analytics including example of feedback analytics approaches in prac-
tice. Finally, Section 2.4 summarizes and concludes the Chapter.

2.1. Rationale and Rationale Management

Research on rationale, and particularly design rationale in requirements and
software engineering has been in focus for decades. Design Rationale is based
on the work of Kunz and Rittel [41] from 1970, which initially proposed an
information system meant to support decisions in collaborative processes that
strive to solve wicked problems, such as political or planing processes. Design
rationale focuses on capturing the decisions made during the design process

1To obtain relevant publications, we utilized online search services of computer science digital
libraries, such as ACM [38] and IEEE [39]. We also employed meta-search services for
academic publications, such as Google Scholar [40].

11



Chapter 2. Foundation & Related Work

and the reasons why those decisions were made [1]. Rationale is considered
as a fundamental element of software architecture knowledge [42, 43, 44]. The
design deliberation process can be seen as the discussion and resolution of issues
in order to satisfy the requirements [8]. Rationale is perceived important not
only by researchers but also by software practitioners [43, 45, 46].

Dutoit et al. [9] distinguish between four types of knowledge required for soft-
ware engineering, that are characterized by two scopes of its use (project sys-
tem/process knowledge, and organizational system/process knowledge). While
these types of knowledge cover the project and organizational view on the system
and the process level (the what), the rationale knowledge provides explanation
of the decision making elements that results to these knowledge types (the why)
[9]. Rationales can also be used by computational services, such as information
retrieval, decision support, dependency management, and services for communi-
cation support (e.g., interactive simulation) [47]. Effective documentation and
use of design rationale is challenged by its suitable rationale representations,
adequate tool support and integration, and its reusability [48].

Bruegge and Dutoit et al. [6] discuss rationale mainly from the software de-
signer’s perspective. They describe the activities of creating, maintaining, and
accessing rationale models, and the issues on managing rationale with focus on
decision support and negotiation. Regli et al. [49] conducted a survey of re-
search in the area of design rationale. They summarize fundamentally different
approaches for representation, capture, and retrieving rationale.

Burge et al. [50] describe the capture and use of design rationale in software
engineering with the aim to improve the quality of software. They further
discuss how rationale can be used for decision making throughout the software
life cycle.

Dutoit et al. [9] give an overview of design rationale and current state of
the art of rationale management approaches. They distinguish between several
rationale management tasks on the strategic and operational level. On the
strategic level, a rationale management process includes tasks related to the
identification of rationale goals, change support, and rationale management. On
the operational level, a rationale management process includes tasks related to
the rationale -identification, -acquisition, -development, -distribution, -use, and
-preservation. However, lack of process standards and adequate tool support
has been shown to hinder the adoption of rationale capturing in practice [11,
45, 46].

Some of the issues with current rationale management approaches are, what
services to provide, what parts of the rationale to represent explicitly, how to

12



2.1. Rationale and Rationale Management

represent, produce, and access rationales and manage them cost effectively, and
how to integrate a design rationale system [51]. Also, their adoption in software
industry is not trivial and have been hindered by several obstacles [6, 9].

Conclusion 1

Rationale plays an important role for requirements and software engineering.
Its value is stressed by both researchers and practitioners. Design rationale
encompasses any design decision elements that contribute towards software
knowledge by explaining past design decisions. Rationale knowledge is a
fundamental element of the software knowledge that needs to be effectively
captured and managed.

2.1.1. Rationale representation

In the past, different representation forms have been proposed for rationale rep-
resentation, ranging from informal to formal [51, 52]. Examples of informal
representation formats are audio, video, text documents, or conventional pa-
per. In semi-formal methods the rationales are partly processed by a computer,
partly by a human with computer assistance. Formal methods define a for-
malism for capturing rationales, enabling computers to process and interpret
them [47]. They can also support the automatic identification of inconsistencies
among design actions. However, formal methods and even semi-formal repre-
sentations are hardly understood by users [53] and might be unavailable for a
domain. It is important to carefully choose the representation schema for ra-
tionale representation since it determines the methods to capture and retrieve
rationale [49].

Position ArgumentIssue addresses
supports/
refutes

Figure 2.1.: Simplified UML diagram of the IBIS model.

Among the prominent design rationale models are the IBIS [54] (and its vari-
ants, such as gIBIS [55]), DRL [56], and the QOC [57] model. IBIS stands
for Issue-Based Information System and is composed of 3 components: issues,
positions, and arguments - as depicted in the UML diagram in Figure 2.1. In
IBIS, issues represent the design questions, positions represent answers to de-
sign questions, while arguments support or refute the positions. DRL stands
for Decision Representation Language. The model is composed of the compo-
nents: issue, alternative, goal, and claim. The component issue represents the
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problems addressed, alternative represents the available options to choose from,
while goal represents properties used to evaluate the alternatives. QOC stands
for Questions, Options, and Criteria, and is a model similar to IBIS, where ques-
tions represent the design questions, options the various alternative answers to
design questions, and criteria the means for weighting the various options.

Conclusion 2

Different representation schemas for design rationale have been proposed in
the past decades. The many existing rationale models and their variants
highlight the challenge in reasonably defining the compositional elements of
design rationale.

2.1.2. Rationale capture and retrieval

Beside determining what information to capture, and which representation schema
to use, choosing an appropriate method to capture and retrieve rationale is a
fundamental problem [49, 51]. Regli et al. [49] classified the design capture
process as a two-step process, where the first step is knowledge recording and
the second step design rationale construction. During the knowledge recording,
as much information as possible during a design process is recorded, while in
the second step (i.e., design rationale construction) the rationales are extracted,
organized, and stored using a representation schema.
Lee [51] discusses design rationale from the human-computer interaction per-

spective. He particularly discusses issues identified from design rationale sys-
tems and workshop discussions on that topic. He elaborates on different methods
to capture design rationale models [51]. The record-and-replay method aims at
capturing the rationales as they occur, e.g., in a telephone conference, email or
forum discussion. The reconstruction method aims at reconstructing rationales
from raw data, such as audio or video, into a more structured form [58]. While
this enables succeeding steps to leverage design rationale more systematically
(e.g., in rationale management systems), its application can be costly and biased
by the person involved in producing the rationales. The methodological byprod-
uct method aims at capturing rationales during a schema-driven design. Such
a design strongly depends on the effectiveness of the applied schema. How-
ever, to develop or choose such a schema is not a trivial task. The method
apprentices captures design rationales through questions triggered by disagree-
ments with or unclear designer’s action, while the method historian aims to
capture the rationales by observing or logging of the designer’s actions with-
out interruptions. Finally, the automated generation method extracts rationales
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automatically from system’s execution history or software artifacts. Automati-
cally generating rationales from system’s history might have high initial costs to
provide the system with the needed knowledge, for example, in order to compile
a rich execution history. As a return the system might be able to continuously
generate the rationales and keep them up-to-date [51].

Automated mining of rationale from software artifacts has become a recent
focus of software engineering researchers, that aim to automatically capture
rationales from text documents. Such approaches have the potential to signifi-
cantly reduce the costs associated with rationale capture and retrieval and thus
improve user involvement. Massive amount of user feedback available online
emphasize the importance of this method, for example, in order to support prac-
titioners in identifying and prioritizing emerging software issues quickly (e.g.,
based on frequency).

The collected rationale knowledge can be retrieved during different phases of
software development for different purposes [49, 51, 59]. One such purpose, to
retrieve a collected rationale information might be, for example, to understand
the logical reasoning about a past design decision or to review the past design
process. For this scenario different retrieval strategies have been proposed that
can be clustered as retrieval techniques for active and passive retrieval [49]. A
retrieval technique is considered to support active retrieval, where the designer
can use this technique to find a specific rationale information, while in the
passive retrieval case, a design rationale system pro-actively triggers a rationale
retrieval depending on the design context [8, 49]. Such systems are also called
context-dependent recommender systems [60].

The challenges associated with approaches to capture, retrieve, and manage
design rationale are related to their effectiveness in supporting a design process,
the right level of formalization, their adoption in practice, and their integration
into existing design processes [1, 61].

Conclusion 3

Capturing and retrieving design rationale are fundamental challenges for an
effective use of design rationale in practice. Promising techniques to capture
rationale from text are automated mining approaches, that have a strong po-
tential in reducing the manual workload for rationale extraction from existing
text documents and user comments. Their adoption in practice has been hin-
dered so far due to the complexity of the underlying rationale models (e.g.,
high degree of formalism), lack of process standards, and missing adequate
tool support.
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2.1.3. Rationale mining

Recently, researchers and tool vendors started suggesting approaches to auto-
matically analyze, filter, and synthesize software artifacts into actionable ad-
vices for developers. They also started to propose approaches to automatically
mine rationale information from existing documentation [37]. In contrast
to argumentation mining (introduced in the next Section), which is a multi-
disciplinary research area that focuses on mining arguments and its integrative
components from natural text, often using formal argumentation schemes [36],
researchers mining rationale for software engineering use existing, self-developed,
or adapted rationale models of different notations and definitions [62], that be-
side arguments of plain definition (compared to argumentation mining), also
include other related rationale concepts, such as options or decisions.

Liang et al. [63] propose a mining approach based on an issue, solution, and
artifact layer-based design rationale modeling. Their approach focuses on au-
tomatically learning design rationale from patent documents. Lopez et al. [64]
present an approach to extract rationale from text documents using patterns
and ontology-based rationale representation with a human-in-the-loop for vali-
dation. They argue that the latter is key to ensure information quality because
of the required domain knowledge and the complexity of integrating it into the
approach. Other researchers have targeted mining rationale from developer ar-
tifacts for software engineering. Liang et al. [63] used their own rationale models
(introduced in [65]) for rationale representation and developed an approach to
identify the relevant rationale elements from design documentation. They eval-
uated the performance and scalability of the algorithms proposed using patents
data to illustrate its application prospects. Rogers et al. [37, 62, 66] compared
text mining and text parsing techniques in order to automatically mine rationale
from bug reports, studied which types of documents contain rationale informa-
tion, and assessed the potentials of various classification features for rationale
mining, targeting a self-defined set of rationale elements. They reported chal-
lenges during manual content analysis and classification, and pointed out the
usefulness of the classifiers on reducing the manual workload. Alkadhi et al.
[67] present an exploratory study examining the frequency of rationale in chat
messages of developers, the completeness of the available rationale and the po-
tential of automatic techniques for rationale extraction. For this, they adapted
the rationale model of Bruegge et al. [6] for the manual coding of the research
data in order to evaluate their automated rationale mining approach.
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Conclusion 4

The current works on automated rationale mining for software engineering
focus mainly on software artifacts. The focus on understanding and leveraging
rationale of users for software engineering and automatically mining it from
user feedback is deficiently researched.

2.2. Argumentation Mining

The increasing availability of user-generated data that includes a vast amount
of crowd-knowledge, and the larger and more effective computational resources
and tools available, shifted the focus of many software engineering researchers
and researchers of other fields towards developing and using mining approaches
to extract insightful and actionable information types from user comments.

2.2.1. Opinion & argumentation mining

Opinion mining [68] denotes a set of computational techniques for extracting,
classifying, understanding, and assessing the opinions expressed in various on-
line news sources, social media comments, and other user-generated content [69].
In order to mine opinion from text, sentiment analysis is used to identify the
polarity of a text, i.e., its positive or negative orientation as well as subjectiv-
ity, i.e. the presence or absence of opinions or other emotional states [69, 70].
Sentiment analysis in a computational sense rose to prominence within compu-
tational linguistics in the early 2000s [70]. Opinion mining has been applied in
requirements and software engineering [71], and almost in every business and
social domain [72].
Argumentation mining is a relatively new research field that involves automat-

ically identifying argumentative structures within a document, e.g. the premises,
conclusion, and whole arguments, as well as relationships between arguments
[36, 73]. An argument is a set of one or more premises and one conclusion, where
the premises act as reasons or support for the conclusion of an argument. Argu-
mentation is “the act or process of forming reasons and of drawing conclusions
and applying them to a case in discussion” [4]. Argumentation mining has the
potential of many interesting and useful applications [74]. It requires interdis-
ciplinary approaches that use Natural Language Processing (NLP) technologies
as well as theories of semantics, discourse [68], or argumentation theory [75].
Defining what counts as argumentation and what does not with regard to em-
pirical data (in addition to modeling different modes of argumentation reliably)
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has proven to be challenging [35, 76].

Lippi & Torroni [36] describe problems that argumentation mining tackles
in five orthogonal dimensions: granularity of input, genre of input, argument
model, granularity of target, and goal of analysis. The input text can be pro-
cessed on different levels of granularity, such as sentence or text-portions at
the paragraph level. Data can be of different types, such as legal, news, issue
tracker, etc. The target of an argumentation mining approach can be only one
argumentation component, such as the claim, or the whole argument. Examples
of goals of an argumentation mining approach can be classification of arguments
or its parts or relation prediction (e.g. stances). The most prominent among
the various argumentation models to capture argumentation structures is the
premise-claim model.

Palau et al. [73] proposed an argumentation mining approach to automat-
ically detect premises and conclusions in legal texts. They employ n-grams,
keywords, as well as linguistic features and metadata and report an F1-Score of
around 70% for recognizing premises and conclusions. Wyner et al. [77] stud-
ied a corpus of comments in an Internet forum about purchasing a camera,
and examined various dialogical activities to examine, e.g. persuasion, nego-
tiation, deliberation, and others. Boltui and Najder [78] studied reasoning in
online discussions. They focused on identifying properties of comment-argument
pairs. They employed different features such as entailment features, semantic
text similarity features, and stance alignment features. Using support vector
machine classifier they achieved a F1-Score between 70% and 80%. Aker et
al. [79] conducted a comparative analysis of the performance of different su-
pervised machine learning methods and feature sets on argument mining tasks.
They focused on the tasks of extracting argumentative segments from texts and
predicting the structure between those segments, and evaluated eight classi-
fiers and different combinations of feature types: structural, lexical, syntactical,
indicative, contextual, word-embeddings features.

While these works have a strong emphasis on conclusiveness and validation
of argumentation, works on rationale mining for software engineering rather
focus on rationale diversity as well as their contexts, with a potential impact for
stakeholders as users, analysts, or developers.
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Conclusion 5

In contrast to argumentation mining that is a young field of research, opinion
mining has been intensively applied by software engineering researchers to
mine insightful and actionable information types from user comments. While
there are some works that leverage contributions from argumentation mining
research for mining rationale from software artifacts, there is a deficiency in
the application of argumentation mining techniques for rationale mining from
user feedback.

2.2.2. Stance mining

Stance mining or stance classification focuses on determining the stance of a
certain text. The stance is described as the disposition towards an idea, ob-
ject, or proposition [80]. One example of stance mining is the identification
of stances in tweets, where tweets are classified as pro and contra towards a
reference topic [81]. When supporting a stance, people not only express their
sentiments, but they also argue about whether something is true or what should
or should not be done [80]. Another example of polarized comments are pro and
contra user comments towards controversial issues (e.g., about the benefits of
vaccination). Debating platforms on controversial issues offer users the ability
to explicitly comment their pro and contra stances. Example debate platforms
are ProCon.org [82] and lasstunsstreiten.de [83].

Sobhani et al. [84] elaborate on detecting stances in tweets. In particular,
they focused on the task to determine whether a tweet is in favor, against, or
neutral towards a target entity (person, organization, movement, policy, etc.).
Misra and Walker [85] empirically studied the rejection or disagreements in
dialogue on controversial issues. Guided by the theoretical works of previous
researchers (e.g., works on theory of politeness [86], and works on negation
[87, 88]) that suggest the existence of topic independent indicators of rejection
(and thus acceptance as its contrasting form), they focused on identifying topic
independent features for agreement and disagreement. They employed a set of
theoretically motivated features in classification experiments and were able to
beat an unfiltered unigram baseline by 6%.

In requirements and design rationale, stances on issues and positions are man-
ifested respectively through alternative positions towards issues or pro and con-
tra arguments towards positions. In the domain of software engineering, stance
mining might allow to highlight contrasting perceptions about application fea-
tures or criteria such as non-functional requirements (e.g., usability vs. privacy).
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Also, stance mining might be employed to guide requirements and design de-
cisions, for example, by externalizing decision criteria and tacit knowledge of
users and explaining to users that there are other perspectives than theirs.

Conclusion 6

Stance mining became a prominent research direction along with argumen-
tation mining. Stance mining techniques have not seen intensive application
in software engineering despite their capabilities. One way to utilize such
techniques is to support of assessment of the different user perceptions on
certain topics, such as app features or software quality criteria.

2.2.3. Criteria mining

Criteria are desirable system properties that a system needs to satisfy. They
are fundamental elements used during requirements analysis, system design, and
project management [6]. Criterion as a concept is one of the most important
rationale concepts [9, 89].
During requirements analysis, criteria are represented by non-functional re-

quirements (e.g., addressed system’s qualities) and constraints (e.g., targeted
operating system)2. They also play an important role in rationale-based sys-
tems for requirements engineering, for instance as decision criteria as part of the
argument ontology [50]. During system design, criteria play an important role
in design rationale for software engineering [1, 57]. In particular, design criteria
are explicitly captured in order to guide design decisions, evaluate and constrain
alternatives, and act as argumentative stances that favor or oppose an option
[1, 3, 6, 7]. During project management, criteria are used to define and manage
goals and trade-offs, such as cost/value trade-offs [6]. In requirements engineer-
ing, criteria are often identified and specified relatively late in the development
process [96, 97] and are barely explicitly managed [98, 99]. This suggests that
developers may fail to appreciate the importance of their assessment and their
early detection [97, 100], and assisting them to identify and manage criteria can
reduce this risk.
The automatic extraction and classification of criteria such as non-functional

requirements from text documents has been the focus of several requirements
engineering researchers. Cleland-Huang et al. [95] presented an approach for
2Requirements are often classified as functional (FR) and non-functional (NFRs) [90, 91].
While there is a broad consensus on the definition of FRs, this is rather not the case for
NFRs [92]. Typically, FRs describe the system functionality, while NFRs describe system
properties and constraints [93, 94]. This distinction has influenced how requirements are
handled in practice during elicitation, documentation, and validation [91, 95].
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retrieving and classifying non-functional requirements from structured and un-
structured documents. The authors first mine weighted indicator terms that
they then use to classify additional requirements. For the non-functional re-
quirements usability, security, operational, and performance they achieve a re-
call between 20% and 90%, and precision between 13% and 73% respectively.
Knauss et al. [101] extracted clarification patterns from software team com-
munication artifacts in the lifetime of a requirement. They employed a Naive
Bayes approach to automatically detect requirements that are not progressing
in a project. Slankas and Williams [99] developed an approach that examines
unstructured documents using automated natural language processing. They
analyzed which document types contain non-functional requirements, assigned
them to categories (e.g. capacity, reliability, and security) and measured how
effectively they can identify and classify non-functional statements within these
documents. For this, they used the Support Vector Machine and Naive Bayes
algorithms.
Software engineering researchers have proposed approaches to mine criteria

from text documents with promising success, however, less focusing on user re-
views. Unlike industrial artifacts created by software practitioners, user reviews
are usually short, unstructured and seldom obey grammar and punctuation rules
[102, 103].

Conclusion 7

Criteria play an important role in requirements and software engineering.
They are crucial for requirements and design rationale and rationale-based
systems. Mining criteria from user feedback can support their early detection,
which is important for a software’s success.

2.3. Feedback Analytics

The importance of user involvement for software engineering has been strongly
emphasized by requirements and software engineerings researchers [22, 104, 105,
106]. A specific level of user involvement is the participation of users during
system development [107]. This level of user involvement can be achieved by
“gathering and understanding user input” [108].

2.3.1. User involvement through feedback analytics

A massive amount of user feedback is found in the app market, a highly compet-
itive environment [20], in which download numbers and star-ratings are crucial
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for an app to succeed. In addition to these metrics, user reviews represent a
valuable source of knowledge, both for other users when deciding about what
apps to purchase and for developers and vendors when deciding about what
to build and release next [103]. Researchers and tool vendors have suggested
approaches to automatically analyze, filter, and synthesize mass user reviews
into actionable advices for users and developers, and hence contribute towards
an improved user involvement.

Researchers have studied popular app stores, including the apps, their de-
scriptions and corresponding user reviews, the characteristics of the app fea-
tures, their inter-dependencies, and relations to fixed (price) and community
metrics (popularity). For instance, Wano and Lio [109] conducted a manual
text analysis and assessed the relationship between the reviews across different
software categories at Apple App Store. They found that review styles differ
depending on the software categories and pointed out biases in reviews. Sarro
et al. [110] conducted a feature life cycle analysis in app stores in order to assess
the differences between trends relating to price, rating, and popularity, with
the aim to reveal undiscovered requirements. McIlroy et al. [111] studied fre-
quently updated apps in the Google play store and found that almost half of the
updated apps they studied did not provide users with any information about
the rationale for the new updates. Mojica Ruiz [112] examined current rating
systems in mobile app stores, and found that store rating is very resilient to
changes in the version rating. Other researchers focused on studying specific
app domains, such as health. One such example is the work of Shen et al. [113],
who studied apps with focus on depression, that were made available to people
who self-identify as having depression. For this task, they extracted app data
from the app descriptions found in the app stores.

Researchers have also focused on developing mining approaches for app re-
views to extract insightful and actionable information. Galvis Carreno and
Winbladh [25], for instance, extracted and visualized word-based topics from
reviews and assigned sentiments to them through an approach that combines
topic modeling and sentiment analysis. Similarly, Chen et al. [114] proposed
the review analytics framework AR-miner, for mining informative app reviews.
AR-miner first filters “noisy and irrelevant” reviews, and then summarizes and
ranks the informative reviews using topic modeling and heuristics from the re-
view metadata. Other researchers mined single app features and user opinions
about them. For example, Harman et al. [115] extracted app features from the
official description pages using collocations and a greedy algorithm. Fu et al.
[116] developed a system that analyzes app reviews on three levels: identifying
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sentiments and their strength on the review level, identifying main causes for
user complaints and their evolution over time on the app level, and discovering
global market trends. Guzman and Maalej [23] applied collocations and sen-
timent analysis to extract app features from the user reviews combined with
an opinion summary about the single features. Villarroel et al. [117] developed
an approach that focuses on supporting requirements prioritization and release
planning based on the feedback of the users. McIlroy et al. [118] studied re-
views from Apple App Store and Google Play Store and found that 30% of
reviews raise various types of issues in a single review and developed an auto-
mated approach to classify reviews with a precision and recall of 66% and 65%
respectively.

In our study “On the Automatic Classification of App Reviews” [103], we de-
veloped a review analytics framework that uses machine learning and natural
language processing techniques to automatically classify the reviews into bug
reports, feature requests, user experience reviews, and uninformative ratings.
As a result of our quantitative study, we derived mockups for an analytics tool
and discussed use cases on how the data collection and processing of the tool
works and how the classification output can be visualized to the tool user in a
user interface. We conducted interviews with multiple practitioners to identify
their needs for a review analytics tool support, focusing on review usefulness, the
identified analytics use cases, feedback on our tool mockups, and tool integra-
tion. We found that the interviewees perceive user feedback as useful, focus on
understanding users needs with the goal to improve the overall user experience,
and express demand for an automatic tool support for extracting information
from reviews.

A recent systematic literature review by Genc-Nayebi and Abran [119] on
mining studies focusing on mobile app stores, distilled two main challenges.
Firstly, the reviews are unstructured and vaguely written and are challenging
to process automatically. This is additionally emphasized by the domain and
context dependency that still needs to be researched. They pointed out, that
the relevance of identified features are still unvalidated with the main software
engineering concepts. Secondly, app reviews can include spam, misleading in-
formation, and reviews that are not informative. Current approaches that focus
on filtering those reviews are still limited and not mature enough.
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Conclusion 8

User involvement is becoming increasingly important. One way to involve
users is by gathering and analyzing users’ input. User feedback on software
contains valuable input for requirements and software engineering and can
help to improve user involvement.

2.3.2. Feedback analytics techniques

Some of the techniques that are used to develop review analytics approaches
come from machine learning and recommender systems research.

Machine learning approaches Machine learning approaches can be distin-
guished in supervised or unsupervised learning approaches. The goal of both
learning techniques is to classify text (e.g., document, paragraph, or sentence)
or numbers (e.g., temperature, noise, or tree length) by assigning a category
from a pre-specified set or a real number [70]. Machine learning approaches
have been used to build individual and group recommender systems.
In contrast to unsupervised techniques, supervised techniques need to be

trained using a labeled dataset before they can be applied. The training set
contains already classified instances that the supervised learning algorithm uses
to infer a classification function. This function is then used to classify unseen
instances. Unsupervised approaches infer their classification function by discov-
ering patterns in unlabeled data. Clustering is one example of such an approach,
which is used for exploring hidden patterns and grouping of data [120]. Unlike
supervised learning approaches that need a manually labeled training set, un-
supervised approaches typically require a larger volume of unlabeled data to be
applicable.
Supervised classification techniques have been widely used in mining user

comments. There are many classification algorithms that can be used for super-
vised classification. We will briefly describe the algorithms Naive Bayes [121]
and Support Vector Classifier (SVC) [122], since they were primarily used in this
thesis for text classification. Naive Bayes assumes that classification features are
independent. Despite this naive assumption it performs quite well compared to
the state-of-the-art classifiers [123]. At the same time, the classification algo-
rithm is computational friendly and robust. SVC classifier algorithm have been
shown to also perform well for text classification tasks [122, 124]. It focuses on
finding a separating hyperplane that maximizes the distance of the closest data
points of the different classes.
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Various features can be used for a supervised classification task. We were
inspired by the related work and employed different types of classification fea-
tures in this thesis: text, metadata, sentiment, and syntax features. Bag of
words and word collocations such as bigrams and trigrams are examples of tex-
tual features. For extraction of text features, word vectors of word frequencies
can be employed, as well as its normalized tf-idf (short for: term frequency -
inverse document frequency) representation [125]. Star rating and text length
are examples of a metadata feature, whereas sentiments capture the positive,
neutral, and negative emotions of a text. Examples of syntax features are: bag
of part of speech (POS) tags, POS tag collocations, and text syntax tree height.
Some of the challenges associated with supervised classification are there gen-

eralizability, tunability, and scalability. A supervised classification approach
that is trained and evaluated using a dataset of user comments from an online
platform A, does not necessarily perform well when applied on a dataset, from
an online platform B, e.g., due to the community bias. Better performance
can be expected when the classification approach is trained and evaluated using
historical data of one platform and then applied on the live data of the same
platform. Typically, tuning a classification approach in order to increase its gen-
eralizability, implies loss in classification accuracy. However tunability is hard
and challenging due to the huge parameter space (e.g., classification model’s
parameters) and hyper-parameters (e.g., classification algorithm’s parameters)
that can be explored. Finally, since data size and quality significantly influence
the classification accuracy, scalability might become challenging, especially in
active learning scenarios [126].

Recommender approaches Systems that significantly rely on machine learn-
ing techniques are recommender systems. Recommender Systems are well known
from online shops such as Amazon [14] or Video Platforms such as Netflix [127]
and have become common in many other domains. Such platforms use different
features, e.g., demographic information, purchase history, or similarity between
users to generate user recommendations.
Two approaches are common when recommending items to users: Content-

based filtering and collaborative filtering [128, 129, 130]. Content-based filtering
approaches utilize a series of discrete characteristics of an item in order to rec-
ommend additional items with similar properties [131]. For instance, if a user
A liked a movie, then it is more likely that user A will like a similar movie
than a randomly chosen movie. Collaborative filtering [128] is perhaps the most
widespread recommendation approach where known similarities between users
are exploited to generate recommendations. For instance, if the users A and B
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like the same product, then it is likely that user A will have the same preference
for another product as B than a randomly chosen person.
Critique-based recommenders leverage user feedback as an additional source

of knowledge to improve recommendations. Such a system typically proposes
users to give feedback in terms of critiques with the aim to improve recommen-
dations [132]. Studies show that frequent information interchange (i.e., recom-
mendations and feedback) can improve the decision quality [132]. Critiquing
support can be differenciated in three major types: natural conversational cri-
tiques, system-suggested critiques, or user-initiated critiques [133]. Systems
supporting conversational critiques ask users to provide feedback on current
recommendations. Systems that pro-actively suggest critiques to the user and
ask the user whether to accept them, use their current knowledge base to infer
such critiques. A user-initiated critiquing system uses examples that are shown
to the user to stimulate users to make self-motivated critiques.

Evaluation metrics and techniques In order to know how a classification ap-
proach performs, how much above or below the envisioned threshold it scores,
and when the model needs to be updated, it is required to conduct a thorough
evaluation.
There are different ways on how to evaluate a machine learning approach.

Sokolova and Lapalme [134] give an systematic overview of performance mea-
sures for classification tasks. One way to evaluate the prediction accuracy of
classifiers is to use the metrics precision, recall, and their harmonic mean known
as the F-Measure (also called F1) [135, 136]. A confusion matrix gives an
overview of the types of errors a classifier can make. Table 2.1 gives an example
of a confusion matrix.

Table 2.1.: Confusion matrix of a binary classifier for class c

Predicted outcome

Actual
outcome

True Positives (TPc) False Positives (FPc)
True Negatives (TNc) False Negatives (FNc)

Precision (Pc) is the fraction of items that are classified correctly to belong
to a class c. Recall Rc is the fraction of items of class c which are classified
correctly. They are calculated as follows:

Precisionc =
TPc

TPc + FPc
Recallc =

TPc

TPc + FNc
(2.1)

TPc is the number of reviews that are classified to rationale concept c and
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actually are of rationale concept c. FPc is the number of review sentences that
are classified as being rationale concept c but actually belong to other rationale
concept c2 where c2 6= c. FNc is the number of review sentences that were
classified to other type c2 where c2 6= c but actually belong to type c. As
already stated, the F-Measure (or F1) is the harmonic mean of precision and
recall providing one single accuracy measure. F1 is calculated as follows:

F1 = 2 · Precisionc ·Recallc
Precisionc +Recallc

(2.2)

One popular technique for evaluating machine learning approaches and ob-
tain a more accurate and robust estimate of real model’s performance is cross-
validation [137]. We describe two variants of this validation technique, namely
K-Fold [138] and Monte-Carlo [139] cross validation.
In K-fold cross validation a dataset is split in equal K folds. In K iterations,

the classifier is trained on data composed of (K-1)-folds and tested against
the one remaining fold. Thus, using K-fold cross-validation, the classifier is
evaluated against K different folds. In Monte-Carlo cross-validation the data is
randomly split into training and testing set using a ratio m:n. The variable m
denotes the size of the training set while n denotes the size of the testing set.
The classifier is evaluated in k iterations using a random training/testing split
with a m:n ratio.
Finally, it might be helpful to visually assess how training size (horizontal

axis) affects classification accuracy (vertical axis). One way to achieve this is
by employing learning curves [140].

Conclusion 9

Feedback analytics approaches use techniques from machine learning and
recommender systems research. Supervised machine learning is a popular
technique that is used in feedback analytics approaches. It requires labeled
data for training and application. Recommender systems make use of ma-
chine learning systems and focus on deriving recommendations from historical
data. A common technique to assess the performance of a machine learning
approach is cross-validation.

2.3.3. Feedback analytics in practice

We can reasonably assume that the popular software stores, such sa Google Play
[13] and Amazon Software store [14], are forerunners regarding the adoption of
state-of-the-art, automated, feedback analytics approaches to guide their busi-
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ness and system design decisions, due to the amount of reviews they have, the
high relevance of the reviews to their business models, as well as their potential
that can help them improve their competitiveness [119, 141, 142, 143].
Some of the research outcomes, including review analytics approaches, have

apparently been already adopted by popular software stores that allow users to
review their products. One example is the improved deliberation support
for users, helping users quickly oversee the current reviews (“Does the app
provide the features I need?”, “How do users like the app features?”, “How do
users perceive the app?”) and help them easier decide on the software (“Should
I install the app?”). We will give few examples of an improved deliberation
support in two such stores, namely Google Play and Amazon Software store.

Figure 2.2.: Screenshot of a mobile view of Google Play Store reviews for the
app WhatsApp (January 2018).

Figure 2.2 shows a screenshot of a mobile view of the Google Play reviews
page for the app Whatsapp. Below the overall app rating (i.e., 4.4), the section
listing top app features (named TOP FEATURES ) along with the percentage
of reviews that have liked the corresponding feature appears below the feature
name. This list of top features appears in a descending order (by total per-
centages of likes) and can be navigated horizontally. Another section REVIEW
HIGHLIGHTS shows a list of review clusters that appear to be grouped by cri-
teria phrases that are most mentioned. These criteria appear as cluster names,
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as single words, bigrams, or trigrams. The clusters appear sorted by number
of reviews in the cluster. In the example shown in Figure 2.2 four such review
clusters are shown. The names of the review clusters are composed of single
words, bigrams, and trigrams. In particular, the four clusters are ‘useful’, ‘easy
to use’, ‘best messenger app’, and ‘boring’. A click on a cluster navigates the
user to the reviews in the cluster. Such clusters are an example output of an
automated feedback analytics approach.

Figure 2.3.: Screenshot of an Amazon software review for the software Libre-
Office (January 2018).

The second screenshot in Figure 2.3 depicts Amazon software reviews for the
software LibreOffice. Before the reviews unfold, a section named Read reviews
that mention appears that includes a word cloud of words that are mentioned
in the reviews, containing words such as program, computer, and processing.
Clicking on the word-box selects only the reviews that mention the clicked word.
As for the review clusters in Google Play reviews, the word clouds in Amazon
software reviews are another example output of an automated feedback analytics
approach.
There are also many companies with a strong focus on providing review an-
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alytics services to synthesize user feedback to support software practi-
tioners. One such company is App Annie [144] that focuses in analyzing app
market data and insights providing services, for example, to support software
practitioners in decision making regarding app marketing, investment, and prod-
uct roadmap. Another similar company offering analytics services to software
practitioners is PrioriData [145] that provides services such as search keyword
optimization, competition-based comparisons, and market trends.

Conclusion 10

State-of-the-art research on feedback analytics approaches are currently being
adopted by popular software stores and are manifested by visible improve-
ments of deliberation support for users. Specialized companies are providing
novel analytics services to software practitioners in order to synthesize user
feedback and support them in decision making in their software development
efforts.

2.4. Summary

Rationale and rationale management play an important role in requirements and
software engineering. For software engineering, several design rationale models
have been introduced in the past with varying degree of formality. Their tran-
sition into practice has been hindered so far not only due to high costs for their
capturing and maintenance, but also due to their complexity and the implied
challenges regarding their understandability, applicability, and reusability. Al-
though there is no doubt among the researchers and practitioners in the value of
design rationale, the transition of the proposed rationale models from research
into practice has been challenging due to a number of reasons. Rationales are
costly to capture and manage, hard to understand and apply due to their com-
plexity and lack of adequate tool support, and often incomplete and inconsistent.
A summary of the main challenges regarding capturing and managing rationale
for software and requirements engineering are the following:

• Cost: Capturing and managing rationales is costly. Rationale needs to be
captured early [9] and needs to be traceable [146, 147].

• Complexity: In contrast to capturing only the solution knowledge (i.e., the
taken decisions), rationale represents a much larger knowledge space since
it includes the context in which the requirements and design decisions were
made [6, 11]. Current rationale models are often hard to understand and
to apply in practice [11, 45].
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• Completeness & Consistency: Incomplete or insufficient rationale as well
as rationale inconsistencies with corresponding system models become
quickly outdated and useless [9, 46].

• Human factor: The quality and usefulness of rationale depend significantly
on the decision maker that captures it (e.g., software architect, developer)
[11].

• Tool support: Adequate tool support for rationale management tasks is
needed in order to improve the practicability of rationale models and pro-
cesses.

• Automated support: Mining rationale from software artifacts is a recent
endeavor on the research landscape of software engineering researchers.
Compared to mining rationales from software artifacts, rationale mining
from user comments is deficiently researched.

In light of the foundation and related work, we discuss how user rationale cap-
tured from user feedback can augment design rationale, how it can be integrated
into an existing design rationale model, the importance of novel automated tech-
niques for its mining, and how this can overall foster improved user involvement.

Augmenting software knowledge with user rationale In all parts of software
knowledge, on the project and organizational level, rationale plays a crucial
part [9]. While the rationales of software knowledge comes primarily from pro-
fessional stakeholders involved in a software project (e.g., business analysts,
developers, managers), there is a clear potential in augmenting this knowledge
with user rationale. In fact, in the era where users are well connected and
social, and provide open feedback and ratings of the software they use, that
significantly can affect software’s success, it is crucial to involve users early in
the software development life cycle.
Besides the system and process knowledge, on the product and organizational

level, user rationale might be the additional software knowledge that represents
the user’s perspective on the software. This is illustrated in Figure 2.4. This
rationale knowledge from users might support informed design decisions, foster
innovations, and help to adjust weighting factors for trade-off decisions among
alternatives.
Inclusion of user knowledge about the software, in particular user rationale,

can impact how software is developed on the product and organizational level.
For developers and vendors, capturing and synthesizing user justifications and

31



Chapter 2. Foundation & Related Work

Product
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Knowledge

User Rationale

System Rationale

Process Rationale

Figure 2.4.: User rationale as part of the knowledge for software engineering
(based on software knowledge classification as proposed by Dutoit
et al. [9])

explanations would make users’ tacit knowledge about functionality and require-
ments, as well as their preferences and needs more explicit. Software teams can
then take better decisions based on an improved understanding of users [23,
103, 117]. Moreover, user rationale can reveal the alternatives considered by
users (e.g. other products, configurations, workarounds) and the criteria for
evaluating these alternatives: a useful knowledge for analysts, designers, and
testers to derive their own decision criteria, arguments, and even new software
requirements. Furthermore, capturing and managing user rationale can help to
improve existing requirements documentation and to document reasons behind
requirements. Finally, user rationale might motivate project stakeholders to
more actively manage rationale, since they can leverage and reuse influential
arguments of users to justify their decisions, instead of relying on their intuition
and gut feeling (which is often the case [6]).

Integration of design and user rationale An example of how user rationale
might enrich existing rationale models is illustrated in the UML diagram in
Figure 2.5, where an IBIS-based rationale model is shown as a tree (for simplicity
reasons). The classes with white background illustrate design rationale concepts,
while the classes with the gray background represent user rationale concepts.

In Figure 2.5, the design rationale issue named Issue is addressed by two
positions, i.e., Position 1 and Position 2. For Position 1, two arguments exists
that relate to the position either by refuting or supporting it, while Position
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Issue

Position 1 Position 2

Argument 1 Argument 2

User
Argument 1
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User
Argument 2

Argument 3

User
Issue

Figure 2.5.: Example of an IBIS-based rationale model (white classes) enriched
with use rationale (grayed-out classes).

2 is unjustified. In addition to designer positions, mining user rationale might
reveal additional user positions, one depicted in the figure as User Position 1.
Designers can add own arguments about such positions, in addition to related,
mined user arguments. User arguments might also be related to existing posi-
tions (e.g., User Argument 1 ) or newly emerged user issues (e.g., User Issue).
When evaluating alternative positions, besides unique new user issues, posi-
tions, or arguments, that are being evaluated, weighting of existing items might
be adjusted with user rationale for a more effective prioritization (e.g., using
frequency measure).

Because of the importance of rationale, but also the amount of user comments
that is available and increases daily, it is apparent that without automated
mining approaches, this huge potential might not be effectively exploited.

Importance of rationale and argumentation mining techniques While opin-
ion (aka sentiments) mining has widely been used in software engineering re-
search and other research domains (e.g., social sciences), argumentation mining
has only recently gained much attraction in different research communities, es-
pecially those with the focus on natural language processing and computational
linguistic. Argumentation mining focuses on automatically analyzing and iden-
tifying argumentative elements from text corpora. Software researchers have
mostly employed opinion/rule-based mining approaches to extract actionable
insights from user comments, less focusing on arguments in user comments.
Argumentation mining bears much potential for requirement and software en-
gineering.

Requirements and software researchers focusing on feedback mining approaches
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can benefit from the research on argumentation mining, in particular from the
insights gained from manual content analysis of argumentative elements in text,
evaluations of classification approaches, and the insights on the significance of
different types of classification features for classifying argumentative elements.

Empowering user involvement through feedback analytics The trend of ap-
plying mining techniques to manage user feedback is more and more evident.
Researchers and software practitioners develop and apply approaches for an im-
proved user deliberation support and review synthesis as decision support during
software development.
User deliberation support aims to assist users in overseeing the current reviews

by highlighting most mentioned topics or cluster criteria that users report to
assess software. Current focus of requirements and engineering researchers is
to develop mining approaches to synthesize reviews for an improved decision
support, by e.g., mining and summarizing the information types they report
such as bugs or feature requests.
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Chapter 3.

A Grounded Theory of User
Rationale

In the previous Chapter we have summarized the foundation and related work on
rationale in software engineering and its importance as stressed by researchers
and practitioners. Rationale is an important part of the software knowledge
that is needed for software development. One potential source of rationale is
the rationale perspective of users as found in user feedback.

This Chapter presents a qualitative study of user rationale in software reviews
using grounded theory approach. The study is based on the paper Kurtanović
and Maalej [148], that was published at the International IEEE Requirements
Engineering (RE) 2017 Conference.

The Chapter is structured as follows. Section 3.1 describes the research set-
ting that introduces the research questions and research methods. Section 3.2
presents the user rationale concepts as a result of the grounded theory ap-
proach. Section 3.3 presents the results of the qualitative analysis of the ratio-
nale stances. Section 3.4 presents the labeled dataset of user rationale obtained
by peer-coding during manual content analysis. Section 3.5 presents the results
of a follow-up study of the labeled dataset, including additional concepts iden-
tified and examples of unlabeled sentences. Finally, Section 3.6 summarizes the
results.

3.1. Research Setting

In this section we introduce the research questions and the research methods
used to answer them.

3.1.1. Research questions

We focus on the following research questions.
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RQ3.1 How do users denote rationale in online reviews?
RQ3.2 Which concepts (information types) does user rationale include?

With RQ3.1 and RQ3.2 we aim to study rationale in software reviews and
develop a theory of user rationale, which includes concepts that users apply
to argue and explain decisions (e.g. issues or assessment criteria). Figure 3.1
overviews our methodological framework that includes three phases. The phases
are described in the next Section.

Select applications

Crawl reviews

Theoretical sampling

Application list

1. Data Collection

Review samples

Coding guide

2. Grounded Theory

Reviews/app 
dataset

Update coding guide

Open, axial & selective 
coding

Rationale concepts

Amazon
Software Store

3. Content Analysis

Stratified sampling

Manual peer coding

Create coding form

Coding sample

Coding form

Conflict resolution

Coding results

Labeled
dataset

Follow-up
qual. analysis

Peer-agreed results

Figure 3.1.: Overview of the research methodology composed of three phases.

3.1.2. Research methods

We describe the three phases to answer the research questions as presented in
Figure 3.1. The data collection phase resulted in a dataset of software reviews.
The follow-up grounded theory phase resulted in the definitions of the identified
rationale concepts and a coding guide for the manual content analysis. Finally,
the content analysis phase resulted in a labeled dataset of user rationale.

Data collection

We first selected from the Amazon’s software store the applications to include
in the study. A screenshot of Amazon software reviews is shown in Figure
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3.2. A screenshot of the front page of the Amazon software store is included in
Appendix in Figure D.1.

Figure 3.2.: A screenshot of Amazon software reviews (2017).

We then crawled the online reviews for these applications to build the research
data. On Amazon users can rate products on a scale from one to five stars and
write a text feedback. The user review consists of the title, the review text, the
rating, and metadata including the name of the reviewer, whether the reviewer
purchased the product, and the review submission date. Other users are allowed
to comment on a review or vote for it, to indicate its helpfulness. We manually
compiled a list of popular applications with many reviews. We selected three
to four applications from each software category in the store. The final list
includes 52 applications from 17 categories as shown in Table 3.1. The category
Antivirus & Security contains the most reviews in the dataset with overall 11,752
reviews (33,762 sentences). The least amount of reviews contains the category
Programming & Web Development with overall 435 reviews (2,242 sentences).

In the next step we crawled the reviews for the selected applications from
Amazon between November 2014 and May 2016, using the freely available
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Table 3.1.: Overview of the collected dataset.
No. Software Category #Apps #Reviews #Sentences
1 Accounting & Finance 3 2396 10161
2 Antivirus & Security 3 11752 33762
3 Business & Office 3 2224 9585
4 Children’s 3 1817 6427
5 Design & Illustration 3 1030 4531
6 Digital Software 3 543 3394
7 Education & Reference 3 512 3439
8 Games 3 1872 12990
9 Lifestyle & Hobbies 3 905 5384
10 Music 3 440 2206
11 Networking & Servers 3 497 2704
12 Operating Systems 3 2100 11823
13 Photography 3 667 3322
14 Programming &

Web Development
4 435 2242

15 Tax Preparation 3 2330 10119
16 Utilities 3 1696 7121
17 Video 3 1198 6185

Total 52 32,414 135,395

crawler on GitHub1. The crawler downloads for each application each single
review page as a html file and then extracts the reviews and metadata into a
CSV file. A single extracted review is composed of a rating, two helpfulness
scores, a review body, a review title, a publishing date, and an author id. Com-
pared to mobile app stores such as Google Play or Apple’s App Stores, Amazon
has an older reviewing culture, longer and potentially more informative reviews.
Table 3.1 summarizes our dataset, with a total of 32,414 reviews consisting

of 135,395 sentences.

Grounded theory

In the second phase, we applied Grounded Theory according to Strauss and
Corbin [149] to answer the first research question. Grounded theory is a sys-
tematic, qualitative method to develop a theory based on evidence in data. The
result was a coding guide that was used for the creation of the labeled dataset
during the content analysis. The coding guide can be found on the project
website [150].
The first step in this phase was open coding. The goal was to group the

studied text elements from reviews into meaningful named categories. Initially
categories are groups sharing similar content. They evolve during the process
into more formed concepts and logical schemes. The result of this step is a

1https://github.com/aesuli/Amazon-downloader, accessed on March 2016
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first categorization of the analyzed data. The second step was axial coding and
aimed to identify connections between different concepts. The result of this step
are identified relationships between categories and subcategories. The third and
last step is called selective coding. This was a process of refinement of the theory
and integration, concluded in the definition of a central concept which connects
all the other concepts into a theory.
The whole analysis was conducted in multiple iterations on theoretical samples

including only data with potential new insights. Open, axial, and selective
coding were not strictly separated from each other. During the process we
continuously made notes resulting from the study to support the theory creation.
The Coding Guide that resulted from this phase systematizes the coding task

and aims to reduce disagreements between peer-coders [151, 152]. It includes
instructions on the coding process and the tasks, clear definitions of the con-
cepts, detailed review examples and counter-examples, and additional hints as
guidelines for coding. As Neuendorf [151] suggests, we iteratively refined the
coding guide from the feedback of the coders in 8 main iterations. We involved
4 coders in the dry runs, interviewed them, and discussed the disagreements.
The necessity of the codes as defined in the coding guide was driven by their

prevalence, their meaning, and how it is related to the study goal. For instance,
if a code only occurs a few times in the open coding, it was merged to a related
concept. If a code was discussed and found unrelated to rationales it was either
removed or merged. Due to bounded time and resources we decided on a concept
hierarchy of maximum two levels.

Content analysis

The third phase consisted of applying the content analysis techniques as de-
scribed by Neuendorf [151] and Maalej and Robillard [152], involving the sys-
tematic manual assessment of a document sample by human coders. The goal
was first to answer RQ2 and second to create a labeled dataset of user rationale.
This phase included three main steps. First, we generated a stratified random

sample of 1020 reviews, in proportion to the ratings and software categories.
Table 3.2 shows the resulting totals of reviews for each star-rating. The Table
reveals a potential dependency of star-rating and verbosity in terms of number
of sentences). In particular, reviews with a lower star-rating seem to be less
verbose compared to the reviews with a higher star-rating. The overall 204
reviews in the coding sample that were rated with one star had 1643 sentences,
while the same number of reviews rated with five stars had only 799 sentences.
Second, we created a coding form as an Excel document. We chose sentence
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Table 3.2.: Overview of the coding sample used for the manual content analysis.
Star rating #Reviews #Sentences #Sentences+titles
1 star 204 1643 1847
2 star 204 1434 1638
3 star 204 1169 1373
4 star 204 1223 1427
5 star 204 799 1003
Total 1,020 6,268 7,288

as the basic information unit to be coded, in order to enable a more fine-grained
content analysis.

The third step consisted of peer-coding the reviews. For this task, seven coders
received a coding form with the reviews and the Coding Guide. The coding form
contained random coding assignments derived from the coding sample. For
each of the seven coders, the coding assignments were peered with all remaining
coders. In particular, the coding assignments were equally distributed among
remaining coders. Since one coder was not able to finish on time, the coding
assignments of that coder was distributed to two of the remaining six coders.

The coders were three graduate students, one PhD student of University of
Hamburg, one IT professional, and the first author of this thesis. They all had
a high command of English, had software development experience, and were
trained for this task.

After the peer-coding process, we merged the results and assessed their reli-
ability, by calculating the inter-coder percent agreement and Cohen’s κ [153].
Disagreements can arise when either the coding guide is unclear or some aspects
are difficult to comprehend [152].

The coding results were merged into one coding form that was later used by
coders involved in resolving the disagreements. The resolution of disagreements
was done by four coders (referred to as disagreement solvers) in two phases.
Half of all disagreements were peer-solved by the first author and a second
coder in several iterations. Each of the disagreement solvers was involved in this
phase. The conflict solver resolved a conflict by choosing a preferred assignment.
For instance, if for a review sentence only one coder agreed on a concept, the
conflict solver would decide whether to accept or reject such an assignment.
The disagreement solver improved their understanding about the user rationale
concepts through discussing and peer-solving the disagreements. The remaining
half of the disagreements were split into three parts and solved by one of the
disagreement solvers.

The resolution of disagreements ensured that the labeled dataset contains
only codings where at least two coders agreed. We derived two datasets from
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the labeled dataset: one for reviews and one for sentences.
The coding guide included an introduction to the main coding task, an overview

of the coding sample, a description of the coding process, and a detailed descrip-
tion for the coding of the different codes.
We improved the guide in 8 main iterations, independently peer-assessing

theoretically sampled reviews. We manually inspected the disagreement be-
tween coders in each iteration and refined the coding guide, i.e., by interviewing
coders about conflicts, improving the definitions of the rationale concepts, as
well as by adding further examples and counter examples. The aim was to avoid
similar disagreements in the next iterations. We also acquired feedback from
experienced researchers in content analysis.

3.2. User Rationale Concepts

During open coding, we focused on getting an improved understanding of the
argumentation of users and related aspects they refer to. We continuously as-
signed codes to those aspects and made notes about our observations, particu-
larly about special keywords and syntax. We chose common, transparent names
for the codes, for example, taking inspirations from the FURPS model for clas-
sifying software quality attributes for code names of the concept criteria. After
each iteration we refined the definition for each of the aspects and extracted
helpful review sentences to be used later for the coding guide.

Table 3.3.: Summary of codes and final concepts.

Final Concept Codes

Issues Issue
Alternatives Alternative software, Alternative version, Alternative

feature, Other alternative*
Criteria Usability, Reliability, Performance, Supportability,

Other criteria*
Decisions Acquire software, Update software, Relinquish software,

Switch software, Other decision*
Justification Justification

Table 3.3 gives an overview of the final concepts and related codes. The codes
marked with an asterisk are open options for “others” not yet identified concepts.
In the following paragraphs we present the definitions of the final user rationale
concepts.
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Issue

The code for this concept is assigned to a sentence, if it reports a concrete issue
or problem with the software. The problem can denote a bug in the software, an
issue with a feature, an issue with software’s quality, an issue with the software
products’s auxiliary (e.g., product documentation, support, licensing, or driver
issues), or an issue described by the user that can or should be solved.
An example sentence for this concept is: “It does NOT work in a server/multi-

user environment, strictly one user at a time ONLY!! ”. Another example sen-
tence reporting a usability issue is: “Can’t find any controls that I’m use to using
and doing searches for instructions isn’t much help”. A counter example is: “I
had problems with it at first, but it was worked out to my satisfaction”, as this
sentence lacks a concrete issue.

Alternative

This concept consists of four codes that can be assigned to a sentence, if it
reports a concrete alternative option described by a user. A short summary of
the Alternative codes is given in Table 3.4.

Table 3.4.: Summary of Alternative codes.

Code Short description

Alternative software Indicates an alternative software.
Alternative version/edition Indicates an alternative version or edition of

the software.
Alternative feature Indicates an alternative feature (improvement

request or missing feature).
Other alternative Indicates any other alternative option.

The code alternative software is assigned when the user mentions an alter-
native software (not version) in the review, such as: “Was using Defender Pro
for 5 years before switching to Webroot”. The code alternative version applies
when an alternative edition, version, or release of the reviewed software appli-
cation is mentioned. An example sentence is: “But I’ve heard good things about
Corel Paintshop, and Paintshop Pro X6 Ultimate is certainly a more powerful
program than I’ve been using”. The code alternative feature is assigned when
the user mentions a feature of another software, an improved version of a fea-
ture, a missing or requested feature, or when two or more alternative features
of the reviewed software are compared. The code other alternative is assigned
for any other alternative options that are mentioned, such as alternative down-
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load source, alternative price, or alternative type of manual. An example of a
sentence reporting an alternative download source is “I purchased mine directly
from Acronis”. A counter example is: “I read the reviews on cheaper items and
decided to stay away from them” as this sentence refers to unclear alternatives.

Criteria

This concept consists of five codes that can be assigned to a sentence, if it
reports a concrete assessment criterion reported by a user. A short summary of
the Criteria codes is given in Table 3.5.

Table 3.5.: Summary of Alternative codes.

Code Short description

Usability Indicates criteria related to usability of the software.
Reliability Indicates criteria related to reliability of the software.
Supportability Indicates criteira related to supportability of the soft-

ware.
Performance Indicates criteria related to performance of the soft-

ware.
Other criteria Indicates any other criteria related to the software.

Typically, such sentences report assessments of criteria such as non-functional
requirements. The code usability refers to sentences that address human factors
related to the usage, user interface layout, attractiveness, aesthetics, consis-
tency, learnability (how easy it is to learn using the software), integrated help,
documentation, training material, or similar criterion related to usability of the
software or its auxiliaries. Some example sentences with this code are “The
interface is more web interface-like, which will take me a little getting used to”
and “The number of special effects is also impressive comparing X3 to X7 ”.
The code reliability is assigned to sentences that address accuracy, frequency

and severity of the failure, recoverability (e.g., after crashes), stability, avail-
ability (e.g., of a server), safety, or a similar criterion related to the reliability
of the software. A candidate sentence for this code is “This product is reliable,
it automatically updates regularly and best of all it is free!” or “Payee names
change when transactions are downloaded, to names that are totally incorrect and
inappropriate”. The code performance refers to sentences that address speed,
efficiency, throughput, response time, recovery time, start-up time, resource
consumption (power, memory, battery, cache, etc.), capacity, scalability, or a
similar criterion related to the performance of the software. Am example is:
“The time between turning on the computer and the login screen pulling up is so
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much faster than Windows 7 ”.
Finally, supportability refers to sentences that address serviceability, adapt-

ability, maintainability, flexibility (modifiability, configurability, adaptability,
extensibility, modularity), localizability (e.g., language, currency), accessibility,
reusability (compatibility, interoperability, portability), or similar criterion re-
lated to supportability of the software. For instance: “Even if you are a power
user, it has plenty of advanced system features and customizable settings for you
to use”.
The code other criteria refers to sentences that address economic constraints,

legal constraints, security, privacy, or other criterion of the software or its aux-
iliaries that do not fit to previous codes. For instance, a candidate sentence
where privacy is addressed in “Unlike Norton and McAfee which I used in the
past, Webroot secureAnywhere is silent, fast and deadly to all those nasties who
want to snuff out your privacy.”

Decision

This concept consists of four codes that can be assigned to a sentence reporting a
single, conclusive, and actionable decision that is considered, taken, or planned.
A short summary of the Decision codes is given in Table 3.6.

Table 3.6.: Summary of Decision codes.

Code Short description

Acquire Indicates decisions related to software acquisitions.
Update Indicates decisions related to software updates.
Relinquish Indicates decisions related to software abandoning.
Switch Indicates decisions related to switching software.
Other decision Indicates any other decision related to the software.

The code acquire software applies to sentences that report a purchase, down-
load, install, or similar decision on software acquisition. An example sentence is
“I was somewhat skeptical about this particular photography editing software, but
got it on the recommendation of a friend ”. The code update software applies to
sentences that report an update, upgrade, renewal, or similar software renewal
decision, as in example “My only quibble is that when I updated X6 I had to
click through several screens to actually download the update”. The code relin-
quish software refers to sentences that report software abandoning, returning,
definite uninstalling, or a similar decision. As the excerpt shows: “I contacted
tech support, ... before giving up and using another backup program”. The code
switch software is used for sentences that report decisions on changing a soft-
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ware. For instance: “Since I’ve upgraded to Windows 7, I’ve been looking for
a replacement for GoBack ”. The code other decision is used for sentences that
report other formed decisions, such as decision on rating, keeping a software, or
other decisions that do not fit to previous decision codes.

Justification

The code for this concept is assigned to a sentence, if it contains a justification
or acts as a justification for another sentence. That is, a justification can be part
of a compound sentence where the statement it refers to is made, or can relate
to a statement contained in another sentence. A justification either explains the
reasons behind a statement or acts as an argument.

An explanation or argument can be explicitly related to a statement by cer-
tain lexemes such as connectives or syntactic constructions, whereas implicit
relations can be detected only on the basis of a knowledge base and inference
[74]. Explicitly related arguments are separated typically by a subordinate con-
junction (e.g., because, until), prepositions (e.g., after, in), or just a comma.
The following example illustrates an argument involving an implicit relation:
“If you aren’t an IT person or a nerd, don’t purchase this software (statement).
It’s like going from basic math to calculus overnight (argument)”.

Words, phrases, and clauses are combined using coordination and subordi-
nation. Coordination combines short independent clauses into single sentences,
while subordination transforms independent clauses into dependent clauses. A
subordinate conjunction emphasizes the importance of the independent clause
and acts as a transition between two thoughts in a sentence. Since humans
write unstructured text and strive to adhere to the common linguistic rules, we
can expect to find arguments in compound sentences. For instance, a sentence
that has one independent clause (i.e., the statement), and one dependent clause
(i.e., the justification). We state three review sentences with different types of
clauses: a purpose, reason, and result clause.

A purpose clause expresses the purpose for an action in the independent
clause, commonly introduced with the to-infinitive clause or with ‘so that’, ‘in
order that’, ‘for the purpose’, ‘in order to’, and many other ways. An example is
“But there is more than enough reason to upgrade to X6 Ultimate in order to get
the Perfectly Clear and Face Filter 3 plug-ins”. This sentence expresses support
for upgrading a product because of new explicitly mentioned features.

Reason clauses contain answers to why-questions. They give an explanation
for a statement in the independent clause. This is typically introduced with
conjunctions ‘because’, ‘as’, or ‘since’, e.g: “I am updating again because it
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does not work with 8.1 ”. ’Because’ is the typical argumentation marker that
is not ambiguous in meaning like ‘since’. The word ‘since’ can also be used
as preposition or adverb. Typically, if ‘since’ is substitutable by ‘because’ in a
sentence, it serves as argumentation marker.

Finally, result clauses indicate the result of an action or a situation. They are
introduced by conjunctions such as ‘so’, ‘so ... that’, ‘such ... that’, or as/with
a result, e.g., : “Capturing and editing video challenges the capabilities of any
computer, so you should assess your computer’s capabilities and this software’s
requirements before making a purchase decision”.

To improve the classifiers’ prediction accuracy in assessing this concept, we
experimented with a set of syntactic features, such as part of speech (POS) tags –
on the word, clause, and phrase level – based on the Penn Treebank Tagset [154].
Syntactic features have been employed in argumentation and stance mining to
identify arguments from user comments [155, 156]. Furthermore, we studied
features to measure text sophistication such as text length, text syntax tree
height, and count of clauses and phrases.

3.3. Rationale Stances

We qualitatively assessed stances in user rationale focusing on polarized stances.
A stance is a subjective disposition towards a particular topic [82, 157, 158].

A simple classification of polarized user stances towards the software is a two-
class classification using the classes pro and contra. Supportive user positions
towards the software belong to the pro class, while user positions expressing a
contra attitude towards the software belong to contra class. Two examples from
reviews are given for each stance orientation in Table 3.7:

Table 3.7.: Example review excerpts exposing pro/contra user stances.

No. Example of Pro stance Example of Contra stance

1 ..Really enjoy what Quicken
brings to my home finances. The
ability to forecast and see problem
areas before they happen...

..The application is MUCH
slower. It takes several (up to
10) seconds to switch between
accounts or screens...

2 ..I love how Quickbooks help
keep things in order. I can eas-
ily track inventory and know in
seconds what needs restocked..

..The check register does not list
anything that affects the balance
except checks. For example, it
does not list deposits nor inter-
est...
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Looking at the review excerpts in the Table exposing a pro stance, in the first
example, the user justifies its stance by praising a concrete functionality of the
software. In the second example the user justifies its pro stance by assessing the
usability of a software.

In the first example of a contra stance, the user justifies user’s performance
assessment by providing additional explanation. In the second example of a con-
tra stance, the user justifies an issue related to the functionality of the software
by further explaining the issue.

3.4. Labeled Dataset

Using the manual content analysis technique we developed a labeled dataset
using the coding sample and the guide. Each coder received the coding form
containing all reviews from the coding sample and the coding guide. A screen-
shot of the coding form is shown in Figure 3.3. The coders classified each title
and sentence of the review, i.e. indicated whether it contains issues, alternatives,
criteria, decisions, or justification. The first two columns named Key and Value
were used to denote a review item (i.e., the row) such as title, rating, or sen-
tence. These columns were protected from changes. In the next 16 columns on
the right, each column represented one of the 16 user rationale codes. Columns
representing the same user rationale concept adjoin each other. A coder could
assign an x to any of the columns to denote that a sentence or title (i.e., row)
reports the related code. Finally, a Done and a Comment columns are used
to mark the coding of a sentence as completed (with an x) or add comments
related to coding respectively. The pane composed of the first two header rows
is protected from changes and fixed to remain visible during scrolling.

The reviews were grouped by the application, i.e. all reviews of an application
that are part of the coding assignment appeared in a consecutive order. The
link to each of the software applications was found right at the beginning of an
application group. It allowed a user to read application’s description on Amazon
before starting to code the reviews. The application’s name is repeated for each
review. Multiple codes for a title or a sentence of a review were allowed. Coders
were able to stop and resume their coding tasks at any time.

After the peer-codings were completed, we merged all coding results and
assessed the inter-coder agreement. Figure 3.4 shows an example of merged
codings of coder 1 and coder 3 for a review. Coders were considered to agree on
a code on the sentence level, if both peers agreed on that code for that sentence.
On the review level, coders were considered to agree on a code, if both peers
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Figure 3.3.: A screenshot that partly shows the coding form.

Figure 3.4.: A screenshot that partly shows the aggregated codings.

agreed at least once on that code in that review. On the review level, coders
were considered to agree on a code for a review, if both peers agreed at least once
on that code for a sentence in that review. The inter-coder percent agreement
across all codes on the sentence level ranged from 83% - 99% (average: 91%),
while the Cohen’s kappa ranged from 0.17 - 0.55 (average: 0.36). On the review
level, the inter-coder agreement across all codes ranged from 65% - 94% (average:
80%), while the Cohen’s kappa ranged from 0.27 - 0.66 (average: 0.43). The
lowest agreement on both granularity levels was on justifications with an average
percent agreement of 74% (i.e., a percent disagreement of 26%) and kappa of
0.22. The kappa values are statistically significant with p < 0.01.

An overview of the inter-coder percent and κ agreement is given in Table 3.8.
The inter-coder percent agreement on the sentence level ranged from 83% - 92%,
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with an average of 87%.

Table 3.8.: Inter-coder agreement for studied rationale concepts on sentence and
review level.

Sentence level Review level

%Agreements κ value % Agreements κ value

Issue 84,20% 0,29 72,30% 0,40
Alternative 96,97% 0,48 89,90% 0,53
Criteria 93,23% 0,43 82,50% 0,50
Decision 97,93% 0,44 90,30% 0,48
Justification 83,1% 0,17 65,80% 0,27

The resulting conflict-free labeled dataset contained only coding assignments
where two of three human coders agreed. From the sentence level dataset, we
derived the review level dataset.

3.5. Follow-up Qualitative Study

We summarize the results of a follow-up qualitative study of rationale sub-
concepts labeled as other in the labeled dataset of user rationale, and the qual-
itative findings of unlabeled sentences.

3.5.1. Study of other concepts

We summarize the results of a qualitative study of review sentences labeled as
other that revealed, that users also report other alternatives (e.g., alternative
software provider), criteria (e.g., cost), and decisions (e.g., on rating software).

Alternative sub-concepts Qualitative assessment of the sentences labeled as
other revealed, that already existing alternative codes might have fit in 2% of
the cases, while 1% were miscoded (false positive). An example of a miscoded
review sentence is “Not sure why but I used another kind which worked ok”.
The three most prevalent other alternatives mentioned were alternative soft-

ware provider (23%), alternative software medium (19%), and alternative price
(7%).

Criteria sub-concepts We qualitatively assessed sentences labeled as other
criteria. We found that 4% of all sentences fit to already existing codes. Overall
3% were wrongly labeled as criteria, such as “Corel said could fix it for me if
you bought the software again from them”.
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The most prevalent three other criteria are Cost (39%), Value (20%), and
Functionality (16%). An example review sentence where Cost is addressed in
e.g., “So the price is kind of high and on top of that they like to pop up ads
on your desktop.” A review sentence addressing Cost and Value is “Must have
and worth the fairly low cost”. Moreover, in overall 12% of the cases we found
that users report trade-offs mostly between Cost/Functionality and Value. Two
review examples are “Not quite worth $40” and “Granted, the GUI layout is
not the same as Adobe or Corel, but it does most of the same things Premier
and Video Studio does at a lesser cost.” Another review sentence reporting a
Functionality (including a trade-off) is “To get the soundfont plugin – without
which the thing is worthless – you have to buy the $300 version.”

Decision sub-concepts In the qualitative analysis of the sentences labeled as
other decisions, we found that already existing codes might have fit for 23% of
those decision, while 15% were misclassified. Those that were misclassified were
either reporting decisions not related to the software (e.g., “Maybe I should just
get a new computer”) or single actions (e.g. “However, I was able to get the dll
from the Internet so I could run the program”)
The most three prevalent other decisions were the decision on rating the

software (38%), on continuation of use (8%), and the decision on relinquishing
the vendor, software provider, software feature, or tech support (overall 8%).

3.5.2. Study of unlabeled sentences

We qualitatively assessed a random sample of review sentences that were not
labeled with any of the user rationale concepts. The majority of the sentences
were irrelevant or unclear (i.e., did not fit to the coding guide). We also found
relevant sentences (i.e., that fit to the coding guide) that were missed to be
coded. Among the sentences not fitting were those reporting background in-
formations (e.g., from personal biography), experiences (e.g., with the software
or technical support), opinions or questions, (e.g., such as praises/dislikes, or
rhetorical questions), recommendations (e.g., to buy or not), or unclear or off-
topic sentences (e.g., unclear phrases, or grammatically incorrect and confus-
ing, or related to Amazon). Example of such sentences are “I took Spanish in
High School and a bit in College, but started to loose it.”, “This is a feature no
one clamored for ”, “Thank you Corel ”, “Delivery was on time and great”, and
“Also, if you are considering getting this and are fearful of losing your photos
or projects, back them up”.
There were also sentences that appeared to be relevant but were unclear and
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thus as expected were not labeled, such as “Every version gets better ” or “Results
are exceptional quality.”. Examples of a sentences reporting an alternative and
criteria but were missed to be labeled are respectively “Parallels has replaced
Parallels Mobile with Parallels Access as of this version” and “The latest version
of parallels runs flawlessly for me on Mavericks”.

3.6. Summary

This Chapter described the results of a qualitative study of user rationale us-
ing grounded theory followed by a content analysis using a dataset of Amazon
software reviews.
By studying how users denote rationale in online reviews and which concepts

(information types) they include we identified and defined the rationale con-
cepts: issue, alternative, criteria, decision, and justification. We also found that
users express their pro/contra stances towards the software in their rationale and
review excerpts as examples. Among the alternatives labeled as other, we found
that the most prevalent is the concept alternative software provider. Among the
criteria labeled as other, the most prevalent is the concept Cost, while the most
frequent concept among the decisions labeled as other is decision on rating the
software.
We created a coding guide that incorporates those definitions along with

detailed instructions for the human coders and an Excel document to carry
out the peer-codings. By employing human coders that followed the coding
guide, conducting a manual content analysis of software reviews, we developed
a peer-labeled dataset (i.e., truth set) of user rationale.
In a follow-up qualitative study of the labeled dataset, we assessed rationale

concepts labeled as other (i.e., those that were not included in the coding guide)
and found that users additionally report other alternatives (e.g., alternative
software provider), criteria (e.g., cost), and decisions (e.g., on rating software).
We also found that users report trade-offs, mostly between cost/functionality
and value. We finally assessed unlabeled sentences and give review excerpts as
examples.
In the next Chapter, we present and discuss the results of the quantitative

study of user rationale using our labeled dataset.
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Chapter 4.

Quantitative Study of User Rationale

After the manual content analysis and the creation of the labeled dataset of
user rationale (as discussed in Section 3.4) we conducted a quantitative analysis
of the dataset. This Chapter presents the results of the study. As in Chapter
3, part of the contributions of this Chapter has been published in the paper
Kurtanović and Maalej [148].
The Chapter is organized as follows. The research questions are presented in

Section 4.1. The results of the quantiative study of the rationale concepts are
presented and discussed in Section 4.2, while Section 4.3 presents and discusses
the results of the quantitative study of the rationale sub-concepts. Finally, the
Chapter is concluded with Section 4.4.

4.1. Research Setting

We take up the findings of the qualitative study of user rationale from Chapter
3 and formulate research questions that we focus on in the quantitative study.
In particular, we focus on the following research questions:

RQ4.1 How is the frequency distribution of the various rationale concepts over
the reviews?

RQ4.2 What is the inter-concept correlation between the rationale concepts in
reviews?

RQ4.3 On conditional frequency distribution of rationale concepts:
a) What is the frequency distribution of the various rationale con-

cepts with respect to star-ratings?
b) What is the frequency distribution of the various rationale con-

cepts with respect to their position (sentence) within review?
RQ4.4 How do the rationale concepts differ in terms of verbosity (word count)?

With the research question RQ4.1 we aim to provide quantitative evidence
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about various concepts of user rationale and how they are combined and dis-
tributed. With RQ4.2 we assess whether and how strong they correlate. With
the research question RQ4.3 we study their distribution with respect to a) star-
ratings and b) position in review. Finally, with RQ4.4 we assess whether and
how strong verbosity helps in differentiating them. This might reveal their po-
tential as classification feature.

4.2. Rationale Concepts

Overall 48% of sentences contain at least one user rationale concept. On the
review level, this number amounts to 86% of reviews having a user rationale
concept. An overview of the labeled datasets is given in Table 4.1.

Table 4.1.: Labeled dataset: on the sentence level and the review level.
Issues Alternatives Criteria Decisions Rationale

Sentences with 1182 794 1981 570 785
Reviews with 484 390 726 387 396

Justifications are reported in 39% of all reviews. Particularly, reviews report-
ing issues, criteria, alternatives, and decisions tend to co-occur and contain a
notable fraction of rationale ranging from 46% and 54%. A contingency table of
concept collocations in reviews/sentences with rationale is summarized in Table
4.2. Figure 4.1 visualizes concept collocations with rationale on review level
as a mosaic plot. A review that was counted to include a concept, might also
have included other concepts as well. A tile’s area is proportional to the num-
ber of overall reviews with rationale. For instance, the upper right tile depicts
number of reviews that report both the concepts alternative and decision (indi-
cated by the top and bottom black bar), with a fraction of 35% justifications.
The shading of the tiles highlights the sign and magnitude of the standardized
Pearson residuals under the assumed model of independence. Issues, criteria,
alternatives, and decisions tend to co-occur in reviews with a notable fraction
of justifications ranging from 21% to 71%.
It seems that, the more informative the reviews are (i.e., higher co-occurrence

of issues, criteria, alternatives, and decision), the higher is the justification den-
sity. Criteria, as the most pervasive concept, appears most often alone compared
to other concepts (in 131 or 13% of all reviews, with a fraction of 21% justi-
fications). In 123 reviews (or 12%) the concepts appear all together, with a
considerable fraction of justifications (71%). Justifications appear in less than
2% of reviews without any other concept.
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Table 4.2.: Contingency table of reviews/sentences with rationale, with justifi-
cation ratio given in parenthesis.

Review Level Sentence Level

Issue False True False True
Alternative Criteria Decision

False False False 16 (100%) 15 (13%) 278 (100%) 268 (15%)
True 40 (37%) 16 (37%) 322 (19%) 28 (21%)

True False 131 (21%) 148 (41%) 977 (14%) 712 (17%)
True 40 (45%) 84 (48%) 36 (30%) 49 (40%)

True False False 34 (23%) 8 (37%) 445 (7%) 36 (27%)
True 17 (35%) 8 (50%) 97 (12%) 9 (11%)

True False 59 (44%) 82 (51%) 115 (16%) 63 (22%)
True 59 (54%) 123 (70%) 12 (33%) 17 (47%)

We assessed the correlations between the rationale concepts using Pearson
correlation test [159]. The Pearson correlation coefficients are summarized in
Table 4.3. The rationale concepts Issue and Criteria have the strongest posi-
tive correlation on both granularity levels (Pearson’s r above 0.4). The results
of pairwise Pearson correlation tests among rationale concepts (including sub-
concepts) on both granularity levels are included in Appendix in Table A.1. In
particular we found that Issue and Supportability criteria have a weak positive
correlation on the sentence (0.27) and review level (0.36).

Table 4.3.: Pairwise Pearson correlation coefficients among the rationale con-
cepts on review (lower triangular matrix) and sentence (upper trian-
gular matrix). All values are statistically significant with p < 0.05.

Issue Alternative Criteria Decision Justification

Issue 1.00 0.00 0.43 0.01 0.12
Alternative 0.15 1.00 -0.01 0.12 0.02
Criteria 0.40 0.20 1.00 -0.05 0.12
Decision 0.19 0.25 0.14 1.00 0.11
Justification 0.24 0.23 0.24 0.24 1.00

In the assessments of the pair-wise differences between the rationale concepts
that follow in the next paragraphs, for a pair of codes ca and cb, we compared
the reviews containing the code ca (excluding the reviews with code cb) with the
reviews containing the code cb (excluding the reviews with the code ca). The
same is applied for sentence level comparison.

We also studied the distribution of the user rationale concepts with respect to
1-5 star-ratings. Figure 4.2 shows the distribution of star-ratings for the different
user rationale concepts. Issues tend to appear more in lower rated reviews. In
fact, the mean rating (2.2) for reviews that report issues was the lowest compared
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Figure 4.1.: Frequencies of collocations of rationale concepts in absolute num-
bers. Parenthesis hold the fraction of rationale. Black side-bars
indicate a concept’s presence.

to other concepts (p < 1e− 06, Student’s t-test). This is not surprising and in
line with our earlier studies [103, 160]. Also decisions show the largest variance
in terms of their distribution across star-ratings, being spread mostly across 1-4
star-ratings with largest presence in lower rated reviews. Criteria, alternatives,
and justifications seem to appear more in 3 star rated reviews. This suggests
that the star-rating might be used as an indicator for informative reviews in
terms of rationale concept diversity, which is in line with earlier studies [21].
Reviews that don’t report any user rationale concept seem to appear in higher
rated reviews (i.e., 4 and 5 star-rating).

Studying their distribution with respect to their position within a review, we
found statistically significant differences between the rationale concepts (p <
0.05, Student’s t-test), except for the concepts criteria and issue. This exception
is not surprising because of the moderate correlation between the two concepts
(Table 4.3). The ascending order of the rationale concepts with respect to
their average position within review is: decision, criteria, issue, alternative, and
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Figure 4.2.: Rating distribution of reviews that report user rationale concepts.

justification. Decisions tend to appear on average in the 5th sentence (median:
3).

Studying the difference of reviews’ verbosity (measured in words and punc-
tuation count) with respect to the reported rationale concepts, we found that
reviews reporting alternatives seem to be more verbose than reviews reporting
criteria. The mean verbosity of candidate reviews including alternatives amount
to ∼190, compared to ∼142 for candidate reviews reporting criteria. Further-
more, reviews reporting rationale tend to be more verbose (mean: ∼181) than
reviews reporting criteria. The differences between these means were statisti-
cally significant (with p < 0.005, Student’s t-test).

There were also statistically significant differences in the verbosity of review
sentences with respect to the concepts reported. Review sentences that report
decisions, criteria, or alternatives, tend to be shorter than those that report
rationale (p < 3e − 05, Student’s t-test). The mean verbosity for candidate
sentences for these concepts amount to respectively ∼21, ∼22, ∼23 and ∼27.

4.3. Rationale Sub-concepts

In this Section we summarize the results of the quantitative study of the sub-
concepts of alternative, criteria, and decision.
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Alternative sub-concepts The cross-/within-concept distribution of codes from
the concept Alternative is given in Table 4.4. The most pervasive codes for this
concept are Alternative Version and Alternative Software with a within-concept
fraction of 63% and 45% on the review level.

Table 4.4.: Distribution of the different alternatives on the sentence and review
level.

Alternative
Feature

Alternative
Version

Alternative
Software

Other

Sentence level

Absolute count 125 432 304 42
Within-concept fraction 16% 54% 38% 5%
Review level

Absolute count 86 244 174 36
Within-concept fraction 22% 63% 45% 9%

Statistically significant differences between the mean ratings of the reviews
reporting the various alternative sub-concepts and between their mean verbosity
were not found. However, we found statistically significant differences regarding
the position within a review, we found that on average Alternative Version is
mentioned earlier within a review than Alternative Feature (p < 0.05, Student’s
t-test).

Criteria sub-concepts The cross-/within-concept distribution of the different
criteria are listed in Table 4.5. The most pervasive two criteria codes on both
levels are usability and supportability with a fraction of 64% and 49% respec-
tively.
Reliability and Supportability criteria seem to appear more in lower rated

reviews than the Usability and Performance criteria. The pair-wise differences
between the mean ratings is statistically significant with p < 0.05 (Welch’s t-
test). Reliability and Supportability criteria is reported in sentences with a
mean rating of 2.6 (median: 2) and 2.5 (median: 2) respectively, while Usability
and Performance is reported in sentences with a mean rating of 3.1 and 3.0
respectively (median: 3). We found also that Usability criteria appears earlier
within a review than Performance (p < 0.05, Welch’s t-test).
There were statistically significant differences between the mean verbosity of

Usability and Performance criteria. Reviews reporting Usability criteria tend
to be shorter (mean: 142 words, median: 81 words) than reviews reporting
Performance criteria (mean: 217 words, median: 128 words). The difference
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Table 4.5.: Distribution of the different criteria on the sentence and review level.

Usability Reliability Performance Supportability Other

Sentence level

Absolute
count

985 255 212 716 375

Within-
concept
fraction

50% 13% 11% 36% 19%

Review level

Absolute
count

465 177 138 354 239

Within-
concept
fraction

64% 24% 19% 49% 33%

was statistically significant with p < 0.05 (Welch’s t-test).

Decision sub-concepts The cross-/within-concept distribution of the different
decisions are listed in Table 4.6. The most pervasive decision reported was the
Acquire software decision. On the review level, 65% of decisions are Acquire
software decisions, while on the sentence level this amounts to 55%.

Table 4.6.: Distribution of the different decisions on the sentence and review
level.

Acquire Update Switch Relinquish Other

Sentence level

Absolute count 312 121 64 97 104
Within-concept fraction 55% 21% 11% 17% 18%
Review level

Absolute count 250 89 58 87 58
Within-concept fraction 65% 23% 15% 23% 15 %

We found statistically significant differences between mean ratings of various
decisions codes (p < 0.05, Welch’s t-test). Acquire and Update decisions are
reported in higher rated reviews (mean: 2.8, median: 3) than Switch (mean:
2.2, median: 2) or Relinquish decisions (mean: 1.6, median: 1). Also, Switch
decisions are reported in lower rated reviews than Relinquish decisions. With
respect to the position within review, we found that Acquire decisions are re-
ported earlier than other decisions (p < 0.05, Welch’s t-test).
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No statistically significant differences on verbosity between the decision codes
were found.

4.4. Summary

In this Chapter we presented the results of a quantitative analysis of user ra-
tionale using the labeled dataset presented in previous Chapter. We assed the
frequency distribution of the various rationale concept over the reviews, as well
as their inter-concept correlations, conditional contributions, and verbosity dif-
ferences. The quantification provides their evidence and how they are collocated
and distributed. We summarize important findings in following paragraphs.

RQ4.1 Findings Justifications are reported in 39% of all reviews. Also, re-
views reporting issues, criteria, alternatives, and decisions tend to co-occur and
contain a notable fraction of rationale ranging from 46% and 54%. The most
pervasive sub-concepts of the concept Alternative, Criteria, and Decision were
found to be respectively Alternative Software, Usability criteria, and Acquire
decision.

RQ4.2 Findings We identified statistically significant, mostly positive, weak
correlations among the rationale concepts, indicating their tendency to co-occur
in reviews. The pairwise correlation tests among the rationale concepts on re-
view level revealed a positive but weak correlation (Pearson’s r ranging between
0.15 and 0.25), except the correlation between issues and criteria. In particular,
for issues and criteria we identified a moderate positive correlation (Pearson’s r
∼0.41).
On sentence level the strongest correlation identified was a moderate positive

correlation (Pearson’s r ∼0.43) between reviews reporting issues and criteria.
We also identified a weak correlation between decisions and alternative (Pear-
son’s r ∼0.12) as well as between justifications and the concepts issue, criteria,
and decisions (∼0.12).

RQ4.3 Findings We found that decisions tend to appear more in lower rated
reviews, while criteria, alternatives, and justifications seems to appear more in
3 star rated reviews. The criteria Reliability and Supportability seem to appear
more in lower rated reviews than the Usability and Performance criteria.
Assessing the conditional distribution of rationale concepts with respect to

their position within a review, we found that on average the rationale concepts
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tend to appear in the following ascending order within a review: decision, criteria
or issue, alternative, and justification.

RQ4.4 Findings Assessing the differences among the rationale concepts with
respect to their verbosity, we found that the mean verbosity of reviews that
include alternatives amount to ∼190, compared to ∼142 for reviews reporting
criteria. We also found that reviews reporting justifications tend to be more
verbose (mean: ∼181) than reviews reporting criteria.
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Chapter 5.

Rationale Mining

In the previous Chapter 3 and 4, we identified user rationale concepts and as-
sessed their frequencies and distributions. In this Chapter we present a super-
vised classification approach to mine them from software reviews. For training
and testing the classifier, we used the manually developed the labeled dataset
as presented in Section 3.4.
The Chapter is organized as follows. Section 5.1 introduces the research

setting. Section 5.2 and 5.3 present the results of the classification experiments
for automatically classifying the rationale concepts and sub-concepts. Section
5.4 discusses the findings while 5.5 summarizes the Chapter.

5.1. Research Setting

The quantitative analysis of the rationale concepts in Chapter 4 revealed the
potential of the labeled dataset of user rationale, for training and evaluation of
a supervised machine learning approach for mining rationale and stances from
user feedback. With the goal to assess such an approach we formulate the
following research questions.

RQ5.1 How accurately can we mine rationale concepts from the user reviews
and sentences using baseline and random classifier configurations?

RQ5.2 Which classification features are most important?
RQ5.3 How accurately can we mine rationale sub-concepts of alternative, cri-

teria, and decision from the user reviews and sentences using a baseline
classifier configuration?

With the research question RQ5.1 we aim to assess how well we can mine ratio-
nal concepts using a baseline and random classifier configuration. A classifier
configuration specifies the employed classification algorithm and features. To
answer the research question, we will define a baseline configuration and use an
algorithm to generate random classifier configurations. In contrast to a random
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classifier configuration that can include any feature type from the employed fea-
tures, a baseline classifier configuration employs only lexical features for training
a classification model. The evaluated classification features are listed in Table
5.1. With RQ5.2 we assess the most important lexical features (i.e., relevant
for baseline configuration) and assess the most informative features among all
feature types. For this, we will employ a forest of tree classifiers on a training
with balanced classes. With the research question RQ5.3 we aim to assess how
well we can mine rationale sub-concepts using a baseline configuration.
We used two datasets both representing the truth set for the classifiers: a

dataset of review sentences for the sentence-level classifier and a dataset of
reviews for the review-level classifier. Both datasets were stored in a file of
comma-separated values (CSV). Each dataset included columns that represent
the user rationale concepts. The column values were interpreted as binary flags,
indicating whether the associated concept is presented in a row or not.

Table 5.1.: Features used to predict rationale in user reviews.

Feature Description

Body n-grams N-grams of words of the review body, for n ∈ {1, 2, 3}
Title n-grams N-grams of words of the review title, for n ∈ {1, 2, 3} (for

review classification only)
Rating Review rating
Length Text length
Sentiment Review body lexical sentiment score ∈ {−5, 5}
T-sentiment Title sentiment (for review classification only)
POS n-grams N-grams of part of speech (POS) tags on the word level,

based on the Penn Treebank Corpus [161], n ∈ {1, 2, 3}
CP unigrams Unigrams of part of speech (POS) tags on the clause and

phrase level (CP), based on the Penn Treebank corpus [161]
Subtree count Sentence syntax sub-trees count (review classifier: mean

value)
Tree height Sentence syntax tree height (review classifier: mean value)

Besides experimenting with part of speech (POS) tags – on the word, clause,
and phrase level – based on the Penn Treebank Tagset [154], we also studied
features to measure text sophistication such as text length, text syntax tree
height, and count of clauses and phrases. The classifiers employed features
listed in Table 5.1. Table 5.2 shows the preprocessing steps.
For each configuration we evaluated one binary classifier for each of the ratio-

nale concepts on both granularity levels (i.e., sentence and review). In our clas-
sification experiments evaluating the random configuration, we employed the
classification algorithms Naive Bayes (NB), Support Vector Classifier (SVC),
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Table 5.2.: List of text preprocessing techniques.

Preprocessing
step

Abbreviation Description

Stopwords
removal

-stops Whether to remove stopwords from the review
text

Punctuation
removal

-punct Whether to remove punctuation from the re-
view text

Lemmatization +lemma Whether to group different inflected forms of
a word to it base form (lemma)

and Logistic Regression (LR), and for evaluating the baseline configuration, we
employed additionally the classification algorithms Decision Tree (DT), Guas-
sian Process Classifier (GPC), Random Forest (RF), and Multi-layer Perceptron
Classifier (MPC).
In each classification experiment, we conducted 10-fold cross validation [138]

with an equal class ratio. As suggested by Dietterich [162], we used McNemar
statistical test [163] to assess the statistical significance of the pair-wise differ-
ences between the classification results using a p-value of 0.05 as the threshold.

5.2. Classifying Rationale Concepts

In this section we describe the classifier experiments for classifying the rationale
concepts using the baseline (Section 5.2.1) and random (Section 5.2.2) classifier
configuration on both granularity levels. We marked the best performing algo-
rithms for precision and recall respectively with a P and R in the parenthesis.

5.2.1. Classifying using baseline configuration

Simple models, such as the one obtained using the baseline configuration, have
been shown to work better in practice than complicated models that easier fit to
noise [164, 165]. As the baseline configuration, we used tf-idf [125] normalized
word features with filtered stopwords, filtered punctuation, and words lemma-
tized.
Table 5.4 summarizes the classification results for classifying rationale con-

cepts for review and sentence level. On the review level, except for issues, the
overall highest precisions were achieved by the RF classifier. The overall highest
recalls were achieved by GPC (except for decisions). In both cases, most of the
pairwise differences between the corresponding results compared to the results
obtained by other classification algorithms were statistically significant (McNe-
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mar test). In particular, the differences between the RF classification results
and other results were found to be statistically insignificant only for DT (for con-
cepts Issue and Criteria), and SVC and MPC (for concept Justification). Also,
the pair-wise differences between the GPC results and other results were found
to be statistically insignificant only for NB (for concepts Alternative, Decision,
and Justification).
On the sentence level, the overall highest precisions were achieved by the RF

classifier for all rationale concepts, while the overall highest recall values were
achieved by NB. All pair-wise differences between the classification results were
statistically significant, except the differences between the classification results
of RF and DT for the concepts Issue and Justification.

Table 5.3.: McNemar test results (p-values) pointing out the statistical signifi-
cance of the differences between Criteria classifiers on review (lower
triangular matrix) and sentence level (upper triangular matrix)
DT GPC LR MPC NB RF SVC

DT 1 1.1e-16 5.9e-20 1.5e-14 2e-51 0.027 4.7e-21
GPC 6e-19 1 0.06 0.92 7.2e-28 2.1e-13 0.031
LR 2.6e-10 3e-08 1 0.31 1.4e-23 3.4e-16 0.31
MPC 1.1e-07 1.7e-08 0.099 1 2e-21 8.2e-10 0.065
NB 4.9e-12 0.0001 0.38 0.017 1 2.8e-46 8.2e-21
RF 0.7 1.8e-22 7.2e-13 4.3e-09 2.3e-14 1 4.4e-17
SVC 7.3e-07 4.5e-10 0.0025 0.34 0.00075 2.1e-08 1

We show the results of the statistical tests assessing the differences between
Criteria classifiers (the most pervasive rationale concept) on review and sen-
tence level in Table 5.3. The results of the statistical tests of the classifiers
for Issue, Alternative, Decision, and Justification are included in the Appendix,
respectively in Table B.1, B.2, B.3, and B.4.
Table 5.5 lists the top 10 most significant features using the baseline con-

figuration. The feature significance scores were obtained using a forest of tree
classifiers and a dataset of balanced classes. The pronouns (abbreviated with
pron) played for each rationale concept a significant role. For the concept Issue,
among the most important word features were strong indicators of issues such
as ‘error’ and ‘crash’. Among the top informative word features for the concept
Alternative were the words ‘version’ and ‘feature’. The words ‘star’ (indicating
rating) and ‘easy’ were among the top informative word features for the con-
cept Criteria. Among the top informative features for the concept Decision are
‘purchase’ and ‘return’, while ‘fact’ and ‘reason’ are among the top informative
word features for the concept Justification.
We investigated the learning curves of the best performing classifiers using
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Table 5.4.: Top 10-fold cross-validated results of binary classifiers using various
classification algorithms with a baseline configuration. Precision (P),
Recall (R), and F1 scores are given in percent.

Algorithm Issue Alternative Criteria Decision Justifications
P R F1 P R F1 P R F1 P R F1 P R F1

Review level
Naive Bayes 69 80 74 65 86 74 67 80 73 62 81 70 59 80 68
Support Vector Clas-
sifier

73 75 74 71 76 74 71 73 72 70 71 70 62 66 64

Decision Tree 61 59 60 74 67 70 70 56 62 69 73 71 63 56 60
Logistic Regression 71 78 74 71 81 76 67 78 72 67 73 70 62 74 68
Gaussian Process
Classifier (R)

66 85 75 63 86 73 60 87 71 62 79 69 57 81 68

Random Forest (P) 71 57 64 80 59 68 80 55 65 75 65 70 65 48 55
Multi-layer Percep-
tron Classifier

72 75 74 70 75 73 68 75 71 67 70 68 61 68 64

Sentence level
Naive Bayes (R) 66 77 71 69 81 75 67 81 73 66 85 75 60 71 65
Support Vector Clas-
sifier

67 71 69 78 75 76 74 73 73 79 78 79 62 67 64

Decision Tree 66 59 62 75 73 74 68 61 64 76 77 77 64 56 60
Logistic Regression 69 71 70 77 73 75 75 72 74 80 77 79 63 67 65
Gaussian Process
Classifier

70 71 71 78 71 74 75 71 73 81 76 78 63 68 65

Random Forest (P) 71 56 63 78 65 71 75 64 69 82 74 78 69 54 61
Multi-layer Percep-
tron Classifier

66 65 66 72 71 72 71 71 71 70 72 71 62 64 63

the baseline configuration on both granularity levels. A learning curve visualizes
how size of the training set influences the classification accuracy. In this case it
also suggests the potential of the baseline configuration (i.e., significance of single
word features) for predicting the rationale concepts and its changes with an
increased training size for the various rationale concepts. In particular, Figure
5.1 shows the recall values for GPC, while Figure 5.2 shows the precision values
for RF.

We can see that the slopes of the Precision learning curves change less strongly
with an increased training size on the sentence level compared to the review
level. This is not surprising, because of the potential lower level of noise of
a sentence compared to a review. For instance, from Figure 5.1a visualizing
precision learning curves obtained for the sentence level we can see, that with
an increased training set the precisions for classifying criteria overall increases
(although slightly), while the accuracy for classifying justifications decreases.
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Table 5.5.: The top ten most significant single, lemmatized word features for
each of the rationale concepts.

Rank Issue Alternative Criteria Decision Justification

Review level
1 star version easy buy pron
2 pron star slow purchase star
3 install upgrade star instal program
4 figure stars pron return new
5 waste new crash purchase let
6 download windows hour star fact
7 try like update download just
8 easy old work email old
9 windows feature computer pron edit
10 error power issue microsoft fix

Sentence level
1 pron version pron buy pron
2 work sims easy purchase reason
3 crash photoshop support upgrade use
4 error pron slow pron star
5 install windows install return new
6 slow feature work instal great
7 use rosetta use order program
8 great adobe time decide add
9 screen office interface download version
10 download like crash update work
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Figure 5.1.: Learning curves depicting cross-validated Precision values obtained
with RF classifier using the baseline configuration for the various
rationale concepts on the 5.1a) review and 5.1b) sentence level.

5.2.2. Classifying using random configuration

We automatically generated a set of random classifier configurations: combina-
tions of preprocessing steps and features that were used to train and test the
classifiers. The goal was to identify indicative configurations that lead to accu-
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Figure 5.2.: Learning curves depicting cross-validated Recall values obtained
with GPC using the baseline configuration for the various rationale
concepts on the 5.2a) review and 5.2b) sentence level.

rate classifiers rather than systematically evaluating all possible configurations.
Besides excluding invalid configurations, we also excluded those containing only
metadata features. Our initial experiments showed that metadata is not suf-
ficient to achieve a high classifier accuracy, similar to our earlier classification
experiments [103].

Prior to running a classifier, the list of classifier configurations were random-
ized. For each sentence classifier, we evaluated between 10,109 - 17,457 different
configurations using cross-validation. For each review classifier, the number of
cross-validated evaluations using different classifier configurations was between
9,895 - 20,433. Table 5.6 and 5.7 give an overview of classifier configurations
leading to the top performance in mining user rationale in sentences and reviews
respectively. We filtered all results having precision, recall, or the F1-score below
0.6.

For the sentence classifier, we achieved the highest values for precision (0.80)
and F1-score (0.83) for classifying decisions. The sentence classifier for alterna-
tives and decisions achieved overall the highest recall values (0.98), but overall
lowest precision for classifying justifications. On the review level, the classifier
for criteria achieved overall best precision and recall, reaching values for preci-
sion, recall, and F1-score of respectively 87%, 99%, and 81%. We achieved the
best F1-score with the classifier for issues (0.82).

Figure 5.3b depicts learning curves with Recall and Precision scores for clas-
sifying justifications using the configuration from Table 5.6 for both levels. We
can see a stronger influence of the training data on the classification accuracy
on the review level compared to the sentence level. In particular, both preci-
sion and recall learning curves show a higher variance of slope on the review
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Table 5.6.: Most accurate classifiers to mine user rationale in sentences
R. concept Precision Recall F1 Configuration

Issue 0.74 0.70 0.71 NB: Body 1-grams, lemma, -stops, -punct, rating,
sentiment, syn. subtree count, syn. tree height

0.60 0.93 0.73 NB: Body 1-grams, POS 1-2grams, -punct
0.70 0.86 0.77 LR: Body 1&2-grams, POS 1&2grams, -stops, -

punct, rating, length, sentiment

Alternative 0.80 0.84 0.82 SVC: Body 1&2-grams, POS 1&2-grams,
+lemma, -stops

0.60 0.98 0.75 NB: Body 1&2-grams, POS 1&2-grams, +lemma,
-stops, -punct, rating, length, sentiment, CP 1-
grams, subt. count, t. height

0.77 0.88 0.82 SVC: Body 1&2-grams, POS 1&2-gram, -stops,
subt. count

Criteria 0.76 0.75 0.75 SVC: Body 1-grams, -stops, rating, CP 1-grams
0.60 0.96 0.74 NB: Body 2-grams, POS 1&2-grams, +lemma,

-stops, -punct, rating, length, sentiment, CP 1-
grams, t. height

0.71 0.84 0.77 SVC: Body 1-grams, POS 1-grams, rating,
length, t. height

Decision 0.80 0.80 0.80 LR: Body 1-grams, -stops, rating, sentiment
0.63 0.98 0.76 NB: Body 2-grams, length, subt. count
0.76 0.93 0.83 SVC: Body 1&2-grams, +lemma, rating, subt.

count

Justification 0.69 0.74 0.71 LR: Body 1-grams, POS 1-gram, sentiment
0.60 0.93 0.73 NB: Body 1-grams, POS 1-grams, -punct, length,

CP 1-grams, t. height
0.66 0.86 0.74 SVC: Body 2-grams, sentiment, t. height

level compared to the sentence level. We can reasonably assume that this is
due to the higher level of noise contained in a review compared to a sentence.
In particular, we can see, that on the review level increasing the training set
approximately after the curves’ peaks slightly improves precision while the re-
call is lowered using the employed feature types. This highlights the limits in
classifying justifications with the employed feature types.

5.2.3. Feature analysis

We used an ensemble of tree classifiers using the sentence and review dataset, to
assess the feature importance over all feature types for the review and sentence
level classification. These were the classifiers Adaptive Boost [166], Extra Tree
[167], Gradient Boosting [168], and Random Forest [169]. For each feature, we
averaged the sum over all importance scores obtained by these classifiers. We
then selected the top 10 most informative features for each classifier.

Most informative features for sentence classifier The most informative fea-
tures for the concept Issues was rating, while the second most significant was
length. The further significant features were 2 POS unigrams, 2 POS bigrams,
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Table 5.7.: Most accurate classifiers to mine user rationale in reviews.
R. Concept Prec. Recall F1 Configuration

Issue 0.83 0.61 0.70 NB: Body 1-gram, +lemma, -punct, rating,
length, sentiment, t. height

0.60 0.98 0.74 NB: Body 1-grams, -stops, -punct, length, CP 1-
grams, subt. count, t. height

0.78 0.86 0.82 SVC: B 1-grams, +lemma, -punct, rating, length,
sentiment, CP 1-grams

Alternative 0.81 0.70 0.72 NB: Body 1-grams, -stops, rating, sentiment,
subt. count, t. height

0.62 0.98 0.74 SVC: Body 1&2grams, POS 1&2-grams, title,
+lemma, -stops, subt. count, t. height

0.74 0.91 0.81 NB: Body 1-grams, -stops, rating, length, senti-
ment, t-sentiment, t. height

Criteria 0.87 0.61 0.71 NB: POS 1&2-grams, T. 2-grams, length, senti-
ment , t. height

0.60 0.99 0.74 NB: Body 2-grams, POS 1&2-grams, +lemma,-
punct, length, sentiment

0.73 0.92 0.81 SVC: Body 2-grams, +lemma, -punct, rating,
sentiment

Decision 0.80 0.67 0.72 NB: Body 1-ngrams, -stops, rating, t-sentiment

0.60 0.96 0.73 NB: Body 1-grams, -punct, rating, length, CP
1-grams, subt. count

0.71 0.89 0.78 SVC: Body 1-grams, +lemma, length, t-
sentiment, subt. count, t. height

Justification 0.82 0.60 0.70 NB: POS 1&2-grams, T. 1-grams, -punct, rating,
sentiment

0.61 0.96 0.74 SVC: Body 1&2grams, +lemma, -stops, senti-
ment, t. height

0.71 0.87 0.78 SVC: Body 1-grams, -stops, length, sentiment,
CP 1-grams, t. height
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Figure 5.3.: Learning curves depicting cross-validated NB Precision and SVC
Recall values on review (Figure 5.3a) and LR Precision and NB
Recall values on sentence level (Figure 5.3b).

2 POS trigrams and a word unigram. Rating and length were together almost
3 times more informative than the remaining features. The best scoring POS
feature ranked overall third was the bigram RB-VB, i.e adverb and verb. An
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example excerpt of a sentence having this feature is given with “... repeatedly
attempting to get my bank transactions loaded with only occasional random
success”. The best ranked POS trigram was MD-RB-VB, i.e. modal, adverb,
and verb. An example sentence having such feature is “after using a couple of
times it won’t let me proceed until I register”.
For the concept Alternatives, POS unigrams were the most informative fea-

tures, accounting for almost half of the overall top 10 significance score. The
best scoring among them was the unigram NNP (proper singular noun), while
the best scoring POS bigram was NNP-CD (i.e., singular noun and cardinal
number). Among the best scoring word unigram feature were the word ‘version’
and ‘versions’. Length was placed at the 10th rank of significance.
For the concept Criteria, length and sentiment were among the most signif-

icant features. They account for almost half of the overall score achieved by
the top 10 informative features. The POS bigrams scored slightly better than
the word unigrams. The best scoring bigrams were RB-JJ (i.e., adverb and
adjective) and TO-PRP (i.e., to infinitive and personal pronoun). The most
significant words were ‘are’, ‘easy’, and ‘not’. The 10th placed feature was the
POS trigram NNS-IN-DT (noun plural, preposition, and determiner).
The top 10 features for the concept Decisions were word and POS unigrams,

syntactic subtree count, and POS bigrams. Word and POS unigrams had a
similar significance, word unigrams being slightly more important. VBD (i.e.,
verb past tense) was the most significant POS tag while the word ‘bought’ was
the most significant word. The most significant bigram was PRP-VBD (i.e.,
personal pronoun and verb past tense). A typical sentence having such feature
is “This is the thing that will make me return this in 55 more days”. The subtree
count feature is as important for the classifier as the POS bigrams.
Length was the best ranked feature for the concept Rationale. Of similar im-

portance were word unigrams, the best scoring being the argumentation marker
‘because’. The POS unigrams and bigrams were each approximately a third as
informative as the word unigrams. The VBD (i.e., verb past tense) was the most
informative POS unigram. The most informative bigram was NN-TO (noun and
to infinite). The tree height feature was ranked 7th most informative feature.

Most informative features for review classifier Rating was the most infor-
mative feature for the concept Issues. Among the top 10 best features were
also length and sentiment. Rating alone was almost 3 times more informative
than all top scoring words, and more than three times as informative as POS
bigrams. The most informative word was the word ‘not’ in the review title. The
best placed POS bigram was RB-VB (i.e., adverb and verb). An example of a
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review sentence having this feature is “Syncing my online accounts just does not
work correctly because it keeps asking me to enter a password even though it’s
saved”.

For the concept Alternatives, length was the most informative feature among
the top 10. It scored more than all top ranked word unigrams, and almost two
times more informative than the one POS unigram CD (i.e., cardinal number).
The best ranked word was ‘version’, while the best ranked POS bigram was TO-
NNP. The trigram VBG-IN-DT (i.e., verb in present participle, preposition, and
determiner) was placed 10th. A review sentence with such a feature is given
with “I started playing with the original Sims and bought Sims 2”.

Length was the most informative feature for the concept Criteria. It was
approximately three times more informative than the sentiment score. The four
top ranked word unigrams had a similar significance as the top three ranked
POS bigrams. They each had less than half of the significance of the feature
length. The top words were ‘are’, ‘not’, ‘easy’, and ‘user’. The best placed POS
bigram was RB-JJ (i.e., adverb and adjective). The second best was PRP-VBD
(i.e., personal pronoun and verb in the past tense). The third best placed POS
bigram was PRP-CC (i.e., personal pronoun and coordinating conjunction). An
example review sentence having the feature RB-JJ is given with “For me, it is
very dependable and easy to use.”, for the feature PRP-VBD with “For me, it
is very dependable and easy to use”. The one top scoring POS unigram was JJ
(i.e., adjective).

POS bigrams, followed by word unigrams, POS unigrams, rating, and POS
trigrams were among the top 10 features for the concept Decisions. The overall
single best feature was PRP-VBD (i.e., personal pronoun and verb in the past
tense). An example review sentence having this feature is “We were FORCED
to upgrade to the newest version (Pro 2014) in order to continue using payroll &
merchant services”. Among the best placed words were the verbs ‘bought’ and
‘upgrade’. VBD (i.e., verb in the past tense) was the best ranked POS unigram
and VBG-DT-NN (i.e., verb in present participle, determiner, and noun) the
only POS trigram ranking among the top 10.

Length scored highest for the concept Rationale. It was slightly better than
the top 5 words. The remaining top features were two POS bigrams, one trigram,
and one CP unigram. The argumentation marker ‘because’ was ranked 2nd and
was the best scoring word. Other top scoring words were ‘bought’, ‘you’, ‘soft-
ware’, and ‘since’. The best ranked POS bigrams were IN-NN (i.e., preposition
and noun) and IN-PRP (i.e., preposition and personal pronoun), while the best
placed POS trigram was TO-DT-NN (i.e., to, determiner, and noun). The CP
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unigram PP (i.e., prepositional phrase) was ranked 5th. Prepositional phrases
act as adjectives or adverbs, as seen in the example review sentence “It takes
several (up to 10) seconds to switch between accounts or screens”.

5.3. Classifying Rationale Sub-concepts

We conducted experiments for the various Alternative, Criteria, and Decision
sub-concepts using the baseline configuration. Again, Precision (P), Recall (R),
and F1 scores are given in percent.

We found that in most cases, across the rationale sub-concepts, the classifi-
cation algorithm Naive Bayes performed best in terms of recall, while Random
Forest performed best in terms of precision.

In the next section, we present the classification results, focusing on reporting
the highest F1 scores.

5.3.1. Alternative

Table 5.8 summarizes the classification results for classifying the different al-
ternatives. In most cases, we achieve the highest precisions and recalls over
all alternative sub-concepts respectively with NB and RF on both granularity
levels.

For classifying Alternative Feature we achieve the highest F1 score of 66%
(with a recall of 70%) with the MPC classification algorithm on the review level.
On sentence level, we achieve the highest F1-score of 77% (with a recall of 79%)
with the SCV classifier.

For classifying Alternative Version, on the review level we achieve the
highest F1 score of 75% with the SVC, DT, and LR classifier. The LR classifier
achieves a recall of 80%. On the sentence level, we achieve the highest F1 score
of 81% with SVC, with a recall of 82%.

For classifying Alternative Software, we achieve on the review level the
highest F1 score of 68% using LR with a recall of 74%. On sentence level, we
achieve the highest F1 scores with SVC with a recall of 74%.

The results of the statistical tests on the pair-wise differences between the clas-
sifiers for classifying alternative versions (most prevalent alternative) is shown
in Table 5.9. Statistical tests on the pair-wise differences between the classi-
fiers for the remaining alternative sub-concepts on both granularity levels are
summarized in Appendix in Tables B.5 and B.6.
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Table 5.8.: 10-Fold cross-validated results of binary classifiers for alternatives
using various classification algorithms with the baseline configura-
tion.

Algorithm Alt. Feature Alt. Version Alt. Software
P R F1 P R F1 P R F1

Review level
Naive Bayes (R) 55 59 56 65 83 73 60 77 67
Support Vector Classifier 60 67 64 74 77 75 62 69 66
Decision Tree 62 49 55 76 74 75 65 59 62
Logistic Regression 56 69 62 71 80 75 63 74 68
Gaussian Process Classifier 51 66 57 66 80 73 60 77 67
Random Forest (P) 64 40 49 77 66 71 68 55 61
Multi-layer Perceptron Classifier 63 70 66 69 77 73 62 72 67
Sentence level
Naive Bayes (R) 70 81 75 67 91 77 67 81 73
Support Vector Classifier 75 79 77 79 82 81 76 74 75
Decision Tree 80 56 66 81 80 80 78 64 70
Logistic Regression 74 75 75 81 79 80 77 72 75
Gaussian Process Classifier 71 72 72 81 78 79 76 72 74
Random Forest (P) 80 38 52 82 72 76 86 63 73
Multi-layer Perceptron Classifier 76 76 76 70 78 74 72 74 73

Table 5.9.: McNemar test results (p-values) pointing out the statistical signifi-
cance of the differences between classifiers of alternative versions, on
review (lower triangular matrix) and sentence level (upper triangular
matrix).
DT GPC LR MPC NB RF SVC

DT 1 0.33 0.82 0.64 3.7e-08 0.00027 0.24
GPC 0.085 1 0.039 0.73 8.5e-16 0.0066 0.0001
LR 0.14 0.73 1 0.81 8.6e-14 0.00038 0.0094
MPC 0.53 0.2 0.31 1 6.3e-14 0.013 0.03
NB 0.014 0.25 0.12 0.0037 1 3.5e-17 7.8e-10
RF 0.042 5.6e-05 0.00015 0.005 2.4e-06 1 9.2e-07
SVC 0.51 0.093 0.12 1 0.0052 0.0036 1

5.3.2. Criteria

Table 5.10 summarizes the classification results for classifying the different alter-
natives on both granularity levels. As for alternative sub-concepts, we achieve
in most cases the highest precisions and recall over all criteria sub-concepts re-
spectively with the classifier algorithms NB and RF on both granularity levels.
For classifying Usability on review level, we achieve the highest F1 score by

NB with 72% (with a recall of 79%). On the sentence level, the highest F1 score
is obtained with SVC with 74% (with a recall of 71%).
NB performs also best in terms of the F1 score in classifying Reliability on

the review level reaching an F1 score of 66% with a recall of 72%. The best F1
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Table 5.10.: 10-Fold cross-validated results of binary classifiers for criteria using
various classification algorithms with the baseline configuration.

Algorithm Usability Reliability Performance Supportability
P R F1 P R F1 P R F1 P R F1

Review level
Naive Bayes 66 79 72 60 72 66 59 76 67 64 83 72
Support Vector Classifier 72 70 71 61 64 62 65 68 67 70 71 71
Decision Tree 67 67 67 60 56 59 68 57 63 72 67 69
Logistic Regression 70 73 71 60 67 64 64 73 68 72 78 75
Gaussian Process Classifier 64 81 71 57 68 63 56 70 63 66 80 72
Random Forest 75 56 65 69 47 56 75 55 64 73 61 67
Multi-layer Perceptron Clas-
sifier

70 72 71 61 65 63 62 71 66 68 74 71

Sentence level
Naive Bayes 68 79 73 66 77 71 69 81 75 70 89 78
Support Vector Classifier 76 71 74 72 71 71 77 73 75 79 79 79
Decision Tree 69 63 66 69 59 64 81 71 76 75 71 73
Logistic Regression 75 69 72 72 71 72 78 73 75 82 77 79
Gaussian Process Classifier 77 67 71 72 70 71 79 69 74 82 74 78
Random Forest 76 61 67 78 47 59 79 67 72 82 69 75
Multi-layer Perceptron Clas-
sifier

72 71 72 65 69 67 70 74 72 74 79 77

score of 72% (with a recall of 71%) is achieved on the sentence level by LR.

The highest F1 score of 68% (with a recall of 73%) for classifying Perfor-
mance is achieved on the review level with LR, while on the sentence level the
highest F1 score of 76% (with a recall of 71%) was achieved by DT.

LR also achieved the highest F1 score for classifying Supportability on the
review and sentence level with respectively F1 scores of 75% and 79% (with
recalls of 78% and 77%). On the review level, the same F1 score was as LR was
achieved by SVC with a slightly better recall.

Table 5.11.: McNemar test results (p-values) pointing out the statistical sig-
nificance of the differences between Usability classifiers on review
(lower triangular matrix) and sentence level (upper triangular ma-
trix).

DT GPC LR MPC NB RF SVC

DT 1 0.0035 8e-06 1.2e-06 1.2e-22 0.063 9.5e-09
GPC 1.2e-06 1 7e-05 0.0051 5.7e-26 4.9e-08 1.5e-06
LR 0.11 3.2e-08 1 0.23 1.2e-20 4.9e-13 0.0052
MPC 0.14 6.3e-05 1 1 4e-10 1.9e-12 0.69
NB 0.00011 0.31 7.3e-05 0.00053 1 1.7e-36 5.9e-13
RF 0.23 5.3e-12 0.0012 0.003 8.5e-09 1 7.8e-17
SVC 0.63 3e-09 0.072 0.11 2.4e-06 0.057 1

The results of the statistical tests on the pair-wise differences between the
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classifiers for classifying usability (most prevalent criteria) is shown in Table
5.11. The results of the statistical tests on the pair-wise differences between
classifiers for the criteria sub-concepts reliability, performance, and supporta-
bility, on both granularity levels, are included in the Appendix, respectively in
Tables B.7, B.8, and B.9.

5.3.3. Decision

Table 5.12 summarizes classification results for classifying decision sub-concepts
on the review and sentence level. We achieve again in most cases the highest
precisions and recall over all decision sub-concepts respectively with the classifier
algorithms NB and RF on both granularity levels.

For classifying Acquire software decisions we achieve the highest F1 score of
69% with DT and GPC (wit recall up to 79%) on the review level, while on the
sentence level we achieve the highest F1-score of 83% with DT (with recall of
85%).

Table 5.12.: 10-Fold cross-validated results of binary classifiers for decisions us-
ing various classification algorithms with the baseline configuration.

Algorithm Acquire Update Switch Relinquish
P R F1 P R F1 P R F1 P R F1

Review level
Naive Bayes 61 73 67 57 83 69 47 64 54 64 72 68
Support Vector Classifier 65 67 66 67 73 70 49 55 52 67 74 70
Decision Tree 67 70 69 86 82 84 53 50 51 67 61 64
Logistic Regression 63 69 66 66 79 72 46 56 51 67 77 72
Gaussian Process Classifier 61 79 69 60 73 66 43 56 49 63 68 65
Random Forest 69 54 61 84 65 73 69 43 53 72 60 65
Multi-layer Perceptron Classifier 62 67 64 59 76 67 51 59 54 67 78 72
Sentence level
Naive Bayes 62 89 73 67 93 78 60 83 69 59 82 69
Support Vector Classifier 81 80 81 85 82 84 66 77 71 70 76 73
Decision Tree 82 85 83 87 84 86 62 55 57 67 78 72
Logistic Regression 84 80 82 85 83 84 64 75 69 70 73 72
Gaussian Process Classifier 84 79 81 85 82 83 57 72 64 70 64 67
Random Forest 84 75 79 88 76 82 73 52 61 73 71 72
Multi-layer Perceptron Classifier 68 75 72 73 82 77 67 72 69 62 70 66

Again, with DT we achieve the highest F1 score for classifying Update soft-
ware decision on the review and sentence level with respectively of 84% and 86%
(with the recall of up to 84%).

For classifying Switch software decisions we achieve the highest F1 score of
54% with NB and MPC (with a recall of up to 64%) on the review level, while
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on the sentence level the highest F1 score of 71% is achieved with SVC (with a
recall of 77%).
Finally, for classifying Relinquish decision, on review level we achieve the

highest F1 score with LR and on the sentence level with SVC, amounting re-
spectively to 72% and 73% (with a recall of up to 77%).

Table 5.13.: McNemar test results (p-values) pointing out the statistical signif-
icance of the differences between classifiers of Acquire decisions on
review (lower triangular matrix) and sentence level (upper triangu-
lar matrix).

DT GPC LR MPC NB RF SVC

DT 1 0.02 0.04 0.0009 0.07 9.3e-06 0.054
GPC 0.018 1 0.51 0.15 1.9e-07 0.066 0.52
LR 0.91 1.6e-06 1 0.067 1.1e-06 0.02 1
MPC 0.48 6.5e-05 0.44 1 1.3e-12 1 0.029
NB 0.52 0.02 0.11 0.024 1 1.2e-08 8.4e-06
RF 7.8e-05 1.8e-11 7.4e-05 0.0013 9.2e-07 1 0.019
SVC 0.52 2.4e-05 0.38 1 0.016 0.00073 1

The results of the statistical tests on the pair-wise differences between the
classifiers for classifying acquire decisions (most prevalent decision) is shown in
Table 5.13. The results of the statistical tests on the differences between classifi-
cation results on both granularity levels for the remaining decision sub-concepts,
for Update, Switch, and Relinquish decision, are included in the Appendix re-
spectively in Tables B.10, B.11, and B.12.

5.4. Discussion

In addition to a baseline configuration including only lexical features, in our
experiments we additionally assessed various classifier configurations that in-
clude also other feature types such as syntactical features and sentiments. We
found that for certain rationale concepts, the classifiers trained using the base-
line configuration are able to reach remarkably good results compared to the
classification models trained including also other feature types. One example is
the classification of decisions on the sentence level, where we are able to reach
an F1 score of 79% using the Support Vector Classifier and Logistic Regression.
The best identified configuration that improves the result by 4%, includes larger
lexical feature spaces (i.e., includes bigrams in addition to single words), meta-
data, and syntactical features. The preprocessing of such a classification model
is linked with significantly higher computation costs compared to the baseline
configuration. These costs need not only to be accounted during training but
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also during the application of such a model.
Therefore, a decision which classification configuration to use might be based

on a cost-accuracy trade-off analysis. Word features as used in our approach
can be extracted with less computational effort, compared to more sophisticated
features such as sentiments or syntactical features. Thus, a baseline configura-
tion might be more practical if it leads to similar or acceptable classification
accuracies compared to configurations that employ other feature types, because
of the significantly less computational effort that is expected.

5.5. Summary

In this Chapter we assessed how well we can mine rationale concepts using a
baseline and random classifier configuration. We assessed feature importances
of diverse classification feature types. We finally assessed how well we can mine
the individual rationale sub-concepts using the baseline classifier configuration.

RQ5.1 Findings We assessed various (baseline and random) classifier config-
urations for classifying user rationale concepts and were able to reach precision
scores of up to 87% and recall scores of up to 99%, with corresponding F1
scores ranging from 60% to 83%. We achieve the highest F1 score for classifying
decisions using the classification algorithm Naive Bayes and employing lexical,
syntactical, and star rating features, and the lowest F1 score for classifying jus-
tifications, using the same algorithm and employing lexical, syntactical, and
sentiment features.

RQ5.2 Findings Among the most significant features identified are star rating
(e.g., for issues), cardinal numbers (e.g., for alternatives), text sentiments (e.g.,
for criteria), past tense verbs (e.g., for decisions), and argumentation markers
(e.g., for justifications).

RQ5.3 Findings Using the baseline configuration for classifying the rationale
sub-concepts, the algorithm Random Forest (RF) achieves in most cases the
highest precision and recall scores of up to 84% and 93% respectively (with
corresponding F1 scores ranging between 49% and 84%). Comparing the F1
scores of the within-concept classification results, we obtained the best F1 scores
for classifying alternative versions (81% with SVC), supportability criteria (79%
with LR), and update decisions (86% with SVC).
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Chapter 6.

Criteria Mining

Criteria is one of the fundamental rationale concepts in software engineering [9,
89]. In Chapter 3 we found that criteria is the most pervasive concept in user
rationale. User report criteria to justify and explain their stances or decisions
they have taken.

In this Chapter we use a criteria dataset from industry (made available by
the RE’17 data challenge1) and study whether the labeled dataset of user ratio-
nale can be used to improve classification accuracy of Criteria classifier for the
criteria dataset and handle class imbalances as found in the criteria dataset. It
is based on the paper Kurtanović and Maalej [165], that was published at the
International IEEE Requirements Engineering (RE) 2017 Conference. In our
classification experiments we employed the Support Vector Classifier (SVC).

We aimed to assess whether our dataset of user rationale, derived from user
feedback, can be used to handle class imbalances in an industrial dataset such the
one we used in this study. Despite that our dataset is more informal compared
to the criteria dataset from industry, we hypothesized that similarities on the
lexical level (e.g., adjectives) can make them usable for the aimed purpose.

This Chapter is structured as follows. Section 6.1 gives an overview of the
research design, introduces the research questions and the criteria dataset from
industry, and describes the research methodology. Section 6.2 presents the clas-
sification results. Section 6.4 finally summarizes the Chapter.

6.1. Research Setting

We first introduce the research questions and then describe the dataset and
research methods used in this study.

1http://re2017.org/pages/submission/data_papers/
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6.1.1. Research questions

We focus on the following research questions:

RQ6.1 How well can we automatically classify requirements as functional (FR)
or non-functional requirements (NFR)? What are the most informative
features for classifying FR and NFRs?

RQ6.2 How well can we automatically classify the four most frequent criteria
classes in the dataset: usability, security, operational, and performance?

RQ6.3 Can we handle class imbalances in the criteria dataset from industry
using the user rationale dataset to improve classification?

RQ6.4 Can we improve the classification accuracy on the criteria dataset from
industry using the user rationale dataset?

With the research questions RQ6.1 we aim to assess how well we can automat-
ically distinguish between functional and non-functional requirements in the
criteria dataset from industry. Our aim is to evaluate the potentials of differ-
ent types of classification features for criteria classification. With the research
question RQ6.2 we study the classification of the four most prevalent criteria
classes in the dataset from industry. Among those are the criteria usability and
performance - both found also in our user rationale dataset. Finally, with the
two last research questions we study how a criteria dataset from industry and
a dataset from user feedback (i.e., user rationale dataset) can be combined to
improve the classification on the criteria dataset from industry. In particular,
with RQ6.3) we aim assess whether we can handle class imbalances in the crite-
ria dataset from industry using our user rationale dataset, and RQ6.4) whether
we can improve the classification accuracy of the criteria classifier by enlarging
it with our user rationale dataset that is obtained from user feedback.

6.1.2. Research data

Table 6.1 presents an overview of the criteria dataset from industry that has
12 classes and overall 625 requirements. The column Length shows the average
requirements length (i.e., words count) for each class. The Table also shows
that some classes of the criteria dataset are underrepresented. The criteria
portability (PO) and fault tolerance (FT) are very rare in the dataset.
Potential issues with such datasets regarding automated classification are due

to the absolute rarity of some classes as well as the within-class imbalances [170,
171]. In particular, the issue with rare instances of the target class can make
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Table 6.1.: Overview of the “Quality attributes (NFR)” dataset.
Requirements Class #Requirements Percent ∅ Length
Functional 255 40,80% 20

Availability (A) 21 3,36% 19
Fault Tolerance (FT) 10 1,60% 19
Legal (L) 13 2,08% 18
Look & Feel (LF) 38 6,08% 20
Maintainability (MN) 17 2,72% 28
Operational (O) 62 9,92% 20
Performance (PE) 54 8,64% 22
Portability (PO) 1 0,16% 14
Scalability (SC) 21 3,36% 18
Security (SE) 66 10,56% 20
Usability (US) 67 10,72% 22

Total 627 100%

a classification difficult despite the class imbalances [172]. When the concept
itself has a subconcept with limited instances, additional difficulty might arise
when classifying a minority concept due to within-class imbalances [173, 174].
We focus on the four most prevalent criteria classes and evaluated an additional
dataset for handling class imbalances.

6.1.3. Research methodology

We preprocessed the dataset in three steps. First, we converted the criteria
dataset from industry to a CSV file. Then, we experimented with various clas-
sification features and classification algorithms, reporting Precision (P), Recall
(R), and F1 scores. Third, we pre-calculated the classification features that
are independent of the classifier training phase to reduce time needed for cross-
validation.
We employed sampling strategies for dealing with imbalances in data to

achieve balanced classes, as balanced class distribution can improve the clas-
sification accuracy [170, 175, 176, 177]. In particular, we employed random
under-sampling to achieve a balanced class distribution. That is, in a binary
case, the majority class is under-sampled. Additionally, we evaluated an over-
sampling technique with the user rationale dataset (UR), derived from user
feedback. That is, in a binary case, the minority class is over-sampled. Figure
6.1 illustrates the two sampling strategies. As introduced in Section 4, the UR
dataset contains usability and performance requirements and is derived from a
sample of Amazon software reviews (Table 4.5).
To answer RQ6.1 we derived a sample of two classes from the dataset: the

classes denoting non-functional requirements (i.e., criteria) summarized as one
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(a) Illustration of the oversampling strategy: the minority Class 1 is oversampled.
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(b) Illustration of the undersampling strategy: the majority Class
2 is undersampled.

Figure 6.1.: Illustration of sampling strategies.

class NFR and the second remaining class FR denoting functional requirements.
We then randomly under sampled the majority class (i.e., NFR in this case) to
balance the two classes and obtain the training set. To assess the feature im-
portances, we built a scoring classifier as an ensemble of tree classifiers using a
FR/NFR training set: Adaptive Boost [166], Extra Tree [167], Gradient Boost-
ing [168], and Random Forest [169]. For each feature, we averaged the sum
over all feature importance scores. We ranked the features according to their
importances and selected the top 10.

To answer RQ6.2, we first filtered out the functional requirements from the
dataset. Then, we assessed four binary classifiers for identifying the four most
frequent criteria in the dataset: usability, security, operational, and perfor-
mance. We additionally evaluated a multi-class classifier for predicting these
four classes.

For RQ6.1 and RQ6.2 experiments, we assessed different classifier configura-
tions. In addition to a baseline (including lexical features only), we also assessed
the classifiers employing all feature types and using an automatic feature selec-
tion method that uses statistical scoring functions. Such methods reduce the
feature space by removing redundant and irrelevant features, while trying not
to loose much information [178]. This mitigates over-fitting of the classification
model and improves its generalizability. We also evaluated learning curves (us-
ing F-scores for simplicity reasons) to assess how classifiers benefit from larger
trainings sets (i.e., size of labeled data).

86



6.1. Research Setting

Class 1
(minority 

class)
Class 2

Class 1
(Criteria dataset)

Class 1U
R

Da
ta

se
t

Cr
ite

ria
Da

ta
se

t

Tr
ai

ni
ng

Da
ta

se
t

Class 2
(Criteria data)

Class 1
(UR dataset)

Figure 6.2.: Illustration of the hybrid training set: composition of the criteria
and UR dataset.

For answering RQ6.3 and RQ6.4, we used under- and oversampling strategies
to build a hybrid training set focusing on classifying usability and performance
criteria. The composition of such a training set is illustrated in Figure 6.2.

Class 1 denotes the minority class (e.g., usability) while Class 2 denotes the
majority class (e.g., non-usability criteria). The Class 1 sample of the training
set for the classifier is built from the criteria dataset from industry and user
rationale (UR) dataset. The UR dataset contains sentences addressing usability
and performance requirements from user reviews. An example of a usability
requirement is “It’s not easy to open a group of RAW files, edit them and then
save them as JPEGs”; an example of a performance requirement is “Boot up
and shut down seems to take longer now ”.

We conducted two types of experiments for answering RQ6.3 and RQ6.4.
With the first type of experiments we simulated a case of minority class rarity
and how oversampling such class with the UR dataset of the same class (up to
the maximum number of class instances of the minority criteria class) affects
the classification accuracy. In these experiments we under-sampled the minority
class (i.e., Class 1) for the training set emphasizing its rarity. Then we oversam-
pled this class by enlarging it with a random subsample from the UR dataset.
The majority class was randomly sampled from the criteria dataset only. The
final training set had an equal ratio of both classes.

In the second type of experiments, we aimed to assess whether further expand-
ing the minority class sample with the UR dataset can improve the classification
accuracy. We took the whole minority class sample from the criteria dataset
and expanded it with the data from the UR dataset. We used several oversam-
pling factors: 0.25, 0.50, 0.75, and 1.00. Again, the majority class was derived
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Table 6.2.: Classification features used in the experiments.
Feature Description

Text n-grams N-grams of words of the review body, for n ∈ {1, 2, 3}
POS n-grams N-grams of part of speech (POS) tags on the word level,

based on the Penn Treebank Corpus [161], n ∈ {1, 2, 3}
CP unigrams Unigrams of part of speech (POS) tags on the clause and

phrase level (CP), based on the Penn Treebank corpus
[161]

%Noun Fraction of nouns
%Verbs Fraction of verbs
%Adjectives Fraction of adjectives
%Adverbs Fraction of adverbs
%Modal Fraction of modal verbs
Length Text length
Subtree count Sentence syntax sub-trees count
Tree height Sentence syntax tree height

only from the criteria dataset. The final training set had an equal ratio of both
classes.

6.1.4. Classifier configuration

The classification features that we used for the classifiers are listed in Table 6.2,
while the preprocessing techniques are summarized in Table 6.3.

Table 6.3.: Preprocessing techniques used in the experiments.
Preprocessing Description

Stopwords Whether to remove stopwords from the review text
Lemmatization Whether to group different inflected forms of a word to its base form

(lemma)

We evaluated the FR/NFR binary classifier as well as the binary and mul-
ticlass criteria classifier using 10-fold cross validation. The criteria classifier,
trained on a hybrid dataset composed of criteria and UR dataset, was validated
using a test set derived from the criteria dataset only (RQ3). For the evaluation
of this classifier we used a Monte-Carlo cross validation [139] using 10 iterations
with hybrid training sets and the criteria-dataset based test sets. In particular,
in each iteration we randomly sampled 10% of the criteria dataset as the test
set with an equal number of both classes. This test set estimates the overall
performance of the classifier against unseen data from the criteria dataset. The
remaining 90% of the criteria dataset and the UR dataset were used to build
the final training set. Thus, in each iteration we trained the classifier using a
randomly created hybrid training set (from criteria and UR datasets) and eval-
uated it against a randomly created test set (from the criteria dataset only).
For all experiments we calculated the precision, recall, and the F1 score [135,
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136] and report their mean scores.
We evaluated the classifiers using a baseline configuration, using only word

features that include bag of ngrams with n ∈ {1, 2, 3} (single words, word bi-
grams, word trigrams) with filtered stopwords and words lemmatized. We also
evaluated the classifier using a configuration employing all feature types listed
in Table 6.2 and using only the k top features for k up to 1000 (in Tables we
report only k up to 500). Simple models, such the one obtained using the base-
line configuration, have been shown to work better in practice than alternative,
more complex, models [164], one of the reasons being that the latter easier fit
to noise.

6.2. Classification Experiments

In this section we report the classification results for the FR/NFR binary clas-
sifier, the binary and multi-class criteria classifier (for US, SE, O, and PE), and
the criteria classifier trained using a hybrid training set (for US and PE).

6.2.1. FR/NFR binary Classifier

The performance metrics of the cross-validated FR/NFR classifier are summa-
rized in Table 6.4.

Table 6.4.: 10-fold cross-validated performance metrics of the FR/NFR binary
classifier.

Classification techniques FR NFR
PrecisionRecall F1 PrecisionRecall F1

Word features
Word features (without au-
tom. feature selection)

0.92 0.93 0.93 0.93 0.92 0.92

Word features (using autom. selection of k best features)
k=100 0.86 0.51 0.63 0.65 0.92 0.76
k=200 0.89 0.68 0.77 0.74 0.92 0.82
k=300 0.91 0.74 0.82 0.78 0.93 0.85
k=400 0.91 0.75 0.82 0.79 0.93 0.85
k=400 0.92 0.79 0.85 0.82 0.93 0.87
All features (using autom. selection of k best features)
k=100 0.80 0.81 0.80 0.81 0.80 0.80
k=200 0.84 0.84 0.84 0.83 0.84 0.83
k=300 0.85 0.87 0.86 0.86 0.85 0.85
k=400 0.86 0.86 0.86 0.85 0.87 0.86
k=500 0.88 0.87 0.87 0.87 0.88 0.87

For classifying FR/NFR, we achieve the best performance using word features
without automatic feature selection The precision and recall of the FR/NFR
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binary classifier is shown in Figure 6.3, while Figure 6.4 shows the learning
curve
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Figure 6.3.: Cross-validated precision and recall scores of the FR/NFR binary
classifier using word features without automatic feature selection.

We can see from the learning curve that the classification score stabilizes
with a training size above 400 requirements. The classification model has al-
ready a reduced feature space compared to the models that include all features.
The over-fitting of the associated classification model is additionally mitigated
with increased training size, which is illustrated with the difference between the
training and cross-validation score in Figure 6.4.
Overall, in Figures 6.5 it is apparent that the models’ performances stabilize

with a training size bigger than 400 for the employed requirements’ features.
The colored areas show the variances of the classification scores.
When employing automatic feature selection using the same model (word

features only) with only 200 of the most significant features we achieve an F-
score of ∼80% using ∼450 training examples (Figure 6.5a). Also, when using
the automated feature selection and employing all feature types, we achieve an
F-score ∼85% using the 200 most informative features (Figure 6.5b).
The automatic feature selection reduces over-fitting, as illustrated in Figures

6.5a and 6.5b; the curves of the training scores and cross-validation scores are
getting closer to each other with increasing training size. With automated
feature selection, the classifier using all feature types outperforms the classifier
using only word features. In particular, the classifier with all feature types
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Figure 6.4.: Learning curve using word features without automatic feature se-
lection.
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200 most informative features).
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(b) Learning curve using all feature types
(only 200 most informative features).

Figure 6.5.: Learning curves of the FR/NFR binary classifier.

achieves above ∼80% accuracy with ∼230 training samples only compared to
∼480 training samples needed to achieve the same accuracy when using word
features only. Furthermore, the classifier with all feature types stabilizes with
∼300 training examples and ∼85% accuracy.

When using an automatic feature selection employing only word features we
achieve higher recalls for classifying criteria compared to when all features are
employed. The difference between the mean recall scores is statistically signif-
icant for all evaluated k values (Welch’s t-test, p < 0.05). In contrast, when
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(d) PE classifier learning curve.

Figure 6.6.: Learning curves of the binary criteria classifier for US, SE, O, and
PE using all feature types and the 200 most informative features.

using an automatic feature selection, the recalls for classifying FRs are higher
when employing all features instead of employing only word features. The dif-
ference between the mean recall values is statistically significant for all k except
for k=500 (Welch’s t-test, p < 0.05).

Most Informative Features We assessed the 10 most informative features of
the FR/NFR classifier using all features types. Taken together, POS tags are
the overall best scoring among the top 10 features followed by the word ngrams
and the feature denoting the fraction of modal verbs. The single most informa-
tive feature is the POS tag CD (i.e., cardinal number). This is not surprising
since numbers are mostly used in NFRs which should make them concrete and
measurable. The second best scoring feature was the fraction of modal verbs
such as shall and should. This feature reflects the requirements writing con-
vention used in the criteria dataset. The single best ranked word feature is the
preposition ‘with’, which appears almost three times more often in NFRs than
in the FRs. Other top informative single words and bigrams were ‘allow’, ‘the
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Table 6.5.: 10-fold cross-validated performance metrics of the binary and multi-
class classifier techniques. Bold values represent the highest score
for the corresponding accuracy metric per criteria class.

Classification techniques Usability (US) Security (SE) Operational (O) Performance (PE)
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Binary Classification
Word features (w/o feature selection) 0.81 0.85 0.82 0.91 0.90 0.88 0.72 0.75 0.73 0.93 0.90 0.90
All feature types (using autom. selection of k best features)
k=50 0.7 0.57 0.61 0.81 0.77 0.74 0.78 0.5 0.57 0.87 0.57 0.67
k=100 0.76 0.62 0.66 0.68 0.7 0.66 0.77 0.59 0.65 0.81 0.66 0.72
k=200 0.76 0.7 0.71 0.76 0.78 0.73 0.73 0.7 0.7 0.78 0.75 0.75
k=300 0.74 0.67 0.69 0.75 0.78 0.73 0.72 0.7 0.69 0.82 0.8 0.79
k=400 0.78 0.67 0.71 0.76 0.77 0.73 0.74 0.72 0.71 0.83 0.8 0.8
k=500 0.80 0.71 0.74 0.74 0.81 0.74 0.72 0.73 0.71 0.87 0.81 0.82

Multi-Class Classification
Word features (w/o feature selection) 0.65 0.82 0.70 0.81 0.77 0.75 0.81 0.86 0.82 0.86 0.81 0.80
All feature types (using autom. selection of k best features)
k=50 0.49 0.68 0.55 0.6 0.5 0.39 0.42 0.47 0.33 0.85 0.53 0.63
k=100 0.55 0.68 0.59 0.6 0.39 0.46 0.41 0.65 0.48 0.88 0.6 0.7
k=200 0.63 0.64 0.6 0.63 0.48 0.53 0.43 0.6 0.48 0.77 0.73 0.73
k=300 0.63 0.64 0.6 0.61 0.56 0.55 0.45 0.57 0.47 0.8 0.68 0.71
k=400 0.63 0.65 0.6 0.63 0.56 0.56 0.51 0.62 0.53 0.86 0.74 0.77
k=500 0.70 0.66 0.64 0.64 0.53 0.56 0.47 0.62 0.51 0.81 0.74 0.76

product’, ‘table’ and ‘for’. A functional requirement having such a feature is
“The system shall allow modification of the display”.

The best ranked POS trigram was VB-VBN-IN (i.e., verb, verb in past par-
ticiple, and preposition). For example, this feature is found in “The report will
be reviewed for auditing purposes”. The best ranked POS bigram is NN-NNS
(i.e., noun, noun in plural). An example of this feature is found in “Program
Administrators and Nursing Staff Members shall be able to add a single student
to a cohort”.

6.2.2. Binary and multi-class criteria classifier

We assessed four binary criteria classifier for the criteria usability (US), security
(SE), operational (O), and performance (PE) as well as one multi-class criteria
classifier for all four classes. The precision, recall, and F-scores are summarized
in Table 6.5. For the classifiers employing an automated feature selection, we
plotted the precision curves as depicted in Figure 6.7a and the recall curves in
Figure 6.7b.

The performance classifier achieved the overall highest precision with a smaller
number of features compared to the other three evaluated criteria classifier.
Security classifier achieved the highest recall and required less than 50 features
for a recall above 0.70%, compared to the criteria classifiers of usability and
performance requiring more than 100 features for the same recall.

The binary classifier had a statistically significant higher recall for classifying
usability with k ∈ {300, 400, 500}, performance with k=300, and security with
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Figure 6.7.: Precision and recall scores of the various criteria classifiers using
the k most informative features.

k ∈ {100, 200, 500} (Welch’s t-test, p < 0.05).
The learning curves for the four NFR binary classifiers using SVC and 200 (k)

most informative features are shown in Figure 6.6. For O and PE the over-fitting
gets less likely by larger training sample.

6.2.3. Binary criteria classifier with hybrid training set

We first present classification results of the criteria classifier for classifying Us-
ability (US) and Performance (PE) requirements using the baseline configu-
ration, and training sets derived from criteria dataset only with balanced or
imbalanced binary classes of varying ratios (Table 6.6). Then, we asses whether
we can handle class imbalances of the criteria classifier using our UR dataset,
and whether we can improve classification accuracy for class C by enlarging
the training set using the UR dataset (relates to RQ6.3). The classifiers were
validated against a test set derived from criteria dataset only.

Criteria classifier baselines We conducted binary classification experiments
with imbalanced classes, simulating class rarity for Usability and Performance
requirements. Table 6.6 summarizes the results of the classification experiments
with balanced and imbalanced class ratio. We used abbreviations for Preci-
sion (P) and Recall (R). In the balanced case, we evaluated the classifier using
balanced classes derived using factors 0.33, 0.66, and 1.0 of the C’s class size
(denoted with #C). The two binary classes are C and Non-C (i.e., , in this case
US and Non-US, and PE and Non-PE). In the imbalanced case, we evaluated
the classifier using imbalanced classes C and Non-C, where C was undersampled
by 0.33 and 0.66 of the C’s class size.
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Table 6.6.: Baseline results of the binary usability and performance classi-
fiers using an balanced (i.e., #C=#Non-C) and imbalanced (i.e.,
#C<#Non-C) criteria dataset.

C size Non-C size Usability (US) Performance (PE)
P R F1 P R F1

Balanced class ratio (for max. possible #C)
#C #C 0.88 0.89 0.88 0.84 0.88 0.86
Balanced class ratio, obtained by undersampling both classes
0.66 #C 0.66 #C 0.80 0.85 0.82 0.89 0.88 0.88
0.33 #C 0.33 #C 0.60 0.80 0.68 0.70 0.66 0.68
Imbalanced class ratio, obtained by undersampling C only
0.66 #C #C 0.82 0.73 0.77 0.88 0.75 0.81
0.33 #C #C 0.70 0.37 0.48 0.50 0.32 0.39

Table 6.6 shows, that in case of balanced class ratio, for a max. possible #C,
we achieve similar classification results for classifying US and PE, with a slightly
lower precision score for classifying PE requirements.
In case of balanced classes obtained by undersampling both classes (with re-

spect to #C), undersampling both classes by a factor 0.66 worsens the classifica-
tion performance for classifying US more than for classifying PE. The precision
for classifying US and PE is respectively 0.80 and 0.89. The classification accu-
racies significantly drop for both US and PE when undersampling with factor
0.33. In this case, higher recall and lower precision is obtained for classifying
US compared to classifying PE.
In case of imbalanced classes (rows in light gray), undersampling C by a

factor 0.66 worsens the classification performance for classifying US more than
for classifying PE. The F1 score for both criteria classes drops on average by 0.09.
Undersampling with factor 0.33 the worsening is remarkably stronger with F1
score dropping on average by 0.43), with classification accuracy being lower for
PE compared to US this time. The next paragraph describes the classification
results that highlight the potentials of handling the case of class imbalances
with the UR dataset.

Handling imbalances with UR dataset In Table 6.7 we present classification
results of criteria classifier using a hybrid training set with balanced classes,
where the criteria instances of class C are undersampled by a factor, and then
oversampled using a subset of UR dataset by the same factor. Thus, the in-
stances of C are composed of the criteria and UR dataset.
Compared to the classification results obtained with imbalanced classes (Table

6.6), achieving a balanced class distribution by oversampling the imbalanced
training set, by enlarging the C-set with instances from UR dataset, we are
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Table 6.7.: Accuracy of the binary criteria usability (US) and performance (PE)
classifiers using a hybrid training set having a reduced size of the
minority class C and being enlarged with the UR dataset.

C size C size Non-C size Usability (US) Performance (PE)
Criteria
sample

UR sample Criteria
sample

P R F1 P R F1

0.66 #C 0.33 #C #C 0.83 0.83 0.83 0.93 0.74 0.81
0.33 #C 0.66 #C #C 0.58 0.66 0.58 0.93 0.52 0.64

able to significantly improve the classification accuracy. In fact, handling an
imbalanced criteria class distribution of 0.33:1 (C:Non-C) ratio by oversampling
the C-set by factor 0.66 with instances from the UR dataset, we are able to
significantly improve the F1 score for classifying both criteria classes, i.e., US
and PE. In particular, the recall for US is improved on average by 0.29, while the
precision and recall for PE is improved on average by 0.43 and 0.20 respectively.
We are also able to successfully handle the imbalanced criteria class distribution
of 0.66:1 (C:Non-C) ratio by oversampling the C-set by 0.33 with instances from
the UR dataset. While no significant change of precision for classifying US
is achieved (only by +0.01), the recall is substantially improved by 0.10. For
classifying PE, the precision score is improved by 0.05 with no significant change
of recall (only by -0.01).

Enlarging training set with UR dataset In Table 6.8 we present classification
results of criteria classifier using a hybrid training set with balanced classes,
where the criteria instances of class C are oversampled using the UR dataset
(Table 6.8). Non-C classes are also oversampled to obtain a balanced class
distribution.

Table 6.8.: Accuracy of the criteria binary usability (US) and performance (PE)
classifiers using a training set of balanced classes C:Non-C where the
C-set is enlarged with the UR dataset.

Oversampling fac-
tor

Usability (US) Performance (PE)

Precision Recall F1 Precision Recall F1

0.25 0.80 0.86 0.81 0.91 0.84 0.87
0.50 0.80 0.88 0.82 0.93 0.90 0.91
0.75 0.87 0.75 0.78 0.91 0.90 0.90
1.00 0.92 0.73 0.79 0.92 0.86 0.88

We now compare the classification results with the baseline results obtained
for balanced class ratio for max. possible #C (Table 6.6). Table 6.8 shows that
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oversampling a balanced C:Non-C class distribution (of ratio #C:#C) using
factor 0.25 worsens the classification accuracy for classifying US. In particular,
we do not achieve any remarkable improvement compared to the baseline results
for classifying US by oversampling the C-set with UR dataset (while keeping a
balanced class ratio), when using any of the factors. However, for classifying PE,
we achieved with any factor a higher precision and recall, except for the factor
0.25 where the recall was lower by -0.04. The best results for classifying PE was
achieved using the oversampling factor 0.50, improving the baseline precision
and recall by 0.09 and 0.02 respectively.

6.3. Discussion

Criteria such as non-functional requirements play an important role in software
engineering and play a crucial role for the success of a software project, especially
during its early stages. Its importance is also manifested by our findings (see
Table 4.1), particularly by the prevalence of criteria in our user rationale dataset.
In particular, users argue for or against the software by assessing its quality
characteristics, such as usability or supportability criteria.

However, non-functional requirements are hard to capture and often over-
looked especially in the early phases of a software project. This stresses the
potential of their mining from software reviews, that might support their early
detection and consideration. We elaborate on this potential for two different
types of software projects: a new software project, where previous software
versions do not exist (e.g., greenfield engineering projects), and continuously
updated software that evolves through releases (e.g., release-driven projects).

In greenfield engineering projects, the potential risk of missing important non-
functional requirements might be mitigated by mining non-functional require-
ments from user reviews on competitor or similar software. Their refinement
and the assessment of their importance for own projects might be obtained
from a qualitative study, resulting in a set of hypothetical, data-grounded, non-
functional requirements. A sample for such a study might be drawn with the
support of user rationale classifiers, by including only reviews of promising qual-
ity (e.g., those reporting justifications). User rationale classifiers can be used
to mine usability, performance, reliability, and supportability criteria from user
feedback (Table 5.10). In case of Amazon, for example, helpfulness scores can
be used as an additional measure of quality in combination with the predictions
of the user rationale classifiers.

In release-driven projects, a software is released as often as possible to satisfy

97



Chapter 6. Criteria Mining

user needs. In such projects, where the non-functional requirements are contin-
uously updated (and re-prioritized), criteria mined from software reviews might
be used to enlarge an existing dataset of non-functional requirements and thus
help improve the understanding of their importance, affecting their internal pri-
oritization (e.g., by their prevalence in software reviews). Furthermore, rare but
important classes might be enlarged with those mined from user reviews, with
the aim to improve their internal processing (e.g., automated classification).

6.4. Summary

In this Chapter, we have described the classification results of classifiers for
an criteria dataset from industry that was made available for the RE’17 data
challenge.
Using lexical, syntactical, and meta-level feature types we assessed how well

we can predict certain classes of the provided criteria dataset. We also studied
whether we can handle class imbalances or improve the classification accuracy
of the criteria classifiers using our user rationale dataset. We then discussed
the potentials of mining criteria from software reviews for initial gathering of
non-functional requirements for greenfield projects as well as their mining for
an improved requirements prioritization and for handling class imbalances in
existing datasets. We summarize the most important findings in the following
paragraphs:

RQ6.1 Findings We evaluated an a binary supervised classifier that automat-
ically classifies requirements as functional or non-functional. With manually se-
lected features employing bag of words, bi- and trigrams, and filtering stopwords
and punctuation, we achieve precision and recall of ∼92%. Using automatic
feature selection and employing only word features we achieve higher recalls
for classifying criteria than when additionally employing syntax and metadata
features. We found that part of speech tags are among the most informative
features, with cardinal number being the best single feature, indicating non-
functional requirements.

RQ6.2 Findings We assessed supervised binary criteria classifiers to automati-
cally identify the different types of non-functional requirements, focusing on the
four criteria in the dataset: usability, security, operational, and performance.
We additionally assessed a multi-class criteria classifier for the same four criteria
classes. Using only word features without feature selection we achieve precision
and recall ranging between ∼72% to ∼90% with the binary criteria classifier.

98



6.4. Summary

Using the 200 most informative features (or ∼2% of the overall feature space)
we achieve a precision and recall above 70% for these four criteria classes.

RQ6.3 Findings We showed that balancing an imbalanced training set drawn
from the industrial dataset, that has an C:Non-C class distribution with C as
the minority class (for C ∈ {US, PE}), with oversampling C instances using the
UR dataset, can significantly improve the F1 score for classifying both criteria
types, i.e., US and PE. We observed also that handling a larger imbalance results
in stronger improvement of the classification accuracy.

RQ6.4 Findings We conducted binary classification experiments for usability
and performance criteria, where we oversampled training sets derived from the
industrial dataset with the dataset of user rationale, with a balanced C:Non-C
class distribution (of ratio #C:#C) and using factors 0.25, 0.50, 0.75, and 1.00.
While we do not achieve an improvement for classifying usability criteria, we
are able to improve the accuracy for classifying performance criteria compared
to the baseline.
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Chapter 7.

Stance Mining

In Chapter 3 we found that users express their stances towards the software,
by verbalizing their stances through criteria assessment, such as usability or
performance. In this Chapter we use a dataset of pro/contra comments from
ProCon.org [82] and study topic-agnostic indicators of pro and contra stances. A
relevant study of Misra and Walker [85] already showed that topic-independent
markers of rejection and support in online discussion can be used as classification
features. While they focused on theoretically motivated features, we focused on
studying topic-independent features from grounded in data. We additionally
assess how different parts of a comment contributes towards stance mining.
Guided by these objectives we conducted various classification experiments on
classifying user comments on controversial issues as pro and contra.

We focused in this study on improving our understanding of the generaliz-
ability of stance classification using a diverse dataset, assess significant topic-
agnostic classification features, and how different comments’ parts (e.g., sen-
tences) contribute towards their automated classification. These insights have
the potential to be used in software engineering, for example, for mining po-
larized stances from user feedback a) on software or b) polarized stances on
controversial software articles. Our expectation was also to leverage the find-
ings as design guidelines for a framework that supports the development of
stance mining approaches.

This Chapter is organized as follows. Section 7.1 introduces the research
setting. It describes the employed dataset and introduces the research ques-
tions. Section 7.2 presents the results of the classification experiments using the
dataset of pro and contra user comments. Section 7.3 discusses the findings and
provides hints with potentials for future work. Finally, Section 7.4 summarizes
the Chapter.
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7.1. Research Setting

We used a dataset of pro and contra user comments obtained from the ProCon
website [82]. We extended the crawler from Schmidt [179] and crawled from each
of the ProCon categories one controversial issue, along with the background of
the issue, associated pro and contra user comments, as well as the pro and
contra quotes and arguments compiled by ProCon Editors. Figure 7.1 depicts
a screenshot from ProCon that shows the input forms for users to submit a pro
and contra comments and two submitted user comments for the issue “Should
any vaccination be required for Children?”. Example screenshots showing the
background of the issue, and pro and contra quotes and arguments are included
in the Appendix respectively as Figures D.3, D.5, and D.4.

Figure 7.1.: Screenshot that partly shows the input forms and pro and contra
user comments for the issue “Should Any Vaccines Be Required for
Children?” (Taken from: https://vaccines.procon.org/, Nov. 2017).

Since one of our study objectives are topic-agnostic features, we aimed at
obtaining a topic-diverse dataset that fit the study goal.
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7.1.1. Research questions

We summarize our research questions as follows:

RQ7.1 On stance classification using lexical features:
a) How well can we predict the stance orientation of user comment using
only lexical features using a dataset of high topic-diversity?
b) What are most significant classification features?

RQ7.2 On stance classification using other features types:
a) Can we improve the classification results using different classification
feature types using a dataset of high topic-diversity?
b) What are the most significant classification features?

RQ7.3 Which sentence of a user comment contribute most towards comment’s
pro/contra stance classification?

With RQ7.1 we aim to study how well we can predict pro and contra com-
ments using lexical features only. In particular using only lemmatized single
words, bigrams, and trigrams. With this research question we assess how well
we can classify user comments as pro and contra using lexical features only,
and b) which of those classification features are most significant. We hypoth-
esized that despite a quite large and diverse dataset of labeled pro and contra
user comments, we will not be able to achieve classification results of high ac-
curacy if we employ only lexical features of user comments. One reason is the
lack of important contextual features for stance classification [180, 181], such as
features extracted from the text of the corresponding controversial issue. Clas-
sification using lexical features only on datasets of homogeneous topics might
enable better results (e.g., due to common domain ontology). However, captur-
ing topic-agnostic stance indicators might contribute towards the development
of less topic-sensitive stance classifiers, despite that they probably are not suf-
ficient.
With RQ7.2 we aim to study how well we can improve the classification accu-

racy using additional features beside lexical features, in particular syntactical,
contextual, and sentiment features. These feature types have been employed by
researchers for stance classification with varying degree of importance [79, 182].
Lastly, with RQ7.3 we aim to assess how specific sentences within user com-

ments contribute towards classifying pro/contra stances. The rationale behind
this research question is our hypothesis, that users in their comments are more
explicit about their stances at comment’s beginning and its end. This hypothesis
was derived from our initial qualitative exploration of the dataset. Another mo-
tive was the large potentials for reducing the needed computational effort when
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processing only the significant parts of the user comments, and thus improve
the overall scalability of the mining approach. As presented in the overview of
the ProCon dataset (in Table 7.1), a user comment is on average 3 sentences
long. Thus with this research question we focus on assessing the importance of
comment’s opening and concluding sentences (i.e., first and last sentences).

7.1.2. Research data

Our dataset of pro and contra user comments obtained from ProCon [82] is
summarized in Table 7.1. The final dataset includes overall 55 articles (i.e.,
from 55 categories) with 10,957 comments, of which 4,777 were pro and 6,180
were contra.
Table 7.1 has 7 columns. The first column contains numbers used to enu-

merate the controversial issues. The second column named Title contains the
titles of the issues, while the forth column #Comment holds the number of
comments for each controversial issue. The columns #Pro and #Con represent
respectively the number of pro and contra comments. The two columns named
∅#Sent. (i.e., ∅#Sentences) represent the average number of sentences for the
corresponding comment polarity (i.e., pro or contra). The final row shows re-
spectively the total number of comments, the total number of pro comments, the
average number of sentences in pro comment, the total number of contra com-
ments, and lastly the average number of sentences in contra comments. Each
comment in the dataset has on average three sentences.

7.2. Classification Experiments

In this Section we summarize the results obtained from the conducted clas-
sification experiments for answering the research questions. In particular, we
present the results obtained from the experiments using only lexical classifica-
tion features (RQ7.1), using additional types of classification features (RQ7.2),
and using lexical features and using only parts of the comments for classifier
training and evaluation (RQ7.3). To obtain more reliable results we conducted
the classification experiments with 10-fold cross-validation.

Classification using lexical features We assessed the classification accuracy
using the whole dataset of ProCon comments and a balanced ratio of pro and
contra comments. We employed only lexical features extracted from user com-
ments without any associated data (e.g., commented item, title of the com-
mented item, etc.). With this classification experiment we aim to identify topic-
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Table 7.1.: Summary of the final ProCon dataset.
Title #Comment #Pro ∅#Sent. #Con ∅#Sent.

1 Should abortion be legal? 363 206 5 157 4
2 Is the aclu good for america? 97 32 3 65 4
3 Can alternative energy effectively replace fossil fuels? 235 119 4 116 3
4 Should animals be used for scientific or commercial testing? 437 230 3 207 2
6 Is sexual orientation determined at birth? 264 124 4 140 4
7 Are cell phones safe? 243 117 2 126 2
8 Should churches (defined as churches, temples, mosques, syn-

agogues, etc.) remain tax-exempt?
87 33 3 54 4

9 Is human activity primarily responsible for global climate
change?

293 139 3 154 3

10 Is a college education worth it? 83 54 4 29 3
11 Should college football replace the bowl championship series

(bcs) with a playoff system?
152 97 2 55 2

12 Should adults have the right to carry a concealed handgun? 351 124 2 227 2
13 Does lowering the federal corporate income tax rate create

jobs?
13 6 3 7 3

14 Should the united states maintain its embargo against cuba? 72 33 3 39 5
15 Is the d.a.r.e. program good for america’s kids (k-12)? 233 90 2 143 3
16 Should the death penalty be allowed? 482 221 2 261 2
18 Should the united states continue its use of drone strikes

abroad?
148 81 5 67 3

19 Should performance enhancing drugs (such as steroids) be ac-
cepted in sports?

198 94 2 104 3

20 Should euthanasia or physician-assisted suicide be legal? 369 139 3 230 3
21 Should felons who have completed their sentence (incarcera-

tion, probation, and parole) be allowed to vote?
266 120 4 146 3

23 Should the united states return to a gold standard? 13 6 6 7 3
24 Is it a sport? 200 106 3 94 3
25 Should more gun control laws be enacted? 202 78 2 124 3
26 What are the solutions to illegal immigration in america? 255 116 4 139 4
27 Should insider trading by congress be allowed? 69 12 3 57 3
28 What are the solutions to the israeli-palestinian conflict? 141 84 4 57 5
29 Should marijuana be a medical option? 789 204 3 585 4
30 Is drinking milk healthy for humans? 285 138 2 147 3
31 Should the federal minimum wage be increased? 21 6 3 15 4
32 Is the patient protection and affordable care act (obamacare)

good for america?
192 84 4 108 4

33 Is obesity a disease? 210 97 4 113 4
34 Should prescription drugs be advertised directly to consumers? 110 20 2 90 4
35 Was bill clinton a good president? 45 21 3 24 3
36 Was ronald reagan a good president? 110 65 5 45 4
40 Should prostitution be legal? 450 132 6 318 5
41 Should all americans have the right (be entitled) to health

care?
314 165 4 149 5

43 Should students have to wear school uniforms? 641 224 2 417 2
44 Are social networking sites good for our society? 238 115 3 123 2
45 Should social security be privatized? 112 50 4 62 4
46 Is the use of standardized tests improving education in amer-

ica?
161 57 4 104 4

47 Hould tablets replace textbooks in k-12 schools? 269 109 3 160 2
48 Should teachers get tenure? 112 36 4 76 4
49 Should the words "under god" be in the us pledge of allegiance? 339 204 3 135 3
50 Should the us have attacked iraq? 101 48 5 53 4
51 Should any vaccines be required for children? 323 128 4 195 3
52 Should people become vegetarian? 321 159 4 162 3
53 Do violent video games contribute to youth violence? 361 172 2 189 2
54 Do electronic voting machines improve the voting process? 29 10 3 19 4
55 Is it appropriate to build a muslim community center (aka the

”ground zero mosque”) near the world trade center site?
158 72 3 86 3

Total 10957 4777 ∅3 6180 ∅3

independent features using our diverse dataset of ProCon user comments.

We assessed the classifier algorithms Naive Bayes, Logistic Regression, and
Random Forest, using unigram, bigrams, and trigrams with words lemmatized.
The classification results are summarized in Table 7.2.

For classifying both stances (i.e., pro and contra), we achieve the highest pre-
cision and recall using the classifier algorithms Naive Bayes employing unigrams,
bigrams, and trigrams, reaching higher recall for contra stances. We reach the
highest precision score of 67% (with a recall of 62%) and the highest recall score
of 70% (with a precision of 65%).
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Table 7.2.: 10-fold cross-validated accuracy scores of the ProCon classifier using
a randomly balanced, labeled ProCon dataset of pro/contra user
comments, employing only lexical features (lemmatized and tf-idf
normalized unigrams, bi- and trigrams).

Classifier algorithm Pro Contra
Precision Recall F1 Precision Recall F1

Configuration: lemmatized word 1grams
Naive Bayes 62 62 62 62 62 62
Logistic Regression 63 61 62 62 64 63
Random Forest 60 47 53 56 70 62

Configuration: lemmatized word 1-2grams
Naive Bayes 66 62 64 64 69 66
Logistic Regression 66 62 64 64 68 66
Random Forest 61 46 52 56 70 63

Configuration: lemmatized word 1-3grams
Naive Bayes 67 62 64 65 70 67
Logistic Regression 67 60 64 64 70 67
Random Forest 59 49 53 56 67 61

We assessed the importances of the lexical features using a balanced ProCon
truthset and a forest of tree classifiers. The top 20 features are summarized in
Table 7.3. The word ’doctor’ seems to be the only topic-dependent word.

Classification using additional features Studies have shown that for a more
accurate stance classification other features such es external domain knowledge
is crucial [183]. We conducted various experiments with classifier configurations
with the ProCon dataset using syntactical features, sentiments, and contextual
feature along with lexical features. We present a subset of the results in Table
7.4.

We were able to identify configurations that improve the F1 score compared to
the baseline, with significant improvement of the recall. In particular, for classi-
fying pro comments using word 1-3ngram, the title marker, and sentiments, and
employing the classification algorithm Naive Bayes, we were able to significantly
improve the best baseline-recall by 13% reaching 75% (baseline: 62%) with an
slight improvement of the best baseline-F1 score by 3% reaching 67% (baseline:
63%). For classifying contra comments using word 1-3ngram, POS 1-3 grams,
and title marker we again signficantly improve the recall by 8% reaching 78%,
with only a slight improvement of F1 by 1%.
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Table 7.3.: The top 20 most significant lemmatized word features (uni-, bi-, and
trigrams) for stance classification. Pron stands for a pronoun.

Rank Feature Rank Feature

1 yes 11 be
2 pron 12 do not think
3 should not 13 be con because
4 be pro because 14 no because
5 help 15 the
6 no 16 pron be
7 not 17 that
8 yes because 18 be pro
9 doctor 19 for
10 good 20 true

Table 7.4.: 10-fold validated accuracy scores of the ProCon classifier using a ran-
domly balanced, labeled ProCon dataset of pro and contra user com-
ments, employing different feature types (lexical, syntactical, contex-
tual, and sentiments).

Classifier algorithm Pro Contra
Precision Recall F1 Precision Recall F1

Configuration: word 1-3grams, POS 1-3grams, title marker
Naive Bayes 70 50 58 61 78 68
Logistic Regression 62 60 61 62 64 63
Random Forest 58 44 50 55 67 60

Configuration: word 1-3grams, title marker, sentiments
Naive Bayes 62 75 67 68 53 60
Logistic Regression 67 61 64 64 70 67
Random Forest 61 49 54 57 68 62

Classification results using comment parts We conducted classification ex-
periments using again three classification algorithms employing lexical features,
and with only first sentences and last sentences selected in the dataset. The
results in Table 7.5 reveal that first sentences are more informative than last
sentences for classifying user comments as pro and contra.

Remarkably, compared to the results obtained using only lexical features (Ta-
ble 7.2), by employing the same configuration we achieve an slightly better clas-
sification accuracy (F1 score) for classifying pro comments if we consider only
the first sentences of the user comments. In particular, compared to the scores
obtained when using the whole comment body with the same classifier config-
uration employing only lexical features, we reach by 2% lower precision scores
of 65% (with a recall of 62%), and by 4% higher recall scores of 66% (with a
precision of 62%). Using only (on average) 33% of the text input must have a
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Table 7.5.: 10-fold validated accuracy of the ProCon classifier using a randomly
balanced, labeled ProCon dataset of pro and contra user comments,
with only first sentences selected, and lexical classification features
only (lemmatized word unigrams, bi- and trigrams).

Classifier algorithm Pro Con
Precision Recall F1 Precision Recall F1

Configuration: lemmatized word unigrams
Naive Bayes 60 63 62 61 59 60
Logistic Regression 62 61 61 62 63 63
Random Forest 62 51 56 57 69 63

Configuration: lemmatized word 1-2grams
Naive Bayes 63 65 64 64 62 63
Logistic Regression 65 62 64 64 67 65
Random Forest 64 51 56 59 71 64

Configuration: lemmatized 1-3grams
Naive Bayes 64 66 65 65 63 64
Logistic Regression 65 62 64 64 66 65
Random Forest 63 52 56 59 70 64

significant positive effect on the needed computational effort when preprocessing
the data, training the classifier, and applying it in practice.1.

Table 7.6.: 10-fold validated accuracy of the ProCon classifier using a randomly
balanced, labeled ProCon dataset of pro and contra user comments,
with only last sentences selected, and lexical classification features
only (lemmatized word unigrams, bi- and trigrams).

Classifier algorithm Pro Con
Precision Recall F1 Precision Recall F1

Configuration: lemmatized word 1grams
Naive Bayes 57 61 59 59 55 56
Logistic Regression 57 56 57 57 59 57
Random Forest 56 45 50 54 66 59

lemmatized word 1-2grams
Naive Bayes 59 59 59 59 57 59
Logistic Regression 59 56 57 57 60 59
Random Forest 56 46 50 54 64 59

lemmatized word 1-3grams
Naive Bayes 59 59 59 59 59 59
Logistic Regression 60 56 57 59 62 60
Random Forest 56 48 52 55 64 59

1As shown in Table 7.1, a user comment in the ProCon dataset has on average 3 sentences.
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7.3. Discussion

With ever increasing online participation of users, for example, in terms of user
reviews on software or user comments on controversial issues, it becomes more
important to be able to automatically assess the sentimental and qualitative
trends of such contributions, e.g., by determining user’s general and more specific
stances towards the discussed topics from their comments.
Pro and contra stance mining might provide benefits for software engineering

practitioners and users in different scenarios. For example, it might used in trend
analysis, to help practitioners to adjust internal importance-weights of criteria
(e.g., non-functional requirements) depending on the pro and contra trend as
mined from user feedback. It might also be used for an improved deliberation
support for users, to help users oversee the polarized trends within an online
discussion (e.g., about a software, or controversial software-related article). It
further might support the community managers in their daily quality assurance
tasks, e.g., on debate sites, and reduce the overall manual moderation workload.
In future work, to differentiate between pro and contra stances, it might be

useful to assess synonyms and antonyms of words mentioned. Synonyms and
antonyms of a significant keyword might predominantly appear in pro and contra
comments respectively. A pro comment that supports a referenced topic might
have a rather positive sentiment compared to a contra argument towards the
same topic. Since the sentence structure of an argument might be informative,
syntactic features might be informative, such as part of speech (POS) tags –
on the word, clause, and phrase level. For this, already existing corpora might
be reused, such as Penn Treebank tag sets of POS and Discourse tags [184].
Researchers have pointed out the importance of contextual features for stance
classification, since they have been shown to be significant for an improved
classification accuracy [181, 182]. Examples are the comment author or her
domain knowledge. The assumption that an author might have a stable stance
(e.g., pro stance) towards a reference topic during a debate might also be used
as a feature, e.g. if the author comments more often during a debate. Also,
application of clustering techniques help to discover related topics as potential
reference topics for stance classification, for example topic modelling with latent
dirichlet allocation (LDA) and word embeddings with word2vec.

7.4. Summary

In this Chapter we presented a dataset of pro/contra user comments obtained
from ProCon [82]. The dataset used in the experiments was of high topic di-
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versity, containing an article from each ProCon category. We used this dataset
to assess how well we can distinguish between pro and contra user comments
using various features and assessed top lexical features. Finally, we evaluated
which sentence of a user comment contributed most towards pro/contra stance
classification. We summarize the findings in the following paragraphs.

RQ7.1 Findings Using the classifier algorithm Naive Bayes and employing only
lexical features (unigrams, bigrams, and trigrams) with words lemmatized, we
achieve a precision of 67% and recall of 62% for classifying pro comments, and
precision of 65% and recall 70% for classifying contra comments. Most of the
significant lexical features were topic-agnostic (e.g., bigram yes because), which
was not surprising considering that we used a diverse dataset of controversial
issues for classifier training and testing.

RQ7.2 Findings We were able to improve the classification results using ad-
ditional features beside lexical features. Using the classifier algorithm Naive
Bayes, beside lexical feature (lemmatized word, bigrams, and trigrams) with
words lemmatized, and additionally employing contextual features (title over-
lap) and sentiments, we achieve a precision of 62% and a recall of 75% (F1-score:
67%) for classifying pro user comments. Using the same classifier algorithm and
employing lexical features, syntactical features (POS tags), and contextual fea-
tures (title overlap), we achieve a precision of 61% and recall of 78 (F1-score:
69%) for classifying contra user comments.

RQ7.3 Findings When using first sentences of user comments, employing only
lexical feature (lemmatized word, bigrams, and trigrams) with words lemma-
tized we achieve slightly better results for classifying pro comments compared
to the results obtained using the same classifier configuration and the whole text
bodies. Also, using same classifier configuration and only last sentences of user
comments, we achieved lower accuracies compared to the results when using the
whole text bodies, however still significantly better than random (F1 score of
approx. 60% for both stances).
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The Rationalitycs Framework

In Chapter 3 we found that a remarkable amount of reviews contain user ra-
tionale concepts with a notable fraction of justifications. In user feedback we
also found that users justify their pro or contra stances towards the software
by assessing criteria (e.g., justifying a contra stance towards the software by
criticizing its usability).
This Chapter introduces Rationalytics framework that focuses on sup-

porting the development of supervised machine learning approaches for mining
rationale and stance classification in user comments. In Chapters 5, 6, and 7
we studied how well we can automatically mine user rationale from Amazon
software reviews, mine criteria from an industrial dataset, and determine pro
and contra stances of user comments towards controversial issues. Thereby we
assessed different types of datasets. In the conducted experiments we evalu-
ated various types of classifications features (i.e., lexical, syntactical, contex-
tual, meta-data, and sentiments). These data and classification insights were
considered during the design of the Rationalytics framework.
This Chapter is organized as follows. Section 8.1 introduces design goals

that guided the design decision about the framework. Section 8.2 introduces
the programming and design conventions followed. Section 8.3 presents a data-
grounded meta-model of user comments. Section 8.4 presents framework’s ar-
chitecture. Section 8.5 discusses the framework in light of the envisioned design
goals and limitations. Finally, Section 8.6 summarizes the Chapter.

8.1. Design Goals

The design goals of the framework were configurability, extensibility, adaptabil-
ity, and scalability.
With configurability we aimed to ensure that the framework supports the

development of supervised classification approaches for rationale and stance
mining, that allows a degree of configurability for simplified training, evalua-
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tion, and practical usage. The motives behind this goal were in particular the
facts, that the accuracy of supervised classification approaches (and thus their
practicability) not only depend on the explicit and implicit random influential
variables, but also depend on the training set, employed classification features,
as well as the set hyper-parameters of the classifier algorithms.1

Another design goal we aim to achieve is extensibility, to ensure that ad-
ditional core functionality can be added, such as new data preprocessors and
machine learning feature extractors.
With adaptability we aim to support adaption of the framework to be used

for similar problems and domains. One example would be to use this framework
for developing a stance classification approach for the domain of journalism, that
classifies user comments based on their stances towards controversial issues as
pro or contra, which is one of the desired features of journalists [185].
With scalability, that is a goal of lower importance compared to our other

design goals, we aim to ensure that the framework enables the development of
prototypes that scale with large data.
Guided by these design constraints, the framework is developed using a layered-

and pipeline-based architecture. We conceptually grouped the functionalities in
layers, based on their functional commonalities. Because of the data-centered
characteristic of the framework, we employed pipelines to design the data trans-
formation processes that are commonly used in popular supervised machine
learning frameworks, such as sklearn [186] or Spark [187].

8.2. Conventions

We adopt the notion of prefixing abstract class names with the the upper case
letter A. Method named init denotes a constructor in Python. Methods
starting with an underscore are to be considered private or protected and thus
are not part of the public interface. The presented UML class diagrams are
simplified for readability.

8.3. Conceptual Meta-model of User Comments

In this Section we present two conceptual UML models of user comments that
were used to derive a UML meta-model of user comments. One of the main
reasons for developing a meta-model is the data-centric characteristic of this
framework as well as its focus on user comments. The meta-model was not only

1Hyper-parameter for a classifier algorithms are set before the training process.
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used to guide the design decisions, but also to serve as a blueprint and contribute
towards a framework design that allows the development of domain-insensitive
prototypes for mining rationale from user comments.
The meta-model is developed using a bottom-up, data-grounded, approach

during a qualitative study of four online platforms that allow users to comment:
a software application provider, an app provider, a debate site, and a news
provider. In particular, these were the platforms Amazon [14], Google Play
[13], ProCon [82], and Spiegel Online [188]. In this section we only present
conceptual models of Amazon Software Reviews and ProCon user comments.
In the conceptual models we do not strive for a complete model. We rather aim
for a simple and comprehensible model that is valuable for the aimed purpose.
For instance, as an example for meta-data we include only submission date in
the conceptual models, although it is not necessarily the only meta-data that is
available.

Conceptual model of Amazon software reviews A conceptual model of Ama-
zon software reviews is shown in the UML diagram in Figure 8.1. Example
screenshots taken from the Amazon’s website that show a software product de-
scription and the associated user reviews, illustrate the rationale behind this
UML diagram. A screenshot of Amazon software reviews is shown in Figure 2.3
with other screenshots included in the Appendix in Section D.1.
A software review is represented by the class Software Review. It is associated

with one software product (i.e., the one being reviewed) that is represented by
the class Software Product. A software review is composed of a review title,
review body, rating, two helpfulness scores, and submission date (as an example
of meta data). The review title and body are represented respectively by the
classes Title Text and Body Text. An Amazon review (class Star Rating) has
exactly one star rating and eventually two helpfulness scores (class Helpfulness
Score). The helpfulness scores can be up and down voted by other users. Finally,
a software review can have one or more replies (class Reply).

Conceptual model of ProCon user comments A conceptual model of ProCon
user comments is shown in the UML diagram in Figure 8.2. Screenshots taken
from the ProCon.org website, that give an example of an controversial issue and
its main elements that were conceptualized into the UML diagram, are included
in the Appendix in Section D.2.
A user comment is authored by a user (of class User) and is represented with

the eponymously named class User Comment. It includes a body text (of class
Body Text) and is related towards one controversial issue (of class Controversial
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Figure 8.1.: Conceptual model of Amazon software reviews [14]. A software
review is represented by the class Software Review.

Issue). A controversial issue is associated with one issue background (class Issue
Background), that elaborates on the background of the issue. Furthermore, a
controversial issue is associated with a list of top pro and contra arguments
and top pro and contra quotes. An argument and a quote are conceptualized
respectively with the classes Argument and Quote. Each reader comment as
well as each argument and quote contain one stance orientation (i.e., pro or
contra) and eventually up to two votes (i.e., up and down vote). The stance
orientation is conceptualized with the class Stance Orientation, while the vote
is conceptualized with the class Vote. The list of top pro and contra arguments
and top pro and contra quotes for a controversial issue is managed by the Editors
of ProCon. Finally, a user’s comment can also have replies, that are composed
of a body text and up to two vote types (i.e., up and down vote).

Conceptual meta-model of user comments From the conceptual models for
user comments of Amazon Software and ProCon.org (Figures 8.1 and 8.2) we
derive a conceptual meta-model of user comments. The meta-model is presented
in Figure 8.3.
A user comment is authored by one user and is directed to the commented

item (e.g., a software product or controversial issue). A user comment is concep-
tualized with the meta-class User Comment, a user with the meta-class User,
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Figure 8.2.: Conceptual model of ProCon [82] user comments. The class User
Comment represents a user comment.

while the commented item is conceptualizes with the meta-class Commented
Item. A commented item can be associated with one or more associated items
(class Associated Item). In case of Amazon software reviews, associated items
for a software product might be similar software products. In case of a contro-
versial issue on ProCon, an associated item might be the background of that
issue. A user comment has at least one text element (meta-class Text Elements),
at least one rating (meta-class Rating), and at least one meta data (meta-class
Meta Data). Example of a text element is body text. Submission date is an ex-
ample of meta data, while star rating is an example for rating. A user comment
might also have replies (meta-class Reply) that are composed of one or more
text elements. A reply can furthermore include one or more ratings.

8.4. Framework Architecture

The framework has a two-layered architecture which employs pipelines for the
processing: a data processing layer and machine learning (ML) engineering layer.
The data processing layer includes services for data provision, data preprocess-

115



Chapter 8. The Rationalitycs Framework

Commented
Item

User
Comment

User Rating

*

1

applies to

*

1

applies to

1

1

authored
by

1

1

authored
by

11 .. *
assigned by

11 .. *
assigned by

Associated
Item  1 0 .. *  1 0 .. *

Reply 1 1

written by

1 1

written by

11 ..* 11 ..*

1

0 ..*

1

0 ..*

Meta
Data

1

1 .. *

1

1 .. *

Text
Element

1

1 ..*

1

1 ..*

1 0 ..*1 0 ..*

1

0 .. *

1

0 .. *

Figure 8.3.: Conceptual model of a user comment (i.e., meta-class Item Com-
ment).

ing, and feature extraction. The ML-Engineering layer includes ML model con-
figuration, training, evaluation, and persistence handling.

8.4.1. Data processing layer

The purpose of the data processing layer is to support training, evaluation,
and application of a classifier by data provision, data preprocessing, and feature
extraction. The data provision for the training and testing phase of the machine
learning model is supported by providers of labeled data2.

Provider of labeled data A provider of labeled data (short: data provider)
enables and simplifies access to the data that is used to derive a training and
testing sample for a machine learning approach.
The dependency to the classifier configuration is established using the Inver-

sion of Control and Dependency Injection design patterns [189], with the aim
to decouple data provision from a classifier configuration. The idea is to enable
the injection of different labeled datasets into a classifier configuration for a
supervised machine learning classifier. This is illustrated by a simplified UML
diagram shown in Figure 8.4.
2Labeled data that is used for supervised classifiers is also called truthset or goldset.
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ALabeledDataProviderALabeledDataProvider

data_source: string

get_balanced_train_test_data_cfg(label_column: string, 
max_items_per_class: int=None, classes_to_filter: list=None): DataConfig

class_labels: list

ATwoGranularityLabeledDataProviderATwoGranularityLabeledDataProvider

ASingleGranularityLabeledDataProviderASingleGranularityLabeledDataProvider

__init__(granularity2source: dict, default_granularity: string, class_labels: list, 
random_state: int=None): None

AClassifierConfigAClassifierConfig

data_provider: ALabeledDataProvider

_import_features(): None
_activate_features(): None

ASamplerASampler

get_balanced_train_test_data_cfg() : DataConfig

__init__(th: ALabeledDataProvider): None

Figure 8.4.: UML-diagram illustrating the dependency between data provider
and classifier configuration: a provider of labeled data (i.e., AL-
abeledDataProvider) is injected into the constructor of classifier
configuration (i.e., AClassifierConfig).

ALabeledDataProvider is an abstract class that serves as a base class for any
provider of labeled data. The class can be initialized with multiple data sources
of different granularity levels (e.g., comment or sentence level). In particular,
the mapping of granularity level and corresponding data source is supplied via
the constructor parameter granularity2source. It has an constructor with the
parameter granularity, that indicates the granularity level and a second pa-
rameter class_labels that represents the different class labels of interest in the
data. For example, in a binary case these might be the classes True and False.
Granularity levels are set using constants, such as GRANULARITY_COMMENT and
GRANULARITY_SENTENCE. Via the optional random_state parameter a random
state can be supplied, that is used for random data shuffling. Random data shuf-
fling is used during sample creation. This is particularly helpful when different
classifier configurations need to be evaluated and compared against a specific
random sample from the truth set.

Two abstract classes derive from ALabeledDataProvider: the classes AOne-
GranularityLabeledDataProvider and ATwoGranularityLabeledDataProvider.
As the names suggest, the class AOneGranularityLabeledDataProvider is a
base class for any data provider that handles one granularity level, while the
class ATwoGranularityLabeledDataProvider is a base class for any truth han-
dler that handles two granularity levels. ALabeledDataProvider inherits from
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ASampler and provides implementation for the method get_balanced_sample

_data_cfg. This method generates a dataset of balanced classes for training and
testing and expects three parameters. The label column that indicates classes
is supplied via the formal parameter label_column. The formal parameter
max_items_per_class indicates the maximum number of sample items (e.g.,
comments) per class in the sample. If this parameter is not supplied, then the
minimum over sample counts over all classes within a truth set is taken. Lastly,
the optional formal parameter classes_to_filter represents a list of class
labels that should be filtered. The method get_balanced_sample_data_cfg

Table 8.1.: DataConfig fields and their descriptions
Key Description

data_wrapper A data wrapper that holds the sample as a data frame.
label_column The name of the column used to differentiate the classes
label_classes The list of classes that appear in the data column
max_items_per_class Max items per class used

returns a DataConfig key-value dictionary. The DataConfig fields are summa-
rized in Table 8.1.

Data processing pipeline The data processing pipeline is shown in the data
flow diagram in Figure 8.5 (using notation from Coad and Yourdon [190]).

Pre-Select
Data

Preprocessed
Input

Extract
Features

Normalize
Features

Reduce
Dimension 

Preprocess

Output
(Feature Matrix)

Input
(Text)

Select
Data

Figure 8.5.: Data processing pipeline.

The pipeline consists of six steps. In the first step (i.e., Pre-select Data), the
text input is selected and eventually adapted to a processable dataframe for the
pipeline. For instance, from an input that consists of a list of user comments, a
list is created of elements that holds only the first sentence of each of the user
comments. The preselected data is then eventually fed into the second step (i.e.,
Preprocess), that preprocesses and caches the data. Since some preprocessing
steps are computational intensive, preprocessing is only done if the preprocessed
input is not found in the cache. Thus, in case the preprocessed data already
exists in the cache, it is retrieved from it. This is especially useful during
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classifier training and evaluation. For example, in multiple runs during cross-
validation the data would be preprocessed only once. An example preprocessing
step is the removal of stop words from text. In the third step (i.e., Select Data),
the preselected and eventually preprocessed data is then selected and adapted
for the next step. An example adaptation is casting values to a specific type
such as float. The fourth step (i.e., Extract Features) takes the selected data
and conducts feature extraction from the data. An example feature extraction
step is the creation of a bag of words feature matrix from text. After the
feature extraction step, the features are eventually normalized (step Normalize
Features). For text features an example normalizer is the Tf-Idf [125] normalizer.
For numeric features, number rounding normalizer or a scaler might be employed
that scales and translates each feature value into a predefined range (e.g., [0, 1]).
In the sixth and final step (i.e., Reduce Dimension), the resulting feature matrix
is eventually reduced using a dimensionality reduction technique such as PCA
[191].

Table 8.2.: List of data selectors.
Selector Description

Data selectors for the step Pre-Select data
DataPreSelector Default data selector that is used prior data preprocessing.

Selects and eventually adapts an input into a processable
dataframe for the pipeline.

FirstSentenceSelector Data selector that selects only first sentences from the in-
put, prior data preprocessing. Default strategies for select-
ing text parts can be substituted via the formal parameter
text_parts_selector (e.g., strategy for select the first sen-
tence from a text).

LastSentenceSelector Data selector that selects only last sentences from text,
prior data preprocessing. Default strategies for select-
ing text parts can be changed via the formal parameter
text_parts_selector.

Data selectors for the step Select data
DataSelector Default data selector that is used after data preprocessing. Se-

lects the processed data and eventually transforms it for further
processing.

TypedDataSelector Data selector used after preprocessing to transform data into a
specific type (e.g., int, float).

A list of data selectors that can be used during the steps Pre-select Data
and Select Data are listed in Table 8.2. A UML diagram depicting their inter-
dependencies is shown in Figure 8.6.

The rationale behind data pre-selectors FirstSentenceSelector and Last-

SentenceSelector comes from Chapter 4 (i.e., rationale concepts’ differences
with respect to their position within review) and Chapter 7 (i.e., differences
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DataSelectorDataSelector

BaseEstimatorBaseEstimator TransformerMixinTransformerMixin

TypedDataSelectorTypedDataSelectorFirstSentenceSelectorFirstSentenceSelector LastSentenceSelectorLastSentenceSelector

transform(X)

DataPreSelectorDataPreSelector

transform(X)

transform(X)

transform(X)transform(X)

__init__(value_type)__init__(text_parts_selector
=TextPartsSelector())

__init__(text_parts_selector
=TextPartsSelector())

Figure 8.6.: UML diagram showing preprocess and postprocess data selectors:
TextPreprocessor and POSTagsExtractor. The first type of selec-
tors are the class PreprocessDataSelector and its derivatives.

in significance of comment’s parts for classification). Table C.1 lists examples
of feature extractors, normalizers, and dimensionality reduction transformers.
CountVectorizer is an example feature extractor that is used to convert text
into a matrix of token counts. TfIdfTransformer is an example feature nor-
malizer, that transforms token counts of a feature matrix into a Tf-Idf (Term
frequency-Inverse document frequency) representation. PCA is an example trans-
former that can be applied to reduce the dimensional space of a feature matrix.

Table 8.3.: Example feature extractors, normalizers, and dimensionality reduc-
tion transformers provided by the scikit-learn package.

Feature extractor Description

Feature extractors that can be used in the step step Extract Features
CountVectorizer Converts an input text into a matrix of token counts.
Feature normalizer that can be used in the step Normalize Features
TfIdfTransformer Transforms a feature matrix of token counts to a normalized tf or

Tf-Idf representation.
MinMaxScaler Transforms a feature matrix by scaling each value to a given range

(e.g., between 0 and 1).
Feature reduction transformers that can be used in the step Reduce dimension
PCA Principal component analysis that translates a feature matrix to a

lower dimensional space, by employing linear dimensionality reduc-
tion using singular value decomposition.

A list of basic preprocessors, that can be employed in the step Preprocess is
given in Table 8.4. A list of preprocessors for justifications is listed in Table 8.5.
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Table 8.4.: List of basic preprocessors.
Preprocessor Description

TextPreprocessor Preprocesses a text input applying lemmatization, stem-
ming, stopwords removal, or punctuation removal. Uses
the tools NLTK and spacy.

TextLengthExtractor Extracts text length in word counts.
POSTagsExtractor Extracts POS tags (e.g., verb) and extended POS tags

from text. Extended POS tags include additional mor-
phological information (e.g., verb’s tense).

ClauseTagsExtractor Extracts clause-level POS tags (e.g., declarative clause)
from text using using the Stanford Tagger library 3.

PhraseTagsExtractor Extracts clause-level POS tags (e.g., adjective phrase)
from text.

ClausePhraseTagsExtractor Extracts clause and phrase-level POS tags from text using
the Stanford Tagger library.

SynTreeHeightExtractor Extracts syntax tree height from text using the Stanford
Tagger library. If input is composed of several sentences,
then the mean tree height values are extracted.

SynSubTreeCountExtractor Extracts syntax sub-tree count using the Stanford Tagger
library. If input is composed of several sentences, then the
mean sub-tree count is extracted.

SentimentExtractor Extracts sentiments from text using the SentiStrength li-
brary 4. If input is composed of several sentences, then
the mean sentiment values are extracted.

Table 8.5.: List of preprocessors for justifications. The Justification markers use
a set of predefined marker words extracted from literature Biran and
Rambo [192].

Preprocessor Description

AnalogyMarker Extracts number of marker words indicating an analogy.
AntiThesisMarker Extracts number of marker words indicating an anti-thesis.
CauseMarker Extracts number of marker words indicating a cause.
ConcessionMarker Extracts number of marker words indicating concession.
ReasonMarker Extracts number of marker words indicating reason.

Note 8.1: Custom preprocessors

Custom preprocessors can be introduces and used. For example, a Reply-

CountExtractor might be introduces that extracts for a comment the num-
ber of comment’s replies, or AvgReplySentimentExtractor that extracts for
a comment an average sentiment value over comment’s replies.

A simplified UML class diagram depicting the base abstract class for prepro-
cessors APreprocessor is shown in Figure 8.7. As shown in the diagram, the
abstract class APreprocessor inherits from the sklearn classes BaseEstimator
and TransformerMixin in order to work with the sklearn library’s pipelines.
Pipelines are used to sequentially execute a list of transformers. The classes
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TextPreprocessor and POSTagsExtractor shown in the diagram are example
preprocessors for natural language text, applying respectively basic natural lan-
guage preprocessing techniques (e.g., punctuation removal) and part-of-speech
(POS) tag extraction. They make use of basic NLP functionality provided by
the internal base package.

APreprocessorAPreprocessor

BaseEstimatorBaseEstimator TransformerMixinTransformerMixin

TextPreprocessorTextPreprocessor

__init__(remove_stops, remove_punct, 
do_lemmatize, do_stem)

POSTagsExtractorPOSTagsExtractor

__init__(extended_postags:bool=False)

Figure 8.7.: UML diagram showing an example of two preprocessors: TextPre-
processor and POSTagsExtractor.

8.4.2. ML-Engineering Layer

The machine engineering layer encapsulates functionality that deals with the
machine-learning classifier configuration, model training and evaluation, and
persistence handling.

Classifier configuration The configuration for a classification model is con-
ceptualized with the abstract class AClassifierConfig. Its main purpose is
to bundle configuration settings of a supervised classifier for its training and
evaluation. It is particularly composed of three parts:

(a) a provider of labeled data that gives access to labeled data and allows
data sampling for training and testing,

(b) a feature configuration, that allows to specify features and the various
data processing steps for each feature,
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(c) a classifier algorithm configuration, that specifies the classification
algorithm (e.g. Naive bayes) along with other algorithm’s settings (e.g.,
required data format).

A AClassifierConfig is injected with a labeled data provider of type ALa-

beledDataProvider. The feature configuration is a key-key-value dictionary,
i.e., a dictionary with a two levels of hierarchy.
Valid keys for the first hierarchy-level are feature ids, each uniquely identifying

a feature. Valid keys for the second hierarchy-level are parameters that configure
the data processing pipeline for a feature. Each feature is conceptually of type
F_TYPE. Valid values for F_TYPE are F_NGRAM (denoting n-gram features) and
F_NUMERIC (denoting numeric features). Example of ngram features are bag
of elements (e.g., words, part-of-speech tags). Example of numerical features
are either explicit user input (e.g., rating) or derived numerical values (e.g.,
sentiments). The list of basic text feature ids is given in Table 8.6, while a list
of feature ids indicating justification marker is listed in Table 8.7.

Table 8.6.: List of basic feature ids
Feature ID Feature type Description

F_TEXT F_NGRAM Indicates text ngram features.
F_TEXT_POS F_NGRAM Indicates POS ngram features.
F_TEXT_POS_CLAUSE F_NGRAM Indicates clause tags ngram features.
F_TEXT_POS_PHRASE F_NGRAM Indicates phrase level tags ngram features.
F_TEXT_POS_CLAUSE_PHRASE F_NGRAM Indicates clause and phrase level tags ngram

features.
F_TEXT_LENGTH F_NUMERIC Indicates text length feature.
F_TEXT_SYN_TREE_HEIGHT F_NUMERIC Indicates syn. tree height feature.
F_TEXT_SYN_SUBTREE_COUNT F_NUMERIC Indicates syn. subtree count feature.
F_TEXT_SENTIMENT_NORM F_NUMERIC Indicates sentiment value feature.

Table 8.7.: List of feature ids indicating justification marker
Feature ID Feature type Description

F_TEXT_JMARKER_ANALOGY F_NUMERIC Feature id indicating justification marker
for analogy.

F_TEXT_JMARKER_ANTITHESIS F_NUMERIC Feature id indicating justification marker
for anti-thesis

F_TEXT_JMARKER_CAUSE F_NUMERIC Feature id indicating justification marker
for clause.

F_TEXT_JMARKER_CONCESSION F_NUMERIC Feature id indicating justification marker
for concession.

F_TEXT_JMARKER_REASON F_NUMERIC Feature id indicating justification marker
for reason.

For each feature type (i.e., F_NGRAM are F_NUMERIC) default data selectors and
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feature extractors are defined, which are used when none are specified. Feature
normalizer and dimensionality reducers are optional.
Additional feature ids can be specified. For instance, if part of the input is

also a user rating than a new feature id can be introduced F_RATING along with
other settings (i.e., preprocessing, extraction, normalization, and dimensionality
reduction transformers). Also, if there are multiple text user inputs (e.g., review
body and review title) than for each text input we might derive contextualized
basic feature ids. For instance, for review body, we might introduce a unique
body prefix F_PREFIX_BODY to contextualize the basic feature ids (Table 8.6) for
body: F_PREFIX_BODY + F_TEXT, F_PREFIX_BODY + F_TEXT_POS, etc. Similarly,
for title, we might use a unique title prefix F_PREFIX_TITLE to contextualize
the basic feature ids for title: F_PREFIX_TITLE + F_TEXT, F_PREFIX_TITLE +
F_TEXT_POS, etc. In such a way we are able to use any of the features for any
part of the text input.
Valid keys for the second hierarchy-level specify settings for the data pro-

cessing pipeline, i.e., settings for data preselection, preprocessing, selection, ex-
traction, normalization, and dimensionality reduction. The valid keys for a
feature are summarized in Table 8.8. Note that the keys are prefixed with a P_

indicating a parameter.

Table 8.8.: Valid feature parameter keys.
Key Valid value

P_FEATURE_TYPE Feature type (e.g., F_NGRAM).
P_DATA_SLICE_NAME The name of the data slice to select (e.g., column

name).

P_DATA_SELECTOR Identifier for a data selector class.
P_DATA_SELECTOR_PARAMS A key-value parameter dictionary for the data selector.
P_PREPROCESSOR The preprocessor class to use.
P_PREPROCESSOR_PARAMS A key-value parameter dictionary of the preprocessor.
P_FEATURE_EXTRACTOR The feature extractor class to use.
P_FEATURE_EXTRACTOR_PARAMS A key-value parameter dictionary of the feature extrac-

tor.
P_FEATURE_NORMALIZER The feature normalizer class to use.
P_FEATURE_NORMALIZER_PARAMS A key-value parameter dictionary of the feature nor-

malizer.
P_FEATURE_DIM_REDUCER The feature reducer class to use for dimensionality re-

duction.
P_FEATURE_DIM_REDUCER_PARAMS A key-value parameter dictionary of the feature re-

ducer.

A subclass of AClassifierConfig has to implement the abstract methods
_register_features() and _activate_features(). The purpose of the method
_register_features() is to initialize features that should be available for a
classification configuration. For instance, the method might register the ba-
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sic features from Table 8.6 and additionally register some custom features. The
purpose of the method _activate_features() is to activate a subset of the reg-
istered features. The activated features are those that are used during training
of a classifier.

Training and Evaluation The data pipeline for classifier training is represented
in the data flow diagram in Figure 8.8. In the first step, a training set is
processed in the data processing pipeline (Figure 8.5) that outputs a feature
matrix. The feature matrix is then used to train the classifier that leads to the
output of a trained classification model.

Training
Set

Feature
Matrix

Data processing
pipeline

Train
Classifier

Classifier
Model

Figure 8.8.: Data pipeline for classifier training.

The data pipeline for classifier evaluation is depicted in Figure 8.9. In the
first step, a training and testing sample is derived from the data provider. The
training sample is passed to the classifier training pipeline (Figure 8.8) that
outputs a classifier model. The testing sample is passed to the step Evaluate
Classifier that evaluates the trained model using the provided testing set, that
results in a classifier evaluation report.

Select
Training/
Testing

Set

Truth
Set

Classifier
Model

Truthset
Provider

Classifier Training
Pipeline

Evaluate
Classifier

Classifier
Evaluation

Figure 8.9.: Data pipeline for classifier evaluation.

Persistence Handling The model persistence is handled by two methods: train
_and_persist_classifier_model() and load_classifier_model. They are
summarized in Table 8.9.
The class ARationalyticsClassifier is a base abstract class for Rationa-

lytics based classifiers. The class is depicted by the UML diagram in Figure
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Table 8.9.: Persistence handling methods
Key Valid value

train_and_persist_classifier_model(...) Model training and persistence method.
Accepts a classifier configuration, the la-
bel column, and the output file name. Re-
turns the trained model.

load_classifier_model(...) Model loading method. Loads a model
from file and returns it.

8.10. It requires the injection of a classifier configuration and an output folder
into which the classification models are persisted and loaded from. The third
formal parameter allows to additionally supply a tag, that is added as a suffix
to the model’s file name that is persisted or loaded.

ARationalyticsClassifier has a method train that has an implementation
for training a classifier using the injected classifier configuration. The method
makes use of the persistence and loading methods listed in Table 8.9 to load
an already trained model, or train and persist the model into the supplied out-
put folder if no model is found. The class ARationalyticsClassifier also
specifies the abstract methods predict and predict_list that the subclasses
need to implement, in order to accept respectively a single or multiple data
objects (i.e., user comments) to be processed by the classifier. The purpose of
these methods is to apply the trained classification model on these data ob-
jects, obtain the class predictions for them, and return the results. By allowing

ARationalyticsClassifierARationalyticsClassifier

__init__(config: AClassifierConfig, model_folder: string, tag: string)

predict(data)
predict_list(data_list)

train()

AClassifierConfigAClassifierConfig

Figure 8.10.: UML diagram of ARationalyticsClassifier allowing a depen-
dency injection of the aggregated class AClassifierConfig.

the injecting of a classifier configuration, and the training method provided,
ARationalyticsClassifier aims to make the sub-classes configurable (e.g.,
different configurations for different classes) and actionable (e.g., through usage
by microservice implementations), which is illustrated by the prototypes that
are described in the next Chapter.
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8.4.3. Tools

The Framework is developed using the Python programming language version
3.6. The required python packages are summarized in the file requirements.txt
and are located at the root level of the Rationalytics Framework. The re-
quired packages can be installed using python’s package management system
pip with the following command:

pip install -r requirements.txt

The list of required python packages are summarized in Table C.2. The list of
external libraries used by the framework in summarized in Table C.3.

8.5. Discussion

We discuss the design goals and limitations of the framework. The framework
was developed with the following design goals in mind: configurability, extensi-
bility, adaptability, and scalability.
The framework is configurable, in the sense that it allows the configuration

of a classifier using a provider of labeled data, a feature configuration, and
configuration of classifier algorithms. One limitation of the configurability is
that the framework allows only configurations of binary or multi-class classifier.
The framework is extensible, in the sense that it allows the addition of crucial

functionalities to be added. In particular, a contribution towards this design
goal is the fact that the framework allows the addition of new features as well
as transformers for data processing, feature extraction, normalization, and di-
mensionality reduction.
The framework is adaptable in the sense, that it although focuses on user

comments on software, it allows also to target other domains too, such as user
comments on news or debating platforms. Different domains might have dif-
ferent data requirements, especially with regard to contextual data needed for
more accurate classifiers. A contribution towards this design goal is the meta-
model of user comments that considers contextual data (e.g., commented item),
that support the development of platform-specific providers of labeled data.
The design goal is also considered, as the framework provides implementation
for different types of features (e.g., lexical, syntactical, and contextual) that
serve also as a blueprint for further adaptations. The current limitation of the
framework regarding adaptability is that it lacks a data wrapper that is aligned
with the meta-model to allow a more convenient linkage of data coming from
different database formats. The current implementation of data providers use
the pandas [193] dataframes to read the labeled data from CSV files. Example
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of python object-relational mapping (ORM) wrapper that might be used for
this is sqlalchemy [194] or peewee [195]. A more sophisticated data providers
are needed in order to improve not only the adaptability but also the scalability
of the framework.

The framework is scalable in the sense, that provides a set of basic nat-
ural language techniques that were designed with a high coherence and low-
coupling in mind. A set of microservices that expose some basic, potentially
time-consuming, preprocessing functionalities of the framework as REST-Api is
developed as reference implementation that should point out framework’s scal-
ability potentials. This should demonstrate how these functionalities can be
encapsulated and ran independently in order to improve the overall scalability.
Such microservices, for example, might be deployed in the cloud to enable a
more performant, scalable, and robust data preprocessing. The scalability is
also strongly influenced by data handling approach and the orchestration of
such microservices.

8.6. Summary

In this Chapter we introduced the Rationalytics framework, that aims to support
the development of supervised classification approaches with focus on rationale
and stance mining from user comments. We summarize the key aspects of the
framework in the following paragraphs:

Meta-model of user comments We developed a data-grounded conceptual
meta-model of user comments that was used to guide the framework’s design
decisions. The aim of the meta-model is to support the generalizability of the
framework. It conceptually specifies a user comment and how it relates to
associated concepts (e.g., commented item or reply).

Framework architecture The framework architecture is a layered, pipeline-
based architecture composed of a data layer and a machine learning (ML) layer.
The data layer encapsulates functionality for supporting data provision, data
preprocessing, and feature extraction. The ML-engineering layer encapsulates
functionality that deals with the configuration, training, evaluation, and per-
sistence and loading of a machine learning classifier. The pipelines for data
processing, classifier training, and evaluation are developed with the aim to be
repeatable and reusable.
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Framework’s design goals We discuss framework design goals, the contribu-
tions made towards these goals, as well as corresponding limitations.
In the next Chapter we describe two prototypes using the Rationalytics

framework as a proof of its concept, that focus on two heterogeneous data sources
of user comments: Amazon software reviews and ProCon user comments. The
first prototype URMiner focuses on mining user rationale from user comments,
while the second prototype ProConStanceMiner focuses on classifying user
comments as pro/contra towards a controversial issue.
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Chapter 9.

Prototypes Using Rationalytics

In the previous Chapter we introduced the Rationalytics framework, that
supports the development of supervised machine learning approaches for mining
rationale insights from user comments. We described how the framework can
be used to configure, train, evaluate, and persist a supervised classifier for this
purpose.
In this Chapter we present a proof of concept for the Rationalytics frame-

work, by describing two vertical prototypes based on this framework: URMiner

and ProConMiner. Both prototypes define a public interface composed of mi-
croservices exposing Representational State Transfer (REST) APIs with a JSON
payload. The design rationale is to simplify the information exchange, the de-
ployment and operation of the microservices, and their integration with other
tools. Section 9.1 describes the prototype URMiner, while Section 9.2 describes
the prototype ProConMiner. Section 9.3 discusses the chapter, followed by
Section 9.4 that summarizes this Chapter.

9.1. URMiner

URMiner focuses on mining user rationale from user comments. As a proof
of concept for the framework, we describe a set of microservices of URMiner

and implemented a subset as a reference implementation of the user rationale
mining functionality.

9.1.1. System overview

URMiner is composed of three analytics layers representing a closed-layered
architecture.
The first layer encapsulates basic user rationale miners, e.g., Criteria miner

such as Usability or Performance miner. The second layer encapsulates user
rationale miners that are conceptually a homogeneous aggregation of basic user
rationale miners. For instance, it exposes a miner for the rationale concept
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Criteria, that is conceptually a homogeneous aggregation of basic Criteria sub-
concept miners (e.g., Usability miner). The third (top) layer provides additional
functionalities that reuse the miners from the second and first layer and provide
miners that are additionally configurable, e.g. miner of informative comments.
The miners on the third layer are meant to be configurable from user’s perspec-
tive: “What does informative mean?”. One miner configuration might define
an informative comment as one that reports an issue, criteria, and justifica-
tion. Another miner configuration might define an informative comment as a
one reporting justifications and having a star rating below 4.

Note 9.1: Implementation variants

Technically, microservices of higher level can encapsulate the functionality
that is provided by the microservises of lower layer, instead of relying on the
corresponding microservices. For instance, the middle layer can integrate the
functionality provided by the microservices of the lower layer. Depending on
the usage scenario, such reduction of coupling might be useful in practice (e.g.,
lowering the number of microservices can reduce the orchestration effort).

In the next paragraphs we describe the labeled data providers, classifier con-
figurations, custom features and preprocessors, and finally the classifier wrapper
for mining user rationale that is used by the microservices.

Labeled data provider The UML class diagram in Figure 9.1 shows three
concrete data providers of user rationale. URReviewLabeledDataProvider and
URSentenceLabeledDataProvider subclass ASingleGranularityLabeledDat-

aProvider and thus provide access to labeled data of a single granularity. The
third data provider URLabeledDataProvider provides access to labeled data on
two granularity levels. In this case, these are the comment and sentence level.

Classifier configuration Figure 9.2 illustrates an UML class diagram of ex-
ample classifier configurations for user rationale classifiers for both granularity
levels - comment and sentence. As visible in the Figure, we have different classifi-
cation configurations with the same name for different granularity levels. For ex-
ample, the classifier configuration class URBaselineClassifierConfig appears
in both packages configs.classifier_review and configs.classifier_sentence.
The reason behind this is that configurations that work good for sentence level,
do not necessarily work good for the review level.
The abstract base configuration class AURClassifierConfig for user ratio-

nale classifiers inherits from framework’s AClassifierConfig class. It initial-
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ATwoGranularityLabeledDataProviderATwoGranularityLabeledDataProvider

ASingleGranularityLabeledDataProviderASingleGranularityLabeledDataProvider

URSentenceLabeledDataProviderURSentenceLabeledDataProvider

URReviewLabeledDataProviderURReviewLabeledDataProvider

URLabeledDataProviderURLabeledDataProvider

Figure 9.1.: UML diagram depicting the concrete classifier configuration classes
– subclasses of AClassifierConfig.

AClassifierConfigAClassifierConfig

__init__(th: ATruthsetProvider): None

AURClassifierConfigAURClassifierConfig

__init__(th: ATruthsetProvider): None

URBaselineClassifierConfigURBaselineClassifierConfig

__init__(): None

URDecisionHighPClassifierConfigURDecisionHighPClassifierConfig

__init__(): None

_register_features(): None
_activate_features(): None

_activate_features(): None

_activate_features(): None

URDecisionHighRClassifierConfigURDecisionHighRClassifierConfig

__init__(): None
_activate_features(): None

URReviewClassifierConfigURReviewClassifierConfig

__init__(): None

URSentenceClassifierConfigURSentenceClassifierConfig

__init__(): None

_register_granularity_spec_features(): None _register_granularity_spec_features(): None

URBaselineClassifierConfigURBaselineClassifierConfig

__init__(): None
_activate_features(): None

_init_granularity_spec_features(): None

URDecisionHighPClassifierConfigURDecisionHighPClassifierConfig

__init__(): None
_activate_features(): None

URDecisionHighRClassifierConfigURDecisionHighRClassifierConfig

__init__(): None
_activate_features(): None

_register_features(): None

Figure 9.2.: UML diagram showing a subset of classes conceptualizing user ra-
tionale classifier configurations.

izes common features for both levels by implementing the abstract method
_register_features(). Additionally, it declares the abstract method _reg-

ister_granularity_spec_features(), to ensure that the sub-classes initialize
any other, granularity specific, features by providing an implementation for this
method. A granularity specific feature might be, for example, a feature that
counts sentences of a comment, that would only be relevant for a review level
classifier. To import a new classification feature (and thus make it available for
activation), it is essentially needed to define an unique feature id, and register
the feature in the _register_features() method.

The packages configs.classifier_review and configs.classifier_sentence

bundle classifier configurations for the review and sentence level respectively.
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Both packages provide a base classifier configuration class for the corresponding
granularity level for simplicity reasons. These are the classes URReviewClassi-
fierConfig and URSentenceClassifierConfig, respectively for the granularity
levels review and sentence. They take care of initializing the right data providers
for the granularity level. For instance, the URSentenceClassifierConfig ini-
tializes URSentenceLabeledDataProvider in its constructor. In both packages,
a class named URBaselineClassifierConfig encapsulates a baseline configu-
ration.1 This configuration activates only lexical features. A baseline configu-
ration can be useful to train a simple classification model and in classification
experiments to establish a baseline that can be compared with other classifier
configurations.

The UML diagram includes also example classifier configuration classes for
classifying certain user rationale concepts. For instance, both packages, the
classes URDecisionHighPClassifierConfig and URDecisionHighRClassifier-

Config specify a configuration for respectively high-precision and high-recall
Decision classifiers.

Custom features and preprocessors In this prototype, we defined two new
classification features F_RATING and F_INDEX_SENTENCE, as well as one new pre-
processor called JustificationMarker. The feature F_RATING represents the
numerical feature star rating, while F_INDEX_SENTENCE is another numerical
feature representing a sentence position within review.

We registered the features F_RATING and F_INDEX_SENTENCE using the method
_register_feature that is provided by the framework’s class AClassifierConfig.
We additionally supplied the required parameter F_TYPE_NUMERIC for both fea-
tures indicating their numeric type. Framework takes care of configuring default
data selectors and feature extractors based on the feature type, although allow-
ing them to be changed.

We also implemented a custom preprocessor JustificationMarker that pre-
processes the input text by counting the number of marker words indicating a
user rationale justification. The preprocessor subclasses framework’s abstract
class APreprocessor.

Classifier wrapper The class URClassifier, that encapsulates a trained clas-
sifier, derives from ARationalyticsClassifier and has one constructor that
expects a classifier configuration of type AURClassifierConfig. URClassifier

1The baseline configuration represents the configuration used to obtain baseline classification
results in Chapter 5.
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encapsulates a classifier that is used in the reference implementations of the
microservices.
In URClassifier’s constructor, the classifier configuration parameter is dele-

gated to the constructor of the base class, together with a parameter specifying
the model folder into which the classification models of user rationale clas-
sifiers should be stored or loaded from. URClassifier furthermore provides
implementations for the methods predict and predict_lists. The classifier
wrapper simplifies the training and persisting of a classifier using the supplied
configuration. The training and persisting of a classifier is only performed if a
corresponding classification model is not found, otherwise the existing persisted
model is loaded.

9.1.2. Microservices

The DOT diagram in Figure 9.3 illustrates a conceptual model of URMiner’s
microservices and their interdependencies. It illustrates its closed-layered archi-
tecture where microservices are clustered according to the three layers (i.e., top,
middle, and low layer) with an access direction from top to bottom. A node de-
notes a microservice, while an edge denotes a use-association2. We implemented
a reference implementation for the middle layer services.

High Layer

Middle Layer

Low Layer

alt-softwarealt-versionalt-feature

issuealternative criteria

usability performancereliabilitysupportability

decision

acquire updateswitchrelinquish

justification

summarizerselector

Figure 9.3.: Microservice architecture of URMiner.

Two base URL prefixes bundle the various URMiner microservices in three
layers for the review and sentence granularity levels: /urminer-review and
/urminer-sentence. Each microservice encapsulates a binary classifier of the
corresponding rationale concept. Table 9.1 summarizes the API endpoints of
the basic URMiner microservices of the middle layer. Table 9.1 shows only
URL suffixes of the microservices. Each of these microservices exist for each
granularity level. That means, that /urminer-review/issue and /urminer-

sentence/issue are two separate microservices: /urminer-review/issue ex-
posing a review-level classifier for issues, while /urminer-sentence/issue ex-
posing a sentence-level classifier for issues.

2Meaning of the edge A→ B is: A uses B
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Table 9.1.: API endpoints of URMiner (named same for both levels).
URI Description

/issue This service accepts a review/sentence as a JSON payload and returns
two probabilities: the probability that an issue (True) is present, and the
probability that an issue is absent (False)

/alternative This service accepts a review/sentence as a JSON payload and returns
two probabilities: the probability that an alternative (True) is present,
and the probability that an alternative is absent (False)

/criteria This service accepts a review/sentence as a JSON payload and returns
two probabilities: the probability that a criteria (True) is present, and
the probability that a criteria is absent (False)

/decision This service accepts a review/sentence as a JSON payload and returns
two probabilities: the probability that a decision (True) is present, and
the probability that a decision is absent (False)

/justification This service accepts a review/sentence as a JSON payload and returns
two probabilities: the probability that a justification (True) is present,
and the probability that a justification is absent (False)

The microservices accept an HTTP Post request with a JSON payload that
include the fields Application, Title, Body, Rating, SubmissionDate, and
Author (Listing 9.1). The required fields for the review-level microservices are
Title, Body, and Rating, while for the sentence-level the required fields are
Body and Rating only.

Note 9.2: Adaptable miner

Technically, a microservice can be developed in an adaptable way: depending
on the request payload, a specific machine learning model might be used. For
instance, in case the JSON payload contains information about the context
(e.g., application name), then a machine learning model might be selected
that was trained considering also contextual data.

A successful answer to a request is a JSON payload that includes two class
probabilities. An example of a JSON payload that is returned is given in Listing
9.4.

Listing 9.1: Example excerpt of a JSON payload for a URMiner service request

{
"Application" : { ... }
"Title" : "␣...␣",
"Body" : "␣...␣",
"Rating" : 4,
"SubmissionDate" : "12-05-2017",
"Author" : "John"

}
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Listing 9.2: Example of a JSON request to a URMiner service request.

{
"msg" : "Predictions␣for␣...␣",
"data": {

"False": 0.29,
"True": 0.71

}
}

9.2. ProCon Miner

ProConMiner is another prototype that is built using the Rationalytics

framework and focuses on classifying user comments as pro or contra towards
controversial issues. This functionality is exposed with microservices. An ex-
ample of an controversial issue is “The benefits of Vaccination for children”.
We included screenshots of this issue taken from the ProCon website in the
Appendix in Section D.2.
The ProConMiner exposes one microservice that encapsulates a pro/contra

classifier. The classifier classifies the stance of a comment on a controversial issue
as pro or contra.

9.2.1. System overview

This section describes the data providers and the classifier configurations of
the ProConclassifier. In the next paragraphs we describe the labeled data
providers, classifier configurations, custom features and preprocessors, and fi-
nally the classifier wrapper for pro/contra stance classification that is used by
the microservices.

Labeled data provider The UML class diagram in Figure 9.4 depicts four
concrete data providers for the ProConMiner.
ProConCommentLabeledDataProvider and ProConSentenceLabeledDataProvider

subclass ASingleGranularityLabeledDataProvider and thus provide access to
labeled data of a single granularity. ProConCommentLabeledDataProvider pro-
vides comment-level labeled data, while ProConSentenceLabeledDataProvider
provides access to sentence-level labeled data. The data provider ProConLa-

beledDataProvider provides access to both granularity levels (i.e., the comment
and sentence level). Finally, ProConLabeledDataOneSiteProvider provides ac-
cess to labeled data for user comments of a specific ProCon’s controversial issue
only (e.g., on vaccination), for both granularity levels.
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ATwoGranularityLabeledDataProviderATwoGranularityLabeledDataProvider

ASingleGranularityLabeledDataProviderASingleGranularityLabeledDataProvider

ProConSentenceLabeledDataProviderProConSentenceLabeledDataProvider

ProConCommentLabeledDataProviderProConCommentLabeledDataProvider

ProConLabeledDataProviderProConLabeledDataProvider

ProConLabeledDataOneSiteProviderProConLabeledDataOneSiteProvider

__init__(site_key: string): None

Figure 9.4.: UML diagram showing the concrete classifier configuration
classes for pro and contra stance classifiers – subclasses of
AClassifierConfig

Note 9.3: Customized data providers

A factory class PROCONLabeledDataProviderFactory allows to create cus-
tomized instances of the data providers, allowing injection of constructor pa-
rameters. For instance, it provides an convenient access to the creation of an
PROCONLabeledDataOneSiteProvider instance, where the formal construc-
tor parameter site_key is injected with the appropriate key that indicates
the controversial issue.

Classifier configuration Figure 9.5 shows an UML class diagram of classifier
configurations for pro and contra stance classifiers.
AProConMinerConfig inherits the class AClassifierConfig from Rationa-

lytics framework. It provides an implementation for _register_features(),
where all classification features are initiated. All its sub-classes provide addi-
tionally an implementation of _activate_features(), where a sub-set of those
classification features are activated and parameterized.
As for the URMiner prototype, a class named ProConLexicalClassifier-

Config encapsulates a classifier configuration using lexical features for pro and
contra stance classifiers that activates only lexical features. This classifier con-
figuration might be used to compute a simple classification model or establish a
baseline in classification experiments. The UML diagram shows also conceptual
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AClassifierConfigAClassifierConfig

__init__(th: ATruthsetProvider): None

AProConClassifierConfigAProConClassifierConfig

__init__(th: ATruthsetProvider): None

ProHighPClassifierConfigProHighPClassifierConfig

__init__(th: ATruthsetProvider): None

_register_features(): None
_activate_features(): None

_activate_features(): None

ProHighRClassifierConfigProHighRClassifierConfig

__init__(th: ATruthsetProvider): None
_activate_features(): None

ProConLexicalClassifierConfigProConLexicalClassifierConfig

__init__(th: ATruthsetProvider): None
_activate_features(): None

ContraHighPClassifierConfigContraHighPClassifierConfig

__init__(th: ATruthsetProvider): None
_activate_features(): None

ContraHighRClassifierConfigContraHighRClassifierConfig

__init__(th: ATruthsetProvider): None
_activate_features(): None

_register_features(): None

Figure 9.5.: UML diagram showing a subset of classes conceptualizing configu-
rations for pro and contra stance classifiers.

examples of high-precision and high-recall classifier configurations for classifying
pro and contra comments. These configurations are conceptualized by classes
ProHighRClassifierConfig and ProHighPClassifierConfig respectively.

Custom features and preprocessors We introduced overall three custom nu-
meric classification features in this prototype.

We defined two features of ratings votes up and votes down, by introducing
a unique id for each respectively F_VOTES_UP and F_VOTES_DOWN. The features
were registered using the method _register_feature that is provided by the
framework’s class AClassifierConfig, additionally supplying the required pa-
rameter F_TYPE_NUMERIC indicating for these features that they are of numeric
type. The framework takes care in configuring default data selectors and fea-
ture extractors based on the feature type supplied. Another numeric classifica-
tion feature that was introduces is F_TITLE_MARKER, that calculates a number
denoting the overlap of a user comment with the title of the corresponding
controversial issue. In contrast to F_VOTES_UP and F_VOTES_DOWN, for this fea-
ture we developed a custom preprocessor named TitleMarker. By registering
this feature we provide the required parameter indicating the feature type (i.e.,
F_TYPE_NUMERIC) as well as our custom preprocessor, thus overriding the default
preprocessor.
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Classifier wrapper The classifier wrapper class ProConMiner derives from Ra-

tionalyticsClassifier, and has a constructor that accepts a classifier config-
uration of type AProcConClassifierConfig. The wrapper class ProConMiner
is used in the implementations of the microservices.

In ProConMiner’s constructor, the supplied classifier configuration parameter
is delegated to the constructor of the base class. Additionally, a string literal
specifying the name of the output folder is supplied, that specifies the folder
in which the classification models of pro and contra stance classifiers should be
stored or loaded from. The class ProConMiner furthermore provides implemen-
tations of the methods predict and predict_lists.

9.2.2. Microservices

The ProCon classifier exposes one microservice with the URI /procon-classifier.
The microservice accepts a HTTP Post request with a JSON payload that in-
clude the fields ControversalIssue, Comment, VotesUp, VotesDown, Submis-
sionDate and Author. The required fields are Comment and Votes. Example
JSON request and return payload is shown respectively in Listings 9.3 and 9.4.

Listing 9.3: Example excerpt of a JSON payload for a ProCon classifier service
request

{
"ControversalIssue" : { ... }
"Comment" : "␣...␣",
"VotesUp" : 5,
"VotesDown" : 7,
"SubmissionDate" : "12-05-2017",
"Author" : "Jane"

}

Listing 9.4: Example of a JSON dictionary as a result to a ProContra classifier
service request

{
"msg" : "Probabilities␣for␣Pro/Contra␣stance",
"data": {

"Pro": 0.77,
"Contra": 0.21

}
}
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9.3. Discussion

As presented in Sections 9.1 and 9.2, a prototype using the Rationalytics

framework needs at least to provide an implementation of a labeled data provider
and a classifier configuration.
For a classifier configuration that inherits from AClassifierConfig, all clas-

sification features provided by the framework can be registered and activated
though framework’s API. Additionally, a prototype can optionally define and
register custom features, along with custom transformers (i.e., data selectors,
feature extractors, normalizers, and feature dimensionality reductors) that can
be activated in the classifier configuration classes.

9.4. Summary

In this Chapter we described two prototypes developed using the Rationalyt-

ics framework as a framework’s proof of concept. The prototype URMiner

exposes a set of microservices that focuses on mining user rationale from user
comments. It uses classifiers that are trained using labeled data of user rationale
derived from Amazon software reviews.
The prototype ProConMiner exposes a microservice that focuses on clas-

sifying user comments as pro and contra towards controversial issues. The pro-
totype uses classifiers that are trained using labeled data of pro and contra user
comments from ProCon.
For both prototypes, we gave a system overview and description of the their

public microservices. We provided examples of how custom classification fea-
tures that work with default data processing transformers can be registered using
the framework’s API, and gave also examples of custom classification features
that have custom transformers.
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Discussion

Our findings stress the importance of user rationale and its relevance to software
engineering. We found that approximately 39% of studied reviews contain jus-
tifications. User rationale concepts tend to co-occur in reviews with a notable
fraction of justifications ranging from 21 to 71%. An illustration of a justified re-
view sentence is “Delivered fast, but was unable to import from TAXACT to this
software, so I returned it”. The sentence reports a decision (relinquish software)
and an argument (compatibility issue). Also, stance detection on comment and
concept-level (e.g., on criteria) might support trend analysis, for example, by
overseeing large amount of user comments.
In Section 10.1 we discuss the importance of user rationale for software engi-

neering and the potentials of its mining and management requirements and soft-
ware engineering scenarios. We particularly describe two scenarios and present
and discuss mockups that might be useful. We also discuss how user rationale
extracted from user feedback can augment design rationale models. In Section
10.2 we discuss the coding and classification challenges. Finally, in Section 10.3
we elaborate on the limitations and of our work and threats to validity.

10.1. Mining and Management of User Rationale

We discuss two scenarios how user rationale classifiers might be employed in
practice: deliberation support for users and synthesis of reviews for developers
and analysts.

10.1.1. Deliberation support for users

Large corpora of user comments, particularly user reviews on software platforms
such as Amazon’s software store [14], Google Play [13], uservoice.com [19] pro-
vide an important resource for software vendors to investigate polarization and
the broad spectrum of rationale and perspectives in the public discussion. At
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the same time it challenges the users to quickly survey the emerging and grow-
ing number of user feedback and to easily provide feedback or get involved into
an existing discussion.
User rationale might be employed to support user involvement by structuring

the discussion/debate in existing reviews. A simple statistics might provide an
overview about reported issues, criteria, alternatives, decisions, or users’ jus-
tifications. The justification density can significantly indicate the usefulness
of a review [28, 29]. User rationale might help users learn about the software
and understand its complexity and the tradeoffs users might not have thought
about. This might improve the application rating. Users might also get sup-
port to identify if a review should e.g., include a criteria or justification and
recommendations to extend the text (e.g. by auto-complete functionality).
User rationale can also be useful for debates on user feedback platforms, for

visualization of pro and contra user stances that highlight contrasting user per-
ceptions on e.g. non-functional requirements (such as pro and contra usability
stances). Criteria concepts, such as usability, might thus be clustered as pro
or contra stances depending on their sentiments, where a positive sentiment
indicates a pro stance, and a negative sentiment indicates a contra stance.
However, there are some general issues when involving users and the pro-

cessing of their feedback. Users are not professionals and so the usefulness of
their reviews can strongly vary. They also do not adhere always to grammatical
rules when they write, and can be biased in their review. This challenges the
automated processing and making sense of their reviews.

10.1.2. Synthesis of software reviews for SE practitioners

User rationale can support developers and analysts in filtering reviews, make
better decisions (e.g. during requirements prioritization), documentation, and
communication.
User rationale can be used to mark and filter potentially low/highly infor-

mative reviews. Those for instance that have a low justification density might
be filtered. Furthermore, rationale-backed reviews of special interest might be
selected and explored, e.g. those that mention conclusive decisions on switching
a software. This allows stakeholders to take best possible actions tailored to the
reported justifications of users.
During requirements prioritization and negotiation, for example, an issue can

be higher prioritized, when it is frequently mentioned as a reason for abandon-
ing the software. A between-app analysis might support practitioners in finding
out how their tool performs compared to others (e.g. “How does my application
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compare to the most mentioned software alternative?”). Identification of dupli-
cates or clustering and quantifying these concepts might support stakeholders
in deciding on tradeoffs (e.g. alternative features). Furthermore, justifications
of users can enrich existing documentation of requirements and design decisions.
The broad spectrum of their justifications can also help to get insights and bet-
ter understand their different perspectives (e.g. on usability). Our approach
can also be applied on other types of inputs as tweets, comments in forums or
social media.
Finally, user rationale classifier can improve communication among stakehold-

ers. The arguments provided by users when negatively assessing the technical
support might be reused when advocating for more resources. For example, to
achieve this, stakeholders might employ the classifiers to select reviews reporting
switch decisions and supportability criteria, and prioritize them according to the
justification density. Then, in the next step they can manually extract relevant
user justifications for these decisions. In future work, such process might be ad-
ditionally improved by applying clustering techniques (using similarity metrics)
with the aim to group and highlight the more urgent cases (e.g., those that are
most mentioned).

10.1.3. Mockups

We will illustrate how a user rationale miner can be employed to support users
and software practitioners by presenting and discussing two mockups. The two
mockups visualize reviews of an hypothetical word processing software.

Deliberation support The first mockup in Figure 10.1 represents a scenario,
where user rationale miners can be employed to support users in getting a quick
overview of current reviews.
The left column in the mockup is composed of three sections. The first section

shows the overall star rating (i.e., ‘4 out of 5 stars’) and the overall number of
reviews. The second section named ‘Review topics’ shows a word and phrase
cloud (e.g., the most mentioned terms within the 129 reviews). The third section
lists then the most recent reviews. In the mockup two reviews are shown by the
users jane and john.
The right column of the mockup displays information that can be gathered

using the user rationale miners. It is composed of 2 parts: ‘Rationale map
overview’ and ‘Criteria stances’. The part named ‘Rationale map overview’
contains a mosaic plot, that visualizes the proportional collocations of rationale
concepts along with the justification density (in percent) for each collocation.
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Figure 10.1.: User feedback overview illustrating an example of a rationale map
and stance classification on criteria as a user deliberation support.

The data for the mosaic plot can be obtained by the rationale miners, by mining
the various rationale concepts from reviews and calculating a contingency table
over their co-occurrences. The tiles of the rationale map overview can be made
clickable for the user, to allow them to select reviews that contain specific infor-
mation types. For example, a click on the right-top tile would lead to selection
of reviews that report only alternatives and decisions.
The part named ‘Criteria stances’ visualizes of user stances towards a user

rationale criteria, i.e., usability, performance, reliability, or supportability. For
each criteria two horizontal bars are displayed. The top (green) bar represents
the fraction of reviews reporting criteria do not report any issue, while the
bottom (red) bar indicates the fraction of reviews that report an issue along
with the corresponding criteria. The data for displaying the two bars can be
obtained by employing the rationale miners to mine criteria and issues, and
calculating the frequencies of criteria/issue collocations in reviews. The list of
criteria appear vertically listed in a descending order by the relevant review
frequencies. The listed criteria items can be allowed to be clicked, as well as the
bar representing pro/contra stances, allowing users to select reviews that report
only a certain criteria.
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Synthesis of software reviews We will discuss a mockup that illustrates how
a user rationale miner can be employed for synthesizing reviews to support
software practitioners in decision making. The mockup shown in Figure 10.2
visualizes user’s contrasting perceptions, pro and contra stances, towards the us-
ability criteria. The review excerpts in the mockup come from our user rationale
dataset.
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Just all around feels cleaner and 
well laid out.
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I found the User interface very 
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the options that wanted to use.

No matter how good it is in its 
technical performance ... when it 
issues dialog boxes that you can't 
rid of or anything else of that 
nature, it is time to find a new 
vendor.

Release 2.1 Release 2.2

Figure 10.2.: Mockup of pro/contra criteria stance visualization.

The mockup is composed of three parts that are horizontally aligned. The
left-most and right-most part show reviews representing respectively pro and
contra stances. The middle part shows two curves for each of the stance orien-
tations, with top x-axis denoting releases over time, and bottom x-axis denoting
time. The curves visualize the pro and contra trends towards the usability cri-
teria over time. The data for such a visualization can be gathered - as for the
overview mockup - by mining criteria and issues from reviews, and calculating
the frequencies of their collocations.
The software stakeholders might use this trend analysis to watch for the dif-

ferences between pro and contra trends towards certain criteria. It can also be
used to improve internal requirements prioritization. The importances of non-
functional requirements might be adjusted depending on the pro/contra trend
analysis. For example, if the number of contra reviews increase and become
larger than the number of pro reviews towards a criteria, then the weighting
factor indicating the criteria’s importance might be automatically increased.
This visualization can be also integrated into the first mockup (Figure 10.1) for
an improved deliberation support for users, e.g., it might be shown to the user
when the user clicks on a specific criteria (e.g., usability).

10.1.4. Design and user rationale

We discuss now two examples how user rationale can augment design rationale.
We will elaborate on the examples in context of requirements engineering and
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software design processes.

Requirements Engineering For the requirements engineering case, we adopt
the concept of a design rationale process that aims to satisfy user requirements,
as proposed by Ramesh and Dhar [8]. Requirements can be interpreted as
verbalization of goals to be achieved (i.e., requirements space) that lead to a set
of issues (along with alternative positions and arguments) that need to be solved
in order to achieve them (i.e., design space). Note that the requirements space
has a higher level of abstraction than the design space. For simplicity reasons,
the requirements will be denoted with the concept Requirement. The design
rationale is modeled using concepts of the IBIS model, i.e., Issue, Position, and
Argument. For each of the concepts, a concept prefixed with User will represent
a user rationale concept. For example, a requirement derived from user rationale
(e.g., requested alternative feature) will be denoted as UserRequirement, while
a position derived from user rationale will be denoted as UserPosition.
We will discuss an example scenario covering the following steps:

1. Automatically mine user rationale from reviews
2. Update requirements space

• Create new user requirement from user rationale
• Associate user requirements with related, existing requirements

3. Update design rationale space
• Select affected design rationale models (i.e., design issues derived

from affected requirements)
• Augment design rationale with user rationale

In the first step, user rationale is automatically mined from software reviews.
Among the user rationale extracted, let the following review excerpt denote a
user requirement:

“I usually learn from friendly manuals by choice rather than taking
online courses or attending classroom instruction”.

The user requirement reports three alternative positions on how the user can
learn about the software, where the most preferred alternative is indicated.
Newly identified alternatives, even not preferred by the user, such as in this
user requirement, can help reveal new directions for further exploration [196].
We will illustrate how such user requirement can augment existing requirements
and design space with the UML object diagram in Figure 10.3. The white class
objects are already existent class object of a requirements space and design
rationale space, while the gray class objects represent objects drawn from the
user rationale space. The top dotted segment named ‘Requirements’ represents
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part of the requirements space, while the bottom dotted segment named ‘Design’
represents part of the design rationale space.

SoftwareDocumentation: 
Issue

UserManual: 
UserPosition

OnlineCourse: 
UserPosition

UserSupport: 
Requirement

ClassRoom: 
UserPosition

Design

Tutorial: Position

KnowledgeBase: Position

*

UserSupport: 
UserRequirement

InteractiveHelp: 
Issue

ProjectWizard: 
Issue

Requirements

Figure 10.3.: Example of an IBIS-based design rationale object model (objects
with white background) enriched with user rationale (objects with
gray background).

Let us assume that the user requirement from reviews affects existing require-
ments related to user support. In the second step of the scenario, we update
the requirements space by creating a new user requirement object and link it
with that existing related requirement. In the UML diagram the user require-
ment from the reviews is represented by the class object named UserSupport of
type UserRequirement, while the existing requirements is represented by another
class object of the same name UserSupport of type Requirement. The relation
between these two requirement objects is illustrated with the connecting edge.

We come now to the third step, to update the design rationale space. In
the Figure we see two related design issues to the corresponding requirement,
namely the objects SoftwareDocumentation and InteractiveHelp. Among the
already existing alternative positions to the two issues, we included the three
alternatives identified in the user requirement. The issue SoftwareDocumen-
tation has overall three positions, among them the user position UserManual
reported in the user requirement. UserManual is also mentioned in the user re-
quirement as the preferred alternatives. This information can also be included
in the design rationale to adjust the relative weight of this position (marked
with an asterisk). The issue InteractiveHelp has also three positions, among
them two user positions named ClassRoom and OnlineCourse reported in the
user requirement.
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System Design Now we discuss how user rationale can augment design ratio-
nale models during system design.
Let suppose that a graphic editor is being enriched with additional features,

particularly extension to support additional file formats are being proposed.
To get inspired, the software vendor mines user rationale from user reviews of a
competitor. Among the user rationale extracted, let the following review excerpt
denote a user requirement reporting a pro argument for the multi layer support
in handling files of the Tagged Image File Format (TIFF):

“I do like the way it saves images (.tif format) with separate lay-
ers intact (my other processor does not) so it can be reopened and
layers/selections moved around again”.

The reported supportive user argument might be added to an existing design
rationale model. Let us suppose that such a design rationale model exists
and looks like the model depicted by the UML object diagram in Figure 10.4.
TIFFSupport denotes the relevant issue (e.g., “Which functionality should the

TIFFSupport: Issue

BasicTIFFSupport: 
Position

AdvancedTIFFSupport: 
Position

MultiLayerSupport: 
UserArgument

Figure 10.4.: Example of an IBIS-based design rationale object model (white
class objects) enriched with user rationale (grayed-out class ob-
jects).

TIFF support include?”), with two alternative positions that aims to solve it,
namely BasicTIFFSupport and AdvancedTIFFSupport. BasicTIFFSupport pro-
poses to support only the baseline TIFF (without multi layer support), while
the AdvancedTIFFSupport includes more advanced TIFF support (including
multi layer support). In the UML diagram, the user argument is represented
by the class object named MultiLayerSupport, that is directed to the position
AdvancedTIFFSupport proposing a solution with support for multiple layers.
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Summary We elaborated on two scenarios on how user rationale mined from
user feedback can augment design rationale models in context of requirements
engineering and system design processes. In both cases user rationale miners
were used to automatically extract user rationale from user feedback and thus
allow project stakeholders to leverage the alternatives and reasoning of users for
own requirements and design rationale models. Although the subsequent tasks
are manual tasks that might be laborious without an adequate tool support
(e.g., to find relevant requirements or rationale models), the importance and
effectiveness of the initial step, to identify user rationale from user feedback
automatically, increases with the amount of user feedback that needs to be
processed.

10.2. Coding and Classification Challenges

Both the manual and automated labeling of rationale in reviews have challenges
and limitations. Due to the inherent complexity of the natural language, man-
ual labeling by humans is often a challenging task [197, 198]. In particular,
manual labeling following to a detailed coding guide can be intensive and diffi-
cult to apply [198]. This is often indicated by the inter-rater agreement. These
challenges limit the applicability of automated approaches. On the other side,
such labeled datasets are required for supervised machine learning approaches
to work. For this purpose, researchers have developed own tools (e.g., Maalej
et al. [103]), or have reused or extended existing tools to support the manual
coding (e.g., Rogers et al. [37]).

In line with earlier studies, our results indicate that there is no one-size-fits-all
classification approach for classifying user rationale. The classification results
not only depend on the feature configuration but are also strongly influenced
by the training sample, its quality and size. While the latter is particularly
indicated by the inspected learning curves, data quality is pointed out by the
inter-coder agreement. The potentials of automated text classification are natu-
rally bounded by the the human achievable classification performance [199], and
are also limited by the limitations of natural language preprocessing techniques
(e.g., inaccuracies of word and sentence segmentation techniques). Further-
more, increased model complexity by increasing the number of feature types
might decrease the generalizability of the classification model and increase the
computational effort needed, but at the same time this might enable better ac-
curacy with less data [165]. Additional challenge might be imposed by data
within-class imbalances (e.g., sub-concepts of criteria) [170]. While for some ra-
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tionale concepts (e.g., criteria concept) more data might help to achieve higher
accuracy for the same set of classification feature types, this might not be true
for other concepts (e.g., justification concept). Additional feature types such
as contextual features [180] might improve the classification accuracy. In par-
ticular, identifying rationale information containing argumentative structures
is challenging even for humans [66, 197, 200, 201]. Compared to formal ratio-
nale sources (e.g., news articles, law documents), user arguments, are rather
informal, inconsistent, or poorly worded [202].

Since human resources limited [203] and manual labeling tasks are laborious
[204], our findings suggest that the classifiers can assist in reducing the work-
load. In case when false negatives are worse than false positives, high-recall
classifiers might be used in mining user rationale to minimize the chance of
missing relevant information (e.g., using Naive Bayes algorithm). In contrary,
high-precision classifiers might be used to collect any representative, true posi-
tive, relevant information (e.g., using Random Forest algorithm). High-precision
classifier might be used to enlarge the training set with the aim to improve the
classifier accuracy, particularly by including predictions of high probability. Di-
verse reviews from different categories might be employed in this process, to
partly mitigate the concern of growing a less heterogeneous training set, com-
pared to the heterogeneity of reviews that the classifier will ultimately be applied
to [205].

We think that our dataset and results are useful for researchers to study
more fine-grained rationale concepts (e.g., performance criteria), their inter-
dependencies (e.g., cost-value trade-offs), and to design and evaluate rationale
analytics and summarization tools. We see our classification results as a first
step towards such a tool. Since we studied whole reviews and single sentences,
user rational concepts can be highlighted or searched for within the reviews.

10.3. Limitations and Threats to Validity

As for every grounded approach with its many variants [206, 207] and manual
content analysis [151, 152], the validity of our study might have been affected by
the human assessment during coding [206]. This is partly indicated by the mod-
erate inter-coder agreement. We conducted the grounded theory with a broad
focus on rationale of users that might have imported potential assumptions dur-
ing the process. Excluding researcher bias in such studies is very difficult if not
impossible to ensure. We therefore do not claim the completeness of the iden-
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tified concepts, instead we aimed for a plausible and valuable theory that is
empirically grounded.

We took several measures to mitigate these threats to validity. First, we
discussed the codes with other researchers and created a detailed coding guide
that describes the main coding tasks, the process, and definitions for all codes
of the user rationale concepts, including the free option “other” for identifying
new codes. The guide can be downloaded from the project website. Second,
we included candidate and non-candidate examples for each code. Third, we
refined the guide in eight iterations, with hired coders to reduce the volunteer
bias. The human coders that were involved in the coding were trained prior to
doing the coding. Fourth, we conducted peer-coding to increase their reliability.
The final truth sets contained only codings on which at least two coders agreed.

Our study was not designed to be generalizable nor representative to other
software markets such as App Store. We see the results primary as indicative,
we are aware that our approach could produce different results if applied to
other data source. Despite that we crawled only a small fraction of applications
compared to the overall more than 300,000 applications available on the store,
we think that our results have a moderate degree of generalizability for the
popular applications on the Amazon software store. First, our dataset included
reviews from popular applications across all Amazon software categories and
ratings. Second, we conducted statistical tests to check for the significance of
the results excluding hazard influence.

We aimed to study the classification feasibility (e.g., for classifying user ra-
tionale) as well as the most informative features instead of obtaining complete
results. Thus, we refrain from claiming the completeness of our classification
results. We focused on rather simple but diverse machine learning features
and were able to achieve accurate results. This facilitates the applicability
and reproducibility of our approach. We did not evaluate all possible feature
combinations. Different parameterization of the used classifier algorithms (e.g,
optimization parameter for the Support Vector Machine), as well as the applica-
tion of statistical feature selection methods might have lead to different results.
Feature selection methods use scoring functions based on the statistical tests,
such as Chi-squared [208] and ANOVA [209]. These techniques reduce the fea-
ture space by removing redundant and irrelevant features, while trying not to
lose much information [178] and can be used to improve performance on large
high-dimensional datasets. To obtain more reliable results we employed a large
number of experiments with 10-fold cross validation using different classifier
configurations.
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We discussed scenarios that should help to give a first impression on the prac-
tical usefulness of user rationale and user rationale miners. The hypothesized
usefulness of the poposed mockups and the discussed scenarios is our subjec-
tive opinion and thus empirically not validated. The practical usefulness of the
underlying data for the mockups is not only dependent on the performance of
the classifiers (i.e., quality of their output), it also depends on the usability of
the proposed mockups as perceived by the users. While we conducted cross-
validation experiments to obtain more reliable classification results to validate
that the classifier output might be useful and practical, a qualitative study with
potential users is needed to validate the proposed mockups.
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Conclusion & Future Work

Rationale and rationale management play an important role in requirements
and software engineering. Rationale knowledge is a fundamental element of the
software knowledge and needs to be effectively captured and managed. Different
representation schemas has been proposed in the past for rationale capture and
use with varying degree of success in the practice. Their use in the practice has
been hindered so far due to their complexity and missing adequate tool support.
Automated mining approaches have been recently applied by software engi-

neering researchers to mine rationale information from text documents. The
potential of these techniques to reduce the manual work load needed for ratio-
nale identification and extraction from text, and thus foster the effective use
of rationale knowledge in practice, has already been pointed out by researchers
and tool vendors.
While recent works focus on mining rationale from software artifacts, this

thesis takes a different perspective. The goal of this thesis was to qualitatively
and quantitatively study rationale of users in software reviews and
investigate means for its automated mining from user feedback to support
user deliberation and software development processes.
This Chapter concludes the thesis by summarizing important findings and

contributions in Section 11.1, and closes the thesis with a discussion on the
prospects of future work in Section 11.2.

11.1. Summary of Findings and Contributions

This section summarizes the major contribution of this thesis.

Study of user rationale We introduced a novel grounded theory of user ra-
tionale for software engineering in Chapter 3. We studied how and in which
context users denote rationale in software reviews and which concepts they in-
clude (RQ3.1 and RQ3.2).
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While design rationale focuses on design related decisions and the reasons
why those decisions were made, the concepts encompassed by user rationale
were developed around the justifications of users - on issues they encounter,
alternatives, criteria of assessment, and their conclusive decisions. We also
found that users in their rationale express pro and contra stances towards the
software.
We developed a coding guide and an excel tool for coding user rationale in

reviews. We involved human coders in peer-coding user rationale in a sample
of software reviews. In a follow-up qualitative study of the coded sample, we
found that users report polarized stances and trade-offs, mostly between cost/-
functionality and value – a finding that might be interesting to study more in
depth in future research.

User rationale characteristics In Chapter 4 we quantitatively studied the la-
beled dataset of user rationale, assessing the frequency distribution of the var-
ious rationale concepts (RQ4.1), the inter-concept correlations (RQ4.2), and
their conditional frequency distributions (RQ4.3).
We found that issues, alternatives, criteria, and decisions tend to co-occur in

reviews with a notable fraction of justifications ranging from 21 to 70%. We
observed that higher co-occurrence indicate a higher justification density. The
most pervasive sub-concepts of the concept alternative, criteria, and decision
are respectively alternative software, usability, and acquire decision.
We also found a moderate positive correlation between reviews reporting cri-

teria and issues. Assessing the distribution of the rationale concepts with respect
to rating, we found that decisions tend to appear more in lower rated reviews,
while criteria, alternatives, and justifications seems to appear more in 3 star
rated reviews. The criteria reliability and supportability seem to appear more
in lower rated reviews than the usability and performance criteria. Regarding
their verbosity, we found that justifications appear rather in longer review sen-
tences compared to other concepts. On average, justifications tend to appear
rather towards the end of a review, while decisions tend to appear rather at the
beginning of a review.

Rationale mining In Chapter 5 we presented the results of a series of exper-
iments, where we assessed how user rationale concepts and sub-concepts can
be automatically predicted with supervised machine learning techniques, using
text, meta data, sentiments, and syntactic features (RQ5.1 and RQ5.3), and
which classification features are most important (RQ5.2). We evaluated overall
seven classifier algorithms and different classifier configurations to predict user
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rationale in reviews and sentences. In particular we evaluated the algorithms
Naive Bayes, Support Vector Machine, Decision Tree, Logistic Regression, Guas-
sian Process Classifier, Random Forest, and Multi-Layer Perceptron Classifier.
We reach precision scores of up to 87% and recall scores of up to 99%, with

corresponding F1 scores ranging from 60% to 83%, achieving the highest F1
score for classifying decisions using the classification algorithm Naive Bayes and
employing lexical, syntactical, and star rating features, and the lowest F1 score
for classifying justifications, using the same algorithm and employing lexical,
syntactical, and sentiment features. Among the most significant features were
star rating (for issues), cardinal numbers (for alternatives), text sentiments (for
criteria), past tense verbs (for decisions), and argumentation markers (for jus-
tifications). Using the baseline configuration employing only lexical features
for classifying the rationale concepts and sub-concepts, the algorithm Random
Forest and Naive Bayes achieves in most cases respectively the highest precision
(up to 88%/77% on sentence/review level) and recall scores (up to 93%/83% on
sentence/review level).

Criteria mining We found criteria to be most prevalent concept in user ratio-
nale. It is a fundamental rationale concept in software engineering for assessing
and judging of different options [9, 89]. In Chapter 6, we therefore used an
criteria dataset from industry to assess how well we can identify criteria (i.e.,
non-functional requirements) using lexical, syntactical, and meta-level classifi-
cation features (RQ6.1) and how well we can automatically distinguish between
different criteria types (RQ6.2). We then assessed whether we can use our user
rationale dataset of software reviews, in order to handle class imbalances and
improve classification accuracy on the criteria dataset from industry (RQ6.3 and
RQ6.4).
With manually selected features employing lexical features, we achieve pre-

cision and recall of ∼92% for distinguishing criteria from functionality require-
ments. Part of speech tags are among the most informative features, with
cardinal number being the best single feature indicating criteria requirements.
Using automatic feature selection and employing only lexical features we achieve
higher recalls for classifying criteria requirements than when employing addi-
tionally syntactical and metadata features.
We assessed binary classifiers to automatically identify the different crite-

ria types in the industrial dataset, focusing on the four most frequent classes:
usability, security, operational, and performance. We additionally assessed a
multi-class classifier for the same four criteria classes, achieving mostly lower
classification performance compared to the binary classifiers. Using only word
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features without feature selection we achieve precision and recall ranging be-
tween ∼72% to ∼90% with the binary classifier. Using the 200 most informative
features (or ∼2% of the overall feature space) we achieve a precision and recall
above 70% for these four criteria classes.
We demonstrated that criteria extracted from user reviews can be used to

handle class imbalances in an industrial criteria dataset, in order to improve
classifiers accuracy on the latter dataset. In particular, for usability and perfor-
mance criteria, we demonstrated that the user rationale dataset of software re-
views can be used to balance an imbalanced criteria dataset to achieve this goal.
Oversampling the minority criteria class in the industrial dataset, with class in-
stances from the user rationale dataset, significantly improved the classification
accuracy compared to the imbalanced case, for the evaluated criteria classes. We
also found that handling a larger class imbalance leads to a stronger classifica-
tion improvement. In another classification experiments, where we trained the
classifier on the industrial dataset enlarged with class instances from the user
rationale dataset, we were not able to significantly improve the classification
accuracy when applied on the industrial dataset.

Stance mining In Chapter 7, we study lexical indicators for pro and contra
stance classification (RQ7.1), and whether syntactical, contextual, and senti-
ment features can improve the classification accuracy (RQ7.2). We additionally
assessed which sentences within user comments contribute most towards a more
accurate classification (RQ7.3). For this we used a dataset of pro and contra
user comments of high topic diversity obtained from ProCon [82].
With the classification algorithm Naive Bayes, we achieve a precision of 67%

and recall of 62% for classifying pro comments, and precision of 65% and recall
70% for classifying contra comments using lexical features. We were able to
improve the classification accuracy by using the same algorithm, and using con-
textual and sentimental features beside lexical features. We achieve a precision
of 62% and a recall of 75% (F1-score: 67%) for classifying pro user comments.
Employing same algorithm and lexical, syntactical features (part of speech tags),
and contextual features (title overlap), we achieve a precision of 61% and recall
of 78 (F1-score: 69%) for classifying contra user comments.
Using only the first sentences of the user comment, and employing lexical

features only, we surprisingly achieve slightly better results for classifying pro
comments compared to the results obtained using the same classifier configu-
ration and the whole text bodies of the user comments - a finding that can be
leveraged by scalability-critical mining approaches. Also, using same classifier
configuration and only last sentences of the user comments, we achieved lower
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accuracies compared to the results when using the whole text bodies, however
still significantly better than random (F1 score of approx. 60% for both stances).

Rationalytics framework and prototypes Guided by the findings from Chap-
ters 5 - 7, we developed the Rationalytics framework that we presented in
Chapter 8. The framework focuses on supporting the development of supervised
classification approaches for mining rationale and stances from user comments.
The Chapter gives a detailed description of the layered, pipeline-based architec-
ture of the framework. It furthermore introduces a meta-model for user com-
ments that can serve as a blueprint and contribution towards future framework
improvements and development of prototypes for rationale and stance mining.
In Chapter 9 we presented two vertical prototypes that were developed using

the Rationalytics framework as a proof of concept: URMiner and Pro-

ConMiner. URMiner exposes a set of microservices for mining user rationale
from software reviews, while ProConMiner exposes a set of microservices for
classifying user comments as pro and contra towards controversial issues.

Scenarios and mockups In Chapter 10 we discuss two scenarios where user
rationale miners can be applied: deliberation support for users and synthesizing
reviews for supporting software practitioners. For the first scenarios, we present
a mockup that contains two visualizations for deliberation support. The first
visualization is a mosaic plot that gives the user an overview of the rationale
concept collocations. The second visualization uses vertical bar plots to show
pro and contra user stances towards criteria (e.g., usability). For the second
scenario, we present and discuss a mockup that visualizes user’s contrasting,
pro and contra stances, towards criteria such as usability. By elaborating on
concrete review excerpts, we finally discuss how the identified user rationale
concepts from user feedback can augment existing design rationale models to
support requirements engineering and system design processes.

11.2. Future Work

This section gives an outlook on the future work concerning further research
and potentials on improving the framework.

11.2.1. Research

We will discuss the future research work with respect to our study findings and
experimental results.
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Study findings A research direction that might be taken as an implication
of our results is a more fine-grained study of rationale stances and the refer-
ence topics they refer to, with the aim to understand the implicit and explicit
clues users use when expressing support or disagreement towards the software.
Mandya et al. [210] and Wojacki and Zesch [211] suggested using linguistic
markers of reference topics for detection of polarized user stances. One of the
challenges in the often fragmentary user comments, is to understand the level
of topic granularity (i.e., general vs. specific reference topics). In the software
engineering domain, a topic referenced in an user argument might be a certain
application feature (e.g., arguing for and against email or SMS notification) or
criteria (e.g., usability vs. privacy). Users might agree or disagree with these
topics. The user might also support their stances by justified opinions or even
by citing external sources, e.g., by including quotes or links. Furthermore, as
sentiments showed useful as classification features, for example, in identifying is-
sues and criteria from user feedback, a more in-depth analysis of the sentimental
aspects of user rationale might uncover existing sentiment-to-criteria relations
(e.g., “Which emotions do users have when reporting a rationale concept?”).
This might not only result in our improved understanding of the relationship
of sentimental effects on polarized user stances towards criteria, but might also
reveal unused potentials for improving automated classification of criteria.
We also identified that users also report cost/value and functionality/value

trade-offs. Further research on this might contribute towards improved under-
standing on how users perceive value of a software or feature as well as cluster
typical tradeoffs users make, for example, when taking conclusive decisions (e.g.,
switch or abandon software). Understanding of the software’s value from users
perspective might additionally contribute towards more sophisticated require-
ments prioritization approaches (e.g., “What feature X must be included in a
software edition, in order to achieve a acceptable, user-derived, cost/value trade-
off?”)

Classification experiments It might also be interesting to investigate, how
contextual sources of user comments, such as software description or domain
knowledge, can be leveraged to improve classification accuracy of user ratio-
nale. Similar to the approach of Johann et al. [212], that maps app features
extracted from the software description with those found in the user com-
ments, pre-extraction of software features from the software description might
help in improving the classifier, particularly the classifier of mentioned alterna-
tives. Such addition might also contribute towards improved stance classification
approaches, since such contextual information (e.g., domain knowledge about
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stance targets) plays a crucial role.

11.2.2. Framework improvements

Using the meta-model of user comments, the data wrapper that wraps the data
for the framework pipelines, might be developed in an database-agnostic way, to
make it easier to use texts from different databases. The data wrapper could also
be improved in such a way, that it provides an easy access to all contextual in-
formation, in addition to the user comments, to enable the development of more
sophisticated, contextual, data preprocessors and feature extractors – especially
useful for supporting the development of stance classification approaches that
typically require contextual features to perform well [213, 214].
The ability to cache preprocessed text that is independent of the training

phase, such as the extraction of part-of-speech tags is crucial for an performance-
efficient evaluation of classifiers. Even the preprocessors allow the pre-extraction
of text and hence its pre-caching, although not fully automated, the prototypical
framework’s caching ability might be improved in such a way that it allows
automatic caching of already processed data and cache-reuse in case the same
data is encountered during the training and evaluation.
It should be straight forward to adapt the current framework in order to sup-

port multi-label classifier. The prototypical implementation was evaluated using
binary-class classifiers but is also designed to work for multi-class classification.
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Appendix B.

Pair-wise tests of the differences
between classifiers

This Appendix bundles statistical tests on of the differences between various
classification algorithms. Bold values (i.e., below the threshold of 0.05) indicate
stat. significant differences.
The list of classification algorithms along with their abbreviation: Naive Bayes

(NB), Support Vector Classifier (SVC), and Logistic Regression (LR), while for
evaluating the baseline configuration, we employed additionally the classification
algorithms Decision Tree (DT), Guassian Process Classifier (GPC), Random
Forest (RF), and Multi-layer Perceptron Classifier (MPC).

B.1. User Rationale Baseline Classifier

This section lists Tables that summarize McNemar statistical test results of
the differences between the various classification algorithms using the baseline
configuration for classifying rationale concepts (Table 5.4).

Table B.1.: McNemar test results (p-values) pointing out the statistical signif-
icance of the differences between Issue classifiers on review (lower
triangular matrix) and sentence level (upper triangular matrix).
DT GPC LR MPC NB RF SVC

DT 1 2.9e-13 1.1e-12 0.00069 6.5e-25 0.15 2.1e-12
GPC 1.5e-22 1 0.76 5.7e-06 9.6e-09 1.8e-22 0.64
LR 3.9e-12 5.4e-09 1 7.3e-06 1e-10 3.8e-21 0.83
MPC 3.3e-09 6.7e-07 0.17 1 1.2e-20 3.5e-07 3.7e-06
NB 4.6e-14 0.0021 0.088 0.0049 1 4e-36 2.1e-10
RF 0.88 5.9e-26 3.4e-15 5.1e-11 9.1e-18 1 1.7e-19
SVC 2.7e-09 6.2e-08 0.096 1 0.0032 2e-11 1
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Appendix B. Pair-wise tests of the differences between classifiers

Table B.2.: McNemar test results (p-values) pointing out the statistical signif-
icance of the differences between Alternative classifiers on review
(lower triangular matrix) and sentence level (upper triangular ma-
trix).
DT GPC LR MPC NB RF SVC

DT 1 0.33 1 0.53 2.8e-06 8.5e-06 0.19
GPC 3.2e-12 1 0.0059 0.83 6.5e-14 0.00018 0.00044
LR 9.4e-08 0.0015 1 0.43 5.3e-11 1.4e-06 0.029
MPC 0.0063 2.4e-06 0.0027 1 1.1e-12 0.00095 0.0084
NB 1.2e-12 0.74 0.0037 7.1e-10 1 2.5e-21 7.3e-07
RF 0.0052 5.3e-23 8.5e-18 5.2e-09 7.3e-23 1 2.4e-09
SVC 0.0024 2.8e-06 0.0019 0.87 1.3e-08 1.1e-09 1

Table B.3.: McNemar test results (p-values) pointing out the statistical signifi-
cance of the differences between Decision classifiers on review (lower
triangular matrix) and sentence level (upper triangular matrix).
DT GPC LR MPC NB RF SVC

DT 1 0.43 1 0.031 5.9e-05 0.12 0.61
GPC 0.047 1 0.022 0.096 7.7e-09 0.51 0.053
LR 1 0.00012 1 0.0097 4.7e-07 0.093 0.46
MPC 0.36 0.00019 0.19 1 1e-15 0.37 0.00077
NB 0.007 0.31 2.2e-05 1.7e-07 1 3.8e-08 2.4e-05
RF 0.0062 8.7e-07 0.0057 0.12 2.2e-08 1 0.025
SVC 0.42 8.8e-05 0.15 0.89 1e-06 0.071 1

Table B.4.: McNemar test results (p-values) pointing out the statistical signif-
icance of the differences between Justification classifiers on review
(lower triangular matrix) and sentence level (upper triangular ma-
trix).
DT GPC LR MPC NB RF SVC

DT 1 4.2e-07 5.2e-06 0.0021 2.2e-09 0.22 1e-05
GPC 4.7e-16 1 0.26 0.018 0.047 1.8e-12 0.33
LR 4.4e-09 1.4e-06 1 0.083 0.0059 1.9e-10 0.9
MPC 0.00015 5e-09 0.0032 1 5.9e-06 6.8e-06 0.11
NB 8.9e-15 0.72 7e-05 4e-09 1 1.1e-14 0.0022
RF 0.01 9.3e-27 1.9e-18 2e-10 1.4e-25 1 1.5e-09
SVC 0.0016 1.4e-13 1.5e-05 0.4 1.8e-11 1.1e-08 1
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B.2. User Rationale Sub-concept Classifiers

B.2. User Rationale Sub-concept Classifiers

B.3. Alternative sub-concepts

This section lists Tables that summarize McNemar statistical test results of
the differences between the various classification algorithms using the baseline
configuration for classifying Alternative sub-concepts (Table 5.8).

Table B.5.: McNemar test results (p-values) pointing out the statistical signif-
icance of the differences between AltFeature classifiers on review
(lower triangular matrix) and sentence level (upper triangular ma-
trix).
DT GPC LR MPC NB RF SVC

DT 1 0.0045 0.00018 0.00011 7.8e-07 0.00068 1.1e-06
GPC 0.02 1 0.22 0.38 0.0074 4.5e-10 0.012
LR 0.006 0.75 1 1 0.039 2.3e-12 0.062
MPC 0.0079 0.65 1 1 0.18 5.5e-12 0.39
NB 0.2 0.11 0.021 0.035 1 3.1e-15 0.69
RF 0.2 0.00043 2.2e-05 6.2e-06 0.0076 1 1.2e-14
SVC 0.017 1 1 0.8 0.016 0.00012 1

Table B.6.: McNemar test results (p-values) pointing out the statistical signif-
icance of the differences between AltSoftware classifiers on review
(lower triangular matrix) and sentence level (upper triangular ma-
trix).
DT GPC LR MPC NB RF SVC

DT 1 0.014 0.0052 0.0042 2.3e-07 0.81 0.0012
GPC 8.8e-05 1 0.77 0.44 4.6e-07 0.00054 0.31
LR 0.0011 0.18 1 0.65 1.1e-05 0.00031 0.44
MPC 0.0067 0.18 0.71 1 0.00051 0.00038 1
NB 0.00012 1 0.33 0.15 1 5.9e-10 0.0017
RF 0.38 7.5e-07 1.7e-05 0.0003 5.3e-06 1 0.00011
SVC 0.046 0.0043 0.035 0.31 0.013 0.0026 1

B.4. Criteria sub-concepts

This section lists Tables that summarize McNemar statistical test results of
the differences between the various classification algorithms using the baseline
configuration for classifying Criteria sub-concepts (Table 5.10).
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Table B.7.: McNemar test results (p-values) pointing out the statistical signif-
icance of the differences between Reliability classifiers on review
(lower triangular matrix) and sentence level (upper triangular ma-
trix).
DT GPC LR MPC NB RF SVC

DT 1 0.00045 4.4e-05 0.0018 3.5e-08 0.0049 0.00018
GPC 0.068 1 0.29 0.88 4e-05 2.3e-12 0.83
LR 0.098 0.82 1 0.42 0.0026 7.3e-14 0.8
MPC 0.25 0.38 0.6 1 0.0017 8.1e-09 0.61
NB 0.0044 0.19 0.078 0.019 1 3.4e-18 0.0015
RF 0.012 2e-05 1.9e-05 0.00013 2.4e-07 1 9.7e-12
SVC 0.37 0.22 0.24 0.85 0.0041 0.00053 1

Table B.8.: McNemar test results (p-values) pointing out the statistical signif-
icance of the differences between Performance classifiers on review
(lower triangular matrix) and sentence level (upper triangular ma-
trix).
DT GPC LR MPC NB RF SVC

DT 1 0.74 0.61 0.37 0.0021 0.02 0.65
GPC 0.0032 1 0.016 0.11 1.6e-06 0.015 0.12
LR 0.00027 0.39 1 0.62 0.00028 0.00018 1
MPC 0.0013 0.86 0.84 1 0.0094 0.0015 0.58
NB 6.5e-05 0.096 0.34 0.29 1 5.1e-09 0.00012
RF 0.46 2.5e-05 2e-06 1.5e-05 2.4e-07 1 0.00054
SVC 0.0091 0.66 0.092 0.4 0.019 0.00031 1

B.5. Decision sub-concept classifiers

This section lists tables that summarize McNemar statistical test results of
the differences between the various classification algorithms using the baseline
configuration for classifying Decision sub-concepts (Table 5.12).

184



B.5. Decision sub-concept classifiers

Table B.9.: McNemar test results (p-values) pointing out the statistical signifi-
cance of the differences between Supportability classifiers on review
(lower triangular matrix) and sentence level (upper triangular ma-
trix).
DT GPC LR MPC NB RF SVC

DT 1 0.056 0.0021 2.4e-05 3.5e-21 0.49 7.6e-06
GPC 4.3e-06 1 0.0026 0.0035 9.2e-27 0.002 0.00038
LR 7.7e-05 0.17 1 0.085 3.8e-21 8.3e-06 0.03
MPC 0.0088 0.0094 0.096 1 1.4e-11 1.4e-07 0.92
NB 3.2e-09 0.087 0.0023 1.5e-05 1 3.3e-28 4.4e-14
RF 0.01 1.1e-12 1.2e-11 3.8e-07 3.3e-16 1 1.8e-08
SVC 0.14 2.4e-05 6.6e-05 0.11 4.2e-09 5.5e-05 1

Table B.10.: McNemar test results (p-values) pointing out the statistical signifi-
cance of the differences between Update classifiers on review (lower
triangular matrix) and sentence level (upper triangular matrix).

DT GPC LR MPC NB RF SVC

DT 1 0.61 0.79 0.72 0.041 0.013 0.61
GPC 0.2 1 1 1 0.00024 0.12 1
LR 0.7 0.18 1 1 0.00049 0.096 1
MPC 0.44 0.63 0.77 1 0.00024 0.28 1
NB 1 0.0039 0.29 0.15 1 8.8e-05 0.00024
RF 0.0041 0.26 0.043 0.11 0.009 1 0.17
SVC 0.22 1 0.23 0.51 0.022 0.26 1

Table B.11.: McNemar test results (p-values) pointing out the statistical signifi-
cance of the differences between Switch classifiers on review (lower
triangular matrix) and sentence level (upper triangular matrix).

DT GPC LR MPC NB RF SVC

DT 1 0.027 0.0072 0.013 0.00053 0.8 0.0026
GPC 0.54 1 0.62 1 0.016 0.0044 0.45
LR 0.52 1 1 0.75 0.062 0.00073 1
MPC 0.42 1 1 1 0.065 0.0072 0.51
NB 0.13 0.39 0.29 0.51 1 1.1e-05 0.29
RF 0.42 0.12 0.12 0.11 0.023 1 0.0004
SVC 0.66 1 1 0.69 0.12 0.19 1
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Appendix B. Pair-wise tests of the differences between classifiers

Table B.12.: McNemar test results (p-values) pointing out the statistical signif-
icance of the differences between Relinquish classifiers on review
(lower triangular matrix) and sentence level (upper triangular ma-
trix).

DT GPC LR MPC NB RF SVC

DT 1 0.0066 0.38 0.17 0.52 0.17 0.83
GPC 0.39 1 0.012 0.24 7.6e-06 0.21 0.0042
LR 0.016 0.039 1 0.58 0.0039 0.83 0.38
MPC 0.0059 0.078 1 1 0.00049 1 0.07
NB 0.099 0.45 0.29 0.18 1 0.027 0.031
RF 1 0.3 0.0081 0.0015 0.061 1 0.4
SVC 0.052 0.38 0.55 0.34 1 0.036 1
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Appendix C.

Rationalytics Framework

C.1. Transformers

Table C.1.: Example feature extractors, normalizers, and dimensionality reduc-
tion transformers provided by the scikit-learn package.

Feature extractor Description

Feature extractors that can be used in the step step Extract Features
CountVectorizer Converts an input text into a matrix of token counts.
Feature normalizer that can be used in the step Normalize Features
TfIdfTransformer Transforms a feature matrix of token counts to a normalized tf or

tf-idf representation.
MinMaxScaler Transforms a feature matrix by scaling each value to a given range

(e.g., between 0 and 1).
Feature reduction transformers that can be used in the step Reduce dimension
PCA Principal component analysis that translates a feature matrix to a

lower dimensional space, by employing linear dimensionality reduc-
tion using singular value decomposition.

C.2. Code Listings

Listing C.1: Base data selector class
1 class DataSelector(BaseEstimator, TransformerMixin):
2 CTOR_PARAM_KEY = "key"
3
4 def __init__(self, key):
5 self .key = key
6
7 def fit ( self , x, y=None):
8 return self
9
10 def transform(self , data_dict):
11 return data_dict[self .key]
12
13 def get_feature_names(self):
14 return [ self .key]

Listing C.2: Base classifier configuration class for User Rationale classifiers
1 class AURClassifierConfig(AClassifierConfig):
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2 def __init__(self, truthset_handler):
3 super().__init__(truthset_handler)
4
5 def _init_default_classifier_algorithm(self) :
6 pass
7
8 def _register_features( self ) :
9 #
10 # register contextualized default feature ids for body and title
11 self ._register_default_text_features(fid_prefix=COL_TEXT_BODY, data_slice_name=

COL_TEXT_BODY)
12 self ._register_default_text_features(fid_prefix=COL_TEXT_TITLE, data_slice_name=

COL_TEXT_TITLE)
13
14 #
15 # register custom feature ids
16 self ._register_feature(id=UR_F_RATING,
17 data_slice_name=COL_RATING,
18 ftype=F_TYPE_NUMERIC)
19
20 self ._register_feature(id=UR_R_INDEX_SENTENCE,
21 data_slice_name=COL_INDEX_SENTENCE,
22 ftype=F_TYPE_NUMERIC)
23
24 def get_body_fid(self, f_id):
25 # create a new feature id for body−text by prefixing f_id
26 f_id = self ._create_compound_id(f_id, COL_TEXT_BODY)
27 return f_id
28
29 def get_title_fid( self , f_id):
30 # create a compound feature for title−text by prefixing f_id
31 f_id = self ._create_compound_id(f_id, COL_TEXT_TITLE)
32 return f_id

Listing C.3: Baseline classifier configuration class for User Rationale classifiers
1 class URBaselineClassifierConfig(AURClassifierConfig):
2 def __init__(self, truthset_handler):
3 super().__init__(truthset_handler)
4
5 def _activate_features(self) :
6 logging.debug("activate feature cfg .. ")
7 g = self .get_default_granularity()
8
9 #
10 # include text−ngram feature for the review title (comment level only)
11 if g == GRANULARITY_COMMENT:
12 f_text_TITLE = self.get_title_fid(F_TEXT)
13 self ._activate_feature_id(f_text_TITLE)
14 self .update_feature_preprocessor_params(f_text_TITLE,
15 {TextPreprocessor.PARAM_NOPUNCT: True,
16 TextPreprocessor.PARAM_NOSTOPS: True,
17 TextPreprocessor.PARAM_DOLEMMATIZE: True}
18 )
19 self .update_feature_extractor_params(f_text_TITLE, {"ngram_range": (1, 3)})
20
21 # activate text−ngram feature id for body−text
22 f_text_BODY = self.get_body_fid(F_TEXT)
23 self ._activate_feature_id(f_text_BODY)
24
25 # update preprocessor parameter for text−ngram feature for body−text
26 self .update_feature_preprocessor_params(f_text_BODY,
27 {TextPreprocessor.PARAM_NOPUNCT: True,
28 TextPreprocessor.PARAM_NOSTOPS: True,
29 TextPreprocessor.PARAM_DOLEMMATIZE: True}
30 )

188



C.3. Framework Dependencies

C.3. Framework Dependencies

Table C.2.: Python package requirements for Rationalytics framework
Package Short description

nltk Natural language processing library.
sklearn Machine learning library.
spacy Natural language processing library.
pandas Software library for data manipulation and analysis.
dependency-
injector

Library for support with dependency injection.

Table C.3.: Summary of non-Python libraries used by the Rationalytics
framework

Library Description P. Language Url

SentiStrength Estimates the strength of
positive and negative senti-
ment in short texts.

Java http://
sentistrength.wlv.
ac.uk/

StandfordParser A set of natural language
parsers that inspects the
grammatical structure of
sentences.

Java https://nlp.
stanford.edu/
software/lex-parser.
shtml
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Appendix D.

User Feedback Platforms

D.1. Amazon.com

Figure D.1.: A screenshot of Amazon’s software store (Taken from: https://
www.amazon.com, Mai 2016)

191

https://www.amazon.com
https://www.amazon.com


Appendix D. User Feedback Platforms

Figure D.2.: A screenshot showing part of the product description of LibreOffice
at Amazon
(Taken from: https://www.amazon.com, Feb. 2018).

D.2. Website ProCon.org
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D.2. Website ProCon.org

Figure D.3.: Screenshot that partly shows the background of the issue “Should
Any Vaccines Be Required for Children?”
(Taken from: https://vaccines.procon.org/, Nov. 2017)
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Figure D.4.: Screenshot that partly shows the top pro and contra argument for
the issue “Should Any Vaccines Be Required for Children?” (Taken
from: https://vaccines.procon.org/, Nov. 2017)
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D.2. Website ProCon.org

Figure D.5.: Screenshot that partly shows the top pro and contra quotes for the
issue “Should Any Vaccines Be Required for Children?”
(Taken from: https://vaccines.procon.org/, Nov. 2017)
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