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Abstract

This thesis focuses on the experimental and theoretical studies of molecular electronic

dynamics by two-dimensional (2D) electronic spectroscopy in biologically relevant

systems. The primary energy transport and charge separation in natural photosyn-

thetic complexes such as light-harvesting complex II, Photosystem II Reaction Center

and Fenna-Matthews-Olson (FMO) complex were studied. The energy-transfer and

charge-separation pathways and the associated timescales were identified from the

experiments in conjunction with theoretical modeling and a global fitting approach.

In the FMO complex, the measured timescale of the electronic coherence was on the

order of 60 fs at ambient temperature. No evidence was found that suggests that

this plays a functional role for the process of natural energy transport. In a separate

study, the exciton and free-carrier dynamics in hybrid lead perovskite thin films were

investigated by 2D electronic spectroscopy after excitation with a 750 nm-laser. The

ultrafast exciton dissociation and free-carrier scattering processes were identified in

these measurements.

iii



Moreover, theoretical study was undertaken of the dynamics of an electronic wave

packet in the vicinity of a conical intersection (CI). It was found that the numerical

simulation time can be significantly reduced by transforming the molecular vibra-

tional modes into the bath and treating the full resulting non-Markovian dynamics

numerically exactly. The presence of the CI was identified by the excited state ab-

sorption in the 2D spectrum. Furthermore, the impact of vibrational coherence on the

electronic wave-packet dynamics was also studied near to the CI. It was shown that

vibrational coherence is one of crucial factors to determine the quantum efficiency of

the wave packet transfer at the CI.
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Kurzfassung

Diese Arbeit konzentriert sich auf die experimentellen und theoretischen Untersuchung

der molekularen elektronischen Dynamik durch zweidimensionale (2D) elektronis-

che Spektroskopie in biologisch relevanten Systemen. Der primäre Energietransport

und die Ladungstrennung in natürlichen Photosynthesekomplexen wie dem Light-

Harvesting Complex II (LHCII), dem Reaktionszentrum des Photosystems II (PSII)

und derm Fenna-Matthews-Olson (FMO) Komplex wurden untersucht. Die Reak-

tionspfade des Energietransfers und der Ladungstrennung und die damit verbunde-

nen Zeitskalen wurden in Experimenten in Verbindung mit einer theoretischen Mod-

ellierung und einer globalen Fit-Methode identifiziert. Im FMO-Komplex liegt die

gemessene Zeitskala der elektronischen Kohärenz im Bereich von 60 fs bei ambien-

ter Umgebungstemperatur. Es wurde kein Hinweis dafür gefunden, dass dies eine

funktionelle Rolle für den Prozess des Energietransports spielt. In einer weiteren

Studie wurde die Dynamik der gebundenen Exzitonen und der freien Ladungsträger

in Hybrid-Blei-Perowskit durch 2D Elektronenspektroskopie nach Anregung bei einer
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Wellenlänge von 750 nm untersucht. In diesen Messungen wurden die ultraschnellen

Exciton-Dissoziation und die Streuungprozesse der freien Ladungsträger identifiziert.

Darüber hinaus wurde eine theoretische Untersuchung der Dynamik eines elek-

tronischen Wellenpakets in der Nähe einer konischen Durchschneidung durchgeführt.

Es wurde festgestellt, dass die numerische Simulationszeit deutlich reduziert werden

kann, indem man die molekularen Vibrationsmoden in das Bad transformiert und die

volle resultierende nicht-Markovsche Dynamik numerisch exakt behandelt. Die An-

wesenheit des konischen Durchschneidung wurde durch die Absorption im angeregten

Zustand im 2D-Spektrum identifiziert. Darüber hinaus wurde auch der Einfluss der

Vibrationskohärenz auf die elektronische Wellenpaketdynamik in der Nhe der Durch-

schneidung untersucht. Es wurde gezeigt, dass die Vibrationskohärenz einer der

entscheidenden Faktoren ist, welcher die Quanteneffizienz des Wellenpakettransfers

an der Durchschneidung bestimmt.
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Chapter 1

Introduction

1.1 Photosynthetic molecular systems

Photosynthesis is the process used by plants and other organisms to convert sunlight

energy into chemical energy that can be latter released to fuel the organisms’ activities

[1]. It happens everywhere and everyday on Earth, from certain bacteria deep in

the ocean to higher plants on land. After billion years of evolution, the biological

functions in photosynthesis are largely optimized. Recently, it was found that in

the initial steps of photosynthesis, pigment-protein complexes (PPCs) complete the

light-energy transfer and charge separation with a near unity quantum efficiency [2],

which is not currently possible for any artificial photosynthetic system. As such, it

makes this research area very attractive.
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1.1.1 Molecular structure and spectrum

In photosynthetic systems, the energy-transfer mechanism is mainly based on the

molecular structure of the basic photo-excitation unit (pigment). Therefore, getting

information of the molecular structure of the pigment is the most important task

for the first steps of research. Based on scattering theory, the molecular structure

has been resolved by X-ray crystallography, which significantly extends our under-

standing of the photosynthetic system. For instance, the crystal structure of the

light-harvesting complex II (LHCII), one of the most important types of peripheral

antenna complexes in the Photosystem II (PSII) of higher plants, was resolved with a

resolution of 2.72 ÅṪhis is high enough to identify the chlorophyll species (8 chloro-

phyll a (Chla) and 6 chlorophyll b (Chlb) in each monomer unit) and the orientation

of the chlorophylls within the protein matrix [3, 4]. The crystal structure of trimeric

LHCII is shown in Fig. 1.1(a). The photons are captured by peripheral PPCs–LHCII

and the excited energy is transferred through the network of antennas to the PSII

reaction center, where the photon-excited energy is converted to chemical energy by

splitting water molecules [1]. In the PSII reaction center, eight pigments (6 Chla and

2 pheophytins (Pheo)) are located on two sides along the center axis and are named

as D1 and D2 branches. They absorb the photon-excited energy from core PPCs

(CP43, CP47) for the charge separation. Due to the different protein environment

of the two branches, charge separation is processed only by the active D1 branch [5].
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Figure 1.1: Molecular structure of three PPCs, the trimeric LHCII (a), reaction center

(b) and FMO subunit (c). The pigments are emphasized in green in the LHCII, in

purple in the reaction center, and in red in the FMO subunit. For clarity of the

presentation, the carotenoids are not shown. VMD [9] was used to create the figures

with PDB files (LHCII: 2BHW.pdb, reaction center: 3ARC.pdb, FMO: 1M50.pdb).

The arrangement of pigments in the PSII reaction center is shown in Fig. 1.1(b).

The FMO complex is another type of PPCs, which was named after Roger Fenna

and Brian Matthews, who first determined its structure, and John Olson, who dis-

covered the protein [6]. The FMO protein is sandwiched between the chlorosome

and the bacteria reaction center in green sulfur bacteria [7]. Its structure consists

of a trimeric complex of monomer subunits, each of which contains seven bacteri-

ochlorophyll a (Bchla) molecules. Recently, the eighth molecule was resolved as well

between the subunits [8]. The additional pigments in the three monomers are posi-
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tioned towards the chlorosome and are probably the entry points for excitations from

the chlorosome baseplate. The monomeric subunit of FMO PPCs is shown in Fig.

1.1(c).

The most obvious way to study the difference of PPCs in higher plants and in

photosynthetic bacteria is to compare the chemical structure of chlorophylls. The

name was first used by Pelletier and Caventou in 1818 to describe the green pigments

that are involved in photosynthesis in higher plants [1]. In addition, three Nobel

prizes were awarded to scientists for the studies of the structural determination and

synthesis of chlorophyll (Richard Wilstätter, Hans Fischer and Robert Woodward).

Here, we choose typical Chla and Bchla for a first comparison. The molecular

chemical formula for Chla is C55H72N4O5Mg and the chemically structural formula

is shown in Fig. 1.2(a). It is a squarish planar molecule with a width of about 10

Å. A Mg atom is in the center of plane and connects to 4 nitrogen atoms. Each

nitrogen atom is part of a cyclic organic compound in a five-membered ring with four

carbons. A fifth ring is formed in the lower right corner and a long hydrocarbon tail

is attached to the lower left. The chemical structure of Bchla is shown in Fig. 1.2(b)

and compared to Chla. It is the principal chlorophyll-type pigment in the majority of

anoxygenic photosynthetic bacteria. The chemical difference between the structures

of Chla and Bchla is the acetyl group at the left-top ring and the single bond in the

right-top ring, instead of the double bond found in Chla. This reduces the degree
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of conjugation in the marcocycle and also reduces the symmetry of the molecule

as compared to chlorophylls. These structural variations exert major effects in the

spectral properties. The chlorophylls all contain two major absorption bands, one in

the near ultraviolet (UV) and one in the near infrared (IR), named as Qx and Qy band

in Fig. 1.2. The transition dipole moment in each band follows the direction of the

molecular X- axis as defined as passing through the N atoms of the bottom-left ring

to the up-right ring (green arrow), with molecular Y-axis rotated by 90 degrees (red

arrow). The Z- axis is perpendicular to the plane of the macrocycle. The absorption

(left) and fluorescence (right) of Chla and Bchla are shown with different transition

frequencies. They are due to the structure variations mentioned above.

1.1.2 Energy transfer, charge separation and quantum co-

herence

In this part, I introduce the mechanism of excitation energy transfer (EET), charge

separation and the electronic quantum coherence in the photosynthetic molecular

systems.

The concept of energy transfer in photosynthetic systems is about 80 years old. In

1936, Gaffron and Wohl imagined that the energy was transferred from one pigment

to another rather than by a movement of the products of photochemistry or the

processing enzyme [10]. This photosynthetic unit consists of a connection of many
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Figure 1.2: Molecular structure of Chla (a), Bchla (b) with absorption (left) and

fluorescence spectra (right). The transition dipole direction in the Qy range is labeled

by the red arrow, Qx is labeled by the green arrow. Picture taken from the Ref. [1].
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pigments, among which the excitation energy could fluctuate before being trapped

or stabilized. However, no physical mechanism was known at that time that could

cause this energy transfer from one chlorophyll to another. This idea met with severe

criticism from the other scientists since the efficiency of a one-dimensional diffusion

process is very low [1]. Of course, today we know that the EET through the antenna

pigments occurs in well-defined, three dimensional structures. By this way only few

steps are needed to connect antenna and the reaction center.

The theoretical description of the energy transfer that is nowadays widely ap-

plied to photosynthetic systems was provided by Förster in the 1940s [11]. It is a

non-radiative resonance transfer process. For the energy transfer, two pigments must

have some couplings between them, which depends on the relative orientations and

distance between the two pigments. Moreover, this kind of weak Coulomb interac-

tion can be quantified by the overlap area of the absorption and emission spectrum.

However, Förster theory breaks down for relatively strong Coulomb interaction when

two antenna pigments are close to each other. Instead, in this case, the concept of

a strong exciton coupling applies. Therefore, we have two pictures of the interaction

of pigments: the Förster picture, applicable at long distances and weak interactions,

and the exciton picture, applicable at short distances but strong interactions. A more

sophisticated treatment reveals that the two viewpoints are really just two sides of

the same coin, and that no fundamental difference exists [12].
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The EET between two molecules can be conceptually described as

D∗ + A→ D + A∗. (1.1)

The donor of the excitation energy is labeled by D and the acceptor by A. The starting

point is a situation where the donor molecule was excited (D∗), for instance, having

received a photon, and the acceptor is in its ground state (A). Then the Coulomb

interaction between them leads to reaction where the donor molecule is deexcited and

the energy is transferred to the acceptor molecule and excites the molecule A (A∗). In

Fig. 1.3, the excitation energy transfer between a donor molecule D and an acceptor

A is illustrated. Furthermore, if the electronic coupling between them is sufficiently

large, the quantum initial state |D∗A〉 and the final state |DA∗〉 may form a quantum

superposition state |D∗A〉 〈DA∗| + |DA∗〉 〈D∗A|, which leads to quantum coherence

between them. If it is generated in an arbitrary set of molecules, this state is known

as the Frenkel exciton [13]. The light-harvesting complex of natural photosynthetic

antenna systems is perhaps one of most fascinating examples of how the concept of

Frenkel excitons can be applied.

To extend the concept of the energy transfer, we need to take into account the

electron exchange contribution when the distance of donor and acceptor is small since

short distance leads to an overlap of the molecular orbitals. If this contributes in a

significant way, the EET is called a Dexter type of transfer [14]. During this type of

EET process, a new intermediate charge-transfer (CT) state |D+A−〉 is formed and

8



Figure 1.3: Excitation energy transfer between an energy donor D and an acceptor

A. One LUMO-HOMO scheme was used to describe the molecule A and D.

becomes a bridge between the energy excited donor and acceptor states. The scheme

is described in Fig. 1.4, and one may have

|D∗A〉 →
∣∣D+A−

〉
→ |DA∗〉 , (1.2)

or, alternatively,

|D∗A〉 →
∣∣D−A+

〉
→ |DA∗〉 . (1.3)

Here, we have briefly described the concept of energy transfer and charge separa-

tion. In the next chapter, we will introduce the details of the theoretical modeling of

these process in the photosynthetic systems.
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Figure 1.4: One LUMO-HOMO scheme of EET based on a two-electron exchange via

the CT states.
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Chapter 2

Theoretical background

In this chapter, I introduce the theoretical background for the description of energy

transfers and charge separations in photosynthetic systems described in the last chap-

ter. First, a quantum dissipative system is described by a system-bath Hamiltonian.

Second, the general quantum master equation is derived with projection operators.

For the numerical applications, the Markovian and Born approximations are applied

to obtain the standard Redfield equation. Third, the non-Markovian master equation

(time non-local equation) is derived based on the second-order perturbation theory.

Last, several standard models for exciton dynamics (Frenkel-exciton, the vibronic and

the tight-binding model) are briefly described.
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2.1 Quantum dissipative systems

Generally, any quantum system is coupled to its environment and forms a quantum

dissipative system. For many complex quantum systems, there is no clear picture of

the microscopic origin of the environment-induced damping. For instance, chlorophyll

interacts with a protein matrix environment in the photosynthetic system. It is often

possible to measure the effective power spectrum of fluctuations in an experiment [15].

Thus, it is important to develop a phenomenological system-bath model, in which, on

one hand, pursuits the full quantum mechanical treatment, and on the other hand,

reduces in the classical limit to a stochastic dynamical system described in terms of

the Langevin-like equation of motion [16].

The simplest model of a quantum dissipative system is a system oscillator which

is linearly damped by a set of harmonic oscillators. The interaction with the reservoir

can be modeled by its displacement coordinate coupling to the fluctuating collective

coordinate of the dynamical harmonic bath. The equilibrium state of the reservoir is

assumed to be only weakly perturbed by the central oscillator. Then, the noise statis-

tics of the stochastic process induced by the harmonic reservoir is strictly Gaussian.

This simple system-bath model has been introduced and discussed by Ullersma [17].

Zwanzig generalized the model to the case in which the central particle moves in an

anharmonic potential and studied the classical regime [18]. Caldeira and Leggett were

among the first who applied this model to a study of quantum mechanical tunneling
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of a macroscopic variable [19].

Let us consider a system with one or few degrees of freedom (DOF) which is

coupled to a large number of DOFs of an environment and let us consider that the

environment is represented by a set of harmonic oscillators. The interaction of the

system with each individual bath oscillator is proportional to the inverse of the vol-

ume of the reservoir. Hence, the coupling to an individual bath mode is weak for

a geometrically macroscopic environment. Therefore, it is physically reasonable for

macroscopic global systems to assume that the system-bath interaction is modeled as

a linear function of the bath coordinates. This property is favorable since it allows

us to eliminate the environment exactly.

The general form of the system-bath model is given by the Hamiltonian

H = HS +HI +HB. (2.1)

Here, HS is the Hamiltonian of relevant system of interest. For the discussion below,

we assume a particle with mass M moving in the potential VQ, i.e.,

HS =
P 2

2M
+ V (Q). (2.2)

The reservoir is described by a set of harmonic oscillators,

HB =
N∑

j=1

(
p2j
2mj

+
1

2
mjω

2
jx

2
j

)
. (2.3)

Here, N is the total number of oscillators in the bath and xj, ωj are the coordinate

and the corresponding frequency of the jth oscillator with mass mj. The system-bath

13



interaction term has the form

HI = −
N∑

j=1

Fj(Q)xj +∆V (Q). (2.4)

The special counter-term ∆V (Q) depends on the system-bath interaction form Fj(Q)

and on the parameters xj, ωj of the reservoir. The additional potential term ∆V (Q)

is introduced in order to compensate a renormalization of the potential V (Q) which is

caused by the coupling in the interaction term HI . This coupling induces the effective

potential

Veff(Q) = V (Q)−
N∑

j

F 2
j (Q)

2mjω2
j

. (2.5)

Then, ∆V (Q) =
∑N

j

F 2
j (Q)

2mjω2
j

is added to compensate for the potential renormalization.

In the simplest case, the interaction form is independent of each individual bath

mode and we can set Fj(Q) = cjF (Q). Therefore, the general form of a system-bath

model Hamiltonian can be written as

H =
P 2

2M
+ V (Q) +

N∑

j=1

[
p2j
2mj

+
1

2
mjω

2
j

(
xj −

cj
mjω2

j

F (Q)

)2
]
. (2.6)

The properties of the bath can be fully described by the bath correlation function,
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which is defined as the correlation function of bath coordinates according to

C(t) = 〈xj′(t)xj(0)〉

=

〈
∑

jj′

gjgj′(αje
−iωjt + α†

je
iωjt)(αj′ + α†

j′)

〉
,

=
∑

j

g2j 〈e−ωjt [1 + nB(ωj)] + eiωjtnB(ωj)〉,

=

∫ ∞

0

J(ω)dω〈e−iωt(1 + nB(ω)) + eiωtnB(ω)〉.

(2.7)

The coupling constants gj =
c2j

2mjω2
j

of each bath mode are encapsulated in the def-

inition of the spectral density, which has the form J(ω) =
∑

j g
2
j δ(ω − ωj). α

†
j and

αj is the creation and annihilation operator of the jth harmonic oscillator. Using

coth(βω/2) = 1 + 2nB(ω) and nB(ω) = 1
eβω−1

with β = 1
kBT

, the final form of the

bath correlation function is given as

C(t) =

∫ ∞

0

dωJ(ω) [coth(βω/2) cos(ωt)− i sin(ωt)] . (2.8)

We have set h̄ = 1.

2.2 Quantum master equations

The starting point of the derivation of the quantum master equation is the Liouville

equation of motion for the global density operator W (t), i.e.,

W (t) = −i [H,W (t)] = LW (t). (2.9)
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Here, L is the global Liouville super-operator of the total system. Next, we exploit

that the Hamiltonian H and Liouville operator L of the total system can be decom-

posed as

H = HS +HI +HB; L = LS + LI + LB. (2.10)

Here, LS, LI and LB refer to the Liouville operators of the studied system, the

interaction and reservoir part, respectively. Next, we define a projection operator P ,

which acts on the total density operator and reduces the full density operator to an

operator living only in the Hilbert space of the relevant system variables, i.e.,

ρ(t) = PW (t). (2.11)

The operator ρ(t) is denoted as the reduced density operator. For the system with

Hamiltonian Eq. 2.10, the projection operator contains a trace operator over the

reservoir DOF. By means of the projection operator P , the total density operator

can be decomposed into the relevant part ρ(t) and the irrelevant part (1 − P )W (t),

according to

W (t) = ρ(t) + (1− P )W (t); P 2 = P. (2.12)

This decomposition can now be used in Eq. (2.9). After acting on the resulting

equation with P and 1− P , respectively, we obtain the two equations

PẆ (t) = PLPW (t) + PL(1− P )W (t),

(1− P )Ẇ (t) = (1− P )L(1− P )W (t) + (1− P )LPW (t).

(2.13)
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Solving the second equation, we obtain (1 − P )W (t) = e(1−P )Lt(1 − P )W (t = 0) +

∫ t

0
dt′e(1−P )Lt′(1−P )LPW (t−t′). This solution can be inserted into the first equation

of Eq. (2.13). This yields the Nakajima–Zwanzig equation

ρ̇(t) =PLρ(t) +
∫ t

0

dt′
[
PLe(1−P )Lt′(1− P )Lρ(t− t′)

]
+

PLe(1−P )Lt(1− P )W (0).

(2.14)

The last term of the right part in Eq. (2.14) is called the inhomogeneous term, and

contains the interference between the system and the reservoir at initial time. For

simplicity, the Born approximation, which neglects the correlation between system

and bath at the initial timeW (0) = ρ(0)
⊗

ρB(0), is used next to simplify the master

equation as

ρ̇(t) = P (LS + LI)ρ(t) +

∫ t

0

dt′PLIe
(1−P )Lt′(1− P )LIρ(t− t′). (2.15)

Here ρB is the bath density operator. The first term describes the coherent motion of

the relevant system while the second time-retarded term brings in irreversibility. It

includes all effects the reservoir exerts on the system, such as relaxation, decoherence

and an energy shift. Eq. (2.15) provides the exact result within the Born approxi-

mation. Yet, it is still too complicated to evaluate in practice. First, the kernel of

Eq. (2.15) contains all orders of LI . Second, the dynamics of ρ at time t depends on

the whole history of the density matrix. In order to surmount these difficulties, one

usually considers the kernel in Eq. (2.15) only up to the second order in LI . Disre-

garding the retardation effects (Markovian approximation) and remaining with the
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second order approximation for the interaction term LI , one arrives at the quantum

master equation in Born-Markovian approximation. It has the form

ρ̇(t) = P (LS + LI)ρ(t) +

∫ t

0

dt′PLIe
(1−P )(LS+LR)t′(1− P )LIρ(t). (2.16)

This equation and variants were successfully used to describe phenomena with weak

system-bath coupling.

Redfield equation. When Eq. 2.16 is projected onto the eigenstates of HS, one

obtains the Redfield quantum master equation [20]

ρ̇nm(t) = −iωnmρnm(t)−
∑

k,l

Rnmklρkl(t), (2.17)

where ωnm = En−Em is the energy gap between En and Em in the energy eigenbasis.

The coefficients Rnmkl describe the Redfield relaxation tensor associated to the effect

of the bath. They are given by

Rnmkl = δlm
∑

r

Γ+
nrrk + δnk

∑

r

Γ−
lrrm − Γ+

lmnk − Γ−
lmnk, (2.18)

with the underlying transition rates

Γ+
lmnk =

∫ ∞

0

dt e−iωnkt〈H̃I,lm(t)H̃I,nk(0)〉R,

Γ−
lmnk =

∫ ∞

0

dt e−iωlmt〈H̃I,lm(0)H̃I,nk(t)〉R.
(2.19)

Here, H̃I(t) = eiHRt/h̄HIe
−iHRt/h̄ is the interaction Hamiltonian in the interaction

picture and the angular brackets denote the thermal average over the bath DOF.
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Time non-local master equation. For the study of the linear and 2D spectra

performed in this work, we have applied the time non-local (TNL) quantum master

equation. Here, we briefly describe how this can be derived. Based on Eq. 2.14, the

time evolution of the reduced density operator can be re-written as

ρ̇(t) = Leff
S ρ(t) +

∫ t

0

K(t, t′)ρ(t′) + Γ(t),

Leff
S = LS + trBLIρ

eq
B + Lren,

K(t, t′) = trBLI

(
Te

∫ t

t′
(1−P)Ldt′′

)
(1− P)(LB + LI)ρ

eq
B ,

Γ(t) = trBLI

(
Te

∫ t

0
(1−P)Ldt′′

)
(1− P)W(0).

(2.20)

The reversible term, the memory term and the inhomogeneous terms are denoted by

Leff
S ρ(t),

∫ t

0
K(t, t′)ρ(t′) and Γ(t). The total Hamiltonian is H = HS+HB+HI+Hren.

Hren is the renormalization term associated to the additional potential term ∆V (Q)

in Eq. (2.4). The Liouville superoperators LS, LI and Lren are associated with the

corresponding Hamiltonian operators. Moreover, Leff
S · = −i[HS+Hren, ·] and T is the

time ordering operator [21].

Next, we expand the correlated thermal equilibrium state ρeq up to the first order

in the overall coupling strength and obtain

ρeq ≈ 1

ZS

1

ZB

e−β(HS+HB) − 1

ZS

1

ZB

∫ β

0

dβ′e−(β−β′)(HS+HB)H
(1)
I e−β′(HS+HB), (2.21)

with the respective partition functions Z = tr exp(−βH), ZB = trBexp(−βHB), and

ZS = trS exp(−βHS). Next, we take the trace over the system DOF on both sides of
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Eq. (2.21) and get

ρeqB =
1

ZB

e−βHB +
χ

ZB

∫ β

0

dβ′e−(β−β′)HB

(
N∑

i=1

cixi

)
e−β′HB . (2.22)

Here, χ = (1/ZS)trs
[
F(Q)e−βHs

]
with the system-bath coupling assumed in the form

F (Q).

The well-known bath correlation function

C(t) =

∫ ∞

−∞

dω

2π
J(ω) cos(ωt) coth

(
βω

2

)
− i

∫ ∞

−∞

dω

2π
J(ω) sin(ωt)

= a(t)− ib(t)

(2.23)

is given in terms of the standard bath spectral density J(ω) and has the real part

a(t) and imaginary part b(t). After inserting Eqs. 2.22 into Eq. 2.20, we express the

last three terms of Eq. 2.20 by a(t) and b(t) in the form

Leff
S = LS + µLren,S + χµL−,

K(t, t′) = L−
(
a(t− t′)Te

∫ t

t′
LSL− + b(t− t′)Te

∫ t

t′
LSL+

)
,

Γ(t) = L−

∫ 0

−∞

dt′
[
a(t− t′)Te

∫ t

t′
LSL−ρeqS + b(t− t′)Te

∫ t

t′
LSL+ρeqS

]
,

(2.24)

with L− = −i[HI, ·] and L+ = [HI, ·]+ − 2χ. The potential renormalization is given

in terms of the spectral density by µ =
∫∞

−∞
dω
2π
J(ω)/ω. In order to obtain an analytic

form of the bath correlation function, we assume that a given spectral density can be

decomposed into a sum of Lorentzian-like spectral terms according to

J(ω) =
π

2

n∑

k=1

pkω

[(ω + Ωk)2 + Γ2
k][(ω − Ωk)2 + Γ2

k]
. (2.25)
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The spectral amplitude pk, the frequency Ωk and the width Γk follow from the expan-

sion of the original function in terms of the Lorentzian shapes. Inserting the expanded

form of J(ω) into Eq. 2.23 results in

a(t) =
n∑

k=1

pk
8ΩkΓk

coth

[
β

2
(Ωk + iΓk) e

iΩkt−Γkt

]

+
n∑

k=1

pk
8ΩkΓk

coth

[
β

2
(Ωk − iΓk) e

−iΩkt−Γkt

]
+

2i

β

n′∑

k=1

J(iνk)e
−νkt,

b(t) =
n∑

k=1

ipk
8ΩkΓk

(
eiΩkt−Γkt − e−iΩkt−Γkt

)
,

(2.26)

with the Matsubara frequencies νk = 2πk/β.

Next, we rewrite the correlation functions as a(t) =
∑nr

k=1 α
r
ke

γr
k
t and b(t) =

∑ni

k=1 α
i
ke

γi
k
t with ni = 2n, nr = 2n + n′, where n′ is the number of Matsubara fre-

quencies used. Then, we define new auxiliary “density matrices” which incorporate

both memory effects and initial correlations according to

ρrk(t) = Te
∫ t

0
dt′LSeγ

r
k
t

∫ ∞

0

dt′eLst′eγ
r
k
t′L−ρeqs +

∫ t

0

dt′eγ
r
k
(t−t′)Te

∫ t

t′
LsL−ρ(t′),

ρik(t) = Te
∫ t

0
dt′Lseγ

i
k
t

∫ ∞

0

dt′eLSt
′

eγ
i
k
t′L+ρeqs +

∫ t

0

dt′ eγ
i
k
(t−t′)Te

∫ t

t′
LsL+ρ(t′).

(2.27)

The first term of the time-retarded Eq. (2.20) can be then deconvoluted into a set of

coupled first-order equations as

ρ̇(t) = Leff
s (t)ρ(t) +

[
nr∑

k=1

αr
kL−ρrk(t) +

ni∑

k=1

αi
kL−ρik(t)

]
,

ρ̇rk(t) = [LS(t) + γrk] ρ
r
k(t) + L−ρ(t), k = 1, . . . , nr,

ρ̇ik(t) =
[
LS(t) + γik

]
ρik(t) + L+ρ(t), k = 1, . . . , ni.

(2.28)
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Here, I end the introduction of this section with the TNL quantum master equa-

tion. Compared to the Redfield equation, the TNL equation takes into account the

non-Markovian effect by deconvoluting it into the coupled set of auxiliary density

operators, as introduced above. The non-Markovian effect is considered as one of

important effects in the process of energy transfer in photosynthetic systems since its

interaction with the environment in the intermediate coupling region. In this region,

the memory of the system can not be fully suppressed by the strength of thermal

fluctuations from the environment. Next, I will introduce the theoretical model of

the energy transfers in the photosynthetic system.

2.3 Frenkel-exciton model for the energy-transfer

process

The energy of a molecular transition is mainly determined by the energy gap between

lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular

orbital (HOMO). Both are obtained from the eigenvalues of the molecular orbitals.

A possible way to obtain molecular orbitals via quantum chemistry calculations is

via the well-known linear combination of atomic orbitals. Often, the study of organic

molecules is hindered by the very complicated molecular energy spectrum obtained

from the quantum chemistry calculations (semiempirical, ab initio . . . ). For the study
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of the energy-transfer mechanism, a simplified two-level system model, the Frenkel-

exciton model, has been introduced. This considerably simplifies the calculation

and renders the investigation feasible. In Fig. 2.1, an example of simplified molecular

electronic states and the orbital energies is shown in the diagram. It suggests that the

exact electronic transition is replaced by a simple promotion of an electron from the

HOMO to the LUMO. In reality, several different electronic configurations, including

contributions from higher-energy molecular orbitals, can contribute to the electronic

transition by the well-known configuration interaction. A simplification is that there is

no one-to-one correspondence between orbital occupations and electronic transitions.

The pigment is only phenomenologically modeled as an effective quantum two-level

system consisting of the ground state |g〉 and the electronic excited state |e〉. The

energy gap between the ground and excited state is defined as the site energy.

With the above simplified two-level system as an elementary building block, the

molecular Hamiltonian of N molecular pigments is given by

HS =
N∑

m=1

ǫmα
†
mαm +

N∑

m=1

∑

n<m

Jn,m(α
†
mαn + α†

nαm), (2.29)

where ǫm is the m-th site energy and Jn,m is the electronic coupling between two
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Figure 2.1: Simplified model of a molecular two-level system. It indicates that the

full complicated electronic transition is replaced by a simple promotion of an electron

from the HOMO to the LUMO. µ denotes the transition dipole moment.

pigments, n and m. The total Hamiltonian can be written as

H = HS +HB +HI ,

HB =
N∑

m=1

Nm
b∑

j

(
p2mj

2mj

+
1

2
ωmjx

2
mj

)
,

HI =
N∑

m=1

Nm
b∑

j=1

cmjxmjα
†
mαm.

(2.30)

Here, the system-bath interaction term HI has been simplified in the form of a linear

coupling to the bath coordinates.
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2.4 Vibronic model

In the above Frenkel-exciton model, the electronic DOF are separated from the total

Hamiltonian. All other DOFs can be described by a bath as a reservoir of harmonic

oscillators. They provide Gaussian fluctuations around the thermal equilibrium state.

This model has been widely used for the study of case with weak system-bath inter-

action. It forms the basis for the Born-Oppenheimer approximation. There, fast

electron motion is compared to the slow dynamics of the nuclei. Then, the approxi-

mation that the nuclear dynamics can be seen as a perturbative fluctuating electric

field acting on the electrons is useful. However, for certain systems, intramolecular

vibrational modes are strongly coupled to the electronic DOF of the studied molecule

and thus, strongly act on the electronic dynamics. Then, it is not appropriate to

model such a strong vibrational mode as a fluctuating mode at thermal equilibrium.

For such an active coupled vibrational mode, we introduce the vibronic model, in

which the active vibrational mode is specified as part of the system Hamiltonian and

the interaction between the electronic DOF and the vibrational mode is included

explicitly. The vibronic model Hamiltonian has the form

HS = Hg +He = |g〉hg 〈g|+ |e〉 (he + E) 〈e| , (2.31)

with hg = Ω(b†b+1/2), he = Ω(b†b+1/2)+κ(b†+b) and Ω is the vibrational frequency.

In the excited state, the electronic-vibrational (vibronic) coupling κ is related to the
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Figure 2.2: Electronic-vibrational coupling leads to the vibronic splitting. ∆ indicates

the dimensionless shift between the minimum of the ground and the excited state.

The vibronic coupling can be evaluated by κ = ∆Ω/
√
2. µ is the transition dipole

moment.

dimensionless displacement of the geometry between the potential energy surface

(PES) of |g〉 and |e〉, and to ∆. In fact, κ = Ω∆/
√
2. A sketch is shown in Fig. 2.2.

Electronic and vibronic transitions. Next, we introduce a quantum mechan-

ical transition in the Frenkel-exciton model combined with a vibrational mode in

order to distinguish the electronic transition from the vibrational transitions by the

so called stick spectrum. It can be understood as the basis for the absorption spec-

trum of the molecule without the effect of a bath (gas phase). The magnitude of

the stick spectrum can be calculated as 〈µ̃2〉, here, µ̃ = U−1µU and U is the matrix

diagonalizing the model Hamiltonian, i.e., H̃ = U−1HU. The transition frequency in
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the spectrum can be evaluated by the frequency difference between the two exciton

states associated to transition.

To illustrate the stick spectrum, we start from the two-level model with a ground

(|g〉) and an excited state (|e〉). We assume one transition induced by, for instance,

a laser pulse from the ground to the excited state (red arrow in Fig. 2.3). The

corresponding transition dipole operator can be written as µ = |g〉 〈e|. Therefore, one

stick is located at the frequency ω = ωe−ωg to represent the corresponding transition

signal. For the vibronic model, we have ordered main transitions from |g, 1〉 → |e, 1〉,

|g, 2〉 → |e, 2〉 and |g, 3〉 → |e, 3〉, respectively. They can be represented by three

transitions in the stick spectrum. Their peak height follows from the ratio of the

magnitudes as 1, S, S2/2, . . .. Here, S is the Franck-Condon factor and can be

calculated as S = ∆2.

2.5 Tight-binding model for the charge-separation

process

To study the charge separation in PSII reaction center, We introduce the tight-binding

model. The charge separation can happen when the distance of two molecules is closed

enough, which induce a significant overlap of molecular electronic wave functions. For

the study of the charge-separation mechanism, each pigment is represented by two
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Figure 2.3: Stick spectrum of an electronic two-level system and the corresponding

vibronic model. ω indicates the energy gap between ground |g〉 and excited state |e〉.

Ω is the frequency of the active vibrational mode.

electronic orbitals, the HOMO and the LUMO. The construction of the model starts

from operators ê†m (êm) that create (annihilate) an electron in the LUMO of site m

and ĥ†m (ĥm) that create (annihilate) a hole in the HOMO. These operators satisfy

the Fermi commutation relations

{êm, ê†n} = êmê
†
n + ê†nêm = δmn, {ĥm, ĥ†n} = ĥmĥ

†
n + ĥ†nĥm = δmn. (2.32)

When the electron in the LUMO and the hole in the HOMO reside at the same site

m, we have the Frenkel excited (FE) state m∗, given by ê†mĥ
†
m |g〉. Here, |g〉 is the

ground state. On the other hand, when the electron and the hole are located on
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different sites m and n, we have the CT state n−m+, given by ê†nĥ
†
m |g〉. The overall

Hamiltonian is given by [22]

Hs =
∑

m,n

temnê
†
mên +

∑

m,n

thmnĥ
†
mĥn +

m 6=n∑

m,n

W d
mnê

†
mĥ

†
mĥnên −

∑

m,n

V eh
mnê

†
mĥ

†
nĥnêm

+
1

2

m 6=n∑

m,n

V e
mnê

†
mê

†
nênêm +

1

2

m 6=n∑

m,n

V h
mnĥ

†
mĥ

†
nĥnĥm

+
1

4

k 6=m∑

k,m

l 6=n∑

l,n

Kkl,mnê
†
kĥ

†
l ê

†
mĥ

†
nĥnêmĥlêk.

(2.33)

Here temn (thmn) is the electron (hole) hopping rate between the LUMO (HOMO) of

different pigments. W d
mn is the dipole-dipole type resonance interaction between m

and n. V eh
mn is the electron-hole interaction and V e

mn (V h
mn) is the electron-electron

(hole-hole) Coulomb repulsion between the quaiparticles at sites m and n. The last

term with Kkl,mn is the interaction of static dipoles between FE states or the CT

states and it is responsible for the energy shift of the double excited states.

The single-excitation manifold of the Hamiltonian matrix can be obtained by the

projection

〈ekhl| ĤS |emhn〉 = tekmδln + thlnδkm − V eh
kl δlnδkm +W d

km(1− δkm)δlkδmn. (2.34)

Therefore, the site energies of the FE and CT states are given by

ǫ∗m = temm + thmm − V eh
mm, ǫm+n− = tenn + thmm − V eh

nm, (2.35)

and the electronic coupling between the FE-FE, FE-CT, CT-CT states can be written
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as

Jm∗,n∗ = W d
mn,

Jm∗,n+k− = temkδmn + thmnδmk,

Jm+n−,k+l− = tenlδmk + thmkδnl.

(2.36)

In the double-excited manifold, the Hamiltonian matrix elements are given by

〈ekelhmhn| ĤS |ek′el′hm′hn′〉 = (tekk′δll′ + tekl′δlk′ + telk′δkl′ + tell′δkk′)δmm′δnn′

+ (thmm′δnn′ + thmn′δnm′ + thnm′δmn′ + thnn′δmm′)δkk′δll′

+ (V e
kl + V h

mn + V eh
km + V eh

lm − V eh
kn − V eh

ln +Kkm,ln)δkk′δll′δmm′δnn′

+W d
kk′(1− δkk′)δll′{δmk(δk′m′δnn′ + δk′l′δnm′) + δnk(δk′m′δmn′ + δk′n′δmm′)}

+W d
kl′(1− δkl′)δlk′{δmk(δl′m′δnn′ + δl′n′δnm′) + δnk(δl′m′δmn′ + δl′n′δmm′)}

+W d
lk′(1− δlk′)δkl′{δml(δk′m′δnn′ + δk′n′δnm′) + δnl(δk′m′δmn′ + δk′n′δmm′)}

+W d
ll′(1− δll′)δkk′{δml(δl′m′δnn′ + δl′n′δnm′) + δnl(δl′m′δmn′ + δl′n′δmm′)}.

(2.37)

Hence, the site energies of the double-excited manifold are given by

ǫm∗n∗ = ǫm∗ + ǫn∗ +Kmm,nn,

ǫm∗,n+k− = ǫm∗ + ǫn+k− +Kmm,kn,

ǫm+n−,k+l− = ǫm+n− + ǫk+l− + V e
nl + V h

mk − V eh
nk − V eh

ml +Knm,lk,

(2.38)

30



and the electronic coupling elements between double-excited states are given by

Jm∗n∗,m′∗n′∗ = Jm∗,m′∗(1− δmm′)δnn′ + Jm∗,n′∗(1− δmn′)δnm′+

Jn∗,m′∗(1− δnm′)δmn′ + Jn∗,n′∗(1− δnn′)δmm′ ,

Jm∗n+k−,m′∗n′∗ = δmm′Jm′∗,m+k− + δmn′Jm′∗,n+k− ,

Jm+n−k+l−,m′∗n′∗ = 0,

Jm∗n+k−,m′∗n′+k′− = δmm′Jn+k−,n′+k′− + δnn′δkk′(1− δmm′)Jm∗,m′∗+

δmn′δnm′δkk′Jm∗,m+m′− + δmk′δnn′δkm′Jm∗,m′+m− ,

Jm+n−k+l−,m′∗n′+k′− = δnk′δkn′Jm′∗,m+l− + δkn′δlk′Jm′∗,m+n−+

δmn′δlk′Jm′∗,k+n− + δmn′δnk′Jm′,k+l− ,

Jm+n−k+l−,m′+n′−k′+l′− = δkk′δll′Jm+n−,m′+n′− + δmm′δnn′Jk+l−,k′+l′− + δkk′δln′Jm+n−,m′+l′−

+ δmm′δnl′Jk+l−,k′+n′− + δmk′δll′Jk+n−,m′+n′− + δkm′δln′Jm+n−,k′+l′−

+ δmk′δnl′Jk+l−,m′+n′− + δnn′δkm′Jm+l−,k′+l′− .

(2.39)

This completes the description of theoretical models used for the study of energy

transfer and charge separation in photosynthetic complex. Due to the large size of

PPCs, the Frenkel-exciton model was introduced to study the dynamics of energy

transfer in PPC, which is based on the modeling of pigment as quantum two-level

system. The vibronic model was illustrated to treat the special case of vibrational

DOF that are strongly acting on the electronic wave functions. The active vibrational

DOFs interact with electronic DOFs to construct the system part of Hamiltonian
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instead of modeling it as part of the bath as equilibrium state. Moreover, the tight-

binding model was introduced to study the charge-separation dynamics in the PSII

reaction center.

2.6 Spectroscopic methods

After introducing the models, we summarize in this part the tools applied to per-

form spectroscopy of different molecular systems, which will be used in the following

chapters. Linear spectra, here, in the form of absorption and circular dichroism (CD)

spectra, are introduced to measure the absorption features of molecules and the time-

resolved nonlinear spectroscopic techniques, transient absorption and 2D electronic

spectroscopy.

Linear spectra. Absorption spectroscopy is one type of general spectroscopic

techniques, which measures the absorption properties of the studied materials. The

calculation of linear absorption spectrum is based on linear response theory [23]. It

follows from the Fourier transform of the dipole-dipole autocorrelation function, i.e.,

I(ω) ∝ 1

2π
ω

∫ +∞

−∞

dt eiωt〈~µ(t)~µ(0)〉g, (2.40)

where ~µ is the electronic transition dipole moment of the studied molecule, and the

subscript g indicates that the initial state to calculate the correlation function is

the ground electronic state, ρg = |0〉 〈0|⊗ e−βHph/Tre−βHph , (β = 1/kBT is inverse
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thermal energy). Since the dipole operator ~µ does not depend on the bath DOF, the

dipole autocorrelation function can be calculated as

〈~µ(t)~µ(0)〉g = TrS{~µTrB[e−iHt~µρge
iHt]}. (2.41)

We notice that ρ(t) = TrB[e
−iHt~µρge

iHt] is the system reduced density matrix at time

t when assuming the initial density matrix ρ(0) = ~µρg. The absorption spectrum in

Eq. (2.40) can be obtained by propagating the system reduced density matrix ρ(t)

and calculating the dipole autocorrelation function using Eq. (2.41).

Moreover, circularly polarized light can be used to measure the spectrum. The CD

spectrum is the difference spectrum in the absorption of left-handed and right-handed

circularly polarized light. It occurs when a molecule contains one or more chiral

chromophores and can be calculated by propagating the time-dependent transition

dipole autocorrelation function as well. In particular, it is given as

CD(ω) ∝ ω

∫ +∞

−∞

dt eiωt〈~Rm,n · ~µm × ~µn〉, (2.42)

where ~Rm,n is the vector from the center of molecule m to n.

Transient absorption spectroscopy. Transient absorption spectroscopy is a

technique based on a two-pulse configuration. It is an extension of the steady-state

absorption spectroscopy. The first pulse excites the molecule to excited states and

the second pulse probes the excited-state dynamics with different waiting times [24].

Therefore, it detects the time-resolved absorption-difference signal. For the theoreti-
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cal description of two pulses interacting with matter, the semi-classical Hamiltonian

of the matter-field interaction is given as

Hint(t) = −
2∑

α=1

(
X†ξα(t) +Xξ∗α(t)

)
,

X = |g〉 〈e| , X† = |e〉 〈g| ,

ξα(t) = AαEα(t− τα) exp{i(~kα~r − ωαt)}.

(2.43)

Here, α =1, 2 indicates the pump and the probe pulse, respectively. Aα, ~kα, ωα and

τα denote the amplitude, the wave vector, the frequency and the center time of the

pulse. The dimensionless pulse envelope is given by

Eα(t) = exp{−(Γαt)
2}, (2.44)

with τPα = 2(ln 2)1/2/Γα being the pulse duration.

To obtain the transient absorption spectrum, we need to use a dynamical equation

of motion. The quantum master equation for the system density matrix ρ(t) reads

(h̄ = 1)

ρ̇(t) = −i[H +Hint(t), ρ(t)]−ℜ{ρ(t)}. (2.45)

Here, ℜ is a superoperator to describe dissipative effect from environment. The total

complex nonlinear polarization

P (t) = tr〈X†ρ(t)〉 (2.46)
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contains contributions corresponding to all possible values of the wave vector ~k =

l1~k1 + l2~k2, with lα being arbitrary integers. The pump-probe polarization PPP (t)

corresponds to the phase-matching condition l1 = 0, l2 = 1. PPP (t) can be retrieved

from the total polarization P (t) by the formula

PPP (t) =
1

2π

∫ 2π

0

dφ2 exp{−iφ2}P (φ2, t). (2.47)

Here, P (φ2, t) is computed via Eq. (2.45) and Eq. (2.46) for specific values of the

phase angles (~k1~r = 0 and ~k2~r = φ2) in the matter-field interaction Hamiltonian.

Once PPP (t) has been determined, the transient absorption integral PP signal is

obtained according to

SPP (T ) = Im

∫ ∞

−∞

dt ξ2(t)
[
PPP (t)− P off

PP (t)
]
. (2.48)

Here, P off
PP (t) is the polarization induced solely by the probe pulse and T = τ2 − τ1 is

the waiting time between pump and probe pulse.

2D electronic spectroscopy. 2D electronic spectroscopy is a four-wave mixing

technique (experimental details are described in chapter. 3), where three interactions

between the incident laser fields with the sample induce the emission of a signal field.

The experiment can be performed with a variety of pulse geometries, methods of

delay control and pulse orderings. In order to produce a 2D spectrum, four pulses

impinge on a sample. Pulse 1, 2 and 3 generate the signal and pulse 4, called the

’local oscillator’, is used for the heterodyne detection. As described in Fig. 2.4, the
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delay τ between pulse 1 and 2 is named as coherence time, the time T between

pulse 2 and 3 is known as the waiting time, and the delay t between pulse 3 and

signal emission is known as the detection time. Traditionally, Fourier transform with

respect to τ and t for a given value of T produces a 2D spectrum, which indicates the

dynamical behavior of the studied system as a function of both the excitation and

the emission frequency. This is particularly useful in examining the photosynthetic

system in which the manifold of closely spaced electronic states and the broadening

due to static disorder yield highly congested spectra. By the measurement of the

second frequency dimension, the previously unresolved dynamical evolution and peak

locations can be identified.

When the pulse 1 impinges on the sample, the fast oscillation of the electric field

under the envelope of the laser pulse induces oscillations of transition dipoles within

the ensemble of molecules in the sample. This process is named dephasing between

ground and the excited state (|g〉 〈e|). Interaction of the sample with the second laser

pulse converts the coherent state of the molecule to the population of the excited state

or the ground state. Phase can be accumulated during the waiting time until the third

laser pulse arrives. The arrival of the third pulse again produces a coherence in the

ensemble, |g〉 〈e|. The resulting oscillatory macroscopic polarization in the sample

drives the emission of a signal in the form of an electric field [25].

For the calculation of 2D spectra in this work, we have applied the equation of
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Figure 2.4: Photon-echo signal generated based on the four-wave-mixing technique.

The coherent time τ is defined between the first and the second pulse, the waiting

time T is the one between the second and third pulse. The time interval between the

third pulse and the echo signal is the detection time t. The photon-echo signal (red

arrow) is artificially separated from the beam direction of the local oscillator.

motion-phase matching approach (EOM-PMA) established in Ref. [26]. In the EOM-

PMA, the induced polarization in the direction of the photon-echo signal is calculated

by the simultaneous propagation of three auxiliary density matrices, ρ1(t), ρ2(t), and

ρ3(t) after the rotating-wave approximation has been applied. Each of those obeys a
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modified effective equation of motion according to

ρ̇1(t) = −i[HS − V1(t, t1)− V †
2 (t, t2)− V †

3 (t, t3), ρ1(t)]−ℜ(t)ρ1(t),

ρ̇2(t) = −i[HS − V1(t, t1)− V †
2 (t, t2), ρ2(t)]−ℜ(t)ρ2(t),

ρ̇3(t) = −i[HS − V1(t, t1)− V †
3 (t, t3), ρ3(t)]−ℜ(t)ρ3(t),

(2.49)

where the pulse function is Vα(t, tα) = XAe−(t−tα)2/2Γ2

eiωαt, X is the transition dipole

operator, Γ is the pulse duration, and ℜ is a relaxation superoperator. All three

equations can be calculated in connection with quantum master equations to obtain

the time-dependent auxiliary density operators. Eventually, the third-order induced

polarization signal is calculated as

PPE(t1, t2, t3, t) = 〈X(ρ1(t)− ρ2(t)− ρ3(t))〉+ c.c., (2.50)

where the brackets 〈. . .〉 indicate the evaluation of the trace.

The total 2D Fourier-transformed spectrum is then given by the double Fourier

transform of the photon-echo polarization signal with respect to the delay time τ =

t2 − t1 and t according to

S(ωτ , T, ωt) ∼
∫ +∞

−∞

dτ

∫ +∞

−∞

dt e−iωτ τeiωttPPE(τ, T, t). (2.51)

Here, ωτ is the coherence frequency, ωt is the detection frequency, and T is waiting

time given by the difference between t3 and t2. For the concrete simulations of the 2D

spectrum, a multi-processing interface can be used to minimize the simulation time.
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2D decay-associated spectrum Normally, the kinetics of the studied system

are present on 2D electronic spectra with varying waiting times. A collection of the

2D spectra can be used to generate a three dimensional data S(ωτ , ωt, T ) and the

kinetics along the waiting time can be fitted by several exponential components, i.e.,

S(ωτ , ωt, T ) =
∑

i

Ai(ωτ , ωt) exp(−T/τi). (2.52)

Here, A(ωτ , ωt) is the amplitude spectrum of one particular exponential decay com-

ponent associated to the decay time τi. Therefore, a positive peak in the amplitude

spectrum indicates the exponential decay along waiting time T with the resolved time

scale τi. In contrast, a negative peak denotes the exponential increase along waiting

time T .

Double-side Feynman diagram. Based on the temporal sequence of pulse 1

and 2, the 2D signal can be classified as rephasing (pulse 1 before 2, τ > 0) and

nonrephasing (pulse 2 before 1, τ < 0) spectrum. In Fig. 2.5, the signatures of the

electronic coupling are represented by the cross peaks in 2D map. The associated

double-side Feynman diagram (ground state bleaching and excited state absorption)

are shown with the respective transitions. Let us consider, e.g., the left rephasing

diagram shown in Fig. 2.5(a). The first laser pulse interacts with system and induces

electronic coherence between the ground and the excited state e1, which induce a

transition signal at ω1 on the excitation-frequency axis. The interaction with the

second pulse transfers the coherent state to the population dynamics of ground state
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(|g〉 〈g|). After the interaction with the third pulse, the induced coherence between

(|e2〉) and (〈g|) generate a signal at ω2 on the detection-frequency axis. Therefore,

the dynamical information of left diagram in Fig. 2.5(a) can be represented on the 2D

map with (ωτ , ωt = ω1, ω2). Following the same explanation, the excited absorption

diagram (right) of Fig. 2.5(a) can be fully described by the peak at (ωτ , ωt = ω1, ωf −

ω1) in the 2D spectrum. It follows the same way to read the ground state bleach (left)

and excited absorption peak (right) in the nonrephasing part of the 2D spectrum,

which is shown in Fig. 2.5(b).

Besides the ground state bleach and excited state absorption diagram, the exci-

tonic population dynamics can be represented as well in the 2D spectrum. In left

part of Fig. 2.6(a), the coherent state (|g〉 〈e2|) is generated by the interaction with

first laser pulse. After interaction with the second pulse, the molecule undergoes

an exciton state (|e2〉 〈e2|). The exciton state starts transfer to the excitonic energy

to the neighbor states, e.g., (|e1〉 〈e1|) during the waiting time due to the electronic

interaction. After the waiting time period, the molecule is converted to the coherent

state again by the third pulse. Therefore, the information of the population dynam-

ics during the waiting time can be represented on the 2D map at the frequencies

(ωτ = ω2, ωt = ω1). It follows the same way to read the population dynamics in the

excited absorption diagram in rephasing and nonrephasing part of Fig. 2.6.

2D spectroscopy also shows the ability to detect the information of electronic
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Figure 2.5: Double-side Feynman diagram which represent the Liouville space path-

ways contribution to the cross peaks (ωτ , ωt)=(ω1, ω2) and (ω1, ωf − ω1) in the 2D

electronic spectrum, ωf denotes the transition from the ground state g to the double

exciton state f . The corresponding energy-level diagrams are shown. In the 2D map,

the black, red and blue lines denote the transition frequencies ω1, ω2 and ωf − ω1,

respectively.

coherence. Take the left part of Fig. 2.7(a) as an example. The first and second

laser pulses excite the molecule to the coherent state (|e1〉 〈e2|) in the same way we

described before. Therefore, the electronic coherence between two exciton states (e1

and e2) can be detected with the evolution of the waiting time. This electronic
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Figure 2.6: Double-side Feynman diagrams representing the population dynamics

between exciton levels. In the 2D map, the signature of the energy transfer is visible

at (ωτ , ωt)=(ω2, ω1) both in the rephasing and the nonrephasing part.

coherence can be located at the transition frequency in the coherence period at ωe2

and the detection period ωe1 . Based on the same explanation, the coherent dynamics

can be seen in the excited state absorption diagram (right) and the nonrephasing part

in Fig. 2.7(b).
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Figure 2.7: Double-side Feynman diagram representing electronic quantum coherence

over the waiting time in the 2D map.
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Chapter 3

Experimental techniques

In this section, I will describe the spectroscopic techniques used to measure the 2D

electronic spectrum. First, I introduce the configuration of the nonlinear optical

parametric amplifier (NOPA) and the critical steps, for instance, the stability of the

generated white light, the polarization of the pump and the seed part of the laser

pulse. I then discuss the pulse compression and the characterization by combining a

prism pair and a deformable mirror (DM). The configuration of the 2D experimental

setup is described at the end of this chapter.

3.1 Nonlinear optical parametric amplifier (NOPA)

The setup of the entire constructed apparatus is described below and is schematically

shown in Fig. 3.1. The incident beam is first split by using a 90:10 beam-splitter (BS),
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with 10% of the light energy going to the seed arm and 90% to the pump arm. The

beam in the seed part then passes through the retro-reflector (RR) and an attenuator

(AT). After being reflected by the dielectric mirror (M1), the seed beam is focused on

the YAG crystal by a convex lens (L1) with a focus length of f = 30 mm to generate

a super continuum spectrum. The lens is mounted on a translation stage to control

the focusing conditions in the YAG, while the attenuator controls the power. The

beam is then promptly collimated by a thin lens (L2) with focus length f = 20 mm.

The beam is then reflected off two silver mirrors (M3 and M4) and send to the NOPA

BBO crystal for the amplification.

In the pump arm, the beam first passes through a half wave plate (WP2) to

convert the polarization direction and, then, goes through the type I BBO crystal

(23.4o) for the second harmonic generation (SHG). After the SHG, 515 nm pump

light is generated and focused by lens (L3) to the BBO crystal after being reflected

by two dielectric mirrors. Mirrors M5 and M6 highly reflect 515 nm and anti-reflect

at 1030 nm to filter residual fundamentals from the pump beam. The two focused

seed and pump beams are then mixed inside the NOPA BBO (cut angle 22.05o).

The polarization of the amplified output signal is then rotated by an achromatic half

waveplate to horizontally (p) polarized before heading to the compressor.

Stabilizing the super continuum spectrum. The white light generation by

the femtosecond laser pulse has become an invaluable tool for the ultrafast spec-
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Figure 3.1: Aligned configuration of the NOPA apparatus used in the current 2D

setup. The pump beam is generated by SHG (denoted by the blue line) and the

super continuum spectrum is indicated by the red line.

troscopic study, both as the seed to generate the ultrabroad laser spectrum in the

optical parametric amplifiers, and, as the probe in the transient absorption or 2D

spectroscopic measurements. In principle, any dielectric medium, from water [27] to

the crystal fiber [28] can be used as the source for the white-light generation. Among

them, sapphire crystal is perhaps the most common source due to its high thermal

conductivity.

The stability of the white-light generation is the most important task for stabiliz-

ing the NOPA output. For this, the central aim is to find the appropriate power and

the optimal focusing condition to generate a single stable beam from the self-focusing.
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A second issue is the stability of the input beam. Generation of the super continuum

is a highly nonlinear process, and it amplifies any instability of the input beam. To

first partially reduce the instability of the input, an aperture is necessary to be placed

before the focusing lens (L1) since noise in the beam is always present at the edges

of the beam. Then, the task is finding the optimal power and focusing condition

for the lens L1. At the beginning, the power is raised by tuning the attenuator to

generate the super continuum signal which is obviously above the needed threshold,

while moving the focal lens to find the position where the beam is focused inside the

crystal. This generated unstable white light with multiple filamentation served as a

starting point. Then, one lowers the power while optimizing the lens position to get

the maximum output of the super continuum spectrum until the power is below the

threshold of white light generation. After this, one slowly increases the input power

to recover the white light again until the uniform white spot appears. This indicates

that the power is slightly higher than the lowest power needed to generate white light.

Polarization of the pump and the seed pulse. Another important issue is

the polarization in the configuration of the NOPA. In the original NOPA of Gale et al.

[29], the pump laser beam was oriented out of the horizontal plane of the optical table

and their phase matching plane was vertically oriented. Having vertically propagating

laser beams is experimentally unfavorable. Thus, in order to have a horizontal phase

matching plane for the NOPA, it must simply be arranged such that the pump is
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horizontally polarized while the seed is vertically polarized. In Fig. 3.1, the incoming

1030 nm beam was initially horizontally polarized and the polarization was oriented

to the vertical by the first half wave plate (WP1). After the beam was separated by

the beam-splitter, the vertically polarized pump arm was oriented to the horizontal

for the NOPA BBO amplification by the double frequency process (type I BBO). The

second half wave plate (WP2) at the front of the BBO crystal was used to tune the

pump energy by rotating the polarization direction. For the seed arm, the vertically

polarized beam is kept to generate the white light until the NOPA BBO amplification.

Based on this NOPA configuration, we employ the type I phase matching, where the

pump and seed photons are orthogonally polarized (type: osignal + oidler → epump).

Achieving spatial and temporal overlap. The achievement of the spatial and

temporal overlap is perhaps the most difficult task of the building a NOPA. Based on

the theoretical calculation, the pump, seed and idler beams should fulfill the condition

of ∆k = kp − ks − ki = 0. For a broadband phase matching, the expansion

∆k = ∆k0 +

(
∂∆k

∂ωs

− ∂∆k

∂ωi

)
∆ω +H.O.T. (3.1)

Therefore, the first and the second order phase matching conditions are

∆k0 = 0,

∂∆k

∂ωs

− ∂∆k

∂ωi

= 0.

(3.2)

To achieve the higher-order phase matching in the case of a collinear configuration

48



Figure 3.2: Geometry of the wave vectors for non-collinear optical parametric am-

plification. α is the angle between the pump vector (~kp) and the signal vector (~ks)

inside the crystal and Ω′ is the angle between ~ks and the idler vector ~ki.

is generically impossible, a non-collinear geometry is needed by adding another new

DOF, which is shown in Fig. 3.2.

Based on the derivation of Ref. [30], the first-order phase matching condition

becomes a vector equation. Then, the parallel and perpendicular directions follow as

∆kpar = kp cosα− kx − ki cosΩ
′,

∆kperp = kp sinα− ki sinΩ
′.

(3.3)

The the second-order phase matching condition becomes

−∂ks
∂ωs

+
∂ki
∂ωi

cosΩ′ − ki sinΩ
′∂Ω

′

∂ωi

= 0,

∂ki
∂ωi

+ ki cosΩ
′∂Ω

′

∂ωi

= 0.

(3.4)

49



These two equations can be combined and simplified to yield an equivalent single

condition for the group velocities of the signal and idler [30] according to

νs = νi cosΩ
′. (3.5)

Here, Ω′ is the angle between signal and idler. Since the pump tilt, not the idler angle,

is varied in practice, it is more useful to solve for the angle α between the pump and

the seed. Using Eq. (3.5) and Eq. (3.3), the angle α inside the crystal follows as

α = arcsin

[
1− ν2s/ν

2
i

1 + 2νsnsλi/νiniλi + n2
sλ

2
i /n

2
iλ

2
s

]1/2
. (3.6)

Here, νs and νi are the velocities of signal and idler pulse, respectively. ns is the

reflective index along the signal direction and λi is the wavelength of the idler sig-

nal. Considering the complicated forms, it is a quite involved job to calculate the

appropriate crystal cutting angle for the broadband phase matching. Luckily, there is

an excellent public software package, well known as SNLO, for such nonlinear optics

calculations [31]. In Fig. (3.3), the phase matching angles of the BBO crystal (22.05◦)

was calculated using the SNLO package with a 515 nm pump beam.

Based on the above theoretical prediction, we know the proper cut-off angle for

the amplification crystal (BBO2) with the internal angle of 22.05◦. We can easily

estimate that the external angle for the mixing of the pump and seed arm is around

6∼7◦. Depending on this, we have enough information to achieve the spatial and

temporal overlap. First, the BBO2 crystal can be aligned to face vertically to the
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seed beam (red line in Fig. 3.1) by checking the reflections to the pinhole. Afterwards,

the mirror M6 can be roughly mounted on an estimated position with the mixing angle

to achieve the overlap. Then, the NOPA output can be optimized by slightly changing

the reflection direction of mirror M6.

Figure 3.3: Phase matching curves as a function of the amplitude signal wavelength for

a λ = 515 nm pump source for a variety of internal angles as indicated. A significant

dependence of the shape of the phase matching condition on the noncolinear angle

between the pump and the seed can be observed with changes as small as 0.2o.
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3.2 Pulse compression and characterization

Due to the highly nonlinear process of the super continuum generation, the NOPA

output possesses an intrinsic chirp. Moreover, the NOPA beam traverses a number

of dispersive optics, which introduce an additional group velocity dispersion to the

pulse. For the 2D electronic spectroscopy, the stability of the pulse phase is extremely

important to achieve the phase matching. Therefore, it is necessary to compress

the pulse to a Fourier transform limited form before using it as the light source of

the 2D spectroscopic experiment. Here, we use a prism pair and DM for the pulse

compression. The pulse information (phase stability, pulse duration) is detected by a

frequency-resolved optical grating (FROG).

Pulse compression. The different orders of the spectral phase can be expressed

in terms of the Taylor expansion of the complex function E(ω) = A(ω) exp[−iωt +

φ(ω)] and the spectral phase φ(ω) can be expanded around the central laser frequency

ω0 according to

φ(ω) = φ0 +
dφ

dω
(ω − ω0) +

d2φ

dω2

(ω − ω0)
2

2!
+
d3φ

dω3

(ω − ω0)
3

3!
+ . . . . (3.7)

The schematic of our compressors is presented in Fig. 3.4. The NOPA output is first

diffracted by the grating (DG, slit 25 µm) and then collimated by the spherical mirror

(SM) and directed to the deformable mirror (DM, 19x4 actuators, OKO Technologies).

The reflected beam is subsequently focused by the spherical mirror again and finally
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focused by the diffraction grating. The output of this compressor is subsequently

picked off and sent to the folded prism pair compressor (25 mm equilateral F2), where

the prism P1 disperses the beam and prism P2 acts as both a collimation optic and

the major source of phase correction via the increased optical path length of the prism

material itself. A folding mirror steers the beam back through the prism pair allowing

for the reconstruction by prism P1. The distance between the dispersive element and

the collimation source acts as the critical component of the phase correction, for which

the complete mathematical treatment of the phase correction factors can be found in

Ref. [32].

The compressor is required for several purpose. First, in this compressor, the

linear chirp can be easily eliminated by a grating or a prism pair. They induce a

different optical path length for the red and blue part of the spectral component of a

given pulse, as schematically indicated in the ray-tracing of Fig. 3.4. The second-order

chirp can be primarily corrected by a diffraction grating. In addition, it is known that

a grating compressor also induces normal third-order dispersion (additional positive

third-order chirp to the spectral phase) and it can be compensated by a prism pair.

For the final fine adjustment, a DM is used. In principle, it corrects arbitrary phase

distortions by change of the shape of the mirror surface. As such, it is possible to find

the stable phase, Fourier transform-limited pulse by combining a diffractive grating,

a prism pair and the DM. It is worth to note that there is no single apparatus which
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can be used to correct the specific order of the chirp. They need to work together

and find the optimal conditions to compensate the chirp. It always can be achieved

by searching the optimal conditions. For instance, in the current work, we search for

the maximum signal by using the genetic algorithm (MATLAB) combination with

changing the position of the prism compressor (P2) and the shape of the DM. During

this complicated searching process, the linear and nonlinear chirp can be eliminated

effectively.

Figure 3.4: Geometry of pulse compression. It consists of a DM, grating compressor

and a pair of prism compressors. DG: 300 g/mm, SM: 50 mm diameter, f=250 mm

spherical mirror; P1, P2: 25 mm equilateral F2 prisms.

Pulse characterization by transient grating FROG. In order to characterize
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the pulse compression, transient grating FROG is used to measure the pulse duration

and phase stability. The scheme of the FROG is shown in Fig. 3.5 and can be

described as follows: three pulses are generated by two beam splitters (70:30 and

50:50) after go through three retro-reflectors. The difference in the optical path

length between beam 1 and 2 is compensated by the compensating block (CB). The

retorreflector (RR) 1 and 2 are static while RR3 is mounted on a translation stage to

allow for the temporal characterization of the pulse.

The configuration of three beams are aligned as BOXCAR geometry and focused

by an off-axis parabolic mirror (OAPM, f=40 mm) to the glass plate (usually SF11 or

fused silica) to generate the signal. Beams 1 and 2 are coincident in space and time

in nonlinear medium and form a grating in the index of refraction of the medium via

the nonlinear optical Kerr effect. Pulse 3 is used to diffract off the transiently formed

grating by the movable RR3 and to map out at all times the diffracted frequencies of

the optical pulse as measured by the spectrometer (SPEC).

3.3 2D photon-echo spectrometer

The experimental scheme of a 2D photon-echo spectrometer used in this thesis is

shown in Fig. 3.6. The Fourier-transform limited pulse is first reflected by a small-size

mirror and send to the OAPM1. The beam is subsequently reflected to a customized

diffractive optics (DO), which was designed to generate ±1st order beams with an
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Figure 3.5: Configuration of the transient grating FROG. RR1–3: retro-reflectors;

CB: compensating block; OAPM: f=50 mm off-axis parabolic mirror; OL, f=50 mm

objective lens; ID, iris diaphragm; SPEC, spectrometer.

overall efficiency of 60%. A CARBOX geometry of four beams is generated and the

arrangement is described in the top-left of Fig. 3.6. Thereafter, four beams are

transversed through different translation stages (MTS1 and MTS2) and focused by

the OAPM2 to the sample to generate the photon-echo signal, which is illustrated as

a red point in the CARBOX geometry. It overlaps with the local oscillator. During

the optical traverse, the delay between pulse 1 and (2) can be achieved by moving the

MTS2, which allows for the delay scan of the waiting time T . For the same reason,

the delay of the coherent time period τ can also be changed by moving the translation

stage MTS1. An optical chopper is mounted in the optical path of beam 1, which

allows for the differential measurement.
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Figure 3.6: Schematic configuration of the instruments used in the 2D optical photon-

echo spectroscopy.

Phase stability of 2D-PE spectrometer. The phase stability of the 2D PE

setup is of central importance for the measurement. First, the phase stability should

be checked before use [36].

The spectrometer measures the spectrum S(ω) of the incoming electric field E(t),

S(ω) = Ẽ(ω)Ẽ∗(ω), (3.8)

where the electric field is the sum of the signal from the PE and the local oscillator

(LO), thus,

E(t) = PE(t) + LO(t−∆T − τ − δt). (3.9)
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Heren ∆T is the time delay generated from the neutral density filter, which is mounted

in the optical path of the LO (see ‘LO’ in Fig. 3.6). τ is the delay between the first and

second pulse. δt is the jitter mainly caused by the air fluctuation and the mechanical

vibrations of the setups. The measured spectrum contains the contributions from the

PE, LO and their interaction terms,

S(ω) = |PE(ω)|2 + |LO(ω)|2 + PE(ω)LO∗(ω)eiω(∆T+τ)+iδφ + c.c. (3.10)

The phase fluctuations are given by δφ = ωδt. In addition, the chopping technique

in the experiment can remove the PE and the mixing signals after blocking one beam

in the 2D setup (see ‘Chp’ in Fig. 3.6). Then, the measured spectrum can be written

as

∆S(ω) = Ã(ω)eiω(∆T+τ) + Ã∗(ω)e−iω(∆T+τ) + SPE(ω). (3.11)

where Ã(ω) = PE(ω)LO∗(ω)eiδφ. Then, the inverse Fourier transform of the spec-

trum Sω can be written in the time domain as

∆S̃(t) = A(t−∆T − τ) + A∗(t+∆T + τ) + S̃PE(t). (3.12)

Here, the signal is separated as negative and positive part in the time domain and the

homodyne contribution of the PE signal can be blocked by zeroing the ∆S̃(t) around

t=0. The delay of the LO pulse should be large enough to completely separate the

terms in Eq. (3.11) in the time domain, i.e., ∆T ≫ τPE. Here, τPE is the maximum
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delay period of the PE signal. After the separation, one can obtain two complex-

conjugated terms

∆S+(ω) = Ã(ω)eiω(∆T+τ), ∆S−(ω) = Ã∗(ω)e−iω(∆T+τ). (3.13)

The oscillatory part can be removed by multiplying exp[−iω(∆T + τ)] with the first

term in Eq. (3.13) and the inversed signal of the second term. We can obtain the

phase information

φs = Im
{
ln
[
Ã(ω)

]}
= φ0 + δφ, (3.14)

where φ0 = Im {ln [PE(ω)LO∗(ω)]} reflects the sum of the phase spectra of the PE

and LO. We assume that φ0 does not change. The magnitude of the phase instability

will be characterized by the standard deviation (STD) of the monitored actual phase:

|δφ| = std(φs).

The measurement of the phase stability was performed at τ = 0, T = 0 with a

glass window at the sample position. The signal was monitored for 60 minutes, the

measured phase stability is shown in Fig. 3.7.

Phasing the 2D PE spectrum. The directly measured 2D electronic spectrum

shows the absolute magnitude and it should be separated into the real and imaginary

part to extract the absorption and transmission information. The well-known proto-

cols for the phasing in PE spectroscopy can be divided into interferometric [33, 34]

and comparative based approaches [35]. In this work, we applied a simple scheme
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Figure 3.7: Phase stability of the 2D-PE spectrometer monitored within 60 minutes.

The STD of the phase fluctuations is shown as Λ/163.

and the theory can be found in Ref. [36]. It is based on the direct comparison of the

spectral profile obtained from transient absorption at zero delay and the PE spec-

trum, which is retrieved from the heterodyne detection of the PE signal measured at

τ = 0, T = 0. For this method, it is necessary to know the precise temporal delay

of the LO filter and it only works for the measurement excited by the same pulse

spectra. In our 2D spectrometer, a 1 mm neutral density filter is mounted in the

LO optical path. First, the differential signal measured from the transient absorption

(also named as pump-probe (PP)) without the LO filter can be written as
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∆Spp(ω) = Ãpp(ω) + Ã∗
pp(ω) + Spp(ω), (3.15)

where Ãpp(ω) = PP (ω)LO∗(ω) is the spectral product of the PP signal and the LO,

and the last term corresponds to the homodyne part of the PP signal. On the other

hand, the measured differential PE signal at τ = 0 is measured as

∆Spe(ω) = Ãpe(ω)e
iω∆T + Ã∗

pe(ω)e
−iω∆T + Spe(ω), (3.16)

where Ãpe(ω) = PE(ω)LO∗(ω) and Spe(ω) = |PE(ω)|2. We assume the LO-delay to

be ∆T = ∆T0+ δt and ∆T0 is the delay induced by the LO filter. We can remove the

fast oscillations in the measured interferograms by multiplying the heterodyne term

by factors exp(±iω∆T0). This procedure requires the splitting of the measured PE

spectrum into two complex-conjugated interferograms, which is already described in

Eq. (3.13). Then, the PE spectrum can be obtained as

Spe(ω) = ∆S+(ω)∆S−(ω)/SLO(ω). (3.17)

After removing the fast oscillations, we have

∆Spe(ω) = Ãpe(ω)e
iωδt + Ã∗

pe(ω)e
−iωδt + Spe(ω). (3.18)

Due to the invariance of the third order polarization signal, P (3) at T = 0, all terms

in Eqs. (3.15) and (3.18) are identical since PP (ω) = PE(ω). The direct relation of
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both spectra is given as

Ãpe(ω)e
iωδt + Ã∗

pe(ω)e
−iωδt + Spe(ω) = ∆Spp(ω). (3.19)

Data collection and processing. The spectrum collected from the measure-

ment is given by

S(t1, ω3) = SLO(ω3) + SPE(t1, ω3) + EPE(t1, ω3)E
∗
LO(t1, ω3)e

iω3(∆TLO+t1) + c.c..(3.20)

Based on the chopper technique, the PE and PE-LO mixing signal can be blocked

and leads to the differential spectrum written as

∆S(t1, ω3) = SPE(t1, ω3) + Ã(t1, ω3)e
iω3(∆TLO+t1) + Ã∗(t1, ω3)e

−iω3(∆TLO+t1). (3.21)

By performing an inverse Fourier transform with respect to ω3, we obtain the signal

in the time domain as

∆S(t1, t3) = S̃PE(t1 + t3) + A(t3 −∆T − t1) + A∗(t3 +∆T + t1). (3.22)

The negative and positive signals in the frequency domain can be obtained by per-

forming Fourier transforms after separating the signal in the time domain, which is

described in detail above. We obtain

S ′
+(t1, ω3) = Ã(t1, ω3)e

iω3(∆TLO+t1),

S ′
−(t1, ω3) = Ã∗(t1, ω3)e

−iω3(∆TLO+t1).

(3.23)
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The fast oscillation components can be removed by multiplying the factor e∓iω3∆TLO ,

i.e.,

S+(t1, ω3) = EPE(t1, ω3)E
∗
LO(t1, ω3)e

iω3t1 ,

S−(t1, ω3) = E∗
PE(t1, ω3)ELO(t1, ω3)e

−iω3t1 .

(3.24)

We define a modulus and a phase of the spectra, according to

|EPE(t1, ω3)| =
√
S+(t1, ω3)S−(t1, ω3)

ILO(t1, ω3)
,

φPE(t1, ω3) = arg(S+)− ω3t1.

(3.25)

Since ILO(t1, ω3) is measured for each t1 due to the chopper, the spectrum is nor-

malized along ω3 for each time point. Here, the real and imaginary part of the spec-

trum can be generated and associated to the absorptive and dispersive parts of the

third-order signal. The 2D spectrum is generated by performing the inverse Fourier

transform along ω3. The procedure above emphasizes the proper way to determine

the phase ∆TLO which is a crucial step of the experiment.
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Chapter 4

Excitation energy flow in

Light-harvesting Complex II

Based on the description of theoretical models and the experimental techniques, we

apply the 2D spectroscopic approach to study the primary step of energy transfer

in the photosynthetic complex of higher plants. In this chapter, the 2D spectra

of the peripheral antenna LHCII are measured at room temperature and combined

with a theoretical analysis. First, based on the global analysis, multi-pathways of

the energy transport are resolved with the associated different time scales. Second,

for interpreting the measured data, an advanced theoretical model is constructed to

simulate the 2D electronic spectra. We find shows a good agreement of the decay-

associated spectra to the experiment. In the end, the electronic coherence is analyzed,
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for which we find the time scale of < 100 fs.

4.1 Introduction

LHCII, as introduced in Chapter 1, is one of the most abundant complexes in na-

ture and is responsible for capturing sun light and the transfer of its energy to the

reaction center with nearly unity efficiency. Since long, the central importance of the

LHCII has been realized and thus, it has been investigated extensively by almost all

available steady-state spectroscopic techniques, such as absorption, linear and circu-

lar dichroism (CD), fluorescence [37, 38, 39] and single-molecule spectroscopy [40],

and also by Stark spectroscopy [41]. The electron-vibrational coupling and the in-

volved intramolecular vibrational modes have been revealed using low-temperature

non-photochemical hole burning [42] and fluorescence line-narrowing spectroscopies.

Also energy transfer processes in LHCII have been extensively studied in the past.

For this, ultrafast spectroscopies such as transient absorption and time-resolved flu-

orescence [43, 44, 45], and three pulse photon echo peak shift (3PEPS) [46, 47] spec-

troscopy have been used. More recently, also 2D photon echo spectroscopy [48, 49, 50]

was applied.

In particular, in the femtosecond transient absorption spectroscopy carried out

at low temperature (77 K), different time scales of the energy transfer have been

addressed [43]. Various Chla absorption bands have been selectively excited and the
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induced changes over the entire Qy region have been detected. A subsequent global

fit together with a target analysis on the basis of a sequential energy transfer model

has revealed different time scales on which the energy transfer dynamics between the

pigments in monomeric LHCII occurs. Within this excitation range, the population

kinetics of the Chla pool involves the time scales of 0.28 ps, 11.5 ps, 160 ps and a

long-lived component with the time scale of 3.4 ns. At room temperature, a transient

absorption study of LHCII-trimers has been performed at very low excitations in the

Chlb spectral region [44]. The measured kinetics showed lifetimes of 175 fs, 625 fs,

5 ps and a long-lived component. The shortest lifetimes were assigned to the energy

transfer between the Chlb and Chla pools. Notably, a 300 fs lifetime component

was not found in the measured kinetics of the LHCII trimers. However, this 300 fs

lifetime was reported in Ref. [46] in the 3PEPS-kinetics in the Chlb absorption band.

It was attributed to the energy transfer within the Chlb molecules, whereas a 4 ps

component reflects the energy transfer from Chlb to Chla. Together with this, the

150 fs and the 600 fs lifetimes were also found in the 3PEPS-kinetics.

In the subsequent 3PEPS experiment reported in Ref. [47] from the same lab, this

300-fs component was observed in the 3PEPS kinetics and was then attributed to the

energy transfer between Chlb and Chla. In a recent 2D spectroscopy study of LHCII

trimers, only the Chlb pool was excited with excitation pulses with a relatively narrow

spectrum (14 nm), however, with a spectrally broad reading pulse. This allowed then
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to resolve the 300-fs component in a sequence of 2D spectra taken at different waiting

times. It was attributed, as well as the 2.4-ps component, to the energy transfer from

Chlb to Chla. However, questions remained open: the excitation level was too high

for annihilation-free conditions in view of the changes in the differential absorbance

up to 50 mOD. Moreover, the interpretation of the Fourier-transformed photon-echo

signals in terms of transient absorption changes, which involve changes in populations,

is debatable.

In general, there is consensus about basically four timescales of the energy transfer

in the LHCII (see, e.g., the reviews [51, 52]): a very fast one with the characteristic

lifetime of 100-150 fs, a slower one with a 300-600 fs lifetime (whose appearance

depends on the excitation wavelength and excitation spectrum), 1.5-2.5 ps which is

generally accepted to be a lifetime of the energy transfer between the Chlb and Chla

pools, and a 5-10 ps component.

In addition to the extended experimental investigations of the LHCII, great efforts

have been made on the side of theoretical simulations of both stead-state and time-

resolved spectroscopic data. It should be emphasized that the identification of the

energy levels of the excitonic states and the energy transfer pathways in experimental

data is not a trivial task and is often limited by typically highly congested linear

spectra, homogeneous broadening, by the presence of static disorder and inhomoge-

neous broadening. The most refined exciton model of the LHCII was established by
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Novoderezhkin et al. [53] on the basis of the crystal structure with a spatial resolution

of 2.72 Å [3]. They performed a simultaneous fit of the absorption, linear dichroism,

steady-state fluorescence, and transient absorption spectra at different delay times

and at different excitation wavelengths (notice that the CD spectrum was not in-

cluded in the fit to the set of data). The excitonic interactions between the pigments

(i.e., the off-diagonal terms in the Hamiltonian matrix) were calculated in the dipole-

dipole approximation [3]. The model describes reasonably well the linear spectra and

the transient absorption data. The time scales and pathways of the energy trans-

fer have been identified upon using modified Redfield theory and an experimental

exciton-phonon spectral density [53]. According to this advanced model, the initial,

fast Chlb → Chla energy transfer is due to a good spatial connection of the Chlb

to strongly coupled Chla clusters. Long-lived components of the energy transfer are

determined by the population of red-shifted monomeric Chl a604 (according to the

pigment arrangement in Fig. 4.1), followed by a very slow (12 ps) flow of excita-

tion energy from this bottleneck site to the remaining low-lying exciton states. The

dynamics of the population within the Chla pool was found to be governed by fast

(sub 100 fs) excitonic relaxation within the a610-a611-a612 trimer, followed by slower

relaxation within a602-a603 and a613-a614 dimers on the time scale of 200-300 fs. An

even slower migration on a time scale of 300-800 fs between these clusters then sets in,

and, finally, a very slow transfer from a604 to the quasi-equilibrated sites terminates
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the transfer [52] (we use the nomenclature of Ref. [3]). The homogeneous broadening

was described within Redfield theory, implying that this approach has no capacity

for a proper description of the 2D electronic spectra. The dominating effect is fast

dephasing which clearly has a non-Markovian behavior in general. It should also be

noted that the dipole approximation for calculating the excitonic interactions is the

simplest one and is actually applicable when the distances between the chromophores

are large enough as compared to their spatial dimensions. A more accurate approach

is the transition density cube (TDC) method [54] which includes the Coulomb in-

teraction of the chromophore molecular charge densities. The site energies of the

pigments (i.e., the diagonal terms in the Hamiltonian matrix) were obtained by fit-

ting the calculated spectra to the experimental data. They also can be calculated

independently by ab-initio, semi-empirical, or other quantum chemistry methods and

by accounting for the energy level shifts due to the interaction of the chromophores

with the local protein environment. Such an approach has been followed in Ref. [55]

and may yield values of the site energies which can be used as very good initial values

for a fitting procedure.

In addition to the traditional transient absorption and time-resolved fluorescence

spectroscopies, the 2D photon-echo electronic spectroscopy was also applied to study

the LHCII. Up to present, only a few investigations using this relatively new technique

have been performed [56, 57, 58]. Moreover, the only theoretical analysis devoted to
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Figure 4.1: Spatial structure of the LHCII monomer from the stromal side (PDB file

2BHW) with labeling of pigments according to Ref. [4]. For clarity of presentation,

the carotenoids are not shown. The figure was created using the VMD package [9].

the modeling of 2D spectra of the LHCII [48] is based on a modified Redfield master

equation and uses a simplified technique [59] for creating 2D spectra. Extending

the measurements of signals to the second frequency dimension allows identifying

the locations of excitonic states and mapping the pathways of the energy transfer

among them. The first report of 2D spectroscopy of the LHCII at 77 K has been

provided in Ref. [48]. Several cross peaks between excitonic states were visualized

and thus some energy transfer routes were identified. In a subsequent work of the
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same group, the authors have analyzed oscillations arising on the diagonal sections

of 2D spectra measured at consecutive waiting times. From the power spectra of the

Fourier-transformed oscillations, all exciton states in the LHCII have been identified

[49]. The energies of the excitonic transitions were in excellent agreement with the

values predicted earlier in Ref. [53], however, not with the energies defined later

in a newly refined LHCII model by the same authors [60]. Furthermore, polarized

2D electronic spectroscopy was applied to reveal the angles between the transition

dipole moments of some excitonic states [61]. The so-called coherence-specific pulse

polarization sequence [62] isolates cross-peaks and suppresses diagonal peaks. It was

also used to investigate dephasing in a 2D study of the LHCII [63]. The coherence

of cross-peaks was reported to decay at 77 K on two distinguishable time scales of

∼50 and 800 fs. However, it remained unclear how these dephasing times relate

to electronic dephasing and to the dephasing of exciton states in the LHCII. All 2D

spectroscopy studies of the LHCII cited above were performed at low temperature (77

K). Up to present, only one published work applied this tool to the LHCII at room

temperature [50]. However, a relatively narrow excitation spectrum, which covers

only the Chlb absorption band, was used.
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4.2 Experimental measurements

Experimental setups. The measurements reported here were performed using a 2D

electronic spectroscopic setup described in Ref. [36] (also present in Chapter 3). In

these experiments the 2D setup was used in a ‘mono-beam’ fashion, without involving

a second beam passing through a deformable mirror compressor (see Fig. 3 in Ref.

[36]). Heterodyne detection of the photon-echo signal was achieved by placing a thin

neutral-density filter with OD 2 into the fourth (reference) beam which delays the

local oscillator pulse by ∼ 400 fs. The spot size of all beams at the sample position

was ∼ 60 µm.

Ultrashort light pulses where generated by a home-build NOPA, tuned to the red

side of the visible spectrum and centered at 670 nm. Since at that position the NOPA

spectrum is very broad, and in order to increase the spectral brightness, its spectral

width was reduced to ∼ 60 nm by placing a 3-mm thick fused silica window into the

white-light channel of the NOPA. Further, in order to avoid excitation of high-lying

vibrational states in the Chl’s, the wings of the NOPA spectrum were suppressed

using an appropriate amplitude mask applied to an acousto-optic modulator Dazzler

(Fastlite, France) which was placed into the first beam of the 2D setup (see in Ref.

[36]). The resulting laser spectrum is shown in Fig. 4.2 together with the absorption

spectrum of the LHCII sample used in the experiments. The light pulses were com-

pressed to the transform-limited level (22 fs FWHM) using a corresponding phase
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mask applied to the Dazzler. The pulses were characterized by a home-build third-

order FROG described in the last chapter. The energy of the excitation pulses was

controlled by the Dazzler and limited up to 10-15 nJ per beam at the sample position.

The laser repetition rate of 900 Hz was used. The measurements was preformed by

Dr. Valentyn I. Prokhorenko at the University of Toronto.

Sample preparation and measuring conditions. The LHCII sample was

provided by Prof. R. van Grondelle. It was isolated from the spinach according to

the procedure described in Ref. [64], dissolved in a HEPES buffer, and stored at

-40◦C. Directly before the measurements, the samples were filtered using a 0.2 µm

micropore filter in order to reduce unwanted light scattering which affects significantly

the 2D spectra especially around zero waiting time. Measurements were performed at

room temperature using a 0.4 mm thick closed cell with an inner volume of 1.5 mL,

mounted onto a precise home-build X-Y motorized translator with a moving speed

of ≈ 6 mm/sec. The actual spectrum of the sample is shown in the left panel of

Fig. 4.2 together with the laser spectrum measured at the sample position. The OD

in the maximum of absorbance of the Qy band was 0.33. For minimizing unwanted

contributions of the non-resonant response to the PE signal, a 0.2 mm fused silica

cover slip was used as an input window in the cell. In order to avoid the so-called

annihilation of excitons in LHCII trimers, the excitation energy was kept below 5 nJ.

At these excitation conditions, the magnitude of the homodyne PE was proportional
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to the third power of the incoming energy (see PE power dependence on the right

panel in Fig. 4.2) which ensures the linear regime of excitation. Deviations from the

linear regime occur at energies > 6 nJ per beam. It was checked that under these

illumination conditions the maximal degradation of absorbance of the LHCII-sample

in the cell was ∼ 5% within 12 hours of operation.

The photon-echo spectra were collected at each fixed ‘waiting time’ T by scanning

the delay time τ in a range of [-100,+150] fs with the step of 1 fs, and 280 spectra

were averaged at each delay point. The waiting time T was linearly scanned within

0-2 ps with a step of 25 fs, and with logarithmically spaced steps up to 50 ps. Since

the accumulation of a large amount of photon-echo scans takes a couple of hours, the

NOPA spectrum was actively stabilized using an appropriate feedback.

4.3 Theoretical model

We consider a molecular system coupled to the electric field which time-dependent

Hamiltonian, which is written as

H(t) = Hmol − µ · E(t), (4.1)

where Hmol is the Hamiltonian of the monomeric LHCII (our model is restricted to

the LHCII monomers due to limitations in the available computer power), E(t) is the

semi-classical electric field of the laser pulse, and µ is the transition dipole operator.
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Figure 4.2: The left panel shows the absorption spectrum of the LHCII sample in

overlap with the spectrum of the excitation laser. Right: Power dependence of the

homodyne PE signal measured at waiting time T = 0. To better see the deviation

from the linear regime, the PE magnitude is plotted as a cubic root vs. the excitation

energy.

The total dipole operator µ is expressed via the transition dipole moments of the

individual molecules µm, i.e.,

µ =
N∑

m=1

µm

(
αm + α†

m

)
, (4.2)

with α†
m and αm being the creation and annihilation operators of the electronic exci-

tation on the mth molecule. The molecular Hamiltonian Hmol is defined as

Hmol = He +Hph +He−ph. (4.3)
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Here, the Frenkel-exciton Hamiltonian

He =
N∑

m=1

ǫmα
†
mαm +

N∑

m=1

∑

n<m

Jn,m
(
α†
mαn + α†

nαm

)
, (4.4)

describes the electronic DOF, where ǫm are the site transition energies of the molecules,

and Jn,m is the inter-molecular excitonic coupling between them. Hph describes nu-

clear (phonon) DOFs. In our model, we assume that the electronic excitation on the

mth molecule couples independently to its own harmonic bath given by the Hamilto-

nian

Hph =
N∑

m=1

Nm
b∑

j=1

(
p2mj

2
+

1

2
ωmjx

2
mj

)
, (4.5)

where Nm
b is the number of bath modes coupled to the molecule m, xmj and pmj are

the mass weighted position and momentum of the jth harmonic oscillator with the

frequency ωmj. The bath spectral density has the form

Jm(ω) =
π

2

Nm
b∑

j=1

c2mj

ωmj

δ (ω − ωmj) . (4.6)

For an infinite number of bath modes, the frequency distribution can be modeled by

using a continuum-distributed spectral density for which we use the Ohmic model.

The electron-phonon coupling He−ph is assumed to cause only electronic energy fluc-

tuations and is the same for each molecule. Each molecule is also assumed to be

linearly coupled to the phonons and the coupling Hamiltonian has the form

He−ph =
N∑

m=1

Nm
b∑

j=1

cmjxmjα
†
mαm. (4.7)

76



For the parametrization of the model, the site energies ǫm of themth chromophore

was pre-calculated by the ab-initio method in the gas phase. We have found higher

transition energies (S0 → S1) for Chlb than for Chla due to an additional carbonyl

group in Chlb, which is known from the linear spectroscopic data. Then, the site

energies have been optimized by fitting to the experimental linear spectra (absorp-

tion and CD) at different temperatures. The intermolecular excitonic couplings Jn,m,

calculated by the transition density cube method [54], have been directly taken from

Ref. [65] without any further modifications. To take the system-bath interaction

into account, the Ohmic spectral density J(ω) = γωe−ω/ωc was fitted by three ar-

tificial spectral densities using Eq. (15) of Ref. [66] which significantly speeds up

numerical calculations. Quantum dynamical calculations were performed using the

TNL quantum master equation [66, 67] (see Chapter 2 for details). The inhomoge-

neous broadening, or effects of low frequency nuclear motions, were accounted for by

a convolution of simulated homogeneous spectra with a Gaussian-shaped distribu-

tion having a width of σ = 106 cm−1. The dipole strengths and the orientations of

the chromophores have also been taken from Ref. [65]. The relative strength of the

transition dipole moments for the Chla and Chlb molecules was set to |µa|=1.0 and

|µb|=0.85, respectively. More details about the Hamiltonian matrix and the numerical

calculation procedures can be found in the Appendix A.

The calculated room-temperature absorption and CD spectra are shown in Fig. 4.3
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in comparison with the experimentally measured ones (dots). The bars represent the

calculated stick-spectrum. In order to fit the CD spectrum, the transition dipoles for

the Chla molecules were rotated counter-clockwise by 8◦ and for the Chlb molecules,

their directions were kept [68].

Figure 4.3: Stick, absorption (top) and CD spectrum (bottom) calculated by the TNL

method. The parameters γ = 0.6 and ωc = 400 cm−1 are used for the Ohmic spectral

density. The result has been convoluted with a Gaussian shaped distribution with

σ = 106 cm−1 for the simultaneous fit of the width of the absorption and the CD

spectrum.
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4.4 Energy-transfer timescales and pathways

In this section, we will first show the selected 2D spectra for different waiting times and

compare them to the theoretical calculations. Then, the pathways and the associated

timescales of energy transfer in LHCII will be analyzed by 2DDAS [69]. Four different

pathways can be clearly resolved. At last, the oscillations in 2D spectra are shown

and their origin will be discussed.

4.4.1 Dephasing and inhomogeneous broadening

Figure 4.4 (left panel) shows several representative experimental 2D spectra collected

at different waiting times as indicated. The shapes of the 2D spectra calculated on the

basis of our theoretical model (right panel) are in very good agreement with the exper-

imental ones which supports the developed LHCII model and justifies the theoretical

approach used for simulations. At the initial waiting time T = 0, the 2D spectrum is

significantly stretched along the diagonal direction which manifests a strong inhomo-

geneous broadening in the LHCII. Antidiagonal direction of the spectrum is related

to homogeneous broadening. Its FWHM of 170 cm−1 corresponds to an electronic

dephasing time of 62 fs (assuming the Lorentzian line shape). It is much shorter than

the dephasing time estimated for the LHCII at low temperatures (77K) also from 2D

spectroscopy [48], but still slightly longer than the typical electronic dephasing time

for, e.g., organic dyes (40-50 fs). The degree of inhomogeneous broadening can be

79



estimated by the ratio of the width of the diagonal and anti-diagonal parts. We find

it to be ≈ 3.1 (FWHM of diagonal section is 530 cm−1). However, this estimate is

not strictly valid for an excitonic system having several transitions distributed over a

wide spectral range (cf. stick spectrum on Fig. (4.3)). Even without inhomogeneous

broadening, the 2D spectrum of such a system will display some diagonal stretch due

to the spectral distribution of the excitonic transitions. We can deduce the degree

of the inhomogeneous broadening by comparison of the diagonal width for the mea-

sured (inhomogeneous) and calculated homogeneous 2D spectrum (FWHM ∼ 410

cm−1, not shown). From this comparison follows that the degree of the inhomoge-

neous broadening at T=0 is approximately 120 cm−1 which is actually close to the

inhomogeneous parameter of 106 cm−1 used in the calculations of all spectra.

The feature visible in the left-top corner of the 2D spectrum (label C) can be

associated with the cross-peak arising due to interference of exciton states associated

with the manifolds of Chla and Chlb molecules. However, at this waiting time the

corresponding diagonal peaks are not well resolved since they are ‘blurred’ by fast

dephasing processes. They become much better resolved at waiting times starting

from ∼ 100 fs, where dephasing is over, and the magnitude of the diagonal peak,

associated with the Chlb pool (label B) then decays with increasing waiting time due

to the energy transfer to the manifold of the exciton states associated with the Chla

pool (label A). This energy transfer manifests itself as a growing of the cross-peak C
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Figure 4.4: Real part of experimental (left) and theoretical (right) 2D photon-echo

spectra of the LHCII at different waiting times. The theoretical result is calculated

with the model and parameters obtained by fitting the linear absorption and CD

spectra (see text). The diagonal and cross peaks are labeled by capital letters in the

frame T = 0 fs.
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which becomes clearly visible at waiting times larger than 100 fs and up to a few tens

of ps. Fig. 4.5 displays different kinetics in the decay traces for the diagonal (A,B)

and cross-peaks (C,D) caused by the energy transfer basically between the Chlb and

Chla pools.

4.4.2 Energy transfer pathways in LHCII

The energy transfer pathways and the associated lifetimes can be resolved by ap-

plying a multidimensional global fit approach to the series of consecutive 2D spectra

acquired at different waiting times. The global fitting of frequency- and time-resolved

data is applicable only if the kinetics is not dispersive, i.e., has no significant wave-

length (frequency) dependence of the lifetimes. To validate the applicability of the

global fitting to our experimental LHCII 2D data, we independently have fit each de-

cay trace (a single fit) in the set of 2D spectra which contains about of 26000 traces,

and found that the retrieved lifetimes form 3 distinguishable groups with quite nar-

row distributions of lifetimes. For the probability of the occurrence of the lifetimes

retrieved from the fit of individual trace, was shown in Fig. 4.6. The quality of the 3D

global fits can be inspected by comparing the experimental and fitted decay traces

shown in Fig. 4.5. The global fitting provides a 2DDAS, which is shown in the left

panel of Fig. 4.7.

We find the lifetimes of 100 fs, 1.1 ps, 9.8 ps and a long lived component with
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Figure 4.5: Representative time traces taken at the indicated positions of the diagonal-

and off-diagonal peaks in 2D-spectra measured at different waiting times T.

a lifetime > 100 ps, which is not resolved in the delay time window used (marked

as ‘Inf’ in Fig. 4.7). This long-lived component in the 2DDAS can be associated

with the trapping of excitation energy in low-lying exciton states after a fast energy

transfer between excited states. A corresponding DAS with a long lifetime of a

few ns was previously observed in numerous transient absorption and time-resolved

fluorescence studies. The fastest resolved 2DDAS can be associated with the fast

electronic dephasing, i.e., it appears due to the decay of coherence among excited

exciton states (note that our excitation spectrum covers a whole Qy band so that all
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Figure 4.6: Lifetime distribution obtained from the fits of individual traces in the

sequence of 2D spectra of LHCII.

exciton states are excited). This 2DDAS shows a smaller degree of inhomogeneity

as compared to the 2D spectrum collected at T = 0 (Fig. 4.4), and a red-shifted

cross-peak is also present there. Section of the 100-fs 2DDAS along ωτ = 15340

cm−1 clearly visualizes it. Some energy transfer is also observed in the 100 fs 2DDAS

along ωτ = 14900 cm−1 which appears as a negative shoulder around ωt = 14600

cm−1. This energy transfer is associated with the main diagonal peaks (Chla) but

it can be attributed to the energy transfer from the exciton states located at 14500

cm−1 to low-lying state(s) located around 14600 cm−1 (see in Fig. 4.7). In contrast

to the experimental one, the corresponding 2DDAS with the comparable lifetime

(70 fs) retrieved from the calculated 2D spectra has a rather different shape. It
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displays a negative peak around 15000 cm−1 which can be associated with an efficient

energy transfer between the Chlb-Chla pools or with contributions of the excited state

absorption.

Figure 4.7: The experimental (left) and theoretical (right) lifetime components of the

energy transport in LHCII by the global fitting analysis of 2DDAS.
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We have not found a component with a lifetime 300 fs in neither the single nor the

global fit analysis of the experimental data. Such a component was intensively dis-

cussed in several experimental papers [46]. It should be noted that in the performed

separate conventional pump-probe experiment, this component was neither detected

in the measured kinetics of our LHCII sample. However, the 2DDAS with the lifetime

of 400 fs is resolved in our modeled 2D spectra (see Fig. 4.8). We would like to note

that there is no direct link between transient spectroscopy and electronic 2D spec-

troscopy in terms of the observed spectra due to the difference in the measured signals

and the dimensionality. Therefore, a direct comparison of the one-dimensional DAS

obtained from the transient absorption and two-dimensional DAS retrieved from the

2D photon-echo spectroscopy experiments is not so straightforward, especially taking

into account different excitation conditions. (Usually, a narrow excitation spectrum

located at the blue side of the absorption spectrum is present in the pump-probe ex-

periments, while a broad excitation spectrum is used covering a whole absorption Qy

band in the photon echo experiment reported here). However, if 2DPE spectroscopy

is conducted under similar excitation conditions as the pump-probe experiment, i.e.,

with a narrow and blue-located excitation spectrum, the similarity in the retrieved

DAS is much higher, but such conditions lead to loss of useful information which can

be obtained from 2D spectroscopy (e.g., excitonic interaction visualized via cross-

peaks). These excitation conditions were realized in the recently reported experiment
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[50]. In particular, this difference in the excitation conditions can explain the absence

of the 300 fs component in our experimental data.

Figure 4.8: 2DDAS resolved 400 fs theoretical component. It is not in the found in

the experimental data.

The overall energy transfer from the Chlb to the Chla pools is clearly resolved

in the 2DDAS with the lifetime of 1.1 ps (see Fig. 4.7). Also, the corresponding

Chla and Chlb diagonal peaks are fully separated and much better resolved in this

decay-associated spectrum as compared to the 2D-spectra at different T as shown in

Fig. 4.4. To illustrate this further, we show in Fig. 4.9 cuts along the horizontal axis

through the 2DDAS. In particular, the viewgraph for the waiting time of 1.1 ps shows

a section along ωτ = 15340 cm−1 which belongs to the Chlb pool and whose ‘butterfly’

shape is similar to the decay-associated spectra in conventional time-resolved pump-

probe spectroscopy. It reveals the “downhill” Chlb → Chla energy transfer, whereas
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Figure 4.9: Lineshape of global fitting components for the 2DDAS.

the “uphill” Chla → Chlb transfer is observed in the cut along ωτ = 14700 cm−1.

It crosses the diagonal peak associated with the Chla pool. For the given spectral

split between the positive and the negative maximum (∼ 400 cm−1), the ratio of their

amplitudes could be estimated on the basis of a Boltzmann distribution and yields

0.14. On the other hand, the observed ratio is 0.4. However, taking into account that

in 2D spectroscopy the measured signal is proportional to the polarization rather

than to the population as in the transient spectroscopy, this ratio has a reasonable

magnitude (
√
0.14 = 0.38). Hence, we can conclude that the overall shapes of the

spectra are similar and the same energy transfer pathways are resolved. Moreover, the

lifetimes in the 2DDAS retrieved from the experimental and from the calculated 2D
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spectra are similar, although the uphill energy transfer is not present in the calculated

spectra.

The 2DDAS associated to the lifetime of 9.8 ps displays a significant cross peak C

with a less populated diagonal peak B. The latter is associated with the exciton states

corresponding to the Chlb pool. This cross peak is well resolved in the section of the

2DDAS at ωτ = 15340 cm−1. The shape of this 2DDAS does not show a signature of

inhomogeneous broadening, and we thus can conclude that the inhomogeneous broad-

ening in LHCII has diffusive character. Clearly, it has died out after ∼ 10 ps. The

calculated 2DDAS with a similar lifetime (∼ 7 ps) shows a strong elongation along the

diagonal direction. This is associated with a strong inhomogeneous broadening even

after ∼ 10 ps. This discrepancy between the measured and the calculated spectra is

due to limitations in accounting for the inhomogeneous broadening while calculating

the 2D spectra (see discussion in Theoretical Modeling). In particular, the effective

inclusion of the inhomogeneous broadening via a convolution with a Gaussian distri-

bution seems insufficient here. Therefore, the measured and the calculated 2DDAS

cannot be directly compared for lifetimes longer then a few ps. This also holds for the

shapes of the 2D spectra. In addition to the inhomogeneous broadening, the energy

transfer between the exciton states located around ωt = 14900 cm−1 and the low-lying

state(s) at 14500 cm−1 is also resolved in the 2DDAS associated to the lifetime of 9.8

ps, see the negative shoulder in the section at ωt = 14840cm−1 in Fig. 4.7. This allows
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us to conclude that there are two energy transfer pathways from the exciton states

located around 14900 cm−1 to the low-lying “energy trap” states at the red shoulder

of the absorption spectrum (14500-14600 cm−1) with very different lifetimes of 100 fs

and ∼ 10 ps.

4.4.3 Oscillations in the 2D spectra and their origin

The residuals of the experimental decay traces shown in Fig. 4.5 show several periodic

oscillations within the first 2 ps of the delay time. A Fourier analysis of all residuals

provides the 3D spectrum where the axes are ωt, ωτ and ωT . Several 2D slices from

this 3D spectrum taken at different frequencies ωT overlap with the positions of the

main diagonal peaks or the cross-peaks in the 2D spectra (see Fig. 4.10), but the

overlap does not occur simultaneously. In addition, the spectral positions of the

resolved “cross-peaks” with respect to the diagonal do not match the corresponding

frequencies ωT at which they are measured. Thus, we can conclude that the origin of

these well-resolved peaks in the 3D spectrum has rather intramolecular character and

involve vibrational states in the chromophores. This is in contrast to the interference

beatings between excitonic states. In an additional analysis of the oscillations along

the diagonal, we also were not able to attribute the resolved frequencies to particular

excitonic states, as has been done in the 2D experiment at 77 K [48]. In fact, this

is not surprising since almost all peaks associated with the oscillations of notable
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Figure 4.10: Two-dimensional spectra of the distribution of the oscillations in the

residuals at different ωT as indicated. The top row shows the measured absorption

spectra of LHCII.

magnitudes are located away from our diagonal region (see Fig. 4.10).

To verify the origin of the oscillations observed in the 2D spectra, we have per-

formed a cross-correlation analysis of the residuals across the diagonal ωτ = ωt. In

particular, we have calculated the correlation coefficients C between the residuals
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R for each pair of conjugated spectral positions in the delay time window up to 2

ps. The delay time steps were equally distributed and the correlation coefficients are

given as

C(ωt, ωτ ) = corr [R(ωt, ωτ ,T),R(ωτ , ωt,T)] , (4.8)

where corr evaluates the correlation with respect to T . This yields a correlation 2D

spectrum which is plotted in Fig. 4.11. Negative values correspond to anticorrelated

residuals, whereas positive values correspond to correlated residuals. We find strong

correlations and anticorrelations between different areas of the 2D spectrum. Many

cross-peaks can be resolved in this correlation spectrum and the positions of some of

them are correlated with the Fourier-components in the 3D spectrum. In particular,

peaks in the 630 cm−1 slice of the 3D spectrum overlap with the main correlated ar-

eas and the 252 cm−1 slice overlaps with the main anticorrelated areas (see Fig.4.10).

The anticorrelated cross peaks in the correlation spectrum show that the oscillations

contained in the corresponding residuals have opposite phases. According to the

theoretical investigations in Ref. [70], this confirms the intramolecular or vibrational

origin of these oscillations. There is only one area of positively correlated residuals

around ωt = 14700 cm−1, ωτ = 15200 cm−1. It can be associated with the beat-

ings between excitonic states located within the Chlb and the Chla pools, especially

when taking into account the 630-cm−1 oscillations in the residuals at these spectral

positions. This is consistent with the Chlb-Chla spectral splitting.
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Figure 4.11: Correlation spectrum of residuals obtained after 3D global fitting of

2D-spectra. The color bar shows the magnitudes of correlation coefficients.

In our theoretical model, localized vibrational states of the chlorophylls were not

included due to the exponential growth of the associated Hilbert space and the de-

manding size of the required computer hardware. Therefore, if oscillations appear

in the sequence of the 2D spectra calculated within our model, they safely can be

attributed only to beatings between exciton states. This clearly allows us to uniquely

determine the origin of the oscillations observed in the experimental spectra. In the

calculated 2D spectra, we find only strongly damped oscillations of small amplitudes

within the initial waiting time window up to ∼ 200 fs for the spectral positions of the

cross peaks C and D. The corresponding signals are shown in Fig. 4.12. Their under-

lying period can be estimated to ∼50 fs (ωT=667 cm−1). This frequency matches well
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the energy gap between the exciton transitions 14666 cm−1 and 15333 cm−1. They

belong to the Chla and the Chlb pools, respectively (see the stick spectrum in Fig.

4.3). Therefore, we can conclude that the 630-cm−1 oscillation observed in the ex-

perimental 2D spectra is associated with the beatings between exciton states, while

all other resolved oscillations originate from the involved vibrational states of the

chlorophylls. We cannot exclude that some of them could belong to vibronic states as

well which would require a strong coupling between the electronic and the vibrational

DOF. This plausible line of reasoning should be tested theoretically by explicitly

including vibrational states to our model Hamiltonian and a subsequent dynamical

description of the vibrational degrees of freedom in the corresponding calculations.

4.5 Conclusions

In this Chapter, we report the results of a broadband 2D electronic spectroscopic

study of LHCII trimers at room temperature. Dephasing of the electronic excita-

tion at room temperature is much faster as compared to low temperatures and occurs

within a 60-fs range. Our data directly visualize the significant impact of strong inho-

mogeneous broadening in the LHCII. Equally important is the loss of inhomogeneity

observed at longer waiting times. This allows us to conclude that the inhomogeneous

broadening in the LHCII at room temperature has diffusive character and dies out

after a few tens of ps. An analysis of the experimental data is given in terms of an
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Figure 4.12: The time evolution of the cross peaks located at (ωτ=14810 cm−1,

ωt=15370 cm−1). The estimated period is 50 fs (ω=667 cm−1) according to the

oscillation in the frequency range T=100 ∼ 250 fs.

exciton model of the LHCII-monomer and an explicit treatment of the dynamics.

The numerically calculated 2D spectra coincide with the experimentally measured

ones in the range of waiting times of up to several ps. Together with the advanced

global fit analysis, this relatively new spectroscopic technique allows us to reveal

and literally visualize the energy transfer pathways of one of the most important

light harvesting complexes of higher plants. Our analysis for ambient temperature

conditions allows us to identify which of the channels, active at low temperatures, do
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contribute predominantly in the living species. We have safely resolved the energy

transfer channels from the Chlb to the Chla pools in both the experimental and the

modeled spectra. These transfer dynamics occur within 1.1 - 1.2 ps as retrieved from

the 2D spectra. Moreover, the fastest 2DDAS with a lifetime of ∼ 100 fs can be

attributed to the loss of coherence among excited exciton states. It also resolves the

energy transfer pathway from the exciton states associated with the main absorption

peak to the exciton states lying at its low-energy edge. The main diagonal peaks

associated with the Chla and Chlb pools are resolved in the 2D spectra and even a

cross peak between them is visible within a waiting time up to 1 ps. Yet, these peaks

and cross peaks are much better visualized in the 2DDAS obtained after applying

the multidimensional global fit to the sequence of 2D-spectra collected at different

waiting times.

Besides resolving the energy transfer pathways and visualizing the diagonal as

well as the cross peaks in the 2D spectra, also long-lasting oscillations in the kinetics

of the coherence appear. The analysis of these oscillations and the cross correlations

applied for the first time to 2D spectroscopy together with the comparison to the

results of the numerical simulations show that almost all of them are associated with

vibrational transitions of individual chlorophylls or corresponding vibronic states.

Only one component of the oscillations with a frequency of ∼ 630 cm−1 can be

attributed to the beatings between excitonic states located in the Chla and Chlb
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pools. The dephasing time of these oscillations can be estimated to be ∼ 100 fs (Fig.

8) which is consistent with the electronic dephasing in LHCII.

Despite some simplifications, our developed and carefully fitted exciton model

matches well the linear spectra of the LHCII (both absorption and CD spectra). It

properly simulates the 2D spectra on the basis of one set of model parameters. It

is limited by a simplified accounting of the effects of the inhomogeneous broadening.

By this, the calculated kinetics of the coherence deviates from the experimentally ob-

served data for times greater than 2 ps where spectral diffusion begins to significantly

affect the spectra.This leads to differences between the shapes and the lifetimes of

some 2DDAS. Finally it should be mentioned that in additional computer simulations

of simpler model systems, we have found that the proper accounting of the inhomoge-

neous broadening via an ensemble averaging of 2D spectra calculated with disordered

site energies can lead to significant changes in retrieved lifetimes (up to a factor of

1.5 - 3) and in the shapes of the 2DDAS.
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Chapter 5

Charge-separation dynamics in the

PSII reaction center

In chapter, we study the charge transfer and separation process in the PSII reaction

center. The 2D electronic spectra of the reaction center are measured and revealed

spectral components with different lifetimes. On the basis of the theoretical investiga-

tion of a simple dimer model, the signature of charge separation can be well resolved

with the assistance of a global fitting approach. Then, the vibrational modulation of

the charge separation in the PSII reaction center is discussed.
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5.1 Introduction

PSII is a unique biological system that is capable of collecting photon-excited energy

and transferring it to the reaction center for the oxidation of water. PSII shows a

rather complicated structure, containing chlorophyll-protein 43 (CP43), CP47 and

branches 1 (D1) and 2 (D2) of the reaction centers. The peripheral complex, such

as the LHCII, absorbs the sunlight energy and transfers it to the D1-D2 reaction

center, where the initial charge separation occurs. The molecular structure of the

PSII reaction center has been well resolved by X-ray crystallography [3, 4]. The D1,

D2 branch of the reaction center contains eight pigments: two primary chlorophylls

PD1 and PD2, two accessory chlorophylls ChlD1 and ChlD2, two pheophytins PheoD1

and PheoD2 and two peripheral chlorophylls ChlzD1 and ChlzD2. The simplified

picture of the arrangement of the pigment molecules is presented in Fig. 5.1. Only

the active D1 branch is responsible for the charge separation [5].

The importance of the PSII reaction center has been realized and thus, it has

been extensively studied over several decades by almost all the available steady-state

spectroscopic techniques, such as absorption, linear and circular dichroism and fluo-

rescence spectroscopy [72, 73]. In order to resolve its biological function, namely the

separation of charges, the primary charge separation of the D1/D2-cytb559 complex

has been studied at low temperature by combining the photon-echo measurement with

pump-probe spectroscopy [74]. Based on a theoretical modeling of the kinetics re-
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Figure 5.1: Pigment arrangement in PSII reaction center. The data are taken from

3ARC.pdb [71]. The VMD package [9] was used to generate the figure.

solved by pump-probe spectra, the primary charge separation timescale was retrieved

to be 1.5 ps and the secondary charge separation process was estimated to occur

within 25 ps. Moreover, the mechanism and kinetics of the electron transfer in the

intact PSII core and the isolated D1/D2-cytb559 PSII reaction center have been inves-

tigated at low temperature as well by femtosecond transient absorption spectroscopy

and analyzed by a decay-associated spectrum [75]. For the intact PSII reaction center,

lifetime components of 5.5 ps and 35 ps were resolved as the timescales of the pri-

mary and the secondary charge separation, respectively. In addition, a long lifetime
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component (200 ps) was resolved and associated to the rate of the electron transfer

from the cofactors to the QA acceptor. In the isolated reaction center, however, the

primary and secondary charge separation were studied and revealed quite different

rates (primary charge separation: 3 ps, secondary charge separation: 11 ps). In this

study, the pigment ChlD1 was identified as the electron donor for the first charge sep-

aration process. The isolated PSII reaction center was measured again by transient

absorption spectroscopic methods at 77 K with a larger spectral range (425 nm to 730

nm) and an extended time range (<3 ns) [76]. Multiply charge-separation pathways

were identified with lifetimes, which differ from the former studies. For instance,

the primary charge separation happens within sub-400 fs and 1.8 ps. The secondary

charge separation process shows slower timescales (65 ps and 585 ps). Based on the

theoretical modeling, the authors proposed that a huge static disorder acts on the

CT state to induce multiple charge separation processes.

Among the techniques used, 2D electronic spectroscopy is a powerful tool which

allows for direct mapping of excitation energy pathways and the coherent dynamics as

a function of the optical absorption and emission wavelength [36]. This is particularly

useful in examining the photosynthetic system in which the manifold of closely spaced

electronic states and broadening through static disorder yields highly congested spec-

tra. The first experimental 2D electronic spectroscopic study of the PSII reaction

center complex at 77 K observed the energy transfer and charge separation process
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occurring with different timescales [77]. A new 2DDAS-resolved rapid lifetime (50-

150 fs) was identified and proposed to be associated to fast down-hill energy transfer.

Furthermore, the fast timescale component (sub-400 fs) was assumed to be associated

to the rapid formation of a radical pair, P−
D1P

+
D2. A mixed population transfer and

charge separation component was resolved with timescales of 1-3 ps and 10-60 ps,

respectively. The longest component (>2 ns) was resolved and proposed to corre-

spond to the lifetime of CT states since it consistent with the transient absorption

studies [76]. However, the authors did not provide any effective way to distinguish

the energy transfer and charge separation process in 2DDAS-resolved lifetime compo-

nents. Despite extensive studies have been done, the pathways and the corresponding

timescales in the PSII reaction center still need to be clarified.

Due to the inconsistency of the experimental observations, it is still not entirely

clear for the theoretical study of molecular identities of the functional states and

the mechanistic and kinetic details of PSII reaction center. For instance, (i) which

pigment is the electron donor and the acceptor which starts the primary charge sep-

aration? (ii) What are the pathways for the charge separation? Answering these

questions allows to proceed how to model the charge separation dynamics and trans-

port. In Ref. [74], the charge transfer process was modeled as the annihilation of

the population of exciton states since the population is transferred to the dark CT

state. Novoderezhkin and coworkers [78] found that one additional CT state is to
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be included in the model to simultaneously fit various kinds of linear and nonlin-

ear spectra (steady-state absorption, linear dichroism, CD, steady-state fluorescence

spectra, transient absorption with different excitation wavelengths, and time-resolved

fluorescence). Due to the insensitivity of the linear spectroscopy to the CT state, the

Stark spectra together with the spectra of the pheophytin-modified reaction center

that lack one of the peripheral chlorophylls, were used for a quantitative fit. The site

energies of the pigments and the first CT state were purified since the fluorescence

and Stark spectra are more sensitive to the assignment of the primary CT state [79].

The absorption difference spectra were calculated and compared to measurements in

Ref. [80] and the authors proposed that the D1-branch ChlD1 is likely to be the elec-

tron donor at cryogenic temperature but the electron transfer could start from both

pigments, ChlD1 and PD1 at physiological temperature. Moreover, multiple CT states

were needed to fit the transient absorption kinetics measured for the isolated reaction

center of PSII at 77 K [81]. This revealed the multiple charge separation pathways

with corresponding timescales: the ultrafast formation of a radical pair P+
D2P

−
D1 and

the initial charge separation of the electron donor and acceptor (ChlD1PheoD1)
∗ →

Chl+D1Pheo
−
D1 were retrieved with sub-ps timescale, and multiple pathways exist with

a primary charge separation within ∼3 ps. The longest secondary charge separation

results in populating the final radical pair with a time constant of 20 ps. In order to

properly account for the Fermi property of the electron and the hole, a tight-binding

103



model was applied to the study of the charge separation in the PSII reaction center

and the corresponding 2D electronic spectra were calculated at 77K [22]. Further-

more, calculated results were used to examine the low-temperature kinetics in the

PSII reaction center by comparing to measured data [82]. The analysis of the 2D

spectra kinetics showed that the inclusion of the two electron transfer pathways helps

to obtain an improved agreement with experimental data.

In order to identify the signature of the charge separation, first, we theoretically

study a simple dimer model with one CT state. The charge-separation signature can

be clearly identified by combining the 2D spectroscopy and 2DDAS technique. Then,

we present the measured 2D electronic spectra of the PSII reaction center at physio-

logical temperature. The theoretical model of the PSII reaction center is constructed

and parametrized by fitting the temperature-dependent absorption (77 and 300 K)

and CD spectra. Three decay-associated components with different lifetimes (200 fs,

1.5ps and 14 ps) are well resolved by a global fitting approach.

5.2 Sample preparation and measuring conditions

The sample was prepared by Dr. Emilie Wientjes and Prof. Roberta Croce at the

University of Amsterdam according to the following procedure. Thylakoid membranes

were isolated from A. thaliana plants as described in Ref. [83] till the centrifugation

step at 6000 g. Thylakoid membranes were solubilized with 0.6% dodecyl-D-maltoside
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(DDM) at a final chlorophyll concentration of 0.5 mg/ml. The sucrose density ultra-

centrifugation was used to obtain PSII core particles as described in Ref. [84]. The

purification of the PSII reaction center from PSII core particles proceeds as follows:

the PSII core particles were diluted in BTS200 buffer (20 mM Bis Tris pH 6.5, 20 mM

MgCl2, 5 mM CaCl2, 10 mM MgSO4, 0.03% DDM, 0.2 M sucrose) to a chlorophyll

concentration of 0.15 mg/ml and solubilized with an equal volume of 10% Triton

X-100 in BTS200 buffer for 20 min; then the material was loaded on a HiTrap Q

Sepharose HP 1 ml column (GE Healthcare) and washed with a BTS buffer until the

eluate became colorless. Finally, the PSII RC particles were eluted from the column

with 75 mM MgSO4 in a BTS200 buffer.

2D electronic spectroscopy in the regime of visible light is well established [36].

As in previously reported experiments [85], in order to suppress the excitation of

high-lying vibrational states of chlorophylls and pheophytines, the spectrum of the

excitation laser pulses is explicitly restricted to the spectral region 630− 720 nm.

Directly before measurements, the RC-sample was filtered using a 0.2-µm micro-

pore filter and placed into a 0.8-mm thick closed cell with the inner volume of 2 mL,

mounted onto a precise home-build X-Y motorized translator allowing a continuous

changing of the excitation spot position. The spot size of all beams at the sample

position was ∼ 60µm. For minimizing unwanted of non-resonant response to the

photon echo signal, the input cell window was made from a 150µm fused silica cover
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slip. To ensure annihilation-free excitation conditions, the energy of the laser pulses

was kept below 5 nJ (except of the local oscillator beam which was attenuated with

a neutral-density filter by a factor of 100).

The heterodyne-detected photon echo spectra were collected at each fixed waiting

time T by scanning the τ delay in a range of [−100,+150] fs, with a delay time

step of 1 fs. At each delay point, 320 − 440 spectra were averaged (depending on

T ) to achieve a high SNR. The waiting time T was linearly scaled within the first

2 ps delay and then logarithmically spaced up to 80 ps. The measured data were

processed according to the procedure described in detail in Ref. [85]. The 2D global

analysis [69] of the series of 2D spectra was performed using 4 life times and starting

from a T = 25 fs delay. The 2D measurement was carried out by Dr. Valentyn I.

Prokhorenko at the University of Toronto.

5.3 Predicted signature of the charge separation

Energy transfer and charge separation revealed by a dimer model. We

describe the 2DDAS-resolved signature of the energy transfer and charge separation

based on a simple model. First, based on the global fitting approach, the sequence of

2D spectra can be decomposed by a sum of exponential components: the amplitude

spectrum Ai(ωτ , ωt) indicates the kinetics of the 2D spectra along the waiting time,

as described in chapter 2. Second, we choose a dimer model composed of monomer
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A and B with site energies ǫ1 = 270 cm−1 and ǫ2 = 210 cm−1, respectively. The

excitonic coupling between the two monomers is set to be J = 150 cm−1. The bath

parameters are obtained from the model of the PSII reaction center. The 2D spectra

of the dimer were calculated for a time up to 5 ps and analyzed by the global analysis.

One component with a lifetime of 60 fs is revealed and a second component with a

infinite lifetime results. Both are shown in Fig. 5.2(a). On the basis of this simple

dimer model, we have clear evidence of the energy transfer in the first amplitude

spectrum (60 fs): one diagonal positive peak located at 400 cm−1 and two negative

cross peaks (up-left: ωt = 0 cm−1, ωτ = 400 cm−1. lower-right: ωt = 400 cm−1,

ωτ = 0 cm−1). It indicates that, in the 2D spectra, the magnitude of the diagonal

peak at ωt = ωτ = 400 cm−1 follows an exponential decay with a corresponding time

constant of 60 fs. For the same reason, the magnitudes of the upper-left and the

lower-right cross peaks follow an exponential increase with the same time constant.

Moreover, the upper-left cross peak shows a much stronger increase than the lower-

right part, which clearly manifests the ratio of down-hill and up-hill energy transfer

between two excitonic states in the 2D map.

In order to study the charge transfer dynamics, one additional CT state (A+B−)

has been included in the dimer model and we calculate the 2D spectra again within

5 ps. The site energy of the charge transfer state is set to be 150 cm−1 and the

interaction with monomer A and B are set to the same value of 45 cm−1. The
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Figure 5.2: 2D spectra (T=0 fs) and 2DDAS resolved lifetime components of a simple

dimer model. (a) shows the case of the excitonic dimer without the CT state. (b) is

the case of the dimer with one additional CT state A+B−. (c) is the dimer model

with one CT state, but the double excited block is artificially excluded.

2DDAS-resolved lifetime components are shown in Fig. 5.2(b). It clearly shows one

additional component (445 fs) besides the typical energy transfer (38 fs) and the ‘Inf’

component. It shows a positive peak and a negative peak located at the two sides of

the diagonal. The position of the negative peak is ωt = 400 cm−1, ωτ = 100 cm−1,

which is the same position as the location of the excited state absorption in the 2D

spectrum (it is shown in the first column of Fig. 5.2). It indicates that the magnitude
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of the excited states absorption increases along the waiting time. It can be reasonably

explained by the shift of the excited state absorption peak, which is induced by the

interaction of the permanent dipole of the CT states. In order to support this picture,

we investigate the dimer model with the CT state, however, in absence of the double

excited state. The resulting calculated 2D spectrum (T=0 fs) and 2DDAS resolved

lifetime components are shown in Fig. 5.2(c). We clearly observe one component with

a comparable lifetime (454 fs) and find the same characteristics of the signature of

charge separation in Fig. 5.2(c), but without the negative peak. This confirms the

explanation of the 2DDAS-resolved charge-separation signature.

Based on the current dimer model, the signature of the energy transfer and the

charge separation can be clearly resolved by the 2DDAS with different timescales.

It clarifies that the charge-separation process leads to the strong shift of the charge-

transfer-related double excited states in the dimer model, which cannot be revealed

in the simple FE model.

In order to study the multiple charge separation processes, we calculate the ki-

netics and the 2D electronic spectra of a tetramer model. In this model, 4 charge-

transfer-coupled pigments are selected with two CT states: (a) realizes the primary

charge separation of donor and acceptor (ChlD1PheoD1)
∗ → Chl+D1Pheo

−
D1 and (b)

models the secondary charge separation Chl+D1Pheo
−
D1 → P+

D1Pheo
−
D1. First, the ki-

netics of the CT states was calculated with an initial population distributed according
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to their transition dipole strength. The transfer process has been fitted yielding two

time constants: the primary transfer occurs with 250 fs, and the secondary transfer

with 5.0 ps.

Figure 5.3: Kinetics of the CT states Chl+D1Pheo
−
D1 and P+

D1Pheo
−
D1 calculated by

the reduced tetramer model. The transfer process has been analyzed and the time

constants of 250 fs (red) and 5.0 ps (blue).

Multiply charge transfer pathways revealed by tetramer model. After

the dynamical calculation, the 2D electronic spectra of the tetramer model are cal-

culated as well and the 2DDAS-resolved components with the different lifetime have

been generated. Two charge transfer components (500 fs, 5.1 ps) are clearly resolved

as shown in Fig. 5.4. The secondary charge separation process (5.1 ps) yields a time

constant which agrees with that obtained from the dynamical calculation. The pri-

mary charge transfer component (500 fs) shows a difference from the dynamically
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calculated result (250 fs) since it is strongly disturbed by the fast dephasing compo-

nent (60 fs). Here, this demonstrates that the multiple charge separation processes

can be well resolved by the combination of the 2D spectroscopy and the 2DDAS

technique.

Figure 5.4: Multiple pathways of the charge separation revealed by the tetramer

model with two CT states. Two charge separation components of 0.5 ps and 5.1 ps

are resolved by the global fitting approach.
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5.4 Energy transfer and charge separation in the

PSII reaction center

Having formulated the expected signature of the charge separation on the basis of the

simpler dimer and tetramer models, we next turn to the full analysis of the charge

separation dynamics in the full model of reaction center. For this, we present a 2D

spectroscopic study of the PSII reaction center at physiological temperature, which

reflects the nature of the charge separation and the transfer process which happens in

daily life. The energy transfer, charge separation and CT states are modeled within

a tight-binding model, which is described in Chapter 1. Four primary CT states

are taken from Ref. [81]: P+
D2P

−
D1, Chl

+
D1Pheo

−
D1, P

+
D1Chl

−
D1 and P+

D1Pheo
−
D1, which

were resolved by fitting the kinetics of the transient absorption measurements. We

need to specify the elements of the single excitation Hamiltonian. First, the Coulomb

interaction terms Jm∗,n∗ between two FE states were calculated by the TrESP method

[80]. The Dexter-type exchange component was properly included in the interaction

term between PD1 and PD2. We use those parameters without any modifications.

Second, the initial site energies of the FE states ǫm∗ are taken from Ref. [79]. Besides,

these site energies were further optimized by the simultaneous fit of the linear spectra

(absorption and CD) at different temperatures (77 and 300 K). Third, the initial value

of site energies of CT states and the corresponding interaction of FE–CT, CT–CT
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states was obtained from Ref. [81]. There, the site energies of the CT states were

optimized by simultaneously fitting of the charge-sensitive time-resolved fluorescence

and Stark spectra [79]. The interaction constants between the FE and CT, CT and

CT were determined by fitting the kinetics of the transient absorption with different

wavelength excitations.

For the system-bath interaction, the parameters of the Ohmic spectral density

J(ω) = γωe−ω/ωc were fit by assuming three artificial spectral densities, thereby using

Eq. (15) of Ref. [66]. This approach significantly speeds up the numerical calculations.

The quantum dynamical calculations were performed using the TNL method [66, 67].

Inhomogeneous broadening is generated by low frequency nuclear motion and static

disorder. In this work, we have accounted for inhomogeneous broadening by an

ensemble average over Gaussian-distributed site energies with width of 110 cm−1

for the FE states and 200 cm−1 for the CT states. In particular, to account for

the spatially correlated disorder and the fluctuations of the CT states, the Cholesky

decomposition scheme was used to generate the cross-correlated heat baths and static

disorder [86]. The dipole strengths and orientations of the chromophores were taken

from the direction of NA–NC atom on the pigments (3ARC.pdb). In particular, the

relative strengths of the transition dipole moments of the chlorophylls and pheophytin

molecules were set to |µChl| = 1.0 and |µPheo| = 0.773, respectively.

To verify the parameters, we have calculated the linear absorption and CD spectra,
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Figure 5.5: The experimental and associated theoretical absorption and CD spectra

at 300 K.

and compare them to the experimental ones. To achieve the optimal fit both for the

absorption and CD spectra, the site energies of the FE states, CT states and also the

coupling terms of FE–CT and CT–CT need to be optimized. In Fig. 5.5, we show

the absorption and CD spectra calculated at 300 K, together with the experimentally

measured spectra. The calculated stick spectra are presented as well. In order to

calculate the 2D electronic spectrum, we apply the EOM-PMA [87]. Therefore, all the

parameters used for the final 2D spectral calculation are: site energies, ǫPD1
= 14950
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cm−1, ǫPD2
= 14890 cm−1, ǫChlD1

= 14700 cm−1, ǫChlD2
= 14840 cm−1, ǫPheoD1

= 14835

cm−1, ǫPheoD2
= 14760 cm−1, ǫChlzD1

= 14910 cm−1, ǫPheoD2
= 14910 cm−1 and CT

states ǫP−
D1

P+

D2
= 14840 cm−1, ǫChl+

D1
Pheo−

D2
= 14680 cm−1, ǫP+

D1
Chl−

D1
= 14600 cm−1,

ǫP+

D1
Pheo−

D1
= 14180 cm−1. The parameters for the Ohmic spectral density are set to,

γ = 0.68 and ωc = 350 cm−1.

Dephasing and inhomogeneous broadening. In Fig. 5.6, representative ex-

perimental 2D electronic spectra of the reaction center are shown (left column) for

different waiting times, T=0 fs, 100 fs, 500 fs and 1 ps. The corresponding theoretical

calculations are presented as well in the right column, calculated for the same waiting

times. Both results show good agreement. At the initial waiting time, the 2D spectra

are significantly stretched along the diagonal direction which indicates strong inho-

mogeneous broadening present in the PSII reaction center. The anti-diagonal cross

section in the 2D spectrum is related to the homogeneous line broadening, which

is determined by fast electronic dephasing. Moreover, two negative-amplitude cross

peaks appear at initial time which indicate the double excited states absorptions.

They disappear very fast (<50 fs). At T=1 ps, there is no evidence of the inhomoge-

neous broadening and a similar bandwidth along the diagonal and the anti-diagonal

cross section appears.

Charge separation revealed by the calculation of the population dy-

namics. The kinetics of the charge separation are calculated based on our theoret-
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Figure 5.6: Real part of the experimental (left) and theoretical (right) 2D photon

echo spectra of the PSII reaction center at different waiting times. The theoretical

result is calculated with the model parameters obtained by simultaneously fitting

the linear absorption and CD spectra. The diagonal and cross peaks are labeled by

capital letters in frame T=0 fs.
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ical model and plotted in Fig. 5.7. For the first calculation, the initial population

is assumed to be equally located at the two peripheral chlorophylls ChlzD1/D2 since

they are close to the core antenna complexes CP43 and CP47. It is shown at top

of the Fig. 5.7. We observe that at short time, the initial charge separation follows

the order as: Chl+D1Pheo
−
D1, P

+
D1Pheo

−
D1, P

+
D1Chl

−
D1 and P−

D2P
+
D1. The first starting CT

state Chl+D1Pheo
−
D1 is mainly caused by the lowest FE state ChlD1, which trap the

excitons for the initial charge separation. After that, other two CT states P+
D1Pheo

−
D1

and P+
D1Chl

−
D1, which relate to the pigment ChlD1, start to become populated. P+

D2P
−
D1

is the last state for the initial charge separation.

It is important to realize that the charge-separation process revealed by the above

population dynamics is quite different from the one revealed by the 2D spectroscopic

study. The reason is that the excitation mechanisms are different. In the 2D experi-

ment, a finite population of all pigments is generated simultaneously by the broadband

laser pulse. In the present work, we have used a bandwidth from 14000 cm−1 to 15500

cm−1. This can be roughly simulated by assigning an initial population to each pig-

ment according to the magnitude of its transition dipole strength. The corresponding

dynamics is calculated and presented at bottom of the Fig. 5.7. The population of

each CT state is analyzed and the associated rates are shown in the figure.

Charge separation versus energy transfer. The kinetics and the associated

lifetimes can be resolved by applying a multidimensional global fit approach to the
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series of consecutive 2D spectra acquired at different waiting times. The procedure

for a global fitting of frequency- and time-resolved data is applicable only when the

dynamics is not dispersive, i.e., when the lifetimes do not significantly depend on the

wavelengths and the frequencies. To validate the applicability of the global fitting

to our experimental PSII reaction center 2D data, we have independently fitted each

decay trace in the set of the 2D spectra which contains about 28561 traces. We have

found that the retrieved lifetimes can be classified into three clearly distinguishable

groups with quite narrow distributions of lifetimes, except for the shortest component.

The quality of the 3D global fits can be inspected by comparing the experimental and

the fitted decay traces.

The experimental 2D data of the PSII reaction center are analyzed in terms of

2DDAS. The lifetime components are shown in the left column of Fig. 5.8. Three

different lifetimes (132 fs, 1.5 ps and 13.9 ps) are extracted from the global fitting. In

order to properly interpret the experiment, the theoretical lifetime components (148

fs and 1.98 ps) also resolved with 2DDAS by fitting the collection of the calculated 2D

spectra with different waiting times. Before analyzing the decay associated lifetime

components, we need to clarify the output of the information from the amplitude

spectrum Ai(ωτ , ωt) of the 2DDAS. A positive peak in amplitude spectrum indicates

an exponential decay along the waiting time T with the resolved time constant τi. In

contrast, a negative peak denotes an exponential growth along the waiting time with
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the time constant τi.

For the shortest experimental lifetime component – 132 fs, a broadband positive

peak located at ωt = ωτ = 14800 cm−1 along the diagonal direction is formed, which is

associated to fast electronic dephasing. In addition, a negative cross peak (ωt = 14700

cm−1, ωτ = 15000 cm−1) indicates the increase of amplitude in that region, which is

a typical signature of the energy transfer as revealed by using the simple dimer model

described in Sec. 5.3. The comparably shortest lifetime component of 148 fs is re-

solved in the calculated 2D spectra. It shows a positive peak located on the diagonal

(ωt = ωτ = 14800 cm−1), which indicates fast electronic dephasing. However, two

negative cross peaks are shown in the amplitude spectrum. One fast energy transfer

component is revealed as the energy transfer signature (ωt = 14800 cm−1, ωτ = 15000

cm−1). In addition, the other component of charge separation is uncovered by the

lower-right cross peak (ωt = 15200 cm−1, ωτ = 14800 cm−1). Its meaning is clarified

by comparing the 2D spectra calculated with the dimer model plus one additional

CT state as done in Sec 5.3. In contrast to the experiment, the fastest theoretical

component is associated to the mixing signature of electronic dephasing, fast energy

transfer and charge separation. This charge-separation component can be associated

to the rapid formation of the CT state (PD1PD2)
∗ → P+

D1P
−
D2 since it agrees with the

charge-separation rate of P+
D1P

−
D2 resolved by dynamical calculations. In Sec. 5.3, we

have demonstrated the coincidence of the rates revealed by the dynamical calculation
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and the 2DDAS-resolved rate of the tetramer model. The absence of this charge sepa-

ration in the current room-temperature measurement may be due to the interruption

of noise or fast electronic dephasing. A charge-separation component (1.5 ps) is well

resolved in the experimental part. The theoretical calculation shows a quantitative

agreement with the experiment with 2DDAS. The lifetime of 1.98 ps is resolved by

the 2DDAS. This lifetime component fits well with the rate of the primary charge sep-

aration between the electron donor and acceptor ((ChlD1PheoD1)
∗ → Chl+D1Pheo

−
D1)

predicted by the dynamical calculation. In contrast, the 2D experiment at 77K [77]

resolved the component of a mixture of energy transfer and charge separation with

a timescale of 1∼3 ps. This may be caused by the different temperature or by the

impossibility to effectively distinguish the energy transfer and the charge separation

component. Moreover, a well-resolved component with a time constant of 13.9 ps is

shown in Fig. 5.8(a) with only one positive diagonal peak located at ωt = ωτ = 14800

cm−1. It is not revealed by the theoretical counterpart since only short waiting times

(<6 ps) are calculated, which is not enough to resolve the 14 ps lifetime component.

It does not show any feature of an energy transfer or charge separation, in contrast

to the shorter 2DDAS components. We assume that this lifetime component is asso-

ciated with the slow energy transport from the two peripheral chlorophylls (ChlzD1

and ChlzD2) to the central cofactors since the electronic couplings are small due to
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the large distance.

(ChlD1PheoD1)
∗→Chl+D1Pheo

−
D1→P+

D1Pheo
−
D1,

(PD1PD2)
∗→P+

D2P
−
D1→P+

D1Chl
−
D1→P+

D1Pheo
−
D1.

(5.1)

Here, we did not resolve any long-lifetime component associated to the secondary

charge separation, which is indicated by the blue arrows in Eq. 5.1. The charge-

separation process P+
D2P

−
D1 → P+

D1Chl
−
D1 is not well resolved in the measured data

since the contribution of this CT pathway is small due to the relatively high site

energy of the P+
D2P

−
D1-state in the current model. It is well described in the calculated

results shown at the bottom of Fig. 5.7.

It is possible to resolve any long lifetime component associated to the secondary

charge separation, which is denoted by the blue arrows in Eq. (5.1). One reason

is that the secondary charge separation takes longer and exceeds the waiting-time

window we have addressed. In this experiment, we have measured the 2D spectra up

to ∼ 80 ps, and it appears still shorter than the timescale of the secondary charge

separation. In Ref. [76], the PSII reaction center has been measured up to 3 ns, with

the result that the secondary charge separation takes up to 65 ps or even 585 ps.

Both timescales are hard to resolve with a collection of 2D spectra up to 80 ps and

2DDAS technique from the presently available data.

Oscillations in 2D spectra and their origin. In Fig. 5.9, long-lived oscillations

are clearly visible in the selected diagonal (A and B) and off-diagonal peaks (C and
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D) of the measured 2D spectra. Interestingly enough, this indicates evidence of

quantum coherence. However, it is still under debate that it belongs to the electronic

or vibrational coherence [88, 89]. In the present work, we do not find any strong

oscillations of the off-diagonal peaks in our simulated 2D electronic spectra, in which

we did not include a vibrational mode. This points to a vibrational origin of the

observed coherent oscillations. Recently, the vibronic coherence was observed in the

PSII reaction center at cryogenic temperature and it has been well explained [90, 91]

by a strong vibrational coupling.

In this chapter, the dynamics of the charge transfer has been studied by the 2D

electronic spectroscopy. The pathways and corresponding timescales of the energy

and the charge transfer have been resolved by the global fitting approach. Based

on the simple dimer model, the charge transfer signature was identified by the DAS.

Moreover, this signature with a time constant 1.5 ps was observed from the DAS,

which is retrieved from the measured 2D spectra of the PSII reaction center. To our

knowledge, this is the first time of directly revealing the charge-transfer signature

from the reaction center. In Ref. [77], the 2D spectra of the reaction center have been

measured at cryogenic temperature and the timescales of energy and charge transfer

have been resolved. However, the direct evidence to distinguish the charge separation

from energy transfer has still be missing.
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Figure 5.7: Top: population dynamics of the CT states within 100 ps. The initial

population is assumed to be located at two peripheral chlorophylls ChlzD1/D2 with

equal probability of 1/2. The initial time window of 800 fs has been magnified in the

inset. Bottom: dynamics calculated with initially distributed population according to

the transition dipole strength of each pigment, which is used to mimic the 2D broad-

band excitation in the experiment. The transfer rates are fitted and yield P+
D2P

−
D1:

238 fs, Chl+D1Pheo
−
D1: 1.84 ps, P+

D1Chl
−
D1: 9.0 ps, P+

D1Pheo
−
D1: 51 ps. The strength

of static disorder was obtained from the fit of the absorption and CD spectra. The

results were calculated by averaging 500 samples.
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Figure 5.8: Experimental (top) and theoretical (bottom) DAS resolved by the global

analysis of the time sequence of the 2D electronic spectra of the PSII reaction center.

Note: one time component 13.9 ps can not be produced by theoretical calculation

since the limitation of the computer hardware, all the calculations of 2D spectra are

ended within the waiting time of 6 ps.
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Figure 5.9: Time-dependent populations (b) of the selected peaks in the 2D electronic

spectrum (a) at T=0 fs. Long-lived vibrational coherence can be seen in the traces

of selected peaks.

125



Chapter 6

Quantum coherence in the

Fenna-Matthews-Olson complex

In the last two chapters, the energy transfer in the LHCII and the charge separation

in the PSII reaction center have been studied by 2D electronic spectroscopy. In this

chapter, I report the study of the energy transport in a particular simple type of PPC,

the Fenna-Matthews-Olson complex at room temperature. Its principal features were

described in Chapter 1. Here, the process of energy transfer is analyzed by the global

fitting approach. The retrieved lifetime components show timescales from hundreds

of femtoseconds to tens of picoseconds. The subsequent theoretical model shows good

agreement with the experimental results. More important, based on the contribution

of experiment and theory, the retrieved timescale of the electronic coherence is found
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to be within ∼ 60 fs, which is even shorter than the fastest energy-transfer component.

This clearly manifests that, at room temperature, the electronic coherence is hardly

to play any functional role in the process of energy transfer in PPCs.

6.1 Introduction

The FMO complex of Prosthecochloris aestuari was the first PPC for which the struc-

ture was determined by X-ray crystallography [92]. Since its discovery, the resolution

of the electron density map has been refined down to 1.9 Å [93] and the structure

of the FMO complex of the closely related bacterium Chlorobium tepidum has been

determined as well [94, 95]. The two structures are very similar, but interestingly,

the spectra look different. The molecular origin of this difference is still unknown.

The structure of the FMO complex consists of a trimer, formed by three identi-

cal monomers of which each contains eight Bchl a. The molecular structure of the

trimeric FMO complex (extracted from Chlorobium tepidum) is shown in Fig. 6.1.

The FMO trimer complex mediates the exciton energy from the antenna complex

and the chlorosomes to the reaction center in the green sulfur bacteria [96]. Due

to the structural simplicity, the FMO PPC has been extensively studied by various

kinds of spectroscopies [97, 98]. In recent years, the ultrafast optical 2D spectroscopic

approach was first extended to the visible range [57] and evidence of the electronic

couplings between the pigments in FMO complex has been provided directly by the
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Figure 6.1: Pigment arrangement of Bchl a in the trimeric FMO complex of C.

tepdium. Eight pigments are included in each monomer. The structure is generated

from 3ENI.pdb [8] by using VMD package [9].

observation of the off-diagonal peaks in the 2D spectra [58]. Moreover, the exciton

energy transfer has been investigated with higher temporal resolution. The oscillatory

beatings observed in the off-diagonal signals of 2D optical spectra have been reported

to survive for longer than 600 fs at cryogenic temperature (77 K) [99]. They were in-

terpreted as the signature of long-lived electronic quantum coherent exciton dynamics

in the FMO network. The same conclusion was drawn also from an experiment at

higher temperature up to 277 K [100], and similar beatings have been reported for
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marine cryptophyte algae as well [101]. These experiments have triggered an enor-

mous interest in a potential new field of “quantum biology” [2, 102, 103, 104, 105],

with far reaching consequences even for the functionality of the human brain [106] and

for technological applications [107]. The cornerstone experiments [99, 100, 101] were

repeated to identify the excitonic energy transfer pathways [108] at 77 K. However,

observation of long-lived electronic coherence in the 2D off-diagonal signals was even

not mentioned in Ref. [108].

Theoretical simulations play an important role in interpreting the experimental

observations. The electronic couplings of the pigments in the FMO complex were

calculated by using quantum chemistry method [55]. With these parameters, Ishizaki

et al. calculated the energy transfer dynamics in the FMO complex using the exciton

model. The lifetime of electronic coherence agreed with those reported in experi-

ments [109], but the used value of the reorganization energy [110] is clearly too small.

2D electronic spectra have been calculated using the HEOM approach, with the re-

sult that the oscillations are much weaker than the experimental observations [111].

The dynamics of the exciton transfer has been calculated with the numerically exact

QUAPI method. It was found that the coherent oscillations are shorter than those in

the experimental observations [112]. To fit the experiment, the long-lived vibrational

coherence has been considered as a resource to enhance and prolong the electronic

coherence, especially in the resonant case [88, 113, 114]. However, an atomic model
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was subsequently used to investigate the corresponding excitonic dynamics in FMO

complex. In this approach, no evidence of long-lived quantum electronic coherence

was observed by the calculation of the population dynamics under the spectral den-

sity obtained from a quantum mechanics/molecular mechanics (QM/MM) approach

[115]. Based on the experimental and theoretical studies, clear evidence to support

the long-lived electronic coherence in the FMO complex is still missing, especially at

physiological temperature.

6.2 Materials and methods

Experimental setup. All the reported measurements were performed using the

2D setup, which was described in the third Chapter and built by the author of this

thesis. Ultrafast light pulses were generated by a home-built NOPA. It was tuned

to the near infrared spectrum and centered at 800nm. The broadband spectrum was

compressed by using the combination of grating, prism pair and a deformable mirror

as described. The pulse duration has been reduced to 16 fs, which was characterized

by FROG. The energy of the excitation pulse was controlled by a neutral density

filter (OD=1.0) and limited to 10-15 nJ for each beam at the sample position.

Sample preparation and measurement condition. The FMO sample was

prepared in the laboratory of Prof. Richard Cogdell (University of Glasgow, UK).

The FMO trimers were isolated from green sulfur bacteria (C. tepidum), dissolved in
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a Tris (PH=8.0) buffer, and stored at −80 ◦C. Before the measurement, the sample

was filtered in order to reduce unwanted scattering, which significantly affects the 2D

spectral measurements. The absorption spectrum was measured using an Avantes

mini lamp in a 1mm cell and the result is shown in the left of Fig. 6.2. In order to

check the linearity of the photon excitation, the relation between the exciton energy

and the PE signal has been measured and is shown in the right part of Fig. 6.2. It

clearly shows the linear relation between PE1/3 and the excitation energy when the

excitation energy is below 15 nJ. The sample was provided by Dr. Khuram Ashraf

and Prof. Richard Cogdell at the University of Glasgow, UK.

6.3 Theoretical modeling

We consider a molecular model of the FMO monomer described by the Hamiltonian

Hmol consisting of seven chlorophylls in a quantum two-level approximation. Recently,

the eighth pigment was found in the FMO complex. However, it is located far away

from the other seven pigments and it is likely that this pigment is lost in the majority

of the complexes during the isolation procedure [108, 116]. Thus, it is viable to restrict

to seven sites. Moreover, we only consider the monomer due to principle limitations

in computer hardware. The total transition dipole operator µ of the molecule is

coupled to the semiclassical electric field E(t) of the laser pulse, which results in the
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Figure 6.2: Left: measured linear absorption spectrum of the FMO trimer C. tepidum

(red line) with the excitation laser spectrum (blue line). Right: The dependence of

the homodyne PE signal on the excitation energy. To distinguish the nonlinear region

of the excitation, a linear fit was applied to the measured data to confirm the linear

dependence of PE∼E3 upto the excitation energy of 15 nJ.

time-dependent Hamiltonian

H(t) = Hmol − µ · E(t) . (6.1)

The total dipole operator is expressed via the transition dipole moments of individual

molecules µm according to

µ =
N∑

m=1

µm

(
αm + α†

m

)
, (6.2)
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with αm and α†
m being the creation and annihilation operators of the electronic exci-

tation on the mth molecule. The molecular Hamiltonian Hmol is given by

Hmol = He +Hph +He−ph. (6.3)

Here, the Frenkel Hamiltonian He describes the electronic DOF, and is given by

He =
N∑

m=1

ǫmα
†
mαm +

N∑

m=1

∑

n<m

Jn,m
(
α†
mαn + α†

nαm

)
,

where ǫm are the site transition energies of the molecules, and Jn,m is the inter-

molecular excitonic coupling. Hph describes the nuclear (phonon) DOF. We consider

a continuous distribution of phonon modes which can be modeled as a bath of har-

monic oscillators. In our model, we assume that the electronic excitation on the mth

molecule couples independently to its own harmonic bath given by

Hph =
N∑

m=1

Nm
b∑

j=1

(
P 2
mj

2
+

1

2
ωmjx

2
mj

)
. (6.4)

Here, Nm
b is the number of bath modes which couple to the molecule m, xmj and pmj

are the mass-weighted position and momentum of jth harmonic oscillator mode with

the frequency ωmj. The system-bath spectral density has the form

Jm(ω) =
π

2

Nm
b∑

j=1

c2mj

ωmj

δ (ω − ωmj) . (6.5)

As usual, we assume a continuous distribution of the frequencies of the bath modes

for Nm
b → ∞ and, in particular, we assume an Ohmic spectral density with param-

eters carefully determined from experimental data, see below. The electron-phonon
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coupling He−ph is assumed to cause only fluctuations of the electronic energy and is

independent for each molecule, such that

He−ph =
N∑

m=1

Nm
b∑

j=1

cmjxmjα
†
mαm . (6.6)

For the parametrization of the model, the site energies ǫm and the electronic couplings

Jn,m are obtained from Ref. [55]. We keep the electronic coupling elements as constant

without further modifications and use the site energies as the starting point for the

calculations. The site energies are further optimized according to the fitting of the

absorption and CD spectrum at different temperatures. To fit the absorption and

CD spectra simultaneously, we optimize the parameters of the site energies and the

inhomogeneous broadening, which accounts for the static disorder with a Gaussian

distribution (FWHM 90 cm−1 except site 3). In order to obtain a converged result,

500 spectra are calculated for the disorder average. We found that it is necessary

to reduce the static disorder of site 3 (FWHM 54 cm−1) to fit the absorption peak

of 12150 cm−1 at 77 K. The low-temperature calculations are shown in Fig. 6.3(a).

The transition dipole orientation are taken from PDB file (3ENI) [8] and the strength

are all assumed as equal to 1. In Fig. 6.3(b), we calculated the absorption and CD

spectrum at room temperature and compare to the measured spectra. Both show

excellent agreement. To fit the vibrational progression in the absorption spectrum,

we add one broadband underdamped vibrational mode in the spectral density besides

the continuous form of the Ohmic spectral density and the spectral density has the
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form

J(ω) = γwe−ω/ωc +
2

π
SΩ3 ωΓ

(Ω2 − ω2)2 + ω2Γ2
, (6.7)

with the parameters γ = 0.7, ωc = 350 cm−1, S = 0.12, Ω = 900 cm−1 and Γ = 700

cm−1. The details of the spectral density are shown in Fig. 6.4.

Figure 6.3: Experimental (square dots) and theoretical (red line) absorption and CD

spectra of FMO complex. The spectra measured and calculated at 77 K (a) and 296

K (b). The experimental data in (a) are taken from Ref. [117]. For all four cases, the

same parameters are used.
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Figure 6.4: The spectral density used for the modeling of the FMO complex. One

additional broadband peak is included to fit the vibrational progression in the ab-

sorption spectrum.

6.4 Energy flow in the FMO complex

We calculated the 2D photon echo spectra of the FMO complex and compare them to

the experimental data for different waiting times in Fig. 6.5. We find good agreement

between theory and experiment. At initial waiting time, the spectrum is significantly

stretched along the diagonal which manifests rather strong inhomogeneous broadening

in the FMO complex. With longer waiting time, the inhomogeneous broadening

decays rapidly and is hard to be observed at T=1000 fs. Furthermore, the magnitude

of the off-diagonal peaks on the up-left part of the 2D spectra increased during the

evolution of the waiting time. The spectrum becomes strongly elongated along the
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ωτ coordinate. It indicates the energy transfer of pigments inside the FMO complex.

Moreover, the long progressions from the central peak (ωτ = ωt = 12400 cm−1)

to (ωτ = 13500 cm−1, ωt = 12400 cm−1) manifests the vibrational relaxation of

the localized vibrational modes of the chlorophylls. In addition, we clearly observe

the decay of the central peak during the waiting time which is induced by thermal

relaxation.

The energy transfer pathways and the associated timescales can be resolved by

applying the global fitting approach to the series of consecutive 2D spectra with

different waiting times. We construct the three dimensional data and fit by four

exponential functions with different decay times, which is illustrated in Eq. 2.52. On

the left part of Fig. 6.6, the DAS from the measured data show four different timescales

of the energy transfer. The shortest one, 90 fs, shows one positive diagonal peak

located at (12500 cm−1) and one strong negative off-diagonal peak at (ωτ = 12500

cm−1, ωt = 12000 cm−1). It clearly shows the evidence of the energy transfer from the

chlorophylls with high site energy (12500 cm−1) to the lower ones (12000 cm−1). It

is interesting to point out that the theoretical calculation of the shortest component

shows the exactly same features and the timescale (90 fs) with higher resolution. The

second component (750 fs) of the measured data shows a similar character as the

first one but with somewhat boarder peaks. It indicates the second energy transfer

pathways from the higher site-energy pigments to the lower ones with longer transfer
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Figure 6.5: Real part of the experimental (left) and theoretical (right) 2D photon echo

spectra of the FMO complex at different waiting times. The theoretical parameters

are obtained from the fitting of the linear absorption and CD spectrum.

times. Theoretical calculations predict the same feature, however, with narrower

peaks. The third and fourth DAS only show one diagonal peak at the central position

12200 cm−1 with a rather broad band, which indicates thermal relaxation of the
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pigments inside the FMO complexes. The DAS from our model also shows the same

features with slightly different decay times of 6 ps. Hence, our model works well

to fit the experimental 2D electronic spectra and the 2DDAS based on one set of

parameters.

Figure 6.6: Experimental (left) and theoretical (right) decay-associated spectra. They

show clearly four different time components for the energy transfers.
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6.5 Oscillations in the 2D spectra and their origin

The residuals of the 2D spectra show oscillations within the first 2 ps. A Fourier

analysis of all residuals provides the 3D spectrum of the vibrational maps. To verify

the origin of the oscillations in the 2D spectra, we have performed a cross-correlation

analysis of residuals across the diagonal ωτ = ωt. We calculated the correlation

coefficients C between the residuals R for each pair of conjugated spectral positions

in the delay time window up to 2 ps, where the correlation coefficients are calculated

as

C(ωt, ωτ ) = corr(R(ωt, ωτ ,T),R(ωτ , ωt,T)). (6.8)

This yields a correlation 2D spectrum, which is plotted in Fig. 6.7. Negative peaks

indicate anticorrelated residuals and positive ones correspond to correlated residuals.

We find strong correlations and anticorrelations of different areas in the correlation

map. We know that all the pigments of the FMO complex have energies in the

frequency region 12000∼12600 cm−1. In this frequency range, two strong negative

peaks are found in the correlation map. Based on Ref. [118], this shows that the

oscillations in this region are related to the vibrational coherence. Moreover, we

clearly observe two negative peaks located at 12400 cm−1 and 13300 cm−1, which are

related to the localized vibrational modes of bacteriochlorophylls in the FMO. This

is rationalized by the vibrational progression in the absorption spectrum of Fig. 6.3.
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Figure 6.7: Correlation map of residuals obtained after subtracting the kinetics ob-

tained by global fitting. White dots indicate the energy eigenvalues of the FMO

Hamiltonian.

In our model, we didn’t include the localized vibrational states of the bacteri-

ochlorophyll due to the limitation of computational resource. However, in our model-

ing, any calculated oscillations originate from the beatings of the electronic coupling

between excitons. This clearly allows us to uniquely determine the origin of the os-

cillations observed in the experimental spectra. In the calculated 2D spectra, we find

the strongest oscillation position at the off-diagonal peaks located at 12300 cm−1 and
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Figure 6.8: Evolution of the cross peak (real part) from the calculated spectra. The

two peaks are located at the positions ωτ=12300 cm−1, ωt=12600 cm−1 and ωτ=12600

cm−1, ωt=12300 cm−1, respectively. It shows that electronic coherence only survive

for ∼80 fs.

12600 cm−1 and indicates electronic coherence within 80 fs. The trace of these two

positions are shown in Fig. 6.8.

For a better comparison with previous works [100], we extracted the trace at same

the position as the measured 2D spectra and plotted in Fig. 6.9. We did not observe

any large-magnitude oscillations with features of electronic coherence. We observe

the oscillations in real and imaginary parts with small magnitude and high frequency.
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Figure 6.9: The real, imaginary and absolute value of trace at (ωτ = 12350 cm−1,

ωt=12200 cm−1) from experimental 2D spectra. No long-lived electronic coherence

are observed at 296 K. The error bars are obtained from averaging the experimental

data over 4 data sets.

It clearly shows features of vibrational coherence.

6.6 Exciton dynamics at low temperature

In order to check the performance of the modeling and the reliability of the approach,

we consider in this section the impact of varying the temperature, but keeping all

other parameters unchanged. For this, we have calculated the linear absorption and

CD spectra at 77 K. The calculated results are shown in Fig. 6.3 (red solid lines)

together with the experimentally measured data taken from Refs. [58, 108]. We find

143



Figure 6.10: Real part of the 2D photon echo spectra calculated for a temperature of

77 K for selected waiting times as indicated. Notice that the two axes for ωτ and ωt

are swapped as compared to Ref. [108].

a good agreement given the fact that the only varied parameter is temperature. In

addition, we have calculated the 2D electronic spectra of the FMO complex at 77 K

as well with the same set of parameters. The results for different waiting times are

shown in Fig. 6.10. The spectra are in good agreement with the experimental results

reported in Refs.[58, 108]. The energy transfer dynamics and pathways can be clearly

observed by the kinetics of the off-diagonal peaks.

Moreover, we have calculated the time evolution of the off-diagonal signal at the
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spectral position (ωτ = 12350 cm−1, ωt = 12200 cm−1) considered in Ref. [100], but

now also for 77 K. Apart from changing temperature, we use the same parameters

as before. The results for the real and imaginary parts are shown in Fig. 6.11. We

find only weak electronic coherence which vanishes within the dephasing time of less

than 200 fs. As a consistence check, we also measure the homogeneous linewidth

provided by the anti-diagonal in Fig. 6.10 for zero waiting time. We find a FWHM of

∆hom = 90 cm−1. This corresponds to an electronic dephasing time of τhom = 120 fs

at 77 K, in agreement with the previous results. Hence, we cannot confirm long-lived

electronic coherence at a temperature of 77K reported up to times beyond 1 ps.
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Figure 6.11: Calculated time-dependent off-diagonal signal (red: real part, blue:

imaginary part) at the spectral position (ωτ = 12350 cm−1, ωt = 12200 cm−1) con-

sidered in Ref. [100] at 77 K.
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6.7 Simulating long-lived electronic coherence

We did not observe long-lived electronic coherence in the present experimental and

theoretical results of the FMO complex. However, we can consider the question how

a long-lived electronic coherence would show up in an optical 2D spectrum at low

temperature and, consistently, in the time-dependent off-diagonal signal. To answer

this question, we have used the simplest possible model of a pure Ohmic spectral

density, i.e., only the first term of Eq. (6.7) and mimic long-lived electronic coherence

by a very weak system-bath interaction. We set γ = 0.35 and ωc = 100 cm−1, and set

the temperature again to 77 K. In Fig. 6.12 (a), we show the result of the 2D spectrum

of the FMO under these artificial weak-coupling conditions. The weak system-bath

coupling induces a very narrow central peak with a small homogeneous broadening

visible in the anti-diagonal band width. We extract a FWHM of ∆hom = 25 cm−1.

This corresponds to an electronic dephasing time of τhom = 420 fs.

Correspondingly, we show in Fig. 6.12 (b) the time-dependent off-diagonal signal

at the spectral position (ωτ = 12350 cm−1, ωt = 12200 cm−1) considered in Ref. [100].

We find (artificially created) long-lived electronic coherence up to times beyond 450

fs, in agreement with the findings from the homogeneous line width. However, the

measured 2D spectra of the real FMO complex do not show these sharp ridges with

a very narrow diagonal peaks at zero waiting times.
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Figure 6.12: (a) Calculated 2D spectrum of the FMO under artificially assumed weak

system-bath conditions with an Ohmic spectral density with γ = 0.35 and ωc = 100

cm−1, and temperature of 77 K. Notice that the two axes for ωτ and ωt are swapped

as compared to Ref. [108]. (b) Extracted time-dependent off-diagonal signal at the

spectral position (ωτ = 12350 cm−1, ωt = 12200 cm−1) considered in Ref. [100].

6.8 Correlation revealed by the diagonal and anti-

diagonal bandwidth

In the 2D electronic spectra, the correlationM(T ) can be revealed by the time evolu-

tion of the diagonal and anti-diagonal bandwidth, M(T ) = (a2−b2)
(a2+b2)

, which is strongly

related to the non-Markvoianity of the system interact to the environment [119, 120].

Here, we measured the time-evolved diagonal (a) and anti-diagonal (b) bandwidth

from the 2D spectra with different waiting time, T. The correlation function M(T ) is

plotted in Fig. 6.13 and it shows one exponential decay at the short time range (< 500
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fs). Based on the correlation analysis, it clearly shows the Markovian dynamics and

it agrees with the previous works [121]. This proves that the FMO exciton dynamics

occurs in the fast modulation limit and the T2-time is reflected in the anti-diagonal

bandwidth.

6.9 Transport timescales of the photosynthetic com-

plexes

We have studied the energy transfer of the LHCII and FMO complexes. Both are

two typical photosynthetic proteins resolved from higher plants and the sulfur bacte-

ria. Despite their protein structure being rather different, it is interesting that both

measurements reveal similar timescales of the energy transport: The shortest time

constant of ∼100 fs is related to electronic dephasing. There, a fast energy transfer

within ∼1 ps occurs and a relatively slower energy transfer with a timescale of several

ps is formed. It is well known that the speed of the energy transfer is strongly related

to the long-range electrostatic interaction. So, the distance of the pigments located

inside the protein pocket is relevant. Nowadays, the distance between pigments can

be well resolved by high-resolution X-ray crystallography. It shows that the averaged

distance in the LHCII and the FMO complex are similar and in the range of 4∼12Å.

This leads to similar timescales of the electronic coupling between the pigments (5∼80
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Figure 6.13: Time-evolution of the correlation function M(T ) calculated from the

diagonal and anti-diagonal bandwidth. The dynamics can be well fitted by one expo-

nential function, which clearly manifests the Markovian dynamics and it proves the

exciton dynamics to occur in the fast modulation limit.

cm−1). It is now easy to understand why the nature chooses this distance of the pig-

ments for the energy transfers. On one hand, a larger distance definitely decreases

the speed of energy transport. On the other hand, it is hard to avoid the overlap of
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molecular orbitals if the distance of pigments is shorter than 3Å. There, the overlap

will induce the charge separation between different pigments, the same feature as

we reported for the reaction center in Chapter 5. However, the reaction center is a

functional protein, which separates the charges for the splitting of water. In addition,

the energy transfer direction and the rates are also strongly related to the energetic

gap between different pigments, which is induced by the different local protein en-

vironment. It is interesting to note that one argument suggests that the biological

function of the photosynthetic complex is determined by the surrounding helices, i.e.,

the backbone architecture of the molecular complex and their exciton dynamics [122].
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Chapter 7

Vibronic quantum coherence in

artificial photoactive molecules

So far, we have addressed natural biological photosynthetic complexes, i.e., the an-

tenna complex LHCII in higher plants, the FMO complex in the green sulfur bacteria

and the charge separation in the PSII reaction center. With the help of theoretical

studies, we have unravelled the short-lived electronic coherence, which is convoluted

with the vibrational quantum coherence during the processes of energy transfer and

charge separation. A central question is whether the electronic coherence can be pro-

longed by long-lived vibrational coherence via the vibronic coupling? It is well known

that the mechanism of the energy transfer is completely different when the electronic

coherence persists for a time longer or at least comparable to the timescale of the
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energy transport. It induces a spatially coherent energy transfer between pigments,

while the vibrational coherent do not considered to strongly influence the energy

transport since it usually originates from the local vibrations of pigments. Due to the

complexity of natural pigment-protein complexes (strong static disorder, congested

excitonic energies), the congested and strongly overlapping peaks in the 2D spectrum

hardly provide a clear picture. For better identifying the origin of quantum coherence,

we study the transfer dynamics in an artificial indocarbocyanine dye molecule using

2D electronic spectroscopy. This type of laser dye molecule shows a clear vibrational

progression in its absorption spectrum. Moreover, two monomers can form a dimer

by two linking butyl chains separated by ∼10 Å. This rather small distance allows

for strong electronic interaction and clearly separated excitonic transition peaks in

the 2D spectra. Moreover, the dynamics of each peak can be accurately traced over

time. It is an ideal sample to be used to understand the relation and the dynamical

interplay between electronic and vibrational coherence.

7.1 Molecular structure of the indocarbocyanine

dye

In this section, we analyze the details of the structure of the monomer and the dimer

molecule of indocarbocyanine dye. For the design of the molecule and in order to
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obtain its structural and spectroscopic parameters for the modeling of the absorption

and 2D spectra, we have used the HyperChem package (version 7, HyperCube Inc.,

U.S.A.). First we have constructed a monomer molecule, the indocarbocyanine dye,

and have optimized it using (sequentially) the PM3 and MM+ HyperChem toolboxes.

Then, by means of the ZINDO/S tool, we have calculated the electronic absorption

spectrum and have defined the magnitude of the transition dipole moment for the

S0 → S1 electronic transition. The obtained value of µ = 12.83 Debye is close to the

one found experimentally (µ = 11 Debye) from the absorption spectrum and from the

value of the extinction coefficient (Ref. [123], compound A− 1) using the well-known

relation from Ref. [124].

For the dimer, we have used two identical indocarbocyanine monomers and have

connected them by two butyl chains. Again, we have performed the structural opti-

mization with PM3 and MM+. It is important to note that we have added two free

ClO4 ions in order to realize the electrostatic equilibrium. The resulting geometry of

the bis-indocarbocyanine dimer is shown in Fig. 7.1. The distance between monomers

in this dimer is ≈ 10 Å (the lines in Fig. 7.1 have been drawn through the centers

of the electronic densities of the monomers), and the twist angle between them is 15

degrees.

The excitonic interaction energy between the two monomers was calculated in the

point-dipole approximation according to (see, e.g., Ref. [125])
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Figure 7.1: The structure of the bis-indocarbocyanine dimer, obtained after the Hy-

perChem optimization. Left: front view, right: top view.

J12 =
~µ1 · ~µ2

|~r12|3
− 3

(~µ1 · ~r12)(~µ2 · ~r12)
|~r12|5

. (7.1)

For the monomer dipole moment, we have µ1 = µ2 = 13 Debye. The distance

between monomers is r12 = 10 Å, and the angle between the transition dipole moments

is 15 degrees. We obtain the electronic coupling between two monomers as J12 = 822

cm−1.

7.2 Electronic and vibrational component

Next, we discuss details of the mixed electronic and vibrational components of the

wave functions of the molecule. Let us start with the simplest electronic two-level

model as illustrated on the left side of Fig. 7.2. The population of the ground state |g〉
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of the system is pumped to the excited state |e〉 which generates one single transition

frequency in the stick spectrum. The transition frequency in the stick spectrum is

determined by the energy gap between the ground and the excited state in the exciton

basis. After adding a vibrational degree of freedom, more transitions can arise, see

right-hand side of Fig. 7.2. The original electronic levels |g〉 and |e〉 are now split by

the vibrational coupling.

To be more precise, let us consider the monomer Hamiltonian H with a vibrational

mode coupled to it. We can define the wave function of this system as a direct product

of electronic and vibrational states, i.e., |ψ〉 = |α〉 |n〉 = |α, n〉 with α = g, e for the

ground or the excited state of the electronic degree of freedom and with n = 0, 1, . . .

being the vibrational quantum number. This wave function refers to the site basis. To

calculate the stick spectrum, we need to diagonalize H by a unitary transformation.

The resulting exciton basis with basis states |k〉 is defined by H |k〉 = Ek |k〉. The

transformation reads

|α, n〉 =
∑

k

|k〉 〈k|α, n〉 or |k〉 =
∑

α,n

|α, n〉 〈α, n|k〉 . (7.2)

The location of the sticks in the stick spectrum for the transition between the

exciton states |k〉 and |l〉 is at the frequency ωk,l = Ek − El. For the height of the

sticks and the ratio of the electronic and the vibrational parts, we need to have the
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dipole operator µ in the excitonic basis. It is given by

µ = |g〉 〈e|+ |e〉 〈g| ≡ (|g〉 〈e|+ |e〉 〈g|)⊗ Idvib

= |g〉 〈e| ⊗
∑

n

|n〉 〈n|+ |e〉 〈g| ⊗
∑

n

|n〉 〈n|

=
∑

n

[|g, n〉 〈e, n|+ |e, n〉 〈g, n|] , (7.3)

where we have inserted the identity operator in the Hilbert subspace of the vibrational

DOF. Next, we perform the transformation to the excitonic basis and insert Eq. (7.2)

in Eq. (7.3) and obtain µ =
∑

k,l µk,l |k〉 〈l| with

µk,l =
∑

n

[〈k|g, n〉〈e, n|l〉+ 〈k|e, n〉〈g, n|l〉] . (7.4)

The total height of the sticks is given by |µk,l|2 since I(ω) ∼ µ(0)µ(t). Hence, we

have

|µk,l|2 = µk,lµ
∗
k,l =

∑

n,m

[〈k|g, n〉〈e, n|l〉+ 〈k|e, n〉〈g, n|l〉]

[〈l|e,m〉〈g,m|k〉+ 〈l|g,m〉〈e,m|k〉] .

(7.5)

In order to distinguish between the electronic and the vibrational parts of the tran-

sition, we may write

|µk,l|2 =
(
|µk,l|2

)
el
+
(
|µk,l|2

)
vib
, (7.6)

where the electronic part is defined by those terms which involve no vibrationally
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excited states, i.e., with n = m = 0. Hence,

(
|µk,l|2

)
el
= [〈k|g, 0〉〈e, 0|l〉+ 〈k|e, 0〉〈g, 0|l〉] [〈l|e, 0〉〈g, 0|k〉+ 〈l|g, 0〉〈e, 0|k〉] , (7.7)

while the vibrational part is defined as the corresponding rest.

For the dimer Hamiltonian with one vibrational mode coupled to each monomer,

we can define the wave function again as a direct product of electronic and vibrational

states, i.e.,

|ψ〉 = |α〉1 |n〉1 |β〉2 |m〉2 = |α, n〉1 |β,m〉2 = |α, n; β,m〉 , (7.8)

with α, β = g, e for the ground or the excited state of the electronic degree of freedom

and with n,m = 0, 1, . . . being the vibrational quantum number. This wave function

again refers to the site basis.

The Hamiltonian is diagonalized by the transformation

|α, n; β,m〉 =
∑

k

|k〉 〈k|α, n; β,m〉 or |k〉 =
∑

α,β,n,m

|α, n; β,m〉 〈α, n; β,m|k〉 . (7.9)

For the electronic dipole operator of the dimer with ê1 = êx and ê1 = (cos(α)êx +

sin(α)êy) with the angle α between the dipole moments and êj the unit vectors in the
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coordinate system of the dimer, we have

µ =ê1(|gg〉 〈eg|+ |ge〉 〈ee|) + ê2(|gg〉 〈ge|+ |eg〉 〈ee|) + h.c.

≡ [ê1(|gg〉 〈eg|+ |ge〉 〈ee|) + ê2(|gg〉 〈ge|+ |eg〉 〈ee|) + h.c.]⊗ Idvib,1 ⊗ Idvib,2

= [ê1(|gg〉 〈eg|+ |ge〉 〈ee|) + ê2(|gg〉 〈ge|+ |eg〉 〈ee|) + h.c.]

⊗
∑

n

|n〉 〈n|1 ⊗
∑

m

|m〉 〈m|2

=
∑

n,m

[ê1(|g, n; g,m〉 〈e, n; g,m|+ |g, n; e,m〉 〈e, n; e,m|)

+ê2(|g, n; g,m〉 〈g, n; e,m|+ |e, n; g,m〉 〈e, n; e,m|) + h.c.] .

(7.10)

As before, we perform the transformation to the exciton basis and with µ =
∑

k,l µk,l |k〉 〈l|,

we obtain

µk,l =
∑

n,m

[ê1(〈k|g, n; g,m〉〈e, n; g,m|l〉+ 〈k|g, n; e,m〉〈e, n; e,m|l〉)

+ê2(〈k|g, n; g,m〉〈g, n; e,m|l〉+ 〈k|e, n; g,m〉〈e, n; e,m|l〉) + h.c.] .(7.11)

From this, the electronic part (|µk,l|2)el again follows by taking the square and setting

all vibrational quantum numbers to zero (n = m = 0). As before, the “rest” is the

vibrational part.

7.3 Theoretical model

The goal is to study the excitonic dynamics in terms of 2D optical spectroscopy and

in the presence of strong vibronic coupling. For a theoretical description, we first
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Figure 7.2: Sketch of a simple electronic (left) and vibronic (right) model with the

associated stick spectra. The blue and pink sticks represent the electronic and vibra-

tional components, respectively.

set-up a model Hamiltonian which includes vibrational states (see vibronic model in

Chapter 1). By an accurate fit to the experimental absorption spectrum, we determine

its parameters. We consider an electronic transition between the electronic ground S0

(|g〉) and first excited state S1 (|e〉), separated by the energy gap E. The electronic

states are coupled to the excitations of a single vibrational harmonic mode with

the frequency Ω and with the bosonic creation and annihilation operators, b† and b,

respectively. We denote the exciton-phonon coupling constant by κ. The monomer

Hamiltonian thus reads (h̄ = 1)

Hmono = Hg +He = |g〉hg 〈g|+ |e〉 (he + E) 〈e| , (7.12)
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with hg = Ω
(
b†b+ 1/2

)
and he = Ω

(
b†b+ 1/2

)
+ κ(b† + b). We further couple

the monomer Hamiltonian to a fluctuating Gaussian quantum mechanical environ-

ment described by the standard bath Hamiltonian HB =
∑

j,ν=el,vib ωj,ν(a
†
j,νaj,ν+1/2)

[16]. The bilinear coupling is given by HSB = |e〉 〈e| ξel(t) + (b+ + b)ξvib(t). The

excited electronic state is coupled to the quantum statistical fluctuations ξel(t) =

∑
j cj,el(a

†
j,el + aj,el), while the vibrational motion is coupled to a different harmonic

bath via ξvib(t) =
∑

j cj,vib(a
†
j,vib + aj,vib). Both baths have the same Ohmic spectral

density, i.e., Jel/vib(ω) = γel/vibωe
−ω/ωc . We assume a large cut-off frequency ωc taken

to be equal for both branches. We calculate first the absorption spectrum [126]

I(ω) ∝ ω

∫ +∞

−∞

dt eiωt〈µ(t)µ(0)〉g , (7.13)

where µ = |g〉 〈e| + |e〉 〈g| is the transition dipole moment of the monomer writ-

ten in the Heisenberg picture. The quantum dynamics was calculated by means

of the TNL master equation [66] for the system’s reduced density operator ρ(t) af-

ter tracing out the bath DOF. The subscript g in Eq. (7.13) indicates a tracing

with respect to the initial state given by the equilibrium density operator (kB = 1)

ρ(0) = |g〉 〈g| ⊗ e−Ω(b†b+1/2)/T0/Zph where the vibrational mode is in thermal equilib-

rium at temperature T0 = 300 K. Zph is the phonon equilibrium partition function.

The electronic and the vibrational bath are held at the same temperature. Inhomoge-

neous broadening is included by convoluting the calculated homogeneous absorption

spectrum of Eq. (7.13) with a Gaussian-shaped inhomogeneous broadening function.
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Figure 7.3: Measured (symbols) and calculated (lines) absorption spectra of the

monomer (a) and dimer (b). In addition, the stick spectra are shown. The elec-

tronic and vibrational contributions to the eigenstates are indicated by the different

colors. The main electronic transition in the monomer spectrum (the “zero-zero”

transition), as well as the vibrational progressions, are clearly resolved. In the dimer

spectrum (b), a clear electron-vibrational coherent coupling is present. The green

line in (b) indicates the power spectrum of the excitation pulse of the laser used in

the simulations.

Furthermore, the obtained spectra are averaged over 500 random orientations. From

the fitting of the calculated absorption spectrum to the experimental one, we obtain
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the complete set of parameters for our model: E = 18850 cm−1, Ω = 1180 cm−1,

κ = 800 cm−1, γel = 0.9, γvib = 0.01, ωc = 700 cm−1, and the FWHM of the in-

homogeneous broadening of 300 cm−1 which is typical for the dissolved organic dyes

at room temperature. Our model reproduces the monomer experimental absorption

spectrum very well as shown in Fig. 7.3a, together with the calculated stick spectrum.

For achieving convergent results, we have included nph = 6 vibrational eigenstates. To

estimate the vibrational dephasing rate, we first set γel = 0 and kept the off-diagonal

elements of the vibrational coupling in the exciton representation. Then, using an

estimated vibrational lifetime of 1 ps, we have adjusted the vibrational dephasing

rate to γvib = 0.01. The stick spectrum in Fig. 7.3a clearly shows that the main peak

is purely electronic, while the three well resolved side peaks have a vibrational origin.

Having obtained the monomer model parameters, we next turn to the dimer.

It consists of two identical indocarbocyanine monomers, covalently bounded by two

butyl chains (the homodimer) with an in-plane angle of α = 15◦. To extend the model

to the dimer, we use the Hamiltonian

Hdim =
∑

j,k=g,e

|jk〉 (h(1)j + h
(2)
k ) 〈jk|+ |ge〉U 〈eg|+ |eg〉U 〈ge| . (7.14)

Here, U is the electronic dipole coupling which can be calculated in the point-dipole

approximation using the structural information for the dimer skeleton obtained using

the HyperChem v.7 package (see last section). For this geometry, the calculated value

of U is ≈ 820 cm−1. The dimer Hamiltonian includes two vibrational modes each
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belonging to one monomer in the same way as the molecular Hamiltonian. Hence,

h
(x=1,2)
g = Ω(b†xbx+1/2) and h

(x)
e = E+Ω(b†xbx+1/2)+κ(b†x+ bx) for the ground and

excited states, respectively. The total transition dipole moment is µ = µ1 + µ2 with

µ1 = êx(|g1〉 〈e1| + |e1〉 〈g1|) and µ2 = (cos(α)êx + sin(α)êy)(|g2〉 〈e2| + |e2〉 〈g2|) with

angle α between the dipole moments and êi the unit vectors in the coordinate system

of the dimer. The dimer absorption spectrum is also calculated using Eq. (7.13).

The excellent fit to the experimental spectrum is depicted in Fig. 7.3b. We used the

parameters E = 18700 cm−1, U = 870 cm−1,Ω = 1230 cm−1, and κ = 834 cm−1. The

slight modification of the monomer parameters (which have been used as an initial

guess in the fitting procedure) is reasonable and could be attributed to the presence

of the butyl chains perturbing the wave functions of the monomers. We have used

the same values for the damping parameters as for the monomer. The stick spectrum

in Fig. 7.3b reveals a strong electron-vibrational coherent coupling. Different states

have quite different vibrational/electronic contributions in the stick components. For

example, the main peak labeled as A shows almost equal contributions from electronic

and vibrational states. For peak C, the electronic contribution is dominant, whereas

the vibrational contribution clearly dominates in the peak B. From the electronic

and vibrational contributions to the eigenstates, depicted in the stick spectrum in

Fig. 7.3b using different colors (see figure capture), one already could expect that the

dephasing of the associated transitions, and consequently the damping of coherent
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oscillations in the 2D spectra, should be rather different since the dephasing of pure

electronic transitions is in general much stronger than the vibrational dephasing.

However, as we will demonstrate below, this is not the case.

7.4 Electronic and vibrational coherence

7.4.1 Short-lived vs. long-lived quantum coherence

We next address the coherent time evolution of the coupling of electronic and vibra-

tional DOF in the artificial dimer. To that end, we consider the 2D photon echo

spectrum [23, 127, 128] which can be calculated upon using the phase matching ap-

proach of Ref. [26] in combination with the time-convolutionless quantum master

equation [66]. The doubly excited states (the excited-state absorption) with an ex-

citon at each monomer were properly accounted for in the model calculation but

doubly excited states within the same monomer were neglected. To match the exper-

imental conditions, the carrier frequency of the laser pulse is set to 18520 cm−1 and

its duration to a FWHM of 7 fs. The resulting 2D photon echo spectra at different

waiting times T are shown in Fig. 7.4. We see clearly separated diagonal peaks which

correspond to the peaks A,B and C in the linear absorption spectrum shown in Fig.

7.3b. We note that the peak A represents a strong electron-vibrationally superposed

vibronic state. Also, well-separated cross peaks (labeled by D to I) appear. Peaks D
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and G are the most intense and correspond to the interference between the diagonal

peaks A and B.

Figure 7.4: Real part of 2D photon echo spectra of the dimer at different waiting

times (as indicated) calculated with the model parameters obtained from the fit of

the dimer linear absorption spectrum. The diagonal as well as the cross peaks are

labeled by capital letters in the frame T = 0 fs.

The strong vibronic coherent coupling is further illustrated in the sequence of 2D

spectra for increasing waiting times with a step of 10 fs, shown in Fig. 7.4. We can

clearly identify the oscillatory behavior of the amplitudes of the cross peaks ‘by eye’.

The calculations reproduce well the main features of the measured 2D spectra (Fig.

7.5) in Ref. [129, 130]. The slight underestimation of the excited state absorption is
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Figure 7.5: Measured absorptive 2D spectra of biscyanine at selected waiting times.

The diagonal peaks and the well resolved cross peaks between the main transition

and lower energy peaks are evident. The figure is taken from Ref. [129].

likely due to neglecting the higher excited states of the monomer.

To study the effect of the environment on the coherent coupling in more detail,

we monitor the time evolution of the amplitude of the cross peaks as labeled in Fig.

7.4 for increasing waiting times. They can readily be extracted from the series of the

2D spectra (the calculations were performed with the waiting time step of 5 fs). The

results are shown in Fig. 7.6 as symbols to which we fit a cosine function damped by

a single exponential decay. This yields the oscillation periods and decay times which
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are summarized in Table 7.1 (first row).

Figure 7.6: Amplitude of the spectral cross peaks D,G and I vs. the waiting time T .

The symbols mark the cross peak maximum extracted from the real parts of the 2D

spectra, while the solid lines represent a fit to an exponentially decaying oscillatory

function. The oscillatory behavior of the cross peaks is shown for both the weakly

(γvib = 0.01) and the intermediately (γvib = 0.12) damped vibrational modes (see

text for details).

We find that the coherent oscillations appear with a period of around 25 fs and

with decay times of 40 − 50 fs. The latter are typical electronic dephasing times of
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organic dyes. The oscillation frequencies match the energy splittings between the

main transitions A, B, and C in the dimer absorption spectrum (Fig. 7.3b) given

by the stick components. Likewise, the coherence time (i.e., the decay time of the

oscillations τD in Table 7.1) is clearly dominated by the electronic dephasing for all

cross peaks. More importantly, these coherences are independent of the participation

ratio between the electronic and vibrational contributions. This can be additionally

verified by increasing the vibrational dephasing rate by one order of magnitude. The

system then goes from the regime of weak damping with γvib = 0.01 to the regime

of intermediate damping with γvib = 0.12. We find a proportional decrease of the

vibrational coherence time from 2 ps to ≈ 200 fs. The extracted oscillations for both

cases are also plotted in Fig. 7.6. For this intermediate damping, we find similar

coherent oscillations decaying within a similar time window. The resulting fit pa-

rameters to the exponentially decaying cosine function are given in Table 7.1 (second

row). Up to minor quantitative modifications, no significant impact of the increased

vibrational damping is observed. This shows that the amplitude of the oscillating

cross peaks is damped by the strong fluctuations acting on the electronic degree of

freedom, i.e., electronic dephasing and, importantly, the weak vibration-bath coupling

cannot reduce its damping.

A further proof can be obtained by changing the angle α between transition dipole

moments of the monomers. This is readily possible in our accurate theoretical model
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D G I

Damping TD/fs τD/fs TG/fs τG/fs TI/fs τI/fs

weak 24.6 38.5 27.6 25.7 24.8 38.0

intermediate 25.8 18.9 26.7 30.5 26.8 23.6

Table 7.1: Oscillation periods TX and decay times τX of the cross peak maxima for

the peaks X = D,G and I for a weakly damped vibrational mode with γvib = 0.01

and a intermediately damped vibrational mode with γvib = 0.12.

while it could be a great challenge in the experiment. Tuning of α modifies the

exciton coupling between molecules, changes the relative intensities of the excitonic

transitions, and induces a redistribution of the electronic contributions relative to the

vibrational ones. For example, for α = 60◦, the ratio of the peak amplitudes of A and

C in the absorption spectrum reaches ≈ 1/3 vs. 1/60 for α = 15◦. Thus, tweaking of

α permits an easy control of the exciton transitions and of the contributions to both

the electronic and vibrational sector. Some examples of calculated absorption and

stick spectra with corresponding electronic and vibrational contributions for different

angle α are given in Fig. 7.7.

We have calculated 2D spectra for various angles and waiting times increasing

in steps of 5 fs. From there, the time dependence of the cross peaks was extracted

and fitted to a single exponentially decaying cosine function as before. The results
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Figure 7.7: Absorption spectra of the dimer for different twist angle α = 0o, 30o, 45o,

60o (a-d) between the two transition dipoles of monomers.

of this fitting for the cross peaks D and G are collected in Fig. 7.8. We find that

despite small quantitative changes, the decay times are essentially independent from

the angle α between the monomer transition dipole moments. This supports the

previous conclusion that the quantum coherence of excitonic transitions is clearly

dominated by the electronic dephasing.

It is well established that in some excitonically coupled systems the coherent

oscillations in measured 2D spectra live sometimes significantly longer than primi-

tively estimated from the magnitude of electronic dephasing. This is true even at

room temperature (see, e.g., Refs.[100, 101, 131]). Nevertheless, their magnitudes are
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Figure 7.8: The oscillation periods Tx=D,G and the decay rate τx=D,G for selected

cross peaks as a function of twist angle α between the transition dipole moments of

monomers evaluated at short times where the electronic dephasing prevails.

rather weak. In recent experimental study [132] of the oxidized reaction center from

Rhodobacter sphaeroides, which can be considered as a good “natural” dimer model,

the authors found in the 2D spectra weak oscillations lasting up to 1 ps at room

temperature. Therefore, the origin and the physical mechanism of such long-lasting

oscillations needs to be established.

In search for weak but long-lived oscillatory components, we have extended the

waiting time window in our simulations to 400 fs and have found that, alongside with

the short-lived oscillations in the cross peaks analyzed above (Fig. 7.6), there are

much weaker long-lived oscillations. A typical example of these oscillations for our
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model dimer with α = 15◦ and γvib = 0.01 for the cross peak D is shown in Fig. 7.9.

In this case, we fit this dynamics with two decaying cosine functions and find two

similar yet distinguishable periods. The period of the strongly damped oscillation

corresponds to the splitting between the interfering diagonal peaks A and B in the

time domain, whereas the period of the long-lived oscillation precisely corresponds to

the value of the vibrational frequency of Ω = 1230 cm−1. For this particular cross

peak D, the ratio between their amplitudes is 44 : 1 and is different for the other cross

peaks. Notably different is the ratio for the imaginary part of the oscillations in the

selected cross peak (see also Fig. 7.9). The long-lived component is stronger by about

one order of magnitude. Since the overall amplitude of the real part dominates, the

absolute 2D spectrum only shows a weak component of long-lived oscillations. Thus,

it might be experimentally advantageous to study 2D spectra phase-resolved.

We observe a similar mixing of a strongly damped oscillation with a period cor-

responding to the splitting between peaks A and B and the long-lived vibrational

frequency Ω (Fig. 7.9) for the position in the 2D spectra with ωt = 17900 cm−1 and

ωτ = 19720 cm−1, labeled in Ref. [129] as peak X. The calculated kinetics is in good

agreement with the experimental observation (see Fig. 4d in [129]). The measure-

ment along with its theoretical description in Ref. [129] was performed in a much

smaller waiting time window (120 fs) than we used in our simulations (400 fs). Fig.

7.9 clearly resolves that at waiting times around 100 fs both contribution are of the
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Figure 7.9: Oscillations in cross peaksD in a large waiting time window (symbols) and

results of a two-component fit (see in text) revealing oscillatory frequencies 1235± 30

and 1350±28 cm−1 corresponding to the vibrational frequency Ω and to the splitting

between peaks A and B in the absorption spectrum of dimer, respectively.

same order of magnitude. Data up to this point do not justify a fit with two separate

components and a fit with only a single component results only in a slightly longer

dephasing time (as observed [129]) than in our analysis for the strong component ob-

tained. Moreover, the polaron-like model used in Ref. [129] in which the vibrational

mode has been integrated out generates an additional mixing of the contributions

which renders the separation more difficult. Thus, our extended simulation (fully in

line with experiments up to waiting times of ∼ 100 fs) reveals the long-lived weak

component as a theoretical prediction to be tested in the experiment.
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The nature of this long-lived oscillations becomes clear if we investigate more

precisely the absorption stick spectrum as shown in the inset of Fig. 7.3b. The small

satellite in the vicinity of the stick A has in essence a pure vibrational origin and

the contribution of electronic transitions is very small. In turn, its decoherence is

weak and the split between the stick component B and this satellite is precisely

given by Ω. Therefore, their interference generates a long-lived oscillation with the

frequency being equal to the vibrational frequency Ω and with a weak amplitude

which is dictated by the small magnitude of that satellite.

To confirm this result, we have examined several additional parameter combina-

tions. We have doubled the vibrational frequency and have kept all other model

parameters unchanged. Similarly, we have decreased the excitonic coupling strength

to U = 250 cm−1 and kept the vibrational frequency at the previous value of Ω = 1230

cm−1 (Details in Appendix B). In all cases, we have found long-lasting oscillations

with small amplitudes in the kinetics of the cross peaks in addition to the quickly

decaying short-time oscillations. All results are consistent with those shown in Figs.

7.6 and 7.9. Importantly, the frequencies of the low-amplitude oscillations coincide

with the vibrational frequency used. Whereas in the experimentally studied dimer

both the energy difference between peak A and B and the vibrational frequency are

very similar, in these theoretically designed dimers these energies differ strongly and,

thus, this assignment is unambiguous.
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Figure 7.10: Kinetics of 2D spectra (top) for the peak position of ωt = 17900 cm−1

and ωτ = 19720 cm−1. The vertical line marks the time delay window used in

the experiment of Ref. [129]. The Fourier transform of residuals (bottom) after

a 3-exponential fit of kinetics reveals fast-decaying and long-lasting oscillations with

the frequencies of ≈ 1400 cm−1, a vibrational frequency ≈ 1230 cm−1, and a high-

frequency component ≈ 2500 cm−1 originating in the excited-state absorption. While

the 1400 cm−1 - component has a rather broad spectral width, the accompanied

vibrational component is very narrow.

This observation of an accurate coincidence of the frequencies of the long-lived

oscillations and vibrational states can be understood using lowest-order perturbation

theory. For the two equal monomers forming a dimer, standard perturbation theory

for degenerate states yields a contribution in first order in U , while the electron-
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phonon coupling appears only in second order in κ. We find for the dimer energies of

the state |k = g/e, n = 0, 1, . . . 〉 the expressions E(1)
gn = nω−U,E(1)

en = E−κ2/ω+nω+

U , E
(2)
gn = nω+U and E

(2)
en = E−κ2/ω+nω−U . Since these expressions only include

the lowest order contributions, they can provide only the location of those peaks whose

electronic or vibrational contribution is sizable. Inserting the values obtained from a

fit to the linear absorption spectrum from above, we find the peaks at energies given by

E
(2)
e0 = 17265 cm−1, E

(2)
e1 = 18495 cm−1, E

(2)
e2 = 19725 cm−1 and E

(2)
e3 = 20955 cm−1.

Also, the peaks at higher energies E
(1)
en = E

(2)
en + 2U are present, although they are

significantly smaller in amplitude. They follow as E
(1)
e0 = 19005 cm−1, E

(1)
e1 = 20235

cm−1, E
(1)
e2 = 21465 cm−1 and E

(1)
e3 = 22695 cm−1. Fair enough, the accuracy of this

lowest-order estimate is limited. Moreover, additional tiny peaks in the absorption

spectrum are not covered by the lowest-order estimates of the energies and higher

orders are required.

7.4.2 Controversy on the origin of the coherence

Over the last years, multidimensional ultrafast optical spectroscopy has been devel-

oped into a very successful probing tool [23, 58, 127, 128] aiming to reveal quantum

coherent dynamics of excitonically coupled electronic states. The femtosecond time

scale of the excitonic dynamics in photoactive molecular compounds and, especially,

in natural photosynthetic units such as the antennae complexes and the reaction
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centers has become accessible (see, e.g., [49, 58, 59, 77, 101]).

While some 2D spectra at low temperature clearly display excitonic features in

the form of well-resolved spectroscopic cross peaks [49, 58], at ambient temperature

they are often fairly unstructured, and recovering of useful information about exciton

states and their couplings is not possible. However, it has been reported that the

measured sequences of 2D spectra taken at different “waiting” time delays T contain

periodic oscillations in their amplitudes. Recent examples include the FMO complex

[99, 100], photoactive marine cryptophyte algae [101], the bacterial reaction center

and the light-harvesting complex LH2 of Rhodobacter sphaeroides [132, 133], the light-

harvesting complex LHCII of the Photosystem II [49], and chlorosomes from the green

sulfur bacterium Chlorobaculum tepidum [134]. Strong long-lived oscillatory compo-

nents have been recently observed in the 2D photon echo spectra of artificial units at

room temperature in J -aggregates [131]. These oscillations were initially attributed

to the strong quantum coherent coupling between the excitonic states formed by inter-

acting electronic states of the molecules [100, 101]. However, in addition to the purely

electronic couplings [2], signatures of the vibrational DOF of the pigment-protein host

[104] can also be accessed on the same spectroscopic footing. Any coherent coupling

in general shows up in a sequence of 2D spectra in form of a coherent oscillatory time

evolution of the amplitude of off-diagonal cross peaks. Long-lived electronic coher-

ence are unexpected and have been proposed to affect the mechanism, the quantum
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yield, and the time scale of light harvesting [135, 136] in general. However, long-lived

vibrational coherence are common and are not expected to strongly affect the light

harvesting. Identifying the nature of this coherence, specifically the details of the in-

volvement of vibrational effects into the excitonic dynamics, has thus become a hotly

debated issue [88, 113, 114, 121, 137, 138, 139, 140, 141, 142, 143, 144, 145]. The

decoherence rate reflects the magnitude of frequency fluctuations which arise from the

coupling to the surroundings. Vibrational transitions have small fluctuations since

the solvent interactions are not very sensitive to the vibrational state. However, elec-

tronic transitions show much stronger fluctuations, hence the faster decoherence (see

Chapters 5 and 6 in Ref. [146]).

Natural molecular complexes are rather large and involve many neighboring ex-

citonic states, broad spectral line shapes, and a complicated spectrum of vibrational

modes. In turn, the ensuing strong spectral overlap of the excitonic and vibrational

DOF renders it challenging to identify strongly overlapping cross peaks in the 2D-

spectra. In addition, the complex protein environment could nebulize coherent elec-

tronic or vibrational transitions. Thus, to pinpoint the nature of the coherence, the

artificial model dimer described in the Chapter which is much less complex in the

electronic and vibrational structure and which can be chemically synthesized in a

controlled way, is highly useful. Due to the strong excitonic coupling, small con-

formational variations lead to the well resolved peaks in 2D map shown in Fig. 7.4,
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which allow to study different dynamical behavior of electronic or vibrational origi-

nated peaks.

As shown above, we have rigorously established a vibronic exciton model, i.e.,

the need for a strong electron-vibration coupling in order to reproduce the experi-

mentally measured absorption spectra of both the monomer and dimer. We found

well separated peaks also in the calculated 2D photon echo spectra. These spectra

agree well with experiment [129, 130]. On the basis of this accurate modeling of the

real molecular complex, we have shown that the strong vibronic cross peaks, which

occur in the 2D spectra, evolve in a quantum coherent manner over the electronic

decoherence time (about of ∼ 50 fs). Their oscillation periods correspond to the

vibronic splittings. Moreover, the theoretical model allows us to vary the angle be-

tween transition dipole moments of the two monomers “in theory” in a controlled

way. This modifies the vibrational contributions to the exciton states and proves

that the overall decoherence is dominated by the electronic dephasing. Likewise, it

is essentially independent on the vibrational dephasing channel. These findings fully

express the naive expectation that all vibronic states are subject to electronic de-

phasing and, thus, corresponding 2D signals must decay fast. Surprisingly, there is

additionally a small slowly decaying oscillatory component which we observed by ex-

tending our simulations to delay times up to 400 fs. Its oscillation frequency exactly

corresponds to the frequency of the vibrational transitions and their decay is caused
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by the weak vibrational decoherence and typically last up to several picoseconds for

the C-C stretching mode. The associated frequency of ≃ 1200 cm−1 is determined by

a weak delocalization with the electronic states. Thus, the overall kinetics of the spec-

tral cross peaks has two clearly separated and distinguishable contributions: (i) The

short lived and large-amplitude oscillations which are rapidly damped due to a strong

electronic dephasing. The associated frequencies are determined by the vibronic split-

ting. In addition, (ii) there exist long-lasting, but small-amplitude oscillations whose

life times and frequencies are determined by the inherent properties of the molecular

vibrational states. Our results suggest a similar picture for the oscillatory behavior

observed in photosynthetic complexes.

In the photosynthetic system, the intramolecular vibrational modes can be well

resolved by a fluorescence or delta-fluorescence line-narrow experiment [147]. Vibra-

tional frequencies and vibronic couplings (Huang-Rhys factor) can be estimated by

fitting the data of the measured fluorescence spectrum. Relatively small Huang-Rhys

factors were resolved, with a range of 0.01 to 0.05, which is much weaker than the vi-

bronic coupling measured in current artificial dimer model (Huang-Rhys factor ∼ 0.6).

This may be caused by the correlation between the vibrational motion of the butyl

chain and the molecular electronic wave function. It would be better for the study if

molecule had a vibronic coupling comparable to the natural photosynthetic system. It

could be an interesting challenge for the experiment to control the vibronic coupling
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strength. However, this is readily possible in the theoretical simulation. In Ref. [110],

2D spectra of the vibronic dimer model were calculated with weak, intermediate and

strong vibronic couplings and it has been proved that the long-lived oscillations in

the 2D experiment originate from the vibrational-assisted vibronic coherence.

Due to the complexity of the molecular structure in the photosynthetic system,

theoretical predictions are always based on the system-bath model approach, in which

the energetic structure is phenomenologically simplified as a quantum ‘two-level sys-

tem’ and the environment is modeled as a reservoir of harmonic oscillators providing

Gaussian quantum fluctuations. For an improved interpretation of the coherent cou-

pling mechanism, an atomic view of the system should be developed for the study. For

instance, the QM/MM approach is a molecular simulation method that combines the

strengths of the QM (accuracy) and MM (speed) approaches, thus allowing for the

study of photo-deactivation process in more complicated molecular structures [148].

However, it is still a challenge for this approach to study the nonequilibrium quan-

tum dynamics with the laser-matter interactions included, especially, to deal with the

feedback of the laser-induced dephasing between ground and excited states from the

heat bath is challenging [149].
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Chapter 8

The coherent modified Redfield

quantum master equation

Due to the complexity of the natural photosynthetic systems and the artificial solar

cells, the calculation of 2D electronic spectra is still a big challenge for the current

computational resources. For instance, in order to properly include the laser-matter

interaction, a rotational average and the averaging over static disorder has to be

taken into account for the comparison between theory and experiment. For this,

more than 6000 CPUs are used for the computation of the 2D spectra of the PSII

reaction center in Chapter 5 for a given waiting time and it is not available for

instance, for the study of the energy transfer or charge separation in the PSII core

complex. It indeed requires one effective approach, which makes the simulation of
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large photosynthetic protein complexes accessible and, in the meantime, it should

provide reliable results as well. In this chapter, we introduce a new efficient tool – the

modified Redfield master equation to calculate 2D electronic spectra with relatively

cheap calculations. In order to examine the reliability of the method, we compare its

result to the numerically exact QUAPI method.

8.1 Available theoretical methods for dynamical

simulations

To analyze the experimental findings in large and complex photoactive molecular

complexes, a thorough comparison with theoretical calculations is essential, in order

to arrive at a reliable interpretation of the measured 2D spectra. Since it is a difficult

and computationally demanding task to determine 2D optical spectra, often only the

population dynamics of exciton states is calculated. For the FMO complex, a rather

small light-harvesting complex, the HEOM [109] was applied and quantum oscillations

were observed on the time scale of the 2D experiments employing an environmental

Debye model spectral density with rather small reorganization energy [110]. Employ-

ing the numerically exact quasi-adiabatic propagator path integral (QUAPI) allowed

to use a more realistic measured environmental spectral density. This resulted in a

decay of the decoherence faster than experimentally observed [112, 150]. This spec-
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tral density could, more recently, be used to calculate the 2D spectra of the FMO

complex with the hierarchy equation [143] and a reasonable agreement between the-

ory and experiment could be achieved. The calculations of QUAPI and the HEOM

treated the coupling of the complex to environmental fluctuations numerically exactly.

However, the computational effort is immense, which makes the simulation of larger

light-harvesting molecular complexes (which contain, typically, dozens to hundreds

of excitonic subunits) virtually impossible. The need for a highly efficient numerical

tool to calculate 2D optical spectra of large molecular complexes with a reasonable

numerical effort and a satisfactory accuracy still exists and it is expected to continue

to increase.

Given their complex molecular structures, for the calculation of 2D spectra of

large light-harvesters, approximate schemes are usually unavoidable. Standard Red-

field equations [151], which invoke a lowest-order Born and a Markovian approxi-

mation, are good for weak system-bath coupling, but fail for strong coupling. The

regime of intermediate system-bath coupling, as present for the exciton dynamics

in photoactive complexes [55], is typically also not properly treated within Red-

field equations [121, 152, 153]. Thus, the modified Redfield theory (MRT) has been

widely used for the description of the energy transfer processes of large molecules

[82, 154, 155, 156, 157, 158, 159]. In this approach, that contribution of the system-

bath coupling Hamiltonian, which is diagonal in the eigenbasis of the system, is
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included fully, while a second-order perturbative approximation is used for the off-

diagonal coupling terms. The equation of motion of the MRT includes a population

transfer within the reduced density matrix, but the accompanying population-transfer

induced dephasing is neglected. The accuracy of the MRT in view of the dynamics

of the reduced density matrix has been analyzed in detail [160]. Moreover, MRT

has been shown to have a somewhat wider range of applicability when compared to

both the original Redfield and Förster theory [155]. Also, linear absorption spectra

for an ensemble of B850 rings have been determined which shows that MRT includes

non-Markovian effects which clearly show up in the high-energy part of the static ab-

sorption lineshapes [161]. Different energy transfer components of the LHCII trimer

and phycoerythrin 545 have been revealed using MRT by simultaneous quantitative

fits of the absorption, linear dichroism, steady-states fluorescence spectra, and tran-

sient absorption kinetics upon excitation at different wavelengths [52].

A more refined description of the quantum dissipative exciton dynamics is es-

tablished in this chapter upon observing that the population-transfer induced elec-

tronic dephasing can be efficiently included in the quantum master equation. The

off-diagonal terms in the quantum master equation now include the decoherence of

excited states and electronic dephasing between ground and excited states by exploit-

ing the relation 1/T2 = 1/2T1 + 1/T ∗
2 to estimate the different contributions to the

dephasing rate, where T2 is the transverse relaxation time and T1, T
∗
2 are the lon-
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gitudinal relaxation time and pure dephasing time, respectively. While working out

the details with the results reported in this Chapter, this extended quantum master

equation has also been independently put forward very recently in Ref. [162] and has

been named the coherent modified Redfield theory (CMRT). To avoid confusion, we

use this nomenclature also here.

For calculating 2D photon-echo spectra, essentially two different approaches are

available. On the one hand, the response to the sequence of applied laser pulses can

be calculated by evaluating the third-order optical response function [23]. Modified

Redfield theory was successfully applied to simulate the 2D spectra of the double-ring

LH2 aggregate of purple bacteria including both the B800 and the B850 ring [163].

An alternative approach to calculate 2D optical spectra, which is especially useful

when finite durations of the laser pulses as well as pulse overlap effects are taken

into account, is the equation of motion-phase matching approach (PMA) [87]. Using

the PMA in combination with the conventional Redfield equations, 2D spectra of a

single FMO subunit were studied, and the signature of energy transfer was revealed

by well-resolved peaks in the simulation with adjustable pure dephasing of exciton

states [164].

Although MRT is used to tackle many different problems in the study of energy

transport in photosynthetic complexes, no investigation of its reliability in calculating

nonlinear and, specifically, 2D optical spectra is at hand. In this Chapter, we first
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verify the CMRT approach by comparing the population dynamics of FMO exciton

states with numerically exact results of the QUAPI approach. In addition, we com-

bine the CMRT with the PMA to calculate 2D photon-echo spectra for a simple dimer

model. Again, the results of CMRT+PMA are benchmarked against numerically ex-

act results of the QUAPI approach. For the long-time steady state dynamics, the

CMRT+PMA and QUAPI simulations show differences for intermediate and strong

system-bath coupling. However, for intermediate coupling, as it is typical in photo-

synthetic complexes, the short time dynamics including dephasing times and coherent

beating frequencies are well described by CMRT+PMA. Hence, an efficient numerical

scheme to calculate 2D photon-echo spectra with a reasonable computational effort

is now realized.

8.2 Coherent modified Redfield master equation

The coherent modified Redfield master equation can be derived from the Nakajima-

Zwanzig equation [161] using a scheme for the separation of the total Hamiltonian

which does not treat the whole system-bath interaction term HSB perturbatively

[152, 66]. Instead, the Hamiltonian is separated according to

H0 = HS +HB +
∑

µ

|µ〉 〈µ|HSB |µ〉 〈µ| ,

H ′ =
∑

µν,µ 6=ν

|µ〉 〈µ|HSB |ν〉 〈ν| ,
(8.1)
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where |µ〉 are eigenstates of HS and H ′ is the off-diagonal term of the system-bath

interaction part in the exciton basis. In this basis, H0 is diagonal and the matrix

elements read

〈µ|H0 |µ〉 = ǫµ − λµµµµ +HB(µ), (8.2)

where ǫµ is the µth excitonic level of the system Hamiltonian and

λµνµ′ν′ =
∑

m

〈µ|Km |ν〉 〈µ′|Km |ν ′〉
∑

j

c2mj

2mmjω2
mj

, (8.3)

is the weighted reorganization energy. Moreover,

HB(µ) =
1

2

∑

ξ


 p

2
ξ

mξ

+mξω
2
ξ

(
xξ +

∑

k

〈µ|Kk |µ〉
mξω2

ξ

)2

 , (8.4)

describes a bath of harmonic oscillators with mass mξ, frequency ωξ and momentum

pξ, shifted due to the coupling with the exciton state |µ〉.

In addition to the redefinition of the system and the bath Hamiltonian, one has

to define a different type of projection operator which only projects on the diagonal

part of the system density matrix in the eigenstate basis. This is achieved by

P̃ =
N∑

µ=0

Pµ with Pµ· = Rµ
eqtr{|µ〉 〈µ| ·} , (8.5)

where Pµ is the projector onto the µth excitonic state and Rµ
eq = exp(−βHB(µ))/Z

µ
eq

is the equilibrium density matrix of the bath when the system is in the excitonic state

|µ〉. Here, Zµ
eq = tr exp(−βHB(µ)) with β = 1/(kBT ) and T being the temperature.
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Inserting these definitions into the Nakajima-Zwanzig equation, determining H ′

up to second order and invoking the time-dependent population transfer rate, one

obtains an equation of motion for the population transfer terms in the form

∂

∂t
ρµµ(t) =

∑

ν 6=µ

[Rµµνν(t)ρνν(t)−Rννµµ(t)ρµµ(t)], (8.6)

with the population transfer rates [154]

Rµµνν(t) = 2Re

∫ t

0

dτtr{|ν〉 〈ν| exp(−iH0τ)H
′ |µ〉 〈µ| ×Rµ

eq exp(iH0τ)H
′},

= 2Re

∫ t

0

dτ exp[−iωµντ − gµµµµ(τ)− gνννν(τ)

+ gννµµ(τ) + gµµνν(τ)− 2i(λνννν − λµµνν)τ ]

× {g̈µννµ(τ)− [ġνµνν(τ)− ġνµµµ(τ) + 2iλνµνν ]

[ġννµν(τ)− ġµµµν(τ) + 2iλµννν ]}.

(8.7)

Here, ωµν = ǫµ − ǫν . The lineshape function gµνµ′ν′(t) can be written as the two-time

integral of the bath correlation function according to

gµνµ′ν′(t) =
∑

k

〈µ|Kk |ν〉 〈µ′|Kk |ν ′〉
∫ t

0

dτ

∫ τ

0

dτ ′C(τ ′),

with C(t) =

∫ ∞

−∞

dω

π
J(ω)

eiωt

eβω − 1
.

(8.8)

To obtain Eq. (8.7), we have used the cumulant expansion up to second order in the

system-bath coupling and have taken the independent bath model into account. The

absorption lineshape within the CMRT is given by

I(ω) = Re
∑

µ

dµ

∫ ∞

0

dt exp

[
i(ω − ωµ0)t− gµµµµ(t)−

1

2

∑

ν 6=µ

∫ t

0

Rµµνν(τ)

]
. (8.9)
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as detailed in Ref. [161].

Up to this point, Eq. (8.6) constitutes the modified Redfield theory, as developed

and applied in Refs. [82, 154, 155, 156, 157, 158, 159]. Based on the population

transfer term in Eq. (8.6), we extend the quantum master equation by including also

the coherence (or, off-diagonal) terms of the reduced density matrix. The resulting

coherent modified Redfield quantum master equation now reads

∂

∂t
ρ(t) = −i[H + F (t), ρ(t)]−ℜ{ρ(t)} , (8.10)

where F (t) is the time-dependent system-field interaction term.

The relaxation and dephasing operator ℜ{ρ(t)} now also includes diagonal and

off-diagonal terms. The diagonal part of the relaxation operator, which was described

in Ref. [165], reads

ℜ{ρ(t)}µµ =
∑

ν 6=µ

[Rµµνν(t)ρνν −Rννµµ(t)ρµµ] . (8.11)

The off-diagonal terms ℜ{ρ(t)}µν are now included in order to describe decoherenece

of excited states and electronic dephasing between the ground and excited states.

Here, we use an efficient way to obtain the associated rates by exploiting the relation

1/T2 = 1/2T1 + 1/T ∗
2 to estimate the different contributions to the dephasing rate.

T2 is the transverse relaxation time, T1, T
∗
2 are the longitudinal relaxation time and

pure dephasing time, respectively [146]. In detail, 1/T1 =
∑

e 6=µRµµee +
∑

e 6=ν Rννee

and 1/T ∗
2 is given by the first derivative of lineshape function gµµνν(t). Therefore, the
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off-diagonal terms of the excited states and between the ground and excited states

can be written as

ℜ{ρ(t)}µν =

[
1

2

(
∑

e 6=µ

Rµµee(t) +
∑

e 6=ν

Rννee(t)

)
+ ġµµνν(t)

]
ρµν(t),

ℜ{ρ(t)}µ0 =
[
1

2
(
∑

m 6=n

Rmmnn(t) +
∑

n 6=m

Rnnmm(t)) + ġµµµµ(t)

]
ρµ0(t).

(8.12)

This extended quantum master equation has also been independently put forward

very recently in Ref. [162] and has been named the CMRT. It is an efficient, but

approximate way to take into account population transfer and dephasing on the same

footing.

8.3 Perturbative method versus iterative path-integral

algorithm

In order to verify the reliability of the CMRT, we present the population dynamics

of the FMO complex calculated by CMRT and compare the results to those obtained

by the numerically exact QUAPI method. In Fig. 8.1, the population dynamics of

selected FMO sites is shown for T = 77 K for two different initial conditions. In

Fig. 8.1a), we assume the energy transfer to start from site 1. We monitor then the

full transfer which involves all seven FMO sites. For simplicity, we only show the

population dynamics of the sites 1, 2, and 3. Alternatively, the energy transfer may

be assumed to start from site 6, see Fig. 8.1b). There, we depict the population
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dynamics of the relevant sites 3, 5, and 6. We observe that the oscillatory behavior

of the populations is captured by both approaches. Both also yield the same decay

rates and periods of oscillations. However, a phase shift of the oscillations occurs

between the CMRT and QUAPI results. Energy transfer is believed to be related

to the population of the FMO site 3 (green symbols and lines) which has the lowest

energy in the FMO monomer. In our comparison, CMRT slightly overestimates the

population transfer efficiency towards site 3. All in all, the CMRT results for the

FMO exciton population dynamics are in good agreement to the numerically exact

QUAPI results. Since the system-bath coupling parameters of the FMO complex are

typical for natural photosynthetic units, we conclude that CMRT is a useful tool to

study their exciton dynamics.

To obtain 2D spectra, we combine the CMRT next with the PMA. This consti-

tutes a very efficient approximate numerical tool whose reliability is assessed by a

comparison with 2D spectra obtained by QUAPI. Since 2D spectra involve extended

numerical calculations, QUAPI results are available only for small model systems with

present day hardware technology. For such a comparison, we present the calculated

results for the dimer model. It allows us to study energy transfer and dephasing (ho-

mogeneous broadening) as building blocks of the exciton dynamics in larger molecular

compounds. It can still be treated by QUAPI with reasonable numerical effort.

Fig. 8.2 (left) shows 2D spectra of the dimer calculated by CMRT+PMA for λ=50
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Figure 8.1: Population dynamics of selected FMO sites. In a), the population of

sites 1 (black), 2 (red) and 3 (green) with the initial condition ρ(1, 1) = 1 is shown,

while in (b) the populations of sites 3 (green), 5 (blue) and 6 (magenta) with the

initial condition ρ(6, 6) = 1 is depicted (symbols: QUAPI, full lines: CMRT) for the

parameters as given in the text.

cm−1 and the other parameters as indicated above. They are compared to QUAPI

results (right column in Fig. 8.2) for waiting times T = 0 fs, 50 fs, 100 fs and 500

fs. These 2D spectra show two diagonal peaks (labeled A, B) which correspond

to the two exciton states. Moreover, two cross peaks (labeled C and D) arise due
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to the excitonic coupling between them. For the sake of simplicity and clarity of

the comparison, inhomogeneous broadening and the rotational averaging for different

laser polarizations and molecular orientations are not performed here. Although this

would be important to describe realistic experimental situations, the averaged results

generally show smaller discrepancies (not shown).

At T = 0 fs, the two results show the same profile for diagonal and cross peaks

and, indeed, the agreement is excellent. This shows that the CMRT correctly models

the coherence times and the system-bath correlations created during the simulation.

With increasing waiting time, the same coherent dynamics is found for both the

diagonal and the cross peaks and even can be inspected by eye. However, some

disagreement is observed for the long waiting time T = 500 fs. The diagonal peak B

in the left figure (CMRT+PMA) shows a somewhat reduced amplitude as compared

to the right figure (QUAPI).

For a more refined comparison, the amplitudes of the diagonal and cross peaks (A,

B, C and D) are plotted against the waiting time in Fig. 8.3 and Fig. 8.4. In Fig. 8.3,

the population dynamics of the diagonal peaks A (top) and B (bottom) calculated

by CMRT+PMA from 0 to 1000 fs is shown and compared to the QUAPI result. We

find that the CMRT+PMA provides reasonably accurate results for the population

transfer and the oscillation period. However, the amplitude of peak B decays slightly

faster in the approximate results as compared to the QUAPI data. Moreover, both
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Figure 8.2: Two-dimensional photon-echo spectra (real part) of a dimer model cal-

culated by CMRT+PMA (left) and QUAPI (right) for different waiting times as

indicated. The Debye spectral density is used for the calculation with the parameters

λ = 50 cm−1, γ = 100 cm−1 and the temperature is set to T = 77 K.
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yield different stationary states. In addition, the phase of the oscillations is slightly

shifted. For the comparison of the cross peaks, the oscillatory behavior of peaks C

and D is plotted in Fig. 8.4. Cross peak C shows a similar oscillatory behavior but

the two approaches yield different stationary states. Peak D shows a only slightly

shifted phase of the oscillatory behavior. Such a phase shift was also observed in the

population dynamics of the FMO complex shown above. The phase shift might be

due to the neglect of imaginary parts in the Redfield relaxation tensor.

In order to further assess the reliability of the CMRT+PMA, we have repeated

the calculations for a larger reorganization energy, i.e., for λ=100 cm−1 (with γ=100

cm−1 kept unchanged). 2D spectra were again calculated by both approaches and the

amplitude of the labeled peaks were extracted. Their time-dependence is plotted in

Figs. 8.5 and 8.6. CMRT+PMA still yields quantitative agreement with the QUAPI

result except for the behavior of the damping. The stronger system-bath coupling

results in faster damping (diagonal peak A) and also in an increased difference between

QUAPI and CMRT+PMA as compared to the weaker coupling with λ=50 cm−1.

From the above comparison of the results obtained by both approaches, we observe

that the discrepancies found in the 2D calculations are more pronounced than in the

dynamics of the populations. Put differently, nonlinear 2D spectra are more sensi-

tive to assess the performance and reliability of approximate theoretical approaches.

In order to understand this, we point out two fundamental differences between 2D
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Figure 8.3: Population dynamics of the labeled diagonal peaks (A, B) extracted from

the underlying sequence of 2D maps. The two approaches yield the same oscillation

period. The diagonal peak B obtained from CMRT+PMA decays faster as compared

to the QUAPI result. The oscillation periods can be extracted by data fitting and

are: CMRT+PMA: 110fs, QUAPI: 99fs.

spectra and the population dynamics. First, entanglement between the system and

the bath leads to initial correlations at the beginning of the waiting time window,

which are absent in the calculation of the population dynamics. Second, two-exciton

states contribute to the 2D spectra during the detection time, and interference be-

tween positive and negative peaks changes the observed amplitudes. This shows that

one can not understand the reliability of a method to simulate correct 2D spectra by
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Figure 8.4: Coherent oscillations of labeled cross peaks (C, D) extracted from 2D

maps. The cross peak C obtained by CMRT+PMA shows the same oscillatory be-

havior, but with a somewhat smaller amplitude.

calculating population dynamics alone. Our current framework, in which we use the

combined CMRT+PMA and compare the results with QUAPI, is well suited to show

the performance of these methods in understanding 2D spectra directly.

In more detail, we have observed three noticeable discrepancies of the CMRT+PMA

as compared to QUAPI: i) A shifted oscillation phase of peak intensities, ii) a slightly

faster decay, and, iii) a different amplitude of peaks B and C for long waiting times.

For the explanation of the shifted oscillation observed in 2D simulations of the

CMRT+PMA, we need to notice that Eqs. (8.11) and (8.12) provide the analytic
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result for a monomer (two-level system), and that this has been proven by comparing

to QUAPI [166]. However, CMRT yields a shifted period for the dimer model. The

mismatch is mainly caused by the population transfer term R(t) since there is no

population transfer term in the monomer model. Here, the population transfer rate

was calculated by the cumulant expansion in Eq. (8.7) [154] and we only took the real

part. It is well known that the imaginary part dominates the phase of the oscillations

[167]. So, most likely, the shifted oscillation is mainly caused by the real-valued

approximation of the population transfer rates.

Then, the population transfer term is also derived based on the second-order

perturbation approximation, which is one of the reasons for the explanation of the

slightly too fast decay of the oscillations found in CMRT calculations. Furthermore,

the secular approximation was used to separate the population dynamics and the

dephasing process in Eqs. (8.11) and (8.12). This also contributes to the discrepancy

in the decay rate, since it neglects the interference between population transfer and

coherence dephasing.

A relatively small amplitude of peak B and C was found in Fig. 8.3 and Fig. 8.4

and it also can be observed by eye in the 2D map for the long waiting time T = 500

fs. We observe that peaks B and C are mainly formed by one positive (red) peak and

the overlap with a negative (blue) peak in the 2D spectrum (T = 500 fs). Therefore,

the amplitude of those peaks mainly depends on the overlap of two peaks. In the
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Figure 8.5: Amplitude of the diagonal peaks A and B for a stronger system-bath

coupling λ=100 cm−1 (with γ=100 cm−1 unchanged). CMRT+PMA calculations

yield a faster decay (A) as compared to the QUAPI result (decay time constants

extracted from a fit: CMRT+PMA: 81 fs, QUAPI: 146 fs).

QUAPI result, the two peaks are clearly separated with a larger spectral distance

than in the CMRT result and this leads to the larger amplitude of peaks B and C

in the 2D spectrum calculated with QUAPI. It indicates that, besides the shifted

oscillation and the faster decay of the oscillation, CMRT does not properly account

for the reorganization energy by the heat bath (diagonal peaks show slightly different

positions in the 2D map: −190 cm−1 and 190 cm−1 for CMRT and −180 cm−1 and

200 cm−1 for QUAPI). In the CMRT, the reorganization energy is included in the
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Figure 8.6: Oscillations of the cross peaks (C, D) with for a stronger system-

bath interaction (same parameters as in Fig. 8.5). The cross-peak C calculated by

CMRT+PMA yields a faster decay and a smaller amplitude (decay time constants as

obtained from a fit: CMRT+PMA: 62 fs, QUAPI: 177 fs).

diagonal part of the Hamiltonian of Eq. (8.3), where it just brings in a shift of the

excitonic transition frequency Eµ by the renormalization term Eq. (8.3) and does not

affect the dynamics of the off-diagonal terms in the Hamiltonian of Eq. (8.1).

On the basis of a clear physical meaning (population transfer and dephasing terms)

and for the purpose of an efficient and fast calculation, the secular approximation and

the second-order perturbation theory were applied to construct the CMRT. On the one

hand, the secular approximation leads to a separation of the population dynamics and
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dephasing process and avoids any complicated interaction terms between diagonal and

off-diagonal parts in the equation. On the other hand, the second-order perturbation

theory simplifies the population transfers. It is possible to improve the approach by

including higher orders. However, this renders the practical calculation considerably

more complicated and requires more computational resources for the simulation. It

is a priori unclear how much this improves the accuracy at all.
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Chapter 9

Quantum dynamics in the vicinity

of conical intersection

In the last chapter, I have provided a simple scheme to calculate the 2D electronic

spectrum for the study of the energy transport and the charge separation for com-

plicated natural photosynthetic complexes. In this chapter, I provide one effective

approach to significantly reduce the computation for the study of the dynamics of an

electronic wave packet on the PESs in the vicinity of a conical intersection (CI), which

is a degenerate point between PESs. The nonadiabatic coupling at the CI prevail and

the Born-Oppenheimer approximation breaks down. This strong vibronic coupling

provides a way to control the dynamics of electronic wave packet by the vibrational

oscillations. Here, I study the impact of the vibrational coherence on the motion
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of the electronic wave packet at the CI. I find that the more coherent wave packet

results in a higher quantum efficiency of photoisomerization. This study provides the

background to support the quantum coherent-control experiments.

9.1 Introduction

A conical intersection is a degenerate point of two PESs in the configuration space of

a polyatomic molecule. This degeneracy between two PESs induces a strong nona-

diabatic coupling between the electronic states, such that the Born-Oppenheimer

approximation breaks down and, in general, an ultrafast electronic and vibrational

relaxation results [168, 169, 170, 171]. Due to the strong nonadiabatic coupling of the

electronic to the vibrational DOF, the molecular electronic dynamics can be moni-

tored by studying the vibrational coherence of the electronic wave packet along the

reaction coordinates.

Various coherent spectroscopic techniques are useful tools to study the wave packet

dynamics in the vicinity of the CI. Among them, the femtosecond stimulated Raman

spectroscopy (FSRS) is one of the powerful tools to reveal the changes of the vibra-

tional coherence in the molecule moving in the vicinity of the CI [172]. FSRS has

been used to study the photoisomerization of rhodopsin, which was estimated to oc-

cur within a timescale of 200 fs or less [173]. The structural evolution of the stilbene

photoisomerization has been tracked by the gradual shift of the associated vibrational
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frequency over time [174]. The proton transfer in the Green Fluorescent Protein has

been revealed by FSRS [175]. More recently, two-dimensional time-resolved stimu-

lated Raman spectroscopy has been applied to measure the vibrational coherence of

a charge-transfer dimer. Thereby, the anharmonicity of the vibrational coherence on

the excited PESs has been clearly revealed [176]. Moreover, the transient absorption

spectroscopy is another diagnostic tool to uncover how the atom in the reactants

moves during the formation of the product. The motion of the electronic wave packet

in the primary photoisomerization reaction has been resolved by the transient ab-

sorption measurement [177]. A frequency shift due to the stimulated emission of

the electronic wave packet on the excited state surface was observed. Furthermore,

by tracking the vibrational coherence on the PESs, it was shown that the stretch

mode in the retinal molecule is largely unaffected by the presence of the CI, while the

hydrogen-out-of-plane (HOOP) mode is strongly damped after passing through the CI

[178]. In addition, the high-order anharmonic couplings between different vibrational

modes on the excited state surface have been well-resolved by the transient absorption

spectroscopy [179]. Recently, using an ultrashort pulse and exploiting the sensitivity

of the heterodyne detected transient grating approach, the local vibrational coherence

of the effective modes has been identified to drive the primary photo-isomerization in

vertebrate vision [180]. This measurement has refined the timescale of the primary

step in vision and the passage through the CI was shown to occur within 50 fs. This
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has also been confirmed by the two-dimensional electronic spectroscopy [181], which

indicates that the relevant reaction dynamics occurs under the vibrational coherent

process before decoherence of the reaction coordinates sets in. This directly implies

that the vibrational coherence can be used to control the dynamics and the efficiency

of the photoisomerization. The coherent control of the primary step of the photoi-

somerization of rhodopsin has been demonstrated by modulating the phase and the

amplitude of the excitation laser pulse in the transient absorption spectroscopy [182].

The isomerization efficiency has been increased and decreased by 20% by using the

optimal or anti-optimal pulse shape. It was not possible to observe the same effects

with all phase control only [183]. Although the phase-only aspect was only a few

percent, it could be argued that the noise level of 4% in this experiment would make

it difficult to observe such an effect. The question then is what is the physics at work

and to what degree can the reaction dynamics be controlled at CIs.

Theoretically, in a minimal model, the physics of a CI can be described by the two-

state two-mode model [184]. The transient absorption spectroscopy of the two-state

two-mode model has been calculated for the cis-trans isomerization [185]. The wave

packet on the PESs is projected onto the effective reaction coordinates of the tuning

and coupling modes, respectively. Its dynamics was calculated by using quantum

master equations, e.g., by the Redfield master equation [186] or the HEOM [187]. In

this chapter, this model is now further simplified by transferring the tuning and cou-
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pling modes to the harmonic bath and solving the resulting non-Markovian dynamics

by a numerically exact approach [188]. By this, the model, in principle, can describe

the configuration with multiple CIs between the PESs, which is more close to a real-

istic situation. Moreover, 2D electronic spectroscopy has been applied to study the

electronic wave packet dynamics in the vicinity of the CI [189, 190, 191]. It has been

found that the excited-state absorption becomes significant when compared to the

model where only vibrational coupling is present. In addition, it has been proposed

to use vibrational coherence in 2D spectra to measure the interstate coupling near

a CI [192]. More recently, a numerical calculation has shown that photorelaxation

in Uracil can be fully modulated to form the long-lived excited state by a properly

shaped laser pulse [193].

The kinetic energy of the wave packet on the PESs is considered as one tool to

control the photoisomerization efficiency in the CI [194]. More details of the coher-

ent control of the electron-nuclear dynamics at the CI have been provided recently

[195]. In Ref. [196], the role of vibrational coherence of an electronic wave packet

moving in the vicinity of a CI has been investigated. Evidence has been provided

that the quantum yield and the isomerization rate both are strongly related to the

vibrational coherence. This was shown by calculating the transient absorption and

the 2D electronic spectra of the three-state two-mode model. The time evolution

of the electronic wave packet in the transient absorption spectrum has been tracked
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and, counterintuitively, it was found that the more coherent wave packet results in a

higher quantum yield, but with a larger isomerization time constant. However, the

full picture of the nonadiabatic dynamics of an electronic wave packet near a CI is

still unclear and the direct evidence of the impact of vibrational coherence on the

quantum efficiency is still missing.

Then, we study the impact of vibrational coherence on the quantum yield and

the isomerization rate of an electronic wave packet moving in the vicinity of a CI by

monitoring the nonadiabatic dynamics of the wave packet projected onto the tuning

and the coupling mode. This allows us to directly visualize the quantum yield and

its isomerization time constant (or, rate). By varying the strength of the dissipative

coupling of the vibrational modes to their respective baths, we find that the quantum

yield can be significantly enhanced by an increased vibrational coherence of the wave

packet. In fact, the generated quantum yield can reach up to 93% for the most

coherent wave packet and it can be significantly reduced to 50% for an electronic

wave packet which experiences strong vibrational damping. In addition, we find in

the case of stronger damping that the electronic wave packet directly penetrates the

higher-lying PES to the lower electronic state via tunneling, before the remaining

parts of the wave packet reach the seam of the CI and can pass directly through. The

direct tracking of the dissipative wave packet motion provides an elegant experimental

tool to reveal the role of vibrational dissipation at a CI.
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9.2 Reduced two-state two-mode model

We start with two-state two-mode model in which a molecule is assumed to possess

a spectroscopically accessible CI between two PES associated to the ground (|g〉)

and excited (|e〉) electronic state. In addition, we include a dissipative interaction

of the standard harmonic environment. The total Hamiltonian can be written as

H = Hmol+Henv. The molecular Hamiltonian is given by Hmol = Hg+He, with Hg =

|g〉 (h1−ǫ/2) 〈g| and He = |e〉 (h2+ǫ/2) 〈e|+(|e〉V 〈g|+h.c.). Here, ǫ is the energy gap

between the ground and the excited state and h̄ = 1. The vibrational Hamiltonians h1,

h2 are associated to the ground and excited electronic state, respectively. They include

two vibrational modes, the coupling mode characterized by the reaction coordinate

Qc, and the tuning mode described by the reaction coordinate Qt. They are given

by hg = 1
2

∑
i=c/t Ωi(P

2
i + Q2

i ) and h1 = hg − κQt, h2 = hg + κQt, where Ωi=c/t are

the frequencies of the harmonic coupling and tuning mode, respectively. Moreover, κ

is the vibronic coupling strength. The electronic coupling between the two PESs is

assumed to linearly depend on Qc, such that V = ΛQc with the electronic coupling

strength Λ. Furthermore, we assume that all relevant interactions between the two

electronic PESs are captured by the coupling mode which is explicitly included. Thus,

the bath only couples vibrational states within the same electronic PES and we assume

that the two vibrational modes are coupled to their own linear bath according to the
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Hamiltonian [16]

Henv =
∑

α

[ p2α
2mα

+
mαω

2
α

2

(
xα +

cαQ1

mαω2
α

)2

+

q2α
2Mα

+
Mαν

2
α

2

(
yα +

dαQ2

Mαν2α

)2 ]
.

(9.1)

Here, the momenta of the bath oscillators are denoted as pα and qα, while their

coordinates, masses, and frequencies are denoted by xα,mα, ωα, and yα,Mα, να. The

respective coupling constants are cα and dα. The baths are characterized by the

spectral densities Jc(ω) = π
2

∑
α

c2α
mαωα

δ(ω − ωα) and Jt(ω) = π
2

∑
α

d2α
Mανα

δ(ω − να).

Throughout this work, we assume that both the tuning and coupling mode experience

fluctuations with an Ohmic spectral distribution according to Jc/t(ω) = ηc/tω. Here,

ηc/t are the damping strengths for the coupling and tuning mode, respectively. The

transition dipole moment is defined within the Condon approximation as µ = |e〉 〈g|+

|g〉 〈e|.

A well separated PES crossing can be induced by a large shift ∆ = 2
√
2κ/Ωt

between the minima of the |g〉 and |e〉-PES. In order to obtain converged numerical

results, a large number of vibrational states is required [189]. This is possible in the

regime of a weakly damped vibrational dynamics within the Born-Markov approxi-

mation. Numerically exact methods such as, e.g., the quasiadiabatic propagator path

integral [197, 198] or the hierarchy equation of motion (HEOM) [199, 200] technique

are not applicable due to the large vibrational Hilbert space, especially when the

vibrational damping is strong.
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However, a numerically exact treatment becomes possible if the two modes Q1

and Q2 are transformed into the bath and treated as effective modes with their full

non-Markovian dynamics.[198, 201] The unitary transformation of Ref. [201] is readily

generalized to the two-mode case and yields the total Hamiltonian

HM =
ǫ

2
σz − σx

∑

α

c′αx
′
α +

∑

α

[ p′2α
2m′

α

+
m′

αω
′2
α

2
x′2α

]

− σz
∑

α

d′αy
′
α +

∑

α

[ q′2α
2M ′

α

+
M ′

αν
′2
α

2
y′2α

]
. (9.2)

Here, σz = |g〉 〈g| − |e〉 〈e| and σx = |g〉 〈e|+ |e〉 〈g| are Pauli matrices. The resulting

effective spectral densities follow as

Jeff
c/t(ω) = λc/t

γc/tΩ
2
c/tω

(Ω2
c/t − ω2)2 + γ2c/tω

2
, (9.3)

where λc = Λ2/(2Ωc), λt = κ2/(Ωt) =
1
2
Ωt(∆/2)

2 are the reorganization energies for

the coupling and tuning mode, respectively. They represent two effective structured

harmonic reservoirs for the electronic dynamics, when both are assumed to initially

be in thermal equilibrium at the same temperature T . In this effective picture char-

acterized by Eq. 9.2, the coupling strength between the ground and excited PES can

be tuned by the reorganization energy λc. The shift between the ground and the

excited PES is encoded in the magnitude of the reorganization energy λt [202]. We

have assumed the shift ∆ to be large, a large reorganization energy for tuning mode

results and leads to the system-bath interaction of Eq. 9.2, valid in the strong cou-

pling region. The structured environment is characterized by the two localized modes
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Figure 9.1: CI of two PESs illustrated along the tuning (Q2 in (a)) and coupling (Q1

in (b)) direction for the ground and excited states in the adiabatic basis, respectively.

which induce two spectral peaks at the frequencies Ωi with the widths given by γi. In

the present chapter, we are interested in the most difficult case when the vibrational

relaxation of the two modes is overdamped. Hence, in the limit γc/t ≫ Ωc/t, we obtain

Jeff,∞
c/t (ω) = λ′c/t

γ′c/tω

ω2 + γ′2c/t
. (9.4)

The effective reorganization energies and damping constants in the overdamped limit

follow as λ′c/t = λc/t and γ
′
c/t = Ω2

c/t/γc/t.
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9.3 Signature of the conical intersection in the 2D

spectrum

Based on the effective Hamiltonian of Eq. (9.2) of a quantum two-level system cou-

pled to a non-standard structured environment, we have calculated the resulting

non-Markovian dynamics by employing the numerically exact HEOM approach [200].

In particular, we are interested in the spectroscopic traces of a CI in 2D electronic

spectra [203]. Therefore, we evaluate the total 2D electronic spectra (rephasing plus

nonrephasing part) by Fourier transforming the third-order nonlinear response func-

tion. Further details are given in Ref. [23]. For the calculation, we have set the

electronic gap in the Franck-Condon region to ǫ = 1000 cm−1 after having performed

the usual rotating wave approximation. The bath parameters are chosen as λ′c = 150

cm−1, γ′c = 150 cm−1 and λ′t = 150 cm−1, γ′t = 20 cm−1, and the temperature was set

to T = 300 K.

In Figure 9.2, we show a collection of selected 2D electronic spectra for different

waiting times T (left column). For T = 300 fs, we observe a split peak with one

positive and one negative branch. Interestingly, the negative off-diagonal peak around

ωt = 1000 cm−1 reaches its maximum magnitude at T = 500 fs. The negative

branch decays rapidly with increasing waiting time and becomes almost invisible at

T = 1000 fs. The negative peak is generated by a secondary excitation which lifts
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the wave packet from the ground state PES (blue arrows) to the excited state PES,

as indicated by the blue arrow in Figure 9.1. This excited-state absorption process

can only exist when the initially excited wave packet (indicated in red in Figure 9.1)

has moved from the Franck-Condon region on the excited-state PES through the CI

downhill, see the purple arrow in Figure 9.1. This can only occur in the presence of

a CI and the negative cross peaks can thus serve as a unique identifier of it.

To verify this picture, a comparison with the model without a CI is helpful. This

is realized by setting λ′c = 0 while keeping the strong vibrational dissipation with

λ′t = 150 cm−1 and γ′t = 20 cm−1. The analogues sequence of 2D spectra is shown

in the right column of Figure 9.2 (labeled as ‘no CI’). It shows the typical relaxation

dynamics in which negative peaks are completely missing. Besides, the maxima of

the 2D spectra decay much slower than in the case with a CI being present. Clearly,

the wave packet no longer can relax in a radiationless process to the electronic ground

state PES via a funneling the CI.

In order to quantitatively compare both cases, the magnitudes of selected peaks

are traced for increasing waiting times. The results are shown in Figure 9.3. We

compare the maximal and minimal peak height of the case with a CI to the maximal

peak height of the case without a CI. Clearly, for the model with CI, the extremal

peaks of the 2D spectra decay very fast and reach zero at 1500 fs (left ordinate in

Figure 9.3). In turn, in the case without a CI, such a rapid decay is not present.
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Figure 9.2: Selected 2D electronic spectra calculated for the effective quantum two-

level model with the structured environment formed by the two baths. The left

column shows 2D spectra calculated in presence of the CI, while the right column

shows the results in absence of the CI with λ′1 = 0. The 2D electronic spectra are

normalized separately according to their maximal peak in the 2D spectrum at T = 300

fs. Here, kcm−1= 1000 cm−1.

Instead, we find still a larger maximum of ∼ 0.28 (in arbitrary units) for the longest

waiting time of 1500 fs considered (right ordinate in Figure 9.3).
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Figure 9.3: Extremal peak heights in the 2D spectra as a function of the waiting time.

The red symbols (labeled ‘CI max’ and ‘CI min’) show the magnitude of the peaks

at (ωτ = 1240 cm−1, ωt = 1240 cm−1) and (ωτ = 1240 cm−1, ωt = 880 cm−1) in the

2D spectra for the case with a CI, respectively. Moreover, the blue symbols (labeled

‘no CI’) show the magnitude of the peak at (ωτ=1200 cm−1, ωt=1200 cm−1) of the

spectra for the case without a CI.

A further confirmation can be obtained from the time-evolved transition absorp-

tion spectrum shown in Figure 9.4. Two bands show up with positive and negative

amplitudes. The time scales on which the dynamics of the wave packet around the

CI occurs can be clearly distinguished by considering the dynamics associated to the

positive and negative bands. After the initial photoexcitation, a part of the wave

packet moves directly through the CI and reaches the ground state PES. This process
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Figure 9.4: Transient absorption spectrum as a function of the waiting time in pres-

ence of a CI. It shows two clearly separated bands (positive and negative) centered

at 1600 cm−1 and 850 cm−1, respectively.

contributes significantly to the positive bands associated to the fast relaxation. In

addition, the remaining part of the wave packet moves through the CI to the PES

minimum. It can be identified with the starting point of the negative bands at ∼ 200

fs. This process reaches its maximum at ∼ 500 fs and is followed by a fast relaxation.

This is caused by the secondary excitation and the backward motion to ground state

PES through the CI. The entire relaxation process is completed within ∼ 1.2 ps.

In this section, we have established a reduced model for the nonadiabatic quan-

tum dynamics of an electronic wave packet in the region of a conical intersection.

It is obtained from the well-known two-state two-mode model by transforming the

two harmonic potential energy surfaces to the harmonic bath. The resulting quan-
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tum mechanical two-level model with two highly structured harmonic baths can be

solved by advanced numerically exact non-Markovian techniques, such as the hierar-

chy equation-of-motion approach. This greatly facilitates the numerical efforts. Most

importantly, it allows to tackle the notoriously difficult case of strong vibrational

damping. The signatures of the conical intersection show up in form of branches with

negative peaks in optical 2D spectra. They clearly can be traced back to secondary

excitations of wave packets which have moved through the conical intersection. Their

ultrafast time scale is also revealed by the time dependence of the cross peaks in the

2D spectra. Finally, we note that negative amplitude cross peak could in principle

also arise when an extremely large shift between the ground and the excited state

potential energy surface exists. For this, the Huang-Rhys factor must be larger than

ǫ/Ωc/t. For any realistic molecules, this factor will be unrealistically large.

After studying the wave packet in the overdamped limit (Eq. 9.4), we investigate

next the impact of the vibrational coherence on the wave-packet dynamics in the

vicinity of CI. For this, we return back to the spectral density with the underdamped

form, Eq. 9.6 and reconstruct the new PESs and parameters for the study.

9.4 Vibrationally modulated quantum yield

In this section, we start with the three-state two-mode model (see Fig. 9.5) in which a

molecule is assumed to have an electronic ground state |g〉 and a CI between two PESs
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belonging to the excited states |e1〉 and |e2〉. In addition, we include a standard dissi-

pative harmonic environment. The total Hamiltonian is H = Hmol+Henv. The molec-

ular Hamiltonian is given by Hmol = Hg+He1+He2+Hint with Hg = |g〉 (hg+ ǫg) 〈g|,

He1 = |e1〉 (h1 + ǫ1) 〈e1| and He2 = |e2〉 (h2 + ǫ2) 〈e2|. The interaction Hamiltonian

between two electronic states is Hint = |e1〉V 〈e2| + h.c. with the strength V of the

electronic coupling. Here, ǫg, ǫ1 and ǫ2 are the energies of the ground and the elec-

tronic excited states, respectively. hg, he1 and he2 are the vibrational Hamiltonians

associated to the ground, first and second electronic excited states. They include two

vibrational modes, the coupling mode characterized by the reaction coordinate Qc,

and the tuning mode described by the reaction coordinate Qt. They are given by

hg =
1
2

∑
i=c,t Ωi (P

2
i +Q2

i ) and he1 = hg − κQt, he2 = hg + κQt, where Ωi=c,t are the

frequencies of the harmonic coupling and tuning mode, respectively. Moreover, κ is

the vibronic coupling strength. The electronic coupling between two PESs is assumed

to linearly depend on Qc, such that V = ΛQc with the electronic coupling strength

Λ. Furthermore, we assume that all relevant interactions between the two electronic

PESs are captured by the coupling mode. Thus, the bath only couples vibrational

states on the same electronic PES. We assume that the two vibrational modes are

coupled to their own linear bath according to the Hamiltonian, Eq. 9.1. Again, we

assume two Ohmic spectral densities Jc/t(ω) = ηc/tω with ηc/t being the vibrational

damping strengths for the coupling and tuning mode, respectively. For the transition
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Figure 9.5: Energy diagram of the three-state two-mode model with an electronic

ground and two excited states. The CI exists between the two excited states, |e1〉

and |e2〉. The initial optical excitation is indicated by the red vertical arrow and

the two transitions yielding the second-excited-state absorption are marked by blue

arrows. The magenta arrows show three different possible deactivation pathways.

dipole moment, we assume an allowed optical transition from the ground state to the

electronic bright state |e2〉 in the Franck-Condon region. Moreover, we assume that

the first excited state |e1〉 is dark with respect to the ground state. In addition, we as-

sume a second allowed transition between the two electronic excited states. Therefore,

the transition dipole moment is given by µ = |e2〉 〈g|+ |g〉 〈e2|+ |e1〉 〈e2|+ |e2〉 〈e1|,

with all components being equally strong.

It turns out that it is technically beneficial to simplify the molecular Hamiltonian
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by again transforming the two modesQc andQt into the bath Hamiltonian and include

their influence within a full non-Markovian treatment of the resulting structured

environment [188]. A unitary transformation [201], generalized to two modes, yields

the total Hamiltonian

H = Hel − σc
∑

α

c′αx
′
α +

∑

α

[ p′2α
2m′

α

+
m′

αω
′2
α

2
x′2α

]

− σt
∑

α

t′αy
′
α +

∑

α

[ q′2α
2M ′

α

+
M ′

αν
′2
α

2
y′2α

]
. (9.5)

Here, the coupling matrices between system and bath for coupling and tuning mode

follow as σc = |e1〉 〈e2|+ |e2〉 〈e1| and σt = |e1〉 〈e1|+ |e2〉 〈e2|, respectively. The new

effective system Hamiltonian with three electronic levels then is Hel = |g〉 ǫg 〈g| +

|e1〉 ǫ1 〈e1| + |e2〉 ǫ2 〈e2| (see Ref. [188] for details). The resulting effective spectral

densities follow as

Jeff
c/t(ω) = λc/t

γc/tΩ
2
c/tω

(Ω2
c/t − ω2)2 + γ2c/tω

2
, (9.6)

where λc = Λ2/(2Ωc), λt = κ2/(Ωt) are the reorganization energies for the coupling

and tuning mode, respectively. We note that we previously [188] have used in Sec.

9.3 a further assumption of an overdamped vibrational dynamics, which we do not

apply in this section. Instead, we study here the underdamped vibrational dynamics.

The three-state two-mode model is sketched in Fig. 9.5. The electronic coupling

between the two electronic excited states |e1〉 and |e2〉 generates a CI of the two PESs.

We assume that an electronic wave packet is initially photoexcited from the ground
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state. The three possible relaxation pathways of the wave packet on the bright excited

state |e2〉 are labeled by A, B and C. Along the path A, the wave packet is deactivated

to the minimum position A on the excited state PES |e1〉 by passing through the CI

without changing its direction. Via the pathway B, the wave packet passes through

the CI but changes its direction. A third pathway C that the wave packet remains

with a finite probability on the excited state PES |e2〉 is possible since we allow for

an underdamped vibrational relaxation (see Eq. 9.6).

The dynamics of the electronic wave packet on the first excited state PES |e1〉

can be measured by the second excited state absorption signal in a 2D spectrum

after it has reached the PES minimum of |e1〉. The second excited state absorption

processes are marked by the blue arrows in Fig. 9.5. Within the three-state two-mode

model, we can separate the information of the dynamics of the wave packet on the first

excited state PES |e1〉 from that of the vertical excitation between ground and second

excited state PES |e2〉 in the 2D and the transient absorption spectra by scanning the

transition frequency corresponding to the transition from the |g〉 to the |e2〉 state. In

addition, we can distinguish the different channels of the second excitation process by

the transition difference of the energy gap between |e1〉 and |e2〉 at the position A and

B, respectively. To show this, we choose the parameters ǫg = 0 cm−1, ǫ1 = 2000 cm−1

and ǫ2 = 2600 cm−1. The vibrational frequencies of the tuning and coupling mode are

set to Ωt = 500 cm−1 and Ωc = 200 cm−1 and the corresponding reorganization energy
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Figure 9.6: 2D electronic spectrum for the effective three-state model for the waiting

time T = 400 fs. The two off-diagonal signals A and B are associated to the two

relaxation pathways as indicated in Fig. 9.5. The damping constants are set to

γc/t = 30 cm−1 (for the remaining parameters, see text).

and damping constants are fixed to λc = 25 cm−1, γc = 30 cm−1, λt = 250 cm−1,

and γt = 30 cm−1. By applying the numerically exact hierarchy equation of motion

approach [200] together with the phase-matching technique [87, 204], we calculate

the 2D spectrum for different waiting times and show in Fig. 9.6 the result for the

waiting time T = 400 fs. The excited state absorption peak (negative) is completely

separated from the diagonal peak (positive). Furthermore, the different channels of

the second excitation state absorption can be clearly distinguished as well (denoted

as A and B in Fig. 9.6).

Since the different relaxation channels are clearly identified, we can now investigate

the wave packet dynamics in the vicinity of the CI. In particular, we can easily evaluate
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the quantum yield and the rate of the isomerization reaction from the 2D and the

transient absorption spectra by monitoring the second excited-state absorption peaks

of the channels A and B. To investigate the impact of the vibrational coherence on

the isomerization, we vary the vibrational coherence of the wave packet by changing

the damping constant γc/t. We consider the three cases (a) γc/t = 30 cm−1, (b)

γc/t = 50 cm−1 and (c) γc/t = 100 cm−1. Inspired by the experiment [182], we

calculate the transient absorption spectra for these three cases. To be able to compare

the same configuration of the PESs, we ensure that the reorganization energies are

kept unchanged, i.e., λc = 25 cm−1 and λt = 250 cm−1. The results of the transient

absorption spectra are shown in Fig. 9.7. The electronic wave packet motion along the

two pathways A and B of the excited state PES |e1〉 are clearly distinguishable from

each other in Fig. 9.7 (a) for the weakly damped vibrational coherence with γc/t = 30

cm−1. Clearly, the wave packet reaches the position A earlier than B by about 200

fs. This is expected due to the structure of the PESs shown in Fig. 9.5. For a more

strongly damped vibrational motion, i.e., for γc/t = 50 cm−1 as shown in Fig. 9.7(b),

or for γc/t = 100 cm−1 as shown in Fig. 9.7(c), the magnitude of the signal of the

excited-state absorption channel A is smaller compared to the one in channel B. In

addition, the time delays between the arrivals of the wave packet at the positions A

and B decrease from γc/t = 30 to 100 cm−1. In fact, for γc/t = 100 cm−1, this delay is

hardly resolvable in the transient absorption spectrum (Fig. 9.7(c)). Hence, the more
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coherent wave packet allows us to better identify the direction of the motion after the

passage through the CI. In turn, a less coherent one rather shows the features of a

classical motion. For a quantitative comparison, we report in Table 9.1 the quantum

yield A/(A+B) extracted from the transient absorption spectrum at T = 5 ps for γc/t

between 30 and 150 cm−1. It decreases from 0.614 to 0.540 in Table 9.1 and we may

anticipate that this ratio reaches 0.5 for the classical (overdamped) case (γc/t → ∞).

A confirmation of this mechanism is obtained by recording the absorption signal

of the channels A and B for varying waiting times T . The result is shown in Fig. 9.8

(a) for the underdamped case γc/t = 30 cm−1. We find an exponential decay with

superposed fast coherent vibrational oscillations. From this, the isomerization rate

can be extracted by fitting an exponential. The inverse isomerization rates are shown

in Table 9.1. These results show quantitatively that the speed of the photoisomeriza-

tion reaction increases when the wave packet is less coherent, i.e, experiences stronger

damping by coupling to the bath. The effect is to truncate the wavepacket in the

reaction coordinate without the prospect of recurrences. In turn, a more coherent

wave packet oscillates on the same PES and has a smaller probability to pass through

the CI. Some components of the wave packet remain on the excited state PES |e2〉

and continue their motion for the next round of traversal.

Further information on the wave packet dynamics can be obtained from the co-

herent oscillations of the transient excited state absorption signal. The Fourier trans-
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Figure 9.7: Transient absorption spectra of the three-state two-mode model with

different damping constants (i.e., different vibrational lifetimes), (a) γc/t = 30 cm−1,

(b) γc/t = 50 cm−1 and (c) γc/t = 100 cm−1. All the other parameters are kept the

same as in Fig. 9.6.
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form of the residual, obtained after subtracting the exponential kinetics from the

time-dependent signal, is shown in Fig. 9.8 (b) for γc/t = 30 cm−1. Several vibra-

tional frequency components are resolved, with peaks at the frequencies 500 cm−1,

1000 cm−1, 1750 cm−1 and 2250 cm−1. The component at 500 cm−1 demonstrates

that the tuning mode component of the wave packet is largely unaffected after hav-

ing passed through the CI. Interestingly, no evidence of the vibrational frequency

of the coupling mode around the frequency of 200 cm−1 is found. Hence, only the

vibrational coherence of the coupling mode component is strongly influenced in the

vicinity of the CI, which is due to the wave packet being split into two parts along the

reaction coordinate Qc of the coupling mode (see Fig. 9.5). This effect has recently

been observed experimentally in the transient absorption spectrum [178].

A further interesting conclusion can be drawn from the relatively weak vibrational

component around ∼ 1000 cm−1, emphasized by the magenta box in Fig. 9.8(b). It is

associated to a two-frequency beating of the vibrational coherence present for the case

of the relatively long-lived coherence with γc/t = 30 cm−1. This beating is absent in

the two less coherent cases of γc/t = 50 cm−1 and 100 cm−1. The peaks originate from

the coherent mixing of the tuning mode at the frequency 500 cm−1 and the recrossing

components. The former components stem from the wave packet which goes through

the CI and reaches the minimum position A, while the latter parts first follow the

pathway C on the excited state PES |e2〉 in the underdamped case. Then, at the
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γc/t (cm
−1) Magnitude A Magnitude B A/(A+ B) Γ−1

y (fs)

30 -0.1001 -0.0630 0.614 285

40 -0.1065 -0.0690 0.607 268

50 -0.1143 -0.0767 0.598 240

100 -0.1601 -0.1206 0.570 200

150 -0.1961 -0.1672 0.540 195

Table 9.1: Magnitude for pathways A (1100 cm−1) and B (1600 cm−1) for the waiting

time T = 5 ps in the transient absorption spectrum with the stable products A and

B. The ratio A/(A+B) shows that the more coherent wave packet produces a higher

quantum yield than the less coherent one. In addition, we show the inverse of the

isomerization rate Γy.
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turning point (meant in the sense of a semiclassical wave packet) these components

reverse their direction towards the CI and move back. After the following crossing of

the CI, parts of the wave packet traverse to the lower lying PES and interfere with

the former parts of the wave packet on the pathway A, such that a coherent mixing

results. This interference signal generates Stueckelberg oscillations in the vicinity

of the CI. In principle, they are discernible experimentally by transient absorption

and 2D spectroscopy with sufficient time resolution [172]. Finally, the high-frequency

components at 1750 and 2250 cm−1 are rooted in the transition interaction between

the two PES at A and B due to the excited state |e2〉 in Fig. 9.5.

In this section, we have shown that the vibrational coherence of an electronic

wave packet crucially determines the efficiency of the photoisomerization reaction.

We have used a very efficient approach to simulate the nonadiabatic wave packet

dynamics in which the coupling and the tuning modes are transformed to the bath

Hamiltonian. The resulting structured environment can be treated by available non-

Markovian techniques of which we have employed the HEOM. Despite the model

based on the harmonic approximation of the PES and on the dipole approximation

of the coupling to the tuning and coupling mode, ab-initio calculations [205] provide

a computational justification of the simple two-state two-model model for the study

of photoisomerization of rhodopsin, which significantly reduces the complexity of

the theoretical investigation. Of course, more than one effective mode need to be
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Figure 9.8: (a) Time-resolved vibrational dynamics of the wave packet along the

relaxation pathways A (red) and B (blue) in the transient absorption spectrum for

γc/t = 30 cm−1. For graphical reasons, the magnitude of B is shifted upwards by

0.05. (b) Vibrational frequencies in the transient absorption signal of pathway A

(red) and B (blue) obtained after a Fourier transform of the vibrational residual after

subtracting the exponential kinetics of the two signals A and B. The magenta box is

associated to a beating due to repeated passages of the wave packet after returning

from C.
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properly accounted for in a quantitative comparison with the experiment. Yet, this is

possible in our approach since only the spectral structure of the non-Markovian bath

needs to be adopted, which significantly reduces the computational costs and makes

the calculations tractable with GPU-based techniques [143]. When a vibrationally

coherent wave packet moves in the vicinity of a conical intersection, it can follow

different relaxation pathways which all can be identified in the transient absorption

and the 2D spectra. We studied the kinetics around the conical intersection with

different degrees of coherence for the wave packet using different degrees of damping.

We have found that the more coherent wave packet results in a higher quantum

yield. In the present combination of parameters, we find a gain of 7.4% for the

more coherent motion as compared to the less coherent one. It already indicates a

significant enhancement in general, since here, we have chosen a rather weak coupling

between two PESs along the coupling mode (in fact, it is ten times smaller than

the value of the tuning mode). We expect that the quantum efficiency could be

enhanced further for stronger coupling modes. After passing through the CI, the

vibrational coherence of the coupling mode component is significantly affected, while

the tuning mode component is unaltered. A vibrationally coherent wave packet also

can repeatedly cross a CI within its coherence time such that interference leads the

Stueckelberg oscillations (see Fig. 9.9) which are manifest in mixing components in the

excited state absorption. Our findings illustrate that the photoisomerization reaction
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Figure 9.9: Schematic illustration of repeated passages of a wave packet in the vicinity

of a CI to induce Stueckelberg oscillation.

can be controlled by tuning the vibrational coherence of the electronic wave packet.

9.5 Motion of the wave packet at the CI

In the last section, based on the calculation of the 2D and the transient absorption

spectra, we revealed the impact of the vibrational coherence on the motion of the

wave packet in the vicinity of the CI. However, the details of the motion of the wave

packet are still unclear. In this section, we study the motion of the electronic wave

packet at the CI and investigate the details how it affects the quantum yield.

We start with the the two-state two-mode model again, in which a spectroscop-

ically accessible CI is assumed with two electronic excited states |e1〉 and |e2〉. The

molecule couples to the dissipative bath, which is composed of the infinity number
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of harmonic oscillators. The total Hamiltonian can be written as H = Hmol +Henv.

The system Hamiltonian is constructed by the electronic states vibronically couple to

two effective modes, tuning Qt and coupling mode Qc. We again assume that both

the tuning and coupling mode experience fluctuations with an Ohmic spectral density

Jt/c(ω) = ηt/cω exp(−ω/ωc). In this part, we assume the initial wave packet to be

prepared in the state |e2, 0〉, such that the density matrix at initial time t = 0 can

be written as ρ(0) = |e2, 0c, 0t〉 〈e2, 0c, 0t|. Here, 0c and 0t are the vibrational ground

states of the coupling and tuning mode, respectively. In order to obtain the time-

dependent position of the electronic wave packet on the PES, we need to project the

wave packet on the corresponding coordinates in the adiabatic basis. The projection

yields the two reduced probability densities

P ad
k (Qc, t) =

∫
dQt 〈Qc| 〈Qt| 〈ẽk| ρ(t) |ẽk〉 |Qt〉 |Qc〉 ,

P ad
k (Qt, t) =

∫
dQc 〈Qc| 〈Qt| 〈ẽk| ρ(t) |ẽk〉 |Qt〉 |Qc〉

(9.7)

of the coupling and the tuning mode, respectively. Here, |ẽk=1,2〉 denotes the electronic

wave function in the adiabatic basis. The transformation of the wave function from

the diabatic to the adiabatic basis is given by |ẽk〉 =
∑

k′=e1,e2 S(Qc, Qt)kk′ |ek′〉 and

the transfer matrix S(Qc, Qt) can be found in Ref. [206]. We assume a vibronic

coupling strength of κ = 1000 cm−1 of the tuning mode Qt, and a vibronic coupling

strength of Λ = 200 cm−1 of the coupling mode, Ωt = 500 cm−1 and Ωc = 900 cm−1.

The energy gap between the two PESs is set to ǫ = 2000 cm−1. In this part, all
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the calculations have been carried out at room temperature (T = 300 K). In order

to realize a sufficiently large eigenbasis of the molecular Hamiltonian for converged

results, 30 and 6 vibrational levels are included for the tuning and coupling mode,

respectively. The total molecular Hamiltonian matrix is 360 dimensional. We use

the TNL quantum master equation [66, 67] for the calculation of the full dynamics

of the electronic wave packet. Based on the above parameters, we plot the PES-

configuration of the two electronic states in Fig. 9.10.

On the basis of this model, we study the impact of the vibrational coherence of the

wave packet on the kinetics around the CI. For this, we vary the vibrational damping

constants ηt/c. We begin with the weak damping case and choose ηt = ηc = 0.5 and

ωc = 50 cm−1. We calculate the dynamics of the wave packet and project it to the

tuning and coupling coordinate. The results of the two reduced probability densities

are shown in Fig. 9.11 in a color scale. In Fig. 9.11(a), the initial wave packet prepared

in the state
∣∣∣ẽ2
〉
was initially localized at Qt = 0. It starts to move to the left side

and passes through the CI (see Fig. 9.10(a), position at Qt = −1) within the first

20 fs. Consequently, the wave packet of the state
∣∣∣ẽ2
〉
completely disappears on the

upper PES, while, at the same time, the wave packet starts to grow at Qt = −1 on

the
∣∣∣ẽ1
〉
-PES. With growing time, it continues to move further to the left side until it

reaches its maximal displacement at Qt = −6. Then, it turns around, moves towards

the center again and penetrates the PES to come back to the upper electronic PES
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Figure 9.10: Configuration of the potential energy surfaces and the conical intersection

along the tuning (a) and the coupling (b) mode. The conical intersection is located

at the tuning coordinate Qt = −1 and at the center of the coupling mode at Qc = 0.

The quantum yield is calculated by the magnitudes of the wave packets at A and B

of the state
∣∣∣ẽ1
〉
according to Y = A

A+B
.

of
∣∣∣ẽ2
〉
. This can be observed in Fig. 9.11(a) to occur at ∼ 60 fs. After that, the

wave packet moves towards the CI again and repeats the kinetics as described until
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the end of the considered time window of 500 fs. During this motion, vibrational

coherence can be clearly identified and shows a period of ∼65 fs in the wave-packet

dynamics on the
∣∣∣ẽ1
〉
-PES. This value coincides with the vibrational frequency of the

tuning mode being set to 500 cm−1. Moreover, the transfer time τ and the quantum

yield Y of the wave packet between the two PESs can be clearly resolved. First, the

quantum yield is quite high in this case of weak damping since the electronic wave

packet is mostly located in the left region of the
∣∣∣ẽ1
〉
-PES in Fig. 9.11(b). Moreover,

an effective potential barrier can be identified at Qt = −1 which blocks the wave

packet motion further to the right side. The transfer time of the wave packet can be

easily determined by integrating over all the parts of the wave packet on the left side

up to Qt = −1. In the case of weak damping, we find Y = 93% and a transfer time

τ = 920 fs.

The wave packet also shows interesting dynamics along the coupling mode direc-

tion, see Figs. 9.11 (c) and (d). At the beginning, the wave packet is localized at

the center Qc = 0. It penetrates the CI and leaves the PES of
∣∣∣ẽ2
〉
within 20 fs. At

the same time, the wave packet appears on the
∣∣∣ẽ1
〉
-PES and reaches the maximum

probability at 25 fs. Then, the wave packet starts to decay from the
∣∣∣ẽ1
〉
-PES and

moves back to the
∣∣∣ẽ2
〉
-surface. Also these kinetics are repeated. The period of this

oscillation is 65 fs which coincides with the period of the tuning mode. Interest-

ingly, a coherent vibrational oscillation along the coupling mode direction can not be
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Figure 9.11: Time evolution of the probability densities of the underdamped electronic

wave packet on the
∣∣∣ẽ2
〉
-PES and the

∣∣∣ẽ1
〉
-PES along the tuning mode Qt and the

coupling mode Qc: (a) P ad
2 (Qt, t), (b) P

ad
1 (Qt, t), (c) P

ad
2 (Qc, t), and, (d) P

ad
1 (Qc, t).

The parameters are ηt = ηc = 0.5 and ωc = 50 cm−1 in the Ohmic spectral density.

identified since the wave packet splits into two parts and shows different frequencies

of the oscillation on the
∣∣∣ẽ1
〉
-PES in the adiabatic basis (see Fig. 9.10(b)). This is

consistent with the theoretical and experimental results of Refs. [178, 186, 196].
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For the case of strong vibrational damping, we choose the parameters ηt = ηc = 2

and ωc = 200 cm−1. The results for the wave-packet dynamics are shown in Fig. 9.12.

In Fig. 9.12(a), the wave packet population on the
∣∣∣ẽ2
〉
-surface shows a much stronger

damped dynamics. The wave packet only shows three clear oscillation periods up to

∼ 120 fs and then disintegrates and disappears after 200 fs. This shows that the wave

packet has completely passed through the CI to the PES of
∣∣∣ẽ1
〉
. In Fig. 9.12(b),

the wave packet dynamics is similar to the one on the
∣∣∣ẽ2
〉
-PES and also shows three

periods of vibrational coherence and gets completely disintegrated afterwards. Yet,

it can be clearly observed that the transfer time is significantly shorter, but with a

smaller efficiency in view of the quantum yield as compared to the weak damping

case in Fig. 9.11. Similarly, for the wave packet dynamics along the coupling mode,

we also observe that the transfer happens faster than before.

In Fig. 9.12(d), we see that the wave packet on the
∣∣∣ẽ1
〉
-surface is split into two

parts at times > 400 fs. This is a clear signature of the geometric (or, Berry) phase

[207, 208]. When the wave packet travels on the two opposite sides around the CI, it

can interfere destructively at Qc = 0 due to the phase difference of π acquired along

the two different pathways. Thus, the probability density gets reduced at Qc = 0 and

the wave packet develops two maxima symmetrically located at Qc 6= 0.

Clearly, the geometric phase does not occur in the weak damping case (Fig. 9.11

(d)) since the electronic wave packet is almost completely localized on the left side
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Figure 9.12: Same as Fig. 9.11, but for stronger vibrational damping. The parameters

are ηt = ηc = 2 and ωc = 200 cm−1.

of the
∣∣∣ẽ1
〉
-PES. In order to quantify this, we fit the kinetics of the electronic wave

packet on the
∣∣∣ẽ1
〉
-surface to an exponential function and obtain the transfer time

constant τ . The kinetics extracted from the left and the right side of the CI (which are

separated by the barrier at Qt = −1) show comparable magnitudes. Furthermore, we

determine the quantum yield Y by integrating over the probability density (separated
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by the barrier line at Qt = −1) at time t = 500 fs. The quantum yield decreases

to Y = 50.4% in the case of strong damping as compared to Y = 93% in the weak

damping case.

For a complete picture, we calculate the electronic wave packet dynamics for a wide

range of damping parameters, ηt/c and ωc. The quantum yields and the associated

transfer times are listed in Table 9.2. We find that both the transfer time and the

quantum yield almost monotonously decrease with increasing damping. Thus, a less

damped and hence a more coherent wave packet results in a higher quantum yield

but with slower transfer process. This is in agreement with previous work [196],

but we now prove the effect on the quantum yield from the viewpoint by explicitly

tracking the wave packet motion in position space. Further, we illustrate that the

spectroscopic approach is capable of revealing the dynamics in the vicinity of a CI,

notwithstanding the experimental issue with rapidly changing spectra.

In addition, the significant difference of the wave-packet dynamics on the
∣∣∣ẽ1
〉
-

surface at short times should be noticed between the weak (Fig. 9.11) and the strong

damping case (Fig. 9.12). We highlight this by the magenta boxes. In the strong

damping case, a small probability density of the wave packet appears at Qt = 0

on the
∣∣∣ẽ1
〉
-surface. However, the wave packet on the upper

∣∣∣ẽ2
〉
-surface does not

reach the seam within that time. This indicates that in the strong damping case, the

electronic wave packet can penetrate the PES by tunneling when the two PESs are
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ηt/c ωc [cm
−1] Rt/c [cm

−1] Y [%] τ [fs]

0.5 50 16 93 920

0.8 80 41 87 600

1.1 110 77 82 430

1.4 140 125 77 350

1.7 170 184 73 300

2.0 200 255 50 200

Table 9.2: The reorganization energy Rt/c, quantum yield Y and transfer time τ for

the different cases of the damping parameters. We set ηt = ηc, such that Rt = Rc.

close together (the region is marked by the green arrow in Fig. 9.10). In contrast,

there is no evidence of this tunneling process in the magenta box of the weak damping

case in Fig. 9.11. To confirm this observation, we increase the electronic coupling

between the two PESs to Λ = 800 cm−1 and calculate the wave packet dynamics up

to t = 500 fs. We compare the time evolution of the probability density P ad
1 (Qt, t) of

the wave packet on the
∣∣∣ẽ1
〉
-surface for the cases Λ = 800 cm−1 and Λ = 200 cm−1

in Fig. 9.13. In Fig. 9.13(a), we can clearly identify the tunneling of the wave packet

at the coordinate Qt = 0. Moreover, it also shows that the wave packet moves to

the right side and to the minimum of the
∣∣∣ẽ1
〉
-surface. In contrast, we observe in

Fig. 9.13(b) a much smaller magnitude of the wave packet at Qt = 0 and no clear

evidence of the movement towards the minimum at the position Qt = 2. Based on
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Figure 9.13: Time evolution of the probability density P ad
1 (Qt, t) of the wave packet

on the
∣∣∣ẽ1
〉
surface for (a) Λ = 800 cm−1, and, (b) Λ = 200 cm−1.

these calculations, we confirm that the less coherent wave packet does not show a

net passage through the CI. Instead, it tunnels through the PESs when they are

close together. In contrast, the more coherent wave packet shows an almost complete

passage through the CI. We believe that this is the significant factor which ultimately

determines the quantum efficiency of the isomerization and would provide a means

for evolutionary optimization of the reaction coordinate.

In this section, we have studied the impact of vibrational damping on the dy-

namics of the electronic wave packet in the vicinity of a CI and its transfer between

the potential energy surfaces. The projection of the dynamics onto the tuning and

the coupling mode allows us to directly track the nonadiabatic dynamics of the wave
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packet on the PESs. By this, the direct visualization of the quantum transfer effi-

ciency or the quantum yield and the associated transfer times becomes possible. The

quantum yield is evaluated for different values of the vibrational damping strength

of the tuning and the coupling mode. It shows that the quantum yield can be sig-

nificantly enhanced by an increased vibrational coherence of the wave packet. It can

reach more than 93% in the coherent or underdamped case and is reduced to 50% for

the case of an incoherent wave packet. In addition, we find signatures of the geomet-

ric (or Berry) phase in the form of a destructive interference in the time-dependent

probability density for the case of stronger damping. Moreover, in the case of stronger

damping, we observe that the electronic wave packet directly penetrates the higher-

lying PES to the lower electronic state
∣∣∣ẽ1
〉
via tunneling, before the remaining parts

of the wave packet can pass directly through the CI. Our work helps to clarify the

details of the wave-packet dynamics at the seam of the CI and it provides new ap-

proaches for coherently controlling the wave packet traversal in the vicinity of the CI

by tuning the vibrational coherence.
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Chapter 10

Photo-induced dynamics in hybrid

lead halide perovskites

In this chapter, we study the dynamics of excitons and free carriers in the hybrid

lead halide perovskites by 2D electronic spectroscopy, which is one hot candidate

functional material for technological application with solar cells. In the 2D spectra,

the exciton peak is clearly resolved at room temperature and the exciton binding

energy is precisely measured. Moreover, with the time evolution, we can detect the

ultrafast exciton dissociation to the free carriers. It can be reasonably explained in

terms of an entorpy-driven process. In addition, we observe the scattering of the free

carriers for increasing excitation power.
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10.1 Introduction

Hybrid lead halide perovskites (LHP) are known to have facile solution processability

[209] and reasonably high charge carrier mobility [210, 211]. Therefore, they have

become an attractive emerging material for solar cell, photodetector and lasing ap-

plications [212, 213, 214, 215, 216, 217]. Since Miyasaka and coworkers first realized

perovskite-sensitized solar cells with a power conversion efficiency (PCE) of 3.8%

[218] in 2009 and since the realization of highly efficient solid state perovskite cells in

2012 [212], the perovskite based photovoltaics has shown phenomenally rapid rise in

PCE. With improved deposition methods and rational selection of device designs, the

PCE has meteorically advanced to 22.1% based on a solid polycrystalline perovskite

absorber layer sandwiched between charge selective contacts [215, 219, 220, 221]. For

further rational tailoring of the device efficiency and stability, it is imperative to ac-

tively pursue the fundamental studies of underlying photophysical mechanisms for

charge separation.

To advance the understanding of the basic photophysical processes, significant

experimental and theoretical efforts have been expended focusing on different aspects

of the problem [211, 222, 223, 224, 225, 226]. Recent studies have converged to the

proposal that most elementary photoexcitations in perovskite are free charge carriers,

which behave like III-V inorganic semiconductors. In addition, the significant role of

bound electron-hole pairs, or excitons, has been realized. The exciton dissociation
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and the coupling of the exciton to the bath is the central important process in photo-

voltaics and the knowledge of the true exciton binding energy at room temperature is

crucial for the further development of the technology. A wide range of exciton bind-

ing energies from 2 to 55 meV has been reported, based on steady state absorption,

photocurrent and photoluminescence spectroscopy [227, 228, 229, 230, 231]. The fate

of the exciton is also determined by the exciton-phonon coupling. The photolumi-

nescence spectrum shows a narrow exciton peak at low temperature, which indicates

quite weak exciton-phonon interactions in the LHP. Recent studies suggest that the

exciton screening by the collective reorientation motion of the organic cations at room

temperature weakens this interaction [232, 233, 234, 235]. In a recent study, using

magneto optics measurements, the exciton binding energy Eb at low temperature has

been determined to be ∼16 meV [230]. The value at room temperature could not

be determined by magneto optics measurements due to thermal broadening. Knowl-

edge of Eb at room temperature is important as photovoltaic cells operate in this

temperature region. To gather a comprehensive understanding of the exciton dy-

namics at room temperature, it is imperative to directly observe the exciton. The

free-exciton peak has been well-resolved at low temperature by the photocurrent, pho-

toluminescence [227] and four-wave mixing spectroscopy [236]. However, at elevated

temperature, the exciton peak shifts and is lost within the broad bandwidth of the

free carrier transitions, which makes the detection of free excitons challenging [237].

246



Despite enormous experimental and theoretical efforts, there has been no report of the

direct generation of free excitons after photoexcitation in LHP at room temperature

[238] up to present.

2D electronic spectroscopy is one of the effective tools, which allows for direct

mapping of the electronic dynamics as a function of the absorption and emission

wavelength [36]. It is particularly useful for examining systems with manifolds of

electronic states, i.e. solid-state materials with band structures, and of systems where

static disorder induces strong spectral broadening and highly congested spectra. It

has been successfully implemented to reveal the excitation energy transfer pathways

in the photosynthetic protein complex [59, 90, 91, 85] and in inorganic semiconductors

[239, 240]. Here we use 2D electronic spectroscopy to capture the electronic dynam-

ics of sub-bandgap bulk excitons after optical excitation of a LHP thin film at room

temperature and at 180 K. The high temporal resolution of 16 fs allows us to discrim-

inate exciton and free carrier transitions and resolve the exciton binding energy of

Eb = 12 meV at room temperature. Moreover, we observe the ultrafast dissociation

dynamics of the free excitons within the electronic dephasing time scale of 47 fs at

296 K, resulting in primarily free charge carrier population after this process.
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10.2 Sample preparation and measuring condition

Sample and the information in this section were provided by Dr. Pabitra Nayak

and Prof. Herry J. Snaith from the University of Oxford. The precursor solution

for the perovskite film was prepared by dissolving 442.2 mg of methylammonium

iodide (Dyesol) and 351.2 mg of lead(II)acetate trihydrate (Sigma-Aldrich) in 4 ml

of anhydrous N, N-dimethylformamide (Sigma-Aldrich). The perovskites films were

prepared by spin-coating the precursor solution at 2000 r.p.m on quartz substrates for

45 s under a nitrogen atmosphere in a glove box. Then, the films were left for drying

for 10 minutes followed by annealing at 100 ◦C for 5 minutes in the glove box. The

UV-Vis spectrum of the thin film was taken on a Carry 300 UV-Vis spectrometer.

The steady-state photoluminescence measurement was done on a Flourolog Horiba

Jobin Yvon. A scanning electron microscope image was taken on a Hitachi S-4300.

10.3 Exciton binding energy

Figure 10.1(a) represents the absorption spectrum (red line) of the perovskite film.

The shoulder at 13500 cm−1 corresponds to the bandgap transition (black arrow

in Fig. 10.1(b)) from the valence band (VB) to the conduction band (CB). The

laser spectrum (blue shaded region) used in the 2D optical measurements covers the

bandgap transition as well as the proposed excitonic transition (red arrow in Fig.
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10.1(b)) which can not be resolved at room temperature by steady state absorption

measurements. To decipher the interplay of these transitions, we measured a series

of photon-echo 2D electronic spectra of LHP at room temperature (296 K) and at

180 K for different waiting times. The measured 2D spectra at 296 K for the waiting

times T = 0, 20, 50 and 200 fs are shown in Fig. 10.2. At T = 0 fs, the generated free

carriers in LHP are associated to the central peak at ωτ = 13600 cm−1. This peak

is significantly stretched along the diagonal direction which manifests a strong inho-

mogeneous broadening of the free carriers signal. Moreover, one additional diagonal

peak as shoulder is well resolved at ωτ = 13100 cm−1, although with a lower intensity.

This peak is in good agreement with the excitonic transition resolved by the Elliott

model [229, 231, 241, 242, 243], which lies slightly below the free-carrier transition

(described in Fig. 10.1(b)). Based on the central peak of the conduction band, we

assign the bandgap of continuum transitions at Eg ∼ 13200 cm−1, which is indicated

in Fig. 10.1(a). Thus, the exciton binding energy, the difference in energy between

the exciton and continuous transition, is obtained as Eb12 meV, which is in the range

of 5 to 55 meV of the previous measurements. Unlike the other approaches, the 2D

spectroscopy allows us to directly measure the exciton binding energy in LHP. Thus,

based on the observation of the 2D spectrum at T = 0 fs, it clearly demonstrates that

the free carriers and the excitons are generated in LHP after the photo-excitation at

room temperature, which is hard to be observed by other spectroscopic techniques
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[228]. Based on the magnitude of the two diagonal peaks, we clearly observe that the

free carriers dominate the photo-excitation process. In addition, it is known that the

anti-diagonal bandwidth of the 2D spectrum at T = 0 fs reflects the time scale of

electronic dephasing [129]. The lifetime of the electronic coherence generated by the

coherent laser excitation is mainly determined by the electron-phonon and exciton-

phonon interactions in LHP. Thus, the anti-diagonal bandwidth is directly determined

by the strengths of these interactions. For a quantitative analysis, we fit the profile

along the anti-diagonal direction for both peaks to Lorentzian lineshapes, see Fig.

10.2(b) and (c). We obtain the lifetimes of 41 fs and 47 fs for the electronic dephas-

ing of the free carriers and the excitons, respectively. Interestingly, it is comparable

to the values for a solved cyanine dye molecule [129], which is a rather small object

dissolved in a solvent. Hence, the electron-phonon and exciton-phonon interactions

in LHP appear to be quite weak. This is probably caused by the protection of free

carriers and excitons in LHP by charge screening [232].

10.4 Exciton dissociation and carrier scattering

At T = 20 fs, the 2D spectrum is significantly shrinked along its diagonal direction

which indicates a dramatically reduced inhomogeneous broadening. Moreover, many

cross peaks appear in the frequency range of the free carriers above 13500 cm−1. They

stem from the dynamics of the excited-state absorption from the free-carrier band.
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Figure 10.1: (a) Absorption (red line) and laser spectrum used in the measurement

(blue curve). ‘Eg’ denotes the band gap in LHP. (b) Energy diagram of the exciton

and conduction band in LHP. ‘VB/CB’ indicate the valence/conduction band, Eb the

exciton binding energy.

The magnitude of the exciton peak at 13100 cm−1 significantly decays for increasing

waiting times and is hard to be observed at T = 50 fs in Fig. 10.2. Meanwhile,

one new cross peak appears at (ωτ , ωt) = (13500 cm−1, 12750 cm−1) which provides

evidence of the electronic coupling between the excitons and the free carriers. To

resolve the population dynamics, we extract the time evolution of selected peaks in

the 2D spectra (marked as a red and blue square in the 2D spectra “T = 50” fs), the

kinetics are shown in Fig. 10.2(d). We observe that the magnitude of the cross peak
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(red square) dramatically increases and reaches its maximum at 50 fs. This coincides

with the time scale on which the free-exciton peak disappears in the 2D spectrum

at T = 50 fs. Moreover, the time-dependent trace of the second off-diagonal peak

(marked by a blue square in Fig. 10.2) clearly shows evidence of coherent oscillations

within a time window of 50 fs. It is an important cross-check result that this value

fully agrees with the time scale extracted from the anti-diagonal bandwidth discussed

above. To ensure that the exciton decay has no contribution from exciton-exciton

scattering, the energy of the pump beam has been tuned to generate the excitons

well below their Mott density. Figures 10.3(c) and (d) represent exciton and charge

carrier decays at different pump fluence, respectively. Unlike free carriers, excitons

decay independently of the pump energy which demonstrates the linear regime of the

exciton dynamics. The coincidence of the coherent dynamics and the disappearance

of the exciton peak proves that the free excitons undergo an ultrafast dissociation

process to free carriers within a time window of 50 fs. The energy transition from

the excitonic to free-carrier band is within the time scale of the electronic dephasing,

which is revealed by the anti-diagonal bandwidth of the 2D spectrum at T = 0 fs.

Thus, this unusual energetically uphill transition is purely an electronic process which

is entropically driven by the electronically coupled much higher density of states in

the conduction band. For the analogy of this process, Zu and co-workers also observed

coherent electronic coupling in tetracene molecules which overcome the energy barrier
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in singlet fission [244]. To verify this, we measure the 2D spectra at a different

temperature 180 K and study the temperature-dependent dissociation process. The

measured 2D spectrum at 180 K is shown in Fig. 10.4. At 180 K, the excitonic peak

is better resolved from the peak related to the free carriers. In order to compare the

dynamics of dissociation, kinetic traces of the exciton peak are plotted for different

temperatures in Fig. 10.3(b). We do observe that the rate of exciton dissociation is

not sensitive to temperature, which is strongly related to the acoustic phonons in the

lattice. This temperature-independent dissociation validates our model of entropically

driven coherent exciton decay. At T = 200 fs, the inhomogeneous broadening has

completely vanished and only the free-carrier peak remains visible, as shown in Fig.

10.2.

To better resolve the exciton energy, we generate the three-dimensional matrix

of time-evolved 2D electronic spectra and analyze the kinetics by the global fitting

approach [69]. We perform the correlation analysis of the residuals obtained by sub-

tracting the underlying global kinetics from the measured data and plot the correla-

tion in the Fig. 10.3(a). We observe that the cross peaks in the correlation map can be

generally divided into two parts along the diagonal direction. First, many cross peaks

are present above 13500 cm−1 with positive and negative magnitude, which clearly

shows the evidence of the associated vibrational oscillations during the free-carrier

dynamics. The cross peaks are marked by the white dotted lines to illustrate the
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Figure 10.2: (a) Measured 2D electronic spectra with selected waiting times as indi-

cated. The anti-diagonal profile is measured at the central peak in (b) and the exciton

peak in (c). (d) Time traces of the selected peaks in the 2D spectrum at T=50 fs.

possible related eigenstates in the conduction band. Second, at least one cross peak

can be resolved in the frequency region below 13500 cm−1, which agrees with the tran-

sition frequency of the free exciton resolved by low-temperature photoluminescence

spectroscopy [227].

In order to resolve the relative contributions of vibrational frequencies that pro-

duce the beating in the 2D spectra, a Fourier transform of the residuals of the global

analysis has been performed. To visualize the spectral location of these vibrational

modes, we plot the 2D vibrational map on the basis of the rephasing part of the
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Figure 10.3: (a) 2D correlation spectrum analyzed by the residual after subtracting

the kinetics in the time sequence of 2D spectra. (b) Temperature-dependent exciton

dissociation dynamics. The scattering of excitons (c) and free carriers (d) is measured

under different excitation conditions, i.e., different strength of the excitation laser.

2D correlation map [245]. Two low-frequency vibrational modes at 48 cm−1 and at

96 cm−1 are clearly resolved. Based on the theoretical calculations [246, 247], they

are assigned to the “breathing” modes of the inorganic octrahedra, which have been

suggested as the central important modes related to the charge-carrier dynamics in
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Figure 10.4: (a) Real part of the measured 2D electronic spectrum at T=0 fs at

180 K. The anti-diagonal profile of the exciton (red curve) and free-carrier (black

curve) transitions are shown in (b) and (c), respectively. The associated linewidth is

estimated by the fit to a Lorentzian lineshape function. This yields the linewidths of

210 and 200 cm−1, which correspond to the time scales of the electronic dephasing of

49 and 51 fs, respectively.

LHP [248]. In the light of the weak electron-phonon coupling in perovskite, the role

of these lattice modes should be revisited using other spectroscopic techniques. Fi-

nally, a few high-frequency modes associated with CH3NH
+
3 have also been observed

which are primarily centered on the conduction band and are in agreement with the

reported literature [247, 249].

In conclusion, we have established direct spectroscopic evidence for the co-existence

of excitons and free carriers in the LHP after optical excitation at room temperature

and 180 K using 2D electronic spectroscopy. Direct observation of the exciton af-
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Figure 10.5: The observable vibrational modes resolved in the Fourier transform of

the residual after subtracting the kinetics based on the global fitting approach.
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ter optical excitation allows us to obtain the binding energy of Eb = 12 meV for

LHP at room temperature. This shows that Eb does not completely collapse at room

temperature, but retains a value similar to that determined at lower temperatures

[230]. Additionally, the high temporal resolution enables us to capture the ultrafast

decay of free excitons to the charge carriers occurring in a time span of 50 fs. This

entropically driven uphill temperature-independent transition is favored by coherent

electronic coupling between the excitonic and conduction band of states. The time

scales of the electronic dephasing of 41 fs and 47 fs have been resolved by measuring

the anti-diagonal bandwidth of the 2D spectrum at zero waiting time. This indicates

the relatively weak exciton-phonon and electron-phonon interaction in the LHP. More-

over, it indirectly provides indication that excitons and electrons in LHP are possibly

protected by charge screening effects [233]. This possibly provides a degree of immu-

nity to mid-gap state trapping and associated non-radiative decay losses. Our results

provide important fundamental insight into the nature of photogenerated species at

the band-edge of LHP which elucidates the photophysical mechanisms underlying the

remarkable performance of this material in optoelectronic devices.
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Chapter 11

Conclusion and outlook

In this work, the photophyscial properties of biological photosynthetic complexes and

of solar cell functional materials and the wave-packet dynamics in the vicinity of a

conical intersection have been studied by optical 2D electronic spectroscopy. At the

beginning, the molecular structures of the natural photosynthetic complexes were de-

scribed. The basic concepts of the energy transfer, charge separation and electronic

quantum coherence were introduced in the first chapter. In the second chapter, the

physics of quantum dissipative systems has been briefly illustrated. The derivation

of the quantum master equation has been obtained by the projection operator tech-

nique. The Frenkel exciton and the vibronic model have been shown to describe the

energy transfer in photosynthetic protein complexes and the tight-binding model for

the charge-separation process has been reviewed. The theoretical background of the
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spectroscopic calculation has been briefly described in the last section of the second

chapter. The associated experimental techniques, the NOPA, pulse compression and

the photo-echo spectrometer are illustrated in the third chapter.

In the fourth chapter, the exciton energy flow in the LHCII has been studied by

2D electronic spectroscopy at physiological temperature. It is one of the dominating

antenna photosynthetic complex in higher plants. With the assistance of the global

fitting approach, multiple pathways of the energy transport were clearly revealed

by the time sequence of measured 2D spectra. Several timescales of the energy-

transfer components have been identified from hundreds of femtoseconds to tens of

picoseconds. Then, the dynamics of the charge separation in the PSII reaction center

has been studied by 2D electronic spectroscopy, which is the unique natural protein

complex capable of charge separation for water splitting. The signature of the primary

charge separation in the reaction center is clearly resolved by the adjacent theoretical

modeling and the global fitting analysis of the time sequence of the 2D spectra.

Recently, a controversy raised of whether the long-lived electronic coherence is

present in the process of the primary energy transport of natural photosynthetic

complexes and what would be the functional role if it exists? To answer this impor-

tant question, we examine the energy-transfer process in the FMO complex by 2D

electronic spectroscopy at physiological temperature. In Chapter 6, the energy trans-

port in the FMO complex has been studied by 2D spectroscopy. It reveals several
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energy transfer components from hundreds of femtoseconds to tens of picoseconds.

However, on the basis of careful theoretical and experimental analysis, it shows the

electronic decoherence timescale of ∼60 fs, which is shorter than the timescale of the

energy transport. This short electronic coherence hardly plays any functional role to

impact the primary step of the energy transport in the FMO complex. The observed

long-lived oscillations mainly originate from vibrational coherence. To further uncover

the impact of the vibrational coherence on the timescale of the electronic coherence,

especially, in the resonant case, the coherent dynamics of the excitonically-coupled

indocarbocyanine dye molecule is studied in Chapter 7. It is one artificial synthetic

molecule with strong electronic coupling. By this, the cross peaks are clearly sepa-

rated in the 2D spectrum. Based on the modeling of the linear and 2D spectra, we

demonstrate that the short-lived electronic coherence is not prolonged by the vibra-

tional coherence.

Besides the experiments, theoretical simulations play the central important role for

interpreting the 2D spectroscopic measurements. Due to the complicated molecular

structures of the biological protein complexes, the system-bath model is the workhorse

for the calculation of the excitonic dynamics in the photosynthetic complex, despite

recent efforts on the quantum chemistry calculations with GPU techniques. In Chap-

ter 8, the modified Redfield approach has been generalized to a master equation. 2D

spectra were calculated with the combination of the modified Redfield master equa-
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tion and the phase-matching approach. To examine its accuracy, the kinetics from the

time sequence of 2D spectra were compared to the one calculated by the numerically

exact method, QUAPI and it shows that the modified Redfield approach provides

reliable results in the weak and intermediate region of the system-bath interaction.

Thus, in this chapter, one possible and reliable method has been provided to study

the excitonic dynamics in photosynthetic systems with rather cheap calculations.

A conical intersection is a degenerate point between two PESs and it is an im-

portant model to study the quantum dynamics of the photoisomerization reaction.

With the strong nonadiabatic coupling, the electronic dynamics in the vicinity of

the CI can be strongly influenced by the vibrational molecular dynamics. In Chap-

ter 9, the established two-state two-mode model has been simplified by transforming

the effective vibrational modes into the reservoir and treat their impact as part of

a highly non-Markovian nonadiabatic quantum bath. HEOM has been used to cal-

culate the electronic dynamics and the 2D electronic spectra. The signature of the

CI is identified by the negative peak present in the 2D spectra, which comes from

the excited-state absorption of the lower state after the wave packet have passed

through the CI. Moreover, the impact of the vibrational coherence on the electronic

wave packet in the vicinity of CI was studied and it shows that a more coherent

wave packet results in a higher efficiency of quantum isomerization, but with slower

transfer times.
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In the Chapter 10, the excitonic and free carrier dynamics in perovskite have been

studied by the 2D electronic spectroscopy. The exciton peak is clearly identified in the

2D spectra at the initial waiting time. The exciton binding energy is directly measured

by the energy difference between the exciton and the bandgap. Ultrafast dissociation

dynamics of the exciton to the free carriers is demonstrated to occur within 50 fs and

it further demonstrates that this process is entropy-driven. In addition, the carrier

scattering dynamics is shown in the measurements with different pulse energies.

Based on all the 2D spectroscopic studies, it becomes clear that 2D electronic

spectroscopy is a powerful tool to investigate the molecular electronic dynamics at

the ultrafast time scale. By projecting the absorption and emission signal onto two

dimensions, the measured spectrum presents the full information of the ground state

bleaching, stimulated emission and the excited state absorption. However, it still con-

tains potential of improvals. (a). 2D electronic spectroscopy is one optical technique

based on the third-order photon-echo signal, but it seems still hard to read all the

information barely based on the 2D spectrum due to the overlap of the different com-

ponents (ground state bleaching, stimulated emission and excited state absorption).

(b). Up to now, all the 2D spectra are obtained from the ensemble-averaged signal.

In principle, the 2D spectroscopy can be also applied to a single-molecule experiment,

which was recently only successfully used in the optical region based on the emission

spectroscopy. (c). The bandwidth of the 2D spectrum is determined by the spectrum
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amplified by NOPA, for instance, in the optical range (550nm to 800 nm) and the

associated pulse duration of ∼5 fs. However, in some measurements, the knowledge

of the deep UV, near IR and the deep IR region also contains useful information. For

instance, the charge separation in the PSII reaction center and the polaron dynamics

in the polymer solar cell materials are of interest. (d). 2D electronic spectroscopy is

capable to fully reveal the electronic dynamics. However, the associated molecular

structural dynamics are missing. Thus, the combination of the spectroscopy and a

microscopy technique should be one way to solve the problem [250, 251]. At the

moment, the spatial resolution is limited to ∼5 nm. For the development of (a) and

(b), the 2D spectroscopy based on the phase-cycling technique [252] would be a good

way to achieve these goals. On one hand, different components (ground state bleach-

ing, stimulated emission and excited state absorption) of the 2D spectrum can be

separated by locking under different phase relations of the pulse sequence. On the

other hand, phase-cycling provides a much better signal-noise ratio, which makes it

possible to detect the photon-echo signal from a single molecule. The problem of the

broadband pulse can be overcome by the direct compression of the white light, which

has been achieved by Ref. [253]. By this, the spectroscopic signal in the optical, near

IR region can be obtained simultaneously.

For the theoretical studies, the system-bath model has been used for all the spec-

troscopic calculations in this work. It provides the workhouse for the study of the
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energy transfer and charge separation in the photosynthetic biological complexes and

some solar cell functional materials. It definitely helps to interpret the exciton, charge

and free-carrier dynamics. However, the system-bath model has limitations: (a). Sim-

plified system, bath and system-bath interactions are usually considered. The opti-

cal transition in the polyatomic molecule is commonly approximated by a two-level

model. Fluctuations in the bath are simplified as harmonic oscillations and linearly

coupled to the system in order to achieve the description of the bath effect in the

form of the spectral density. For this, the quantum chemistry calculations (ab initio,

semiempirical) should be one alternative approach to be included, which provide the

atomic picture of the study of the electronic dynamics in the polyatomic molecules.

(b). Super-large molecular structures of the natural photosynthetic complexes are

apparently too large for the current computer hardware for an accurate simulation.

For this, on the one hand, molecular simulations would be one way to calculate the

noise from the bath (for instance, thermal fluctuations and structural variations from

proteins, water and vibrations from pigments). On the other hand, simplified quan-

tum master equations, for instance, modified Redfield master equation, would provide

one way to study one of the most relevant super-large complexes, PSII core complex

[254]. For the study of the interaction between system and bath, the quantum chem-

istry/molecular dynamics [149, 255, 256] provides one way to focus on the atomic

details of the interaction between system and bath. In any case, the technology of
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nonlinear 2D spectroscopy seems to have an exciting bright further ahead.
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Appendix A

Model Hamiltonian for LHCII

In Chapter 4, we have studied the photophysics of the LHCII. Here, we provide the

details of the Hamiltonian of the LHCII.

A.1 Hamiltonian Matrix

The LHCII model includes spectroscopically relevant 8 chlorophyll-a (Chla) and 6

chlorophyll-b (Chlb). No carotenoids are accounted for. The 14-dimensional model

Hamiltonian and its matrix elements have been determined as follows: First, we start

with the excitonic couplings which were taken from Ref. [65] where they had been

calculated by the transition density cube method. Second, the vertical excitation

energies of the chlorophylls were initially pre-calculated by quantum chemistry meth-

ods. We have used both time-dependent density functional theory (B3LYP/6-31G)
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and ZINDO/S [257]. Then, the site energies were further optimized by fitting the

resulting absorption and circular dichroism (CD) spectra simultaneously to the avail-

able experimental data. The Hamiltonian obtained as such was then used to calculate

the 2D spectra. Inhomogeneous broadening and the strength of the system-bath inter-

action were extracted by a simultaneous fit of the linear spectra (absorption and CD)

and the cuts through the 2D spectra along the anti-diagonal. After several refining

loops, the final Hamiltonian was obtained in the optimized form as the matrix
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15410 47.1 −6.1 −2.7 0.5 −2.0 −2.6 3.3 4.4 −4.5 24.5 2.3 −8.4 2.9

47.1 14790 17.4 5.5 −0.2 4.9 6.2 −5.8 −21.9 −5.4 0.7 10.1 −1.9 0.1

−6.1 17.4 14904 −0.5 −0.2 −2.1 8.2 4.2 71.6 8.4 −0.7 −0.6 2.4 −5.7

−2.7 5.5 −0.5 15032 5.4 80.8 26.0 −5.7 −1.5 −0.2 −3.3 3.7 2.2 −2.8

0.5 −0.2 −0.2 5.4 15186 11.5 −5.2 −3.7 −0.1 0.8 1.1 −2.2 −1.2 0.0

−2.0 4.9 −2.1 80.8 11.5 15348 23.7 −6.7 −11.8 −0.6 −2.0 2.1 1.2 −1.8

−2.6 6.2 8.2 26.0 −5.2 23.7 15240 −3.5 −1.7 −0.4 −2.1 2.2 2.7 −2.4

3.3 −5.8 4.2 −5.7 −3.7 −6.7 −3.5 15360 26.1 57.0 4.8 −1.3 −2.2 1.4

4.4 −21.9 71.6 −1.5 −0.1 −11.8 −1.7 26.1 15180 1.1 3.3 −0.2 −2.5 2.0

−4.5 −5.4 8.4 −0.2 0.8 −0.6 −0.4 57.0 1.1 14680 −26.4 12.4 6.0 −1.2

24.5 0.7 −0.7 −3.3 1.1 −2.0 −2.1 4.8 3.3 −26.4 14880 105.0 −0.8 0.6

2.3 10.1 −0.6 3.7 −2.2 2.1 2.2 −1.3 −0.2 12.4 105.0 14880 −1.0 −0.2

−8.4 −1.9 2.4 2.2 −1.2 1.2 2.7 −2.2 −2.5 6.0 −0.8 −1.0 14802 −28.0

2.9 0.1 −5.7 −2.8 0.0 −1.8 −2.4 1.4 2.0 −1.2 0.6 −0.2 −28.0 14860




(A.1)
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All entries are given in units of cm−1.
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Appendix B

Vibronic dimer

In Chapter 7, we have studied the indocyanine dimer which shows a strong vibronic

coupling. Here, we study other parameters and configurations to thoroughly investi-

gated its quantum coherence properties.

B.1 Other parameters of the vibronic dimer

In order to underpin further our conclusion drawn in Chapter 7, our accurate theo-

retical model which has been validated against precise experimental data, allows us

to study further parameter constellations in theory. We have carried out additional

calculations for two different cases, which are (i) a vibrational frequency of ω = 2460

cm−1, and, (ii) an excitonic coupling of J = 250 cm−1. The stick spectra with the

electronic and the vibrational components and the corresponding absorption spectra
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are shown in Fig. B.1 and Fig. B.2, respectively.

Large frequency gaps between the sticks are observed in Fig. B.1 for the vibra-

tional frequency of ω = 2460 cm−1. In turn, for the modified excitonic coupling of

J = 250 cm−1, we find congested sticks as shown in Fig. B.2.

Then, the resulting 2D spectra of the two cases (i) and (ii) have been again

calculated upon applying the time-nonlocal quantum master equation approach in

combination with the EOM-PMA [87]. The results are shown in Fig. B.3. Again,

well separated diagonal and cross peaks appear.

In order to analyze the coherence properties of the cross peaks, the amplitude

of the cross-peak D is extracted. Its evolution for growing waiting times is shown

in Fig. B.4 for both cases (i) and (ii). As before, we have fitted the data points

by two decaying cosine functions at long time, similarly as described in Chapter 7.

We find two clearly separated oscillation frequencies in the data fit, which exactly

coincide with the energy gaps between the stick B and the two sticks of peak A in the

absorption spectrum, see Fig. B.4 for the precise values. More interestingly, the decay

rate of the initial short-time oscillations and the asymptotic long-time oscillations do

not change very much in the considered cases. This provides a further proof that the

electronic dephasing cannot be improved by the long-lived vibrational oscillations via

the vibronic molecular coupling.
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Figure B.1: Absorption spectrum of the dimer with a modified vibrational frequency

of ω = 2460 cm−1 (all the other parameters are kept unchanged and are as given in

Chapter 7). The large spectral distances between the stick of peak B and the two

sticks of peak A are 2136 cm−1 and 2460 cm−1, respectively.

B.2 Global fitting analysis of 2D spectra

In this part, we describe further details of the fitting procedure carried out to ana-

lyze the 2D spectra. To obtain the “background-free” oscillatory components from

the sequence of the 2D spectra calculated at the different waiting times at each

spectral position ωt, ωτ , we have applied the recently developed multi-dimensional

global fitting procedure [69] to the 3D data array formed by a series of 2D spec-

tra. This technique has already been successfully applied to the analysis of the 2D

photon-echo experimental data of tubular J -aggregates [131]. The detailed descrip-

tion of the method can be found elsewhere [69]. This fitting approach provides the
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Figure B.2: Absorption spectrum of the dimer with the weaker electronic coupling

J = 250 cm−1 (all other parameters remain unchanged and are given in Chapter 7).

The spectral distances between the stick of peak B and the two sticks of peak A are

1095 cm−1 and 1230 cm−1, respectively.

two-dimensional decay-associated spectra (2DDAS) from which the energy transfer

pathways between different excitonic levels can be reconstructed.

We have performed the two-dimensional global fit of the calculated 2D spectra in a

range of waiting times [0, 400] fs and have found a satisfactory fit upon using the three

lifetimes 25 fs, 90 fs, and an infinitely long relaxation component (at zero frequency)

whose time constant cannot be resolved within a 400 fs-time window. The 2DDAS

(real part) for each lifetime is plotted in Fig. B.5 together with the distribution of

standard deviations (STD) of residuals which is a good measure of the intensity of

the oscillations in the sequence of 2D spectra. The quality of the fit can be estimated
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Figure B.3: 2D spectra of the dimer with the vibrational frequency ω = 2460 cm−1

(left, all the other parameters are as given in Chapter 7) and with a weaker excitonic

coupling J = 250 cm−1 (right, all the other parameters are as given in Chapter 7) for

the waiting time T = 0 fs.

from Fig. 7.10 in the main text.

In the next step, we have performed the Fourier transform for the residuals and

have, by this, obtained a “truly” three-dimensional spectrum in the frequency space

[ωt, ωτ , ωT ]. We note that due to a relatively small waiting time window, the resolution

in this 3D spectrum along the coordinate ωT is 83 cm−1.

Figures B.6 shows the spectra of the oscillation amplitudes for the three most

intense frequencies in the 3D spectrum, which are 1251 cm−1, 1334 cm−1, and 2502

cm−1. They are associated to the vibrational frequency, the beating frequency be-

tween the excitonic states A and B. The oscillations originate from the excited state
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Figure B.4: Evolution of the amplitude of cross-peak D for growing waiting times for

the two cases (i) with the vibrational frequency ω = 2460 cm−1 (a), and (ii) with the

excitonic coupling 250 cm−1 (b). The data are again fitted to two cosine functions

(see the fitting function part) and we obtain the fit parameters for (a) as ωD1 = 1989

(1974, 2003) cm−1 and ωD2 = 2484 (2461, 2507) cm−1, and, for (b) as ωD1 = 1208

(1191, 1225) cm−1 and ωD2 = 1324 (1306, 1343) cm−1. The numbers in brackets

indicate the 95% confidence bounds.

absorption, respectively.
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Figure B.5: Two-dimensional decay-associated spectra obtained after a 2D global

analysis of 2D spectra, calculated in the waiting time range of [0, 400] fs for the

lifetimes τ = 25.5 fs (top left), τ = 90 fs (top right) and τ = ∞ (bottom left). The

bottom-right plot shows the standard deviations of residuals.
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Figure B.6: Slice of the 3D spectrum showing the amplitude spectral distribution at

ωT = 1251 cm−1, 1334 cm−1 and 2502 cm−1, respectively.
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Appendix C

Quasiadiabatic propagator path

integral

Here, we provide the details of the Quasiadiabatic path integral approach and follow

Ref. [258, 259]. In absence of external field, the system-bath model (see Chapter 1)

is given by the Hamiltonian

Htot = HS +
∑

j

(
p2j
2mj

+
1

2
mjω

2
j

(
xj −

cjx

mjω2
j

)2
)
. (C.1)

Here, we assume the linear type of system-bath interaction cjx. It is common to as-

sume that the bath is initially at thermal equilibrium and the system-bath interaction

switched on at t=0. Therefore, the initial total density operator can be factorized as

W (0) = ρ(0)
⊗

e−βHB , (C.2)
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where HB is Hamiltonian for isolated bath, ρ(0) is the initial density matrix of system

and β = 1/kBT , kB is Boltzmann constant. The total density operator is propagated

with time according to

ρ(t) = TrB
[
e−iHt/h̄W (0)eiHt/h̄

]
, (C.3)

where TrB denotes the trace with respect to all the bath DOF. Discretization of the

path integral representation of Eq. C.3 by N time steps of length ∆t = t/N yields

the form

ρ(t) = 〈s′′| ρ(0) |s′〉 ,

=

∫
ds+0

∫
ds+1 . . .

∫
ds+N−1

∫
ds−0

∫
ds−1 . . .

∫
ds−N−1 〈s′′| e−iHS∆t/h̄

∣∣s+N−1

〉
. . .

〈
s+1
∣∣ e−iHS∆t/h̄

∣∣s+0
〉 〈
s+0
∣∣ ρs(0)

∣∣s−0
〉 〈
s−0
∣∣ eiHS∆t/h̄

∣∣s−1
〉
. . .
〈
s−N−1

∣∣ eiHS∆t/h̄ |s′〉

I(s+0 , s
+
1 , . . . , s

+
N−1, s

′′, s−0 , s
−
1 , . . . , s

−
N−1, s

′; ∆t).

(C.4)

Here, s±k denotes the coordinates at time k∆t on the forward discretized Feynman

path. I(s+0 , s
+
1 , . . . ,

s+N−1, s
′′, s−0 , s

−
1 , . . . , s

−
N−1, s

′; ∆t) is an influence functional that arises from the cou-

pling to the environment, which has the form

I(s+0 , s
+
1 , . . . , s

+
N−1, s

′′, s−0 , s
−
1 , . . . , s

−
N−1, s

′; ∆t) = TrB[e
−iHB(s′′)∆t/2h̄e−iHB(s+

N−1
)∆t/h̄ . . .

× e−iHB(s+
0
)∆t/2h̄ρB(0)e

iHB(s−
0
)∆t/2h̄ . . .

× eiHB(s−
N−1

)∆t/h̄eiHB(s′)∆t/2h̄],

(C.5)
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which is simplified by the spectral density J(ω),

I(s+0 , s
+
1 , . . . , s

+
N−1, s

′′, s−0 , s
−
1 , . . . , s

−
N−1, s

′; ∆t) =

exp

(
−1

h̄

N∑

k=0

k∑

k′=0

(s+k − s−k )(ηkk′s
+
k′ − η ∗kk′ s−k′)

)
,

(C.6)

where s+N = s′′ and s−N = s′ and the different types of coefficients ηkk′ read

ηkk′ =
2

π

∫ ∞

−∞

dω
J(ω)

ω2

exp(βh̄ω/2)

sinh(βh̄ω/2)
× sin2(ω∆t/2)e−iω∆t(k−k′), 0 < k′ < k < N,

ηkk =
1

π

∫ ∞

−∞

dω
J(ω)

ω2

exp(βh̄ω/2)

sinh(βh̄ω/2)
× (1− e−iω∆t), 0 < k < N,

ηN0 =
2

π

∫ ∞

−∞

dω
J(ω)

ω2

exp(βh̄ω/2)

sinh(βh̄ω/2)
× sin2(ω∆t/4)e−iω(t−∆t/2),

η00 = ηNN =
1

2π

∫ ∞

−∞

dω
J(ω)

ω2

exp(βh̄ω/2)

sinh(βh̄ω/2)
× (1− e−iω∆t/2),

ηk0 =
2

π

∫ ∞

−∞

dω
J(ω)

ω2

exp(βh̄ω/2)

sinh(βh̄ω/2)
× sin(ω∆t/4) sin(ω∆t/2)e−iω(k∆t−∆t/4), 0 < k < N,

ηNk =
2

π

∫ ∞

−∞

dω
J(ω)

ω2

exp(βh̄ω/2)

sinh(βh̄ω/2)
× sin(ω∆t/4) sin(ω∆t/2), 0 < k < N.

(C.7)

Here, spectral density for the negative part is formally defined as J(−ω) = −J(ω).

Iterative propagation. To derive the iterative propagation, we rewrite the

influence functional Eq. C.6 as a product of subterms

I =
N∏

k=0

I0(s
±
k )

N−1∏

k=0

I1(s
±
k , s

±
k+1) . . .

N−∆k∏

k=0

I∆k(s
±
k , s

±
k+∆k) . . .×

N−∆kmax∏

k=0

I∆kmax
(s±k , s

±
k+∆kmax

),

(C.8)

where

I0(s
±
k ) = exp

{
− 1

h̄
(s+k − s−k )(ηkks

+
k − η∗kks

−
k )
}
,

I∆k(s
±
k , s

±
k+∆k) = exp

{
− 1

h̄
(s+k+∆k − s−k+∆k)(ηk+∆k,ks

+
k − η∗k+∆k,ks

−
k )
}
, ∆k ≥ 1.

(C.9)
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For the iterative propagation, we define a new propagation tensor Λ of rank ∆kmax+1,

Λ∆kmax+1(s±k , s
±
k+1, . . . , s

±
k+∆kmax

) = K(s±k , s
±
k+1)I0(s

±
k )I1(s

±
k , s

±
k+1)I2(s

±
k , s

±
k+2)× . . .

× I∆kmax
(s±k , s

±
k+∆kmax

).

(C.10)

Here, K(s±k , s
±
k+1) is the propagator for the system part, which is given as

K(s±k , s
±
k+1) =

〈
s+k+1

∣∣ e−iHS∆t/h̄
∣∣s+k
〉 〈
s−k
∣∣ eiHS∆t/h̄

∣∣s−k+1

〉
. (C.11)

We also define the reduced density tensor A∆kmax with the initial value obtained from

initial density matrix,

A∆kmax(s±0 , s
±
1 , . . . , s

±
∆kmax−1) =

〈
s+0
∣∣ ρS(0)

∣∣s−0
〉
. (C.12)

We propagate A∆kmax to time ∆t according to the relation

A∆kmax(s±k+1, . . . , s
±
k+∆kmax

; (k + 1)∆t) =

∫
ds±k Λ

∆kmax+1(s±k , . . . , s
±
k+∆kmax

)×

A∆kmax(s±k , . . . , s
±
k+∆kmax−1; k∆t).

(C.13)

The final reduced density matrix at time t = N∆t is calculated by the terminal

iterations

ρ(s±N ;N∆t) = A∆kmax(s±k , s
±
N+1 = . . . = s±N+∆kmax

= 0;N∆t). (C.14)

Convergence of memory parameters. The quasiadiabatic propagator path

integral (QUAPI) is a numerical exact approach to determine the influence of en-

vironmental fluctuations on the system dynamics within a open quantum systems

284



approach. Specifically, QUAPI determines the time dependent reduced density op-

erator ρ(t) of the system. It is well established in the literature and we only briefly

summarize the central features in the following. The algorithm is based on a symmet-

ric Trotter splitting of the short-time propagator K(tk+1, tk) for the full Hamiltonian

into two parts, one depending on the system Hamiltonian, and one involving the

bath and the coupling term. The short-time propagator determines the time evo-

lution over a Trotter time slice ∆t. The discrete time evolution becomes exact in

the limit ∆t → 0. For any finite ∆t, a finite Trotter error occurs which has to be

eliminated by choosing ∆t small enough to achieve convergence. On the other side,

the environmental DOF generate correlations which are non-local in time. For any

finite temperature, these correlations decay on a time scale denoted as the memory

time scale. The QUAPI scheme defines an augmented reduced density tensor, which

lives on this full memory time window. Then, the iteration scheme described above

is established in order to extract the time evolution of this object. All correlations

are completely included over the finite memory time τmem = K∆t but are neglected

for times beyond τmem. One increases the memory parameter K until convergence

is found. The two strategies to achieve convergence, i.e., minimize ∆t but maximize

τmem = K∆t, are naturally counter-current, but nevertheless convergent results can

be obtained in a wide range of parameters, including the cases presented in this work.
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[43] C. C. Gradinaru, S. Özdemir, D. Gülen, I. H. M. Stokkum, R. van Grondelle,

and H. van Amerongen, Biophys. J. 75, 3064 (1998).

[44] J. P. Connelly, M. G. Müller, M. Hucke, G. Gatzen, C. W. Mullineaux, A. V.

Ruban, P. Horton, and A. R. Holzwarth, J. Phys. Chem. B 101, 1902 (1997).

[45] R. Croce, M. G. Müller, R. Bassi, and A. R. Holzwarth, Biophys. J. 80, 901

(2001).

[46] R. Agarmal, B. P. Krueger, G. D. Scholes, M. Yang, J. Yom, L. Mets, and G. R.

Fleming, J. Phys. Chem. B 104, 2908 (2000).

[47] J. M. Salverda, M. Vengris, B. P. Krueger, G. D. Scholaes, A. R. Czamoleski,

V. I. Novoderezhkin, H. van Amerongen, and R. van Grondelle, Biophys. J. 84,

450 (2003).

[48] G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg. E. L. Read, M. Ballottari,

R. Bassi, R. van Grondelle, and G. R. Fleming, J. Phys. Chem. B 113, 15352

(2009).

290



[49] T. R. Calhoun, N. S. Ginsberg, G. S. Schlau-Cohen, Y. -C. Cheng, M. Ballottar,

R. Bassi, and G. R. Fleming, J. Phys. Chem. B 113, 16291 (2009).

[50] K. L. Wells, P. H. Lambrev, Z. -Y. Zhang, G. Garab, and H. -S. Tan, Phys.

Chem. Chem. Phys. 16, 11640 (2014).

[51] H. van Amerongen, and R. Croce, Primary Processes of Photosynthesis: Basic

Principles and Apparatus, RSC Publ. Cambridge, UK Vol. I, p. 329, 2008.

[52] R. van Grondelle, and V. I. Novoderezhkin, Phys. Chem. Chem. Phys. 8, 793

(2006).

[53] V. I. Novoderezhkin, M. A. Palacios, H. van Amerongen, and R. van Grondelle,

J. Phys. Chem. B 109, 10493 (2005).

[54] B. P. Krueger, G. D. Scholes, and G. R. Fleming, J. Phys. Chem. B 102, 5378

(1998).

[55] J. Adolphs, and T. Renger, Biophys. J. 91, 2778 (2006).

[56] J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, Chem. Phys.

Lett. 297, 307 (1998).

[57] D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).

[58] T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R.

Fleming, Nature 434, 625 (2005).

291
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Structure, Dynamics and Spectroscopy (World Scientific: Singapore, 2004).

[169] W. Domcke, D. R. Yarkony, and H. Köppel, Conical Intersection: Theory,
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