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1. Synopsis  

1.1. Introduction 
 
We are continuously faced with the challenge to make inferences about the state of 

the world and make choices that guide our behavior based on those inferences. 

Imagine you are walking down a sidewalk on a busy shopping street. While walking, 

you are constantly approached by people from different directions moving at different 

speeds. In order to successfully navigate through such a dynamic crowd and to avoid 

bumping into other pedestrians, you have to decide continuously whether to swerve 

left or right. The choices we make in such situations clearly depend on the available 

sensory information, such as the number of pedestrians approaching from the different 

directions. The information we gather, however, is not always reliable, but often 

ambiguous and “noisy”. This ambiguity can be the result of external factors, such as 

rain, blurring the visual field, but can also arise internally, for example from 

imperfections along the sensory processing stream. To account for these various 

sources of noise, perceptual decisions are not based solely on instantaneous 

estimates of the external sensory information. Instead, mathematical models of 

decision making posit that sensory information is gradually accumulated (or integrated) 

over time, in order to attenuate the impact of noisy sensory estimates (Usher and 

McClelland, 2001; Smith and Ratcliff, 2004; Gold and Shadlen, 2007). This 

accumulation of information is hypothesized to be carried out until a decision threshold 

or bound is crossed and a response is initiated (Fig. 1A/B).  

The choices we make, however, are not only determined by the (noisy) interpretations 

of the sensory information provided by the external world. Imagine, you are waking 
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down the same shopping street. The street is just as busy as usual. This time, however, 

you need to catch a bus, which you can already spot in the distance and which is about  

to depart shortly. Although the sensory information you gather (i.e., the number of 

pedestrians approaching you) is, on average, similar to the day before, your choices 

may differ markedly, as you are rushing down the street. Changes in the levels of 

arousal, stress and motivation (among others), can substantially alter cortical 

information processing in general (Aston-Jones and Cohen, 2005; Harris and Thiele, 

2011; Zagha and McCormick, 2014; McGinley et al., 2015b), and decision-making in 

particular (Eckhoff et al., 2009; Cheadle et al., 2014; de Gee et al., 2014). Previous 

research demonstrates that these changes in global “brain state” are the result of the 

action of neuromodulatory systems (Phillis, 1968; Robbins, 1984; Aston-Jones and 
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Figure 1. Sequential sampling and temporal accumulation. (A) Evidence for one choice over an 

alternative (Choice 1 – Choice 2) is encoded in primary sensory areas. Top. Weak evidence for choice 

1 with an average strength of +0.1. Bottom. Stronger evidence for choice 1 with an average strength of 

+0.2. (B) Instantaneous sensory evidence is accumulated over time until a decision bound (or threshold) 

is crossed, upon which a choice is made. (C) Schematic of an implementation of temporal accumulation 

within a neural circuit. Two populations, representing different choice alternatives, maintain information 

through recurrent excitation (denoted with w+) and compete with each other through lateral inhibition 
(Wong and Wang, 2006). 
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Cohen, 2005; Berridge, 2008; Sara, 2009; Lee and Dan, 2012; Zagha and McCormick, 

2014), such as the noradrenergic and the cholinergic system. Studies across various 

species demonstrate that changes in the neuromodulatory levels in the brain are 

accompanied by profound changes in the computational characteristics of single 

neurons, local microcircuits as well as distributed networks (Servan-Schreiber et al., 

1990; Aston-Jones and Cohen, 2005; Bouret and Sara, 2005; Lee and Dan, 2012; 

Marder, 2012; Pinto et al., 2013; Chen et al., 2015; McGinley et al., 2015b). 

Importantly, in contrast to the traditional view of neuromodulatory systems, these 

changes can occur rapidly, already while a decision is evolving (Aston-Jones and 

Cohen, 2005; Harris and Thiele, 2011; Martins and Froemke, 2015). Hence, depending 

on the internal state of the decision maker, her/his choices will be different, even when 

faced with similar sensory input.  

The two mentioned examples roughly outline the scope of this thesis: in the first part, 

I will review the progress over recent years in the field of decision neuroscience, with 

a particular focus on the mechanisms and time scales of temporal accumulation of 

sensory information. The second part will be concerned with three major 

neuromodulatory systems and their impact on neuronal dynamics and cognitive 

operations. This is followed by an overview of the studies which are part of this thesis. 

For each study, I will provide a short summary of the background, the specific aims as 

well as a summary of the results. In the last section, I will discuss and integrate our 

findings and provide an outlook into possible future directions. 

1.2.  Perceptual decision-making 
 
Perceptual tasks are a useful framework to study decision-making, as they allow the 

experimenter to control the quantity and quality of the information with high precision 
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(Gold and Shadlen, 2007), but the findings from perceptual decision-making should, in 

principle, translate to other, more complex forms of decisions, such as value-based 

economic decisions (Polanía et al., 2014). According to sequential sampling models of 

decision-making, the formation of a perceptual choice can be roughly divided into three 

stages (Smith and Ratcliff, 2004; Gold and Shadlen, 2007; Drugowitsch et al., 2016): 

(i) the initial encoding stage, where incoming sensory information is being processed, 

probably carried out in primary sensory areas, (ii) the gradual accumulation of this 

sensory information over time, and (iii) the transformation of sensory evidence into a 

choice, for example in form of a motor output, once sufficient information has been 

accumulated and a decision threshold or bound is reached. Over the last decade, 

investigating the principles behind decision-making emerged as one of the central 

topics in the field of cognitive and systems neuroscience. Since, the neuronal circuits 

as well as the computational principles underlying perceptual decision-making have 

been extensively characterized in studies on rodents (Brunton et al., 2013; Hanks et 

al., 2015), non-human primates (Gold and Shadlen, 2000; Shadlen and Newsome, 

2001; Shadlen and Kiani, 2013), in humans (Donner et al., 2007, 2009; Siegel et al., 

2007; Kelly and O’Connell, 2013) as well as theoretically (Ratcliff, 1978; Usher and 

McClelland, 2001; Wang, 2002; Wong and Wang, 2006; Eckhoff et al., 2009). 

1.2.1. Temporal accumulation  
 
A hallmark of decision-making is the gradual accumulation of sensory information over 

time (Ratcliff, 1978; Usher and McClelland, 2001; Gold and Shadlen, 2007). 

Computational models of decision-making posit a “decision variable”, which encodes 

the relative evidence for one choice over another. This decision variable shows a 

gradual build-up during stimulus viewing, with a slope of the build-up being determined 
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by the quality of the signal (i.e., the strength of the evidence for one choice alternative 

over another) (Fig. 1B). The decision process is halted, when a decision threshold is 

reached, upon which a choice is made (Smith and Ratcliff, 2004; Gold and Shadlen, 

2007). One indicator that observers indeed accumulate information over time is the 

decrease in detection threshold (i.e., the lowest signal strength needed in order to be 

perceived by an observer) as a function of signal duration. This means that very weak 

signals are likely to be missed if only presented for very short durations. On the other 

hand, if the same signal is presented for a longer period, the chance of a successful 

detection increases. In such situations, the strength of the evidence is one key 

predictor for reaction times, with stronger evidence yielding faster responses as the 

threshold is reached quicker (Fig. 1B). Errors, for instance false alarms, can arise in 

this process from the excessive accumulation of noise, which leads to an incidental 

threshold crossing, whereas misses result when the accumulated signal fails to reach 

the threshold within the available amount of time. Neurophysiological substrates of 

temporal accumulation have been identified in various brain regions, many of them 

linked with the preparation of the motor action that was required to indicate the 

subjects’ choice as well as working memory processes. Among these regions are 

lateral intraparietal area (Zaborszky et al., 1999; Gold and Shadlen, 2000; Shadlen and 

Newsome, 2001; Roitman and Shadlen, 2002), prefrontal (Kim and Shadlen, 1999; 

Philiastides et al., 2011), somatosensory (Romo et al., 2002) and motor cortex (Donner 

et al., 2009).  

1.2.2. Neurophysiological principles of temporal accumulation  
 
Given the relatively short time constants of individual synapses and neurons, the time 

scale of temporal accumulation during decision-making is remarkable: neurons in 
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association (Shadlen and Newsome, 2001; Roitman and Shadlen, 2002) and (pre-

)motor cortices (Gold and Shadlen, 2001; Donner et al., 2009) show ramping activity, 

reflecting the accumulation of sensory information, for up to several seconds. In 

contrast, the slowest synaptic time scales are around 100 ms (Wang, 2002). Hence, 

typically observed integration time scales far exceed this time constant. One key 

question in decision neuroscience is how the temporal accumulation of information is 

achieved within neural circuits. The first hints about the neural implementation of 

temporal accumulation came from the observation that signatures of the decision 

variable were identified in regions that have previously been linked with processes 

involving working memory, such as lateral intraparietal area (Wang, 2008). These 

regions have long been known to exhibit persistent activity during the maintenance of 

items in working memory (Wang, 1999). This has led to the idea that the mechanisms 

underlying temporal accumulation might be based on similar principles (Wang, 2002; 

Wong and Wang, 2006). One hypothesized key component of these accumulator 

circuits is slow reverberation through recurrent excitation (Fig. 1C) (Douglas et al., 

1995; Wang, 2002, 2008, 2012), which can give rise to self-sustained population 

activity within a neural circuit (Wang, 2001). These slow reverberations observed in 

such networks are hypothesized to depend critically on slow NMDA receptors at the 

recurrent excitatory synapses (Wang, 2001; Wong and Wang, 2006). Accordingly, 

stronger recurrent excitation is associated with longer time scales, facilitating the 

integration of information over extended periods of time. Recent work described a 

hierarchy of time scales in the primate cortex, with early sensory areas exhibiting 

relatively short time constants and higher order areas, which are hypothesized to be 

involved in working memory as well as decision-making, exhibiting longer time 

constants (Honey et al., 2012; Murray et al., 2014). The authors show that this 
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hierarchy can indeed emerge from a gradient of recurrent excitation across the brain, 

but longer time constants only emerge in combination with long-range structural 

connections (Chaudhuri et al., 2015). Thus, short time constants can be the result of 

local recurrence alone, whereas long time constants in the brain may emerge as a 

consequence of large-scale network interactions in combination with local recurrence 

(Chaudhuri et al., 2015). Consisted with these findings, it has been observed that the 

slowest fluctuations in the brain (with longest autocorrelations and, hence, largest time 

constants) are observed in those areas that exhibit the strongest structural connectivity 

(Baria et al., 2013). 

In sum, over recent years several key principles underlying the temporal accumulation 

and its neural implementation have emerged, most prominently the reverberation 

within neural circuits through recurrent excitation, likely mediated through NMDA 

receptors, as well as long-range connectivity.  

1.3. Neuromodulation 
 
Modulatory neurotransmitters, henceforth called “neuromodulators”, are a class of 

neurotransmitters that, in contrast to regular neurotransmitters, do not alter activity of 

neurons directly, but rather modulate the response properties of multiple neurons, 

possibly through a combination of wired transmission and volume transmission (Sarter 

et al., 2009). The effects of neuromodulatory systems are often described as “spatially 

diffuse” and unspecific, with a temporal profile that has been characterized as sluggish 

(Ballinger et al., 2016). More recent studies, however, demonstrated neuromodulatory 

effects with relatively high spatial precision that unfold on multiple time scales, 

including very short ones (Aston-Jones and Cohen, 2005; Schultz, 2007; Sarter et al., 

2009; Ballinger et al., 2016; Nelson and Mooney, 2016). Several neuromodulatory 
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systems have been linked with the control of global brain state, and the regulation of 

behavioral state variables such as arousal and attention (Phillis, 1968; Robbins, 1984; 

Berridge, 2008; Harris and Thiele, 2011; Lee and Dan, 2012; Zagha and McCormick, 

2014). Their role in shaping specific cognitive processes as well as neural 

computations, however, has long remained unknown. The prominent role of 

neuromodulatory systems in brain function becomes most evident when considering 

the consequences associated with their malfunctioning in neuropsychiatric and 

neurological disorders, such as Parkinson’s disease (Burns et al., 1983; Lotharius and 

Brundin, 2002), schizophrenia (Meltzer and Stahl, 1976) or depression (Fava and 

Kendler, 2000), which are linked with severe cognitive and/or physical impairments.  

In the following, I will briefly discuss three neuromodulator systems that are the focus 

of this thesis: the two catecholamines noradrenaline and dopamine, as well as 

acetylcholine.  

1.3.1. Noradrenaline 
 
Noradrenaline (also called norepinephrine) is a catecholaminergic neuromodulator that 

has been strongly linked with the control of global brain state (Aston-Jones and Cohen, 

2005; Lee and Dan, 2012; Zagha and McCormick, 2014) and the regulation of arousal 

(Aston-Jones and Cohen, 2005; Berridge, 2008; Eldar et al., 2013). The primary source 

of noradrenaline to the central nervous system is the locus coeruleus (LC), a small 

structure in the brainstem, which maintains projections throughout almost the entire 

brain (Foote and Morrison, 1987). The effects of noradrenaline are mediated through 

different classes of adrenergic receptors, the α1- and α2- as well as the β-

adrenoceptors. Depending on the activated receptor type, the effects of noradrenaline 

can differ markedly (Foote and Morrison, 1987). On the level of single neurons, 
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noradrenaline leads to an increase in the signal-to-noise ratio, which manifests as an 

elevated response of a neuron to synaptic input with respect to spontaneous 

background noise (Servan-Schreiber et al., 1990; Hasselmo et al., 1997; Aston-Jones 

and Cohen, 2005; Eldar et al., 2013). Early computational modelling work implemented 

these changes as an increase in the response gain of the activation function of units 

in a neural network (Servan-Schreiber et al., 1990). Such an alteration in the input-

output function of a neuron means that weak (or inhibitory) input is further suppressed, 

whereas strong (or excitatory) input is further increased (Fig. 1A, dashed orange line) 

(Donner and Nieuwenhuis, 2013). In V1, these changes in gain may be the result of a 

noradrenaline-related depolarization of excitatory pyramidal cells, as well as a 

depolarization of parvalbumin-positive (PV+) and somatostatin-positive (SOM+) 

inhibitory interneurons, in combination with a decrease in membrane potential 

variability (Polack et al., 2013). Whether these observations extend to regions other 

than V1 is currently not fully understood. In primary auditory cortex A1 of the mouse, 

for instance, a recent report demonstrated that the pairing of locus coeruleus 

stimulation with the presentation of a tone of a certain frequency led to an increase in 

the neuronal response in many neurons, irrespective of the frequency preference of 

the neurons (Martins and Froemke, 2015). This indicates that noradrenaline, at least 
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in A1, may cause an increase in the baseline of the neuronal activation function (Fig. 

2B, dashed orange line), perhaps in combination with the aforementioned increases in 

response gain.  

Although the involvement of the LC-NE system in the regulation of arousal has long 

been acknowledged (Robbins, 1984; Berridge, 2008), only recently it began that the 

neural and computational mechanisms of arousal, as well as its effects on specific 

cognitive processes, are being investigated (Aston-Jones and Cohen, 2005; Sara, 

2009; de Gee et al., 2014; Reimer et al., 2014; McGinley et al., 2015b, 2015a; Vinck 

et al., 2015; Reimer et al., 2016). This surge in the number of investigations is partly 

linked to the identification of pupil diameter as a non-invasive index of 

“neuromodulatory state” in general (Reimer et al., 2016), and of noradrenergic activity, 

in particular (Murphy et al., 2014; Joshi et al., 2016). The classic view of the 

noradrenergic involvement in cognitive processes emphasized the slow component, 

regulating behavioral state over longer time scales. Recent research, however, shows 

that phasic changes in noradrenaline-related arousal can be fast (Aston-Jones and 

Figure 2. Activation or transfer functions and neuromodulation. (A) Possible scenarios depicting 

increases (dashed orange line) and decreases (dashed blue line) in response gain. (B) Positive (orange) 

and negative (blue) baseline shifts of the activation function. (C) Increases (orange) and decreases 
(blue) in input gain. 
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Cohen, 2005) and alter of specific neural computations already while cognitive 

processes in general, such as perceptual decisions, are unfolding (de Gee et al., 2014).  

Taken together, research investigating the impact of noradrenaline on specific 

cognitive computations has grown substantially over recent years and it is now clear 

that, in contrast to the classical view, noradrenaline can bias cognitive processes such 

as decision making while they unfold. However, the exact nature of the role of 

noradrenaline during such cognitive operations is currently still not sufficiently 

understood. 

1.3.2. Acetylcholine 
 
Acetylcholine is hypothesized to play a key role in the control of cortical state as well 

as in various cognitive processes, most prominently attention, learning and memory 

(Hasselmo and Sarter, 2010). Moreover, malfunctioning of the cholinergic system is 

associated with several neurodegenerative and neuropsychiatric diseases (Hasselmo 

and Bower, 1993; Ballinger et al., 2016). The majority of cholinergic input to the brain 

is provided by cholinergic cells in the various nuclei of the basal forebrain (Woolf, 1991; 

Zaborszky et al., 1999, 2015), with the main cortical input being provided by the 

nucleus basalis of Meynert (Thiele, 2013). Traditionally, the innervation profile of the 

cholinergic system has been described as diffuse (Ballinger et al., 2016), but 

projections of basal forebrain cholinergic neurons can exhibit remarkable spatial 

specificity (Fournier et al., 2004; Sarter et al., 2009; Zaborszky et al., 2015; Kim et al., 

2016).  

Like other neuromodulators, the effects of acetylcholine depend on specific receptor 

types. Two prominent classes of cholinergic receptors have been identified in the brain, 

muscarinic and nicotinic receptors, which can be further divided into several subtypes 
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that exhibit a heterogeneous distribution across the brain (Disney et al., 2006; Thiele, 

2013). Depending on the activated receptor type, the effects of acetylcholine can 

unfold on different time scales (Parikh et al., 2007) and likely subserve different 

functions in the brain (Herrero et al., 2008). Earlier research mainly emphasized the 

slow component, possibly mediated through (metabotropic) muscarinic receptors 

(Thiele, 2013). However, several studies have reported cholinergic action unfolding 

much more rapidly, over the course of seconds (Parikh et al., 2007) or even tens of 

milliseconds (Nelson and Mooney, 2016). These rapid effects may be mediated 

through fast (ionotropic) nicotinic receptors (Albuquerque et al., 2009; Sarter et al., 

2009).  

Our understanding of the circuits level mechanism of acetylcholine has grown 

substantially over recent years, due to advances in imaging, recording as well as 

stimulation techniques. In visual area V1 of the awake mouse, an intricate circuit 

involving several subclasses of inhibitory interneurons has been identified as one 

potential implementation of the effects of acetylcholine (Fu et al., 2014). In this circuit, 

acetylcholine activates vasoactive intestinal peptide positive (VIP+) inhibitory 

interneurons, which, in turn, inhibit somatostatin-positive (SOM+) interneurons. SOM+ 

interneurons, in turn, mainly innervate excitatory pyramidal cells (Pfeffer et al., 2013; 

Fu et al., 2014; but see Pakan et al., 2016). Hence, the hypothesized net effect of 

acetylcholine is cortical disinhibition, leading to a net increase in excitation within the 

targeted microcircuit. This disinhibitory circuit is consistent with the observed increases 

in response gain under acetylcholine (Disney et al., 2007; Herrero et al., 2008; Fu et 

al., 2014). However, other studies reported decreases in response gain (Fig. 2A, 

dashed blue line) along with baseline shifts (Fig. 2B, dashed orange line) (Soma et al., 

2012, 2013; Nelson and Mooney, 2016) or even changes in input gain, which manifest 
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as a shift of the activation function along the x-axis (Fig. 2C, dashed orange and blue 

lines) (Froemke, 2015). As these latter studies were carried out in A1 of the mouse (as 

opposed to V1), the discrepancy might point towards dissociable effects of 

acetylcholine in different regions of the brain, perhaps mediated by different receptors. 

In sum, acetylcholine can act across multiple spatial and temporal scales, both spatially 

diffuse and unspecific and spatially precise and rapid. Moreover, the circuit level effects 

of acetylcholine likely differ, depending on receptor type and target region, which 

allows the cholinergic system to support a range of functions in the cortex. 

1.3.3. Dopamine 
 
As a catecholamine, dopamine is structurally strongly related to noradrenaline. In fact, 

dopamine is the chemical precursor to noradrenaline in the brain. Nonetheless, its 

functions are markedly different. Traditionally, dopamine has been strongly linked with 

motor function. This view originates from the observations that the motor deficits that 

accompany Parkinson’s disease are associated with a degeneration of neurons in 

dopaminergic centers in the brain stem, such as the substantia nigra and the ventral 

tegmental area (Lotharius and Brundin, 2002). Likewise, experimental lesioning of 

these areas is reported to result in severe motor deficits (Burns et al., 1983). More 

recently, dopamine has also been linked with the regulation of reward-related cognitive 

processes, the control of motivational behavior (Wise, 2004), as well as reinforcement 

learning (Schultz et al., 1997; Schultz, 2016). The actions of dopamine are mediated 

by a diverse set of dopaminergic receptors of at least five different types of G protein-

coupled receptors (Missale et al., 1998), which are roughly categorized into D1-type 

and D2-type receptors (with several subclasses each). These different classes of 

receptors are likely to support the different functional roles of dopamine (Schultz, 
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2016), which unfold on several (distinct) time scales (Schultz, 2007, 2016). Their 

individual roles and contributions to the known effects of dopamine are not well 

understood. Along with noradrenaline, early models of catecholaminergic function 

proposed that both dopamine increase signal-to-noise ratio and the response gain of 

neurons (Fig. 2A) (Servan-Schreiber et al., 1990). In contrast to noradrenaline, 

however, the dopaminergic systems seems to maintain strongest cortical projections 

to prefrontal regions (Montague et al., 2004), which may explain the involvement in 

different cognitive operations compared to noradrenaline. Interestingly, dopamine, 

especially the D1 receptor, has been linked with the control of persistent activity and 

working memory function (Sawaguchi and Goldman-Rakic, 1991), possibly through a 

modulation of NMDA-related excitatory currents (Brunel and Wang, 2001). This 

suggests that dopamine may also play a prominent role in temporal accumulation 

during perceptual decision-making. 

1.3.4. Other neuromodulators 
 
Many other neuromodulatory systems exist. Prominent examples are serotonin, arising 

from the dorsal raphe nucleus, and histamine from the tuberomammillary nucleus (Lee 

and Dan, 2012). Both these systems have been implicated with the control of behavior 

as well as modulation of cortical excitability (Froemke, 2015). Furthermore, many of 

these systems are linked to specific neuropsychiatric disorders such as major 

depressive syndrome. Likely, these systems also impact cognitive processes such as 

decision-making. However, a detailed discussion is beyond the scope of this thesis.  

1.4. Study overview and summary of results 
 
This thesis consists of five experimental chapters. In this paragraph, I will give a short 

overview of each study, including an outline of the background and aims, followed by 
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a short summary of the results. For details regarding experimental design, the 

employed methods as well as results, the reader is referred to the dedicated sections 

in the experimental chapters below (chapters 4-8). 

1.4.1. Study 1: Action Planning and Perceptual Choice 

1.4.1.1. Background and Aims 
 
Computational models of perceptual decision-making posit that decisions are based 

on the temporal accumulation of sensory information. When the stimulus duration is 

controlled by the environment, the optimal strategy is to integrate all the available 

evidence to minimize the influence of noisy estimates. However, if human observers 

accumulate information optimally, over the entire stimulus period, when provided with 

sufficiently long streams of information, is unclear. Moreover, in most previous 

investigations, the subjects knew beforehand which motor response was associated 

with the available choice alternatives, either from long training (in animals) or explicit 

instructions (in humans). Under such conditions, the integrated evidence can be 

continuously mapped onto regions involved in action planning and motor execution. 

This explains why most signatures of evidence accumulation were consistently 

identified in brain regions involved in action planning (Gold and Shadlen, 2000, 2003; 

Donner et al., 2009; de Lange et al., 2013). In contrast, if the sensory-motor mapping 

was unknown to the subject during the accumulation of information, these 

neurophysiological signatures were absent (Gold and Shadlen, 2003; O’Connell et al., 

2012). Whether the knowledge about sensory-motor contingencies alters the decision-
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making process in general, and temporal accumulation in particular, is largely 

unknown.  

In this project, we exploited accumulation time scales as a diagnostic tool of the 

decision-making process during up/down motion discrimination, where the stimulus-

response mapping varied on a trial-by-trial basis. Crucially, in one condition the 

stimulus-response mapping was communicated to the subject before (“Pre”; Fig. 3A) 

and in the other condition after stimulus presentation (“Post”; Fig. 3B). Our hypotheses 

were as follows: if decision-making and evidence accumulation depend on the motor 

action that is taken, then trial-to-trial fluctuations in the stimulus-response mapping 

should result in significant alterations of the time scale over which participants 

accumulate evidence. On the other hand, it is possible that evidence is accumulated 

Figure 3. Experimental design for study 1. Random dot-kinematograms of varying motion strength 

were presented to the observer after a variable fixation period. (A) In the “Pre” condition, decision-

response (DR) mapping (or stimulus-response mapping) was communicated to the subject before 

stimulus presentation (B). In the “Post” condition, the information about the DR-mapping was 

communicated to the subject after stimulus presentation. In both conditions, DR-mapping varied from 
trial to trial. 
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independently of a following motor action. In this case, no such changes are expected. 

In sum, the aims of the first study were two-fold: (i) investigate if human observers 

integrate optimally and accumulate all available evidence, even when presented with 

signals of very long duration, and (ii) investigate whether decision-making and 

temporal accumulation depend on action planning. 

1.4.1.2. Results and Discussion 
 
We first investigated if human observers integrate optimally in a task with prolonged 

signal durations. In this experiment, signals were of up to 4.8 seconds duration. Thus, 

in order to maximize performance on this task, our subjects should have accumulated 

information for the entire length of the signal. While all participants showed clear 

signatures of evidence accumulation, in form of a decrease of the detection threshold 

as a function of signal duration, none of the subjects exploited the full duration of the 

signal. For each condition and subject, we estimated the average time scales of the 

evidence accumulation process (using both model-free as well as model-based 

approaches) and found those to be far below the maximum signal duration (with an 

average time scale across participants of ~ 500ms).  

Furthermore, we found no evidence that temporal accumulation depends on the 

knowledge about sensory-motor mapping: estimated time scales, independent of the 

analytic approach (i.e., model-free or model-based), were statistically indistinguishable 

between the employed task conditions. Hence, we conclude that the rapid acquisition 

of the sensory-motor mapping after stimulus presentation had no significant impact on 

the decision mechanism. The result has several implications for the study of decision 

neuroscience. First, human observers do not integrate all the available sensory 

information, even if this would optimize performance. This suggests that the 
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accumulation time scale over which evidence is accumulated may have an upper limit 

that varies across individuals, just like working memory capacity. Second, it shows that 

those regions that are involved in motor planning and are usually found to exhibit time 

courses similar to what is expected from the decision variable itself, likely carry a 

downstream signal that is generated elsewhere. This indicates that temporal 

accumulation and action planning as well as motor execution are largely dissociable 

processes. 

1.4.2.  Study 2: Adaptive Evidence Integration in Perceptual Choice 

1.4.2.1. Background and Aims 
 
The properties of evidence accumulation have commonly been probed in tasks, in 

which the level of sensory evidence is constant. However, in natural environments the 

available and relevant sensory information varies in an unpredictable fashion and can 

be temporally embedded in irrelevant information (i.e., noise). Many models of decision 

making, such as the drift diffusion model, assume perfect accumulation over time 

(Ratcliff, 1978; Ratcliff and Gail, 2008). When the sensory information an organism is 

sampling from is stationary, drift diffusion models predict short response times and 

optimal accuracy. However, the environment we live in is highly dynamic and 

contingencies can change at any moment. When faced with non-stationary 

information, perfect accumulation may be suboptimal, as it can lead to an excessive 

integration of noise that masks the relevant information. Alternative models of decision-

making incorporate leaky or forgetful accumulation (Usher and McClelland, 2001). This 

means that information that is accumulated, is also subject to decay over time, with a 

decay rate controlled by the leak term and a time scale given by the inverse of the leak. 

Using a single accumulator model with leak, we show that there are in fact situations 
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where leaky integration is beneficial over perfect integration. We experimentally tested 

these predictions, using a novel variant of a signal detection task, in which a signal is 

embedded in an ongoing stream of noise (Fig. 4A). Crucially, we experimentally 

manipulated the dominant signal duration in two separate conditions (Fig. 4B). In one 

condition, short signals were most frequent, whereas in a second condition, long 

signals were    more frequent (and short and long signals were mixed with two medium 

durations). Based on model simulations, we predicted that observers adapt the time 

Figure 4. Experimental design of study 2. (A) Schematic of the time course of the stimulus during an 

example signal + noise trial. Two discs fluctuated in luminance around a mean level. During the signal 

interval, at a variable onset latency, the mean luminance level of one of the discs increased. Observers’ 

task was to detect these changes in luminance. (B) Distribution of signal durations on signal + noise 

trials, where the two conditions are highlighted in red (long durations more frequeny) and blue (short 

durations more frequent). 
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scale over which they accumulate evidence to the dominant signal duration in order to 

maximize performance.   

1.4.2.2. Results and Discussion 
 
In this study, we showed that under conditions of non-stationary sensory information, 

perfect integration (using the drift diffusion model) yielded suboptimal results and is not 

the strategy employed by human observers. Instead, human observers increased their 

performance during the task by adapting the time scale over which they accumulate 

sensory information to the dominant (or expected) signal duration, consistent with 

predictions derived from simulations of a leaky accumulation process (Usher and 

McClelland, 2001). This adaptation of the time scale manifests in clear differences in 

performance: for short signals, observers show higher performance when short signals 

dominate (and the time scale is short) compared to when long signals dominate (and 

the time scale is long). For long signals, on the other hand, performance is better when 

long signals dominate, compared to when short signals dominate. 

This study has a number of important implications. First, our results provide strong 

support for models of perceptual choice that are based on leaky integration of 

perceptual evidence. This is consistent with fundamental principles of neural 

computation (Wang, 2002). Furthermore, it shows that in ecologically more valid 

situations, forgetful accumulation can in fact be advantageous. Second, our results 

shed new light on the question of how “top-down” mechanisms shape decision 

computations in the brain. Our results reveal a novel top-down mechanism that can 

already shape decision-making at the level of evidence accumulation. This shows that 

the time scale of evidence accumulation is not just a fixed circuit property, but exhibits 

a high degree of flexibility.  
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1.4.3. Study 3: Neuromodulation and Cortical Excitation-Inhibition Balance 
 

1.4.3.1. Background and Aims 
 
Cortical activity fluctuates continuously, even in the absence of changes in sensory 

input or motor output (Faisal et al., 2008). These intrinsic fluctuations exhibit a 

characteristic temporal structure, which is evident as 1/f-like power spectra and long-

range temporal autocorrelations (Linkenkaer-Hansen et al., 2001; Miller et al., 2009; 

He et al., 2010; Palva et al., 2013; Zhigalov et al., 2015). The temporal structure of 

intrinsic cortical activity varies widely across individuals, partly due to variations in the 

balance between anatomical excitatory and inhibitory connections. Excitation and 

inhibition, however, are not determined solely by the anatomy of cortical circuits, but 

are a dynamic property that fluctuates continuously as a function of brain state 

(Isaacson and Scanziani, 2011; Froemke, 2015). Previous animal work points to two 

key factors involved in shaping cortical excitation-inhibition: first, thalamic drive of the 

cortex, for instance due to sensory stimulation (Zagha and McCormick, 2014). 

Evidence suggests that excitatory feedforward drive is accompanied by intracortical 

inhibition of comparably strong (Shadlen and Newsome, 1998), or even stronger 

(Haider et al., 2013), magnitude. Second, modulatory brainstem systems, such as the 

noradrenergic and the cholinergic system (Froemke, 2015). Despite an increase in our 

understanding of the effects of neuromodulation at the level of neural microcircuits, 

their net effects on excitation and inhibition in large-scale cortical circuits have 

remained unknown. In this study, we employed a combination of computational 

modelling, selective pharmacological manipulation of acetylcholine and 

catecholamines (noradrenaline and dopamine), as well as magnetoencephalography 

in healthy humans (during rest and task) to address this question (Fig. 5A/B). We 
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hypothesized that, if neuromodulators alter the net ratio between excitation and 

inhibition systematically, this should be evident in form of an alteration of the temporal 

correlation structure of cortical oscillations. 

1.4.3.2. Results and Discussion 
 
We first simulated neural activity, using a modified version of a network model of a 

simplified cortical circuit (Poil et al., 2012). In this model, we separately manipulated 

excitatory as well as inhibitory synapses in the model through multiplicative modulation 

Figure 5. Experimental design for study 3 (A) Neuromodulation levels were pharmacologically 

manipulated within subjects. To ensure a valid double-blind design, drugs and placebo pills were 

administered at different points in time.  (B) Brain activity was recorded during rest (left) and during 

task (right), which entailed constant visual stimulation by means of a structure-from-motion rotating 

sphere stimulus. (C) Layout of neural network model, consisting of 2500 units arranged on a 50x50 

grid, with local connectivity. (D) Neuromodulatory effects (grey lines) were implemented as a 
multiplicative increase in the connection weights between excitatory (E) and inhibitory (I) units. 
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of the connection weights (Fig. 5C/D) and determined their impact on long-range 

temporal correlations of intrinsic network oscillations. We found that dynamic 

modulation of the connection weights led to changes in the temporal correlation 

structure of alpha-band amplitude fluctuations. 

Next, we tested the influence of neuromodulation on brain activity recorded with MEG 

experimentally. We found that increased levels of catecholamines were associated 

with significant increases in temporal correlations of intrinsic cortical activity in parietal 

and occipital regions, indicative of changes in the ratio of excitation and inhibition. By 

contrast, acetylcholine had no effects on long-range temporal correlations. In principle, 

the observed changes in temporal correlations can have multiple causes: both 

increases and decreases in excitation or inhibition can lead to the observed effects. In 

order to get a better idea of the net effects of catecholamines, we compared the 

changes in temporal correlations induced by pharmacological treatments with those 

induced by sensory/task drive. Sensory stimulation is associated with profound 

increases in inhibition and, in our experiment, with pronounced decreases in temporal 

correlations (compared to rest). This specific pattern enabled us to infer that the 

catecholamine-related increase in temporal correlations is likely the result of an 

increase in excitation-inhibition ratio.  

We conclude that catecholamines, but not acetylcholine, change temporal correlations 

of intrinsic cortical activity, possibly by increasing the ratio between excitation and 

inhibition, which may be the result of a decrease in inhibition (Martins and Froemke, 

2015). 
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1.4.4. Study 4: Neuromodulation of Functional Connectivity 

1.4.4.1. Background and Aims 
 
Intrinsic brain activity not only exhibits remarkable temporal structure, but is also highly 

coordinated in space. This coordination is reflected in the organization of intrinsic 

activity into distributed networks of correlated activity (Fox et al., 2005; Raichle and 

Snyder, 2007; de Pasquale et al., 2010; Deco et al., 2011). The neurophysiological 

mechanisms behind such widespread network fluctuations, however, are not well 

understood. Due to their global innervation profile and effects across multiple time 

scales, neuromodulatory systems, such as the catecholaminergic system, are in an 

ideal position to shape brain activity spatially widespread, in a temporally coordinated 

manner. Catecholamines have been hypothesized to increase the gain of the activation 

function of targeted neurons (Servan-Schreiber et al., 1990). Using a simple network 

model, it has been shown that such changes in response gain lead to a global increase 

in the correlations across the units in such a network (Eldar et al., 2013). Indeed, during 

the execution of a simple perceptual task, periods of increased pupil dilation, reflecting 

increases in neuromodulatory activity (Murphy et al., 2014; Joshi et al., 2016; Reimer 

et al., 2016), are associated with spatially widespread increases in activity correlations 

as measured using BOLD-fMRI (Eldar et al., 2013). In this project, we increased the 

levels of catecholamines, through pharmacological manipulation, during BOLD-fMRI 

measurements of resting state activity in healthy human participants. The main 

objectives in this study were (i) to investigate if and how pharmacological manipulation 

of catecholamines alters whole-brain BOLD correlations during rest and (ii) investigate 

the functional topology that is associated with increased levels of catecholamines.  
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1.4.4.2. Results and Discussion 
 
Previous research, using pupil dilation as an index of noradrenergic activity (Eldar et 

al., 2013) and studies employing pharmacological manipulation of catecholamine 

levels (Warren et al., 2016), reported increases in brain-wide correlations measured 

using fMRI. In stark contrast, in this study, we found that increased levels of 

catecholamines were associated with a strong decrease of inter-regional BOLD 

correlations. These decreases exhibited spatial specificity, indicating that 

catecholamines can exert spatially distinct effects on the correlations between 

particular brain regions. How can the discrepancy between the previous results, 

reporting increases in correlations and our current findings be reconciled? One key 

difference between the discussed studies and the current study was the behavioral 

context. Here, we recorded brain activity during rest, that is, in absence of external 

stimulation or overt behavior. In contrast, in the earlier studies, participants were 

engaged in a perceptual task (Eldar et al., 2013; Warren et al., 2016). Noradrenaline 

has been shown to depend on the level of glutamate in the system, exerting stronger 

effect when more glutamate is available (Polack et al., 2013; Mather et al., 2015). 

Hence, it is possible that during a perceptual task, glutamate levels are elevated due 

to strong feedforward excitation. In turn, this may have amplified the effects of 

noradrenaline in those previous studies, while the absence of strong stimulation and, 

thus, lower levels of glutamate, led to a decrease in activity correlations.  

Our findings have two key implications. First, catecholamines reshape functional 

network topology spatially widespread, yet spatially specific. This supports the findings 

that locus coeruleus coupling and receptor distribution across the brain can exhibit a 

high degree of spatial specificity. Second, the observed decrease in whole-brain 

correlations is inconsistent with a simple catecholamine-related increase in response 
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gain. Thus, the effects of catecholamines may be more diverse than previously 

assumed.  

1.4.5.  Study 5: Context-dependent neuromodulation of the intrinsic cortical 
correlation structure 

1.4.5.1. Background and Aims 
 
The noradrenergic and the cholinergic system have long been implicated with the 

regulation of global brain state (Harris and Thiele, 2011; Lee and Dan, 2012; Zagha 

and McCormick, 2014). These systems are made up of brainstem centers, the locus 

coeruleus (containing noradrenergic neurons) and the basal forebrain (containing 

cholinergic), who have widespread projections to most parts of the entire cerebral 

cortex (Foote and Morrison, 1987; Aston-Jones and Cohen, 2005; Ballinger et al., 

2016). Work from theoretical neuroscience postulates that both neuromodulatory 

systems, despite their overall similar functional organization, play distinct 

computational roles in learning, inference, and decision-making (Yu & Dayan, 2005; 

Dayan, 2012). However, there is so far, little evidence for distinct functional roles of 

these two neuromodulatory systems. Previous research suggests that catecholamines, 

possibly through changes in the balance between excitation and inhibition (Murphy and 

Miller, 2003), increase neural gain, i.e., the responsivity of neurons towards input 

(Servan-Schreiber et al., 1990). Similar effects have been described for acetylcholine 

(Fu et al., 2014; but see Nelson & Mooney, 2016). Here, we manipulated the levels of 

both catecholamines and acetylcholine with selective pharmacological interventions 

and measured intrinsic cortical activity fluctuations during rest and continuous task 

drive, by means of whole-brain MEG recordings. This study is based on the data 

presented in chapter 3 (see Fig. 5A/B).  
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1.4.5.2. Results and Discussion 

In this study, we present a striking double-dissociation between the effects of 

catecholamines and acetylcholine on the global correlation structure of intrinsic 

(‘steady-state’) cortical activity in the human brain. Catecholamines strongly increased 

brain-wide correlations, but only during task. By contrast, acetylcholine strongly 

decreased correlations, but only during rest (i.e., in absence of external drive). These 

results reveal a novel context-dependence of the large-scale effects of both key 

neuromodulators on human brain activity. For both neuromodulators, the effects were 

spatially widespread. Moreover, these results help to resolve the seemingly 

inconsistent results reported earlier (see 1.4.4.2.). Here, we provide evidence that the 

observed discrepancies of catecholaminergic effects on global BOLD correlations 

indeed arise from different behavioral contexts. 

1.5. General Discussion  
 
Our choices depend on the information we infer from the external world and 

accumulate over time. However, the computations that are carried out in order to arrive 

at a choice also critically depend on the brain’s internal state, which fluctuates due to 

factors such as arousal and attention. These fluctuations in brain state are controlled 

by neuromodulatory systems (Aston-Jones and Cohen, 2005; Harris and Thiele, 2011; 

Lee and Dan, 2012), such as noradrenaline, acetylcholine and dopamine. The 

traditional view of neuromodulatory function assumed that the effects they exert unfold 

over relatively long time scales. By contrast, recent research demonstrates that phasic 

changes in neuromodulation can occur rapidly and bias decision-making already 

during the evolution of a choice (Aston-Jones and Cohen, 2005; Sarter et al., 2009; 

Cheadle et al., 2014; de Gee et al., 2014).  
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1.5.1. Top-down control of temporal accumulation 
 
A number of previous studies have investigated the top-down effects in perceptual 

decision-making. Most such studies have focused on top-down adjustments of the 

decision threshold, for example in studies investigating the speed-accuracy trade-off 

(Ratcliff, 1978; Bogacz et al., 2010; Heitz and Schall, 2012). By contrast, top-down 

control of the time scale over which observers integrate information has rarely been 

studied experimentally.  

In study 2, we show that temporal accumulation of sensory evidence can be flexibly 

adjusted to environmental contingencies (Ossmy et al., 2013), although the time scale 

might have an upper limit, as shown in study 1 (Tsetsos et al., 2015). These findings 

have several implications. First, many investigations on decision-making employed 

stimuli with prolonged signal durations, with the implicit assumption that observers 

accumulate over the entire signal. We show that human observers instead accumulate 

over time scales that are much shorter than the typical stimulus durations, despite 

resulting in suboptimal performance. This suggests that the time scale over which 

evidence is accumulated has an upper bound, just like working memory capacity. Yet, 

the time scale over which humans accumulate information is also not a fully hard-wired 

property of neural circuits. In study 2 (Ossmy et al., 2013), we show that the 

accumulation time scale can in fact be adapted to the statistics of a task, in order to 

optimize task performance. The discrepancy between study 1 and 2 in this respect 

may arise from the fact that signal durations in study 2 were much shorter. Thus, time 

scale adaption may only be possible, when signal durations are close to or below the 

upper limit of an individual.  

Based on observations from studies on working memory, theoretical work 

hypothesized a key role for recurrent excitation, mediated by NMDA receptors, in 
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temporal information accumulation (Wang, 2002; Wong and Wang, 2006). 

Interestingly, dopamine has been shown to enhance NMDA related excitatory currents 

in prefrontal cortex, via D1 receptors (Seamans et al., 2001). Consistent with this 

finding, dopaminergic D1 receptors within dorsolateral prefrontal cortex (dlPFC) of the 

macaque monkey were shown to be crucial for the maintenance of items over time 

during a working memory task (Sawaguchi and Goldman-Rakic, 1991). Dorsolateral 

PFC was also shown to be causally involved in perceptual decision-making: in a recent 

study, repetitive transcranial magnetic stimulation of dlPFC led to reduced accuracy 

(Philiastides et al., 2011) during a perceptual decision-making task. Computational 

modeling based on drift diffusion revealed that these changes in performance are 

mainly attributable to changes in drift rate, which reflects the efficiency of the 

accumulation mechanism. Future research should address the role of dopamine within 

dlPFC and specifically assess its role in the temporal accumulation mechanism during 

decision-making in general, and its role in time scale adaptation, in particular.  

1.5.2. Neuromodulation of excitation and inhibition  
 
Our results from study 3 demonstrate that atomoxetine, which increases the levels of 

catecholamines (noradrenaline and dopamine), increases the ratio between excitation 

and inhibition ratio, which can be achieved through a decrease in inhibition (Martins 

and Froemke, 2015) or an increase in excitation. It is possible that this change in the 

excitation-inhibition ratio also affects temporal accumulation during decision making. 

Interestingly, it has been shown that atomoxetine acts on NMDA receptors (Udvardi et 

al., 2013; Di Miceli and Gronier, 2015), which have been strongly linked with recurrent 

excitation and temporal accumulation (see above). This suggests that the observed 
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changes in cortical dynamics could reflect an increase in recurrent excitation, possibly 

mediated by an increase in dopamine (Seamans et al., 2001). 

A recent network modelling study strongly links the balance of excitation and inhibition 

with mechanisms underlying decision-making (Lam et al., 2017). The authors found an 

inverted-U relation between decision-making performance of their biophysically 

plausible network model and the underlying ratio between excitation and inhibition. 

More specifically, under high levels of excitation-inhibition ratio, activity build-up 

towards the decision threshold during temporal accumulation was much faster 

compared to lower E:I ratios. This means when the ratio is (too) high, decisions 

become impulsive. In contrast, low E:I ratios led to very slow ramping activity, which 

resulted in indecisiveness. Two testable prediction can be derived from this result. In 

our study, catecholamines were associated with an increase in the ratio between 

excitation and inhibition. This increase in E:I should facilitate more impulsive behavior 

during decision-making compared to the placebo condition. Moreover, future studies 

can exploit signatures of E:I ratio, such as the one we employed in this study (i.e., long 

range temporal correlations of cortical activity), to determine baseline levels of E:I ratio 

across individuals. These should predict the level of impulsivity/indecisiveness during 

decision-making.  

1.5.3. Neuromodulation of large-scale interactions 
 
Recent research indicates that the timescale over which evidence is accumulated 

within a region does not only depend on local properties of the circuit, such as the 

recurrent excitation, but also strongly on the large-scale structural and functional 

network the regions is embedded on (Chaudhuri et al., 2015). In two separate studies 

(Studies 4 and 5), we show that catecholamines and acetylcholine cause large-scale 
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network reconfigurations, with a striking context-dependence (Study 5). This shows 

that neuromodulators can potentially alter the temporal accumulation of sensory 

information, even without changing in the local properties of the accumulation 

mechanism. The model by Chaudhuri et al. predicts that long time scales are the result 

of network reverberation, whereas shorter time scales can emerge from local dynamics 

only. Hence, longer time scales should may also be evident in stronger functional 

coupling across regions. In this scenario, increased interactions during task, as 

observed in study 5 during atomoxetine, could give the potential for prolonged 

integration time scales.  
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2. Abbreviations 
 
AAL    Automated anatomical labelling 

Ach   Acetylcholine 

BOLD  Blood oxygen level dependent 

DA    Dopamine 

DDM    Drift diffusion model 

dlPFC  Dorsolateral Prefrontal Cortex 

E/I   Excitation/Inhibition 

EEG    Electroencephalography 

eLORETA   Exact low resolution tomography 

EPSCs   Excitatory postsynaptic current 

FC   Functional connectivity 

fMRI    Functional Magnetic Resonance Imaging 

ICA    Independent component analysis 

IPSCs   Inhibitory postsynaptic current 

LC-NE   Locus Coeruleus-norepinephrine  

LCMV  Linearly constrained minimum variance 

LCA   Leaky competing accumulation model 

LFP –   Local field potential 

MEG    Magnetoencephalography 

NA    Noradrenaline (also NE, norepinephrine) 

PV+   Parvalbumin positive 

ROI    Region of interest 

SOM+   Somatostatin positive 

VIP+    Vasoactive intestinal peptide positive 
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Abstract
Perceptual decisions are based on the temporal integration of sensory evidence for different
states of the outside world. The timescale of this integration process varies widely across
behavioral contexts and individuals, and it is diagnostic for the underlying neural mecha-
nisms. In many situations, the decision-maker knows the required mapping between per-
ceptual evidence and motor response (henceforth termed “sensory-motor contingency”)
before decision formation. Here, the integrated evidence can be directly translated into a
motor plan and, indeed, neural signatures of the integration process are evident as build-up
activity in premotor brain regions. In other situations, however, the sensory-motor contin-
gencies are unknown at the time of decision formation. We used behavioral psychophysics
and computational modeling to test if knowledge about sensory-motor contingencies affects
the timescale of perceptual evidence integration. We asked human observers to perform
the same motion discrimination task, with or without trial-to-trial variations of the mapping
between perceptual choice and motor response. When the mapping varied, it was either in-
structed before or after the stimulus presentation. We quantified the timescale of evidence
integration under these different sensory-motor mapping conditions by means of two ap-
proaches. First, we analyzed subjects’ discrimination threshold as a function of stimulus du-
ration. Second, we fitted a dynamical decision-making model to subjects’ choice behavior.
The results from both approaches indicated that observers (i) integrated motion information
for several hundred ms, (ii) used a shorter than optimal integration timescale, and (iii) used
the same integration timescale under all sensory-motor mappings. We conclude that the
mechanisms limiting the timescale of perceptual decisions are largely independent from
long-term learning (under fixed mapping) or rapid acquisition (under variable mapping) of
sensory-motor contingencies. This conclusion has implications for neurophysiological and
neuroimaging studies of perceptual decision-making.
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Introduction
A hallmark of perceptual decision-making is the integration of evidence for different states of
the world [1]. Imagine driving your car on a rainy day and reading a street sign to decide whether
to turn left or right. Since the “sensory evidence” you are trying to interpret is noisy (i.e., it fluctu-
ates randomly), you can improve your judgment by integrating evidence over time [1,2,3].

The timescale of this integration process is a key psychophysical parameter quantifying per-
ceptual decision-making as it reflects the network mechanisms underlying the accumulation of
sensory information in the brain [4–7]. While many studies of non-sensory (top-down) effects
in perceptual decision-making have focused on strategic adjustments of the decision threshold
that terminates the decision process [3,6,8,9,10], only few previous studies have investigated di-
rect top-down effects on the evidence integration process per se, as indicated by the integration
timescale [11–14]. Only two of these studies were conducted in human observers [11,13]
whose integration mechanisms may differ from those of other species [15]. Here, we examined
the effect of one important top-down factor that has not been previously examined: knowledge
of sensory-motor contingencies.

In the above example, the integrated evidence is continuously mapped onto a plan to
select and execute a motor movement. The same holds for most previous neurophysiological
laboratory studies of perceptual decision-making [1,16,17,18]. Under such conditions, build-up
signatures of evidence integration are found in brain regions involved in action planning. In
particular, when perceptual choices are reported as saccades [12,19,20] or hand movements
[21,22] choice-specific activity ramps up in the corresponding (pre-)motor brain regions. These
premotor build-up signatures are not evident if the sensory-motor contingencies are broken up
by instructing the mapping between perceptual choice and motor response only after stimulus
presentation [12], or by eliminating the motor response altogether (in a covert counting task)
[23]. This raises the question whether knowledge about sensory-motor contingencies might
also improve (i.e., prolong) integration timescales observed behaviorally. Further, it has been
shown that learning of fixed sensory-motor contingencies (over hundreds of trials or more) im-
proves the selectivity of the read-out of sensory information by the association cortex [24,25].
But it remains unknown whether such learning also improves the integration timescale.

We addressed these questions in six human observers performing the same motion discrim-
ination task under three different sensory-motor mapping conditions. In one experiment, the
mapping between decision outcome and motor response varied on a trial-by-trial basis. In dif-
ferent conditions, this mapping was instructed before or after stimulus presentation. While the
first condition allowed the integration of evidence directly towards action plans, the second did
not. We found that integration timescales were generally shorter than the maximum stimulus
duration, and thus shorter than the timescale required to maximize the fraction of correct
choices in the task. But integration timescales were indistinguishable between conditions. We
then reasoned that sensory-motor mapping might only improve integration timescales if fixed
over many trials, due to a slow learning process. Thus, we asked the same observers to perform
the task under fixed mapping in another experiment. Again, despite extensive practice, integra-
tion timescales were indistinguishable from the other two conditions. We conclude that the in-
tegration of perceptual evidence does not depend on sensory-motor contingencies.

Materials and Methods
Ethics Statement
The ethical committee of the University of Amsterdam approved the study (reference number
2011-OP-1588). Written informed consent was obtained from all participants.
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Observers
Six healthy human observers were recruited for this study (2 males, mean age: 25; range: 22–29
years). All observers had normal or corrected-to-normal vision. The pool included four observ-
ers who were naïve with respect to the purpose of the experiment, and two authors (P.J. and T.
P). Observers received either course credits or were paid a small amount of money (€10/hour)
for their participation.

Stimuli
We used an established psychophysical approach for quantifying the perceptual evidence inte-
gration timescale [12,13,26–29], which entailed the following two aspects of the sensory input:
First, we systematically manipulated the duration of the stimulus (i.e., the maximal evidence in-
tegration time available to the observer) and prompted the response after that time (“interro-
gation protocol”). Second, we systematically manipulated the strength of the perceptual
evidence to estimate the observer’s perceptual discrimination threshold for each stimulus dura-
tion. This enabled us to quantify discrimination thresholds as function of stimulus duration
(see below).

Using this general approach, we performed two experiments. Below, we first describe all
general aspects, followed by the specifics of each experiment. Motion stimuli consisted of
“random dot kinematograms” (RDK), consisting of 785 white dots (on average) within a cir-
cular aperture 9.1° in diameter (dot density: 12.07 dots per deg2), centered on a red fixation
cross (0.4° x 0.4°), and displayed against a black background. Individual dots subtended 0.04°
x 0.04°. On each frame, the dots were randomly assigned to either a population of “signal
dots” or of “noise dots”. The signal dots were randomly selected on each frame and were dis-
placed from frame to frame with a fixed spatiotemporal offset, creating a coherent motion sig-
nal with upward or downward direction (separated by 180°) and a speed of 2.6°/s. We used
“random position” noise. That is, the noise dots were re-drawn on a randomly selected posi-
tion, creating spatiotemporal white noise, which comprised a mixture of directions and speeds
[30]. On each trial, three different “sets” of RDKs of the selected direction and coherence were
plotted in an interleaved fashion, where the dot pattern from each set was shown for one
frame and followed by the next pattern from the same set only after three successive video
frames, and so forth. This version of the RDK stimulus corresponds to the one used in many
of the seminal monkey physiology studies on temporal integration of visual motion informa-
tion (e.g. [31]). This was to encourage integration of motion information across space and
time. The percentage of coherently moving dots (“motion coherence”; 0.05, 1.26, 3.15, 7.92,
19.91, and 50%), viewing duration (150, 300, 600, 1200, 2400, and 4800 ms), direction (“up/
down”), and “decision-to-response-mapping” (“DR-mapping”; e.g. upward motion left button
and downward motion right button) were randomly chosen on each trial, under the constraint
that each combination of these parameters occurred equally often within a block of 144 trials.
The six coherence levels listed above were determined in extensive pilot sessions, tailored to
sample the full psychometric function for all stimulus durations. New stimuli were generated
for each experimental block, including six different variations of the interleaved RDK
sequences.

Stimuli were displayed on a 22-inch CRT monitor (resolution: 800 x 600 pixels) at a rate of
100 Hz. The viewing distance was 68 cm. Experiments were conducted in a dimly illuminated
room. Subjects were seated in an adjustable chair with their chin resting comfortably in a chin
cup and additional support was provided by a head restraint mounted on the table. The height
of the monitor placed the center of the display at approximately eye level.
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Task and procedure
Throughout all experimental conditions, subjects were required to fixate the red cross in the
center of the screen and classify the net motion in a stimulus as upward (50% of trials) or
downward motion by pressing one of two buttons (left or the right index finger) when a re-
sponse prompt was provided. The RDK presentation was followed by a variable delay interval,
after which the response was prompted. Observers were under no time pressure to respond.
Auditory feedback of 100 ms duration (a 1000 Hz tone) was provided for incorrect responses.

Variable DR-mapping experiment. The decision-response mapping (e.g., left-hand but-
ton press for indicating “upward” choice) varied randomly from trial to trial. We will hence-
forth abbreviate this as “DR-mapping”. The experiment consisted of two conditions, which
differed only in the timing of the cue instructing observers about the DR-mapping, relative to
presentation of the RDK stimuli (Fig 1A and 1B). The cue indicated the motion direction cor-
responding to each response button in terms of two white arrows (one upward, one downward
pointing) presented on the left and right half of the screen (11° from fixation).

In the pre-cueing (“Pre”) condition (Fig 1A), the arrows were presented after a variable peri-
od of fixation for 1000 ms, and were followed by a second random delay (200–400 ms) and the
onset of the motion stimulus (150–4800 ms). After stimulus offset and another random delay
(200–400 ms) the fixation cross turned green, which prompted the subject to report their
choice.

The post-cueing (“Post”) condition was identical, except that DR-mapping cue was pre-
sented after the motion stimulus and second delay (Fig 1B). In both conditions, the inter-trial
intervals were 900 ms. “Pre”- and “Post”-conditions were conducted in alternating blocks of
144 trials (see General design below).

Fixed DR-mapping experiment. This experiment consisted of a single condition, which
was identical to the “Pre”-condition, with the exception that the DR-mapping was kept con-
stant across all trials (Fig 1C). Although the DR-mapping was instructed at the start of the ex-
periment and remained constant thereafter, the DR-cue was shown at the beginning of each
trial to keep the visual input and trial duration identical to the “Pre”- from the variable DR-
mapping experiment. Each subject was first trained on the task for a minimum of 432 trials
and then completed between 2448 and 7632 trials (distributed over 3–9 experimental sessions),
which were used for the analyses reported in this paper.

General design. All statistical analyses reported in this paper were performed within indi-
vidual observers. Given the large number of trials required from each observer per condition
(minimum: 2016) and the clear effect evident in Subjects 1–3 who participated in all conditions
(see Results), the remaining three observers were asked to only participate in a subset of condi-
tions. Subjects 4 and 5 were used to replicate the comparison between “Pre” and “Post”. Subject
6 was used to replicate the comparison between the variable and “Fixed”mappings.

The experimental conditions were arranged as follows. Subjects 1–5 first performed the
Variable DR-mapping experiment, in which they alternated between “Pre” and “Post” condi-
tions in a pseudorandom order. Each experimental session consisted of 6 blocks: 3 blocks of
each condition (“Pre” and “Post”). Subjects 1–3 then performed the Fixed DR-mapping experi-
ment. General order effects would have (if anything) predicted an improvement (prolongation)
of integration timescales in the “Fixed” condition, due to the extensive practice of the task
(under variable and fixed mapping). By contrast, we found no change of integration timescale
in these subjects. Nonetheless, to rule out any order effects, we flipped the order in one addi-
tional observer (subject 6), who started with “Fixed”, followed by “Post”. Each subject was first
trained on the task for a minimum of 432 trials per condition. Subjects then completed between
2110 and 5760 trials of each condition (distributed over 3–7 experimental sessions in total).
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Model-independent analysis of integration timescale
Quantifying psychophysical thresholds. Given the task design (interrogation protocol

with different levels of stimulus strength), our analyses focused on proportion correct data,
rather than response times [3]. We fitted the observers’ proportion of correct choices as a func-
tion of motion coherence, denoted P(C) below, by means of a cumulative Weibull function
[32], separately for each experimental condition and stimulus duration. See Fig 2 for example
fits from one subject in both conditions of Experiment 2. The cumulative Weibull distribution
function was defined as

Pt1!t!t2
Cð Þ ¼ 0:5þ 0:5& lð Þ 1& exp & C

a

! "b
" # !

ð1Þ

Fig 1. Experimental design.On each trial, the observer was required to discriminate the direction (upward
or downward) of the random dot kinematogram (RDK), while fixating the central crosshair. The RDK was
presented for one of a number of different durations and levels of motion strength (A) Variable “Pre” DR-
mapping condition. The DR-mapping cue (two arrows mapping up/down motion directions onto left/right hand
button presses) was presented before the RDK (separated by a variable delay), and it varied randomly from
trial to trial. After another variable delay, a color switch of the fixation cross prompted the observer to indicate
the choice with a button press. (B) Variable”Post” DR-mapping condition. Identical to “Pre”, except that the
DR-mapping cue was presented after the RDK (“Post”). (C) “Fixed” DR-mapping condition. Identical to “Pre”,
except that the DR-mapping cue was kept constant throughout the experiment, enabling long-term learning of
sensory-motor associations.

doi:10.1371/journal.pone.0129473.g001
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where λ, α and β are free parameters and the value 0.5 represents chance performance. The
lapse rate (λ) represents stimulus-independent errors, corresponding to the fraction of incor-
rect choices at the highest motion strength and longest viewing duration. λ was determined by
fitting eq (1) to data from the longest viewing duration in each experiment, and then inserted
in eq 2 to find best fits of α, and β to the data from all conditions. The value of α is the psycho-
physical threshold corresponding to the coherence level that elicits 82% correct responses
when asymptotic performance is perfect (i.e., λ = 0). Parameter β determines the steepness of
the psychometric function for a particular threshold. Best-fitting values for the free parameters
were obtained by means of a maximum likelihood procedure [33]. To obtain the best-fitting
values for the free parameters, we minimized the negative log-likelihood, which yields the exact
same parameters as maximizing the likelihood.

Confidence intervals for the proportion of correct choices were obtained by employing a
non-parametric bootstrap [34], in which the original set of trials was resampled with replace-
ment a large number of times (N = 10,000) and the proportion of correct responses was com-
puted for each iteration. The confidence intervals of the parameters of the cumulative Weibull
functions and of the regression-based threshold vs. duration functions (see below, eqs 2–5)
were obtained by means of a parametric bootstrap procedure [35]. We used a binary process to
generate a new set of data based on the binomially distributed noise and estimated Weibull pa-
rameters from the observed data set. We repeated the maximum likelihood procedure for each
bootstrap iteration to find the best parameter fits for the “mock” data set and calculated the
corresponding parameters anew. The resulting distributions indicated the likely spread of all
parameters for the original data set.

Fitting threshold versus duration functions. Perfect integration predicts a linear decrease
in threshold with duration with a slope of -0.5 in log-log coordinates. A lack of integration pre-
dicts a flat line (slope of 0). Hence, to analyze the dependence of thresholds on duration, we fit-
ted a bilinear function to the log of the best fits of α and viewing duration [26–28]. The slope of
the first line was constrained to -0.5 and the slope of the second line was constrained to 0. We
determined the best fitting value for the intercept β0 of the linear function. The general fit was
evaluated by calculating the sum of squared errors (SSE) and the best fit of the bilinear function
was determined by means of an iterative least squares method [36].

With a number of durations n, the relationship between thresholds and viewing duration
for each i = 1,. . .n was expressed as

yi ¼ b0 & 0:5log tið Þ þ ei; if log tið Þ ! Ai

and

yi ¼ b0
0 þ ei; if log tið Þ > Ai ð2Þ

where β0 correspond to the y-intercept of the first line, b
0
0 corresponds to the y-intercept of the

second line, A represents the abscissa of the joint point. In order to ensure that the two lines
join at the value x = A, we applied the following restriction:

b0 & 0:5A ¼ b0 þ ei ð3Þ

The error terms (i.e. ei’s for i = 1,. . .n) were independent and identically distributed normal
random variables with mean equal to zero and constant variance. Due to the restriction from
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eq (3), the abscissa of the joint point could be estimated as

A ¼ ðb0 & b0
0Þ

0:5
ð4Þ

Eq (4) held only for cases in which A lied between two consecutive values of log(t), log(tj)
and log(tj+1). In this case, the first line included nj number of log(ti) and log(ai) pairs up to and
including log(tj) and log(aj), whereas the second line included all values from log(tj+1) and log
(aj+1) on to n0

j. If the estimated joint point was indeed log(tj), and log(tj+1), we computed the

ordinary least squares solutions and determined the joint point by substituting the observed β’s
with the estimated β’s. The SSE was computed as the sum of the individual SSEs from the two
lines

SSEj ¼
Xj

i ¼ 1

½log aið Þ & ðb0 & 0:5logðtiÞÞ(
2 þ

Xn

i ¼ jþ1

½log aið Þ & b0
0(

2 ð5Þ

If the estimate of the joint point was not between log(tj), and log(tj+1), we modified the com-
putation such that A occurred exactly at log(tj). Since the minimization of SSE in this case is
constrained to only one possible joint point log(tj), this constrained least squares solution was
computed as a modification of the two separate ordinary least squares solutions [36].

In a control analysis, we relaxed the constraints on the slopes of the bi-linear fits, by allow-
ing the first slope to be in the range from -0.5 to 0, and the second slope was constrained to any
value larger than the first slope. These fits required two additional constraints. 1. If the estimat-
ed joint point exceeded the longest signal duration in the experiment, it was set to the longest
signal duration (4.8 s). 2. If the first slope was smaller than 0.001, we assumed that participants
did not integrate and set the joint point to the shortest signal duration of 0.15 s.

Given the six stimulus durations, the joint point could only be estimated for the four inter-
mediate durations, which corresponded to the limited interval 0.3–2.4 s. We verified that in all
cases, the bi-linear fits provided a significantly better match to the data than a single linear fit,
with or without slopes constrained to -0.5 (data not shown). Further, in all cases were the joint
point estimates significantly shorter than the longest possible timescale estimates of 2.4 s (see
Results, Fig 3). Thus, it is unlikely that the short timescale estimates obtained are due to the
limitations of the procedure.

Fig 2. Example psychometric functions of one observer in all conditions. Solid curves are maximum likelihood fits of cumulativeWeibull functions to the
proportion correct data. Vertical dashed lines represent estimated threshold parameters (solid horizontal lines at bottom, 95% confidence intervals). The
horizontal dashed line represents the lapse rate. (A) “Pre”- condition. The performance data and psychometric functions are shown separately for all stimulus
durations. (B) As in A, but for “Post”. (C) As in A, but for “Fixed”.

doi:10.1371/journal.pone.0129473.g002
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Statistical comparisons of joint points. To compare integration time scales and lapse
rates between conditions within individual observers (i.e., “Pre”- versus “Post”-conditions;
“Post” vs. “Fixed”; “Post” vs. “Fixed”), we compared the joint point estimates A by means of
non-parametric permutation tests [34]. For each permutation, all trials were combined into
one set of Npre/Nfixed + Npost trials and shuffled 10,000 times. Then the shuffled set was split
into 2 sets of Npre/Nfixed and Npost trials, the proportion correct was recalculated and the Wei-
bull functions were fitted to determine the new thresholds and lapse rates. Based on these, A
was iteratively computed to obtain the permutated difference between the two sets. Finally,
we compared the observed difference lapse rates and in A with the permutated differences.

Fig 3. Model-independent characterization of integration timescales. Threshold vs. duration functions from all conditions. Circles represent
psychophysical thresholds for each stimulus duration. Solid lines: best fitting bilinear function, with the slopes constrained to -0.5 (first branch) and 0 (second
branch; see text for details). Error bars, 60% confidence intervals (bootstrap). Inset: bar graphs of the joint point estimates of the best fitting bilinear function.
Error bars, 95% confidence intervals (bootstrap).

doi:10.1371/journal.pone.0129473.g003
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P-values were obtained by calculating the fractions of repetitions (10,000), in which the abso-
lute value of the permutated difference was larger than the absolute value of the measured
difference.

Computational modeling of psychophysical performance
General model description. We fitted the leaky-competing accumulator model (LCA)

[37,38] to the behavioral data of each individual observer. The LCA is a neurophysiologically
inspired sequential sampling model of decision-making and has successfully accounted for be-
havioral data from a wide variety of perceptual tasks [2]. Similar to other models, LCA assumes
that noisy evidence for different hypotheses is accumulated towards a decision criterion. A sep-
arate accumulator, corresponding to the pooled neuronal activity of a dedicated population,
represents each competing hypothesis. Thus, in choices between two options, two pools of neu-
rons integrate the momentary evidence for each alternative and compete with each other via
lateral inhibition, while their activity is subject to slow decay (“leak”). The activation states of
the accumulators are described by the following finite difference equations:

x1ðt þ 1Þ ¼ maxð0; x1ðtÞ þ Dx1Þ;
x2ðt þ 1Þ ¼ maxð0; x21ðtÞ þ Dx2Þ;

Dx1 ¼ I1 & kx1 & bx2 þ I0 þ Nð0; sÞ;
Dx2 ¼ I2 & kx2 & bx1 þ I0 þ Nð0; sÞ:

ð6Þ

In the above equation xi corresponds to the activation states of the accumulator associated
to alternative i. Themax function prevents activation states (which correspond to population
firing rates) from going below a predefined value, implementing in this case a lower reflecting
boundary at 0. Constant input to both accumulators (controlling for the degree of non-linearity
in the activation states) is denoted by I0 while Δ is the momentary change of each accumulator
on each time step. This change or increment is driven by three factors: i) the external input in
favor of the corresponding accumulator, ii) the activation state of the accumulator on the pre-
ceding moment and iii) the activation state of the competing accumulator. The external mo-
mentary input, denoted by Ii, is subject to Gaussian noise fluctuations with zero mean and
standard deviation σ. The accumulators compete with each other via lateral inhibition of
strength β, and their activation is subject to leak of κ. For the interrogation protocol used in
this study, the activation states of the two accumulators are read out at the end of the trial (cor-
responding to the response cue presentation), and the alternative with the highest activation
state, up to that point, is chosen.

In the simulations presented here, we fixed the standard deviation of noise to σ = 1. We fur-
ther assumed that I1 = C × s, with C corresponding to the motion coherence for the corre-
sponding alternative and s being the sensitivity parameter that modulates the signal to noise
ratio. We let I0 be a free parameter, and we assumed that motion coherence is subject to
power-law saturation with exponentm: I1 = Cm × s. The experimental time units were con-
verted into simulation time steps with 1 second corresponding to 250 time-steps. The coher-
ence level (C) was determined by the experimental condition and ranged from 0 (no coherent
motion) to 1 (all dots move coherently towards a given direction). The input to the first unit
(I1) was always proportional to the coherence level c, while the input to the second unit (I2)
was always set to 0. In sum, the decision-making model had five free parameters: inhibition
(β), leak (κ), sensitivity (s), constant activity (I0) and coherence saturation (m).

Model fits to behavioral data. We fitted the model described above to the data of each in-
dividual observer. Specifically, the model was fitted to the individual proportion correct data
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for N coherencies xM duration levels (N = 5 andM = 6). We excluded the lowest coherence
level (0.05) because performance indistinguishable from chance for all durations at that coher-
ence and we found that including this coherence yielded worse fits. Assuming that the correct
responses follow a binomial distribution, we computed the likelihood for a given parameteriza-
tion of the model, for the K = N x M data points as:

L ¼
Yk

i

ni

yi

! "
pyi ð1& piÞ

ni&yi ð7Þ

where ni was the number of trials for the i-th data point, yi was the corresponding number of
correct responses and pi the probability of correct response predicted by the model (obtained
by running 5000 iterations of the model for the given condition/ parameterization). The cost
function was the negative logarithm of L:

&LL ¼ & logeðLÞ ð8Þ

and was minimized using SUBPLEX minimization routine [39]. For each subject and each
model we ran the optimization 400 times with starting points randomly sampled from uniform
distributions within a parameter-specific range.

In order to assess the goodness of fit for the best parameters of a given model, we calculated
the chi-square statistic as follows:

w2 ¼
XK

i ¼ 1

Oi & Eið Þ2

Ei

ð9Þ

where K was the number of bins corresponding to the experimental conditions,Oi was the ob-
served frequency of correct responses at condition i, and Ei the corresponding frequency pre-
dicted by the model. Because the number of experimental and simulated trials was different, Ei
was calculated by multiplying pi (the probability of correct response predicted by the model) by
the number of experimental trials. The chi-square statistic had K-1 degrees of freedom. P-val-
ues indicated the probability that the chi-square statistic is at least as extreme as the obtained
one, under the null hypothesis that the data and the predictions of the model follow the same
distribution. We rejected the null hypothesis at a significance level of α = 0.05.

Model-based estimation of integration time constants. In order to obtain a model-based
estimate of the time constant of evidence integration, we fitted shifted exponential functions
[40] to the d’ transformed psychometric functions of the LCA model fits of each observer. The
shifted exponential function has been shown to accurately track the stimulus sensitivity in-
crease as a function of time of human observers [40]. Fitting shifted exponential functions to
the simulated (rather than the measured) d’ vs. duration functions provided more robust time
constant estimates (Fig 4) by discounting noise in the behavioral data. We applied this proce-
dure after ensuring that the LCA provided a reasonable fit to the behavioral (proportion cor-
rect) data of each subject (MLE, χ2 and p values for assessment of goodness of fit). We fitted
the following shifted exponential function to the predicted average sensitivity across all coher-
ences d' (d0 = F-1(0.99)pi)) vs. duration (Fig 4):

d
0
tð Þ ¼ D 0 1& exp & t & t0

t

! "! "
ð10Þ

with D0 denoting the average asymptotic sensitivity level for all coherences, t0 the period during
which sensitivity was zero and τ the time constant (Fig 5).
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Results
We examined the impact of sensory-motor contingencies [41,42] on the timescale of perceptu-
al evidence integration in a total of six human observers. To this end, we used a standard psy-
chophysical task, coarse discrimination of visual motion direction, and quantified the
integration timescale under variable (Fig 1A and 1B) or fixed (Fig 1C) DR-mapping. For the
variable mapping, the mapping was instructed either before (“Pre”; Fig 1A) or after decision
formation (“Post”; Fig 1B). Subjects 1–3 were asked to perform all three mapping conditions,
to establish the main result in terms of three independent within-subject comparisons. Subjects
4 and 5 were measured to replicate the results of the “Pre” vs. “Post” comparison. Subject 6 was
measured to replicate the result of the variable (only “Post”) vs. fixed comparison.

Fig 4. Model-based characterization of integration timescales. Simulated d’ vs. duration functions, and exponential fits. Filled dots are the best-fitting
LCAmodel estimates for each subject; solid curves: shifted exponential functions on the predicted average sensitivity across all coherences; blue stars:
measured average sensitivity across all coherences. (A) “Pre”. (B) “Post”. (C) “Fixed”.

doi:10.1371/journal.pone.0129473.g004

Fig 5. Summary of integration times usingmodel-independent (A) andmodel-based (B)
characterization of time-constants. Summary of integration times under the three DR-mappings tested.
The gray horizontal line marks the median, the upper and lower edges of the box mark the 25th and 75th

percentiles, and the whiskers extend to the most extreme data points, excluding outliers. (A) Joint points of
the bilinear fit to threshold vs. duration functions. (B) Time constants derived from LCAmodel fits.

doi:10.1371/journal.pone.0129473.g005

Action Planning and Perceptual Choice

PLOS ONE | DOI:10.1371/journal.pone.0129473 June 12, 2015 11 / 21



Overall performance
In all observers and experimental conditions, performance depended lawfully on both, the
strength and the duration of the visual motion signal (see Fig 2 for an example observer). The
proportion of correct choices was generally about chance-level (~0.5) for the lowest level of co-
herently moving dots (0.05) and about perfect (~1) for the highest coherence level (0.5). This
was true for all stimulus durations, except for the shortest (150 ms), at which even the highest
coherence did not yield perfect performance in some subjects. We quantified the dependency
on motion coherence by fitting cumulative Weibull functions to the proportion correct data.
The psychometric functions generally shifted leftwards with increasing stimulus duration, as
reflected by the decrease of the threshold parameter (inverse of sensitivity; Fig 2), meaning that
observers could integrate the motion information over time and even discriminate patterns
with a low percentage of coherently moving dots. The thresholds reached less then 0.1 motion
coherence in all observers for the longer durations (Fig 3). This decrease of psychophysical
thresholds with stimulus duration is an index of temporal integration of stimulus information
(see below).

To assess whether observers made more “non-perceptual” errors (i.e., choosing the incorrect
buttons irrespective of signal strength) in any of the three experimental conditions, we com-
pared the “lapse rate” estimates (i.e., the upper asymptote of best-fitting cumulative Weibull
functions) between conditions. Lapse rates quantify processes independent of the perceptual
decision per se, such as lapses of attention or motor errors. Lapse rates were generally negligible
in all three conditions (Table 1), and there were no systematic differences between the three
conditions in most observers. One observer (subject 5) exhibited a significant difference in
lapse rates between “Pre” and “Post” (p = 0.02), but also evident in the joint point (see below).
There were also no differences in the overall threshold levels between the conditions when test-
ed separately for all but the first (0.15 s) stimulus durations (Table 2).

In sum, all six observers exhibited a high sensitivity and were able to adjust the sensory-
motor associations and even rapidly (on a trial-by-trial basis) under the variable DR-mappings.
There were no systematic differences in the occurrence of motor errors, as well as in overall
performance, between the three conditions. Finally, the lawful shift in psychometric functions
with stimulus duration indicates that observers indeed integrated stimulus information over
time and thus became better in discriminating motion directions with low coherences the lon-
ger the observation period [12,13,26–28]. We next quantified the timescale of this integration
process, and its dependence on DR-mapping, based on two complementary approaches: a
model-independent and a model-based approach.

Table 1. Lapse rates.

Subject “Pre“ “Post“ “Fixed”

1 0.014 (0.000, 0.033) 0.000 (0.000, 0.004) 0.000 (0.000, 0.008)

2 0.000 (0.000, 0.000) 0.000 (0.000, 0.003) 0.000 (0.000, 0.000)

3 0.011 (0.000, 0.028) 0.000 (0.000, 0.000) 0.006 (0.000, 0.017)

4 0.049 (0.000, 0.070) 0.029 (0.030, 0.062) -

5 0.052 (0.009, 0.070) 0.014 (0.000, 0.029) -

6 – 0.000 (0.000, 0.000) 0.028 (0.000, 0.059)

Numbers are estimates of lapse rate (λ) and by 95% confidence intervals.

doi:10.1371/journal.pone.0129473.t001
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Model-independent characterization of integration timescales
The model-independent approach was based on the following rationale. The integral of the
“signal” embedded in the noisy stimulus increases linearly with the stimulus duration, while
the “noise” (i.e., standard deviation) increases with the square root of the stimulus duration.
Consequently, the signal-to-noise ratio increases with the square root of duration and perfect
integration of the sensory evidence implies that the observers’ psychophysical threshold (the
inverse of their signal-to-noise ratio) decreases as a function of the square root of stimulus du-
ration, yielding a straight line with a slope of -0.5 on log-log axes. Conversely, no integration of
sensory evidence implies that the observers’ threshold does not change as a function of stimu-
lus duration (i.e., a straight line with a slope of 0). Consequently, integration of evidence across
a limited time window predicts an initial linear decrease of the threshold vs. duration function
with a slope of -0.5, followed by gradual deceleration towards a second (asymptotic) linear por-
tion with a slope of 0. Note that such a timescale limitation may be due to leaky integration
[37,38], or perfect (i.e., without leak) integration towards absorbing bounds [28] (see Discus-
sion). Based on this rationale, the duration situated in between the -0.5- and 0-slope portions
of the threshold vs. duration function can be used as an estimate of the integration timescale.
We fitted bilinear functions to the individual threshold vs. duration functions, whereby the
slope of the first line was constrained to -0.5 and the slope of the second to 0 and used the joint
point between both lines as time scale estimate.

In all three conditions, the threshold vs. duration functions decreased with stimulus dura-
tion, but only for a limited range (Fig 3). The individual joint points ranged from 300 to 870
ms for “Pre” (presumably involving the highest short-term memory demands, see Discussion),
from 300 to 610 ms for “Post”, and from 310 to 580 ms for “Fixed”. Any two frames of one of
the three interleaved sequences of coherent motion were separated by 30 ms (at the monitor re-
fresh rate of 100 Hz; see Materials and Methods), across which the observers’ visual motion
system could pair dots to extract motion. Thus, the physical evidence fluctuated over 30 ms.
Under the assumption that visual cortical regions like MT that encode visual motion track this
stimulus information with high temporal precision [43], the shortest integration timescale ob-
served here (300 ms) implies integration of ten samples of sensory evidence provided by visual
cortex into the decision. The longest timescale of 870 ms corresponds to integration of close to
30 samples of sensory evidence.

Given the experimental design and fitting procedure, possible estimates of the joint point
were confined to the interval 0.3–2.4 s (see Materials and Methods). All joint point estimates in

Table 2. Comparisons of threshold estimates between conditions.

Subject Comparison 0.15s 0.30s 0.60s 1.2s 2.4s 4.8s

1 Pre/Post 0.356 0.002 0.079 0.174 0.204 0.284

Post/Fixed 0.465 0.001 0.436 0.451 0.810 0.237

2 Pre/Post 0.000 0.277 0.002 0.163 0.374 0.363

Post/Fixed 0.001 0.000 0.147 0.070 0.060 0.393

3 Pre/Post 0.004 0.447 0.311 0.090 0.316 0.401

Post/Fixed 0.082 0.069 0.199 0.009 0.352 0.331

4 Pre/Post 0.005 0.293 0.175 0.332 0.403 0.414

5 Pre/Post 0.000 0.004 0.183 0.403 0.393 0.378

6 Post/Fixed 0.000 0.005 0.004 0.230 0.005 0.304

Numbers are p-values based on two-sided permutation tests. Significant p-values (after Bonferroni-correction for multiple comparisons) are printed in bold.

doi:10.1371/journal.pone.0129473.t002
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the insets Fig 3 were shorter than the upper bound of 2.4 s, and the 95% confidence intervals of
these joint point also estimates excluded 2.4 s. Thus, in all cases were the timescale significantly
shorter than the one that would have maximized performance in this task entailing the maxi-
mum stimulus duration of 4.8 s.

In sum, all subjects showed temporal integration of perceptual evidence, but their integra-
tion timescale were consistently smaller than the optimal timescale for this task (defined as the
timescale that would have maximized the overall fraction of correct choices). Possible mecha-
nistic accounts of the timescale limitation are described in Discussion. We next explored if and
how the timescale was affected by our manipulations of the sensory-motor contingencies.

Integration timescale for “Pre” vs. “Post” under variable DR-mapping. If the integra-
tion timescales depended on subjects’ ability to directly translate the integrated evidence into
an action plan, then precluding the sensory-motor contingency in the “Post”-condition might
be expected to shorten the integration timescale, relative to the “Pre”-condition. We found no
consistent evidence for this scenario. Only one observer (subject 5 who also had a difference in
lapse rates; Table 1) exhibited a significant difference in joint points between “Pre”- and
“Post”-conditions (p< 0.01; two-tailed permutation test). In the remaining four observers
(subjects 1–4) the joint points did not differ significantly between “Pre”- and “Post”-(range of
p-values: 0.07–0.37; two-tailed permutation test).

Separate bi-linear fits with relaxed constraints on the two slopes (see Materials and Meth-
ods) yielded qualitatively identical results. The joint point estimates obtained from this proce-
dure were generally less precise (larger confidence intervals, data not shown). Importantly,
however, there was again no robust difference between joint points from the different condi-
tions in all of the five observers (range of p-values across subjects 1–5: 0.09–0.77; two-tailed
permutation test). Taken together, the results suggest that the evidence integration timescale is
largely independent of the “Pre” vs. “Post” condition.

Integration timescale for fixed vs. variable DR-mapping. In previous studies reporting
neural signatures of evidence integration in brain regions involved in motor planning [12,19–
22,44,45], subjects were typically practiced with one specific sensory-motor contingency for at
least hundreds of trials. It is possible that sensory-motor contingencies only improve the inte-
gration timescale after extensive practice, due to slow learning mechanisms. The trial-to-trial
variation of DR-mapping in the “Pre-”condition of the previous experiment may have not have
enabled such learning and, therefore, no improvement in integration timescale. To test this
idea, we next explored the effect of long-term practice of one specific fixed DR-mapping on the
integration timescale (Fig 1C), and compared this with the timescale under the variable DR-
mapping.

The joint points obtained from the constrained fits (first slope: -0.5, second slope: 0) were
statistically indistinguishable between the “Fixed” and “Pre” (range of p-values across three ob-
servers: 0.07–0.19; two-tailed permutation test) and the “Fixed” and “Post” conditions (range
of p-values across four observers: 0.31–0.70; two-tailed permutation test) and. The bi-linear fits
with relaxed constraints on the slopes yielded similar results: There was no significant differ-
ence in the joint points for two out of three observers in the “Fixed” vs. “Pre” comparison (sub-
ject 1: p = 0.81; subject 2: p = 0.02; subject 3: p = 0.21) and three out of four observers in the
“Fixed” vs. “Post” comparison (subject 1: p = 0.41; subject 2: p = 0.68, subject 3: p = 0.66; sub-
ject 6 p< 0.01. Thus, even extensive practice of a specific sensory-motor association across sev-
eral thousands of trials did not seem to robustly improve the temporal integration process.

Model-based characterization of integration timescales. One concern may be that our
model-independent assessment of integration timescale may not have been sufficiently sensi-
tive to reveal subtle effects of the sensory-motor contingencies. To address this, and to obtain a
more theoretically motivated estimate of the integration timescale, we used a computational
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model of the decision process to fit the behavioral performance data (see Materials and Meth-
ods). The LCA is a neurophysiologically inspired model of the collective dynamics of two pop-
ulations of “decision neurons”, which has been successfully applied to behavioral data from a
wide variety of decision tasks [2,37,38,40]. For our interrogation protocol, the model assumed
that the observers kept integrating for the whole stimulus interval and made a decision in favor
of the alternative with the largest integrated evidence after that interval. Limitations of integra-
tion time scale resulted from the balance between “leaking away” of past evidence (biasing
choices towards the most recent evidence) and mutual inhibition (biasing choices towards the
early evidence).

The LCA model provided a reasonable fit to the behavioral performance of all observers in
all three experimental conditions (Table 3). The goodness of fit was assessed by means of com-
paring the empirical and model-predicted psychometric functions using the chi-square statistic
(see Materials and Methods). For an alpha value of 0.05, the null hypothesis that the two com-
pared distributions (e.g. psychometric functions) are the same was not rejected for any of the
participants (p>0.95 for all participants, see Table 3).

We used the model with the best-fitting parameters for each observer to generate accuracy
(d') vs. duration functions and fitted the average (across coherence levels) sensitivity with a
shifted exponential function (Fig 4). The LCA fit of subject 4 in the “Pre”-condition was invari-
ant to increases of duration and thus meaningful exponential fits could not be obtained. For
the remaining subjects and conditions the obtained time constants were typically around 200
ms (Table 4, Fig 5B), consistently shorter than the around 500 ms timescale estimates obtained
from the bi-linear fits (compare Fig 5A and 5B). This difference is expected since the time con-
stant of the exponential fit represents the time it takes for the sensitivity to reach ~62% of its as-
ymptotic value while the joint point indicates the exact moment of asymptotic saturation; by
simulating a leaky integrator model we confirmed that the bilinear joint point is expected to be
2–2.5 times higher than the exponential time constant. The exact, analytical correspondence
between the two measures of integration timescale should be addressed in future theoretical
work. Despite the quantitative difference between the two timescale measures, there was a con-
sistent qualitative correspondence across subjects (compare insets in Fig 3 with Table 4).

Most importantly, in line with the analysis of joint points, comparison of the model-based
integration time constants between conditions did not yield any significant difference between
DR-mapping contexts, as assessed by comparing the 95% confidence intervals between condi-
tions (Table 4).

To assess the sensitivity of the model-based time constant estimation, we simulated a leaky
integration model to generate many psychometric functions and repeated the same time con-
stant estimation procedure (i.e., based on exponential fits as described in Materials and Meth-
ods) on these psychometric functions. In a simple leaky integration model, the integration time
constant is known precisely (inverse of the leak parameter), whereas the time constant is a
combination of leak and mutual inhibition in the more complex non-linear LCA described
above (see Materials and Methods and [37]). We used three different levels of leak correspond-
ing to time constants of 200, 400, and 600 ms, whereby 200 ms corresponds roughly to the me-
dian time constant estimate obtained from our behavioral data in all conditions (Fig 5B). Using
three motion coherence levels (7%, 11%, 15%) and six stimulus durations (as in our behavioral
experiments) we generated 300 simulated model responses per condition and repeated the
time constant estimation process 10,000 times, for each of the three different time constants.
The 95% confidence intervals of the resulting distributions of estimated time constants did not
overlap (Fig 6). We conclude that our estimation procedure was sufficiently sensitive for distin-
guishing differences in time constants of 200 ms.
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Discussion
Here, we examined how knowledge of sensory-motor contingencies [41,42] affects the time-
scale of perceptual evidence integration into visual motion discrimination decisions, on a
short-term (trial-by-trial) or long-term (across thousands of trials) basis. We found that all
subjects integrated visual motion signals across time, and that their behavioral performance
was well accounted by a leaky competing accumulator [37] model. However, integration time-
scales were generally shorter than optimal for the task (median joint points of ~450 ms), in
which subject had to integrate evidence for up to 4.8 s. Finally, we found that neither subjects’
knowledge of a (variable) sensory-motor contingency, nor their long-term learning of one
(fixed) contingency, had a significant and consistent effect on their integration timescale. Al-
though we used two independent analytic approaches (model-independent and model-based)
for estimating integration timescales which yielded consistent results, and established the sensi-
tivity of our analyses, there was no evidence for a difference in integration timescales between
the experimental conditions. We, therefore, conclude that long-term learning (under fixed

Table 3. LCAmodel parameters and goodness of fit.

Condition Subject β κ s I0 m -LL c2(1, N = 29) p

“Pre” 1 0.282 0.133 1.528 0.646 0.837 73.041 3.78 1.000

2 0.497 0.020 1.696 -0.021 0.806 74.444 7.70 1.000

3 0.436 0.028 2.379 -0.055 0.767 70.6333 7.17 1.000

4 0.270 0.557 1.909 -0.064 0.381 88.095 6.03 1.000

5 0.359 0.006 0.929 0.129 0.883 100.468 10.87 0.999

“Post” 1 0.126 0.090 2.403 0.507 0.985 61.137 4.33 1.000

2 0.019 0.036 2.613 0.858 1.033 62.749 4.69 1.000

3 0.061 0.063 9.181 1.125 1.371 40.263 2.06 1.000

4 0.173 0.123 0.532 0.818 0.591 96.489 15.19 0.989

5 0.257 0.110 2.178 0.484 1.083 76.182 6.17 1.000

6 0.772 0.002 1.680 -0.237 0.732 61.299 3.79 1.000

“Fixed” 1 0.155 0.084 1.025 0.403 0.728 83.117 17.68 0.951

2 0.179 0.011 1.622 -0.136 0.663 74.168 4.86 0.999

3 0.176 0.093 1.449 0.456 0.672 65.839 8.25 0.999

6 0.447 0.046 2.739 0.118 1.012 64.579 10.80 0.999

Parameters: inhibition β, leak k, sensitivity s, baseline activity (I0) and coherence saturation (m). See Materials for description of the meaning of these
parameters.-LL, χ2and p are the negative log likelihood of the best-fitting parameters, the chi-square value and the p-value respectively.

doi:10.1371/journal.pone.0129473.t003

Table 4. Model-based time constant estimates.

Subject “Pre” “Post“ “Fixed”

1 0.151 (0.112, 0.212) 0.100 (0.038, 0.162) 0.093 (0.017, 0.169)

2 0.255 (0.221, 0.314) 0.197 (0.145, 0.251) 0.195 (0.152, 0.237)

3 0.170 (0.142, 0.192) 0.305 (0.251, 0.360) 0.178 (0.146, 0.210)

4 N/A 0.141 (0.087, 0.196) —

5 0.190 (0.124, 0.255) 0.111 (0.032, 0.190) —

6 — 0.273 (0.137, 0.409) 0.184 (0.124, 0.243)

Numbers are estimates of time constant (τ) and 95% confidence intervals.

doi:10.1371/journal.pone.0129473.t004
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mapping) or rapid acquisition (under variable mapping) of sensory-motor contingencies have
only a small, if any, effect on the mechanisms limiting the timescale of perceptual decisions.

Many studies have used free response protocols, in which the observer controls the decision
time, to study the dynamics of perceptual decision-making [8,9,31,37,46]. Evidence integration
is then inferred from fitting a decision model to the reaction time distributions [2,3,8,37]. Reac-
tion times do not only reflect the integration process, but also the observer’s speed-accuracy
tradeoff [3,6,8,9,47]. By contrast, in the interrogation protocol used in the present study, the
optimal strategy is to integrate all available evidence (perhaps subject to inevitable leak), and
then choose the option that is best supported by the integrated evidence when the response is
prompted [3,37]. Thus, the improvement of threshold as a function of stimulus duration
should directly reflect the evidence integration process.

Previous studies of perceptual decision-making in humans and animals using this approach
yielded a wide range of integration timescales. Some studies of human motion discrimination
found timescales on the order of several seconds [26,27]. One study in rats and humans showed
close-to-perfect integration, within a range of ~1 s using a task where participants had to dis-
criminate the relative frequency of discrete events [29]. Another human study showed thresh-
old decreases throughout a range of 900 ms—crucially, this decrease was steeper when subjects
expected longer signals compared to when they expected shorter signals [13]. The relatively
short timescales observed in the current study are in line with previous results from monkeys
[28] in motion discrimination: In particular, using stimuli and tasks analogous to our fixed
DR-mapping condition, Kiani et al. [28] found that monkeys exhibited a joint point of ~420
ms, just like our current human results. The human studies with larger samples sizes perform-
ing the same task also observed a substantial inter-individual variability in integration time-
scales [13]. Taken together, these results may suggest that integration timescale may, just like
short-term memory capacity, be an individual trait with an upper limit, which can only be
adapted to task demands within that limited range [13]. Additionally, the length of the tempo-
ral integration window may differ across different tasks.

Limited integration timescales are consistent with two mechanistically distinct scenarios.
First, the decision process may terminate prematurely, once the integrated evidence has
reached an implicit absorbing bound (termed “bounded diffusion”) [28]. This strategy can be
compared to “closing the eyes” after an initial decision is made, thus eliminating the impact
of the subsequently presented evidence. Second, the limit may be explained using a leaky

Fig 6. Sensitivity of the model-based timescale estimation. Sensitivity of the model-based timescale
estimation. Three distributions of estimated time constants obtained by simulating leaky integrator models
with three different time constants (0.2, 0.4, 0.6 s). Vertical lines indicate the 2.5% and 97.5% quantiles. The
overlap between the distributions is small (<5%).

doi:10.1371/journal.pone.0129473.g006
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competing accumulation process, as postulated by the LCA model that we used here [38,48].
If the leak parameter exceeds inhibition then the model implements a stable Ornstein-Uhlen-
beck (leaky integration) process, with integration taking place only until the stable state is
reached [3]. When the inhibition parameter is larger than leak, the model has unstable dy-
namics and is maximally sensitive to early evidence, in close resemblance to the bounded dif-
fusion model. Both the implicit boundary and LCA dynamics might also work in concert,
and to different extent in different individuals. The current findings establish that, whatever
the mechanism limiting the integration time scale, this mechanism seems unaffected by sen-
sory-motor mapping.

The variable DR-mapping forced observers to establish and remember a new association be-
tween decision and response on each trial, whereas the fixed mapping allowed them to establish
an automatic sensory-motor transformation, presumably after a few hundred trials of practice
[49]. Specifically, maintaining a new DR-mapping rule online during the decision formation
(“Pre”-condition) increased short-term memory load [49,50], which may have interfered with
the integration process. This difference in task demand seemed not to affect the behavioral per-
formance measures–neither the mean integration timescales, nor the frequency of simple
motor errors (lapse rates; Table 1).

Our results have a number of implications for neurophysiological studies of perceptual deci-
sion-making. First, several studies into the neural basis of decision-making have used a manipu-
lation analogous to our “Post-condition” to decouple decision-making from action planning
[12,23,42,51–54]. Our present results indicate that these studies, in fact, probe decision dynamics
analogous to those occurring in the classical tasks with fixed mapping. Second, our observation
of limited integration time scales question an assumption that has been implicit in several fMRI
and neurophysiological studies using interrogation protocols [16,20,21,30,50,53–55]: that observ-
ers integrate all sensory information provided, even for extended (> 1 s) stimulus durations. Our
results indicate that this assumption should be verified for each experimental condition and sub-
ject. Finally, our findings shed new light on the build-up activity commonly observed during de-
cision formation in motor structures of the human brain [21,22,23,45,56]: Albeit providing a
useful neural marker of the evolving integration process, this activity seems to be a downstream
consequence of the integration process rather than a direct correlate of that process. Our results
are consistent with a growing body of physiological evidence [23,53,57–59] indicating that evi-
dence integration during decision-making is distinct from action planning.
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Summary

A key computation underlying perceptual decisions is the
temporal integration of ‘‘evidence’’ in favor of different states
of the world. Studies from psychology and neuroscience
have shown that observers integrate multiple samples of
noisy perceptual evidence over time toward a decision
[1–11]. An influential model posits perfect evidence integra-
tion (i.e., without forgetting), enabling optimal decisions
based on stationary evidence [2, 3, 12]. However, in real-life
environments, the perceptual evidence typically changes
continuously. We used a computational model to show
that, under such conditions, performance can be improved
by means of leaky (forgetful) integration, if the integration
timescale is adapted toward the predominant signal dura-
tion. We then tested whether human observers employ
such an adaptive integration process. Observers had to
detect visual luminance ‘‘signals’’ of variable strength, dura-
tion, and onset latency, embedded within longer streams of
noise. Different sessions entailed predominantly short or
long signals. The rate of performance improvement as a
function of signal duration indicated that observers indeed
changed their integration timescale with the predominant
signal duration, in accordance with the adaptive integration
account. Our findings establish that leaky integration of
perceptual evidence is flexible and that cognitive control
mechanisms can exploit this flexibility for optimizing the
decision process.

Results

Numerous studies of perceptual decision-making in psychol-
ogy and neuroscience have shown that human and animal de-
cision-makers integrate multiple samples of noisy ‘‘evidence’’

about the state of the outside world over time [1–11]. An influ-
ential model, the drift diffusion model, posits a perfect integra-
tion (i.e., without forgetting) of evidence toward a critical level,
henceforth termed ‘‘decision bound.’’ Crossing the decision
bound triggers the response and hence determines reaction
time [2, 3, 12–14]. When the evidence is stationary (i.e., its
mean does not vary over time), thismodel produces the fastest
decisions for a fixederror rate [1, 2, 15]. Inmost real-life percep-
tual decisions, however, we face changing environments that
yield changes in evidence over time (Figure 1A). Consider a
radar operator who has to decide whether the trace displayed
on the monitor corresponds to amissile, a passenger plane, or
just ‘‘noise’’: the operator has to search for a weak signal that
emerges from a continuous stream of noise, at an unknown
time, and needs to respond to it as soon as she detects the
signal.Henceforth,wewill refer to this situationassignal detec-
tion under nonstationary evidence and temporal uncertainty.
Here, we used a computational model of the decision pro-

cess to show that, in this situation, perfect integration is sub-
optimal, because it results in an excessive level of ‘‘false
alarms’’ due to integration of presignal noise. Instead, we
show that leaky (i.e., forgetful) integration, which limits the
integration of presignal noise, is more suitable, provided that
the decision-maker can adapt the integration time constant
to the typical signal duration (e.g., the typical duration of
the signal emitted by a missile). We simulated a leaky inte-
grator model that detected signals of varying duration in
protracted streams of noise using different integration time
constants (Figure 1B; see also Figure S1 and Supplemental
Experimental Procedures). The time constant corresponded
to the time it took the integrator’s response to a sudden
signal increase (step function) to reach 1 2 (1/e) of its final,
asymptotic value. The model’s detection threshold (the
inverse of sensitivity, not to be confused with the decision
bound shown in Figure S1) decreased as a function of signal
duration in an approximately linear fashion in log-log coordi-
nates [16]. This linear decrease of the logarithm of the
threshold (i.e., the increase of sensitivity) with the logarithm
of signal duration is a hallmark of temporal integration of sen-
sory evidence [1, 4, 17, 18]. Its slope provides an index of the
integration time constant (Figure S1C). For large time con-
stants (approaching perfect integration), the slope was close
to 21. For small time constants (leak approaching 1), the
decrease was shallower, governed by ‘‘probability summa-
tion’’ of correct detection events, rather than temporal integra-
tion [19]. Intermediate time constants yielded slopes between
about 20.3 and 21, like the ones shown in Figure 1B. As
expected, the long time constant was better suited than the
short time constant (i.e., yielded a lower threshold) for detect-
ing the longest signals (compare red and blue lines in Fig-
ure 1B). However, crucially, for the shortest signals, the short
time constant (blue line) was advantageous over the long
time constant (i.e., lower threshold than for red line). Conse-
quently, the threshold versus duration functions produced by
the two different time constants intersected.
If human observers are able to adapt to the statistics of

signal durations to enhance their performance, then they
should, likewise, shift their integration timescale toward the
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typical signal duration. This should be evident in the rate of
observers’ performance (measured in terms of hit rate and
detection threshold, respectively) improvement as a function
of signal duration (Figure 1B): one should find a stronger
improvement when long signals predominate compared to
when short signals predominate. Thus, the hit rate versus
duration functions (and threshold versus duration functions,
respectively) measured under different predominant signal du-
rations should intersect.

To test this prediction, we asked 12 human observers to
detect visual ‘‘signals’’ embedded in a longer ‘‘noise’’ stream
(Figures 1C and 1D; Experimental Procedures). On each
‘‘signal + noise’’ trial, the signal was an increment inmean lumi-
nance level of one of two fluctuating discs, which occurred at
different latencies within the longer noise stream and varied
(across trials) in duration and intensity (Figure 1D). Critically,
we systematically manipulated the typical signal duration
(and, thereby, presumably the observers’ expectation of signal
duration) by presenting either predominantly the shortest or
the longest signal durations within each of a number of
different experimental sessions (henceforth referred to as
‘‘S-’’ or ‘‘L-sessions,’’ respectively; Figure 1C). Observers
were informed about the predominant signal duration at the
start of each session. We hypothesized that they would

integrate the difference between the two input streams on
the left and right, respectively, and respond whenever this
accumulated difference surpassed one of two symmetric deci-
sion bounds (a positive and negative one for left and right,
respectively). More importantly, we further hypothesized that
observers would employ a longer integration timescale in the
L- than in the S-sessions.
This is what we found (Figures 2 and 3). All observers per-

formed the task with low rate of false alarms (mean across
observers: 14%; range: 8%–24%) and other errors (Table
S1). Across the group, there was no significant difference in
false alarms between L and S sessions (t11 = 0.94; p = 0.36).
Hit rates increased monotonically with signal duration, indi-
cating temporal integration of the signal. Importantly, for the
shortest signals (150 ms), hit rates were significantly higher
in the S- than in the L-sessions, while the opposite was the
case for the longest signals (900 ms; Figure 2). Accordingly,
in signal trials, there was a highly significant interaction
between the session type (L versus S) and signal duration
(two-way repeated-measures ANOVAwith factors signal dura-
tion and session type; F3,33 = 17.91; p < 1023). This interaction
was not evident in the reaction times (RTs). Although RTs
increased with signal duration (main effect of signal duration:
F3,33 = 6.81; p = 0.02; effect of session type: F3,33 = 2.32;

Figure 1. Model Predictions and Behavioral Detection Task

(A) Example time course of evidence for a detection decision with temporal uncertainty. A ‘‘signal’’ (an increment in the mean level, black line) is superim-
posed onto a continuous stream of random fluctuations (‘‘noise’’) at a random time, resulting in the noisy evidence (gray line). This time course describes any
type of evidence that a decision-maker might integrate (e.g., the luminance of a visual stimulus or the value of a stock). (B) Detection thresholds as a function
of signal duration for a leaky integrator model employing different time constants t. Thresholds correspond to the signal strength yielding a hit rate of 80%.
The decision bound was adjusted for each t to maintain a fixed false alarm rate of 20%. The linear slope on log-log axes provides an estimate of t. See also
Figures S1–S3. (C) Histograms of the signal durations on signal + noise trials during S- and L-sessions of the psychophysical detection task. Observers were
informed about these contingencies at the start of each session. (D) Schematic of the time course of the stimulus during an example signal + noise trial. The
two discs fluctuated in luminance around a common mean level. During the signal interval, the mean luminance level of one of the discs increased (variable
onset latency, magnitude, and duration). The signal is exaggerated for illustration. In the actual experiments, signal strengths were selected to span
observers’ psychophysical detection threshold.
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p = 0.15), there was no statistically significant interaction
between signal duration and session type (F3,33 = 0.9;
p = 0.45). Therefore, we focused our subsequent analyses on
the accuracy data.

The behavioral results in Figure 2 indicate that observers
indeed changed their integration time constant, depending
on which signal duration predominated in a given session.
We used two complementary approaches to quantify this
effect and link it to our theoretical predictions. First, we
compared alternative computational models of the decision
process in their ability to account for the observers’ behavioral
data (i.e., the false alarm rates, and the hit rates as a function of
signal strength and duration; Figures 2 and S2; Tables S2 and
S3). One class of models incorporated our theoretical predic-
tions: a leaky integrator, the timescale of which was free to
vary with the session type (see Supplemental Experimental
Procedures). This model provided a reasonable account of
the psychophysical data (solid lines in Figure 2; see Figure S2A
and Table S2 for individual observers). The integration
time constants estimated by this model were consistently
longer for L- than for S-sessions (group average: S: 80 ms;
L: 490 ms; Wilcoxon signed-rank test: 1023).

The variant of the leaky integrator model shown in Figure 3
had different parameters for the internal ‘‘noise’’ in both
session types and for an exponent describing the nonlinear
relationship between physical signal intensity and neuronal
input to the integrator at the decision stage. A simpler variant
of this model, without these additional parameters, provided
qualitatively identical results (Figure S2B).

We also fitted a perfect integrator (drift diffusion) model to
the behavioral data (Supplemental Experimental Procedures).
As expected, this model (dashed lines in Figure 2) consistently

provided a worse performance level (low correct rejection
rates for noise-only trials) and a worse account of the data
(underestimation of hit rate at short signals and overestimation
of hit rate at long signals) than the leaky integrator model with
variable time constant (see Figure S2A and Table S3 for
individual observers). Quantitative model comparison was
consistently in favor of the leaky integrator model (Table 1).
The difference in the Bayesian information criterion (BIC,
which takes into account both the goodness of fit and the
number of model parameters) values, ranged between 82
and 766 across observers, providing strong support for the
leaky integrator. In sum, fitting alternative models of the deci-
sion process strengthens the case for leaky integration with
adaptive timescale.
In the second, model-independent approach, we estimated

observers’ psychophysical detection thresholds for all signal
durations (see Figure 3A for an example observer; Supple-
mental Experimental Procedures). For all observers individu-
ally (Figure S3A), as well as for the group (Figure 3B), the
thresholds were approximately linear in duration (in log-log
coordinates). Just as for the model in Figure 1, the slopes of
observers’ empirical threshold versus duration functions
depended on the expected signal duration (Figures 3B and
3C and Figure S3A). Slopes were significantly larger (i.e.,
more negative) in the L- than S-sessions in nine of the 12 indi-
vidual observers (p < 0.05; one-sided permutation test).
Further, the difference in slopes was highly significant when
tested for the group (Wilcoxon signed-rank test; p < 1023; Fig-
ure 3C). We obtained qualitatively similar results when using
an alternative, more constrained, approach for estimating the
slopes of the threshold versus duration functions (see Supple-
mental Experimental Procedures and Figures S3B–S3D).
Taken together, our results provide strong and comple-
mentary support for our hypothesis that observers changed
their integration timescale with the predominant signal dura-
tion, in line with a decision process employing an adaptive
timescale.

Discussion

The temporal integration of pieces of evidence supporting
different choice options is a fundamental computational pro-
cess underlying all decisions. This process operates during
perceptual decisions like the one studied here [1–11], as well
as during valued-based, economic decisions (e.g., a stock-
buyer choosing stock options by integrating their fluctuating
values) [14, 17, 20]. Here, we show that under conditions of
nonstationary evidence with temporal uncertainty, perfect
evidence integration is suboptimal and is not the computation
employed by human decision-makers. To this end, we used an
experimental protocol, which, albeit still far from real-life deci-
sions, extends the standard laboratory tasks used for probing
evidence integration in an important way. Our results demon-
strate that human observers can boost their decision perfor-
mance by flexibly changing the timescale of a leaky integration
process according to changes in the expected signal duration.
Our estimates of integration timescales showed a consistent

separation between long and short expected signals. But
these timescales also varied substantially across observers
and tended to be shorter than the actual duration of the typical
signal, especially during the S-sessions. One possible expla-
nation for the latter is that, in the S-sessions, some observers
may have based their decision, in addition to the integrated
signal, on transient responses at signal on- and offsets (see

Figure 2. Interacting Effects of Expectation and Signal Duration on Hit Rate
Reveal Adaptation of Integration Time Constant

The group average (n = 12) of proportion of correct choices for the noise-
only trials and signal + noise trials are shown separately for the different
signal durations and for L-sessions (red) and S-sessions (blue). For noise-
only trials, numbers correspond to the correct rejection rate (no response).
For signal + noise trials, numbers correspond to hit rates, collapsed across
the five different signal strengths. Solid lines, average prediction of best-
fitting leaky integrator model; dashed lines, average prediction of best-
fitting drift diffusion model; error bars represent 95% confidence intervals;
***p < 1023 (paired t test). See also Figure S2 and Tables S1–S3.
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legend of Figure S2A for details). In general, a substantial frac-
tion of the interindividual variability in the performance of our
12 observers may reflect differences between strategies (or
integration capacities) among individuals. Future studies
should examinemore complexmodels of the decision process
to capture such individual differences.

Our results have a number of implications for understanding
themechanisms of decision-making. First, they provide strong
support for models of perceptual choice that are based on
leaky, rather than perfect, integration of perceptual evidence.
The notion of leaky integration is inspired by fundamental prin-
ciples of neural computation [4, 18], and it is consistent with
neurophysiological data suggesting a reservoir of time con-
stants in the cerebral cortex [21, 22]. Leaky integration is
also consistent with a common finding in psychophysical
experiments, which manipulated the stimulus duration and
hence available decision time, showing that observers inte-
grate sensory evidence only across limited periods of time
([8, 10, 11, 23, 24], but see [8] for an alternative interpretation
involving perfect integration). While information leak has so
far been regarded as a limitation in perceptual decision-
making, our results reveal that it is, in fact, advantageous for
real-life decisions: the integration timescale provides a critical
degree of freedom for adapting the decision process to the
environmental contingencies. Similar conclusions have been
reached for the temporal integration of reward (across trials)
in a dynamic foraging task, in whichmonkeys used a time con-
stant that was closely matched to the statistics of the environ-
ment [25]. However, in this study, the optimal timescale was
not systematically manipulated.

Our results also shed new light on the question of how ‘‘top-
down’’ cognitive control mechanisms shape decision compu-
tations [26]. Since the emergence of signal detection theory in
perceptual psychophysics [16], perceptual decision-making
has been viewed as a two-component process: (1) the encod-
ing and integration of sensory evidence and (2) the criterion

A B

C

Figure 3. Change of Psychophysical Thresholds
with Signal Duration Reveals Adaptation of
Integration Time Constant

(A) Psychometric functions of one example
observer, separately for the four signal durations
and two session types. Psychophysical detection
thresholds (expressed in units of signal-to-noise
ratio; SNR) decreased with duration but more
strongly in L- than in S-sessions. Solid lines,
best-fitting cumulative Weibull functions. Vertical
dashed lines indicate location of threshold
parameter on the x axis. Error bars represent 95
% bootstrap confidence intervals. (B) Group
average thresholds, plotted on log-log scales as
a function of signal duration. Error bars represent
SEM. Lines, group average of the individual
regression fits. (C) Individual (thin lines) and
group average (thick black line), best-fitting
regression slopes for S- versus L-sessions. The
absolute value of the slopes is shown (all fitted
individual slopes were negative; see Figure S3A).
The thin black thin line corresponds to the
observer shown in (A). See also Figure S3.

level (decision bound), against which
the integrated evidence is compared
to reach a decision. In this view,
decision-makers exert control over the
decision process only by adapting

the decision bound [1–3, 27, 28], while the evidence integration
operates automatically. By contrast, our results reveal that
adaptive control mechanisms can directly shape the evidence
integration computation.
Further, the results imply that the brain is remarkably flex-

ible in selecting an integration timescale suitable for the envi-
ronmental context at hand. Timescales of several hundreds
of milliseconds, like the ones observed here, are probably
an emergent property of dynamic network interactions rather
than a fixed property of individual neurons [4, 18, 24]. Physi-
ological evidence suggests that such network interactions
during decision-making span multiple regions that are widely
distributed across the brain [29–31]. The adaptive changes in
integration timescales found in the present study may, there-
fore, reflect the flexible adjustment of such large-scale deci-
sion networks, which might be achieved by neuromodulation
[32–34].
Finally, our study sets the stage for future neurophysiolog-

ical studies of the biophysical circuit mechanisms underlying
perceptual evidence integration. Such studies could exploit
our experimental protocol to experimentally manipulate inte-
gration timescale, while characterizing neurophysiological
signatures of the evidence integration mechanism [22, 29].

Experimental Procedures

Below, we describe the psychophysical experiments and provide a brief
summary of the psychometric fitting procedures. All data analysis and
modeling procedures are described in detail in the Supplemental Experi-
mental Procedures.

Observers
Twelve healthy observers (eight females, age range: 20–37 years, normal or
corrected-to-normal vision) participated in this study after informed
consent. The observers were psychology students at TAU, who were naive
to the purpose of the study, did the experiment for credit, and were, in
addition, paid for their participation in proportion to task performance
(20–40 NIS per hr). The study was approved by the local ethics committee.
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Stimuli
Stimuli were presented on a linearized CRT screen (frame rate: 100 Hz). On
each trial, two discs were presented in the right and left visual hemifields
on a black background, for a total duration of 5 s (Figure 1C). Discswere pre-
sented at an eccentricity of 5! and subtended about 2.85! of visual angle.We
controlled the level of (external) noise entering the decision process by
randomly and independently changing each disc’s luminance level at each
monitor refresh (10 ms). These random luminance fluctuations were drawn
from a truncated Gaussian noise (SD after truncation = 0.11), and they
were added to each disc’s mean luminance level. The truncation was used
to prevent the luminance variable to exceed the (0,1) boundaries (see below).
Throughout each trial, the mean luminance level had one of two values.
Twenty-five percent of the trials (‘‘noise-only’’ trials) contained only fluctua-
tions around the same baseline level (0.40, on a 0–1 scale). This was con-
structed by using RGB values with equal components. In the remaining
75% (‘‘signal + noise’’ trials), both discs fluctuated around the samebaseline
level for most of the trial, and a luminance increment was added to the base-
line level of one of the discs at various different latencies within the noise
stream (uniform distribution of signal onsets; range: 0.6–3.5 s). This incre-
ment was the signal that observers had to detect. The signal’s location
(left or right), strength (0.08, 0.16, 0.24, 0.32, or 0.40), and duration (150,
300, 600, or 900 ms) were randomly selected on each signal + noise trial.

Procedure
Observers’ task was to maintain fixation throughout the whole trial and to
respondwhenever they judged that one of the discs had increased in bright-
ness (the signal; Figure 1D). They had to indicate the location of the signal by
pressing a left or a right button within a predetermined response window
(from signal onset to 600 ms after signal offset). Responses to signals
were classified as correct (‘‘hits’’) if they weremadewithin the responsewin-
dow and with the correct button. There were four possible types of errors:
‘‘false alarms’’ (response on noise-only trials or before the response window
on signal + noise trials), ‘‘slow responses’’ (response on signal + noise trials
after the response window), ‘‘misses’’ (no response whatsoever on signal +
noise trials), or ‘‘mislocalization’’ (response on signal + noise trials within
response window but with incorrect button). At the end of ‘‘mislocalization’’
trials, a sound feedback was provided. At the end of the other error trials, a
text on the screen informed observers about the type of error. After the
completion of each trial, observers pressed a key to continue to the next
trial. In the absence of any key press, the next trial started automatically
after 2.5 s. Every 100 trials, observers were allowed to pause.
After a short practice session, each observer performed several experi-

mental sessions of 500 trials each (duration: w1 hr). All sessions consisted
of 125 noise-only trials and 375 signal + noise trials. To manipulate the
observers’ expectation of signal duration, we introduced a predominance
of a factor of two (rate of occurrence: 0.4 versus 0.2) of either the longest
or the shortest signal duration over the other three durations (Figure 1C).
In one type of session (‘‘S-sessions’’), there were 150 trials (5 signal
strengths 3 30 trials) of the shortest duration (150 ms). In the other type
of session (‘‘S-sessions’’), there were 150 trials of the longest duration
(900 ms). In all sessions, there were 75 trials (5 signal strengths 3 15 trials)
of the remaining three durations (see Supplemental Experimental Proce-
dures for rationale behind these distributions of signal durations.)

The two types (S/L) were alternated from session to session, with the
order counterbalanced across observers. Observers received an explicit
instruction about each session’s type before the start of testing. Nine
observers performed four sessions. Three observers performed six
sessions.

Data Analysis and Model Fits
We computed observers’ psychophysical detection performance as the
percentage of hits on signal + noise trials, separately for each signal dura-
tion and intensity, and as the percentage of no responses (‘‘correct rejec-
tions’’) on noise-only trials (Figure 2). We fitted two different classes of
computational models of the decision process (leaky integrator and drift
diffusion) to the complete performance data of each individual observer
(including noise-only trials). To estimate observers’ detection thresholds,
we fitted a cumulative Weibull function to the hit rates as a function of signal
strength and extracted the threshold parameter of the best fits (Figure 3).
See Supplemental Experimental Procedures for details of the data analysis
and model fitting procedures.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-
dures, three figures, and three tables and can be found with this article
online at http://dx.doi.org/10.1016/j.cub.2013.04.039.
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Introduction 35	

Cortical activity fluctuates continuously, even in the absence of changes in sensory input or 36	

motor output (Faisal et al., 2008). These intrinsic fluctuations in cortical activity are evident 37	

from the level of single neurons to large-scale networks of distant cortical areas (Shadlen 38	

and Newsome, 1998; Fox et al., 2005; Deco et al., 2011). Fluctuations in cortical mass 39	

activity exhibit temporal structure characteristic of so-called “scale-free” behavior: “1/f-like” 40	

power spectra (Miller et al., 2009; He et al., 2010) and long-range temporal autocorrelations 41	

(Linkenkaer-Hansen et al., 2001; He, 2011; Palva et al., 2013; Zhigalov et al., 2015). This 42	

characteristic temporal structure of cortical activity fluctuations varies widely across people, 43	

partly explained by genetics (Linkenkaer-Hansen et al., 2007) and exhibits marked changes 44	

in brain disorders, such as depression or Alzheimer’s disease (Linkenkaer-Hansen et al., 45	

2005; Montez et al., 2009).  46	

The large variability of cortical neurons is not only due to the biophysics of individual 47	

cells (Faisal et al., 2008), but also due to the balance between excitatory and inhibitory 48	

inputs to each (van Vreeswijk and Sompolinsky, 1996; Shadlen and Newsome, 1998) – a 49	

key determinant of the computational properties of cortical circuits (Murphy and Miller, 2003; 50	

Polack et al., 2013; Martins and Froemke, 2015), and the behavior of the organism (Wang, 51	

2008; Eckhoff et al., 2009). The balance between excitatory and inhibitory interactions 52	

seems also essential for the characteristic temporal structure of spontaneous cortical 53	

activity: Variations of the degree of excitatory and inhibitory connectivity change the long-54	

range temporal correlation structure of activity in a cortical circuit model (Poil et al., 2012). 55	

Such differences in cortical microcircuitry might account for the large differences in the 56	

temporal structure of activity fluctuations between people, and between the healthy and 57	

diseased brain.  58	

However, there is an important factor other than the fixed structural circuitry, which 59	

might also shape cortical excitation-inhibition balance and thus variability: dynamic 60	
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neuromodulatory state (Marder, 2012). Modulatory systems of the brainstem regulate 61	

cortical state through widespread ascending projections (Aston-Jones and Cohen, 2005; 62	

Berridge, 2008; Harris and Thiele, 2011; Lee and Dan, 2012; Froemke, 2015). The 63	

neurotransmitters released from these projections, such as noradrenaline or acetylcholine, 64	

modulate specific  elements of cortical microcircuits (Polack et al., 2013; Fu et al., 2014) and 65	

alter the variability of cortical neurons (Polack et al., 2013; Eggermann et al., 2014; Chen et 66	

al., 2015). Thus, neuromodulators might dynamically “tune” the net ratio between cortical 67	

excitation and inhibition within an individual, and variations in neuromodulatory tone between 68	

people, in addition to variations in structure, might account for individual differences. The net 69	

effects of neuromodulatory systems on cortical excitation-inhibition balance, and on the 70	

temporal structure of activity fluctuations, have so far remained unknown. Unraveling these 71	

effects across cortex is critical for bridging between the modulations of specific microcircuit 72	

elements on the one hand and the gross effects of neuromodulatory state on cognition and 73	

behavior on the other hand (Aston-Jones and Cohen, 2005; Sara, 2009; Harris and Thiele, 74	

2011).  75	

Here, we investigated if, how, and where, catecholaminergic and cholinergic 76	

modulation shape the temporal structure of intrinsic activity fluctuations in human cortex. We 77	

hypothesized that neuromodulatory effects that modulate net cortical excitation-inhibition 78	

balance should also alter the temporal correlation structure of intrinsic activity fluctuations. 79	

We solidified this prediction through simulations of a simplified cortical circuit model under 80	

modulation of excitatory or inhibitory synapses. We then tested this prediction by combining 81	

pharmacological intervention and magnetoencephalographic (MEG) recordings of human 82	

cortical steady-state activity during two conditions: “rest” and continuous, strong visual input 83	

combined with a simple task. Comparing the changes in temporal correlations induced by 84	

pharmacological treatments with those induced by external drive, enabled us to infer the 85	
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alterations in net cortical excitation-inhibition balance induced by catecholaminergic 86	

neuromodulation. 87	

	88	

Methods 89	

Pharmacological MEG experiment 90	

Subjects 91	

30 healthy human participants (16 females, age range 20-36, mean 26.7) participated in the 92	

study after informed consent. The study was approved by the Ethical Committee responsible 93	

for the University Medical Center Hamburg-Eppendorf. One participant was excluded from 94	

subsequent analysis due to excessive extra-cranial artifacts in the MEG recording. Another 95	

participant only completed 2 out of 3 recording sessions and was also excluded, resulting in 96	

a total of 28 participants (15 females). 97	

 98	

General design 99	

We pharmacologically manipulated the levels of catecholamines (noradrenaline and 100	

dopamine) and acetylcholine in a double-blind, randomized, placebo-controlled, and cross-101	

over experimental design (Fig. 1A, B). Each participant completed three experimental 102	

sessions, consisting of drug (or placebo) intake at two time points, a waiting period of 3 103	

hours, and an MEG recording of about 1.5 hours. During MEG, participants were seated on 104	

a chair inside a magnetically shielded MEG chamber. All instructions and stimuli were 105	

projected onto a screen (distance: 60 cm) inside the chamber. Each session consisted of 6 106	

runs of 10 minutes each. 107	

 108	

Pharmacological intervention 109	

We used the selective noradrenaline reuptake inhibitor atomoxetine (dose: 40 mg) to boost 110	

the levels of catecholamines noradrenaline and (at least in prefrontal cortex) dopamine 111	
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(Robbins and Arnsten, 2009). We used the cholinesterase inhibitor donepezil (dose: 5 mg) 112	

to boost acetylcholine levels. A mannitol-aerosil mixture was administered as placebo. All 113	

substances were encapsulated identically in order to render them visually indistinguishable. 114	

Peak plasma concentration are reached after ~3-4 hours after administration for donepezil 115	

(Tiseo et al., 1998) and 1-2 hours for atomoxetine (Sauer et al., 2005). We adopted the 116	

following procedure to account for the different pharmacokinetics (Fig. 1A): participants 117	

received two pills in each session, one 3 h and another 1.5 h before the start of MEG 118	

recording. In the Atomoxetine condition, they first received a placebo pill (t = -3 h) followed 119	

by the atomoxetine pill (t = -1.5 h). In the Donepezil condition, they first received the 120	

donepezil pill (t = -3 h), followed by placebo (t = -1.5 h). In the Placebo condition, they 121	

received placebo at both time points. The half-life is ~ 5 h for atomoxetine (Sauer et al., 122	

2005) and ~ 82 h for donepezil, respectively (Tiseo et al., 1998).  The three recording 123	

sessions were scheduled at least 2 weeks apart in order to allow plasma concentration 124	

Figure 1. Experimental design. (A, B) Types and time course of experimental sessions. (A) Each 

subject participated in three sessions, involving administration of placebo, atomoxetine, or donepezil 

(session order randomized across subjects). Each session entailed the administration of two pills, in 

the order depicted for the different session types. (B) Within each session, subjects alternated 

between two steady-state conditions, Rest and Task, during MEG (runs of 10 min each). See 

Materials and Methods for details. (C) Group average power spectrum, averaged across all MEG 

sensors, for Rest and Task (Placebo condition only). 
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levels to return to baseline. This design ensured maximum efficacy of both pharmacological 125	

manipulations, while effectively blinding participants as well as experimenters. 126	

 127	

Stimulus and task conditions 128	

In each session, participants alternated between three different stimulus and task conditions 129	

(2 runs à 10 minutes per condition). 130	

Rest condition.  During the Rest condition, participants’ task was to fixate a green 131	

fixation dot (radius = 0.45º visual angle) presented in the center of an otherwise grey screen.  132	

Task-counting condition. During the Task-counting condition, subjects viewed a 133	

seemingly rotating sphere giving rise to the kinetic depth effect (Wallach and O’connell, 134	

1953; Sperling et al., 1990), spontaneous changes in the perceived rotation direction (Fig. 135	

1B). The stimulus subtended 21º of visual angle. It consisted of 1000 dots (500 black and 136	

500 white dots, radius: 0.18º of visual angle) arranged on a circular aperture presented on a 137	

mean-luminance gray background, with the green fixation dot in the center. The speed of 138	

rotation of the sphere was 2.6 º/s  or 3.3 º/s, in different sessions (same speed for 24 out of 139	

28 subjects). In order to minimize tracking eye movements, the sphere rotation was either 140	

“forward” (towards the observer) or “backward” (away from the observer), and the dot 141	

density decreased along the horizontal axis towards the center of the stimulus. Participants 142	

were instructed to count the number of perceived changes in rotation direction and report the 143	

total number of perceived transitions at the end of the run. Taken together, just like the Rest 144	

condition, the Task condition minimized any external (sensory or motor) transients, but it 145	

produced well-constrained endogenous transients associated with the spontaneous 146	

perceptual changes. 147	

Task-pressing condition. This condition was identical to Task-counting, except that 148	

participants were instructed to press and hold one of two buttons with their index finger to 149	

indicate the currently perceived rotation direction of the sphere.  150	
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Here, we only analyzed the Rest and Task-counting conditions. For simplicity, the 151	

latter will be referred to as Task condition in the following.	 152	

 153	

Data acquisition  154	

MEG was recorded using a whole-head CTF 275 MEG system (CTF Systems, Inc., 155	

Canada) at a sampling rate of 1200 Hz. In addition, eye movements and pupil dilation were 156	

recorded with an MEG-compatible EyeLink 1000 Long Range Mount system (SR Research, 157	

Osgoode, ON, Canada) and electrocardiogram (ECG) was acquired using two Ag/AgCl 158	

electrodes.  159	

 160	

Data analysis 161	

Preprocessing  162	

Eye data. Eye blinks were detected using the manufacturer’s standard algorithm with default 163	

settings.  164	

 165	

MEG data. First, all data were cleaned of strong transient muscle artifacts and squid jumps 166	

through visual inspection and manual as well as semi-automatic artifact rejection procedures, 167	

as implemented in the FieldTrip toolbox for MATLAB (Oostenveld et al., 2011). To this end, 168	

data segments contaminated by such artifacts (+/- 500 ms) were discarded from the data 169	

(across all channels). Subsequently, data were downsampled to 400 Hz the data were split 170	

into low (2-40 Hz) and high (>= 40 Hz) frequency components, using a 4th order (low- or 171	

high-pass) Butterworth filter. Both signal components were separately submitted to 172	

independent component analysis (Bell and Sejnowski, 1995) using the FastICA algorithm 173	

(Hyvärinen, 1999). Artifactual components (eye blinks/movements, sustained muscle 174	

artifacts, heartbeat and other extra-cranial artifacts) were identified based on three criteria as 175	

described in detail in (Hipp and Siegel, 2013): power spectrum, fluctuation in signal variance 176	
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over time (in bins of 1s length), and topography. Artifactual components were reconstructed 177	

and subtracted from the raw signal and low- and high frequencies were combined into a 178	

single data set. On average, 20 (+/- 14) artifactual components were identified for the low-179	

frequencies and 13 (+/- 7) artifactual components were identified for the high frequencies.  180	

 181	

Spectral analysis and motivation of frequency bands of interest 182	

Sensor-level spectral estimates (power spectra and cross spectral density matrices) were 183	

computed by means of the multi taper method using a sequence of discrete prolate Slepian 184	

tapers (Mitra and Pesaran, 1999). For the power spectrum shown in Fig. 1C, power spectra 185	

were computed using a window length of 5s and a frequency smoothing of 2 Hz, yielding 19 186	

orthogonal tapers. For all remaining analyses, spectral estimates were computed for the 187	

following, coarsely defined frequency bands: 2-8 Hz (‘delta/theta’), 8-12 Hz (‘alpha’) and 12-188	

45 Hz (‘beta/gamma’).  189	

The focus of this paper was on the fluctuations of the amplitude envelopes, rather 190	

than on the (oscillatory) fluctuations of the carrier signals per se. The temporal correlation 191	

structure of the amplitude envelope fluctuations of cortical activity seems similar across 192	

different carrier frequency bands (Zhigalov et al., 2015). For most analyses reported in the 193	

following, we focused on amplitude envelope fluctuations in the alpha-band because (i) the 194	

cortical power spectra exhibited a clearly discernible alpha-peak, which robustly modulated 195	

with task, as expected from previous work (Donner & Siegel, 2011) (Fig. 1C); and (ii) the 196	

computational model used to study the effect of synaptic gain modulation on cortical activity 197	

fluctuations was tuned to produce alpha-band oscillations (see above and Poil et al., 2012). 198	

The two lower and higher frequency bands were defined coarsely for simplicity, such as to 199	

cover the complete range of the power spectrum with reliable signal during task and rest. 200	

They were analyzed as control for frequency dependence of any effects observed in the 201	

alpha-band.  202	
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 203	

Source reconstruction: general approach 204	

The cleaned sensor level signal (! sensors) was projected onto a grid consisting of " = 205	

3000 voxels covering the cortical surface (mean distance: 6.3 mm) with spatial filters 206	

computed using the exact low-resolution brain electromagnetic tomography (eLORETA; 207	

(Pascual-Marqui and Lehmann, 2011) method. The magnetic leadfield was calculated, 208	

separately for each subject and session, using a single shell head model constructed from 209	

the individual structural MRI scans and the head position relative to the MEG sensors at the 210	

beginning of the run (Nolte, 2003). In case no MRI was available (4 subjects), the leadfield 211	

was computed from a standard MNI template brain transformed to an estimate of the 212	

individual volume conductor using the measured fiducials (located at the nasion, the left and 213	

the right ear).  214	

 215	

Computation of source level estimates of amplitude envelopes and power 216	

For comparing amplitude envelope and power estimates between experimental conditions in 217	

source space we aimed to select a single direction of the spatial filter for each voxel across 218	

pharmacological conditions (i.e., MEG sessions), but separately for Rest and Task 219	

conditions. The rationale was to avoid filter-induced biases in the comparisons between the 220	

pharmacological conditions, while allowing that external task drive might systematically 221	

change the dipole orientations.  222	

To this end, we first computed the mean source-level cross-spectral density matrix 223	

$ %, &  for each frequency band &, averaged across the three MEG sessions, as follows: 224	

$ %, & =
(

)
*+
, % $+(&)*+ %

)
+/( 	  (1) 225	

where *+ denotes the subject-specific spatial filter for session 1 and $+ &  was the (sensor-226	

level) session- and frequency-specific cross-spectral density matrix. We then extracted the 227	
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first eigenvector 2( %, & 	of the session-average matrix $ %, &  and computed the unbiased 228	

filter selective for the dominant dipole orientation, 3+ %, & , as: 229	

3+ %, & = 	*+ % 2( %, &    (2) 230	

Please note that this filter was now frequency-specific, whereas the previous filters, 231	

*+, were not. To obtain instantaneous estimates of source-level amplitudes, the sensor-level 232	

signal for session 1, 4+ 5 , was band-pass filtered (using a finite impulse response filter) and 233	

Hilbert-transformed, yielding a complex-valued signal 6+ &, 5  for each frequency band. This 234	

signal was projected into source space through multiplication with the unbiased spatial filter, 235	

3+(%, &), and the absolute value taken: 236	

789+(%, &, 5) = | ;+ &, 5 	3+ %, & |  (3) 237	

where 789+ %, &, 5  was the estimated amplitude envelope time course of source location % 238	

and frequency & . Next, for each session, unbiased source-level cross spectral density 239	

estimates were obtained from the sensor-level cross-spectral density matrix $+ & 	and the 240	

frequency-specific, unbiased spatial filter 3+(&). The main diagonal of the resulting matrix 241	

contains source-level power estimates for all source locations: 242	

<+ & = =1>?(3+
,(&)+$+ & 3+(&))  (4) 243	

 These computations where repeated separately for the Task and Rest conditions, 244	

session by session. The differences in amplitude envelope fluctuations and power estimates 245	

between pharmacological and task conditions reported in this paper were robust with 246	

respect to the specifics of the analysis approach. In particular, we obtained qualitatively 247	

similar pharmacological effects in sensor space, as reported in an earlier conference 248	

abstract (Pfeffer et al, SfN, 2015). 249	

 250	

Detrended fluctuation analysis of MEG data 251	

The source-level amplitude envelopes 789+ %, &, 5  were submitted to detrended fluctuation 252	

analysis (Peng et al., 1994; Hardstone et al., 2012) in order to quantify long-range temporal 253	
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correlations. Detrended fluctuation analysis quantifies the scaling with time-window length of 254	

the fluctuation of a (locally detrended) cumulative signal. Different from the analysis of the 255	

(more widely known) autocorrelation function (Honey et al., 2012; Murray et al., 2014), 256	

detrended fluctuation analysis provides robust estimates of the autocorrelation structure for 257	

stationary and non-stationary signals. Non-stationarities in the signal may originate from 258	

artifacts that are time-locked to the onset of a recording, such as head movements that are 259	

more pronounced at the beginning of a recording compared to the end. The procedure of 260	

detrended fluctuation analysis is illustrated for an example subject in Figure 2.  261	

For simplicity, in the following, we re-write the amplitude envelope 789+ %, &, 5  as @+, with 1 262	

indicating time points. First, we computed the cumulative sum of the demeaned @+, (Fig. 2B): 263	

4A = (@+ 	− 〈@〉)
A
+/(    (5) 264	

The cumulative signal 4A was then cut into E segments (overlap: 50%) of length F, where 265	

E = &GHH%[(! − F)/(0.5	F)] and ! was the length of the complete signal 4A  (Fig. 2B, top). 266	

Within each segment, the linear trend 4AOPQR	(least squares fit) was subtracted from 4A (Fig. 267	

2B, middle, blue vs. red lines), and the average fluctuation computed as the root of the sum 268	

of squared differences, averaged across windows of equal length (root-mean-square): 269	

< T >	=
(

V
	 (4A − 4AOPQR)

WV
Q/(

X

Y (6) 270	

where n indicated windows of equal length F. The procedure was repeated for different 271	

window lengths, yielding the fluctuation function < T(F) > (Fig. 2B, bottom). As expected for 272	

scale-free time series (Hardstone et al., 2012), this function of window size followed a 273	

power-law of the form:  274	

< T F >	∝ F[   (7) 275	

The “scaling exponent” \ was computed through a linear regression fit of < T(F) > in log-log 276	

coordinates (Fig. 2B, bottom). We estimated the scaling exponent \ for 15 logarithmically 277	

spaced windows ranging from 3 s to 50 s. These bounds were chosen such as to achieve an 278	
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upper bound of 10% of the total data length and to avoid spurious long-range temporal 279	

correlations introduced by  band-pass filtering  (Hardstone et al., 2012). 280	

 A scaling exponent of 0.5 < \ < 1 is indicative of scale-free behavior (also referred to 281	

as “power-law scaling”) and long-range temporal correlations (Hardstone et al., 2012). The 282	

scaling exponents for alpha-band MEG amplitude envelopes estimated in this study ranged 283	

(across experimental conditions, behavioral contexts, and participants) from 0.40 and 1.04, 284	

with 99.4% of all estimates in the range between 0.5 and 1, indicative of scale-free behavior 285	

and consistent with a growing body of evidence (Linkenkaer-Hansen et al., 2001, 2005; 286	

Montez et al., 2009; He, 2011; Palva et al., 2013; Tagliazucchi et al., 2013; Zhigalov et al., 287	

2015). 288	

 289	

Coefficient of variation of MEG data 290	

As another aspect of intrinsic fluctuations in cortical activity, we also computed the 291	

coefficient of variation of the amplitude envelopes. The coefficient of variation, the standard 292	

deviation of a signal over its mean, quantified the overall magnitude of the fluctuations of 293	

amplitude envelope, irrespective of the frequency or time-scale, at which these fluctuations  294	

were expressed.  295	

 296	

Relationship between measures of variability  297	

Scale-free behavior of neural time series has also been quantified via analysis of the power 298	

spectrum (Miller et al., 2009; He et al., 2010; Honey et al., 2012). There is a straightforward 299	

relationship between both approaches, which we explain below and illustrate in Fig. 2C and 300	

D, to help appreciate our results in the context of these previous studies. The power 301	

spectrum of the amplitude envelope of cortical activity is typically well approximated by 302	

^ & ∝ 	&_ , where `  is referred to as the power-law exponent. For power-law decaying 303	
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autocorrelations, the relationship between the power-law exponent `  and the scaling 304	

exponent \ (estimated through DFA) of a time series is: 305	
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Figure 2. Quantifying fluctuations in cortical activity. (A) Top. Time-frequency representation of 

MEG power fluctuations during Rest (example subject). Bottom. Filtered signal (at 10 Hz; black) 

and the corresponding amplitude envelope (red). (B) Illustration of detrended fluctuation analysis. 

See main text (Materials and Methods) for details. Top. Cumulative sum of the amplitude envelope. 

Center. Detrending of cumulative sum within segments, shown for two different window lengths T. 

Bottom. Root-mean-square fluctuation function <F(T)>. In log-log coordinates, <F(T)> increases 

approximately linearly as a function of T, with a slope that is the  scaling exponent α. (C) Illustration 

of power spectrum analysis. In log-log coordinates, the power spectrum can be approximated by a 

straight line, with a slope β (power-law exponent) and an area under the curve (gray) that quantifies 

the overall variance of the signal. (D) Analytical and empirical relationship between scaling 

exponent α and power-law exponent β from the analyses shown in (B) and (C). Exponents are 

strongly correlated across sensors in one example subject. Red line, analytically predicted relation 

for a scale-free signal. (E) Empirical relationship between coefficient of variation of amplitude 

envelope signal (red in panel A, bottom) and the area under the curve of power spectrum in 

(C).Both measures are strongly correlated across sensors. AUC, area under the curve. 
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` = 2\ − 1   (9) 306	

To illustrate this relation with our empirical data, we computed the double-logarithmic power 307	

spectrum of the amplitude envelopes of the band-pass filtered signal (8-12 Hz; finite impulse 308	

response filter). Fig. 2D shows the relation between power-law exponent ` and the scaling 309	

exponent \  for subject #27 across all 274 MEG channels. As expected, we observed a 310	

highly significant negative correlation between the two measures (r=-0.78; p<1e-55). The 311	

analytically derived values for \, depicted in red, corresponded reasonable well with the 312	

empirically measured ones (black). 313	

 Likewise, the coefficient of variation, a measure of the overall fluctuation of the 314	

amplitude envelope signals, was linearly related to the area under the curve (AUC) of the 315	

power spectrum. Figure 2E depicts this relation, across sensors, for subject 27 (r = -0.87; p 316	

< 1e-87). 317	

 318	

Analysis of ECG data 319	

ECG data were used to extract average heart rate and scaling behavior of the R-R time 320	

series (Palva et al., 2013; Zhigalov et al., 2015). To this end, we used an adaptive 321	

thresholding procedure to reliably capture the R-component of each QRS-complex in the 322	

ECG time series. Heart rate was estimated by computing the total number of R-components 323	

divided by time. To investigate scaling behavior, we determined the temporal intervals 324	

between all consecutive heartbeats. Next, we estimated long-range temporal correlations in 325	

the resulting interval time series using detrended fluctuation analysis described for MEG 326	

above (see Detrended fluctuation analysis). Here, we used windows ranging from 3 to 50 327	

heartbeats (roughly corresponding to 3 - 50 s). 328	

 329	

Statistical tests 330	
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Cluster-based permutation test. To identify significant alterations in space, we computed a 331	

non-parametric permutation test based on spatial clustering (Nichols and Holmes, 2002; 332	

Maris and Oostenveld, 2007). This procedure has been shown to reliably control for Type I 333	

errors arising from multiple comparisons. First, a paired t-test was performed to identify 334	

voxels with significant changes (voxel with p < 0.05). Subsequently, significant voxels are 335	

combined into clusters based on their spatial adjacency. Here, a voxel was only included 336	

into a cluster when it had at least two significant neighbors. Subsequently. the t-values of all 337	

voxels comprising a cluster were summed, which yields a cluster statistic (i.e., a cluster t-338	

value) for each identified cluster. Next, a randomization null distribution was computed using 339	

a permutation procedure (N=10000). On each permutation, the experimental labels (i.e., the 340	

pharmacological conditions) were randomly re-assigned within participants and the 341	

aforementioned procedure was repeated. For each iteration, the maximum cluster statistic 342	

was determined and a distribution of maximum cluster statistics was generated. Eventually, 343	

the cluster statistic of all empirical clusters was compared to the values obtained from the 344	

permutation procedure. All voxels comprising a cluster with a cluster statistic smaller than 345	

2.5% or larger than 97.5% of the permutation distribution were labeled significant, 346	

corresponding to a corrected threshold of \	= 0.025. 347	

 348	

Bayes Factor. Wherever null effects were conceptually important, results obtained from a 349	

regular (paired) t-test (Rouder et al., 2009) and Pearson correlations (Wetzels and 350	

Wagenmakers, 2012) were used to derive corresponding Bayes factors. The Bayes Factor is 351	

useful, as it allows to estimate the strength of the evidence in support (or against) the null 352	

hypothesis with respect to the alternative hypothesis and takes effect size into account. Here, 353	

we computed Bayes Factors to quantify null effects, which are difficult to interpret using 354	

regular null hypothesis significance testing. 355	

 356	
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Computational model simulations 357	

To simulate the effects of synaptic gain modulation on cortical activity fluctuations, we 358	

extended a previously described, simplified computational model of a local cortical patch 359	

(Poil et al., 2012) by means of multiplicative modulation of synaptic gain. The model 360	

consisted of 2500 integrate-and-fire (75% excitatory, 25% inhibitory) with local connectivity 361	

within a square (width = 7 units) and a connection probability that decayed exponentially with 362	

distance (Fig. 3A). The dynamics of the units were governed by:  363	

b+ = b+ + !+de+d<dd    (8) 364	

f+
Rgh

RA
= bi − b+   (9) 365	

where subscripts 1,	j indicated different units, e+d were the connection weights between two 366	

units, and <d a binary spiking vector representing whether unit j did or did not spike on the 367	

previous time step, and bi = 0.	 !+d  was a multiplicative gain factor, which was the main 368	

difference to the model described by (Poil et al., 2012), and which was introduced to 369	

simulate the effects of neuromodulation on synaptic interactions in the cortical network 370	

(Eckhoff et al., 2009). On each time step, b+ was updated for each unit 1, with the summed 371	

input from all other (connected) units j and scaled by a time constant f+ = 9	lm, which was 372	

the same for excitatory and inhibitory units. The connection weights were egn =373	

−0.569,			egg = −2.0, enn = 0.0085  and eng = 0.0085,  whereby subscript 7  indicated 374	

excitatory, subscript b indicated inhibitory, and the first and second subscript referred to the 375	

receiving and sending unit, respectively. The probability of a unit generating a spike output 376	

was given by: 377	

qr+ = qr+ + b+    (10) 378	

fs
	Rsth

RA
= qi − qr+   (11) 379	

with the time constant for excitatory units fs = 6	lm and for inhibitory fs = 12	lm. qi	was the 380	

background spiking probability, with qi u@v. = 	0.000001	[1/lm]  and qi 18ℎ. = 0	[1/lm] . 381	

For each time step, it was determined whether a unit did or did not spike. If it did, the spiking 382	
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probability of that unit spiking was reset to qO u@v15>5H%x = −2	[1/lm] and qO 18ℎ1y15H%x =383	

−20	[1/lm].  384	

We quantified the power-law scaling of neuronal avalanche distributions using the 385	

kappa-index, as described in (Shew et al., 2009). To simulate the models’ “local field 386	

potential”, we summed the activity across all (excitatory and inhibitory) neurons. We band-387	

pass filtered the local field potential in the alpha-band (8-16 Hz) and computed long-range 388	

temporal correlations in the alpha-band amplitude envelopes following the procedure 389	

described above (see Detrended fluctuation analysis of MEG data), using windows sizes 390	

ranging from 5 s to 30 s.  391	

For the simulations reported in this paper, we chose the connection weights and 392	

synaptic decay constants for all simulations, such that the network exhibited alpha-band 393	

oscillations, long-range temporal correlations, and neuronal avalanches (see Discussion). 394	

From this baseline level, we systematically varied the synaptic gain factors !nn, !gn, and !ng 395	
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Figure 3. Dynamic modulation of excitation-inhibition balance simplified model of cortical patch. (A) 

Schematic of the computational model. The network consists of 2500 excitatory and inhibitory 

integrate-and-fire units and random, local (within an area of 7x7 units) connectivity (magnified within 

the red square). (B) Neuromodulation was simulated as gain modulation term multiplied with 

excitatory and/or inhibitory synaptic weights. (C) Scaling exponent as a function of excitatory and 

inhibitory synaptic gain modulation. Red square, baseline state. White line, axis of parameter 

combinations corresponding to changes in excitation-inhibition ratio re-plotted schematically in Fig. 
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(Fig. 3B). !ng  was modulated independently from !nn ,and !gn , which in turn were co-396	

modulated by the same factor. This was intended to simulate modulations GABA receptors 397	

in the former case (mediating the effects of inhibitory neurons on others), as opposed 398	

(AMPA or NMDA) glutamate receptors in both of the latter two cases (mediating the effects 399	

of excitatory neurons on others). !nn ,and !gn  were co-modulated by the same factor for 400	

simplicity, because we did not assume that excitatory (glutamatergic) synapses would be 401	

differentially modulated depending on whether they were situated on excitatory or inhibitory 402	

target neurons. !gg  was not modulated because we found this to cancel the effects of 403	

modulating !ng . Per parameter combination, we ran 10 simulations with a random global 404	

input noise. In this paper, we focus on the effects of neuromodulation on the scaling 405	

exponent \ which served as a reference for interpretation of the MEG effects. 406	

 407	

Results 408	

We simulated a simplified model of a cortical patch under systematic variations in synaptic 409	

gain modulations. We then compared the simulation results to empirically measured 410	

changes in the fluctuations of human MEG activity under placebo-controlled 411	

pharmacological interventions with the cholinergic and catecholaminergic systems. 412	

Importantly, cortical activity fluctuations were measured during two steady-state conditions: 413	

“rest” and continuous, visual task drive. This allowed us to build on animal work which 414	

established that strong external (sensory) drive of cortex is accompanied by intracortical 415	

inhibition of comparably strong (Shadlen and Newsome, 1998a), or even stronger (Haider et 416	

al., 2013a), magnitude than the excitatory drive. Consequently, we assumed that the net 417	

excitation-inhibition ratio was either unchanged or reduced (but not increased) during task 418	

compared to rest. This assumption constrained the baseline level for the pharmacological 419	

manipulations.  420	
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The Results section is organized as follows. We first present results from simulations 421	

of a cortical circuit model under neuromodulation. These helped solidify the prediction that 422	

dynamic modulations of (excitatory and/or inhibitory) synaptic gain, alter long-range temporal 423	

correlations of intrinsic fluctuations in the amplitude of cortical oscillations, similar to those 424	

observed experimentally with EEG or MEG recordings. Next, we show how manipulating 425	

catecholaminergic and cholinergic neuromodulation (through atomoxetine and donepezil, 426	

respectively), affects fluctuations in cortical activity – specifically, the temporal correlation 427	

structure of intrinsic fluctuations in the amplitude of cortical oscillations. The 428	

neuromodulatory effects were quantified during both, “rest” (passive fixation) and external 429	

task drive; the task- and drug-induced effects on the temporal structure of activity 430	

fluctuations enabled inferences about the change in the net excitation-to-inhibition ratio 431	

under neuromodulation. Finally, we demonstrate that the observed pharmacological effects 432	

on central (cortical) activity fluctuations were not explained by effects on the peripheral 433	

(vegetative) nervous system. 434	

 435	

Asymmetric modulation of excitatory and inhibitory synaptic gain alters long-range 436	

temporal correlations in cortical circuit model 437	

We simulated neural network activity using a modified version of a cortical circuit model that 438	

has previously been analyzed to demonstrate effects of variations in structural connectivity 439	

(i.e., the percentage of excitatory and inhibitory connections) on intrinsic fluctuations in 440	

cortical activity (Poil et al., 2012). The previous work has shown that the model, despite its 441	

simplicity, accounts for the joint emergence of two empirically established phenomena (Poil 442	

et al., 2012).: (i) neuronal avalanches (Beggs and Plenz, 2003), which are dissipations of 443	

activity across cortical neurons, with an event size distribution that roughly follows a power-444	

law; and (ii) long-range temporal correlations of cortical mass activity, the focus of the 445	

present study (Linkenkaer-Hansen et al., 2001). Both phenomena unfold on different spatial 446	
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scales (single neurons vs. mass activity summed across neurons) and temporal scales (tens 447	

of milliseconds vs. several hundred seconds). Yet, both phenomena emerge at the same 448	

ratio of excitatory and inhibitory connectivity. 449	

Here, we first determined the structural connectivity and the time scale parameters 450	

such that the network generated intrinsic alpha-band oscillations with amplitude fluctuations 451	

that exhibited robust long-range temporal correlations (with \	~	1 ), as well as neuronal 452	

avalanches (Materials and Methods). We then independently manipulated both excitatory 453	

(EE and IE) as well as inhibitory synapses (only EI, see Materials and Methods) through 454	

multiplicative modulation of the connection weights (Fig. 3B), and evaluated the effects on 455	

the scaling exponent \  of the amplitude envelopes of alpha-band activity. Dynamic 456	

modulation of excitatory and inhibitory gain altered the scaling exponent of intrinsic 457	

amplitude fluctuations in a non-monotonic fashion (Fig. 3C, white line). Changes in both, 458	

excitatory as well as inhibitory gain resulted in alterations of \. Importantly, the effect of 459	

changes in excitation or inhibition depended on the starting point: increases in excitation 460	

increased in \ from an inhibition-dominant starting point but decreased \  from an excitation-461	

dominant starting point.  462	

Overall, the effects of excitatory and inhibitory gain modulation on the temporal 463	

correlation structure of the simulated activity were qualitatively similar to the effects of 464	

(structural) changes in the fraction of excitatory and inhibitory synapses simulated previously 465	

(Poil et al., 2012). We conceptualize the latter as simulations of individual differences in 466	

cortical anatomical microstructure, and the former as simulations of within-subject, state-467	

dependent changes in cortical dynamics, which are the focus of the current study. The new 468	

simulation results provided a solid theoretical foundation for the interpretation of the 469	

pharmacological effects on fluctuations of alpha-band amplitude envelope signals in human 470	

MEG data, as described next. 471	

 472	



Pfeffer et al: Neuromodulation and Cortical Excitation-Inhibition Balance  

	 22 

Atomoxetine increases temporal correlations of intrinsic cortical activity  473	

We focused on amplitude envelope fluctuations in the alpha (8-12 Hz) band for most 474	

analyses reported in the following because (i) as expected from previous work (Donner and 475	

Siegel, 2011), the cortical power spectra exhibited a clearly discernible alpha-peak, which 476	

robustly modulated with task (Fig. 1C); and (ii) alpha-band were used in the above model 477	

simulations to read out the effect of synaptic gain modulation on cortical activity fluctuations 478	

was tuned to produce oscillations (see above and (Poil et al., 2012)).  479	

We assessed the effect of catecholaminergic and cholinergic neuromodulation on 480	

long-range temporal correlations (as indicated by the scaling exponent \ ) of amplitude 481	

envelope fluctuations in the alpha (8-12 Hz) band, during both rest and task. The average 482	

scaling exponent during rest (placebo only) was \ = 0.67 ({ = 0.09) and during task (placebo 483	

only) \ = 0.64 ({ = 0.07), indicative of robust long-range temporal correlations during both 484	

behavioral contexts. In order to evaluate the main effect of the drugs, we pooled the data 485	

across the behavioral contexts (rest and task). Averaged across voxels, we found a 486	
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Figure 4. Scaling exponent α for the pharmacological conditions, pooled across behavioral 

contexts. (A) Mean scaling exponent across all cortical voxels (N = 3000) for all three 

pharmacological conditions. Compared to placebo, the exponent exhibits a significant increase 

under atomoxetine, but not under donepezil. (B, C) Spatial distributions of drug-induced changes 

(threshold: at p = 0.05, two-sided cluster-based permutation test). (B) atomoxetine vs. placebo; (C) 

donepezil vs. placebo. 
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significant increase in \ (p = 0.0068; t = 2.93; paired t-test) under atomoxetine (\ = 0.67, { = 487	

0.05), compared to placebo (\ = 0.65, { = 0.05; Fig. 4A). There was no overall significant 488	

difference between donepezil (\ = 0.66, { = 0.05) and placebo (p = 0.50; t = 0.68; bf = 0.68; 489	

paired t-test; Fig. 4A). We next assessed the spatial profile of the atomoxetine-induced 490	

changes. A cluster-based permutation test revealed significant increases in \  across 491	

distributed cortical regions, comprising central, parietal and occipital cortex (Fig. 4B, p = 492	

0.0022; cluster-based permutation test). By contrast, we found no significant effect of 493	

donepezil on \ in any cortical region (p = 0.22; cluster-based permutation test; Fig. 4C).  494	

 495	

Similar effects of atomoxetine on temporal correlation during rest and task 496	

To assess whether the drug effects depended on the behavioral context, we repeated the 497	

above comparisons, separately for the two behavioral contexts. This revealed significant 498	

effects of atomoxetine on \ during both rest (Fig. 5A; p = 0.0245; cluster-based permutation 499	

test) and task (Fig. 5B; p = 0.0035; cluster-based permutation test), with a large number of 500	

voxels that exhibited significant effects during both rest and task (Fig. 5C). Correspondingly, 501	

there was no evidence for a significant interaction between task and atomoxetine effects 502	
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Figure 5. Spatial distribution of the atomoxetine-induced changes in scaling exponent α. (A) Rest; 

(B) Task. (C) Conjunction of maps in (A) and (B), highlighting (in green) voxels with significant 

increases in both conditions. 
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anywhere in cortex: when directly comparing the contrast maps from rest with the maps from 503	

task, we did not find any significant cluster (p > 0.081 for all clusters; cluster-based 504	

permutation test), indicating that the effects of atomoxetine were largely independent of 505	

context. Again, no effects were evident for donepezil, neither during rest nor during task (Fig. 506	

5 – figure supplement 1A/B). The control analyses presented below establish clear effects of 507	

donepezil on both, cortical activity as well as markers of peripheral nervous system activity, 508	

thus ruling out concerns that the drug may have been less effective overall than atomoxetine 509	

(see Discussion).  510	

 511	

Task drive decreases temporal correlations of intrinsic cortical activity  512	

Averaged across voxels, we observed a significantly larger \ during rest compared to task (p 513	

= 0.0062; t = 2.97; paired t-test; placebo condition only; Fig. 6A). The effect was spatially 514	

more widespread than the reported increase due to atomoxetine, covering large parts of the 515	

cortical surface (p < 0.01; cluster-based permutation test; Fig. 6B). This task-related 516	

decrease was also observed consistently across pharmacological conditions (Fig. 6C/D). As 517	

expected (Donner and Siegel, 2011), the task condition also exhibited significantly lower 518	
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alpha-band power averaged across the brain (p < 0.05; two-sided cluster-based permutation 519	

test; Fig. 1C), but also across large parts of the cortical surface (p < 0.01 for all clusters; two-520	

sided cluster-based permutation test; Fig. 6 – figure supplement 1).  521	

 522	

Pattern of effects on temporal correlation indicate that catecholamines increase net 523	

excitation-inhibition ratio in the cortex 524	

In our model, the scaling exponent \ exhibited a non-monotonic dependence on excitation-525	

inhibition ratio (see the white diagonal line in Fig. 3C, and schematic depiction in Fig. 7). 526	

Consequently, changes in in excitation-inhibition ratio are generally impossible to infer from 527	

changes in \ without knowing the baseline state (i.e., excitation- or inhibition-dominance). 528	

Specifically, the observed increase in \ following the administration of atomoxetine at rest 529	

could have been due to an increase or a decrease in excitation-inhibition ratio. However, 530	

well-established findings about the changes in cortical excitation-inhibition ratio induced by 531	

sensory drive combined with the measured changes in \  during task compared to rest, 532	

(Figures 6), put strong constraints on the baseline state during task, which, in turn, allowed 533	

us to infer the change in net cortical excitation-inhibition ratio induced by atomoxetine.  534	

The rationale is illustrated in Figure 7. Findings from animal physiology indicate that, 535	

counter-intuitively, strong sensory drive as in our experiment does not increase cortical 536	

excitation-inhibition ratio, but rather keeps it constant  or even shifts it toward stronger 537	

inhibition (Haider et al., 2013a). This assumption is illustrated by the two blue arrows in 538	

Figure 7. Thus, the observed decrease in \ must have been due to a shift towards inhibition-539	

dominance from rest to task (yellow point Fig. 7A). This inference, in turn, determines the 540	

baseline state for the atomoxetine manipulation during task (i.e., inhibition-dominance). 541	

From observing the atomoxetine-induced increase in \, we can then infer that atomoxetine 542	

must have increased the excitation-inhibition ratio during task (Fig. 7B). Because the effects 543	
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of atomoxetine on \  were the same during task and rest, it is likely that the same 544	

mechanism was at play during rest, where the baseline state was unknown.  545	

 546	

Distinct (or absent) drug effects on features of fluctuations in cortical activity other 547	

than long-range temporal correlations 548	

We next investigated drug-induced changes in power. Pooled across contexts, we find no 549	

significant changes in power in the alpha-band due to atomoxetine (Fig. 8A; p > 0.025 for all 550	

clusters; cluster-based permutation test). In contrast, donepezil decreases alpha-band 551	

power, although locally confined (Fig. 8B; p < 0.01; cluster-based permutation test). Next, we 552	

assessed the drug-related effects on alpha power separately for the two behavioral contexts: 553	

first, during rest, both atomoxetine and donepezil reduced alpha-band power compared to 554	

placebo in occipito-parietal regions (Fig. 8 – figure supplement 1A/B; p < 0.025 for all 555	

Figure 7. Schematic illustration of the inference from observed change in exponent to (hidden) 

change in net E:I ratio (see main text for details). The non-monotonic dependence of scaling 

exponent � on E:I ratio (white line in Fig. 3C) is replotted schematically. (A) The measured scaling 

exponent α during Rest (gray) can result from both, inhibition- or excitation-dominant regimes; the 

baseline is unknown. We assume that external drive (task; yellow dot) does not increase E:I ratio 

(Shadlen and Newsome, 1998). Thus, the observed decrease in scaling exponent during Tast 

(yellow) must reflect a shift towards the inhibition-dominance (blue arrows), consistent with animal 

physiology (Haider et al., 2013). (B) This constrains the baseline state for the interpretation of the 

atomoxetine-induced increase in scaling exponent during Task (red): The latter increase must 

reflect an increase in E:I ratio (red arrow). 
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clusters; cluster-based permutation tests). During task, in contrast, neither atomoxetine nor 556	

donepezil changed alpha-power significantly (Fig. 8 – figure supplement 1C/D, p > 0.025 for 557	

all clusters; cluster-based permutation test). In sum, elevating the levels of both, 558	

catecholamines and acetylcholine, suppressed cortical alpha-band oscillations during rest 559	

(but not task), which is largely consistent with previous pharmacological work in rodents 560	

(Chen et al., 2015) and humans (Bauer et al., 2012). This is also consistent with recent 561	

studies on single neuron correlates of non-luminance-mediated fluctuations in pupil diameter 562	

(Reimer et al., 2014; McGinley et al., 2015; Vinck et al., 2015), a marker of the activity of 563	

neuromodulatory brainstem centers (Joshi et al., 2016).  564	

Critically, the atomoxetine-induced changes in alpha-band power had a different 565	

spatial pattern than those of the atomoxetine-induced changes in the scaling exponent \: 566	

within the cluster of the significant main effect of atomoxetine on \, power did not show a 567	

significantly correlate with the changes in \  (group average spatial correlation between 568	

pooled difference maps within cluster; r = 0.073; p = 0.129, bf = 1.065).  569	

Next, we evaluated the drug-related changes on the coefficient of variation of the 570	

amplitude envelopes. Again, we find no main effect of atomoxetine, pooled across 571	

behavioral contexts (Fig. 8C; p > 0.025 for all clusters; cluster-based permutation test), 572	

whereas donepezil led to a significant reduction in coefficient of variation, mainly in temporal 573	

regions of the left hemisphere (Fig. 8D; p < 0.025 for all clusters; cluster-based permutation 574	

test). We assessed the drug-related effects separately for the behavioral contexts: during 575	

rest, atomoxetine slightly decreased the coefficient of variation in frontal cortex (Fig. 8 – 576	

figure supplement 2A; p < 0.025; cluster-based permutation test), whereas donepezil 577	

exhibited a decrease across several areas comprising (left) temporal and frontal cortex (Fig. 578	

8 – figure supplement 2B; p < 0.025 for all clusters; cluster-based permutation test). We 579	

observed no significant changes in coefficient of variation during task (Fig. 8 – figure 580	

supplement 2C/D; p > 0.025 for all clusters; cluster-based permutation test). 581	
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Taken together, these control analyses indicate that the above-shown effect of 582	

atomoxetine on the scaling exponent \ was a specific effect and may largely be resulting 583	

from independent factors. 584	

 585	

Atomoxetine-induce change of cortical fluctuations not explained by peripheral 586	

effects  587	

Masked at p < 0.025 (cluster corrected)

T-value
-3 +3

Masked at p < 0.025 (cluster corrected)

T-value
-3 +3

A B

+3

Masked at p < 0.025 (cluster corrected)

T-value
-3 +3

Masked at p < 0.025 (cluster corrected)

T-value
-3 +3

C D

Figure 8. Drug-related changes in power and coefficient of variation. (A) Spatial distribution of 

atomoxetine-related power changes, pooled across behavioral contexts (thresholded at p = 0.05, 

two-sided cluster-based permutation test). (B) Same as (A), but for donepezil. (C) Spatial 

distribution of atomoxetine-related changes in coefficient of variation, pooled across behavioral 

contexts (thresholded at p = 0.05, two-sided cluster-based permutation test).  (D) Same as (C), but 

for donepezil. 
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Atomoxetine and donepezil also affect catecholamine and noradrenaline levels at synapses 588	

of the peripheral vegetative nervous system. Atomoxetine increased average heart rate, 589	

both during rest (p < 0.001; t = 3.83; paired t-test; Fig. 8A) and task (p < 0.0001; t = 5.56; 590	

paired t-test; Fig 8B). Donepezil had no significant effect on average heart rate, neither 591	

during rest (p = 0.8676; t = 0.16; paired t-test; bf = 0.8676; Fig. 8A) nor during task (p = 592	

0.3274; t = 1.0; paired t-test; bf = 0.3139; Fig. 8B). We evaluated also the effects on the 593	

scaling behavior of the time intervals between consecutive heart beats, as assessed in 594	

previous studies (Palva et al., 2013; Zhigalov et al., 2015b). During both rest and task, and 595	

for both drugs, we found significant increases the scaling exponent \ compared to placebo 596	

(atomoxetine/rest: p = 0.0012, t = 3.62; atomoxetine/task: p = 0.0167; t = 2.55; Fig. 8C; 597	

donepezil/rest: p = 0.0076, t = 2.88; donepezil/task p = 0.0049, t = 3.06; Fig. 8D; all paired t-598	

tests). 599	

Previous studies of intrinsic cortical fluctuations reported a significant relation 600	

between the scaling behavior of inter-heartbeat intervals and the scaling behavior of cortical 601	

activity (Palva et al., 2013; Zhigalov et al., 2015b). Here, atomoxetine-induced changes in 602	

heart rate showed no (task: r = 0.00; p = 0.99; Person correlation; bf = 0.15) or only very 603	

weak and non-significant (r = 0.24; p = 21; Person correlation; bf = 0.31) correlations with 604	

the changes in cortical activity (8A/B, right). Similarly, the atomoxetine-related changes in 605	

the scaling behavior of inter-heartbeat intervals were only weakly (and not significantly) 606	

correlated with the changes in cortical scaling behavior (rest: r = 0.22; p = 0.26; bf = 0.27; 607	

task: p = 0.26; p = 0.19; bf = 0.35; Fig. 8C/D, right).  608	
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 As an additional measure of peripheral activity, we also assessed the drug effects on 609	

subjects’ rate of spontaneous eye blinks. This was an important control for two reasons. First, 610	

it has been speculated that spontaneous blink rate might reflect dopamine levels (Karson, 611	

1983; Jongkees and Colzato, 2016), which, in turn, might also be altered by atomoxetine 612	

(Robbins and Arnsten, 2009). Second, blinks evoke transients in cortical activity, even in the 613	

absence of retinal input (Bristow et al., 2005), which might have contributed to our estimates 614	
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Figure 9. Drug effect on cortical scaling exponent not explained by peripheral drug effects. (A) Left. 

Heart rate for atomoxetine, placebo and donepezil during Rest. Right. Correlation of atomoxetine-

related changes in heart rate (x-axis) with atomoxetine-related changes in MEG scaling exponent α 

(y-axis) (within significant cluster during Rest). (B) As (A), but during Task (C) Right. Scaling 

behavior of inter-heartbeat intervals (Heart-DFA). Left. Heart-DFA for all pharmacological conditions 

during Rest. Right. Correlation of atomoxetine-related changes in Heart-DFA (x-axis) with 

atomoxetine-related changes in MEG scaling exponent α (y-axis). (D) Same as (C), but during task. 

(E) Left. Number of blinks during rest for all drug conditions. Right. Correlation of atomoxetine-

related changes in number of blinks (x-axis) with atomoxetine-related changes in MEG scaling 

exponent α (y-axis) (within significant cluster during rest). (F) As (E), but for Task. 
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of intrinsic cortical variability, although blink-related effects were minimized through our 615	

artifact rejection (see Materials and Methods). Indeed, atomoxetine, but not donepezil, 616	

significantly altered spontaneous blink rate during rest (p = 0.034; t = 2.24; paired t-test; Fig. 617	

6E, left). However, this change was a decrease, rather than an increase, of spontaneous 618	

blink rate. This contrasts with the previously reported increase in spontaneous blink rate due 619	

to increased levels of dopamine. Further, there was no effect of atomoxetine on blink rate 620	

during task (p = 0.53; t = -0.63; paired t-test; bf = 0.676; Fig. 6F, left), and no significant 621	

correlation between changes in blink-rate and changes in cortical scaling behavior (rest: r = -622	

0.26; p = 0.19; bf = 0.35; Fig. 6E/F, right). 623	

Taken together, we found no evidence for drug-induced changes in peripheral 624	

activity (read out via heat rate) or in spontaneous blinking behavior underlying the 625	

atomoxetine-induced changes in the temporal structure of cortical fluctuations shown in 626	

Figures 4 and 5.  627	

 628	

Discussion 629	

Cortical circuits maintain a tight balance between excitation and inhibition (Denève and 630	

Machens, 2016). This balance shapes the computational properties of cortical neurons and 631	

circuits (Murphy and Miller, 2003; Polack et al., 2013; Martins and Froemke, 2015), and 632	

thereby the behavior of the organism (Wang, 2008; Eckhoff et al., 2009). Deviations from 633	

this balance have been linked to schizophrenia and autism and might also be at play in 634	

various other neuropsychiatric disorders (Yizhar et al., 2011; Lisman, 2012; Nelson and 635	

Valakh, 2015). The exact ratio between excitation and inhibition changes continuously in 636	

cortex (Isaacson and Scanziani, 2011; Froemke, 2015), presumably due to the effects of 637	

neuromodulators, such as noradrenaline and acetylcholine (Froemke et al., 2007; Eckhoff et 638	

al., 2009; Polack et al., 2013; Eggermann et al., 2014; Fu et al., 2014; Martins and Froemke, 639	



Pfeffer et al: Neuromodulation and Cortical Excitation-Inhibition Balance  

	 32 

2015). Neuromodulators also regulate ongoing changes in the operating mode of behavior 640	

(Aston-Jones and Cohen, 2005; Sara, 2009; Harris and Thiele, 2011; Dayan, 2012).  641	

Here, we unraveled the effect of neuromodulation-controlled microcircuit level 642	

changes on the net ratio between excitation and inhibition across the cortical sheet. To this 643	

end, we combined computational modeling, pharmacological intervention, and MEG 644	

recordings of neural mass activity in humans. We found that catecholamines (noradrenaline, 645	

possibly also dopamine) altered the temporal structure of intrinsic cortical activity in a 646	

consistent way during both rest and under external (sensory and task) drive. Together with 647	

knowledge about the effect of strong external drive on the cortical excitation-inhibition ratio, 648	

the model and MEG results enabled us to infer that catecholamines increased the net ratio 649	

between excitation and inhibition (see Results and Fig. 7). We propose that combining 650	

measurements of changes in intrinsic cortical fluctuations under task and pharmaceuticals 651	

provides a novel potential non-invasive read-out of drug effects on cortical excitation-652	

inhibition balance. Our general approach might also be useful for inferences about changes 653	

in cortical excitation-inhibition balance in neuropsychiatric disorders.  654	

 655	

Microcircuit basis of catecholaminergic increase of net excitation-inhibition ratio  656	

An increase in excitation-inhibition ratio could have been realized through either a net 657	

increase in excitatory currents, a net decrease in inhibitory currents, or both. Results from 658	

recent invasive work in rodents are consistent with this conclusion. One study found that 659	

locus coerulues stimulation, and thus noradrenaline release in cortex, yielded a decrease in 660	

the rate of tonic inhibitory postsynaptic currents in cortical neurons, whereas the rates and 661	

amplitudes of tonic excitatory currents remained unaffected (Martins and Froemke, 2015). 662	

Another study showed found noradrenaline (but not acetylcholine) to mediate a locomotion-663	

induced, tonic depolarization of V1 pyramidal cells, possibly through a reduction in 664	

membrane leak conductance (Polack et al., 2013). Provided no (or weaker) depolarization of 665	
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inhibitory interneurons through noradrenaline, this observation is consistent with a net 666	

increase in excitation in the local microcircuit. Both results are consistent with an increase in 667	

net excitation-inhibition ratio within local cortical circuits. 668	

 669	

Cortical distribution of chatecholaminergic effects on cortical fluctuations 670	

The atomoxetine effects on the scaling exponent were widespread across cortex, but they 671	

were not entirely homogenous, pronounced across parietal cortex but not robust in frontal 672	

cortex (see Fig. 4B). It is unlikely that this distribution simply reflected where signal-to-noise 673	

of alpha-band activity is highest (commonly most pronounced in occipito-parietal cortex) 674	

because the drug-induced changes in power (which should be equally affected by signal-to-675	

noise) were spatially uncorrelated with the changes in long-range temporal correlations (see 676	

Results). The observed distribution of effects points to a noradrenergic, rather than 677	

dopaminergic origin. Atomoxetine increases the levels of both catecholamines, 678	

noradrenaline and dopamine (Robbins and Arnsten, 2009). But the dopaminergic system 679	

mainly projects to prefrontal cortex (Montague et al., 2004), whereas the noradrenergic 680	

projections are more widespread, with a focus on parietal and occipital cortex (Morrison and 681	

Foote, 1986). Another possibly important aspect is the receptor composition of different 682	

cortical regions, which is heterogeneous (Ramos and Arnsten, 2007; Salgado et al., 2016): 683	

The relative frequency of different adrenoceptors (α1-, α2 or β-adrenoceptor) differs strongly 684	

between frontal and posterior cortex, which, in turn, can result in distinct effects of 685	

noradrenaline on the dynamics of neural activity in these different cortical regions (Ramos 686	

and Arnsten, 2007), in particular persistent activity. Future studies should investigate 687	

whether the observed differences of noradrenergic effects on long-range temporal 688	

correlations in cortical activity are due to these differences in adrenoceptor composition 689	

across cortex. 690	

 691	
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No evidence for cholinergic effects of net excitation-inhibition ratio 692	

In contrast to atomoxetine, we observed no robust effect of increased acetylcholine levels on 693	

cortical long-range temporal correlations. This absence of an effect was unlikely due to an 694	

ineffective pharmacological manipulation through donepezil: The latter had equally strong 695	

effects as atomoxetine on alpha-band power in some cortical regions, as well as on heart 696	

rate variability. Rather, the absence of robust donepezil effects might reflect specific 697	

properties of cholinergic action, which may leave the cortical net excitation-inhibition ratio 698	

largely unchanged. Substantial evidence points to the rapid disinhibition of (excitatory) 699	

pyramidal cells by acetylcholine, by activating a circuit made up of a chain two inhibitory 700	

interneurons (VIP+ and SOM+) (Pfeffer et al., 2013; Fu et al., 2014; Pakan et al., 2016). The 701	

cholinergic activation of this disinhibitory circuit would be expected to shift the net excitation-702	

inhibition ratio towards excitation, just as we inferred for catecholamines. However, this 703	

disinhibitory circuit seems to mainly affect transient, stimulus-evoked responses (Froemke et 704	

al., 2007), whereas noradrenaline also alters the tonic levels of inhibition (Martins and 705	

Froemke, 2015). This may explain the relative lack of donepezil effects during the steady-706	

state conditions (rest and continuous task drive) employed in our present study. Alternatively, 707	

the cholinergic activation of this disinhibitory circuit might be balanced by other, inhibitory 708	

effects of acetylcholine on the local microcircuit, thus leaving the net excitation-inhibition 709	

ratio unchanged.  710	

 711	

Functional consequences of changes in net excitation-inhibition ratio  712	

A net increase in excitation may have behaviorally relevant effects on the dynamics of 713	

parietal and prefrontal cortical circuits involved in working memory and decision-making 714	

(Wang, 2008). These circuits are characterized by slow intrinsic fluctuations of activity 715	

(Honey et al., 2012; Murray et al., 2014; Chaudhuri et al., 2015). The catecholaminergic 716	

increase in long-range temporal correlations of intrinsic activity fluctuations in parietal circuits 717	
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that we observed in the current study may reflect a relative increase specifically in the 718	

recurrent excitation in ‘accumulator’ circuits. Recurrent excitation, in turn, is essential for 719	

both the computational capacities (Wang, 2002) as well as the timescale of intrinsic activity 720	

fluctuations of these circuits (Murray et al., 2014; Chaudhuri et al., 2015). Simulations of 721	

synaptic gain modulation of such ‘accumulator’ circuits indicate that the most robust 722	

behavior emerges from co-modulation of both, excitatory and inhibitory synapses, but with 723	

different factors (Eckhoff et al., 2009). 724	

Consistent with our current results, previous studies also found a decrease in 725	

temporal autocorrelations of cortical activity due to external drive, even during intermittent 726	

presentation of stimuli and tasks, entailing more external transients than the steady-state 727	

task condition used here (Linkenkaer-Hansen et al., 2004; He, 2011). Indeed, simulations of 728	

large-scale biophysical models of cortical networks show that the driven state is associated 729	

with shortened temporal autocorrelations as well as a decrease in the entropy of activity 730	

states in the network (Ponce-Alvarez et al., 2015). This suggests that the increased long-731	

range temporal autocorrelations with catecholaminergic modulation we observed here may 732	

be associated with an increase in entropy, in other words, a tendency of the cortex to 733	

explore a larger set of activity states. It is tempting to link this to a prominent idea about the 734	

function of noradrenaline, which postulates that high tonic noradrenaline levels promote 735	

exploratory, and more distractible, behavior (Aston-Jones and Cohen, 2005). 736	

  737	

Catecholamines may act as a control parameter for critical network dynamics 738	

Long-range temporal correlations in the fluctuations of neural mass activity (i.e., activity 739	

summed across the entire local network) (Linkenkaer-Hansen et al., 2001) and avalanches 740	

within the neuronal network (Beggs and Plenz, 2003) jointly emerge at the same ratio 741	

between excitatory and inhibitory connectivity in the simplified cortical patch model used 742	

here. Both phenomena, long-range temporal correlations and neuronal avalanches, are 743	
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commonly interpreted as hallmarks of “criticality” (Linkenkaer-Hansen et al., 2001; Beggs 744	

and Plenz, 2003; Beggs, 2008; Zhigalov et al., 2015b). Criticality refers to a complex 745	

dynamical system poised between order and chaos (Bak et al., 1987; Bak, 1996; Chialvo, 746	

2010).  747	

 The cortex might operate in a narrow regime around this critical point (Chialvo, 2010; 748	

Hesse and Gross, 2015). This operating mode, in turn, might yield computational capabilities 749	

superior to those of the “sub-“ or “supercritical” modes (Kinouchi and Copelli, 2006; Beggs, 750	

2008; Shew et al., 2009b, 2011; Shriki and Yellin, 2016). A number of recent reports have 751	

indicated that cortical dynamics may fluctuate around the critical state (Priesemann et al., 752	

2013; Arviv et al., 2015; Fagerholm et al., 2015; Shew et al., 2015), but these fluctuations 753	

have, so far, been spontaneous. Here, we identified two key factors (task drive and 754	

catecholaminergic neuromodulation) to bring these changes under experimental control. 755	

Complex systems can self-organize towards criticality (Bak et al., 1987), e.g. through 756	

plasticity and/or feedback connections. However, critical dynamics can also be achieved 757	

through an external control parameter that fine-tunes the system. The tuning of temperature 758	

in the Ising model of spin magnetization is a common example (Chialvo, 2010). We propose 759	

that noradrenaline may serve as such a control parameter in the cerebral cortex.  760	

 761	

Conclusion 762	

In summary, we demonstrated that catecholamines increase the long range-temporal 763	

correlations of intrinsic cortical activity. The combination of computational modeling with 764	

MEG measurements changes in temporal correlations related to task drive and those 765	

induced by selective pharmaceuticals, allowed us to infer that catecholamines increase the 766	

net excitation-inhibition ratio in the cortex. Our approach can be readily applied to other 767	

studies investigating drug-related effects on excitation-inhibition balance or clinical studies of 768	

neuropsychiatric diseases associated with disturbances thereof.  769	
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Figure 5 - Supplemental Figure 1. No donepezil-related changes in scaling exponent. (A) 

Spatial distribution of donepezil-induced changes in scaling exponent α during Rest, 

thresholded at p = 0.05 (two-sided cluster-based permutation test). (B) As (A), but for Task. 
	

Figure 6 – Supplemental Figure 1. External task drive decreases alpha-band power. (A) 

Spatial distribution of task-induced changes in scaling exponents (placebo only; thresholded at 

p = 0.05, two-sided cluster-based permutation test). (B) Same as (A), but for atomoxetine 

condition. (C) Same as (A) and (B), but for donepezil condition. 
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Figure 8 - Supplemental Figure 1. Drug-related alpha-band power changes. (A) Spatial 

distribution of atomoxetine-related power changes during rest, thresholded at p = 0.05 (two-

sided cluster-based permutation test). (B) Same as (A), but for donepezil. (C) Spatial 

distribution of atomoxetine-related power changes during task, thresholded at p = 0.05 (two-

sided cluster-based permutation test).  (D) Same as (C), but for donepezil. 
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Figure 8 - Supplemental Figure 2. Drug-related changes in coefficient of variation. (A) Spatial 

distribution of atomoxetine-related changes in coefficient of variation during rest, thresholded at 

p = 0.05 (two-sided cluster-based permutation test). (B) Same as (A), but for donepezil. (C) 

Spatial distribution of atomoxetine-related changes in coefficient of variation during task, 

thresholded at p = 0.05 (two-sided cluster-based permutation test).  (D) Same as (C), but for 
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Catecholaminergic Neuromodulation Shapes Intrinsic MRI
Functional Connectivity in the Human Brain
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The brain commonly exhibits spontaneous (i.e., in the absence of a task) fluctuations in neural activity that are correlated across brain
regions. It has been established that the spatial structure, or topography, of these intrinsic correlations is in part determined by the fixed
anatomical connectivity between regions. However, it remains unclear which factors dynamically sculpt this topography as a function of
brain state. Potential candidate factors are subcortical catecholaminergic neuromodulatory systems, such as the locus ceruleus-
norepinephrine system, which send diffuse projections to most parts of the forebrain. Here, we systematically characterized the effects of
endogenous central neuromodulation on correlated fluctuations during rest in the human brain. Using a double-blind placebo-
controlled crossover design, we pharmacologically increased synaptic catecholamine levels by administering atomoxetine, an NE trans-
porter blocker, and examined the effects on the strength and spatial structure of resting-state MRI functional connectivity. First,
atomoxetine reduced the strength of inter-regional correlations across three levels of spatial organization, indicating that catecholamines
reduce the strength of functional interactions during rest. Second, this modulatory effect on intrinsic correlations exhibited a substantial
degree of spatial specificity: the decrease in functional connectivity showed an anterior–posterior gradient in the cortex, depended on the
strength of baseline functional connectivity, and was strongest for connections between regions belonging to distinct resting-state
networks. Thus, catecholamines reduce intrinsic correlations in a spatially heterogeneous fashion. We conclude that neuromodulation is
an important factor shaping the topography of intrinsic functional connectivity.

Key words: catecholamines; functional connectivity; gain; neuromodulation; norepinephrine; resting-state fMRI

Introduction
The resting-state, here defined as periods during which a partic-
ipant is not engaged in a complex explicit task, is characterized by

fluctuations in neural activity that are correlated across brain
regions (Biswal et al., 1995; Leopold et al., 2003; Fox and Raichle,
2007; Hiltunen et al., 2014). Such spontaneous, correlated fluc-
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Significance Statement

The human brain shows spontaneous activity that is strongly correlated across brain regions. The factors that dynamically sculpt
these inter-regional correlation patterns are poorly understood. Here, we test the hypothesis that they are shaped by the cat-
echolaminergic neuromodulators norepinephrine and dopamine. We pharmacologically increased synaptic catecholamine levels
and measured the resulting changes in intrinsic fMRI functional connectivity. At odds with common understanding of catechol-
amine function, we found (1) overall reduced inter-regional correlations across several levels of spatial organization; and (2) a
remarkable spatial specificity of this modulatory effect. Our results identify norepinephrine and dopamine as important factors
shaping intrinsic functional connectivity and advance our understanding of catecholamine function in the central nervous system.
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tuations exhibit a rich spatial (Yeo et al., 2011) and temporal
(Allen et al., 2014; Zalesky et al., 2014) structure that is reflective
of the brain’s functional organization (Tavor et al., 2016). The
strength and spatial distribution of these correlated fluctuations
are predictive of behavior and pathological conditions (Greicius
et al., 2004; De Luca et al., 2005). Moreover, the global structure,
or topography, of correlated activity changes dynamically with
alterations in conscious state (Barttfeld et al., 2015) and task con-
ditions (Nir et al., 2006; Sepulcre et al., 2010). While the existence
and overall spatiotemporal structure of the spontaneous inter-
regional correlations are well established (Fox and Raichle, 2007),
uncertainty remains regarding the underlying physiological
mechanisms. It has been proposed that correlations across dis-
tant brain regions could be induced by brainstem neuromodula-
tory systems, and in particular the locus ceruleus-norepinephrine
(LC-NE) system, which sends diffuse, ascending projections to
the forebrain (Leopold et al., 2003; Drew et al., 2008; Schölvinck
et al., 2010), where noradrenergic terminals corelease dopamine
(DA) (Devoto and Flore, 2006). Here, we examined whether and
how the catecholaminergic neuromodulators NE and DA shape
correlated fluctuations during rest in the human brain.

A number of observations suggest that catecholamines should
generally increase the strength of functional connectivity. Both
iontophoretic NE application and DA agonism enhance neuro-
nal responses to excitatory synaptic input (Rogawksi and Aghaja-
nian, 1980; Seamans et al., 2001b; Wang and O’Donnell, 2001).
Furthermore, NE and DA can amplify synaptic GABAergic inhi-
bition (Moises et al., 1979; Seamans et al., 2001a). These and
other findings have led to the view that catecholamines boost the
efficacy of synaptic interactions between neurons (Berridge and
Waterhouse, 2003; Winterer and Weinberger, 2004), resulting in
an increased difference in firing rates between strongly and
weakly active neurons. Such signal amplification yields a system-
wide facilitation of signal transmission (Waterhouse et al., 1998).
Recent computational work suggests that this effect of cat-
echolamines should boost both positive and negative temporal
correlations between the activities of local groups of neurons,
resulting in stronger and increasingly clustered network connec-
tivity (Donner and Nieuwenhuis, 2013; Eldar et al., 2013). Puta-
tive behavioral and pupillary indices of heightened NE activity
have accordingly been shown to co-occur with stronger func-
tional coupling throughout the brain (Eldar et al., 2013). A first
consideration of the anatomy of the LC-NE system suggests that
these changes in functional connectivity might show little spatial
specificity. LC neurons exhibit tightly synchronous firing and
collateralize broadly, resulting in largely homogeneous cat-
echolaminergic innervation throughout the brain (Swanson and
Hartman, 1975; Aston-Jones et al., 1984; Ishimatsu and Williams,
1996; Berridge and Waterhouse, 2003).

In the present study, we systematically characterized catechol-
amine effects on the strength and spatial structure of resting-state
inter-regional correlations, measured with fMRI. Using a
double-blind placebo-controlled crossover design, we manipu-
lated catecholamine activity by administering a single dose of
atomoxetine, a selective NE transporter (NET) blocker. Within
the cortex, NET is also responsible for DA reuptake, due to the

cortical paucity of DA transporters (Devoto and Flore, 2006).
Thus, NET blockers increase both central NE and cortical DA
availability (Bymaster et al., 2002; Devoto et al., 2004; Swanson et
al., 2006; Koda et al., 2010). We systematically quantified cate-
cholamine effects on functional connectivity: globally, between
brain networks, and at the level of individual connections be-
tween brain regions. In contrast to the notion of a catecholamine-
induced homogeneous increase in functional connectivity, we
found that atomoxetine reduced correlations across most pairs of
brain regions. Most remarkably, atomoxetine altered the strength
of inter-regional correlations in a highly spatially specific man-
ner. These results have important ramifications for our under-
standing of resting-state activity and central catecholaminergic
function.

Materials and Methods
Participants. Neurologically healthy right-handed individuals (N ! 24,
age 19 –26 years, 5 male) were recruited and medically screened by a
physician for physical health and drug contraindications. Exclusion cri-
teria included: standard contraindications for MRI; current use of psy-
choactive or cardiovascular medication; a history of psychiatric illness or
head trauma; cardiovascular disease; renal failure; hepatic insufficiency;
glaucoma; hypertension; drug or alcohol abuse; learning disabilities;
poor eyesight (myopia ! "6 diopters); smoking #5 cigarettes a day; and
pregnancy. All participants gave written informed consent before the
experiment and screening, and were compensated with €135 or course
credit.

Design and functional MRI data. We used a double-blind placebo-
controlled crossover design. In each of two sessions, scheduled 1 week
apart at the same time of day, participants received either a single oral
dose of atomoxetine (40 mg) or placebo (125 mg of lactose monohydrate
with 1% magnesium stearate, visually identical to the drug). Elsewhere,
we report data showing that the atomoxetine treatment significantly in-
creased salivary levels of cortisol and " amylase, reliable markers of sym-
pathetic nervous system and hypothalamus-pituitary-adrenal axis
activation, respectively (C. M. Warren, R. L. van den Brink, S. Nieuwen-
huis, and J. A. Bosch, unpublished observations), thus confirming drug
uptake. In both sessions, participants were scanned once before pill in-
gestion (t ! "20 min) and once at t ! 90 min, when approximate
peak-plasma levels are reached. The interaction contrast (postatomox-
etine " preatomoxetine) minus (postplacebo " preplacebo) allowed us
to examine the effects of atomoxetine while controlling for other session-
related differences. Each scan comprised 8 min of eyes-open resting-state
fMRI. During scanning, the room was dark, and participants fixated on a
black fixation cross presented on a gray background.

MRI data collection and preprocessing. All MRI data were collected with
a Philips 3T MRI scanner. In each of the scanning sessions, we collected a
T2*-weighted EPI resting-state image (echo time 30 ms, repetition time
2.2 s, flip angle 80°, FOV 80 $ 80 $ 38 voxels of size 2.75 mm isotropic,
and 216 volumes). To allow magnetic equilibrium to be reached, the first
5 volumes were automatically discarded.

In addition, each time the participant entered the scanner, we collected
a B0 field inhomogeneity scan (echo time 3.2 ms, repetition time 200 ms,
flip angle 30°, and FOV 256 $ 256 $ 80 voxels with a reconstructed size
of 0.86 $ 0.86 mm with 3-mm-thick slices). Finally, at the start of the first
session, we collected a high-resolution anatomical T1 image (echo time
4.6 ms, repetition time 9.77 ms, flip angle 8°, and FOV 256 $ 256 $ 140
voxels with size 0.88 $ 0.88 mm with 1.2-mm-thick slices).

We used tools from the FMRIB Software Library for preprocessing
of the MRI data (Smith et al., 2004; Jenkinson et al., 2012). EPI scans
were first realigned using MCFLIRT motion correction and
skull-stripped using BET brain extraction. We used B0 unwarping to
control for potential differences in head position each time the par-
ticipant entered the scanner and resulting differences in geometric
distortions in the magnetic field. The B0 scans were first reconstructed
into an unwrapped phase angle and magnitude image. The phase
image was then converted to units radians per second and median-
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filtered, and the magnitude image was skull-stripped. We then used
FEAT to unwarp the EPI images in the y-direction with a 10% signal
loss threshold and an effective echo spacing of 0.332656505.

The unwarped EPI images were then high-pass filtered at 100 s, pre-
whitened, smoothed at 5 mm FWHM, and coregistered with the anatom-
ical T1 to 2 mm isotropic MNI space (degrees of freedom: EPI to T1, 3;
T1/EPI to MNI, 12). Any remaining artifacts (e.g., motion residual,
susceptibility-motion interaction, cardiac and sinus artifacts) were re-
moved using FMRIB’s ICA-based X-noiseifier (Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014) with pretrained weights (Standard.RData).
Noise classification performance was checked afterward, by manually
classifying components as “signal,” “noise,” or “unknown.” Then, the
accuracy of the automated artifact detection algorithm was quantified as
the percentage of components that had the label “noise” in both classifi-
cations. The accuracy was found to be 96.4% correct. All subsequent
analyses were conducted in MATLAB 2012a (The MathWorks).

Physiological recordings and correction. We recorded heart rate using a
pulse oximeter and breath rate using a pneumatic belt at 500 Hz during
acquisition of each EPI scan. We used these time series for retrospective
image correction (RETROICOR) (Glover et al., 2000). This method as-
signs cardiac and respiratory phases to each volume in each individual
EPI time series, which can then be removed from the data. The physio-
logical time series were first down-sampled to 100 Hz. Next, the pulse
oximetry data were bandpass filtered between 0.6 and 2 Hz, and the
respiration data were low-pass filtered at 1 Hz, using a two-way FIR filter.
We then extracted peaks in each time series corresponding to maximum
blood oxygenation and maximum diaphragm expansion. The interpeak
intervals were then converted to phase time by linearly interpolating
across the intervals to between 0 and 2#. Next, we used these phase time
series to extract the sine- and co-sine components of the dominant and
first harmonic Fourier series of each signal. After down-sampling to the
EPI sample rate, this yielded 8 regressors (4 cardiac and 4 respiratory)
that could then be used to remove cardiac and respiratory effects from
the BOLD time series using multiple linear regression. The findings re-
ported here were based on noncorrected data, but we replicated all of our
results using the RETROICOR-corrected data (see Results).

Pupillometry. Pupil size was measured from the right eye at 500 Hz
with an MRI-compatible Eyelink 1000 eye tracker. Blinks and other ar-
tifacts were interpolated offline using shape-preserving piecewise cubic
interpolation. Pupil data were low-pass filtered at 5 Hz to remove high-
frequency noise and Z-scored across conditions. Five participants were
excluded from pupil-related analyses due to poor signal quality (#50%
of continuous time series interpolated) or missing data. Of the remaining
participants, on average 20% (SD 9%) of the data were interpolated.

Brain parcellation and connectivity. Time series of brain regions were
extracted for the 90 regions of the Automated Anatomical Labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002) (see Fig. 1a). We did not
include the cerebellum because it was not fully inside the FOV for all
participants. Following averaging across voxels within each brain region,
time series ( M) for each run i were Z-scored and correlation matrices ( R)
were computed between them via the following:

Ri $
Mi% ! Mi

nTR % 1

where % denotes transposition and nTR is the number of volumes (211).
Because positive and negative correlations jointly determine a network’s
functional organization (Fox et al., 2005), many prior studies have used
the absolute value of the correlation coefficient to describe functional
interactions (Achard and Bullmore, 2007; Eldar et al., 2013; Li et al.,
2013). Moreover, computational work suggests that catecholamines
should boost temporal correlations regardless of their sign (Donner and
Nieuwenhuis, 2013; Eldar et al., 2013). We therefore used the absolute
correlation coefficient as our measure of connectivity strength. The
signed and absolute matrices were very similar because anticorrelations
were rare (mean 3.4% of all connections, SD 3.5%), as is common when
no global signal regression has been performed. In the group- and
condition-averaged correlation matrix, 0.28% were anticorrelations (11
of 4005 unique connections; see Fig. 1b). To facilitate comparisons of

values across participants, we range-normalized each participant’s abso-
lute correlation matrices between 0 and 1 across the 4 conditions. This
procedure discarded the between-participant variance while leaving the
spatial structure and between-condition variance intact.

In addition, for the postatomoxetine condition time-resolved connec-
tivity (Allen et al., 2014) was computed for 189 tapered windows w of
length nw (22 volumes) via the following:

Rwi $
Mwi% ! Mwi

nw % 1

The taper was created by convolving a Gaussian (SD 3 TRs) with a rect-
angle. Rwi was Fisher-transformed to stabilize variance across windows.
We then again used the absolute value as our measure of connectivity
strength. An identical sliding window was applied to the pupil diameter
data in the postatomoxetine condition such that for each window in Rwi

there was a corresponding value of pupil size during that window. Then,
we divided up pupil size into 3 equal-sized bins and averaged the corre-
sponding values in Rwi for each pupil bin separately. To rule out the
possibility that the results depended on the choice of bin size, we also
tried alternate bin sizes (2, 5, and 7 bins) and found similar effects.

Graph-theoretical analysis of global correlation structure. For each con-
dition, we constructed a binary undirected (adjacency) matrix A. We did
this by first concatenating the correlation matrices across participants
such that for each condition we had a brain region by brain region by N
(90 $ 90 $ 24) matrix of connectivity. We then assessed with a t test
across the participant dimension for each element y, x in the connectivity
matrix whether its value differed significantly from the average of its row
y or column x (Hipp et al., 2012). In other words, for each connection, we
obtained a distribution across participants of weighted values, and two
distributions corresponding to the mean weighted values of each brain
region that was linked by that particular connection. The connection
distribution was then compared with each of the brain region distribu-
tions with a t test. If either of the two comparisons was significant, the
connection was scored as 1, and otherwise it was scored as 0. The " level
was set to 0.01, Bonferroni-corrected for two comparisons to 0.005
(Hipp et al., 2012).

This procedure, as opposed to simply applying a fixed-percentage
threshold, results in adjacency matrices that can differ in the number of
connections between conditions, and therefore allows the assessment of
correlation structure, or degree. We thus quantified the global degree k in
each condition as the average across the adjacency matrix (Hipp et al.,
2012) via the following:

k $ n"1!
x!1

n

n"1!
y!1

n

A&x, y'

where n is the number of brain regions in the AAL atlas.
To test the prediction that increased catecholamine levels should result

in stronger functional connectivity, we used k as our measure of connec-
tivity strength rather than relying on the mean weighted values (i.e., the
average of Ri). The binarization of weighted graphs is common in func-
tional network analysis (Achard and Bullmore, 2007; Rubinov and
Sporns, 2010; Hipp et al., 2012; Li et al., 2013) and is intended to preserve
only the strongest (most probable) connections. This ensures that weak
edges, which are more likely to be spurious (Rubinov and Sporns, 2010),
do not convolute the global mean. Given that these edges are less likely to
reflect true neurophysiological interactions, they are less likely to be sen-
sitive to any experimental manipulation that is specifically intended to
alter neurophysiology (in our case, drug intake). Thus, excluding these
connections decreases the likelihood of false negatives in between-
condition comparisons of the global mean. In addition, by treating
each connection equally (either present or absent), the global mean is not
disproportionally influenced by extremely strong connections that are
more likely to decrease in strength after an experimental manipulation by
virtue of regression toward the mean.

Furthermore, by defining adjacency matrices using a statistical test
across participants, each connection that is present in the adjacency ma-
trix is ensured to be reliably expressed across the group of participants for
a given condition. Thus, the adjacency matrices are representative of the
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group-level topography of connectivity. We used two measures of clus-
tering, defined using these group-level adjacency matrices, to test the
prediction that an increase in central catecholamine levels should be
accompanied by more strongly clustered network connectivity. The clus-
tering coefficient C was quantified as the average fraction of triangles &
around a node, the latter given by the following:

&x $ 2"1!A&x, y' A&x, z' A& y, z', where y, z ! N

and N represents the total set of nodes. C was then given by the following:

C $ n"1!
y!1

n

n"1!
x!1

n 2&x

kx&kx % 1'

The clustering coefficient here is equivalent to the average proportion of
the node’s neighbors that are in turn neighbors to each other (Watts and
Strogatz, 1998; Rubinov and Sporns, 2010). Thus, the clustering coeffi-
cient represents the mean fraction of clustering around each node.

Because C is normalized by degree (k) individually per node, it may be
biased by nodes with a relatively low k. We therefore also included a
measure of clustering that is normalized by k collectively and hence does
not suffer from the same potential bias. This measure is known as tran-
sitivity ( T), and is given by the following:

T $
!
x!1

n

2&x

!
x!1

n

kx&kx % 1'

This is equivalent to the ratio of triangles to triplets in the network. Both
clustering coefficient and transitivity capture the extent to which the
network is segregated in terms of processing because a large number of
triangles implies functional clustering. These two measures were com-
puted using the Brain Connectivity Toolbox (Rubinov and Sporns,
2010). Both clustering and transitivity are (partially) dependent on
global degree (van Wijk et al., 2010).

To test statistically whether degree, clustering coefficient and transi-
tivity differed between conditions, we used nonparametric permutation
testing. We shuffled the condition labels for each participant before com-
puting the adjacency matrices and then computed the graph-theoretical
measures. This was done for 10,000 iterations to produce a null distribu-
tion. We then derived a p value for each contrast by dividing the number
of null observations less extreme than the observed contrast by the total
number of null observations, and subtracting this value from 1.

Network identification via community detection. We used the Louvain
method for community detection optimized for stability (Blondel et al.,
2008; Le Martelot and Hankin, 2013) to classify each brain region as
belonging to a particular network, or module. This method works by
maximizing the number of within-group connections (edges) while min-
imizing the number of between-group connections via greedy optimiza-
tion. We first defined an adjacency matrix As by concatenating the
condition-averaged correlation matrices across participants, and then
statistically comparing each element y,x to the average of its row y or
column x, similar as described above. However, to accurately classify
networks, we needed to retain only those connections that were most
informative about community structure. We therefore promoted spar-
sity in the condition-averaged adjacency matrix by defining it using a
one-tailed t test with a conventional " level (0.05) and a correction for
multiple comparisons using the false discovery rate (FDR). This pre-
served only those connections that were consistently the strongest across
participants (16.9% of all possible connections). We then submitted this
sparse condition-averaged adjacency matrix to the Louvain community
detection algorithm. The optimization procedure (Le Martelot and
Hankin, 2013) ensured a stable solution across multiple runs of the
algorithm. In the optimization procedure, the Markov time acts as a
resolution parameter that determines the community scale, and thus the
number of modules that the algorithm will return. This parameter was set
to 0.9, resulting in 6 separate modules. We set the number of modules to
be detected to 6 because, given the relatively coarse anatomical layout of
the AAL atlas, this number yielded a relatively reliable modular organi-

zation. The community detection and optimization resulted in a “mod-
ule number” for each AAL brain region indicating to which module it
belonged, and a single Q value indicating the strength of modularity.

We first verified whether the Q value was significantly higher than
chance. To do so, we generated 10,000 randomized null networks with an
identical size, density, and degree distribution as As (Maslov and Snep-
pen, 2002), and submitted them to Louvain community detection and
optimization to produce a null-distribution of Q values. We then derived
a p value for the observed modularity by dividing the number of null Q
values less extreme than the empirical Q value by the total number of null
Q values, and subtracting it from 1.

The observed Q value of 0.46 was significantly higher than chance
( p ( 0.001), showing that group-average connectivity was strongly mod-
ular. We then visualized the modular structure by rearranging the
condition-averaged correlation matrix by module. The assignment of
brain regions to modules corresponded closely to a number of well-
characterized intrinsic connectivity networks, indicating that the modu-
lar structure reflected a functionally meaningful grouping of brain
regions.

Graph-theoretical analysis of network structure. The procedure de-
scribed above allowed us to group brain regions into modules of intrin-
sically coupled AAL brain regions. We could then use these modules to
assess changes in the structure of intrinsic correlations at the within- and
between-network level, rather than as a function of the system in its
entirety. To do this, we first rearranged the condition-specific adjacency
matrices by their module number, and computed average degree of ele-
ments within and between modules via the following:

km $ na
"1 !

xa!1

na

nb
"1 !

yb!1

nb

As&xa, yb'

where na is the number of brain regions belonging to module a and nb is
the number of brain regions in module b. This yielded, for each condi-
tion, a symmetric and module-by-module matrix of continuous average
degree values, in which values on the diagonal indicated the average
number of connections within each module, and each value around the
diagonal indicated the average number of connections between a com-
bination of modules.

We could then use these “module matrices” to test for atomoxetine-
related changes in degree of the connections within modules, and the
connections linking different modules. This allowed us to characterize
changes in connectivity in a spatially more specific way than for global
degree. We again used nonparametric permutation testing, similar as
described for global degree, except that it was done for individual ele-
ments within the module matrices.

Control analyses using an alternate atlas and multiple thresholds. To rule
out the possibility that our results were specific to the use of the AAL atlas, we
repeated all of our key analyses using the atlas made available by Craddock et
al. (2012), which comprised 87 distinct regions after excluding the cerebel-
lum, and found similar effects in terms of both direction and significance.
Moreover, to verify that our results were independent of the statistical
threshold used to define the adjacency matrices, we conducted a control
analysis in which a range of adjacency matrices was created per condition
with varying condition-averaged connection densities (40%–75%). This was
done by progressively raising/lowering the " level of the t test that was used to
determine whether a connection is present or absent (see above). Then, for
each threshold we computed the graph-theoretical measures, and for each
condition and measure separately calculated the area under the curve across
thresholds. This allowed us to compare the area under the curve between
conditions with permutation testing (10,000 iterations). For all measures,
the critical interaction contrast was significant and in the same direction as
our original findings (see Results).

Controlling for regression toward the mean. The correlation between
baseline coupling strength and the atomoxetine-related change in cou-
pling strength (see Fig. 3e; see Results) is confounded by regression to-
ward the mean. That is, if two particular brain regions show strong
baseline coupling, then simply by chance they are more likely to show a
reduction under atomoxetine, and so a negative correlation is likely to
occur. We therefore controlled for regression toward the mean using
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permutation testing. For 10,000 permutations, we shuffled the condition
labels across participants before computing the atomoxetine-related
change in coupling strength. We then computed the correlation between
baseline coupling and atomoxetine-related change in coupling to pro-
duce a distribution of correlation coefficients under the null hypothesis
of regression toward the mean. Finally, we derived a p value for the
empirical correlation coefficient by dividing the number of null observa-
tions less extreme than the correlation coefficient by the total number of
null observations, and subtracting this value from 1. This p value indi-
cated the significance of the observed correlation coefficient beyond re-
gression toward the mean.

Analysis of BOLD signal variance. We calculated for each participant
and each AAL brain region the fractional amplitude (i.e., variance) of
low-frequency fluctuations in the non-Z-scored BOLD time series
(fALFF) (Zou et al., 2008). This measure indexes the relative contribu-
tion of low-frequency (0.01– 0.08 Hz) fluctuations to the total amplitude
spectrum. We compared fALFF between conditions using repeated-
measures ANOVA. Additionally, for each participant, we correlated the
atomoxetine-related change in fALFF with the atomoxetine-related
change in inter-regional correlation strength across AAL brain regions.
We then compared the distribution of Fisher-transformed correlation
coefficients to zero using a two-tailed t test. Very similar results were
obtained using alternative measures of variance (e.g., average 0.01– 0.08
Hz amplitude or the signal SD rather than fractional amplitude).

Results
Atomoxetine reduces global degree and clustering
In a first set of analyses, we examined the effect of atomoxetine on
graph-theoretical summary measures of functional connectivity

strength. We parcellated each participant’s brain into 90 separate
regions according to the AAL atlas (Tzourio-Mazoyer et al., 2002)
(Fig. 1a) and computed the correlation between the Z-scored
time series of all pairs of regions (Fig. 1b). We then took the
absolute correlation coefficient as our measure of functional
connectivity strength (see Materials and Methods). In general,
functional connectivity was strongest between visual cortical
areas and between homolog areas in both hemispheres (Fig.
1b), consistent with a host of previous work (Fox and Raichle,
2007).

For each condition (preplacebo, postplacebo, preatomox-
etine, postatomoxetine), we constructed a binary matrix of con-
nections (edges) between pairs of brain regions that consistently
differed in strength across participants from the average of other
connections involving either of the two brain regions (following
Hipp et al., 2012). Graph theory allowed us to capture different
properties of these matrices of intrinsic correlations in a small
number of diagnostic scalar quantities (Bullmore and Sporns,
2009; Rubinov and Sporns, 2010). Specifically, we assessed three
such measures: the global degree, which indexes the number of
strongly correlated regions (above a certain threshold; see Mate-
rials and Methods) in the network, and two descriptors of the
extent to which network connectivity is clustered in segregated
local groups of brain regions: clustering coefficient and transitiv-
ity, both of which are (partially) dependent on the strength of
connectivity (van Wijk et al., 2010; Eldar et al., 2013). If cat-

Figure 1. Inter-regional correlation and global graph-theoretical results. a, Topography of the AAL atlas. Each brain region within hemispheres has a unique color. b, Condition-averaged
inter-regional correlation. Both the signed and absolute values are shown. Color labels on the left and bottom axes represent brain regions in a. c, Atomoxetine-related effects on global
graph-theoretical measures. Error bars indicate the SD of the bootstrapped null-distribution. n.s., Not significant. *p ( 0.05. **p ( 0.01. ***p ( 0.001.
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echolamines increase global functional connectivity, then atom-
oxetine should increase all three measures.

Figure 1c shows that atomoxetine significantly reduced the
number of strong correlations present in the network, as indi-
cated by lower global degree. This was reflected in a significant
interaction between treatment and time (p ! 0.039). A similar
pattern of results was found for the two measures of clustering,
both of which decreased in magnitude (Fig. 1c): clustering coef-
ficient (p ! 0.043) and transitivity (p ! 0.048). Thus, atomox-
etine reduced the number of strongly correlated brain regions, as
well as the extent to which correlated brain regions formed local
functional ensembles. Together, these results show that atomox-
etine decreases, rather than increases, overall inter-regional cor-
relations in the brain at rest.

Atomoxetine reduces internetwork degree
Many studies of resting-state activity in humans have revealed a
consistent set of groups, or modules, of brain regions that are
characterized by strong coupling between brain regions belong-
ing to the same module, and weaker coupling between brain
regions belonging to different modules (Bullmore and Sporns,
2009). These modules are often referred to as “intrinsic func-
tional connectivity networks” (Fox and Raichle, 2007). In a next
set of analyses, we investigated atomoxetine-related changes in

the strength of functional connectivity within and between these
networks.

To do this, we arranged the connectivity matrix by network
(Fig. 2a) (Blondel et al., 2008). This resulted in 6 functional net-
works that correspond closely to previously reported resting-
state networks (Yeo et al., 2011; Zalesky et al., 2014). Based on their
topography (Fig. 2b), we termed them: default; somatomotor; vi-
sual; subcortical; inferior-frontal; and frontoparietal networks. We
then calculated the average number of connections within and be-
tween these networks, resulting in a 6 $ 6 network degree matrix for
each condition (Fig. 2c,d). Finally, we examined atomoxetine-
related changes in within- and between-network degree using per-
mutation testing. This allowed us to explore whether changes in
functional connectivity occurred in intranetwork or internetwork
connections. The atomoxetine-related reduction in global degree
(Fig. 1c) is visible in the network degree matrices as an overall in-
crease in “brightness” in Figure 2d (right).

Consistent with the decrease in global degree reported above,
we observed only atomoxetine-related reductions in network de-
gree (Fig. 2e). The interaction between treatment and time was
significant for the connections between the visual and somato-
motor networks (p ( 0.001), between the visual and frontopari-
etal networks (p ! 0.044), and between the frontoparietal and
default networks (p ( 0.001). After using the FDR (q ! 0.05) to

Figure 2. Intrinsic connectivity networks and changes in graph-theoretical measures of network structure. a, Condition-averaged inter-regional correlation arranged by network. The networks
are outlined in blue. b, Topography of functional networks. Colors correspond to the labels in a. c, Condition-specific adjacency matrices arranged by network. Black elements indicate that a
connection is present. d, Average degree for within- and between-network connections. To facilitate visual comparison, the size of each network is the same as in c. However, all statistical
comparisons were conducted on symmetrically sized matrices in which each network contributed equally to the global mean. e, Atomoxetine-induced changes in degree for connections within and
between networks. Shades of gray represent the value of the interaction contrast (postatomoxetine " preatomoxetine) minus (postplacebo " preplacebo). Significant ( p ( 0.05) changes in
degree are outlined in red.
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correct for multiple comparisons, all connections, except the
connection between the visual and frontoparietal networks, re-
mained significant. However, when comparing the area under
the curve across a range of thresholds (see Materials and Meth-
ods), all connections remained significant after FDR correction.

Interestingly, all significant reductions in network degree
were in connections between (as opposed to within) functional
networks. Thus, the most robust decreases in functional coupling
occurred for connections linking functionally dissociable groups
of brain regions. These results corroborate the conclusion drawn
above: that atomoxetine decreased inter-regional correlations in
the brain at rest. More importantly, these results provide a first
indication that this reduction in inter-regional correlations is not
spatially homogeneous across the brain. In the following, we fur-
ther characterize the spatial heterogeneity of the atomoxetine-
induced reductions in inter-regional correlations.

Regionally specific reductions and baseline-dependent
changes in connectivity with atomoxetine
Having assessed the topographical changes induced by atomox-
etine at the global level and the level of functional networks, we
next assessed differences in the strength of inter-regional corre-
lations at the level of individual connections between brain re-
gions, using the absolute correlation coefficient. We found that
atomoxetine altered correlation strength in a strikingly struc-
tured fashion (Fig. 3a): In general, connectivity was reduced by
atomoxetine, especially in posterior brain regions (Fig. 3b). These
observations align with our findings of reductions in internet-

work degree involving the visual system. To quantify these effects,
we used a two-step procedure. Specifically, we first derived a set
of data-driven hypotheses by identifying, in the first half of the
fMRI volumes, the limited number of individual connections
that exhibited an atomoxetine-related change in connectivity
that was reliable across participants (p ( 0.05, using a two-tailed
t test), thereby reducing the number of comparisons for the sub-
sequent step. We then retested those connections using the (in-
dependent) second half of the volumes and selected those that
again showed a systematic atomoxetine-related change in corre-
lation strength (p ( 0.005, two-tailed). Atomoxetine signifi-
cantly lowered correlation strength in a cluster of occipital brain
regions (Fig. 3c,d), specifically correlations between left calcarine
cortex and right calcarine cortex/bilateral lingual gyrus; between
left cuneus and right calcarine cortex/lingual gyrus; between left
lingual gyrus and right calcarine cortex/lingual gyrus; and be-
tween right lingual gyrus and right calcarine cortex/right fusi-
form gyrus. These contiguous connections remained significant
after applying a highly conservative cluster size threshold (p (
0.0001), obtained by generating a distribution of maximum clus-
ter sizes under the null hypothesis with permutation testing
(Nichols and Holmes, 2002). Thus, the cluster involved signifi-
cantly more connections than would be expected by chance.

We did not find significant changes in connectivity between
structures of the basal ganglia, which have been widely studied in
relation to catecholaminergic drug effects (Sulzer et al., 2016).
This lack of an atomoxetine-related effect in the human basal
ganglia is consistent with the observation that the basal ganglia

Figure 3. Atomoxetine-related effects on inter-regional correlation. a, Region-by-region matrix of atomoxetine-related changes in inter-regional correlation strength. Colors represent the value
of the interaction contrast (postatomoxetine " preatomoxetine) minus (postplacebo " preplacebo). Blue represents reduced correlation following atomoxetine. The matrices are organized
following Figure 1b. b, Atomoxetine-related effect on the absolute inter-regional correlation coefficient, rendered in 3D with an arbitrary threshold applied. White dashes in the color bar indicate
threshold. Spheres are placed in the center of mass of their respective AAL atlas regions. Both the size and color indicate the average atomoxetine-related effect on coupling (i.e., the average across
rows or columns in a). c, Transverse (top is anterior) and sagittal (right is anterior) view on 3D rendering of significant correlation changes, resulting from the whole-brain two-step analysis.
Individual connections that changed significantly with atomoxetine are plotted as cylinders between the corresponding regions. d, Inter-regional correlation in each condition, averaged across the
significant connections shown in c. Error bars indicate the SEM. e, Correlation between baseline inter-regional correlation strength (collapsed across preplacebo and preatomoxetine) and change
with atomoxetine. Each dot represents a unique region-by-region connection. Self-connections were excluded.
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receive relatively sparse noradrenergic innervation (Aston-Jones
et al., 1984), and with findings that atomoxetine has little effect
on DA levels within the basal ganglia of rodents (Bymaster et al.,
2002). Indeed, unlike in the cortex, in the basal ganglia there is an
abundance of DA transporter (Sulzer et al., 2016), so DA re-
uptake is not dependent on the NE transporter. Thus, our finding
that atomoxetine reduced the strength of inter-regional corre-
lations in (predominantly visual) cortical areas is consistent with
the specific effect of atomoxetine on synaptic catecholamine lev-
els within the cortex.

In sum, atomoxetine lowered the strength of correlations be-
tween visual cortical brain regions (Fig. 3c), regions that on aver-
age showed strong connectivity (Figs. 1b, 2a). This raises the
question whether the atomoxetine-induced change in connectiv-
ity was dependent on the baseline level of connectivity between
any pair of brain regions. To address this question, we correlated
weighted coupling strength collapsed across the preplacebo and
preatomoxetine conditions (i.e., baseline connectivity) with the
coupling change following atomoxetine (controlling for regres-
sion toward the mean with permutation testing). The obser-
ved correlation between baseline connectivity strength and the
change with atomoxetine was significant (r ! "0.22, p ! 0.029;
Fig. 3e). This indicates that the strongest functional connections
tended to show the largest connectivity reductions after atomox-
etine, and vice versa.

Atomoxetine induces decoupling of early visual cortex from
the rest of the brain
As noted above, atomoxetine reduced correlations between oc-
cipital brain regions. To establish whether these occipital regions
also showed reduced coupling to the rest of the brain, as sug-
gested by visual inspection (Fig. 3b), we computed a summary
statistic (median) of correlation strength between early visual
(pericalcarine) cortex and all other AAL atlas regions. There were
no differences between left and right early visual cortex, so we
collapsed the data across hemispheres.

Average connectivity seeded from early visual cortex is shown
in Figure 4a. Atomoxetine reduced connectivity between early
visual cortex and the rest of the brain, as reflected by a significant
interaction between treatment and time (F(1,23) ! 5.31, p !
0.031; Fig. 4b,c). The only significant pairwise comparison was
postatomoxetine versus preatomoxetine (t(23) ! 2.34, p ! 0.028).
Together, these results suggest that the early visual cortical areas

not only decoupled from each other following atomoxetine (Fig.
3c) but also from the rest of the brain.

The results of our analyses at the level of individual connec-
tions between brain regions converge with those at the global
level and at the level of networks of brain regions, showing that
atomoxetine decreased functional connectivity. In addition,
the results show that atomoxetine modulated functional con-
nectivity in a highly regionally specific fashion, with more
robust changes in visual cortex than in other brain areas.

Excluding alternative explanations
In five sets of control analyses, we ruled out the possibility that the
atomoxetine-related changes in inter-regional correlations were
driven either by local changes in BOLD variance, by retinal effects
due to pupil dilation associated with atomoxetine, by head mo-
tion, by saccade-related retinal transients, or by atomoxetine-
induced changes in physiology (heart rate and breath rate). First,
the correlation coefficient between two signals is their covariance
normalized by the signals’ variances. Thus, it is possible that the
observed changes in inter-regional correlations are caused by lo-
cal changes in variance alone (Haynes et al., 2005; Freeman et al.,
2011), rather than by changes in covariance (i.e., the degree to
which the BOLD signals in two regions fluctuated together). If
this is the case, then the atomoxetine-related change in average
inter-regional correlation and the atomoxetine-related change in
BOLD signal variance should be negatively correlated across
brain regions. Instead, we found a positive relationship between
changes in inter-regional correlation and changes in BOLD vari-
ance, which was consistent across participants (t(23) ! 3.36, p !
0.003; Fig. 5), ruling out variance as a confound. Moreover, there
was no interaction between treatment and time in overall BOLD
variance (F(1,23) ! 0.71, p ! 0.40), or in variance for only the
occipital brain regions that showed reduced atomoxetine-related
inter-regional correlation (F(1,23) ! 0.41, p ! 0.53).

Second, because atomoxetine increased the size of the pupil
(Fig. 6a), it is conceivable that this peripheral effect, rather than
the effect of atomoxetine on central catecholamine levels, was
driving the changes in inter-regional correlation in visual cortex
(Haynes et al., 2004). To examine this potential confound, we
binned inter-regional correlation by pupil size in the postato-
moxetine condition, focusing on those correlations that showed a
significant reduction under atomoxetine. If larger pupil size is
responsible for the reduction in correlations, then time periods

Figure 4. Atomoxetine reduces correlation strength between early visual (pericalcarine) cortex and the rest of the brain. a, Topography of condition-averaged correlation seeded from left and
right early visual cortex. b, Topography of atomoxetine-related effects on correlation seeded from left and right early visual cortex. Colors represent the value of the interaction (postatomoxetine "
preatomoxetine) minus (postplacebo " preplacebo). c, Median correlation values across the brain seeded from left and right early visual cortex. Error bars indicate the SEM.
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during which the pupil is large should be associated with weaker
correlations than time periods during which the pupil is small.
Interestingly, we found the opposite pattern (Fig. 6b,c): stronger
correlations for large pupil (t(18) ! 2,84, p ! 0.010), ruling out an
interpretation in terms of pupil size.

Third, head motion can have a strong influence on the
strength of inter-regional correlations (Van Dijk et al., 2012). To
rule out the possibility that our key finding of atomoxetine-
related changes in inter-regional correlation was driven by head
motion, we first compared head motion between conditions.
Neither mean head motion nor mean absolute head motion dif-
fered between conditions (all p values #0.05). No participant’s
head motion exceeded 2 mm, indicating that overall there was
little head motion. However, general mild head motion tends to
increase correlations between proximate areas and decrease con-
nectivity between distant areas (Van Dijk et al., 2012). Thus, head
motion can potentially lead to spatially heterogeneous effects on
connectivity in a manner that is related to the distance between
brain areas. To rule out the possibility that the spatial structure of
atomoxetine-related changes in connectivity was driven by subtle
(nonsignificant) differences in head motion between conditions,
we correlated Euclidean distance between the center of mass of
each pair of AAL brain areas and the strength of functional con-
nectivity between those areas, for each participant and each con-
dition. We then compared the distribution of Fisher-transformed
correlation coefficients between conditions. If head motion is
responsible for the observed change in connectivity between con-
ditions, then the correlation between Euclidean distance and
strength of connectivity should also differ between conditions.
However, we did not find any differences between conditions (all
p values #0.05), ruling out head motion as a confound.

Fourth, it is possible that that the atomoxetine-related reduc-
tion in the strength of correlation between visual cortical areas
occurred due to differences between conditions in saccade-
related retinal transients. To rule out this possibility, we extracted
several eye movement metrics from the eye tracker gaze position
data using the EYE-EEG toolbox (Dimigen et al., 2011). There
was no interaction between treatment and time for any of the
metrics: the number of saccades (F(1,18) ! 0.47, p ! 0.50), median
saccade amplitude (F(1,18) ! 0.45, p ! 0.51), median saccade
duration (F(1,18) ! 0.11, p ! 0.74), or median saccade peak ve-
locity (F(1,18) ! 3.32, p ! 0.085). This latter trend was driven by a
numeric difference between the preplacebo and postplacebo

conditions. Preatomoxetine and postatomoxetine did not differ
significantly in saccade peak velocity (t(18) ! "0.43, p ! 0.67).
Together, these results show that our key result of an
atomoxetine-related reduction in the strength of correlation be-
tween visual cortical regions was unlikely to be driven by saccade-
related retinal transients.

Finally, atomoxetine significantly increased breath rate
(F(1,23) ! 8.96, p ! 0.007) and heart rate (F(1,23) ! 4.66, p !
0.041), as reflected by a significant interactions between treat-
ment and time. We therefore corrected the BOLD time series
using the RETROICOR method (see Materials and Methods)
(Glover et al., 2000). The average R 2 of the physiology regressors
was relatively low (0.034), indicating that physiology accounted
for a small proportion of the total BOLD variance (which was
likely the result of artifact removal by FMRIB’s ICA-based
X-noiseifier) (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014).
Nevertheless, to conclusively rule out atomoxetine-related
changes in physiology as confounds, we repeated the key analyses
on the physiology-corrected data. All three global graph-
theoretical measures remained significant and in the same direc-
tion as reported above (all p values ( 0.05). We also found
significant reductions in network degree in the same internet-
work connections (all p values ( 0.05). Last, we observed a similar
contiguous cluster of significantly reduced inter-regional corre-
lations within visual cortex (all p values ( 0.005, and cluster-
corrected at p ( 0.0001). Thus, our key results were unlikely to be
driven by atomoxetine-related changes in physiology.

Discussion
Using a pharmacological manipulation, we examined the effects
of increased extracellular levels of the catecholamines NE and DA
on resting-state fMRI connectivity in the human brain. First, we
found that our manipulation reduced the strength of inter-
regional correlations across three levels of spatial organization,
indicating that catecholamines reduce the strength of functional
interactions during rest. Second, this modulatory effect on the
structure of resting-state correlations exhibited a substantial de-
gree of spatial specificity, indicating that catecholamines differ-
entially reduce spontaneous correlations between select brain
regions. These two key findings are surprising in light of the
common understanding of the neurophysiology and computa-
tional function of catecholaminergic systems. They also identify
catecholaminergic neuromodulation as an important factor
shaping the spatial structure and strength of intrinsic functional
connectivity in the human brain.

Our first key finding is that atomoxetine, a selective NET
blocker that increases synaptic NE and DA levels (Bymaster et al.,
2002; Devoto et al., 2004; Invernizzi and Garattini, 2004; Swan-
son et al., 2006; Koda et al., 2010), reduced the strength of inter-
regional correlations. Specifically, atomoxetine reduced the
strength of connectivity globally (Fig. 1c), between nodes belong-
ing to distinct intrinsic connectivity networks (Fig. 2e), and be-
tween individual brain regions within the visual system (Fig. 3c).
This consistent pattern of results seems to be at odds with the
notion of a facilitative effect of catecholamines on brain-wide
signal transmission (Aston-Jones and Cohen, 2005; Eldar et al.,
2013). One possible explanation for this discrepancy lies in the
fact that, in our experiment, participants did not actively respond
to incoming sensory information. According to a recent theory,
the effects of NE on neural activity strongly depend on interac-
tions with local glutamate release (Mather et al., 2015). Accord-
ingly, enhanced NE may have qualitatively different effects
during task processing, associated with relatively high glutamate

Figure 5. Spectral BOLD characteristics and the relation with inter-regional correlations.
Left, Atomoxetine-induced changes in spectral amplitude for AAL brain regions that showed an
atomoxetine-induced increase (red) and decrease (blue) in inter-regional correlation strength.
Brain region and condition-averaged amplitude areas shown in black. Right, Mean correlation
between the region-averaged atomoxetine-induced change in coupling strength and fractional
amplitude of low-frequency BOLD fluctuations. Error bars indicate the SEM. **p ( 0.01.
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activity, than during states of relative cor-
tical quintessence (i.e., at rest), associated
with relatively low glutamate activity. In
line with this possibility, Coull et al.
(1999) showed dissociable effects of the "2-
adrenergic agonist clonidine on positron
emission tomography effective connectivity
obtained during task performance and dur-
ing rest. Whereas during task performance
clonidine increased connectivity between
frontal and parietal cortical regions, during
rest clonidine reduced connectivity from
frontal cortex to thalamus, and in connec-
tions to and from visual cortex. Two other
studies that used NE drugs also provided ev-
idence for regional reductions in connectiv-
ity strength during rest (McCabe and
Mishor, 2011; Metzger et al., 2015). These
studies, however, only used a small number
of seed regions to assess connectivity, and hence did not examine
large-scale topographical changes.

Our second key finding is that atomoxetine resulted in spa-
tially heterogeneous changes in inter-regional correlations. For
example, atomoxetine caused a reduction in the number of
strongly correlated brain regions between (but not within) dis-
tinct resting-state networks (Fig. 2e). Furthermore, the effect of
atomoxetine on inter-regional correlations was dependent on the
baseline level of coupling: the strongest functional connections
tended to show the largest connectivity reductions after atomox-
etine (Fig. 3d). How can such spatially structured effects of cat-
echolamines come about? First, recent anatomical tracing work
has suggested that the projection profile of the LC is more heter-
ogeneous than once thought (Schwarz and Luo, 2015). For ex-
ample, even though on the whole there is broad collateralization
within the LC-NE system, subpopulations of LC neurons selec-
tively innervate distinct brain regions (Chandler et al., 2014;
Schwarz et al., 2015). Moreover, subpopulations of LC neurons
that differ in their afferent projection profile also show marked
differences in their firing characteristics (Chandler et al., 2014).
The firing modes of LC neurons in turn have differentiable effects
on neuronal synchronization within the cortex (Safaai et al.,
2015). Importantly, LC neurons have been reported to corelease
DA (Devoto and Flore, 2006). Thus, spatially selective effects of
catecholamines on correlated fluctuations in the brain can be
achieved via a heterogeneous cortical innervation by the LC.

Second, heterogeneity in the effect of catecholamines on inter-
regional correlations could be achieved by regional differences in
the expression of different receptor types. For example, expres-
sion of the "2 receptor approximately follows an anterior to pos-
terior gradient (Nahimi et al., 2015), with particularly strong
expression in primary visual cortex (Zilles and Amunts, 2009).
Interestingly, we observed an anterior to posterior gradient in the
effect of atomoxetine on the strength of correlations (Fig. 3b).
Moreover, we found a pronounced reduction in the strength of
correlations between regions within visual cortex, and between
early visual cortex and the rest of the brain (Fig. 4). The similarity
between the spatial distributions of "2 receptors and the effects of
atomoxetine thus warrants further investigation into the rela-
tionship between specific NE receptor types and their influence
on correlated activity across the brain.

A number of limitations of the present study should be acknowl-
edged. First, we examined the effects of only one dose (40 mg) of
atomoxetine. Dose-dependent pharmacological effects of catecho-

laminergic drugs on neural function are not uncommon (Berridge
and Waterhouse, 2003). Future work on the neurochemical basis of
functional connectivity will need to examine dose-dependent effects
of atomoxetine, and other catecholaminergic drugs, with different
pharmacokinetic profiles. Second, we do not know whether atom-
oxetine would have similar effects on functional connectivity in clin-
ical populations characterized by disturbed catecholaminergic
function (e.g., attention deficit hyperactivity disorder and depres-
sion). Third, although we used BOLD activity as a proxy for neural
activity, the link between neuronal interactions and BOLD activity is
not entirely clear (Logothetis, 2008). Models of catecholamine func-
tion make predictions about how NE and DA should affect neural
communication. However, the translation of these predictions to
BOLD correlations is not straightforward. Last, we used an atlas-
based brain parcellation to investigate inter-regional correlations.
Thus, the spatial resolution of our analyses was restricted by the
resolution of the atlas. Future work, using voxel-level approaches, is
needed to investigate more fine-grained spatial effects of catechol-
amine levels on functional connectivity.

The synaptic effects of catecholamines have been relatively
well charted (Berridge and Waterhouse, 2003; Winterer and
Weinberger, 2004). However, there is considerable uncertainty
about how these low-level effects translate to system-wide func-
tional interactions. Recently, Safaai et al. (2015) provided an im-
portant first glimpse into how the LC-NE system modulates
spontaneous cortical activity and how this modulation in turn
affects sensory processing in anesthetized rats. Specifically, they
showed that LC bursts can both attenuate and enhance process-
ing of sensory stimuli depending on their timing relative to the
stimulus and the cortical activity state. However, the effects of
catecholamines on the large-scale communication between
distant brain areas and their neurophysiological underpinnings
remain exceedingly unexplored. Our finding that atomoxetine
reduced inter-regional correlations in a spatially structured
manner thus calls for novel work on the neural mechanisms that
produce such effects.

Theory and evidence indicate that the topography of intrinsic
fMRI correlations is dictated to an important extent by the fixed
anatomical connectivity of each brain region (Deco et al., 2011,
2013). That is, brain regions that are anatomically strongly con-
nected are more likely to show strong functional coupling than
those that are connected weakly or only indirectly. However,
within the constraints of physical connectivity, there is substan-
tial room for state-dependent movement in functional topologi-

Figure 6. a, Atomoxetine effect on pupil diameter. b, c, Correlation strength in the postatomoxetine condition binned by pupil
size, only for connections that showed an atomoxetine-related reduction in inter-regional correlation. Error bars indicate the SEM.
n.s., Not significant. *p ( 0.05. ***p ( 0.001.
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cal space (Allen et al., 2014; Zalesky et al., 2014; Barttfeld et al.,
2015). Our results identify NE and DA as important factors driv-
ing these movements, and thus suggest that spontaneous fluctu-
ations of catecholamine levels can serve to flexibly alter the
structure of spontaneous correlations both globally and in spe-
cific brain regions, around the anatomical backbone.
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Introduction 

Brain activity exhibits intrinsic fluctuations that are largely independent of external factors (Faisal 

et al., 2008). These fluctuations exhibit an intricate spatiotemporal structure, reflected in the 

organization into correlated networks, and provide insights into the fundamental functional 

architecture of the brain (Fox et al., 2005; Fox and Raichle, 2007; Vincent et al., 2007; Deco et 

al., 2011; Engel et al., 2013) as well as its malfunctioning in various pathologies (Greicius, 2008; 

Hawellek et al., 2011, 2013). Despite a surge in the numbers of studies on the correlation patterns 

of intrinsic fluctuations, the underlying physiological mechanisms are still not well understood. 

One key candidate for shaping the large-scale correlation pattern of intrinsic brain activity are 

ascending neuromodulatory systems, such as the noradrenergic and the cholinergic system, 

which have long been implicated with the regulation of global brain state (Harris and Thiele, 2011; 

Lee and Dan, 2012; Zagha and DA, 2014) as well as the spatiotemporal coordination of intrinsic 

fluctuations (Leopold et al., 2003). Neuromodulatory centers, such as the locus coeruleus 

(noradrenaline) and the nucleus basalis (acetylcholine), have widespread projections covering 

almost the entire brain (Foote and Morrison, 1987; Aston-Jones and Cohen, 2005; Ballinger et 

al., 2016), with an innervation profile that has been described as “diffuse” (Woolf, 1991). However, 

these systems can also can also act spatially specific (Ballinger et al., 2016). Moreover, 

neuromodulatory systems can act on both, short as well as long timescales (Aston-Jones and 

Cohen, 2005; Ballinger et al., 2016). In sum, both the spatial and the temporal profile of 

neuromodulatory systems enables them to shape brain activity across multiple spatial (from 

microcircuits to the entire brain) and temporal (from milliseconds to minutes and longer) scales. 

Previous research suggests that catecholamines, possibly through changes in the balance 
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between excitation and inhibition (Murphy and Miller, 2003), increase neural gain, i.e., the 

responsitivity of neurons towards input (Servan-Schreiber et al., 1990). On a network level, these 

catecholamine-related changes in gain have been shown to result in increases in brain-wide 

correlations as well as changes in functional network topology during simple cognitive tasks (Eldar 

et al., 2013; Warren et al., 2016). During rest, on the other hand, a widespread decrease in whole-

brain correlations has been observed (van den Brink et al., 2016), poiting towards a “context-

dependence” of the effects of catecholamines on brain-wide interactions.  

Less is known about the effects of acetylcholine. One important effect of acetylcholine seems to 

be a boost in the intra-cortical inhibition (Hasselmo and Bower, 1992, 1993). More recent 

evidence points to a direct inhibition of a specific class of inhibitory interneurons within the cortical 

microcircuit, possibly resulting in cortical disinhibition (Froemke et al., 2007; Pfeffer et al., 2013; 

Fu et al., 2014; Letzkus et al., 2015). The net effects of acetylcholine, however, are not well 

understood. Both multiplicative (Disney et al., 2007), but also divisive and additive gain 

modulation (Nelson and Mooney, 2016) have been reported in the past. Moreover, the effects of 

acetylcholine on large-scale brain interactions are unknown. 

In the present study, we asked how catecholamines and acetylcholine influence the brain-wide 

correlation structure of intrinsic neuronal activity. To this end, we pharmacologically manipulated 

the levels of catecholamines and acetylcholine, combined with MEG recordings of brain activity 

during both rest (i.e., in absence of external drive) and task (i.e., during constant external drive). 

Our findings reveal an intricate dissociation between the effects of catecholamines and 

acetylcholine on large-scale intrinsic correlations: catecholamines strongly increased brain-wide 

correlations, but only in the presence of strong external drive (i.e., during task), whereas 

acetylcholine strongly decreased correlations, but only in absence of external drive (i.e., during 

rest). These results demonstrate a marked context-dependence of the large-scale effects of both 
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catecholamines as well as acetylcholine.  

Materials and Methods 

In the current study, we analyzed a data set that has been described in detail in chapter 3 (see 

also Fig. 1 of chaper 3) of this thesis. The reader is therefore referred to the respective methods 

section for details regarding the specifics of the data set and the experimental design. In the 

following, we will focus on the methodological aspects that are not described in the previous 

chapter. The approach is also summarized in Figure 1. 

Figure 1. Methodological approach. The data were cleaned of extracranial artifacts and filtered into 

several overlapping frequency-bands of interest. A spatial filtering approach based on LCMV was 

applied to project the signal onto 90 AAL regions. Phase and amplitude were extracted for each 

freqeucy band using Hilbert transoformation and the resulting signals were orthogonalized with 

respect to each other. The orthogonalized signals were then used to compute power envelope 

correlations. This was repeated for all possible signal combinations, resulting in a 90x90 functional 

connectivity matrix.  
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Band-pass filter. The cleaned sensor-level signal (see Materials and Methods of chapter 3) was 

filtered into 13 overlapping frequency-bands of interest, using a 4th order Butterworth filter. The 

center frequencies of the pass-bands were logarithmically spaced from 2 to 128 Hz (rounded to 

the nearest integer) and the spectral width of each pass-band was defined as half the center 

frequency. For instance, a center frequency of 4 Hz resulted in a band-width of 2 Hz and a pass-

band ranging from 3 Hz to 5 Hz. This ensured that the relation between center frequency and 

band-width remained constant across all frequency bands.  

 

Source analysis. We estimated instantaneous source-level amplitude by means of linear 

“beamforming” (LCMV; van Veen et al., 1997). LCMV is an linear adaptive spatial filtering 

technique, where activity from a given source location ! is passed with unit gain, while activity 

from all other sources is maximally suppressed. The steps described in the following were 

performed separately for each participant and recording session. For each source location !, a 

spatial filter	# !, %  was derived according to: 

# !, % = '( ! )*+,- %
./' !

./
'( ! ) % ./  (1) 

where ' denotes the magnetic leadfield (0 denotes the matrix transpose) and )*+,-(%) is the real 

part of the complex frequency-specific sensor-level cross spectral density matrix. The obtained 

spatial filter contains three orthogonal projections, which were combined into one spatial filter 

3 !, % 	along the direction of the dominant dipole, using singular value decomposition and the 

first eigenvector. In order to obtain the the real-valued source level signal for each location	!, the 

sensor-level signal 4 5, %  was multiplied with the resulting spatial filter: 

46*7 !, 5, % = 3(!, %)4(5, %)   (3) 
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Finally, the resulting signal was Hilbert-transformed in order to derive complex-valued source-

level estimates.  

  

AAL grid. To render the results comparable to previously acquired results from fMRI (van den 

Brink et al., 2016), as well as to reduce the computational load of the following analyses, we 

projected the signal onto 90 cortical and subcortical AAL regions (Tzourio-Mazoyer et al., 2002). 

To this end, source locations were first arranged on an equally spaced grid (of 4 mm x 4 mm x 4 

mm resolution) covering the entire brain. Time courses for each AAL region 48(5) were obtained 

by means of a weighted sum across all grid points 9 covering a given AAL region : (Brookes et 

al., 2016). For each grind point ; within a certain AAL region :, the weights were determined 

based on distance to the center of mass of region : according to: 

48 5, % = 	 <
=>
?

@AAB
C 46*7 ;, 5, %   (4) 

 

Where ! denotes the distance in mm. The full width at half maximum of the weighting 

corresponded to 17 mm, consistent with a previous report (Brookes et al., 2016). The employed 

approach ensured that the reconstructed AAL time courses were biased towards their center of 

mass, hence increasing the contrast between regions. Note that prior to the computation of the 

weighted sums, the signs of the spatially filtered signal were flipped when necessary, in order to 

account for the arbitrary polarity which is induced by the source estimation.  

 

Orthogonalized power envelope correlations. Power correlations were defined as the correlations 

of the power envelopes at carrier frequency % between two regions ; and D. To this end, we first 

squared the absolute value of the Hilbert-transformed source-level estimates, yielding the source-

level power envelopes, and log-transformed the resulting signal to render the power distribution 



Pfeffer et al.: Context-dependent neuromodulation of cortical correlation structure 

 7 

more normal. In order to reduce spurious correlations arising from instantaenous signal leakage, 

we orthogonalized each power envelope with respect to the reference signal (Brookes et al., 2012; 

Hipp et al., 2012). More specifically, we orthogonalized each signal Y with respect to signal X 

according to: 

EFG 5, % = 	;HIJ	(	E 5, % 	
G K,L ∗

G K,L
	)   (5) 

where	EFG 5, % 	is the signal E 5, %  orthogonalized with respect to signal 4 5, %  and * denotes the 

complex conjugate. In principle, the orthogonalization can be computed over the entire signal, but 

the shortest possible length is recommended (Hipp et al., 2012). In this study, we have chosen to 

orthogonalize within the smallest window length, i.e., on a sample-by-sample basis. The 

orthogonalization was done in both directions (EFG 5, %  as well as 4FN 5, % ). Next, correlation 

coefficients were computed for both directions and the resulting values were averaged. The 

orthogonalization approach has been shown to underestimate true correlations in a signal by a 

constant factor of ~0.577 (Hipp et al., 2012). This factor is not accounted for in this report. The 

analysis resulted in a “functional connectivity matrix” (subsequently called FC matrix) of size NxN 

(with N = 90 AAL regions), for each frequency band of interest.  

 

Linear projection. Peripheral activity, such as changes in heart beat, as well as spontaneous 

blinks of the eye can introduce spurious correlations between regions (due to muscle activity that 

is picked up by the sensors). Due to the nearly instantaneous spread of such artifacts, the 

orthoginalization approach likely eliminates these spurious correlations. However, participants 

might realize drug-related changes in peripheral signals, such as an increased heart rate. This, in 

turn, may change the global arousal level of the participant. In order to ensure that the reported 

effects are independent of such confounds, we additionally employed a linear projection 

approach. To this end, we sequentially projected out variations in heart beat and blink rate across 
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subjects from each field in the FC matrix. For each connection	;D  (with ; = 1,…, 90 and D = 1,…, 

90), we first computed and then subtracted the mean across subjects. Next, we computed the 

residual correlation	!FO using orthogonal projection: 

PFO = PCQ − PCQ
( S S ,   (6) 

where S is the reference (i.e., heart beat or blink rate) and P contains the correlation values for 

connection ;D across subjects. In this report, only the cleaed matrices are shown. However, the 

reported results equally hold without the application of the linear projection.  

 

Statistical tests of changes in whole-brain correlations. In order to quantify whole-brain changes 

in power envelope correlations, we have adopted a procedure described previously (Hawellek et 

al., 2013). For each carrier frequency %, we statistically compared the (fisher z-transformed) FC 

matrices, across subjects, between the two drug conditions and placebo, using a paried t-test. 

Then we counted the number of significantly positively (p < 0.05 and t > 0) and the number of 

significantly negatively altered correlations (p < 0.05 and t < 0). This resulting value was divided 

by the number of possible connections M (with M = (90*90-90)/2 = 4005) to obtain the fraction of 

significantly altered correlations in both directions. This procedure was repeated for all 13 

frequencies bands. In order to derive p-values, corrected for multiple comparisons across 

frequencies, we have employed a single threshold permutation procedure based on ranks 

(Nichols and Holmes, 2002; Hawellek et al., 2013). In short, for each of N permutations (with N = 

20000), the experimental labels were randomly re-assigned within subjects and the 

aforementioned procedure was repeated. This resulted in a Nx13 matrix for both effect directions 

(positive and negative alterations). Next, the matrix was converted into ranks for each column 

(i.e., across permutations) and the maximum rank was determined for each row (i.e., across 

frequencies), resulting in a distribution of maximum ranks. For each frequency band, the 
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distribution of maximum ranks was converted back into a frequency-specific, maximum resample  

distribution. From this, frequency-specific corrected p-values were obtained. The conversion into 

a distribution of maximum ranks ensured that the test was not simply biased towards the 

frequency-bands with the largest magnitudes. 

It should be noted that significant alterations in the correlations between two regions can be 

achieved in different ways. A decrease in correlations, for instance, can mean that a positive 

correlation becomes weaker, or that a negative correlation becomes more negative. However, 

only the former would qualify as a meaningful reduction in correlation, whereas the latter 

correlation gets smaller in number (i.e., more negative), but actually stronger in terms of coupling. 

Hence, a “significant decrease” does not always carry the same meaning, and same is true for 

increases. In this study, consistent with many previous reports, the number of positive correlations 

by far outnumbered the number of negative correlations. In fact, 99% of all connections were 

positive. Thus, we assume that a decrease (increase) in correlation corresponds to a positive 

correlation becoming weaker (stronger). 

 

Results 

In the current study, we investigated the influence of atomoxetine, which increases the levels of 

noradrenaline and dopamine, as well as donepezil, which increases the levels of acetylcholine, 

on frequency-resolved power envelope correlations. Previous studies have reported peaks in 

power envelope correlations in the alpha- (center frequency 11 Hz) and beta-band (center 

frequency 16 Hz) (Hipp et al., 2012; Cabral et al., 2013; Brookes et al., 2016). Moreover, in this 

study, spectral power showed a clear peak in the alpha-band (see chapter 3). Therefore, we first 

assessed the functional connectivity matrix in the alpha-band.  
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During rest, atomoxetine led to a slight decrease in alpha-band correlations, across almost 

the entire brain (Fig. 2A, upper triangular part of the depicted matrix). During task, on the other 

hand, atomoxetine increased whole-brain correlations. Again, this increase was spatially 

widespread (Fig. 2A, lower triangular part of the depicted matrix). We repeated the analsysis for 

donepezil, which increased the levels of acetylcholine. Donepezil decreased power envelope 

correlations across almost the entire brain in both behavioral contexts, but more strongly during 

rest (Fig. 2B, upper triangular part of the depicted matrix) than during task (Fig. 2B, lower 

triangular part of the depicted matrix). 

 

Double dissociation of effects on whole-brain correlations 

We assessed the statistical significance of the observed results collapsed across the entire brain 

(rather than for each connection separately), but separately for a range of frequencies. To this 

end, for each frequency, we counted the number of significantly altered (fisher z-transformed) 

power correlations by means of a paired t-test (alpha = 0.05), separately for positive and negative 

alterations (see Materials and Methods). During rest, we found no evidence for an effect of 

A B

Diff. correlation
+0.01-0.01

Diff. correlation
+0.01-0.01

Task

Rest

Left hemisphere
Right hemisphere

Left hemisphere
Right hemisphere

Task

Rest

f = 11 Hz f = 11 Hz

Figure 2. Drug-related changes in whole-brain correlations at 11 Hz. (A) Atomoxetine-related change in 

power envelope correlations. Upper triangular part. Drug-related changes during task. Lower triangular 

part. Drug-related changes during rest. (B) Same as (A), but for donepezil. 
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atomoxetine on power envelope correlations, neither positive nor negative (p > 0.05, two-sided 

permutation test). In contrast, during task, atomoxetine significantly increased whole-brain power 

correlations in the alpha-band (p = 0.007, two-sided permutation test).  

  In stark contrast to atomoxetine, donepezil led to a significant decrease of whole-brain 

correlations during rest (Fig 3C). This decrease was most strongly pronounced in the beta-band 

(center frequency 16 Hz; p = 0.001; permutation test), but also present the alpha-band, though 

slightly weaker in magnitude (center frequency 11 Hz; p = 0.011; permutation test). During task, 

on the other hand, donepezil led to a significant reduction in whole-brain correlations in the delta-

band (center frequency 2 Hz; p = 0.012; two-sided permutation test), but not in the alpha- and 

beta-band (Fig. 3D; p > 0.05; two-sided permutation test). 
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Figure 3. Drug-related changes across carrier frequencies. (A) Atomoxetine-related changes in the 
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Same as (A), but during task. (C) Donepezil-related changes in the percentage of significantly altered 

correlations during rest. (D) Same as (C), but during task. 
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Context-dependence of neuromodulatory effects  

The results obtained thus far point towards a dependence of neuromodulatory effects on whole-

brain power envelope correlations on behavioral context (i.e., rest or task), both for atomoxetine 

as well as donepezil. Therefore, we next assessed the interaction between the drug effects and 

the behavioral context. Both atomoxetine and donepezil exhibited significant context-

dependence: atomoxetine increased whole-brain correlations in the alpha-band significantly more 

strongly during task compared to rest (Fig. 4A; p = 0.008; two-sided permutation test), whereas 

donepezil significantly decreased whole-brain correlations more strongly during rest compared to 

task in the beta-band (Fig. 4B; center frequency 16 Hz; op = 0.006; two-sided permutation test).  

 

Discussion 

The large-scale correlation structure of intrinsic brain activity has been subject of intense research 

over the recent decade. Yet, the underlying neurophysiological mechanisms generating the 

spatiotemporal pattern of correlated brain activity are not yet understood. One important factor is 

the underlying anatomical connectivity, which provides the scaffold brain activity unfolds upon. 

Earlier studies have noted a marked resemblance of anatomical connectivity and intrinsic 

correlations (Honey et al., 2007, 2010). Strong evidence for the causal contribution of anatomical 
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connectivity to the emergence of correlated spontaneous fluctuations comes from studies on 

callosotomy, showing that, after the corpus callosum of anesthetized monkeys is cut, 

spontaneous interhemispheric correlation vanishes (O’Reilly et al., 2013). Anatomy can explain a 

substantial part of the observed correlation structure especially when considered over long time 

scales, but the resemblance between anatomical connectivity and whole-brain correlations is 

markedly reduced on shorter time scales (Honey et al., 2007). Moreover, anatomy cannot account 

for the profound changes in brain-wide correlations during sleep (e.g. Deco et al., 2013) or under 

anaesthesia (Supp et al., 2011). These findings clearly indicate that there are other fundamental 

factors which shape the structure of large-scale correlated brain activity. Here, we investigated 

the role of two major neuromodulatory systems, the catecholaminergic and the cholinergic 

system. The innervation profile as well as their temporal characteristics puts those systems in an 

ideal position to shape coordinated activity within and across large parts of the brain and across 

multiple time scales. Interestingly, on a local scale (i.e., within microcircuits and cortical regions), 

both catecholamines and acetylcholine have comparable net effects, resulting in a decrease in 

low-frequency activity (< 10 Hz) and an increase in high-frequency activity (> 20 Hz) (Bauer et al., 

2012; Pinto et al., 2013; Polack et al., 2013; Chen et al., 2015). Our results results show that, 

despite similar effects on local synchronization, the large-scale effects can be strinkingly different.  

In this study, catecholamines, that is noradrenaline and dopamine, increased whole-brain 

correlations in the alpha-band during task, but not during rest. This result has important 

implications for the effects of catecholamines in general as well as on their influence on whole-

brain interactions in particular. Catecholamines have been suggested to modulate the gain of 

neuronal activity multiplicatively (Servan-Schreiber et al., 1990; Aston-Jones and Cohen, 2005), 

which results in an altered neuronal input-output relation. An increase in multiplicative gain means 

that a neuron that receives strong input, will respond even stronger, whereas neurons receiving 
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only weak input, do not change much in output, or even become weaker (Donner and 

Nieuwenhuis, 2013). On a brain-wide scale, multiplicative gain modulation has been shown to 

result in wide-spread increases in the interactions between different regons of the brain in a 

simplified network model (Eldar et al., 2013). This prediction has received experimental support 

using pharmacological manipulations (Warren et al., 2016), and using pupil dilation as an index 

of noradrenergic activity (Eldar et al., 2013). These results were obtained while participants were 

performing a perceptual task. In contrast, during “resting state”, that is, in absence of external 

input or overt behavior, catecholamines led to a spatially widespread reduction in intrinsic activity 

correlations in a recent another report (van den Brink et al., 2016). Here, we demonstrate that the 

discrepancy between these prior reports likely arises from differences in the behavioral context 

(rest or task), i.e., the level of external/sensory drive. Although we did not observe significant 

catecholamine-related changes during rest, the sign of the induced change in the alpha-band was 

consistenly negative across many connections (see Fig.2A). However, it should be acknowledged 

that the transfer of hemodynamic whole-brain correlations (as measured with fMRI) to frequency-

specific power correlations (as measured with E/MEG) is far from trivial (Hipp and Siegel, 2015). 

In contrast to rest, during task, catecholamines led to a pronounced increase in whole-brain 

interactions (Fig. 2A, Fig. 3A). In previous rodent work, the effects of the catecholamine 

noradrenaline have been shown to depend on the level of glutamate in the circuit (Polack et al., 

2013). It is possible that continuous task/sensory drive, compared to rest, is associated with 

elevated levels of glutamate, for instance due to feedforward excitation, which locally and globally 

interacts with noradrenaline (Mather et al., 2015). This idea accounts for the phenomenon that 

noradrenaline possibly only marginally affects weak neural activity but amplifies strong activity, 

resulting in multiplicative gain. Notably, strong sensory drive is also associated with an equally 

strong (Shadlen and Newsome, 1998), or even stronger (Haider et al., 2013), increase in 

GABAergic inhibition. As of yet, it is unknown if noradrenaline also interacts with the levels of 
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GABA in the circuit.  

In stark contrast to the effects of catecholamines, in this study, increased levels of acetylcholine 

led to a strong decrease in whole-brain power envelope correlations during rest, with peaks in the 

alpha- (~11 Hz) and beta-band (~16 Hz) (Fig. 2B/3C). These decreases were spatially widespread 

and unspecific, possibly reflecting the realtively homogeneous distribution of cholinergic receptors 

throughout the brain as well as the global innervation profile of cholinergic nuclei in the basal 

forebrain (Ballinger et al., 2016). Acetylcholine did not alter cortical correlations under external 

drive (Fig. 3D), that is, during task, and, thus, exhibited significant context-dependence. Notably, 

this context-dependence was reversed compared to catecholamines, whose effects were 

strongest during task. Context-dependent effects of acetylcholine have only rarely been assessed 

and are, consequently, not well understood. Activity in cholinergic centers in the basal forebrain 

results in cortical disinhibition, for instance in A1 and V1 (Froemke et al., 2007; Fu et al., 2014; 

Letzkus et al., 2015). This disinhibition is likely the result of the activation of VIP+ interneurons, 

which in turn decrease the inhibitory effects of SOM+ interneurons on excitatory pyramidal cells 

(Fu et al., 2014). This circuit mechanism may account for the observed increases in neural gain, 

associated with focused attention (Thiele et al., 2009) and locomotion (Pi et al., 2013; Fu et al., 

2014). Recently, this view has been challenged by several observations, demonstrating that 

acetylcholine (Kuchibhotla et al., 2016), as well as locomotion (Pakan et al., 2016), activate PV+, 

SOM+ and VIP+ interneurons in parallel. Most interestingly, these inhibition-related effects of 

locomotion in V1 exhibit context-dependence (Pakan et al., 2016): during visual stimulation, 

locomotion resulted in the activation of PV+, VIP+ and SOM+ interneurons, as well as excitatory 

pyramidal cells,. In darkness, however, SOM+ interneurons and pyramidal cells were largely 

unaffected by locomotion. Thus, it is possible that in the present study, acetylcholine mainly 

activated PV+ and VIP+ interneurons during rest (i.e., in absence of trask/sensory drive). During 
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task (i.e., strong visual drive), on the other hand, all three interneurons as well as excitatory 

pyramidal cells were affected. It is unknown how such cell specific effects would affect large-scale 

cortical activity and interactions across entire regions. Future work should address if and how 

such local changes can account for the context-dependence of large-scale network alterations as 

reported here. 

Conclusions 

In this study, we provided a quantitative description of the effects of two major neuromodulators, 

catecholamines and acetylcholine, on the whole-brain correlation structure during both rest and 

task. Critcally, both neuromodulators differed substantially in their effects: catecholamines 

increased cortical correlations during rest, but not task, whereas acetylcholine decerased cortical 

correlations during rest, but not during task. These results provide fundamental insights into the 

physiological mechanisms underlying the generation of large-scale correlated intrinsic activity. 

Moreover, the reported findings may help to idenfity novel “neuromodulatory fingerprints” 

(Schaefer et al., 2014), which can be used to infer disturbances in the functioning of 

neuromodulatory systems in diseases commonly associated with the malfunctioning of such 

systems.  
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5. Abstract 

5.1. English  
 
Perceptual decision-making is a cognitive operation that results in committing to one 

perceptual interpretation about the state of the world over a set of alternatives. Studies 

from psychology and neuroscience have shown that observers accumulate multiple 

samples of (noisy) perceptual information over time, until a decision threshold is 

crossed and a choice is made. The accumulation timescale is hypothesized to depend 

on the strength of recurrent excitation within local cortical circuits as well as their 

embedding in a large-scale functional network. Decision-making is a highly flexible 

mechanism, yet little is known about the flexibility of the accumulation timescale and 

whether it can be strategically adjusted in order to improve performance. Both local 

circuit dynamics as well as functional network topology fluctuate as a function of brain 

state, which is under the control of neuromodulators such as noradrenaline and 

acetylcholine, suggesting an involvement of these systems in temporal accumulation 

during decision-making.  

Through a combination of psychophysics and computational modelling, this thesis 

provides evidence that the timescale of evidence accumulation is a bounded property 

with an upper limit, just like working memory capacity. However, below this limit, human 

observers optimize their performance on a perceptual decision-making task by 

adjusting the timescale over which they accumulate non-stationary flickering visual 

evidence that is embedded in noise. This provides evidence for a new type of top-down 

control in decision-making.  

Using pharmacological manipulation and magnetoencephalography (MEG) during rest 

and task, it is shown in this thesis how such changes could be implemented within 

cortical circuits: catecholamines (noradrenaline and dopamine) are demonstrated to 
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increase the local ratio between excitation and inhibition, possibly reflecting an 

increase in recurrent excitation. Moreover, both acetylcholine and catecholamines are 

shown here to result in large-scale reconfigurations of the functional network topology 

of intrinsic brain activity. Thus, the results presented in this thesis argue that (i) the 

time scale of evidence accumulation is a bounded but adaptive property that can be 

strategically adjusted by the observer in order to optimize performance, (ii) 

neuromodulators such as catecholamines and acetylcholine alter both local cortical 

dynamics and functional network topology, suggesting their involvement in controlling 

the timescale of evidence accumulation. 

5.2. German  
 
Perzeptuelle Entscheidungsfindung ist eine kognitive Operation, die darin resultiert, 

dass eine Wahrnehmungsdeutung über den Zustand der Welt gegenüber anderen 

alternativen Wahrnehmungsdeutungen abwägt und ausgewählt wird. Frühere Studien 

aus Psychologie und Neurowissenschaften konnten zeigen, dass Beobachter mehrere 

Samples verfügbarer Wahrnehmungsinformation über die Zeit akkumulieren, bis eine 

sogenannte Entscheidungsschwelle überschritten ist und eine Wahl getroffen wird. 

Dabei wird vermutet, dass die Zeitskala er Akkumulation von der Stärke rekurrenter 

Erregung innerhalb lokaler kortikaler Schaltkreise, sowie der Einbettung jener in ein 

großflächiges funktionelles Netzwerk abhängt. Die menschliche Entscheidungsfindung 

ist ein hochflexibler Prozess, jedoch ist wenig über die Flexibilität der 

Akkumulationszeitskala bekannt und ob diese vom Beobachter adjustiert werden kann, 

um Performance zu verbessern. Sowohl die Dynamik lokaler kortikaler Schaltkreise 

als auch jene funktionaler Netzwerktopologie fluktuieren in Abhängigkeit vom globalen 

Zustand des Gehirns. Dieser Zustand wird wiederrum von Neuromodulatoren wie 
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Noradrenalin und Acetylcholin reguliert. Dies legt nahe, dass neuromodulatorische 

Systeme auch bei der zeitlichen Akkumulation sensorischer Information eine Rolle 

spielen könnten. 

Durch eine Kombination von Psychophysik und mathematischer Modellierung wird in 

dieser Dissertation dargelegt, dass menschliche Beobachter die Zeitskala, über 

welche sie flackernde visuelle Information in einer perzeptuellen 

Entscheidungsaufgabe akkumulieren, anpassen, vorausgesetzt dass die verfügbare 

Information nichtstationär ist und ihre Performance dadurch optimiert werden kann. 

Die Zeitskala kann dabei jedoch nicht ohne Einschränkung angepasst werden, 

sondern nur innerhalb eines gewissen Bereichs, der nach oben begrenzt zu sein 

scheint. Damit zeigt diese Arbeit eine neue Form der top-down Kontrolle in der 

Entscheidungsfindung auf. 

Weiterhin wird durch Anwendung pharmakologischer Manipulationen und 

Magnetoenzephalographie (MEG) während einer Ruhemessung und während der 

Bearbeitung einer perzeptuellen Aufgabe zudem gezeigt, wie solche Veränderungen 

in neuronalen Schaltkreisen implementiert sein könnten: Katecholamine (Noradrenalin 

und Dopamine) erhöhen das lokale Verhältnis zwischen Erregung und Hemmung, was 

möglicherweise eine Verstärkung der rekurrenten Erregung innerhalb dieser 

Schaltkreise widerspiegelt. Des Weiteren wird gezeigt, dass sowohl Acetylcholin als 

auch Katecholamine zu großräumigen Rekonfigurationen der funktionellen 

Netzwerktopologie intrinsischer Hirnaktivität führen. Zusammenfassend legen die  in 

dieser Arbeit dargestellten Ergebnisse nahe dass (i) die Zeitskala der 

Evidenzakkumulation eine adaptive Eigenschaft ist, die innerhalb eines bestimmten 

Bereichs strategisch angepasst werden kann, um Performance zu optimieren, (ii) 

Neuromodulatoren wie Katecholamine und Acetylcholin lokale kortikale Schaltkreise 
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sowie großflächige funktionale Netzwerktopologie verändern, was auf eine Rolle 

dieser neuromodulatorischen Systeme der bei der zeitlichen Akkumulation von 

Information nahelegt. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 163 

6. Acknowledgements  
 
This work would not have been possible without the support of many people. First and 

foremost, I would like to express my deepest gratitude to my supervisor Tobias Donner, 

who has profoundly shaped my scientific thinking over the recent years, but has also 

provided me with the freedom necessary to pursue my own interests. His scientific 

rigor and enthusiasm will remain as a guiding model for me in the future.   

Furthermore, I would like to thank Andreas Engel, without whom large parts of this 

work would not have been possible and who created an inspiring scientific environment 

at the Department of Neurophysiology. Moreover, I am deeply grateful to Guido Nolte, 

for providing profound and instructive methodological support and feedback throughout 

those years. 

Science depends on collaborations and the exchange of ideas and thoughts. Luckily, 

during my time as a PhD student, I had a number of fantastic collaborators, who I would 

like to thank. For sharing their knowledge, their ideas, their enthusiasm but also their 

criticism. In particular, I would like to thank Konstantinos Tsetsos, Marius Usher, Pia 

Jentgens, Rudy van den Brink, Sander Niewuenhuis, Klaus Linkenkaer-Hansen, Arthur 

Avrmiea, Gustavo Deco, Adrian Ponce-Alvarez and Anne Urai. 

Scientific work would be only half as enjoyable without the proper social environment. 

Therefore, I would like to thank my friends and colleagues at the Department of 

Neurophysiology. For sharing both the joys but also the frustrations of academic life. 

Special thanks go to my current and former office mates, Marion Höfle, Ina Peiker, 

Kathrin Müsch, Sarah Bütof, Arne Ewald and Anke Braun. 

Finally, I would like to thank those people who substantially shaped who I am today: 

my close friends, long-time companions and siblings. For being there when it matters 

(but also when it doesn’t). And for always reminding me that the most important things 



 164 

in life are to be found outside of academia. Of course, none of this would have been 

possible without the trust and the almost unconditional support by my parents - I am 

forever indebted. My final thanks are dedicated to Marie, who I thank for all her support, 

her input, her optimism, her humor, and her love.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 165 

7. Curriculum vitae  
 
    Education 
 
01/2012 – current   PhD student 
    University Medical Center Hamburg-Eppendorf 
    Advisors: Prof. Tobias H. Donner, Prof. Andreas K. Engel 
 
2013 – 2014   MFA student in Fine Arts 

University of the Arts (HfBK) Hamburg 
 

2010 - 2012   MSc student in Brain & Cognitive Sciences 
    University of Amsterdam, The Netherlands 

Graduated with distinction 
 

2006 – 2010   BSc student in Psychology 
    University of Vienna (2006 – 2008) 
    University of Magdeburg (2008 – 2010) 
 
2004 – 2005   BSc student in Interactive Media 
    University of Applied Sciences Augsburg, Germany 
 
    Research experience 
 
2012 – present   Research scientist 
    University Medical Center Hamburg-Eppendorf 
 
2016    Visiting scientist (3 months) 
    Universitat Pompeu Fabra, Barcelona, Spain 
    Supervisor: Prof. Gustavo Deco 
 
2011 – 2012   Masters student 
    Centre for Integrative Neuroscience (CIN) 
    University of Tuebingen, Germany 
    Supervisor: Dr. Markus Siegel 
 
2009    Research intern 
    MPI for Brain and Cogntive Sciences, Leipzig, Germany 
 
2008 – 2010   Student assistant 
    Institute for Cognitive Neurology and Dementia Research 
    University of Magedeburg, Germany 
 
2009     Student assistant 
    institute for Biological Psychology 
    University of Magdeburg, Germany 
 

 



 166 

8. Eidesstattliche Versicherung (Declaration of academic integrity)  
 
Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe 

verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und 

die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln 

nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten 

Werkes kenntlich gemacht habe. 

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an 

einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um 

Zulassung zur Promotion beworben habe. 

Ich erkläre mich einverstanden, dass meine Dissertation vom Dekanat der 

Medizinischen Fakultät mit einer gängigen Software zur Erkennung von Plagiaten 

überprüft werden kann. 

 

 

Unterschrift: ...................................................................... 

 

 


