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Abstract
The aim of the current thesis a comparison of the KSBA and the GHKS partial compact-
ification of the moduli space of K3 pairs of degree 2. We check a conjecture of Sean Keel
that predicts the boundary of these spaces to be the same. We first calculate the required
input data, the Dolgachev-Nikulin-Voisin mirror family, and the show that indeed all sur-
faces that appear in the boundary of the KSBA compactification appear in the GHKS
compactification.

Abstract
Ziel der vorliegenden Arbeit ist der Vergleich zweier (partieller) Kompaktifizierungen des
Raumes stabiler K3 Paare des Grades 2. Wir überprüfen eine Vermutung Sean Keels, die
besagt, dass beide Kompaktifizierungen übereinstimmen. Dazu berechnen wir projektive
Modelle der Dolgachev-Nikulin-Voisin Spiegelfamilie und zeigen dann, dass alle entarteten
K3 Flächen der KSBA Kompaktifizierung in der GHKS Kompaktifizierung auftreten.





Contents

Introduction xi

1 Moduli Spaces of K3 surfaces 1
1.1 Moduli stacks of K3 surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Periods and Mirror Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Compactifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 The Baily-Borel compactification . . . . . . . . . . . . . . . . . . . 8
1.3.2 Shah’s moduli space . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 The KSBA compactification . . . . . . . . . . . . . . . . . . . . . . 11
1.3.4 Toroidal compactifications . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.5 Mori fan and rational maps . . . . . . . . . . . . . . . . . . . . . . 17

2 The GHKS family 19
2.1 Affine manifolds, Wall Structures and Mirror families . . . . . . . . . . . . 20
2.2 Mirror families for log Calabi-Yau surfaces . . . . . . . . . . . . . . . . . . 21

3 The Dolgachev-Nikulin-Voisin family 27
3.1 d-semi-stable K3 surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Models of the DNV family in genus 2 . . . . . . . . . . . . . . . . . . . . . 31
3.3 The Morifan of the Dolgachev-Nikulin-Voisin family . . . . . . . . . . . . . 36

4 Deformations 39
4.1 Deformations of n-vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Surfaces of type IIIζ , IIIα and III1 . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Surfaces of type IIIγ, IIIδ and IIIε . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Surfaces of type IIIζ′ , IIIφ, III2 and III5 . . . . . . . . . . . . . . . . . . . . 50
4.5 Surfaces of type III4, IIIβ and III6 . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Surfaces of type II1, II2, II3 and II4 . . . . . . . . . . . . . . . . . . . . . . 58

ix



Bibliography 61



Introduction

K3 surfaces are a fundamental class of compact complex surfaces [BHPVdV15] with appli-
cations in compactifications of string theories and in particular on string dualities [Asp96].
As complex manifolds they form one family (of dimension 20) and, in particular, they
are mutually all diffeomorphic. Not every K3 surface is algebraic, that is, can be defined
by polynomial equations. Those that can are projective, that is, they can be defined by
homogeneous polynomials as a subset X ⊂ CPn of some complex projective space. The in-
tersection with a general hyperplane H ⊂ CPn defines a smooth complex curve C = H∩X
in X. The pair consisting of X together with the class of C in H2(X,Z) (or the correspond-
ing holomorphic line bundle L = O(C)) is called a polarized K3 surface. The genus of C
as a closed surface is then called the genus of the polarized K3 surface X. For example, a
hyperplane section of a quartic surface X ⊂ CP3 is a plane curve of degree 4, which has
genus 3.

For any genus g ≥ 2 polarized K3 surfaces of genus g also form one connected family,
each of dimension 19. There is a theory describing this family as a quotient of an open
set in some homogeneous space by a discrete (arithmetic) group. In modern terms, one
describes this quotient as a moduli space (stack), denoted Fg. Somewhat more generally,
one considers pseudo-polarized K3 surfaces, i.e. K3 surfaces with a polarization given by
a nef and big bundle. Instead of considering line bundles, one can also look at the pair
(X,C), which leads to a moduli space Pg of dimension 19 + g.

One fundamental feature of these moduli spaces is that they are non-compact. The
non-compactness arises by the fact that holomorphic families of polarized K3 surfaces, say
over the punctured unit disk D∗ = {z ∈ C | 0 < |z| < 1}, typically can not be extended
over the origin as a smooth family. Rather, the fibre over the origin will be some kind
of singular K3 surface. By work of Kulikov and Persson-Pinkham [Kul77],[PP81], the
candidate singular K3 surfaces have been known for a long time. It is also well-understood
that the extension is not unique, it can be modified by a sequence of explicit operations
on the central fibre.

For many applications, and also because the moduli spaces Fg are natural objects of

xi



xii Introduction

study by themselves, it would be desirable to compactify the moduli space Fg in such a
fashion that the universal family of (now singular, in general) K3 surfaces also extends.
Such compactifications are referred to as modular. For Pg a modular compactification is
the KSBA compactification (after the work of Kollár and Shepherd-Barron [KSB88] and
Alexeev [Ale96], see also [Laz12]), which is natural from the point of view of the minimal
model program. Both for F and Pg there are many other compactifications known, for
instance the Bailey-Borel compactification or toroidal compactifications, but none of these
are known to be modular.

However, there is a distinguished toroidal partial compactification. Hacking and Keel
suggested in 2007 to use mirror symmetry to build a modular toroidal compactification.
The details are joint work with Gross and Siebert, whose mirror [GS11] construction pro-
vides the technical core of this modular compactification, see [GHKS]. The project is
currently nearing a certain first finished form [GHKS]. In this form the compactification is
only partial (over the so-called type-III locus, the remaining type-II locus may be amenable
to ad hoc methods), and while the family of K3 surfaces indeed extends, it is not clear how
to characterize the occurring singular K3 surfaces intrinsically.

The GHKS construction produces a (19+g)-dimensional family X→ P̄g locally of pairs
(X,C), which is then cut down to 19 dimensions. Sean Keel conjectured and sketched a
proof that the (19 + g)-dimensional family indeed describes the KSBA compactification.
This conjecture is the motivation for our work.

For K3 surfaces with pseudo ample polarization of degree 2, Laza [Laz12] constructs the
KSBA compactification. He also gives an explicit description of the (generic) limit surfaces
appearing in the components of the type III boundary of the KSBA compactification. While
the GHKS construction is not yet available in full generality in the genus 2 case, it can
be constructed over the type III locus. We show that over this locus, all (generic) limit
surfaces of the KSBA compactification appear - for a precise statement, see below.

One crucial input of the GHKS construction is the Dolgachev-Nikulin-Voisin mirror
family [Dol96]. While the general form of this family is certainly known to experts, we give
a construction and show that its Mori fan is finite.

We now give a more detailed overview of the thesis with precise results.
In chapter 1 we review different approaches to compactifying the moduli space of smooth

complex K3 surfaces. We define a moduli functor of K3 with ADE singularities and
show that it defines a Deligne-Mumford moduli stack Fg. This is, of course, all well
known to experts; nevertheless, we spell out the argument. Also, we briefly review the
construction of the coarse moduli spaces as period domains together with the standard
compactifications and mirror symmetry of these domains. We recall relevant aspects of the
KSBA compactification of the moduli space of degree 2 K3 pairs.
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In chapter 2, we give a brief review of the main ingredients of the construction of
[GHKS].

In chapter 3 we will, following ideas of Paul Hacking, identify models of the Dolgachev-
Nikulin-Voisin mirror family .

In chapter 4, we proof that all generic limit surfaces of components of the type III
boundary of the KSBA compactification occur as fibres of the GHKS family P̄g.

Theorem 0.0.1. Let X be the GHKS family over the type III boundary stratum. Then all
generic limit surfaces of the type III boundary of the KSBA compactification P̄2 appear as
fibres over strata Z of Morifan(Y).

We will also show how to obtain the type II limit surfaces.

Theorem 0.0.2. Let X be the GHKS family over the type III boundary stratum. Then the
generic limit surfaces of type IIi, i = 1 . . . 4 of the KSBA compactification P̄2 appear as
fibres over strata Z of Morifan(Y).

We remark that the missing boundary components of type II should also be fibres of
X. The missing ingredient are smoothings of n-vertices to elliptic singularities.
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Chapter 1

Moduli Spaces of K3 surfaces

Introduction

In this section we review aspects of the moduli theory of K3 surfaces. We begin with the
smooth case, i.e. smooth K3 surfaces with polarization and then move on to K3 surfaces
with ADE singularities. We show that the moduli stack of such K3 surfaces is a Deligne-
Mumford stack. Then we introduce the moduli space of degree d K3 pairs Pd and also show
it is a Deligne-Mumford stack. For moduli of smooth K3 surfaces, we follow the excellent
reference [Huy]. There are several other excellent surveys available. The article [Laz16] is
a comprehensive exposition of different approaches to the compactification problem in al-
gebraic geometry. Compactifications of locally symmetric varieties are reviewed in [Loo03].
Also, there is an exhaustive treatment in [BJ06].

1.1 Moduli stacks of K3 surfaces

The moduli functorMg of smooth K3 surfaces over a noetherian base S is defined by the
mapping

(Sch/S)op → (Sets), T 7→ (f : X → T,L)

sending a scheme T of finite type over S to a smooth proper family X → T together
with a line bundle L ∈ Pic(X/T ) such that the geometric fibres Xs are polarized K3

surfaces with polarization L|Xs that squares to 2g − 2. Here we define to such families to
be equivalent if there exists an T -isomorphism ψ : X → X ′ and a line bundle L0 on T such
that ψ∗L′ ∼= L ⊗ f ∗L0.

For an S-morphism h : T ′ → T , we defineMg(T )→Mg(T
′) as the pullback

(X → T,L) 7→ (X ×T T ′ → T ′, h∗XL).

1



2 Chapter 1. Moduli Spaces of K3 surfaces

This defines the moduli functor of smooth polarized K3 surfaces of degree g. The moduli
functor Mg can also be viewed as a category fibred in groupoids. We have the following
theorem:

Theorem 1.1.1. Over a noetherian base S,Mg is a Deligne-Mumford stack. It is coarsly
represented by an algebraic space Mg.

Proof. The proof is implicit in [DM69] and can be found in [Riz05]. The statement about
coarse representation is [KM97].

Over the complex numbers there is the following theorem by Pyatetskii-Shapiro and
Shafarevich [PSS71].

Theorem 1.1.2. Over C, the moduli stackMg is coarsly represented by a quasi-projective
variety.

We now change perspective from smooth K3 surfaces toK3 surfaces withADE singular-
ities, i.e. normal complete surfaces X over C with trivial canonical bundle, H1(X,OX) = 0

and at most ADE singularities. Similarly to the smooth case, we obtain a moduli functor
Fg. As a first step towards showing that Fg is a Deligne-Mumford stack, we show the
following.

Proposition 1.1.3. Let (X,L) be polarized K3 surface with ADE singularities. Then the
group scheme Aut(X,L) is reduced and finite.

Proof. First, ADE singularities are isolated singularities. Hence there is an open cover
{Uy}y∈S, where S denotes the set of ADE singularites and Uy contains exactly one singular
point y. As X is quasi-compact this means that X has only finitely many singular points.
Then, as all singularities are rational double points, the minimal resolution of π : Y → X

is a smooth surface Y with H1(Y,OY ) = H1(X,OX) = 0 and trivial canonical bundle,
cf [[Dol12], 8.1.2], i.e. a K3 surface. The pullback of L is big and nef, making Y into a
pseudo polarized K3 surface. Every automorphism of X preserving the polarization lifts to
a unique automorphism of Y by the universal property of the blow up. Also, the induced
morphism preserves the pseudo polarization, so there is a map

Aut(X,L)→ Aut(Y, π∗L).

This map is injective, as two maps X → X inducing the same morphism Y → Y agree
on an open dense subset of X, and thus on all of X, because X is separated. Hence the
automorphism group of X is finite, as Aut(Y, π∗L) is. As we work over C, there are no
infinitesimal automorphisms, so Aut(X,L) is reduced.
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Note that the result also follows from separatedness, boundedness and locally closedness
of the moduli functor.

Following the theory outlined in [Vie95], we prove that the moduli functor Fg defines
an algebraic stack which we will also denote by Fg. This will be a Deligne-Mumford stack
due to the finite automorphism groups.

Proposition 1.1.4. The fibered category defined by Fg is Deligne-Mumford stack ( in the
étale topology). It is coarsly represented by an algebraic space Fg.

Proof. We show that the functor Fg is separated, locally closed and bounded. By the
general theory of moduli functors, this implies that the fibered category Fg is the quotient
stack [H/G] with H a subscheme of a Hilbert scheme ang G an algebraic group.

First, we show Fg is separated. We do this in the larger class of normal surfaces with
rational singularities, as in [Kol85]. Following the proof of Corollary 13.24 in [HK11] but
replacing the theorem of Mumford-Matsuka by Proposition 3.3.1 in [Kol85], it follows that
the moduli functor for this larger class is separated. Hence it is also separated for the
smaller class of K3 surfaces with ADE singularities. Also, Theorem 2.1.2 in [Kol85] shows
that Fg is bounded. By Lemma 1.18 in [Vie95], the moduli functor M of normal polarized
surfaces with ADE singularities is open. Hence it is locally closed. The geometric condition
to be a K3 is also locally closed. Hence Fg is locally closed. This shows that Fg is the
algebraic stack given by a quotient of some subscheme H of some Hilbertscheme by an
algebraic group, see [[Vie95], p.295]. By Proposition 1.1.3, Fg is a Deligne-Mumford stack,
compare [[Edi00], section 2].

The statement on the coarse representation follows once we show that the action of G
on H is proper and has finite stabilizers. Following the proof of Lemma 7.6 in [Vie95],
we apply the valuative criterion for properness. So let T be a DVR, K its quotient field,
S = SpecT and U = SpecK. Suppose there is a commutative diagram

U
δ0 //

��

PG×H
ψ̄
��

S δ // H ×H.

We need to find a morphism δ′ : S → PG × H such that the diagram commutes. Let
(fi : Xi → S,Li, φi : P(fi∗Lµ) ∼= PN × S), i = 1, 2 be two families from H(S) obtained by
pulling back the universal family by pri ◦δ, with µ the number such that Lµ is very ample
from the boundedness of Fg and φi the isomorphisms corresponding to the embeddings
Xi → PN given by the bundles Lµi . By commutativity of the diagram, the restriction to U of
the families are isomorphic. Then by separatedness of Fg, (f1,L1) is isomorphic to (f2,L2).
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This means there is an isomorphism τ : X1 → X2 and an isomorphism θ : L1
∼= τ ∗L2. As τ

is an S-isomorphism, we have f1∗L1
∼= f2∗Lµ2 . Hence there is an isomorphism

θ′ : P(f1∗Lµ1) ∼= P(f2∗Lµ2).

Set γ = φ2 ◦ θ′ ◦ φ−1
1 . As in [Vie95], the lifting of δ is now given by (γ, pr2 ◦δ).

One can employ the methods of Viehweg to obtain the following result.

Proposition 1.1.5. The coarse moduli space Fg is a quasi-projective scheme.

Proof. This follows from Theorem 8.23 in [Vie95] using the functor Fg with index 1 and
considering the Hilbert polynomial as element of Q[T1, T2].

1.2 Periods and Mirror Symmetry

In the previous section we have seen that there are moduli stacksMg and Fg of smooth
polarized K3 surfaces and polarized K3 surfaces with ADE singularities. They both admit
coarse moduli spacesMg and Fg that - over C - are quasi-projective varieties. In this section
we will review the theory of period domains for K3 to surfaces show that the moduli spaces
Mg and Fg can be understood in these terms. As the period spaces are locally symmetric
varieties, they admit the Baily-Borel compactification and toroidal compactifications of
[AMRT10]. We follow the exposition in [Dol96].

Let Λ be a lattice, i.e. a finitely generated abelian group with bilinear form (, ) of
signature (n+, n−). As the bilinear form is non-degenerate, its zero locus in P(ΛC) is
smooth and we define an open subset D (in the classical topology) by

D := {x ∈ P(ΛC) : (x)2 = 0 and (x, x̄) > 0} ⊂ P(ΛC).

This is called the period domain associated with Λ.
Let H2(X,Z) be the integral cohomology of a K3 surface X. The quadratic form

induced by the cap-product gives H2(X,Z) the structure of a lattice with signature (3, 19).
More precisely, on shows that

H2(X,Z) ∼= U⊕3 ⊕ E⊕2
8 .

Here, U is the hyperbolic plane and E8 the lattice defined by the negative of the Cartan
matrix of a E8 root system. We define the K3 lattice ΛK3 = U⊕3 ⊕ E⊕2

8 .
Also, define

V (X) = {x ∈ H1,1
R (X) ∩H2(X,R : x2 > 0}.
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This cone has two connected components. Let V +(X) denote he component that contains
the class of a Kähler form. Moreover, set

4(X) = {δ ∈ Pic(X) : (δ, δ) = −2}

and let 4(X)+ denote the effective classes in 4(X). Define

C(X) = {x ∈ V (X)+ : (x, δ) ≥ 0∀δ ∈ 4(X)+},

and let C(X)+ be the set of interior points. The we set

Pic(X)+ = C(X) ∩H2(X,Z), Pic(X)++ = C(X)+ ∩H2(X,Z).

Note that the elements of these spaces are pseudo-ample and ample divisor classes respec-
tively.

For a given lattice M of signature (1, t), we similarly have the cone V (M) of square
positive elements of MR. We fix one coomponents and denote it by V (M)+. Again, 4(M)

denotes the square −2 elements and we fix a subset 4(M)+ of positive roots. This defines

C(M)+ = {h ∈ V (M)+ : (h, δ) > 0 ∀δ ∈ 4(M)+}.

We have the following notion

Definition 1.2.1. An M -polarized K3 surface is a pair (X, j) where X is a K3 surface
and j : M → Pic(X) is a primitive lattice embedding. An M -polarized K3 surface X is
pseudo ample if j(C(M)+) ∩ Pic(X)+ 6= ∅ and ample if j(C(M)+) ∩ Pic(X)++ 6= ∅.

For a lattice M with embedding into ΛK3 as above, we set N = MΛ⊥K3
. There is the

following definition.

Definition 1.2.2. A marked M -polarized K3 surface is a pair (X, θ) where X is a K3
surface and θ : H2(X,Z) ∼= ΛK3 an isomorphism of lattices such that θ(M)−1 ⊂ Pic(X).

Defining j0 = φ−1
|M , a marked M -polarized K3 surface X is a M -polarized K3 surface.

Define
DM := {x ∈ P(ΛC) : (x)2 = 0, (x, x̄) > 0} ⊂ P(NC).

By the local Torelli theorem, there is a holomorphic map S → DM that is locally an
isomorphism - the period map - where S is the local moduli space of a K3 surface X.
Let KM be the fine moduli space of K3 surfaces with a polarization as above. The local
moduli spaces can be glued together to a holomorphic map KM → DM . By Theorem 3.1
of [Dol96], the restriction to of this map to the space of K3 surfaces with pseudo-ample
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polarization as above remains surjective. Let 4 := {x ∈M⊥ : (x)2 = −2}. For any δ ∈ 4,
set Hδ = {z ∈M⊥

C : (z, δ) = 0}. Then define

D◦M = DM\(∪δ∈4Hδ ∩DM)

. Let Γ denote the orthogonal transformations of ΛK3 fixing M . Suppose also that M is
such that any two embeddings M → ΛK3 differ by an isometry. We have the following
results, cf [Dol96]

Theorem 1.2.3. Let Kl be the space of isomorphism classes of pseudo-ample M-polarized
K3 surfaces X. Then KM is a quasi-projective variety and

KM
∼= Γ\DM .

Also, KM
∼= Fg, i.e. KM is a coarse moduli space for pseudo-ample polarized K3 surfaces.

For ample M -polarizations, one similarly has the following.

Theorem 1.2.4. Let Ka
M be the space of isomorphism classes ample M- polarized K3

surfaces. Then Ka
M is a quasi-projective variety and

Ka
M
∼= Γ\D◦M .

Also, Ka
M
∼= Fg, i.e. Ka

M is a coarse moduli space for ample polarized K3 surfaces.

We are interested in degree 2 case. Thus we choose M = 〈2〉 = Zl with (l, l) = 2. Then
the embedding M → ΛK3 is unique by [[Dol96], Cor. 5.2] and thus the moduli spaces from
above exist. Also, for this choice of polarization, both moduli spaces are 19 dimensional,
see [[Dol96], Cor. 5.2].

Our next aim is to define a mirror family for a family of M -polarized K3 surfaces. We
will define a mirror lattice M̌ . Then we obtain the mirror moduli space KM̌ , and for a
given (complete) family of pseudo-ample M - polarized K3 surfaces, any (complete) family
of pseudo-ample M̌ polarized K3 surfaces will be called a mirror family. Of course, this
construction fits into the picture of mirror symmetry for Calabi-Yau threefolds, see [Dol96].
We do not repeat these general notions here as we are only interested in the construction
of mirror family and not its properties. Also, we only consider the degree 2 case.

For a primitive isotropic vector f in a non-degenerate even lattice S , let div f denote
the positive generator of the image of the induced map S → Z.

Definition 1.2.5. A primitive isotropic vector f ∈ S is called m-admissible if div f = m

and there is a primitive isotropic vector g with (f, g) = m and div g = m.
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Given an m-admissible isotropic vector f in M⊥, set

Zf⊥M⊥/Zf = M̌

.

Definition 1.2.6. The moduli space KM̌ is called the mirror moduli space of KM .

Let S be the local deformation space of a M̌ -polarized K3 surface X. There is a family
of M̌ polarized K3 surfaces X0 → S and the composition with the period map X → KM̌

gives a family over the mirror moduli space. In particular, this means that such a family
has Pic(Xs) = M̌ for each fibre Xs.

In the next section, we will recall the Baily-Borel compactification. With this in mind,
we define

Definition 1.2.7. The mirror family X → KM̌ over a pointed neighbourhood U of the
unique 1-cusp - i.e. U does not contain the cusp - will be called the Dolgachev-Nikulin-
Voisin mirror family.

To conclude, for g = 2, we find a 1-admissible vector f and then

M̌ = U ⊕ E2
8 ⊕ 〈−2〉

with 〈−2〉 the lattice generated by an element of square −2, see [[Dol96], §7].

1.3 Compactifications

We have seen that the moduli space of pseudo-polarized K3 surfaces can be identified with
an arithmetic quotient of the period domain D := DM , where M = 〈2〉. The period
domain D can be represented as a Grassmannian and we note that the quotient Γ\D is a
locally symmetric variety: a connected component D+ of the Grassmanian is a bounded
Hermitian domain of type IV and taking the quotient by the subset Γ′ of isometries that
preserve the component yields a representation

Γ\D ∼= Γ′\D+

as locally symmetric variety. As such, it has a canonical minimal compactification, the
Baily-Borel compactification that is constructed as follows.
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Figure 1.1: The boundary of the Baily-Borel compactification of F2

1.3.1 The Baily-Borel compactification

As a bounded Hermitian domain, D+ has an embedding into its compact dual Ď. The
closure of D+ in Ď decomposes into irreducible components, i.e. connected complex ana-
lytic submanifolds. Let G be the group of automorphisms of D+. A boundary component
is called rational if its G-stabilizer is defined over Q. There is a topology on the set of
boundary components due to Satake that was shown by Baily and Borel [BB66] to give a
projective variety (Γ\D)∗ that extends the analytic structure on Γ\D. This is the Baily-
Borel compactification. The boundary components are of high codimension, other than
the space D+ itself there are only 1-dimensional (type II components) or singletons (type
III components). The number of boundary components has been calculated by Scattone
in [Sca87, §6.1].

Theorem 1.3.1 ([Sca87]). The boundary of (Γ\D)∗ consists of 4 curves meeting in a single
point.

Also, note that the type II boundary components, i.e. the curves are in 1 : 1 correspon-
dence with rank 2 isotropic sublattices of ΛK3 modulo the action of Γ. In degree 2, the 4

type II components correspond to root lattices of type 2E8 + A1, E7 + D10, D16 + A1 and
A17.

While the Baily-Borel compactification is a canonical compactification, there is no
modular interpretation known. Also, it is almost always singular. This was improved upon
in the degree 2 case by the GIT compactification of Shah [Sha80].

1.3.2 Shah’s moduli space

Note that by Mayer’s theorem, [May72], degree two K3 surfaces have a special form: they
come as double covers. More precisely, we distinguish two cases, cf [Laz12]



1.3 Compactifications 9

(NU) (non-unigonal case) |H| is base point free, in which case X is a double cover of P2

branched along a sextic C with at worst ADE singularities.

(U) (unigonal case) |H| has a base curve R. Then H = 2E + R where E is elliptic and
R smooth rational. The free part 2E maps X to a plane conic, and gives an elliptic
fibration on X. On the other hand, |2H| is basepoint free and maps X two-to-one
onto the cone Σ0

4 over the rational normal curve in P4. The map

X → Σ0
4

is ramified at the vertex and in a degree 12 curve B, which does not pass through
the vertex. B has at most ADE singularities.

Recall the moduli space of plane sextic curves: it is the GIT quotient

M := PH0(P2,O(6)2
P)// SL(3).

By [Sha80], this GIT quotient has the following description

Theorem 1.3.2 ([Sha80]). LetM be the GIT quotient of plane sextics.

(i) A sextic with ADE singularities is GIT stable. Thus there exists an open subset
M⊂M, which is a coarse moduli space for sextics with ADE singularities.

(ii) M\M consists of 7 strata:

(type II) Z1, Z2, Z3 and Z4 with dimension 2, 1, 2 and 1 respectively.

(type III) τ and ζ of dimension 1 and 0.

(type IV) a point ω.

(iii) The adjacencies of the boundary strata are as follows:

(a) ζ ∈ Zi for all i

(b) τ ∈ Z1 ∩ Z3

(c) τ = τ ∪ {ζ} ∪ {ω}.

By Meyer’s theorem, item (i) means thatM is a moduli space of non-unigonal degree
2 K3 surfaces. By [Sha80], the strata of the boundaryM\M correspond to certain GIT
models, see Table 1.1.

All unigonal K3 surfaces are mapped to the point ω. To remedy this, [Sha80] constructs
a moduli space M̂ by blowing up ω. The boundary strata of M̂ are the strict transforms
of the Zi, we denote these by Ẑi. Shah’s result is the following:
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Stratum Sextic curve

Z1 Π3
i=1(x0x2 + aix

2
1), ai ∈ C

Z2 x2
2f4(x0, x1) = 0, f4 no multiple factors

Z3 (x0x2 + x2
1)2f2(x0, x1, x2) = 0, induced quadrics intersect in 4 distinct points

Z4 f3(x0, x1, x2)2 = 0, f3 smooth
τ (x0x2 + x2

1)2(x0x2 + ax2
1) = 0, a 6= 0

ζ x2
0x

2
1x

2
2 = 0

ω (x0x2 + x2
1)3 = 0

Table 1.1: Boundary strata ofM.

Theorem 1.3.3 ([Sha80]). The blow up ofM in ω gives a projective compactification M̂
of the moduli space F2 of degree 2 K3 surfaces. The boundary strata of F2 ⊂ M̂ are
the strict transforms of the boundary strata of M. Moreover, the boundary points of M̂
correspond to degenerations of K3 surfaces that are double covers of P2 or Σ0

4 and have at
worst slc singularities.

The moduli space M̂ comes with a period map M̂ → (Γ\D)∗. More precisely, there is
the following Theorem due to Looijenga [Loo86].

Theorem 1.3.4. There is an extension of open embeddings F2 ⊂ M̂ and F2 ⊂ (Γ\D)∗

such that the following diagram commutes.

M̂

~~ ##
M // (Γ\D)∗

The morphism M̂ →M is Shah’s blow-up and M̂ → (Γ\D)∗ is the Looijenga modification
associated to a certain hyperplane arrangement.

While the space M̂ from a certain perspective is an improvement over the Baily-Borel
compactification, it still is not a modular compactification, being in a sense to degenerate.
However, we will see presently that it will play a prominent role in the analysis of the
KSBA compactification. A different attempt of improving the properties of the Baily-
Borel compactification are the toroidal compactifications of Mumford et al. [AMRT10].
This is discussed in a later section.
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1.3.3 The KSBA compactification

In this subsection we recall Lazas’ KSBA compactification of K3 pairs of degree 2, [Laz12].
Instead of considering K3 surfaces with a polarization (X,L) of degree d, one considers K3
pairs (X,L) of K3 surfaces X together with an ample divisors L of degreee d and instead
of Fg considers the moduli stack Pg of such pairs. There is a forgetful functor

Pg → Fg

that is smooth and proper and in particular Pg is a smooth Deligne-Mumford stack.
The limit objects are then the K3 stable pairs of degree d:

Definition 1.3.5. Let X be a surface, L an effective divisor on X and d = 2g− 2 an even
positive integer. The pair (X,L) is a stable K3 pair of degree d if

(i) X is Gorenstein with ωX ∼= OX .

(ii) L is an ample Cartier divisor.

(iii) The pair (X, εL) is semi-log canonical (slc) for all small ε > 0.

(iv) There exists a flat deformation (X ,L)/T of (X,L) over the germ of a smooth curve
such that L is an effective relative Cartier divisor and such that the general fibre
(Xt, Lt) is a degree d K3 pair.

The moduli stack of stable K3 pairs is denoted by P̄d. The following result is due to
Laza, [Laz12]:

Proposition 1.3.6. The stack P̄d is a Deligne-Mumford stack. Its coarse moduli space
P̄d is a proper algebraic space containing the moduli space of degree d K3 pairs and is a
geometric compactification of Pd.

Due to results of Shepherd-Barron [SB83], the stable K3 pairs of degree d are given
by log canonical models of central fibres of degenerations of K3 surfaces. For g = 2, the
possible surfaces have been classified by [Tho10]. These are the surfaces that appear in
the boundary of P̄2.

Laza constructs a auxiliary compactification P̂2 to study the KSBA compactification.
This is done by means of a GIT quotient of sextic pairs, i.e. pairs (C,L) of sextic curves
C together with a line L. One obtains a map

P̂2 → M̂,
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where the space M̂ is the compactification of [Sha80]. This means that at least outside
the locus where the GIT semistable locus is replaced by KSBA stable pairs, one can use
the GIT models of [Sha80] to understand the type II boundary components and thereby
their limits, the type III boundary.

Theorem 1.3.7 ([Laz12], Thm 4.1). The GIT quotient P̂2 compactifies the moduli space
of degree 2 pairs P2 and has the following properties:

i) P̂2 has a natural forgetful map P̂2 → M̂;

ii) the GIT stable locus Ps2 ⊂ P̂2 is a moduli space of KSBA stable degree 2 pairs (X,H)

such that X is a double cover of P2 (or Σ0
4). Thus Ps2 is a common open subset of

P̂2 and P;

iii) the stricly semistable locus P̂2\Ps2 is a surface Z̃1 that maps one-to-one to the closure
of the stratum Ẑ1 ⊂ M̂.

In the remainder of this section, we give a description of the type III boundary compo-
nents and their generic points. Figure 1.2 shows the incidence relation and generic surfaces
of the components.

The A17 stratum: IIIζ , IIIα and III1

The Baily-Borel boundary component A17 is isomorphic to the stratum Z4 of Shah. The
latter is GIT stable and thus the map

P̂2 → M̂

is a P2 fibration over Z4. The GIT models in the type II boundary over the A17 component
are given by

z2 = f3(xi)
2

where f3 is a smooth cubic. The normalization is two copies of P2 with double curve
E = V (f3). As the number of components in a degeneration can only go up and Z4 =

{ζ} ∪ Z4, the corresponding type III boundary component is the locus where the cubic
becomes nodal. The deepest degeneration is IIIζ , where f3 is a triangle. The locus IIIα is
where the generic point is such that V (f3) is reducible and finally for the generic point of
III1, V (f3) is irreducible. See Figure 1.2.
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IIIζ

IIIα

III1

IIIε

IIIδ

IIIγ

IIIβ

(quartic ∪ double line)
III4

(sextic with T2,q,r-singularity)
III6

deg 4

E7 +D10

III3 = IIIγ ∪ IIIδ

D16 + A1

E8 + A1

T2,3,r-singularity

dP1

conenodal elliptic curve

A17

KSBA flip

IIIζ′

IIIφ

III2

III5

Figure 1.2: The type III boundary of the KSBA compactification.
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The E7 +D10 stratum: IIIβ, III4 and III6.

To describe these surfaces, we first recall the surfaces in the corresponding loci of the type
II boundary. Over the stratum Z2, the space P̂2 agrees with the KSBA compactification
P2. This is because after a choice of a polarizing divisor, all sextics C mapping to Z2

are either ε-stable or ε-unstable1. Furthermore, over Z2, ε-stability is the same as KSBA-
stability. Thus by Theorem 1.3.7, both compactifications agree. Therefore, in a stable pair
(C,L) of a sextic C with divisor L, the sextic is given by the GIT model of Table 1.1.
Moreover, as a central fibre of a type II degeneration, it has to be of the form specified by
the classification of [Tho10]. Hence, there are three geometric possibilities for the type II
boundary over the E7 +D10 component, see [[Tho10], Table 4].

(i) C is a sextic containing a double line,

x2
0f4(x1, x2) = 0, f4 smooth.

After normalization, the double cover given by this sextic is a Del Pezzo surface of
degree 2. The line gives the anticanonical section D.

(ii) The sextic C is reduced with unique Ẽ7 singularity.

(iii) A sextic containing a double line and an Ẽ7 singularity.

Letting j → ∞ gives the type III models. By the matching of [Tho10] with the GIT
analysis of [Sha80], one obtains, as ζ ⊂ Z2, the limiting cases

III4 The sextic of (ii) degenerates to a quartic with tangent line: l2(xi)f4(xi), Thompson’s
model III.III.1.

III6 The Ẽ7 singularity degenerates to a cusp singularity T2,q,r, q ≥ 4, r ≥ 5, Thompson’s
model III.0h.

Moreover, the above strata contain:

IIIβ The model of this stratum is a double cover of P2 branched in a nodal quartic with
a double line passing through the node. This is a specialization of III.1.

IIIγ The model here is a double cover of P2 branched along two double lines and a conic.
The intersection of the lines gives a degenerate cusp singularity.

1This is one place where the choice of a divisor versus a line bundle is essential: Z2 is stricly semi-stable,
fixing a line bundle results in (ε-) strictly semi-stable points.
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The D16 + A1 stratum: III3, IIIε and IIIδ.

The preimage of the D16 +A1 Baily Borel boundary component IID16+A1 in M̂ is given by
the fibration

Ẑ3\τ̂ → IID16+A1 ,

where Ẑ3 and τ̂ are the strict transforms of Z3 and τ . The points of Ẑ3\τ̂ are GIT stable
and therefore give stable points in P̂2 and therefore in P2. The GIT model corresponding
to this stratum are the sextics given by

(x0x2 + x2
1)2f2(x0, x1, x2) = 0,

such that the quadric (x0x2 +x2
1) and f2 intersect in 4 distinct points. The model matched

is Thompson’s (II.2), i.e. the double cover

q2(xi)f2(xi) = z2 ⊂ P(1, 1, 1, 3).

Here, q is a smooth quartic, f2 is reduced and |q ∩ f2| = 4. The double curve is the double
cover of V (q) branched at the 4 intersection points. The type III limits are then given as
follows.

(IIIγ) As above, the model here is a double cover of P2 branched along two double lines
and a generic quadric with a degenerate cusp singularity given by the intersection of
the two lines.

(IIIδ) The model is z2 = q2
0q, with conics that are tangent.

These to strata form the component III3, i.e III3 = IIIγ ∪ IIIδ. The intersection of the two
components is the stratum given by

(IIIε) Double covers of P2 branched in double lines plus a conic that is tangent to one of
the lines.

The E8 + A1 stratum: IIIζ′ , IIIφ, III5 and III2.

We look at the type II boundary components first. The GIT models are given by the
models of the stratum Ẑ1. Hence the GIT models are those corresponding to

Π3
i=1(x0x2 + aix

2
1), ai ∈ C.

The corresponding geometric possibilities are sextic curves with one or two Ẽ8 singularities.
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Now, if the hyperplane section of the polarising divisor does not pass through the
singularity, a pair (X,L) of this locus is GIT stable and thus KSBA stable. If it does pass
through the singularity, the pair is GIT semistable and KSBA unstable. Hence one applies
the ’ KSBA flip ’ and replaces the pair with a surface

X = V1 ∪E V2

such that both components are degree 1 del Pezzos glued along an elliptic curve. This can
further degenerate to cases where one or both components become elliptic ruled surfaces
with Ẽ8 singularity.

The type III limits are then as follows:

(III2) The section along which the del Pezzos are glued becomes nodal.

(III5) The Ẽ8 degenerates to a T2,3,r singularity with r ≥ 7.

(IIIφ) One of the del Pezzo surfaces in III2 degenerates to a conesover the nodal curve, i.e
surfaces X = X1 ∪X2 with X1 a del Pezzo of degree 1 and normalisation Xν

0 = P2.

(IIIζ′) Both del Pezzo surfaces degenerate to cones. This is the pillow surface given by the
triangulation T depicted in Figure 3.1 in chapter 3.

1.3.4 Toroidal compactifications

For a locally symmetric variety, there may be very many toroidal compactifications. The
crucial point is that, in contrast to the Baily-Borel compactification, these depend on
choices. For moduli spaces of K3 surfaces, one has to choose a fan structure for each Type
III boundary component. We follow the description of Looijenga [Loo03].

Recall that a Type III boundary component corresponds to a rank 1 isotropic sublattice
in M⊥ ⊂ ΛK3. Let I ⊂M⊥ be such a sublattice. Consider (I⊥/I)R. The intersection form
on M⊥ descends and we let C denote the cone given by a connected component of square
positive elements. Let C+ denote the convex hull of C̄ ∩ I⊥/I. With G ⊂ Aut(I⊥/I), we
have the following notion, see [GHKS].

Definition 1.3.8. A Mumford-Looijenga fan4 on C for G is a collection of strictly convex
rational polyhedral cones σ in (I⊥/I)R, closed under pairwise intersection and taking faces,
such that

i. g(σ) ∈ 4 for all g ∈ G, σ ∈ 4,

ii. |4| := ∪σ∈4σ = Crc,
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iii. There are only finitely many G orbits of cones in 4.

We have seen that in the degree 2 case, there is only one Type III boundary component.
While in order to construct toroidal compactifications of general locally symmetric varieties,
Mumford-Looijenga fans must be chosen for all boundary components in a compatible
way, for K3 surfaces, one only needs to choose Mumford-Looijenga fans for the Type III
boundary components. Hence, for the moduli space of K3 surfaces of degree 2 - or more
generally, for degree 2n with n square free - the choice of a single Mumford-Looijenga fan
determines a toroidal compactification. The following theorem is Looijenga’s version of
[AMRT10].

Theorem 1.3.9. Let4 be a Mumford-Looijenga fan for Γ. Then there is a normal analytic
space X4 and a proper and birational morphism X4 → (Γ\D)∗.

In the degree 2 case we have Γ = O∗(M̌) and C = V (M̌), where M̌ is the mirror lattice
from above and O∗(M̌) is the group of automorphisms of ΛK3 fixing l with l the generator
of M = Zl with l2 = 2. Thus, in order to construct a toroidal compactification, we need a
Mumford-Looijenga fan on a connected component of the square positive cone V (M̌). Let
Y be the Dolgachev-Nikulin-Voisin family as above. Then Pic(Y gen) = M̌ , and V (M̌) is
the connected component containing the ample cone of the generic fibre. Keel and Hacking
suggested to use the Mori fan of the threefold Y to construct a toroidal compactification.

1.3.5 Mori fan and rational maps

We recall the Mori fan of a projective variety. See [KH00] and [GHKS] for more information.
Also, Chapter 7 of [Dol12] contains an excellent review of some of the notions used here.

A contraction is a rational map between proper normal varieties such that the inverse
rational map has no exceptional divisors.

Definition 1.3.10. A resolution of a rational map f : X → Y of projective varieties is a
pair of regular projective morhisms π : X ′ → X and σ : X ′ → Y such that f = σ ◦π−1 and
π is an isomorphism over dom(f).

X ′

π

~~

σ

  
X

f // Y

This allows us to define pullbacks for rational maps. Given a rational map f : X → Y ,
resolve the map and for L ∈ Pic(Y ) set f ∗(L) = π∗σ

∗L ∈ A1(X). This is independent of
the resolution, cf Lemma 10.1 [GHKS].



18 Chapter 1. Moduli Spaces of K3 surfaces

Now, let Y → δ be a Q-factorial, projective variety. Let f : Y 99K Z be a rational map
( and everything is assumed projective over δ). Let N ⊂ Pic(Z)R be the cone of positive
real combinations of basepoint free divisors on Z. Then set

C(f) := {f ∗(N)}.

Let Morifan(Y) ⊂ Pic(Y)R denote the collection of all cones C(f) for all contractions
f : Y 99K Z. For threefolds, this gives a well defined fan structure with support the
Moving cone Mov(Y) of Y .



Chapter 2

The GHKS family

Introduction

We review some aspects of the construction of Gross, Siebert, Hacking and Keel [GHKS].
There, the authors produce a (partial) toroidal compactification of Fg using the Morifan of
the Dolgachev-Nikulin-Voisin family. The starting point of the GHKS construction is the
Dolgachev-Nikulin-Voisin family. To a semi-stable model Y → S of the DNV family, they
associate an affine manifold B with singularities by taking the dual intersection complex of
the central fibre Y and endowing it with an affine structure. For each cone in ( a Mumford-
Looijenga refinement δ of) Morifan(Y), they produce a family over a toric stratum of the
toric variety TV (δ), by constructing a homogeneous coordinate ring. This construction -
minus the scattering diagram- can also be found in [GHKS16]. The families are glued to a
polarized family

(X,O(1))→ ˆTV (δ)

over the completion of TV (δ) along the type III part of the toric boundary. They obtain
a toroidal partial compactification P̄g of the moduli space of triples

P(π∗(OX (1)) = {(S,O(1), C) : (S,O(1)) ∈ Fg, C ∈ |O(1)|}.

The family (X,O(1)) → ˆTV (δ) can be viewed as a family of triples as over a formal
neighbourhood of the type III boundary, it comes with theta functions, i.e. a canonical
basis of sections.

It can be shown that (X,O(1)) glues to the universal family over P(π∗O(1)) → Fg.
Hence one obtains a family over the type III locus of stable pairs. One feature of the
construction is that to each contraction of the DNV model Y → S, it associates a toric
stratum in TV (δ) and the family is trivial over these strata. Hence, to each contraction

19
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Y → Z, there is an associated degenerate K3 surface. The GHKS construction is not yet
available for genus 2 in its full generality. However, this only concerns the gluing to the
universal family over the interior of the moduli space. Over the type III boundary, it can
be constructed for all degrees.

We now recall some of the ingredients of the construction. We will be brief and follow
the excellent exposition [GHKS16]. We relate the construction of the K3 family to the
Looijenga pairs of [GHK15a]. Appropriate Looijenga pairs give local description of the K3

family which we will later use to study strata. An example illustrating these concepts is
given at the end of the section.

2.1 Affine manifolds, Wall Structures and Mirror
families

Definition 2.1.1. An affine manifold B0 is a differentiable manifold with an equivalence
class of charts with transition functions in Rn o GL(Rn). If the transition functions are
in Zn × GL(Rn), B0 is integral. An affine manifold comes with sheaves Λ, Λ̌ of integral
tangent and cotangent vectors.

We assume we have a space B and a decomposition P of B into integral polyhedra.
Then B0 = B\4 can be made into an affine manifold, with 4 a codimension 2 subset. A
pair (B,P) is a polyhedral affine pseudomanifold.

We also assume the existence of a P-piecewise affine function φ on B0 that takes values
in the Grothendieck group Qgp of some toric monoid Q. This means φ is, on each open set
U in B0, a continuous map

U → Qgp
R

that restricts to a integral affine function on each maximal cell of P. Such a function is
convex if it takes values in Q.

Remark 2.1.2. One can show that to characterize such a function, it is enough specify the
kinks on each ray of B, see [GHKS16, Definition 1.6].

Assume the data of a polyhedral pseudomanifold (B,P) together with a convex piece-
wise affine function φ. The crucial input for the construction of [GHKS16] is the existence
of a wall structure S . This is a set of polynomial functions associated to rays on the affine
manifold that take values in certain rings. We do not need the precise definitions here,
these can be found in [GHKS16], Definition 2.11. The point of these structures is that if
they fullfill an additional property - consistency - they induce a theta functions, which give
a canonical basis of the (homogeneous) coordinate ring of the family defined by (B,P).
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We now indicate how this is used to produce the K3 mirror family.

Construction 2.1.3. Let Y → S be a projective semi-stable model of the Dolgachev-
Nikulin-Voisin family of degree 2. There is a cone σ in Morifan(Y) corresponding to
Y → S, i.e. σ = f ∗Nef(Y/S) for some marking f . By the Kulikov classification, the dual
intersection complex of the central fibre Y0 is a triangulation G of the sphere B = S2. In
[GHKS, Construction 1.15], an affine structure is given, with 4 the vertices of G , defining
a pair (B,P). Also, there is a G -piecewise affine section φ that is defined by setting the
change of slope on a edge e of G to be equal to the self-intersection of the component of
the double locus of Y0 corresponding to e. This defines starting data for the construction
of a mirror family over TV (Nef(Y )). The remaining datum for the construction of a family
X → TV (σ) is a scattering diagram giving a wall structure, see[GHKS, §3]. Running this
construction for every cone in the Morifan and completing along the type III boundary gives
the family see [GHKS, Theorem 6.2]. Note that in the degree 2 situation, no refinement of
the Mori fan is necessary, as it is a rational polyhedral fan.

2.2 Mirror families for log Calabi-Yau surfaces

In this section we outline the GHKS mirror theory in the situation of rational surfaces with
anticanonical cycles.

Definition 2.2.1 ([GHK15a], Def 1.1). A Looijenga pair is a smooth rational projective
surface Y together with a reduced nodal curve D ∈ | − KY | with at least one singular
point.

In particular, the normalised components of any model of the Dolgachev-Nikulin-Voisin
family are Looijenga pairs. The construction of [GHK15a] produces mirror families for
Looijenga pairs. For technical reasons, one prefers working with pairs (Y,D) such that D
has at least three components. The tool to obtain these are toric blow-ups.

Definition 2.2.2 ([GHK15a], Def 1.2). Let (Y,D) be a Looijenga pair.

(i) A toric blow-up of (Y,D) is a birational morphism π : Ỹ → Y such that if D̃ is the
reduced scheme structure on π−1(D), then (Ỹ , D̃) is a Looijenga pair.

(ii) A toric model of (Y,D) is a birational morphism (Y,D)→ (Ỹ , D̃) to a smooth toric
surface Y with toric boundary D such that D → D is an isomorphism.

If (Y,D) is a Looijenga pair, blowing up a node of the anticanonical cycle is a toric
blow-up. Indeed,
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Lemma 2.2.3. Let (Y,D) be a Looijenga pair.

(i) Let p be a node of D. Then

(Blp(Y ), D′)→ (Y,D)

is a toric blow-up, where D′ is the sum of the strict transforms of the components of
D and the exceptional curve of the blow-up.

(ii) Let p be a smooth point meeting exactly one component of D. Then (Blp(Y ), D′) is
a Looijenga pair, where D′ is the strict transform of D.

Proof. Let D0, D1 be the components of D =
∑

iDi with p ∈ D0∩D1. Write X = Blp(Y ).
Denote the blow up by π : X → Y . Let E be the exceptional curve of the blow up, D̃i the
strict transforms of the Di. Then

KX = π∗KY + E.

Hence

−KX = −π∗KY − E = π∗
∑
i

Di − E =
∑
i

D̃i + 2E − E = D′.

For (ii), assume p ∈ D0. Let E be the exceptional curve of the blow up. Then, similarly,
with D′ the sum of the strict transforms of the Di

−KX = −π∗KY − E = π∗
∑
i

Di − E = π∗D0 +
∑
i>0

Di − E

= D̃0 + E +
∑
i>0

Di − E =
∑
i

D̃i − E = D′.

A Looijenga pair (Y,D), with D = D1 + . . . Dn, induces an affine manifold B : For each
node pi,i+1 = Di ∩ Di+1, let Mi,i+1 be the rank 2 lattice with basis vi, vi+1 and the cone
σi,i+1 = cone(vi, vi+1). We glue these along the rays ρi = Rvi. This defines a manifold B
with polyhedral decomposition Σ given by the cones. An integral affine structure is defined
by charts

ψi : Ui := int(σi−1,i ∪ σi,i+1)→ Z2
R,

with
ψ(vi−1) = (1, 0), ψi(vi) = (0, 1), ψi(vi+1) = (−1,−D2

i )

on the closure of Ui and linear on the cones.
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Construction 2.2.4. We relate the construction of the K3 mirror family to the Looijenga
pairs in [GHK15a]. Consider the data (B,G ) as above, i.e. B the 2-sphere with triangu-
lation G together with the convex piecewise affine function φ. By construction, a vertex
y of G corresponds to a component Y0 ⊂ Y0. Let Y denote the normalisation of Y0. The
double locus of Y0 defines an anticanonical cycle D and the pair (Y,D) is a Looijenga pair.
The affine manifold with polyhedral decomposition BY ,GY induced by the pair (Y,D) is
the tangent wedge of B at y. The function φ induces a piecewise affine function φ̄, using
the map NE(Y )→ NE(Y). This is starting data for the construction of [GHK15a].

The remaing input is the canonical scattering diagram of a pair (Y,D). It is defined in
[GHK15a, §3]. We recall the definition.

Definition 2.2.5. Let Ỹ , D̃ be Looijenga pair. Let C be an irreducible component of D̃.
Let β ∈ A1(Ỹ ,Z) be a class such that

β.D̃i =

kβ D̃i = C

0 D̃i 6= C

for some kβ > 0.

In the situation of the definiton, let F be the closure of D̃\C and set Ỹ o = Ỹ \F and
Co = C\F . There is a moduli space M(Ỹ o/Co) of stable relative maps of genus zero curves
representing the class β with tangency order kβ at an unspecified point of Co. It is proper
over C [GHK15a, Lemma 3.2], and thus one defines

Nβ =

∫
[M(Ỹ o/Co)]vir

1.

Construction 2.2.6. [GHK15a, Definition 3.3] Let (Y,D) be a Looijenga pair with affine
manifold B, fan Σ and piecewise affine function φ. Fix a ray d ⊂ B with endpoint the
origin. If d coincides with with a ray of Σ, set Σ′ = Σ. Otherwise, let Σ′ be the refinement
of Σ obtained by adding the ray δ and a number of other rays such that each cone of Σ′ is
integral affine isomorphic to the first quadrant of R2. By [GHK15a, Lemma 1.6], this gives
a toric blow-up π : (̃Y )→ Y . Let C ⊂ π−1(D) be the irreducible component corresponding
to d.

Let τd ∈ Σ be the smallest cone containing d. Let md ∈ Λτd be a primitive generator of
the tangent space to d, pointing away from the origin. Define

fd = exp
[
ΣβkβNβz

π∗(β)−φτd (kβmd)
]
.

Here, β runs over all classes as above and φd is the localisation of φ as in [GHK15a,
Construction 2.2]
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Definition 2.2.7. The collection Sc(Y ) := {(d, fd)|d ⊂ B is a ray of rational slope} is
called the canonical scattering diagram of (Y,D).

Theorem 2.2.8. [GHK15a, Thm 3.8] The canonicial scattering diagram is consistent.

Remark 2.2.9. Scattering diagrams are only constructed for anticanonical cycles of length
at least 3. To obtain scattering diagrams for shorter cycles, one resricts in an approrpiate
way, see [GHK15a, §6.2].

Let (Y,D) be a Looijenga pair. The wall structure given by the canonical scattering
diagram is consistent and hence one can construct a mirror family. For the statement of
the result, we need the notion of an n-vertex Vn. For n ≥ 3, this is the reduced cyclic
union of coordinate A2’s:

Vn = A2
x1,x2
∪A2

x2,x3
∪ · · · ∪A2

xn,x1
⊂ A2

x1,...xn
.

We also define n-vertices for n ≤ 2, by setting

V1 = SpecC[x, y, z]/(xyz − x2 − z3),

and
V2 = SpecC[x, y, z]/(y2 − x2z2).

Assume that the Looijenga pair (Y,D) is such that the cone of curves N̄E(Y ) is a rational
polyhedral cone. The following result is a simplified version of [GHK15a, Theorem 0.1].

Theorem 2.2.10. Let (Y,D) be a Looijenga pair with N̄E(Y ) rational polyhedral. Suppose
D = D1 + · · ·+Dn. Let m be the maximal ideal of the monoid ring R = C[NE(Y )]. There
is a formal flat family

Xm → Spf R̂,

with R̂ the completion with respect to m.

Now, let (Y,D) be the Looijenga pair defined in Construction 2.2.4. One has the
canonical scattering diagram Sc(Y ). The scattering diagram produced in [GHKS] also
induces a scattering diagram SK3(Y ) on (Y,D). Up to the addition of certain rays -
higher order incoming rays, see e.g [GHK15a, Defiinition 2.3] - these diagrams agree. It is
expected that the scattering diagrams Sc(Y ) and SK3(Y ) are equivalent and thus produce
isomorphic families. We assume this in the following.

Assumption 2.2.11. Let (Y,D) be a Looijenga pair obtained by localisation as in Con-
struction 2.2.4. The scattering diagrams Sc(Y ) and SK3(Y ) are equivalent.
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E1 C2

E2C1

Figure 2.1: Blow-up of P1 × P1

Let (B,G , φ) be the combinatorial data of the K3 mirror family. The mirror family
defined by a Looijenga pair (Y,D) obtained by localisation at a vertex of v of B together
with SK3(Y ) determines the deformation of the K3 mirror family locally around the n-
vertex singularity defined by v. Under Assumption 2.2.11, we can study the deformation
theory of

(X,O(1))→ ̂TV (Morifan(Y))

around its n-vertex singularities by studying the deformation theory of the corresponding
Looijenga pairs in the framework of [GHK15a].

We close with an example.

Example 2.2.12. Take (Y,D) the blow up of P1×P1 in two points on opposing components
of the toric boundary, see Figure 2.1. Here, D = D1 + D2 + D3 + D4 is an anticanonical
cycle.

To this surface, we associate a affine pseudo manifold as follows, see [GHK15a]. For
each node pi,i+1 = Di∩Di+1, we define a rank two Mi,i+1 lattice with basis vi, vi+1 and the
cone σi,i+1 = cone(vi, vi+1). We glue these along the rays ρi = Rvi. This defines a manifold
B with polyhedral decomposition Σ given by the cones. An integral affine structure is
defined by charts

ψi : Ui := int(σi−1,i ∪ σi,i+1)→ Z2
R,

with
ψ(vi−1) = (1, 0), ψi(vi) = (0, 1), ψi(vi+1) = (−1,−D2

i )

on the closure of Ui and linear on the cones. After a suitable modification on can write
B\ρ2 in a chart such that

ψ(v2) = (−1, 1), ψ(v3) = (−1, 0), ψ(v4) = (0,−1), ψ(v1) = (1, 0),

see Figure 2.2.
We let φ be the function with kink the class of Di on ρi, where we write Di for the

components of the anticanonical cycle. The canonical wall structure i is given by the
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Figure 2.2: The affine manifold B.

following structure:

S := {(ρ1, (1 + zE1z−1
1 )(1 + zC1z−2 1)), (ρ3, (1 + zE2z−1

3 )(1 + zC2z−3 1))}.

With this data, one calculates the theta functions as

ϑ1 = z1

ϑ2 = z2 · (1 + z1z
−E1)(1 + z−1

1 zC1)

ϑ3 = z3 = z−1
1 zD4

ϑ4 = z4.

This defines the mirror family.



Chapter 3

The Dolgachev-Nikulin-Voisin family

Introduction

In this section we compute models of the Dolgachev-Nikulin-Voisin mirror family for K3
surfaces of degree 2 in (−1)-form. This will be the starting point for our investigaton in
chapter 4. We also show that the Mori fan of the DNV family is a polyhedral fan precisely
for genus 2.

3.1 d-semi-stable K3 surfaces

Central fibres of semi-stable degenerations of K3 surfaces are the so called d-semi-stable
K3 surfaces, [Fri83]. Below, we will see that it is enough to construct a central fibre with
certain properties to obtain a model for the Dolgachev-Nikulin-Voisin family Y → S. The
property that governs the smoothability of a degenerate K3 surface is the d-semi-stability,
introduced in the next definition.

Definition 3.1.1. Let X = ∪Xi be a variety with normal crossings, Di = Xi ∩ Uj 6=iXj.
Let ID be the ideal sheaf of D in X, IXi the ideal sheaf of Xi in X. Set

OD(−X) =
⊗
i

IXi/IXiID,

the product taken over OD. Let OD(X) be the dual. Then X is d-semi-stable, if

OD(X) ∼= OD.

The next definition characterizes the class of degenerate K3 surfaces.

27
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Figure 3.1: The triangulations P and T .

Definition 3.1.2 ([Fri83]). Let X be a compact complex surface with normal crossings.
X is a d-semi-stable K3 surface of type III if

(i) X is d-semi-stable,

(ii) ωX = OX ,

(iii) X = ∪iXi with Xi rational and the double curves Xi ∩ Xj are cycles of rational
curves,

(iv) The dual graph is a triangulation of the sphere S2.

For a not nececessarily d-semi-stable K3 surface X, let [X] denote its locally trivial
deformation class. In particular, we can consider the deformation classes of d-semi-stable
K3 surface in −1 form, i.e. such that all self intersection numbers of components Dij =

Xi ∩ Xj equal to −1 (in the normalisation Xν
i ). By [Laz08], these deformation classes

correspond to the two non-isotopic triangulations of the sphere with 2 triangles that are
given by two triangles glued along the boundary and two triangles glued along one side
to each other, with the remaining sides identified. We shall denote the first of these
triangulations by P and the latter by T . For precise definitions see [Laz08], but see
Figure 3.1.

We recall the follwing construction, see e.g. [Laz08], Section 3.1. Let X be a d-semi-
stable K3 surface. Writing X = ∪iXi and Dij for the double curves, there is a map

⊕i H2(Xi,Z)→ ⊕ijH2(Dij,Z). (3.1.1)

As the precise construction is unimportant for us, we refer to [[KK98], 151ff] for details.
Let L denote the kernel of 3.1.1. All theXi are rational surfaces, we have the Betti numbers
given by

b2(Xi) = 10−K2
Xi
.
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Also, X is d-semi-stable and thus smoothable by [[Fri83], 5.10]. Hence from [[Per77], 2.4.4],
we obtain the triple point formula

D2
ij +D2

ji = tij,

where tij is the number of triple points on Dij. As X is assumed to be of type III, tij = −2,
unless Dij is nodal, in which case t = 0. Here Dij is considered to be a divisor on Xi. Also,
let n,e and t be the numbers of components, double curves and triple points of the dual
graph of X. Then, by Euler’s formula, n − e + t = 2. As the double curves are smooth
rational and the general fibre is a K3 surface, we also have the formula [[Per77], 2.4.6]

−
∑
i

K2
Xi

= −6n+ 12

which, combined with the formula for the Betti numbers shows that the rank of⊕iH2(Xi,Z)

is 4n + 12. Also, Friedman shows that over Q the map is surjective. The sublattice L is
primitive, as it is the Kernel of a map between torsion free lattices. As e = 3n − 6, this
implies the rank if L is n+ 18.
There is Carlson’s extension map

cX : L→ C∗.

Again, we will not need the explicit homomorphism, instead we refer to [Car79] for details.
The important fact is that the kernel of cX can be identified with the Picard group Pic(X),
[[Car79], 7E],[FS86].
Now, note that the preceding statements about cohomology groups are purely topological
and hence also valid for for degenerate K3 surfaces that are not necessarily d-semi-stable.
The point is that if L = Pic(X), X is d-semi-stable, by [FS86], p.25.

We summarize:

Lemma 3.1.3. Let X0 = ∪iXi be a not necessarily d-semi-stable K3 surface of type III.
Let tiXi → ∪iXi be the normalization map. Then

(i) there is an injective morphism

Pic(X)→ Pic(tiXi),

(ii) X is d-semi-stable if L = Pic(X).

Below we will construct a d-semi-stable K3 surface by gluing rational surfaces. Recall
that gluing schemes Xi along closed subschemes Zij amounts to constructing the push-out
and that this push-out is indeed a scheme, cf. [Sch05]. While the details of this construction
are not important for us, the following property of the construction is essential.
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Lemma 3.1.4. Let X be the pushout of finitely many integral schemes Xi glued along
finitely many closed subschemes Zij ⊂ Xi. Then DivCl(X) = Pic(X).

Proof. First, X is a scheme by iterating [[Sch05], 3.7]. By definition, for an open set U
in X, Γ(U,OX) is a certain subring of the product

∏
i Γ(α−1

i (U),OXi), where αi is the
canonical morphism Xi → X. As the Xi are reduced, this means that X is reduced. For
each component Xi, choose an affine open Ui in Xi\ ∪ Zij. Then

∐
Ui is an dense open

affine subset of X. As X is reduced, U is schematically dense. Hence DivCl(X) = Pic(X)

by [[GW10], 11.27].

The next result follows from the deformation theory of [FS86].

Proposition 3.1.5. Let [Y ] be the locally trivial deformation class of a d-semi-stable K3
surface Y with Y having t = 2d triple points. Let Y0 ∈ [Y ] be such that cY0 = 1, i.e. the
Carlson map is trivial. There is a unique one-parameter smoothing Y → S = SpecC[[t]]

of Y0 such that the restriction Pic(Y)→ Pic(Y0) is an isomorphism and Pic(Yη) ∼= M̌ .

Proof. If cY = 1, Pic(Y ) = L. Let n be the number of components of Y . Consider the
divisors ξi =

∑
j Dij −Dji, i = 1, . . . , n.. They span a primitive sublattice K.

We also pick linear independent divisors L1, . . . L19 that generate Pic(Y ) mod K. If
Y → S is a deformation with Pic(Y) ∼= Pic(Y ) via restriction, then by definition Y → S

is a deformation of Y together with the Li. We shall show that there is a unique such
1-parameter deformation, up to automorphisms on the base.

Let X → V be the semiuniversal deformation of [FS86]. By the calculation in [FS86],
the locus V ′ in the smoothing component of V where the Li deform is 1 dimensional and
smooth. Let X0 → V ′ be the restriction of the semiuniversal family. By [FS86], this is a
smoothing of Y . Let R be the analytic algebra defining the germ, let R′ be the completion
of R with respect to the maximal ideal. Then R′ ∼= C[[t]]. This defines a formal scheme
Ŷ → Spf C[[t]], and by the condition that all Li deform, there is a L ∈ Pic(Ŷ) restricting to
an ample bunde on Y and thus by Grothendieck’s existence theorem a deformation Y → S

with S = SpecC[[t]]. By construction, Pic(Y) ∼= Pic(Y ) via restriction.
Also, for the degeneration Y → S, it follows from [Kaw97], using the fact that S is a

DV R, that we have an exact sequence

0→ ZY → Pic(Y)→ Pic(Yη)→ 0 (3.1.2)

with ZY the abelian group generated by the components Yi of the central fibre modulo the
relation

∑
Yi = 0.
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The statement about the Picard group of the generic fibre follows from [Laz08], Propo-
sition 4.3 and Corollary 4.6 and the Sequence 3.1.2.

We show that Y → S is a smoothing of Y . The Kodaira Spencer class of Z → S ′ is by
construction a class in the smoothing component V , so the analytic deformation X0 → R

is smooth by [Fri83, Proposition]. In particular, its local rings in closed points are regular,
and thus by [Mat89, Theorem 23.7] the local rings in all y ∈ Y of the formal smoothing are
regular. By the same theorem, this implies that the stalks of closed points of the central
fibre of Y → S are regular local rings. This implies that Y is regular by [GW10, Remark
6.25]. In particular, the generic fibre is a smooth K3 surface. Also, by adjunction, Y has
trivial canonical bundle. So Y → S is indeed a semistable model.

Now, suppose Y ′ → S is a second such model. By formal semiuniversality, Y ′ → S is
pulled back from Y → S via a homomorphism C[[t]]→ C[[t]]. Because Y ′ → S is regular,
the uniformizing parameter t maps to at with a a unit. Hence, Y ′ → S is canonically
isomorphic to Y → S. This proves the result.

3.2 Models of the DNV family in genus 2

We now construct models of the DNV family in genus 2 in (−1)-form. To get such a model,
we need to find a d-semistable K3 surface Y0 in −1 form with trivial Carlson map such that
deformation induced by Proposition 3.1.5 has generic fibre Yη with Pic(Yη) = M̌ . As g−1 is
square free, this means that the number of triple points is 2, so in particular a central fibre
sitting in such a degeneration will have 3 components. Hence a surface as required can be
found in the locally trivial deformation class of degenerate K3 surfaces in −1 form defined
by the triangulations P and T . These deformation classes can be expicitely described, see
[Laz08, Proposition 5.2]. For example, the surfaces in the class defined by P are triples of
( weak ) del Pezzo surfaces of degree 2 glued along the anticanonical divisor. The required
triviality of the Carlson map forces the components of Y0 to have a maximal configuration
of rational double points. We construct these surfaces and then glue them in a way such
that the Carlson map is trivial, inducing a model of the DNV family of genus 2. We recall
some facts about weak del Pezzo surfaces first, a reference is [Dol12].

Definition 3.2.1. A weak del Pezzo surface is a nonsingular surface S with big and nef
anticanonical divisor.

Similar to usual del Pezzo surfaces, weak del Pezzo can be constructed by blowing up
points on P2 and in fact, a blow up of P2 in 8 or less point is a weak del Pezzo surface if
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E1 E2

Figure 3.2: The E6 root system and the exceptional curves E1, E2.

and only if the points are in almost general position, cf. [Dol12, Chapter §]. Note that this
entails blowing up points several times. Also, we have the following.

Proposition 3.2.2. Let S be a weak del Pezzo surface.

(i) Let S → S ′ be a blowing down of a (−1)-curve E. Then S ′ is a weak del Pezzo
surface.

(ii) Let S ′ → S be a blowing-up with center a point not lying on any (−2) curve. Assume
K2
S > 1. Then S ′ is a weak del Pezzo surface.

There is some control over the (−2) curves on a weak del Pezzo.

Proposition 3.2.3. Let S be a weak del Pezzo of degree d = 9−N . Then the number r of
(−2) curves is less than or equal to N and the sublattice generated by them is a root lattice
of rank r.

Definition 3.2.4. Let (Y,D) be a anticanonical pair. Let D =
∑
Di and p be a smooth

point of exactly one Di. If n = 1, the n-fold blow up of Y in p is the usual blow up, if
n > 1, the n-fold blow up of Y in p is the blow up of the n− 1-fold blow up π : Y ′ → Y in
the point ex(π) ∩ π−1

∗ Di . More generally, if (p1, . . . , pk) is an ordered set of points pi ∈ Y
such that each component Di contains at most one pi as a smooth point, we define by the
obvious generalisation the (n1, . . . , nk)-blow up of Y in (p1, . . . , pk).

Construction 3.2.5. We now construct the component surfaces. For each such surface,
we als define a special point. This point will play a role in the gluing of the components.
We need weak del Pezzo surfaces of degree d = 1, 2, 4.

d=1: Let Q = P1×P1 with toric boundary D = D1 +D2 +D3 +D4, ordered cyclically. Let
pi ∈ Di, i = 1 . . . 4, be points in the smooth part of D such that pi, pi+2 are in the
same fibre of one of the two rulings, see Figure 3.3. Let Q̃ be the (1, 5, 1, 3)-blow-up
of Q in (p1, p2, p3, p4). The strict transforms of the D1, D3 have self-intersection −1

on Q̃. Blowing down these yields a surface such that the strict transform of D4 has
self intersection (−1). Then, blowing this down yields a surface Y1 with boundary
divisor an anticanonical cycle D̃ of self intersection 1 and an E8 root system of
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Figure 3.3: The blow up of P1 × P1.

effective (−2)-curves. This is a weak del Pezzo of degree 1, see Figure 3.4. There is
a unique −1 curve E meeting D̃. The special points are two copies of the node on
D̃ and the point in E ∩ D̃.

d=2: For degree 2, we take P2 together with its toric boundary (xyz = 0). We can fix three
collinear points, one on each boundary divisor, say p, q, r. Let Y ′ be the (3, 3, 2)-blow
up of P2 in (p, q, r). This yields a weak del Pezzo surface of degree 1, as we have
blown up 8 points that are not on (−2) curves. Now, blow down the strict transform
of the toric divisor that is a (−1)-curve. Then the resulting surface Y2 is also a weak
del Pezzo surface of degree 2 with anticanonical cycle D = D1 +D2. It carries an E6

configuration of effective (−2)-curves by construction. There are also 2 exceptional
curves E1, E2 of the first kind each meeting a long end of the root system and a
component of the anticanonical divisor, see Figure 3.2. The special points of Di are
the points Di ∩ Ei and the two points in Di ∩Di+1.

d=4: Again, let Q = P1 × P1 with toric boundary D = D1 +D2 + D3 + D4. Let pi,
i = 1 . . . 4, be points on the intersection of the fibres of the two ruling with the toric
boundary components. Blow up Q in the once in each pi, the resulting surface Y4 is
a weak del Pezzo of degree 4, with an A2 root system of effective (−2)-curves and an
anticanonical cycle D̃ = D̃1 + D̃2 + D̃3 + D̃4 where the D̃i are the strict transforms
of the Di. There are 4 (−1) curves Ei, i = 1 . . . 4 on Y4 that are not components of
D̃. Each Ei meets exactly one of the Di transversally. The special points of D̃i are
the points D̃i ∩ Ei, D̃i ∩ D̃i+1 and D̃i ∩ D̃i−1, indices considered cyclically.

Let G ∈ {P,T }. The triangulation G defines a locally trivial deformation class
[Y ]G of d-semistable K3 surfaces, and we can take the member YG of [Y ]G such that the
(normalization) of each component is from the above list. The gluing is such that the
nodes of the anticanonical divisors and the the special points are identified. We show that
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Figure 3.4: The (weak) dP1 components.

the gluing specified in the construction is optimal, i.e. the resulting surfaces have trivial
Carlson map. We learnt this condition from [GHKS].

Proposition 3.2.6. Let G ∈ {P,T }. The surfaces YG have trivial Carlson map, i.e.
cYG

= 1.

Proof. Each of the surfaces Yi has a Q-basis of Pic(Yi) given by the −2-curves and the
interior −1-curves, i.e. those that are not components of the anticanonical divisor. For the
normalisation Y ν

i of a component Yi, of YG , we denote this basis by Bi. The Picard group
of YG is given by the kernel of the Carlson map. Let Ysimp be a semi-simplicial resolution
of YG , see [Car79],[KK98, §4.2.2]. We assume YG = ∪Yi to have simple normal crossings.
Then the one takes Ysimp to be

Yp =
∐

Yi0 ∩ · · · ∩ Yip (i0 < . . . ip)

for p = 0, 1, 2. Face maps are given by maps δi : Yp → Yp−1 such that δi has the structure of
an inclusion on the components of Yp, see [KK98, §4.2.2]. In the normal crossing case one
has to modify this by including appropriate normalisations and normalisation maps. Let
Li be a tuple of divisors written in the basis Bi, with i running throught the non-hexagonal
components, such that the degrees on double curves agree. Also, on the hexagonal compo-
nents H, for each divisor L there is a linearly equivalent divisor that restricts to degL|Dimi

with mi denoting the interior special point on Di ⊂ H by (the proof of ) [GHK15b, Lemma
2.8]. By the gluing condition, the support of the pullback of Li to any component of the
double curve Yi ∩ Yj is equal, hence trivial under the Carlson map, cf [Car79], page 8 ff.
This implies the result.
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We obtain the following result.

Proposition 3.2.7. Let G ∈ {P,T }. The surface YG is a d-semistable K3 surface. The
associated smoothing YG → S is a model in (−1)-form of the Dolgachev-Nikulin-Voisin
family, i.e. Pic(YG η) = M̌2d and Pic(YG ) ∼= Pic(YG ). The threefold YG is projective over
the base S.

Proof. YG is a d-semistable K3 surface in (−1)-form by construction. The Carlson map is
trivial, i.e. cYG

= 1, because the gluing is optimal. It is also projective: for G = T , any
triple of ample divisors on the component surfaces can be, after taking multiples such that
the degree on components of the double curves agrees, be glued to an ample bundle on YT .
If G = P, it is easy to see by the symmetry of Y2, that there is an amle divisor A on Y2

with degree agreeing on both components of the anticanonical curve. For example, take
the bundle given by the tuple (7, 11, 13, 16, 13) on the (−2)-curves, i.e. the i-th number
corresponds to the i-th root in the ordering of [Dol12], p. 404, and by adding 10Ei for Ei,
i = 1, 2 the −1 curves in the exceptional locus of the blow up in the above construction.
Taking this bundle on each copy of Y2 in YP defines a ample bundle. Because ampleness
is an open condition and as we work over the spectrum of a DVR, the lift of an ample
bundle to YG → S defines a ample bundle over S, and thus YG is projective over the base
S.
Write YG = ∪3

i=1Yi. The condition Pic(YG η) = M̌ follows from the exact sequence

0→ G→ Pic(Y)→ Pic(Y gen)→ 0,

where G is the free abelian group generated by the components of YG modulo
∑

i Yi = 0:
We have Pic(YG ) = Pic(Y). Also, we can identify the images of the components Yi with
the classes ξ of [[Laz08], 3.1] in L = Pic(YP), and thus obtain

Pic(Y gen) ∼= L/A = L̄

with L̄ the lattice from Laza [Laz08] and A the span of the ξi. By Example 5.11 in [Laz08],
this shows

Pic(Y gen)) = M̌.

Hence, the degeneration YG → S is indeed a model of the Dolgachev-Nikulin-Voisin mirror
family in genus 2.
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YP YT

Figure 3.5: The surfaces YP and YT .

3.3 The Morifan of the Dolgachev-Nikulin-Voisin
family

Let Y → S be a model of the DNV family. We have the following result.

Proposition 3.3.1. Let Y → S be the Dolgachev-Nikulin-Voisin family of genus g. Let
Y gen denote the generic fibre.

i. If g = 2, Aut(Y gen) is finite: Aut(Y gen) = Z/2× S3.

ii. If g ≥ 3, Aut(Y gen) is not finite.

Proof. Let M̌g denote the Picard lattice of the generic fibre of Y → S. These lattices are
given in [Dol96]. It follows from [Nik83], that the automorphism group is finite only for
g = 2, as only that lattice appears in Nikulin’s classification. The concrete description for
g = 2 is due to [Kon89].

We have the following exact sequence,

0→ Zg → Pic(Y)
r→ Pic(Y gen)→ 0,

the homomorphism r being restriction.

Lemma 3.3.2. [[GHKS], 9.2] Let Y → S be the Dolgachev-Nikulin-Voisin family. Then

r(Mov(Y)) = Mov(Y gen) = Nef(Y gen)

.

There is the following result, see [[GHKS], 9.5].
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Theorem 3.3.3. Let 4 ⊂ |Nef(Y gen| be a rational polyhedral cone. Then

i. r−1(4) and r−1(4) ∩Mov(Y) are rational polyhedral cones.

ii. The collection
{r−1(4) ∩ γ : γ ∈ Morifan(Y)}

is a finite set of rational polyhedral cones with support r−1(4).

iii. The collection
{r−1(4) ∩ γ : γ ∈ Morifan(Y) ∩Mov(Y)}

is a finite set of rational polyhedral cones with support r−1(4) ∩Mov(Y).

iv. We have
|Morifan(Y)| = Mov(Y)

Recall the following notion.

Definition 3.3.4. Let Y → S be a projective morphism, Y smooth. We say Y → S is a
Mori dream space if

i. The relative Picard group Pic(Y/S) is a finitely generated abelian group,

ii. There exist finitely many rational maps (over S), fi : Y −→• Yi, that are isomorphisms
in codimension 1 such that if D is a movable R-divisor, there exist fi and a semiample
divisor Di with D = f ∗i Di.

It turns out that the Dolgachev-Nikulin-Voisin family is a Mori dream space precisely
when g = 2.

Theorem 3.3.5. The Dolgachev-Nikulin-Voisin family Y → S is a Mori dream space if
and only if the genus g is 2.

Proof. Let p : Y → S denote the DNV family. The Picard group PicY = Pic(Y/S) is a
finitely generated abelian group, as it it equal to the N1(Y/S). Moreover, by Theorem
3.3.3, the support of Morifan(Y) is Mov(Y) and by Lemma 3.3.2, the latter is contained in
the preimage under r of the Nef cone of the generic fibre, i.e. Morifan(Y) ⊂ r−1(Nef(Y gen).
In particular, γ ∩ r−1(Nef(Y gen) = γ for all γ ∈ Morifan(Y). If g = 2, Nef(Y gen) is a
rational polyhedral cone by [[Huy],4.8], as Aut(Y gen) = Z/2 × S3 by Proposition 3.3.1.
Hence we can take 4 = Nef(Y gen) in Theorem 3.3.3 and get

{r−1(Nef(Y gen) ∩ γ : γ ∈ Morifan(Y) ∩Mov(Y)} = {γ : γ ∈ MorifanY}



is a finite set of polyhedral cones, i.e. Morifan(Y) is rational polyhedral.
Thus, by definition of the Morifan, there are finitely many contractions fi : Y −→• Yi

such that for every movable R-divisorD there is a fi withD = f ∗i Di for someDi semiample.
This means that Y → S is a Mori dream space.

If g ≥ 3, the automorphism group of Y gen is infinite by Lemma 3.3.1, and thus Nef(Y gen)

is not rational polyhedral, again by [[Huy],4.8]. This means that Morifan(Y) cannot be
rational polyhedral as else the generators would give a finite set of generators of Nef(Y gen),
and thus there is no finite collection of contractions fi : Y → Yi such that every movable
divisor is a pullback of a semiample divisor of Yi. So in this case, Y is not a Mori dream
space.



Chapter 4

Deformations

Introduction

Having constructed semi-stable models YP and YT of the Dolgachev-Nikulin-Voisin family,
we now study deformations. In total, we show the following theorem. For the statement,
let ̂TV (Morifan(Y)) be the completion of the toric variety given by Morifan(Y) along the
type III part of the toric boundary.

Theorem 4.0.1. Let X be the 21 dimensional GHKS family over the locus of stable pairs.
Then all generic limit surfaces of the type III boundary of the KSBA compactification P̄2

appear as fibres over strata Z of ̂TV (Morifan(Y)).

Recall the relation between contractions of semi-stable models and deformations of the
pillow surfaces: Let Y be a projective semi-stable model of the Dolgachev-Nikulin-Voisin
family. By definition, a contraction defines a face F of Morifan(Y), so F defines a toric
stratum in the base of the family induced by the central fibre Y0 of Y . Restriction of the
local model to this stratum then defines a deformation of the pillow surface corresponding
to Y0. By construction, the family X is trivial over toric strata, i.e. there is a degenerate
surface associated to each contraction. This is the approach taken here and in the following
chapter.

We will also show how to obtain the type II limit surfaces.

Theorem 4.0.2. Let X be the GHKS family. Then limit surfaces of type IIi, i = 1 . . . 4,
of the KSBA compactification P̄2 appear as fibres over strata Z of ̂TV (Morifan(Y)).

The constructions in section 4.1 build on ideas of Paul Hacking, the deformation to IIIε

is due to him.

39
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4.1 Deformations of n-vertices

The fibre of the genus 2 GHKS family X is, over each maximal subcone of the Morifan
of the Dolgachev-Nikulin-Voisin family, given by three deformations of n vertices glued
together. For example, we have constructed a semi-stable model YP → S with dual graph
the triangulation P. This pillow surface XP is three 2-vertices glued together, i.e. the
fibre of the GHKS family over the (maximal) toric stratum corresponding to YP . We want
to (partially) smooth XP ( and the pillow surface XT given by the triangulation T ) to
other surfaces of Laza’s list. We will deform the 2-vertices individually, using the theory
of [GHK15a]. We will call the deformation X of an n-vertex as in [ [GHK15a], Thm 0.1]
the mirror family.

To proceed, note that the mirror family of an anticanonical surface with cycleD consist-
ing of 2 or less components is constructed via a toric blow up Ỹ . This blow-up is necessary
if one wants to use toric models for the construction of the mirror, as in [GHK15a]. We
now construct a toric blow up and a toric model for the components of the central fibre of
model YP .

Construction 4.1.1. Let Y0 ⊂ YP be a component of the central fibre of the Dolgachev-
Nikulin-Voisin family in (−1)-form, with deformation class P. Let D = D1 + D2 be the
anticanonical cycle of Y given by the double curve, with D2

i = −1.
Set Ȳ = P1×P1 with toric boundary a cycle D̄i, i = 1 . . . 4 and let F̄1, F̄2 denote interior

fibres of the two rulings of Ȳ . Let pj and qj, j = 1, 2, denote the points of intersection of
F̄1 and F̄2 with the components of the boundary, respectively. Assume the pj lie on D̄2

and D̄4, see Figure 4.1. Blow up the pj three times and the qj once. Denote the resulting
surface by Ỹ . Repeated application of Lemma 2.2.3 shows that the strict transforms D̃i

of the D̄i form an anticanonical cycle D̃. Hence, (Ỹ , D̃) is a Looijenga pair. The strict
transforms D̃1 and D̃3 are (−1) curves. Contracting these defines a morphism τ : Ỹ → Y

to an anticanonical pair (Y,D) with D the image of D̃. By construction, Y has an E6 root
system of effective (−2)-curves, giving a basis of the subspace of Pic(Y ) that is orthogonal
to KY .

Also, the anticanonical divisor has degree D2 = 2 and is big and nef: there are only
finitely many (−1) and (−2)-curves on Y and thus the Mori cone NE(Y ) is polyhedral
and generated by curves C with C2 < 0, by Proposition 5.1.1.6 and Theorem 5.1.3.1 in
[ADHL14]. This shows Y is a weak del Pezzo surface of degree 2. Hence, by the Global
Torelli Theorem of [GHK15b], Y is isomorphic Y0.

The E6 system is depicted in Figure 4.2. Note that the cycle E1 +F1 +F2 +F3 +F4 +

F5 + E2 determines a ruling Y → P1. The components of the anticanonical divisor are
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q1

p1

q3

p2

F̄2

F̄1

Figure 4.1: The surface Ȳ with rulings and marked points.

E1 F1 F2 F3

F0

F4 F5 E2

Figure 4.2: The E6 root system given by the Fi and the (−1)curves E1 and E2.

sections of this ruling.

The discussion implies the following.

Lemma 4.1.2. Let Y ⊂ YP be a component of the DNV-family in (−1) form. Then there
is a toric blow up Ỹ → Y , a ruling r1 : Y → P1, a ruling r2 : Ỹ → P1 and a toric model
π : Ỹ → Ȳ such that the following diagram commutes

Ỹ
π //

r2 ##��

P1 × P1

��
Y r1

// P1.

Note that the diagram of Lemma 4.1.2 shows that the Nef cone of P1 defines a ray
in Nef(Y ), and therefore a divisor Z in TV (Nef(Y )). The latter sits in TV (Nef(Ỹ )) by
Lemma 4.1.4 below..

The divisor Z defined by the ruling r2 : Ỹ → P1 defines a deformation of the 2-vertex
to a normal crossing surface. More precisely:

Proposition 4.1.3. The fibre of the mirror family X restricted to the divisor Z defined
by the ruling r1 : Y → P1 is a normal crossing surface.

Proof. Let Ỹ be the toric blow up of Y that admits the toric model π : Ỹ → P1 × P1, as
above. By Lemma 4.1.2 the ruling r1 defining Z factors through π.
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Over the locus defined by the vanishing of the exceptional divisors of the toric model,
X is isomorphic to the family defined by P1 × P1 with plt function ϕ induced by pullback,
and fan Σ the fan of P1 × P1, see e.g the discussion in chapter 3 of [GHK15a], or conclude
by strong uniqueness of scattering diagrams. The remaining deformation direction is then
given by the morphism NE(P1 × P1) → NE(P1) contracting the toric boundary divisors
D̄1, D̄3 in the fibre P1×P1. This is the degeneration given by erasing the rays corresponding
to D̄1, D̄3, by [GHK15a, 1.3]. The fan Σ̄ of convex cones of maximal domains of linearity
of the induced map ϕ̄ is given by to half spaces, see figure 1.1. Hence the fibre is given by
the algebra

C[Σ̄] = ⊕Czm

with m running through the integral points of Σ. This defines normal crossing surface:
there is an morphism

C[X1, X2, X3, X4]→ C[Σ̄]

sending Xi to ei, with kernel (X1X3 − 1, X2X4) Hence we find

C[X±1 , X2, X4]/(X2X4) ∼= C[Σ̄].

This is the localization of C[X1, X2, X4]/(X2X4) in X1 and thus an open subscheme of a
normal crossing scheme. Hence, SpecC[Σ̄] is a normal crossing surface.

Lemma 4.1.4. Let π : Y ′ → Y be a birational morphism of smooth rational varieties.
Then there is a toric morphism TV (Nef(Y ))→ TV (Nef(Y ′)).

Proof. Let L be a nef line bundel on Y and C an integral curve in Y ′. Then

π∗L.C = L.π∗C

by the projection formula. As both varieties are projective, π is proper so π∗C = d[D]

with D the image of C under π, so π∗C is a positive multiple of an integral curve, thus
L.π∗C ≥ 0 and therefore π∗ restricts to a morphism

π∗ : Nef(Y )→ Nef(Y ′).

This is linear, so by [[CLS11], Thm 3.3.4], π∗ induces the required morphism of toric
varieties.

Let Y be a component of YP as above. Let D = D1+D2 be the anticanonical cycle. Let
E1, E2 be the irreducible interior (−1)-curves with numbering such that Ei.Di = 1. There
is the E6 root system of (−2)-curves Fi, i = 1 . . . 6, where we use the same numbering as in
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Figure 4.1. Contraction of D2 yields a map γ : Y → Y ′ to a weak del Pezzo surface Y ′. The
image of E2 under π1 is curve E with E2 = 0. Also, the curve C := γ∗(E1+F1+F2+F3+F4)

is an exceptional curve on Y ′, being a tree of an irreducibel (−1)-curve and (−2)-curves.
Hence there is a blow-down

πC : Y ′ → Y ′′.

By Proposition 3.2.2, Y ′′ is a weak del Pezzo surface of degree 8. It contains the (−1)-curve
πC∗γ∗(F5) and no (−2) curves. Therefore Y ′′ ∼= H1, where H1 is the Hirzebruch surface of
degree 1. There is a ruling Y ′′ → P1 given by contracting πC∗(E)

Proposition 4.1.5. Let Y be a component of the central fibre YP of YP. Let γ : Y → Y ′

be the contraction of a component D1 of the anticanonical cycle. Let r3 : Y ′′ → P1 be the
composition of the contraction πC : Y ′ → Y ′′ and the ruling Y ′′ → P1.

(i) The contraction γ : Y → Y ′ deforms the 2-vertex defined by Y to a 1-vertex

(ii) The ruling r3 : Y → P1 deforms the 2-vertex to {z2 = y2(x2−y+1)} ⊂ SpecC[x, y, z].

Proof. This is essentially the calculation in [GHK15a, 6.2]. In order to calculate the fibre
of the mirror family over the stratum defined by γ : Y → Y ′, we need to work on a
toric blow up Ỹ of Y , which can be obtained by blowing up a node of the anticanonical
divisor. The affine manifold B of Ỹ is depicted in figure 4.3. Here, w,w + w′, are the
rays corresponding to the components of the anticanonical divisor D while w + 2w′ is the
refinement corresponding to the toric blow-up, see [GHK15a], 1.2 for the construction of
B. The gluing is so that w is identifyed with w′. Let m be the asymptotic monomial
with m̄ = 2w + w′, see [GHKS16], Definition 3.1. Contraction of D1 means that D1 is set
to 0 in all decoration functions. The the corresponding ray is w + w′. This means that
over the maximal monomial ideal NE(Y ), broken lines can pass the ray w + w′, but do
not pick up any monomials. In particular, broken lines passing w +w′ do not bend. Also,
the ray w + 2w′ can be passed by broken lines as the corresponing divisor is set to 0 in
the calculation of the family induced by Y . Denoting the theta functions with asymptotic
monomial n by ϑn, the multiplication rule for broken lines yields the following equations.

ϑwϑw+w′ = ϑ2w+w′ + ϑw+2w′

ϑ2w+w′ϑw+2w′ = tϑ3
w+w′ .

Hence ϑwϑw+w′ − ϑ2w+w′ = ϑ2
w+2w′ and thus

ϑ2w+w′(ϑwϑw+w′ − ϑ2w+w′) = ϑ3
w+w′
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ϑw

ϑw′

ϑw+w′

ϑw+2w′

Figure 4.3: The affine manifold B

The change of coordinates ϑw+w′ 7→ y, ϑw 7→ 2x and ϑ2w+w′ 7→ z+xy gives the equation
(z + xy)(2xy − (z + xy)) = y3, so

z2 = y2(x2 + y)

Next, we show the second item. Note that contracting Y → P1 then means that now the
ray w + w′ carries a term 1 + tzn with n = (−1,−1) on any maximal cone of the polyhe-
dral decomposition of B, because all exceptional curves but E meeting the (contracted)
component D2 contain a component that is not contracted under Y → Y ′ and hence their
contribution in the multiplication rule is modded out. This yields the following set of
equations.

ϑwϑw+w′ = ϑ2w+w′ + ϑw+2w′

ϑ2w+w′ϑw+2w′ = ϑ3
w+w′ + ϑ2

w+w′ .

Under a the same change of coordinates as above, this yields the equation

z2 = y2(x2 − y + 1)

Remark 4.1.6. Note that this proposition is true for all Looijenga pairs (Y,D) that are
toric blow ups of a pair (Y ′, D′) with D′ a nodal curve and which have a ruling as in the
proposition.

We shall also need morphisms corresponding to ’do nothing’ on the 2-vertex. If Y is a
component of YP , application of the morphism defined by the anticanonical sheaf O(−KY )

does the job.
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Proposition 4.1.7. Let Y be a component of YP. Let X be the mirror family of Y . Let
τk : Y → Yk be the morphism defined by the anicanonical system. The fibre of X over the
stratum defined by τk is a 2-vertex.

Proof. Let Y → Yk be the morphism defined by O(−KY ). Consider the toric blow-up given
above, i.e. blow up Y once in each of the nodes of the anticanonical cycle to obtain Ỹ → Y .
There is a morphism Ỹ → Ỹk defined by O(−KỸ ). The images of the exceptional curves
C1, C2 of the toric blow up are still (−1) curves. This defines a commutative diagram

Ỹ //

��

Ỹk

��
Y // Yk

where the morphism Ỹk → Yk is the contraction of the images of C1 and C2. Hence we need
to show that the family given by Ỹk is the same as that of Ỹ , as then its further restriction
( toric blow down ) is the family defined by Yk.

Equality of the of the fibres over the maximal strata follows from the fact that Ỹ → Ỹk

contracts precisely the −2 curves. Any A1 class β necessarily contains a component C that
is not a (−2), as it intersects the anticanonical divisor. So C is contained in the maximal
monomial ideal m of NE(Ỹk), and thus β vanishes modulo m.

We also need the following proposition.

Proposition 4.1.8. Let π : Y → Z be a birational contraction with Y a semi-stable model
of the Dolgachev-Nikulin-Voisin family with triangulation P. Then the fibre X of X →

̂TV (Morifan(Y)) over the stratum S defined by π is a 2:1 cover of P2 branched in a sextic.

Proof. Let B0 be the sextic curve that is the double curve of XP . The deformation of
the algebra structure induces deformations of the 2 copies of P2 and of B0, as the defining
equations are given in terms of theta functions, and these deform. As P2 is rigid there
are still 2 copies of P2 contained in X, defining a surjection P2 ∪ P2 → X. By flatness,
Euler numbes are constant and thus the P2’s intersect in a (sextic) curve B, which is the
deformation of B0. Denote the two copies of P2 by X1 and X2. Let B → X1 be the
inclusion and let φ : B → X2 the morphism giving the copy of B in X2. This defines a
diagram

B

φ

��

// X1

σ2
��

X2
σ2 // P2
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with σi the coordinate change bringing the copies of B into normal form. This defines a
2:1 cover of P2 branched in B.

4.2 Surfaces of type IIIζ, IIIα and III1

We return to the deformations of the pillow surface XP . We note the obvious result.

Proposition 4.2.1. The GHKS family X→ ̂TV (Morifan(Y)) has a fibre that is the surface
IIIζ.

Proposition 4.1.3 shows that we can smooth the vertices of XP , thereby obtaining
certain surfaces from Laza’s list. More precisely, we have the following.

Proposition 4.2.2 (The A17 case). The GHKS family X → ̂TV (Morifan(Y)) has strata
with fibres

(i) A union of 2 copies of P2’s glued along a reducible cubic.

(ii) A union of 2 copies of P2’s glued along an irreducible nodal cubic.

In particular, X→ ̂TV (Morifan(Y)) has fibres given by surfaces of type IIIα and III1.

Proof. This is an application of the previous section: we can smooth one or two of the
2-vertices. By construction of the mirror family, the rulings of the components discussed
there give a partial smoothing of XP . In particular over the locus Z from Proposition
4.1.3, the fibre of X is given by a smoothing of a single vertex 2-vertex singularity v to a
normal crossing singularity. Here, X is the mirror family of the Looijenga pair associated
to v.

In order to only trivially deform the remaining vertices u,w, we use the maps given by
Proposition 4.1.7. Note that the degrees of the respective bundles on the double curves
of the central fibre agree so the bundles indeed induce a morphism φ on the family YP .
Concretely, for a suitable numbering of the components Yi i = 1, 2, 3 of the components
of the central fibre, φ is the morphism given by O(−KY1)⊗O(−KY2)⊗O(F ) with F the
fibre as in Proposition 4.1.3.

Over the stratum F (φ) defined by φ the deformations of u,w are trivial by Proposition
4.1.7, i.e. the fibres are 2-vertices and as already noted above, the remaining vertex deforms
to a normal crossing singularity. In total, the restriction to Ω yields a deformation of the
pillow surface XP to a 2 : 1 cover of P2 branched in a conic and a line. This is a surface
of the desired type.
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R1

R2

H C ′

Figure 4.4: The two rulings R1 and R2, the smooth section H and the inverse image C ′of
C in Q.

A similar argument shows (ii): The morphism ψ given by O(−KY1) ⊗ O(F ) ⊗ O(F )

in a suitable numbering of the components of YP lifts to a morphism on YP . By the
Proposition 4.1.3, the two 2-vertices corresponding to the components that are contracted
are smoothed to normal crossing singularities while the remaining vertex deforms trivially.
Thus, XP deforms to a surface SIII1 that is a 2 : 1 cover of P2 branched in a nodal cubic.

4.3 Surfaces of type IIIγ, IIIδ and IIIε

In this section we show how to obtain the generic surfaces of the components IIIγ, IIIδ

and IIIε. All these have only 1 component, so in addition to the smoothing we saw in the
previous section, we shall deform XP such that the resulting surface is irreducible.

The generic surface X of the IIIε component is a double cover of P2 branched over a
conic and two double lines, one tangent to the conic. The normalization of X is a smooth
quadric Q = P1×P1 in P3. The quadric Q has two rulings, denoted by R1 and R2. Choose
a point x not on Q and project to a plane. This gives a 2 : 1 map

Q→ P2.

that is branched along a conic C ⊂ P2, cf [Har92, p.286]. Let L be a line in P2 that is
tangent to C. Then the inverse image of L consists of 1 line of each of the rulings R1, R2.
Also, let M be a line that is not tangent to C. The inverse image of M is a smooth
hyperplane section, denoted by H, see Figure 4.4.

One can construct X by gluing H to itself using the 2 : 1 map H →M and identifying
the two rulings R1 ans R2. This gives back the 2 : 1 cover X of P2 branched in a conic and
two double lines.
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YP

π0
ε

Yε

Figure 4.5: The surface Yε: a component of the double curve of Y ⊂ YP is contracted.
The double arrow indicates gluing resulting from further contracting Y .

Now consider the DNV family YP in (−1)-form. Let Y be a component of the central
fibre YP . LetD1 be a component of the anticanonical divisorD of Y . There is a (−1)-curve
E1 with E1.D1 = 1. As above, the divisor D1 + E1 induces a ruling

Y → P1.

This ruling induces a morphism
π0
ε : YP → Yε,

where Yε is given by contracting D1 and E1, so Yε is the surface with Y contracted to a P1

and an isomorphism on YP\Yε, see Figure 4.5. The morphism π0
ε extends to a morphism

πε : YP → Yε to a threefold Yε with central fibre Yε.

Proposition 4.3.1. Let Y be a component of YP, D1 ⊂ Y a component of the double curve
of Y and E1 a (−1)-curve with E1.D1 = 1. Let πε : YP → Yε be the induced morphism.
Over the stratum F (πε) determined by πε, the fibre of the family X→ ̂TV (Morifan(Y)) is
a double cover of P2 branched in a conic and two double lines, a surface of type IIIε.

Proof. Write YP = Y1 ∪ Y2 ∪ Y3, with Y = Y1. Suppose D1 = Y1 ∩ Y2. By Proposition
4.1.5, the contraction of D1 deforms the central fibre of the mirror family induced by Y2 to
a 1-vertex, while π0

ε restricted to Y is a ruling as in Proposition 4.1.5, and thus deforms the
corresponding 2-vertex to z2 = y2(x2−y+1). Hence, by Proposition 4.1.8, the deformation
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of XP is a 2 : 1 cover of P2 branched in a conic and two double lines, meeting the conic
tangentially. This is the surface Q from above.

One can continue along this line to obtain a surface of type IIIγ. Recall that this is
given by the double cover of P2 branched in two double lines and a generic quadric. As
above, the normalization of this is the smooth quadric Q = P1×P1 in P3 with two rulings,
again denoted by R1 and R2. As before, there is a 2 : 1 map

Q→ P2.

that is branched along a conic C ⊂ P2. Now, let L and M be lines in P2 that are not
tangent to C. Then inverse images of L and M are smooth hyperplane sections, denoted
by H and K. One can construct X by gluing H and K to itself using the 2 : 1 map. This
gives back the 2 : 1 cover X of P2 branched in a conic and two double lines.

We give a morphism that deforms XP to this surface. Let Y1, Y2 and Y3 be the
components of YP . Then D = Y1 ∩ Y2 is a component of the anticanonical divisor of both
Y1 and Y2. As we have seen, there exists rulings π1, π2 of Y1 and Y2 defined by D and a
(−1)-curve. There are bundles bundles Li defining the morphisms πi : Y1P1. These have
degree agreeing on D and have the same (positive) degree on the remaining component
of the anticanonical cycle of Yi. Thus, there is a number n such that L1 ⊗ L2 ⊗O(nKY3)

defines a bundle on YP and thus on YP . Hence there is a morphism

πγ : YP → Yγ

with Yγ a threefold with restriction to YP the contraction of Y1 and Y2.

Proposition 4.3.2. The morphism πγ : YP → Yγ defines a stratum of the GHKS-family
X→ ̂TV (Morifan(Y)), with fibre a surface of type IIIγ.

Proof. Again, the surface P1×P1 has toric boundary divisors D1, D2, D3 and D4, in cyclic
order. As before, the contraction defined by D deforms the pillow XP to a surface Y ′

given by P1×P1, with D1 identified with D2 and D3 identified with D4 using the 2 : 1 map
P1 × P1 → P2, i.e. this is a 2:1 covering of P2 branched in a conic and two double lines
tangent to the conic. The further contraction of the exceptional curves E, E ′ then defines,
by Proposition 4.1.5, a smoothing of both 1-vertices of Y ′ such that the double lines meet
the conic in 4 points. This is the surface Q from above, a double cover of P2 branched in
a conic and a two double lines.

The generic surface of the component IIIδ is obtained as follows. We first take a
contraction as defined by the smoothing of the 2-vertex in proposition 4.1.3. Then, there
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are two components Y1 and Y2 of YP that are not modified. Hence, we can apply a
contraction π as before, i.e contract Y1∩Y2 and a (−1)-curve E. Let π0

δ be the composition
of these morphisms. It induces a morphism πδ : YP → Yδ.

Proposition 4.3.3. The morphism πδ defines a stratum over which the fibre of X is a 2 : 1

cover of P2 branched in a conic C and a (double) conic C ′ that is tangent to C, a surface
of type IIIδ.

Proof. The partial smoothing of the 2-vertex given by contracting one component of the
central fibre Y0 via Proposition 4.1.3 deforms the corresponding 2-vertex to a double conic.
The remaining contraction is given by contracting the intersection D of the remaining
components and then further contracting one component along the ruling. By the same
analysis as above, this results in a double cover branched in a double conic meeting a conic
tangentially.

The models of IIIδ also smooth to cusp singularities of type T2,3,r with r ≥ 7. These
cannot be obtained with the semi-stable model we have been using so far. We will show
how to get such cusp singularities below.

4.4 Surfaces of type IIIζ ′, IIIφ, III2 and III5

This locus contains the pillow surface XT as its deepest degeneration. As in the XP case,
the surface XT is readily available.

Proposition 4.4.1. The GHKS family X→ ̂TV (Morifan(Y)) has a fibre that is the surface
IIIζ.

Proof. This is by construction: XT is the fibre over the 0-stratum given by a projective
semi-stable model of the DNV family with dual intersection complex T , say YT .

We now want to deform XT to the surfaces of type E8 + A1. The remaining surfaces
of this type are given by surfaces X1 ∪X2 with at least one Xi a del Pezzo of degree 1, the
other a cone over a nodal curve, i.e P2 with two toric boundary divisors identified.

To obtain del Pezzo surfaces, consider the following. Let YT = V1 ∪ V2 ∪ V3, where
V1, V3 are the smooth components. Take a smooth component V1, weak del Pezzo surfaces
with an E8 root system of effeective (−2)-curves. There is an element c of this root system
that meets 3 other roots. Let F0 be the element among these three that only meets c.
Also, there is an element F7 that meets a unique element of the root system and the 0-
curve E0 meeting the anticanonical divisor given by the double locus in a node, compare
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Figure 3.4. Then, contraction of the unique irreducible (−1)-curve and the curves in the
E8 system different from F0, F7 and then further contraction along the ruling E0 defines a
morphism φ0 : YT → Y ′φ contracting V1. The image of V1 ∩ V2 under φ0 is a (−1)-curve on
the normalisation of the image of V2 and can be contracted. Let Yφ denote the resulting
surface. This construction lifts to the threefold YT , as shown by the following lemma.

Lemma 4.4.2. There is a morphism φ : YT → Yφ lifting the morphism ∪Vi → Z0 given
by φ0 followed by a contraction of the curve φ0(V1 ∩ V2) .

Proof. The composition is a morphism from the central fibre of YP . On components, it is
given by line bundles Li with degree agreeing on the double curves because the morphism
∪iVi → Yφ is induced by a morphism from the normalization descending to the push-out.
This means there is a lift YT → Yφ as required.

Thus we have a contraction
φ : YT → Yφ.

The stratum F (φ) define by φ gives the generic surface of type IIIφ. To show this, we first
analyse the contraction V1 → P1 → Spec(C). Recall from [GHK15a] that (V1, D), where
D is the anticanonical cycle induced by the double curve of YT , defines a deformation of
a 1-vertex.

Proposition 4.4.3. Let V be a smooth component of YT with anticanonical cycle D in-
duced from the double curve of YT . Let E0 be the (0)-curve meeting D in a node. Let
φV : V → P1 → Spec(C) be the contraction along the ruling defined by E0, followed by
contraction to a point. The morphism φV deforms the 1-vertex to a smooth point.

Proof. Set Let Ṽ be a toric blow up with toric model Ṽ → V̄ such that Ȳ is a ruled
surface. This exists by construction of V2: blowing up the node of D gives a surface V ′

and anticanonical cycle given by the exceptional curve of V ′ → V and the strict transform
of D, blowing up the nodes of of this cycle yields a Looijenga pair (Ṽ , D̃) with D̃ a cycle
of length 4. There is a toric model Ṽ → P1 × P1.

This defines a commutative diagram

Ṽ //

��

P1 × P1

&&
Y // P1 // Spec(C).

The toric model Ỹ → P1 → P1 defines a trivial deformation of the 4-vertex. As before,
over the locus defined by the toric model, we are in a purely toric situation, i.e. the affine
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manifold B is R2 with and the fan structure σ is the fan of P1 × P1. The remaining
deformation given by P1 → P1 → Spec(C) is the Mumford degeneration given by erasing
all rays of Σ, see section 1.3 of [GHK15a]. Hence, the algebra structure is given by (1.5)
of [GHK15a]. Hence the 4-vertex defined by Ṽ deforms to Spec(Z2). As Ṽ → Spec(C)

factors through the contraction Ṽ → V , the same is true for the 1-vertex defined by V .

Proposition 4.4.4. The fibre over the stratum defined by φ is a surface X = X0 ∪D X1

with X0 a del Pezzo surface of degree 1 and Xµ
1
∼= P2. The gluing curve D is a nodal curve.

In particular, surfaces of type IIIφ appear as fibres of the GHKS-family.

Proof. First, the restriction of φ to V3 is the identity and thus the corresponding component
is still a 1-vertex, so it is a cone given by

z2 = y2(y + x2).

The restriction of φ to V1 smoothes the singularity given by V1, by Proposition 4.4.3.
The restriction of φ to V2 is corresponds to the contraction of a component of the

anticanonical cycle Dν
2 of V ν

2 , where D2 is the anticanonical cycle on V2 induced by the
double curve. Hence we have a contraction V ν

2 → V ′, a toric blow-up of V ′. The surface
V ′ has an anticanonical cycle D′ of length 3 induced by V ν

2 → V ′. By definition of mirror
families of Looijenga pairs, this means that the 4-vertex defined by V2 deformes to the
3-vertex V3. In terms of polyhedra, this corresponds to erasing the ray connecting the
4-vertex with the 1-vertex defined by V1.

Hence, the resulting surface X has two components, one smooth and one a cone as
above. Let X0 be the smooth component. The double curve D defined by the rays of V3

that lie on both components of X is a degree 1 curve as locally around V3 it is a union of
lines. Also, D is an anticanonical divisor, as X is a model of a central fibre of a type III
degeneration of K3 surfaces. Hence (X0, D) is an anticanonical surface and D is big and
nef. Therefore X0 is a (weak) del Pezzo of degree 1.

The same construction can be applied to deform both both components to del Pezzo
surfaces.

Proposition 4.4.5. There is a contraction of YT such that the fibre of X→ ̂TV (Morifan(Y))

over the induced stratum is a surface of type III2.

Proof. By construction, both curves φ0(V1 ∩ V2) and φ0(V2 ∩ V3) can be contracted on
the level of central fibres. By the proof of 4.4.2, the morphism contracting both these
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curves lifts to a morphism YT → Z ′. Let Z0 be the image of φ0(V2). The normalization
of Z0 is the anticanonical surface obtained by blowing down the preimages of φ0(V1 ∩ V2)

and φ0(V2 ∩ V3) in the normalization of V2. Hence, V ν
2 is a toric blow-up of Zν

0 . Thus,
over the central fibre of the stratum induced by YT → Z ′, the 4-vertex deforms to a 2-
vertex. Also, both 1-vertices deform to SpecC[Z2], by Proposition 4.4.3. Let X denote the
resulting surface. Again, from the polyhedral description of X it follows that X = X0∪X1.
Both components are indeed smooth because the 1-vertices are smoothed. As above, the
components are anticanonical surfaces glued along a big and nef anticanonical curve of
degree 1, i.e. del Pezzo surfaces of degree 1.

Now, we show how to obtain cusp singularities of type T2,q,r with q ≥ 3 and r ≥ 7. In
order to get such a smoothing, we need to change the semi-stable model of the Dolgachev-
Nikulin-Voisin family to one that has a central fibre with a component of negative boundary,
i.e. for a component S ⊂ Y0, the intersection matrix {Di.Dj} of the anticanonical cycle
has to be negative definite and no component Di is allowed to be exceptional. We can
construct such a model from the YT model by flopping enough curves.

Construction 4.4.6. Let YT have components V1, V2 and V3, with V1, V3 the degree 1

del Pezzos. By construction, there is a a cycle E1 + F + E2 of 3 curves meeting D21

and D23 with E2
i = −1 and F 2 = −2 - these are the images of the exceptional curves

meeting the components of the toric boundary of the P1 × P1 that are not identified and
the strict transform of the corresponding fibre. Also by construction, there is a (−1)-curve
C = C1 + C2 + C3 of length 3 on V3 meeting D32 in E2 ∩ D23. Hence one can flop C to
V2. The resulting semi-stable model Y1 is again projective: denote the components of Y1

by W1, W2 and W3, with Wi the image of Vi.
Let D21 be W1∩W2 considered as a curve on W2. There is a blow down W ν

2 → P1×P1

with Dν
21 the strict transform of a component D̄1 of the toric boundary D̄. On P1 × P1,

there is an automorphism defined by the involution on D̄1 that fixes the interior special
point and interchanges the nodes of D̄ lying on D̄1. This automorphism lifts to W ν

2 by
the universal property of blow-ups. Using this automorphism, it follows that there is an
ample bundle A2 on W2 such that the degree of A2 is the same on the components of the
anticanonical cycle that are identified under W ν

2 → W2. Let A1, and A3 be ample bundles
on V1 and on V3.

Because W1 and W3 are glued to W2 along distinct curves high enough multiples of
A1, A2 and A3 glue to an ample bundle on Y1. C. Hence Y1 carries an ample line bundle
that, as we have seen above, lifts to a bundle on Y1 and this threefold thus is quasi-
projective. As it is also proper, it is projective.
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Now one can successively flop the ( strict transforms of the ) curves E1 + F + E2 and
the flopped curves C+

1 and C+
2 of C1 and C2 to V1. By the same arguments as above, the

resulting threefold YD is projective. Let YD be the central fibre. Denoting the transforms
of components Vi ⊂ YT again by Vi, we note the following: The boundary of V1 is negative,
with D2

12 = −4. The normalisation of V2 has two −1 curves C1, C2 that meet each of the
components of the anticanonical with self intersection −1 and the image of C is a (0)-
curve. Contracting C1, C2 thus gives a degree 8 surface without −1 curves, i.e. P1 × P1.
The component V3 can be contracted similar as above.

We have the following proposition.

Proposition 4.4.7. There is a contraction YD → S with such that the image of YD is a
cusp singularity of S. The induced deformation defines a smoothing to a T2,3,r singularity
with r ≥ 7.

Proof. Take the anticanonical bundle O(−KV1) on V1, let O(F ) be the bundle defining
the contraction along the ruling on V2 and O(G) define the contraction of V3. After
choosing suitable multiples, these bundles define a projective morphism on YD contracting
the components V2 and V3. Denote this morphism by πT : YD → YV1 . The threefold YV1 is
projective.

The component V1 has negative boundary. Thus there is a contraction V1 → S with S a
cusp singularity. By an extension of Theorem 7.5 of [GHK15a] to the case of anticanonical
cycles with length n = 1, 2, there is a stratum I over which the mirror family of V1 smooths
to the dual cusp Š of S. By the Hirzebruch-Zagier algorithm, Š has type T2,3,r with r ≥ 7.
Let V1 → S0, for some surface S0, denote the corresponding contraction. Post-composing
the restriction of the morphism πT : YD → YV1 to the central fibre with this contraction
then induces a contraction

πD : YD → YV1 → S

with S a threefold with central fibre S0. By construction, the fibre of the deformation
induced by πD is a surface with a cusp singularity of type T2,3,r with r ≥ 7.

4.5 Surfaces of type III4, IIIβ and III6

We show how to obtain generic models of the strata III4, IIIβ and III6. To begin, consider
again the model giving the IIIγ model: there, the surface is obtained by deleting an edge
connecting two 2-vertices and smoothing the 1-vertices thus obtained. One can then delete
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one of the remaining edges, thereby obtaining a 1-vertex and a double line with two pinch
points on it. Let πγ : YP → Yγ be the contraction defining the model IIIγ. Let σ be the
morphism obtained from this by post-composing with the contraction of a component of
the anticanonical cycle of the remaining component of the central fibre Y0. By similar
arguments as above, the composition lifts to a morphism of threefolds

YP → Z,

which we again denote by σ.

Proposition 4.5.1. The morphism σ : YP → Z defines a stratum over which the fibre of
the GHKS family is given by a surface of type III4.

Proof. Let πγ : YP → Yγ be the contraction defining the model IIIγ. Considering the
normalisation, the remaining component V has an anticanonical cycle D = D1 + D2 of
length 2 with intersection numbers D2

i = −1. Contracting -say- D1 then by Proposition
4.1.5 yields a branch locus given by a double line and a conic, intersecting tangentially.
Let Y0 be the component of YP that is contracted to a point. By Proposition 4.4.3, the 2−
vertex associated to Y0 is smoothed to SpecC[Z2]. The resulting surface X is a 2:1 cover
of P2, with double curve given by a quartic meeting a double line tangentially. This is a
surface of type III4.

The next surface we want to obtain is type IIIβ. We again use the model YP . Take
a component V1 of YP . Consider an irreducible −1-curve C. Flop it to the adjacent
component, say V0. Let V2 be the third component. Let C ′ be the exceptional curve of the
first kind on V2 meeting V2 ∩ V0. Flop it to V0. This yields a projective semi-stable model
Yβ of the Dolgachev-Nikulin-Voisin family, as follows.

Proposition 4.5.2. The model Yβ is projective.

Proof. We can write the last flop as

Y ′P

  

// Y ′

��
Y

with Y ′P the result of the first flop and Y = ∪iV ′i , i = 0, 1, 2 with V ′1 the blow down of V1,
and V ′2

∼= V2 and V ′0 the blow up of V0. Here, V ′1 , V ′2 and V0 are weak del Pezzo surface
of degree 3, 3 and 1, respectively. For each i = 0, 1, 2, the cone of curves of V ′i is finitely
polyhedral by Theorem 5.1.3.1 in [ADHL14], as V ′i has only finitely many (−1)- and (−2)-
curves, as it is a weak del Pezzo. Also, being an anticanonical surface, there are no curves
with C2 < −2 that are not components of the anticanonical divisor D = D1 +D2.
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ϑ2

ϑ1

ϑ3

ϑ′2

Figure 4.6: The affine manifold B.

Also, the components of the boundary have non-positive selfintersection, and thus either
generate extremal rays by Lemma 1.22 in [KM98], or have self-intersection 0. Hence, by
Lemma 4.5.5 below, we can fix an ample bundle Ai on V ′i with degree ni on each boundary
component. Then the bundles n1n2A3, n2n3A1 and n1n3A2 glue to an ample bundle on Y .
As the morphism Y ′ → Y is projective, this means that Y ′ is projective and thus carries
an ample bundle that extends to Yβ, by 1.2.17 in [Laz04].

Write the central fibre of Yβ as Y0 ∪ Y1 ∪ Y2. It has a component, say, Y0, with an-
ticanonical cycle D = D1 + D2 ,with D2

i = −2. The remaining components Y1, Y2 are
toric blow-ups of Looijenga pairs with anticanonical cycle of length 1. Let φβ be the mor-
phism contracting Y1 and Y2 via their ruling. Take a component of the boundary of Y0,
say D1 = Y0 ∩ Y1. For any curve C on Y0 not equal to D1, D1.C ≥ 0. Hence there is
a morphism contracting precisely D1. Post-compose the contraction of Y1, Y2 with this
morphism. As above, the resulting morphism lifts to a morphism Φβ on the threefold.

Proposition 4.5.3. There is a contraction Φβ : Yβ → Z such that the fibre of the GHKS-
mirror family over the stratum F (Φβ) is a surface of type IIIβ.

Proof. By Proposition 4.1.5, contraction of Y2 along the ruling deforms the branch curve
of the fibre of the mirror family locally to a double line through a conic. The contraction
of Y1 to a point smoothes the branch curve locally around the associated vertex. The local
picture around the vertex associated to Y0 is calculated as follows. The affine manifold
induced by Y0 is depicted in Figure 4.6, with v2 = (1, 0), v1 = (0, 1), v3 = (1, 1) and
v′2 = (−1, 2). The ray v3 is a toric blow up. By the multiplication rule for theta functions,
noting that contraction of D1 means that broken lines can cross the rays v1, v3, but do not
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pick up anything, we have, with m = (−1, 3) on the interior of any maximal cell,

ϑ1ϑ2 = ϑ3 + ϑm

ϑ3ϑm = ϑ4
1.

After a coordinate transformation as in the proof of Proposition 4.1.5, this yields

z2 = y2(x2 − y2),

a double line meeting a node in its singularity. In total, application of Φβ deforms the
pillow XP to a 2 : 1 cover with branch curve a nodal quartic and a double line through
the node. This is a surface of type IIIβ.

The components of the central fibre of Yβ that are weak del Pezzo surfaces of degree 3

can be contracted along a ruling. This induces a deformation to a T2,q,r singularity with
q ≥ 4, r ≥ 5.

Proposition 4.5.4. There is a contraction τ : Yβ → S such that the induced deformation
defines a smoothing to a T2,q,r singularity with q ≥ 4, r ≥ 5.

Proof. The components Y1 and Y2 of the central fibre Yβ of Yβ have a ruling similar to the
components in the model YP . This gives a morphism ψT : Yβ → Y0 where Y0 has central
fibre Y ′0 that is Y0 glued to itself along the boundary. Y0 has negative boundary. Thus
there is a contraction Y0 → S0 factoring through Y ′0 with S0 a cusp singularity. Again, by
an extension of Theorem 7.5 of [GHK15a] to the case of anticanonical cycles with length
n = 1, 2, there is a stratum I over which the mirror family of Y0 smooths to the dual cusp
Š of S. Post-composing the restriction of the morphism Yβ → Y0 to the central fibre with
this contraction then induces a contraction

ψD : Yβ → Y0 → S

with S a threefold with central fibre S0. The (normalization of the ) fibre of the deformation
induced by ψD is a surface with a cusp singularity of type T2,q,r, q ≥ 4, r ≥ 5, where the
type follows because the cusp is a smoothing of a surface of type IIIβ.

Lemma 4.5.5. Let (Y,D) be an anticanonical pair with anticanonical cycle D = D1 +D2

and suppose NE(Y ) is locally polyhedral. Let A be an ample divisor such that A.D1 > A.D2.
Suppose D1 is extremal or D2

1 ∈ {0, 1}. Then there is an ample divisor A′ on Y such that
A′.D1 = A′.D2.



58 Chapter 4. Deformations

Proof. Let A.D1 = m1 and A.D2 = m2 and suppose m1 > m2. Assume first the ray
generated by D1 is extremal. Let E denote the set of extremal rays of NE(Y ). Consider
the convex hull C of E\{R+[D1]}. This is a convex cone contained in the closed cone
NE(Y ). Let {zi}i be a convergent sequence with limit z ∈ NE(Y ).

Take a neighbourhood of z such that NE(Y ) is polyhedral, with generators E1, . . . , Em

for some extremal rays Ei such that zi ∈ conv({R+Ej}j) for all i. Then zi =
∑m

j=1 ajEj,
and if Ej = R+[D1], then aj = 0. As the convex hull of finitely many rays is closed, this
implies z is in C. So C is a proper closed convex subcone of NE(Y ). By Lemma 6.7 of
[Deb13], there is a linear form positive on C − 0 and vanishing on R+[D1]. By the same
Lemma, this means that the interior of C∗ intersects the rational hyperplane (R+[D1])⊥

and thus there is a divisor M on Y ′ that is positive on C and zero on D1. In particular,
M is nef. Let M.D2 = n > 0. Then nA+ n(m1 −m2)M is ample and

(nA+ n(m1 −m2)M).X =

{
nm1 if X = D1

nm2 + nm1 − nm2 if X = D2.

This proves the lemma ifD1 is extremal. If insteadD2
1 ∈ {0, 1}, one takesM := D1.

4.6 Surfaces of type II1, II2, II3 and II4

We show how to obtain certain type II limit surfaces. In all cases considered, we smooth
the branch curves by contracting all components of the central fibre of a model of the
Dolgachev-Nikulin-Voisin family. As the procedure is by now familiar, we will be somewhat
sketchy.

Consider the model YP with central fibre YP . We have seen that each of the compo-
nents can be contracted along a ruling. Also, the sheaves giving these contractions glue to
a sheaf on YP . Hence there is a contraction

Φ1 : YP → Z1

to a projective threefold.

Proposition 4.6.1. The stratum determined by Φ1 has fibre given by a double cover of P2

branched in a smooth cubic, a model of type II1.

Proof. This follows as before: each of the components is contracted along the ruling of
Proposition 4.1.3, and thus the branch curve is smoothed at each of the vertices. Hence
the nodal cubic deforms to a smooth cubic, and the resulting surface is indeed a 2:1 cover
of P2 ramified in a smooth cubic.
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Figure 4.7: The generic surface of type II4

Next, consider the model YT . We can contract the del Pezzo surfaces of degree 1 along
a ruling as before. The normalization of the remaining component V has, by construction,
a ruling with fibre the double curves meeting the other components. This contraction
descends to V . These morphisms compose to a morphism

Φ2 : YT → Z2.

Proposition 4.6.2. The stratum determined by Φ2 has fibre given by two del Pezzo surfaces
of degree 1 glued along an elliptic curve, a surface of type II2.

Proof. This is the same proof as Proposition 4.4.4, only now the 4-vertex is smoothed via
Proposition 4.1.3. The resulting surface thus consists of two del Pezzo surfaces of degree 1

glued along a smooth elliptic curve.

Consider the morphism σ : YP → Zδ giving the surface of type IIIδ i.e. a double cover
of P2 branched in a double conic meeting a conic tangentially. The central fibre of Zδ has
component a dP3 with a ruling as in Proposition 4.1.5. Post-composing σ|YP

with this
ruling then defines a morphism

Φ3 : YP → Z3.

Proposition 4.6.3. The stratum determined by Φ3 has fibre given by a 2 : 1 cover of P2

branched in two conics, a surface of type II3.

Proof. The fibre is a deformation of the surface mirror to σ : YP → Zδ. Because we
contract the component corresponding to the locus where the mirror family is locally a
double conic tangent to a conic along a ruling as above, by Proposition 4.1.5, the branch
curve is (locally) deformed to two conics intersecting transversally. In total, this gives a
surface of the desired type.



Consider the morphism σ : YP → Z giving the surface of type III4. The central fibre of
Z has component a dP3 with a ruling as in Proposition 4.1.5. Post-composing σ|YP

with
this ruling then defines a morphism

Φ4 : YP → Z4.

Proposition 4.6.4. The stratum determined by Φ4 has fibre given by a double cover of P2

branched in a quartic and a double line through it. This is a model of type II4.

Proof. This is similar to how surfaces of type III4 are obtained. Contracting the component
that locally gives the 2:1 cover branched in a conic tangent to a double line deforms the
branch curve of that model further. By Proposition 4.1.5, the double line tangent to a
conic (locally) gets deformed to a double line through a conic. In total, the branch curve
is a double line through a quartic.
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