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...dobri moj čitatelju, ne požali truda,

pak izađi sa mnom o sunčanom zapadu

iz tijesne izbe svoje i uskih ulica,

gdje jedva vidiš to krasno nebo, na otvorenu ravnicu

i posveti koju uru motrenju pojava, kojima ćeš biti svjedok.

Naći ćeš doduše dosta ljudi, koji će te gledati u čudu,

što li nalaziš u tome zabave, da se zadubljuješ u to nebo,

jer žalibože danas tisuće i tisuće i obrazovanih ljudi

svaki dan gledaju te krasne pojave, a da ih ne vide.

Neka ti oni ne budu mjerilom, rđav uzgoj,

pretjerana borba za svakidašnji život,

možda i niske strasti ugušile su u njima polet srca,

koji već ne može da shvaća takovih užitaka.

Ne dao nam Bog da ikad, pa ni u dubokoj starosti,

padnemo na te niske grane!

Oton Kučera, Naše Nebo (1895)
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Zusammenfassung

Diese Dissertation behandelt den Einfluß der Verteilung der Quellen kosmischer Strahlung sowie der

kosmischen Magnetfelder auf die Anisotropie von Einfallsrichtungen kosmischer Strahlung mit Fokus auf

ultra-hohe Energien. Präsentiert werden die zwei hauptsächlichen Untersuchungen dieses Sachverhalts

sowie eine Nebenthematik, welche für diese beiden wichtig ist.

Der erste Themenbereich befasst sich mit der Anisotropie verursacht durch eine einzige Quelle,

wobei der Beitrag aller anderen Quellen als isotrop angenommen wird. Der Fluss kosmischer Strahlung

wird beeinflusst von turbulenten Magnetfeldern, welche die Einfallsrichtungen zerstreuen. Diese Zer-

streuung wird mit einer Fisher Distribution nachgestellt. Dieses Modell wird dann eingeschränkt

durch Vergleich mit Messungen des Pierre Auger Observatoriums, insbesondere der beobachteten

dipolaren Anisotropie. Mit der Kleinwinkelnäherung ergibt sich der quadratische Mittelwert des

Ablenkungswinkels zur Sichtlinie zu
(
50+11
−10
)◦. Es wird gezeigt, dass der Ablenkungswinkel noch größer

wäre, falls die Teilchen verschiedene Gebiete eines strukturierten Feldes passieren würden. Die Anwen-

dung dessen auf zwei potenzielle Quellen, Cen A und das Virga Cluster, liefert eine Abschätzung der

Kohärenzlänge und Feldstärke des dazwischenliegenden tubulenten Magnetfeldes.

Der zweite Themenbereich behandelt die Auswirkung von Magnetfeldern auf Anisotropien indem

es die Anwendbarkeit von Liouville’s Theorem auf kosmische Strahlung untersucht. Das Konzept des

Einfangens kosmischer Strahlung wurde herausgestellt als eine potenzielle Ursache von Anisotropien

und ein Beispiel dessen Anwendung wird demonstriert. Das Einfangen in einem strukturierten feld

kann dipolare Anisotropien hervorrufen.

Das Nebenthema erforscht den Übergang von geradliniger zu diffusiver Propagation und leitet ein

präzises Kriterium für den Fall turbulenter Magnetfelder ab.
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Abstract

This dissertation deals with the influence of cosmic ray source distributions and cosmic magnetic

fields on anisotropies in the arrival directions with a focus on the ultra-high energy range. Two main

investigations regarding the subject are presented and one side topic important for the first two.

The first topic is the study of anisotropies caused by a single source where the rest of sources are

contributing only isotropically. The cosmic ray flux is affected by a turbulent magnetic field which

spreads the arrival directions, and that spread is modelled with a Fisher distribution. The model is

then constrained against measurements of the Pierre Auger Observatory, especially against its dipolar

anisotropy. Under the small angle approximation, this gives the root mean square angular deflection

with respect to the line of sight of
(
50+11
−10
)◦. It is shown that the angular deflection would be even

greater if particles were crossing different domains of a structured magnetic field. When applying this

to two potential nearby sources, Cen A and the Virgo cluster, estimates between the coherence length

and field strength are obtained for the intervening turbulent magnetic field.

In the second topic, effects of magnetic fields on anisotropies are considered by inspecting the

applicability of Liouville’s theorem on cosmic ray anisotropies. The concept of trapping was identified

as a potential cause of anisotropies, and one case of its application is demonstrated. It is shown how

the trapping in a structured field can generate a dipolar anisotropy.

The side topic explores the transition from the rectilinear to diffusive propagation where a precise

criterion is derived for the case of a turbulent magnetic field.
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1 | Introduction

The night sky. It occupies man’s interest and fires his imagination, today as well as

in ancient times. When Galileo Galilei used his new invention, the telescope, and

pointed it at the night sky, he discovered the four largest satellites of Jupiter. That

certainly had a tremendous impact on people’s way of thinking about the Universe at

that time. From that moment on, people started to build bigger and bigger telescopes

to improve their senses and to see further and better into mysterious realms of the

Universe. Although our understanding of the astronomical phenomena improved greatly

from Galileo’s times, the fascination with cosmic phenomena has never dried up.

In the last more than a hundred years, people observed a phenomenon of radiation in

our atmosphere that undoubtedly comes from above, from Space. This phenomenon was

first named “cosmic radiation”, and a bit later “cosmic rays”, the name that survived

to the present day, even though today we know that the “rays” part is not strictly

correct since this phenomenon consists of particles, not rays. Nowadays, we see cosmic

rays as charged energetic subatomic particles that constantly bombard our planet. The

most energetic of them initiate in the atmosphere showers of secondary particles, which

can spread over a 10 km2 area on the ground level. Kinetic energies of these particles

range from below 109 eV up to a few 1020 eV, and, as such, cosmic rays represent a unique

phenomenon which continuously extends in energy over the broader orders of magnitude

known to mankind. Needless to say, cosmic rays of the highest energy, named ultra-high

energy cosmic rays or UHECR for short, are the most energetic phenomenon, which by

far exceeds the energies of particle accelerators such as the Large Hadron Collider. Their

immense energy brings two fundamental, interconnected questions that motivate many
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1 CHAPTER 1. INTRODUCTION 2

researchers in the world to explore them. What kind of subatomic physics emerges on

those energies? Where does Nature create those particles in the first place?

While the former question can be seen as a continuation of fundamental research

in elementary particle physics, the latter one fits more as an astrophysical topic. The

latter question, the question of the “origin”, can be restated in an astronomical form:

can high energy cosmic rays serve as a new kind of astronomy - astronomy of charged

particles that would line up with other new astronomies, such as gamma-ray astronomy,

high-energy neutrino astronomy, and gravitational wave astronomy? In that way, we

would get another “eyes” to use to see new phenomena of the Universe, as Galileo did

with his telescope.

Unfortunately, the charged nature of cosmic rays together with the existence of om-

nipresent cosmic magnetic fields makes this quest troublesome, if not daunting. The

Lorentz force inevitably bends cosmic ray trajectories; magnetic field irregularities scat-

ter them; different types of interactions change their composition and reduce their en-

ergy. All of that eventually makes the information about their origin seemingly lost. It

has to be clarified that the origin of cosmic rays depends on their energy, and not that

a single acceleration mechanism is responsible for the whole energy range.

Direct evidence of major acceleration mechanisms for energies up to GeV come from

spacecraft missions, for example. These mechanisms are identified as interplanetary

shock waves associated with the solar wind, and as solar flares. Furthermore, although

not in situ observed, it is well argued, by several independent arguments, that cosmic

rays up to PeV energies come from our galaxy, where the commonly considered acceler-

ation mechanisms are located in supernova remnants and high-energy binary systems.

However, the origins and acceleration mechanisms of cosmic rays above the PeV en-

ergy range remains under continuous debate without strong support for any proposed

hypothesis.

The origin of cosmic rays of the highest energies is a topic of special interest even

for the researchers outside of the cosmic ray community. Those cosmic rays of ener-

gies up to 20 joules per particle are in every aspect extreme, so the assumption is that
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they originate from an equally extreme environment, which could reveal new insights

for fundamental questions of matter. Yet, it is not clear what sources and associated

mechanisms are responsible for them. What significantly complicates the origin problem

is that those cosmic rays apparently originate outside of our galaxy, where our knowl-

edge and experimental reach is even weaker than in our galaxy, where it is already

unsatisfactory.

Without sufficient knowledge of the positions of UHECR sources and the structure

and strength of the intervening magnetic fields, it is difficult to discriminate between

the influences of magnetic fields and the source distribution within the cosmic rays

framework alone. The cosmic ray research relies on advancements in other fields, and

especially in determining galactic and extra-galactic magnetic fields.

The recent discovery of the dipolar anisotropy by the Pierre Auger Observatory above

8× 1018 eV is the first distinct feature in the context of UHECR arrival directions; the

first sign of anisotropy in that energy range. The motive of this thesis is to explore

possible causes of this feature, but to do so, the problem of the cosmic ray propagation

has to be systematically analysed. What follows is the examination of a simple model

of a single source of cosmic rays and how it influences the anisotropic pattern that can

be observed, while taking into account the non-trivial propagation through a turbulent

field. Finally, effects of magnetic fields on the anisotropies are studied, and the hope

is that the Auger Prime, the ongoing upgrade of the Pierre Auger Observatory, which

should be able to distinguish better the composition of UHECR per event, would give

new valuable data to learn more about those effects.

This thesis is structured as follows. Chapter 2 depicts the historical development

of the research field by going through the most important steps that were made so

far to reach today’s level of knowledge, including, at the very end, a review of the

current status of observations. Special but brief attention is given to the Pierre Auger

Observatory as being the main source of new findings in the last decade in the context of

ultra-high energy cosmic rays, and because it is the cosmic ray experiment best known

to the author since the author participated in its activities for the past three years.
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The role of this chapter is also to introduce the terminology used later pedagogically.

Chapter 3 is where the theoretical foundations necessary to understand the propagation

of cosmic rays are laid down and how they interact with turbulent magnetic fields. The

problem of transitioning between the rectilinear propagation to diffusion is inspected in

the last section. Chapter 4 condenses the study of anisotropies that are caused by a

single source where the cosmic rays are deflected by a turbulent magnetic field, while the

rest of the sources are considered to contribute isotropically. In the following sections of

that chapter some derived topics are also presented: the effects of structured fields on

the model; constraining the model parameters by the experimental data of large-scale

anisotropies, and giving some prediction for relevant quantities, where the prediction of

dipolar amplitude on energies beyond currently measured is maybe the most important

one; a short discussion how a group or cluster of sources could replace a single source.

Chapter 5 investigates the consequences of Liouville’s theorem on anisotropies and gives

an example and a demonstration where this could no longer apply. In the appendix,

two technical topics that are significantly used in the main part are covered: relevant

topics of spherical harmonics and a description of the cosmic ray propagation framework

- CRPropa.



2 | Historical overview and

current status

A systematic approach to any research matter is generally accomplished in two ways.

One way is to use a formal system composed of definitions or axioms, theorems, lemmas

and corollaries, which is known since the time of Euclid’s Elements [2] and later fre-

quently used through the whole history of western science, like in Newton’s Principia [3],

Maxwell’s Theory of Electromagnetism [4] or it is often how nowadays quantum mechan-

ics is introduced [5, 6]. Not to mention modern mathematics, which probably cannot be

imagined without its use. It can be said that a topic of interest can be presented in this

way if it forms, to some degree, a closed system of concepts and their mutual relations

[7, Non-Relativistic Quantum Mechanics, ch. 6] and is concerned mainly of theoretical,

abstract or formal considerations, i.e., if it forms a theory. Another way, on the other

hand, is to describe the development of a topic and its main ideas in the fashion in

which it really progressed, in a historical context. This is probably less grateful since

it cannot encompass the conciseness, completeness and elegance of the former one, but

despite this, it does not need an external motivation or justification since its causality

is already given by history itself. This approach could be appropriate for most research

subjects, especially for those who still have many open questions.

The field of cosmic rays is, before anything else, a phenomenological subject which

is still being actively developed. In it, even around main concepts such as the definition

of cosmic ray, there is no strict consensus in the community. For example, in Stanev’s

book [8] “Cosmic rays are often defined as charged particles that reach the Earth from

5
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interstellar space. (...) Neutral particles are obviously not included (...)”, V. L. Ginzburg

uses “mostly relativistic” particles in his definition [9], Thomas K. Gaisser is more

specific [10] “(Cosmic ray particles) are ionized nuclei (...)” while, on contrary, in some

texts electrons and positrons are counted [11, 12] or even neutral particles [13]: “(ultra-

high energy cosmic rays) are mostly charged particles”. Clearly, different definitions

occupy different aspects of research and are chosen to deal with different sides of the

phenomenon. For an experimentalist who measures an extensive air shower, there is

no clear distinction between various particles that initiated the shower as that cannot

be measured, only inferred. Thus, narrowing the subject of interest only to charged

particles would go without a basis in experimental data. This can be seen in the

fact that the Pierre Auger Observatory, although built as a cosmic ray observatory, in

principle can detect photons [14] and neutrinos [15]. A theoretician thinks about the

questions of definition differently. If she keeps the definition extensively wide, that leads

to an inability to accurately describe her theoretical model. The wider the definition

is, the more mechanisms have to be included in the model which, therefore, makes it

difficult to draw unambiguous and falsifiable statements from it.

Since the formal definition cannot be given unambiguously, the only proper way

to demonstrate the evolution of cosmic ray concepts is to derive them from historical

considerations where the interplay of the theory and the experiment took place. These

considerations will present how many hypotheses, to explain differences in observed

phenomena, were made among which many were refuted with experiments. Later, some

of them were restored by re-interpreting old experiments or in light of new experiments.

Although the process is somehow chaotic, it can be concluded that the overall knowledge

about this matter qualitatively improved. That idea of the dialectical development of

knowledge on examples of mathematical topics is vividly expressed in Imre Lakatos’

well-known book Proofs and Refutations [16], but the author of this work speculates

that it could be applied universally, thereby, in the field of cosmic rays too.

Another reason for reviewing the history of the subject is that it can nicely show

how some conclusions are trivial and evident today but were enigmatic and dubious fifty
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years ago, and that can serve as a good motivation for further research as the nature

of any subject is infinite and one can never close it marking it as “solved”. The process

of gaining knowledge always opens new questions which one did not even know that

existed. The whole history of science can serve as an example of that.

2.1 Discovery of radiation

The history of cosmic rays probably could not begin without the development of a

theory of electric and magnetic phenomena and without understanding the phenomenon

of radiation.

Figure 2.1: The sketch of a torsion balance elec-
trometer, a device with which Coulomb performed
his measurements. The figure is taken from [17], li-
censed under public domain.

Although empirically known from an-

cient times as a property of amber and

loadstone (magnetite), which as wit-

nesses stand the Greek etymology of

the modern words ἤλεκτρον (elektron)

for amber and μαγνῆτις λίθος (magnētis

lithos) for loadstone, a scientific theory

of electric and magnetic phenomena was

explored and developed at the end of the

18th and in the 19th centuries by many

workers, such as Coulomb, Volta, Am-

père, Ørsted, Ohm and Faraday, among

others. Finally, by 1865 James Clerk

Maxwell was the one who established it

as a complete mathematical framework

[4] which is known today as classical elec-

trodynamics.

The theory of electrodynamics provided necessary mathematical tools to explore

related phenomena such as radiation, which was started to be systematically investigated

at the end of 18th century by the work of H. Herz, P. Lenard and W. Röntgen. Firstly,
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it was considered as a form of electromagnetic radiation predicted by Maxwell, but soon

it showed new properties so that the differentiation and a better understanding of it

waited until the beginning of the 20th century in the light of new technical inventions

[18]. Brief reviews of important discoveries are listed next.

In 1785, Charles-Augustin de Coulomb, by using his invention, the torsion balance

electrometer (fig. 2.1), reported that the device spontaneously discharges due to the

action of the air rather than by defective insulation [17]. Coulomb’s observation was

later confirmed by M. Faraday and W. Crookes who further improved the experiment.

At this point, the effect was known to be caused by some sort of radiation which ionizes

the air inside of the electroscope, but the source of this radiation remained unknown.

It is interesting that further progress came after the invention of the photographic

plate. This invention was a result of a centuries-old effort of how to faithfully convey a

picture seen through camera obscura (see the history of photography [19] for details, or

from a physicist’s perspective [20]).

From 1886 to 1889, in a series of experiments, H. Hertz discovered electromagnetic

waves. His student P. Lenard expanded his supervisor’s work focusing on cathode rays,

but it was Wilhelm Röntgen who used a photographic plate while experimenting with

Hertz’s and Lenard’s cathode tubes and found X-rays in 1895 [21]. “It seemed at first

a new kind of invisible light. It was clearly something new, something unrecorded...”

he wrote at that time. The term “rays” was picked on account of their property of

propagating themselves in straight lines as light does. The actual constitution of this

radiation of energy was still unknown [22]. A year later, Henri Becquerel investigated

further Rötgen’s rays which led him to find that uranium salts emit penetrating radiation

which, again, was registered on a photographic plate. By inspecting the properties of

this phenomenon, Becquerel realized that it has distinct properties compared to X-rays,

so he concluded that this is a new form of radiation. His work was continued by Pierre

and Marie Curie radioactivity, which was recognised as the discovery of radioactivity

[22]. They showed that radioactive elements emit radiation which ionises the air. The

pioneering work of Ernest Rutherford in the following years gave the differentiation of
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radiation into charged alpha and beta, and neutral one – gamma radiation.

The simplest explanation of Coulomb’s observation of the spontaneous discharge of

the electroscope at that point was due to the newly discovered radioactivity of radioac-

tive materials, as it was the mechanism which was already experimentally demonstrated

[23]. Other possibilities were that it originates from the atmosphere or it has an extra-

terrestrial source, which was speculated already by Nikola Tesla in his patent about the

method of utilizing radiant energy in 1901 [24]: “My own experiments and observations

lead me to conclusions (...) that sources of such radiant energy throw off with great

velocity minute particles of matter which are strongly electrified”, and “The rays of

radiations (...) may be derived from a natural source, as the sun, (...)”.

2.2 Search for the sources of radiation

Julius Elster and Hans Geitel at the beginning of the 20th century conducted a series of

different measurements by isolating electroscopes with a thick metal box, where again

they observed the same phenomena which led them to the conclusion that the radiation

has to be highly penetrating [25]. Charles Thomson Rees Wilson did underground

experiments to see if natural radioactivity would decrease [26]. He did not find any

reduction from which he concluded that natural radioactivity is not extra-terrestrial in

origin [27]: “It is unlikely, therefore, that the ionisation is due to radiation which has

traversed our atmosphere; it seems to be, as Geitel concludes, a property of air itself.”

Theodor Wulf improved the measuring device and used it to investigate the dependence

of radiation on altitude by using the 300 metres elevation of the Eiffel tower [28, 29].

Unfortunately, unknowing that the metal of the tower also contributed to radioactivity,

the results of his measurements were dubious and inconclusive regarding whether the

radiation increases or decreases with height.

Domenico Pacini questioned the Earth’s crust origin of radioactivity and carried out

a series of experiments on and below the sea surface. He found out that radiation is still

present and it falls with depth. Thus, he concluded that the reason should be from an

extra-terrestrial contribution [30] (English translation from [23]): “[it] appears from the
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results of the work described in this Note that a sizable cause of ionisation exists in the

atmosphere, originating from penetrating radiation, independent of the direct action of

radioactive substances in the soil.”

Figure 2.2: Victor Hess and his balloon crew
in one of many balloon experiments taken in
1911 and 1912. Source: APS, licensed under
public domain.

The first experiments during balloon flights

took place to investigate Wulf’s altitude re-

sults. By ascending up to 4,500 metres above

sea level, Albert Gockel found out that the

ionisation did not decrease with height as ex-

pected in the hypothesis of terrestrial origin

and confirmed Pacini’s conclusion. Gockel also

introduced the term “kosmische Strahlung” in

his writings to Wulf [31]. In his thesis, Erwin

Schrödinger demonstrated that the altitude re-

sults could be explained if a part of radioactiv-

ity comes from Earth and a part from above

[23].

Finally, balloon flights conduced by Victor

Hess (fig. 2.2) in 1911 and 1912 up to 5,000 me-

tres gave enough of precise experimental data

from which he concluded that the increase of ionisation with height must be due to radia-

tion coming from above, probably extra-terrestrial in origin [32, 33] (English translation

in [27]): “The discoveries revealed by the observations here given are best explained by

assuming that radiation of great penetrating power enters our atmosphere from the

outside and engenders ionisation even in counter lying deep in the atmosphere.” Ad-

ditionally, he saw no difference in the radiation between night and day, and during an

eclipse implying that the Sun is not directly responsible. His results were later confirmed

by the work of Kolhörster at even higher altitudes up to 9,300 metres [34].
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2.3 First observed properties of cosmic rays

The First World War interrupted the research of cosmic rays. After the war, in 1926, R.

A. Millikan and G. H. Cameron continued with experiments, measured the radiation at

various depths in lakes at high altitudes [35] and reported that the underwater ionisation

rate of the lower lake corresponded to the rate obtained approximately two metres deeper

in the higher lake. This showed that two metres of water in lakes absorbed about the

same amount of radiation as almost two kilometres of air. Although Millikan admitted

that the radiation comes from above, he coined the term “cosmic rays” because he

was convinced that the radiation was electromagnetic in nature due to its incredible

penetrating power which was then only related to gamma rays. The conclusion was

wrong, but the name stayed to this day. Improvements of Geiger-Müller tubes soon after

enabled Kohlörster and Bothe to make a comparison between the known corpuscular

radiation and cosmic radiation in which they noticed similarities and that led them to

infer the corpuscular property of cosmic rays [36] (English translation in [27]).

In several expeditions, of which an especially important was the one in 1930 from

Amsterdam to Bangkok, J. Clay observed that the penetrative power of the primary

cosmic rays decreases with latitude [37]. Later Arthur Compton confirmed those results

[38, 39] and inferred that this could be caused by the Earth’s magnetic field if cosmic

rays are (mostly) charged particles, making the Millikan claim about the non-charged

property unconvincing.

Another insight into the nature of cosmic rays followed from Alvarez, Compton [40]

and Bruno Rossi [41]. Rossi demonstrated that the Earth’s magnetic field bent in-

coming charged particles and measured near the geomagnetic equator the higher flux

in west-east direction compared to the east-west one concluding that cosmic rays are

predominantly positive. In addition, during his experiments which employed improved

Bothe’s coincidence method, Rossi noticed that his detectors, even in a triangle config-

uration where a cosmic ray could not transverse all of them, gave coincidental signals

from which he assumed the production of showers of secondary particles [42]. In spite
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of this, the discovery of extensive air showers that cover a large area is attributed to

Pierre Auger and his collaborators [43] since they not only performed measurements of

correlation between separated detectors but also indicated that the energy of a primary

particle, which produces a shower by colliding with air molecules, could reach the energy

of 1015 eV. That energy was several orders of magnitude higher than any known before.

In the following years, Marcel Schein, by isolating detectors with thick lead walls,

came to the conclusion that primary cosmic rays cannot be electrons and should be

composed mostly of protons at 109 − 1012 eV [44].

In the thirties and forties, measurements of cosmic rays also gave a lot of additional

discoveries. Probably the best known are the discovery of the positron (Anderson, 1933

[45]) and the muon (Neddermeyer and Anderson, 1936 [46]), but after a decade, the

investigation in high energy particle physics turned to man-made particle accelerators.

2.4 Consequences of extensive air showers

Extensive air showers revealed the existence of highly energetic particles, but they also

brought many difficulties by themselves. Most notably is the difficulty of identifying

primary cosmic ray properties such as its energy, composition and directional informa-

tion from the air shower event. These quantities are not as easy to determine from

the air showers as before, with direct measurements. Thus, the theoretical work and

advancements in other areas, such as measurements of nuclear cross-sections in particle

accelerators, were needed to enable further progress in cosmic ray experiments.

Fortunately, already by 1937, Bethe, Heitler, Bhabha, Carlson and Oppenheimer in

series of papers developed a concept of electromagnetic cascades from which a better

qualitative inference about the primary cosmic ray that caused the extensive air shower

could be made [47, 48, 49].

By employing the cascade theory, a series of experiments observed that the energy

of primary cosmic rays stretches over an immense energy range, but the occurrence

frequency of events on higher energies was rapidly decreasing. The decrease in the energy

spectrum could be described with an inverse power law, which raised the question of



2 CHAPTER 2. HISTORICAL OVERVIEW AND CURRENT STATUS 13

origin since a power law behaviour is considered as a signature of a non-thermal process

of the acceleration. To explain this, Enrico Fermi in 1949 [50] proposed a mechanism

of acceleration by collisions against a moving magnetic field front which can yield such

a spectrum, although, particles are already required to have some initial energy before

they can gain energy in Fermi’s process, what is known as the injection problem.

More precise data measurements brought into light the first distinct feature of the

energy spectrum observed in 1959. The feature is the steepening of the spectrum around

1016 eV [51]. It was called the “knee” due to its resemblance to the shape of a human

leg (see fig. 2.4).

In the following decades, many array experiments for detection of air showers were

built. Technologically, this was led by the application of photomultiplier tubes (PMTs)

which succeed Geiger-counter techniques. A detailed overview of those experiments,

experimental techniques and new analysis that they employed can be found in [42], but

the most important ones can be highlighted.

John Linsley at the Volcano Ranch experiment (New Mexico) reported the detection

of a primary cosmic ray of energy 1020 eV [52]. Also, he reported a hint of a flattening

of the spectrum above 1018 eV [53]. The Haverah Park experiment (1964 – 1987) built

in the UK recognised and confirmed those results, but it took a few decades and more

ambitious experiments such as AGASA and Fly’s Eye until these results were established

as unambiguous.

The discovery of the cosmic microwave background (CMB) radiation by Penzias and

Wilson [54] had a consequence on the interpretation of the cosmic ray energy spectrum.

Greisen [55] and, independently, Kuzmin and Zatsepin [56] predicted that the microwave

background should limit the maximum energy of cosmic rays because above 5× 1019 eV

cosmic rays significantly interact with CMB photons via ∆ resonance:

γCMB + p→ ∆+ → p+ π0, (2.1)

or

γCMB + p→ ∆+ → n+ π+. (2.2)
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That means that ultra-high energy cosmic rays coming from sources beyond the local

galactic supercluster (more than 50 Mpc) rapidly lose their energy by collisions with

the CMB photons and that should be observed as a spectrum cut-off in the case where

cosmic rays are not accelerated in Milky Way’s neighbourhood.

Another important theoretical consideration was brought by B. Peters in 1961 [57].

Motivated by the discovery of the “knee” feature, he examined the possibility of shifting

that feature based on the composition of the primary cosmic rays, which can be caused

either by a limitation of the electromagnetic acceleration processes or by the leakage

of particles from the galaxy. That would, for example, mean that iron nuclei can be

accelerated by the cosmic ray source to higher energies compared to protons, or can

be contained better in the galactic magnetic field, which would be seen as composition

cycles, named Peter’s cycles, in the energy spectrum. Forty-five years later, experiments

KASCADE and KASCADE-Grande identified this spectral steeping of the heavy com-

ponent at about 8 × 1016 eV which is in agreement, e.g. 26 times higher, if the light

component knee is at about 3 to 5 1015 eV [58, 59].

2.4.1 The Pierre Auger Observatory

Nowadays giant air shower arrays succeeded kilometre-scale arrays to access the energy

spectrum above 1 EeV. Two such observatories currently operate and actively contribute

with new findings. These are the Pierre Auger Observatory (later only PAO) [60, 61] and

the Telescope Array (later only TA) [62]. TA is located in the northern hemisphere,

in Utah, U.S., while PAO is located in the southern hemisphere, in the Province of

Mendoza, Argentina. In both cases, a hybrid technique of air shower detection is used

that combines fluorescence detectors (FD) and surface detectors (SD), but the difference

is that in case of TA scintillation detectors serve as surface detectors and in case of

PAO these are water Cherenkov tanks. The fluorescence detectors work only during

clear moonless nights and observe the longitudinal shower development which gives

a calorimetric energy measurement. The surface detectors in principle have a 100%

duty cycle and observe particles on ground level, i.e., capture the air shower lateral
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distribution. As they observe mutually orthogonal components of the air shower, these

two techniques are complementary.

A brief description of the Pierre Auger Observatory is given in the following few

paragraphs. The focus is on PAO since the author is a member of the Pierre Auger

Collaboration and, therefore, more familiar with details of its operation. For more

detailed descriptions the reader is referred to the instrumentation papers [60, 61, 63, 64,

65, 66].

The Pierre Auger Observatory was first proposed in 1992 by Jim Cronin and Alan

Watson, its construction started in 2000 and finished in 2008, but it is recording showers

since 2004 when the array was still incomplete. It is built on a flat elevated plateau in

average 1400 metres above sea level at the south of the Province of Mendoza, next to

the city of Malargüe. This altitude is chosen as it has a favourable atmospheric depth

of 875 cm2 for ground experiments at which vertical cosmic-ray showers originated from

ultra-high energy cosmic rays already reached their maximum shower development yet

the shape of the vertical shower profile around the maximum can still be well captured

by the fluorescence detectors. The fluorescence detectors are extremely sensitive to light

so a rather low amount of light pollution around Malargüe provides good conditions for

these techniques. One cannot intuitively express what is meant by low light pollution,

but as the light pollution roughly correlates with the population living in the area,

it is illustrative to notice how this part of Argentina is largely unpopulated with 0.8

inhabitants per square kilometre [67]. To put this number into perspective, Hamburg

has 2397 while Germany has 231 inhabitants per square kilometre [68]. On top of that,

the dry weather conditions of this location are also favourable for the experiment.

The PAO surface detector array [63] (the right panel of figure 2.3) consists of more

than 1600 water Cherenkov tanks on the area of 3000 km2 arranged on a triangular

grid with 1.5 km spacing in between. Additional 49 stations are placed more densely

on the area of 24 km2 with 750 m spacing in between to measure lower energy showers.

A 10 m2 cylindrical water tank holds 12 t of ultra-pure water in a sealed liner with a

reflective inner surface. Three photomultiplier tubes (PMTs) are immersed in the water
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Figure 2.3: On the left is the layout of the Pierre Auger Observatory showing the grid of surface
detectors and four locations where fluorescence detectors are housed (Courtesy of Darko Veberic, the
Pierre Auger Observatory, licensed under CC-BY-SA). On the right is a photo of an FD building,
namely Coihueco. As it can be seen, during the day the telescopes are protected from the daylight
with shutter doors.

from above and records the Cherenkov light. The Cherenkov light is produced when a

relativistic charged particle interacts with the water. The recorded data is wirelessly

transmitted via FD stations, the central data acquisition systems at the observatory

campus. The tank’s electronics are powered by two batteries which are charged by two

solar panels.

The fluorescence method [64] is implemented with 24 fluorescence telescopes dis-

tributed at four different locations in blocks of six telescopes. They are pointed hori-

zontally just above the ground where surface detectors are deployed. Each FD location

covers a 180◦ azimuthal angle in a way that each of the six telescopes has a 30◦ × 30◦

field of view. The left photo in figure 2.3 depicts one FD building which houses six

telescopes. The telescopes themselves are based on a modified Schmidt camera design

which is composed of an aperture, corrector ring, mirror and a PMT camera. This

system partially corrects spherical aberration and eliminates coma aberration. Fluores-

cence light passes through a 3.8 m2 large circular opening, a UV pass filter glass window

which improves the signal-to-noise ratio by reducing unwanted EM frequencies. After
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the UV filter, the light is refracted by an annular lens and reflected by the 13 m2 large

spherical mirror and directed to the PMT camera placed at the focal plane of the mirror.

Three additional telescopes called “High-Elevation Auger Telescopes” (HEAT), built as

an extension of the original telescopes, are angled more toward the sky to record air

showers of lower energy which develop at higher altitudes.

Both surface and fluorescence detectors record and classify an event when certain

patterns and conditions are met, implemented through various on-line (local) and off-line

(post-processing) triggers. These triggers filter the noise and non-shower signals keeping

only relevant recordings. Then, from the collected data, follows the event reconstruction.

The surface detector stations can provide information of the arrival times and deposited

energy. From that, the shower geometry can be obtained by fitting models to the

measured data, consequently determining the arrival direction (the shower axis) and

the relative energy estimation. The absolute calibration of the shower energy is done by

using so-called hybrid events which are also recorded with the FD. In case of the FD, one

can recover the shower properties such as the profile of deposited energy by measuring

the flux of photons from the PMT camera and correlating that with the geographical

location measured by at least one SD station. One of the most important characteristics

in this context of the shower profile is the depth of the maximum energy deposit Xmax

because it is sensitive to the composition of the primary cosmic ray, which means that

the composition of the primary can be statistically inferred from it. Xmax should be

interpreted as the point where the shower development reaches the maximum number of

particles Nmax. The exact expression depends on the longitudinal development model,

which can be described with, for example, the Gaisser-Hillas function [69]:

N(X) = Nmax

(
X −X0

Xmax −X0

)Xmax−X0
λ

exp
(
Xmax −X0

λ

)
(2.3)

where X0 is the point where the primary particle interacted for the first time and

initiated the shower and λ is a shape parameter. The parameter X is a function of
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‘slant depth’:

X(t) =
∫ ∞
l

ρ(r(l′))dl′ (2.4)

which expresses how much of atmospheric density ρ the shower traversed by moving

along the longitudinal coordinate l of the shower axis.

Events are classified into the following categories: vertical, inclined and hybrid

events. Vertical and inclined events are distinguished by the zenith angle: those be-

low θ < 60◦ are considered as vertical, while those arriving from the 60◦ to 80◦ are

labelled as inclined. The hybrid events are those detected by the FD in combination

with at least one SD station. Events can be detected if they are above a threshold

energy which is 3× 1018 eV for vertical, 4× 1018 eV for inclined, and 1018 eV for hybrid

events. Events detected by HEAT and the 750 m array are treated and analyzed sepa-

rately as they measure air showers of lower energies with a threshold energy of 1018 eV

and 3× 1017 eV, respectively.

The Pierre Auger Observatory develops and tests other techniques of shower detec-

tion. For example, AMIGA (Auger Muons and Infill for the Ground Array) is a part of

the 750 m array which adds underground scintillator muon counters buried below water

tanks to measure the muon content of air showers [70]; and AERA (Auger Engineering

Radio Array) which investigates the radio technique of measuring the shower signal [71].

At the time of writing this, a testing phase of an important upgrade of the SDs named

‘AugerPrime’ is underway in which, among other things, on top of every water tank, a

scintillator detector will be added [72]. The primary goal of the upgrade is to identify

the primary cosmic ray composition better.

2.5 Current status of the main observables

The main observables on which modern experiments concentrate their efforts are the

energy spectrum, a statistically expressed composition of primaries depending on energy,

and anisotropies in the arrival directions. These will be now presented independently but

without physical interpretations since most of the interpretations are still under debate,
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and covering all of them equally would be out of the scope of this short overview.

2.5.1 Energy spectrum

Since the beginning of the cosmic ray measurements, the energy spectrum is one of the

main observables and it simply represents the total number of particles N crossing an

area A in a solid angle Ω per time t with energy E in the form of a differential flux:

j(E) = d4N

dAdΩdEdt(E) (2.5)

The term “particles” almost universally in this context refers to atomic nuclei.

On figure 2.4, a collected set of measurements of this quantity from various exper-

iments is shown. The chosen set of the plot does not include many other experiments

to avoid a clutter, but it is enough to show the main characteristics. The first thing to

note is the enormous spread of the spectrum across the 12 orders of magnitude, from

109 eV to more than 1020 eV. Over the spectrum, the flux rapidly decreases following

quite faithfully an inverse power law j(E) ∝ E−γ, where γ in the range from 2.4 to 2.7

[79] for the biggest part of the spectrum. Illustratively, that counts 1000 particles per

square metre at 109 eV, just one per square metre around 1015 eV, and less than one per

square kilometre in a century above 1020 eV.

The solar activity and the Earth’s magnetic field greatly influence the spectrum

below the 109 eV range, so the flux below that range is usually not perceived as a part

of the spectrum. On the other end, the number of detected events is so reduced that it

is not easy to make firm conclusions, but the Pierre Auger Observatory, as the largest

and, thereby, the most authoritative experiment, detects the flux suppression above

4 × 1019 eV [80], which is also confirmed by TA [81]. The suppression was originally

observed with a statistical significance of five standard deviations by HiRes [82].

Other observed features are the steepening of the spectrum from γ ∼ 2.6 to 3.1−3.3

above 3 × 1015 eV and the flattening again to γ ∼ 2.7 at ∼ 5 × 1018 eV [83, 84]. The

former feature is usually called the ‘knee’, and the latter is called the ‘ankle’ due to an

association of the shape of the plot to a human leg. Unfortunately for this analogy, the
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Figure 2.4: The top panel shows the all-particle energy spectrum of cosmic rays measured by various
experiments [73, 74, 75, 76, 77, 78]. The bottom panel shows only the highest energy range where the
flux is multiplied by E3 to enhance the visibility of the knee, ankle and cut-off features.
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additional characteristics were recently also observed: a flattening around 2×1016 eV and

a steepening at 1.3× 1017 eV to γ ∼ 3.3 in the so-called second knee feature [76, 85, 86].

2.5.2 Composition

The cosmic ray composition can be precisely determined for energies below 1015 eV where

the flux is still accessible for direct measurements of primary particles. The composition

in that range effectively follows the abundance of elements in the solar system. The only

exception are the light elements 3 ≤ Z ≤ 5 and the elements close to iron 21 ≤ Z ≤ 25

[87]. The difference for these few elements can be explained by spallation processes of

primary cosmic rays in the galaxy [88]. In this energy range, all nuclei exhibit the same

power-law in the energy spectrum.

Above 1015 eV the description is not so simple and unambiguous as in the lower

energy range since the composition can only be inferred from air showers. The depth

of the maximum energy deposit Xmax, as mentioned in 2.4.1, is the main observable

easily accessible to the air shower experiments which are sensitive to the composition of

the primary cosmic ray. For example, an iron primary initiates the shower earlier than

the proton primary and, thus, the difference between them is 100 g/cm2. Yet, even in

that observable there are significant uncertainties and fluctuations, as the fluctuations

from shower to shower are of the order σsh(Xmax) ∼ 20−60 g/cm2 and the experimental

resolution does not exceed 20 g/cm2, making the composition identification per event

hardly possible. Therefore, the results are obtained only from a statistical inference

with the help of Monte Carlo air shower simulation codes such as CORSIKA (COsmic

Ray SImulations for KAscade) [89].

KASCADE Grande reported a composition change after the (first) knee towards

heavy nuclei [58, 59]. Above 1 EeV, the High Resolution Fly’s Eye and TA report the

presence of light composition again [90, 91]. PAO reports are consistent with that result

before the ankle, but at higher energies, it suggests a mixed composition around the

ankle with a tendency to iron when reaching the cut-off region [92, 93]. There are

ongoing efforts to resolve the discrepancy between PAO and others [94].



2 CHAPTER 2. HISTORICAL OVERVIEW AND CURRENT STATUS 22

2.5.3 Anisotropies

Back in the early days of cosmic rays, the measurement of their arrival directions pre-

sented one of the hardest observables to obtain, which is opposite to the situation in

contemporary experiments in which arrival directions can be accurately measured. For

example, PAO can determine the angular resolution better than 1◦ or in the worst case

2.2◦, depending on the number of the SD stations triggered by a shower [95]. In spite of

that, the vast amount of experimental data on arrival directions for years did not reveal

anything significant besides a high level of isotropy. One could say that the terminology

in the community changed accordingly – to a notion of deviations from isotropy, i.e., to

anisotropies. Recently, due to modern experiments and the increased statistics of de-

tected events that picture has slightly changed, showing signs of anisotropy at various

energy ranges and at various angular scales. Nevertheless, the fact that the cosmic ray

sky is highly isotropic generally remains.

The arrival directions of cosmic rays can be represented as the sum of Dirac delta

functions on the surface of the unit sphere:

Φ(n) = dN(n)
dΩ =

N∑
i=1

δ(n− ni) (2.6)

where ni are the arrival directions of totally N events. The anisotropy Φ(n) can be

expanded in spherical harmonics (see Appendix A):

Φ(n) =
∑
`≥0

∑̀
m=−`

a`mY`m(n) (2.7)

where the information about the anisotropy is encoded in the coefficients a`m of the

expansion. Additionally, the angular power spectrum can be defined as the average

squared amplitude of the coefficients:

C` = 1
2`+ 1

∑̀
m=−`

|a`m|2 (2.8)
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where the moment order of ` represents anisotropies of an angular scale 180◦/`.

Now, with this definition in mind, experimental results can be divided into two

groups: those focused on large-scale anisotropies around ` ∼ 1, such as the dipolar or

quadrupolar anisotropy, and those focused on small scales anisotropies, like the cluster-

ing of events in a certain region of the sky referred to as “hot spots”. Ideally, a full-sky

observatory is needed to give a true description in terms of C` [96], but unfortunately,

up to now, every experiment covers only a certain part of the sky, which requires recon-

struction methods that introduce additional assumptions about correlations between

multiple moments. Another issue is that many experiments can only detect variations

in the flux as a function of the right ascension (RA), α, but not on the declination, δ,

due to uncertain attenuation of showers in the atmosphere, geomagnetic influences on

the shower, among others. Combining the data sets, experiments try to overcome these

difficulties, as, for example, PAO and TA in [97].

In the 1012 − 1015 eV energy range, experiments such as Tibet-ASγ, Milagro or

IceCube/IceTop, report large-scale anisotropies with an amplitude of about 10−3 to

10−4 [98, 99, 100, 101]. On the other hand, KASCADE showed no significant excesses

[102]. The equatorial component, which can be more precisely measured, of a dipolar

anisotropy is determined to increase up to 1012 eV with maximum values of 10−3, and

then decreases up to 1014 eV, where it reaches minimum values of 10−4. The direction of

the equatorial component of the dipole at ∼ 300× 1015 eV is aligned with the direction

of the Galactic centre. For a more detailed review see [103, 104].

In the energy range above 1015 eV, the first solid sign of anisotropy was recently

established by PAO at 8 EeV with a five-sigma certainty [105]. That anisotropy is

a dipole pointing to (α, δ) = (100◦,−24◦) and with an amplitude of about 6.5%. For

comparison, the Galactic centre is located in Sagittarius A* [106], at (266◦,−29◦), which

means that the dipole is pointing almost in the opposite direction of the Galactic centre.

At the highest energies of cosmic rays, where the propagation should become more

rectilinear, and where small scale anisotropies are expected as a sign of sources, TA

and PAO reports the following. The largest departure from isotropy, according to the
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PAO analysis [13], is at an energy threshold of 54 EeV in a 12◦ radius window centred at

(α, δ) = (198◦,−25◦). This is∼ 18◦ away from the direction of Centaurus A (201◦,−43◦)

[107], yet the excess is not statistically significant. TA reports the maximum departure

from isotropy in a 20◦ angular radius at (α, δ) = (148.5◦, 43.2◦) with a 3.4σ significance.

The autocorrelation analysis does not deviate from an isotropic expectation, both for

PAO [13] and TA [108]. The only exception is a moderate deviation from isotropy above

the 57 EeV threshold at 20◦ − 30◦ angular scales.

Testing a possible correlation of arrival directions with catalogues of extragalactic

objects, such as the 2MRS catalogue [109], the Swift-BAT X-ray catalogue of AGNs [110]

and a catalogue of radio galaxies with jets [111] did not yield any significant correlation

[13, 112]. PAO recently reported a 4σ deviation from isotropy at an intermediate angular

scale for the case of starburst galaxies [78].

It can be suggested that the absence of significant correlations with visible objects

implies the important role of Galactic and/or extragalactic magnetic fields on the prop-

agation of cosmic rays.



3 | Charged particles in magnetic fields

In the previous chapter, it was shown how the concept of cosmic rays has developed and

been refined through time and how it was necessary that other related fields advance in

order to open paths for new ideas and hypotheses. Despite significant advancements,

many questions in the research field of cosmic rays persist today, and one could expect

that the described process of progress will, in one way or another, continue. An implica-

tion of this is that the accumulated knowledge is not a final one and that definitions and

premises that are valid now will be unsatisfactory and insufficiently strict in the future.

On the other hand, it is hardly possible to build any formally consistent structure on

such a fluid ground without stating at least some building blocks as facts. Therefore,

to lay the foundations for a theoretical investigation one has to start from a basic set of

assumptions which are based on, but not strictly tied up with, the experience, and which

have firm relationships to already established physical theories. As Hannes Alfvén put

it in his book [113]: “When we try to apply to cosmic phenomena the laws [of physics]

in which the experience [gained in the laboratory] is condensed, we make an enormous

extrapolation, the legitimacy of which can be checked only by comparing the theoretical

results with observations”.

The previous introductory paragraph uncovered and announced the task of this

chapter. It is to give an overview of the underlying theories and discuss some of the

later used assumptions.

Of course, by immersing the subject into the mathematical framework, there is the

danger of losing connections with the real world substance of the studied phenomena.

On the other hand, the gain is in establishing an overall consistency between different

25
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aspects of the researched phenomenon and related theories, which is a difficult job

in its own right, but which could be even more difficult without mathematical tools.

Emphasising the limits and assumptions of given derivations could be seen as a safeguard

measure against the described danger.

With that said, the first assumption in this research is that cosmic rays are charged

particles that traverse the Universe. There is plenty experimental evidence which sup-

ports this assumption, although chances that cosmic rays above 1015 eV, in the domain

of air shower experiments, are neutral persist as an academic possibility as long as the

composition of the primary cosmic ray remains directly unseen. By being charged, they

primarily interact with electromagnetic fields. Many indications show that the Universe

is filled with magnetic fields on all scales. They are highly irregular and are structured

following to some extent the matter distribution [114, 115, 116]. The known theoretical

framework of electromagnetism founded by Maxwell [4] can be employed to deal with

this scenario.

The classical electromagnetic theory of fields is completely described by the set of

four equations valid in vacuum [117]:

∇ · E = ρ

ε0

∇×B− ∂E
c2∂t

= µ0j

∇× E + ∂B
∂t

= 0

∇ ·B = 0

(3.1)

where E and B are, respectively, the electric and magnetic field, and j and ρ charge and

current density.

Another essential equation is the Lorentz force equation which describes the dynam-

ics, i.e., the effect of those fields on a charge q which moves with relativistic velocity u

in them:

dp
dt = q(E + u×B) . (3.2)
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Sometimes it is easier to obtain the result of a problem with the Lagrangian formal-

ism, in which a charged particle in electromagnetic potentials A and Φ is given by the

following Lagrangian [117]:

L = −mc2/γ + e

c
u ·A− qΦ . (3.3)

in which m represents the rest mass, and γ is, traditionally, the Lorentz factor γ =

1/
√

1− u2

c2 .

The Hamiltonian H is also worth to note down. It can be derived by finding the

canonical momentum P from L, which is conjugated with the position coordinate x:

Pi = ∂L

∂ui
= γmui + e

c
Ai ⇒ P = γmu + e

c
A = p + e

c
A (3.4)

from which, by a Legendre transformation of L, H = P ·u−L, follows the Hamiltonian:

H = c

√
m2c2 +

(
P− q

c
A
)2

+ qΦ . (3.5)

In most cases of interest, the electric component of electromagnetic field in the

Universe vanishes due to the high conductivity of the interstellar medium [118, 119],

hence, the particle only interacts with the magnetic field. From now on, E and Φ will

be removed from the Lorentz force in all formulations mentioned above.

In a uniform magnetic field, the particle generally exhibits a motion that can be

described as gyration perpendicular to the field lines and motion parallel to the field

lines. These two form a helix of constant pitch around the magnetic field line. The angle

between the particle’s velocity vector u and the local magnetic field line B is called the

pitch angle. Equation (3.2) thus can be rewritten as follows:

du
dt = u× ωg (3.6)

where ωg = qcB
E

is the gyration or precession frequency. E is the particle’s energy E =

γmc2. A quantity also related to the gyration movement is the radius of gyration, rg =
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|p|
|q|B⊥

, also called the Larmor radius or the gyroradius. Another convenient parameter

here is the magnetic rigidity R = |pc|/q since particles with the same magnetic rigidity

follow same trajectories in the magnetic field even if they have a different charge number

or momentum.

Determining the behaviour of a moving charge even in a static magnetic field can

represent a difficult problem, in most cases unsolvable analytically. Nevertheless, before

introducing numerical methods, there are several analytical results which are good to

investigate to develop intuition in this context.

The first consideration is when a charge gyrates around a slowly varying magnetic

field line for which the adiabatic invariants method can be applied as it will be shown

in the next section following [120, 117, 79, 121].

3.1 Slowly changing magnetic fields

The concept of adiabatic invariants was introduced in celestial mechanics and in the old

quantum theory, and here it can be applied when a charged particle moves through a

slowly varying field. To be more concrete, it is required that the magnetic field strength

change, ∆B/B, is insignificant during a single orbital period T = 2π/ωg of a particle,

making the action integral invariant:

J =
∮

P⊥ · dl = const. (3.7)

where P⊥ is the transverse component of the canonical momentum 3.4 which is parallel

to the line element directed along the circular path of a particle dl. Thus, the action

integral yields:

J =
∮

P⊥ · dl =
∮

p⊥ · dl + e

c

∮
A · dl

=
∮
mu⊥rgdθ + e

c

∫
S
∇×A · da

= 2πmr2
gγωg + e

c

∫
S

B · n̂ da (3.8)
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Figure 3.1: The orange line shows the gyration of a particle along a field line, represented in blue, in
the magnetic field of a magnetic dipole. After reaching a certain threshold, the particle is bounced as
it can be seen clearly on the right panel. The particle is basically trapped in the magnetic field. This
scenario has been investigated in studies of the Earth’s magnetosphere (see [122] for example). The
trajectory shown here is produced with CRPropa (appendix B).

where in the last line the first integral has been integrated over θ just after the substitu-

tion u⊥ = ωgγrg has been applied and Stoke’s theorem has been employed in the second

integral. The variable of integration da is a surface element of the area enclosed by the

circular path. The second integral can be solved by observing that the unit vector n̂

is anti-parallel to B, which leaves − e
c
r2
gπB. From the definition of ωg the first term is

2 e
c
r2
gπB. After subtracting, the action integral yields

J = e

c
r2
gπB . (3.9)

Therefore, according to the adiabatic invariance of J , ∆(πr2
gB) vanishes which means

that the flux passing through the particle’s orbit is linked with the area of the orbit.

Equivalent statements are Br2
g = p2

⊥/B = γµ, where µ = (eωgr2
g/2c) is the magnetic

moment of the current loop of the particle in orbit. From the last equality, it can be

concluded that the magnetic moment is itself an adiabatic invariant in the nonrelativistic

limit.

The direct consequence of this result is a phenomenon called the magnetic mirroring.

If a particle is spiraling through a static magnetic field B around the z axis in which

there is also a small positive gradient of B, it will bounce at some point z = z0. To show
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this, the particle’s velocity is decomposed into perpendicular and parallel components

to B: v2 = v2
|| + v2

⊥. The adiabatic invariant p2
⊥/B = const. yields:

v2
⊥0
B0

= v2
⊥
B

(3.10)

where zero indices represent values at z = 0. Using this, the relation between the

components of the velocity becomes:

v2
|| = v2

0 − v2
⊥0
B(z)
B0

. (3.11)

Increasing B(z) will be shrinking the particle’s orbit while decreasing the parallel com-

ponent v|| which at some point z0 will eventually reach zero. At that point it will bounce

and continue spiraling in the negative z direction. Figure 3.1 shows a more complex but

also more realistic case of magnetic mirroring in the magnetic field of the dipole.

The magnetic mirroring also stands behind a mechanism of the acceleration of cosmic

rays developed by E. Fermi [50] as mentioned in sec. 2.4. In Fermi acceleration a

charged particle is bouncing, due to the magnetic mirror effect, in a magnetic field

between two interstellar clouds if the magnetic field in them is greater than the area in

between. When clouds are moving relatively towards each other, the charged particle

gains energy on each reflection. Now it is clear why the particle has to have an initial

velocity. Otherwise, it cannot be trapped, and the acceleration mechanism does not

work. A more detailed description can be found, for example, in [10, 88].

3.2 Scattering in magnetic fields

Magnetic fields in the Universe at all scales are expected to contain irregularities which

have a profound effect on a moving charge. In the case of interplanetary magnetic

fields these irregularities were directly measured, for example, by the Mariner 4 space-

craft (see [123] for more). Magnetic fields of larger scales, galactic and extra-galactic,

are also assumed to contain irregularities [115, 114]. A charged particle is scattered
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when it encounters those irregularities, and that can change the field line around which

it gyrates. The effectiveness of the scattering depends on the size of the irregularity

compared to the particle’s gyroradius. If the irregularity is much bigger than the gy-

roradius, the particle follows the field line of the irregularity conserving its adiabatic

invariants. On the other hand, if irregularities are too small compared to the gyrora-

dius, the particle continues to gyrate along the mean magnetic field line like in the case

when irregularities are not present. Thus, only irregularities of comparable size to the

gyroradius significantly scatter the particle.

Accumulation of scatterings eventually leads to a stochastic motion where the parti-

cle inevitably “forgets” its original pitch angle, thus two states of the particle separated

enough become completely uncorrelated. That can be described by a Wiener process,

i.e., Brownian motion [124, 125]. A basic question which determines the nature of scat-

tering is what does it mean “separated enough”. It turns out that this depends on the

details of the system, i.e., the particle properties and magnetic field characteristics.

Without knowing details of a scattering process, movement of a charged particle can

be roughly classified purely statistically, by observing its mean square displacement.

The mean square displacement is defined as:

〈
(∆r)2

〉
≡
〈
(r(t)− r(0))2

〉
. (3.12)

The mean square displacement is a continuous function of time, which can be assumed

to have a form of 〈
(∆r)2

〉
∼ tσ . (3.13)

A different type of motion is represented by a different regime of the parameter σ,
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namely [126]:

subdiffusion : 0 < σ < 1 ,

normal diffusion : σ = 1 ,

superdiffusion : 1 < σ < 2 ,

rectilinear propagation : σ = 2 . (3.14)

The rectilinear propagation represents a motion without any deflections, the normal

diffusion is actually a Brownian movement, while sub- and superdiffusion are regimes

known as anomalous diffusion.

To continue further with the analysis one has to know more about the nature of

irregularities in magnetic fields where the scattering takes place. The most commonly

considered case of an irregular magnetic field in this area of research is a turbulent

magnetic field, therefore, a short review is needed, first about magnetohydrodynamics

and then followed by details of turbulent magnetic field modelling.

3.3 Magnetohydrodynamics

The plasma state, which implies high conductivity, is the dominating state of matter

in the Universe. Electrical currents there, which occur due to the movement of charges

in the plasma, induce magnetic fields. In that setting turbulent magnetic fields arise.

The theoretical realm where the plasma and magnetic fields are investigated is called

magnetohydrodynamics (abbreviated as MHD). But before immersing into it, a few

remarks are needed on regular hydrodynamics.

Within the hypothesis of continuum, it is believed that all fluid flows are described

by the Navier-Stokes equations which relate the fluid density field ρ(x, t) and its velocity
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field u(x, t) [127]:

(
∂

∂t
+ u · ∇

)
ρ =− ρ∇ · u ,

ρ

(
∂

∂t
+ u · ∇

)
u =−∇p+ µ∇2u + f . (3.15)

The first equation is the mass-conservation equation where the bracket represents the

Lagrangian (material) derivative, while the second one is the momentum equation where

the right-hand side contains the force terms: −∇p is the gradient of the local fluid

pressure p(x, t), µ∇2u is the net force associated with internal friction or viscosity µ,

and f(x, t) is any external force per unit mass acting on the fluid.

The Navier-stokes equations, besides the laminar class of flows, also describe highly

irregular flow patterns called turbulence (for an introduction see [128]). First systematic

studies of this phenomenon were conducted by O. Reynolds [129]. One of his observa-

tions is that the turbulence phase can be characterized by the relative importance of the

inertial and viscous forces, that is, by a quantity later named after him, the Reynolds

number:

Re = ρuL

µ
= uL

ν
(3.16)

where L is the characteristic dimension of a system under consideration, and the fluid is

described by its density ρ, velocity u, and the dynamic and kinematic viscosity, µ and

ν, respectively. The turbulent regime is reached when the Reynolds number is high,

roughly above 1000.

After Reynolds, the phenomenon of turbulence was studied by many scholars, in-

cluding N. Kolmogorov [130, 131, 132, 133] (also see [134, 135]). He developed a theory

based on a statistical approach and derived the following. He used the assumption that

the phenomenon of turbulence has the property of transferring energy from larger eddies

to smaller eddies which are independent of scale which expands within a certain range.

The upper boundary of this range is defined by the scale at which the system receives

the energy, while the lower boundary is the one at which the energy dissipates due to

viscosity. That assumption of scale invariance, called the scale universality, is confirmed
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by many experimental tests (for an overview see [136]), but there are also indications

of scale dependent features like intermittency [137].

Although Kolmogorov used complex mathematical arguments, the same result can

be sketched by a dimensional argument. From the universality assumption follows that

the energy dissipation rate ε is constant:

ε ∼ ∆ρ`
∆t (3.17)

where ∆ρ` is the change of energy density of scale ` transfer in time ∆t. The change of

energy density is proportional to the kinetic energy ∆ρ` ∼ v2
` , while ∆t = `/v`. That

yields

ε ∼ ∆ρ3/2
`

`
= const.⇒ ∆ρ` ∝ `2/3 . (3.18)

It is convenient to transform this into an inverse Fourier space of v` where k ∝ 1/`:

v(k, t) = 1
(2π)3

∫∫∫
R3

v(x, t)eix·kd3x (3.19)

so that ∆ρ`(v`)→ ∆ρk(vk) which finally gives:

∆ρk ∼ k−2/3 ⇒ E(k) ≡ d∆ρk
dk ∼ k−5/3 . (3.20)

The study of turbulence can be generalized to the magnetohydrodynamical case [138]

where the Navier-Stokes equations (3.15) are combined with Maxwell’s equations (3.1)

in the following way.

In Ohm’s law for the plasma

j = σ(E + u×B) (3.21)

where σ is conductivity, the second and the third Maxwell’s equations are employed

without the displacement current term since the plasma is too slow compared to the
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speed of light to be relevant in this case:

∇×B = µ0σ(E + u×B)

∇×∇×B = µ0σ [∇× E +∇× (u×B)]

−∇2B = µ0σ

[
∇× (u×B)− ∂B

∂t

]
. (3.22)

In the last line the vector identity

∇× (∇×B) = ∇(∇ ·B)−∇2B (3.23)

has been used. This gives the induction equation:

∂B
∂t

= ∇× (u×B) + η∇2B (3.24)

where η = 1/µ0σ. The first term on the right-hand side is known as the convective term

responsible for “freezing” magnetic field lines in the plasma. The second term is called

diffusive and shows the resistive leakage of the magnetic field lines across the plasma

[121]. The induction equation can be rewritten in a more “hydrodynamical” form1:

(
∂

∂t
+ u · ∇

)
B = (B · ∇) u−B (∇ · u) + η∇2B . (3.26)

In the second equation of (3.15), the force term j×B = (∇×B)×B/µ0 is added:

(
∂

∂t
+ u · ∇

)
u = −1

ρ
∇p+ µ

ρ
∇2u + 1

ρ
f + 1

ρµ0
(∇×B)×B . (3.27)

The following identity

(∇×B)×B = (B · ∇) B−∇
(
B2

2

)
, (3.28)

1By exploiting the following identity:

∇× (u×B) = u (∇ ·B)−B (∇ · u) + (B · ∇) u− (u · ∇) B . (3.25)
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and the incompressibility condition ∇ · u = 0 in eq. (3.26) and eq. (3.27) yield the set

of equations:

(
∂

∂t
+ u · ∇

)
B = (B · ∇) u + η∇2B ,(

∂

∂t
+ u · ∇

)
u = −1

ρ
∇
(
p− B2

2µ0

)
+ µ

ρ
∇2u + 1

ρ
f + 1

ρµ0
(B · ∇) B ,

∇ · u = 0 ,

∇ ·B = 0 (3.29)

which describe the incompressible MHD theory.

3.3.1 Turbulent magnetic fields

The incompressible MHD theory can be applied to the interstellar plasma to develop a

theory of interstellar turbulence of magnetic fields by investigating the dynamics of the

Alfvén waves in the cosmic plasma [113, 139, 140, 141]. However, here a phenomeno-

logical approach will be followed referring to some parts of the theoretical results.

Here only a magnetic turbulent field δB(x, t) with homogeneous statistical properties

is considered following references [142, 126]. The magnetic field can be given in the

wavenumber space for the ith component (i = x, y, z):

δBi(x, t) =
∫ d3k

(2π)3 δBi(k, t)eik·x . (3.30)

For studies of charged particle transport, the two-point-two-time correlation tensor takes

an important role:

〈δBi(x, t)δBj(x0, t0)〉 = (2π)−6
∫

d3k
∫

d3k′ 〈δBi(k, t)δBj(k′, t0)〉 eik·x+ik′·x0 . (3.31)

With ∆t0 = 0 and x0 = 0 in the previous equation, the homogeneity condition defines:

〈δBi(k, t)δBj(k′, 0)〉 = (2π)6Pij(k, t)δ(k + k′) (3.32)



3 CHAPTER 3. CHARGED PARTICLES IN MAGNETIC FIELDS 37

where Pij(k, t) is the correlation tensor in the wavenumber space. Further on, by as-

suming the same temporal behaviour of all tensor components, the magnetostatic cor-

relation tensor Pij(k) ≡ Pij(k, 0) and the dynamical correlation function Γ(k, t) can be

separated:

Pij(k, t, t0) = Pij(k)Γ(k, t) . (3.33)

The focus will be given on isotropic turbulence which prescribes the following form

for the magnetostatic correlation tensor in the most general way [142]:

Pij(k) = A(k)δij +B(k)kikj + C(k)
∑
n

εijnkn . (3.34)

where B(k) has nothing to do with the magnetic field which is denoted either as the

vector quantity B or per component Bi. The same notation will be used to be consistent

with the literature, but only in the next few paragraphs. Maxwell’s equations (3.1)

require the solenoidal constraint:

∑
i

∂iδBi(x) = 0⇒
∑
i

kiδBi(k) = 0 (3.35)

which by using eq. (3.32) results

∑
ij

〈kiδBi(k)kjδBj(k′)〉 =
∑
ij

kikjPij(k) = 0 . (3.36)

Inserting eq. (3.34) into the last equation fixes the relationship between B(k) and A(k):

B(k) = −A(k)
k2 (3.37)

and, therefore, it reduces the original expression to:

Pij(k) = A(k)
(
δij −

kikj
k2

)
+ C(k)

∑
n

εijnkn . (3.38)
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Additionally, the magnetostatic correlation tensor also has to satisfy the following:

Pij(k) =
〈
δBiδB

∗
j

〉
= 〈δB∗i δBj〉∗ = 〈δBjδB

∗
i 〉
∗ = P ∗ji(k) (3.39)

which puts additional constraints on the coefficients, namely:

A(k) = A(k)∗ and C(k) = −C(k)∗ (3.40)

or by words: A(k) has to be real and C(k) has to be imaginary. It is customary to

redefine

C(k) = iA(k)σ(k)
k

(3.41)

without loosing generality where σ(k) is a real number called the magnetic helicity.

Finally, the magnetostatic correlation tensor reads:

Pij(k) = A(k)
[
δij −

kikj
k2 + iσ(k)

∑
n

εijn
kn
k

]
. (3.42)

The functions A(k) and σ(k) are specified by the turbulence model, where A(k) is

usually referred as the geometry.

Continuing the derivation, the emphasis will be on the magnetostatic turbulence

without helicity as one of the most widely studied and numerically accessible models.

That means that Γ = 1 in eq. (3.33) and σ(k) = 0. Following [143] and [141], A(k) is

given by:

A(k) = B2(k)
8πk2 (3.43)

that can be normalised by requiring

B2
rms =

∫ ∞
0

dkB2(k) . (3.44)

At this point a Kolmogorov type power law can be used to describe B2(k). This

is well-founded since the power law dependence has also been observed in experiments,

for example by the Helios 2 spacecraft (see [126]). Thus, by assuming B2(k) ∝ k−n and
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normalising eq. (3.44), one obtains:

B2(k) = B2
rms(n− 1)k−n 1

k1−n
min − k1−n

max
(3.45)

where n is a spectral index, kmin and kmax have been introduced as integration boundaries

which correspond to physical dimensions 2π/Lmax and 2π/Lmax, respectively. Alterna-

tively, the same equation can be expressed without referring to kmin, kmax:

B2(k) = B2
rmsk

−n(n− 1)

(
2π
Lmax

)n−1

1−
(
Lmin
Lmax

)n−1 (3.46)

The Kolmogorov spectrum 5/3 is recovered when n = 5/3 is plugged in.

The coherence length is a characteristic length scale for the spatial decorrelation of

the turbulence and it is an important parameter to characterise the turbulent field. It

is defined so that the area of LcB2
rms is equal to the total area under the correlation

function [126]:

Lc ≡
1

B2
rms

∫ ∞
−∞

dL 〈δB(0)δB(x(L))〉 (3.47)

where the integration goes along the path x(l) in a fixed direction. It can be evaluated

as follows:

Lc
(3.31)= 1

B2
rms

∫ ∞
−∞

dL 1
(2π)6

3∑
i

3∑
j

∫
d3k

∫
d3k′ 〈δBi(k)δBj(k′)〉 eik·x(L)

(3.32)= 1
B2

rms

∫ ∞
−∞

dL
3∑
i

3∑
j

∫
d3k

∫
d3k′

B2(k)
8πk2 Pij(k, t)δ(k + k′)eik·x(L)

(3.42)= 1
B2

rms

∫ ∞
−∞

dL
∫

d3k
B2(k)
8πk2

3∑
i

3∑
j

[
δij −

kikj
k2

]
eik·x(L)

= 1
B2

rms

∫ ∞
−∞

dL
∫

d3k
B2(k)
8πk2

3∑
i

[
δii −

kiki
k2

]
eik·x(L)

= 1
B2

rms

∫ ∞
−∞

dL
∫ ∞

0
dkk2

∫ 2π

0
dφ
∫ 1

−1
d cos (θ) B2(k)

8πk2 2eikx(L) cos(θ)

= 1
B2

rms

∫ ∞
0

dk
∫ ∞
−∞

dLB2(k) 1
kx(L) sin (kx(L)) (3.48)
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by employing Cauchy’s residue theorem for the inner integral, the equation reads:

Lc = π

B2
rms

∫ ∞
0

dkB2(k)
k

(3.46)= π(n− 1)

(
2π
Lmax

)n−1

1−
(
Lmin
Lmax

)n−1

∫ kmax

kmin
dkk−n−1 (3.49)

this finally results in:

Lc = 1
2Lmax ·

n− 1
n
·

1−
(
Lmin
Lmax

)n
1−

(
Lmin
Lmax

)n−1 . (3.50)

This equation gives, for a Kolmogorov-type spectrum n = 5/3, approximate values

Lc ≈ Lmax/2 when Lmin ∼ Lmax and Lc ≈ Lmax/5 when Lmin � Lmax.

3.4 Propagation in turbulent magnetic fields

Now the stage is ready to investigate scatterings of charged particles when they traverse

turbulent magnetic fields. There are several different approaches to this topic. Histori-

cally, the problem of transport of cosmic rays in irregular magnetic fields was modelled

by the Fokker-Planck equation (see [144] for one of the first papers, or book [141] for a

comprehensive overview). The Fokker-Planck equation is a type of master equation that

deterministically describes the time evolution of the distribution function f(r,v) start-

ing from a given initial distribution. It can be seen as a generalization of Liouville’s

theorem which includes Brownian motion. Accordingly, its solution is an ensemble-

averaged particle distribution function. Yet, the distribution function approach can

represent a difficulty when dealing with the dynamics of a single particle, especially

if the particle has not reached a diffusive behaviour [145]. A different route will be

taken here, after [143], by using stochastic differential equations (SDE) (see [124, 146]).

This route has an advantage compared to the Fokker-Planck formalism when confronted

with an interpretation of a single particle case in a non-diffusive regime since results

of SDE are expressed as averaged values of physical quantities, and not as distribution
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functions.

To simplify the analysis, the presented derivations and equations are restricted to a

relativistic particle where the particle’s velocity can be approximated with the speed of

light, i.e., u ≈ c. The justification for this depends on the context, but in most cases

for particles above 1015 eV the approximation is almost always acceptable. It can be

checked by evaluating:
u

c
=
√

1− (mc2)2

E2 (3.51)

where E is energy and m is the mass of the particle.

The unit vector of the velocity, i.e., the direction in which the particle is currently

heading, n̂ = (n1, n2, n3), will be the main parameter which depends on the deflection

by a turbulent quasi-static magnetic field B:

(3.6)⇒ u
dn̂
ds

ds
dt =

(
qc

E

)
un̂×B⇒ dn̂

ds =
(
q

E

)
n̂×B ,

dni
ds =

(
q

E

)
εijknjBk (3.52)

which is just a rewritten version of the Lorentz force equation (3.6) for ultra-relativistic

particles u ≈ c ⇒ s ≡ ct. The quantity s denotes the path length which the particle

traverses. The particle performs Brownian motion in the flight direction n̂ with a corre-

sponding diffusion coefficient D0. This can be modelled with the stochastic differential

equation of the Ito form [146]:

dni = −2D0nids+
√

2D0 (δij − ninj) dWj (3.53)

where the implicit summation convention is used. With the quantity dW ≡ (dW1, dW2, dW3)

the Wiener process in three dimensions is set. It satisfies 〈dWi〉 = 0 and 〈dWidWj〉 =

δijds. The first term in eq. (3.53) reflects ‘dynamical friction‘, while the second one is

due to random deflections in the plane perpendicular to n̂.
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First, the averaged deflection angle can be derived:

d〈ni(s)〉
ds = −2D0〈ni(s)〉

⇒ 〈ni(s)〉 = 〈ni〉0e−2D0s ⇒ 〈n̂(s)〉 = 〈n̂〉0e−2D0s (3.54)

which shows in case of s → ∞ the particle completely forgets its original direction of

flight. The subscript 0 denotes initial values at s = 0.

The next task is to employ eq. (3.53) to calculate the evolution of 〈ninj〉 during

propagation. In the case of two stochastic integrals X and Y , the following relation

applies [147]:

d(X · Y ) = dX · Y +X · dY + dX · dY (3.55)

from which d(ninj) yields:

d(ninj) =dni · nj + ni · dnj + dni · dnj

=
(
−2D0nids+

√
2D0 (δik − nink) dWk

)
· nj

+ ni ·
(
−2D0njds+

√
2D0 (δjk − njnk) dWk

)
+
(
−2D0nids+

√
2D0 (δik − nink) dWk

)
·
(
−2D0njds+

√
2D0 (δjk − njnk) dWk

)
=2D0(δij − 3ninj)ds

+
√

2D0 [ni (δik − nink) dWk + nj (δjk − njnk) dWk] (3.56)

where the properties (ds)2 = 0, dWids = dsdWi = 0, dWidWj = δijds were used. By

taking the average, only the first term on the right-hand side is left:

d〈ninj〉 = 2D0(δij − 3〈ninj〉)ds⇒
d〈ninj〉

ds = 2D0(δij − 3〈ninj〉) . (3.57)

The result of integration is:

〈ninj〉 = 〈ninj〉0e−6D0s + δij
3
(
1− e−6D0s

)
. (3.58)
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By following the path of propagation xi(s) =
∫ s

0 ds′ni(s′) along the coordinate axes

and averaging it, one gets:

〈xi(s)〉 = 〈ni〉02D0

(
1− e−2D0s

)
. (3.59)

One should be cautious when interpreting this result. By construction of the integral,

the path is already assumed to be along an axis so the equation can only describe the

ballistic regime of propagation which in limit D0s� 1 becomes 〈xi(s)〉 ≈ 〈ni〉s, i.e., that

the particle follows a straight line. In the diffusive regime, the under integral function

is already zero and there is no path to follow along an axis, thus the integration yields

〈xi〉 = 0 which is a well-known result of Brownian motion.

Finally, two additional relations used later are also derived (see [143] for the full

derivations). The correlation between the particle’s flight direction and position:

d〈xinj〉
ds = 〈ninj〉 − 2D0〈xinj〉 ⇒

〈xinj〉 =
〈ninj〉0 − 1

3δij
4D0

e−2D0s
(
1− e−4D0s

)
+ δij

6D0

(
1− e−2D0s

)
. (3.60)

That was necessary to calculate the correlation between two positions:

d〈xixj〉
ds =2〈xinj〉 ⇒

〈xixj〉 = 1
4D2

0

(
〈ninj〉0 −

1
3δij

) [
1− e−2sD0 − 1

3
(
1− e−6sD0

)]
+ δij

3D0

[
s− 1

2D0

(
1− e−2sD0

)]
. (3.61)

After lengthy work to obtain these expressions, some concrete results may follow.

3.4.1 Quasi-rectilinear propagation

In the limit of small angle scatterings, i.e., in the quasi-linear approximation [148, 126,

141], where D0s� 1, one can find the average (root mean square) deflection angle θrms,

a quantity which will be used later when the so-called quasi-rectilinear (or ballistic)
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propagation will be analysed.

If the particle is deflected by a small angle θ in its direction of flight n̂, for example,

along the z-direction êz, it can be approximated by:

cos(θ) ≈ 1− 1
2θ

2 ⇒ θ2 ≈ 2 [1− cos(θ)] = 2 (1− n̂ · êz) . (3.62)

Averaging the expression and plugging in 〈nz〉 from eq. (3.54) the following result is

derived:

〈θ2〉 ≈ 2 (1− 〈nz〉) = 4D0s (3.63)

where in the last step the small angle approximation D0s � 1 ensures that 〈nz〉 =

e−2D0s ≈ 1− 2D0s.

In analogy to a spatial diffusion coefficient Kxx = limt→∞〈(∆x)2〉/2t, and by follow-

ing the Taylor-Green-Kubo formulation of the diffusion coefficient [126]:

Kxx =
∫ ∞

0
dt
〈

dx
dt (t)dx

dt (0)
〉
, (3.64)

the diffusion coefficient in the flight direction takes the form:

Dij ≡ lim
∆s→∞

〈∆ni∆nj〉
2∆s =

∫ ∞
0

ds
〈

dni
ds (0)dnj

ds (s)
〉

(3.65)

where ∆ni ≡ ni − 〈ni〉 and, therefore, 〈∆ni∆nj〉 = 〈ninj〉 since the mean vanishes,

〈ni〉 = 0. Using eq. (3.52) one has

Dij =
(
q

E

)2 ∫ ∞
0

dsεiklnk(0)εjqrnq(s)〈Bl(0)Br(x(s))〉

=
(
q

E

)2 ∫ ∞
0

dsεiklnk(0)εjqrnq(s)
1

(2π)6

∫
d3k

∫
d3k′ 〈δBl(k)δBk(k′)〉 eik·x(s) .

(3.66)

Again, in the next step the assumption nk(0)nq(s) ≈ nk(0)nq(0) is introduced due to

the quasi-linear approximation. To be more specific, this approximation is valid if the

deflection of the particle is small within one coherence length of the turbulent field:
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|∆n̂| ∼ Lc/rg � 1. Furthermore, the same approximation guarantees that x(s) ≈ n̂s.

The integral now can be evaluated in the same manner as in eq. (3.48), which results

in the following expression:

Dij = π

8

(
qc

E

)2
(δij − ninj)

∫ kmax

kmin
dkB2(k)

k
, (3.67)

or, by representing it with the scalar diffusion coefficient in the quasi-linear approxima-

tion:

Dij = Dql
0 (δij − ninj) , Dql

0 ≡
1
8

(
qc

E

)2
LcB

2
rms = 1

8
Lc
r2
g

. (3.68)

At this point, Dql
0 can be substituted in eq. (3.63):

θ2
rms ≈ 4Dql

0 s = 1
2

(
qc

E

)2
B2

rmsLcs = 1
2
Lc
r2
g

s (3.69)

which represents the root mean square angular spread around the initial direction and

it is consistent with other approaches, for example [149].

This theoretical result is compared with a Monte Carlo simulation using CRPropa

(appendix B). The comparison is shown in fig. 3.2. The simulation is performed by sam-

pling 500 particle trajectories and recording their deflection angles θrms at various dis-

tances relative to the initial angle. By using two different energies, E = {2.0, 5.0}EeV,

in a turbulent magnetic field defined by Brms = 1 nG, and Lc = 0.5 Mpc, two gyroradii

are compared, rg = {2.16, 5.40}Mpc. As it can be seen, the comparison of the theoret-

ical calculation with the numerical result is in agreement for the second gyroradius in

which the small angle approximation is still valid for the whole range of displayed dis-

tances. On the other hand, the first gyroradius in the given range of distances breaks the

inequality Dql
0 s < 1. An investigation of the validity of the small angle approximation

is reserved for the next section.

The angle θ2
rms is important in the reference frame of the particle. However, the

observer is more interested in an angle that closes the line of sight from the source

and the particle’s arrival direction. That means that the angle of interest is given by
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Figure 3.2: The plot shows the average deflection angle theoretically given with eq. (3.69) for two
distinct gyroradii, rg = {2.16, 5.40}Mpc (black lines). The orange lines are the same values extracted
from two propagation simulations (see details in the text). The displayed discrepancy between the
theoretical and numerical results for the 2.16 Mpc gyroradius represents the violation of the small
angle approximation.

α = arccos(n̂ · r̂) = arccos(〈n̂ · r〉/〈|r|〉) where r is a vector between the observer and

the particle’s origin. In the limit of quasi-rectilinear propagation, the root mean square

quantity of this angle is given by [143]:

α2
rms ≈

4
3D0L = 1

3θ
2
rms = 1

6

(
qc

E

)2
B2

rmsLcL (3.70)

where s has been substituted with L to highlight the change of the context, from the

path that the particle crossed to the distance from the particle’s origin.

Due to scatterings, not only that the particle’s original direction is altered, but also

it is delayed compared to the speed of light, albeit, locally, it is approximately taken

that it moves at the speed of light (see eq. (3.51)). The formula can be derived from

the above expressions and reads:

c〈tdelay〉 ≈
1
3D0s

2 . (3.71)
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3.4.2 Transition from rectilinear propagation to diffusion

Equation (3.61) is general enough to demonstrate the transition from rectilinear prop-

agation to (normal) diffusion already defined in relations (3.14). The mean square

displacement in this case yields:

〈
r2(t)

〉
=
〈
x2(t)

〉
+
〈
y2(t)

〉
+
〈
z2(t)

〉
= ct

D0

[
1− 1

2ctD0

(
1− e−2ctD0

)]
. (3.72)

In the rectilinear regime, ctD0 � 1, that equation gives:

〈
r2(t)

〉
−−−−→
ctD0�1

(ct)2 (rectilinear) , (3.73)

while in the diffusive regime, ctD0 � 1, the limit becomes:

〈
r2(t)

〉
−−−−→
ctD0�1

ct

D0
(diffusive) . (3.74)

This result can be better understood with the help of eq. (3.69), valid within the

small angle approximation, in which the quantity ctD0 represents the root mean square

deflection angle ctD0 = θ2
rms/4, so the transition is expressed relative to θrms = 2 rad.

Another way to see the result is by the second equality in eq. (3.69). If the trajectory

length L = ct is transformed in a number of coherence lengths crossed λ ≡ L/Lc, the

above mentioned regimes are then distinguished compared to:

λ(Lc/rg)2/8 ≈ 1 , (3.75)

which is plotted on the left panel of figure 3.3. The interpretation is now straightfor-

ward: the diffusion regime occurs when the deflection Lc/rg is high and/or when many

coherence lengths are crossed, and vice versa for the rectilinear regime. One should

notice that eventually, t→∞, or to be more precise, if the age of the Universe allows,

every motion will inevitably enter the diffusive picture, and the ratio Lc/rg only deter-
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mines whether will this happen sooner or later. To underline the context again, this

perspective is correct when the small angle approximation is valid, Lc � rg.

Figure 3.3: The calculated quantity LD0 for ranges of λ = Lc/L and Lc/rg is plotted on the left panel
with eq. (3.75) marked as the blue line. The quantity

√
〈r2〉/L on the right panel is numerically

obtained by sweeping the same range of parameters with independent simulations, where drawn every
dot is one simulation in which two hundred particles were propagated in a turbulent field for a fixed
length L. The red line on the right corresponds to the blue line on the left, which shows that Monte
Carlo simulations are in good agreement with the theoretical consideration where the discrepancy
indicates the breakage of the interpretation based on the small angle approximation.

In the lower limit, the spatial diffusive coefficientK, commonly defined as 〈r2〉 = 2Kt,

reads

K(E) = c

2D0
= 4

cr2
g(E)
Lc

(3.76)

which is known in literature as the (spatial) diffusion coefficient at “high” energies [150]

where the constant factor in the front depends on the definition of the coherence length

(eq. (3.47)) and, hence, may vary.

To get a broader picture without relying on the small angle approximation, the fol-

lowing numerical procedure is employed to demonstrate the transition. A few thousand

simulations in CRPropa were performed with different initial parameters2: the particle’s

energy E, the magnetic field strength Brms, the coherence length Lc(Lmin, Lmax) and the

spectral index of turbulence n. In every simulation, two hundred protons are simulated

in a different realisation of a turbulent magnetic field for ten fixed trajectory distances

L up to 100 kpc. The right panel of figure 3.3 shows how the quantity
√
〈r2〉/L, which

2The included ranges of the simulation parameters are: E = [1015, 1021] eV, Brms = [10−10, 10−5] G,
Lmin = 2 kpc, Lmax = [5, 150] kpc, and n = {0, 1, 3/2, 5/3, 3, 5}.
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can serve as a measure of the transition, depends on the initial parameters which are

expressed in λ = Lc/L and Lc/rg. The transition occurs where it was expected by

eq. (3.75). The numerical result also depicts the range of the small angle approxima-

tion, which breaks at rg ∼ Lc: the border obtained numerically bends away from the

transition line after Lc > rg.

Figure 3.4: The transition between the rectilinear propagation and diffusion is shown in the upper
panel, which is obtained by simulating particles of various energies in various realisations of a tur-
bulent magnetic field for a fixed propagation distance L = 10 kpc (see footnote 2 for the simulation
parameters). The quantity LD0 is a dimensionless measure defined in eq. (3.72) which quantifies the
type of propagation. The exponent is calculated from a linear regression of log

(
〈r2(L)〉

)
= σ log(L)+b,

where b is a constant independent of L (not shown in the plot). The lower panel represents the regres-
sion residual indicating how well the fitting function describes the numerical data points. It can be
seen that the transition starts at LD0 ≈ 1.

Alternatively, the numerical result can be plotted as follows. The assumption

〈r2(L)〉 ∝ Lσ is taken to compute the linear regression in a log− log space in which

the exponent σ becomes the slope. The scalar diffusion coefficient, D0, is derived from

the simulation parameters using eq. (3.68). The procedure is repeated for a different

set of initial parameters. All retrieved σ versus L · D0 are plotted in fig. 3.4. As one
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can see, both limiting regimes are reproduced: σ ' 2 when LD0 � 1 and σ ' 1 when

LD0 & 1. The lower plot of the same figure shows the standardized residual of the

linear regression: values bigger than zero indicate that the straight line does not fit the

provided data well in some regions of LD0. These regions are regimes of superdiffusion

(2 > σ > 1) and subdiffusion (1 > σ). Figure 3.5 illustrates two types of propagation,

diffusive and superdiffusive, as an example of two distinct trajectories. One could no-

tice that superdiffusive and diffusive trajectories are best described through Lévy flights

which, simply said, combine diffusive motion with rectilinear jumps [151]. The model of

Lévy flights is especially important in structured magnetic fields, which are character-

ized by different field strengths and coherence lengths in different domains. Subdiffusion

occurs when particles are trapped within one region of space due to magnetic mirroring

cf. described in sec. 3.1.

Figure 3.5: An illustration of particle trajectories in two regimes of propagation determined by the
value of LD0: superdiffusive (LD0 ∼ 0.5) on the right panel and diffusive (LD0 ∼ 200) on the left
panel.



4 | Anisotropies caused by single source

In this chapter1, a study of cosmic ray source distributions and how they affect anisotropies

in the arrival direction is conducted. Without the inclusion of cosmic magnetic fields,

which bend charged particle trajectories, all studies of anisotropies, in essence, can be

reduced to geometrical considerations similar to visible-light astronomy, for example.

In order not to remain solely on that, a turbulent magnetic field will be included in the

study, with some general remarks on structured magnetic fields.

As always with the scientific methodology, the first approach would be to establish

the simplest model which can accommodate the already given observations, and system-

atically study its consequences by trying to find inconsistencies with experimental data

or other, more founded, hypotheses. In the case of finding an inconsistency, one would

either reject the initial model as insufficient, or upgrade it with additional assumptions,

and, thus, make it viable again.

The first plausible assumption in this procedure of building the simplest model is that

the cosmic ray flux is dominated by neighbouring sources. This implicitly follows from

the fact the intensity of cosmic rays has generally the inverse square dependence with

distance. Therefore, one should, at first order at least, focus on potential neighbouring

sources. Looking further away, more sources are included in the considered volume

and, as the matter distribution in the Universe approaches homogeneity at large scales,

these sources have the tendency to contribute isotropically to the flux. On top of that,

due to longer paths through intervening magnetic fields with an inevitable turbulent

component, the more remote sources tend to spread their arrival directions more widely,

1This chapter is based on [1].
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which also makes their contribution to the flux isotropic, and thus less interesting in

the context of anisotropies.

The topic of cosmic ray propagation in a turbulent field was elaborated in detail

in the previous chapter. However, an important consideration of the energy losses is

unaccounted. Cosmic ray interactions represent a complex and broad subject on its

own right, and cannot be easily covered in this work, so the reader is referred to other

literature, such as the textbooks [88, 8, 10]. Nevertheless, one can summarise that

cosmic rays lose their energy during the propagation through the Universe depending

on their energy both by interacting with photons or, if they are unstable, by decaying.

The expansion of the Universe also causes adiabatic energy loss on cosmological length

scales. Apart from losing energy, cosmic rays also generate secondary particles, like other

cosmic rays, gamma rays and neutrinos. The length scale on which a particular process

acts can be illustrated through fig. 4.1 on a proton and on a radioactive isotope of sulfur,

from which the main message that can be read out is: energy loss processes can be to

some extent neglected below ∼ 1020 eV on distances shorter than a few megaparsecs.

Figure 4.1: Energy loss length on an example of proton and sulfur-35. A proton (right panel) or sulfur
nucleus (left panel) in the high energy range interact with photons of cosmic microwave background
(CMB) from the early Universe and with infrared photons emitted by the present matter in the Universe
(those photons are called the extra-galactic background light, or EBL for short). As radioactive, it also
decays with a half-life of 87.5 days. Generated with CRPropa (ch. B).

The benefit of focusing only on neighbouring sources in anisotropy studies is, hence,

twofold. On the one hand, the contribution from local sources is dominant in the total
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flux, and therefore their relevance for anisotropies. On the other hand, the significance

of energy losses is minimised, and thereby the complexity of that subject is to some

degree circumvented, making the anisotropy modelling more concrete and, consequently,

falsifiable.

The main constraint for anisotropies of ultra-high energy cosmic rays is the dipolar

anisotropy detected by the Pierre Auger Observatory, as noted in sec. 2.5.3. Every

considered model should be able to reproduce this fact. The dipolar anisotropy basically

means more cosmic rays are coming from one side than from the other. Logically, the

reason could be an inhomogeneity of sources between the two sides. This inhomogeneity

in the simplest case can be caused only by a single neighbouring source.

Centaurus A (Cen A) or the Virgo cluster are the closest candidates that have been

studied many times before [152, 153, 154, 155, 156, 157, 158]. Besides those studies

focused on specific sources, more general studies of a single source with various ap-

proaches and aims were conducted, such as a diffusion model [159, 160, 161], simulated

ballistic propagation from a single source [162], a single source in the context of the

galactic magnetic field [152], etc. The main problem of these studies is that they are

usually very concrete with their assumptions, which depend on a specific position of

the source, the injected composition, luminosity, intervening magnetic field properties

and similar, and one cannot easily apply the knowledge contained in them to situations

when some of the used assumptions alter due to a new experimental evidence or to a

contribution from another research field. Their results also cannot be used when con-

structing scenarios for Monte Carlo simulations in a straightforward sense. For example,

before, galactic sources had dominated the interest in the community and papers that

investigated them were written under the assumption of diffusional propagation, which

is natural to include for the galactic environment, but due to this assumption, their

results cannot be applied to extra-galactic contexts.

With that argued, the main work in this chapter is developed around the idea that

there exists a neighbouring source that contributes a significant fraction of the total

ultra-high energy cosmic ray flux compared to the next significant contribution in flux
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source. The goal is to analyse anisotropies from a neighbouring source, without spec-

ifying its distance or luminosity, by focusing primarily on properties of an intervening

turbulent magnetic field in such a way as to satisfy given experimental constraints. As

noted, the experimental constraints exist for large-scale anisotropies only. Therefore,

the focus here will also be on them by relying on the angular power spectrum, which

is a rotationally invariant observable. That property enables a more general analysis

without focusing on specific directions on the sky. Of the most relevance here is the

generality of the results, which require analytical tools, but they will be accompanied

with Monte Carlo simulations in parts where it will be unavoidable. These results can

be used to make predictions and constrain the model’s parameters, which will also be

shown later in the chapter.

4.1 Single source model

When air shower experiments (see sec. 2.4.1) measure arrival directions of UHECR

events, every event is interpreted as one charged particle hitting the earth’s atmosphere

after arriving from a remote source. In chapter 3 it was shown that a charged particle

is scattered on irregularities of intervening magnetic fields, especially on those from

turbulent fields. Thereby, the particle undergoes Brownian (random) motion in its

flight direction when crossing many coherence lengths of a turbulent magnetic field.

This stochastic motion placed on a unit sphere, in which the particle starts its

movement from µ, and it moves in a time κ−1, is described with the Brownian motion

distribution denoted as BM3(µ, κ) where the index 3 stands for three-dimensional case.

The Brownian motion distribution which starts from (θ, φ) = (0, 0) is given by the

formula [163, 164]:

fBM(θ, φ|κBM) =
∞∑
k=1

(2k + 1)e−k(k+1)/4κBMPk(cos θ) (4.1)

where Pk are the Legendre polynomials of order k.

This is a good place to introduce a concept from directional statistics - the mean
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resultant length which is a measure of the angular spread ρ = 1
N
||∑N

i=1 xi|| where xi is a

unit vector of an event, like an arrival direction event of a single cosmic ray and N is the

total number of events. For BM3(µ, κBM), the mean resultant length is ρ = e−(2κBM )−1 .

In the context of Brownian motion in flight directions described in sec. 3.4, one is

interested in expressing this quantity in terms of the flight direction unit vector n̂ which

is correlated with the unit vector pointing from the observer to the source r̂. Thus,

normalized eq. 3.60 gives:

ρ = 〈n̂ · r̂〉 . (4.2)

The correlator has a complex form based on equations in sec. 3.4 and will not be listed

here, but the limiting values are important for the further analysis: 〈n̂ · r̂〉 −−−−→
LD0�1

1− 2
3D

ql
0 L, and 〈n̂ · r̂〉 −−−−→

LD0�1
0.

Roberts and Ursell [165] showed that BM3(µ, κBM) can be approximated by the

Fisher distribution (or Fisher – von Mises distribution on the (p−1)-dimensional sphere

where p = 3) when they share the same mean resultant length [166, 164]. The Fisher

distribution can be seen as a spherical analogy by a normal distribution (in a plane).

When considering small angular spreads of data the Fisher distribution is well described

with a normal distribution.

Consequently, the arrival direction distribution of cosmic rays that are coming from a

single source can be modelled with the Fisher distribution centred around (θ, φ) = (0, 0):

fF (r̂|κ) = κ

4π sinh(κ) exp(κr̂ · r̂src) , (4.3)

where rsrc is the position of a single source, and κ(≡ κF ) the concentration parame-

ter. Since this distribution by construction shares the same mean resultant length of

BM3(µ, κBM), the diffusion coefficient in flight directions and the total travelled length

can be related to κ through:

κ = A−1
3 (ρ) = A−1

3 (〈n̂ · r̂〉) . (4.4)
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The function A3(κ) relates κ and ρ in the following way

ρ = A3(κ) = coth(κ)− 1
κ
. (4.5)

For κ� 1, A3(κ) ≈ κ/3, while for κ� 1, A3(κ) ≈ 1− 1/κ (from Appendix 1 in [164]).

The parameter κ will be called the spread parameter from now on. That is because

it encodes everything which influences the angular spread of arrival directions, such as

the presence of magnetic fields. κ goes to zero in the limit of extremely high deflections

in which the original arrival direction of a particle is totally erased, and so does the

source position. For κ = 0, the Fisher distribution is just a uniform distribution on a

sphere. In the absence of deflections, when magnetic fields do not exist, the distribution

behaves like a point source, i.e., a delta function.

To accommodate other sources which, by assumption here, contribute to the to-

tal flux only isotropically, the Fisher distribution is modified and re-normalised in the

following way

fsrc+bg(r̂|η, κ) = 1− η
4π + η

κ

4π sinh(κ) exp(κr̂ · r̂src) (4.6)

where η is the relative flux jsrc/jtot of a single source.

This approach of modelling the spread of arrival directions from a single source is

also used in [167]. The difference between the interpretation of eq. (4.6) here and the

one used in [167] needs an elaboration. Harari et al. argue that “the isotropic term arises

mostly from particles that diffused long times and made several turns before reaching

the observer,” while here the isotropic term is due to other sources which contribute

only isotropically. The author of this work did not find any grounds for the former

interpretation in his investigation. The Fisher distribution, as a good approximation of

the Brownian movement distribution, should also take into account multiple turns. In

the limit of large spreads, κ→ 0, the Fisher distribution already gives isotropy. Thereby,

placing an additional term by hand rises the question of which underlying mechanism

would reproduce a distribution with such constant term. It is worth to be reminded
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that a particle locally does not recognise the regime of diffusion when it propagates – it

just propagates ballistically, and the concept of diffusion is only our shortcut when the

particle motion is analysed globally. Besides that, numerical simulations do not show

any disagreement with the assumed distribution, which fits perfectly to any collection

of data acquired from trajectory simulations, even when particles enter in a so-called

diffusion regime, D0L � 1. Simulations of cosmic ray propagation in a turbulent field

were performed, in terms of the range of parameters. in the same manner as for fig. 3.3

to check this. A few examples of the fit are shown in the left panel of fig. 4.2. The fit is

done on a density of colatitude θ for the Fisher distribution, given by the expression:

fF (θ, κ) = κ

2 sinh(κ)eκ cos(θ) sin(θ) . (4.7)

The histograms are created by binning the angle θ of all particles at a certain point

during the propagation. The angle θ represents the deviation from the initial flight

direction when the particle reached a certain point where it was recorded. The right

panel of the same figure shows that the spread parameter κ is a function of D0L as

was stated above. The red line shows the analytical expression of κ
(
e−2D0L

)
in the

small angle approximation domain where the diffusion parameter, D0, can be calculated

directly from physical parameters. The approximation is valid down to κ & A−1
3 (1 −

2D0L/3) ≈ A−1
3 (1 − 2/3) & 1.1. That also agrees with Monte Carlo simulations in fig.

4.2: the overlapping of the red line with the simulation results is down to ∼ 1. Below

that point, one needs to look for an expression for D0 in the diffusive regime. This is not

done in this work, although D0 should follow other known diffusive coefficients given,

for example, in [150].

In section 4.1.1 the small angle approximation and the parameter space of physical

quantities will be inspected in more detail.

Now, to study how the given model corresponds to the anisotropy observables, the

angular power spectrum of the distribution (4.6) is derived. The angular power spectrum

is rotationally invariant, so without loss of generality the observer can be placed at the

origin of the coordinate system and the z-axis can be chosen along the source direction:
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Figure 4.2: A comparison of the density of colatitude θ given by eq. (4.7) of several κ values is shown on
the left panel. The right panel demonstrates that the spread parameter κ is indeed a function of D0L
without any additional parameters needed. The red line represents the analytically calculated κ for
given physical parameters of the simulations when D0 is described by the small angle approximation.

r̂ · r̂src = cos(θ). Inserting (4.6) in (A.18) gives:

a`m =1− η
4π

∫ 2π

0
dϕ
∫ π

0
dθ sin θY m∗

` (θ, ϕ)

+ η
κ

4π sinh(κ)

∫ 2π

0
dϕ
∫ π

0
dθ sin θ exp(κ cos(θ))Y m∗

` (θ, ϕ) (4.8)

=δ`0
1− η

4π 2
√
π + δm0

√
2`+ 1

4π

∫ π

0
dθ

κ sin(θ)
2 sinh(κ) exp(κ cos(θ))P`(cos θ) . (4.9)

The last integral I` = κ
2 sinh(κ)

∫ 1
−1 du exp(κu)P`(u) can be reduced to a recurrence relation

using the property of Legendre polynomials (2n+ 1)Pn(u) = d
du

[Pn+1(u)− Pn−1(u)]:

I0 =1 , I1 = coth κ− 1
κ
, I` = I`−2 −

2`− 1
κ
I`−1 . (4.10)

The recurrence yields the final form expressed in terms of the modified Bessel function

of the first kind:

I` =
√
π

2

√
κ

sinh κI`+
1
2
(κ) (4.11)

a`0 =δ`0
1− η√

4π
+ η

√
2`+ 1

4π

√
π

2

√
κ

sinh(κ)I`+
1
2
(κ) . (4.12)
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Figure 4.3: These two plots illustrate solutions of the single source model (4.13) without the background
contribution (η = 1). The first one shows the dependence of the normalized power spectrum C` on the
multipole moment ` for different parameters κ, while the second one shows the dependence of the power
spectrum on κ for the first few moments; the dashed curves are derivatives of solid lines multiplied by
a factor 10; the black dotted line represents the ratio x = C2/C1 versus κ. All figures in this work are
plotted using [168].

The final power spectrum reads

C` =


1

4π if ` = 0

η2 1
4πI

2
` = η2 κ

8 sinh−2(κ)I2
`+ 1

2
(κ) if ` > 0

(4.13)

where it is advisable for numerical calculations to use the recurrence form (4.10) instead

of the last form due to numerical instability around κ ≈ 0.

The solution for η = 1 is plotted in fig. 4.3 for the first few moments and for

several parameters κ. The figure shows consistency in the following limiting cases:

when the angular spread is high enough, or the spread parameter is low enough, to

erase the position of the source completely, only the monopole component is present

(∀` > 0 limκ→0C` = 0). In the opposite limit, without any deflections, the source is

presented in the form of a delta function and all moments are equal. The parameter η

governs the ratio of higher multipoles to the monopole.

The model’s parameters, κ and η, can be determined from the ratios of multipoles.
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Figure 4.4: The left panel shows how to retrieve parameter κ from the ratio of the quadrupole and the
dipole (x = C2/C1) with the two analytical approximations described in the footnote. The right panel
shows how η, which parametrises the flux contribution of the single source, can be determined from
x = C2/C1 and the relative dipole amplitude y = C1/C0.

In particular, the ratio of the quadrupole and the dipole, x = C2/C1, is given by:

C2

C1
≡ x =

[(
coth κ− 1

κ

)−1
− 3
κ

]2

. (4.14)

In fig. 4.4, eq. (4.14) has been solved for κ numerically2. The derivative of dx(κ)/dκ is

always positive, which confirms the monotonous behaviour of the function and implies

the existence of a unique solution for κ in the domain of interest. The parameter η is

then expressed through y = C1/C0 and κ(x) (fig. 4.4):

η (y, x) =
√
yκ(x)

|κ(x) coth κ(x)− 1| . (4.15)

The model gives y = C1/C0 ≤ 1, which implies η ≥ [coth(κ)− 1/κ]−1. On the right

panel of fig. 4.4 this inequality is violated for certain pairs x and y, where η becomes

larger than unity, which is nonphysical since it would result in negative flux in certain

directions, c.f. eq. (4.6).

2Nevertheless, useful analytical expressions in case of low (x < 0.1) and high (x > 0.25) ratio limits
can be obtained:

κ(x) ≈ κapprox(x) =

 3−
√

x+
√

x+6
√

x−3
2−2
√

x
, valid for x & 0.25,

5
√
x, valid for x . 0.1 .
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4.1.1 The spread parameter in the small angle approximation

The deflections of cosmic rays in intervening magnetic fields cause blurring to a source

image. Interactions can also contribute to the angular spread, but for highly energetic

particles their effect can be neglected, as the scattering angle is of the order of the

inverse Lorentz factor. Relevant quantities for deflections in magnetic fields are the

magnetic rigidity R = E/Ze and properties of the intervening magnetic field. In the

small angle approximation, see sec. 3.4.1, where D0L ≤ 1, one can approximate eq. 4.4

with the already mentioned expression for A3:

κ = A−1
3

(
1− 2

3D
ql
0 L
)
≈ 3

2
(
Dql

0 L
)−1

. (4.16)

Inserting eq. (3.70) in the last expression yields:

κ ≈ 2α−2
rms = 12R2B−2

rms (LcL)−1 (4.17)

where θrms is the root mean square deflection angle, L is the total travelled distance,

Lc and Brms are the coherence length and the root mean square strength of a turbulent

magnetic field, respectively. One needs to notice that the approximation for large κ

in A−1
3 (ρ) breaks sooner (κ ∼ 2) when κ → 0 than the small angle approximation,

described in sec. 3.4.2.

The numerical form, useful in the ultra-high energy cosmic ray context, is given by:

κ ≈ 140.2 ·
( R

EV

)2 (Brms

nG

)−2 ( L

Mpc
Lc

100kpc

)−1

. (4.18)

Cosmic rays that are deflected within a particular realisation of a Kolmogorov-type

turbulent field will not generally be consistent with the smeared shape of the Fisher

distribution if they are not sufficiently randomized by traversing multiple coherence

lengths of the turbulent magnetic field defined in eq. (3.50). That is now going to be

checked numerically.

Cosmic rays in a turbulent magnetic field are simulated in CRPropa (appendix B)
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Figure 4.5: It is numerically checked how many coherence lengths cosmic rays need to traverse to
be sufficiently randomized to match the predicted value from the Fisher distribution. The analytical
expectation follows from equation (4.17), where the result is multiplied by Lc/L

max
c to remove the

dependence of κ on Lc to stress the discrepancy; Lmax
c = 256kpc but it could be any constant length

as it serves only as a normalization constant. For less than approx. 40 Lc the parameter κ jumps
because the turbulent field on such scales correlates the movement of cosmic rays, which tends to
create additional patterns within the source image that appear as smaller inner hot spots.

over the fixed distance of 5 Mpc. The forward propagation method is used to propagate

5 EeV energy protons through different realisations of the turbulent magnetic field given

by Brms = 5 nG, Lmin = 20 kpc, and Lc ranging from 28 to 256 kpc. For every Lc, 30

random realisations of the magnetic field are generated to calculate the mean and the

variance. Particles are detected if they hit an observer sphere (later just the observer).

The radius of the observer was set to 200 kpc, and it is chosen so to minimise the

artificial effect of the finite observer, which affects the angular spread but, at the same

time, to register at least a few hundred events (see sec. B.3 for details). Numerically, κ is

calculated using eq. (4.4). Figure 4.5 shows the result from which it can be concluded

that at least 40 coherence lengths are needed to reproduce the shape of the spread

parameter which corresponds to the analytical form.

To verify the dependence on the other parameters in equation (4.17) the same ap-

proach is used following in part ref. [169]. The coherence length of the turbulent field is

set to 100 kpc and the other parameters are set to Brms = 5 nG, R = 5 EV, L = 5 Mpc

when they are not subject of the check themselves.
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Figure 4.6: The parametrization of equation (4.17) is numerically tested for different parameters of
magnetic field strength Brms, rigidity R and distance L separately. The red lines are calculated from
the formula, while blue dashed lines are Monte Carlo results.

It is worth to note that small discrepancies and fluctuations for κ > 50 are of less

importance because the anisotropic moments C` are not changing much for those values

and a moderate `, which is expected because large κ values, means a small deflection

to which low multipoles are not very sensitive (see the derivatives in the second plot of

figure 4.3).

The influence of the second nearest source

Knowing how the spread parameter depends on the distance, one can assess the validity

of the starting assumption that distant sources do not sufficiently change the anisotropy

created by the closest source. Introducing only two sources in an analogous manner as

in equation (4.6) with different distances L1, L2 = λL1 and with spread parameters

κ1, κ2 = κ1(L1/L2) = κ1/λ respectively, the calculation from section 4.1 can be re-

peated. The fluxes fall as L−2
1,2, hence the relative flux is j2/j1 = λ−2 when both sources

are injecting particles with the same rate. Only the dipole is calculated as the most

important moment in any case. Two extreme cases are studied to preserve the axial

symmetry, which simplifies the integration: a “constructive” one (r̂1 = r̂2), where the

second source is behind the first one, and a “destructive” one (r̂1 = −r̂2), where the
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second one is on the opposite side, relative to the observer.

fsrc1,2(r̂|λ, κ1, κ2) =fsrc1,2(r̂|λ, κ1) =

(1− λ−2

2 ) κ1

4π sinh(κ1) exp(κ1r̂ · r̂1)

+ λ−2

2
κ1/λ

4π sinh(κ1/λ) exp(κ1r̂ · r̂2/λ)

⇒ a10 =
√

3
4π

[
I1(κ1)− 1

2λ2 (I1(κ1)± I1(κ1/λ))
]
. (4.19)

By requiring limλ→∞C1(λ, κ1, κ2)/C1(κ1) = 1, the deviation from the single discrete

source case can be parametrized through a parameter λ. The following solution is

plotted in fig. 4.7:

C
src1,2
1 (λ, κ1, κ2)

Csrc1
1 (η = 1/2λ2, κ1) =

1±
coth

(
κ
λ

)
− λ

κ

(2λ2 − 1)
(
coth(κ)− 1

κ

)
2

≈1± 1
3λ3

(
3 + 1

5κ
2 +O(κ4)

)
(4.20)

where the last approximation is valid for λ� 1 and κ ∼ 1.

The influence of the second source on the dipole falls with distance as ∼ λ−3 for a

given spread parameter κ, but if the angular spread is larger (smaller κ), the decrease is

quicker for both cases. Thus, for stronger magnetic fields and lower rigidities, the single

discrete source assumption holds better, as expected, and the assumption is already

justified if the second source is at least located at several times the distance of the first

one.

Combining multiple rigidities

Up to now, calculations considered only a monoenergetic source which is injecting only a

single type of cosmic rays, i.e., a single rigidity. An expansion of the analysis to multiple

rigidities can be represented through a single source which is a combination of multiple

sources located at the same position with a range of values for the spread parameter κ.

This leads to the spectrum expressed analogously as in the previous subsection in eq.
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Figure 4.7: This plot shows when the dipole moment converges to the original expression given by
(4.13) if there is a second source involved. Parameter λ is the ratio between the distances of the two
sources - the more remote the second source is, the less it interferes with the dipole and other moments
created by the first source. Two extreme cases are considered, a “constructive” one (solid lines) where
the observer, the first source and the second source are located on the same line of sight in that order,
and a “destructive” one (dashed lines), where the observer is located between the two sources.

(4.12):

Ccomb
` (κ1, . . . , κN) = 1

8

[
N∑
i

ηi
√
κi

sinh(κi)
I`+ 1

2
(κi)

]2

(4.21)

where ηi is the flux weight of the component i.

A form of eq. (4.21), where one could easily see the general behavior of the given

scenario is not found but by comparing it with the solution (4.13), an important point

can be made: if the two angular power spectra correspond to the same dipole, all

higher multipoles of the multiple-rigidity solution will have higher values compared to

the original case. Finding the dipole’s value directly cannot be done analytically since

I1 = coth(κ)− 1
κ
is a transcendental equation. The process comes down to finding the

root of the equation:

1
4π

(
coth(κ0)− 1

κ0

)2
− Ccomb

1 (κ1, . . . , κN) = 0 . (4.22)



4 CHAPTER 4. ANISOTROPIES CAUSED BY SINGLE SOURCE 66

Verifying the above claim is then equal to checking if the following is satisfied:

Ccomb
` (κ1, . . . , κN)

Ccomb
1 (κ1, . . . , κN) ≥

Cpure
` (κ0)

Cpure
1 (κ0) (4.23)

which is numerically confirmed for a wide range of parameters3, and it can also be

understood physically: by knowing that Min(κ1, . . . , κN) < κ0 � Max(κ1, . . . , κN)

sources with κi > κ0 always exist and they contribute more to smaller scale anisotropies

than the source with κ0 (see the first plot in fig. 4.3), and therefore, the combined

spectrum will necessarily have larger higher multipoles than the pure κ0 case.

4.1.2 Comparison with structured magnetic fields

Figure 4.8: The volume filling fraction of structured magnetic field models for Dolag et al. [170],
Miniati et al. [171] and the benchmark field [172].

The above-presented model follows a rather naive assumption that magnetic fields

in the local Universe are everywhere uniformly turbulent only. Since galaxies, clusters,

filaments, and voids contain magnetic fields which differ by several orders of magnitude

in strength and other properties, it is more realistic to assume that magnetic fields are
3There is no reason that for some other set of parameters the inequality will not be satisfied since

all components involved have a monotonic and bounded behavior. For example, see the black dotted
line in the second plot of fig. 4.3.
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structured, which is also backed by observations. Thus, in this section, the effects of

structures on the single source model are investigated.

Nowadays, there are several structured extra-galactic magnetic field models available

such as [171, 170, 173, 174]. The magnetic field that is employed, also described in

detail in the CRPropa 3 reference paper [172] and referred later as the benchmark

field, is constructed on the basis of the work of Dolag et al. [170] and Miniati et al.

[171]. It represents a constrained model of the local large-scale structure taken from

Dolag et al. on top of which is applied the magnetic field from Miniati et al., by first

constructing the correlation density magnetic field within Miniati and then applying it

to the Dolag density field. Within uncertainties of the void fraction in the local Universe

[175], the chosen model’s magnetic field strength in voids comply with the newest upper

limits, such as from the ESA Planck experiment [176]. This can be seen in fig. 4.8,

in which a volume filling fraction of the mentioned models is displayed. The volume

filling fraction represents a binning of volume blocks dV according to their averaged

magnetic field strength values. However, the more important component to compare

here is the structure of the magnetic field itself, not its strength. The magnetic field

structure of the benchmark field in the form of a strength distribution is shown in fig.

4.9. Furthermore, two distinct locations for the observer have been investigated: the

first one located within structures, which resembles the local Universe around the Milky

Way; and the second one is placed in a void at least 5 Mpc from the nearest structure

(fig. 4.9).

The simulation scenario consists of iterating a single source over 80 uniformly dis-

tributed locations on a sphere of radius 5 Mpc and 10 Mpc around the observer. The

observer sphere has a radius of 400 kpc. The energy range of the particles is chosen

such that the angular spread ranges from κ ≈ 1 to κ ≈ 10, which is the range where

the effect of the structure in the angular distribution is most easily seen in the context

of this investigation, namely around 10 EeV. The other parameters are kept the same

as in the turbulent case. At least one thousand events are collected from every source.

The results are shown in fig. 4.10 in the form of the retrieved values of κ. The spread
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Figure 4.9: Two distinct locations for the observer are chosen: the first one within structures that is
also constrained to resemble the local Universe around the Milky Way; and the second one is placed
in a void at least 5 Mpc from the nearest structure. The colour scale represents the magnetic field
strength. The shown magnetic field comes from the benchmark model described in the text.

parameter of all sources in the first location, within structures, is κ5 Mpc
1 = 2.9 ± 0.8

and κ10 Mpc
1 = 2.0± 0.5 for sources at 5 Mpc and 10 Mpc distance, respectively. In the

second location, within the void, the values are κ5 Mpc
2 = 22± 14 and κ10 Mpc

2 = 7± 4.

In a structured magnetic field, it is not possible to unambiguously define physical

parameters in the whole space, such as Brms that determines the spread parameter κ, as

in the case of a turbulent field, i.e., equation (4.17). However, it is possible to investigate

how much the shape of the angular power spectrum is altered compared to the expected

analytical solution given by eq. (4.13). To achieve this, the value of κ is determined

from the dipolar moment obtained from the simulation, and then, the next most robust

large-scale moment, the quadrupole, also obtained from the simulation, is compared

against the expected value calculated from κ by eq. (4.13). Therefore, the ratio of these

two quadrupole values, the purely turbulent obtained analytically and the one obtained

from the simulation with the structured field, can be established by taking the relative

difference (CMC
2 − CAN

2 )/CAN
2 (figure 4.11). It can be observed in which directions the

original pattern expected from equation (4.13) (figure 4.3) is the least affected by the

structures. In the void, the pattern is conserved the best, which has been expected,

but for larger distances where new domains of the magnetic field emerge this picture is

disturbed. For the observer in the structured part of the Universe, the pattern is mostly
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Figure 4.10: These four skymaps interpolate values of κ from 80 uniformly distributed sources in four
cases (the colour scale represents the value of κ): the upper two represent skymaps for the first location
of the observer (within structures) where sources are at 5 Mpc (left) and 10 Mpc (right), while the
bottom two represent skymaps for the second location of the observer (in the void), also at the same
distances as the upper two. Average values are κ5 Mpc

1 = 2.9± 0.8, κ10 Mpc
1 = 2.0± 0.5, κ5 Mpc

2 = 22± 14
and κ10 Mpc

2 = 7±4. The angular spread depends on the direction, but generally the same quantitative
behavior is preserved: the stronger magnetic field (1st location, upper row) causes the larger angular
spread (smaller κ). The same holds for greater distances from the sources (right column). The structure
of the magnetic field around these locations is displayed in the previous figure (4.9).
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Figure 4.11: This figure describes the same cases as the previous figure 4.9, but it shows the relative
difference in the quadrupole component between the simulation and the analytical expression, (CMC

2 −
CAN

2 )/CAN
2 , which is represented by the colour scale. The smaller the difference, the better the original

pattern (figure 4.3) reproduced, e.g., the better it resembles the pure turbulent case. Red spots are
areas where the structured magnetic field changes the expected ratio between the dipole and quadrupole
moment the most. It should be stressed that in all such cases the quadrupole to dipole ratio tends to
be larger than predicted for purely turbulent fields.
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distorted on the edges between two different domains of high and low angular spread,

which can be seen by comparing figures 4.10 and 4.11. In areas where the pattern is

distorted, the predicted single source signature is basically lost since different moments

are modified differently, yet, it should be stressed that, in all such cases, the effect

of structures increased the quadrupole component compared to the dipole component

relative to the analytical expectation.

A qualitative description of the phenomena can be phrased in the following way.

Generally, a structured magnetic field can be characterized by the existence of separate

domains which have different field properties and spatial sizes, therefore, these domains

contribute differently to cosmic ray deflection, that is, they have different values of κ.

If the source and the observer are located within the same domain, the described pure

turbulent field approach can be applied, but if cosmic rays from the source traverse

different domains to reach the observer, each domain can be considered as an indepen-

dent source located at the same position as the real source but with an independent

angular spread, which leads to a power spectrum of the same form as eq. (4.21). As was

already shown in subsection 4.1.1, the values of higher multipoles will increase when

combining sources of different κ compared to the pure turbulent case. Summarizing

the argument, the structured magnetic field tends to enhance higher multipoles of the

angular power spectrum compared to the analytically obtained reference spectrum, and,

hence to increase the ratio C`+1/C`.

In domains where the assumption of traversing multiple coherence lengths is not

fulfilled, cosmic rays can create distinct structured patterns like creating mirror images

[149], which will considerably affect the argument. Similar effects will occur if regular

components of the magnetic field dominate turbulent ones in those domains. Every

systematic shift of the arrival directions caused by the regular components of magnetic

fields will distort the Fisher distribution. Considering those scenarios is beyond the

scope of this work. It can only be added that smaller structures in the Universe are

expected to have a smaller coherence length of their associated turbulent component, like

in our Galaxy where Lc ≤ 100 pc [177]. Smaller coherence lengths of smaller structures
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make the systematic shift in the arrival directions less probable, i.e., their directions

are in every domain randomised. That makes an objection to not traversing multiple

coherence lengths less relevant.

4.1.3 Examining constraints from the measured dipole and quadrupole

and potential neighbouring sources

The Pierre Auger Observatory reported a dipolar amplitude of d = 6.5+1.3
−0.9% above 8 EeV

[105] while higher moments remain within 99% confidence level of isotropy [105]. To

derive values of C` with the correct normalization in the monopole component C0 for the

Auger data, following the expression from [178], is used: Φ(n̂) = Φ0
4π (1 + d · n). Putting

it in eq. (A.16), one gets C1/C0 = |d|2/9 = (0.00047+0.00019
−0.00013). As already noted in

section 4.1, equation (4.14) serves to constrain the model’s parameters from the dipole

amplitude. The result is displayed as the solid blue line, together with the associated

uncertainties as the dashed blue lines, in figure 4.12. Employing the estimated value of

the quadrupole moment from the Pierre Auger experiment with the upper normalization

C2/C0 = (1±0.5)×10−4 [179], the model gives the solution κ = 2.7+1.2
−1.1, η = 0.03±0.01

where uncertainties are obtained from the experimental uncertainties of C1 and C2 by

integrating out either η or κ. The shaded areas in figure 4.12 (orange for one sigma and

yellow for two sigmas) represent the propagated confidence ranges for every η and κ.

Large uncertainties are the consequence of the large derivatives of the solutions from

equation (4.14) in the regime of small κ (see the derivatives in the second plot of figure

4.3) combined with the large experimental uncertainties in the large-scale anisotropy

sector. The large experimental uncertainties are caused firstly due to low statistics

at the highest energies, and secondly due to the limited coherent full-sky coverage

[96]. In the current full-sky analysis [97], uncertainties in systematics between the

two largest experiments, Telescope Array and Pierre Auger Observatory, prevent more

precise results than those obtained by reconstructing the large scale anisotropies from

partial sky coverage of a single experiment.

The retrieved κ is bigger than 1, which guarantees that the small angle approxi-
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Figure 4.12: The plot shows how the Auger dipole and quadrupole above 8 EeV constrain the space
of parameters η and κ. The solid blue line is the result if only the dipole is considered, while dashed
lines are the associated uncertainties. If the quadrupole is taken into account, there is one possible
solution (given by equations (4.14) and (4.15)) marked with a star and corresponding to one, and two
sigmas shaded areas (orange and yellow respectively). From the plot, it can be concluded that, if the
anisotropy is caused by a single source, a significant angular spread (small κ) is favoured, which almost
completely erases C` with ` > 2. The significant angular spread also implies larger than expected
deflection at the given energies and composition in typical magnetic field models (see equation (4.17)
and also the next figure).

mation can be used, thereby, Dql
0 L follows from eq. (4.16) and the root mean square

angular spread αrms from (4.17):

Dql
0 L = 0.56+0.25

−0.22 , αrms =
(
50+11
−10

)◦
. (4.24)

The parameters derived above imply angular spreads considerably larger than what

the usually considered physical values in equation (4.17) give. The significant angular

spread reinforce the single source approximation as the influence of the second nearest

source falls rapidly with distance (see eq. (4.20) and fig. 4.7). However, if one takes into

consideration the results from sections 4.1.1 and 4.1.2, which tend to increase higher

moments compared to the dipolar moment, and hence to increase the ratio C2/C1,

the observed dipolar amplitude would impose more stringent conditions on κ and η.

If the flux from which the dipole is reconstructed is composed of multiple rigidities –

which is almost certainly true – and if cosmic rays traverse domains of a structured
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magnetic field – which also is realistic – the single source model would predict an

increase of the expected ratio C2/C1. This increases the expected value of κ compared

to the simpler case, and consequently, the observations realistically require even more

significant angular spreads. Or, to put it differently, if the measured anisotropies are

originating from a single source and the quadrupole component is increased compared

to the dipole component due to a mixed composition and a structured magnetic field,

the consequence is that an even smaller κ is required by the observations.

By using the solution (4.13) for ` = 1 and the parametrization (4.17) to express the

dipole amplitude d =
√

9C1/C0 as a function of rigidity R, one gets:

d(R) = 3η
(
coth κ− κ−1

)
≈ 3η

coth
(
κ0

R2
0
R2
)
−
(
κ0

R2
0
R2
)−1

 (4.25)

where κ0 and R0 are fixed by the dipole measured in the energy bin centered at 11.5

EeV. An immediate consequence is that the dipole amplitude should increase at higher

energies. The plot of the function and the Auger dipolar amplitudes for 4-8 EeV and

8+ EeV bins can be seen on fig. 4.13. The measured dipole amplitude in the 4-8 EeV

range is in agreement with the derived result. The composition data from the Pierre

Auger Observatory [93] suggests a change in the average composition at the end of

the spectrum towards heavier nuclei when the fit of the EPOS-LHC hadronic model

to the shower data is employed. Here, the composition is simplified to the average

〈Z〉 = ∑
i=p,He,N,Fe fiZi per energy bin, or approximated with 〈Z(E)〉 = 4 + 0.1 E

EeV .

When this dependence is inserted in R = E/〈Z(E)〉, the dipole amplitude at higher

energy bins is slightly suppressed compared to the prediction without this dependence.

Other hadronic models from [93] reduce this difference since they predict a more uniform

composition in this energy range.

In the field of ultra-high energy cosmic rays, two nearby extra-galactic objects often

considered as potential sources of these cosmic rays are Centaurus A [180] and the Virgo

cluster [181, 157]. This conclusion comes from the reasoning that if our galaxy does not

contain known accelerators which are capable of achieving energies above 8 EeV [180], it
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Figure 4.13: This is a comparison of the model’s result for the dipole with measured dipole amplitudes
at two different energy ranges taken from [105] by using (4.25). Equation (4.25) with κ0 and η0
determined by the measurement at 11.5 EeV is plotted as the solid line. The resulting prediction of
the dipole at the lower energy range is consistent with the measured dipole in the 4-8 EeV bin. The
dashed line represents a correction in the dipole amplitude d(Z) when the changing average composition
〈Z(E)〉 at higher energies is taken into account. This shows that the measured composition indications
slightly suppress the dipole amplitude at the higher energies, while negligibly amplifying it at lower
energies. The dotted line is a dipole average of the isotropic distribution in the case of full-sky coverage
when roughly the total number of events detected by PAO, N ≈ 200, above 1019.5 eV [93] is inserted
in d =

√
9〈C1〉iso/C0 = 3N−1/2 [96].
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Figure 4.14: For a source of a given distance, the remaining parameters left undetermined are the
charge, the magnetic field strength and the coherence length. The plot shows the relation between
Brms and Lc following from eq. (4.17) for the fitted value of κ, for proton and iron primaries coming
from Centaurus A and the Virgo cluster.

follows that ordinary galaxies cannot produce UHECRs either. Therefore, radio galaxies

or rich clusters of galaxies are more likely to contain UHECR sources. The radio galaxy

Centaurus A and the Virgo cluster are the two closest of this kind. The distance from

Cen A is 3.8 Mpc [182] and from Virgo is 16.5 Mpc [183].

Putting their distances into eq. (4.17) and using the constraints from the previous

paragraph, the quantity Z−2B−2
rms(Lc)−1 is constrained. This can be seen in figure 4.14

where two limiting cases, hydrogen and iron, are shown.

To verify our analytical approximation, a CRPropa simulation was performed based

on the obtained parameters from above, η, κ, and the parametrization given in eq.

(4.17). The simulation consists of a single source at 4 Mpc distance which injects

monoenergetic iron nuclei (Z=26) at 11.5 EeV, a turbulent magnetic field with spa-

tially homogeneous structural properties and coherence length of 30 kpc which fixes

the magnetic field strength to Brms = 2.9 nG. Additional [(1− η)/η]Nsingle events are

injected isotropically to represent the background component. In total ∼ 17000 events

are detected (of which Nsingle ' 1900 are from the single source) in a series of ten

realisations with the observer defined as in sec. 4.1.1. The dipole is fitted to the
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Figure 4.15: The two plots are results of a Monte Carlo simulation, which is set up as described in the
text. The sky plot shows the dipole induced by the single source that is placed at 4 Mpc distance from
the observer. The direction of the dipole is marked with a star. The other parameters are Z = 26,
E = 11.5EeV , Brms = 2.9 nG, Lc = 30 kpc, η = 0.03 where (1 − η) is the isotropic contribution from
the background. The right panel plot depicts the first few moments of the angular power spectrum
where the blue line is the analytically calculated spectrum by using the spread parameter (κ) and the
relative flux (η), while the orange line is a fit from the simulation. The orange shaded area represents
one sigma fluctuations.

resulting sky map using the healpy library [184] which reproduced the targeted am-

plitude d = (0.061 ± 0.006)% and the corresponding large-scale multipoles, namely

C1 = 0.005± 0.001 and C2 = 0.0014± 0.0004, within the numerical fluctuations caused

by differences in the realisation of the magnetic field, randomness in the isotropic in-

jection and the variation in picking events from CRPropa’s ParticleMap container (see

fig. 4.15).

4.2 Clustering of many sources

The Pierre Auger Collaboration in its paper about the dipolar anisotropy [105] suggests

that the dipole could originate from the 2MRS4 dipole [185], although it is shifted by

55◦ away from it and that could, in principle be due to the galactic magnetic field.

The presented results of the single source model can be roughly re-examined in a

new context of multiple sources grouped in a certain part of the sky. For simplicity,

this grouping can be depicted as a circle of radius r at a distance L from the observer.

The quantity of interest here is only the ratio between the spatial spread r and the
4The 2MRS catalogue is a redshift survey from the 2MASS (Two Micron All Sky Survey) catalogue

[109] which maps the distribution of galaxies in the local Universe observed in the near infra-red
spectrum.
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Figure 4.16: Plot of the angular power spectrum given by eq. (4.26), where χ is the ratio between the
size of the cluster and the distance from the cluster.

distance χ = r/L. When χ → 0, the scenario can be approximated as a single source.

In the opposite case, the cluster of sources can be interpreted in terms of the finite-size

observer problem presented in appendix B.3, although now this is not a technical issue,

but rather a physical reality. The angular power spectrum is given by the following

expression, calculated in appendix A.1:

C` = 22`π

∑̀
k=0

(
`

k

)(
`+k−1

2
`

)
1

k + 1

1−
(

1− r2

L2

)(k+1)/2
2

. (4.26)

This equation is plotted in fig. 4.16 in analogy to fig. 4.3: on the left panel C`/C0

versus ` for different χ, and on the right panel C`/C0 versus χ for some first few `.

The behaviour of the angular power spectrum when the angular spreading and the

isotropic background are included roughly follows the single source model, which means

that the deflections of cosmic rays are lowering higher moments more, thus increasing

ratios between multipoles, like the C2/C1 considered above. It can be concluded that

a spatially extended source, like a cluster of sources, would act in the same way as the

deflections in turbulent magnetic fields, and thus relax constraints on the deflections,

i.e., when χ→ 1, the requirement for the deflection αrms would be smaller.
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4.3 Summary

This chapter analysed a scenario where only a single source of cosmic rays contributes

to the anisotropy, while other sources are treated as an isotropic background which

gives only a fraction of the total flux given by η. The arrival directions of cosmic

rays that originated from a single source are assumed to be distributed following the

Fisher distribution with the concentration parameter κ, which encodes the angular

spreading. This is argued by recalling from the previous chapter that cosmic rays

are performing a random walk in flight directions, which leads to a Brownian motion

distribution on a sphere, and it can be approximated with the Fisher distribution. The

isotropic background is added as a constant term in the distribution. The distribution,

through the analytically obtained angular power spectrum, is then related to physical

parameters which are responsible for the deflections in the regime of the small angle

approximation introduced in sec. 3.4.1.

A short investigation of the influence of a structured magnetic field is conducted

in sec. 4.1.2. Monte Carlo simulations were then performed in which cosmic rays got

forward tracked from a single source in different parts of the magnetic field crossing

various structures. From the analysis of the results, it was concluded that structured

magnetic fields generally tend to increase smaller anisotropies compared to the dipole,

reducing the ratio between them that was introduced by a single source.

The single source model is then confronted with observational data. By plugging

in the amplitude of the dipolar anisotropy measured by the Pierre Auger Observatory

and the estimated value of the quadrupole component, the parameters of the model

were obtained, namely, κ = 2.7+1.2
−1.1, η = 0.03 ± 0.01, which showed that the ratio of

a neighbouring source for the given parameters should be contributing with ∼ 3 ± 1%

compared to the total flux. The value of the concentration parameter, also called the

spread parameter, although implying considerable deflections, at the same time guaran-

tees that the propagation still falls under the small angle approximation, thus physical

parameters were calculated from it. The obtained root mean square deflection angle is
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αrms =
(
50+0.11
−0.10

)◦
. The obtained deflections affect other more distant sources as well. If

their distance is only ∼ 5 times the distance of the first source from the observer, they

influence the first source dipole by less than 5%, and higher multipoles even less, thus

they contribute to the arrival directions almost isotropically and most of the information

about their position is practically lost (see eq. (4.20) and fig. 4.7). In contrast, sources

at similar distances from the observer invalidate the starting assumption of a single

isolated source, which would require a different analysis. Furthermore, the robustness

of the analysis is confirmed in a study of the dipole amplitude dependence on energy

4.25, which shows an agreement with the measured dipole amplitudes at different en-

ergies. Finally, by assuming that the source could be Cen A or the Virgo Cluster, the

constraints were put on the ratio of the magnetic field strength and its coherence length

for the proton and iron composition (fig. 4.14). This suggests that if the magnetic field

is weaker than 1 nG in case of iron nuclei, or 10 nG in case of protons, for the coherence

length of the field ≤ 1 Mpc, it is likely that there is no single luminous source in the

vicinity of the Milky Way, such as Centaurus A or Virgo cluster.

In the last section, a short discussion about a spatially extended source is given. The

spatially extended source could be a cluster of galaxies or any other grouping of sources

that can be approximated as a wider area that inject sources. The message is that by

spatially expanding the size of the source relative to the distance from the observer, the

constraints of the original single source model on the deflections are reduced.



5 | Effects of magnetic fields

on anisotropies

As it was mentioned in the introduction, in the context of arrival direction anisotropies,

one in principle cannot decouple the influence of cosmic ray source distributions from the

influence of intervening magnetic fields. Yet, to develop a better understanding of the

anisotropy origin, one has to resort to studies of special or limiting case scenarios where

the focus is mainly on one aspect of the phenomenon. Unlike the previous chapter, where

the emphasis was on source distributions in which magnetic fields played the simple role

of spreading the arrival directions, this chapter is devoted to an investigation of how

magnetic fields affect anisotropies in a more complex manner. Source distributions are

of less importance here.

Unfortunately, due to the vast amount of unknowns, the analysis of a single particle

movement in the Universe is not possible, and one cannot hope to find an exact descrip-

tion of the particle’s dynamics. Hence, methods of statistical mechanics employed on the

particles’ trajectories represent a decent compromise, although it is decent only under

the assumption that magnetic fields, which shape those trajectories, are predominantly

in the stationary state, at least on timescales of propagation.

One of the major pillars of the statistical mechanics’ framework is Liouville’s the-

orem. Liouville’s theorem has a profound impact on the propagation of cosmic rays

through magnetic fields, and the investigation of the theorem’s applicability to the cos-

mic ray propagation and anisotropies has a central role in the study of this chapter.

The author of this work finds the subject of Liouville’s theorem in some sense complex

81
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and debatable, or at least not easy to comprehend in all aspects. The reason for this

is probably due to the non-intuitive consequences that Liouville’s theorem imposes on

anisotropies, but also to the poorly known soundness of its assumptions in this given

context. The common statement of its application is, to cite for example [10], “if the flux

of extra-galactic cosmic particles is isotropic outside of the galaxy it has to be isotropic

on Earth”; or any equivalent statement that isotropy “outside” means automatically

isotropy “inside” since magnetic fields only cannot introduce anisotropies in the first

place. The fact that this is not easy to grasp is proved by many dedicated studies and

discussions on this issue, especially popular in the physics of the magnetosphere, for

example, see discussions in [122] where even experts in the field of geomagnetism dare

to ask questions about it, such as “Doesn’t the result - that an isotropic equatorial

distribution implies isotropy everywhere - have to break down somewhere?” Also re-

cently, some authors tried to find an exception of it in special contexts, like streaming

instabilities in the heliosphere [186], while others counter argue them [103].

Under the umbrella of numerical cosmic ray propagation, this question is of great

importance, especially in a commonly used method – the backtracking of particles. In

the backtracking simulation, anti-particles are propagated backwards to obtain trajec-

tories of regular particles that would normally reach the observer. On the opposite to

the forward tracking method, the backtracking is far more efficient since only the ob-

served particles are propagated. Moreover, in it, the issue of the finite-size observer (see

B.3) does not exist at all. However, the main disadvantage is that it cannot take into

account stochastic energy loss processes as they are fundamentally irreversible in time.

Therefore, in scenarios where energy losses can be neglected, like in the case of galactic

propagation, the backtracking method is frequently the method of choice. The implicit

assumption of the backtracking method is that cosmic rays obey Liouville’s theorem,

and without it the reversibility of the propagation would not hold.

The forward tracking method is also concerned with this theorem, but on a deeper

level. Monte Carlo simulations are not a truthful representation of the real Universe

as they always suffer from finite event statistics and the finite numerical precision, and
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thus, cannot fill particles’ phase space in the continuous limit, which would be required

for the machinery of statistical ensembles to work. This discrepancy is maybe evident

the most in a so-called trapping mechanism, which will be explained later in this chapter.

5.1 Liouville’s theorem and cosmic rays

Before stating Liouville’s theorem, one additional assumption should be clarified. Be-

sides the magnetic field stationary condition requirement, the next important assump-

tion when employing statistical methods in the trajectory analysis is that particles do

not interact with each other. Omitting mutual interactions can be argued by read-

ing off the spatial particle density from the all-particle spectrum shown in section 2.5.

The isolated particles imply that every trajectory can be considered as an ensemble

member by itself, like in the case of an ideal gas. Consequently, phase space is then

just 6-dimensional, that is, three dimensions for the particle’s momentum and three

dimensions for the particle’s position.

If the system in question is Hamiltonian, which a charged particle in a magnetic

field under governance of the Lorentz force (3.6) certainly is, as stated in chapter 3, it

evidently satisfies the Hamiltonian equations [187]:

q̇i = ∂H

∂pi
, ṗi = ∂H

∂qi
(5.1)

where qi refer to coordinates and pi to momenta, then the density of the ensemble

members defined as f = dN/dqdp in phase space is conserved:

df
dt = 0 . (5.2)

Since the same holds when the momentum is substituted with the canonical momen-

tum Π, Liouville’s theorem can be applied also in the case of the canonical phase space

of a single charged particle df ∗/dt = 0, where f ∗ = dN/dqdΠ. Finally, it can be shown

that the Jacobian of the transformation to the ordinary phase space is unity [188, 122].
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In a more concrete sense, if P and P ′ denote two points on the dynamical trajectory

of one particle, then the theorem states that the density, f(P ) = f(P ′), is conserved

along a dynamical trajectory. The total time derivative in eq. (5.2) should be read as

the derivative taken at the position of a moving particle.

In practice, that means that a unidirectional detector with an infinitesimal cross-

section detects a number of particles per unit time dt, per unit solid angle dΩ, per unit

energy dE, per unit area dA, or just detects the intensity of particles j, and that is

obtained from the phase space density f :

j = f(x,p)dxdp
dtdEdAdΩ

= f(x,p)r
2drdΩdprp2

rdΩ
dtdEdAdΩ

= f(x,p)vr
2dprp2

rdΩ
dEr2dΩ

= f(x,p)p2
r

vγm

p
= p2

rf(x,p) (5.3)

where in the last step dE = p
γm

dp was used. Liouville’s theorem states in this case that

the intensity j has the same value if one follows a point on a dynamical trajectory. Or

if one assumes a constant flow of particles on a given trajectory, the detector can stay

in a fixed point of space to detect the constant intensity, or, alternatively, the intensity

is constant at each point of the trajectory.

This, however, does not generally apply to a broad angle detector as James Van

Allen wrote in [122]: “A practical point to remember in the use of Liouville’s theorem

is that a detector having an infinitesimal cross-section and solid angle must be used.

A broad angle detector will intercept rays with different dynamical traces having come

from distinct dynamical regions. Liouville’s theorem of course does not apply to a

mixture like this and use of the theorem can be a great pitfall.”

Originally, the theorem was applied first in the context of cosmic rays and the

latitude effect. Lemaître and Vallarta [189] stated that if one assumes a homogeneous

and isotropic distribution at infinity, the intensity in all allowed directions at any point

is the same. The concept of allowed, and its opposite, forbidden, directions respectively
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mean that a magnetic field may allow or prohibit cosmic rays from reaching a certain

point from a certain direction. To find out if a direction is allowed or forbidden one would

have to trace back the trajectory associated with this direction and look at whether the

trajectory ends up at infinity, where the homogeneous and isotropic distribution has

been defined, and if does, that would be counted as an allowed direction. In the case

of a forbidden direction, the backtracking would reveal that the orbit is periodic. A

periodic orbit is obviously forbidden because a single particle that is following this orbit

cannot pass through the detector and be detected twice or more.

When Earth’s magnetic field, which can be approximated as a magnetic field of a

dipole, is considered, some directions are prohibited. These are those whose trajectories

can be traced back to the Earth’s surface. As Clay and Compton observed [37, 38],

the intensity of cosmic rays (of certain energy range) drops sharply on latitudes south

of ∼ 34◦ on the north, and north of ∼ 34◦ on the south, and in between is located

the magnetic equator where the intensity is minimal. Complete derivations of these

phenomena can be found in a pioneering work of Carl Störmer, in his study of charged

particle trajectories in the presence of a magnetic dipole, summarised in his book The

Polar Aurora [190]. One could illustrate the latitude effect as the shadow of the Earth

since the trajectories of forbidden directions are intersected by the planet itself.

If the conclusion of the latitude effect is generalised, the periodic orbits could be

looked elsewhere, in other magnetic fields, such as in the solar magnetic field or the

galactic magnetic field. Near the solar surface the same argument can apply, due to the

shadow of the sun, but looking further away there is no experimental evidence of any

forbidden directions and zones without cosmic rays. The reason why cosmic rays are

isotropic everywhere else besides in the Earth’s case could be given as follows. First,

there is no solid obstacle big enough that could shadow a region of space enough to be

evident. But should there still be plenty of periodic orbits which could be unpopulated in

the first place and which could have the intensity zero? The answer is no if the scattering

is brought into the picture. It was described in chapter 3 that due to irregularities in

magnetic fields particles are scattered, which also happens if one takes into account
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energy losses or the solar wind, or any other mechanism that can change the orbits

of particles switching them between the orbits of allowed and forbidden directions. In

that way, particles would fill up the periodic orbit, and eventually, the stationary state

between the periodic orbits and those that lead to infinity would be established, and

isotropy would be restored everywhere. Therefore, there are no forbidden orbits in the

solar field, and then probably not at larger scales, like in the galactic field due to all

these processes [113]. This is called the isotropisation argument.

5.2 Trapping of cosmic rays

The work of Lemaître and Vallarta has been criticised already by Störmer [191] in 1934

on several points. One of these was an objection to Lemaître and Vallarta making the

argument about asymptotic orbits rather trivial, while those asymptotic orbits require

a detailed study of the shape of all the orbits from infinity as a function of their initial

conditions. The point is that orbits never extend simply to infinity, but, depending on

which paths they are taking through a magnetic field, some of them could be significantly

longer compared to others. Particles that are channelling on those trajectories are

trapped in practical terms. In Monte Carlo simulations of propagation, that means

that some maximum trajectory length defined within the simulation will be reached and

that trajectory will be deleted making, from an allowed direction, a forbidden one. That

eventually can cause anisotropies. In the real Universe, particles first do not propagate

in infinite time, and secondly, they interact and change their properties, such as energy

and composition through energy loss processes (see fig. 4.1). Of course, Liouville’s

theorem assumes no change in energy; thus if this is violated, it does not apply to

this case. However, the argument of isotropisation at a practical “infinity” given above

also violates that assumption, although in favour of the argument. Hence, the same

assumption is violated, on both sides, for and against the application of Liouville’s

theorem on conserving the isotropy. The only question is which violation of those two

occurs sooner. If the isotropisation is the quicker one, the practical “infinity” will be

very close, and no significant trapping will happen. On the other hand, if the trapping
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is the dominating process, the anisotropy will appear albeit in “infinity” a homogeneous

and isotropic distribution is present.

A rough estimate of the effect can be summarised for the case of a turbulent magnetic

field as follows. If the observer is located on the border of two domains of a structured

magnetic field with different properties, then, under the small angle approximation,

equation (3.71) gives an averaged trajectory difference between similar particles arriving

from the same distance across those two domains:

∆L ≈ 1
3L

2
(
Da0 −Db0

)
= 1

24R
−2L2

[(
LcB

2
rms

)
a
−
(
LcB

2
rms

)
b

]
(5.4)

where Da0 and Db0 are diffusion coefficients in the flight direction associated to the do-

mains a and b. In the parentheses the associated coherence lengths and root mean

square strengths of turbulent components in those domains are given.

Here is one case was given to demonstrate the argument.

5.2.1 Structured magnetic field

In a forward tracking simulation of a scenario in which a structured magnetic field is set

while 10 EeV mono-energetic iron particles are injected homogeneously and isotropically,

the large-scale anisotropies can appear depending mostly on the location of the observer

within the structure. The structured magnetic field model used here is already described

in sec. 4.1.2, and locations of observers are shown in fig. 4.9. The periodic boundary

condition deals with particles that reach the boundary of the box. A scenario does not

have to include energy losses, but, consequently, it has to include at least one breaking

condition to avoid infinite loops (see appendix B for technical details regarding simu-

lations). The maximum trajectory length is a commonly employed breaking condition,

and it is used in this case, with the length of 2 Gpc. It is identified to cause anisotropies

in a way like it is described above, in sec. 5.2, on the location at the border of two do-

mains, but not in the location of the void (see the upper row fig. 5.1). The amplitudes

of a dipolar moment are C1/C0 = 0.0060 and C1/C0 = 0.00003 for the border and the

void location, respectively. Two additional sky maps are shown in the same figure with
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Figure 5.1: These four sky maps shows binned events that are recorded in the four scenarios described
in the text. In all four scenarios particles are injected homogeneously and isotropically. The two upper
panels show the location at the border between two zones (left) and the location in the void (right).
The bottom sky maps are the zero magnetic field case (left) and the first upper left scenario with
interactions included (right).
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the zero magnetic field scenario on the bottom left panel, and with energy losses and the

structured field on the bottom right panel. The associated dipolar moment amplitudes

are C1/C0 = 0.0065 for energy losses included and C1/C0 = 0.000008 for the zero field

case. The zero magnetic field case serves only as a sanity test in which perfect isotropy

is expected from the isotropic and homogeneous distribution everywhere.

Now, the scenario at the border location without energy losses is taken and the

backtracking procedure is initiated to increase the statistics of arrival directions. Anti-

iron particles are propagated isotropically from the observer until the propagation length

of 500 Mpc is achieved. At that point, the position of the particle is recorded. Figure

5.2 shows the result in which the dipolar vector of arbitrary length is drawn in the

direction of the dipolar anisotropy calculated as 1
N

∑N
i n̂i(ω) where the unit vector n̂i is

the direction of ith event from the forward propagated simulation. The direction points

to the region of the weaker magnetic field where particles propagated further and that

is where the dipolar anisotropy is the forward tracking simulation also points.

The interpretation is already given above, but it is worth to repeat that, at least

within the propagation simulations, a magnetic field indirectly can be responsible for

the large-scale anisotropies at one should take into account in the process of designing

a simulation scenario. In the real Universe, this question is probably not of interest

since it is hard to argue that the distribution of cosmic rays would be homogeneous and

isotropic in the first place, thus the investigated scenario is not so relevant in such a naive

form. However, it can be imagined that the magnetic horizon, which is not uniform in

every direction from the observer due to the influence of the large-scale structures, is

a cause of the large-scale anisotropies under the assumption that the dominant part of

the flux comes from sources that are located enough from the observer that the effect

would be noticeable. A further investigation is required for more quantitative estimates

of this effect.



5 CHAPTER 5. EFFECTS OF MAGNETIC FIELDS ON ANISOTROPIES 90

Figure 5.2: On this figure, positions of particles after propagating for 500 Mpc from the observer (the
red dot) are plotted. The yellow circle represents an average distance crossed for all particles. The
backtracking procedure is performed on the first scenario of the previous figure.

5.3 Summary

This section is dedicated to studying the effects of magnetic fields on anisotropies. The

application of Liouville’s theorem is reviewed with an emphasis on the assumptions

used and on its scope of applicability. It is explained that the usual statement of

homogeneous and isotropic distribution at infinity does not mean automatically isotropy

in all arrival directions. The statement formally only holds per dynamical trajectory

in the stationary state, i.e., requiring that every point along a dynamical trajectory

should have the same intensity. Therefore, every trajectory has to be backtracked. If

it is backtracked to infinity, then the direction is counted as allowed. If it is periodic,
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it does not need to have the same intensity, and is named forbidden direction. It is

further argued that various processes such as scatterings, energy losses, etc. are turning

forbidden directions into allowed and vice versa, which isotropise everything, thus the

application of the theorem holds for all trajectories, although this breaks the assumption

when stating the theorem. Here, a trapping mechanism is proposed which can generate

anisotropies by using the fact that some particles have longer trajectories than others,

which can have an effect on their properties during propagation, such as energy losses.

Again, the assumption of the theorem is broken, but formally this does not differ from

the isotropisation argument. To demonstrate this, a case with a structured magnetic

field is proposed that can generate a dipolar anisotropy which depends on a location of

the observer in the large-scale structure.



6 | Conclusions and Outlook

Anisotropies in the arrival directions of ultra-high energy cosmic rays are the main

subject of study in this thesis. Observations report no significant correlation with known

objects of the celestial sphere and general isotropy on all scales. The only exception

is a significant, but rather weak, dipolar anisotropy above 8 EeV, which was officially

reported by the Pierre Auger Observatory last year. This dipolar anisotropy points

away from the galactic centre that the sources of those cosmic rays probably are not

in our galaxy. Since anisotropies can be either due to a particular source distribution,

to high spread in arrival directions, or to both, the cause of this observation cannot be

easily determined.

The common approach of this research field to account for this situation is through

the use of complex propagation simulations, which include an enormous number of as-

sumptions and parameters, ranging from different models of extra-galactic and galactic

fields, different injection compositions, different injecting power laws, differently tuned

interactions by choosing over several infrared photon field models, various assumptions

regarding the source distribution, different propagation codes, etc. The result of this

complexity is that many statements and indications are often contradictory, or at least

they have an emphasis on different components making different interpretations. Need-

less to say that most of the results are difficult to reproduce.

In this work, the decision was to study perhaps less realistic cases but to gain in

terms of transparency and stability of the results, which would be a basis for more

complex works later. Propagation simulations are undeniably necessary tools for the

job, especially frameworks such as CRPropa 3, which includes all, so to say, ‘bells
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and whistles’ one can ask for, but without advancements in the analytical department,

unfortunately, those powerful tools can hardly be used productively.

The results of this work can be summarised as follows.

An approach using stochastic differential equations to model the propagation in a

turbulent field is reviewed, and a criterion for the transition from the rectilinear motion

to diffusion in this magnetic field is proposed and demonstrated using propagation

simulations.

A single source model in the presence of deflections is then studied. Other sources in

this model are considered to contribute only to isotropy. Besides deflections in turbulent

fields, the effects of a structured magnetic field are investigated, where it is shown that

structured magnetic fields tend to rise smaller scale anisotropies compared to the large-

scale ones, such as a dipole. Finally, the model is confronted with the experimental

data in which parameters of the model are determined. To explain the observed dipolar

anisotropy and insignificant quadrupole, strong deflections are required, expressed in

the form of a deflection angle along the line of sight with the source of
(
50+11
−10

)◦
. Ad-

ditionally, the contribution from a single source to the total flux should be (3± 1)% to

match the dipolar amplitude. Furthermore, if Cen A or the Virgo cluster are considered

as the closest source, the constraints on a turbulent magnetic field can be given.

In the last part, the influence of magnetic fields on anisotropies is covered. The

application of Liouville’s theorem to cosmic ray anisotropies is reviewed and elaborated

since debates still exist around it. It is identified that propagation simulations can gen-

erate anisotropies from isotropy and homogeneity only due to the presence of magnetic

fields. That is explained, and a case with a structured magnetic field is demonstrated

in which the dipolar anisotropy is obtained.

The further work would focus on cases which exploit the ability of new observatories

to discriminate the particle composition per event basis. That would enable to con-

strain much better the intervening magnetic fields since the arrival directions would be

correlated with rigidities, and not with energies as the case is nowadays.



A | Spherical harmonics

The analysis of anisotropies in the arrival directions of cosmic rays, which is the main

topic of study in this work, heavily relies on different mathematical tools which deal with

spherical geometry. The reason for this is obvious: all available experimental results,

especially those regarding the ultra-high energy cosmic rays, are measured from the

Earth or from the near vicinity of the Earth. Potential sources of cosmic rays, on the

other hand, are assumed to be much farther away compared to distances available for

the experiments. Therefore, acquired data is tied to the celestial sphere and expressed

in terms of spherical geometry where the dominant role play spherical harmonics.

Spherical harmonics are obtained as a solution of Laplace’s equation in spherical

coordinates [192]:

∇2f = 1
r2

[
∂

∂r

(
r2∂f

∂r

)
+ 1

sin θ
∂

∂θ

(
sin θ∂f

∂θ

)
+ 1

sin2 θ

∂2f

∂ϕ2

]
= 0 . (A.1)

They are defined as:

Y m
` (θ, ϕ) ≡ (−1)m

√
2`+ 1

4π
(`−m)!
(`+m)! P

m
` (cos θ) eimϕ . (A.2)

where Pm
` are associated Legendre polynomials.
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Some of properties of Y m
` are:

Y m
` (θ, ϕ)∗ = (−1)m

√√√√(2`+ 1)
4π

(`−m)!
(`+m)! P

m
` (cos θ) e−imϕ (A.3)

Y −m` (θ, ϕ) = (−1)mY m
` (θ, ϕ)∗ (A.4)∫ π

θ=0

∫ 2π

ϕ=0
Y m
` Y m′

`′
∗ dϕdθ = δ``′ δmm′ (A.5)

∑̀
m=−`

Y ∗`m(θ, ϕ)Y`m(θ, ϕ) = 2`+ 1
4π (A.6)

Here expressions for the first few orthonormalised spherical harmonics (with the

Condon-Shortley phase convention) are given:

Y 0
0 (θ, ϕ) = 1

2

√
1
π

(A.7)

Y −1
1 (θ, ϕ) = 1

2

√
3

2π sin θ e−iϕ (A.8)

Y 0
1 (θ, ϕ) = 1

2

√
3
π

cos θ (A.9)

Y 1
1 (θ, ϕ) = −1

2

√
3

2π sin θ eiϕ (A.10)

Y −2
2 (θ, ϕ) = 1

4

√
15
2π sin2 θ e−2iϕ (A.11)

Y −1
2 (θ, ϕ) = 1

2

√
15
2π sin θ cos θ e−iϕ (A.12)

Y 0
2 (θ, ϕ) = 1

4

√
5
π

(3 cos2 θ − 1) (A.13)

Y 1
2 (θ, ϕ) = −1

2

√
15
2π sin θ cos θ eiϕ (A.14)

Y 2
2 (θ, ϕ) = 14

√
15
2π sin2 θ e2iϕ . (A.15)

Since spherical harmonics form an orthonormal basis, an expansion of a function
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f(θ, ϕ) to spherical harmonics is possible:

f(θ, ϕ) =
∞∑
`=0

∑̀
m=−`

a`m Y
m
` (θ, ϕ) (A.16)

where the coefficients of the expansion are:

a`m =
∫

Ω
f(θ, ϕ)Y m∗

` (θ, ϕ) dΩ =
∫ 2π

0
dϕ
∫ π

0
dθ sin θf(θ, ϕ)Y m∗

` (θ, ϕ) (A.17)

in analogy with a Fourier series.

The angular power spectrum C` is defined through an expansion of some function f

in spherical harmonics:

C` ≡ 〈|a`m|2〉 = 1
2`+ 1

∑̀
m=−`

|a`m|2 . (A.18)

where

〈a`ma∗`′m′〉 =
∫ 2π

0
dϕ
∫ π

0
dθ sin θf(θ, ϕ)f(θ, ϕ)Y m∗

` (θ, ϕ)Y m′

`′ (θ, ϕ) . (A.19)

A.1 Circular shape distribution

A circular shape can be also defined as a spherical cap and on a sphere this is described

as:

f(ϑ, ϕ) = Θ(θ − ϑ) (A.20)

where Θ is the Heaviside step function and the θ is the angular size of the circle. Now,

C` can be calculated:

a`m =
∫ 2π

0
dϕ
∫ π

0
dϑ sinϑΘ(θ − ϑ)Y m∗

` (ϑ, ϕ)

a`m =
∫ 2π

0
dϕ
∫ θ

0
dϑ sinϑY m∗

` (ϑ, ϕ) = 2π
√

2`+ 1
4π

∫ 1

cos(θ)
dxP 0

` (x)
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∫ 1

cos(θ)
dxP 0

` (x) =
∫ 1

cos(θ)
dxP`(x) = 2` ·

∑̀
k=0

(
`

k

)(
`+k−1

2
`

)∫ 1

cos(θ)
xk dx

= 2` ·
∑̀
k=0

(
`

k

)(
`+k−1

2
`

)
1

k + 1
(
1− cos(θ)k+1

)
(...)

⇒ C` = 22`π

[∑̀
k=0

(
`

k

)(
`+k−1

2
`

)
1

k + 1
(
1− cos(θ)k+1

)]2

A.2 Fisher distribution

The derivation and the solution for the Fisher distribution is given in sec. 4.1.



B | CRPropa

Many results in this thesis could not be possible without the support of numerical tools.

CRPropa 3 is a cosmic ray propagation framework which has a central role in this

context, and as such, deserves a detailed description.

CRPropa was originally started by G. Sigl and later developed into a publicly-

available1 numerical package for the propagation of ultra-high energy protons by the

work of several people [193]. Adding the capability to propagate heavier nuclei led to

the 2.0 version [194], and the current version 3 represents a major rewrite, which is

based on a modular architecture enabling multiple new use cases [172, 195, 196]. The

code is licensed under the GNU General Public License 3 which means that it can be

freely re-used and modified, but the derived works, if shared with others, have to be

released under a compatible license. Only the latest version will be described here2.

B.1 Design and modules

CRPropa is designed to propagate highly relativistic cosmic rays only, and that is why

it approximates the speed of cosmic rays with the speed of light and does not support

lower velocities. The code design is abstractly divided between mutable data containers

called Candidate(s), which represent particles of different types and carry all informa-

tion about the particle’s physical state, and stateless modules which change properties

of candidates during the simulation. That design provides an easy way to exploit the

1https://crpropa.desy.de
2Identified by the following Git commit hash: f01ad2ee04a553ae051c9ae237ae50da5597e733 (27-

02-2018).
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thread based parallelism of modern multi-core CPU architectures, in this case, by using

OpenMP, so that each particle can be distributed in a separated CPU thread and inde-

pendently processed, while efficiently sharing the modules and their memory content.

The advantage of sharing modules is especially noticed when storing huge amounts of

data in memory, such as large magnetic field grids. Of course, the assumption here is

that candidates do not mutually interact; otherwise, a parallelisation of this kind would

not be possible.

An ordinary simulation in CRPropa is executed by a main loop implemented as a

class ModuleList which sequentially iterates Candidate(s) through the list of modules

until some breaking condition is met. Internally, the candidate iteration stops if the

candidate’s property isActive is set to false by a module. The ModuleList is fed with

candidates by a candidate generator called Source. There is also an option that the

user inserts candidates into the ModuleList individually. As CRPropa is primarily a

propagation code, the most important modules are, naturally, propagation modules and

so the crucial breaking criteria are triggered by reaching the total propagation length

of a candidate or by reaching some spatial coordinates, for example, when a certain

geometrical boundary, such as the boundary of the observer, is crossed. Possible propa-

gation modules are SimplePropagation, which provides for rectilinear propagation and

PropagationCK, which serves for three-dimensional propagation in magnetic fields. Ad-

ditionally, there is a diffusional propagation module, called DiffusionSDE, which solves

the transport equation using stochastic differential equations [197].

Energy-loss processes of cosmic rays are handled by a set of interaction modules that

change the states of candidates. In the case of simulating cosmic rays, the most im-

portant modules are ElectronPairProduction for electron-pair production of charged

nuclei when interacting with background photons, NuclearDecay for decaying unstable

nuclei, PhotoDisintegration for photo-disintegration of nuclei by background photons,

PhotoPionProduction for photo-pion interactions of nuclei with background photons,

and Redshift for an adiabatic energy loss due to the expansion of the universe. The

interaction modules can generate secondary particles which are treated as ordinary can-
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Figure B.1: The flowchart diagram of a typical CRPropa simulation. After the specification of a
simulation is given, where all modules were defined and added to ModuleList, the main loop is started.
Providing a source is optional since ModuleList can accept individual candidates prepared by the user.
In case Source (or SourceList) is specified, which consists of SourceFeature such as position(s),
composition, emission direction, redshift and so on, ModuleList gets new candidates from Source (or
SourceList). Every new candidate is iterated through the list of modules until one of them deactivates
it, then the next candidate is taken if there is a next candidate. The total number of candidates which
will be iterated may be specified in the beginning, e.g., in the source modules. The candidate will be
forwarded to output if the condition for recording it is fulfilled.
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didates. The secondary particles can be iterated either immediately after their creation

or after the iteration of their parent candidate is finished.

Other modules are mostly technical in nature. The Observer module enables the

detection of candidates in a certain part of the simulation box based on their position,

which can be specified as a geometric shape, e.g., sphere. The Output modules can be

plugged in the observer module and then they are in charge of recording detected can-

didates in different output streams, such as text (TextOutput), HDF5 (HDF5Output),

shell (ShellOutput) or in-memory (ParticleCollector). The boundaries and condi-

tions modules can activate an action if a certain condition is fulfilled, like crossing the

boundary of the simulation box or reaching an energy threshold.

Data objects form the third component of the core functionality. The data objects

can be, for example, different magnetic fields, which are passed as an argument to the

PropagationCK module, or photon fields, mass and decay tables, which serve as an

input for the above-mentioned interaction modules.

CRPropa is written in the C++ programming language, where SOPHIA, an external

library used by PhotoPionProduction, is the only exception. SOPHIA is a FORTRAN

Monte Carlo code for photohadronic interactions of relativistic nucleons with an ambient

photon radiation field [198]. CRPropa is meant to be used either directly through

C++ or, preferably, through the interface for the Python programming language that

is accomplished with SWIG. SWIG is an automatic code generator of the interface code

which allows other high-level programming languages to access C/C++ functions and

data types.

In the following sections, components that are predominately used in this work will

be covered.

B.2 Three-dimensional propagation

The three-dimensional propagation in CRPropa works through the PropagationCK

module which is based on solving the equations of motion of a relativistic charged
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particle in a magnetic field (see chapter 3):

dy
dt = d

dt

x

u

 =

 u
qc
E

u×B(x)

 , y(t0) = y0 =

x0

u0

 (B.1)

where q, u and E are the particle’s charge, velocity and energy, respectively, while B(x)

is the magnetic field at the particle’s position. Values with subscript 0 are the initial

values.

Generally, the differential equation (B.1) does not have an exact solution for every

initial-value problem, so in most cases it is solved numerically, and, commonly today,

this is done by employing the Runge-Kutta class of methods. As always, any numerical

method requires a conversion of a differential equation to a discrete analogy, i.e., to a

difference equation, first presented by Leonhard Euler back in the 18th century [199].

The conversion relies on the Taylor series expansion where higher terms of the expansion

are truncated. Various techniques then look how to minimise the local truncation error

to make the solution of the difference equation as close as possible to the solution of the

initial-value problem. For the initial value problem y′(t) = f(t, y(t)), y(t0) = y0, Euler’s

method, starting from y(t0), iteratively approximates the value of y(tn) in the nth step:

yn+1 = yn + hf(tn, yn) (B.2)

where h is the step size defined by tn = t0 + nh, and thus roughly solves y(t).

In that sense, the Runge-Kutta class of methods shares the same background as the

original Euler’s method, which is also sometimes referred as the simplest Runge-Kutta

method. For a description of the Runge-Kutta based algorithms see, for example, [200].

CRPropa also uses the Runge-Kutta method, however, with a more refined approach

from the subclass of adaptive Runge-Kutta methods originally developed by Fehlberg

[201]. In these methods, an adaptive step size is controlled by estimating the local

truncation error. Specifically in CRPropa, the Cash-Karp method [202] is adopted,
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which is defined by the following Butcher tableau:

0
1
5

1
5

3
10

3
40

9
40

3
5

3
10 − 9

10
6
5

1 −11
54

5
2 −70

27 −35
27

7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

37
378 0 250

621
125
594 0 512

1771
2825
27648 0 18575

48384
13525
55296

277
14336

1
4

(B.3)

where the first column are cj coefficients, aij are given in the triangle part and the

last two rows are bi and b∗i coefficients for the fifth order and the fourth order accurate

solution, respectively. This method is especially designed to keep the algorithm efficient

in case of rapidly varying functions such as those dependent on cosmic magnetic fields.

The CRPropa implementation does not use cj coefficients since the equation of

motion does not hold an explicit time dependence, dy/dt = f(y). Thus, the equation is

calculated with:

yn+1 = yn + h
6∑
i=1

b∗i ki(yn), en+1 = h
6∑
i=1

(bi − b∗i )ki(yn) (B.4)

where the RK coefficients are:

k1 = f(yn), ki=2,...6 = f

yn + h
i−1∑
j=1

aijkj

 . (B.5)

The calculation is iterated as long as the ratio between the direction error en+1 → |u|

and the tolerance is bigger than 1, or as long as the minimum step size is not reached.

The tolerance is by default 10−4 but can also be specified by the user. One of the

consequences of this numerical method is that the computation time depends on the

cosmic ray deflection in the magnetic field, e.g., the stronger the field for a given particle

the more computation time needed for the solution to converge. In that case, specifying
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the maximum step size can help, which is the last argument that can be passed to

PropagationCK besides the magnetic field, the tolerance, and the minimum step.

In the case of neutral particles, the method reduces to a rectilinear propagation and

the maximum step size is proposed as the next step.

B.2.1 Magnetic fields

The PropagationCK module accepts magnetic field models that can be defined in multi-

ple ways. The only property that they are required to provide is the getField method,

which is a function of the three-dimensional position and which returns a field vector in

that point of space. The most versatile method of providing a magnetic field model is

by loading it as a three-dimensional grid lattice. If the value in-between grid points is

requested, a trilinear interpolation of the eight neighboring grid points is performed.

Then loading a grid to CRPropa, the expected file format of the grid is a binary

file that contains a Nx ×Ny ×Nz array of float point numbers. The grid can be saved

and loaded with CRPropa’s dumpGrid and loadGrid, respectively. Or independently of

CRPropa, to load such a grid in NumPy’s ndarray, the following function is sufficient:

import numpy

import struct

def load_grid (filename , Nx , Ny , Nz):

dim = 1 # 3 for vector , 1 for scalar

fsize = struct . calcsize (’f’)

grid = numpy.zeros ((Nx*Ny*Nz ,dim), dtype=float )

with open(filename , ’rb’) as f:

for i in range(Nx*Ny*Nz):

grid[i] = struct . unpack (’f’*dim , f.read(dim*fsize))

return grid. reshape ((Nx , Ny , Nz , dim))

where filename is the file system path to the grid file. A saving grid function can be

implemented analogously.

Some fields, like a homogeneous isotropic turbulent magnetic field, can be generated
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on the fly. The isotropic turbulent magnetic field is theoretically described in sec.

3.3.1, eq. (3.30). For similar implementations see [203, 204]. Firstly, the k-space B(k)

is constructed by drawing for each grid point (in total N3) a random amplitude from

following the power spectrum B2(k) = kα where the default value α = −11/3 represents

a Kolmogorov spectrum3. The random amplitude is modulated by a random complex

phase, and a random orientation with k ·B = 0 to satisfy ∇ ·B = 0 approximately. All

B(k) outside of [kmin ≡ spacing/Lmax, kmax ≡ spacing/Lmin] are set to zero. In kmin and

kmax, spacing is the physical distance between two nearest grid points. After that, the

field is transformed into real space with a Fast Fourier Transform method provided from

the FFTW software package [205]. In-place complex to real Fourier transform follows

to retrieve only the real components. Finally, the grid is normalised to Brms. It is worth

to notice that by this prescription, the resulted turbulent field has periodic boundary

conditions. The prescription can be sketched also by the following formulas:

B(x) = Re
{

FFT
[
n̂|k|α/2 (ê1 cos(θ) + ê2 sin(θ)) eiφ

]}
B(x)norm = Brms√

1
N3
∑N3 B2(x)

B(x) (B.6)

where n̂ is a random unit vector, ê1 and ê2 are unit vectors which with k form an

orthogonal basis, while θ and φ are random angles from 0 to 2π.

The turbulent field can be modulated with a scalar grid to mimic a large scale

structure distribution (LSS), e.g., filaments, voids and clusters. The advantage is that

the provided scalar grid does not need to match the size of a turbulent grid, which

enables a high resolution of the vector field, but at the same time covers a large portion

of space with that scalar one.

It is expected that the galactic magnetic field is at least equally important as extra-

galactic magnetic fields for ultra-high energy cosmic rays, thus CRPropa provides im-

plementations of two galactic field models: Jansson & Farrar (JF12) [177] and Pshirkov

et al. (PT11) [206]. Although significantly stronger compared to extra-galactic mag-
3Note that the difference from canonical n = 5/3 is due to additional k−2 in three dimensions (see

eq. (3.43)) which gives α = −n− 2.
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netic fields, galactic fields extend only to a small portion of space of order ∼ 10 kpc.

On such propagation lengths energy-loss processes are mostly negligible. Therefore,

only deflections should be considered and that is the basis for the notion of “lensing”.

The “lensing” technique maps the arrival directions on the Earth with directions where

cosmic rays enter the galaxy. After the mapping is generated by backtracking simula-

tions, it is much faster to apply lensing to retrieve the deflections caused by the galactic

magnetic field than to simulate the propagation through it. The “lensing” in CRPropa

is initially based on the PARSEC implementation [207].

B.2.2 Performance of PropagationCK

Statistical uncertainties in every Monte Carlo analysis depend on the number of simu-

lated experiments, thus, “the more the better” is the main idea behind this approach.

Unfortunately, this is limited by the capabilities of computers, both in terms of software

and hardware. Simulating the propagation of cosmic rays in CRPropa is generally a

CPU intensive task and it is worth to estimate the time required for a simulation with

N simulated particles to finish. The simulation time is affected by all modules, some

of them having a considerable impact while others execute in no time. One can use

PerformanceModule instead of ModuleList to monitor the simulation performance of

every employed module. CRPropa can simulate numerous different scenarios and can

be used on various hardware which can lead to completely different run times for each

case. Nevertheless, certain “invariant” estimates can be inferred. First of all, in theory,

the simulation performance scales linearly with the number of CPU threads. Hence,

the total performance estimation can be calculated from the performance per thread.

In practice, the scaling saturates around 8 threads [172] due to PhotoPionProduction,

which rely on external libraries not optimised for parallel computing (SOPHIA [198]).

Since this work revolves around the propagation of cosmic rays in magnetic fields,

the knowledge of the PropagationCK performance is relevant. As already noted above,

the larger the deflections of cosmic rays in a magnetic field, the more time needed for

the calculation of the next propagation step to converge resulting with a smaller step
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Figure B.2: These two plots show the performance of the PropagationCK module: the propagation time
of 1000 particles per Mpc versus the Larmor radius rg as a measure of the average deflection of cosmic
rays. The left panel compares different CPUs in the case of a turbulent field. On the right panel the
comparison between the performance of various scenarios in the same measure quantity (propagation
time) on the same computer (Intel® Xeon® E7-8870). The various scenarios of propagation are: the
turbulent field with and without interactions included, the uniform field of the same magnitude as the
turbulent one, and 1D propagation with interactions included.

size. The small step size means more iterations of all modules per physical length which

consequently requires more total CPU time per cosmic ray trajectory. In this case, to

some extent, an invariant unit of performance can be chosen as the time needed to

propagate 1000 particles per thread per mega-parsec based on their Larmor radius rg =
E

c|q|B (see sec. 3.2). Figure B.2 shows test results for three different CPUs when particles

are propagated in a turbulent or uniform magnetic field. The test consists of injecting

1000 protons with energy 1 EeV isotropically for 20 different magnetic field strengths

ranging from 1 nG to 30µG. The used turbulent field is defined with the following

parameters: Lmin = 1.5 kpc and Lmax = 90 kpc which, by 3.50, gives Lc = 19.2 kpc.

B.3 The finite-size observer problem

The total number of particles that can be propagated are limited by the processing

power of computers. Thus, in the forward tracking propagation mode, a problem of

collecting a sufficient number of events detected by the small-size observer, occurs. If

the observer would be of the size of the Earth as in the real Universe, an injection of

Ninject = NEarth(dsrc/rEarth)2 ∼ (Mpc/106m)2 = 1033 particles would be necessary to
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O Sd

r

S ′

θmax

Figure B.3: On the left panel: the particle that arrived from S and hit the edge of the observer O
(the red vector) is seen as a particle that came from the source S′ from the perspective of a point-like
observer (the blue vector). Due to its finite-size, the observer O creates a virtual source S′, which is
displaced at most by the radius r of observer’s sphere. Hence, the finite-size observer transforms a
point-like source S into a circular area around S. On the right panel: the sky plot of the described
scenario where the yellow, green and red circle correspond to the arrival directions area of cosmic rays
coming from a 3 Mpc distant source for a 0.1 Mpc, 0.5 Mpc and 1 Mpc observer size, respectively.

have just a few events from a nearby source that is within a megaparsec. Simulating

these scales of interest is practically impossible since CRPropa3 optimally, without any

interactions, can process ∼ 105 particles/s/thread on modern hardware. That is the

reason why the observer size is typically much larger than the size of the Earth.

However, by over-sizing the observer unwanted artifacts appears, especially in studies

of anisotropies. From geometrical considerations alone, without deflections, it can be

seen (fig. B.3) that a point-like source becomes a disk shape on the sky plot of the

arrival directions, which artificially changes anisotropy. The maximum angle of the

artificial deflection is given by θmax = arcsin
(
r
d

)
, where r is the observer radius and d

is the distance from the source.

To compute the angular power spectrum of a point source seen by a spherical ob-

server, we approximate the source image as a homogeneous circle, although it is not

perfectly homogenous but has a radial distribution. A spherical cap is then a suit-

able model for the case: f(ϑ, ϕ) = Θ(θ − ϑ) where Θ is the Heaviside step function

and θ is the angular size of the circle. The calculation of C` for the circular shape is

given in the previous appendix, subsection A.1. By inserting θmax = arcsin
(
r
d

)
and

cos(arccos(x)) =
√

1− x2 into the calculated C`, the angular power spectrum becomes:
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Figure B.4: The plot shows how the finite size observer or radius r affects the angular power spectrum
of a nearby source at a distance d. The spectrum without deflections, i.e., when arrival directions have
a δ−distribution, should be C`/C0 = 1 without deflections (where C0 is the monopole component), but
as the ratio r/d grows to unity multiple moments, starting from higher ones, reduce their values in the
angular power spectrum. For example, the ratio r/d ∼ 0.1 will not influence the dipole significantly,
but will deform ` = 7 by more than 10%.

C` = 22`π

∑̀
k=0

(
`

k

)(
`+k−1

2
`

)
1

k + 1

1−
(

1− r2

d2

)(k+1)/2
2

. (B.7)

which is plotted in fig. B.4 for the first lowest multipole moments. Every moment is

expressed relative to the monopole C0 = π
(

1−
√

1− r2

d2

)2
. From the result one can

estimate that for a study of multipoles below ` = 5, while keeping the artificial angular

spread below 10%, the observer size should always be below 10% of the total distance

from the nearest source.
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