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1. Introduction 

1.1. Learning and memory 

“Like waking from a dream…every day is alone itself…” H.M. 

The scientific community considers the early description of H.M. the inauguration of 

modern memory research.  H.M. was a patient who, after a bicycle accident at the 

age of 9, developed minor seizures and at the age of 27 he could not work or live a 

normal life due to the severe epilepsy. Thus, he underwent a bilateral medial 

temporal lobe resection in an attempt to control the epileptic seizures. Besides an 

amelioration of the seizures, H.M. was no longer able to transfer short-term memory 

into long-term memory, but memories of childhood events, personality and general 

intelligence were mostly preserved. The bilateral lobotomy of the medial temporal 

lobes and consequently the appearance of specific memory deficits established the 

fundamental principle that memory involves distinct areas of the brain. The 

neurosurgeon W. Penfield and the psychologist B. Milner systematically studied the 

memory deficits developed by the patient H.M.1 and this influenced memory research 

mainly for two reasons. First, they suggested that memory is a brain function which 

can be categorized in two main categories (fig. 1) Declarative memory (explicit and/or 

conscious) of facts and events, requires temporal lobe structures like hippocampus, 

subiculum, amygdala and entorhinal cortex. The other form of memory, known as 

procedural memory (implicit and/or unconscious), lies outside the province of the 

medial temporal lobe, in regions comprising the striatum, amygdala, neocortex, 

cerebellum2. Second, memories to be acquired and then retained might undergo 

different temporal steps, including an immediate memory which later on consolidates 

into stable long-term memory.  
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Figure 2. The hippocampal trisynaptic circuit.  
Neurons in layer II of the EC project to the DG through the performant path (PP). The axons 
of the granule cells project to the CA3 field via the mossy fibers (MF). CA3 axons connect to 
the contralateral hippocampus and to the apical dendrites of CA1 through the Schaffer 
Collateral (SC) (Yassa and Stark, 2011). 
 
CA1 is divided in stratum oriens (basal dendrites), stratum pyramidale (cell soma), 

stratum radiatum (proximal apical dendrites) and stratum lacunosum-moleculare 

(distal apical dendrites). CA1 stratum radiatum is where the majority of Schaffer 

collateral fibers project to. The relatively simple organization of its connectivity 

patterns coupled with the highly organized laminar distribution has allowed for 

extensively studying the hippocampal circuit.  

1.3 Extracellular Field Recording 

The development of slice preparation by the work of Henry McIIwain´s group allowed 

neurons to be studied in vitro.9 This technique offered a new tool to investigate 

functional anatomy, brain physiology under pharmacological treatments and synaptic 

plasticity. Following electrical excitation of the schaffer collaterals, an extracellular 

electrode placed in stratum radiatum will first measure a small potential reflecting a 

current sink from the presynaptic axonal fibers, referred to as the fiber volley (FV), 

the amplitude of which indicates the excitability of the presynaptic fibers. 

Neurotransmitter released by the presynaptic fibers, evoke a transmembrane ionic 

flow through postsynaptic transmitter receptor channels. In the hippocampus, the 

parallel arrangements of apical dendrites gives rise to a summed current sink, that 

can be measured as potential difference (fEPSP) (fig. 3) through the neurotransmitter 

channels. 
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1.4 Hippocampal synaptic plasticity 

In the 18th century English philosopher David Hartley was the first to hypothesize 

that memories were encoded through hidden motions in the nervous system. Later 

on, Donald Hebb intuited that “neurons that fire together, wire together”. He proposed 

that encoding of memories is the result of highly connected neurons and that this 

connection was established through repetitive and simultaneous firing between the 

same neurons.10 It has been proposed that memories are encoded by modification of 

synaptic strength. Homeostatic scaling is a form of synaptic plasticity that tune the 

strength of a neuron’s excitatory synapses in order to maintain stability and integrity 

of the underlying neuronal circuit.11 The cellular models underlying a decrease and 

increase of synaptic strength are known as Long Term Depression (LTD) and Long 

Term Potentiation (LTP),12 respectively. Three well-described characteristics of 

synaptic plasticity: cooperativity, associativity and input-specificity, are essential to 

support the hypothesis that it may be a biological substrate for some forms of 

memory.13 Cooperativity occurs when a weak stimulation is associated with a strong 

stimulation. The associativity principle assumes that activating a few fibers is 

insufficient to induce LTP in either synapse, but simultaneous stimulation of 

neighboring synapses will trigger LTP at all of them. Input-specificity determines that 

upon stimulation only the fibers receiving that stimulation will undergo synaptic 

plasticity.    

1.4.1 LTD 

In LTD in, synaptic strength is reduced in an experience-dependent manner. There 

are several types of LTD: it can be homosynaptic (induced by a direct stimulation to a 

specific set of fibers) or heterosynaptic (as a secondary effect due to a stimulation of 

neighboring fibers) and can be de novo or following LTP (which case it is called 
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depotentiation). In this paragraph I will focus on describing homosynaptic de novo 

LTD. In CA1 synapses LTD can be induced electrically by a prolonged period of Low 

Frequency Stimulation (LFS) of the Schaffer Collaterals or by application of an 

appropriate receptor agonist, known as chemical LTD.14,15 Initial studies showed that 

the “electrical” LTD, induced by one train LFS (1 Hz stimulation for 15 min, 900 

pulses), is homosynaptic, saturable and requires the activation of postsynaptic N-

methyl-D-aspartate (NMDA) receptors.16,17 NMDARs are assembled from NMDAR 

subunit 1 (NR1) and at least one type of NR2 subunit, where NR2A and NR2B are 

the predominant NR2 subunits in the adult hippocampus18. It has been reported that 

distinct NMDAR subunits are critical factors that determine whether a stimulation 

paradigm will result in an LTP or LTD (Liu et al., 2004). Studies propose that LFS-

induced LTD is age dependent, since LFS induces a robust and stable LTD only in 

slices from young mice (P6-P17), not from older animals.20 Moreover, hippocampal 

LTD is facilitated by exposing an animal to mild stress.21 On a molecular level, 

hippocampal NMDAR-dependent LTD requires the activation of the downstream 

protein phosphatases calcineurin (a calcium-CaM-regulated phosphatase, also 

termed PP2B) and PP1, both present in the postsynaptic density (PSD)22 (fig. 5).  
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comprised of mGluR1 and mGluR5. In the hippocampus, mGluR5 is mainly 

expressed in dendritic fields of stratum radiatum, whereas mGluR1 is mostly found 

on cell bodies26. The first selective mGluR antagonist that was discovered, α-methyl-

4-carboxyphenylglycine (MCPG), blocks de novo LTD27. Moreover, it has been 

shown that rapid dendritic protein synthesis is essential for mGluR-dependent LTD, 

whereas transcription inhibition has no effect 24. Interestingly, the dependence of 

mGluR-LTD on novel protein synthesis has some exceptions. In Fmr1 KO mice, a 

mouse model of Fragile X syndrome (FXS), mGluR-LTD does not require new protein 

synthesis, although Fmr1 KO mice show the same postsynaptic LTD expression 

mechanism, e.g. a decreased AMPARs surface expression28. 

1.4.2 LTP 

Discovered in 1973 by Bliss and Lomo, LTP was first induced by brief high frequency 

stimulation, resulting in a long lasting increase in synaptic strength29. HFS induces a 

persistent potentiation lasting for many hours and is converted to a decremental 

potentiation when a translational inhibitor is present during the repeated 

tetanization30, Kläschen. Med Thesis, 2014). LTP is commonly divided into two 

distinct temporal phases: early phase (E-LTP) which is transient (1-2 hrs), sensitive 

to disruption and requires modification of preexisting proteins, whereas the late 

phase (L-LTP) is long lasting (>3 hrs) and requires gene expression and novel 

protein synthesis3. E-LTP is usually induced by one train of high frequency 

stimulation (HFS, 100 Hz for 1s), and is unaffected by transcriptional or translational 

inhibition. On the contrary, L-LTP is induced by repeated, intermittent trains of HFS 

and relies on gene transcription and mRNA translation30. Moreover, it has been 

recently shown that the stability of L-LTP is a balance between synthesis and 



 

10 
 

degradation of novel proteins: interfering with either protein synthesis or degradation 

abolishes L-LTP31. 

Another form of LTP can be induced by Theta Frequency Stimulation (TBS, 5 Hz, 30 

sec) (Huang and Kandel, 2005). Hippocampal theta oscillations were originally 

described as the hippocampal “arousal rhythm” since it was correlated with a 

neocortical desynchronization characteristic of wake, attentive state33. Years later, it 

was considered as correlate of voluntary movement and REM sleep34,35. The late 

phase of TBS-LTP is known to be transcription independent and specifically requires 

local protein synthesis32. Transcription, protein synthesis and degradation can 

function as mechanisms of maintenance, supporting the long lasting stability of L-

LTP. Besides these mechanisms, there are also induction mechanisms, transient and 

very brief during stimulation that might involve both presynaptic and postsynaptic 

responses and are modulated primarily by ionotropic glutamate receptors and 

calcium channels. It is generally agreed that the influx of calcium through the NMDAR 

is required for LTP, producing a significant rise in the postsynaptic calcium 

concentration36.  



 

 

Figure 
Strong 
phospho
 
The hi

depend

AMPAR

1.5  

In 1995

in neur

novel e

the IEG

is rapid

activity

stimula

and po

specific

6 Postsyna
activity pai
orylation, an

igher conc

dent protei

Rs and inc

Arc/Arg

5, an Imme

rons by sy

experience

Gs: its gene

dly transp

44. On a c

ation and c

ost-synaptic

cally requi

aptic expres
ired with st
nd exocytos

centration 

in kinase 

creases the

g 3.1 

ediate Ear

ynaptic act

,  and follo

e is transc

ported to d

cellular lev

correlates w

c density, 

red for lo

ssion mech
trong depol
sis. (Modifi

of calciu

II (CaMKII

e levels of A

ly Gene (IE

tivity such 

owing seizu

cribed withi

dendrites43

vel, Arc/Arg

with the lo

where it d

ng term m

anism of L
arization tr
ied Trend in

um leads 

I), which p

AMPARs a

EG) Arc/A

as LTP a

ures41,42. A

in 5 minute

3, making 

rg3.1 mRN

calization 

directly affe

memory fo

LTP. 
iggers LTP

n Neuroscie

to activat

phosphoryl

at the syna

rg3.1 was 

and LTD, i

Arc/Arg3.1

es of stimu

it a good

NA is also 

of its mRN

ects synap

ormation. I

 

P in part via
nce,37). 

tion of ca

ates the G

apses (Fig.

identified t

n respons

has uniqu

ulation afte

d marker 

rapidly tra

NA in the n

ptic functio

n fact, Ar

a CaMKII, 

alcium/calm

GluA1 sub

. 6) 38, 39, 4

to be upre

e to learn

e qualities

er which its

to map n

anslated fo

nucleus, de

on45. Arc/A

rc/Arg3.1-d

11 

receptor 

modulin-

units of 

40. 

egulated 

ing and 

s among 

s mRNA 

euronal 

ollowing 

endrites 

Arg3.1 is 

deficient 



 

12 
 

mice exhibit a complete loss of memory in a variety of behavioral and learning 

paradigms 46(Xiaoyan Gao, 2016, Castro-Gomez, 2016).Several lines of evidence 

implicate Arc/Arg3.1 as a crucial element in homeostatic synaptic scaling, LTD and 

LTP.  

An essential mechanism to regulate glutamatergic synaptic strength is to increase or 

decrease the accumulation of AMPA receptors in the postsynaptic membrane and 

Arc/Arg3.1 has been found to be directly involved in the endocytosis of these 

receptors47, 48. A schematic representation for Arc/Arg3.1 regulation of AMPARs 

trafficking is shown in figure 1.2. Arc/Arg3.1 directly interacts with components of the 

endocytic pathway, e.g. endophilin and dynamin, increasing the rate of AMPARs 

endocytosis49 (fig. 7). This is corroborated by the observation that Arc/Arg3.1 KO 

mice show a significant increase in surface GluR1-containing AMPARs 47. 

Furthermore, it has been demonstrated that Arc/Arg3.1 plays a key role in regulating 

visual experience-dependent homeostatic plasticity of excitatory synaptic 

transmission50. 

Alteration of Arc/Arg3.1 function has been shown to be related to a neurological 

disorder. A mutation of the E3 ubiquitin ligase Ube3A causes Angelman Syndrome 

(AS). Ube3A regulates excitatory synapse development by controlling Arc/Arg3.1 

degradation. Disruption of this gene leads to elevated levels of Arc/Arg3.1 and 

consequently an excessive internalization of AMPARs. It has been proposed that 

impaired AMPARs trafficking may be the cause of the cognitive dysfunction that 

occurs in AS 51. Rapid translational upregulation of Arc/Arg3.1 is required for rapid, 

mGluR-dependent AMPA receptor endocytosis 5253. The increase in Arc/Arg3.1 

translation requires eEF2K, a calcium/calmodulin-dependent kinase that binds to 

mGluR and dissociates upon mGluR activation. Phospho-eEF2K inhibits general 
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molecular layer through NMDARs activation54. Moreover, studies on Arc/Arg3.1 

function found that in Arc/Arg3.1 KO mice, E-LTP is enhanced while L-LTP is blocked 

in both DG in vivo and in CA1 in vitro46.The role of Arc/Arg3.1 in the maintenance of 

long lasting synaptic plasticity is still not clear. However, it has been proposed that 

Arc/Arg3.1 might interact with the inactive form of CaMKII in synapses with low 

activity or inactive synapses, promoting AMPARs endocytosis55. As a consequence, 

in synapses that receive strong inputs, CaMKII might be more active and therefore 

the interaction with Arc/Arg3.1 weaker, leading to a redistribution of Arc/Arg3.1 to 

other sites55. This inverse synaptic tagging of Arc/Arg3.1 might explain how the only 

synapses previously potentiated can maintain their state over time, whereas the 

inactive synapses are weakened through Arc/Arg3.1 and AMPAR internalization.  

1.6 Arc/Arg3.1 and development 

Neuronal activity models the brain throughout the entire life. However, during specific 

time windows of early postnatal life this activity might considerably impact molecular 

mechanisms across brain regions and potential arousal in adulthood56, 57. Especially 

during early postnatal development, formation of neuronal connections is initiated by 

an excess of synaptogenesis. During the course of development, some synapses are 

selectively strengthened and other synapses are weakened and/or eliminated58. It 

has been already reported that Arc/Arg3.1 has a critical role in activity-dependent 

climbing fibers (CFs) synapse elimination during cerebellar development59. Moreover, 

studies on visual cortex plasticity during a time window particularly sensitive to 

changes in activity (P25-32) show that mice lacking Arc/Arg3.1 do not show 

depression of deprived eye response or shift in ocular dominance after brief 

monocular deprivation like control mice60. These data suggest primary key role of 
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Arc/Arg3.1 in experience-dependent synaptic regulation in visual cortex of excitatory 

synaptic transmission in vivo in juvenile mice. 

Infantile amnesia is a phenomenon in which adults are unable to recall events from 

early childhood 61. Recently it was found that long lasting changes taking place in the 

dorsal hippocampus during a developmental critical period through a BDNF and 

mGluR5-dependent switch in the ratio of GluN2B/GluN2A expression represent key 

processes to develop the ability to form explicit, associative long-term memories in 

adulthood 62. The latent memory formed at P17 requires mGluR5 and GluN2B but not 

GluN2A, whereas at P24 the more strong memory requires GluN2A but not mGluR5. 

Since Arc/Arg3.1 is involved in juvenile forms of plasticity such as mGluR-dependent 

LTD63,64 and is crucial for the consolidation of long term memory65, it seems likely 

that Arc/Arg3.1 plays a role here.  
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2 Aims of the PhD thesis 

The overall aim of this thesis was to investigate forms of plasticity linked to memory 

consolidation and in particular to reveal their underlying mechanisms in WT and 

Arc/Arg3.1 deficient mice. Specific aims were: 

I. Establish a novel form of LTD in mature hippocampal slices of WT mice 

and to study the mechanisms underlying induction and maintenance; 

II. Induce LTD with the novel protocol in KO, in cKO and in dendritic 

Arc/Arg3.1 deficient mice and explore mechanisms of induction and 

maintenance;  

III. Induce a form of LTD mediated by mGluRs in juvenile WT and KO mice 

and investigate the protein synthesis; 

IV. Induce HFS-LTP and examine the protein synthesis in KO and late cKO;  

V. Induce TBS-LTP and examine the protein synthesis in KO; 
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3 Material and methods 

3.1 Animals care 

The animal care, maintenance and experimental procedures were performed in 

accordance with the Ministery of Science and Public Health of the City State of 

Hamburg, Germany. Mice were kept in plastic cages under standard housing 

conditions (rodent provender and water ad libitum, nesting material provided). 

Light/dark cycles were not reversed. Adult mice aged 2-6 months and juvenile (P21-

P23) were used in experiments. Network organization and plasticity in adult mice 

have reached a mature state66. Mice of both sexes are included in the experiments at 

balanced numbers. 

3.2 Genotypes and breeding schemes 

The aims of this study were to find how the ablation of Arc/Arg3.1 at different times 

during development affects adult hippocampal synaptic plasticity. We were also 

interested in investigating the role of dendritically translated Arc/Arg3.1 in adult 

plasticity. To answer those questions 4 mouse line have been generated: 

Germline KO 

This line represents the constitutive knockout mice, in which the full gene locus of 

Arc/Arg3.1 was deleted from the germ line (Plath et al, 2006). This mouse line was 

raised in a C57Bl/6J background, and comprises WT (Arc/Arg3.1 +/+), heterozygous 

(Arc/Arg3.1 +/-) and KO (Arc/Arg3.1 -/-). In this study I used WT and KO mice. 

Conditional KO mice 
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The following two Arc/Arg3.1 conditional KO mice lines have been generated in our 

laboratory with a Cre/LoxP recombination system (Xiaoyan Gao PhD thesis, Castro-

Gomez PhD thesis) and used in this study.  

Early cKO 

Early-cKO, was generated in which the Tg(CaMkIIα-cre)1Gsc67 started to ablate  the 

Arc/Arg3.1 gene after P7 and completed before P14. Control mice were Arc/Arg3.1 

early-cKO+/+ with CamkIIα-cre, later referred as early WT.  

Late cKO  

The Arc/Arg3.1 late cKO mouse line, later on referred as late-cKO, was generated 

with the same Cre/LoxP recombination system as used for Early-cKO mice.Tg 

(CaMKIIα-cre)T29-1Stl was used to obtain the late-cKO mice 68. Arc/Arg3.1 ablation 

started after P21 and was completed before P35. Also for the experiments performed 

with this mouse line, the control mice were Arc/Arg3.1 early-cKO+/+ with cre, later 

referred as late-WT. 

Tg(3´UTR) Arc/Arg3.1  

One of the unique characteristic of Arc/Arg3.1 is that the mRNA is located in the 

dendrites; in our laboratory a specific mouse line has been generated in which the 

dendritic Arc/Arg3.1 mRNA is missing. The 3’ UTR of the Arc/Arg3.1 gene that 

regulates Arc/Arg3.1 mRNA in the dendrites has been replaced with the one of Zif, 

another immediate early gene, leading to the generation of transgenic mice (tg) that 

lack dendritic Arg3.1/Arc mRNA. This mouse line includes also WT and KO mice. 

Figure 8 shows Arc/Arg3.1 mRNA and protein expression in WT and tg 

(3´UTR)Arc/Arg3.1 mice of CA1-hippocampal neuron. 
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3.3 Electrophysiology  
 

 

3.3.1 Slice preparation 

Male and female mice aged 2-5 months were anesthetized by sedation with 

Isoflurane (100 µl) and transverse hippocampal slices, 350 µm thick, were prepared 

in iced, gassed aCSF (LTD, in mM: NaCl 125, KCl 4.4, NaHCO3 25, NaH2PO4 1.25, 

MgSO4 1, glucose 10 and CaCl2 2; LTP, in mM: NaCl 119, KCl 2.5, NaHCO3 26, 

NaH2PO4 1.25, MgSO4 1.3, glucose 10, CaCl 2.5).  Slices were always prepared 

between 8:00 and 9:00 AM. Microm vibrato was used to perform the slicing. Slices 

were allowed to recover at 30°C for LTD and at 37°C for LTP experiments for 2 hours 

and then transferred into submerged recording chambers. Recordings started after 

about 1 h of resting period maintained at 30°C and 37°C for LTD and LTP, 

respectively. The temperature of the aCSF in the incubator was constantly monitored. 

3.3.2 The multi-slice field recording system Synchroslice 

All the experiments were performed in the Synchroslice system (synchroslice, 

Lohmann Research Equipment, Castrop-Rauxel). Synchroslice is a multi-slice field 

recording system containing four independent submerged chambers (fig. 9).   
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3.4 Rejection criteria 

To be included in the final analysis the experiments had to satisfy specific criteria. 

The first criterion considered necessary was the state of the general recording, like 

perfusion and temperature stability and health of the slice. Experiments were rejected 

if baseline recordings were unstable or if the control pathways had changed more 

than 20% from the baseline. 

3.5 Data Analysis and Statistics 

All experiments were recorded and analyzed online with Synchrobrain software. Raw 

data were transferred and further organized in Microsoft Office Excel (Version 2007). 

Igor pro was used to analyze and visualize the data. The initial slope of the evoked 

fEPSPs was calculated and expressed as a percent change from the baseline mean. 

Error bars in figures denote SEM.  Successful LTD was defined as a decrease of the 

fEPSP slope below 80% of the baseline and duration of at least half an hour. For 

LTD protocol, the time-window considered was from t=40 to t=115, unless otherwise 

specified. For LTP two time window were considered: E-LTP from t=4.5 to t=29.5, L-

LTP from t=274.5 to t=299.5. Successful LTP was defined as an increase of the 

fEPSP slope above 120% compared to the baseline following HFS or TBS. Group 

results are plotted as means ± standard. For all experiments, both number of slices 

and number of animals are mentioned, where each slice was considered a single 

experiment. Summary of the I/O curves of each experiment for each group was plot 

in a graph as sigmoidal function, and compared the mean of the single fit curve per 

experiment per genotype. Statistical significance was evaluated using Prism 

GraphPad. Tests used ANOVA (analysis of variance) RM (Post-hoc) and Student t-

test for two group comparison and Mann Whitney U-test if the data was not normally 

distributed.  
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3.6 Reagents 

Name  Blocker of Concentration Solvent 
Wash-

out Ref. 

APV-5 NMDAR 50 µM DDW NO 70 

RO25- 6981 NR2B- containing NMDAR 5 µM DDW NO 71 

MCPG group I/II mGluR receptors 500 µM DDW NO 72 

Nifedipine L-type VGCC 20 µM DMSO NO 73 

CHX Protein synthesis 120 µM DDW NO 74 

Leupeptin Lysosome/ Protease  20 µM DMSO NO 75 

MG-132 Proteasome 20 µM DDW YES 76 
 
Table 1 
Blockers list.   
 
 
All drugs were diluted in aCSF and bath applied for at least 45 minutes before LTD or 

LTP induction (table1). The drugs were made up as stock solutions in either double-

distilled water (DDW) or 99% v/v DMSO and stored in -20°. DMSO at final 

concentration of 0.01-0.1% was added to the solution of the control group. 
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(a) Exemplary LTD experiment in a WT slice. fEPSP slope rising phase was measured and 
plotted against time. fEPSPs in the stimulated pathway decreased by 23% following LFS 
stimulation, while  control fEPSPs  remained unchanged. (b) Averaged time course of LTD in 
28 WT slices (n=28) obtained from 17 mice. Individual fEPSP slopes were normalized to 
their own baseline, presented as percentage and averaged across experiments. The averaged 
fEPSP slopes decreased during LFS stimulation to a minimal level of 75.71% (t= 45) and was 
maintained at 81.30% of baseline throughout the remainder of the recording. 
 

4.2 Mechanisms underlying LTD- induction in WT mice 

Because a novel form of LTD was established in adult hippocampal slices, the first 

aim was to investigate the mechanisms underlying its induction and maintenance. It 

has been already shown that in hippocampal CA1 pyramidal cells of juvenile (11-35 

days old) rats two distinct forms of LTD coexist.  One form of LTD depends on the 

activation of NMDA receptors, while the other form relies on the activation of mGluRs 

77. In addition, in adult a form of LTD was described, which was dependent on 

postsynaptic calcium ion entry through L-type voltage-gated calcium channels paired 

with the activation of mGlu receptors 78. 

Therefore, I first investigated the role of NMDARs, mGluRs and VGCC on LTD 

induction. 

4.2.1 LTD and mGluR receptors 

Group I metabotropic glutamate receptors, including mGluR1 and mGluR5, are the 

most prevalent group of mGluRs present in the hippocampus and are believed to be 

involved in multiple forms of experience dependent synaptic plasticity events, 

including learning and memory79. In order to investigate the role of group I mGluR 

receptors, LTD was induced in either standard recording medium or in presence of 

500 µM MCPG. The non-selective group I/group II metabotropic glutamate receptor 

antagonist72. As established, the LTD protocol in untreated slices caused a 

decreased fEPSP slope to 80.92 ±4.52% of baseline (N= 6 n= 11) (fig. 17). Likewise, 
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4.2.2 LTD and NMDA receptors 

In the adult brain the most common form of LTD is mediated by NMDA receptors and 

their downstream targets, under the condition that the activation remains below the 

threshold to induce potentiation80. To examine the role of the NMDAR on LTD 

induction I bath applied APV (50 µM), a well-known selective NMDAR antagonist. 

Untreated slices showed stable LTD following the LFS protocol (fig. 18a) (78.12 

±7.11%, N= 2 n= 6; averaged from t=40 to t=115). In contrast, in the presence of 

APV, LTD was blocked (fig. 18a) (98.74 ±5.06% N=8 n=18). The difference between 

untreated and APV-treated slices was significant (treatment p= 0.7061, time p < 

0.0001, interaction p= 0.0049, two-way ANOVA RM). In conclusion, our LTD in CA1 

of adult mice is mediated by NMDA receptors. 

 



 

 

Figure 
 (a) LTD
slopes o
recorded
baseline
APV-tre
(filled b
Compar
treated s
Next, c

followin

differen

pathwa

18 APV blo
D in APV-t
of 119.51 ±
d in parall
e. Comparis
eated slices
black circle
rison of fEP
slices were 
control pa

ng LTD pr

nt from bas

ays of APV

ocks LTD i
treated slic
± 8.56% o
el to APV
son of fEPS
s is shown a
es, N= 2 n
PSP traces, 
shown abov

athways w

rotocol was

seline slop

V-treated 

in adult W
es (50 µM)
f baseline. 
-traeted slic
P traces, be

above the g
n= 6) and A

before and
ve the graph

were exam

s 104.88 ±

pes (p= 0.5

slices exh

T slices 
) (empty ci
Untreated 

ces, decrea
efore and af
graph. (b) Su
APV- treat

d after LFS 
h. 

mined. In u

±6.81% (N

5015, paire

hibited a p

rcles; N= 8
slices (fille

ase in fEPS
fter LFS stim
ummary of 
ted slices (
stimulation

untreated 

N=2 n=6), 

ed t-test) (f

persistent 

8 n= 18), re
ed black ci
SP slope to
mulation, in
f control pat
(empty circ
n, of both u

slices me

which was

fig. 18b). In

and signif

 

esulting in 
ircles; N= 
o 78.12 ±7
n both untre
thways of u
cles; N= 8 
untreated an

ean fEPSP

s not sign

n contrast,

ficant incre

34 

a fEPSP 
2 n= 6) 
.11% of 

eated and 
untreated 

n= 18). 
nd APV-

P slope 

ificantly 

 control 

ease in 



 

 

fEPSP 

Paired 

APV-tre

fEPSP 

LFS sh

from t=

increas

enhanc

Figure 
The com
pathway
t= 115, 
 
 
Norma

experim

4.2.3 

For a m

at the N

NR2B- 

slopes fo

t-test) (fig

eated slice

amplitude

howed no s

= 40 to t= 

se of fEPS

ced presyn

19 FV anal
mparison be
y showed n
N=8 n= 14;

lized fEPS

ments in AP

LTD and

more comp

NMDAR-su

containing

ollowing L

. 18b). In 

es followin

es of FVs w

significant 

115, N=8 

SP slopes 

naptic fiber

lysis of APV
etween mea
no significan
; p= 0.1019

SPs amplitu

PV- treated

d NR2B-c

prehensive

ubunits. Am

g NMDARs

FS stimula

order to ve

ng LFS w

were asses

difference

n= 14; p=

of control

excitability

V-treated s
an FV ampli
nt differenc
 paired t-tes

ude (% of 

d slices (10

containin

understan

mong the s

s are broad

ation (115

erify wheth

were due t

ssed. Com

es (fig. 19)

 0.1019 pa

l pathways

y. 

slices. 
itude during

ce (104.03 ±
st). 

baseline) 

04.03 ±2.5

ng NMDA

nding of th

six regulat

dly express

5.98 ±4.26

her the en

to enhanc

parison be

) (104.03 ±

aired t-tes

s in APV-

g baseline a
±2.51% of b

of FV we

51% N= 8 n

AR 

e role of N

tory subun

sed in the 

6% N=8, n

hanced co

ced presyn

etween FVs

±2.51% of 

t). Therefo

treated di

 

and post LF
baseline ave

re calculat

n= 14) 

NMDARs o

its of NMD

postnatal h

n=18; p= 

ontrol path

naptic exc

s before a

baseline a

ore, the pe

id not resu

FS of the sti
erage from 

ted in a su

n LTD, we

DARs, NR2

hippocamp

35 

0.0008, 

ways in 

citability, 

nd after 

average 

ersistent 

ult from 

imulated 
t= 40 to 

ubset of 

e looked 

2A- and 

pus and 



 

 

are bel

begin b

require

(RO25)

n= 6; a

LTD (fi

Direct 

slices s

interact

 

Figure 
LTD in
83.15 ±
6), decr
 
 
Contro

baselin

ieved to p

by investiga

ed for LTD 

). Untreate

average fro

g. 20) (83

compariso

showed no

tion p= 1, t

20 Unaffec
n WT RO25
± 3.47% of b
rease in EPS

l pathways

ne N= 3 n=

play import

ating the ro

induction, 

ed slices sh

om t= 40 to

.15 ± 3.47

on of LTD 

o significan

two-way A

cted LTD in
5- treated sl
baseline com
SP slope of 

s were not 

= 6, p= 0.20

ant roles in

ole of NR2

I bath app

howed nor

o t= 115). L

7% of base

experime

nt differenc

ANOVA RM

n RO25-69
lices (empty
mpared to u
85.5 ±8.55%

affected b

061 paired

n synaptic

2B- contain

plied RO25

rmal LTD (f

Likewise, R

eline N= 3

ents induce

ce (fig. 20)

M). 

81 treated 
y circles; N
untreated co
% of baselin

by LFS stim

d t-test; RO

c plasticity8

ning NMDA

5-6981, an

fig. 19) (85

RO25-trea

n= 6; ave

ed in both

) (treatmen

slices 
N= 3 n= 6), 
ontrol slices
ne. 

mulation (u

O25- treate

81. Therefo

AR. To test

n NR2B-se

5.5 ±8.55%

ted slices 

erage from

 untreated

nt p= 0.727

resulting in
s (filled bla

untreated 1

ed 93.99 ±7

ore, we dec

t whether N

elective ant

% of baselin

presented

m t= 40 to t

d and RO-

7 time p <

 

n a EPSP s
ack circles; N

112.88 ± 8

7.02% of b

36 

cided to 

NR2B is 

tagonist 

ne N= 3 

 normal 

t= 115). 

-treated 

0.0001 

slopes of 
N= 3 n= 

.98% of 

baseline 



 

37 
 

N= 3 n= 6; p= 0.428 paired t-test). These results indicated that NR2B- containing 

NMDAR is not crucial for LTD induction in adult mice. 

4.2.4 LTD and L- type VGCCs 

L-type VGCCs are major sites of post-synaptic calcium influx for induction of some 

forms of synaptic plasticity in the hippocampus 82. In order to test whether calcium 

influx through L-type VGCCs is necessary for this form of plasticity, I induced LTD in 

presence of nifedipine, the L-type VGCC blocker 83. It has to be mentioned that in this 

set of experiments untreated slices were perfused with DMSO, since the preparation 

of nifedipine stock solution was made with DMSO. Remarkably, fEPSP slopes of 

slices “treated” with DMSO showed significantly smaller E-LTD compared to 

untreated slices (fig. 21a) (DMSO 89.32 ± 3.64% N= 4 n= 8, untreated 79.52 ± 2.57% 

N= 17 n= 28; p= 0.0458 Mann Whitney U-test).  
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showed no significant difference from baseline values (untreated 114.48 ±8.19% N= 

4 n= 8; average from t= 40 to t= 115; p= 0.1115 paired t-test, nifedipine-treated 

100.39 ±4.89% N= 4 n= 8; average from t= 40 to t= 115; p= 0.9374). Taking together 

these results, first DMSO partially blocks LTD during and after LFS. Second, blocking 

L-type VGCCs enhances LTD induction. 

4.2.5 LTD and the simultaneous inhibition of NMDAR and L-type 
VGCC 

Previous studies showed that in hippocampal CA3-CA1 pathway specific patterns of 

stimulation differentially activate NMDARs and L-type VGCCs, resulting in distinct 

forms of LTP 83. Since I assessed that LTD induction is NMDA receptors dependent 

and blocking L-type VGCC enhanced LTD, we were interested now to investigate the 

simultaneous cross talk between NMDAR and L-type VGCC on LTD induction. To 

test the simultaneous requirement of NMDARs and L-type VGCCs on LTD induction, 

APV (50 µM) alone or together with nifedipine (20 µM) was bath-applied and LTD 

experiments were performed. As previously reported, APV alone blocked LTD (see 

paragraph 4.2.2, fig.18). No significant differences were found between LTD of APV-

treated and (APV + nifedipine)-treated slices (fig.22) (APV-treated 96.79 ±6.51% N= 

3 n= 6, (APV + nifedipine)-treated N= 3 n= 6; treatment p= 0.9139, time p < 0.0001, 

interaction p= 0.6231 two-way ANOVA RM). Control pathways of APV-treated and 

(APV + nifedipine)-treated slices were stable throughout the entire recording (APV-

treated 110.15 ±5.31% of baseline; average from t= 40 to t= 115, p= 0.1020 paired t-

test; (APV+nifedipine)-treated 108.71 ±7.98% of baseline; average from t= 40 to t= 

115, p= 0.3167 paired t-test). 
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underlying LTD maintenance, I investigated the role of protein synthesis and 

degradation pathways in LTD. 

4.3.1 LTD and protein synthesis 

First, we were interested in the role of novel protein synthesis in LTD maintenance. I 

applied cycloheximide (CHX 120 µM), a well-known protein synthesis blocker. In 

untreated slices, LFS stimulation induced a normal decrease in synaptic transmission 

to 71.15 ±4.12% of baseline (N= 4 n= 5) (fig. 23a). In contrast, LTD was blocked in 

CHX- treated slices (fig. 22a) (91.30 ±4.93% N= 4 n= 7). Statistical analysis showed 

significant differences between untreated and CHX-treated slices (fig. 23b) (average 

from t= 40 to t= 115, treatment p= 0.0138 time p < 0.0001 interaction p= 0.7108, two-

way ANOVA RM). Control pathways were unaffected by LFS stimulation (untreated 

92.69 ±4.31% of baseline, N= 4 n= 5, p= 0.1579 paired t-test; CHX-treated 100.68 

±8.17% of baseline, N= 4 n= 7, p= 0.9362 paired t-test). In conclusion, LTD 

maintenance is supported by the synthesis of novel proteins. 



 

 

Figure 
CHX-tr
untreate
(b) Bar 
and CH
 
 
 
4.3.2 

Eviden

ubiquiti

Howev

MG 13

23 Protein 
reated slices
ed slices LT
graph show

HX-treated sl

LTD and

ce from th

in-proteaso

er the role

2 (500 µM

synthesis i
s show LTD
TD decrease
wing mean n
lices. 

d proteas

he last dec

ome syste

e of protea

M) to invest

inhibitor C
D to 91.30 
ed to 71.15 
normalized 

somal de

cades sugg

em (UPS)

asome in r

tigate the r

CHX blocks
± 4.93% o
±4.12% of 
fEPSP slop

egradatio

gests that 

) may als

regulating 

role of prot

s LTD main
f baseline (
baseline (fi

pe following

on 

protein de

so be a c

LTD rema

teasome a

ntenance 
(empty circl
illed black c
g LFS stimu

egradation

critical reg

ains elusive

activity in L

 

les; N= 4 n
circles; N= 

mulation in u

n mediated

gulator of 

e. Here, I 

LTD mainte

42 

n= 7), in 
4 n= 5). 

untreated 

d by the 

LTP31. 

applied 

enance, 



 

 

the res

followin

compa

differen

treatme

Figure 
LTD in 
N= 6 n
black ci
 
 
No sign

of base

baselin

conditio

 

 

sults of wh

ng LFS sti

rison with 

nce in LTD

ent p= 0.90

24. The pr
MG132-tre

n= 13) com
ircles; N= 8

nificant dif

eline N= 6

ne N= 6 n=

ons, LTD is

hich are sh

mulation d

mean fEP

D mainten

052 time p 

oteasome in
eated slices 

mpared to un
8 n= 20) (av

fferences w

6 n= 15, p

= 12; p= 0

s not depe

hown in Fig

decreased 

PSP slopes

nance (fig.

< 0.0001 

nhibitor M
decrease to

ntreated slic
erage from 

were found

p= 0.1477 

0.1860 pair

endent on u

g 4.12. Me

to 73.61 ±

s of MG132

 24) (75.8

interaction

MG-132 doe
o 78.88 ± 5.
ces, decrea
t= 40 to t= 

d in contro

paired t-te

red t-test). 

ubiquitin pr

ean fEPSP

±2.93% (N

2-treated s

88 ±5.86%

n p= 0.9547

es not affect
86% of bas

asing to 73.
115). 

ol pathway

est; MG13

In summa

roteasome

P slopes o

N= 8 n= 20

slices show

% of basel

7, two-way

t LTD  
eline (500 µ
61 ±2.93%

s (untreate

2- treated 

ary, under 

e degradati

of untreate

0) (fig. 23)

wed no sig

line N= 6 

y ANOVA R

 

µM) (empty
% of baselin

ed 91.66 ±

88.74 ±6.

our exper

ion. 

43 

d slices 

). Direct 

gnificant 

n= 13, 

RM).  

y circles; 
ne (filled 

±5.19 % 

.63% of 

rimental 



 

 

4.3.3 

Traffick

synapti

AMPAR

lysosom

leupept

LTD of 

was blo

control 

change

n= 6, p

p= 0.20

for the 

Figure 
LTD in 
99.78 ±
decrease

LTD and

king of AM

ic transmis

Rs after LT

mal degra

tin, a lyso

84.38 ±3.5

ocked (99

pathways 

es in fEPS

p= 0.3055 

002 paired

maintenan

25 Summa
LEU-treate

± 8.2% of b
e in EPSP s

d lysosom

MPA recep

ssion, resu

TD inducti

adation in 

osomal blo

53% of ba

.78 ±8.2%

of both un

Ps before 

paired t-te

d t-test). Ba

nce of LTD

ary of leupe
ed slices (2
baseline co

slopes of 83

mal degr

ptors is a 

ulting in ei

ion is well

LTD main

cker. Untr

seline (fig.

 N= 5 n= 

ntreated an

and after L

st; leupept

ased on th

D. 

eptin exper
20 µM) (em
ompared to 
.38 ±3.53%

radation

key comp

ther LTP o

l accepted

ntenance, 

reated slic

. 25) (N= 5

8; p < 0.0

nd leupept

LFS (untre

tin-treated 

hese result

riments 
mpty circles;

untreated 
% of baseline

ponent in 

or LTD. Th

d23,86. In or

I induced

es followin

5 n= 6). LT

0001 Mann

in-treated 

eated 105.3

105.7 ±3.

ts, lysosom

; N= 5 n= 8
slices (fille
e (p < 0.000

modulating

he lysosom

rder to exa

d LTD in 

ng LFS sti

D in leupe

n Whitney 

slices show

39 ±4.77%

87% of ba

mal degrad

8), resulting
ed black cir
01 Mann W

g the stre

mal distrib

amine the

the prese

imulation s

ptin-treate

test). Ana

wed no sig

% of baselin

aseline N= 

dation is e

 

g in EPSP s
rcles; N= 5

Whitney test)

44 

ength of 

ution of 

 role of 

ence of 

showed 

ed slices 

alysis of 

gnificant 

ne N= 5 

5 n= 8, 

ssential 

slopes of 
5 n= 6), 
). 



 

 

4.3.4 
s

Long la

a varie

mainte

proteas

betwee

effect o

degrad

(86.6 ±

found 

treatme

Synapt

of base

of base

LTD is 
synthesi

asting chan

ety of sig

nance of 

somal deg

en synthes

of simultan

ation with 

±3.91% of 

no signific

ent p= 0.6

tic specific

eline N= 5 

eline N= 4 

preserv
is and ly

nges in ne

naling cas

LTP is 

gradation31

sis of nove

neously b

leupeptin.

baseline, 

cant differe

753 time p

ity was con

n= 8, p= 0

n= 7, p= 0

ved by 
ysosoma

uronal net

scades at

determina

. In order

el proteins

locking bo

. LTD in (C

N= 4 n= 7

ences (fig

p < 0.0001

nfirmed in 

0.4819 pai

.849 paire

simulta
l degrad

tworks rely

t synapse

ate by a 

r to asses

s and deg

oth protein

CHX + LE

7), and com

. 26) (84.

1 interactio

both grou

red t-test; 

d t-test). 

aneous 
ation 

y on severa

s. It has 

balance 

ss whethe

gradation p

n synthesis

U)-treated

mparison w

10 ±4.38%

on p= 0.94

ps of slices

(CHX + LE

blockin

al steps wh

already b

of protein

r our LTD

pathways, 

s with CH

slices wa

with LTD o

% of base

462, two-w

s (untreate

EU)–treate

g of p

hich are ba

been show

n synthes

D was a b

we explo

HX and lys

as normal (

of untreate

eline, N= 5

way ANOV

ed 101.64 

ed 100.57 

 

45 

protein 

ased on 

wn that 

sis and 

balance 

ored the 

sosomal 

(fig. 25) 

d slices 

5 n= 8; 

VA RM).  

±3.03% 

±2.86% 



 

46 
 

Figure 26. Combined blockade of protein synthesis and degradation by CHX and LEU 
restores LTD in WT slices  
LTD in (CHX + LEU)-treated slices (empty circles; N= 4 n= 7), resulting in EPSP slopes of 
86.6 ±3.91% of baseline compared to untreated slices (filled black circles; N= 5 n= 8), 
decrease in EPSP slopes of 84.10 ±4.38% of baseline. (Average from t= 40 to t= 115, 
treatment p= 0.6753 time p< 0.0001 interaction p= 0.9462). 
 
 
These results show that blockade of either protein synthesis or lysosomal 

degradation separately antagonizes LTD maintenance. However, when protein 

synthesis and protein degradation are inhibited at the same time, LTD is restored to 

control levels. Thus, NMDAR-LTD is supported by a balanced cross-talk between 

novel protein synthesis and lysosomal degradation. 

 

4.4 Synaptic plasticity in germline Arc/Arg3.1 KO mice 

4.4.1 Evaluation of basal synaptic transmission 

Initially, to estimate basal synaptic transmission in WT and KO slices, I measured 

maximum fEPSP amplitude reached with stimulation intensity from 0 to 1600 µA.  

Statistical analysis showed no significant difference between IO curves generated in 

WT and KO slices (fig. 27a) (WT N= 7 n= 12 KO N= 7 n= 14, (genotype p= 0.1618 

time p < 0.0001 interaction p= 0.7749, two-way ANOVA RM). Since I/O curves 

include pop-spikes evoked at higher stimulation intensities, we performed a more 

detailed analysis to isolate the synaptic properties of CA1. Therefore, I examined the 

I/O results from individual experiments to see at what current a pop-spike occurred, 

noting the corresponding stimulation intensity (SIthreshold) and resulting fEPSP 

threshold amplitude at that current. Here, the fEPSP threshold amplitude was not 

significantly different between WT and KO slices (fig. 27c) (WT N= 8 n= 15 KO N= 8 

n= 16, p= 0.6494, Mann Whitney t-test). However, KO slices showed significantly 
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I repeated the same experiment in 14 mice (n= 21 slices) and compared directly with 

WT LTD experiments (fig. 29a). E-LTD was significantly enhanced in KO slices 

compared to WT slices (fig. 29b) (WT 79.528 ± 2.567% of baseline N= 17 n= 28, KO 

slices 71.769 ±2.725% of baseline N=14 n= 21, average from t= 40 to t= 60; 

genotype p= 0.0441 time p < 0.0001 interaction p < 0.0001, two-way ANOVA RM). 

Nevertheless, L-LTD was normal (fig. 29c) (WT 79.528 ± 2.567% of baseline N= 17 

n= 28, KO slices 71.769 ± 2.725% of baseline N= 14 n= 21, average from t= 100 to 

t= 120; genotype p= 0.9539 time p= 0.0595 interaction p= 0.162, two-way ANOVA 

RM). 
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4.5 Mechanisms underlying LTD induction in germline 

Arc/Arg3.1 KO mice 

The previously shown long lasting LTD exhibited in our KO slices is not in line with 

the widely believed hypothesis that memory formation requires consolidation of 

synaptic connectivity changes, initiated at the time of learning88. It also differs from 

previous reports on LTD deficits in Arc/Arg3.1 KO mice46, evoked by different stimuli. 

To better understand the relevance of this LTD to memory and of the importance of 

Arc/Arg3.1, I investigated the mechanisms underlying the aberrant plasticity in KO 

mice. 

4.5.1 LTD is NMDAR dependent in KO 

NMDAR activation has been linked to Arc/Arg3.1, targeting Arc/Arg3.1 mRNA to 

active synapses89. NMDAR- dependent synaptic plasticity events have been shown 

to be directly related to memory storage (Frey and Morris, 1997)91. However, the 

coupling of NMDAR Arc/Arg3.1 and memory in LTD is still elusive. In order to 

determine whether NMDA receptors mediate LTD induction in KO slices, I induced 

LTD in presence of APV (50 µM). Untreated slices, following LFS stimulation, 

underwent LTD (fig. 30a) (70.69 ±2.18% of baseline N= 4 n= 7). In contrast, LTD in 

APV-treated slices was completely blocked (fig. 30a) (109.78 ±7.94% of baseline N= 

4 n= 8), the statistical difference between the two groups being highly significant 

(treatment p= 0.0009 time p < 0.0001 interaction p= 0.0237, two-way ANOVA RM). 

Control pathways of both groups were unaffected by LFS stimulation (untreated 

95.73 ±2.4% of baseline N= 4 n= 7, p=0.2472 paired t-test; APV treated 105.08 

±2.5% of baseline N= 4 n= 8, p= 0.0606 paired t-test). The effect of APV on LTD in 

KO slices was comparable to LTD in WT slices treated with APV (fig. 30b) (APV 

treated- WT slices 98.74 ±5.07% of baseline N= 6 n= 10; APV treated- KO slices 
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0.6727, paired t-test). In summary, KO slices showed NMDAR-dependent LTD which 

is not dependent on NR2B-subunit. 

4.6 Mechanisms underlying LTD-maintenance in germline 

Arc/Arg3.1 KO mice 

 

4.6.1 LTD is protein synthesis independent 

Activity-dependent long lasting changes in synaptic function are believed to be 

mediated by the synthesis of novel proteins, eventually leading to memory 

consolidation92. I previously reported that the novel form of LTD in WT is supported 

by the synthesis of novel proteins (see paragraph 4.3.1, fig. 23). In order to assess 

whether maintenance of the LTD in KO slices is similarly mediated by the synthesis 

of novel proteins, I repeated the same LTD experiments in presence of CHX. 

Application of LFS stimulation to KO slices reliably induced LTD of evoked excitatory 

synaptic responses to 77.15 ±8.17% of baseline (fig. 34) (N= 4 n= 7). Surprisingly, 

CHX had no effect on LTD in KO slices (fig. 34) (77.30 ±4.74% of baseline, N= 4 n= 

8; treatment p= 0.828 time p < 0.0001 interaction p= 0.9924, two-way ANOVA RM). 
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(untreated N= 4 n= 8 CHX-treated slices N= 4 n= 8). (b) Summary I/O curves of KO 
untreated and CHX-treated slices were generated with the same experimental conditions used 
in WT slices. 
 
 
These I/O curves represent a mixture of synaptic and somato-dendritic currents that 

separately reflect synaptic transmission and membrane excitability. To dissect the 

effect of CHX on either current, I assessed fEPSP threshold amplitude and the 

SIthreshold in untreated and CHX-treated slices.  In WT CHX-treated slices SIthreshold was 

enhanced, but no statistically significant difference in fEPSP threshold amplitude was 

found compared to untreated slices, meaning that the basal synaptic transmission 

remains intact combined with modulation of pop-spike threshold (fig. 33a) (SIthreshold: 

untreated N= 4 n= 7 CHX-treated N= 4 n= 8, p= 0.0105 Mann Whitney U-test; fEPSP 

threshold amplitude: untreated N= 4 n= 7 CHX-treated N= 4 n= 8, p= 0.4178 Mann 

Whitney U-test). Interestingly, KO CHX-treated slices showed increased values in 

both SIthrshold and fEPSP threshold amplitude (fig.33b) (SIthreshold: untreated N= 4 n= 8 

CHX-treated N= 4 n= 8, p= 0.0389 Mann Whitney t-test; fEPSP threshold amplitude: 

untreated N= 4 n= 8 CHX-treated N= 4 n= 8, p= 0.0348 Mann Whitney U- test). Thus, 

the basal synaptic transmission was significantly affected by the CHX-treatment.  
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LTD in WT leupeptin- treated slices (20 µM) (empty circles; N= 7 n= 10), resulting in a 
decrease in EPSP slopes to 82.94 ± 4.28% of baseline compared to untreated slices (filled 
circles; N= 7 n= 10), decrease in EPSP slope to 80.69 ±2.74% of baseline. 
 
 
Control pathways of untreated and leupeptin-treated slices were unaffected by LFS 

stimulation (untreated 101.36 ±2.29 % of baseline N= 7 n= 10, p= 0.541 paired t-test; 

leupeptin-treated 103.34 ±3.93% of baseline N= 7 n= 10; p= 0.3978 paired t-test). 

The block of lysosomal degradation had no effect on LTD in KO slices, and this result 

leads to the conclusion that although KO slices show stable long-lasting plasticity, it 

is not coupled to typical expression mechanisms. 

4.6.4 Basal synaptic transmission and lysosomal degradation 

In order to figure out whether basal synaptic transmission in WT and KO slices was 

affected by the lysosomal blocker, I performed I/O curves in presence of leupeptin. 

WT slices were not affected by the lysosomal blocker (fig. 35a) (untreated N=5 n= 6, 

LEU-treated n= 5 n= 8, treatment p= 0.6949 current p < 0.0001 interaction p= 0.9977, 

two-way ANOVA RM). On the contrary, KO LEU-treated slices showed a significant 

reduction in fEPSP amplitude (fig. 35b) (untreated N=6 n= 9, LEU-treated N= 6 n= 

10, treatment p= 0.0053 current p < 0.0001 interaction p < 0.0001). 
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4.6.5 LTD is preserved by simultaneous blocking of protein 
synthesis and lysosomal degradation 

Protein synthesis and lysosomal degradation are activity dependent processes that 

regulate turnover of synaptic membrane proteins involved in plasticity events 95,96. 

Here, LTD in KO slices seems to be unaffected by blocking either novel protein 

synthesis or lysosomal degradation. Previously I reported that the simultaneous 

blocking of protein synthesis and lysosomal degradation restored LTD in WT slices 

(see paragraph 4.3.4, fig. 26). Despite the persistency of LTD in KO slices, we 

wanted to test whether simultaneous application of CHX and leupeptin alters LTD 

maintenance in KO slices. Here, co-application of CHX and leupeptin had no effect 

on LTD and no significant changes were found compared to LTD in untreated slices 

(fig. 37) (untreated 83.62 ±4.46% of baseline, N=7 n= 10; (CHX+LEU)-treated 81.02 

±5.1% of baseline, N= 4 n= 7; treatment p=0.7178 time p < 0.0001 interaction p= 

0.4123, two-way ANOVA RM).  No significant changes were found in the control 

pathways (untreated 101.33 ±3.77% of baseline, N= 4 n= 5, p= 0.7346 paired t-test; 

(CHX + LEU)-treated 97.06 ±3.33% of baseline, N= 4 n= 7, p= 0.3964 paired t-test). 
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synaptogenesis Arc/Arg3.198 (Late cKO), in setting the capacity for adult synaptic 

plasticity.  

4.7.1 Basal synaptic transmission in early cKO mice 

I recorded I/O curves of early cKO slices. I/O curves showed no significant difference 

among early WT and cKO slices (fig.38a) (early WT N= 4 n= 16 early cKO N= 5 n= 

20, genotype p= 0.9939 current p <0.0001 interaction p= 0.0946, two-way ANOVA 

RM). Further analysis showed no significant differences in SIthreshold between 

genotypes (fig.38b) (SIthreshold: early WT N= 4 n= 16 early KO N= 5 n= 20, p= 0.0853 

Mann Whitney U-test) or in the fEPSP threshold amplitude (fig.38c) (fEPSP threshold 

amplitude: early WT N= 4 n= 16 early cKO N= 5 n= 20, p= 0.185 Mann Whitney U-

test). Thus, the effect of Arc/Arg3.1 is determined prior to the first postnatal week.  
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results suggest that the ablation of Arc/Arg3.1 after P21 does not affect the induced 

LTD.  

4.7.5 Basal synaptic transmission and protein synthesis in late cKO  

We were interested to investigate whether CHX differentially affected synaptic 

properties of late WT and cKO slices. Therefore I compared untreated and CHX- 

treated slices among genotypes. I/O curves of late WT slices showed no significant 

differences between untreated and CHX-treated slices (fig. 42a) (untreated N= 7 n= 

13 CHX-treated N= 7 n= 13, treatment p= 0.5381 time p < 0.0001 interaction p= 1, 

two-way ANOVA RM). As measured in late WT slices, I/O curves of late cKO CHX-

treated slices were not significantly different from untreated slices (fig. 42b) 

(untreated N= 6 n= 12 CHX-treated N= 6 n= 12, treatment p= 0.708 time p < 0.0001 

interaction p= 1, two-way ANOVA RM). SIthreshold and fEPSP threshold amplitude 

were estimated among genotypes in presence of CHX.  In late WT CHX-treated 

slices, SIthreshold was enhanced (fig. 43a) (untreated N= 7 n= 13 CHX-treated N= 7 n= 

13, p= 0.0006 Mann Whitney U-test). However, no significant difference was found in 

fEPSP threshold amplitude (untreated N= 7 n= 13 CHX-treated N= 7 n= 13, p= 

0.3569 Mann Whitney U-test). In late cKO slices both SIthreshold and fEPSP threshold 

amplitude were unaffected by CHX application (fig. 43b) (SIthreshold: untreated N= 6 n= 

12 CHX-treated N= 6 n= 12, p= 0.5344 Mann Whitney U-test; fEPSP threshold 

amplitude: untreated N= 6 n= 12 CHX-treated N= 6 n= 12, p= 0.7645 Mann Whitney 

U-test). In summary, late WT and cKO slices showed no significant difference  
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Figure 45 Control pathways of late WT and cKO slices 
(a) fEPSPs of control pathways in late WT CHX- treated slices increased significantly 
following LFS stimulation late (108.25 ±2.42% of baseline N=7 n= 14, p= 0.0036 paired t-
test). This effect was not detected in late WT untreated slices (104.5 ±2.60% of baseline N= 
8 n= 12, p= 0.104 paired t-test). (b) control pathways of late cKO both untreated and CHX- 
treated slices showed increased fEPSP slopes following LFS stimulation (late cKO untreated 
111.81 ±5.11% of baseline N=10 n= 17, p= 0.0329 paired t-test; late cKO CHX-treated 
110.49 ±3.72% of baseline N= 6 n= 11, p= 0.0169 paired t-test). 

 
 
Summarizing, late cKO mice showed normal LTD magnitude. However this form of 

plasticity was not supported by the synthesis of novel proteins. These results are 

similar with the results obtained in KO slices (see 4.4.2 and 4.6.2). Thus, the 

mechanisms involved in the consolidation of this form of plasticity do not seem to be 

associated with the developmental role of Arc/Arg3.1 early after birth.  

4.8 Tg (3’UTR) Arc/Arg3.1 mice 

4.8.1 Basal synaptic transmission in tg(3´UTR) Arc/Arg 3.1 mice 

In response to regular neuronal activity, Arc/Arg3.1 mRNA is rapidly transcribed and 

traffics into dendrites, where it undergoes local translation99. Transgenic mice 

carrying a modified Arc/Arg3.1 allele that is not targeted to the dendrites were 

generated to investigate the importance of local Arc/Arg3.1 translation in dendrites.  

Here, I asked whether dendritic Arc/Arg3.1 translation is needed to support basal 

synaptic transmission at CA1-hippocampal region. I/O curves of tg(3´UTR)Arc/Arg3.1 

mice were performed and compared to relative WT and KO. I/O curves of 

tg(3´UTR)Arc/Arg3.1 slices were significantly reduced compare to I/O curves of WT 

and KO slices (fig. 46a) (WT N= 3 n= 12 tg N= 3 n= 10 KO N= 3 n= 10, genotype p= 

0.0009 time p< 0.0001 interaction p< 0.0001, two-way ANOVA RM). Furthermore, 

analysis of SIthreshold among genotypes found a significantly enhanced threshold in 

tg(3´UTR)Arc/Arg3.1 slices compared to WT slices (fig.46b) (WT N= 3 n= 12 tg N= 3 

n= 12, p= 0.0465 one-way ANOVA).  On the other hand, fEPSP threshold amp was 
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threshold amp (mV) was not significantly different among genotypes (tg N= 3 n= 10, WT N= 
3 n= 12 KO N= 3 n= 10, p= 0.3394 one-way ANOVA).  
 

 
 
 

4.8.2 LTD in Tg(3’UTR)Arc/Arg3.1 mice  

Next, I investigated the contribution of local Arc/Arg3.1 translation to LTD.  Since tg 

mice came from a new mouse line, including WT and KO mice, I initially investigated 

LTD on WT and KO slices. Both WT and KO slices showed LTD following LFS 

stimulation. At no time point was there a statistically significant difference between 

these groups (fig. 47a) (WT 83.2 ±2.99% of baseline N=3 n= 11, KO 80.1 ±4.19% of 

baseline N= 3 n= 8, genotype p= 0.5324 time p < 0.0001 interaction p < 0.0001, two-

way ANOVA RM). On the contrary, LTD was completely blocked in tg slices (fig. 47a) 

(98.87 ±6.45% of baseline, N= 3 n= 8). Statistical comparison between LTD of tg 

slices with WT and KO slices resulted in a significant LTD reduction (WT 83.2 

±2.99% of baseline N=3 n= 11, tg 98.87 ±6.45% of baseline, N= 3 n= 8, genotype p= 

0.0241 time p= 0.0001 interaction p= 0.0002, two-way ANOVA RM; KO 80.1 ±4.19% 

of baseline N= 3 n= 8, genotype 0.0258 time p <0.0001 interaction p= 0.2563, two-

way ANOVA RM). Concerning control pathways, WT and KO slices did not show any 

significant changes in fEPSPs post- LFS stimulation compared to baseline fEPSPs 

(fig. 47b) (WT 103.31 ±3.24% of baseline N= 3 n= 11 average from t= 40 to t= 115, 

p=0.3117 paired t-test; KO 105.17 ±4.91% of baseline N=3 n= 8 average from t= 40 

to t= 115, p= 0.3171 paired t-test). In contrast, tg slices presented slightly increased 

fEPSPs following LFS stimulation (fig. 47b) (112.36 ±4.49% of baseline N= 3 n= 8 

average from t= 40 to t= 115, p= 0.0242 paired t-test). 
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and protein in the soma and dendrites of germline KO mice, does not reduce the LTD 

magnitude. Arc/Arg3.1The link between local Arc/Arg3.1 translation and NMDAR-

mediated LTD remains to be explored. 

4.9 Metabotropic GluR-LTD in juvenile WT and KO  

The second form of LTD present in CA1 hippocampal region is dependent on mGluR 

activation and relies on rapid Arc/Arg3.1 translation 775352. Although it has been 

already published that lack of Arc/Arg3.1 leads to mGluR-mediated LTD impairment, 

we aimed to confirm it under our experimental conditions and for our mouse lines.  

4.9.1 DHPG- induced LTD in WT and KO mice 

Beside LTD induced by electrical stimulation, long lasting decreases in synaptic 

transmission can be evoked by pharmacological activation of mGlu receptors52.In 

order to investigate mGluR-dependent LTD in WT and KO slices, I initially induced 

LTD by application of 25µM DHPG, a group I mGluR agonist. In WT slices, 25 µM 

DHPG produced a stable reduction of synaptic strength (fig. 48a) (76.3 ±7.02% of 

baseline N= 3 n= 6, average from t= 4.5 to t= 119.5). In KO slices, treatment with 25 

µM DHPG (fig. 48a) (73.54 ±10.03% of baseline N= 2 n= 4, average from t= 4.5 to t= 

119.5), surprisingly, evoked an LTD indistinguishable from WT slices (genotype p= 

0.8024 time p <0.0001 interaction p= 0.3226, two-way ANOVA RM). DHPG 

concentration may affect neuronal excitability and consequently electrophysiological 

properties of CA1 pyramidal cells100. Therefore, in order to assess whether the long 

lasting LTD in KO slices was dependent on DHPG concentration, we decided to 

double the amount to 50 µM. Again, 50 µM DHPG induced a LTD in WT slices which 

was comparable to KO slices (fig. 48b) (WT 72.55 ±4.93% of baseline N= 9 n= 18 KO 

67.98 ±5.28% of baseline, average from t= 4.5 to t= 119.5, genotype p= 0.5068 time 

p < 0.0001 interaction p= 0.365, two-way ANOVA RM).  Even after doubling the 
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<0.0001 interaction p= 0.3226, two-way ANOVA RM). (b) In WT slices, 50 µM DHPG 
induced LTD to 74.61 ±4.94% of baseline (N= 9 n= 18, average from t= 4.4 to t= 214.5), 
whereas in KO to 68.82 ±5.12% of baseline (N= 6 n= 11, average from t= 40 to t= 214.5). 
Again, no statistical difference on LTD in WT and KO slices was found (genotype p= 0.5068 
time p <0.0001 interaction p= 0.365, two-way ANOVA RM). (c) 100 µM DHPG- induced 
LTD in WT and KO slices was comparable in magnitude (WT 68.82 ±7.72% of baseline N= 4 
n= 7, KO 69.32 ±4.07% of baseline N= 3 n= 6, average from t= 4.5 to t= 214.5, genotype p= 
0.9427 time p= 0.0001 interaction < 0.0001). 

 

In conclusion, surprisingly KO slices show normal mGluR- mediated LTD with each 

applied DHPG concentration. These results are in contrast with literature, which 

claims mGluR-LTD relies on Arc/Arg3.1 translation101.  

4.9.2 DHPG- induced LTD and protein synthesis 

It is widely claimed that mGluR-mediated LTD in hippocampal area CA1 is protein 

synthesis dependent and relies on Arc/Arg3.1 translation28,52. First, we were 

interested to investigate the mechanism of protein synthesis on LTD in juvenile WT 

slices at 25, 50 and 100 µM DHPG. Surprisingly, bath application of CHX, the protein 

synthesis blocker, did not affect any LTD induced by 25, 50 or 100 µM DHPG and no 

significant differences were found compared to LTD in untreated slices (fig. 49 e, f, g) 

(25 µM DHPG: untreated N= 3 n= 6 CHX-treated N= 3 n= 6 , average from t= 4.5 to 

t= 119.5, treatment p= 0.7014 time p= < 0.0001 interaction p= 0.9994 two- way 

ANOVA RM;  50 µM DHPG: untreated N= 9 n= 18 CHX- treated N= 7 n= 13, average 

from t= 4.5 to t= 119.5, treatment p= 0.4609 time p  < 0.0001 interaction p= 0.3253 

two-way ANOVA RM; 100 µM DHPG: untreated N= 4 n= 7, average from t= 4.5 to t= 

119.5, treatment p= 0.3879 time p= < 0.0001 interaction p= 0.9903 two-way ANOVA 

RM). Next, the protein synthesis blocker was applied in KO slices and LTD was 

induced by 25, 50 and 100 µM DHPG. CHX did not block LTD induced by any DHPG 

concentration (fig. 49 h, i, l) (25 µM: CHX- treated 77.60 ±2.37% of baseline N= 3 n= 
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5, average from t= 4.5 to t= 119.5; 50 µM: CHX treated 67.33 ±2.56% N= 5 n= 9, 

average from t= 4.5 to t= 119.5; 100 µM CHX-treated 70.93 ±6.78% of baseline N= 3 

n= 5, average from t= 4.5 to t= 119.5).  In conclusion, under our experimental 

conditions, mGluR-mediated LTD is protein synthesis independent in WT slices. The 

results may appear counterintuitive since it is well established that this form of 

plasticity is sustained by novel protein synthesis. However, experimental conditions 

might play a considerable role in this form of plasticity102. 
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LTD induction following 100 µM DHPG in KO slices decreased significantly more than in 
WT slices (WT 40.37 ±10.556% of baseline N= 4 n= 7, t= 4.5, KO 65.22 ±1.55% of baseline 
N= 3 n= 6, t= 4.5, p= 0.035 Mann Whitney t-test). No significant differences were found in 
LTD induction among genotypes at 25 µM and 50 µM DHPG (25 µM: WT 25 ±7.783% of 
baseline N= 3 n= 6, t= 4.5, KO 36.77 ±8.9% of baseline N= 2 n= 4, p= 0.2571 Mann Whitney 
t-test; 50 µM: WT ±5.988% N= 9 n= 18, t= 4.5, KO 31.57 ±4.05% of baseline N= 6 n= 11, t= 
4.5, p= 0.3808 Mann Whitney t-test). 

 

The stronger reduction of the KO fEPSP amplitude in 100 M DHPG could indicate a 

higher sensitivity to mGluRs activation, for example, due to a greater abundance of 

the mGlu receptors. Alternatively, the high concentration of DHPG has unspecific 

effects that are stronger in KO slices. 
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4.11 HFS-induced LTP 

LTP can be induced at Schaffer Collaterals-CA1 synapses by high frequency 

stimulation (HFS) 103. Increasing numbers of HFS episodes result in larger and longer 

LTP. I applied 3 HFS episodes separated by 10 minutes to elicit LTP in WT and KO 

slices. 

4.11.1 LTP in KO slices 

First, LTP was induced in WT slices. Following 30 minutes baseline, 3xHFS was 

applied resulting in E-LTP of 173.10 ±17.2% of baseline (fig. 51) (N= 7 n= 9, average 

from t= 4.5 to t= 19.5) and, as expected, maintained stability until the end of the 

recordings (L-LTP 151.72 ±18.5% of baseline N= 7 n= 9, average from t= 274.5 to t= 

299.5). Surprisingly, KO slices did not show any significant differences neither in the 

E-LTP (174.22 ±7.73% of baseline N= 4 n= 5 average from t= 4.5 to t= 19.5, 

genotype p= 0.9624 time p < 0.0001 interaction p= 0.939, two-way ANOVA RM), nor 

in the L-LTP (154.44 ±16.85% of baseline N= 4 n= 5, average from t= 274.5 to t= 

299.5, genotype p= 0.9243 time p= 0.7175 interaction p= 0.6066, two-way ANOVA 

RM) (fig. 51). Control pathways of both WT and KO slices preserved stability 

throughout the entire recording (WT 99.11 ±5.56% of baseline N= 7 n= 9, average 

from t= 4.5 to t= 299.5, p= 0.3466 paired t-test; KO 97.93 ±10.56% of baseline N= 4 

n= 5, average from t= 4.5 to t= 299.5, p= 0.8479 paired t-test). These results suggest 

that, under our experimental conditions, LTP in KO slices can be induced of a similar 

magnitude and duration to WT LTP. However, it is still unknown whether the 

mechanisms underlying this form of LTP are the same in WT and KO slices. 
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ANOVA RM). In contrast, CHX had no effect on L-LTP in KO slices (fig. 52 b and d) 

(untreated 154.44 ±16.85% of baseline N= 4 n= 5, average from t= 274.5 to t= 299.5 

CHX- treated 143.78 ±9.55% of baseline N= 4 n= 6, average from t= 274.5 to t= 

299.5, genotype p= 0.1996 time p= 0.9989 interaction p> 0.999). Control pathways 

were assessed among groups of slices and only control pathways of WT CHX- 

treated slices showed significant decreased fEPSPs following LTP protocol (90.88 

±4.35% N= 10 n= 15, average from t= 274.5 to t= 299.5,  p= 0.0385 paired t-test).  In 

conclusion, LTP is protein synthesis dependent in WT slices. Moreover, although 

LTP size in KO slices did not differ significantly from WT LTP, it was different by not 

being maintained through novel protein synthesis. It is still unknown which 

mechanisms underlie LTP maintenance in KO slices. 
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RM). (c) (d) Bar graphs showing L-LTP of untreated and CHX- treated slices among WT and 
KO slices 
 

4.11.3 LTP in early cKO mice 

Several lines of evidence suggest that experience-dependent changes occurring in 

mature cortical circuitry built their fundaments during specific time window of 

development56, 104. In order to assess the developmental role of Arc/Arg3.1 in adult 

plasticity, I induced LTP in early cKO mice. In early WT slices, E-LTP was induced to 

166.55 ±14.68% of baseline (N= 4 n= 7, average from t= 4.5 to t= 29.5) and resulted 

in a long lasting L-LTP (148.84 ±15.73% of baseline N= 4 n= 10, average from t= 

274.5 to t= 299.5) (fig. 53). Early cKO slices showed a non-significant increase in E-

LTP compared to early WT slices (207.28 ±20.07% of baseline N= 4 n= 10, average 

from t= 274.5 to t= 299.5, genotype p= 0.1383 time p < 0.0001 interaction p= 0.2031, 

two-way ANOVA RM). L-LTP was comparable in early cKO slices (184.59 ±21.16% 

of baseline N= 4 n= 10, average from t= 274.5 to t= 299.5, genotype p= 0.2287 time 

p= 0.3506 interaction p= 0.902, two-way ANOVA RM) (fig. 53). No significant 

differences were found in fEPSPs of control pathways, before and after LTP protocol, 

among genotypes (early WT 96.52 ±12.93% of baseline N= 3 n= 6 average from t= 

4.5 to t= 299.5, p= 0.776 paired t-test; early cKO 99.37 ±8.05% of baseline N= 4 n= 

10, average from t= 4.5 to t= 299.5, p=0.9382 paired t-test). Taking together these 

results, in early cKO slices the LTP protocol induced a form of plasticity not 

substantially different from early WT slices. However, it is still unknown whether the 

mechanisms required are the same. 
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4.11.5 HFS- induced LTP and protein synthesis in late 

cKO mice 

Next, we were interested in investigating LTP maintenance in late cKO slices.  I 

initially bath applied CHX during LTP recordings in late WT slices and similarly to 

before, the protein synthesis inhibitor blocked L-LTP (fig. 55a) (untreated 136.35 

±5.68% of baseline N= 6 n= 6, average from t= 274.5 to t= 299.5 CHX- treated 

109.69 ±8.09% of baseline N= 9 n= 12, average from t= 274.5 to t= 299.5, treatment 

p= 0.0381 time p= 0.7463 interaction p= 0.6156, two-way ANOVA RM).On the other 

hand, L-LTP was not affected by CHX in late cKO slices (fig. 55b) (untreated 137.96 

±7.09% of baseline N=7 n= 12, average from t= 274.5 to t= 299.5 CHX- treated 

143.67 ±10.29% of baseline N= 6 n= 10, average from t= 274.5 to t= 299.5, treatment 

p= 0.6402 time p= 0.2268 interaction p= 0.8891, two-way ANOVA RM). In summary, 

late cKO slices exhibited a protein synthesis independent LTP. LTP in KO slices was 

also independent of novel proteins synthesis. Taking together, our results suggested 

that the expression of Arc/Arg3.1 in mature synapses is essential to link synaptic 

consolidation with memory. 
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4.12 TBS- induced LTP 

Another form of LTP reported in the hippocampus is induced by Theta Burst 

Stimulation (TBS). KO mice show an exaggerated E-LTP but lack the ability to 

consolidate L-LTP mediated by TBS 46. However, little is known about the 

developmental role of Arc/Arg3.1 on this form of plasticity at the hippocampal circuit. 

Here, I investigated TBS- inducing LTP in KO and late cKO mice. 

4.12.1 TBS-induced LTP in KO mice 

It has been shown that KO mice failed to consolidate L-LTP triggered by TBS, both in 

vivo and in vitro46. In order to evaluate the developmental role of Arc/Arg3.1 in adult 

TBS-induced plasticity, I first tested TBS on WT and KO slices. In WT slices, TBS 

induced E- LTP to 161.19 ±9.71% of baseline (fig. 55a) (N= 4 n= 8, average from t= 

4.5 to t= 29.5) and maintained L-LTP to 131.88 ±4.77% of baseline (N= 4 n= 8, 

average from t= 269.5 to t= 294.5). As expected, KO slices generated an enhanced 

E-LTP compared to WT slices (fig. 56a) (191.25 ±15.87% of baseline N= 5 n= 16, 

average from t= 4.5 to t= 29.5, genotype p= 0.1898 time p <0.0001 interaction p= 

0.0165, two-way ANOVA RM). But surprisingly, L-LTP in KO slices was similar to WT 

(133.16 ±7.98% of baseline N= 5 n= 16, average from t= 269.5 to t= 294.5, genotype 

p= 0.915 time p= 0.0035 interaction p= 0.6915, two-way ANOVA RM). WT control 

pathways were unchanged, whereas KO slices showed reduced fEPSP slopes 

following TBS (fig. 56b) (WT 103.01 ±4.88 N= 4 n= 8, average from t= 4.5 to t= 

294.5, p= 0.5033 paired t-test; KO 88.24 ±2.4% of baseline N= 5 n= 16 average from 

t= 4.5 to t= 294.5, p < 0.0001 paired t-test). 
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(a) Comparison of LTP experiment of WT and KO slices having baseline fEPSP amplitude 
below 1 mV showed a slightly enhanced E-LTP in KO slices (WT 160.17 ±6.13% of 
baseline N= 7 n= 10, average from t= 4.5 to t= 29.5, KO 191.12 ±16.04% of baseline N= 9 
n= 11, average from t= 4.5 to t= 29.5, genotype p= 0.0802 time p < 0.0001 interaction p= 
0.1095, two-way ANOVA RM). L-LTP was blocked in KO slices (114.23 ±7.69% of 
baseline N= 9 n= 11, average from t= 269.5 to t= 294.5), WT slices showed normal LTP 
(133.86 ±4.1% of baseline N= 7 n= 10, average from t= 269.5 to t= 294.5, genotype p= 
0.0469 time p < 0.0001 interaction p= 0.0275, two-way ANOVA RM). (b) In the group of 
slices having baseline fEPSPs amplitude above 1 mV, E-LTP was slightly enhanced in KO 
slices compared to WT slices (WT 159.71 ±10.22% of baseline N= 8 n= 11, average from t= 
4.5 to t= 29.5 KO 184.06 ±10.7% of baseline N= 4 n= 9, average from t= 4.5 to t= 29.5, 
genotype p= 0.0839 time p= < 0.0001 interaction p= 0.2785, two-way ANOVA RM). KO 
slices exhibited an enhanced L-LTP, although not significantly different from L-LTP in WT 
slices (WT 120.5 ±8.29% of baseline N= 8 n= 11, average from t= 269.5 to t= 294.5 KO 
145.84 ±11.3% of baseline average from t= 269.5 to t= 294.5, genotype p= 0.0797 time p= 
0.1854 interaction p= 0.9813, two-way ANOVA RM). 

 

Taking together, KO mice revealed a surprisingly long lasting LTP. However, further 

analysis shows that the magnitude of fEPSPs at baseline correlates with the outcome 

of LTP. fEPSPs of baseline above 1 mV, lLTP was preserved, whereas baseline 

fEPSPs amplitude below 1 mV lLTP was blocked. On the contrary, WT slices did not 

show any differences in LTP concerning baseline fEPSPs.  

4.12.2 LTP and protein synthesis 

It has been reported that Theta Burst stimulation applied at the Schaffer Collateral 

induces a form of LTP dependent on local translation but independent on 

transcription32. Therefore, we were interested to assess whether the dependence of 

translation was occurring in TBS-inducing LTP in WT and KO mice. In WT slices, 

CHX-treated slices showed a slightly enhanced E-LTP compared to untreated slices 

(fig. 59a) (untreated 134.64 ±9.62% of baseline N= 7 n= 8, average from t= 4.5 to t= 

29.5 CHX-treated 155.93 ±6.64% of baseline N= 8 n= 10, average from t= 4.5 to t= 

29.5, treatment p= 0.0532 time p < 0.0001 interaction p= 0.9321, two-way ANOVA 

RM). No significant difference was found in L-LTP (fig. 59a) (untreated 117.12 

±10.5% of baseline N= 7 n= 8, average from t= 269.5 to t= 294.5 CHX- treated 115.7 
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±6.18% of baseline N= 8 n= 10, average from t= 269.5 to t= 294.5, treatment p= 

0.904 time p= 0.6532 interaction p= 0.1274, two-way ANOVA RM).  On the other 

hand, KO untreated and CHX-treated slices did not show any significant difference 

neither in E-LTP (fig. 59b) (untreated 179.91 ±13.84% of baseline N= 6 n= 7, average 

from t= 4.5 to t= 29.5 CHX-treated 179.3 ±13.36% of baseline N= 6 n= 12, average 

from t= 4.5 to t= 29.5, treatment p= 0.9741 time p < 0.0001 interaction p= 0.6659, 

two- way ANOVA RM) nor in L-LTP (fig. 59b) (untreated 133.59 ±9.56% of baseline 

N= 6 n= 7, average from t= 269.5 to t= 294.5 CHX- treated 138.4 ±8.54% of baseline 

N= 6 n= 12, average from t= 269.5 to t= 294.5, treatment p= 0.7121 time p= 0.0578 

interaction p= 0.3433, two-way ANOVA RM). In conclusion, LTP induced by TBS is 

not mediated by the synthesis of novel proteins in WT slices. Similarly, LTP in KO 

slices did not show any alteration by CHX administration. 
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average from t= 274.5 to t= 299.5, genotype p= 0.2303 time p= 0.0577 interaction p= 0.1763, 
two-way ANOVA RM). 

 

Thus, late cKO slices showed normal LTP. This form of plasticity is sustained by 

mechanisms shaped during early stage of development in which Arc/Arg3.1 was still 

present. Therefore, TBS-induced LTP in late cKO slices is comparable to relative WT 

slices. 
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5 Discussion 

5.1 A novel form of LTD in mature hippocampal synapses 

Although LTP remains the most widely accepted model for learning and memory, 

over the last decades LTD has also been implicated in some forms of memory. For 

instance, studies showed that LTD might be involved in weakening synapses 

irrelevant for newly learned information and, using optogenetic stimulation, LTD has 

been linked to memory inactivation25,12. The cellular mechanisms underlying LTD 

within the hippocampus change with development and stimulation protocols 106. Two 

forms of LTD are known to coexist in the hippocampus: one is mediated by activation 

of NMDA receptors and the other by activation of mGluRs77. The present study 

identifies a novel form of LTD induced in adult hippocampal slices by multiple LFS 

and is mediated by NMDA receptors. Indeed, APV blocked the LTD, whereas MCPG 

the group I mGluRs antagonist, did not have any effect on this form of plasticity.  In 

adult hippocampus, NR2A and NR2B are the two predominant NMDAR-subunits 18. 

Using hippocampal slice preparation, it has been shown that selectively blocking 

NR2B-containing NMDARs abolished the induction of LTD but not LTP, whereas 

inhibition of NR2A-containing NMDARs prevents the induction of LTP without 

affecting LTD19,107. Moreover, NR2A and NR2B subunits undergo a particularly well-

characterized developmental shift in the cortex. NR2B subunits are abundant in the 

early postnatal brain, whereas NR2A increases with development and the 

recombination of these subunits is highly regulated by sensory experiences108,109. In 

addition to changes in subunit-composition, in the cortex the localization of NR2A- 

and NR2B-containing NMDARs has a marked impact on LTD and LTP.  For instance, 

NR2B-containing NMDARs might be targeted to extrasynaptic sites107, 110. We found 

that our LTD is not dependent on NR2B-containing NMDARs. Therefore, we presume 
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that this form of NMDAR-mediated LTD involves NR2A-subunits, which are sufficient 

to trigger the LTD.  It is not yet known whether the NR2B antagonist Ro25-6981 

blocks NR1/2A/2B heteromers.  

L-type VGCCs are involved in numerous processes in the neurons, including gene 

expression, synaptic efficacy and cell survival111. Previous studies have shown that 

LTD in neonatal CA1 pyramidal cells depends on postsynaptic depolarization that 

evokes Ca2+ entry through L-type channels and on simultaneous activation of 

mGluRs78. Application of nifedipine, the L-type VGCC antagonist, induced a stronger 

LTD compared to the relative DMSO-control group. Interestingly, the simultaneous 

inhibition of NMDARs and L-type VGCCs activation during LFS blocks LTD to the 

same extent as does blockade of NMDARs only. Therefore, we suggest that L-type 

VGCCs are coupled downstream of NMDAR activation, and L-type channels alone 

are not able to sustain LTD without pairing with NMDARs. It was recently published 

that NMDARs and L-type VGCC cooperatively regulate the transfer of AMPARs to 

the dendritic plasma membrane (PM)112. This publication supports the statement that 

upon stimulation, AMPAR-recycling endosome (RE) docking and fusion to the 

plasma membrane requires NMDARs activation, and coincident L-type VGCCs 

activation is required to transfer for delivering the AMPARs to the PM. Interestingly, 

blocking NMDARs completely prevents all forms of activity-triggered RE fusion. On 

the other side, blocking L-type VGCCs has little effect on mobilization and fusion of 

REs with the PM; it drastically increases the incidence of display-mode events that 

transfer less RE cargo to the PM in dendritic shafts. Based on these results, we 

presume that a similar mechanism is involved in our NMDAR-LTD. However, the 

function of L-type VGCCs on this form of plasticity is still not clear. Figure 61 shows 

schematically the receptors and channels involved in LTD induction. 
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5.2 NMDAR-LTD maintenance is a balance between 

protein synthesis and protein degradation 

Previous studies have shown that the balance between novel protein synthesis and 

protein degradation is essential for long lasting hippocampal LTP. Indeed, the 

blocking of translation and of proteasomal pathway separately disrupts LTP 

expression31,113. In line with this idea, we found that the novel form of LTD in WT 

mice is mediated by the simultaneous translation of novel proteins and lysosomal 

degradation of proteins (fig. 61). It is widely believed that novel protein synthesis is 

required for some forms of LTD, since inhibitors of translation cause a recovery of 

synaptic transmission within few hours of induction114. In our hands, application of 

CHX blocks LTD already during the induction phase, meaning that CHX might affect 

the production of transmembrane receptors involved in this form of plasticity, such as 

AMPARs. Interestingly, our LTD is regulated by lysosomes rather than by the UPS, 

even though it has been observed elsewhere that blocking lysosomal degradation did 

not have functional consequences on LTD maintenance115. This observation is also 

at odds with several recent studies suggesting a role for the proteolytic activity of the 

UPS in activity-dependent synaptic plasticity84. A role for lysosomes however is 

supported by other studies116, 117. The endocytosis of AMPA receptors is known to be 

important for the expression of NMDAR-dependent LTD118. Recently, studies in 

dissociated hippocampal neurons suggested that lysosomes move to the dendrites in 

an activity-dependent manner and directly correlate with the distribution of 

internalized membrane proteins and AMPARs96 (fig. 62). 
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that modulates the electrophysiological, morphological and biochemical properties of 

AMPA receptors in regulating synaptic plasticity119. For instance, phosphorylation 

sites at serine 845 (S845) of AMPARs is critical for LTD expression since mice 

lacking S845 lack LTD120. S845 is phosphorylated by PKA and is a key site 

controlling AMPARs trafficking. It traffics receptors to extrasynaptic membranes and 

primes extrasynaptic receptors for synaptic insertion121 In contrast, phosphorylation 

of S880 of GluA2-containing AMPARs reduces GluA2 surface expression, which 

eventually promotes LTD122. It remains still unknown whether our LTD protocol is 

modulated by the same AMPAR-phosphorylation sites. Ubiquitination, another PTM, 

has emerged as an important regulator of AMPARs trafficking and function123. 

Depending on the chain length and topology of the targeted proteins, ubiquitination 

can target them to proteasomal or lysosomal degradation124. Therefore, it might be 

fundamental to check whether the same modifications in phosphorylation and 

ubiquitination of AMPARs are occurring in our experiments at the baseline level and 

upon stimulation.  In summary, we hypothesize that in WT mice the translation of 

Arc/Arg3.1 might be fundamental in trafficking AMPARs to the lysosome. Yet, 

blocking Arc/Arg3.1 translation AMPARs recycle back to the transmembrane (fig.62). 
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5.3 Enhanced E-LTD in KO mice 

Arc/Arg3.1 is a well-known activity-regulated immediate early gene, which is being 

intensively studied due to its crucial role in linking neuronal activity to long lasting 

synaptic plasticity and, ultimately, memory formation46, 125. Arc/Arg3.1-deficient mice 

show impaired hippocampal LTD and deficits in memory consolidation46, 53. However, 

in our hands KO mice exhibit enhanced E-LTD and sustained L-LTD and reveal a 

similar dependency on NMDAR activation as WT. Both pre and postsynaptic 

mechanisms have been proposed to explain NMDAR-dependent LTD126. Although 

Arc/Arg3.1 is known to be expressed only at postsynaptic structures54, the stronger 

E-LTD showed by KO mice might be related to presynaptic alteration, such as for 

instance a more severe decrease of transmitter release due to less neurotransmitter 

available for the release or transient decrease of local Ca2+ concentration at the 

presynaptic active zone. To regulate synaptic strength postsynaptic neurons release 

substances from the cell bodies and dendrites, these messengers act in a retrograde 

manner to modulate neurotransmitter release from presynaptic terminals127. 

Recently, it was found that in drosophila Arc/Arg3.1 (dArc1) protein forms capsid-like 

structures that bind darc1 mRNA in neurons and is loaded into extracellular vesicles 

that are transferred from motorneurons to muscles128. It has been also reported that 

this retroviral-like mechanism of transfer is required for dArc1 function in Drosophila. 

We hypothesize that these EVs loaded with Arc/Arg3.1 mRNAs might also be present 

in mice hippocampus and act as a retrograde messenger from the postsynaptic cell 

to the presynaptic terminal following stimulation in order to regulate neurotransmitter 

release by moderating VGCCs kinetics. Therefore, lack of Arc/Arg3.1 might occlude 

this phenomenon, leading to an enhanced E-LTD. However, there is still no evidence 

of such a mechanism in mammalians. It is interesting to note that at the baseline 

level, KO slices showed an enhanced current threshold to evoke action potentials 
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compared to WT slices, although the resulting fEPSP amplitude reached by that 

current remains comparable in both genotypes.  This analysis suggests that KO 

slices might be less excitable, due to enhanced inhibition, synapses or spines 

number.  

One of the best characterized functions of Arc/Arg3.1 is scaling neuronal output 

through internalization of AMPA receptors47. It has been shown that loss of 

Arc/Arg3.1 leads to an increase in the steady state level of surface GluR1, relative to 

WT control49. One alternative to the direct internalization of AMPARs from the 

synaptic site includes the lateral diffusion of these receptors where they cycle with 

intracellular pools129,130. Since KO mice show an enhanced E-LTD, this alteration 

might be linked to a temporary increased lateral diffusion of AMPARs to extra 

synaptic membrane and, eventually, their internalization (fig. 63).   
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5.4 Novel protein synthesis and lysosomal degradation in 

LTD of KO mice 

Memory consolidation is assumed to require specific patterns of activity that lead to 

stable modifications of synaptic structure and function. Those modifications are in 

part dependent on synthesis and degradation of proteins131, 84. Arc/Arg3.1 is an IEG, 

first identified as activity-dependent gene, fundamental for memory and synaptic 

consolidation132,46. Surprisingly, our findings show that KO mice exhibit sustained 

LTD, although these mice still show severe deficits in memory consolidation46,133,134. 

Despite the similarity of LTD magnitude in WT and KO mice, in WT slices the 

inhibition of protein synthesis and lysosomal degradation separately prevents LTD 

maintenance. In contrast, KO slices do not show any LTD impairment either by 

blocking of protein synthesis and of lysosomal degradation, separately or 

simultaneously. It has been already shown that LTD induced in-vitro, under certain 

conditions, might endure several hours without synthesis of novel proteins74. Protein 

synthesis independent forms of LTP and LTD might rely on a pool of previously 

synthesized proteins, which will eventually be depleted. Thus, in-vivo, high protein 

turnover at the synapse renders memory persistence and plasticity dependent on 

novel protein synthesis. Indeed, in living animals, experience rapidly invokes short 

term memory that consolidates into long term memory via a process which also 

requires protein synthesis. Arc/Arg3.1 KO mice exhibit normal short-term memory but 

entirely lack all forms of long-term memory.  My current findings, show that large LTD 

can be evoked and persist for 2 hours in the KO mice, similar to the duration of the 

short term memory. The absence of protein synthesis may however, prevent this LTD 

from consolidating into changes underlying long-term memory. 
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However, my findings differ from previous reports of transient LTD in the Arc/Arg3.1 

KO mice46. One explanantion is that LTD protocols previously used in KO slices were 

different from our LTD protocol46,52. LTD induced by a conditioning stimulation 

composed of one LFS train is prevented by application of NMDA receptors 

antagonist80. The LTD protocol used in our study was composed of two trains of LFS, 

with an inter-train interval of 10 minutes. We suggest that a mechanism of 

metaplasticity135 might differently prime NMDA receptors function during the first LFS 

and consequently alter the cellular mechanism following the second LFS. Essentially, 

metaplasticity allows neurons to change their physiological and biochemical state in 

order to generate synaptic plasticity. Notably, metaplasticity is not supposed to alter 

the synaptic strength, but it modulates only the capability of the synapses to undergo 

LTP or LTD through, for instance, regulation of biochemical processes135, 136. 

Experience-dependent plasticity is modulated by changes in sensory input occurring 

over the course of the day137,138. However, studies on circadian regulation of 

hippocampal plasticity found that endogenous circadian oscillator modulates synaptic 

plasticity in the hippocampus139. During sleep an activity dependent down-selection 

of synapses is supposed to renormalize net synaptic strength and restores cellular 

homeostasis, a crucial mechanism for memory consolidation140. All the LTD 

recordings were in the sleeping-state of the mice. LTD in WT slices seems to be 

sensitive to the pharmacological blocking of the mechanisms essential to its 

maintenance. Since LTD recordings in KO slices were not affected by any 

pharmacological treatments, we suggest that KO mice exhibit an inflexible shrinkage 

of synapses which underlies the persistent LTD and as a consequence a lead to 

deficits in memory consolidation.  
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On a basal synaptic transmission level WT slices treated with CHX or leupeptin did 

not exhibit any changes in I/O curve. In contrast, leupeptin-treated KO slices showed 

a significantly lower I/O curve compared to untreated KO slices, but no significant 

alteration was detected in CHX-treated slices. The reduced synaptic response seen 

by blocking the lysosome in KO slices might be the result of decrease membrane 

excitability due to less AMPARs at the PM or diminished Ca2+ influx pre or 

postsynaptically116. Further analysis by detecting lysosomal localization before and 

after stimulation could be useful to understand its function on LTD. 

5.5 The role of dendritically-translated Arc/Arg3.1 in LTD 

Previously, it has been shown that upon NMDAR activation newly synthetized 

Arc/Arg3.1 mRNA is specifically targeted to active synapses, where it undergoes 

local translation89. It was also reported that the targeting of Arc/Arg3.1 mRNA was 

not confounded by blocking of local translation, meaning that the signal for the 

localization at the dendrites is in Arc/Arg3.1 mRNA itself54. The present study shows 

that NMDAR-dependent LTD is completely blocked in adult slices of 

tg(3’UTR)Arc/Arg3.1 mice. Although lacking of local translation of dendritic 

Arc/Arg3.1 mRNA, the somatic expression of Arc/Arg3.1 protein and its delivery to 

the dendrites are intact in these mice. Additionally, It was also proven that Arc/Arg3.1 

is specifically localized at the synapses of Tg(3’UTR)Arc/Arg3.1 mice. The resistance 

of tg(3’UTR)Arc/Arg3.1 mice to undergo LTD following LFS is caused by the lack of 

local Arc/Arg3.1 translation, which might result in insufficient activation of NMDARS 

activation,  since LTD could not be even induced in tg(3´UTR)Arc/Arg3.1 mice. The 

impaired NMDAR-LTD induction can be generated by reduced AMPARs 

internalization and/or decrease in NMDARs number or conductance.   
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In addition, the basal synaptic transmission was significantly decreased in 

tg(3’UTR)Arc/Arg3.1 mice as indicated by significantly smaller fEPSPs compared to 

that of WT mice.  This might be due to the significantly enhanced current threshold to 

induce action potentials, suggesting reduced membrane excitability in 

Tg(3’UTR)Arc/Arg3.1 slices. In order to better understand this phenomenon, it would 

be worthy to investigate voltage-gated channels activation, inactivation, and synaptic 

conductance on spike threshold. Additionally, decreased synaptic transmission can 

also be caused by reduced presynaptic neurotransmitter release which is modulated 

in part by retrograde messenger that travels from the postsynaptic to the presynaptic 

cells and directly impact synaptic plasticity141. Therefore, in Tg(3’UTR)Arc/Arg3.1 

mice retrograde signaling mediated by, for instance, nitric oxide (NO)142 might be 

attenuated. This could result in reduced neurotransmitter release, underlying the 

observed decrease in basal synaptic transmission.  
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5.6 mGluR-LTD is protein synthesis independent in 

juvenile WT mice 

In young mice, the best known form of LTD is mediated by mGluRs15. This form of 

plasticity is largely known to rely on novel protein synthesis at the hippocampal-CA1 

dendrites, since isolated dendrites still support LTD24. Briefly, mGluRs activate the 

expression of several proteins, such as Arc/Arg3.152, MAP1B143, FMRP144 which 

regulate AMPARs internalization and promote LTD.  The removal of synaptic 

glutamate receptors, such as AMPARs, is a well-established mechanism for the 

expression of mGluR-LTD in the hippocampus145. 

Surprisingly, our study shows a form of mGluR-LTD independent on novel protein 

synthesis. Indeed, CHX does not show any effect on DHPG-inducing LTD, in any 

DHPG- concentration used.  

The protein synthesis dependence of DHPG-induced LTD is known to be 

developmentally regulated28. In fact, previous studies on protein synthesis concluded 

that DHPG-LTD is independent of protein synthesis at P8-P15 and becomes 

dependent between P21-P35. Here, we show that at P21-P23 mGluR-LTD, in WT 

mice, is still protein synthesis independent. Whether this changes at older ages, 

remains unknown.  

Moreover, it has been reported that the induction of stable LTD in the CA1 region of 

the hippocampus of awake adult rats is facilitated by exposure of mild stress146  Our 

mice were housed in the animal facility, picked up in the morning and directly 

anaesthetized and sacrificed in our laboratory. The animals were neither acclimatized 

nor handled before the procedures. Thus, we suggest that the mice might have 

experienced mild stress before slicing. Preparation for transport by caretakers in the 
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basement, transport from the basement to the laboratory, changes in room 

temperature and the exposure to novel environmental cues could be a source of mild 

stress for rodents and the stress might promote LTD even when blocking protein 

synthesis. Interestingly, it has also been documented that the time window in which 

LTD could be reliably elicited was prolonged by inducing anesthesia immediately 

after the stress146.  Although it has been reported that the effects of stress on LTD 

appear to be mediated primarily by NMDARs activation147, we hypothesize that a 

similar effect might happen also in our LTD mediated by mGluRs.  

Recent evidence showed that the circadian rhythm can alter synapse number or 

strength148. For instance, hippocampal LTP is facilitated during the dark cycle, when 

mice are active139. On the other hand, during sleep cellular mechanisms involved in 

decreasing synaptic transmission in hippocampus and cortex are active. Studies on 

changes in GluR1-containing AMPAR levels in mice during wakefulness and sleep 

show that a significant increase in total GluR1 level is detected in 

synaptoneurosomes of the waking group149. Interestingly, it was found that during 

sleep the ratio of nuclear to cytoplasmic Arc/Arg3.1 expression is higher, compared 

to wakefulness and sleep deprivation in supragranular cortical layers150. Arc/Arg3.1 

localizaton to the nucleus promotes an increase in promyelocytic leukemia nuclear 

bodies, which decrease GluR1-containing AMPARs transcription151. Since our 

experiments were all performed during the mice’s light-cycle (i.e. sleep phase), it is 

possible that a decrease of GluR1 transcription, due to an increased nuclear 

Arc/Arg3.1, promotes LTD even in absence of novel protein synthesis.  

 

 



 

118 
 

5.7 Normal mGluR-LTD in Juvenile KO mice 

Previous reported suggested that Arc/Arg3.1 is essential for mGluR-mediated LTD in 

juvenile mice, since Arc/Arg3.1 KO showed impaired mGluR-LTD52. It had been 

shown that activation of mGluRs triggers dendritic Arc/Arg3.1 translation, which 

eventually promotes AMPARs internalization and LTD maintenance152. Surprisingly, 

in our experiments mGluR-LTD was preserved in juvenile KO mice, and was protein 

synthesis independent in both WT and KO mice. These findings are at odds with 

previous publications24. Arc/Arg3.1 KO mice used in these publications were identical 

to ours as well experimental procedures including slicing, recovery time, solutions, 

chamber perfusion and stimulation. Subjective time of day at brain preparation was 

not reported in these publications and may be different to ours.  On a cellular level, it 

is known that mGluR activity stimulates translation through two major signaling 

pathways, ERK-MAPK and PI3K-mTOR pathways153.  It is still unknown whether 

these pathways are influenced by light/dark cycle. A first preliminary examination 

might be to check whether these pathways are also activated by mGluRs following 

DHPG application in juvenile KO slices under our experimental conditions.LTP is 

facilitated during the dark cycle and more interestingly, LTP of slices prepared during 

the light-phase but recorded during the dark-phase has a profile remarkably similar to 

the dark group, i.e. LTP was preserved139. Additionally, molecular and 

electrophysiological evidence suggest that sleep is linked with LTD and memory 

consolidation149. The role of LTD during sleep makes sense since activity-dependent 

down regulation of synaptic strength, potentiated after wake, restores cellular 

homeostasis and favors memory consolidation140. LTD experiments in our hands 

were performed during the sleep phase of the mice. It might be possible that in KO 

mice different states of metaplasticity promote the persistent LTD following DHPG 

application. Furthermore, no differences in basal synaptic transmission were found 
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between WT and KO mice, suggesting that on a baseline level fast excitatory 

transmission is comparable between genotypes. Since LTD is supposed to occur 

during the night in order to restores synaptic network for proper memory storage, the 

persistence of mGluR-LTD in KO mice might explain the consequent lack of memory 

consolidation show in these mice.  

5.8 Arc/Arg3.1 expression during development in adult 

plasticity 

Proper development of cortical circuitry is influenced in part by ongoing sensory 

events, occurring in distinct postnatal time-windows56.Arc/Arg3.1 mRNA is detected 

at P7 with upregulation peaking between P14 and P21133,134. In this study we show 

that following LTD and LTP protocols early cKO mice exhibit an enhanced E-LTD and 

E-LTP and sustained L-LTD and L-LTP. Late cKO mice show an overall preserved 

synaptic plasticity.  

LTD and LTP are conventionally separated into two-phases: the early-phase and the 

late-phase.  The early-phase is known to be unaffected by transcriptional and 

translational inhibition30 and rather relies on protein phosphorylation (PTMs), which is 

known to  be a postsynaptic mechanism154.                                                                                         

PTMs are mechanisms for regulating ionotropic glutamate receptors, including 

AMPARs and NMDARs154. One of the PTMs involved in regulating synaptic plasticity 

is phosphorylation155. It was reported that phosphorylation at 831 and 845 sites 

(S831 and S845, respectively) of the GluR1 subunit of AMPARs are modulated 

during LTD and LTP156. Previous studies found that GluA1 S831 phosphorylation by 

CaMKII157 and PKC158 increased single channel conductance, whereas S845 

phosphorylation enhanced the channel open probability and the current peak of 
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GluA1-containing AMPARs159. It might be possible that the enhanced E-LTD and E-

LTP detected in early cKO mice as well as the enhanced E-LTD and E-LTP in KO 

mice are the consequence of an alteration of the state of AMPARs phosphorylation 

sites occurred upon stimulation. In fact, phosphorylation of the GluR1 subunit on 

S831 is significantly increased in visual cortex of KO mice50. It would be interesting to 

examine the state of AMPAR-phosphorylation sites, in particular at S831 and at 

S845, in CA1 of our KO and early cKO slices before and within 20 min of following 

LTD and LTP protocols. Intriguing, our work demonstrates that the presence of 

Arc/Arg3.1 until the end of the third postnatal week lacks a change in E-LTD and E-

LTP. In order to test whether the changes in the state of phosphorylation sites are a 

developmental issue, it might be interesting to test S831 and S845 before and after 

LTP and LTD protocols in the late cKO as well, and compare the results with the 

results of KO and early cKO mice. If the phosphorylation state of AMPARs is different 

at the baseline level in late cKO mice compared to KO mice, we might suggest that 

this difference is due to the role of Arc/Arg3.1 during development in regulating 

synaptic function. We show that late cKO mice exhibit seemingly normal LTD, LTP 

and basal synaptic transmission. However, the mechanisms of LTD and LTP 

maintenance like KO mice, late cKO mice show are protein synthesis-independent, 

as in KO mice. Taking together these results, it seems that the presence of 

Arc/Arg3.1 during early postnatal development, affects the size of E-LTP and E-LTD, 

which were abnormally elevated in the KO and early-cKO but not the late cKO. In 

contrast, protein synthesis dependence of the LTD and LTP was impaired in all Ko 

and cKO mice demonstrating that presence of Arc/Arg3.1 at the time of activity-

dependent plasticity events is fundamental for engaging the protein synthesis 

machinery. In this case, the link between protein synthesis and Arc/Arg3.1 

expression might not be a developmental issue. 
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6. Abstract 

The expression of the immediate early gene Arc/Arg3.1 is rapidly upregulated 

following neuronal activity, synaptic plasticity and learning. The loss of Arc/Arg3.1 

has been well-correlated with the impairment of long term depression (LTD) and long 

term potentiation (LTP), as well as with deficits in consolidation of long term memory 

in mice. In order to further investigate adult hippocampal plasticity in acute slices of 

Arc/Arg3.1 knock-out (KO) mice, a novel form of LTD is initially established in wild 

type mice. The novel LTD is dependent on NMDARs activation and supported by the 

synthesis of novel proteins and by the protein degradation through the lysosomal 

pathway. In KO mice, NMDAR-LTD was enhanced in the early phase but, 

surprisingly, it remains stable throughout the entire recording. Further investigations 

on the mechanisms underlying the LTD maintenance reveal that the LTD in KO mice 

is independent on both protein synthesis and lysosomal degradation. These data 

demonstrate that, under certain circumstances, the maintenance of the LTD is not 

directly linked with memory consolidation, since KO mice still show deficit in memory 

consolidation. In this regard, if we want to directly correlate the time needed for the 

memory to evolve from short term to long term memory, i.e. days and weeks, with the 

time-window investigated for LTD experiments, 2 hours, and the discrepancy is pretty 

remarkable. These results acknowledge the role of Arc/Arg3.1 in linking protein 

synthesis dependent-synaptic plasticity with memory consolidation.  

Proper development of cortical circuitry is influenced in part by ongoing sensory 

events, occurring in distinct postnatal time-windows. Since Arc/Arg3.1 mRNA and 

protein are expressed in the hippocampus early after birth, we were interested in 

understanding whether this gene acts during neuronal development in shaping adult 

plasticity. Indeed, adult conditional mice in which Arc/Arg3.1 is ablated after 7 days 
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postnatally (early cKO) show a LTD comparable to KO mice, i.e. enhanced E-LTD 

and normal L-LTD. On the other hand, the ablation of Arc/Arg3.1 after the third 

postnatal week (late cKO) do not show any significant effect on LTD. The role of Arg 

3.1 in linking long lasting synaptic plasticity to memory is supported by the results of 

NMDAR-LTD experiments in KO mice. However, it is still under debate whether this 

link matures during development or later in life. In order to consider a developmental 

role of Arc/Arg3.1 in settling the association between protein synthesis and 

maintenance of synaptic plasticity, LTD was induced in late cKO mice in the 

presence on the protein synthesis blocker cycloheximide (CHX). Here, in these mice 

LTD was independent on novel protein synthesis, like the LTD expressed in KO mice. 

Together these results validate Arc/Arg3.1 as a crucial bond during the stimulation 

time in order to link the novel protein synthesis with the consolidation of synaptic 

plasticity associated with memory.  

Growing evidence suggests the role of local protein synthesis in supporting several 

forms of synaptic plasticity related with memory formation. The unique feature of 

Arc/Arg3.1 gene to be locally translated gives the opportunity to determine whether 

the dendritic Arc/Arg3.1 translation is directly involved in synaptic plasticity, i.e. 

NMDAR-LTD. To examine this possibility, LTD is induced in mice lacking dendritic 

Arc/Arg3.1 mRNA (Tg (3’UTR) Arc/Arg3.1). Interestingly, they show impaired LTD 

induction and lack of LTD maintenance, confirming the role of local Arc/Arg3.1 

translation in NMDAR-LTD.  

Next attempt is to directly evaluate hippocampal plasticity in slices derived from 

juvenile KO mice. In juvenile mice the best known form of LTD is mediated by 

mGluRs. Therefore, we induce a chemical mGluR-LTD by bath-application of DHPG, 

the well-known mGluRs agonist.  This form of mGluR-LTD, known to rely on novel 
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protein synthesis, unexpectedly is not protein synthesis dependent in our wild type 

mice. Additionally, this form of plasticity does not show any impairment in KO mice, 

peculiar results since the scientific community agrees that Arc/Arg3.1 is essential in 

regulating mGluR-dependent LTD. Our data suggest that, under certain 

circumstances, mGluR-LTD might be sustained by signaling mechanisms unrelated 

to novel protein synthesis. However, these signaling mechanisms remain to be 

identify both for the LTD in wild type and in KO mice. 

 The other model of synaptic plasticity strongly linked with memory is long term 

potentiation (LTP). LTP is induced initially in KO mice by application of the high 

frequency stimulation (HFS) protocol, which consists of three train of HFS (100 Hz 

each train). In KO mice, HFS induces an enhanced E-LTP, as previously reported. 

However, in this set of experiments, the L-LTP was surprisingly preserved. It is well-

accepted that HFS induces protein synthesis dependent L-LTP. Therefore, we next 

aim to assess this statement by inducing HFS-LTP in the presence of the protein 

synthesis blocker CHX in wild type and KO mice. Indeed, HFS-LTP is protein 

synthesis dependent in WT mice. Conversely, KO mice show a protein synthesis 

independent L-LTP. The developmental role of Arc/Arg3.1 in HFS-inducing LTP is 

assessed in late cKO mice as well. Yet, in late cKO mice HFS-LTP is unaffected by 

the CHX, confirming the independence on protein synthesis. Together these results 

point to the conclusion that Arc/Arg3.1 is essential in mature neurons in order to link 

protein synthesis with LTP maintenance. This assumption goes eventually in line with 

previously reported results on NMDAR-LTD and protein synthesis in KO and late 

cKO mice.  

The second form of LTP investigated is induced by theta burst stimulation (TBS). KO 

mice confirmed enhanced E-LTP but, yet, the L-LTP was maintained. Further 



 

125 
 

analysis on TBS-LTP recordings of KO mice reveals a correlation between the 

amplitude of the evoke response during baseline with the maintenance or decay of L-

LTP. Furthermore, we confirm that TBS-LTP is protein synthesis independent. Late 

cKO mice exhibit normal TBS-induced plasticity, confirming the previously reported 

result of HFS-LTP in this mouse line. Taking together, these results suggest that 

Arc/Arg3.1 deficient mice, under certain circumstances, are able to undergo and 

maintained activity-dependent synaptic plasticity. However, this capability does not 

act in linking synaptic plasticity and memory consolidation. It remains still matter of 

debate which mechanisms support the abnormal long lasting plasticity in KO mice 

and, eventually, whether this abnormal plasticity might be rescue. 
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7. Zusammenfassung 

Das unmittelbar-früh exprimierte Gen (immediate early gene, IEG) Arc/Arg3.1 wird 

nach neuronaler Aktivität, synaptischer Plastizität und Lernvorgängen exprimiert. Der 

Verlust von Arc/Arg3.1 korreliert mit einer Störung von synaptischer Langzeit-

depression (long term depression, LTD) und Langzeitpotenzierung (long term 

potentiation, LTP), sowie fundmentalen Problemen bei der Konsolidierung des 

Langzeitgedächtnisses. Für ein tieferes Verständnis der Plastizität in akuten 

hippokampalen Hirnschnitten adulter konstitutiver Arc/Arg3.1 knockout Mäuse (KO) 

wurde eine neue Form von LTD in wildtyp Mäusen (WT) etabliert. Diese Form von 

LTD ist abhängig von NMDA-Rezeptoren (NMDAR) und geht einher mit de novo 

Proteinsynthese und lysosomalem Proteinabbau. In KO-Mäusen ist dieses NMDAR-

LTD in der Anfangsphase verstärkt und bleibt während der gesamten 

Aufzeichnungsphase stabil. Eine weitere Untersuchung des zugrunde liegenden 

Prozesses ergab, dass das LTD in KO-Mäusen sowohl von Proteinsynthese als auch 

von Proteinabbau unabhängig ist. Diese Daten zeigen, dass die Stabilisierung von 

LTD und die Gedächtniskonsolidierung nicht direkt miteinander verknüpft sein 

müssen, da KO-Mäuse trotz LTD kein stabiles Langzeitgedächtnis ausbilden können. 

Hierbei ist zu bedenken, dass die Ausbildung des Langzeitgedächtnisses über Tage 

und Wochen erfolgt, während der Zeithorizont bei LTD-Experimenten mit ca. 2 

Stunden wesentlich kürzer ist. Arc/Arg3.1 könnte in diesem Zusammenhang die 

Lücke zwischen Proteinsynthese-abhängiger synaptischer Plastizität und 

Gedächtniskonsolidierung überbrücken. Die Entwicklung kortikaler Netzwerke wird z. 

T. durch andauernde sensorische Erfahrung während eines begrenzten postnatalen 

Entwicklungsfensters beeinflusst. Da Arc/Arg3.1 mRNA und Protein im Hippokampus 

bereits kurz nach der Geburt exprimiert werden, wollten wir untersuchen, inwiefern 

dieses Gen bereits bei der neuronalen Entwicklung Einfluss auf die Ausbildung 
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adulter Plastizität nehmen kann. Konditionale Arc/Arg3.1 KO-Mäuse, in denen die 

Expression 7 Tage nach der Geburt ausgeschaltet wurde (early cKO), zeigten 

tatsächlich ein zu KO-Mäusen vergleichbares LTD mit einer verstärkten frühen (E-

LTD) und normalen späten Phase (L-LTD). Eine weitere konditionale Mauslinie, in 

der Arc/Arg3.1 erst nach der dritten postnatalen Woche ausgeschaltet wird (late 

cKO), zeigte dagegen keine signifikante Veränderung der LTD. Die Rolle von 

Arc/Arg3.1 bei der Überbrückung von Langzeitplastizität und Gedächtnisausbildung 

wird somit durch die Resultate aus NMDAR-LTD Experimenten in KO Mäusen 

bestätigt. Unklar bleibt bisher, ob diese Verbindung schon während der Entwicklung 

oder erst später im Leben von Bedeutung ist. Um dies besser zu verstehen, wurde 

LTD in late cKO Tieren in Anwesenheit des Proteinsyntheseinhibitors Cycloheximid 

(CHX) untersucht. Hierbei zeigte sich, dass LTD unabhängig von de novo 

Proteinsythese exprimiert wurde, vergleichbar mit den Ergebnissen aus KO Mäusen. 

Dies bestätigt die Rolle von Arc/Arg3.1 als Bindeglied zwischen proteinsynthese-

abhängier synaptischer Plastizität und Gedächtnisbildung in adulten Tieren. 

Eine Vielzahl von Studien legt nahe, dass lokale Proteinsynthese eine wichtige Rolle 

für verschiedene Formen von synaptischer Plastizität und Gedächtnisbildung spielt. 

In diesem Zusammenhang sollte untersucht werden, ob lokale, dendritische 

Arc/Arg3.1 Translation eine Rolle bei NMDAR-LTD spielt. Hierfür wurde LTD in 

einem Mausmodel ohne dendritische mRNA (Tg (3’UTR) Arc/Arg3.1) induziert. 

Interessanterweise zeigten sich hier eine gestörte Induktion und Expression von LTD, 

wodurch die Rolle von Arc/Arg3.1 bei lokaler Translation während NMDAR-LTD 

unterstrichen wird. 

Als nächstes sollte hippokampale Plastizität in Hirnschnitten junger Mäuse untersucht 

werden. Eine vielfach untersuchte Form von LTD wird hier über metabotrope 
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Glutamatrezeptoren (mGluRs) vermittelt, die durch Badapplikation von DHPG, einem 

mGluR-Agonisten, induziert werden kann. Diese Form von mGluR-LTD, die 

normalerweise proteinsynthese-abhängig ist, erwies sich unerwarteter Weise als 

nicht proteinsyntheseabhängig in unseren WT-Mäusen. Darüber hinaus zeigte sich 

auch keine Veränderung in unseren KO-Tieren. Beides unerwartete Ergebnisse, da 

eine Beteiligung von Arc/Arg3.1 an mGluR-LTD durch viele Studien belegt ist. 

Unsere Daten lassen den Schluss zu, dass mGluR-LTD unter bestimmten 

Umständen unabhängig von Proteinsynthese etabliert werden kann. Welche 

Signalwege einem solchen Prozess zu Grunde liegen, verbleibt sowohl für KO, als 

auch für WT Mäuse ungeklärt. 

LTP ist eine andere Form synaptischer Plastizität, die als wesentliche Grundlage für 

Gedächtnisprozesse erachtet wird. Hier wurde LTD in KO Mäusen durch 

Hochfrequenzstimulation (high frequency stimulation, HFS) induziert, bei der jeweils 

drei Pulse HFS mit einer Frequenz von 100 Hz appliziert werden. In KO-Mäusen führt 

diese Stimulation, wie zuvor gezeigt, zu einer erhöhten E-LTP. Überraschender 

Weise blieb L-LTP in unserer Serie von Experimenten stabilisiert. Induktion über HFS 

führt nach allgemeiner Auffassung zu einer proteinsynthese-abhängigen L-LTP. Dies 

wollten wir durch Induktion von HFS-LTP in Anwesenheit des Proteinsynthese-

blockers CHX in WT und KO-Mäusen überprüfen. Es stellte sich heraus, dass HFS-

LTP in WT-Mäusen tatsächlich proteinsynthese-abhängig war. In KO-Mäusen 

dagegen war L-LTP proteinsynthese-unabhängig. Zusätzlich sollte die entwicklungs-

biologische Rolle von Arc/Arg3.1 bei HFS-LTP in late cKO Mäusen untersucht 

werden. In diesem Modell erwies sich HFS-LTP als CHX-resistent und damit als 

proteinsynthese-unabhängig. Zusammengenommen deuten diese Ergebnisse darauf 

hin, dass Arc/Arg3.1 in reifen Neuronen ein Bindeglied zwischen Proteinsynthese-
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abhängigkeit und LTP-Stabilisierung darstellt. Diese Interpretation der Ergebnisse 

stimmt mit den hier zuvor dargestellten Beobachtungen an NMDAR-LTD und der 

Proteinsyntheseabhängigkeit in KO und late cKO Tieren überein. 

Eine zweite von uns untersuchte Form von LTP wird durch ein theta burst stimulation 

Protokoll (TBS) induziert. KO Mäuse zeigten ein verstärktes E-LTP und ein 

konsolidiertes L-LTP. Eine weiterführende Analyse in KO Tieren ergab einen 

Zusammenhang zwischen der Amplitude evozierter, basaler Feldpotentiale und der 

Stabilisierung von L-LTP. Darüber hinaus konnten wir bestätigen, dass TBS-LTP 

proteinsynthese-abhängig ist. Late cKO Mäuse zeigten eine unveränderte TBS-

induzierte Plastizität, in Einklang mit zuvor gezeigten Eigenschaften von HFS-LTP in 

dieser Mauslinie. Zusammengefasst lassen diese Ergebnisse die Schlussfolgerung 

zu, dass in Arc/Arg3.1 KO Mäusen, unter bestimmten Umständen, aktivitäts-

abhängige, synaptische Plastizität induziert und stabilisiert werden kann. Durch 

welche Mechanismen diese aberrant Formen synaptischer Plastizität in Arc/Arg3.1 

KO Mäusen vermittelt werden, verbleibt kontrovers. Ebenso, ob und wie normale 

Plastizität in diesen Tieren wiederhergestellt werden kann. 
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8. List of abbreviation 

 

aCSF    Artificial cerebro spinal fluid 

AD    Alzheimer´s disease 

Amp    Amplitude 

AMPAR   α-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid 
receptor 

ANOVA RM   Analysis of Variance repeated measure 

APV    DL-2-amino-5-phosphovaleric acid 

Arc/Arg3.1 Activity-regulated cytoskeleton-associated protein Activity 
regulated gene 3.1 protein  

AS    Angelman Syndrome 

BDNF    Brain-derived neurotrophic factor 

CA    Cornu ammonis 

CamKII    Ca2+ /Calmodulin-dependent protein kinase II 

CHX     Cycloheximide 

cKO    Conditional knock-out 

CNS    Central Nervous System 

Ctrl    Control pathway 

DDW    Distillated water 

DG    Dentate gyrus 

DHPG    (S)-3,5-Dihydroxyphenylglycine hydrate 

Dyn    Dynamin 

DMSO   Dimethylsulfoxid 

EC     Entorhinal cortex 

eEF2K   Eukariotic initiation factor 4E kinase 

E-LTD/P   Early-Long term depression/potentiation 
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End    Endophilin 

EPSP    Excitatoty post synaptic potential 

fEPSP    Field Excitatory Post Synaptic Potential 

FMRP    Fragile mental retardation protein 

FV    Fiber volley 

FXS    Fragile X syndrome 

GluA1    Glutamate receptor 1 subunit 

HFS    High frequency stimulation 

Hz    Herz 

IEG    Immediate early gene 

KO    knock-out  

Leu    Leupeptin 

LFS    Low frequency stimulation 

LFP    Local field potential 

L-LTD/P   Late-Long term depression/potentiation 

LTD     Long term depression 

LTP    Long term potentiation 

MCPG   (RS)-α-Methyl-4-carboxyphenylglycine 

MF     Mossy fibers 

MG132   carbobenzoxy-Leu-Leu-leucinal 

mGluR   metabotropic glutamate receptor 

N    number of mice 

n    number of slices 

Na    Natrium/Sodium 

Nif    Nifedipine 

NMDAR   N-methyl-D-aspartate receptor 

NO    nitric oxide 
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NR2A/B   NMDAR subunit A/B 

P8    Post-natal day8 

Pop-spike   Population-spike 

PP    Perforanth Path 

RO25-6981 (αR,βS)-α-(4-Hydroxyphenyl)-β-methyl-4-
(phenylmethyl)-1-piperidinepropanol 

SC    Schaffer collateral 

SEM    Standard Error of the mean 

SI     Stimulus Intensity 

TBS    Theta burst stimulation 

Tg Transgenic mice with the 3´ UTR of Arc/Arg3.1 encoding 
region is replaced with the 3´UTR of Zif268 

Ube3A   Ubiquitin-protein ligase E3A 

UPS    Ubiquitin Proteasome System 

VGCC    Voltage gated calcium channel 

WT    Wild type 
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