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1. Introduction

Conservation laws are an important class of homogeneous hyperbolic partial differential
equations (used to model wave motion and advective transport problems), where the total
amount of the conserved quantity between two points changes only due to the flux past
these points [22]. They form the mathematical foundation behind the study of fluid dy-
namics, which is broadly needed in the areas of geophysics, gas dynamics, acoustics, among
others. Many of these physical problems give rise to nonlinearities, leading to discontinuous
solutions like shock waves. This and the wide range of scales in which the different physical
phenomena takes place bring often numerical difficulties, making more relevant the need

of a deeper understanding of these equations origin.

Through out the study of rarefied gas flows, different macroscopic transport models have
been developed as a more approachable alternative to the Boltzmann kinetic equation (from
which they are also derived), specially for higher orders of the Knudsen numbers (Kn). In
the limit of sufficiently small Kn, the Euler equations and the Navier-Stokes and Fourier
equations can be derived, forming a link between the microscopic world of gas particles and
the macroscopic one of fluid dynamics. One of the most promising is the order of magnitude
method (OMM) which accomplishes stability at any order of Kn [36]. The OMM uses Chap-
man—Enskog-like asymptotic expansion techniques of the corresponding moments in terms
of the Knudsen number, which plays the role of a relaxation parameter for the Boltzmann
equation, the resulting moment systems are asymptotically closed without an additional

closure relation.

Based on the previous stated connection between kinetic theory and conservation laws, we
use the order of magnitude method in order to derive kinetic-induced moment systems for

the spatially one-dimensional scalar and 2 x 2 system case of conservation laws from a given



Boltzmann-like kinetic equation, where Kn is represented now by the smallness parameter
e. The resulting partial differential equations are used first, as monitoring functions in
order to detect particular flow structure like shock and rarefaction waves, resulting in novel
grid-adaptive simulation tools and second, as a basis to derive novel parametrizations for

subgrid closures.

This thesis is organized in five chapters. First, in chapter 2 we explain the basic concepts
of conservation laws and kinetic theory. Second, in chapter 3 we describe the order of
magnitude method and apply it to the scalar case and to a 2 X 2 system of balance laws
(inhomogeneous conservation laws (2.7)), where we can prove that for ¢ — 0, higher order
moment systems tend to the original balance law plus a new function W (x, t), which may act
as a monitoring function to detect special solutions like shock and rarefaction waves. Third,
in chapter 4 we perform numerical experiments in order to compare the original balance
law with their corresponding moment system up to some order of accuracy. Initially, a
static grid is used and the effects of different small values of € are studied, then we include
the new variable W (x,t) as refinement criteria into adaptivity techniques and compare it
with traditional mesh refinement approaches. Two main example are treated: the inviscid
Burgers equation and the shallow water system. Finally, in chapter 5 we explore the
spectral characteristics of the derived moment system for the inviscid Burgers case and the
possibility to employ it as a "subgrid closure" model when using Fourier-Galerkin spectral
approximations by comparing different amounts of resolved scales with different values of
e. In order to make the last chapter more readable, we include in Appendix A and B the

complete set of figures of the numerical experiments used for it.



2. Preliminaries

During the following chapter, we will give an overview of basic concepts needed to have a
better understanding of the succeeding chapters. The first section introduces the deriva-
tion of conservation laws together with two of its main approximation methods, the finite
differences (FDM) and finite volumes methods (FVM). These concepts will be useful to un-
derstand the origin of the systems under study and the choice of numerical schemes for the
corresponding numerical experiments. In the second section, we review the basic knowledge
on kinetic theory, the modelling of gas flows and the connection with conservation laws,

which are the key of the latter construction of kinetic-induced moment systems.

2.1 Conservation laws

Consider a one-dimensional density vector function ¢(z,¢) of m components, each one
representing different conserved quantities. Given any smooth, bounded region V' C R, the

total mass within V at a time ¢ is given by

/Vq(x, t)dz (2.1)

Since the aforementioned quantities should be conserved, their concentration is neither
created or destroyed (principle of conservation) and thus the rate of change within V comes
only from flux vector function f(q), which controls the rate of loss or increase of g(zx,t)
through the boundary 0V. It makes then sense to write that for each time ¢, the following

holds

0
e /qux =— aVf(q) -vdS (2.2)

where v denotes the outward unit normal along V. By using the divergence theorem we

/V gl = — /V [(@)ad (2.3

can rewrite (2.2) as



and derive a general first order nonlinear PDE system of conservation laws
qt + f(Q)l =0 inRx (07 tfinal) (24)

Definition 2.1.1. (Conservation laws)
A system of conservation laws is a system of partial differential equations that can be written

in the form
G+ f(q). =0, (2.5)
where

q= (Q17q27 o 7Qm)T7 f(q) = (fla f2> e >fm)T' (26)

q(z,t) € R™ represents the vector of conserved variables and f € R™ the flux vector, each

fi component is a function of the components q; of q [40].

We call an equation of the form (2.4) a system of balance laws when it is inhomogeneous,
meaning that, there exits a source term S(q) # 0 € R™ which contributes to changes in
the physical variables under investigation. A general one-dimensional nonlinear system of

balanced laws reads

qt + f(Q)l = S(q) in R x (Oatfinal> (27)

When f(q) = aq with a constant value, the flux function is linear and we simply get the
advection equation, in which case the solution translates uniformly. On the contrary, if f(q)
is nonlinear, the solution deforms as it evolves and shock waves appear, across which, the
solution is discontinuous and (2.4) does not hold any more in the classical sense. Consider

now a control volume in space I = [z, xg] then integrate (2.4) over it

o [*R RG]
2 / et [ saar=o (2.8)
subsequent integration of the second term by parts results in the integral form of (2.4),
o [*R
5i | ot 0 = flaten,t) - Fatra.t) (29



this is an important definition since at a discontinuity in ¢, equation (2.9) will continue to
hold if the Rankine-Hugniot conditions are satisfied. These conditions, relate the jump of
the conserved quantities ¢ and fluxes f(q) across a shock wave with the propagation speed

s of the discontinuity, they vield

s(gr —qr) = F'(qr) — F(qr) (2.10)

here g, and qg represent the states coming from the left and right side of the shock.

Additionally, the system (2.4) can be written in quasilinear form as
qi + A(q) Q= 0 inRx (Oytfinal) (211)
where A(q) is the Jacobian matrix of the flux vector.

Definition 2.1.2. (Jacobian Matriz)
The Jacobian of the flux vector f(q) in (2.4) is the matriz

afl/afh 3.f1/an
Alg) = Z_f; _ 3fz'/3q1 8f2/:8Qm (2.12)
afm/a(h afm/aqm

each entry 0f;/0q; corresponds to the partial derivative of the i—component of the flux

vector f(q) with respect to the j—component of the conserved quantities vector q [40].

Definition 2.1.3. (Eigenvalues)

The eigenvalues \; of a matriz A are the roots of the characteristic polynomial
PN\ =]A=X|=det(A—XI)=0 (2.13)
where I is the identity matriz. They are also called the eigenvalues of the system [40].

In the physical sense, the eigenvalues will represent different speeds of propagation of

information.



Definition 2.1.4. (Eigenvectors)
A right eigenvector of a matriz A is a vector r' = [ri vl - ri 17 satisfying Ar' = \ir'.
In a similar way, a left eigenvector of a matriz A is a vector I* = [I8,1%,--- ,I¢ T such that

FA =X\ [40].

Definition 2.1.5. (Hyperbolic system)
A system (2.4) is said to be hyperbolic if A has m real eigenvalues X; ;1,.. ;) and a corre-
sponding set of m linearly independent right eigenvectors r*. The system is strictly hyper-

bolic if all \; are distinct [40].

A system of m equations, will have m waves in the solution of the Riemann Problem and

m characteristic fields defined by the characteristic speed \;(q).

Definition 2.1.6. (Linearly degenerate field) An i—characteristic field is said to be
linearly degenerate if

VAi(g) - r'(q) =0 VgeR" (2.14)

where 7\ represents the gradient with respect to the wvector of conserved quantities q,

i.e. 7\ = 0N/0q [40].

If this is the case, nor shock nor rarefaction waves can occur in the i—characteristic field, in-
stead a contact discontinuity appear, which is linear and propagates to the i—characteristic

speed on each side without distorting.

Definition 2.1.7. (Genuinely nonlinear field) An i—characteristic field is said to be
genuinely nonlinear if

VAi(q) (@) #0 VYgeR™ (2.15)

This property ensures that characteristics are always compressing or expanding as ¢ varies,

so either shocks or rarefaction waves can take place [40].



In order to give physical meaning to the Riemann Problem solution, a discontinuity sep-
arating left and right states, propagating at speed s, must satisfy the following Entropy
Condition

Xi(qr) > s > Ni(qr) (2.16)

so that the i-th characteristic is impinging on the discontinuity, while the other ones are

crossing it. Furthermore,

Nj(qr) < s and \j(qp) < s for j <i

Ni(qr) > s and X\;(qg) > s for j >

where the eigenvalues are assumed to be ordered as A\; < Ay < ... < \,. For more details

on the properties of conservation laws systems see [11],[20],[21],[22].[40].

Example 2.1.1. (Burgers Equation)

Burgers Equation is one of the most fundamental nonlinear scalar conservation laws, defined

by
ou 0 [u? B
a'F%(?) =0 (2‘1{)

2
where the velocity flux is given by F(u) = 5 thus F'(u) = w. In quasi-linear form the

equation reads

ou ou
o Tum- =0 (2.18)

and the characteristic speed is just \(u) = w with its derivative N'(u) = 1 > 0, meaning

that the flux is convexr and therefore larger values of u propagate faster than small ones.

Example 2.1.2. (Isentropic gas dynamics)

Consider the isentropic' gas equations given by

dp 0
N + %(pu) =0 (2.19)
0

a(pu) + %(qu + P(p)) =0 (2.20)

! Adiabatic flow, i.e.. without gain or loss of heat

-1



where p(t,x) denotes the gas density, u(t,z) the velocity in x—direction and P(p) the

pressure. We choose a polytropic gas®, meaning that the equation of state follows the relation
P(p) =", 7y €R (2.21)

In quasi-linear form the previous system read

0 1 0
g S - (2.22)

pu ) —u?+a? 2u) \ pu 0

with a = ykp?~t. The eigenvalues are given by 12 = u F a, which are real and distinct,

then the system is strictly hyperbolic. The right and left eigenvectors are

rt = .ot = (2.23)

'=((u+a),l), P?=(+(u-a)l) (2.24)

2.1.1 Numerical methods for conservation laws

Rarely, it is possible to find an analytical solution to systems like (2.4), specially if we
want to get closer to real scenarios. Several successful numerical methods have been de-
veloped over the years, which approximate the solution of such problems along a given
space and time interval. Here, we make an overview of two of the most important ones for

Conservation Laws, which will then be used ahead to perform our numerical experiments.

Finite differences

Consider the scalar case of (2.4), the Finite Differences Method replaces the derivatives in

the nonlinear first-order PDE with finite differences approximations, which are evaluated

?The internal energy is a function only of temperature, usually proportional to it.



in a finite number mesh instead of in a continuous domain. Let us define a spatial domain

[a,b] where (2.4) holds, the space discretization is then denoted by M equidistant points
r; = a+iAx, V 0<i<M-1 (2.25)

Ax = (b—a)/(M — 1) is the cell width. In a similar way, the temporal discretization of

the time domain [0, tfm@l] is determined by the time levels
ln=nAt, V 0<n<N (2.26)

with At = tfinq/N the time step and tyi,q = At - N. The finite mesh will be given by
(2.25) and (2.26). A general explicit numerical method can be defined by the numerical
operator

Lh(Q?) = Q?—H - H( ?—l: T 7Q1z’17 ?—1—17 T 7Q?+fr) =0 (2'2T)

which acts on discrete point values Q. The operator H is a real function of (I +r + 1)
variables, with [ and r the scheme size. The Local Truncation Error to one time step is
then defined as

Li(q(@i, tn))

Ve (2.28)

here the numerical operator is applied to the exact solution computed at the mesh point

((I,'Z‘, tn)

Definition 2.1.8. (Order of accuracy)

A numerical method is of order of accuracy p in space and k in time if
7 = O(AzP) + O(ALY) (2.29)

Definition 2.1.9. (Consistency)

A numerical method is said to be consistent with the partial differential equation if

T—=0 as Ax—0 (or AlL—0) (2.30)



The exact value of ¢(z,t) in (2.4) evaluated at the grid point (z;,t,) is thus approximated
by Q! and its respective partial time and space derivatives (9;,0,) by one of the following

finite differences approximations.

o forward differences (1% order accurate)

n+1 n
Ovq(xiyty) = i NI — + O(At) (2.31a)
Opq(xiyty) = ZHA:L’ @ + O(Ax) (2.31b)

o backward differences (1% order accurate)

n n—1
gz tn) = & A? +O(A) (2.32a)
Dpq(i, ) = ©r AQZ L+ 0(Ax) (2.32b)

e centred differences (2" order accurate)

Q- Q! )
Yy i T Wi A 334
0yq(s,1y) SAL + O(At?) (2.33a)
‘ _ Qi — @i 2
0pq(i,ty) N + O(Az”?) (2.33h)

The above approximation will be of use later during the implementation of our numerical

experiments.

Additionally, for conservation laws one could use a conservative scheme like (2.41) to solve

the scalar case of (2.4), which reads

At

ar=Qr- o (234)

7 [ i+i T z—%}

given that changes in the conservative quantity come only from the fluxes to left and right

hand side of the domain. Details follow in the next section.

10



Definition 2.1.10. (Courant-Friedrichs-Lewy condition)
In the case of an explicit discrete scheme, the domain of dependence of the PDE is contained
in the domain of dependence of the numerical scheme if

At

N2 ip e < CF Lygy 2.35
with A .. = max |\ the largest characteristic speed at time n and CF Ly, = 1 the
2

linearised stability limit for convection dominated problems [24].

Remark 2.1.1. For diffusion dominated problems the mesh restriction includes

At
VA_;L’Q S CFLmax (236)

with v the diffusion coefficient and C'F Lyq, = 1/2

The previous CFL condition is a necessary condition for stability and convergence as the
grid is refined (Al, Az — 0). A more detailed description on the general construction of

finite differences schemes and their properties can be found in [23], [28], [40].

Finite volumes

Consider now the nonlinear system (2.4), the Finite Volume Method is based in the integral
form (2.9), which continues to hold along discontinuities. Instead of making approximations
at grid points like the finite differences method, the domain is divided into grid cells, and
the numerical solution gives an approximation of the average value of ¢(z,t) on each one.
Defining C; = (xi_%, T, +%) the i-th grid cell, the average value of ¢(x,t) over the i-th interval
at time t,, is given by

n 1 Lord
QF ~ Ar CiQ(ilfatn)dl' (2.37)

where Az = Tl — T 1. In each time step, these values will change only by the fluxes
through the edges of the grid cells and the total mass within the computational domain

will be preserved. Recall the integral form (2.9)

5 [ a0 = o)~ fa(ry.0) (2:38)

q 1,10
C; 2
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We want to approximate Q?H which is the value of the cell average in the next time step.
Integrating (2.9) over a time interval [t,,¢,.1] and dividing by Az we get

1 1 1 d 1 tnt1 ‘ d bt ‘ d
E Ciq(lb,tn—i-l)(lﬁ_ E/ClQ(l’,tn) f—g{/tn f(Q(xH_%,t)) t—/tn f(q(a:i_%,t)) 3

(2.39)
If we define FZ"jF L as the approximation of the flux average along © =z, 1, i.e.
1 lny1
g a0 (2.40)
then (2.39) may be written as
Q= Q- S, Fr) (2.41)

where FgFl is the approximation of the flux average along z = x,_1 in the time interval

3 F3
[tn, tny1]. The real flux is giving by f(q) where g(x,t) is the exact solution.
1 tnt1

n
1

e 2 5 f(q(miq%,t))dt (2.42)
However, since we do not know the exact solution it is not possible to evaluate the time
integrals of the flux exactly and thus it is necessary to construct a good approximation
of the flux function based on the approximate cell averages Q". The idea behind it, is to
use a piecewise constant function defined by the cell averages Q7 (2.37) as initial data to

compute the numerical flux Fi+1 at cell interfaces z,-1, so it will be a function of the states
2 2

:F

on the left and on the right of the interfaces.
= Fi—i—%( i+ Qi) (2.43)

Several numerical fluxes can be found in the literature ([15],]22],[40]), from the simplest

one called central flux given by

Py = 2 (1@ + 1(Q2) 2.44)

passing through the Lax-Friedrichs, the Lax-Wendroff and the FORCE which increase in

complexity. and reaching the most accurate and complex one called the Godunov fluz
p ) g p .

FE9 = f( ‘f;) (2.45)



where the Godunov state Qz(iol = Q""(0,t) is the exact solution at the cell interface of the
2

local Riemann Problem, which yields

Qi+ J-=0 (2.46a)
7, ifx <0

Q(x,0) = (2.46Db)
n,o ifz>0

Remark 2.1.2. The ezxact computation of the local Riemann Problems in (2.46) can be
complex and time-consuming, therefore the use of approximated Riemann solvers are
rather common. One of the most popular and the one used in this work is the Roe lineari-
sation method, which is first order accurate and follows the properties of hyperbolicity,
consistency and conservation but is not entropy satisfying, the so called Harten-Hyman

entropy fiz is then used in case of sonic entropies to avoid this problem [22].

In a similar way to the finite differences method, the CFL condition (Def. 2.1.10) will again
impose a constraint onto the mesh velocity (Az/At) as a necessary condition for stability.
In the case of first order hyperbolic systems with p eigenvalues A, ; in cell i, it reads

At

n Lo d

Smam AIE S CFLma:L‘ (24{)

where S)! = max {max | Api |} is an estimate of the largest wave speed at time n along
7 D )

with CF L0 = 1.

Definition 2.1.11. (Consistency)

The numerical fluz is said consistent if all the arguments of F, L1 are identical

Fia(Q,Q,...,Q) = f(Q) (2.48)

%
Theorem 2.1.1. (Laz-Wendroff 1960)

If a conservative method is consistent and stable then its numerical solution is conver-

gent and it converges to a weak integral solution of the conservation law.

The respective proof can be found in [21].
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Fractional-step methods

When discretizing a Balance Law (2.7), instead of solving the entire system, an easier ap-
proach is the use of fractional-step methods. The idea is to split the complete system into
two sub-problems, that can be solved separately. The first problem will consist in the ho-
mogeneous conservation law system which can be resolved by using a finite volume method
in time step Af, later this solution will be used as initial condition in the discretization
of the second problem, which will change accordingly with the nature of the source term.

Therefore, the solution of the previous system will be equivalent to solve

oqg 0 . . _
e + o (q) =0 (2.49a)
dq

2.2 Basic concepts of kinetic theory

2.2.1 Boltzmann equation and BGK relaxation model

The Boltzmann equation describes the statistical distribution of the density of particles
f(t,z,&) which at time ¢ and position z moves with velocity £. It is formed by the effects
of the free advection of particles (left hand side) and the collisions between them, since

involves exchange of energy and momentum (right hand side). It reads,
0 0 1
—f=—_9 2.50
5 T¢a. = 7050 (2.50)

with Kn the Knudsen number * and S(f) the collision term. One of the different ways to
express S(f) in a simpler manner (and the one used here) is the Bhatnagar-Gross-Krook
(BGK) model, which must satisfy balance of mass, momentum and energy depending on
the problem,

SU) = fo— 1 (2.51)

3Ratio between the mean free path (average distance travelled by a particle between collisions) and the

system typical length Kn = \/L.
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with fy the local equilibrium function. A deeper study on the Boltzmann equation and the

BGK model can be found in [36].

Moments of f(t,,¢)

The moments derived from the Boltzmann equation are weighted averages of the distribu-
tion function much more approachable than [, given that [ sometimes can be difficult to
compute and is usually charge with a lot of information that might not be useful. They

form a complete set of partial differential equations [36], and follow

Wy = / ¥ f(t,x,&)de  for a=0,1,2,... (2.52)
R

Remark 2.2.1. The weighted averages of fo(t,z,§) are called equilibrium moments.

2.2.2 Macroscopic transport equations for rarefied gas flows

The modelling of gas flows implies the numerical solution of the Boltzmann equation (2.50),
which can be a quite complex and time demanding task, even for small values of the Knud-
sen number. However, the type of gas flow can be characterized by Kn offering alternative
models to the kinetic equation (2.50) but derived directly from it, which will result in faster

and more efficient macroscopic transport equations.

The simplest case is the hydrodynamic regime (Kn < 0.01), it can be accurately described
by the laws of Navier-Stokes and Fourier, yet the NSF equations stop to be valid for the de-
scription of gas microflows in the transitional regime (0.01 < Kn < 10) where the processes
demand a more detailed method. Simplified extended macroscopic models for rarefied gases
* that replace (2.50) have been developed for Kn < 1, which include: the Chapman-Enskog
expansion in powers of Kn, its higher orders have been proven unstable for time-dependent

problems [13]; the Grad’s moment method, which provides stable equations for any set of

1Flow of gases below standard atmospheric pressure, also called low-pressure gas flow [26].



moments considered basic variables, though it is not related to the Knudsen number and
thus unclear which moment set needs to be considered for a given process [9, 16]; and the
Order of magnitude method that combines the first two. The last method considers the
infinite coupled set of all possible moment equations, at any order of Kn yields sets of
moment equations produced from the requirement that the number of variables is a small
as possible. The Chapman-Enskog expansion is used only to identify the Knudsen order
of moments [37]. This method will be the base of our research on kinetic-induced moment
systems for conservation laws, a deeper explanation will follow in Chapter 3. For a detailed

review of the literature on rarefied gas flows approximation methods see [36].

For Kn 2 1 including the free-molecular flow regime (Kn 2 10) the only option is to solve
the Boltzmann equation numerically either by direct numerical simulation (DNS) or direct

simulation Monte Carlo (DSMC) [5].

2.2.3 Kinetic representation of conservation laws

On the other hand, one can also establish a connection between the kinetic equation (2.50)
and a conservation laws system (2.4) through a valid kinetic representation. First, we
define the kinetic formulation of a conservation laws, which according to Lions [25] is an
equivalent equation to the original hyperbolic system based on an appropriate Boltzmann-

like transport equation such that:
- consider a full family of entropy inequalities,
- it involves an additional variable ¢ called kinetic or microscopic velocity.
- its £&-moments recover the original equations and their entropy conditions.

A weaker version of this formulation and the one covered here is the so-called kinetic
representation, it uses only the single entropy coming from the total energy and is based on

the representation formula given by its equilibrium £-moments (the motivation for this and
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a detailed construction of a kinetic formulation can be seen in [33]). Next, we will outline
the construction of the kinetic representation for the isentropic gas dynamic system as an

example.

Example 2.2.1. (Kinetic representation of isentropic gas dynamics)
An equivalent equation to the isentropic gas dynamic system (2.19) is based on the repre-

sentation formula

p 1
U = € | folp,§ —u)d§ (2.53)
pu’ + rp? R\ &

which is valid under fo(p, &) defined as,

folt,z.€) = folp,§) = p' " x(5) with =723 (2.54)

and where the function x(w) € R fulfils the properties

X(w) =x(—w) >0  (even non-negative function) (2.55a)
/ X(w)dw =1 and / wWx(w)dw = K (2.55b)
R R

The succeeding proof is just a simple computation of the right hand side of (2.53). Now, by
integrating w.r.t. £ against weights 1 and &, and using the values in (2.53), we can check

that G(t,x,&) defined as

0 0
g folp & —u) + & folp, & —u) = Gt 2,€) (2.56)

satisfies the conservation relations

/Gdfz() and / EGdE=0 (2.57)
R R
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It is possible to consider (2.56) as the limit when ¢ — 0 of a Boltzmann-like equation with

a BGK relaxation term, written as

o8 + -1 (1,3,6) =

Y)Ir—\

fO Ps 5_ u f(t7m7§>] (258‘1)

St x,§)d (2.58b)

Eft,x,€)d (2.58¢)

\\<

where ¢ < 1 is a smallness parameter representing Kn and

.t
As mentioned in Perthame [33], the rigorous proof of this consideration is still an open

problem.

The kinetic representation (2.56) can also be used for numerical purposes, it allows the
construction of stable solvers for the numerical approximation of the flux needed in the finite
volume method (2.41). The so called kinetic schemes use the moments of the numerical
fluxes coming from the kinetic approach of the hyperbolic system to discretize the flux
in (2.41). In the case of the isentropic gas dynamics (2.53) the fluxes are under the flux

splitting ® form, where

Flys = Folplud) + Fo(pin uita), (2.60a)
1
Fe(p,u)= [ & ‘ fo(p, & —u)dg, (2.60Db)
£>0
1
Fo(pu)= [ ¢ ‘ Jo(p, € —u)ds. (2.60¢c)
£<0

5A different approach to the Godunov method for identifying upwind directions in the FVM, it allows

to write the scheme for one sign of the velocity [22],[40]
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The details of the construction and properties of these type of schemes are not within the

scope of this work. For further reading see [32], [33].
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3. Kinetic-Induced Moment Systems

Based on the formulation of the order of magnitude method done by H. Struchtrup [35]
which constructs a set of stable transport equations for rarefied gases at high orders of the
Knudsen number, we want to derive a general kinetic-induced moment system for the one-
dimensional nonlinear balance law in the scalar case and for a 2 x 2 system of equations.
The moment system will depend on the smallness parameter ¢ < 1 (representing Kn from

now on), which in the formal limit € — 0 yields the original balance laws.

3.1 Order of magnitude method (OMM)

As mentioned in section 2.2.2, the stability problems of the higher order expansions coming
from the Chapman-Enskog method [10] and the lack of connection between the Knudsen
number and the set of moment equations derived from the Grad’s moment method [36] in
rarefied gases modelling (¢ < 1), were the motivation behind H. Struchtrup formulation of
a new extended hydrodynamic model [35, 37] which combines the previous two methods
in order to derive a set of equations capable to capture micro-scale effects at high orders
of £ |36], i.e. when the typical length L is of the order of the gas mean free path A\. The

computation of such equations with order of accuracy ny in € follows:

1. Determine the order of magnitude 7 of the moments. Based on a Chapman-
Enskog expansion with ¢ as smallness parameter, expand the moment w, (2.52)
according to

Wo = Z 5ﬂwaﬁ = W0 + EWa,1 + W2 + - . . (3.1)
5=0

and determine the leading order n by inserting the expansion into the complete set

of moment equations. The expansion of the Boltzmann equation (2.50) is transferred



from the phase space (as done by the Chapman-Enskog method [10]) to the moment

space.
Definition 3.1.1. A moment is said to be of leading order 7, if wap =0 V3 < n.

Remark 3.1.1. [t is important to underline that the order of magnitude method is
not interested in the computation of the coefficients w, g, but rather in their leading

order.

2. Construct a moment set of equations with the minimum number of mo-
ments at order 7. New variables are introduced by linear combinations of the
original moments, such that at a given order n the number of variables is minimal

and form a unique set of moments, independent from their initial choice.

3. Model reduction to a given order of accuracy 7. Delete all terms in the system
that lead to contributions of the order n > 1, according to the definition of order of

accuracy adopted for the problem.

Therefore, the order of magnitude method constructs a unique stable moment system
at any order of accuracy 7o based on the infinite moment system of the Boltzmann
equation, the resulting transport equations contain the minimal number of moments at a

given order of magnitude 7. Both orders are measured in powers of the ¢ [36].

Next, we will use OMM based on a Boltzmann-like kinetic equation (with ¢ < 1) to
construct a higher order moment system correlated with the one-dimensional scalar and

the 2 x 2 system case of nonlinear balance laws (2.7) and study its properties.

3.2 Non-linear scalar balance laws

Based on the construction of a unique moment set for the one-dimensional transport equa-

tion using the order of magnitude method in [37], a similar moment system is constructed
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in [38] such that at zeroth order accuracy in ¢, it yields the general form of a one dimen-
sional nonlinear balance law equation, where the nonlinear flux is given by F(u) € C*(R)
and the source term by P(t,z,u) € C°(R? x Ryy).

ou O
ETd %F(U) = P(t,z,u) (3.2)

3.2.1 Boltzmann-like kinetic equation and the infinite moment sys-

tem

Considering an artificial kinetic equation of the form (2.50) plus BGK-relaxation (2.51),
we denote by p € [—1,1] the velocity of the particles and uy = u the zeroth moment of
f(z,t, p), defined as :

uo(z,t) = /1M0f(t7$7/i) du (3.3)
The corresponding advection process is then given by & = F'(ug) + p, with F'(ug) the
local (macroscopic) convection speed coming from (3.2), so it will be possible to recover
the correct nonlinear flux function F'(ug). Consequently, the distribution function f(z,t, u)

obeys the kinetic equation

O (F () + )

of
ot ox

1
= g(fo — /) (3.4)
Proposition 3.2.1. The final Boltzmann-like kinetic equation corresponding to (3.2) is
given by

L (F - == (_ — ) — D

Proof. Since we want to recover an scalar balance law, the zeroth moment of the collision
term (right hand side of (3.4)) must balance the source term in (3.2), which means

|
[ 2= n = Plu) (3.6a)

1

where ° = 1 and ¢ is a constant value, then

[ o= nan=epiu) (3.6b)
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/_sz dp — /_llfdﬂ = P (uo). (3.6¢)

Moreover, the zeroth moment of f(z,t, ) must only balance mass (in this case given by

up(z,t)) as defined in (3.3), therefore we can write

1 1
Fody = / Fdpi+ 2 P(ug) (3.64)
—1 —1
1
/ Jodp =wug+eP(ug) by (3.3) (3.6e)
-1
and given that fj is independent of p by definition, it is possible to compute the expression
U EP(U()) .
= — 4 — 3.6f
Jo 5 + 5 (3.6f)
Inserting (3.6f) into (3.4) we get (3.5). O

Remark 3.2.1. In the case of scalar conservation laws the zeroth moment of the collision

term (3.6a) must be equal zero.

Proposition 3.2.2. (Infinite moment system) Let u, and w, be the even and odd

monomial moments of the distribution f(x,t, ),

Uq = f_ll,uza fdu for a=0,1,2,... even,

Wy = f_llu(2a—1) fdu for a=1,2, ... odd,
respectively. Then, the infinite moment system reads,
8U'O 8U0 8’1,01
o )G+ 5y = PG 3.8:
ar (1) or | oz (o) (3.8a)
0’Uja ow ou 1
F - = = ——w, =1,2,... 3.8h
o+ (w) =+ = “w,  a=12 (3.8b)
ou ou Oway1 1 o P(uo)
Y A @ atl _ 1 o, ~Plug) 19 -

Proof. Multiplying the kinetic equation (3.5) by powers of p and subsequent integration

vield the system (3.8). O

Later use of the order of magnitude method allows the derivation of a scale-induced closure
to a finite number of moment equations at a given order of accuracy in . In particular,

the recovery of the general balance law equation (3.2) at zeroth order.
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3.2.2 Order of magnitude method

According to the description made in section 3.1, the order of magnitude method will assign
orders of magnitude to the moments, so that one may construct a new set of equations with

the minimal amount of them at each order. Expanding all moments according to (3.1)

Uy = Zéﬁua,g = Uq + EUg1 + - .. (3.9a)
B=0
Wy = Z sﬁwaﬁ = W0 + EWq1 + ... (3.9b)
B=0

uq is of leading order 7 if uq3 =0 VB < 7. It holds in the same way for w,.

Equilibrium (zeroth) and 1st order variables

Lemma 3.2.1. The equilibrium values of the moments w, and w, are given by

Uo
20+ 1

Wo|g =0 (3.10b)

ualE - (3‘1[}3)

Proof. The claim easily follows by considering (3.8) in the formal limit ¢ — 0. We can see

that all odd moments have no equilibrium value. O

Lemma 3.2.2. The zeroth order term in the expansion (3.9) agrees with the equilibrium
moments (3.10).

C 2a+1
We,0 = 0, w, s at least of the order O(e") (3.11b)

(3.11a)

U 0

Proof. Inserting the Chapman-Enskog expansion (3.9) into the moment system (3.8) and

balancing the leading order terms ™' we obtain (3.11). O

Thus w, has no zeroth order contribution and all the even moments wu, can be written in

terms of ug, which now is considered as a base variable. Now we can define the first set of
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non-equilibrium moments,

U
ut(xl) zua_ua|E=Uoz_ 20{—0|—17 a=12 .. (3.12&)
W) = wy — wa|p = W, a=1,2,.. (3.12b)

Theorem 3.2.1. The first order of magnitude moment system reads

ou ou ow'"
ato P (ug) > 4+ a; = P(up) (3.13a)
Hws , 8wa s L e Oy
oL + F (’U,()) O + oL = —— |Wy4 + 20[—“% o = 1, 2, RN (3131))
ouly ould  ow') 1 e owl
- I’ = i 71 Lt =1,2,... 3.13¢
ol + ' (uo) Ox + ox S +1 Ox e=hs (3:15¢)

Proof. Inserting the new variables (3.12) into (3.8) and eliminating the time derivative of

up, we can derive the new moment system (3.13). O

2nd order variables

Now the variables in the new moment system (3.13) are given by the equilibrium one ug

(1)

and the non-equilibrium ones uq w?. The latter are by construction at least of first order

O(e), their subsequent expansion in a Chapman-Enskog series in ¢ reads,

ull) = Zeﬁ W — ey 1)1 + SQUS)Q +... (3.14a)
wl) = Zs w! B = 5w(1) +e w(l) +. (3.14b)

Lemma 3.2.3. The first order term in the expansion (3.14) reads,

U'((xl)l =0, ull s at least of the order  O(c?) (3.15a)
o) — L Ou 3 (1)

“0 - . a=23,... 3.15t
W = 2041 0x 2044—1wl’1 @ (3.15b)

Proof. 1t follows by inserting again the expansion (3.15) into (3.13) and subsequent balance

of the leading order terms &°. O



According to (3.15), there is no first order contribution in u&l), while all the moments w

can be expressed in terms of the gradient of the zeroth moment and are proven linearly

dependent. Subsequently, to first order all the moments can be written in terms of u, and
» 1 . . v "

a part of its flux ’wg ), therefore they will be considered as the new base variables, while

the rest of the moments are replaced by the second non-equilibrium variables, which are at

least second order O(g?).

ul? = ulM) — Vg = ull), a=1,2... (3.16a)
w® = w) —wl| g =wl — Lw(l). a=23,... (3.16b)
o o « a 20 + 1 1 > )y
Theorem 3.2.2. Let ug = tg and wgl) = c;) in the interest of indicating their order

of magnitude in e for convenience. The new moment system including second order of

magnitude variables yields

Oy | 0w 0w
% 5 _ P, 3.17a
gp PGy ey = P@) )
ooy oo ou? 1] £ Dy
Fl A~ 1 —_ A(l) [ — 31—1’
ol +eF (i) Ox * Ox € _Ewl * 3 0x (B:17R)
2 2 (2) TS
Hu? . ’(%)au'(’) N Owy), _ 1 JOm 4oe? ow; 1
ot O ox el (20+3)2a+1) Ox o
(3.17¢)
ow? owt?  oul [ 3¢ oul?
« Fl -~ @ “ - (2) - 1 =2.3,. 17d
o T T S R o e @=23... B

Proof. Following the same procedure as before, the new moment system (3.17) follows after

insertion of (3.16) and replacement of the time derivative of wh. O

3rd order variables

In a similar way as before, we expand only the second order variables,

u =3 sﬁufzg = 2ul) + ulh + (3.18a)
=2



w® =" P = 2w+ Su+ (3.18b)
8=2

Lemma 3.2.4. The second order terms in the expansion (3.18) read

(1)
(2) 4o 82111 15a 2) .
e — 5 — 2, 3, e 3.19
a2 (2a+3)(2a+1) Ox (2a+3)(2a + 1) Uiz @ (8.108)
wf% =0, w® s at least of the order  O(=%) (3.19b)

Proof. One more time, the proof follows by inserting (3.18) into (3.17) and balancing the
(2)

. 2 . . . .
leading order terms e'. Hence, wt? has no second order contribution and uy 5 is linear

dependent as expected. O

We continue in the same way as before and introduce the third non-equilibrium variables

15
(3) — @ _ @ — 2 _ (2) =23 3.20a
Uq Ug Ug |E Ug (20[+3)(20{+1)UI ) « P ( ‘l)
w® = w® —w?|p =w?, a=23,... (3.20b)

)

Theorem 3.2.3. Let the already expanded variable be defined as u§2 = 52@(2), the new

moment system including third order of magnitude variables yields

i _oay 0w _
% + F'(u@% te ”‘g; — P(i) (3.21a)
8@(1) 8@(1) ‘ am@) 17 £ Oty
Fl A~ 2 — = (1) —_ 3.2]_b
ey € (t1p) 5 T T an e+ g ( )
e . am®  ou® o 4em
2 4 (@) o+ o = —e |G+ (3.21¢)
Ous F’(ﬁ)aw‘(f) + oud) 1 w® 9a D" 90" o =23
ot O o oz el T 20+3)(2a+1) Ox o
(3.21d)
3 3 (3) i —~(3)]
oy N F,(ﬁo)ﬁu&) Ow,y _ 1 4B 15ae owz? 023
ot oz oz el (2a+3)(2a+1) Ox '
(3.21e)

The proof comes in the same systematic way as for (3.17).
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Approximation for 3rd order variables

As we go further, the transport equations increase and their derivation become more com-
plex, therefore we shall stop at the third order equations and consider only the leading

terms given by the expansion of the highest order moments.

ul® = Z S’BUS:% (3.22a)
3=3

w® = Zeﬁw((j)ﬁ (3.22h)
8=3

Lemma 3.2.5. The third order terms in the expansion (3.22) read

uffé =0, ul® s at least of the order  O(e?) (3.23a)
9(a —1 on® 35(a — 1
w((f?a = (a ) LN la ) ws), o= 3.4,... (3.23b)

2a+3)2a+1) 0z  (2a+3)(2a+1) >
Proof. After inserting (3.22) into (3.21) and balancing the leading orders €2 we get (3.23),
where only the odd moments wS) have third order contribution and are linear dependent.

O

Theorem 3.2.4. Define again the first three variables: of zeroth order ug = g, of first

(1) (1 (2) (2)

order w\" = ;Y and of second order v\ = 2@,®. Furthermore, let the third non-

equilibrium variables (3.20) consider only the first term in the expansion and be defined as

u® = S = E3u§% (3.24a)
wl® = @ = 2u), (3.24b)

Then the closed moment system with variables up to third order of magnitude corresponding

to the infinite system (3.21) reads

Oy oty oW R
a—t" + F’(uo)a—; te a;; = P(dp) (3.25a)
5@;(1) 8,@(1) o (2) 10y
F' (i 2 = |oW 2 3.25b
TR U ety R Y (8:25b)
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ow® 9 0*ay®
QF/ -~ 1 _ 1 — _
+ e (i) ox 35 0Ox? :

P ot 2)

S0t

(3.25¢)

where the smallness parameter € plays the role of an indicator of the leading order of each

quantity.

Proof. Tt follows first by replacing (3.24) into (3.21) and then closing the system using the

leading order terms of the third order variables (3.23). (]

Remark 3.2.2. The previous system contains the minimal number of elements from the

infinite moment equations that are up to third order of magnitude.

3.2.3 Model reduction by order of accuracy

Depending of the process under study, a reduced version of the moment system (3.25) based

on the smallness parameter ¢ might be enough.

Definition 3.2.1. A set of equations is said to be accurate of order ng, when the part

of the fluz wy = w'") is known within the order O(s™) [37].
The previous definition will be used for proving the next four theorems.

Theorem 3.2.5. The zeroth order accuracy model reduction of the moment system

(8.25) is given by the 1D nonlinear balance law equation

Oug ;o\ Oug .
ey

(1)
1

Proof. As we have shown before, w;’ = cw; "’ in (3.25) is of leading order =. Therefore,

according to the Definition 3.2.1 it will vanishes to zeroth order in e and (3.26) will follow.

O

Theorem 3.2.6. The first order accuracy system of (3.25) recovers the inhomogeneous

balance laws equation with a linear diffusion term and diffusion coefficient of the order

O(e).
9 :
é;lto + F (Uo)

Oug _ & Oug
oxr 3 Ox?
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Proof. Accordingly with the Definition 3.2.1, if we consider the first order in the smallness

parameter ¢, first we need (3.25a)

Ot (91/0\1(1)
F/
(o) 5 Jx te ox

OUO
oL

= P(aw) (3.28)

together with the leading order contribution (of order £°) from (3.25h),

0 _% [gﬁm N g%_zo} (3.29)

T _%%_"? (3.30)

Combining both equations the system will yield (3.27). u
Theorem 3.2.7. The second order accuracy system of (3.25) yields

5‘5;0 P2+ 20 pay) (3.310)

Eﬁugt + sFl(uo)azgil) + %85;0 =—w; (3.31b)

. . - 1 . .
Proof. Now we need to consider higher order contributions to wp in order to increase

the order of accuracy. Hence, the terms of second leading order ! in (3.25b) must be

included. O

Remark 3.2.3. Consider F'(ug) in (3.31) with only real eigenvalues and is diagonalizable,

then we will have found an inhomogeneous hyperbolic system.

Theorem 3.2.8. The third order accuracy system of (3.25) recovers an inhomogeneous

hyperbolic system with a diffusive correction of higher order.

B 0 ow, M
5;0 + ' (ug) 01;? + e = P(u) (3.32a)
o om0 ey 4 P
F — = _ LB l'
R S ra +€15 022 (3:82D)

Proof. We will require the balance law (3.25a) plus the full equation (3.25b),

0 ow;
g g

8u0
ot

— P(up) (3.33a)
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oV o™ o @ . 10
wy wq 42 o [wl(l) 4 _ﬂ] '

Ox Ox 3 0x (3.33b)

Since the second order variable @ appears, the leading order terms in (3.25¢) must be

also included,

4 8@\1(1)
0= |la® 42 3.34
" o (8:34)
4 o
L 3.35
i 15 Oz (8:35)
Combining the equations the new system is given by (3.32). O

If we continue in the same way, it is possible to construct sets of equations of 4th and 5th

order of accuracy.

3.2.4 Case 1: 1D Inviscid Burgers equation

We will base the numerical experiments of the previous developments in the inviscid Burgers
equation, which is one of the most fundamental study cases for nonlinear scalar balance

laws. Our equation reads,

ou 0 [u?
A C S 3.36
ot * Oz ( 2 ) (3:36)
w2
where the velocity flux is given by F(u) = Ex thus F”’(u) = u. And there is no source term,

i.e. P(x,t,u) = 0 and the equation is homogeneous. We can now immediately construct
the reduced models up to 3rd order, by using the Theorems 2.2.5 until 2.2.8.
Zeroth order accuracy

Accordingly to (3.26) we can instantly observe that the zeroth order in e will read the
inviscid Burgers equation.

=L =0 (3.37)
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First order accuracy

Consistently, following (3.27) the first order in the smallness parameter, recovers the viscous
Burgers equation, with diffusion coefficient of the order O(z).

Oug ug € 0%y
= - 3.38
ot T T 302 (8:38)

Second order accuracy

Again, in agreement with (3.31) the second order system yields an inhomogeneous strictly
: . 1 . .
hyperbolic system, since Ay = ug F —= the eigenvalues of the homogeneous corresponding

V3

problem are real and distinct.

Aug oug oy
— —_— =0 3.39a
ot T T (8:59)
om  awm  10uy 1
- _= 391
+ ug o + % O — (3.39h)

ot
Third order accuracy

Finally, the third order system includes a linear diffusive correction of higher order in the

previous second order system, with a diffusion coefficient of the order O(e).

g N g N gaﬁ(”

— u —

ot Y ox o
ot 0 9z 3e Ox e ! 15 022

=0 (3.40a)

(3.40b)

3.3 Non-linear 2x2 system of balance laws

We will now consider the case of a general balance laws system with two unknowns, in which
the left hand side is given by the corresponding conservative' system which is hyperbolic

and the right hand side by the source terms which can alter in time the amount of each

Ichange in time of the unknowns plus the corresponding flux matrix
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quantity. The system yields,

o | qlt,x) o | z(t,x)

g + 2 _ P(g,2) (3.41)
o | oay | | g |

where the fluxes are giving by F'(¢) = z and F(z) by a function of the form f(q, z) = %2+an
for which we have used as a model the isentropic gas dynamics equations, where the pressure
is given by the equation of state p(q) = k¢ for some constants £ > 0 and 1 < v < 3,
(see [33]). The type of source term P(q,z) considered corresponds to linear functions
representing external forces which must follow one of the following structures, and where

the function v(z,t) is know and can also be a constant.

Plg2) = v | (3.422) P(g,2) = vz, ) | 1 (3.42b)

q z

The balance laws system (3.41) is completed by the entropy function E(q, z), corresponding

to the total energy of the system,

122 K
Blo.s)= 5o + -7 (3.43)
~—~ N——

kinetic energy  potential energy

This is an obvious choice since an entropy function should be a conserved quantity, in this
case the energy whenever the unknowns are smooth, but which has a source or a sink at

discontinuities.

In our case, the energy will decrease in an admissible shock but will increase across an
expansion shock. Consequently, it is also possible to define an entropy fluz together with

the entropy inequality, which satisfies for weak solutions

OE 0 |z
- - | = v < A
8t+8:c [q(E+/§q )}_0 (3.44)

For smooth solutions the previous inequality becomes an equality. For more details in the

properties and definition of entropy functions see [22].
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3.3.1 Boltzmann-like kinetic equation and the infinite moment sys-

tem

The corresponding artificial kinetic equation is of the form (2.50) including the acceleration

giving through external forces ¥ (x, t, u) (see [36]), with a BGK-relaxation term (2.51).

of af of 1.~ 2
o THas T ‘p(iﬁyt,ﬂ)a—u = g(fo f) (3.45)
where,
U(&) =v(x,t) for (3.42a) V(&) =v(x,t)u for (3.42b).

We will consider only the case (3.42a), the other case should follow in an analogous way.

Proposition 3.3.1. The final Boltzmann-like kinetic equation corresponding to (3.41) with

a source term given by (3.42a), yields

0 0 0 1 .
a—{—i—ué'i‘V(x»t)%: (o= (3.46)

The subsequent definition of the respective moments of the equilibrium distribution fo(x,t, 1)
follows the so-called kinetic representation formula (2.53), an equivalent system to (3.41)

as explained in section 2.2.3.

q 1
) z = 1% fO ([L’7 L lUJ) d:u (347)
z
" + kq" R\ 2

Lemma 3.3.1. The general moment of the equilibrium function fo(x,t, u) reads

a 1 a=2 )
qzl + a(az ),qu (2) = /,uo‘ fo(t,z, p) du, for a=0,1,2,... (3.48)

R
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Proof. By using the conditions (2.55a) and (2.55a) described in section 2.2.3 for the function

fo(z,t, 1) in the representation formula (3.47), we can compute (3.48). O

Proposition 3.3.2. (Infinite moment system) Let w, be the monomial moments of

the distribution f(x,t, )

Wy = /;ﬂ ft,x, p) du, for a=0,1,2,... (3.49)

R

and (3.48) the moments of fo(x,t, ). Then, the infinite moment system reads

dq 0z -
E + % =0 (3d03.)
0z Ows -
n + e v(z,t)g=0 (3.50b)
Wy — OWaiq 12 ala=1) (2 a2 -
g + e av(z, Hwy—1 = - [qa_l + 54 p We a=273,...
(3.50¢)

Proof. The collision operator (right hand side of (3.46)) must balance mass and momentum,

therefore at the zeroth and first moment, f(¢,x, 1) must be in equilibrium, i.e

/(fo — dp=0 (3.51a) /,u(fo — [)dp = 0. (3.51b)

R R

Multiplying the kinetic equation (3.46) by the powers of p and subsequent integration,

vield the moment system (3.50). O

3.3.2 Order of magnitude method
Equilibrium (zeroth) and 1st order variables

Lemma 3.3.2. The equilibrium values of the infinite moment system (3.50) agree with the

moments of fo(t,z, ).

wolp =~ e =) (2 o (3.52)
OlE_qa_l 2 q q -
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Proof. By considering (3.50) in the formal limit ¢ — 0, equation (3.52) easily follows. O

Since we have define only one set of moments, we can see that for every a we have zeroth

order contribution. Contrary to the scalar case, we will see that for the 2 x 2 system there

are not vanishing moments. The first set of non-equilibrium moments are defined as.
o a—2
W oz ale—=1) z B .
W) =W — Wa|p = W, o + 5 p : a=23 .. (3.53)

Theorem 3.3.1. The first order of magnitude moment system reads

dq 0z
4% )
ot " ox
0z+8 ,z2+/_€7 +8w§1)_y
ot dx \ q 9 or 1
Gwél) 2z 8w§1) 8w§1) 0 [z I o
_ =T k(=3 —(Z) ===
ot qg Or ox w(y = 3)a or \ q 22
owld  ala—D(a—2)kg 223 [ owl! R dq
ol 2 1\ 1 5
oa— 1 a— (1)
A dwy)  ala—1kr(y=3)¢ 2% 2 9 [z L Moy v lw((ll)
=R 2 2oz \q) " oa :
Proof. Replacing the new variables (3.53) in (3.50) we have for o = 3,4, ...
dq 0z
9,9 )
ot * Ox
LR e W S
ot dr \ q K or 1
w9 (22 wél) o (23 I
+ = (kg + 2 43k ) = 2w — -
ot ot\q )T e Tan\g o F) T
owl) N o [ 2%  ala—1)kg? 2272
ot ot \ g1 2 g2
+8wfxlll O (22T a(a+ 1)kgY 2271
Ox or \ q* 2 g1
a—1 —9 -1 v La—3 1
—ozuw((ll,)l v (ZQ_Q (a —2)(a —1)kq" 2 _3) = — =W
q 2 q* €



And eliminating the second time derivative in (3.55¢) and (3.55d), the infinite moment

system (3.55) follows. O

Remark 3.3.1. We can see that is necessary to write explicitly the moment equation for

1 . ) . .
wé ) separately from the general moment equation for ws since giving the source term the

last one also depends on the previous moment wg_)l, while for o = 2 this contribution
disappears with the replacement of the time derivative for space one. The system (3.54)
now depends on the equilibrium variables q(t, x) = wo, z(t,z) = wy and the non-equilibrium

ones w&l) fora=2,3, ...

2nd order variables

By construction the new variables are at least of first oder in ¢, therefore their Chapman-

Enskog expansion will read

b

wl) = Zeﬂws}g = 5wf¥17)1 + 6%}8% +... a=23,... (3.56)
p=1

Lemma 3.3.3. The first order contribution O(e) of (3.56), yields

0 (=

! —

wil) = (v - 3)rq" = (5> (3.57)
n ala—1)z2721 1 9q

’wg)l = —2 = wgl) + (a - 2)/{27 . % , a=3,4,... (3.58)

Proof. Our claim follows by inserting (3.56) on (3.54) and balancing the leading order terms

el . O

We can then write the infinite first non-equilibrium a—moments in terms of the equilibrium

(1)
2

variables and ws; ', making it possible to close the system if desired. Again, we define a

new set of non-equilibrium variables as a linear combination of the previous ones,which are

at least of second order O(g?),

ala—1)2072 [ ¢ @1 dq
o =) Pl = oy - DI04 oy ) gy
(3.59)




Theorem 3.3.2. Let ¢ = q, z = Z and wél) = cwaV in the interest of making explicit

the magnitude of the already expanded variables. The new moment system including second

order of magnitude variables yields

og 0z
a—z + a—; —0 (3.60a)
97 o (72 o,V
_ - - il — un
5 + . (qA + Kq ) + e o vq (3.60b)
0wV 2 owW 0 [Z o (7
(3.60¢)

ox ox
ow? 32 oM 3z 0w? 05 _ow™
3 _ 2 2 =3 3ekg 2 | v d e

0 (o 203\  0w?
+36527£ <q27_2—q> + W

ox ox

% e (2)
et [ (2) + 22000 (2)] L e Ly

ol q B) 7 0 oz
1 ‘ o (3.60d)

0x? \ q g  Ordr \q ox €
w?  ala—1)22"2 | 2owl? : 2)52@“) oy
—= —(a— —
ot 2 3| q Or qg O
ala —1)(a — 2)erg’ 2273 [ 10w . " ag ]
2 @3 |7 or @ O |
ala—1)(a—2)er?yg? 2073 [20%]  0°2 g 0 (z\]
Lol )( )eryg - [: Z R T 229 :) (3.60¢)
2 q qox? Ox x0xr \q)
-1 -2 -3 2727 sa—3 8/\(1) 8’\ 8/\
oo )« )A(a JeR* G Z 0w, +/f“/§(y_1—q 9
27 gt ox Oz | Ox
) 1,
et avw?® | = —Zw®
ox €

Proof. By performing the change of variables on (3.54) with (3.59) and replacing the ap-

pearing second time derivatives, the infinite moment system (3.60) follows. O
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3rd order variables

As done previously, we now expand the second order variables according to the Chapman-

Enskog expansion
a,2

w® = Z 55w((j)ﬁ = 2w%) + sgwg; - a=3,4,... (3.61)
3=2

Lemma 3.3.4. The second order contribution in ¢ of (3.61) are giving by

(1) s (1) 2 /o PR
@) _ g1 (AW2 07 Oy A |0 (2 20=2)07 0 (%
Wiz = 34 < q 8:(7+ Ox TR 0x2 \ 7 T Ox 0z \ G (8:62)

q q q
ala—1D(a—2)2>3 3(a —3)*2P 3 (07
wih = ; = Wiy + . o) | a=a5. (363

Proof. Once again, the proof follows by inserting (3.61) into (3.60) and balancing the

leading order terms e. O

As usual, we define now the third order non-equilibrium variables, in order to replace the

previous ones for o = 4,5, ... in (3.60).

_ _ A\ 2
= @ ala—1)(a —2) 7073 w® 4 3 (o — 3) k323 0 -
a % 6 @_3 3 /Z\ ax .
Theorem 3.3.3. Let the already expanded variable be defined as ¢ = G, z = 2, wY) = ew; ")
and w:(f) = 62@(2), the new moment system including third order of magnitude variables
yields
dqg 0z
—+—=0 3.65a
ot + ox (3.65a)
0z 0 (7 oy
Pl B L =vq 3.651
T ax(q+ﬁq>+€ e~ VA (3.65Db)
ow,")  zow) 49 (7 o (7
£ = + 3 = | — - 3 g’ — =
ot ) R At i
5 9 =@ (3.65¢)
~o~—90( w3 —~(1)
13en2y L (g2 2 _
Y o <q Ox ox v



6/\(2) 3_3310;2) , ,Yw/\(l) g a/\(l)
or 1 or

v

32wy 0wy s oo [0* (2N 2v=2)07 0 (Z
_ e ekt N I ed AT 4 3.65d
o et 5 (5) - (B) .
, 0 |7 07 ow? _
42 2 | 25:@ 3.273y—4 [ Y9 4 _ (2)
e Jox [ng IRy (&L) ] * Ox cts
001 FOmiY b orap@ 0T T 0w
ot 7 ox ox g Ox
g 407 oq 0 3 272 0%q 0%z -
—12e%k3y2 1 2 |3 3 — == +2—= 3.65e
ST [ (= )833 Ox q Ox? N oz? ( )
o 5070w 0ws® 1 g
1222~ g3 _ .0
s or O + ox e
ow®  ale—1)(a—2)(a—3)e2 oy 05 ow™
ot 6 s L LU ity
ala —1)(a —2) 2273 0w, ®
6 g3 Ox
Ca(e—1)(a - 2)(a — 3)2k2g P 2 4aq oy
2 19z Oz
3ala = (o= 2)( = 3PP - 3§ 2 (a_a> 2(3)
2 ?_4 ox 2 ox QA (365f)
—a(a—1D(a —2)(a — 3)e®w*y2 ¢ = 4%[ q@:l:2+ 562}
afa—1)(a = 2)(a = 3)(a — 42ty g P 2o s
2z
_a(a—l)(a—Q)(a—iS)(oz—él) K324 2ot dq * Ow;
2z 4\ oz (9.,
0wa+1 (3) L 3
o AWWe—y = — Wy
Proof. The proof comes in the same systematic way as for (3.60). O

Approximation for 3rd order variables

We could continue repeating the previous steps infinitely, but as in the scalar case the

results will become more difficult to handle, therefore we shall go as far as third order
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variables considering only the leading order terms of their expansion.

w® :Z SZ?_E wé;+s4wé%l+... a=4,5,... (3.66)
5=3

Lemma 3.3.5. The third order contribution in (3.66) reads

- > o
wff) = ey 20 4 o 2000
g1 0Q Jdg 0 (z z0%q  0°Z )
12 /3 23y-471 |« ) e _ 921 27 ~
ey ox 30 3)830 oxr \q q 0z? N 0x?
5 ala—1(a—2)(a=3)2"" | ;4 L7070 07\
wa’% = 51 = wi?), + 126 — 4)y3 =\ 5, (3.68)

Proof. Balancing the terms of the order O(e?) after inserting (3.66) into (3.65), we get
(3.67). O

Theorem 3.3.4. Define again the first three variables: of zeroth order q = q, z = Z, of

first order wél) WY and of second order w§2)

= W9 = 2w, w32, Furthermore, let the third
non-equilibrium variable (3.64) consider only the first term in the expansion and be defined
as

w® =S =¢ w((f% (3.69)

Then the closed moment system with variables up to third order of magnitude corresponding

to the infinite system (5.21) reads

g 0z

—+—=0 3.70a
ot + ox (3:708)
0z 0 (72 o,
— 4+ — | = q" =vq 3.701
8t+ax(a+&q>+5 e vq (3.70b)
€ e —i—ei 0 +35w2(1)— i
ot qg Ox oxr \ q N
(3.70¢)

o (7 O { o 00 ow;?
—k(y—=3)q” E (—) + 3ek? 78 ( 2 282) +€2—Zgi =~V
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5@ 2 57=(2) >
2007 2200 e O (2
Ot q ‘ q

352@\2(1) 8@\2( ) o ) N
_ 43 "“/—2,/\( ) Y4
A et e

OG0 (g s0T\ 0027
2.3 2 o B34 3y—4_ 1
+12€ KR = o |:a < o ) 6.172_
07\* 0w o0 (owm" og
12 ~y—4 _ _1 _
+12%k%q l(’y 3)((%) Er el B e
o7\ 2 g 0 (2 z
+108e3 1342577 <6—z) {(’Y(’Y —3)+ 6)8_(]6_ <A> ’anTz <;>
T : (3.70d)
d

372 0°q 07
1263325770 20209 4,0F
e q Ox? 75):[72_

96 05 677
24 3,.3.23y-5 3y — 102221
TS B = 1005 5 e

. 0 [(070°Z 0 [(070*7\]
3.3.2:8y-5 |~¢ (0902} O
2R [ Tou <8x 83:2) “or <8x Oz?
,sz(l) 8(] 1 a/\(l)
q? O qA ox

. L
—3er?yg? ! [68 > (z> +2(7 — 2)3%8% (%) = et

where the smallness parameter € plays the role of an indicator of the leading order of each

—3ekq” [

quantity.

Proof. 1t follows first by replacing (3.69) into (3.65) and then closing the system using the

leading order terms of the third order contribution variables (3.67). O

Remark 3.3.2. The previous system contains the minimal number of elements from the

infinite moment equations that are up to third order of magnitude.

3.3.3 Model reduction by order of accuracy

Following the order of accuracy definition established for the scalar case (Def. 3.2.1), we
now complete the order of magnitude method by reducing the moment system up to a third

order of magnitude (3.70), based on the smallness parameter <.
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Theorem 3.3.5. The zeroth order accuracy model reduction of the moment system

(3.70) is given by the original one-dimensional 2 x 2 hyperbolic system

07 07

E + % =0 (371(1-)
0z 0 (7?
— e — _— /\7 — q L8
é)t+8x(§+ﬁq> vq (3.71Db)

Proof. According to the Definition 3.2.1, besides the equilibrium variables all the extra
moments in (3.70) will vanish in ¢, since their leading order is ! or higher and (3.71) will

follow. O

Remark 3.3.3. The system of equations (3.71) has real and distinctive eigenvalues for

/f, ’Y G R>O.

A= VT (372

Theorem 3.3.6. The first order accuracy model reduction of the moment system (3.70)
yield an inhomogeneous hyperbolic system with a nonlinear diffusion term (unlike the linear
one in the scalar case (3.27)) and an additional nonlinear mized-derivative term, both of
the order of O(e).

o5 o7
ot =0 (3.73a)

8z 0 (72 ) vO7 O (Z 0? [z _
g 830 ( + Kq ) = —ek(y—3)7" {E%£ ( ) + 922 <A)] +vq (3.73b)

Proof. We are now searching for first order in ¢, which means we will need the complete

equation (3.70b) that includes the correction given by the third moment to the flux.

o0 o2
21 77 3.74:
ot T or " (8.740)
oz 9 (32 o _
n + = e ( + Kkq > +e 5, = Va (3.74b)

In order to close the system it is necessary to consider the leading order contribution £° of

the equation (3.70c)
P
0= + k(7= 3)7 5 <5> (3.75)
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_ 9 (2 i
B = k(y - 3P - <%> (3.76)

Replacing @5 in (3.74), the system (3.73) will follow. O

Theorem 3.3.7. The second order accuracy model reduction of the moment system

(3.70) recovers an already closed system with a nonlinear correction of order O(g).

g 0z

E + % =0 (3.77&)
oz 0 (7 a@“)
a5 7 Ao =vq Wi ¢
T +a ( + kg ) e vq (3.77b)
(1) ~ (1) ~
60%1 +€iaa + 3ew 1)00 (z)
17 0% N (3.77¢)

0 (z 0 [ o, o0 _
—k(y =3)7" 5~ (5) = 3K’y ( a2 az) - w"

Proof. To increase the order of accuracy to a second degree we just need to include the

second order leading terms O(g) coming from (3.70c¢). ]

It is possible to write the previous system (3.77) in conservation form by defining a new

o~

. __ z
variable [ = oV + =+ Kq.
q

9 o7 i}
0z 6f N -
E‘F%—VC]—O (3.(81))

of 232 R O T |
EJr%[ZS—( —§§>]—21/z——36ﬁ "5 <q 7)) " C f—g—f"?q (3.78c)

In quasilinear form, the conservative part of the previous system will read

_ 0 1 0 _
P ol
2z |+ 0 0 L] 2 (3.79)
f PR VLY A LA f
L ¢ ¢ 7 F gl

with the respective eigenvalues of the Jacobian of the flux matrix,
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ho = (3.80) M= 2FVET-F)  (381)

SSNWES)
Q)I w)

by which (3.79) will be strictly hyperbolic as long as (fq — 2?) > 0.

Theorem 3.3.8. The third order accuracy model reduction of the moment system (3.70)
looks exactly like the second order accuracy one with an additional higher order correction

term, which includes nonlinear diffusive and dispersive terms.

g—? + g—i =0 (3.82a)
g—f % (%j + /@@7) + sagi(l =vq (3.82b)
68{2\2:1) i%() + 3VA(1)% (:g:) —K(y — 3)?[782 (i) =
—35&27% <527—22—g — 35%% E% (zf@;(”)} (3.82¢)
st (001 () 1o- 2 ) =

Proof. We will now include the second order contribution in (3.70c) which adds to the

previous second order accuracy system (3.77) the variable w;?.

oqg 0z .

E + 8_1 =0 (383(1-)
0z, 0 72 aﬁ“) N _
a1 8:15 ( + Kq ) +e =vq (3.83b)

(1
sﬁwQ( ) +si6w2 +3em0 2 ( )
ot q

(3.83c¢)

Ox
o (% aq 0w .
_ — 3\ — +3 5272 &2 =

R(y = 3)7" 5 <q) R ( =
Therefore, we must also take into account the leading order terms in (3.70d) in order to

close the new system.

—~(1) —(1) 2 ~ ~
_ G s (Y2 0T 10w a1 | 9 (2 10§90 (=
0=—ws +3“q< = e 7 o0 T 52 \3) T D550\ 5




—(1) /\() 2 /o ~ =
—~(2) _ o, =y [ TW2 0g  1ow Zv—1 3_ z 2~ — 2 1@2 z
w3 = 3K ( = x5 or T 52 \5) P20V 5

07 0w 82 [z 1030 (2
A<>_3_A 1,0 %4 2 32y | L () 4oy =22 X2 (2
qu [/q Ox 7 Ox o {8# <A> +20 )Z]\ rdx \q
10 9? [z 100 0 (% :
(2) -3 TN ) 32yg | 2 (2 oy =19 (2 3.84
o (q w; )+ K*7q [aﬁ (qA>+ (v )qaxax (3.84)
Inserting (3.84) into (3.83), the final system will yield (3.82). O

The homogeneous part will remain unaltered thus we can write it again in conservation

form as in (3.79), keeping the same hyperbolic properties.

g 0z
ajf + a—; —0 (3.85a)
0z 0 N
H_i + d_i —vg= (3.85Db)
af o [.2 232 -
G T2 (p— 22 )|~ =
P (-35)] e
0 oq 0 0
—3er’yo- QA%_Q,—Q —3eki— | == (JO =27 — kq™")
ox or ox 0 _
(3.85¢)

0
18q o [z
i a%% <q) )

3.3.4 Case 2: 1D Shallow water equations

For the numerical experiments of the 2 x 2 system, we will take as test case the one-
dimensional homogeneous shallow water equations, with v = 2, k = g and v = 0.
oh N J(hu)
ot Ox

B(h,u) 3} 5 _
o (h + h) (3.86D)

Where g(z,t) = h(z,t) represents the height of the water, z(z,t) = h(z, {)u(z,t) the flow

=0 (3.86a)

discharge with u(x,t) the horizontal velocity and g stands for the gravitational acceleration.
Replacing the new variables into (3.71), (3.73), (3.77), (3.83) we can construct the different

closed systems for each order of accuracy.
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Zeroth order accuracy

As expected from (3.71) at zeroth order in & we recover the system of interest, in this case
the 1D shallow water equations,
oh . a(ha)
ot Ox
T 972 -
+ = (hu2+—h ) =0 3.87b
Ox 2 ( )

=0 (3.87a)

First order accuracy

As we increase the accuracy in ¢, accordingly with (3.73) nonlinear diffusive effects of the

order of O(e) will appear affected by the gravitational force.

oh  O(hu)
+

ot Ox
o(hu) 0 (’};az i g%) _ Egﬁ (/;;2@) (3.88b)

=0 (3.88a)

Second order accuracy

We can write directly the following systems in balance form by defining a new variable

= eV + ha? + gﬁz , as done for the general case.

oh  o(hu)

o =0 (3.89a)
o(ha) of
o to, =0 (3.89b)

OF 0 [anfp_ 2350\] _ 5020 (5200) _1(0 5on 07 .
o {3u<f 3hu>}— 32 m(h - 8<f h 2h> (3.89¢)

Together with the eigenvalues \g = w and A\ =u F \/B?L(f —ﬁﬂ2), by which the system
will be strictly hyperbolic if h >0 and (f — ?Lﬁz) > 0.



Third order accuracy

Subsequently, in a similar way we construct the third order accuracy system in &, which in-
cludes higher order nonlinear diffusivity and dispersive effects to the second order accuracy

system.

oh  o(hu)

a7 Ton (3.90a)
(gf) + gi 0 (3.90D)
0F | 0 Taa( - Zha2)] = _3.929. 52920 (7,0
8t+5)x[3u<f Sh )}_ 2835( > cZ@az h@xz
490 Q 2y 239 074 (3.90¢)
Y on [ ox f P = Sh )
e T2 972
€ (f hid 2h )

3.4 Shock and rarefaction wave detector

3.4.1 Scalar case

For the scalar case, replacing vy = u and oV = W for convenience, in the formal limit

e — 0, the system (3.32) reads

ou ou
L PwE=p 914
T + (u)ax (u) (3.91a)
10u
=——— 91t
350 (3.91hb)
Therefore, as € goes to zero we have that if
ou ou
Fre 0—W=0, (3.92a) 9 < 0—W >0, (3.92b)
?>O—>W<O (3.92¢)
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Additionally, we could distinguish between shock and rarefaction waves, since

ou .
— = —00 W = o0 (shock wave)
gx
U ;
o W — —oo (rarefaction wave)
x
The generic solutions for a nonlinear scalar balance law consist of one wave, that depending
on the initial data will be either a shock or a rarefaction wave modified by the effects of

the source term P(u) with respect to the conservation law case.

Proposition 3.4.1. In the formal limit € — 0, the system (3.32) yields the correct shock

propagation which is independent of the source term.

Proof. In order to prove that the third order moment system (3.32) yields the correct shock
propagation and therefore it may act as an indicator to detect shock and rarefaction waves,
consider a discontinuity located at s(t) with u(s(t7),t) = —u(s(t"),t) and u(s(t7),t) > 0,
such that its solution with evolve in a shock wave. The speed of the shock s(¢) will be
given by the Rankine-Hugoniot conditions [22]. Hence, from (3.91a) we can infer that
for 0 < ¢ < 1 the solution of W(z,t) tends to a § -function located at the point of the

discontinuity s(t). Scaling the variable = as

T — s(t
p= =20 (3.93)
€
and introducing the scaled functions,
u(n,t) = u(en + s(t),t) (3.94a)
W(n,t) = W (en + s(t), 1) (3.94b)
the system (3.32) will turn into
o ou oW
. F/ m — S —_— —_— P i ; =
5 + (F'(u) s(t))a?7 + o eP(u) (3.95a)
oW oW 10u o~ 4 PW
(PR — s L 2 il 3.
e T (@) = 5(1) o T3 = T 5o (3.95b)
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Again, taking the formal limit ¢ — 0, the leading order of (3.95a) is given by

ow L _ou
o (s(t) = F (u))a—77 (3.96)

Moreover by using equation (3.94b), equation (3.32a) can be written as

ou Pl ou  1OW

o T Wg + 2y =W 397
since —— ow._ Low . Now replacing (3.96) into (3.97), we will get
Or e 0n’
ou ;o o0u 1 Ja OU
G+ PG + 260 - F@)g = P (3.98)
Ju ,oOu 1) , ou
N + F'(u )Bx + g(s(t) - F (u))sg = P(u) (3.99)
ou ., . 0u
i + s(t)% = P(u) (3.100)
This demonstrates our claim. O

3.4.2 2 x 2 system

~

Similarly, for the 2 x 2 system replacing § = q. 2 = z and W) = W, in the formal limit
e — 0 the system (3.82) will yield,

8q 0z

=0 (3.101a)

0z o [ 22
aﬂ)_( i ) 0 (3.101b)
W= nly— 3L (2 (3.101¢)
=Ky —9)q o 3.101c

Consequently, taking into account that x > 0 and ¢(x,t) > 0 the limit behaviour of the

ox

term (v — 3) will always be negative and therefore will have a similar case as in (3.92),

variable W (z,t) will be determined by the values of v and 7 <—> For 1 <~ < 3 the



g (5> —0— W =0, (3.102a) g <3> <0— W >0, (3.102b)
q dzr \q

z (g) S0 W <0 (3.102¢)

In the case where the balance laws system corresponds to the study of a fluid’s movement
(gas or liquid), such as the isentropic gas Euler equations and the shallow water equations,
the flux of the mass variable ¢(z,t) will be given by the product of the velocity of the fluid
times the mass density z(z,t) = u(z,t)q(x,t). Thus the ratio g will be equal to u(x,t) the
velocity, and (3.102) will behave as (3.92) such that is possible again to distinguish between

shock and rarefaction waves.

Proposition 3.4.2. For the case z(x,t) = q(x,t)u(z,t) the third order accuracy system
(3.82) will yield (formally) the correct shock propagation in the limit ¢ — 0.

Proof. A similar analysis to the scalar case can be performed for the 2 x 2 system, in
which we consider a two-shock solution for the third order accuracy system (3.82) in the
limit of ¢ — 0 by considering again as initial condition a discontinuity located at s(t) with
q(z,0) = qo a constant value and u(s(t™),t) = —u(s(t™),t) with u(s(t7),t) > 0. After

scaling « as in (3.93), the scaled functions will read,

q(n,t) = q(en + s(t), 1) (3.103a)
zZ(n,t) = z(en + s(1), 1) (3.103Db)
W(n,t) = eW (en + s(t).t) (3.103c)
into (3.82) we will have,
dq z 0q o [z
S s HE = (2) = 104;
6t+[ s(t)]anJr an<> 0 (3.104a)
0z [2z 0z aq 8W Bq
i - _ g gl
e [67 s(t)] o + [/qu } n + = an 577 (3.104b)
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568—/1/;7 + E - S(t)] % n [3W Ry — 3)2;‘7] 9 (5) =

n \q

0 [y 207\ _3 0 LW L 0G0W
_ 9 9q oW 3.104c
3 78 < on 3 87) ¢ on? g on on ( )

) 02 [(F 1040 (Z —
s 7 (e (3) +20 - 23508 (5)) ) -
" on [q on* \ q 2= )q on dn

and taking again the limit case of £ going to zero, the leading orders will yield,

9 (i) _ E[ (1) — —} 4 (3.105a)
m\q) q o
We rewrite the second equation of (3.82) using only the scaled function for W(z,t), which
will replace oV _ 1ow and the new limiting expression (3.105b),
dx &2 0n

0z 0 (22 Z .04
- - - v - S — = - | = .
i () 2|05 () o Gy e e

z 0z 0 [z
() —2( o )+ (ta_@_ (3.107)
0 [z ) 8 z
a— (5) + S 6— <a> = (3‘1[}8)
Hence, our claim follows. O

Remark 3.4.1. In the case of v = 3 the W{(x,t) will always tend to zero as ¢ — 0
independently of the values of the gradient of the z(x,t), for this reason this type of problem

will not count with W (x,t) as a shock, rarefaction wave detector.

Remark 3.4.2. The moment systems (3.32) and (3.82) yield only in the formal sense the
correct shock propagation, since it has not been proven rigorously that in the limit ¢ — 0 a

solution of the moment systems exist.

3.5 Summary

Starting from an artificial Boltzmann-like equation (previously defined in accordance with

the nonlinear balance law of interest), it is possible to use the order of magnitude method to
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recover the corresponding infinite kinetic-induced moment system containing higher orders

terms coming from the balance law itself.

At each order of magnitude 7, one can construct a closure relation for the respective infinite
moment system, by expanding asymptotically the highest order moments and subsequently

finding and balancing the leading order terms.

The previous closed system might contain a few terms that are not of our interest, thus
. . . . 1) .
it can be reduced to a desired order of accuracy 79, in which the part of the flux wg ) s

known within the order O(£™).

The 0-th order accuracy system always attains the original nonlinear balance law and the
1st order accuracy includes a diffusive term with a coefficient of the order O(e). Higher
orders of accuracy introduce the coupling between the original balance law and higher order

variables, produced via the smallness parameter e.

For the scalar case, we focus on the 3rd order accuracy system and for the 2 x 2 case, on the
2nd order accuracy one. This is given since our interest lies (for the moment) on the effects
coming from the s—coupling with the next higher order moment and its corresponding

diffusive correction. Both cases yield (formally) the correct shock propagation.

In the formal limit € — 0, the two previous systems tend to the original nonlinear balance
law together with the variable W (x,t) = @, that for the Burgers and shallow water
examples approximates to the inverse of the gradient, making it easy to identify where

special solutions like rarefaction and shock waves take place.



4. Numerical Experiments

As mentioned before, we will focus on two model problems: the one dimensional Burgers
equation for the scalar case and the shallow water equations for the 2 x 2 system case.
For them and their corresponding closed moment systems discretization, we will use a
finite differences scheme and a finite volumes one respectively, according to the numerical
methods for conservation laws problems introduced in section 2.1.1. In the first section,
the choice of grid will be static, i.e., it will not change in time, this will allow us to compare
the model problems with their kinetic-induced moment systems and to prove that indeed
as expected, the new variable W (z,t) works like a shock/rarefaction detector. The second
section uses an adaptive mesh, for which the refinement parameter is then given by W (z, 1)

in order to discretize the original equations.

4.1 Static grid

4.1.1 Case 1: 1D Inviscid Burgers equation

According to the order of magnitude method, the third order accuracy moment system
for the inviscid Burgers equation (3.40) with uy = u and oY = W, yields the following

kinetic-induced moment system

ou ou ow

oW oW 1 0u 1 4e O*W
AL S R | A 4.1b
ot +u8:1: +3€8x € +15 0x? ( )

where there is a linear coupling depending on e, a diffusion coefficient (D, = 4¢/15) of
the order O(e) and a source term of the order O(¢7!). The corresponding homogeneous

problem with @ = [u W]T reads,

u € 0
— u 0

3e



which is strictly hyperbolic with two real and distinct eigenvalues Ay = u F ﬁ that do

not depend on €.

The system (4.1) is discretized by using finite differences schemes with splitting of the
source term (2.49), since the last one can be solved exactly. The first part of equation
(4.1a) is just Burgers equation, which can be approximated using the conservative scheme
(2.41) evaluated at the grid points with Q7 = u”, Fir = fru and F; 1= fiu. The second
part follows a backward difference (2.32b) for the space derivative of W (x,t),

it =y = 2 (o ) - bW W) (4.3
The fluxes around ], are defined by the nonlinear upwind scheme due to Roe, which is
a consistent, first order accurate numerical solution for the discretization of the nonlinear

flux term, it reads

n 1 n n J(@QF) = F(QF) ] QY — QF) _
Py = U@ + @) - [R5 . (4.4
we can then write,
1 n n n,n 1 n n n n i
fru, = Z(um—l—lum-i-l + umum) - Zlum—i-l + um|(um+1 - um) (4“33‘)
1 1
Jiw = Z(u%—lu%—l + Uy Uy, ) — Z|U%—1 + U | (g, — ) (4.5b)

Subsequent, the first part of the second equation (4.1b) is approximated again by (2.41)
with Q7 = W, FH% = frw and Fi_% = fu. For the second part, we use a backward

difference (2.32b) for the space derivative of u(x,t) and the diffusion term is done by a

three-point stencil, the discretization yields

- At Al 1 At 4e

n+1: n __ =" o — i) — —— n o __,n ——A 4.
Wi = Wi = 3 Frw = Jow) = 32 (U = wm) + X775 (4.6)
[ TN (4.7)

with the convection of W, discretized by a first order accurate standard upwind scheme,

1 n(,.n n 1 n n n
frw - §um(/wm + wm-i—l) - éluml(wm-i-l - /wm) (483‘)

o
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n n n 1 n n n
flw =3u (wm + wm—l) - éluml(wm - wm—l) (48b)

the diffusion term given by,

(Wi —2Wo + Wi )
Ax

A=

and where (4.7) comes from solving exactly the split source term - ——W.

£
In the case of first order hyperbolic PDEs, it is necessary to ensure stability, thus the initial
time step At must fulfil the CFL-condition (2.47). For second order PDEs, in order to keep
stability the restriction is more severe and the time step must satisfy (2.36). Therefore,
as ¢ — 0 the upper boundary for At will grow notably thanks to the diffusion coefficient

v = 4¢/15, which depends on it. For both conditions we use CFL = 0.9 x CF L,,, and

define the coarsest time step as

A 15(Aa?
At = min <0.9 « bn—z 0.45 * [%D (4.10)

where S

mag = Max {m[z)xx | Api |} with p = 2 the number of eigenvalues.

For comparison reasons, the inviscid Burgers equation (2.17) is approximated by using as
before the scheme (2.41) with the discrete fluxes given by (4.4), it will only need to satisfy

the advection CFL-condition (2.35).

Results

e [2-error

The evolution in time of the 3rd order accuracy moment system using ¢ = 0.001 is
contrasted with that of the approximated and exact solution of the inviscid Burgers
equation in the domain [—2,8]. The grid is giving by M = 800 corresponding to a
Az = 0.0125, which evolves until ¢t = 4.



Initial conditions correspond to a shock developing Riemann problem with the dis-

continuity located at z = 0,

2 ifx<O
u(z,0) = (4.11a)
1 ifz>0
W(x,0) =0, only for (4.1b). (4.11b)
2 L T T T -
5t 1
5 Exact
S === 3rd Order
= Burger
1 -I 1 1 1 1 1
5.85 5.9 5.95 6 6.05 6.1
X
—_— 2 i i
X
50 I
0 1 1 1 1 1 1 1
5.85 5.9 5.95 6 6.05 6.1 6.15
X

Figure 4.1: u(x,t), W(x,t) at t =4

At a first glance, Fig. 4.1 shows us the expected diffusion coming from the numerical
methods and the accuracy of the variable W(z,t) to act as a shock detector when
¢ is very small, both approximations perform quite similar, but yet the 3rd order
system injects some extra diffusivity. The previously detected differences between
solutions are quantified by the following discrete [2-norm, where Q7 is used to denote

the approximated solution and ¢ the exact one.
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Figure 4.2: [2-error time evolution
As anticipated, Fig. 4.2 proves that for £ = 0.001 the differences between [2-errors
as time advances is quite small. The 3rd order approximation error will always lie
beneath the largest Burgers error value and above the smallest one, having a quite
stable behaviour in time and with a rather close mean value, around 2.1 x 1072 which

of an order considered as a good performance.

As for the behaviour of the [2 — error corresponding to the 3rd order moment system

with respect to the smallness parameter ¢, we perform several computations by using

five different values of it,
e={0.0002, 0.0005, 0.001, 0.003, 0.010} (4.13)

and five different grid sizes Az until { = 4,



Ax
dx1 | 0.0077
dx2 0.01
dx3 | 0.0125
dx4 0.02
dx5 0.04

Table 4.1: Ax values for the 3rd order moment system discretization.

0-035 1 1 1 1 1 1
+—— i
0.03 .
0.025 | _
S
o
=
¢
N 002 |
— — —dx1
—— - _e_dX2
0.015 -_____,—’ dx3 |
dx4
e dx5
0.01 1 1 1 1 1 1 1 1 1

0  0.001 0.002 0.003 0004 0005 0.006 0.07 0.008 0.009 0.01
eps

Figure 4.3: [2-error performance of the 3rd order moment system w.r.t. € and Az

As known, the kinetic system approximation grows apart from the inviscid Burgers
equation as £ grows since its value increment the amount of diffusion on it, therefore
for larger values of € we will see that according with Fig. 4.3, the results on the [2-error

time evolution (Fig. 4.2) will not be as similar as for ¢ = 0.001 and instead the one



corresponding to the 3rd order system will start increasing. There is nonetheless, a
stable increment of the error for each space step and no evidence of the results blowing
up for very small or large values of . Furthermore, again the errors evolution is of

order 1072, which is satisfying.

e Time step At

The magnitude of the time step for both numerical schemes depends as explained
before from the stability conditions, which variate according with the size of the grid.
The advective condition (2.47) coming from the inviscid Burgers approximation for

the different grid sizes dz;, vield the following At

Ax At
dx1 | 0.0077 | 0.0035
dx2 0.01 | 0.0045
dx3 | 0.0125 | 0.0056
dx4 0.02 | 0.0090
dx5 0.04 | 0.0180

Table 4.2: At values for the inviscid Burgers equation according with the stability
advective condition (2.47).

Parallel to it, the advective condition coming from the 3rd order system produces the
following time steps in Table 4.3, that for the smallest four dx; are of the order 1073,
Moreover, the diffusive condition (2.36) affecting the 3rd order system depends also
on ¢, thus we need to track the evolution of At for changes in the step size as for

changes in the smallness parameter (Fig. 4.4).
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Ax At
dx1 | 0.0077 | 0.0026
dx2 0.01 | 0.0035
dx3 | 0.0125 | 0.0044
dx4 0.02 | 0.0070
dx5 0.04 | 0.0140

Table 4.3: At values for the 3rd order moment system according with the stability
advective condition (2.47).
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Figure 4.4: At according with the diffusive condition (2.36) w.r.t different ¢ and Ax

Presented in logarithmic scale, Fig. 4.4 shows that the increase of Ax will lead to
a similar one of the time step, while the increase in £ will lead to a small decrease
(depending on the value of Az). However, for every Az the time step coming from
advection will be more restrictive than the diffusion one independently of the ¢ values,

therefore the first one will be the one chosen by the numerical method.
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At the same time, we do not compare the computational times, since we know that
Burgers will always be faster than the 3rd order system considering that the first

solves only one equation instead of two.

4.1.2 Case 2: 1D Inviscid shallow water equations

Unlike the Burgers equation case, for the shallow water equations it is enough to use the

second order accuracy system (3.89) in order to have W (x, () acting as a shock/rarefaction
. . . . —(1 . .

detector at ¢ — 0, since it already includes an extra equation for w>"Y with a correction

term which contains a diffusive part. Writing A = h, hu = hu and Y =W we get

oh  O(hu) A s
S+ =0 (4.14a)
8(hu) 0 g, ow 1
R (h +2h ) +e5- =0 (4.14b)
ow oW 8u ,Ou 3 5,507 Oh 1
AL A - 14de
5 —I—ua +3W8 +2h8m 59 [h82 2h(8m>] EW (4.14c)

With@Q =1[h hu f]'and f = 5W+hu2+%h2 the previous system in balance form reads

0 1 0
Qt + 0 0 1 Qz =
4u3 — 3f—: 3% —6u® 3u 4
i T 1.15
) (4.15)
0

3 202h oh 1 ~ 5 Gy
—5e0° [h D22 2h<dL> ] _E<f_h“ _§h>

where the diffusion part is nonlinear and of the order O(g) with a coefficient (Dy,, = 39?/2),
additionally the source term has an order of O(¢7!). The conservative part of the system is
equipped with three eigenvalues A\g = v and \x = uF \/m, by which the system
will be strictly hyperbolic if A > 0 and (f — hu?®) > 0
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The homogeneous part of (4.15) is discretized according to the finite volumes method (2.39)
with a Godunov numerical flux (2.45), it reads

QU =Qr — A_[A+AQi_% + A AQH%] (4.16)

T

i—1» which stand for the net effect of

all left-going and right-going waves from T 1 respectively and are define in the form,

the fluctuations at cell interfaces are given by ATAQ

ATAQ s =y — [(Qi1) (4.17)
ATAQy = [(Qi) — F, (4.18)

with f(Q;) the system flux evaluated at the specified point. The approximation of the fluc-
tuations is done via the first order accurate Roe linearisation (2.1.2) and the Harten-Hyman
entropy fix is used in case of sonic entropies. For details see [22]. The inhomogeneous part is

discretized by applying a fractional-step method (2.49) and solving separately the problem,

0
Qi = X , (4.19)
3;: 5 |, 2 0%h oh 1 ~ 5 Gy
27 [h Ox? +2h O € (f i 2h )

We use an explicit method with a first order accurate forward difference (2.31a) for the
time derivative at ¢{" and a second order accurate central finite difference (2.33b) for the
space derivatives at position z;, where @7 is the solution of the homogeneous system at

each time step.

QT = QF + AL(y(Q))) (4.20)
0Q _ Qi1 — Qi
T e 4.2
ox 2Ax (&2
2 - . )
0°Q _ Qit1 — 2Qi + Qi (4.22)
Ox? (Azx)?
We need to satisfy both stability conditions (2.47) and (2.36), therefore
A 2(Ax?
At = min (0.9 « 5&2’0'45 « [ ;e; )D (4.23)
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where S*

max — mfux{m;xx | A |} with p = 3 the number of eigenvalues. For the 1-

D homogeneous shallow water system (3.86a) the same kind of discretization as for the

homogeneous part of (4.15), which will just need the CFL-condition for advection (2.47).

Results

e [2-error

We compare the evolution in time of the 2nd order accuracy moment system (& =
0.001) with the homogeneous shallow water equations in the domain [—10, 10] using
a static grid of M = 1600 and Az = 0.0125 until { = 1.8. The initial conditions

correspond to the dam break example, where a shock and rarefaction wave will form.

2 ifz<0 u(z,0) =0, (4.24b)

h(xz,0) = (4.24a)
1 ifz>0 W(x,0) =0, only for (4.14c). (4.24¢)

The solution given by the moment system is very close to the real shallow water ap-
proximation (Fig. 4.5), yet as could be expected it will add some extra diffusion to the
numerical method coming from the extra equation which depends on the values of e.
As for the new variable W (x,t), we can see that indeed for a very small ¢ it performs
as a shock and rarefaction wave detector. In Figs. (4.6), (4.7) we can observe closely
the diffusive effect for the rarefaction and the shock wave, in the first case given the
smoothness of the wave the effect is milder while in the last case considering the

sharpness of the solution we will see a higher impact.
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Figure 4.6: Rarefaction wave at t = 1.8

The measure of the solutions difference presented above is done via the [2- discrete

norm, which for a two unknowns system yield

1 M 2 ?
= no_ g |2 4.25
2 M 41 mzz:l p | Qm,z qm,z | ( O)

i and g . denotes the approximation of the moment system and the shallow water

equations respectively, with m: the quantity of unknowns.
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The initial peak observed in Fig. 4.8 around ¢ = 0.7 is considered of small relevance
giving its magnitude, since as time evolves it tends to stabilize around the point
0.035 which can be considered a good result. Giving that the main contribution to
the error comes from the extra diffusion added by the moment system, we measure

the evolution of the [2-error for five different values of the smallness parameter ¢,
e = {0.0002, 0.0005, 0.0008, 0.001, 0.003} (4.26)

and five different grid sizes Az until ¢ = 1.8,

Ax
dx1 | 0.0077
dx2 0.01
dx3 | 0.0125
dx4 0.02
dx5 0.04

Table 4.4: Ax values for the 3rd order moment system discretization.

0.3 T T T T T
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0.2 |
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Figure 4.9: [2-error performance w.r.t ¢ and Ax
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Figure 4.10: [2-error performance w.r.t ¢ and Ax

Fig. 4.9 shows that for each value of Ax there is a lower bound in & which the
numerical method can not handle any more making the error to jump. From that
point onwards as £ moves away from zero the error will start to increase gradually as
one would expect it. In the case of dx5, the space step has reach an upper bound for
which only bigger values of the smallness parameter are admitted by the numerical
method. Fig. 4.10 shows a closer look of the magnitude of the error according with

the increase of e.

Time step At

Coming from the stability condition for advection (2.47), in the case of the homoge-
neous shallow water system, the corresponding time steps for the different values of

Az used previously read
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Ax At
dx1 | 0.0077 | 0.0014
dx2 0.01 | 0.0018
dx3 | 0.0125 | 0.0022
dx4 0.02 | 0.0035
dx5 0.04 | 0.0071

Table 4.5: At values for the homogeneous shallow water equations according with
the stability advective condition (2.47).

Since it must approximates only two equations instead of three, it will always perform
faster than the moment system. In the case of the second order moment system, from

advection we get

Ax At
dx1 | 0.0077 | 0.0012
dx2 0.01 | 0.0015
dx3 | 0.0125 | 0.0019
dx4 0.02 | 0.0030
dx5 0.04 | 0.0032

Table 4.6: At values for the 2nd order moment system according with the stability
advective condition (2.47).

And from diffusive condition (2.36), given that the stability condition depends also
on the smallness parameter e, we compute the corresponding time step (Fig. 4.11)

using the same values (4.26) as before.
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Figure 4.11: At according with the diffusive condition (2.36) w.r.t different = and Az

If we take a look to the range of Az and € in which the value of the [2-error stays
stable, we will only consider dr1 until dz4 and ¢ = {0.8,1,3} x 1073, in this range
the diffusion time step is of the order of 10 and will always be smaller than the
corresponding advection time step that is of the order of 1073, therefore the first will

be the one chosen by the numerical method.
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4.2 Adaptive mesh refinement

In this section, we will give a brief introduction to the concepts of adaptive discretization,
specially its construction in a one-dimensional setting and how we can profit from the limit
behaviour of the kinetic induced moment system in order to use the new variable W (z,1)
as the refinement criteria. We will keep on using during this chapter and along the rest
of the thesis the two test cases introduced above (Burgers and shallow water equations)
to perform the corresponding numerical experiments and subsequent comparison with the

traditional refinement criteria applied to the original equations.

4.2.1 Definitions and the AMR 1D algorithm

The numerical solution of partial differential equations faces constantly computational lim-
itations in order to achieve accurate and stable results. In the case of hyperbolic PDEs.
it is usual to find physical problems where large regions embody a smooth slowly varying
solution (where a coarse grid suffices) and small(local) regions where it varies rapidly (and
a fine grid is needed). These localized special features can come from shocks development,

steep gradients, discontinuities, spatial scales variations, boundary layers among others.

Until now many successful adaptive discretization techniques using Cartesian grids, over
rectangular patches have been developed in [1, 2, 6, 3, 17, 18], we will focus in the last
two to construct a one-dimensional AMR algorithm (where refined grid patches become

intervals) in spite of testing the third order moment systems constructed previously.

The AMR technique adaptively places finer grids in regions needing a better numerical
resolution over a coarse grid covering the domain [17|, based on the behaviour of its own
solution [3]. The refinement is by an integer ratio in space as well as in time and acts in a

recursive manner.
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Recursive AMR algorithm
Data: Q(z!,0) initial condition
Result: Q(z!,t.,4) at the final time
t=20
while ¢ < t.,4 do
Q(x,1) ad, Q(x',t + At'); /% Advances the current time solution one
coarse time step All %/
=1
Check refinement _criteria(Q(z!, t + At')) ; /* Flags cells where
refinement is needed */

if time to regrid then
l=1+1

regrid(l) ; /* Computes new space and time steps At/ Az! and
constructs the new grid */

L=t

while t; <t + At! do

advance _level(Q(!, 1Y) Al Q' 4 + AtY)

b=t + At

end

if | <l,,,, then
Check refinement _criteria(Q(a',t + Atl))

if time to regrid then

l=1+1
end
end
end
Update Q(z!', 1 + At'); /* Computes new solution at [+ A(! */
t=1t+ At

end
Algorithm 1: General recursive AMR algorithm
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The previous algorithm describes in a general way how the AMR method advances the
solution in time in a recursive manner, where the vector or matrix -according to the quantity
of variables- Q (!, t) contains the solution of each unknown at time ¢ in the grid with level
of refinement [. The whole process is divided in four stages [17]. The Remesh Stage
is done in two steps: the refine step which evaluates the refinement criteria, flag the
corresponding cells accordingly and cluster them into patches; and the regrid step that
computes the physical location of the clusters and the corresponding solution values from
the previous level. The most common monitoring functions [24] in which the decision of

refinement is based are:

e Richardson Extrapolation: Error estimation, compares the solutions of one time

step in [ — 1 with two steps [.

Q(fl"ia tn-i—l) - Q(Iflé_17 tn—i—l)

4.27
oy > tol (4.27)

e Spatial Gradient Estimate: Max-Norm of the undivided difference of Q(zl,¢,)

based in its two neighbours
Qatarta) = Q(aly. )] > tol (4.28)

The flagging takes place in the cells where one of the previous functions -other functions
like the curvature monitor proposed in [42] can also be used- exceeds some established

tolerance (tol) given by the user, the proper setting of its value can cause some difficulties.

On the other hand, the refinement factor r -an integer- for nonlinear PDEs, must sat-
isfy at each level the given conditions for stability and accuracy [17]. Consider Az' the
corresponding spatial step at level [ given by

A/,l—l
Azl = "; L 1=23, L (4.29)

In order to ensure stability, the initial time step in the AMR framework At; must satisfy

the CFL-conditions (2.47) and (2.36), since the kinetic-induced moment system contains
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e , . At .
also a diffusive term. For first order PDEs, to keep the ratio s constant independently
x
of the refinement level, the finer grid must be advanced r time steps for each coarser time

step. Therefore,
At
At = . 1=2.3, lnas- (4.30)
T

For second order PDE, the finer grid should have r? time steps for each coarser level to

t
keep constant independently of the refinement level.
(Ax?)
Atl_l
At = 5 1=2,3, ... Lnas (4.31)

The Advanced Stage advances the solution for all clusters of the current level to a specified
time. Here we illustrate two different numerical discretization in the AMR context, the
finite differences and volumes method which we will use ahead. In the finite differences

approach the solution of the unknown is node-centred, i.e. Q(zl¢,) is a node value on

l

the grid. The explicit FD scheme with F(z _,,1,) the flux function between (z;, 7;41) and
2

(i1, 2;) reads,

l l Atl l l /
Qe tun) = Q) = T (Flal, s t) = Flal_y. 1) (4.32)

We follow the AMR integration algorithm proposed in [17, 18] for a one-dimensional prob-

lem, constructed in a node-based adaptive framework. In the regridding step at a time n,

the coarser nodes will share always the same position with a finer one (Fig. 4.12), the com-

putation of the internal boundaries is done by interpolation between the internal boundary
I+1

values of the coarser grid at forward time ¢,7 ", and the ones on the finer grid at the current

. Ll
time 2.

Figure 4.12: Finite differences AMR grid



Unlike the finite differences, the finite volumes method works in a cell-centred framework,
i.e Q(x,t,) is the cell average and it is updated by the flux differences through the cell

edges. The general scheme yields

Ltner) = Q(ah t AtlFltF’t 4.33
Q(xi’ “"’1) _Q(xh n) B A_xl( (xi-i—%? n) - (xz‘—%a n)) ( : )
with
! 1 tn41 }
F(zii,tn) ~ @/tn J(Q(al,y, )t (4.34)

The AMR algorithm is proposed in |3] for the case of hyperbolic systems. The time integra-
tion will run until ¢, + At! is reached, the internal boundaries are imposed using ghost cells

which are computed by space-time interpolation from the coarser grid values (Fig. 4.13).

ta + k 5 5 ty + 2k = .
B T £ % [ 21 2 1 [
| q}_g qu—L \ qjli | ma Im g :
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Figure 4.13: Finite volumes AMR grid |[3|

Succeeding, the Recursion Stage makes a loop for every cluster until no further refine-
ment is needed or until the maximum level [,,,, is reached. And finally, the Projection

Stage updates the solution values on the coarsest grid according to the chosen numerical
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discretization. For finite differences the fine grid solution is simply copied directly to the
coarse nodes that overlap with the fine ones, in the case of finite volumes the coarser nodes

values will be replaced by the average of the two adjacent finer ones.

4.2.2 W(x,t) as a refinement criteria

The new unknown W (x,t) present in the third order moment systems (3.32) and the second
order moment system (3.74) can be employed in the context of adaptive mesh refinement
(AMR) as a refinement criteria, since as described in section (3.4) it behaves as a delta
function in the case a shock or a rarefaction wave occurs. Different approaches in how to
define the new refinement criteria were tested, at the end the one propose next showed the

best results.

As the need of greater accuracy comes in cases of complicated flow structure, we can set
the level of refinement accordingly with the steepness of the velocity gradient, given that
in the limit of & — 0 the function W (x,t) has the opposite behaviour of d,u, consequently
we expect in the case of shock waves a higher level of refinement. On that account, it is
possible to define always in the limit of ¢ — 0 an estimate of J,u depending on W(z,t),

coming from the moment system, which is produced by the original equation itself.

Consider

LU = J(W), (4.35)

where f(W) is a function which depends on the discrete values of W (x,t) and represents
an estimate of the respective gradient d,u at the point (i,n), it is recovered by considering
the moment system in the formal limit ¢ — 0. For our two examples, it is given by equations

(3.91b) and (3.101c). Next we define,
|0,U7| : absolute value of 8,UY at a given time n (4.36)

we can then establish a parameter tol K which will denote accordingly with the type of
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problem, yet more the kind of expected solution (if known) the steepness value for which

more or less refinement is desired. At a fixed n all points in space where
0, U} = Lol K (4.37)

will be flagged for refinement. Our aim is to compare the previously defined monitor
function with the traditional ones applied to the inviscid Burgers and the shallow water

equations. For simplicity we choose the spatial gradient estimate (4.28).

4.2.3 Case 1: 1D Inviscid Burgers equation

In order to compute the Advanced Stage inside the adaptive mesh refinement algorithm
we use the finite difference method described in (4.32). Moreover, the refinement function

(4.36) for this case is defined accordingly with equation (3.91b)
|0:U7 ] =| =3- W | (4.38)

Since we continue to use the same initial conditions (Riemann problem) as in the static
grid case (5.21), we know that the solution will be a single shock wave moving in time as we

0, U?| # 0 according to (3.92)

have seen in Fig. 4.1. Therefore, we will refine always where
given that W (z,t) will be zero everywhere except around the shock. The corresponding
refinement tolerance for the third moment system would be then tol K = 0, since in a shock

wave we will always want the maximum level of refinement.

Numerical data

We compare the results of the AMR integration algorithm for the inviscid Burgers equation
(3.37) computed for three different tolerance values (tol) considering the spatial gradient
estimate (4.28), and its corresponding third order kinetic system (4.1) considering the re-

finement criteria (4.38), with respect to the exact solution of the Burgers equation.
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The first three solutions will be represented in the figures as "Burgers Tol= tol", on the
other hand, the computation of W coming from (4.1) will be also used as a refinement
criteria for the inviscid Burgers represented by "Burgers w/ W (xz,t)", and for the kinetic
system itself represented by "Kims". Hence, we will be able to observe the corresponding

changes in error and refined areas correspondingly with the following data,

« computational domain [—2 : §]
* £ =0.001

* lpar = 4

x refinement factor r = 2for

% tol = [0.04,0.6,0.8], used (4.28)
* tol K = 0, used for (4.38)

x coarsest grid M; + 1 = 251

« finest grid My + 1 = 2001, (if all the domain were refined)
x Ax; = 0.04

x Axy = 0.005

* Lpinar = 2.1

Results

e Refinement
Fig. (4.14) shows the refined areas with corresponding levels for each tolerance value,
according with the respective refinement criteria for both AMR approximations. The
first three results correspond to (4.28), the last one to (4.38) and the red plot repre-

sents the exact solution of the Riemann problem at ¢ = 2.1.

For (4.28) we have chosen such tolerance values that exhibit where the level of re-
finement starts decreasing. We can observe that the total Kims refined area is quite

similar to the rest, but the part corresponding to [ = 4 is bigger if we compare it
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Figure 4.14: Refinement levels at t = 2.1 for different tolerance values.

with Burgers Tol=0.04, since in the first case the number of cells between levels is
fixed to four from the start and it will not change given the established value for
tol K. These are of course parameters that can be varied according to the problem

and requirements of the user.

If we focus in the results coming from the spatial gradient estimate (4.28), we can
see that in order to decrease the refinement we need to increase considerably tol but
after it starts decreasing any small change will contract the refinement, showing in
the case of a shock how sensitive it can be after a point to different tolerances. Ahead

we would be able to see how this translates to the [2-errors.

e [2-error

We use the (2 — norm (4.12) of the difference between approximated solutions Q7

(Burgers AMR and Kims AMR) and the inviscid Burgers equation exact solution ¢!,
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so to compute the error of our algorithms in the time interval (0,2.1].
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(a) 12-norm comparison between spatial gradient estimate for different tolerance values and KIMS refine-

ment.
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(b) Burgers 12-norm using spatial gradient estimate with tol = 0.04 and w(z,t) from KIMS.

Figure 4.15: 12-norm comparison.

In Fig. 4.15a, it is possible to see that the evolution of the [2-error is coherent with
the previous results of the refined area, as to lower levels of refinement we get higher
errors. On the other hand, there is not a significant difference between the solutions
with tol = 0.04 and tol = 0.6 being the latter just one level of refinement below, also

as we could hope for, Fig. 4.15b shows that the adaptation made through W(x,t)
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is almost the same as the best approximation done with spatial gradient estimate,
which is of the order 1072. As a reference, we include the result of the kinetic system
(KIMS), which has naturally the same refinement of "Burgers w/ W(z,t)" and as

observed has a rather low error, also of the order 1072.

o u(x,t)

Next we will show the comparison of the approximated solutions for u(z,t) with
respect to the exact one at the final time ¢ = 2.1, by this point the discontinuity has

travel past x = 3.15 (Fig. 4.16a).

5 1.90536 F
— Kims
— Burgers w/ w(x,t) 1.905355
1.8F —— Burgers Tol=0.04
Burgers Tol=0.6 1.90535 F
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Q 1.6 g > 1.905345
Na ¥ .
1.90534
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(a) u(z,t) shock wave at t = 2.1 (b) Burgers with tol = 0.04 and W (z,t)

Figure 4.16: Comparison of Burgers approximations with different tolerance
values and the third order moment system (KIMS).

Fig. 4.16a is indeed the reflection of what we have already observed, where the diffu-
sive effect grows as the level of refinement decreases, increasing the error. Further in

Fig. 4.16b, it becomes visible the closeness between the results "Burgers Tol=0.04"
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and "Burgers w/ W (x,t)".

e Time step Aty

If we take a look to the maximal time steps in both AMR algorithms, we can notice
that Atpy, = 0.018 is of the order 1072 and Atgimse—0001 = 0.014 also of the
order 1072, meaning that both have a quite similar computational effort. We do
not compare the computational time of the numerical methods, since we know from
advanced that the kinetic system is solving on top of the original equation (in this

case the inviscid Burgers) an extra one, which will naturally take more time.

4.2.4 Case 2: 1D Inviscid shallow water equations

Following again the adaptivity routine described previously, we will now use the finite
volume method (4.33) and (4.34) to compute the Advance stage. Additionally, the re-
finement function (4.36) is defined accordingly to (3.101c),

—2

pERLL (4.39)

One more time, we use the same initial conditions as for the static grid case (4.24), which
correspond to the breaking dam and as we know, in time it will develop into a rarefaction
wave (for which the need of refinement is less) where Wz, t) becomes a moderate negative
curve and a shock wave (for which we will want to refine until the maximum level) where
W (z,t) behaves like a delta peak, as we have seen in Fig. 4.5. Hence, we can define the
parameter tolK accordingly with the value of space gradient desired for different levels of
refinement. In this case, we want the rarefaction wave to reach only [ = 2 and thus the

refinement criteria yield,

0 ifl <2
tol K = (4.40)

1.5 if2<1<4
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Numerical data

The AMR for shallow water is computed by using three different tolerance values tol for the
spatial gradient estimate (4.28) and w(z,t) from the second order moment system together
with tolK for (4.39). The results are compared with a reference solution coming from the

approximation of the shallow water equations with a fine static grid.

In a similar way to the previous scalar example, the first three results for the shallow
water equations are represented by "SWE Tol— tol", the refinement of the shallow water
equations done via W by "SWE w/ W (z,t)" and the refined second order kinetic system

itself by "Kims". The parameters used for the numerical computations read,

% computational domain [—10 : 10]

* ¢ = (0.001

* lpar = 4

x refinement factor r = 2

« tol = [0.01,0.1,0.8]

% coarsest grid M; + 1 = 600

« finest grid My + 1 = 4800, (if all the domain were refined)
x Az = 0.033

x Axy = 0.0042

* Lpima = 1.4

Results

e Refinement

Subsequently with the spatial gradient estimate (4.28), the levels of refinement cor-
responding to each tol value for the shallow water system are presented in figure 4.16
together with the second order moment system (KIMS) accordingly to section 3.2.2.

In the first case, we have chosen tolerance values that display different refinements at
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least for the rarefaction wave. Only the solution for hu(z,t) is shown.

SWE Tol=0.8 /
SWE Tol=0.1 1 /
SWE Tol=0.01 s / —

Kims

(a) Rarefaction wave for h(x,t)u(x,t) at t = 1.4

In Fig. 4.17a we can see that along the rarefaction wave the lowest tolerance for
(4.28) reaches until [ = 3, but when we increase the value the refinement stops
at [ = 1. Again the refined area in "Kims" is just a little larger that the best
approximation from the gradient estimate, and it goes up to [ = 2 as established
from the parameters (4.40). Furthermore, along the shock wave showed in Fig. 4.16b,
for (4.28) the refinement decreases suddenly from the maximum level [ = 4 to the
initial grid just in the highest tolerance, and as in the Burgers case the refined region
by "Kims" looks rather similar to the one corresponding to "SWE Tol—0.01" reaching

out the maximum level as one should expect giving the drastic jump in the solution.

e 12-error

According to the [2-discrete norm (4.25), with @7, ; the approximated AMR solution

of the shallow water and the second order moment system, and gy, ; the reference
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Figure 4.16: Refinement of the SWE for h(x,t)u(x,t) at t = 1.4. Rarefaction wave
(a), shock wave (b)

solution given by the approximation of the shallow water equations in a fine static

mesh (M + 1 = 4800), Fig. 4.17 shows the comparison between approximations.

In line with the previous section, we can observe how the [2-error for SWE Tol=0.8
increases substantially in comparison with the rest, since the grid stays at [ = 1,
as well as how the "SWE w/ W (x,1)" error stays between "SWE Tol= 0.01" and
"SWE Tol= 0.1" given that the highest refinement level along the rarefaction are
2.3.1 respectively. It is of note that "Kims" error, which has the same refinement as
"SWE w/ W (x,t)" is fairly low and stays comparatively close to "SWE Tol= 0.1"

error, even overtaking it after some time.

e h(x,t) and h(x,t)u(x,t)

Conclusively Figs. 4.18a and 4.18b present the juxtaposition of the approximated
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Figure 4.17: Comparison of the 12-norm between the shallow water and the sec-
ond order moment system (KIMS) with different tolerance values.

solutions for both h(z,t) and h(z,t)u(x,t) including the reference solution defined
previously for the computation of the error, which here is called SWE Fiz. In order
to visualize the divergence of the solutions in a clearer way, the rarefaction and shock

waves are shown separately.

Figs. 4.19b and 4.19¢ display the beginning and end of the rarefaction wave, which
coincide with the previous results. We can observe more diffusion coming from the
second order moment approximations (Kims) and from highest tolerance value for
the shallow water system (SWE Tol=0.1 and SWE Tol=0.8), then becomes clear
that the rarefaction approximation has the strongest influence on the error increment
-which is aligned with the static mesh results at section 3.1.2-, given that for the
shock wave (Fig. 4.20) almost all the cases are equally refined and we can note how

close they are to each other (Fig. 4.20b).



1.8
—~ 1.6
pl\
Ko
= 14f
—SWE w/ w(x,t)
1 5| —Kims
| =——SWE Tol=0.01
SWE Tol=0.1
—SWE Tol=0.8
—— SWE static
1 = 1 1 1 1 1 1
-6 —4 -2 0 2 4 6
X
(a) h(z,t) at t =14
1 I | | | | I
1.5F
= _
ok SWE w/ w(x,t)
= —Kims
< ——SWE Tol=0.01
osl SWE Tol=0.1
' ——SWE Tol=0.8
—— SWE static
O 1 1 1 1 1 1
-6 —4 -2 0 2 4 6
X

(b) h(z,t)u(z,t) at t =14

Figure 4.18: Comparison between the shallow water and the second order mo-
ment system (KIMS) with different tolerance values.
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Figure 4.19: Comparison of SWE rarefaction wave approximations with differ-
ent tolerance values and the second order moment system (KIMS).
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Figure 4.20: Comparison of SWE shock wave approximations with different tol-
erance values and the third order moment system (KIMS).

Fig. 4.20 shows again that the second order moment system introduces extra diffusiv-
ity to the shock. Nevertheless, there will be a lower level of refinement for the SWE
in which the amount of diffusion reaches that of the Kims computed in a higher level

of refinement as we could observe for the rarefaction wave.

4.3 Summary

The static grid numerical examples show that in both cases (Burgers and SWE), with a
smallness parameter ¢ = 0.001, the new variable W (x,t) in fact performs as a shock and
rarefaction wave detector, behaving -as expected from Chapter 3- like the opposite of the

gradient. Namely, around a shock wave it will behave as a positive d—peak, while around
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a rarefaction wave it will have a moderate negative tendency, otherwise it will be equal to
zero (Fig. 4.5). Therefore, it is possible to use W/ (the approximation of W(z,t)) as an

alternative for the traditional refinement criteria in the context of adaptive mesh refinement.

As for the corresponding [2-errors, in the numerical approximation of the 3rd order moment
system of Burgers equation, we could observed that by raising the value of ¢, the error will
increase steadily (Fig. 4.3). On the other hand, for the 2nd order moment system of the
SWE, the steady increase of the error will depend on both parameters ¢ and Az, since for
very small values of ¢ or for not small enough values of Az the error will blow up (Fig. 4.9).
This could mean, that more complex systems will have stronger numerical restrictions on
the parameters £ and Az, thus in order to use the corresponding KIMS model we would
have to check always in advance an appropriate setting for both parameters, so to avoid

unstable approximations, which can be cumbersome.

Furthermore, when using W/ as a refinement criteria in AMR (4.35), it gives us the possi-
bility to establish a proper gradient value for which less or more refinement shall be wanted.
Hence, one can set a different maximum level of refinement depending of the expected solu-
tion. For example, if it is either a shock or a rarefaction wave. This feature will then allow
the level refinement to be independent of some heuristic parameter specified according to
the user’s criteria, as it occurs with more traditional refinement parameters (4.27) and

(4.28), instead we can use the gradient to determine more suitable refinement conditions.

The comparison between refinements of the original equations done via spatial gradient
estimate (SGE) and via W/ shows that the area refined by the second method tends to
be larger than the one by the first (Fig. 4.14,Fig. 4.16). Additionally, the latter is in both
experiments almost the same to the best SGE result, which corresponds to the lowest tol-

erance value as one would expect (Fig. 4.2,Fig. 4.17). In other words, there is always a

tolerance value (which needs to be found) for SGE that refines in the same way as W) does

91



it, without the need of computing a kinetic-induced moment system which by default will
need more computational time. Nevertheless, the use of W (if available), simplifies the
task of defining the proper refinement parameters that give us the most accurate approx-
imation, since it is not longer a random value but it is now connected to a mathematical

characteristic of the problem itself, which in the long run will save us time.
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5. Spectral Analysis

It is well know that discretizing the one-dimensional nonlinear diffusion equation by spectral
methods, one often encounters convergence problems in the case of shock developing initial
conditions [39]. This kind of solutions arise from very small viscosity (v — 0), for which a
considerably large amount of modes need to be considered in order to have a stable solution
that includes the effect of small wavelength modes and resolves the resulting wave. Up
to present time, different models like optimal prediction [4] and hyperviscosity [31] among
others, have been developed trying to overcome this difficulty. Hereby, we try to established
if the previous derived kinetic moment systems are equipped with spectral properties that
allow some relaxation for the stability condition and provides an alternative model to the

ones already found in the literature.

5.1 Fourier-Galerkin spectral approximation of the third
order kinetic-induced moment system for Burgers
equation

We are interested in studying the one-dimensional viscous Burgers equation (5.1) in the

limit of vanishing viscosity (v — 0), so we get closer to the inviscid problem (2.17).

ot Yor Vox2 &

On the domain z € [0, 27| with periodic Dirichlet boundary conditions (0, ¢) = u(2m,t) =0

the previous equation (5.1) will develop shock waves in time from smooth initial conditions,

like sinusoidal waves. For v = 0 the shock will become a discontinuity [7].

The FG-spectral approximation, approximates the solution u(x,t) of (5.1) by the Fourier
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series’,
uMN(a,t) = g (t)e (5.2)
k

where the corresponding Fourier coefficients at each mode k are defined as

. 1 ihe .
Ux(t) := o u, e (5.3)

with (-,-) the inner product?, which uses e*** as test function. See [19] and [29].

Theorem 5.1.1. Let k be the cut-off wavenumber, that truncates the Fourier series (5.2)
of u(x,t). The FG-spectral approzimation of the viscous Burgers equation (5.1) satisfies
the following nonlinear differential equation for modes within k.

Oty

Zk PN 2~ 7. I
E—i_g Z Uy gy = —VE Uy, VIk[<k (5.4)

neZy (E)

where the sum is over the set,

Z(k) = {n/n € Z:|nl, Ik — n| <&} (5.5)
and yields,
(&
S () k>0
n=—k+k
> 0= (5.6)
neZy, (k) Ttk
>0 k<0
\ n=—k

LA Fourier series is an expansion of a periodic function in terms of an infinite sum of sines and cosines,
which can also be extended to complex coefficients. It make use of the orthogonality relationships of the

sine and cosine functions [12].
2The vector space of real functions whose domain is a closed interval [a,b] is equipped with the inner

product (f,g) = f; fgdx. Tt satisfies the following four properties:

1. (f,f) >0, (f,f) =0 only if f is the constant zero function,

(2]

. {f,9) = (g, f). For complex-valued functions (f,g) = (g, f) the complex conjugate,

3. (g +h) = (f.9) + (], .
. (fycg) = ¢(f,g) for any scalar c.

[r

For details see [11].
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ikx

Proof. Tn weak conservative form® with e’** as the test function, (5.1) yields

b
/—i_‘ 1 ~ ) /—"c\%
(Oyu, 7Y + <8§ (§u2> ,e”“”> = (0, (vu), e*) | (5.7)

Using the Fourier series approximation of wu(z,t) by (5.2), together with integration by

parts and periodicity we develop each term:

a— <at2al( zlm‘ 1km‘ _ Zatu zl.r zkx)
l
= Z Oyt (£) (e, ™) = 2 Z Ayt () O (5.8a)
l !

— 27Tat’l1k (t)

1 : 1 ,
aﬁ <§u2> 7ezkx> — <_§u2’8xezkx>

< Z un mx> (Z iy zl:c) . ezkx)
Zzun Ul f z(n—l—l)x,ikeikm’) (58b)
ik

=5 T () e (1) (77 iK™
n+l=k

= |ikm Z U () U (1)

b=

¢ = (O (vu), ") = (D} ) w(t)e™, )
l

— v Z (1) ((il)%e™ ey = —p Z Py (t) (e, e™) (5.8¢)

= —(2m)w Y Py (t)ou = | — (2m)vk>i(t)

3 An equation written in its weak form is no longer required to hold in the classical sense, instead requires
a solution only with respect to certain test functions. These are then called weak solutions, which allow

discontinuities [11].



Putting all terms together and dividing by 27 we obtain (5.1),

Oty

'lk PN 2 A 7. 7. o2

neZy (k)

Remark 5.1.1. As is well known, spectral methods work very good for viscous problems

where the mesh parameter

h=n/k (5.10)
is smaller than the shock width
Il =7 v, (5.11)
thus imposing the condition
h <l (5.12)

One could state, that k should be approzimately greater (or equal) than v,

meaning that
they are inversely proportional. The needed amount of resolved scales will then increase as

we get closer to the inviscid case (v = 0), increasing naturally the numerical effort.

Consider again the third order moment system induced from the one-dimensional inviscid

Burgers equation (4.1) with 0 < e < 1,

—tu—+te——= (5.13a)

oW  10u  OW 4ed®*W 1 )
ot + 3c0x tu or 15 ox2 EW (5.13b)

The additional term in (5.13a) which couples the first equation with the second one, intro-
duces extra viscosity to the inviscid Burgers solution as we saw on the third chapter. One
could expect, that the truncated FG-approximation of such a system acts as the truncated
solution of Burgers equation with an included "subgrid model" if we compare it with LES
(large eddy simulation) [34], in which the influence of small wavelength unresolved modes
is included on the long wavelength resolved ones by means of an additional source term,

vet in this case the extra modelling comes from the equation itself.
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Theorem 5.1.2. Let @y and Wy be the Fourier coefficients of the solutions u(z,t) and
W (z,t) respectively, and let k be again the cut-off wavenumber that truncates the Fourier se-
ries approzimation (5.2) for both variables. The FG-spectral approzimation of the third or-
der moment system (5.13) satisfies the following nonlinear differential equations for modes

within k.

o ik
% n % D" nite + icki = 0 (5.14)
neZy (k)
ou ik 4 1 _
nesiy,

Proof. Using ¢**® as test function, the weak conservative form of (5.13b) and (5.13a) yield

b

(Oyu, ™) 4 (ﬁm(iuQ), e*Y 1 (0, (eW), ey =0 (5.15a)
(B, €5%) + (D, (=), €57} + (B, W, €77) = (DH(S2W), ) — (2 W, ) (5.15D)
—— 3e ———— 15 N3

d e S f

c 5 b
One more time by replacing the Fourier series approximation of u(z,t) and W (x,t) accord-
ing to (5.2), together with integration by parts and periodicity we develop each term. First
for (5.15a), the terms a and b read the same as in the viscous Burgers case, (5.8a) and

(5.8b) respectively. The last term c follows

c = (0,(eW), ey = (—eW, 0,e*®) = —(W, ike™™)
= ike(W, %) = zke(z iy (t)e™, etk
1

- (5.16)
= ike »_an(t)(e", ™) = 2mike Y ain(1)ou
I I
= 27Tik€wk(t)
Putting (5.8a), (5.8b) and (5.16) together and dividing by 27 we reach (5.14a),
Oty | ik D dniign +ickipy =0 k€ {-Fk ..,0,..,k} >0 (5.17)
ot 9 . nUk—n k — g eeey Uy ooy y v 2 9.4
ne sy (k




Next, we proceed as before for (5.15b):

d= <8t Z lDl(t)eilz, eikz Z 8tw cile zka:)
l

= Z Ay (1) (e ) = 27 Z Oty (£) 0y,

! l

= 27T(9t12)k(t)
e= @(i iy (t)e'), ety = <—izﬁz( )e'”, 9,e™)
3¢ ’ 3e l
ik ~ ilx ik k ~
:;_6 l (1) (el ety 27rl—€zl:ul(t)olk
ik .

f= (u0,W, ey =|2n Z iny (L) tg—n (L)

Note: Y inw,tg_, = (vw,)r — Convolution sum
n

g = = <82 Z (t) z’lz’ zkz) _ 411_:; Zl:wl(t)<(il)2eil$; eika:>

Z lg A ile zk:l’> — _(277)411—; Z lQ’LZJl(t)(Slk

l

= —(27)1—gk2wk(t)

= _<Zw zlz zkz _ ézwl(txeilz’?eikx)

l
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Again, putting (5.18a), (5.18b), (5.18c¢), (5.18d) and (5.18¢) together and dividing by 27

we recover (5.14b)

0wy, ik € 1 _ _
% + ;k) intd i+ ;_sﬁk _ <—k2 n E)“A”“ ke {—F, 0, K}, £ >0
nesiy

(5.19)
O

For numerical purposes explained in the coming section, an artificial viscous term v, is

included in (5.20a), the resulting ODE system will then read

ou ik . o -

8_: + 5 Z, T Ug—p + iekily, = | —v k21 (5.20a)
neZy (k)

ow . . ik 4e 1\ . — .

G_tk +1 Z, Wy, W—y, + 3ok = - (1—5k2 + g)wk NV k< k. (5.20b)
'I‘LEZk(k)

ODEs systems (5.4) and (5.20) are solved numerically using the Matlab solver ode45 based

on an explicit Runge-Kutta 4 formula [27].

5.2 Numerical Experiments for a Fourier-Galerkin spec-
tral approximation

Since we want to study a periodic problem, the initial condition for (5.1) will be given by
the sinusoidal wave

u(z,0) = —sin(x), (5.21)
in wavenumber space the same condition reads,

0 for | k|# 1
i (0) = vkl (5.22)
ik/2  for|k|=1.

In time, the energy transfer to higher modes coming from the nonlinear hyperbolic equa-

tion (5.1) with v — 0 will turn the smooth initial condition (5.21) into discontinuities, this
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special feature will be our main interest through out this chapter. Additionally, we set

W (x,0) = 0 as initial condition for KIMS (5.13).

In order to compare the spectral characteristics of the viscous Burgers equation (5.1) with
those of the KIMS model (5.13) for v — 0, we perform different numerical experiments in

time with At = 0.1, following the procedure below:

1. We compute a benchmark solution (called here DINS in analogy to turbulent flows) by
solving the viscous Burgers equation (5.1) in a fine grid able to resolve accurately the
shock wave. The FG- approximation is done accordingly with (5.4) and its respective
cut-off wavenumber kpng will be given by the viscosity value according to (5.12).

This solution will work as a reference frame.

2. We solve the viscous Burgers equation (5.1) in a coarse grid such that A > [
(Burgers), using different viscosity values v. For each v the coarse solutions are

computed using different cut-off wavenumber k.

3. We solve the moment system (5.20) in a coarse grid such that h > [ for different

values of . (KIMS e = ...)

e = {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} (5.23)

The 12 — error will helps us to quantify the differences between the previous experiments,

it is defined in the resolved scales as:

S B(k) — B (k)P
L) = |22 (5.24)

where N =k is the cut-off wavenumber of the coarse grid approximations 2. and 3. with
EN (k) their respective solution. F(k) refers to the benchmark solution (DNS). The results

are presented in physical space {u” (z, ()} as in wavenumber space { E(k) =| 1y, |, Fourier
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coefficients magnitude } together with the 2 — error of the Fourier coefficients with respect to

the DNS.

521 v,=0

First, we look into how the third order moment system (5.20) for Burgers equation performs
numerically without including the artificial viscosity term in (5.20a), hence we consider
v, = 0. Then following the procedure previously described, we set a benchmark solution
(DNS) with v = 3.5 x 10™* together with kpys(N) = 3000 according to the condition
(5.12) and compare it with the coarse approximations of (5.20) for the different ¢ values in
(5.23), and with the viscous Burgers approximation (5.4) using the three different viscosity

values presented in (5.25).
v = {0.00035, 0.001, 0.0035}. (5.25)

We now need to define the different coarse cut-off wavenumbers (V) in order to compute

these coarse approximations for which (h > [) holds, they are
N = {100, 75, 50, 25}. (5.26)

For each one of the previous cases, we analyse the numerical results obtained for F(k) and
uN(z,t) (for simplicity the latest will be referred as u(z,t) from now on) at different time

moments until ¢ = 3.5 is reached, and present those whose outcome is most relevant.

Results

At early times (¢ = 0.1), the solution presented in Fig. 5.1 for N = 50 stays smooth and
the energy is conserved since the shock is not yet formed, consequently independent of the
values used for the viscosity (Burgers) and epsilon (KIMS) the energy has a stable nonlinear
decay as we move closer to the cut-off wavenumber, this will happen even for the smallest
N value (see Fig. A.1 for the results on N = 100,75,25 at ¢ = 0.1). For KIMS ¢ = 0.1

(the biggest value used for £) there is small increase in the energy for modes approximately
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Figure 5.1: E(k) and u(z,t) for the DNS and coarse grid solution N =50 at ¢ = 0.1.

bigger than k£ = 25, which can be observed up to N = 50.

After t = 1 the shocks around x = 0 and x = 27 start to form, creating a sawtooth-like
shape. The DNS corresponding energy decreases linearly (in a logarithmic scale) and we

begin to see some differences with respect to the other solutions.

Two main events occur: First, for every viscous Burgers and KIMS with & from 5 x 10?
to 0.01 there is an accumulation of energy near the cut-off wavenumber, for the smallest
values of v and ¢ the energy increase starts sooner and the peaks reached by the oscillations
are higher than for the rest. This pile of energy translates into small amplitude waves with
a node around = = 7 (Fig. 5.2a), which decreases amplitude as we reduce the number of
resolved modes since the energy pile has also lower peaks (Fig. 5.2b). Second, the energy
for KIMS € = {0.05,0.1} decays sooner than that of the DNS approximation and has an

almost linear behaviour without oscillations, thus it will not generate extra waves in the
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Figure 5.2: E(k) and u(x,t) for the DNS and coarse grid solutions at ¢t = 1.1.
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physical space solution.

Furthermore, the approximation of the forming shocks along all the different solutions looks
rather similar, and we can observe how the steepness decreases from N = 100 to the smaller

cut-off wavenumber N = 50. Additional results using N = 75,25, can be see in Fig. A.2.
At t = 3.5 when shock waves are already form, the energy transfer from smaller modes
to bigger ones increases for some approximations, which will not converge in the physical

space to the DNS.

| u, ()| in FG , N=50 until t=3.5

10 T
—— DNS(N=3000)
Burgers v=0.00035
—— Burgers v=0.001 ~ ol |
—— Burgers v=0.0035 \m_/
10" '
10’ 10'
| k|
u(x,t) in FG , N=50 until t=3.5
2 I I I I I I I
1 - -
Ky .
= | I
_1 - —
_2 | 1 1 1 1 1 1
0 1 2 3 4 5 6
X
(a) N =50 for Burgers with coarse grid
Namely, as we start reducing the number of resolved modes starting at N = 100 un-

til N = 25, higher oscillations become more and more present for increasing viscosity in
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(b) N =50 for KIMS with coarse grid

Figure 5.3: E(k) and u(x,t) for the DNS and coarse grid solutions N = 50 at ¢ = 3.5.

the case of Burgers and for increasing ¢ in the case of KIMS. With N = 50, Burgers
v ={0.35,1} x 1073 (Fig. 5.3a) together with KIMS ¢ = {0.5,1,5} x 1072 (Fig. 5.3b) show
to be unstable, we have reduced and divided the results in order to make them clearer, the
complete solutions can be found in Fig. A.3c. It is then clear, that even for a small quantity
of resolved modes, the remaining solutions KIMS ¢ = {0.05,0.1} (Fig. 5.3b) stay stable
and converge to the DNS, yet keeping a slightly faster decaying energy as we observed at

the previous time.

The complete set of results are shown in Fig. A.3, where we can observe that for N = 100
(Fig. A.3a) Burgers v = 3.5 x 107% and KIMS & = {0.5,1} x 1073 present already bigger

oscillations, later for N = 75 (Fig. A.3b) oscillations increase in Burgers v = 1 x 1073,
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for N = 50 (Fig. A.3¢) in KIMS € = 5 x 1072 and for N = 25 (Fig. A.3d) in Burgers
v =1x10"* and KIMS ¢ = 0.01.

Additionally, if we take a closer look to the approximation of the shock, the steepness of
the shock wave will decrease accordingly to the amount of resolved modes included in the
computations, as observed also at ¢ = 1.1. On the other hand, the instabilities originated
at x = 7 will reach the shocks at lower values of the cut-off wavenumber where they have
started, If we also observe closer the energy accumulation around the cut-off wavenumber,
we can notice that less energy is transferred for smaller values of N. Fig., A.4 displays the

results for all values of N at ¢ = 3.5 zooming in the shock location.

e 12-error

Next, accordingly with (5.24) we compute the [2-error for different times and compare the
results of the approximations already presented. We have by now made the distinction
between two groups of solutions. The first one, consisting of Burgers with all the viscosity

values and KIMS e = {0.5,1,5,10} x 1073, and the second one KIMS & = {0.05,0.1}.

For the first group until the shock is formed at ¢ = 1 the solutions are almost identical,
after that the error will increase continuously starting for KIMS ¢ = {0.5,1} x 1072 and
Burgers v = 3.5 x 10~ with N = 100 (Fig. 5.4a), followed by Burgers v = 1 x 1072 with
N = 75 (Fig. 5.4b), then by KIMS ¢ = 5 x 1073 with N = 50 (Fig. 5.4¢) and finally by
KIMS € = 0.01 and Burgers v = 3.5 x 1072 with N = 25 (Fig. 5.4d). It is of note, that the
error increments occur first for the lowest values of viscosity and the smallness parameter
and gradually as the resolved modes are decreased the next value follows. Moreover, we can
identify pairs of parameters where the results behave quite similar, is the case of Burgers
v =0.35x 1073 with KIMS £ = 1x 1073, also Burgers v = 1 x 1073 with KIMS ¢ = 5x 1073,
and Burgers v = 3.5 x 1073 with KIMS £ = 10 x 1073.
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Figure 5.4: [2-error as a function of time for ug = —sin(z).

The second group will have a higher jump around the time when the shock forms, followed

by a decrease which leaves the error at a rather stable value along the changes of the

cut-off wavenumber (Fig. 5.4). This means that for a & around the order of O(107") the



third order moment system (5.13) includes the significant effects of the unresolved modes
into the resolved ones even for small N which provides a stable solution, nevertheless the

steepness of the shock approximation will suffer the spared modes.

5.2.2 v,=v

Next, we will include the artificial viscosity v, in (5.20a), which will take up on the same
values as those used for the viscous Burgers equation (Table 5.1). Differently to the pre-
vious section with (v, = 0), where only one DNS solution with its respective viscosity
was defined to which all of the coarse grid cases of viscous Burgers and KIMS where com-
pared to, here each one of the five viscous cases determines the amount of resolved modes
(Npns) needed in order that the condition (5.12) holds, imposing the benchmark solution
DNS corresponding to the case. This is done given that now the FG spectral approximation

of KIMS (5.20) varies not only with respect to the parameter ¢ but with v, also.

# v l Npns hpns

1 1035x1073| 1.1x10% | 3000 |33x10"
2 | 1x107% [314x107%| 1010 |99 x 1074
31 35x1073% | 1.1 x1072 300 |33x1073
4 10 x 1073 [3.14x1072| 110 |[9.1x1073
B) 35 x 1073 1.1 x 1071 50 2x 1072

Table 5.1: Viscosity values with their respective shock width (5.11), cut-off
wavenumber (5.12) and mesh parameter (5.10)

In the first place, we will compute the coarse grid approximations of the viscous Burgers
(5.1) and of KIMS (5.20) for different & values in (5.23), with a chosen viscosity v given in

Table 5.1, afterwards we compare them with the corresponding DNS solution. The choice of
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the different cut-off wavenumbers (V) from Table 5.2 used to discretize the coarse grid ex-

amples is given accordingly with the related Npysg, in order that they will agree with h > [.

N 500 250 200 150 100
h [2x103[4x103|5x102|6.7x103|1x 102

N 50 30 25 15
2x107%33x10%]4x102%|6.7x 102

>

Table 5.2: Coarse cut-off wavenumbers N with their corresponding mesh param-
eter h given by (5.10)

The five different settings for the numerical experiments corresponding to each viscosity

value in Table 5.1 read.

v Ni | Ny | N3 | Ny
1]0.35 x 1073 | 500 | 250 | 100 | 50
2| 1x10=% | 500 | 200|100 | 50
31 3.5x1073 | 150 | 50 | 25

4| 10x 1073 | 50 | 30 | 15 | —
5| 35x1073 | 25 | 15 | — | -

Table 5.3: Coarse cut-off wavenumbers N chosen for each experiment

Results

We start by analysing case 1 in Table 5.3. Fig. 5.5 shows as the kinetic energy decay in
every solution for each value of N at initial times (¢ = 0.5) for N = 500. We can observe

an early agglomeration of the energy cascade for the DNS with the coarse Burgers solution
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which start decaying sooner than the rest, together with the coarse KIMS solutions except
for ¢ = 0.1 which is the highest ¢ value and the last one to decay. As we decrease N
the energy cascade is then shortened without exhibiting mayor changes in its values. The

results for each cut-off wavenumber in Table 5.3 with v = 0.35x 1073 can be seen in Fig. B.1.

Iuk(t)l in FG v= 3.5e-04 N=500 until t=0.5

10° ' —_——— ' —
— Burgers
100 —— KIMS e=0.0005
107 B S e— n
— KIMS ¢=0.001

A —— KIMS €=0.005

= ol e KIMS €=0.01
020k KIMS €=0.05 ]
........ KIMS ¢0.1
........ DNS(N=3000)
107300 F . o , . .
100 10!
| k|
1 u(x,t) in FG v= 3.5e-04 N=500 until t=0.5
T T ! ! I I
05 i
=
X or |
]
05F |
-1 1 1 1 1 ! : ;
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Figure 5.5: E(k) and u(z,t) for the DNS and coarse grid solutions N = 250 at ¢ = 0.5.

The previous results are in-line with what we have already observed for v, = 0, where the
influence of viscosity and the smallness parameter are minimal for times prior to t = 1. In
terms of u(x,t) we still can not see significant differences in the solutions. As for the rest
of cases described in Table 5.3, their outcome is quite similar for initial times to case 1,

thus we do not extent this analysis to them.
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After t = 1.5 the shock is forming and the energy starts to be transferred from the small
scales to the modes near the cut-off wavenumber, by t = 5 the shock is defined and de-
creasing, thus diminishing the kinetic energy decay. In case 1 which uses the smallest
viscosity value, as we decrease N from 500 to 50, we start observing oscillations which
increase specially in the cut-off area, in the physical space these oscillations are translated
into a jump in u(z,t) around x = m, larger oscillations mean a larger and longer jump
(Fig. 5.6). On the other hand, the smooth part of u(z,t) showed by the DNS remains
smooth for KIMS approximations with the biggest values of ¢ even for smallest amount of

resolved scales N = 50 (Fig. B.2d).

For the biggest amount of resolved modes N = 500 (Fig. 5.6a) the coarse KIMS kinetic

energy for ¢ = {1,0.5} x 1073 together with the coarse viscous Burgers will decay at the
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Figure 5.6: E(k) and u(x,t) for the DNS and coarse grid solutions at ¢ = 5.

same rate as the DNS does, while the rest of solutions start decaying sooner beginning
with the biggest ¢ = 0.1. By N = 100 in Fig. 5.6b the coarse viscous Burgers and KIMS
with e = {1,0.5} x 1073 have started to oscillate. The resting outcomes can be found in
Fig. B.2, where we can see in detail that for N = 250 in Fig. B.2b only the coarse viscous
Burgers oscillate, and by N = 50 in Fig. B.2d KIMS with £ = 5 x 1073 joins the previous

ones.

With regard to the shock approximation, in Fig. B.3 we show a closer look to the solutions
behaviour around the shock area and the kinetic energy near the cut-off wavenumber. For
N =500 in Fig. B.3a only KIMS with € = {0.1,0.05} have a significant difference with the
DNS. As for N = 250 in Fig. B.3b the gap with respect to the DNS increases for the coarse
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viscous Burgers and KIMS with the smallest values of ¢ which as seen in Chapter 3 will
follow Burgers closely. Finally for N = 50 in Fig. B.3d the coarse viscous Burgers solution

appears to bring the least accurate approximation of the shock wave.
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Figure 5.7: E(k) and u(z,t¢) for the DNS and coarse grid solutions N = 100 at ¢ = 5.

We increase the viscosity value to v = 1 x 1073 as we continue to case 2, therefore the
number of resolved scales needed to achieve a stable approximation ( Npyg) is lower. The
first coarse example with N = 500 contains half of the resolved scales with respect to the
DNS, while previously it was a sixth. The behaviour of all the solutions span sticks to the
same pattern seen before using a smaller viscosity, with the difference that in this case we
start to observe oscillations only by N = 100 in Fig. 5.7 beginning with the coarse Burgers

approximation, while for case 1 this starts happening already for N = 250. By N = 50
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KIMS with e = {0.5,1} x 102 have followed (Fig. B.4d). All of the numerical experiments
for N = 500,200, 100, 50 cab be seen in Fig. B.4.

Moreover, the shock resolution in this example is quite coherent with the one already ob-
served in the previous case, not only in the way it evolves but also in the number of resolved
scales. In Fig. B.5a (N = 500) we obtained some very good estimates, by N = 50 the dis-
tance with respect to the DNS has grown around the shock for all approximations in an

almost equal magnitude. Details in Fig. B.5.

In case 3 by increasing again the viscosity to v = 3.5 x 1072 we get a cut-off wavenumber
Npns = 300, less than half of the resolved scales used in the second example. We start
the experiments by using half of the scales needed for stability N = 150 and go until one
twelfth N = 25. The energy cascade looks quite stable for N = (150, 50) presenting the
same behaviour already seen in Fig. 5.6a for case 1, the corresponding results are showed
in Figures B.6a and B.6b. Oscillations only appear for N = 25 in Fig. B.6c increasing
in the usual approximations order and even touching KIMS ¢ = 0.01. As for the shock
approximation, we do not get any surprises, there is a quite standard gap between DNS
and the coarse solutions as the resolved scales are reduced, that is relatively similar to all,

still KIMS with € = 0.1 has a slightly better approximation of it by N = 25.

In case 4 we have reached now a viscosity of order 1072, As we could observe in the previous
experiments for bigger v, oscillations appear along the energy cascade only for really coarse
mesh with a smaller amplitude and frequency, which we can visualize in the Appendix
Fig. B.8. Furthermore, for N = 15 (Fig. 5.8) is clear how oscillations reach faster KIMS
approximations with bigger values of ¢, going up until ¢ = 0.01. The behaviour of coarse
approximations in terms of the shock resolution deteriorates faster than in the previous

experiments, results are shown in Fig. B.9.
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E(k) and u(x,t) for the DNS and coarse grid solutions N = 15 at ¢t = 5.
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Figure 5.9:
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With the last viscosity increase in case 5, we get the smallest cut-off wave number. In
this case even for a small amount of resolved scales N = 15 (Fig. 5.9) there is no trace of
oscillations along the energy cascade. In this case, the coarse viscous Burgers approximation
keeps on being a good choice even for a really coarse mesh, this comes from the fact that
N =15 is just a third of the considered Npys. The complete ensemble of results are given

in Fig. B.10.

e 12-error

Last of all, we monitor the accuracy evolution of each one of the five viscous numerical
examples (Table 5.3) as we decrease the number of resolved scales N by computing the

[2-error (5.24).

Omne more time, we begin with the smallest viscosity value in Table 5.3. In case 1, the
coarse viscous Burgers and KIMS approximations with ¢ = {0.5,1} x 1073 expose a similar
behaviour in time for every N. Until £ & 1 we observe that there is almost no difference
with the benchmark solution DNS, after that a big jump occurs around the same time where
the shock is starting to form. For N in Fig. 5.10a we can see a pattern in the evolution,
which at ¢ ~ 1.7 reaches a maximum followed by a smooth decay until ¢ ~ 5, where the
shock is now disappearing. As we decrease N their [2 — error increases notably, being the
Burgers the first one to disrupt the pattern noticed before (Fig. 5.10b), but followed in
the next cases by the two KIMS solutions (Figures 5.10c¢ and 5.10d) and surpassing all the

other approximations.

Furthermore, KIMS approximations with ¢ = {0.05,0.1} maintain a stable behaviour and
magnitude throughout all the values of N, having an initial peak at ¢t ~ 1 together with
the shock formation and followed by a decrease around ¢ ~ 1.7 with a subsequent increase
which continues in time. We can see in Fig. 5.10a how these solutions have almost the

opposite behaviour as the three ones discussed above. For N = 500 we get the highest
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Figure 5.10: Case 1: [2-error as a function of time for vy = —sin(z).

error at almost every time, but as other approximations error start increasing with the

reduction of the resolved scales, we can observe how by N = 50 we get the lowest error

almost everywhere.
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Finally, KIMS approximations with ¢ = {0.5,1} x 1072 for N = 500 behave like those with
the biggest ¢ values but with a smaller error, their behaviour transforms as N decreases
taking a similar shape of the coarse viscous Burgers in Fig. 5.10a though increasing mod-
erately the error value. In average, all through the span of cut-off wavenumbers they have
the best performance, specially for the smaller one where in time the error tends to zero

instead of increasing.

On the other hand, if we compare the results for N = {100,50} (Figs. 5.10c, 5.10d) with
those obtained using v, = 0 (Figs. 5.4b, 5.4c), we can observe that the artificial viscosity

provides a marginally extra stability to the KIMS approximations.

Continuing with case 2, once more Fig. 5.11 show us that exists a pattern on the behaviour
of every approximation for a diminishing N. However, in comparison with the previous
case, the error coming from Burgers and KIMS with € = {0.5,1} x 1072 is the lowest for
N = 500 and starts to rise indefinitely only for a very coarse grid (N = 50). The rest of
solutions as we decrease N perform in a similar way to the earlier example, which shows

again that in average KIMS with ¢ = {0.05,0.1} brings the best results.

Again, if we compare with the results obtained from v, = 0 (Figs. 5.4b, 5.4c), we can notice
that the artificial viscosity effect increases, as one would expect it. which means that KIMS
approximations with smaller values of ¢ remain stable for lower cut-off wavenumbers. As

we increase the viscosity values, we will see how these effects become stronger.

Already in case 3, Fig. 5.12 presents again -as one would hope- the same development for a
decreasing NV, yet in this case viscous Burgers and KIMS approximations from ¢ = 0.5x 1073
until € = 1 x 1072 have a resembling behaviour, performing really good for N = 150 and

increasing in error at a comparable rate as N decreases, surpassing by N = 25 at least
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Figure 5.11: Case 2: [2-error as a function of time for uo = —sin(x).
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double the error coming from KIMS with ¢ = {0.1,0.05}.
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Figure 5.13: Case 4: [2-error as a function of time for vy = —sin(x).
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In coherence with the results already obtained for the Fourier modes magnitude and u(z, ),
for case 4 the [2 — error even for N = 15 does not blows up for any of the approxima-
tions. We observe in Fig. 5.14 the same pattern as in the third numerical example case 3,
which for the lowest quantity of resolved scales the best outcome comes from KIMS with

e ={0.05,0.1}.
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Figure 5.14: Case 5: [2-error as a function of time for vy = —sin(z).

Finally, the case 5 [2—error in Fig. 5.14 shows a steady behaviour similar to what we have
already seen. Nonetheless, KIMS with ¢ = {10,5} x 1073 continues on being in average

the best choices.

5.3 Summary

In the presence of shock developing solutions, the discretization of the one-dimensional
inviscid Burgers equation (2.17) by means of spectral methods will exhibit convergence

problems, given that as the discontinuity forms the energy transfer to the higher modes
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will significantly increase and large oscillations in the physical space will appear. One could
tackle this problem by solving the viscous version of Burgers (5.1) in the limit of v — 0.
However, as the viscosity value gets closer to zero, the amount of resolved modes needed to
achieve stability will be considerably larger (5.12), otherwise, oscillations will be developed

again.

The kinetic-induced third order system for Burgers equation (5.13) is then expected to
perform as a "subgrid closure" in terms of turbulent flows, in which the correct setting of
the smallness parameter ¢ could account for the unresolved modes effect onto the resolved
ones, specially when the stability condition (5.12) is not satisfied. The corresponding
Fourier-Galerkin approximation (showed below) includes an artificial viscosity v, which is

first set to zero, and then takes the viscosity values used to approximate the viscous Burgers

equation
ouy ik
8_: T3 Z, Ul + iekiby, = | —v ke
n€Zy (k)
oy L ik de 5 1Y . -
neZy (k)

with & the cut-off wavenumber (called also N for numerical purposes). Several numerical

experiments have been performed using different values of N for both cases of v,.

By setting v, = 0, the numerical results before ¢ = 1 when the shock has not formed
vet, appear to be rather similar independently of the parameters (v, ¢, N) and two main
behaviours show up: First, the Burgers approximations using every viscosity values, along
with KIMS using the value of £ up to an order of O(1072), present an almost zero error
being quasi identical to each other. Second, KIMS together with an ¢ of an order higher
than O(1072) has an error increase around ¢ ~ 0.5 which finds its peak at ¢ = 1 where
the shock lies. After ¢ = 1 the shock forms and as the number of resolved modes (N)

decreases the approximations stop converging, starting with those with the smallest values
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of v and ¢, for KIMS with an ¢ of an order higher than O(102) a decrease of the error
and stabilization follows (Fig. 5.4), thus there is clear dependency between the stability re-
quirement for KIMS and the values of . The above shows, that indeed the KIMS model is
able to remove oscillations coming from the energy transfer during the development of the
shock while using a significantly lower amount of resolved modes than the ones required by
the condition (5.12), if the parameter ¢ is set accordingly. Still, the accuracy of the shock

steepness is always compromised when decreasing the cut-off wavenumber.

Comparatively, setting v, = v the numerical approximations develop relatively similar to
the previous case before the shock, specially for the smallest viscosity value. After ¢ = 1,
the increase in viscosity provides more damping and the needed amount of resolved scales
(N) to remove oscillations in the physical space decreases in comparison to the results
obtained with v, = 0 (Fig. 5.10, Fig. 5.11, Fig. 5.12, Fig. 5.13, Fig. 5.14), in fact, it will be
then possible for a particular N to set a value of € larger than the one required in the case

v, = 0, so to improve the accuracy around the shock.



6. Conclusions

By means of the Order of Magnitude Method, it is possible to construct a kinetic-induced
moment system (KIMS) with a desired order of accuracy 7y, which is asymptotically closed
without an additional closure relation and couples the chosen balance law with its higher
order variables via the smallness parameter £ by means of a Chapman-Enskog-like asymp-
totic expansion of the moments. At zeroth — order accuracy it will always yield the
original equations. Such kinetic-induced moment systems can be built for any conservation
law system, for which an expression defining the equilibrium moments can be constructed.
However, such an expression can be difficult to build and the derivation of the correspond-

ing KIMS model will get more complex for larger systems and for higher accuracy orders.

Since our goal was to construct a system of equations that coupled the original balance law
with its next higher order moment and corresponding diffusive correction, we focus on the
3rd order accuracy moment system for Burgers equation (3.40) and the 2nd order accuracy
for the shallow water system of equations (3.89). The new variable W (x,t) in the previous
systems can then be used as a detector of special solutions that have an effect onto the
velocity gradient, for example, shock and rarefaction waves, given that, in the formal limit
e — 0 it will have an opposite behaviour to the gradient, while the moment system will
still preserve the correct shock propagation. The preceding statement holds true for both

of our study cases (Burgers and SWE).

In addition, the numerical experiments using a static grid show that the new variable
W (z,t) coming from the KIMS model, will behave accordingly with changes in the velocity
gradient for a small enough ¢ as it was expected, acting as a delta function around shock
waves, having a moderate negative tendency around rarefaction waves and equal to zero

otherwise (Fig. 4.5), the speed of both waves will not be affected by the choice of . More-
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over, the amount of extra diffusion inserted to the approximation of the original equations
by higher order terms, decreases for smaller € values, this effect is reflected in the decline of
the [2-error as we lower €. On the other hand, the KIMS model of the SWE is unstable for
very small values of € or for not small enough values of Ax (Fig. 4.9), meaning, that more
complex systems will probably have stronger restrictions on the numerical parameters and

an a priori validation of the chosen values is needed, which can be cumbersome.

Furthermore, W (z,t) appears to be a good alternative choice of refinement criteria for
adaptive mesh refinement techniques. Here, the desired gradient steepness would define
the refinement area (4.35). Therefore, it allows easily to costume the desired maximum
refinement level to different solutions (shocks, rarefactions) making it more flexible and in-
dependent of some heuristic parameter specified according to the user’s criteria, as it occurs
with more traditional refinement parameters (4.28) and (4.27), which will established more
suitable conditions. Nevertheless, its numerical results come rather similar to those coming
from spatial gradient estimate refinement criteria (4.28) with a very small tolerance value,
yvet, the computation of KIMS is more costly and may no be worth the extra features unless
the moment system is already at hand. Still, since the refinement criteria will not longer
depend of a random value but it is now connected to a mathematical characteristic of the
problem itself, it will save us time in the long run and the computation of such systems

might then be worth it for some cases.

On the other hand, a FG-spectral discretization of the 3rd order accuracy moment system
for Burgers equation will indeed perform as a "subgrid closure" model, since it manages to
include the effects of unresolved modes without having to satisfy the convergence condition
(5.12), for which the mesh parameter must be smaller than the shock width. Particularly.
the KIMS model is able to remove the oscillations coming from the increase in the energy
transfer during the development of the shock wave generated by the Burgers equation, es-

pecially when the amount of resolved modes (N) is insufficient. This special feature will
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allows to save in computational time without loosing stability. Nonetheless, it is necessary
to chose the appropriate value of ¢ for the given amount of resolved modes ( V), considering
that for smaller N a larger ¢ is needed. The choices £ = 0.05,0.1 showed no oscillations even
for very small cut-off wavenumbers. However, it has a disadvantage, the shock steepness

in the KIMS model approximation will suffer this reduction of resolved modes.

In the same way, if we consider an artificial viscosity term v, in KIMS spectral approxima-
tion for Burgers, the increase of this value will bring more damping and for less resolved
modes the KIMS solution will converge even for very small values of ¢, making the cut-off
wavenumber for which the KIMS model approximation starts oscillating to decrease and
giving the possibility to set a value of ¢ larger than the one required in the case v, = 0 for

a particular value of NV, so to improve the steepness around the shock.

In conclusion, with this work we have shown that the Order of Magnitude Method coming
from Kinetic Theory can be of use for the development of new techniques in the field of
numerical analysis for Balance Laws. It has been presented how the e-coupling of a new
variable W (x,t) derived from the original equations, allow us to optimize refinement regions
in adaptive mesh refinement and also the amount of required resolved modes in FG-spectral
approximations. However, we have repeatedly stated that the derivation of such kinetic-
induced moment system can be complex and full of tedious computations. Here, we have
just set the basis for further developments on the subject, a better understanding on how

one could optimally set the smallness parameter ¢ in both cases is necessary.
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Figure A.1: E(k) and u(z,t) for the DNS and coarse grid solutions at ¢t = 0.1.
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Figure A.2: E(k) and u(z,t) for the DNS and coarse grid solutions at ¢t = 1.1.
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Figure A.3: E(k) and u(z,t) for the DNS and coarse grid solutions at ¢ = 3.5.
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Figure A.4: E(k) and u(z,t) for the DNS and coarse grid solutions located at the shock
area at ¢t = 3.5. 139



B. E(k) and u(x,t) for vy = v
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Figure B.1: E(k) and u(x,t) for the DNS and coarse grid solutions at ¢ = 0.5.
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Figure B.2: E(k) and u(x,t) for the DNS and coarse grid solutions at ¢ = 5.
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lu, (O lin FG v= 3.5¢-04 N=500 until t=5
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| u, (t) lin FG v= 3.5e-04 N=100 until t=4
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Figure B.3: E(k) and u(z,t) for the DNS and the coarse grid solutions at t = 5.
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| uk(t) lin FG v=1.0e-03 N=500 until t=5
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Figure B.4: E(k) and u(x,t) for the DNS and the coarse grid solutions at ¢t = 5.
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Figure B.5: E(k) and u(x,t) for the DNS and the coarse grid solutions at ¢ = 5.
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Figure B.6: F(k) and u(x,t) for the DNS and coarse grid solutions at ¢ = 5.
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Figure B.7: E(k) and u(x,t) for the DNS and coarse grid solutions at ¢ = 5.

153



| uk(t) lin FG v= 1.0e-02 N=50 until t=5
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Figure B.8: F(k) and u(x,t) for the DNS and coarse grid solutions at ¢ = 5.
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Figure B.9: F(k) and u(x,t) for the DNS and coarse grid solutions at ¢ = 5.
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Figure B.10: E(k) and u(z,t) for the DNS and coarse grid solutions at ¢t = 5.
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Figure B.11: E(k) and u(z,t) for the DNS and coarse grid solutions at ¢ = 5.
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Summary

Based on the relation between kinetic-like transport equations and non-linear
balance laws, we use the order of magnitude method in order to derive kinetic-
induced moment systems for the spatially one-dimensional scalar case and the
2 x 2 system, which will be then e-coupled with their higher order terms. Next,
we prove that in the formal limit € — 0, the higher order moment systems tend
to the original balance law plus a new variable that we call W (z,t), which may
act as a monitoring function to detect special solutions like shock and rarefac-
tion waves. T'wo main example are treated: the inviscid Burgers equation and
the shallow water system, which are then used to perform numerical experi-
ments where W (x,t) is used as refinement criteria for adaptive techniques. In
addition, we study the spectral characteristics of the derived moment system
for the inviscid Burgers equation and its use as a "subgrid closure” model when
using Fourier-Galerkin spectral approximations by comparing different amounts
of resolved scales with different values of the smallness parameter e.

Zusammenfassung

Basierend auf dem Verhéltnis zwischen kinetisch geformten Transportgleichun-
gen und nichtlinearem Gleichgewichtsgesetz, nutzen wir die Gréfenordnungs-
methode, um kinetisch induzierte Momentsysteme fiir den raumlich eindimen-
sionalen Skalarfall und das 2 x 2 System, welches dann e-gekoppelte mit den
Termen héherer Ordnung, abzuleiten. Als néchstes beweisen wir, dass im for-
malen Limes ¢ — 0, das hchere Ordnungssystemmoment zum urspriinglichen
Gleichgewichtsgesetz und einer neuen Variablen, die wir W (z,¢) nennen und
die als Monitoringfunktion zum Aufdecken von speziellen Losungen wie Schock-
und Verdiinnungswellen dienen kann, tendiert. Zwei Hauptbeispicle werden
behandelt: die inviskose Burgersgleichung und das Flachwassersystem, welche
dann genutzt werden, um numerische Experimente, bei denen W (z,t) als Ex-
aktifizierungskriterium fiir die Adaptivtechnik dient, durchzufithren. Zudem
erforschen wir die Spektralcharakteristiken des erhaltenen Momentsystems fiir
die inviskose Burgersgleichung und deren Nutzen als ein ”Subnetz Abschluss”
Model, indem wir die Fourier-Galerkin Spektralapproximationen durch den Ver-
gleich von unterschiedlichen Mengen aufgelGster Skalen mit unterschiedlichen
Werten des Kleinheitsparameters €, benutzen.



