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Kurzfassung

Wassermoleküle übernehmen im biologischen Kontext verschiedene wichtige Rollen – von einem
reinen Lösemittel, über strukturelle Eigenschaften wie der Vermittlung von Wasserstoffbrücken, hin
zu katalytischen Funktionen. In den letzten Jahren wurde daher immer mehr die Rolle der Wasser-
moleküle in der Entwicklung von Medikamenten, Herbiziden und biokatalytischen Fragestellungen
miteinbezogen. Aus diesem Grund wurden über die letzten Jahre diverse Methoden für die Analyse
von Wassermolekülen entwickelt – von der strukturellen Analyse von kristallografisch aufgelösten
Wassermolekülen, bis zur Vorhersage von Wassermolekülen in biologischen Strukturen und deren
energetischen Beiträgen. Trotz der Menge und Varianz an verfügbaren Methoden bleiben diverse
Fragen, insbesondere der energetische Beitrag von Wassermoleküle, ungeklärt. Hinzu kommt, dass
viele der gebräuchlichen Methoden rechenintensiv sind und nur auf wenigen, selektierten Daten
evaluiert wurden.

In der hier präsentierten Arbeit wird eine Methode für die Platzierung von Wassermolekülen mit an-
schließender Bewertung auf Basis der zuvor entwickelten HYDE Bewertungsfunktion dargestellt. Um
Wassermoleküle korrekt zu platzieren, muss der zur Verfügung stehende Raum in Protienstrukturen
richtig erkannt werden. Basierend auf einer Analyse von Proteinstrukturdaten wurden Wasserstoff-
brückengeometrien definiert, die im Folgenden genutzt wurden um potenzielle Wasserpositionen zu
definieren. Die Identifikation des so genannten freien Raums wurde im Anschluss genutzt, um explizit
Wassermoleküle zu platzieren. Diese Wasserpositionen wurden im Anschluss mit HYDE bewertet,
um deren energetische Beiträge abzuschätzen.

Neben der Methodenentwicklung wurde besonderer Wert auf dessen Evaluierung gelegt. Ins-
besondere Wassermoleküle stellen eine Herausforderung dar, da experimentelle Ergebnisse für
einzelne Wassermoleküle nur schwer zu erhalten sind. Die einzige experimentell verfügbare Quelle,
die in ausreichender Qualität und Quantität für Wassermoleküle verfügbar ist, ist die Elektronen-
dichte, die bei der Proteinstrukturaufklärung entsteht. Auf Basis der Elektronendichte wurde das
Maß EDIA (Electron Density of Individual Atoms) entwickelt, um automatisiert Kristallwasser mit ihrer
experimentellen Grundlage abzugleichen. Mit Hilfe des EDIA wurde ein hochaufgelöster Datensatz
zusammengestellt, welcher im Verlauf der Methodenentwicklung genutzt wurde, um die entwickelte
Platzierungsstrategie und die Bewertung der Wassermoleküle zu validieren. Die Platzierung erreicht
eine hohe Sensitivität, wobei 80% der vorhergesagten Wasser in einem Abstand von weniger als 1.0 Å
zu kristallographischen Wassermolekülen platziert werden. Zusätzlich zu der konsistenten Platzierung
von Wassermolekülen, erziehlt die Methode eine kurze Laufzeit, was im Folgenden die Analyse und
Bewertung von Protein-Ligand-Komplexen sowie den Einfluss von Proteinflexibilität auf umgebende
Wassernetzwerke ermöglicht.
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Abstract

Water molecules play an important role in biological complexes, from simply surrounding solvent, to
structural aspects such as the mediation of hydrogen bonds, to catalytic functionalities. Over the
last years, many different methods and programs were developed for the analysis of water. These
range from analyzing water molecules observed in crystallographically resolved protein structures,
to predicting potential water positions and evaluating their energetic contribution to the binding
affinity. However, despite the large amount of available tools, many questions, such as a the energetic
contribution of water molecules, still remain a challenge. In addition, most frequently applied software
solutions require substantial computational resources and are validated on small amounts of selected
protein complexes.

The presented work shows a strategy for placement and subsequent energetic evaluation of
water molecules based on the previous developed HYDE scoring function. First, potentially available
space for a water molecule inside a protein structure has to be recognized correctly. Therefore,
hydrogen bond geometries were analyzed within a large set of protein structures. Based on the
derived hydrogen bond geometries, suitable positions within the protein structure were defined. This
available space was used to place water molecules explicitly and, finally, score those positions with
HYDE.

Beside the method development, great effort was put on its evaluation. Especially the validation of
water molecules is a challenging task and no large-scale data set existed. Since single water molecule
are very difficult to measure experimentally, adequate data has to be compiled for validation purposes.
The electron density, the only experimental evidence sufficiently available for water molecules, was
exploited. Using the electron density, a metric for the automatic evaluation of water positions with
their underlying electron density was developed – EDIA (Electron Density of Individual Atoms). This
way, a high-resolution data set with well resolved water molecules was compiled. This large-scale data
set was used for the validation of the water placement and scoring procedure. The water placement
strategy achieves a high sensitivity of 80% for placing water molecules within 1.0 Å distance to a
crystallographically observed one. Due to a short run-time, the water placement procedure displays a
solid foundation for further evaluation of protein-ligand complexes, the effects of protein flexibility on
the surrounding water network, or scoring of protein-ligand interfaces with a consistent representation
of water molecules.
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1
Introduction

Three major components contribute to the composition of cells – water, inorganic ions, and organic
molecules. Over 70% of the cellular mass is water.1 This already shows the importance of water
molecules in nature. In this thesis, the relevance of water molecules for proteins will be discussed.
They not only play a passive role as surrounding solvent, but also fulfill active roles such as mediating
interactions within protein structures2–5 or being part of a reaction catalyzed by a protein.6–8

Therefore, water molecules are of interest in pharmaceutical, biotechnological as well as agricul-
tural research. Throughout the last years, many different developments in the field of chemoinfor-
matics have helped to guide the research in these areas in a more rational way. Time consuming
wet-lab experiments as well as the work load could be reduced.

A great improvement in structure-based design is the constant enhancement of crystallography
methods to elucidate protein structures with high resolution.9 This allows more detailed insights into
the structural composition of proteins, more precise evaluations and, by this, also a more detailed
analysis of water molecules. Especially for water molecules high-resolution structures are mandatory
to enable the crystallographer to correctly model the water molecules into the protein structure. In
order to resolve water molecules, a resolution of at least 2.7 Å is needed.10 However, water positions
in structures with resolution lower than 1.8 Å are less reliable than water molecules in better resolved
structures.11 Additionally, in order to observe a continuous hydration layer at the protein surface, a
resolution of better than 1.6 Å is needed.12

Due to the different roles water molecules can fulfill, they are relevant in many chemoinformatics
methods from structure-based virtual screening (SBVS), to docking, to scoring functions. An analysis
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1. Introduction

of the PDBbind 2007 data set13 revealed water mediated interactions in 96% of protein-ligand
complexes.14 This exemplifies the need of a correct representation of water molecules within these
methods.

Previously, the scoring function HYDE15–19 was developed for the estimation of protein-ligand
binding affinities. HYDE is a physics-based approach relying on HYdrogen bonding and DEyhdration.
Herein, water molecules display an essential part, but are currently not handled adequately. Two
aspects are of major interest. First, a consistent treatment of water molecules within the HYDE
scoring function. Second, a consistent representation of water molecules in protein structures, which
is necessary to realize point one. The resolution of the protein structure may not be good enough to
resolve water molecules or the structure has not been crystallized, i.e. protein-ligand docking poses,
which means that water molecules are not available. A consistent integration and availability of water
molecules within protein structures, especially within protein-ligand interfaces, is necessary.

In this thesis, a method for placing water molecules into the structural model of proteins is de-
scribed. Beginning with the structural evaluation of water molecules, to the correct identification of
available space for water molecules within protein structures, to, finally, the placement of structurally
relevant water molecules. Subsequently this method is combined with the HYDE scoring function.
Herein, the estimation of individual water scores is examined. This is of special interest for drug design
strategies, i.e. to predict which water molecules would be best to target with a ligand in order to gain
affinity.

Relevance of Water Molecules

‘Water molecules appear to be both
the cement that fills crevices between amino acid building blocks,
and the lubricant that allows motion of these building blocks.’ *

In the following subsections, different aspects of water molecules are described – from available
experimental data for water molecules, to structural aspects, thermodynamic characteristics, available
software solutions for placing and scoring water molecules, and the relevance of water molecules in
chemoinformatic methods.

*Levitt, M. & Park, B. H. Water: now you see it, now you don’t. Structure 1, 223–226 (1993).

2



1.1. Water Molecules in Protein Structures

1.1 Water Molecules in Protein Structures

Many aspects around water molecules are of interest in the area of chemoinformatics. Beginning with
the availability of experimental data for water molecules to allow their correct representation. Further,
structural characteristics found in protein structures are important for understanding the role of water
molecules. Last, the thermodynamics displayed by a water and the influence of thermodynamic
effects by water molecules is of great relevance for method development, but also to comprehend
the underlying mechanisms of, i.e., protein-ligand binding events.

1.1.1 Experimental Data and Validation

Water molecules are difficult to examine experimentally. Especially when it comes to their energetic
contribution, problems arise. Due to the fact that a water molecule in a protein-ligand interface is
displaced by extending a ligand, the difference in measured binding affinity is always the combination
of water displacement together with the ligand extension.20–22 Therefore, other means of validation
have to be identified for the evaluation of water molecules.

The largest resource of experimental data are protein structures solved by X-ray crystallography
(Figure 1.1). Those structures are readily accessible from the Brookhaven Protein Data Bank (PDB).23

Thanks to the increasing focus on data quality within the last years, structure factors are nowadays
mandatory for newly resolved structures deposited in the PDB. With a constantly growing number of
available structures, quantitatively as well as qualitatively, the PDB is an ideal data resource.

Already the protein structure displays a model of the experimentally collected data, the diffraction
patterns. Different metrics exist to validate the model with its underlying data. Accessible directly
from the PDB file are occupancy and temperature factor (B factor). The occupancy is given for every
atom and contains information about alternate locations. This is, however, not always correctly used
and especially for water molecules difficult to interpret. The B factor contains information about the
local motion of the structure. Since the B factor is dependent on the refinement procedure24–26 it can
be artifactual, especially if crystal contacts are available but not considered adequately. Furthermore,
the B factor does not contain information about an atom being resolved by electron density, but
about its structural flexibility as well as disorder. Other metrics exist that consider the underlying
electron density data: real-space R factor (RSR),27 normalized RSR (RSR-Z),28 real-space R correlation
coefficient (RSCC),29 real-space difference density Z score (RSZD), and real-space observed density
Z score (RSZO).30 However, all of them have strengths as well as weaknesses. For example the often
used RSCC exhibits problems especially for water molecules. This is due to atoms with weak densities
but correct intensity distributions. Thus, even a low resolution can result in a good score. For more
detailed information on the different metrics see D2 and D3.

Apart from X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy displays a
resource for protein structural data. Further, electron microscopy (EM) has evolved dramatically
throughout the last years. From previously only low-resolution structures, high-resolution EM struc-
tures are emerging and will become more and more available throughout the next years.9 However,

3



1. Introduction

of the overall available structures, NMR and EM structures display only a minority (Figure 1.1).
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Figure 1.1: Number of available structures in the PDB23 differentiated by experimental method and composition
(as of October 2017).

One critical aspect about X-ray structures are the experimental conditions, which are commonly
used to obtain the diffraction patterns. Usually, diffraction data are collected at cryogenic tempera-
tures (100 K). Generally, it is assumed that the cooling process disturbs the natural structure of the
macromolecule only minimally. Due to this process, however, only one snapshot of the naturally
fluctuating macromolecular structure is captured. Apart from the exact location of water molecules,
the different properties between ‘hydration water’ and bulk water were subject of analysis. Different
terms used for hydration aspects are explained in Figure 1.2.

Studies have been conducted analyzing the differences between cryogenic and room temper-
ature X-ray structures as well as X-ray structures versus NMR structures.31–33 Results showed that
cryocooling leads to remodeling of conformational distributions of proteins as well as to over-packed,
smaller structural models. Room temperature structures on the other hand can reveal protein motions
necessary for its function or ligand binding. NMR spectroscopy has also been used to study the
differences of the first hydration shell of DNA between solution and crystal.34 This study concluded
that at low temperatures the rotation of water molecules is less temperature dependent, which they
attribute to constraints from the protein. Nuclear magnetic relaxation dispersion (NMRD) experiments
were conducted to analyze hydration layer waters.35 Compared to bulk water, water molecules in the
hydration layer of the protein are roughly two times slower, with the exception of those trapped in
surface cavities. Nakasako compared the number of water molecules in cryogenic structures with
that in solution.36 He concluded that based on small angle X-ray scattering (SAXS) measurements
the amount of hydration is comparable between cryogenic structures and solution.

X-ray structures, moreover those elucidated at cryogenic temperatures, display the majority of
available structures. In combination with the underlying electron density they are of great relevance
for method development and validation. Overall, one has to bear in mind that cryogenic protein
structures are only one snapshot of the structure in nature.

4



1.1. Water Molecules in Protein Structures

Figure 1.2: Hydration of macromolecules; blue: macromolecule, e.g. protein or DNA; red: buried water molecule;
yellow: first hydration shell = water molecules directly surrounding the macromolecule typically within
3.5 Å with their properties affected by the macromolecule; green: second hydration shell = water
molecules surrounding the macromolecule with their properties affected by the macromolecule;
orange: bulk water/solvent = water molecules distant to macromolecular structures only in contact
with other water molecules. For more information on protein hydration refer to a recent publication
of Carugo.37

1.1.2 Structural Characteristics

Water molecules have different roles in and around protein structures and thus exhibit specific
structural characteristics. NMRD experiments have shown that water molecules in protein structures,
regardless of their position in a protein-ligand complex, are not fixed but in constant dynamic
exchange with bulk waters.38 Herein, water molecules in the protein vicinity are slower than bulk
waters.39 Elastic incoherent neutron scattering (EINS) displays another means of analyzing water
molecules. Combet and Zanotti have identified interfacial waters as the driving force of local and
large-scale motions in proteins.40

Water molecules contribute to several processes in protein structures: from the big picture,
such as protein folding41–44 or active/inactive transformations,45 to small details, such as distance
regulation,46 proton transfer,46–49 as well as energy storage.50 Herein, flexibility aspects are a re-
sult of rather weakly bound water molecules. They still remain mobile and thus allow structural
changes. Functionality on the other hand is due to tightly bound water molecules that are an inte-
gral part of the protein structure. This aspect is further emphasized in hyperthermophilic proteins.
Molecular dynamics simulations were used to study differences of internal water molecules in hyper-
thermophilic and mesophilic proteins. Herein, hyperthermophilic proteins offered a slightly more
favorable environment for water molecules compared to non-hyperthermophilic proteins.51,52

Apart from their overall roles, water molecules have been analyzed within proteins, within protein-
ligand interfaces, as well as in protein-protein interfaces.53–56 Water molecules bridging between
protein and ligand often have three or more interactions compared to an average of one interaction
in protein-protein interfaces.57,58 Also within internal protein cavities, they form on average three
hydrogen bonds with half the cavity waters occurring in clusters of two or more.59 NMR studies
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1. Introduction

showed that hydrophobic cavities, which often appear to be unsaturated in crystal structures, can
contain mobile water molecules.60 Using Monte-Carlo simulations, the smallest stable water cluster
in hydrophobic binding sites was a trimer with three hydrogen bonds.61 The implications of active site
surface characteristics on water molecules has recently been analyzed by Haider et al..62 They used
explicit solvent molecular dynamics (MD) simulations to study the reorganization of water molecules.
Compared to bulk waters, they found favorable active site water molecules – with either enhanced
water-water interactions or strong hydrogen bonds to the protein – as well as unfavorable water
molecules. The latter ones result from surface constraints that hinder water molecules in adopting
favorable orientations. Further, water molecules in protein-protein interfaces can be differentiated
based on their interaction characteristics, bridging, i.e. interactions with both proteins, favorable for
one protein, or no interaction with any protein.63 Interestingly, 69% of water molecules of the last
category (in total 18%) are in a hydrophobic environment, so called ‘hydrophobic bubbles’ (Figure 1.3).

Figure 1.3: Hydrophobic enclosed water molecule H2O-A-535 in Sec12 a component of the COPII vesicle budding
machinery responsible for vesicle transport of proteins and lipids from the endoplasmic reticulum to
the Golgi (PDBid 4h5i64); Mesh: electron density displayed at 1σ (Molecular graphics were created
using UCSF Chimera65).

Another aspect that has been evaluated, are the binding partner preferences of water molecules.
Indicated by the number of interactions, water molecules prefer hydrogen bonds to the protein
backbone rather than to side chains.58,63,66

1.1.3 Thermodynamic Characteristics

The full picture, of how water molecules exactly contribute to binding affinity of protein-ligand as
well as protein-protein complexes or in combination with DNA, has not been fully understood.67,68

The following paragraphs summarize thermodynamic aspects in which water molecules have been
analyzed and shown to contribute.

Estimation for the energetic contributions of water molecules have been made. Dunitz concluded
from energetics of anhydrous salts and their corresponding hydrates that the upper bound for entropic
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1.1. Water Molecules in Protein Structures

cost is about 2 kcal mol−1 at 298K.69 Ladbury on the hand estimated the upper enthalpic gain as
-3.8 kcal mol−1.67 A combination of both estimates results in a free energy gain of -1.8 kcal mol−1 for
transferring a water molecule from bulk into the protein or the active site.70 This is in accordance with
approximations from Cooper, who estimated the free energy range between -0.7 to -2.2 kcal mol−1,
depending on the number of hydrogen bond interactions the water molecule can participate in.71

Experimentally, the biophysical technique isothermal titration calorimetry (ITC) is applied to
measure the thermodynamic signature of binding.72,73 Herein, enthalpy changes (∆H ), association
constant (Ka ), and the stoichiometry of binding are derived. Those can be used to calculate the free
energy of binding, also termed Gibbs free energy, (∆G) as well as the entropy change (∆S) using the
following formula:

∆G =−RT lnKa =∆H −T∆S (1.1)

R is the gas constant and T the temperature. ITC measurements in combination with structural and
molecular dynamics simulations have shown in Abl-Src homology 3 domain (SH3) with the high
affinity peptide p41 that interfacial water molecules need to be included to fully understand the
binding process.74 Herein, hydrophobic interactions in the protein binding site were complemented
by a water-mediated hydrogen bond network of circumferential residues. For the application of ITC
for diverse systems, from protein-ligand interactions, protein-peptide interactions, protein-protein
interactions, to enzyme activity and kinetics, please refer to Ghai et al..75 Kimmer et al. have reviewed
the influences of different parameters on ITC measurement, such as buffer or experimental set-up,
to get a better estimate on the reliability and comparability of the generated data.76

Enthalpy/Entropy Compensation (H/SC)

Enthalpy and entropy compensate each other, the stronger the binding the more negative the
enthalpy and the lower the entropy. While in weaker binding, the entropy increases due to the
system’s disorder and thus the enthalpy decreases.

Often, the optimization of binding affinity was driven by increasing the Gibbs free energy ∆G.
Due to enthalpy (∆H)/entropy (∆S) compensation (H/SC), more emphasis has been put on their
separate contributions to the overall affinity.77 For example the enthalpic optimization of an HIV
protease inhibitor by introducing a strong hydrogen bond let to no overall gain in affinity due to an
entropic loss attributed to conformational strain and solvation effects.78

Breiten et al. used human carbonic anhydrase (HCA) protein-ligand complexes with indistinguish-
able binding affinities for analyzing H/SC effects (Figure 1.4 and Table 1.1).79 Herein, ITC was used to
measure the changes in enthalpy and entropy, while WaterMap was applied to analyze the water
molecules in and surrounding the active sites. They concluded, that apart from the ligand and protein,
water molecules close to the interface have an impact on the enthalpy and entropy of binding.

However, the true impact of H/SC is controversial.80,81 Uncertainties in experimental measure-
ments of enthalpy and entropy exist. Additionally, other explanations apart from H/SC can often be
found, such as solvation as an ubiquitous explanation or protein flexibility. Chodera81 also showed,
using an idealized protein-ligand binding site, that even though the conformational freedom of the
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ligand is restricted the tighter the ligand binds, and some H/SC is present, it is not linear as would be
expected. Thus, they conclude that other aspects beside the H/SC must play a role.

(a) HCA with H4BTA (PDBid 3s7382). (b) HCA with F4BTA (PDBid 4kap83).

Figure 1.4: Example of H/SC in HCA with two arylsulfonamide ligands; Figures were generated using the Pro-
teinsPlus Server.84

Table 1.1: ITC measures for HCA (pKa corrected at 298.15K) taken from Breiten et al..79

Ligand ∆G◦ ∆H◦ -T∆S◦

H4BTA -13.5 ± 0.3 -18.9 ± 0.5 5.5 ± 0.7
F4BTA -13.0 ± 0.2 -16.3 ± 0.6 3.4 ± 0.5

Hydrophobic Effect

The energetic gain due to the reorganization of water molecules upon protein-ligand binding is termed
hydrophobic effect. Water molecules at hydrophobic sites of both protein and ligand are replaced,
thus leading to an energy gain.85 Upon release of water molecules close to hydrophobic areas of
protein or ligand, conformational freedom would be gained. Thus, this energetic gain was mostly
attributed to entropy changes. However, it has been shown that enthalpy changes can also contribute
to the hydrophobic effect.82,86–88 Experimentally, the energetic contributions of the hydrophobic
effect range from -67 J mol−1 Å−2 (with no temperature indicated),89 to -125 – -138 J mol−1 Å−2 and
-119 – -149 J mol−1 Å−2 (at room temperature).90,91

The question about the main driving force of protein-ligand association is still topic of discussion,
as exemplified by studies from Setny92,93 and re-interpretation of his studies by Graziano.94 Setny
constructed a model protein-ligand binding site (Figure 1.5).92 Using MD simulations he concluded that
the driving force of protein-ligand association was enthalpy-driven due to water reorganization. Then,
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Graziano derived a different interpretation of the same set-up of the protein-ligand binding site.94 He
concluded that the gain in enthalpy due to water-water hydrogen bond formation is compensated
by the simultaneous loss in entropy. Thus, in his opinion, enthalpy cannot be the driving force of
protein-ligand association. Again, Setny commented on the conclusions from Graziano, stating that
his interpretation neglects dehydration effects of the binding site, which contribute to the overall
thermodynamics.93

Figure 1.5: Model protein-ligand binding pocket used by Setny92,93 and Graziano;94 The dashed line indicates
the solvent accessible surface area relevant for the shown binding event.

Kinetics

Water molecules not only play a significant role in the thermodynamics of e.g. protein-ligand associa-
tion, but they also influence their kinetics, i.e. the residence time of a ligand in a binding site. Classically,
IC50, the necessary concentration to inhibit half the enzyme activity, and kD , the dissociation constant,
are frequent measurements for binding in vitro. However, especially in vivo the time-scale of protein-
ligand interactions influences the magnitude as well as the duration of a response.95–98 Therefore,
the individual kon and ko f f rates are of interest. The importance of kinetics for drug development can
also be seen in recent efforts by a public-private consortium approaching open questions such as
transition from in vitro to in vivo or standardized data formats.98

Schmidtke et al. analyzed heat shock protein (Hsp) 90 inhibitor complexes for which detailed
thermodynamic and kinetic data were available.99 They concluded, that buried hydrogen bonds, i.e.
polar atoms that are almost unaccessible, are exchanged at a lower rate. Thus, a hydrogen bond that is
highly inaccessible for water molecules can be a rate-limiting step in protein-ligand binding. Bortolato
et al. evaluated the role of water molecules for ko f f rates.100 Using a combination of different
computational methods, Adenosine A2A receptor antagonists were examined. Herein, unfavorable
water molecules, also called ‘unhappy’ water molecules, included in protein-ligand binding sites
influence off-rates. The number of unhappy water molecules as well as their actual positions in
the binding site are of relevance. MD simulations were also applied to calculate kinetic parameters
computationally.101,102 For more information on the use of MD simulations for generation of kinetic
data please refer to Deganutti et al..103
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1.2 Computational Methods for Water Molecule Predictions

Over the last years, many different methods for the characterization and prediction of water molecules
became available. On the one hand, they can be separated according to the aim of the method:

A1 Classification of conserved vs. non-conserved waters,

A2 Estimation of the relevance of a water molecule,

A3 Prediction of water locations alone or in combination with their energetic contributions.

On the other hand, the different methods can be classified based on their underlying method:

M1 Empirical/Knowledge-based methods,

M2 Statistical/Molecular mechanics methods,

M3 Molecular dynamic simulation methods, and

M4 Monte-Carlo simulation methods.

In most cases, empirical/knowledge-based methods (M1) are applied to different aims, especially to
points A1 and A2, while the prediction of water locations and their thermodynamic profiles (A3) are
often employed by methods M2, M3, and M4.

1.2.1 Underlying Technologies

In the following paragraphs, methods and theories applied by the water prediction tools are briefly
introduced.

Free Energy Perturbation (FEP)104–107 calculates the relative free energy between two systems
using the Zwanzig equation:104

∆G A→B =−kT ln

〈
exp

(
−∆E AB

kT

)〉
A

(1.2)

Herein, system A is the reference state, while system B displays the perturbed state. T is the
Temperature and k is the Boltzmann constant. The energy difference between the two states ∆G A→B

is the average of the ensemble generated by system A. Energy convergence can only be achieved
if system A and B have a large enough overlap and are relatively similar. The latter is ensured by
applying a reaction coordinate λ, which resembles the reference state (λ= 0) and the perturbed state
(λ= 1). Any value in between describes a non-physical hybrid of both states. In FEP applications, the
reaction coordinate λ is split and multiple λ windows are sampled.

Thermodynamic Integration (TI)108–110 generates a potential of mean force (PMF) using the gradient
of free energy over the aforementioned reaction coordinate λ, denoted as (δG/δλ)λ. This free energy
surface along the coordinate is calculated at different points of λ. The full PMF is generated by
numerical integration of the different λ points. An alternative approach, finite-difference thermo-
dynamic integration (FDTI), uses an approximation (∆G/∆λ)λ to obtain finite differences. Thus, the
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differences between the reference states at λ and the perturbed state at λ+∆λ can be calculated
using the Zwanzig equation (1.2). An advantage compared to FEP is the improved overlap between
the reference and perturbed state by using ∆λ. Therefore, the Zwanzig equation converges better. In
order to verify the approximation, the energy for the forward λ→λ+∆λ and backward λ→λ−∆λ
windows can be calculated with their absolute values being equal.

Inhomogeneous Fluid Solvation Theory (IFST)111,112 decomposes the solvation free energy into four
subunits: the solute–solvent energy, the solvent reorganization energy, and two entropic terms – the
solute–solvent entropy and solvent reorganization entropy.70 Thus, the effect on the free energy due
to a solute is calculated relatively to its bulk state. One advantage of IFST is the detailed differentiation
of energy contributions. On the other hand and directly related to this aspect is the high amount of
approximations that have to be made in combination with rather complicated calculations. A recent
study by Huggins and Payne resulted in a slight overestimation of entropic contribution but an overall
agreement between hydration free energy predictions.113

Cell Theory (CT)114 describes a method to calculate free energies of water molecules from computer
simulations. Each water molecules resembles a rigid body with hindered translations and hindered
rotations. Using computer simulations, potential energy surfaces are approximated. Thus, equilibrium
simulations of water allow the calculation of its free energy, enthalpy and entropy. The entropy term
can further be separated into translational, rotational, and conformational contributions.

Poisson-Boltzmann (PB)115–117 and Generalized Born (GB)118–121 are implicit solvation models. The
advantage compared to explicit solvation models is the lower computational cost. PB resembles the
electrostatic environment of a solute in a solvent containing ions. GB represents an approximation
of the PB equation and is therefore computationally less expensive. Herein, the solute is modeled
as spheres with dielectric constants different from the surrounding solvent. The combination of
PB or GB with a surface area (SA) term allows the energetic penalty when cavities in the solvent
are generated. Both PB/SA and GB/SA are too inaccurate to resemble single water molecules.
This is partly overcome by the implicit solvation model AGBNP2 by Gallicaccio et al..122 For more
detailed information of implicit solvent models and their application please refer to the following
publications.123–125

Apart from implicit solvation models, diverse explicit solvation models exist. Herein, Hess et al.
have conducted a study analyzing thermodynamic properties predicted for 13 amino acid side chains
using three different force fields (AMBER99,126 GROMOS 53A6,127 and OPLS-AA128) in combination
with five different water models (SPC,129 SPC/E,130 TIP3P,131 TIP4P,131 and TIP4P-Ew132).133 They
concluded, that different force fields lead to small variations in the calculated thermodynamics, while
the water model had a greater impact on the calculated energies. For more details on implicit and
explicit water models and their (dis-)advantages please refer to Onufriev et al..134
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1.2.2 Software Solutions

Knowledge-based Methods

Diverse empirical methods were developed to evaluate crystallographically observed water mole-
cules and classify them into conserved/bound water molecules and non-conserved/displaceable
ones.135–138 Consolv,135 WaterScore,137 and PyWATER138 mainly exploit environmental factors, such
as B factor and the number of hydrogen bonds, for this purpose. WatCH136 on the other hand
identifies conserved waters in related protein structures using a hierarchical clustering approach.

Other knowledge-based methods determine whether a crystallographically observed water
molecule is structurally relevant. Proasis WaterRank139 is a purely geometry based score, consisting of
hydrogen bond distances and angles of the crystallographic water molecule to its surrounding protein
partners. Herein, a maximum of two donors and two acceptors is allowed. The Relevance metric140 is
a combination of WaterRank and HINT score.141 Thus, it displays a combination of a geometric score
with the interaction strength of a water molecule to its surrounding hydrogen bond partners.

Apart from characterizing crystallographically observed water molecules, methods have been
developed that predict water positions and their corresponding energetic scores. Knowledge-based
methods are used to place water molecules, mostly focusing on structurally relevant ones,142–147 but
also to evaluate the energetic contribution of the predicted water positions.148–150

AQUARIUS142,143 and WATGEN144 rely on observable water positions in crystal structures around
amino acids. Those positions are transfered to the protein structure of interest and are used for
water placement. AcquaAlta145 has a similar approach as the previous two methods, but exploits the
information of small molecules contained in the Cambridge Structural Database (CSD).151 Herein,
interaction geometries for water molecules with different functional groups are analyzed. The ideal
interaction directions of protein and ligand are determined. They are scored and rank-ordered
by ab initio calculations. The ranking is thus used to place water molecules. WaterDock146 uses
AutoDock Vina152,153 to dock water molecules and thus identify suitable positions. A probabilistic
water molecule classifier is applied to predict the conservation of water sites and to identify what
type of atom, i.e. polar or apolar, can be used for its displacement. Xiao and coworkers developed a
tetrahedral water-cluster model, which makes use of amino acid triplets to derive feature triangles.147

The water molecule is then placed at the top of a tetrahedron of which the amino acids form the
bottom triangle.

The water placement procedure in Fold-X, a force field method,149 is based on the AQUARIUS
approach, using known water positions to generate new water positions in the protein-ligand interface
of interest. Those positions are then incorporated in the Fold-X force field and finally lead to water
positions that are included in the calculation of free energy changes of side chain mutations. The
HINT (hydropathic interactions) toolkit148 is a grid-based approach. Herein, available grid points in a
protein-ligand interface are scored with HINT.141 The most favorable sites are then used to place a
water molecule. The procedure is repeated with the already placed water molecules to account for
bridging water interactions. DOWSER++150 is the combination of DOWSER,154 AutoDock Vina153
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and WaterDock.146 Herein, internal cavities are detected and filled with water molecules.

Placing and/or scoring of water molecules is achieved using different methods: Statistical and
molecular mechanics, molecular dynamic (MD) simulations, or Monte-Carlo simulations.

Statistical and Molecular Mechanics Methods

GRID155–157 uses different probes to generate molecular interaction fields. Among these probes, one
mimics a water molecule. The entropic contributions are estimated indirectly using a so-called ‘dry’
probe, which is evaluating the hydrophobic effect. Similar to GRID, MCSS (multiple copy simultaneous
search)158–160 uses different probe molecules, i.e. a water probe, to generate maps with their preferred
locations. However, in contrast to GRID, MCSS does not use a grid but randomly distributes the
probe molecules. Those positions are then minimized to retrieve energetically preferred positions.
WaterFLAP161 is based on GRID. Potential water positions identified with GRID are optimized locally
and incorporated into the target structure. This procedure is repeated iteratively in order to not
generate multiple water layers. An additional probe ‘ENTR’ is used to reflect the entropy of the water
molecules. Using this probe, bulk-like water molecules are identified. Furthermore, the GRID ‘CRY’
probe is used to correct for hydrophilic regions. 3D-RISM (3D reference interaction site model)162,163

generated 3D solvent site profiles. Using integral-equation theory of liquids, equilibrium solvent
distributions can be obtained rapidly without sampling. Favorable hydration sited with localized
entropies, enthalpies and solvation free energies are revealed by the distributions. wPMF (water
potential of mean forces)164 generates atom pair potentials based on water and 40 protein atom
types. It is trained on nearly 4 000 protein structures to predict hydration sites and assign wPMF
scores. SZMAP (solvent Zap mapping)165 is the only tool using a grid-based semi continuum approach.
One explicit water molecule (a so-called water probe) is sampled while the surrounding is simulated
with a Poisson-Boltzmann continuum model (section 1.2.1). The thermodynamic properties are
calculated using the water probe, a neutral probe, i.e. with charges removed, as well as a vacuum
probe, with van der Waals terms removed. Setny et al. describe a semiheuristic solvation model
based on body-centered cubic (BCC) lattice.166–168 A water molecule is centered on a lattice point
such that its neighbors are arranged in a tetrahedral arrangement. The hydrogens of the water
molecule can occupy two of its eight direct neighbors, which results in a total of 12 possible water
orientations. The energy of a water molecule at a lattice point is calculated using a position dependent
effective Hamiltonian that includes solvent-solvent and solute-solvent terms. Iteratively, the lattice
configuration – either occupied by a water or vacant – is determined using the effective Hamiltonian.
This method is applied to predict buried water molecules in protein cavities.

MD Simulation Methods

WaterMap169,170 uses a short MD simulation to sample the available space within a protein. The
generated water positions are clustered and then IFST (section 1.2.1) is applied to calculate the
thermodynamic profiles of the generated water positions. Similar to WaterMap, STOW (solvation

13



1. Introduction

thermodynamics of ordered waters)171 uses an MD simulation in combination with IFST. Herein, mean
energetic interactions of specific water positions are provided. Applying rotational and translational
restrictions allows the calculation of an entropic penalty. SPAM (‘Maps’ spelled backwards)172 applies
a nanoscale MD simulation with explicit solvent. Using a site partition function, free energies are
calculated. The site partition function is based on local distribution relative to the perturbation in bulk
water. Water-water contacts are neglected in SPAM. WATsite173,174 exploits clustered MD trajectories.
The probability densities of translation and rotation of water molecules are used to estimate entropies.
In general, no water-water contacts are considered. GCT (grid cell theory)175–177 analyzes explicit
solvent molecular simulations based on the cell theory method (section 1.2.1). Herein, interaction
energies from water-solute to water-water are compared to retrieve thermodynamic properties. From
a single simulation, insights of the enthalpies and entropies of hydration are generated. WATCLUST178

predicts water sites that can subsequently be integrated into docking. An MD simulation is run to
determine structural and thermodynamic properties. BiKi Hydra179 analyses the persistence of water
molecules using an MD based analysis. Steered MD simulation are run, followed by a spatial density
analysis to measure the local water stability. Persistence of water molecules can be influenced
by favorable interactions as well as steric hindrance. GIST (grid inhomogeneous fluid solvation
theory)180,181 is a discretization of IFST onto a 3D grid. The use of a 3D grid allows the calculation
of water properties at every voxel of the grid. This way, explicit water locations are dispensable
and water properties are provided as a function of position. MixMD (mixed molecular dynamics)
has previously been used to identify active sites as well as allosteric sites in protein structures182

and was recently applied to predict the displaceability of water molecules.183 Six different probes,
representing different chemical properties, can be tested for potentially displacing water molecule.
The great advantage of this method is the knowledge about which probe is best able to displace a
water molecule. This information can potentially be used for rational-driven chemical alterations of a
ligand.

Monte-Carlo Simulations

RETI (replica exchange thermodynamic integration)184,185 aims at calculating relative hydration free
energies. Herein, a combination of FDTI and Hamiltonian replica-exchange method to enhance
the sampling is used. In addition to the above described TI (section 1.2.1), multiple replica of the
system are generated with different states being exchanged, when the Replica Exchange test is
passed. Thus, an ensemble distribution of the reaction coordinate λ is generated. Double decoupling
method186,187 simulates two different states: Once, the decoupling of water from bulk, second,
the decoupling of water from the receptor site. The latter is restrained to the active site of the
protein to limit the sampling space to achieve convergence. Using the differences, free energies
can be calculated. Double decoupling with RETI188 is a combination of the two previously explained
method. The thermodynamic properties are calculated using RETI for both decoupling processes.
JAWS (just add waters)189 also uses the double decoupling method to calculate energies. Herein,
the conformation of the protein chain is sampled, while water molecules appear and disappear on
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a grid. Thus, hydration site occupancies can be calculated and incorporated into the interaction
energy estimations. MCRS (Monte Carlo reference state)190 simulates atom-atom contact densities
by sampling the structural space with random probes. The aim is to predict hydration sites in proteins
and construct the reference state of a system. GCMC (grand canonical Monte Carlo)191–193 methods
try to circumvent the drawbacks of MD simulations, i.e. the lack of successfully filling protein cavities
isolated from the bulk. Using random moves – translation and rotation as well as deletion and
insertion – physical barriers are avoided. The number of particles, i.e. water molecules, is fluctuating
depending on a defined chemical potential. This chemical potential is usually defined from a priori
knowledge about the occupancy of the cavity. Ross et al. have developed GCMC to define the
chemical potential from the simulation itself.194 Finally, the relation between free energy of water
and chemical potential allows conclusions of the water affinity at specific locations. AquaBridge195 is
a Monte-Carlo based method to identify bridging water molecules in protein-ligand interfaces. Those
positions can subsequently be integrated into docking.

1.2.3 Evaluation and Comparison Studies

Most of the aforementioned tools were validated on limited amount of data and only the distances be-
tween the placed and crystallographic water molecules were reported. The authors of DOWSER++150

suggested statistical criteria for water placement evaluation. The criteria are based on the number of
true positive – water molecules placed close to crystallographically observed ones – and false positive
predictions – water molecules placed without close crystallographic ones. Thus, the sensitivity, also
called recall, and false discovery rate of the method were calculated:

Sensitivity=χ=
∑

True Positive
NX−r ay H2O

(1.3)

False discovery rate=µ=
∑

False Positive
Npl aced H2O

(1.4)

Reliability= ρ = (1−µ) ·χ (1.5)

NX−r ay H2O is the total number of crystallographically observable water molecules and Npl aced H2O

the total number of placed water molecules. The false discovery rate is difficult to interpret. The
number of observable crystallographic water molecules is limited. This is due to the fact, that the
protein crystal structure is only an average of multiple protein structures, but also that waters close
to the macromolecule are spatially more confined than others. Further, water molecules are not
necessarily in the focus during structure elucidation or might be placed by automatic placement
tools. Additionally, the crystal contacts, i.e. further protein units of the crystal, would also need to
be considered in case the area of the protein where water molecules are placed is affected by them.
Using a combination of sensitivity and false discovery rate, Morozenko et al. calculate a reliability score
ρ. They applied DOWSER++ to a data set from Sleigh et al.196 consisting of conserved water positions
from 14 high- to medium-resolution structures of oligopeptide binding protein bound to a tripeptide

15



1. Introduction

(Lys-X-Lys). Based on their distance criteria of 2.0 Å between a placed and a crystallographically
observed water molecule, they correctly placed 85% of the water molecules (χ = 0.85) while the
number of false positives was kept low (µ = 0.2). Thus, they achieved a reliability ρ of 0.69. According
to their evaluation, WaterDock146 achieved a higher sensitivity (χ = 0.95). However, WaterDock
placed more water molecules than crystallographically observable (µ = 0.93), which lead to an overall
reliability ρ of 0.07.

In 2014, as part of the critical assessment of predicted interactions (CAPRI), a blind prediction of
protein-protein interfacial water positions was performed.197 Twenty groups that previously submitted
docking positions for another CAPRI study – docking predictions for the complex of DNase domain
of colicin E2 and Im2 immunity protein – were invited to predict interfacial water molecules for that
target. A total of 195 different models was submitted and evaluated based on 35 water-mediated
contacts. Herein, two aspects concerning the sensitivity of the models were analyzed: (1) fraction of
recalled water mediated contacts (fW MC (nat)) and (2) fraction of recalled water molecules (fW (nat)(r)).

Recall(WMC)= f W MC (nat ) =
nW MC

p

nW MC
t

(1.6)

Recall(W)= f W (nat )(r ) =
nW

p−matched (r )

nW
t

(1.7)

nW MC
p is the number of correct predicted water mediated contacts, nW MC

t the number of crys-
tallographically observed contacts, nW

p−matched (r ) the number of predicted water molecules in a
certain distance r to a crystallographically observed water molecule, and nW

t the total number of
observed crystallographic waters. Within 1.0 Å distance, a maximum of 40% of the crystallographic
water molecules was matched in combination with a maximum recall of water mediated contacts of
60%. Only 6% of the submitted models had f W MC (nat ) above 0.5, which means that only half the
water-mediated contacts were re-created correctly.

The sensitivity of the methods due to the absolute coordinates of waters or protein atoms was
only evaluated for SZMAP165 and WatSite.173,174 The sensitivity of SZMAP results were analyzed by
shifting water positions up to 0.5 Å 200 times. The score variability of the water ensemble was
analyzed. Depending on the system, ∆∆G varied between 4.3 and 45.8 kcal mol−1. WatSite results
have been evaluated concerning the impact of the used MD parameters as well as the variation of
binding site residue conformations. Results showed that a 4ns MD simulation is long enough to
achieve reliable water sites. However, variation of over 0.5 Å in amino acid conformations let to
inconsistent hydration sites and predicted energies.

Very few comparisons of different software solutions exist. Many tools have been applied to
different problems, as recently reviewed by Bodnarchuk198 or collected in a perspective about water
prediction methods.199 However, a thorough comparison, i.e. the application of different compu-
tational tools on the same target structure is hard to find. A study by Bodnarchuk compared three
different Monte Carlo based methods – JAWS, double-decoupling with RETI and GCMC – applied
to N9 neuraminidase.200 The three methods predicted consistent water energies for a single and
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isolated water molecule. From the three tested methods, the results of JAWS can be more difficult
to interpret, especially when water networks lead to overlapping density contours. Bortolato et al.
have combined different methods – WaterMap, SZMAP, GRID, GCMC, and WaterFLAP – for the
evaluation of ligand residence time for A2A receptor (see section Kinetics 1.1.3).100 They created the
water network with SZMAP, optimized it with a customized version of WaterMap and then predicted
the water energies with SZMAP, WaterMap, GRID, and GCMC. Finally, they analyzed the water net-
works to draw conclusions about ligand residence time. Overall, they mainly attributed the different
residence time to trapped unfavorable water molecules in the protein ligand binding sites. Another
combination of tools – GRID, WaterMap, and SZMAP201 and GRID, WaterMap, and WaterFLAP202 –
has been applied to studying the druggability of GPCR binding sites. Herein, the hydration differences
were studied and related to the overall druggability of the active site. Not only the absolute number
of energetically unfavorably contributing water molecules influences the active site druggability,
but also their location and arrangement within the binding site. Explicit water networks to derive
conclusions about energetics and kinetics display a ‘third dimension’ in drug design strategies. Re-
cently, a comparison of SZMAP, WaterFLAP, 3D-RISM, and WaterMap was published.203 The four
water prediction methods were used for predicting the energetic contribution of water molecules in
three target proteins. The water energies were used to explain experimentally observed structure
activity relationships (SARs) that could not be explained by protein-ligand interactions themselves.
Overall, Buchner et al. concluded, that water energy prediction software can be useful to guide
drug development studies. However, none of the methods outperformed any other method in
this study. While WaterMap showed predictions in accordance with observed SAR, the predicted
value of an unfavorably scored water molecule exceeded the experimentally observed energy upon
displacement of the water molecule.

1.3 Relevance and Applications

Apart from the diverse computational tools specifically developed for the analysis and prediction
of characteristics of water molecules, they play important roles in different other computational
techniques such as virtual screening and docking. Moreover, multiple studies were conducted that
analyze the consequences of water molecule displacement within a protein structure.

1.3.1 Water Molecules in Computer-Aided Drug Design

Diverse computational approached in computer-aided drug design have been augmented by the
integration of water molecules. Most prominent are docking and virtual screening approaches. Herein,
different strategies exist. Methods such as GOLD,204 GLIDE,205,206 and SLIDE207 allow the treatment
of explicit water molecules using a full atom representation. However, due to the computational cost,
often only few water molecules can be handled explicitly. Other approaches such as FlexX208,209

and FITTED210–212 treat waters as spherical particles.
GOLD includes the scoring of water mediated interactions as well as water displacement during
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protein-ligand docking. GLIDE applies implicit solvation and the user can additionally select explicit
water molecules. Further development, called GLIDE XP, includes water desolvation energy terms into
the scoring function, i.e. a penalty for polar atoms that are insufficiently solvated as well as estimation
of a penalty for water molecules with high amount of hydrophobic contacts. SLIDE is a docking
algorithm that allows side chain flexibility during docking to account for induced complementarity of
protein active site and ligand. Herein, conserved water molecules are considered based on predictions
from Consolv (see 1.2.2). The conserved water molecules can translate during docking or are fully
displaced. The displacement of conserved water molecules is integrated into the scoring function
as a penalty term. Displacement of water molecules is penalized only if its due to apolar groups.
Additionally, the penalty term is scaled using the confidence of conservation based on Consolv. FlexX
allows user defined in- or exclusion of water molecules. Further development of the so-called ‘particle
concept’209 allows explicit water placement. FITTED was developed for docking of flexible ligands
into flexible proteins. The docking and virtual screening performance was evaluated for different water
representations: (1) fixed integration of crystallographic water molecules, (2) displaceable integration
of crystallographic water molecules, (3) placement of water particles, or (4) no water molecules at all.212

They concluded that overall a flexible representation of the protein is advantageous in combination
with displaceable crystallographic water molecules.

Multiple docking approaches are based on AutoDock.152,153,213,214 One development explicitly
for docking water molecules, WaterDock,146 has already been mentioned in the previous section
(see 1.2.2). Furthermore, water molecules have also been integrated into docking tools to enhance
their original purpose – docking of ligands into protein binding sites. A combination of AutoDock
and GIST incorporates thermodynamics of active-site water molecules into the scoring function
for protein-ligand docking.215 Herein, a GIST-based desolvation function was integrated into the
AutoDock scoring function to account for the displacement of unfavorable water molecules. Their
application to dock 52 ligands into coagulation factor Xa resulted in a higher scoring accuracy as well
as better docking poses. They further applied their AutoDock-GIST function to a virtual screening of
factor Xa from the directory of useful decoys-enhanced (DUD-E)216 resulting in a higher enrichment
and better area under the curve (AUC) values. Uehara et al. further assumed, that displacement energy
might already be implicitly included in scoring functions due to their training on experimental binding
affinity. Thus, they suggested that more effort should be put on an explicit water term to account
for their displacement energies. For the analyzed water molecules in factor Xa they concluded that
most of them were energetically unfavorable based on their enthalpic contributions rather than their
entropic contributions. Another approach based on the AutoDock force field217 was developed by
Forli et al.218,219 Herein, water molecules, represented as spherical particles with combined donor
and acceptor functionality are attached to ligands prior to docking. During the docking process, their
positions are iteratively evaluated. The force field has been adapted to account for a spherical water
model to calculate and include enthalpic and entropic water contributions. The inclusion of water
molecules into the docking process led to an accuracy increase of 10% and 11.7% for training and test
set, respectively. Not only for protein complexes but also for RNA the inclusion of displaceable water
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molecules led to an increase in docking accuracy as shown by Moitessier et al..220

Apart from the above mentioned combination of AutoDock and GIST, DOCK3.7 was combined
with GIST to enhance the docking performance by including water-displacement energies.221 Ret-
rospectively, 25 targets of the DUD-E were used to calibrate the weights of DOCK3.7 and GIST
terms. Then, a prospective docking run was performed for a model cavity in cytochrome c peroxidase.
Among the top 1000 scored poses, more than 50% overlap between GIST vs non-GIST docking.
However, the combination of GIST and DOCK3.7 showed a correct ability to prioritize molecules.

A study by Huang et al. used a dynamic on/off-switching of water molecules, which led to an
increase in docking accuracy.222 Another recently developed docking method and scoring function,
WScore, is based on WaterMap calculations.223 Herein, water locations and thermodynamics are
derived from WaterMap calculations. An ensemble docking approach is applied to account for protein
flexibility. Water molecules are treated flexible during docking, with the possibility of being displaced
into bulk. Desolvation effects are assessed based on solvation of polar and charged groups of protein
and ligand.

As shown by multiple studies,212,224–227 the influence of water molecules on the docking accuracy
is greatly influenced by the protein system. Other computational approaches where water molecules
can be considered are 3D-QSAR models228–231 as well as pharmacophore models.232–235 More
information about chemoinformatic strategies can be found in D1.

Many of the aforementioned techniques rely on the availability of apo- or holo-structures of the
protein of interest. However, especially apo-structures are not necessarily available. Additionally, the
implicit assumption that the water molecule positions do not significantly change between apo- and
ligand-bound structure is not always true. The same applies for holo-structures. The binding mode
of the crystallized ligand might be different from the ones used in the docking procedure. Therefore,
water placement tools display an opportunity to place water molecules even if the binding mode
changes or no apo-structures are available.

1.3.2 Water Molecule Displacement Studies

Diverse studies, computationally as well as experimentally, have been conducted to analyze the
displaceability of water molecules.

Experimental Studies

In the following section, experimental studies on displaceability and relevance of water molecules will
briefly be discussed. Generally, cyano groups,20,21,236 halogens,237 mimicry of the water molecule’s
interactions,238 or methyl groups (‘magic methyls’),239 are exploited for water displacement strategies.
For more details on the exploration of water molecules in drug discovery, please refer to a recent
perspective240 on the roles of water molecules.

Scytalone dehydratase (SD) is an enzymatic determinant for fungal disease targeting rice plants.
A developed inhibitor241 showed an extended hydrogen bond network with side chains and two
water molecules (Figure 1.6a). Thus, another inhibitor series was developed aiming at displacing one

19



1. Introduction

of the water molecules to achieve an energy gain.20 Herein, the water was displaced using a cyano
group (Figure 1.6b), resulting in three proposed aspects concerning the thermodynamics: (1) entropy
gain by water displacement into bulk, (2) less entropy loss due to conformational limitations, i.e. the
ortho-CN substituent limits the conformational flexibility of the ligand, and (3) enthalpic gain due to
interactions between inhibitor and protein. Inhibition constants due to different ligand alterations
(Table 1.2) show that displacing the water molecule leads to the largest affinity increase. While a
carbon atom is most unfavorable, due to no interaction with the water, a nitrogen atom is more
favorable, probably due to a potential hydrogen bond interaction to the water molecule, while the
cyano group, displacing the water molecule, shows the best inhibition.

(a) SD with a salicylamide inhibitor
(PDBid 1std241).

(b) SD with cyanocinnoline inhibitor
(PDBid 3std20).

Figure 1.6: Example of water displacement in SD; Figures were generated using the ProteinsPlus Server.84

Table 1.2: Inhibition constants of different SD inhibitors taken from Chen et al.;20 * represents different ligand
alterations listed in the table; ligand ids are taken from Chen et al..20

Ligand ID * Ki (nM)

6d C 140 ± 9
5d N 0.22 ± 0.02
7d CC#N 0.0077 ± 0.001

Non-additive effects of ligand alterations in thermolysin (TLN) were attributed to disruptions of
the water network.242 Herein, sequential addition of substituents, methyl and carboxylate, let to a
moderate affinity gain for the first addition independent of which substituent was added first (Figure
1.7 and Table 1.3). However, the addition of the second substituent, again independent of which one,
led to a larger affinity gain. The analysis of the water network surrounding the ligands, showed a
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disruption of the water network upon addition of the first substituent and a re-organization after the
second addition.

(a) Superposition of 1 and 2. (b) Superposition of 1 and 3. (c) Superposition of 1 and 4.

Figure 1.7: Example of water network rearrangements in TLN with different inhibitors;242 Initial inhibitor 1 (orange,
PDBid 3t73); Inhibitor 2 with methyl substituent (blue, PDBid 3t8f); Inhibitor 3 with carboxylate
substituent (purple, PDBid 3t8g); Inhibitor 2 with both substituents (green, PDBid 3t74); Ligand IDs
are taken from Biela et al..242 (Molecular graphics were created using UCSF Chimera.65)

Table 1.3: ITC measures for TLN taken from Biela et al..242

Ligand ∆∆G◦ ∆∆H◦ -T∆∆S◦

1 → 2 -2.2 +2.5 -4.7
1 → 3 -1.0 -3.5 +2.5
1 → 4 -6.7 -16.8 +10.2

DNA methyltransferase (DNMT) contains a highly integrated water molecule, which mediates the
recognition of histone H3 with a trimethylated lysine (H3K36me3, Figure 1.8).243 The recognition
of DNMT and H3K36me3 initiates the methylation of DNA. Herein, a water molecule mediates
between the serine side chain (Ser270) of DNMT and the trimethylated lysine backbone oxygen
(3mLys36) of H3. A mutation of the DNMT serine to proline (Ser270Pro) leads to an affinity loss, thus
a decrease in DNA methylation. The lack of methylated DNA leads to a disease called ICF syndrom
(immunodeficiency, cantromeric instability and facial abnormalities). Rondelet et al. hypothesized
that upon mutation of Ser270Pro the water mediated interaction is no longer possible, which leads to
an affinity decrease. Another structural aspect that has been mentioned by Ge et al. is the tryptophane
(Trp263) interacting with Ser270.244 Upon mutation, Trp263 is no longer able to form a hydrogen
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bond with Ser270Pro and thus might need to adapt its conformation. Due to Trp263 being part of
the aromatic cage necessary for the recognition of the trimethylated lysine, this might lead to an
additional steric hindrance in binding of H3K36me3 by DNMT.

Figure 1.8: DNA methyltransferase (DNMT, light blue) with histone H3 recognition site (H3K36me3, red, PDBid
5ciu).243 Water-mediated hydrogen bonds between Ser270 of DNMT and backbone oxygen of
trimethylated Lys36 of histone H3 are indicated with yellow dashed lines.

Salie et al. examined the unusual long half-life of a HIV reverse transcriptase inhibitor.245 They
reasoned that this might be due to ordered water networks in the active site. The identification of
four structurally relevant water molecules in the active site of β-amylase led to the conclusion that
those waters keep eight side chains conformationally restricted.246 These strategic water molecules
can be displaced by ligand oxygen atoms. However, the number of displaced water molecules is
determined by the substrate type, the remaining water molecules guide the correct orientation and
hydrogen bond network in the active site necessary for the catalytic functionality of the enzyme.

Some water molecules in protein structures have proven to be difficult to displace or only without
the expected affinity gain. Levinson et al. analyzed the significance of structural water molecules in
Src kinases.247 A pair of structured water molecules in the kinase active site is conserved among 40
different kinases with 164 ligands. They conclude that water mediated interaction can be critically
exploited for specificity during drug development and should thus gain more attention throughout this
process. Similar observations were made for HIV protease, where the exploitation of water-mediated
interactions can be used for potent inhibitor design.248
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Computational Studies

Different protein systems have been subject to computational studies about the displaceability of
water molecules. Especially WaterMap has been applied to various protein targets. A summary of
those applications can be found in a recent review.249

Factor Xa, a protein of relevance in blood coagulation, has been studied by WaterMap170 as
well as GIST181 analysis. The WaterMap study concluded that enthalpic contributions resulted from
displacing hydrophobically enclosed water molecules, while entropic contributions were due to
displacement of hydrogen bonded water molecules. Additionally, they suggested to score water
molecules not only based on the current complex, but to consider its contribution upon displacement.
Energetically, the GIST study reached similar results, namely that energy may outweigh entropy
in cases of strong hydrophobic binding, which was previously shown experimentally86,88,169,250 as
well as computationally.92 Similar conclusions were drawn from an IFST study of 103 ligands in the
ATP binding site of heat shock protein 90 (Hsp90), a molecular chaperone that aids other proteins
folding correctly.251 Haider et al. observed a better correlation between experimental binding affinity
and predicted interaction energy than with predicted free energy. This is explained by less entropic
contributions to the overall binding affinity.

An IFST calculation was done for a highly conserved water molecule in HIV protease, which
cleaves so-called polyproteins to generate functional mature proteins.252 Herein, to displace the
water molecule, it was mimicked by an urea group. Compared to the carbonyl group of urea the
water molecule is more favorable. Although the interactions of the carbonyl group are calculated
to be slightly more favorable (-16.9 kcal/mol) than the free energy of the water molecule (∆Gsol v =
-15.2kcal/mol), the desolvation of the carbonyl group (+5 kcal/mol) leads to an overall unfavorable
contribution.

A TI calculation was applied to analyze the SH3 domain of Abl tyrosine kinase, a mediator of
protein-protein interactions and therefore of relevance in cellular signaling.253 Different functional
groups were analyzed concerning the displacement of a tightly bound water molecule. Interestingly,
hydroxyl, formamide, and an ethyl groups led to a favorable energy gain, while methyl and amine
groups resulted in an unfavorable energy.

WaterMap analysis of A2A receptor, a regulator of myocardial oxygen consumption and coronary
blood flow, allowed the comprehension of affinity changes upon ligand alterations.254 Herein, small
apolar substituents led to a decrease in affinity, while larger hydrophobic substituents led to an
increase. The water molecule analysis concluded that small substituents competed with favorable
water molecules, thus leading to no affinity gain while larger substituents reached into an area with
unfavorable water molecules. The displacement of those sterically unstable water molecules led to
an affinity gain. Overall, these results show the importance of water molecule analysis, because in this
case the differences in affinity would not have been explainable by effects such as ligand-receptor
interactions or steric effects. Another study of the A2A receptor identified an ‘unhappy’ water molecule
as the reason for an unexpectedly large affinity gain (33-fold) upon addition of a methyl substituent –
a so-called ‘magic methyl’.239
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A Concanavalin A study based on NMR experiments and MD simulations showed that a distorted
water molecule contributed favorably.255 Concanavalin A is a lectin for storage and defense mecha-
nisms in plants. NMR studies showed that a hydroxyethyl moiety was not able to displace a conserved
water, but led to a distortion. The authors suggested that the entropic gain (max 2.0 kcal mol−1) would
not outweigh the enthalpic loss upon displacement. This study contradicted previous conclusions
from ITC calculations,256 which were based on the displacement of the conserved water molecule.

As concluded previously by Garcia-Sosa257 and shown by the above mentioned examples, it
is difficult to predict the energetic outcome upon water molecule displacement. Diverse aspects
have to be considered – water network effects, hydrophobic effect, enthalpic as well as entropic
contributions among others. At the same time, these aspects show the relevance and importance of
water molecules in drug design strategies.

1.4 Motivation and Thesis Content

Even though many aspects concerning the relevance of water molecules are already known, it is still
an ongoing field of research. In order to understand binding aspects – protein-ligand as well as inter
and intra protein – in more detail, it is necessary to understand the role of water molecules in greater
detail. As shown in the previous sections, water is an integral part of the protein structure and has to
be considered correctly.

Diverse areas of computer-aided drug design (CADD) could profit from a better understanding
and integration of water molecules into software solutions, from docking, to scoring, to analyzing
different water networks as a result of protein flexibility (D1). Frequently applied software solutions
for placing and scoring water molecules are time-consuming. A dynamic application to large amounts
of protein-ligand complexes is thus limited. At the same time, existing water prediction tools are
hardly evaluated thoroughly. Further demands on water prediction tools are usability aspects such as
easy-to-use and easy-to-interpret. If too many (too) close water molecules are predicted, the result is
hard to interpret. In addition to this, the predictions should be consistent, i.e. if the crystallographically
observable water network is not perturbed by ligand changes and the amino acids around the water
molecules are not changed either, the predicted water locations as well as thermodynamics should
be consistent. Furthermore, the method should – ideally – not depend on the protein system, but
should be applicable universally.

Since it is hardly possible to retrieve binding affinity data for single water molecules experimentally,
other means of validation needed to be considered. Protein structure models are an interpretation of
the experimentally collected data, the diffraction patterns. The electron density data is exploited,
since it is the only experimental data abundantly available for water molecules. The developed
metric, called EDIA – Electron Density of Individual Atoms – allowed an automated comparison of
the structural model with its underlying electron density (D2 and D3). This way, the foundation for
validating the following water placement procedure was built.

In order to place water molecules, freely available space within protein structures needs to be
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identified correctly. Since water molecules participate in hydrogen bonds, a large-scale analysis was
performed (D4, D5). Hydrogen bond geometries were derived from this study, which were used as a
starting point for placing water molecules (P1).

In a final step, the predicted water positions were integrated into and scored with HYDE. Two
aspects were considered concerning the estimation of the energetic contribution of water molecules:
The energy value of the water molecule itself and in its surrounding. This gave valuable information
about the ‘happiness’ of the water molecule. If a water molecule has a favorable energy contribution,
it is unlikely to be displaced by a ligand. On the other hand, if the energetic contribution is unfavorable,
this water molecule displays a possible means of increasing the protein-ligand binding affinity.
Therefore, a suitable ligand is needed to displace the water molecule.

Finally, a comparison of state-of-the-art water programs (P2) as well as further application sce-
narios (D6, D7 and D8) were conducted.
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2
EDIA – Structure Validation Using Electron

Density

Water molecules display a great challenge when it comes to the availability of experimental data.
As explained in Chapter 1.1.1 X-ray structures constitute a great means of resources and are readily
accessible via the PDB.23 However, just because water molecules are modeled in the X-ray structure
does not necessarily mean that they are observed experimentally.258 The X-ray structure is already
an interpretation of the X-ray diffraction pattern collected through exposure of protein crystals to
X-ray beams (Figure 2.1).

Figure 2.1: Structure elucidation process: (1) protein crystals259 are placed in an X-ray beam and diffraction
patterns260 are collected; (2) generation of electron density model from diffraction pattern using
Fourier transformation (FT); (3) molecular modeling of the atomistic structural model into the electron
density.
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The electron density, which is nowadays available for a large amount of protein structures, was
exploited for the validation of water molecules. Using the electron density a metric for automatic
evaluation of atoms with their underlying electron density was developed – EDIA (Electron Density
of Individual Atoms). First, EDIA was developed solely for water molecules, i.e. a single oxygen atom.
A more detailed description of the EDIA calculation can be found in D2. Then, EDIA was advanced
to handle multiple atoms, such as ligands, amino acids, or whole proteins, called EDIAm . For more
details on EDIAm see D3. In this chapter the basic methodologies of EDIA and EDIAm are explained.

2.1 General Overview

The EDIA was developed as a means of validation for the water placement and water scoring pro-
cedures developed in the course of this dissertation. Herein, an objective and – more importantly –
automatic measurement for the quality of water molecules was needed.

As already mentioned in Chapter 1.1.1, different measures exist for the evaluation of protein
structures. However, existing measures such as B-factor, RSR, or RSCC were either not sufficient or
too elaborate for our application. The B factor depends on the structure refinement and can thus
be influenced. Additionally, it does not contain information about the underlying electron density.
Other measures, such as RSR or RSCC, include the back calculation of an electron density grid from
the modeled structure to compare it to the experimentally observed electron density. However, they
do not consider clashes or unaccounted electron density. From a modeling perspective, the fit of
the given structural model into the electron density is of interest. Thus, EDIA was developed which
quantifies the fit of the given model into the available electron density.

The EDIA calculation was modeled by a Gaussian-like function, in which the electron density grid
values closer to the center of the respective atom were assigned a greater weight, than density grid
values at the outer radius (Figure 2.2a EDIA). Thus, water molecules could be classified based on the
underlying electron density.

The EDIA was developed further to being able to handle multiple atoms, called EDIAm . Different
aspects have to be considered, when electron density coverage for multiple atoms is calculated.
Especially neighboring effects such as covalent bonds, clashes, or unaccounted electron density
have to be considered. These effects were integrated into the EDIAm calculation by putting great
emphasis on the assignment of electron density ownership, i.e. the mapping of electron density
to individual atoms. This way, the single electron density grid points (Figure 2.2) were assigned to
one or – in case of covalent bonds – to multiple atoms. Based on the assigned ownership, electron
density grid values are considered up to twice the radius of an atom. While electron density values
are mandatory up to the full radius of the atom, electron density at further distances is unwanted and
can be used as an indicator of problematic structural aspects (Figure 2.2a EDIAm ). Using the EDIAm

whole protein structures, single amino acids, or individual atoms can be quantified based on their
underlying electron density support.
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2.1. General Overview

(a) Weighting of electron density grid values by EDIA and EDIAm .

(b) Extensive water network with one water molecule (A 2254) without electron density support (PDBid 1of8261);
Corresponding EDIA/EDIAm values are given in the abstracted hydrogen bond network (center).

(c) Electron density of an incorrectly modeled me-
thionine (Cys B 85) and water molecule (B 1497)
with corresponding EDIA and EDIAm values (PDBid
1hp0262).

(d) Protein secondary structure colored by EDIAm

(PDBid 1hp0262).

Figure 2.2: Calculation of EDIA and EDIAm and example structures; EDIAm coloring scheme: blue (well resolved)
to red (not sufficiently supported by density).
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2.2 Validation of Water Molecules

The initial application of the EDIA was to analyze the characteristics of water molecules. Therefore, a
high-resolution PDB subset was compiled, with resolutions better than 1.5 Å. Even for high-resolution
structures, we were able to show that almost 9% of all water molecules were insufficiently resolved.
The majority of these unresolved water molecules was located at the protein surface, where water
molecules are in general more flexible. Due to the atomic structure being an average of multiple
proteins in the protein crystal, non-localized water molecules lead to a less clear signal. However, also
water molecules close to protein-ligand or protein-protein interfaces were found to be unresolved,
3.8% and 3.3%, respectively. Overall, this shows the importance to distinguish water molecules and
critically reviewing the data provided in X-ray structures.

With the development of EDIA we are now able to differentiate between water molecules that are
well resolved by electron density and those that are not (Figure 2.2b). The compiled high-resolution
data set provides a basis for the validation of further method development throughout the following
chapters.

2.3 Validation of Multiple Atoms

The developed EDIAm allows the validation of X-ray structures as well as the evaluation of com-
putational methods such as docking or geometric optimization prior to scoring. For our intended
application, small molecules, amino acid side chains, or whole proteins are subject to a geometric
optimization, called GeoHYDE. After optimization, the structure should still be in agreement with its
underlying electron density. Thus, an automatic evaluation is necessary as a quality measurement –
EDIAm .

The developed EDIAm can be used for both, the validation of single atoms (Figure 2.2b) as well
as the analysis of amino acid side chains (Figure 2.2c) or whole proteins (Figure 2.2d). The EDIAm

also allows to automatically compile data sets with well resolved structures. Herein, analysis showed
that out of 45,113 ligands from PDB structures 77% were well resolved (EDIAm ≥ 0.8). In a detailed
comparison with other existing measures, such as B factor and RSCC, the advantages of EDIAm could
be shown. Especially the automatic error detection, such as clashing atoms, too few or too much
electron density, or shifted electron density, can aid a more detailed structural understanding.

Overall, the EDIAm is well suited for both requested tasks, structure validation as well as quality
criterion for structure optimization purposes.
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3
NAOMInova – Analysis of Interaction

Geometries

A critical step for placing water molecules is the correct identification of areas within protein complexes
where water molecules would fit. Since most water molecules form (multiple) hydrogen bonds in
protein structures, the idea was to exploit unsatisfied hydrogen bond functionsa from ligand or
protein atoms as a starting point for water placement. Therefore, different interaction types and their
corresponding interaction geometries were analyzed.

IsoStar,263 is a commercially available tool for the analysis of atom distributions around a central
functional group. Herein, predefined functional groups are available. However, IsoStar was too strict
in its functional group definitions compared to the objectives of this analysis. SuperStar264,265 is
another tool for the analysis of ‘hot spots’ in protein-ligand interfaces. It is based on data derived from
IsoStar and allows the identification of favorable areas within a protein-ligand interface for specific
functional groups. Both, SuperStar and IsoStar, do not allow a sufficient geometric analysis of the
atom distributions with the flexibility needed for the purpose of this analysis.

Thus, the tool NAOMInova was developed. For more information on the methodical details see D4
and for its application to hydrogen bond interaction definition see D5. In this chapter, the underlying
method of NAOMInova is briefly explained and its applications are presented.

aA hydrogen bond function is a donor hydrogen or an acceptor lone pair.
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3.1 General Overview

NAOMInova is a tool for geometrically analyzing atom distributions around a substructure, e.g. a func-
tional group of interest. Herein, great emphasis was put on the flexibility of the analysis opportunities.
The user can define the data for which an analysis should be performed, either a subset from the
PDB, in-house data, as well as MD trajectories. The substructures can be determined by either using
a SMARTS expression or by visually selecting atoms from a small molecule. Finally, the analysis of
the data can be filtered with diverse geometrical as well as chemical criteria. A general overview of
the data preparation as well as data analysis process is given in Figure 3.1.

Figure 3.1: Overview of NAOMInova data preparation (left) and data query (right) process. Protein structures: A user-
defined selection of protein structures is used as input for the NAOMInova database. Data preparation:
Structural information is stored in the database and a user-defined substructure can be defined. This
substructure is searched in the given structures and according to specifications of the user, i.e. EDIAm

or SMARTS for a description of the immediate surrounding. Atoms within 4.5 Å, so-called partner
points, are stored in the database for later querying. Data analysis: Based on diverse chemical as
well as structural criteria, the database can be queried for stored partner points. The substructure in
combination with the partner points can be analyzed visually for geometric characteristics as well as
their underlying structures using the integrated back-link option.
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Apart from the geometric analysis of data, NAOMInova also provides the option of analyzing a
protein-ligand binding site of interest. Herein, suitable filtered data can be super-imposed in the
protein-ligand active site. Thus, preferred interaction directions or assemblies of surrounding atoms
can be visualized and analyzed. For applications of binding site analysis please see D4.

3.2 Analysis of Hydrogen Bond Geometries

The development of NAOMInova allowed the analysis of diverse interaction types in more detail.
Additionally, NAOMInova provided the necessary flexibility for further geometric analysis of hydrogen
bond interaction geometries.

Two main purposes were subject of this analysis: (1) the definition of preferred interaction geome-
tries and (2) the verification of the used interaction geometries in the NAOMI software library.266–268

Evaluating Hydrogen Bond Geometries

For our evaluation of hydrogen bond geometries, we focused on the evaluation of atom distributions
around a functional group within ideal hydrogen bond distances (2.6 – 2.9 Å). Some publications
mention a more linear geometry at shorter hydrogen bond distances269,270 or in other words, wider
distributions of partner atoms at larger distances. The main problem at larger distances, especially
greater than 3.0 Å, is the distinction between ‘true’ hydrogen bonds and coincidental contacts. Thus,
we kept the distance for our analysis between 2.6 Å and 2.9 Å to focus on relevant hydrogen bond
geometries.

Definition of Hydrogen Bond Geometries

Diverse applications rely on hydrogen bond geometries: most existing scoring functions and also the
throughout this dissertation developed water placement procedure. Since the defined geometries
are used for scoring the quality of hydrogen bonds, it is assumed that the number of observations
relates with their energy contributions.

With NAOMInova 22 different functional groups were analyzed. Especially for sp2 hybridized
oxygen atoms, such as oxygen atoms of a carbonyl, amide, or ester, differing geometries were
observed. Those differences between sp2 oxygen atoms were not expected. Additionally, the
geometries varied from those used within the NAOMI library (Figure 3.2). Due to a rectangular
geometry, modeled as a spherical rectangle, the new geometry (Figure 3.2b) is rotated by 90◦

compared to the previous definition (Figure 3.2a).

For more information on the briefly described evaluation and definition of hydrogen bond ge-
ometries please refer to D5.
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(a) ‘Old’ geometry definition. (b) Experimentally derived geometry.

Figure 3.2: Spherical rectangle geometry of a primary amide oxygen; only one interaction direction is shown by
the blue surface.

3.3 Water-Surrounding Analysis

Further, NAOMInova was applied to the analysis of distances between water molecules and their
surrounding atoms. This information was needed for the water placement procedure where the
overlap of surrounding atoms with a water molecule was of interest.

As expected, distances to polar atoms (nitrogen and oxygen) were shorter than the sum of the
van der Waals radii (Table 3.1 and Figure 3.3a). Herein, oxygen atoms showed closer distances than
nitrogen atoms, with the majority of surrounding atoms at 2.8 Å and 3.0 Å respectively. Therefore,
the distribution of oxygen atoms was analyzed more closely. Oxygen atoms were classified according
to their origin (Figure 3.3b). However, no significant difference in the distributions could be observed.
The intensity of the peak resulting from small molecule oxygen atoms is lower than the remaining
ones. This might be due to a higher amount of oxygen atoms in small molecules as shown by a higher
percentage of oxygen atoms at larger distances.

Table 3.1: Van der Waals radii (rvdW ) of analyzed atoms.

Atom rvdW (atom) [Å] rvdW (atom + water† ) [Å]

O 1.52 2.92
N 1.55 2.95

C 1.70 3.10
S 1.80 3.20

F 1.47 2.87
Cl* 1.75 3.15
Br 1.85 3.25
I 1.98 3.38

† Water radius was set to 1.4Å.
* Major contributor to the distance distribution in Figure 3.3a.
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3.3. Water-Surrounding Analysis

(a) Different elements as partner atoms; nitrogen (N), oxygen (O), sulfur (S).

(b) Oxygen partner atoms separated by different origins; back bone (bb), water (hoh), small molecule (mol),
side chain (sc).

(c) Carbon partner atoms separated by different origins; back bone (bb), small molecule (mol), side chain (sc).

Figure 3.3: Volume normalized distance distributions of different atoms around a water molecule as the central
group based on the high-resolution PDB subset from D2.

Weak hydrogen bonds, such as CH· · ·O or halogen bonds, have been subject to several studies
throughout the last years.271–273 Therefore, their distances to water molecules were analyzed. Halogen
atoms showed distances closer than the sum of the van der Waals radii (Table 3.1 and Figure 3.3a). The
major contributor to the distance distribution was chlorine (80%). The main peak is just above the sum
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of the van der Waals radii of chlorine and water (peak: 3.2 Å; rvdW : 3.15 Å). A visual inspection of 10%
of chlorine atoms closer than 3.0 Å revealed only chloride ions and no small molecules containing a
halogen. Sulfur and carbon atom distributions had significant intensities only at distances greater
than the the sum of their van der Waals radii. Still, we took a closer look at carbon atoms to monitor
any close distances that could arise due to so-called weak hydrogen bonds.271–273 Independent of its
origin, no significant amount of distances closer than the sum of the van der Waals radii could be
observed (Figure 3.3c).

The information about water-surrounding distances was used in the water placement procedure.
Herein, available areas within the protein have to be identified and atoms that could be closer to a
water molecule than the sum of their van der Waals radii need to be respected adequately. For more
details on the usage of the distance information see Chapter 4 and P1.
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The previous two chapters display a requisite for placing water molecules (Chapter 3) as well as a
means of validating the developed water placement procedure (Chapter 2). The derived interaction
geometries were exploited to identify space within the protein complex suitable for water molecules.
Due to a discretization of the interaction geometry surfaces, a clustering approach was used to derive
final water positions. Subsequently, the derived water positions were optimized and subject to
HYDE scoring (HYDEw ater ) to predict their energetic contributions (Figure 4.1). For a more detailed
explanation of the method and validation procedure see P1. In this chapter, the identification of
free space, the water placement procedure, and the estimation of water energy contributions are
described.

Figure 4.1: Overview of water placement and scoring work-flow; Protein structure: HIV protease (PDBid 1kzk274).
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4.1 Identification of Water Molecules

Especially when it comes to cavities in protein structures or to protein-ligand binding sites, an implicit
representation of water molecules may not be sufficient. On the one hand, the number of donor and
acceptor functions needs to be considered. One water molecule has two donor and two acceptor
functions in a tetrahedral arrangement, thus a maximum of two acceptors and two donors can be
satisfied by one water molecule (Figure 4.2). On the other hand, and directly in connection with the
previous aspect, the orientation of the water molecule is important. Especially if multiple atoms with
donor and acceptor functions are in the vicinity of one water molecule they might not be arranged
such that the water molecule can satisfy all hydrogen bond functions (Figure 4.2b).

(a) Geometric arrangement of acceptor (A) and donor (D) functions of
a water molecule.

(b) Tetrahedral arrangement of donor
(D) and acceptor (A) atoms around
a water molecule in ideal hydrogen
bond distance (2.7Å).

Figure 4.2: Geometric specifications of water molecules.

The HYDE scoring function played an essential role in the development of the water placement
algorithm. HYDE is sensitive to geometric criteria of hydrogen bonds. Thus, explicit water molecules
are mandatory. However, water molecules are not always resolved, especially in X-ray structures with
less than 2.5 Å resolution. On the other hand, scoring functions are applied to protein-ligand docking
poses where water molecules are not available.

For the above reasons, a consistent availability and representation of water molecules in protein
structures is needed. The developed water placement procedure consists of two steps (Figure 4.3):
(1) The identification of free space within protein structures and (2) the generation of explicit water
positions.
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Figure 4.3: Overview of free space identification (left) and water placement procedure (right). The identification
of free space has two main steps and forms the basis for the water placement, which consists of
three main steps. IA = interaction; H-bond = hydrogen bond; FIPs = free interaction points.
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4.1.1 FSI – Free Space Identification

The identification of free space (FSI) is based on derived interaction geometries from a large-scale
evaluation of protein structures (Chapter 3 and D4). Using a discretization approach, explicit positions
for water molecules were generated, further called potential water positions (PWP). Herein, the
interaction geometries were discretized using concentric circles (Figure 4.3 Identification of free space).
Depending on the type of interaction together with its chemistry type and its geometry type, different
geometric criteria, i.e. cone or spherical rectangle, as well as angle specifications, were applied
(Appendix B.2).

Concerning the discretization, two different aspects have to be considered – the accuracy as well
as the run-time. Both aspects mutually influence each other: the smaller the distance between PWPs,
also called dot distance, the larger the run-time, while more coarse-grained sampling reduces the
run-time, but leads to a loss in accuracy.

The dot distance is directly connected to the accuracy of the method. Therefore, a criterion, further
called overlap criterion, for ‘available’ versus ‘occupied’ needs to be determined before evaluating the
accuracy dependence of the dot distance. Every PWP was subject to the overlap criterion. Herein,
the distances to atoms surrounding the PWP were evaluated. In case of polar atoms, adjusted atom
radii were used (Equation 4.2). Due to potential hydrogen bonds from a water molecule to a polar
atom, the distances can be shorter than the sum of their van der Waals radii (Figure 3.3). Thus, the
radii of polar atoms were adjusted to allow potential hydrogen bonds (Figure 4.4). Since all analyzed
apolar atoms showed no van der Waals radii overlap (Figure 3.3), their van der Waals radius was used
without any adjustment for the determination of accessibility of a PWP.

2.6Å = 0.895 · rvdW
(
apol ar

)+0.866 · rH2O (4.1)

=⇒ rad j
(
apol ar

)= 0.895 · rvdW
(
apol ar

)−0.134 · rH2O (4.2)

Figure 4.4: Adjustment of polar atom radii according to water-surrounding analysis (Section 3.3).

After defining the overlap criterion, the best dot distance, i.e. the distance between individual
PWPs, was evaluated. Different dot distances were examined for their achieved accuracies to identify
an optimal balance between accuracy and run-time. Herein, accuracy is defined as an available PWP
(further called free interaction point or FIP) close to a crystallographically observed water molecule.
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The evaluation was based on the previously compiled high-resolution PDB subset (Chapter 2.2).
Finally, a dot distance of 0.4 Å led to a high accuracy, comparable to accuracies achieved with smaller
dot distances (Figure 4.5a), while the run-time was kept at an intermediate level (Figure 4.5b). The
developed FSI was compared to a basic procedure, in which only the ideal interaction direction
was used to identify free space. This procedure is faster, due to no sampling, but the accuracy is
significantly lower (Figure 4.5).

(a) Achieved accuracies by different voxel distances.
Lines connecting the individual points are for vi-
sualization purpose only.

(b) Run-time differences by voxel distances for single
interactions and whole complexes.

Figure 4.5: Evaluation of different voxel distances for the discretization of interaction geometries; Best PWP
is used to evaluate the accuracy of the free space identification (figure inlet); ’Basic’ is an approach
where only the ideal interaction direction is used for the identification of free space.

Overall, the FSI showed a high accuracy in correctly identifying free space in protein structures
for water molecules (Figure 4.6). Thus, the method can be applied to both, implicit handling of water
molecules for areas where the exact orientation is less relevant, i.e. at the protein surface, but also as
a starting point for explicitly placing water molecules.

(a) Accurate identification of a confined area for
a water molecule (Asp43, PDBid 1isp7 ).

(b) Accurate identification of no free space for a
water molecule (Arg112, PDBid 3inh275).

Figure 4.6: Examples for the identification of free space in protein structures; purple spheres = free space; light
blue spheres = occupied space.
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4.1.2 WarPP – Water Placement Procedure

The basis for the water placement procedure (WarPP) are unsaturated interaction directions of protein
or ligand atoms. Since protein structures usually do not contain hydrogen atoms, we used Protoss276

for the optimization of the hydrogen bond network. Without considering the crystallographically ob-
served water molecules, hydrogen atoms were added and the hydrogen bond network was optimized
as well as protomers and tautomeric states adjusted.276

Clustering of PWPs

Unsaturated interaction directions, as well as directions with non-ideal geometries, were selected for
subsequent water placement using the FSI (Figure 4.3 Water Placement). For the water placement,
rotatable functional groups were modeled as capped cones (Figure 4.7). Modeling explicit interaction
directions (Figures 4.7a and 4.7b) had the disadvantage of regions with no FIPs at all as well as differing
geometric scores, which depend on the initial Protoss run and influence the water placement. In
contrast, a capped cone (Figure 4.7c) had a continuous distribution of FIPs with the same geometric
score on the same concentric circle.

Every FIP displayed a potential position of an explicit water molecule. However, a selection had to
be made to place a biologically reasonable amount of water molecules, ideally the same amount as
crystallographically observable. Diverse clustering approaches exist that are applied to drug discovery
problems.277 However, several aspects had to be included during clustering, such as the geometric
score, the origin of the FIP, the hydrogen bond angles as well as distances. In order to include all of
them, we developed our own approach. An approach was evaluated, where the points would cluster
themselves, i.e. the points are shifted towards each other until they have approximately the same
position. The approach is agglomerative, which means that single FIPs are merged to receive final
water positions. More details on the water placement procedure and its parametrization can be found
in P1.

Optimization of Water Positions

During the water placement procedure, FIPs were drawn towards better hydrogen bond geometries.
Due to the maximum cluster distance of 1.4 Å water positions can be closer to each other than the
allowed minimum hydrogen bond distance. Therefore, a refinement step was added to ensure correct
distances between the placed water molecules.

A gradient-based optimization procedure was selected with four optimization criteria: (1) Op-
timization of water-water distances; (2) Maintaining hydrogen bonds to polar surrounding atoms
of water molecules; (3) Avoiding clashes with surrounding atoms; (4) Maintaining hydrogen bonds
between the placed water molecule and their atoms of origin, i.e. those atoms that provided FIPs for
the water placement.

The numerical optimization was performed using an in-house implementation of the BFGS
algorithm (see Nocedal et al.278 for a detailed description of the BFGS algorithm).
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(a) Top view of explicitly modeled donor (cone) and acceptor (spherical rectangle) IA geometries.

(b) Side view of explicitly modeled donor (cone) and acceptor (spherical rectangle) IA geometries.

(c) Implicit representation of IA geometries using a capped cone.

Figure 4.7: Interaction (IA) geometries for the hydroxyl oxygen atom of a threonine side chain; For color coding
of IA surface points see Figure 4.3.

The developed optimization strategy was evaluated using crystallographically observed water
positions. Based on the previously compiled high-resolution PDB subset (Chapter 2.2) all protein-
ligand complexes with well resolved ligands (EDIAm ≥ 0.8) were selected. For the evaluation, only
structurally relevant water molecules, i.e. with an EDIA between 0.24 and 3.5 as well as two hydrogen
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bonds to ligand or protein atoms of the active site, were used. Overall, about 20,000 water molecules
were used for the evaluation. The selected crystallographically observed water molecules were
optimized. 85% of the water molecules were shifted less than 0.5 Å away from its crystallographic
position, 96% less than 0.75 Å and 97% less than 1.0 Å (Figure 4.8a). Thus, we were confident to use
the developed optimization strategy to refine placed water positions.

Evaluation and Conclusion

Four different criteria were analyzed for the evaluation of WarPP: (1) Sensitivity, (2) precision, (3)
water–water distance distribution, and (4) EDIA values for placed water molecules.

For the evaluation of placed water molecules, we need to differentiate between sensitivity and
precision (Table 4.1). The sensitivity (Equation 4.3) gives information about how many crystallographi-
cally observed water molecules are matched by placed water molecules, while the precision (Equation
4.4) contains information about how many water molecules are placed that are not matched by
crystallographically observed water molecules.

Sensitivity= T P

T P +F N
= T P

Number of X-ray waters
(4.3)

Precision= T P

T P +F P
= T P

Number of placed waters
(4.4)

Table 4.1: Terminology of a confusion matrix for water placement; X Å = selected distance.

Observed category

X-ray water available No X-ray water

Pr
ed

ic
te

d
ca

te
go

ry

Pl
ac

ed

True positives (TP) = placed water molecule
in X Å distance to a crystallographically de-
termined water molecule

False positives (FP) = placed water molecule
without a crystallographically determined
water molecule within X Å distance

N
ot

pl
ac

ed

False negatives (FN) = crystallographically
determined water molecule without a
placed water molecule within X Å distance

True negatives (TN) = no crystallographically
determined water molecule and no placed
water molecule within X Å distance (cannot
be calculated)

WarPP was evaluated using the same data set as for the evaluation of the optimization strategy.
The sensitivity of our method was calculated using placed water molecules and their distance to the
crystallographically observed water molecules. We achieved a sensitivity of 47% within 0.50 Å and of
80% within 1.0 Å (Figure 4.8a). The precision was calculated using all water molecules with a sufficient
EDIA, but it was not limited to water molecules with two interactions. Thus, our method achieved a
precision of 40% within 0.5 Å and of 66% within 1.0 Å (Figure 4.8b). The drop in precision compared
to sensitivity has multiple sources. First, water molecules might be too flexible to be defined to a
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specific position, i.e. surface water molecules or those at the rim of the active site. Second, water
molecules might not have been modeled in the crystal structure due to different reasons (Figure 4.8c).
And third, water molecules might be part of another crystal symmetry, which was not considered
during the evaluation process (Figure 4.8d).

(a) Sensitivity achieved by optimizing X-ray waters and
placed water molecules with and without optimiza-
tion.

(b) Precision achieved with placed water molecules.

(c) Unmodeled water molecules within an active site
(PDBid 3igb275); Blue mesh = electron density map
(2fo-fc map) at 1σ; red/green mesh = electron den-
sity difference map (fo-fc map) at -3σ and +3σ,
respectively.

(d) Water molecules placed at positions of polar atoms
of another asymmetric unit (PDBid 1ovp279); Red
spheres and ball-and-stick representation with
green carbons = neighboring crystal contact.

Figure 4.8: Sensitivity and precision of water placement procedure with examples cases; Water molecules in
ball-and-stick representation = placed water molecules. Dashed lines in a) and b) are for visualization
purpose only.

In addition to the sensitivity and precision, the pair-wise distances of the placed waters were
evaluated. Placing water molecules should lead to correct hydrogen bond distances between the
water molecules. Thus, measuring water· · ·water distances contains useful additional information
about the hydrogen bond network beside the absolute number of placed water molecules. Herein,
placed water molecules are expected to show a similar distance distribution to crystallographically
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observed water molecules. Compared to observed water distance distributions (Figure 3.3b), the
placed water molecules show a narrower peak with a maximum between 2.7 Å and 2.8 Å (Figure 4.9a).
A drop in density can be observed at 3.1 Å, which is due to the function used for the optimization of
water molecules. Overall, the distance distributions between observed and placed water molecules
agree well with each other.

The electron density was exploited to further validate the quality of placed water molecules.
Herein, the EDIA values for crystallographically observed, placed, and randomly distributed water
molecules were calculated (Figure 4.9b). For the random distribution of water molecules, the binding
site was evenly distributed using a 3D grid with a voxel distance of 2.2 Å. The active site residues
were used as maxima and minima for the grid definition. Every voxel within 8.0 Å of the ligand was
assigned either available to water molecules or unavailable based on the previously defined overlap
criterion. If the voxel was available, the EDIA for the respective position was calculated. The grid was
shifted separately in x, y, and z direction by 1.1 Å to achieve a better sampling of the active site. The
voxel distance should roughly resemble hydrogen bond distances. However, a distance of 2.6 Å let to
almost no available voxels on the 3D grid. Thus, the distance was reduced to 2.2 Å. Compared to the
EDIA distribution of crystallographically observed water molecules, placed water molecules have
a larger amount of EDIA values between 0.0 and 0.2. 45% of the placed water molecules achieve
EDIA values above 0.4 while only 1% of randomly distributed water molecules have an EDIA greater
than 0.4. Overall, the placed water molecules have a better quality than randomly distributed water
molecules but are less accurate than crystallographically observed ones.

No other available water placement methods were evaluated on a comparable sized data set.
Often, a data set consisting of the same protein family was used and only conserved crystallographic
water positions were considered for water placement predictions.145,146,150 Additionally to the small
data sets, the sensitivity is mainly calculated for placed water molecules within 1.5 Å or 2.0 Å distance
of crystallographically observed ones. Compared to other methods, WarPP achieves a high sensitivity
while keeping the precision at a fair level.

Compared to the FSI the sensitivity drops significantly at low distances due to the great change in
the number of available positions considered for the evaluations, i.e. for the FSI the whole interaction
surface is used, while for WarPP only one discrete position is considered. Additional problems for the
water placement are different amino acid side chain orientations that cannot be differentiated based
on the electron density. For example, histidine side chains can flip, resulting in the same electron
density but in swapped polar and apolar atoms. Thus, in one state an interaction is feasible while in
the other a carbon atom occupies the position. Crystal symmetry displays another interesting aspect
for analysis. On the one hand, as described above, some of the placed water molecules are actually
crystallographically available when symmetry operations are applied to the protein structure. At the
same time, further available amino acid side chains from the symmetry unit could lead to a more
precise placement due to their occupancy of space where, without considering crystal symmetry
units, space for a water molecule would be available. However, especially the consideration of crystal
symmetry units highly depends on the biological relevance of the crystal contact. If it actually has

46



4.1. Identification of Water Molecules

(a) Pair-wise distance distribution of placed water molecules; blue = volume normalized distance distribution
without optimization; yellow = volume normalized distance distribution with optimization.

(b) EDIA distribution of crystallographically observed water molecules (red), placed water molecules (green) and
randomly placed ‘water probes’ (blue).

Figure 4.9: Evaluation of placed water molecules by pair-wise distances and EDIA.

a biological relevance, i.e. the functional protein is displayed by the crystal contact, it should be
considered during water placement. If it is only a crystal artifact, i.e. the crystal contact only exists
due to crystallization conditions, it should not be taken into account during water placement.

Runtime

The placement of water molecules in the active site (8.0 Å around the ligand atoms) takes on average
6.8 sec and 0.08 sec per water molecule placed.

For further methodical details and the evaluation of the water placement please refer to P1.
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4.2 Energetic Contribution of Water Molecules

The energetic contribution of water molecules is of interest for various reasons: First, water molecules
contribute to the overall binding affinity, not only of protein-ligand complexes, but also to protein-
protein interactions or the stability of a protein itself. Second, replacing water molecules is a common
strategy in drug development to enhance the binding affinity of a small molecule to its protein binding
site. Therefore, the most promising water molecules need to be identified to apply rational-driven
ligand alterations.

However, the most difficult aspect is the estimation of the energetic contribution of a single water
molecule. As described in Chapter 1.1.1, it is experimentally hardly feasible to measure the contribution
of a single water molecule. Even if a water molecule is displaced by a ligand, it is always replaced
with an extension of the ligand. Thus, the energy difference is always a result of the water molecule
displacement in combination with the ligand extension, which also contributes to the binding affinity.
According to theoretical considerations (Chapter 1.1.3), the maximum free energy contribution of a
single water molecule is estimated to be between -0.7 and -2 kcal mol−1.

An aspect that is especially relevant for the integration of water molecules in a scoring function,
is their representation. Water molecules in bulk form up to four hydrogen bonds with an average
of two geometrically high quality hydrogen bonds.280–283 Therefore, the energetic contributions of
water molecules may need a different handling than other ligand atoms during scoring.

4.2.1 HYDE Scores for Water Molecules

Diverse aspects of the calculation of the HYDE scoring function15–19 were adapted in the course of
this dissertation. Below, only the main alterations that directly implicate water scores are described.
For more information on the HYDE scoring function please refer to Appendix B.1. For differentiation
reasons, the HYDE versionb that built the foundation of this dissertation will be called HYDE2012.

Calculation of ∆GHYDE

The total HYDE score consists of a saturation and dehydration term.

∆GHYDE = ∑
atoms i

∆G i
saturation +∆G i

dehydration (4.5)

The dehydration term is calculated differently for polar and apolar atoms. While for polar atoms their
hydrogen bond functions j (HB j ) are considered, the difference in accessible surface area (∆acc i ) is

bFor further information please refer to the dissertation of N. Schneider.17
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used for apolar atoms.

∆G i
dehydration =∆G i ,pol ar

dehydration +∆G i ,apol ar
dehydration (4.6)

∆G i ,pol ar
dehydration =−2.3 ·RT ·p logP i · ∑

HB j
w j ·p j

dehyd (4.7)

∆G i ,apol ar
dehydration =−2.3 ·RT ·p logP i ·∆acc i (4.8)

R is the gas constant, T the temperature, and p logP the partial logP parameter based on octanol-
water partition coefficients (Appendix B.1.1). For polar atoms, the contribution of hydrogen bond
functions is multiplied by a weighting term w j (Equation 4.13). If an atom has only one hydrogen
bond function, the weighting term w j is one. In case an atom can form multiple hydrogen bonds,
the weights are distributed among the different hydrogen bond functions. While the probability of
dehydration p j

dehyd (Equation 4.12) is considered for the dehydration term, the geometric quality

f j
dev of the hydrogen bond influences the saturation term. The geometric quality f j

dev of a hydrogen
bond is determined by four measurements: heavy atom distance, head-head distance, i.e. of the
electron pair and the hydrogen atom, donor, and acceptor angles (see P1 for more information). More
details about the assignment of hydrogen bond weights and the dehydration probability are given
later in this chapter.

∆G i
saturation = 2.3 ·RT

Fsat
·p logP i · ∑

HB j
w j · f j

dev (4.9)

The principle calculations of the HYDE scoring function (Equations 4.5 – 4.9) were not altered. How-
ever, the underlying calculations were changed with a special focus on two aspects: (1) A more accurate
representation of water molecules and (2) a reduction of discrete decisions. The latter point is of
importance for the geometric optimization of protein-ligand structures, called GeoHYDE. Discrete
decisions lead to steps in functions, which are difficult for optimization algorithms.

The HYDE score represents the difference between the unbound and the bound state of a protein-
ligand interaction (Figure 4.10). In order to differentiate between hydrogen bonds already existing in
the unbound state, a classification was introduced in HYDE2012: external IA (interaction), internal IA,
no IA, or covered. External IAs were those that exist only in the bound state, while internal IAs already
existed in the unbound state. No IAs were hydrogen bond functions that were either fully or partially
accessible to water molecules (Section 4.2.1). While covered meant that the hydrogen bond function
was not accessible to water and does not participate in a hydrogen bond.

In order to remove these classifications and consider the difference between the unbound and
bound state directly, we calculated the HYDE score for both states – unbound and bound – separately
(Equation 4.10).

∆GHYDE =∆GHYDE
(
bound

)−∆GHYDE
(
unbound

)
(4.10)

A change in the HYDE score calculation was only necessary for the hydrophilic score contributions,
since the hydrophobic term of the HYDE score already included the difference of the surface area
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accessibility between the unbound and bound state. The change in the calculation of the hydrophilic
score contribution allowed the inclusion of the quality of protein· · ·water and ligand· · ·water inter-
action in more detail. In the exemplary protein-ligand binding site in Figure 4.10, red hydrogen
bonds exist in the unbound as well as the bound state. Thus, they cancel each other out and do
not contribute to the overall binding affinity. If water molecules are present that do not change
upon binding, such as enclosed ones, they do not contribute to the binding affinity. Yellow depicted
hydrogen bonds are those to water, which change upon binding and green are those hydrogen bonds
that are formed during binding. The geometric scores for the yellow depicted hydrogen bonds are
approximated by implicit water molecules (Section 4.2.1 Inclusion of Implicit Water Molecules). Thus,
the difference between the hydrogen bond in the unbound and the bound state can lead to an
affinity gain, in case the hydrogen bond in the unbound state was qualitatively less ideal, or to a drop
in affinity, in case the hydrogen bond is more restricted in the bound state.

Figure 4.10: Calculation of the total HYDE score by explicitly calculating the unbound and bound HYDE score
contributions; red dashed lines = hydrogen bonds (HB) that do not change between unbound and
bound state; yellow dashed lines = HB to water molecules in the unbound state; green dashed lines
= inter HB formed upon protein-ligand binding.
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Calculation of the Dehydration Probability

The basic algorithm used for calculating the dehydration probability, the probability if a hydrogen
bond function is accessible to water or not, was based on a search in ideal interaction direction in
HYDE2012 (Figure 4.11a). The dehydration probability was calculated as a function of the water volume
that would fit in ideal interaction direction. If less than half a water volume would fit, the hydrogen
bond function would be termed inaccessible (pdehyd (0.5VH2O) = 0.0). From half a water volume to a
full water volume the dehydration probability increased linearly (pdehyd (1.0VH2O) = 1.0). The intention
of using half a water volume, was to identify areas with shifted water molecules, i.e. those not in ideal
interaction direction. However, half a water volume can lead to false positives, i.e. the identification
as accessible, even though a water molecule would not fit, as well as false negatives, i.e. not enough
space in ideal direction but enough space for a full water molecule located at a larger deviation angle.

Herein, the free space identification, introduced in the previous section, was applied (Section
4.1.1) to correctly identify those interaction directions, where no water molecule would fit, and those,
where the placement of a water molecule would still be possible (Figure 4.11b).

(a) Basic algorithm: evaluation of free space in ideal
interaction direction by testing for 0.5VH2O .

(b) Sampling algorithm: searching the full interaction
area with a full water molecule (see also Figure 4.3).

Figure 4.11: Basic and enhanced algorithm for the identification of free space in HYDE and the calculation of the
dehydration probability pdehyd .

The dehydration probability is now given by the geometric quality a water molecule would get at
the first available PWP (Equations 4.11 and 4.12).

f F SI
dev = fdev (PW P ) (4.11)

pdehyd = 1− f F SI
dev (4.12)

Contribution of Hydrogen Bonds

Based on a study of small molecules, molecular surface area and experimental octanol/water partition
coefficients – logP – were related.18 The study showed that the hydrophilicity of small molecules is
independent of the number of hydrogen bond functions of one polar atom, i.e. primary, secondary,
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and tertiary amines let to the same contribution to the logP value. These results led to the assumption
that only the first hydrogen bond should contribute to the binding affinity, which is in contrast to
an often applied scheme, where the energetic contribution of hydrogen bonds is assumed to be
additive.

These results were integrated into the HYDE2012 scoring function. Thus, the first hydrogen bond
of a polar atom contributed most to the free energy, while the following hydrogen bonds contributed
to a smaller extend. This model is called ‘100-20-10’ model, due to the weight of 100% for the
first hydrogen bond, 20% for the second, and 10% for the third, while more hydrogen bonds do
not contribute any further. The additional 20% and 10% cannot be explained by experimental data
derived from the logP analysis. Thus, a simplification of the ‘100-20-10’ model was generated, called
‘100-0-0’ model, which represented the assumption of the original publication. Another equally valid
assumption from the logP results would be an equal distribution of energetic contribution among
the hydrogen bond functions. Since discrete assignments of unequal weights lead to cliffs in the
scoring function, which is inappropriate from an optimization point of view, the weighting-scheme
was adapted to consider the hydrogen bond quality f j

dev . Thus, a change in the hydrogen bond quality
during optimization leads to a smooth transition of the hydrogen bond weights w (Equation 4.13).

w j =



1 if # IAs= 1

(
f

j
dev

)2+
(∑

IAs k 0.0001·pk
dehyd

)
−0.0001·p j

dehyd∑
IAs k

(
f

j
dev

)2+(#IAs−1)·
(∑

IAs k 0.0001·pk
dehyd
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(
f

j
dev

)2+
((∑
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dehyd

)
−p

j
dehyd

)
· 1

16∑
IAs k

(
f

j
dev

)2+(#IAs−1)·
(∑

IAs k pk
dehyd

)
· 1

16

if atom of origin = water

(4.13)

For every hydrogen bond function j of an atom a the weight w j is calculated under consideration of
all hydrogen bond functions k of a. If a has exactly one hydrogen bond function (# IAs = 1), a weight
of one is assigned. If atom a has multiple hydrogen bond functions (# IAs > 1), the weight is calculated
according to equation 4.13. Herein, hydrogen bonds of the same quality fdev contribute equally. If
only one hydrogen bond is formed or one hydrogen bond has a significantly better geometry, this one
contributes most. In case no hydrogen bond in formed, the dehydration penalty (pdehyd , Equation
4.12) takes control of the weighting scheme, which ensures an energetic penalty for inaccessible and
unsaturated hydrogen bond functions. Water molecules are treated separately from other protein
or ligand atoms. Water molecules build on average two qualitatively ideal hydrogen bonds in bulk.
Thus, the weighting scheme ensures a favorable energy contribution when the water molecule builds
two geometrically high-quality hydrogen bonds in the protein-ligand complex. A comparison of the
different weighting models is shown in Table 4.2.

Inclusion of Implicit Water Molecules

The dehydration probability was used to define the accessibility of hydrogen bond functions and can
subsequently be used to determine the contributions of implicit water molecules.
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Table 4.2: Weights for hydrogen bond functions for the central water molecule according to different weighting
schemes; Geometric quality, fdev , for each hydrogen bond (HB, yellow dotted line) is annotated at its
respective interacting atom; X = covered hydrogen bond function (HBF).

HB weights

Model HBH2O···Li g HBH2O···OH HBH2O···N H HBFH2O···X
100-20-10 100% 20% 10% 0%

100-0-0 100% 0% 0% 0%

fdev -based 37% 37% 20% 6%

Based on the HYDE theory, a stabilizing energy contribution is achieved due to a better geometric
quality of hydrogen bonds in the bound state, than compared to hydrogen bonds to surrounding
water molecules in the unbound state (Fsat , Equation 4.15).

Funsat (T ) = ∆H f +Cp (T −273K )

∆H f +∆H273K−373K +∆He
(4.14)

Fsat (T ) = 1−Funsat (T ) (4.15)

The enthalpy of fusion ∆H f = 6.0 kJ mol−1 describes the necessary enthalpy to go from ice to liquid
water at 273 K. Cp is the specific heat capacity of water (Cp = 0.0745 kJ mol−1 K−1) and is constant
between 273 K and 373 K. Thus, the enthalpy for heating water at a constant pressure of 1000 hPa
can be calculated as ∆H273K−373K = Cp ·∆T = 7.5 kJ mol−1. The enthalpy of evaporation, to go from
liquid water at 373 K to vapor, is ∆He = 40.7 kJ mol−1. The fraction of unsaturated hydrogen bonds
(Funsat ) can thus be calculated assuming that Funsat in bulk water is proportional to the administered
heat to the system.

Fsat represents the remaining fraction of satisfied hydrogen bonds, which is 0.855 at room
temperature (298 K). Therefore, implicit water molecules can achieve at maximum a geometric
quality of 0.85 (Equation 4.16) while their dehydration probability is set to 1.0 (Equation 4.17), which
leads to a maximum energetic contribution of a hydrogen bond to an implicit water molecules of
0.0 kJ mol−1.

f i mpl i ci t
dev = 0.85 · (1−pdehyd ) (4.16)

p i mpl i ci t
dehyd = 1.0 (4.17)

If a hydrogen bond is formed to an implicit water molecule in the unbound as well as bound state with
exactly the same saturation and dehydration contribution, it will not affect the total binding affinity.
In case a hydrogen bond is formed to an implicit water molecule in the unbound state, while upon
binding a hydrogen bond between a protein atom and a ligand atom is formed, the energy difference
contributes to the binding affinity. An energy gain is only achieved if the hydrogen bond between
protein and ligand has a better quality than the implicit water hydrogen bond in the unbound state.
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4.3 Implications of Placed Water Molecules on the HYDE Scoring

Function

In HYDE2012, explicit water molecules were counted as part of the protein. Thus, only the interactions
between water and ligand were considered as contributing to the binding affinity. Through modeling
implicit water molecules as well as considering the energy difference between the unbound and
bound state, water molecules are now differentiated. If they do not change, i.e. if they are enclosed
water molecules, they do not contribute to the overall energy difference. Explicit water molecules at
the interface, i.e. protein-ligand interface, are considered implicitly in the unbound state and explicitly
in the bound state. Thus, water molecules can now contribute to the overall binding affinity through
water· · ·protein and water· · · ligand interactions.

4.3.1 HYDEwater – Scoring of Water Molecules

Different energetic contributions of water molecules are of interest for scoring. On the one side,
individual water molecule scores contain information about the satisfaction of the water molecule
itself. However, even if the water molecule itself contributes favorably to the overall binding affinity,
the local surrounding might be unfavorable due to geometrically non-ideal arrangements. Therefore,
apart from the contribution of a single water molecule also the so-called mapped affinities of amino
acid and ligand atoms in close vicinity were evaluated (Figure 4.12).

Figure 4.12: Single and mapped HYDE scores for placed water molecules; For each water molecule protein and
ligand atoms within 8.0 Å surrounding were selected to form the water molecule’s active site.

About 82% of all placed water molecules were predicted to be energetically favorable, 7% were
energetically neutral, and 11% were unfavorably (Figure 4.12). Neutral water molecules are similar
to bulk water. Most of those water molecules can be found at the outer rim of the active site, i.e.
they interact with either protein or ligand or both and have free interaction directions that could
interact with other surface water molecules. The distribution of mapped HYDE scores is similar to
that of single water scores (85% favorably, 6% neutral, 9% unfavorably, Figure 4.12). The shape of the
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distribution is like a normal distribution with the main proportion around -5 kJ mol−1.
Examples for favorably and unfavorably contributing placed water molecules are given in Figures

4.13a and 4.13b, respectively. In both cases the energetic contribution of the surrounding is favorable
(Mapped∆GHY DE < 0 kJ mol−1). In the first example (Figure 4.13a), the water molecule forms four
geometrically ideal hydrogen bonds with its surrounding atoms. Thus, the water molecule itself as
well as its the surrounding is satisfied. In the second example (Figure 4.13b), however, the water
molecule participates in two hydrogen bonds: One geometrically ideal with the backbone nitrogen
of Asn and one non-optimal to Arg. Since the oxygen atom of Arg participates in another hydrogen
bond, which is geometrically ideal, it is energetically satisfied due to the larger contribution of the
ideal hydrogen bond to the overall energy (Equation 4.13). The remaining hydrogen bond functions
of the water molecule are covered due to a hydrophobic surrounding. Thus, the energy of the water
molecule itself is unfavorable.

(a) Favorably contributing placed water molecule (∆GHY DE = -1.88 kJ mol−1, Mapped∆GHY DE = -5.2 kJ mol−1)
with four H-bonds arranged in an almost perfect tetrahedral geometry (PBDid 1h61284).

(b) Unfavorably contributing placed water molecule (∆GHY DE = 1.69 kJ mol−1, Mapped∆GHY DE = -2.0 kJ mol−1)
due to two low quality H-bonds: one to the backbone nitrogen atom of Asn A 193 and one to the backbone
oxygen atoms of Arg A 198 (PBDid 2c78285).

Figure 4.13: Example cases for single and mapped HYDE scores of placed water molecules; Left figures = atoms
colored by HYDE coloring scheme (green/white/red = favorably/neutral/unfavorably contributing);
Right figures = colored by atom colors; Blue mesh = 2fofc electron density grid at 1σ; Yellow lines =
H-bonds (hydrogen bonds) formed by the central water molecule.
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(c) Favorably contributing placed water molecule (∆GHY DE = -1.0 kJ mol−1) due to two geometrically good
H-bonds to Lys A 761 and Glu A 700 but overall unfavorable surrounding (Mapped∆GHY DE = 8.0 kJ mol−1)
due to non-optimal H-bonds to the backbone oxygens of His A 679 and Ile A 682 (PBDid 2qoc286).

(d) Unfavorably contributing placed water molecule (∆GHY DE = 1.67 kJ mol−1) and unfavorable surrounding
(Mapped∆GHY DE = 3.5 kJ mol−1) due to three H-bonds with non-optimal geometries (PBDid 3t6i).

Figure 4.13: Continued.

The energetic contribution of the water molecule itself does not necessarily contain all information
needed to evaluate the overall ‘happiness’, i.e. the overall energetic contribution, of the water molecule.
Independently of the water contribution itself, the surrounding can be energetically unfavorable
(Figures 4.13c and 4.13d). The first example (Figure 4.13c) shows a water molecule with four hydrogen
bonds, two ideal and two non-ideal geometries. Thus, the water molecule itself is energetically
favorably contributing, while the backbone oxygens of His and Ile are penalized and lead to an
overall unfavorable surrounding. In the second example (Figure 4.13d), the water molecule itself is
penalized due to three non-optimal hydrogen bond geometries. The backbone oxygen atom of
Thr only participates in the hydrogen bond with the water molecule, while the second hydrogen
bond function is covered and cannot interact at all. Therefore, the overall energetic contribution is
unfavorable. Similarly, the backbone oxygen of Ala contributes in two hydrogen bonds, both with
non-ideal geometries. Thus, the oxygen atom gets an unfavorable energy contribution.

The four examples show that it is important to not only consider the energy contribution of the
water molecule itself, but also its direct surrounding. Especially in the drug development process, this
aspect can help to identify water positions which lead to an overall gain in affinity upon displacement.

56



5
Applications and Use Cases

Method development is only one side of the coin. Application scenarios are needed to demonstrate
the practical usefulness of the developed methods. Diverse applications were conducted using the
different developed methods.

A comparison to state-of-the-art software solution for water placement and scoring based on
relevant drug targets shows the advantages as well as disadvantages compared to other methods.
Further applications concern the HYDE scoring function.19,287 On the one hand it was applied ac-
cording to its original purpose – for virtual screening applications. On the other hand HYDE was
used beyond its original scope – for the prediction of amino acid side chain mutations as well as
protein-protein interface classification.

5.1 HYDEwater – Comparison to State-of-the-Art Software Solutions

The developed water placement procedure was compared to state-of-the-art software solutions –
3D-RISM,162,163 SZMAP,165 WaterFLAP,161 and WaterMap.169,170 Four different measures were intro-
duced as criteria for the comparison of water placement and scoring tools: (1) The distance between
crystallographically observed and predicted water molecules; (2) The re-creation of the water· · ·water
distance network; (3) The total number of placed water molecules in a defined area of interest com-
pared to the number of crystallographically observed water molecules; (4) The correlation between
observed SAR and predicted water energies.

Two protein families – Bromodomains (BRD) and Bruton’s Tyrosine Kinases (BTK) – with nine crystal
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structures each were selected for the comparison. Five observed water molecules were analyzed for
BRD and eight for BTK structures. The examined ligands affect the water network, which was related
to observed changes in SAR. In this section the results obtained with the water placement procedure
and HYDE will be discussed. For more details on targets, experiments, and methods see P2.

Distance between Predicted and Crystallographically Observed Water Molecules

The distances between the oxygen atoms of observed and placed water molecules were measured
to quantify the accuracy of the placement procedure. WaterMap achieved the highest accuracies
for both analyzed protein families within 0.5 Å distance to crystallographically observed water
molecules (Figure 5.1). HYDE was the second best for BRD structures with 80% correctly placed
water molecules within 1.0 Å distance (Figure 5.1a). WaterFLAP placed water molecules showed the
second best accuracies within 0.5 Å to observed water molecules in BTK structures. However, within
1.0 Å distance, all tools (except WaterMap) achieved similar accuracies around 60% (Figure 5.1b).

(a) Distance distribution for placed water molecules in
nine BRD structures (total = 41 water molecules).

(b) Distance distribution for placed water molecules in
nine BTK structures (total = 66 water molecules).

Figure 5.1: Comparison of water placement procedure with state-of-the-art software solutions. X-axis: distances
between crystallographically observed and placed water molecules.

Number of Predicted Water Molecules

For both targets, BRD and BTK, the region of the binding site was approximated with spheres. This
way, an ‘area-of-interest’ was defined in which the number of crystallographically and placed water
molecules were counted and compared quantitatively. In both analyzed protein families, HYDE
places the same amount of water molecules as crystallographically observable (Table 5.1). Herein,
one has to point out that the total number of water molecules placed for each structure individually
does not always match exactly. Compared to HYDE, WaterMap also places roughly the same amount
of water molecules as observed experimentally. SZMAP and WaterFLAP place 30-60% more water
molecules than crystallographically observed in this area, which makes the interpretation of results
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more difficult. 3D-RISM places less water molecules in BRD and more in BTK structures compared to
crystallographically observable.

Table 5.1: Total number of placed water molecules across all nine BRD and BTK structures.

Protein X-ray 3D-RISM SZMAP WaterFLAP WaterMap HYDE

BRD 48 42 74 67 43 48
BTK 56 70 72 89 58 56

Re-creation of the Water Network

As a basis for the water network re-creation, the pair-wise distances between the oxygen atoms of the
crystallographically observed water molecules were calculated (‘basic water network’). Subsequently,
all pair-wise distances were measured for the different programs and by RMSD measurement com-
pared to the basic water network (Table 5.2). 3D-RISM and SZMAP have larger RSMD values for
BRD structures, while SZMAP and WaterFLAP were less accurate in re-creating the water network in
BTK structures. WaterMap re-creates the water networks well, except for four BRD structures, where
WaterMap was not able to locate one water molecule correctly, which mediates between protein
and ligand. HYDE performed well in re-creating the water network in both targets with only two
exceptions and RMSD values greater than 1.0 (complex BRD4 compound 4, Figure 5.2a and complex
BTK compound 13, Figure 5.2b). In the BRD4 complex, a water molecule was placed in between of
two observed ones (water molecules #0 and #3) while the remaining water molecules were placed
with high accuracy. In the complex of BTK with compound 13, the water cluster consisting of three
crystallographically observed water molecules (#4, #5, and #6) is not predicted well. This is due
to the shape of the pocket, which is open to the protein surface in that area. Our water placement
procedure relies on interaction directions from protein or ligand atoms and not water alone. Thus,
water molecules in this area are less constrained due to less available interaction points.

Table 5.2: Median (average) RMSD values of the re-created water network in BRD and BTK structures.

Protein 3D-RISM SZMAP WaterFLAP WaterMap HYDE

BRD 1.16 (1.53) 0.88 (0.84) 0.58 (0.61) 0.69 (0.64) 0.48 (0.51)
BTK 0.69 (0.73) 0.88 (0.96) 0.94 (1.04) 0.43 (0.48) 0.69 (0.69)

Energetic Contribution of Water Molecules and SAR Consistency

Based on an overlay of BRD9 structures, the ligand alterations (hydrophobic extensions using carbon
chains) do not affect the water molecule network. Thus, the experimentally observed affinity changes
should not be due to the water network, but rather the hydrophobic interactions of ligand with
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(a) BRD4 compound 2 with crystallographic water mo-
lecules and HYDE predicted ones (PDBid 5i88288).

(b) BTK compound 13 with crystallographic water mo-
lecules and HYDE predicted ones (PDBid 6bln, P2).

Figure 5.2: Comparison of observed (ball-and-stick water molecules with red oxygen atoms) and predicted water
molecules (HYDE-colored); Hydrogen bond network was optimized using Protoss.276

protein. HYDE predicted individual water molecule contributions are rather favorable for all five water
molecules of interest in the active site of BRD9 (Figure 5.3). One exception is BRD9 with compound
1, in which water molecule #1 received a higher energy score (∆GHY DE ≈ 0k Jmol−1). Compared to
the remaining three structures, in which water #1 is scored favorably by forming three ideal hydrogen
bonds, water #1 in BRD9 with compound 1 can only form two geometrically ideal hydrogen bonds.
The water molecule was placed in between the two electron pairs of the amide oxygen atom, which
is geometrically less favorable. Water #0, which is tetrahedrally coordinated with three hydrogen
bonds to protein atoms, is scored more favorable than water #1 across all BRD9 structures. Water #4
mediates between two backbone oxygen atoms and is rotationally restricted. Therefore, water #4 is
scored most consistent between the different BRD9 structures.

Figure 5.3: HYDE predicted energies for placed water molecules in BRD9 structures with different compounds
(cpd); Connecting dashed lines are for visualization purpose only.

Different aspects were analyzed for the water energies in BTK structures. Experimentally, the
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displacement of water #1 resulted in a decrease in affinity. Thus, water #1 was expected to contribute
favorably to the overall binding affinity. This aspect is well represented by the HYDE score for water
#1 (Figure 5.4a). Also the surrounding of water #1 is predicted to be favorable (Figure 5.4a mapped
HYDE scores). Water #8 is well integrated into the protein. It was unsuccessfully tried experimentally
to replace this water molecule. The HYDE score for the water itself as well as the HYDE scores of
the surrounding are favorable. Water #7 is present in all structures. Compared to water #8, it is
spatially more restricted. More than half of its pocket is apolar and the remaining interaction partners
are a water molecule, a backbone nitrogen and an amide oxygen atom of the ligand (Figure 5.4b).
However, both the backbone and ligand atoms are not arranged ideally. Therefore, water #7 has a
greater variance in its predicted binding affinity. Water molecules #2 and #3 are close to water #1.
Thus, their scores vary more due to the displacement of water #1. Waters #4, #5, and #6 form one
cluster which is located at the rim of the pocket, which leads to a greater distribution of their scores.

(a) Variability of HYDE predicted water energy scores across eight water
molecules for nine BTK structures; Box: line = median, boundaries =
upper and lower quartile; Whiskers = minimum and maximum HYDE
score for the individual water molecules; Circles = Outliers.

(b) Water #7 of BTK compound
9; Mesh = active site sur-
face colored by atom type;
Magenta/Blue dashed line =
ideal/non-ideal H-bond.

Overall, the developed water placement procedure proved to be comparable or better than
three out of four state-of-the-art commercial software solutions. WaterMap is superior in placing
water molecules in close distance to the crystallographically observed ones. The placement of water
molecules works fairly well for all analyzed software solutions (57-86% for BRD and 60% for BTK
within 1.0 Å distance to observed water molecules).

However, the predicted water energies by 3D-RISM, SZMAP, WaterFLAP, and WaterMap did not
correlate with experimental SAR. Inter- as well as intra-tool results were inconsistent. Especially
WaterMap scored highly integrated water molecules unfavorable, which was not as expected. HYDE
predicted water energies have a high dependency on the hydrogen bond network and by this on the
number of formed hydrogen bonds. Even though the predicted water energies were not as consistent
for BRD as suggested by the experimental structures, the HYDE scores for BTK structures could
explain some of the hypothesis derived from experimentally measured binding affinities. For more
details on the results of the state-of-the-art software solutions please refer to P2.
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5.2 HyPPI – Protein-Protein Interface Classification

Protein-protein interactions (PPI) display an interesting target for drug development because they
are often involved in signal transduction pathways.289 PPIs can be differentiated according to their
stability into obligate and non-obligate PPIs. The separate protein units of obligate PPIs are not
stable on their own, whereas non-obligate protein units are stable in their unbound form. Further,
PPIs can be classified based on their lifetime into permanent and transient interactions. Permanent
PPIs are represented by complexes only stable in their interacting form while transient ones interact
when their function is needed.290 In order to inhibit a protein-protein interaction it is necessary to
differentiate the interface into permanent or transient, with the latter displaying an ideal target for
drug design. The available data of PPIs resulting from X-ray crystallization poses another challenge:
The observed PPIs need to be discriminated into true biological interfaces and into artificial contacts
due to the crystallization process. Crystal contacts only exist due to the protein crystallization process
and do not possess any biological function.

Different solutions, based on free energy calculations or classification models using geometric
and physico-chemical descriptors, have been developed for the discrimination of PPIs.291–301 Many
methods distinguishing between crystal artifacts and biological complexes achieve high accuracies,
generally above 77%. Also methods for the classification of non-obligate and obligate PPIs or
permanent and transient PPIs reach accuracies of 92%. However, large amounts of descriptors,
ranging from 7 up to 213, were used for the differentiation.

Our classification of PPIs – HyPPIc – is based on two descriptors only: (1) the hydrophobicity of
the interface based on the HYDE hydrophobic dehydration score (Equation 4.8) and (2) the accessible
surface area difference between the unbound and bound state (Equation 5.2).

I F R(x) = MSI F (x)

MSunbound (x)
(5.1)

I Fquoti ent = mi n(I F R(A), I F R(B))

max(I F R(A), I F R(B))
(5.2)

The interface ratio of protein x (IFR(x)) is calculated using the molecular surface of the protein
interface (MSI F (x)) and the whole surface area of the unbound protein (MSunbound (x)). The interface
quotient (IFquoti ent ) is formed by the smaller IFR of the PPI divided by the larger IFR (Figure 5.5). Those

Figure 5.5: Exemplary formation of a PPI; Bold lines = change in accessible surface area upon PPI formation.

cDeveloped during my bachelor thesis: Vennmann, E. Klassifikation von Protein-Protein-Komplexen auf Basis der Bewer-
tungsfunktion HYDE. B.Sc. Thesis, Universität Hamburg, 2010.
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Figure 5.6: Distribution of descriptors used for SVM-based classification of PPI for the training (number of
complexes: C = 120, P = 74, T = 60) and test set (number of complexes: C = 32, P = 59, T = 61).

two descriptors were used in a two-stage support vector machine (SVM, R package e1071302). In a
first discrimination step, crystal artifacts were separated from biological relevant PPIs. The following
step classified biological PPIs into transient and permanent ones. Thus, with a rather simple set of
descriptors a sufficient discrimination of PPIs into crystal artifacts, permanent, and transient, could
be achieved (92.5% on a training set and 77.9% on an independent test set, Figure 5.6). An example
for the transient PPI of interleukin-2 and its receptor (IL-2/IL-2Rα) is given in Figure 5.7. It has been
shown that the PPI of IL-2/IL-2Rα can be inhibited with small molecules.303 Thus, it is correctly
classified as transient. For more information see D6 and D7.

At the time when HyPPI was developed, no adequate handling of water molecules in HYDE was
available. Therefore, it would be interesting to test the discrimination of PPIs based on the latest
development of HYDE, including the water placement procedure.

Figure 5.7: Screenshot of the ProteinsPlus Server84 interface of HyPPI; Example structure: interleukin-2 and its
receptor (IL-2/IL-2Rα, PDBid: 1z92304).
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5.3 HYDEprotein – Amino Acid Mutation Predictions

Optimization of enzyme functionality is of great interest in biotechnological processes. Oftentimes
amino acid side chain mutations are exploited to increase enzyme stability, turnover and yield rate,
or alter its substrate specificity.305

The prediction of energetic effects of amino acid side chain mutations using the HYDE scoring
function can be performed with HYDEpr otei n . Due to the generic physics-based concept of HYDE
and no training on experimental binding affinity data, it can be applied to score mutation effects
without alteration to the underlying scoring function.

HYDEpr otei n applies an enumeration approach to sample possible conformations of the mutated
amino acid (Figure 5.8). Those conformations are considered as staring points for GeoHYDE opti-
mization. Since GeoHYDE is a local optimization, different starting points need to be evaluated. The
optimized amino acid side chain are then scored with HYDEpr otei n and the best scored conformation
is selected. Different experiments were conducted to test HYDEpr otei n : (1) remutation experiments,
(2) cross-mutation experiments, and (3) protein stability predictions.

Remutation experiments are commonly used and allowed a comparison to state-of-the-art
methods. HYDEpr otei n showed comparable accuracies to other studies based on remutation and
protein stability prediction experiments. The cross-mutation experiments were newly introduced to
examine more realistic scenarios, i.e. a mutation of one amino acid into another one. As expected,
those experiments led to a decrease in accuracy, especially if multiple mutations that effected each
other occurred. For more details on the mutation procedure and comparisons to state-of-the-art
methods see D8.

At the time when HYDEpr otei n was evaluated, the handling of water molecules in HYDE was
limited. Either crystallographically observed water molecules were included or excluded. However,
especially for mutation studies with varying sizes of amino acid side chains, water molecules are
necessary. Herein, the mutation of a larger to a smaller amino acid might create enough space for a
water molecule, while the other way round a water molecule might be displaced. Therefore, it would
be interesting to analyze the impact of water molecules on the accuracy of side chain conformation
predictions as well as their energetic contributions.
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Figure 5.8: Overview of amino acid side chain mutation process; Protoss: Hydrogen bond network
optimization.276
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5.4 Biotechnological Applications

HYDE has been used in diverse scenarios relevant for biotechnology, from identification of a natural
substrate to analysis and alteration of substrate specificity.

5.4.1 EstN2 – Elucidation of Enzyme Functionality

The enzyme EstN2 (Figure 5.9) was discovered by genome analysis of the archaeon Candidatus
Nitrososphaera gargensis, which was obtained from terrestrial hot springs.306 However, the actual
function of EstN2 remained unclear.

Figure 5.9: Active site of EstN2 with its catalytic triad (Molecular graphics were created using UCSF Chimera65).

Structural alignment revealed chloroperoxidase, enol-lactonase, and esterase as closest homol-
ogous proteins. Thus a virtual screening of potential substrates from other known enzymes was
conducted. In a first attempt a data set of 3036 ester and lactone containing small molecules was
compiled based on BRENDA (BRaunschweig ENzyme DAtabase).307 This dataset was then docked
with FlexX208 and scored using HYDE (Figure 5.10).

The highest ranked molecules often contained glycerol derivatives (Figure 5.10: Results 1). There-
fore, it was concluded that a potential function of EstN2 was the degradation of phosphoglycerols.
Within the top 100 scored molecules enole containing molecules were only represented once. Thus,
enoles were unlikely to be a natural substrate of the enzyme. This finding was supported by laboratory
experiments that could not detect any enzyme activity using enoles as substrates.

In a second approach suggested small molecules were examined for their fit in the active site of
EstN2 (Figure 5.10: 2. Screening). However, the molecules showed rather fragment like characteristics,
i.e. molecular weight 130-152 Da, and only occupied a fraction of the binding site (pocket size 585 Å3,
molecule sizes: 126-192 Å3). Thus, it was difficult to achieve definite conclusions from this second
approach because multiple binding modes were scored similarly (Figure 5.10: Results 2).
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Figure 5.10: Virtual screening processes for the elucidation of the natural substrate of EstN2.
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5.4.2 Lipase Cal B – Analysis of Substrate Specificity

Lipase Cal B catalyzes the reaction of methyl glucoside with lauric acid to methyl glucoside laurate
(Figure 5.11). Lipase Cal B exhibits a high substrate specificity. The removal of the methyl group, i.e.
from methyl glucoside to α-D-glucose, leads to a complete loss of enzyme activity (Figure 5.12 top).
Thus a virtual screening approach was used to generate explanations for this observation.

Figure 5.11: Active site of lipase Cal B with its catalytic triad (Molecular graphics were created using UCSF
Chimera65).

In a first approach the final product, methyl glucoside laurate or α-D-glucose laurate, was docked
using different spatial constraints. However, none of these approaches let to satisfying results. Thus,
a different approach was pursued, using a step-wise approach (Figure 5.12 middle). The first docking
consisted of placing lauric acid into the active site. Since lauric acid has a long and flexible carbon
chain, its length was shortened. Using the best HYDE scored conformation of the fatty acid, either
methyl glucoside or α-D-glucose were docked into the active side including the pre-docked fatty
acid. In both docking steps a pharmacophore was used to enforce the contact of catalytic side chains
with the functional groups from the educts.

Overall, the substrate specificity might be explained by a hydrophobic effect of the methyl group
from the methyl-glucoside pointing towards the carbon-chain of lauric acid. The energetic advantage
for methyl glucoside of ∆∆GHY DE -3 kJ mol−1 and -5 kJ mol−1 for hexanoic and decanoic acid,
respectively, might even further increase for lauric acid (Figure 5.12 bottom). The hydrophilic hydroxyl
group of α-D-glucose on the other hand would point towards the aliphatic chain and would lead to a
repulsion.
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Figure 5.12: Docking and scoring processes of Lipase Cal B; based on X-ray structure 4k6g (Molecular graphics of
the results section of the figure were created using UCSF Chimera65).
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5.4.3 Trimethlyguanosine Synthase – Substrate Specificity Alterations

Trimethlyguanosine synthases (TGSs) are responsible for methylation of the 5′-Cap of mRNA.308

Herein, a methyl group of the cofactor S-adenosylmethionine is transferred to the 5′-Cap of mRNA.
TGSs are an interesting target for further analysis of the underlying mechanisms and eventual influ-
ence of mRNAs. Therefore, analogs of the cofactor can be used to transfer other functional groups
than methionine to allow chemical click-reactions. Those reactions can subsequently be used to
label the mRNA and visualize them, i.e. using fluorescence labeling.

The aim of this analysis was the alteration of substrate specificity of TGS of the organism Gardia
lamblia. First, HYDE was used to predict the relative affinities of the cofactor in its methylized (SAM)
and demethylized (SAH) form, as well as its analog AdoPropen (Table 5.3 and Figure 5.13a). HYDE
was able to score the different small molecules correctly, i.e. their relative scores in human and G.
lamblia TGS, hTGS and glaTGS respectively, were as observed by experiment (compare Table 5.3 and
Figure 5.13b).

Table 5.3: Substrate and analoga activity of TGS; natural cofactor S-adenosylmethionine (SAM) and its demethyl-
ized form (SAH) compared to an analog with propen (AdoPropen); SAH as reference point; hTGS =
human protein; glaTGS = G. lamblia form of TGS.

Protein SAH SAM AdoPropen

hTGS 0 +++ -
glaTGS 0 +++ +

Next, the SAM binding site was examined to suggest amino acid mutations to increase the binding
site to accept bigger substituents than methyl, i.e. propen or even phenyl azide. Since the protein
structure of glaTGS was based on a homology model of hTGS, the reliability of suggested amino
acid mutations for the X-ray hTGS form was higher (Figure 5.13c and Table 5.4). Especially for the
stabilization of the mostly hydrophobic analogs, smaller but hydrophobic amino acids such as alanine
or glycine were suggested. Ligand binding affinity could be enhanced by integrating suitable hydroxyl
groups for further hydrogen bonding.

Based on glaTGS our collaboration partner could achieve some success with directed alterations of
mRNA. However, due to specific pre-methylation conditions needed by glaTGS, a different enzyme
was finally chosen, Ecm1, which provided a greater promiscuity for cofactors and their analogs.309

At the time, when this study was conducted, neither HYDEpr otei n nor the water placement and
scoring procedure was available. Both developments would now allow a more detailed examination
of amino acid alterations.
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5.4. Biotechnological Applications

(a) TGS natural cofactor in its methylized (SAM) and demethylized (SAH) form and AdoPropoen analog.

(b) Relative affinities for human and G. lamblia TGS predicted by HYDE; relative affinity to SAM.

(c) Proposed amino acid mutations (magenta amino acids) and ligand alteration (magenta dashed circle) for
selectivity advantages (structure: hTGS with AdoPhenylAzide; Molecular graphics were created using UCSF
Chimera65).

Figure 5.13: Analysis of human and G. lamblia TGS.

Table 5.4: Proposed amino acid mutations and ligand alteration for hTGS according to Figure 5.13c.

Alteration
Reason

From To

Ser671 Ala or Gly steric advantages
Glu667 Ile or Val stabilization of phenyl ring
Pro765 Ala or Gly steric advantages

H OH hydrogen bond between ligand and protein

71





6
Conclusions and Further Directions

In the presented work a reliable procedure for placing water molecules in protein structures was
developed. First, an automatic assessment of protein structures was evolved – EDIA and EDIAm .
Second, NAOMInova was implemented for the deduction of interaction directions and geometries.
The derived interaction geometries were exploited to detect suitable available space in protein
structures for water molecules. Subsequently, the identification of free space was utilized for placing
explicit water molecules. Finally, those predicted water positions were scored with HYDE to predict
their energetic contributions.

Great emphasis was put on the use of as much experimental data as possible. Herein, structural
data as well as their underlying electron density data was exploited. The automatic structure quality
assessment – EDIA and EDIAm – provide an objective criterion for the evaluation of protein structures
without the subjective, visual interpretation of electron density grids. In addition to the qualitative
assessment, the EDIA was applied to compile a large data set of well resolved water molecules for
the evaluation of the developed water placement strategy. Based on protein crystal structures, a
large-scale analysis of interaction directions was conducted. With the developed tool NAOMInova
22 functional groups, present in amino acids as well as ligands, were evaluated for their preferred
interaction directions. The analysis showed that donor interactions agree well with theoretical consid-
erations, while acceptor functions can vary significantly. Furthermore, unexpected geometries could
often be ascribed to structural artifacts, such as close atom contacts around metals. The derived
interaction directions and geometries were finally used for several aspects: (1) the identification of
free space, (2) subsequently for the water placement procedure, and (3) for scoring of hydrogen
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6. Conclusions and Further Directions

bond interactions in HYDE. The developed identification of free space accurately represents areas
in protein structures, where the full volume of a water molecules would fit. Polar atoms that can
form hydrogen bonds to a potential water molecule were included with smaller atom radii. The
reduction of the radii was derived from a water· · ·atom distance analysis with NAOMInova. Apolar
atoms on the other hand did not show closer distances than expected by their van-der-Waals radii
and were treated accordingly. The placement of explicit water molecules from discrete points used
for the identification of free space was done with the development of a self-assembly procedure. The
potential water positions defined by the interaction surfaces cluster themselves and thus result in
explicit water positions. These water positions were finally scored with HYDE. Herein, diverse aspects
of the HYDE scoring function were adapted to handle water molecules more accurately.

Several aspects influence the developed water placement procedure. Initially, Protoss276 is used
for the optimization of the hydrogen bond network and thus defines the starting point for the identi-
fication of free space. If the hydrogen bond network is optimized differently, the starting positions
could result in differently placed water molecules. In addition to this, alternate conformations as-
signed for amino acids or ligands in protein structures lead to a different hydrogen bond network,
different interaction directions and thus, different locations for the predicted water networks. How-
ever, protein structures only represent a snapshot of the flexibility of the protein structure in nature.
Especially water molecules and their networks are highly variable. This aspect could potentially be
used to analyze the effects of protein flexibility on the water network and its corresponding energetic
contribution.

The integration of the developed identification of free space (FSI) and water placement (WarPP)
have different consequences – positive as well as negative. The estimation of the dehydration
probability (pdehyd ) based on the FSI now allows a detailed sampling of the interaction surface in
ideal hydrogen bond distance as well as an accurate representation of a water molecule. However, a
complete representation would demand sampling of the full hydrogen bond distance range. This
would eliminate the discrete step in ideal angle range in the scoring function but would greatly
increase the run-time, especially for the optimization with GeoHYDE.

Differences in modeled protein structures can lead to a correct water placement in one and none
in another structure due to steric hindrances. Thus, the predicted HYDE scores can differ. In the first
case, hydrogen bonds can be formed and the participating atoms are scored favorably, in case of good
hydrogen bond qualities. The latter one has unsatisfied hydrogen bond functions, which are penalized
by HYDE. An increase in scoring robustness could be achieved by placing water molecules after an
initial protein-ligand minimization based on the HYDE scoring function. Tight areas within the binding
site might be opened to accommodate water molecules that were not available pre-optimization.
A second geometric optimization would be run after the water placement to ensure high-quality
hydrogen bond geometries. This adaption would increase the run-time and might not be necessary
or beneficial for all protein-ligand structures. It would only be useful if many unsatisfied hydrogen
bond functions are within the active site. Those might be satisfied by forming hydrogen bonds to a
water molecule, which does not have enough space without an initial optimization step.
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Theoretical considerations reason the free energy contribution of water molecules to be between
-0.7 and -2.2 kcal mol−1 (-2.9 to -9.2 kJ mol−1).70,71 The maximum favorable energy contribution for
a water molecule predicted by HYDE is -2.05 kJ mol−1. This number is derived from the theoretical
concept behind the HYDE scoring function and is at the lower range of the aforementioned theoretical
considerations.

The diverse application scenarios showed the practicality of the water placement procedure as
well as HYDE itself. Especially the HYDE studies, i.e. HYDEpr otei n , HyPPI, and the biotechnology
examples, were conducted when the development of HYDEw ater was not finished. A comparison
to state-of-the-art, commercial software solutions proved the developed water placement and
scoring as equally good and in some cases better. Thus, it would be interesting to re-evaluate the
HYDE studies including HYDEw ater . Especially for the mutation prediction, water molecules play an
important role, i.e. they might be displaced if a small amino acid is replaced by a larger one or they
might mediate interactions, when a larger amino acid is replaced by a smaller one.

The water placement procedure could further be applied to analyze the impact of protein flexibility
on the water network and vice versa, to consistently place water molecules in docking poses, and to
ensure a homogeneous representation of water molecules in protein-ligand structures for scoring.
As a next step, the impact of WarPP on protein-ligand, protein-protein, as well as intra protein
HYDE scores demands an extensive evaluation. Overall, the developed water placement and scoring
procedure can aid the identification of water molecules within a protein-ligand binding site. Water
molecules that are good to incorporate during drug design, because they can mediate between
protein and ligand and are energetically favorable, and those that are good to target for displacement,
because they are weakly integrated and contribute unfavorably, can be differentiated.
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BRD Bromodomain

BTK Bruton’s Tyrosine Kinase

CADD computer-aided drug design

EDIA electron density of individual atoms

EDIAm electron density of multiple atoms

FIP free interaction point

FSI free space identification

H/SC enthalpy/entropy compensation

HYDE hydrogen bonds and dehydration

IA interaction

PDB Protein Data Bank

PWP potential water position

RSCC real-space R correlation coefficient

RSR real-space R factor

RSR-Z normalized RSR

RSZD real-space difference density Z score

RSZO real-space observed density Z score

SAR structure activity relationship

SBVS structure-based virtual screening

WarPP water placement procedure
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author’s contributions are specified.
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Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; pp 71–100.
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Individual Atoms and Molecular Fragments in X-ray Structures. J. Chem. Inf. Model. 2017, 57
(10): 2437-2447.
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the SMARTS pattern derivation used within NAOMInova. M. Rarey supervised this work.
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Large-Scale Analysis of Hydrogen Bond Interaction Patterns in Protein-Ligand Interfaces. J.
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E. Nittinger and T. Inhester have written the manuscript, developed and implemented NAOMInova,
which was used for the analysis of hydrogen bond geometries. E. Nittinger, T. Inhester and
K. T. Schomburg designed the study. S. Bietz implemented the matching algorithm used in
NAOMInova. A. Meyder developed the application of EDIA for multiple atoms, which was
integrated in NAOMInova. R. Klein contributed to the area normalization calculations. G. Lange
advised the data assembly. M. Rarey supervised this work.
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M. ProteinsPlus: a web portal for structure analysis of macromolecules. Nucleic Acids Res. 2017,
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R. Fährrolfes and S. Bietz have written the manuscript. R. Fährrolfes has implemented the
ProteinPlus server. S. Bietz developed SIENA and revised Protoss. A. Meyder and E. Nittinger
developed the EDIA measurement for automatic structure validation with the experimental
electron density data. E. Nittinger developed the hyPPI server for categorization of protein-
protein interfaces. T. Otto refined PoseView for a 2D visualization of protein-ligand interactions.
A. Volkamer developed the DoGSite scorer for the detection of druggable pockets in protein
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structures, which was further evolved by F. Flachsenberg. M. Rarey supervised this work.
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of protein-ligand interactions. M. Hilbig developed MONA for the processing of data sets. K.
T. Schomburg developed iRAISE for inverse virtual screening. K. T. Schomburg and S. Bietz
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druggable pockets in protein structures, which was further evolved by F. Flachsenberg. M. Rarey
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protein mutation effects based on dehydration and hydrogen bonding – A large-scale study.
Proteins Struct. Funct. Bioinforma. 2017, 85 (8): 1550-1566.
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contributed to the concept of HYDEpr otei n . E. Nittinger has contributed to the manuscript,
assembled the data set for the energy prediction experiment, and contributed to the design of
the experiments. A. Meyder has contributed to the manuscript and implemented the HYDE
optimizer. S. Bietz has contributed to the manuscript and helped implementing the HYDE
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M. Rarey has supervised the project.
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Springer International Publishing August 26, 2016, pp 1–12.

M. M. von Behren has written the manuscript, developed and conducted all experiments. S.
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Bietz and M. M. von Behren generated the alignment data set used for the evaluation of lig-
and superpositioning. S. Bietz integrated the necessary filter functionality into SIENA and
developed the clustering approach for the identification of redundant ensembles. E. Nittinger
contributed by supporting M. M. von Behren with the selection of high-resolution data for the
validation of molecular alignments. M. Rarey supervised this work.

P1 Nittinger, E.; Flachsenberg, F.; Bietz, S.; Lange, G.; Rarey, M. Placement of Water Molecules
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E. Nittinger has written the manuscript, developed and conducted the evaluation strategy. F.
Flachsenberg has developed and implemented the optimization strategy, which was applied for
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of the water placement strategy. M. Rarey supervised this work.
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vised the project. D. F. Ortwine and P. Gibbons have contributed to the manuscript and have
supervised the project.
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This section lists the author’s oral presentations and posters presented at national and international
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Methodical Details

In this chapter, additional details about the methods not included in the publications of this disserta-
tion are described.

B.1 HYDE Scoring Function

The HYDE scoring function was originally developed to score protein-ligand complexes.15–19 Due to
its generic concept with no training on experimental binding affinity data, it can also be applied to
score single amino acids, whole proteins, or protein-protein complexes. In this section, the alterations
implemented in the course of this dissertation will be described. For further information on the basic
concept of HYDE please refer to the dissertation of N. Schneider.17

B.1.1 Details of the HYDE Implementation

For differentiation, the previous HYDE implementation will be referred to as HYDE2012.

Assimilation of HYDE and Protoss

Protoss is used by default to optimize the hydrogen bond network before HYDE scoring. Protoss and
HYDE2012 used different scoring schemes (Figures B.1a and B.1b), which let to different qualitative
assessments between Protoss and HYDE2012. The angles α and β indicated in Figure B.1b were
measured in our large-scale analysis of hydrogen bond interaction patterns (D5). Therefore, the
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HYDE scoring scheme was changed to the Protoss scoring scheme including an adaption of the ideal
and maximum angle values. HYDE2012 applied an asymmetric scoring of hydrogen bond distances
(Figure B.1c), which let to no penalty for clashing atoms. The calculation of fdev for distances was
changed to a symmetric scoring. Based on these alterations, HYDE and Protoss now use the same
scoring scheme and qualitatively achieve the same geometric measures.

(a) Geometric measures used for previous HYDE fdev

calculation.
(b) Geometric measures used for Protoss fdev calcula-

tion.

(c) Asymmetric scoring of hydrogen bond distances. (d) Symmetric scoring for hydrogen bond distances and
angles.

Figure B.1: Adaption of geometric measures to align HYDE and Protoss.

Adaption of log P Parameter

The plogP parameters for polar and apolar atoms can be derived from the HYDE concept. Based on
the thermodynamic cycle of water, the total energy for breaking all four hydrogen bonds, i.e. from
ice to vapor, is 54.18 kJ mol−1 (Figure B.2).

This concludes that breaking one hydrogen bond function costs 13.55 kJ mol−1 or expressed
favorably, forming a hydrogen bond leads to an energy gain of ∆Gsat = -13.55 kJ mol−1. The fraction
of unsaturated hydrogen bonds in water, as explained in Chapter 4.2, is the reason for the stabi-
lizing energetic contribution upon formation of a hydrogen bond. According to HYDE, the energy
contribution of a polar atoms can be calculated as follows:

∆Gsaturation = 2.3 ·RT

fsat
·p logP i · ∑

HB j
w j · f j

dev (B.1)
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Figure B.2: Thermodynamic cycle of water; ∆H f = enthalpy of fusion, ∆H f = enthalpy of heating water from
273 K to 373 K, ∆He = enthalpy of evaporation.

Assuming an ideal interaction geometry ( fdev = 1) and only one hydrogen bond function (w j = 1), the
equation can be solved for plog P accordingly:

p logP = ∆Gsatur ati on · fsat

2.3 ·R ·T
(B.2)

= −13.58k Jmol−1 ·0.85

2.3 ·8.314Jmol−1K −1 ·298K

=−2.032

The introduction of an apolar functional group disrupts the hydrogen bond network of pure water.
Based on the HYDE concept it is assumed that an idealized apolar group leads to one unsatisfied
functional group of a water molecule while the remaining three hydrogen bond functions are satisfied.
Due to a temperature dependent factor difference between the entropy and enthalpy, an overall
unfavorable free energy results for the introduction of apolar groups into water. To avoid unsatisfied
hydrogen bond functions, apolar moieties aggregate. Thus the removal of an unsatisfied hydrogen
bond function, i.e. the dehydration of an apolar group, results in a favorable free energy contribution,
known as the hydrophobic effect. The free energy contribution of an apolar atom is ∆Gapol ar

dehyd = -2.7
kJ mol−1 according to the HYDE theory. Since the HYDE theory assumes that exactly one hydrogen
bond function is covered by introduction of an idealized apolar moiety, the energy gain results from
the removal of an unsatisfied hydrogen bond function. To approximate the surface area of one
hydrogen bond function, the covered molecular surface area of water molecules of ten protein
structures was calculated and related to their number of formed hydrogen bonds. Water molecules
participating in one hydrogen bond have a minimum of 6.81 Å2 covered surface area. This leads to
25.13 Å2 covered solvent accessible surface area for one hydrogen bond function of a water molecule.
The formula for calculating the free energy of dehydration of apolar atoms is as follows and can be

113



B. Methodical Details

solved for plog P accordingly:

∆Gapol ar
dehyd =−2.3 ·R ·T ·p logP ·∆acc (B.3)

p logP = ∆Gdehyd

−2.3 ·R ·T ·∆acc
(B.4)

= −2.7k Jmol−1

−2.3 ·8.314Jmol−1K −1 ·298K ·25.13Å2

= 0.0188

This leads to an energy gain of -107 J mol−1 Å−2, which agrees well with experimentally obtained
values ranging from -67 J mol−1 Å−2 (with no temperature specified),89 -125 – -138 J mol−1 Å−2, to
-119 – -149 J mol−1 Å−2 (at room temperature).90,91

The plogP values based on the HYDE theory were used for the HYDE calculations.

B.2 NAOMI Interaction Framework

The NAOMI interaction framework is used for generating and scoring hydrogen bond interactions. In
this section, the new implementations for discretization interaction surfaces will be described. For
details on the interaction framework itself please refer to the dissertation of S. Bietz.310

B.2.1 Interaction Surface Discretization

Interaction directions and their assigned geometries are defined using chemical type (CHEMTYPE) and
geometry type (GEOMTYPE) definitions. The CHEMTYPE defines the interacting atom, e.g. a nitrogen
acceptor, a carbonyl oxygen etc.. The GEOMTYPE specified the geometry of the interaction surface,
e.g. cone, spherical rectangle, or capped cone. For the combination of CHEMTYPE and GEOMTYPE
interaction deviations are available. Those interaction deviations consist of an optimum, the maximal
optimum deviation (maxOpt) up to which an interaction is ideal, and the maximum until which the
score contribution is decreased to zero.

Based on the assigned interaction surfaces a discretization with concentric circles is calculated
(Figure B.3).
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Figure B.3: Discretization of interaction surfaces.
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In this chapter, the developed software architecture and the application programs based on them are
presented. All components were based on the previously developed NAOMI framework.267

An overview of the dependencies of software applications and the main developed, altered, and
used software libraries is given in Figure C.1. PROTOSS is a previously developed software library used
for all presented applications and necessary for the developed free space identification and water
placement procedure. The INTERACTIONS and HYDE software library are existing software libraries
whose functionalities have been altered or extended. The software libraries CRYSTALGEOMETRY as
well as WATERPREDICTION were implemented for the interpretation of electron density maps, the
EDIA calculation as well as water placement procedure.

The aim of this chapter is to provide insight into the decisions made during the development
as well as their internal dependencies. The chapter is organized in two sections: (1) The developed
internal libraries with their concepts, classes, and dependencies. (2) An overview of the new and
extended application programs.
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Figure C.1: General structure of software libraries and dependencies of the NAOMI library; green = new develop-
ment; yellow = altered or extended; gray = used.

C.1 Software Libraries

Crystal Geometry Library

The CRYSTAL GEOMETRY library contains functionalities for the analysis and interpretation of crystal
structure information. The library provides an interface for three main functionalities:

1. The storage of electron density values parsed from electron density maps.

2. The calculation of EDIA and EDIAm based on electron density values.

3. The generation of crystal symmetry contacts based on crystal contact information from PDB
files.
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The main class ELECTRONDENSITYDATA is used for storing information of electron density maps,
such as the electron density grid, the origin of grid, the number of data points in each direction x, y,
and z, or the angles between x, y, and z axis. The main component is the 3D grid with its assigned
electron density values. Based on the stored density information in ELECTRONDENSITYDATA, the
class ELECTRONDENSITYSCORER calculates EDIA and EDIAm scores.

The generation of crystal symmetry complexes depends on the CRYST1 information given in the
header section of PDB files:

CRYST1 30.800 45.000 40.300 90.00 90.00 90.00 P 21 21 2

The first three number are the unit cell lengths (a, b, and c). The following three numbers are
the angles α, β, and γ, with α between directions b and c, β between directions a and c, and γ

between directions a and b. The remaining information indicates the space group (P 21 21 2). For all
space groups, the library contains necessary translation vectors and transformation matrices in the
SYMMETRYGENERATORLIST. Based on a definable distance threshold, the crystal contacts surrounding
the protein complex from the PDB file are generated.

HYDE Library

The HYDE library provides the interface for scoring protein-ligand interactions as well as HYDEpr otei n

for the estimation of protein-protein affinities as well as the protein itself.

The main components of the HYDE library are:

• HYDECOMPONENTBUILDER to build the two textscHydeComponents necessary for scoring:
one represents the active site, the other one the molecule to be scored.

• HYDESCORERCONTEXTBUILDER to initialize the scoring context, i.e. the identification of close
atoms, the generation of interactions, as well as matching interactions.

• HYDESCORER to calculate the HYDE score based on the HYDEHYDROPHILICSCOREPOLICY,
which determines the scoring of polar atoms, and the HYDEHYDROPHOBICSCOREPOLICY, which
determines the scoring of apolar atoms.

In order to generate the two HYDECOMPONENTS two active sites are necessary. The first active site is
used as the area in which the HYDE score is calculated. The second active site needs to be bigger
than the first one and is necessary for the correct calculation of the change in surface area, which is
used for the calculation of apolar atom contributions.

The calculated HYDE scores of the HYDECOMPONENT representing the active site, can be mapped
onto the second HYDECOMPONENT using the MAPPEDHYDESCORE class. This way, the atom scores
of the surrounding are mapped on the closest atom of the molecule.

Further classes, HYDEPROTEININTERFACESCORE and HYDEPROTEINSCORE, generate HYDE scores
for protein-protein interfaces and the protein itself, respectively.
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Interactions Library

The INTERACTIONS library contains all functionalities around interactions, from calculating interaction
directions, discretization of interaction surfaces, to scoring interactions. In this section, only the
altered and new implementations will be described. For detailed information about the remaining
functionality please refer to the dissertation of S. Bietz.310

Based on the large scale analysis of hydrogen bond interactions in protein-ligand active sites (D5)
additional chemical types (CHEMTYPES) to the already existing NAOMI CHEMTYPES were defined:

• IASTATCARBONYL: ketones and primary amide oxygen atoms.

• IASTATCARBOXYL: carboxylic acid oxygen atoms.

• IASTATAMIDECARBONYL: secondary and tertiary amide oxygen atoms.

• IASTATESTER: sp2-hybridized ester oxygen atom.

• IASTATETHER: ether oxygen atom as well as ester sp3 hybridized oxygen atom.

• IASTATACCWOPLANE: an acceptor, where no plane can be defined.

The main alterations concern sp2-hybridized oxygen acceptors that showed distinct differences in
their opening angle, i.e. the angle between the electron lone pairs. In addition to the CHEMTYPES,
angle deviation were defined (STATISTICINTERACTIONDEVIATIONS).

Based on the new CHEMTYPES in combination with geometry types (GEOMTYPES: cone, spher-
ical rectangle, or capped cone) interaction surfaces are defined. These interaction geometries are
discretized by the class INTERACTIONSURFACELIST. This class is implemented as a singleton, thus its
instance is only created ones. Every used combination of CHEMTYPE and GEOMTYPE is only calculated
once and stored for further use. Herein, the interaction direction is translated onto the x-axis and
the in-plane angle (first rotation direction) is rotated onto the y-axis. All discretized surface points
are transformed respectively. The individual points of the discretized interaction surface are stored
as pairs POINTSCOREPAIR, containing the coordinate of the point and its assigned geometric score.
The geometric score is based on angles and distances defining a hydrogen bond interaction (for an
example see B.1b). The use of a template allows a user defined INTERACTIONSCORER, which defines
the distances and angles as well as their combination to a final geometric score. All points of the
discretized interaction surface are stored in a vector POINTSCOREVECTOR, sorted by the geometric
score of the POINTSCOREPAIRS. This allows a consistent storage of discretized interaction surfaces
and the transformation back onto other interaction directions. After transformation onto the current
interaction direction, the availability of the discretized surface points needs to be calculated, i.e. the
overlap with surrounding protein or ligand atoms.

Water Prediction Library

The WATERPREDICTION library provides functionalities for implicit as well as explicit water molecules.
In case of implicit water molecules, free space needs to be identified correctly. Based on discretized
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interaction surfaces, the free space is identified. Using the identification of free space, explicit water
molecules can be placed.

The POTENTIALWATERSCORER class provides the interface to the INTERACTIONSLIBRARY and its
discretization of interaction surfaces used for implicit water molecules. Three main functionalities are
provided:

F1 Returns all transformed discretized points with their corresponding geometry scores for a
given interaction direction.

F2 Returns the best available position for an implicit water molecule on the discretized interaction
surface.

F3 Returns the best geometric score for an implicit water molecule.

The WATERPLACEMENT class needs INTERACTIONDEVIATIONS and an INTERACTIONSCORER to place
water molecules. Either for a specified active site or for the whole protein complex water molecules
can be placed. Free interaction directions of the active site or protein are identified and using the
function F1 of the POTENTIALWATERSCORER, possible water positions are assigned. This information
is subsequently used for clustering and generation of explicit water molecules.
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C.2 Software Application

This chapter explains the basic program options for NAOMInova, HydeDebugGUI and PPI.

C.2.1 NAOMInova

NAOMInova was developed for large scale analysis of user-defined substructures. The developed
graphical user interface (GUI) allows diverse opportunities for the generation of substructures of
interest as well as their further structural analysis.

First, a user-defined set of protein structures has to be selected for the generation of the SQLite
data base (Figure C.2). Once a data base has been created, it can be loaded an re-used. Next, a
substructure of interest has to be defined by the user (Figure C.2). Herein, two different possibilities
exist: Either a small molecule is loaded from a sdf or mol2 file or a SMARTS can be supplied. Both
ways, the molecule is generated and shown in a 3D view, in which the desired atoms can be selected.
Selected atoms can further be specified using the full range of the SMARTS language. This allows
the definition of a surrounding, without the need to specify the exact geometry. In addition to
the substructure definition, a unique name and optional a minimal EDIA value are chosen. Using
the minimal EDIA criterion allows a qualitative evaluation at a later stage. Once one or multiple
substructures have been defined, they must be added to the data base. The previously selected
atoms will be used for superimposing matching structures from the data base.

Figure C.2: NAOMInova substructure definition tab.
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After adding substructures to the data base, they can be filtered for diverse chemical and geometric
criteria (Figure C.3). The only mandatory parameter is the selection of a functional group as central
substructure. All further parameters are optional and range from location, i.e. backbone, side chain,
molecule, or water, to connection, i.e. inter or intra. Additionally, the resolution of the original PDB
can be specified as well as the EDIA, if it was selected during substructure definition.

Figure C.3: NAOMInova filter tab.

Once the filter process is completed, the sets are shown in the list view on the left hand side
of the GUI (Figure C.4). Now, the user has to options: (1) the set can be analyzed for geometric and
chemical criteria in the Set View (Figure C.4) or (2) a protein-ligand active site can be loaded and
suitable filtered sets can be superimposed into the active site (Figure C.5).

The Set View contains diverse further filter criteria that can be applied to the already pre-filtered
set as well as the geometric analysis and generation of volume-normalized histograms, i.e. for the
evaluation of preferred positions of partner points around the central substructure.

The Pocket View contains the same additional filter criteria as the Set View. Based on the superim-
posed set and pocket, the user can identify regions, where partner points are preferred and those,
where no partner points can be observed based on the structures in the data base.
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Figure C.4: NAOMInova set visualization tab.

Finally, every partner point that is either displayed in the Set or Pocket View is connected to is
source. This means, that the protein structure of the partner point can be displayed for further analysis,
so-called ‘backlink’ (Figure C.6). This allows the validation of the source and by this if the partner point
is of interest for answering my questions.

Overall, NAOMInova a is versatile tools for the analysis of user-defined substructures of interest
with a diverse spectrum of filter criteria that aid its geometric and chemical evaluation.
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Figure C.5: NAOMInova pocket visualization tab.

Figure C.6: NAOMInova backlink visualization.
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C.2.2 HYDE Debug GUI

The HYDE Debug GUI was developed to visualize the results of the scoring function HYDE. HYDE
calculated results are atom-based and allow an easy-to-interpret visualization (Figure C.7).

Figure C.7: HYDE coloring scheme.

Originally, HYDE was developed to score protein-ligand complexes (Figure C.8). Due to no training
on experimental data such as small molecule binding affinities, HYDE can also be applied for scoring
proteins (Figure C.9) – in whole, but also single amino acids, or individual atoms – or protein-protein
interactions (Figure C.10).

First, a protein structure has to be loaded or fetched directly from the PDB. If the protein structure
is fetched, the electron density data (2fo-fc and fo-fc map) will be retrieved automatically as well, if it
is available. Otherwise the electron density data can be loaded separately.

The Molecule View displays the mapped HYDE score, i.e. the HYDE scores of the pocket atoms
are mapped onto the closest ligand atom (Figure C.8). The predicted affinity can be analyzed and
broken down to the individual atom contributions. For the protein-ligand affinity prediction, the user
has the option to geometrically optimize the ligand with GeoHYDE.

Figure C.8: HYDE Debug GUI molecule tab.
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HYDEpr otei n scores can be analyzed in the Protein View (Figure C.9). These scores resemble the
difference between the unfolded and folded protein. The contribution of the whole protein can
be analyzed and split into contributions from backbone as well as side chains. Additionally, each
individual amino acid can be analyzed as well as ligands, co-factors, water molecules or metals.

Figure C.9: HYDE Debug GUI protein tab.

All protein-protein interfaces formed by two or more protein chains are scored with HYDEpr otei n

(Figure C.10). Their predicted affinities as well as the single amino acid contributions can be analyzed
in the Protein-Protein View.

The last view is for organizational reasons only (Figure C.11). This allows different protein complexes
to be handled simultaneously without the need to re-load them. All protein complexes once loaded
into the HYDE Debug GUI are stored and can be selected for further analysis.
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Figure C.10: HYDE Debug GUI protein protein tab.

Figure C.11: HYDE Debug GUI protein selection tab.
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In addition to the HYDE score visualization, the HYDE Debug GUI enables the user to analyze
geometric arrangement by measuring distances and angles, as well as structural quality criteria (Figure
C.12). The B factor coloring displays the B factors of each atom as annotated in the PDB file (Figure
C.12a). Electron density maps can be displayed as well as the derived EDIAm values for each atom
(Figure C.12b).

(a) B factor coloring for the protein backbone. (b) EDIAm coloring for the protein backbone.

Figure C.12: Visualization of quality criteria in the HYDE Debug GUI.

The identification of free space can be visualized and water molecules can be placed using the
water placement procedure described in this dissertation. Further visualization options comprise the
molecular surface of the active site, the surface points of each amino acid or ligand separately, and
the coordination of metals.

Parameter Selection

Diverse parameters used for the HYDE calculation can be adjusted by the user (Figure C.13). All
parameters are briefly described below:

• Settings mode

– USE SEESAR SETTINGS: Applies the parameters and protein preparation steps used in
SeeSARd

– MANUALLY ASSIGN SETTINGS: Enables all of the following parameter settings.

• HYDE settings

– PROTOSS: Optimization of the hydrogen bond network including protonation and tau-
tomers.

– KEEP LIGAND PROTONATION/TAUTOMERS: Keeps the input protonation/tautomers of the
ligand.

dSeeSAR is a software tool for structure based design developed by BioSolveIT: https://www.biosolveit.de/SeeSAR/.
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– KEEP PROTEIN PROTONATION/TAUTOMERS: Keeps the input protonation/tautomers of the
protein.

– ACTIVE SITE RADIUS: Selection of the radius of the active site for protein-ligand, protein,
and protein-protein calculations.

– INCLUDE PDB WATERS: Selection of water molecules from the input file or predicted by
the water placement procedure.

* NONE: All water molecules are deleted.

* RELEVANT: Water molecules with either three potential hydrogen bond contacts to
protein atoms and metals or one potential hydrogen bond to protein and another
one to ligand atoms or three potential hydrogen bonds to ligand atoms are selected.

* ALL: All water molecules are considered during HYDE calculations.

* 3-PROTEIN BOUND: Only water molecules with potentially three contacts to protein
atoms are kept for HYDE scoring.

* 3-CONTACTS: Only water molecules with potentially three contacts to protein or
ligand atoms are kept for HYDE scoring.

* PLACE WATERS: Water molecules are placed according to the placement procedure.
All placed water molecules are integrated into HYDE scoring.

– DEHYDRATION PENALTY WEIGHT: Weight for the polar dehydration term of the HYDE
scoring function ∆Gdehydr ati on

– HYDROGEN BOND WEIGHT: Weight for the saturation term of the HYDE scoring function
∆Gsatur ati on

– INTERNAL H-BOND THRESHOLD: Geometric quality threshold ( fdev ) for the recognition of
a hydrogen bond interaction.

– EXPOSED TERM THRESHOLD: Penalty for exposure of apolar ligand atoms.

– USE DEHYDRATION PROBABILITY: Usage of the dehydration probability (pdehyd ) for HYDE
calculation. If the dehydration probability should not be used the following discrete
decision is made:

pdehyd =
0 if pdehyd < 0.5

1 if pdehyd ≥ 0.5
(C.1)

– USE WATERINTERACT TERM: Inclusion of the WaterInteract term.

– USE WATEROVERLAP TERM: Inclusion of the WaterOverlap term.

– USE 100-0-0 MODEL: Selection of 100-0-0 model or fdev -based model.

• Optimizer Settings

– OPTIMIZE LIGAND: Activation of the geometric optimization of the ligand with GeoHYDE.

– BOND SETTINGS: Selection of bond parameters for optimization.
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* TORSION AND H-DONOR BONDS: Optimization of torsion angles as well as terminal
hydrogen bond donors.

* ONLY TORSION BONDS: Only torsion bonds are rotatable during optimization.

* ONLY H-DONOR BONDS: Only terminal hydrogen bond donors are rotatable during
optimization.

• Mark as rejected

– MAXIMUM OVERLAP IN %: Visual indication of clashing molecules. The overlap is calculated
using the van der Waals radii of the atoms. The percentage indicates the overlap of the
van der Waals radii.

Figure C.13: HYDE Debug GUI parameter dialog.
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C.2.3 HyPPI

HyPPI was developed for the automatic classification of protein-protein interfaces into crystal artifact
or transient or permanent interface. Its integration in the ProteinPlus web server allows the automatic
retrieval of a protein structure from the PDB and its classification (Figure C.14).

Figure C.14: ProteinsPlus interface; Example complex: Anticalin with a tumor antigen (PDBid 5n48).

The user can define the protein chains for which a classification should be performed (Figure C.15).
Theoretically, multiple chains can be selected to form one interface. However, this is currently not
implemented on the ProteinPlus web server.

Once the classification is finished, which usually takes less than a minute, the probability for the
interface to be a crystal artifact, a transient or permanent interaction are given (Figure C.16).
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Figure C.15: Selection of protein chains for their classification with HyPPI on the ProteinsPlus web server; Example
complex: Anticalin with a tumor antigen (PDBid 5n48).

Figure C.16: Results of the HyPPI classification on the ProteinsPlus web server; Example complex: Anticalin with
a tumor antigen (PDBid 5n48).
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5
Supporting Biocatalysis Research with Structural
Bioinformatics
Nadine Schneider∗, Andrea Volkamer∗, Eva Nittinger, and Matthias Rarey

5.1
Introduction

Computer methods have found their way to almost all fields of academic and
industrial research by now. Especially, intricate design processes cannot be tack-
led without the use of specific software tools due to their inherent complexity.
Although computational tools have been an integral component of most natural
sciences disciplines over a long period of time, their application in life sciences to
answer biological, biochemical, pharmaceutical, or biotechnological questions is
still relatively sparse. This may be due to the complexity of the engaged systems.
In many cases, the incomplete comprehension of the underlying biological and
physicochemical processes constitutes an enormous challenge, which makes the
generation of accurate theoretical models very difficult. In spite of this, many com-
putational methods exist that try approaching these problems and already support
experimentalists in life science research. This chapter focuses on the application of
software tools to assist biocatalysis research. First, questions that can be addressed
by computational methods, including an overview of methods currently deployed
to biocatalytical problems, are identified. In the second section, novel computa-
tional methods are introduced, which have been developed for the analysis and
comparison of protein binding pockets and the estimation of energetic contribu-
tions of protein-protein and protein-ligand interactions, respectively. In the third
section, applications exemplifying the benefit of these novel methods for biotech-
nological research are given. Finally, a conclusion is drawn and future directions
are discussed.

5.2
Computational Tools to Assist Biocatalysis Research

The discovery and efficient yield of biocatalysts in (bio-)technological processes
is the central question in biocatalysis research. One of the challenges is to find

*A.V. and N.S. contributed equally to this work.

Applied Biocatalysis: From Fundamental Science to Industrial Applications,
First Edition. Edited by Lutz Hilterhaus, Andreas Liese, Ulrich Kettling, and Garabed Antranikian.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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or optimize biocatalysts for specific processes. This objective goes along with the
need to construct enzymes with new or enhanced catalytic properties. Thereby,
the optimization of characteristics of the enzyme like temperature-, pressure-, or
pH-stability often play key roles. Usually, experimental methods such as directed
evolution are employed for this. Those are time- and cost-intensive approaches,
based on several mutagenesis cycles combined with efficient screening or selec-
tion [1]. A variety of computational tools have been developed in the last years to
assist directed evolution and de novo design of new enzymes; a comprehensive
overview can be found in the work of Damborsky and Brezovsky [2, 3].

Besides the engineering of proteins, the identification of new enzyme classes
from various species catalyzing specific reactions is another objective in biocatal-
ysis research. Due to structural genomics projects and advances in crystallization
techniques, nowadays, protein structures are elucidated before anything is known
about their function. Experimentally determining the function of enzymes is a
complex process, usually starting with the screening of known substrate collec-
tions; similar to finding a needle in a haystack. For this purpose, also several in
silico methods have been developed to support the prediction of the protein’s func-
tion as well as its properties considering the binding of substrates. In the following,
computational methods related to the fields of de novo design, bioinformatics, and
molecular modeling are presented in order to give an impression of the wide range
of applications of those in questions occurring in biocatalysis research.

5.2.1
Computational Tools for Protein Engineering

In the process of protein engineering, the following questions may arise:

• Which residues should be modulated to optimize the enzyme activity or selec-
tivity? And which are the best substituents for these residues?

• Up to which temperature is the enzyme stable and which mutations can lead to
a better thermostability?

• Which residues are most important for a protein-protein interaction?

These and other questions considering the design of proteins can be addressed
by a variety of computational tools, which are summarized in this section. Elab-
orate software suites for the de novo design of binding sites such as ROSETTA
[4] or ORBIT [5] allow to construct virtually new enzymes that catalyze nonbi-
ological reactions [6, 7]. A recently published tool PocketOptimizer [8] can be
either used to optimize the active site of a protein concerning the binding affinity
of small compounds or to establish the binding of new compounds by virtually
mutating binding site residues. Besides these de novo design methods, quantita-
tive structure-function or sequence-activity relationship analysis can be used as a
computational tool to predict promising mutations concerning specific functional
modulations [9, 10]. Here, a statistical model is derived from mutated enzymes
using a set of structural and physicochemical properties of the amino acids and
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the activity of these enzymes. These analyses enable the classification and the pre-
diction of beneficial, neutral, or disadvantageous mutations.

Although most mutations leading to functional enhancement of the enzyme
were located in the binding site, other promising approaches exist that attempt to
optimize ligand exchange pathways to improve the kinetics. The computational
tool CAVER [11, 12] helps to find pathways within the protein that connect a
buried active site with the solvent. If the three-dimensional (3D) structure of a
target protein is resolved, CAVER can be used to identify important residues in
these pathways. An application of this tool to redesign dehalogenase access path-
ways for degrading toxic substances has resulted in a 32 times higher activity of
this dehalogenase toward a nonnatural substrate [13].

Furthermore, when analyzing protein-protein interactions, modulations of
protein surface residues are of special interest. The COMBINE model [14]
estimates residue-wise binding energy contributions of both interacting partners
and, thereby, allows the identification of critical residues for binding. Another
concept, called computational alanine scanning, estimates the specific contribu-
tion of a residue by virtually substituting it by an alanine [15, 16]. This approach
is well suited to study protein-protein interactions as well as protein stability and
can be combined with different energy functions.

Another important aspect in protein engineering is the thermostability of
proteins. This can be analyzed using bioinformatics methods such as sequence
alignment of homologous proteins to find, for example, the so-called ancestral
mutations. Thereby, it is assumed that enzymes originate from a more ther-
mostable but promiscuous ancestor and have been specialized later through
evolution [17, 18]. A summary of all methods presented in this section is listed in
Table 5.1.

5.2.2
Computational Tools for Function Prediction and Analysis of Enzymes

During the characterization of an enzyme with unknown function, some of the
following questions may emerge:

• Which enzymatic class does the protein belong to?
• Do low-molecular-weight compounds (200–700 Da) bind to the protein?
• Which class of low-molecular-weight compounds will preferably bind to the

protein? What are the physicochemical properties of such compounds?
• Can the function of a protein be inhibited or activated by a low-molecular-

weight compound?
• Are there structurally or functionally critical waters involved in the binding

process?
• Which other compounds in the bioassay may possibly interfere with the binding

of the substrate to the enzyme?
• What is the bioactive binding mode of the substrate?
• Is a potential protein-protein contact deposited in the crystal structure the bio-

logically relevant assembly?
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Table 5.1 Summary of computational methods and tools for protein engineering.

Technique Applications/goals Computational
tools/methods

De novo design of
binding pockets

Design new enzymes that
catalyze non-biological
reactions

ROSETTA [4]

Optimize binding pocket with
respect to substrate binding
affinity

ORBIT [5]

Finding of non-natural
substrates

PocketOptimizer [8]

Quantitative
structure-function and
sequence-activity
relationships

Prediction of mutations
concerning functional
modulations

ProSAR [9, 10]

Modulation of binding
pocket entrance

Optimization of ligand
exchange pathways,
identification of important
residues

CAVER [11, 12]

Analysis of
protein-protein
interactions

Identification of critical
residues for binding

COMBINE [14]

Computational alanine
scanning

Analysis of energetic
contributions of single residues

Alanine scanning [15, 16]

Sequence alignment of
homologous proteins

Optimization of, for example
thermostability

Analysis of ancestral
mutations [17, 18]

Several computational tools already exist that focus on analyzing, for example
the binding mode of a compound, the properties of the active site, or possible
functions/substrates of an enzyme. In most cases, those tools depend on the
availability of the 3D structure of the protein of interest. Due to advances in
crystallization techniques, a growing number of protein structures are nowadays
elucidated yielding large structural data pools. The freely available RCSB Protein
Data Bank (PDB) [19], for example, contained more than 117000 structures in
early 2016 and has shown an exponential growth since its launch. Using this
abundant source of information, valuable insights about structure-function
relationships of proteins can be derived with the help of computational tools.

Molecular docking methods (see for example [20] for a current review) are able
to predict the bioactive binding mode of compounds in a protein binding site and
to distinguish between compounds that will or will not bind to a protein. Using
these methods with a set of potential substrates, insights into substrate specificity
of enzymes have been successfully gained [21–25]. If the function of an enzyme
is unknown, although its structure has been elucidated, docking approaches
have already been used to propose potential substrates that reveal hints about its
concrete function [26]. Protein function prediction is also possible by analyzing
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different properties of the complete protein or its binding pocket and relating
these to the features of already characterized enzymes [27–32]. Furthermore,
the analysis of molecular interactions between an enzyme and the substrate is
essential to gain a deeper insight into the mode of action. Computational scoring
functions have been designed for this purpose and are successfully applied in
pharmaceutical research (reviewed in [33]).

To characterize the function of an enzyme, it is also important to know the nat-
ural biological assembly. In crystal structures, protein-protein interactions may
be artificially formed due to the regular crystal lattice and often the biologically
relevant multimeric state of the active enzyme is not obvious [34]. Several com-
putational methods have evolved to distinguish between biological assemblies of
proteins and crystal artifacts (see, for example, [35, 36]).

The mentioned approaches and success stories constitute only a subset of the
available structure-based computational approaches, which can be, and partially
already have been, successfully applied to biotechnological research. Nevertheless,
few of these tools have been optimized toward solving biotechnological questions
and many challenges remain. For a more detailed overview of the field of structural
bioinformatics, the interested reader is referred to the following books [37–39].

In the next section, novel computational approaches are presented that address
biocatalysis questions ranging from the analysis of enzyme binding sites and func-
tional prediction of proteins to considerations of protein stability.

5.3
From Active Site Analysis to Protein Stability Considerations

Novel in silico approaches, presented in this section, were developed in close coop-
eration with industrial partners, thereby allowing to concentrate on urgent prob-
lems in biocatalysis research. These novel methods comprise tools for the struc-
tural and functional analysis of enzymes as well as approaches to assist protein
engineering tasks such as optimizing protein stability.

One of the major objectives for the development of the novel approaches was
enabling a comprehensive understanding of enzyme functions and properties,
especially if nothing except the sequence and the structure of the protein is known
beforehand. Focusing on structure, such analysis includes detecting potential
binding pockets on the protein surface, characterizing them by structural and
physicochemical descriptors and, finally, incorporating these descriptors for
functional protein classification. For example, predicting the potential of an
enzyme to be modulated or inhibited by low-molecular-weight compounds
becomes possible based on these binding site descriptors.

Furthermore, the adaptation and improvement of the molecular docking tool
LeadIT [40] enables predicting the natural substrate of an enzyme or finding new
substrates with higher activity and, thus, better yield. In addition, docking sub-
strates from known enzymes of specific classes into an enzyme binding site of
unknown function can be used for functional classification.
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In the context of enzyme optimization, that is the introduction of non-natural
mutations, consideration of energetic and stability aspects is essential. Hence, a
reliable estimation of interaction energies of protein-ligand and protein-protein
complexes is required to allow systematic optimization and mutation of enzymes.
For this purpose, the HYDE scoring function [41, 42], which has originally been
developed to assess the interactions between ligands and proteins, has been
adapted to this new application scenario.

In the following, the rational for developing the respective approaches together
with the underlying methodology is discussed. First, the method for the detec-
tion and analysis of active sites is described. Second, the usage of derived pocket
descriptors for classification of proteins, for example function annotation, is intro-
duced. Furthermore, a short description of how to incorporate docking in an auto-
mated manner for substrate-specific functional annotation is given. Finally, the
incorporation of the scoring function HYDE to assess the energetic contribution
of molecular interactions in protein-ligand as well as protein-protein complexes
is presented.

5.3.1
Computer-Aided Active Site Analysis of Protein Structures

The 3D structure of a protein is the key to its function. The formation of a protein-
ligand complex, and thus, the completion of the biological function of a protein
largely depends on the complementarity of the two binding partners. Protein and
ligand have to adapt and fit to each other, similar to a key in a lock [43], demanding
a structural as well as physicochemical match of the properties of the two binding
partners.

As mentioned earlier, more than a hundred thousand 3D protein structures
are currently publicly available. Although 3D structures are already used in
biotechnological processes for the analysis of single enzymes, less effort has
so far been undertaken to detect patterns from the whole data pool. Thus,
automatic tools are needed to extract and categorize information from this
data flood and to transfer this information to so far uncharacterized enzymes.
Such knowledge-based transfer has long been used in sequence-based analysis,
due to the fact that the sequence is usually known before its structure. Clearly,
comparing the sequences of proteins will reveal information about the potential
function of a protein based on high sequence similarity. Nevertheless, when this
high similarity is missing, structure-based methods can still reveal similarities
between distantly related proteins [44]. Furthermore, structural comparisons give
insights into the spatial arrangement of key residues of an enzyme and can help to
compare proteins on a functional level, and even give hints about how to optimize
the yield of a biocatalyst. The automatic detection of potential binding pockets in
protein structures is not a new task. Many algorithms have been developed over
the last two decades that can be applied for ab initio pocket prediction [45]. Some
challenges nevertheless remain, mostly due to the fact that the universe of pocket
shapes is manifold together with the natural motion of proteins. Thus, a protein
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binding pocket can be small or large, buried or open, deep or shallow, continuous
or disrupted making the correct detection of a pocket and its boundary in an
automatic manner challenging. A new pocket detection algorithm has been
developed, called DoGSite, which addresses especially the question of deriving
distinct pockets and subpockets and of finding a correct boundary definition to
make future descriptor-based analyses as feasible as possible [46]. The DoGSite
algorithm has been evaluated on several retrospective benchmark studies and
convinced by its good performance in recovering the true ligand-binding site.
Special attention has been turned on the boundaries, precisely, the volume of the
predicted pockets and subpockets. Measures such as the overlap of the pocket
and the ligand have been used to show that the predicted pockets define restric-
tive volumes that include the major part of the ligand while leaving as little empty
space as possible. This especially holds for the calculated subpockets which are,
therefore, well suited for descriptor derivation and pocket comparison. Starting
from this representation, various shape and physicochemical properties can be
calculated, for example, volume, depth, and hydrophobicity of a pocket. Using
such well-defined descriptors for the binding sites and, thus, the centers of action
of a protein, allows correlating protein structures with their functional class.
Finally, with respect to process optimization, predictions about the potential
ability of an enzyme to be modulated or inhibited by low-molecular-weight
compounds can be predicted with this method.

5.3.1.1 DoGSite: Binding Site Detection and Derivation of Representative Binding Site
Descriptors
Similar to other geometric approaches for pocket detection, DoGSite uses a grid
representation of the protein, but in contrast to other algorithms it incorporates
a difference of Gaussian (DoG) filter from the field of image processing for cavity
detection and enables the prediction of more reasonable pocket boundaries. Fur-
thermore, the new algorithm is able to separate detected pockets into subpockets
allowing a more detailed analysis.

The procedure is straight forward: The 3D structure of a protein complex,
including all protein atoms, their types and their locations, that is x-, y-, and
z-coordinates in Cartesian space, is used as input. A Cartesian grid is spanned
around the protein (Figure 5.1a). Subsequently, each grid point is scanned and
assigned as occupied if it lies inside the van der Waals radius of any protein
atom, otherwise as free (see Figure 5.1a, occupied= 1, free= 0). Next, the DoG
filter is applied to the grid detecting invaginations on the protein surface where
positioning of sphere-like objects is favored (Figure 5.1b). Thus, grid points with
favorable DoG values are merged to subpocket cores (Figure 5.1c). In the final
step, these subpockets are dilated toward the protein surface and, eventually,
merged into pockets (Figure 5.1d).

Analyzing binding sites based on their shape and physicochemical features can
generate valuable information for further design processes. For example, similari-
ties between distantly related proteins can be explored by comparing their binding
site features.
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Figure 5.1 Schematic depiction of DoGSite’s
(sub)pocket detection. (a) Grid representa-
tion of the protein binding site (light blue).
(b) Filtering of the grid using a DoG filter.

(c) Merging of favorable grid points to sub-
pocket cores. (d) Dilation to subpockets and
merging to one pocket.

To describe the size of the cavity, the volume and the surface of the pocket are
calculated. The depth of the pocket is described by the largest distance between
any solvent-exposed pocket grid point and the most distant buried grid point.
Furthermore, the exposure of the pocket can be described by the ratio of number
of solvent-exposed grid points to the number of pocket-lining grid points. Finally,
the shape of the pocket is mimicked by ellipsoids fitted into the pocket volume,
thus, simplifying the shape as being something between a rod, a disk, and a sphere
(see Figure 5.2).

The physicochemical properties of the pocket-lining atoms are equally impor-
tant for ligand binding and are, therefore, also added to the set of pocket descrip-
tors. The amino acid composition of the pocket-lining residues is calculated based
on the respective type and then grouped by their physicochemical properties. Fur-
thermore, functional groups, for example, hydrogen bond donor and acceptor
atoms, as well as hydrophobic groups are detected and a hydrophobicity profile
is calculated. In total, over 40 properties are collected, which can be used for the
analysis and comparison of enzymes. A more detailed description of the method
and the derived properties of the binding pockets can be found in [46].

5.3.1.2 DoGSiteScorer: Descriptor-Based Protein Classification

Structural descriptors, derived from the active site, allow to correlate protein
structures with their specific function, family affiliation, or binding behavior. Thus,
to assess the structure-function relationship of proteins, the above-mentioned
descriptors are incorporated into two different classification methods.
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(a) (b) (c)

Volume Depth Shape

Figure 5.2 3D structures of the active site of
urokinase-type plasminogen activator (PDB
code 1c5q) including three exemplarily cal-
culated descriptors. The protein surface is
shown in gray. The co-crystallized ligand is
depicted in ball-and-stick mode. (a) Volumes

of the three subpockets sketched in orange,
yellow, and red. (b) Depth of the pocket,
color coding from yellow (solvent exposed)
to red (buried). (c) Ellipsoidal shapes calcu-
lated for all three subpockets.

The first classification approach, a hierarchical clustering method, has been
incorporated to group proteins by the similarity of their descriptor profiles. The
analogy between two proteins is calculated based on the summed similarities
or distances between the single descriptors of the respective proteins and
normalized to a value between zero and one. Based on these values a cluster tree
can be calculated holding information about the relationship between proteins
or, more precisely, their binding sites (similar to a phylogenetic tree showing
the evolutionary relationship among various entities). This approach has been
applied in a mutation study and is further explained in the application part (see
Section 5.4.3).

Nevertheless, in most cases, there is no simple linear relationship between one
or several descriptors and the functional class of a protein. In such cases, other
sophisticated machine learning techniques can be applied, which are more robust
in assigning the correct class for nonlinear data. Therefore, in DoGSiteScorer an
existing freely available implementation of a support-vector machine (SVM) [47]
was chosen. Besides its robustness, this SVM can be applied to separate multiple
groups, for example necessary to classify proteins into the six EC main classes.
Furthermore, the classification is supported by a probability value. Based on the
above-mentioned descriptors, active sites can be correlated to arbitrary classifica-
tion scenarios, such as the prediction of the potential of an enzyme to be inhibited
or activated by low-molecular-weight compounds or the function of an unchar-
acterized enzyme (more details about the application are given in Section 5.4.1).
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The premise for these machine learning methods is a reliable and large data set,
in which each protein is represented by a well resolved structure and a distinct
assignment to a class. Having collected such a data set, the binding pockets for
the respective protein structures are detected using the DoGSite algorithm and
the set of descriptors is calculated. Usually, the data set is separated into training
and test data. The training set is used to train the SVM method to optimally
separate the data points from the different classes based on the precalculated
descriptors. The independent test set is then employed to evaluate the prediction
performance of the built SVM model. Once a model has been established, it
can be queried with any new protein structure by computing the respective
descriptors and afterward assigning, for example its ability to bind molecules
of a specific type or its function in general. A more detailed description of the
classification method is given in [48, 49].

5.3.2
Molecular Docking to Assist Functional Characterization of New Enzymes

As an alternative to the concept of pocket similarity, which is applied in the
DoGSiteScorer to derive the function of a protein, molecular docking can help to
identify the substrate of an enzyme and, thereby, its function. The LeadIT soft-
ware suite [40], which includes the FlexX docking algorithm [50], has originally
been evolved for computer-aided drug design. The idea of molecular docking
is to place a small molecule of interest in the active site of a protein in order to
identify the bioactive binding mode. Hence, docking algorithms are confronted
with the lock-and-key problem, that is, how to best fit the small molecule (key)
into the protein binding site (lock). Thus, the initial requirement is a strategy to
place the ligand in the binding site, followed by the evaluation of the calculated
binding mode using a scoring function. To assess the quality of a ligand binding
mode, the scoring function estimates the respective free binding energy. Most
scoring functions have been calibrated using a set of protein-ligand complexes
with resolved crystal structures and experimentally measured affinities.

Since in nature proteins and their binding partners are flexible, the two binding
partners are able to adapt their conformation to each other (known as induced-fit
phenomenon [51]) to achieve a better fit. Modeling this flexibility is rather chal-
lenging. Thus, the first docking approach kept protein and ligand rigid [52], while
subsequent approaches tried to capture ligand-flexibility (see, e.g., [50, 53, 54]),
eventually, most recent tools also try to investigate protein flexibility (see, e.g.,
[55, 56]). In the FlexX docking algorithm (integrated in the LeadIT software), the
ligand is treated in a flexible manner.

In order to apply molecular docking in biocatalysis questions, the LeadIT soft-
ware had to be adapted. As mentioned earlier, scoring functions are calibrated
on protein-ligand complexes, mostly on protein-inhibitor complexes, leading to
a high dependency of the performance on the underlying complexes. In contrast
to inhibitors, which exhibit a strong binding to the protein, substrates bind rather
weakly to an enzyme. This is problematic since most scoring functions were only
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trained on strong binders and, therefore, often cannot correctly assess the binding
mode of substrates. For this purpose, the HYDE scoring function (see next Section
5.3.3), which is not calibrated on experimental binding affinities, was incorporated
into the LeadIT software to enable a reliable estimation of the binding energy of
substrates. Another issue attributed to substrates is the importance of the correct
protonation state. Hence, the docking tool must be able to handle different pro-
tonation states and tautomeric forms. For this reason, the tool Protoss [57, 58],
which is able to find the best hydrogen bonding interaction network, was also
included in the LeadIT software.

These major adaptations enable the LeadIT docking software to be used for
functional classification and specificity predictions. An open issue is the transi-
tion state substrates adopt during the catalytical process. This high-energy state
of a molecule is usually not modeled in docking tools, but can be incorporated
by generating these states beforehand [26]. In the application part of this chapter,
two successful examples using the LeadIT docking software in function as well
as specificity prediction will be shown without especially considering transition
states of substrate (see Sections 5.4.4 and 5.4.6).

5.3.3
Energetic Estimation of Protein-Ligand and Protein-Protein Interactions

The reliable estimation of binding free energy between two biomolecules is a
prerequisite for the understanding and modeling of biological processes. Almost
all life sciences – whether dealing with biotechnological process optimization or
the development of new pharmaceuticals – will benefit from the solution of this
problem. A wide variety of issues could be tackled, ranging from optimization
of the selectivity of an enzyme over systematic determination of mutations
to enhance the thermostability of a protein to the correct assignment of the
biological function of an enzyme by identifying the natural substrate. Several
computational approaches exist trying to reliably estimate the binding affinity of
biological complexes. Elaborated methods to calculate the free energy such as
quantum chemistry calculations or molecular dynamics simulations are time and
resource consuming, allowing their application only on small systems or partic-
ular questions. Alternatively, scoring functions have been successfully applied,
mainly in pharmaceutical industry, to assess the binding affinity of a compound
to a protein target [33]. These functions are mathematical expressions to estimate
the energetic contribution of noncovalent protein-ligand interactions. Herein,
it is assumed that independent interaction contributions could be additively
combined to calculate the total binding free energy. Normally, scoring functions
rely on calibration strategies, which include experimentally measured binding
affinities of protein-ligand complexes and their 3D structures. This induces a
high dependency of the performance of a scoring function on the quality of the
underlying data as well as on the types of complexes used for its calibration.
Another challenge is the inclusion and description of destabilizing interactions
which are rarely found in 3D structures. In general, the precise modeling of
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molecular interactions and balancing energetic contributions of different kinds
of interactions is still a matter of research. Furthermore, the consideration of
enthalpic and entropic contributions to binding free energy is challenging, given
that the main part of entropy is attributed to the surrounding solvent molecules.
Hence, to solve the problem of binding free energy estimation many different
aspects have to be considered.

In the past decade, the scoring function HYDE has been developed for protein-
ligand complexes, without using experimental affinity data for calibration [41, 42,
59]. The HYDE scoring function has so far been applied successfully to a variety of
pharmaceutically relevant questions showing good results in line with other highly
parameterized scoring functions in the field [42, 59]. In the following sections,
the concept behind the HYDE scoring function is described and new potential
applications of HYDE in the biotechnology area are presented.

5.3.3.1 The Concept behind the HYDE Scoring Function

The theoretical concept behind the HYDE scoring function describing the satura-
tion of the hydrogen bond network in liquid water has been developed by Lange
and Klein [60]. The fraction of satisfied hydrogen bond functions Fsat(T) at a cer-
tain temperature T could be derived from the thermodynamic cycle of water (see
Figure 5.3) under the following assumptions: First, in hexagonal ice crystals, the
water molecules are completely satisfied forming four hydrogen bonds with their
neighbors. Second, in a vaporous state, all four hydrogen bonds are broken. Finally,
the energy that is needed to break all four hydrogen bonds can be deduced as
the sum of three enthalpic terms: the enthalpy of fusion, the enthalpy of heating
up water from 273 K to 373 K, and the enthalpy of evaporation. This results in
54.18 kJ mol−1 (see Figure 5.3).

Based on these findings, the temperature-dependent fraction of unsatisfied
hydrogen bond functions Funsat(T) can be estimated by dividing the actual energy
of the system at temperature T by the total energy needed to transfer the water

(54.18 kJ mol–1)

ΔHfusion
(6.0 kJ mol–1)

ΔHevaporation
(40.7 kJ mol–1)

ΔH273–373K= Cp ΔT
(7.5 kJ mol–1)

Ice
Four satisfied 

hydrogen
bond functions

Vapor
Zero satisfied 

hydrogen
bond functions

Liquid water
(373 K)

Liquid water
(273 K)

Figure 5.3 Thermodynamic cycle of water, Cp = heat capacity of water.
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Fsat(Ice) = 1

Satisfied H-bond

Fsat(298 K) = 0.85

Partially satisfied H-bond

Fsat(373 K) = 0.75

Unsatisfied H-bond function

Figure 5.4 Saturation factor Fsat(T) at different temperatures.

molecules into the vaporous state (see Equation 5.1). The remaining fraction
represents the amount of satisfied hydrogen bond functions Fsat(T) in bulk water
at a given temperature:

Funsat(T) =
ΔHfusion + Cp•(T − 273 K)

ΔHfusion + Cp•(373 K − 273 K) + ΔHevaporation

Fsat(T) = 1 − Funsat(T) (5.1)

Figure 5.4 gives an overview of the range of values the saturation factor Fsat(T)
can adopt at different temperatures. Binding affinities were usually measured at
ambient temperature (298 K); here, the saturation factor Fsat(298 K) equals 0.85,
which means that 85% of the hydrogen bonds of the solvent molecules were sat-
isfied (assuming the solvent is an aqueous solution). The saturation factor is an
important parameter, which is included in the HYDE scoring function (discussed
later). Furthermore, using this theoretical concept, dehydration terms and values
for idealized hydrogen bond functions could be derived. A more detailed descrip-
tion of this concept can be found in [60].

5.3.3.2 HYDE – Estimation of Hydrogen Bonding and Dehydration Energy
The HYDE scoring function models the basic concepts of binding. In the
unbound state, protein and ligand are solvated in aqueous solution. To enable the
binding process water molecules located in the binding pocket of the protein are
displaced while those surrounding and interacting with the ligand are stripped
off. Primarily, this leads to an unfavorable enthalpic contribution since hydrogen
bonds of protein and ligand to water molecules are broken. Establishing new
hydrogen bonds between protein and ligand may counterbalance this energy
loss. In addition, hydrophobic moieties of ligand or protein, which have been in
contact with water molecules beforehand, lead to an unfavorable energy given
that they introduce a discontinuity in the water hydrogen bonding network.
Removing these water molecules from the hydrophobic surfaces and releasing
them to bulk water produces a gain in energy, the so-called hydrophobic effect
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Figure 5.5 Schematic depiction of the binding process, modeled in the HYDE scoring
function.

[60]. In HYDE, it is assumed that the main energetic contributions to the binding
energy arise from the above-described processes. Hence, the interactions mod-
eled in the HYDE scoring function are hydrogen bonding and the hydrophobic
effect as well as the unfavorable contribution of dehydration of polar atoms (see
Figure 5.5).

The equation of the HYDE scoring function consists of two terms: one to calcu-
late the change in hydrogen bonding (ΔGH-bonds) and a second one to estimate the
dehydration energy (ΔGdehydration) for every atom i in the protein-ligand interface
(see Equation 5.2).

ΔGHYDE =
∑

atoms i
ΔGi

H-bonds + ΔGi
dehydration (5.2)

Both terms of the HYDE scoring function – the hydrogen bonding and
the dehydration term – are derived from the Gibbs-Helmholtz equation
(ΔG=−RT ln(K )). As equilibrium constant, an atom-based log P (plog P) value
is introduced in the hydrogen bonding as well as the dehydration term. The
atom-based plog P increments were derived from experimental log P values
(octanol-water partition data) of small molecules using multiple linear regression
(MLR) analysis [61]. The energy contribution of a hydrogen bond in HYDE
arises from the fact that statistically not all hydrogen bonds in bulk water are
perfectly realized (discussed earlier). Thus, the energy for disrupting these
weak hydrogen bonds is lower than that for ideal hydrogen bonds [60]. This
phenomenon is integrated into HYDE by using the saturation factor Fsat(T) (see
Equation 5.1). A more detailed description of the HYDE scoring function is given
in [42].

5.3.3.3 Estimation of Protein-Protein Interactions Using HYDE
The calibration strategy pursued in HYDE – the usage of octanol-water partition
data of small molecules instead of binding affinities and crystal structures
of protein-ligand complexes – prevents HYDE from being restricted to the
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estimation of binding energies in protein-ligand complexes. Furthermore, the
general concept behind the HYDE scoring function allows assessing interactions
between arbitrary molecules which take place in aqueous solution. In addition,
the before-mentioned temperature-dependent saturation factor Fsat(T) allows
to include the temperature dependence of molecular interactions in HYDE,
enabling the analysis of thermostability of proteins. These are the required
foundations making HYDE applicable to biocatalysis questions such as the
systematic optimization of enzymes, directed mutational analysis of proteins, or
the improvement of selectivity.

To realize the scoring of protein-protein interactions within a protein structure
and to assess whether the 3D structure is stable at different temperatures, the ref-
erence state used in the HYDE function has to be changed. Unlike the estimation
of protein-ligand binding energy, in which the energy difference of unbound and
bound state is calculated (see Figure 5.5), the energy gain between the unfolded
and folded state has to be assessed to prove the stability of a protein structure.
In the unfolded state, a residue is solvated and able to freely interact with the
surrounding water molecules, whereas in the folded state, the residue is almost
completely dehydrated and restricted to interactions with neighboring residues
in the final 3D structure of the protein. Hence, for each residue of the protein,
the difference in hydrogen bonding and dehydration energy between these two
states is estimated using the HYDE function. Furthermore, the terms of the HYDE
scoring function can be slightly modified to include the temperature-dependent
saturation factor Fsat(T) also in the dehydration term, identifying protein residues
contributing more or less favorable to binding at elevated temperatures. To further
assess the stability or the type of protein-protein interfaces found in multimeric
protein complexes, the identification of all potential interfaces contained in the 3D
structure of the protein complex is implemented. Afterward, the binding energy
of all these interfaces is estimated using the HYDE scoring function.

These adaptations enable the investigation of the energetic effect of mutations,
the analysis of stability of the protein structure at different temperatures, and the
classification of protein-protein interfaces in biologically relevant assemblies and
artificial crystal contacts.

5.4
Applying DoGSiteScorer and HYDE to Biocatalytical Questions

In the following, some exemplary applications of the computational tools
described in Section 5.3 are presented. These examples comprise some of the
biocatalysis questions, which were mentioned in Section 5.2 and which could
be addressed using the newly developed computational approaches. In the first
application, one of the most important questions in biocatalysis research, the
annotation of the function of an enzyme, is addressed by the DoGSiteScorer
SVM-based classification method. This question could also be tackled by molec-
ular docking and is shown in a subsequent application study. Another challenge
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in biocatalysis research is the suggestion of potential mutation sites, which can
be addressed incorporating the descriptor-based binding site comparison. Fur-
thermore, the derivation of specific properties of the binding site and their usage
to decide whether a binding pocket could be targeted by a low-molecular-weight
compound are described. Subsequently, another important question, the predic-
tion of competitive substrate inhibition by other compounds within the activity
assay, is discussed. Finally, the last application study is the determination of the
biologically relevant assembly of a protein-protein complex deposited in the PDB
crystal structure using the HYDE scoring function. This is only an extraction of
possible questions that could be answered by the developed computational tools.
Further applications are discussed at the end of the chapter.

5.4.1
Enzymatic Function Prediction Using the DoGSiteScorer

Due to, for example, structural genomics projects and advances in crystallization
techniques, nowadays protein structures might get elucidated before the function
is fully characterized. Many sequence-based approaches for functional annotation
are known. However, proteins without homologous sequences can still share func-
tions and vice versa proteins with high sequence similarity can disagree in their
functional duty. Several structural methods are available for function prediction
like fold comparison (SCOP [62], CATH [63], eFold [64]), structural alignments
(PAST [65], VAST [66]), descriptor-based comparison [27, 28] or structure-based
(fragment) docking [26]. Despite this magnitude of methods, many protein struc-
tures are still deposited in the PDB with missing or wrong functional annotation.
In a recent study, the number of nonredundant X-ray structures in the PDB with
“unknown function” has been reported to be 2549 [67]. While more than half of
the proteins could be reassessed by further investigations into UniProt Knowl-
edgebase, sequence and fold similarity, a total of 1084 protein structures remained
with “true” unknown function.

The DoGSiteScorer SVM-based classification approach has been advanced for
answering biotechnological questions as the prediction of enzymatic function
based on the EC classification scheme. To assist overcoming the remaining
functional annotation lack, a new data set containing all proteins from the PDB
with annotated EC number was generated [49]. Over 26 000 pockets, containing
a bound ligand and fulfilling the implemented coverage quality criterion, were
detected and used for the training and testing of the method. Based on the
calculated global properties, these pockets were separated on different EC
specification levels based on multiclass SVM models. The method especially
convinced through the introduction of a stepwise classification into EC main
class, subclass, and substrate-specific sub-subclass. With aid of this method,
a deposited protein of unknown function or a newly elucidated protein can
be classified step-by-step, thus predicting its potential EC class together with
estimated confidence values for the respective annotation steps. As an example,
a hypothetical protein TM0936 (PDB code: 1p1m) has been investigated in a
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retrospective study. The protein was clearly predicted as being a hydrolase (EC 3)
and could further be classified into subclass EC 3.5. Finally, as substrate-specific
classification a peptide amidohydrolase (EC 3.5.1.88) and an adenosine deaminase
(EC 3.5.4.4) were found on the top ranks. This function prediction was in good
agreement with other annotation methods and literature reports [26]. Although,
the method may not give a unique answer to the functionality question, it can
generate reasonable hypothesis of the protein function within seconds, which
could, in a next step, be verified biochemically.

The DoGSiteScorer method for active site analysis has also been used for
the classification of four selected enzyme families: lipases (LED), cytochromes
(CYPs), thiamindiphosphate-dependent enzymes (ThDPs), and medium-chained
dehydrogenases/reductases (MDRs) with a total of 943 structures [68]. The
setup procedure of the classification models was the same as described in the
previous paragraph, and the accuracy to annotate the correct enzyme family in a
cross-validation study on this data set was 91%.

5.4.2
Docking-Based Functional Protein Classification

Besides the enzyme function prediction via descriptor analysis, the docking soft-
ware LeadIT was employed for this task. The aim was to classify proteins based
on docking scores of specific reference substrates. The idea for substrate-based
function prediction is to count the quantity and quality of enzyme-class-specific
substrates binding to an enzyme of interest. Thus, in this experiment, it was
assessed which substrates from proteins of known function bind best to the
proteins of unknown function.

The above-described enzyme data set containing the four enzyme families was
adapted with focus on the bound substrates. All substrates were extracted; erro-
neous molecules and duplicates were removed, yielding a set of 189 substrates
which were docked iteratively against the enzymes. This retrospective application
was aimed to recover the function of an enzyme pretending that nothing about the
function was known beforehand. The experiment is exemplified for a known lipase
(considered as unknown protein, see Figure 5.6). In this test case, all extracted
substrates have been docked against the target enzyme and the resulting docking
poses have been sorted by docking score. Based on the experiment design, the
substrates from known lipases should be accumulated on the top ranking scores,
and indeed they did (as shown on the right-hand side of Figure 5.6). Thus, to pre-
dict the most likely function of the target enzyme, the docked poses have been
ranked by their scores and a score histogram was calculated (see Figure 5.6, right).
Clearly, the lipase substrates (actives) got better (lower) scores than the substrates
from the other three classes (decoys). Repeating the experiment for all enzymes in
the data set, a mean accuracy of 73.5% over all four classes was observed. In gen-
eral, the function prediction via docking worked quite well; the performance was
especially good for lipase recovering, whereas the performance on ThDP enzymes
was rather poor. This implies potential problems in the preparation of the data
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set, the choice of substrates, or the consideration of cofactors or ions. Further-
more, in some cases, the docking method may generate nonnatural binding modes
leading to wrong assumptions. The results show that the LeadIt docking software
is capable of generating information about the catalytical function and substrate
specificity of an enzyme. A further example using docking to predict competitive
substrate inhibition is presented in Section 5.4.5.

5.4.3
Predicting Potential Mutation Sites Using DoGSite and Molecular Modeling

The mutation of enzymes to optimize the substrate conversion is a major
issue in biotechnology. Directed evolution and random mutations are only
two examples of how to achieve enzymes with better yields. In addition, using
computational tools for rational enzyme design can help to detect additional
potential mutation sites. As one example, the conversion of an alditol oxidase via
directed evolution into a glycerol oxidase was investigated [69]. Since directed
evolution did not achieve the expected increase in glycerol activity, the assistance
of DoGSite was consulted. A strategy was established to predict potential
mutation sites based on binding site comparisons combined with molecular
modeling.

The goal was to use typical binding properties of glycerol-binding enzymes
as idea generator for mutations in the active site of alditol oxidases toward
an enhanced glycerol activity. A PDB search for oxidases binding alditol and
those oxidases in complex with glycerol yielded 210 glycerol oxidases and 5
alditol oxidases with known structure (PDB codes: 2vfr, 2vfu, 2vfv, 2vfs, 2vft).
Next, to detect similarities and differences between their active sites, DoGSite
was applied to find and describe the respective oxidase pockets. Subsequently,
the proteins have been clustered based on the previously described similarity
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measure. The obtained clustering tree showed that the five alditol oxidases are
very similar and ended up in one branch, together with 11 glycerol binders (see
Figure 5.7a). Out of these 11 structures, the glycerol-binding oxidase (PDB code:
1d6z), which is most similar to four of the alditol oxidases, was chosen for further
investigations. To exactly characterize the differences in these structures, the
amine oxidase (1d6z) was superposed onto the alditol oxidase (2vfr) and analyzed
using the molecular modeling software MOE [70]. Direct comparison allowed the
detection a few residues, which could be mutated in the active site of the alditol
oxidase to closer resemble the known active site of the glycerol-binding oxidase
(see Figure 5.7b).

In 1d6z, the two amino acids Glu702 and Lys709 form a salt bridge. With respect
to the carbon atoms, two equidistant amino acids, that is, Val250 and Phe275,
could be found in 2vfr. Furthermore, the respective two amino acids are located
similarly with respect to the bound ligand. Thus, this double mutation could help
to enhance the alditol oxidase activity toward glycerol. Such mutations can have
a high impact on neighboring amino acid positions and the stability of the com-
plete structure. Further mutations, such as substituting Pro249 by a smaller amino
acid to create more space, could be necessary and detailed modeling experiments
should be investigated to verify these suggestions. Nevertheless, the described
double mutation and three additional single mutations were experimentally tested
by the cooperation partner. Unfortunately, these mutants could not be expressed
in the cytoplasm, thus no active oxidases could be produced [69].

This application showed some of the strength and weaknesses of the method.
Although valuable information about the active sites of the oxidases and their
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similarity could be derived, no information about the stability of the enzyme can
be added. Thus, in addition to active site comparison and amino acid mutation,
molecular dynamic simulations could be applied to computationally analyze the
stability of the modified enzyme. Furthermore, computational tools that estimate
the stability of protein complexes could be investigated (see Section 5.3.3) to eval-
uate functionally motivated mutations.

5.4.4
Predicting the Potential of a Target to be Modulated by Low-Molecular-Weight
Compounds

Many drug discovery projects in pharmaceutical research fail because the under-
lying target was afterward found to be undruggable [71]. A priori prediction of
the potential of a disease-modifying target to be modulated by low-molecular-
weight compounds is of major interest to save time and costs in the development
pipeline. In this context, the term druggability has been coined in the early 2000s
[72] and has been intensively analyzed since then. Similarly, the terms ligandabil-
ity and targetability are investigated. Thus, the biotechnological question whether
an enzyme can be temporarily inhibited by a low-molecular-weight compound
could equally be answered by this approach. A prerequisite is only a reasonably
sized training set of proteins.

DoGSiteScorer was trained to predict the druggability of protein targets [48]. A
prerequisite for the successful application of machine learning techniques, such
as SVMs, is a large and reliable data set to train and evaluate the method on.
Therefore, a well-characterized druggability data set from literature [73] contain-
ing 1069 data points has been chosen. Pockets were detected and descriptors cal-
culated for all targets. Subsequently, a descriptor analysis was performed. In agree-
ment with other literature findings, druggable pockets were found to be larger,
more complex, and more hydrophilic than undruggable pockets. In a further step,
a model has been trained on a non-redundant version of this data set. Finally, each
query structure is annotated as being either druggable or undruggable based on
the normalized druggability score returned by the SVM model. The method has
been tested on the complete data set, containing bound and unbound structures
of proteins from different families, and yielded correct predictions in 88% of the
cases. As one important drug target class, kinases that play a major role in cancer
and inflammatory diseases are briefly discussed here. The data set contained 40
p38 MAP kinase pockets; almost all of them were correctly assigned as druggable.
The underlying structures were crystallized in different activation states (DFG-in
and DFG-out), accordingly their volumes ranged from 450 to 1800 Å3. Neverthe-
less, other features, such as a high fraction of lipophilic surface area, allowed to
classify them as druggable, which exemplifies the robustness of the method to
structural changes within the protein structures.

With the aid of this technique, the quality of a new protein of interest can be
assessed within seconds and several proteins can be compared and prioritized for
biotechnological processes or other investigations based on the calculated scores.
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Thus with this technique, novel active and allosteric sites can be explored on pro-
teins for which nothing is known beforehand.

5.4.5
Prediction of Competitive Substrate Inhibition

During the development of synthetic multi-enzyme pathways, wherein the activity
of each enzyme should be maximized, competitive substrate inhibition constitutes
a bottleneck. In a recently published study, Schomburg et al. [74] have established
a computational prediction protocol to quantify competitive substrate inhibition
by buffering agents. Combining molecular docking using the LeadIT software
suite with a rescoring strategy based on the HYDE scoring function, buffering
agents that interfere with the binding of the substrate could be identified. In the
following, an exemplary case of the effect of buffering agents on the catalytic activ-
ity of phosphoglucose isomerase is presented. Further examples of competitive
substrate inhibition by buffering agents on enzymatic systems can be found in
[74].

Phosphoglucose isomerase catalyzes the reaction of glucose-6-phosphate to
fructose-6-phosphate and vice versa (see Figure 5.8). The availability of a 3D
structure of phosphoglucose isomerase, preferably co-crystallized with substrate
or product, constitutes the basis for studying the effect of buffering agents on its
catalytic activity using molecular docking. In the above-mentioned study, a crys-
tal structure of fructose-6-phosphate bound to phosphoglucose isomerase (PDB
code: 1hox) was available from the PDB. This structure was prepared within the
LeadIT software suite before the docking of 14 different buffering agents was con-
ducted. Afterwards, the binding energy of the proposed molecular complexes –
enzyme and a buffering agent – was estimated using the HYDE scoring function
and related to the binding affinity of the substrate. This resulted in a relative HYDE
score compared with the substrate’s HYDE score. Buffering agents exhibiting a
relative HYDE score of at least 90% were marked as critical, because they would
most likely interfere with the binding of the substrate to the enzyme. Buffering
agents whose relative HYDE score is predicted to be in the range of 75–90%
also may inhibit the binding of the substrate. Below a relative HYDE score of
75%, the buffering agent is expected not to affect the activity of the enzyme.
The computational rating of four buffering agents – carbonate, diglycine, TRIS,
and PIPES – on their effect on the activity of phosphoglucose isomerase was
afterwards experimentally validated (see Figure 5.8).

To evaluate the predictive power of the relative HYDE score the measured activ-
ity of phosphoglucose isomerase in the presence of a buffering agent was con-
verted to a relative activity. This can be done by relating the activity of the enzyme
measured in the presence of a buffering agent to the maximum activity the enzyme
can achieve with its natural substrate. Using the relative HYDE score PIPES was
predicted to highly influence the binding of fructose-6-phosphate to phospho-
glucose isomerase. In the experimental test, when PIPES is used as a buffering
agent in the activity assay, the measured activity of the enzyme is reduced to 57%.
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The buffering agent TRIS was also predicted to affect the binding of fructose-6-
phosphate to the enzyme. This could be confirmed by a decreased activity of 37%
compared with the regular activity of phosphoglucose isomerase. Diglycine as well
as carbonate were classified as less critical by the relative HYDE score (diglycine
obtaining a relative HYDE score of 70% is not rated as inhibiting). In the activity
assay, diglycine reduces the enzyme’s activity by 28%. Carbonate, rated as best
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Diglycine Fructose-6-phosphate PIPES

Figure 5.9 Binding modes of phosphoglucose isomerase substrate (fructose-6-phosphate,
co-crystallized) (1hox) and two buffering agents, diglycine and PIPES (docking poses).
Images were generated with Chimera [75].

buffering agent for phosphoglucose isomerase by the relative HYDE score, has no
effect on the binding of fructose-6-phosphate to phosphoglucose isomerase in the
experiment.

Figure 5.9 shows the bioactive binding modes of diglycine (left) and PIPES
(right) in the phosphoglucose isomerase binding pocket, which were predicted by
HYDE. The binding mode of the co-crystallized substrate, fructose-6-phosphate,
is also depicted (Figure 5.9, middle). Both buffering agents exhibit a similar
binding mode compared with the substrate, partially interacting with the same
residue.

5.4.6
Classification of Biological and Artificial Protein Complexes

The interaction of proteins with each other is essential for all biochemical path-
ways and signal transduction processes. One objective in rational protein design
is altering these interactions to analyse the connectivity in signal transduction
networks. Protein-protein interactions can be classified according to their lifetime
in permanent and transient interactions [76, 77]. Permanent complexes assemble
directly after protein transcription and can be characterized by their high stability
and long lifetime. In contrast, transient interactions are less stable and thereby
reversible, playing a key role in signal transduction processes. Experimental
methods to distinguish those protein interactions are time-consuming and
exhibit high false-positive rates [78]. An additional type of protein-protein inter-
actions occurs in crystal structures of proteins: the contact of protein subunits
artificially forced by the crystallization process. To characterize the function of an
enzyme, it is important to known which multimeric state is the natural biological
assembly.

In this context, a computational classification method using a machine learn-
ing approach and the HYDE scoring function was developed. The basis for the
analysis was a data set of 254 protein complexes, which comprises the three above-
mentioned types of protein-protein interactions [79], and a set of various descrip-
tors. As a result, it could be revealed that the hydrophobic dehydration energy of
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the protein-protein interaction estimated using HYDE is sufficient to classify bio-
logically relevant protein assemblies and artificial crystal complexes with a prob-
ability of 95%. Figure 5.10 depicts the distribution of the hydrophobic dehydra-
tion energy of the different protein-protein interactions of the data set. Consider-
ing the determination of permanent and transient protein interactions, the per-
formance of hydrophobic dehydration energy drops to 73% accuracy (compare
Figure 5.10).

This application study shows that the HYDE scoring function can be used to
estimate protein-protein interactions and can be applied to automatically classify
the biological and artificial protein complexes.

5.4.7
Available Web Services to Support Biocatalysis Research

To provide the functionality of active site prediction and analysis as well as the
classification of protein-protein interactions, web services were made publicly
available.

The DoGSiteScorer (http://dogsite.zbh.uni-hamburg.de/) [80] offers the full
active site analysis functionality in a user-friendly manner. As input, only a
3D protein structure is required (or simply a PDB code). Subsequently, all
potential pockets and their properties are calculated on the fly. In Figure 5.11,
the results for a flavonoid glycosyltransferase (PDB Code: 2c9z) from red wine
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Subpockets

Pockets and descriptors for 2C9Z

Legend: undruggable=>druggable

Figure 5.11 DoGSiteScorer web server
example for a glycosyltransferase (PDB:
2c9z). (Left) Extraction of result tables of
(sub)pocket prediction and descriptor cal-
culation. (Right) Subpockets of the largest
pocket of 2c9z are shown in different col-

ored isosurfaces. The colors correspond to
the subpocket table on the left side. The
protein backbone is shown in blue. The co-
crystallized ligands (QUE, UDP) are repre-
sented in ball-and-stick mode.

with proven in silico activity are exemplified. The server outputs a simplified view
of the calculated pockets and subpockets together with all pocket properties
and a score, which estimates how easy the pockets can be addressed by small
compounds. In the case of this flavonoid glycosyltransferase, DoGSiteScorer
detects the active sites of the enzyme correctly and furthermore splits the highest
ranked pocket into subpockets of which one contains exactly the substrate and
another one holds the cofactor. This allows to learn more about the features
of the pockets (volume, surface, hydrophobicity, etc.) and to drive further
investigations.

The protein-protein interaction classification can also be accessed by a web ser-
vice (http://ppi.zbh.uni-hamburg.de/). As input, simply a PDB code is required
and the user has to specify the protein-protein interface of interest (selection of the
corresponding protein chains). Subsequently, the probabilities of being an artifi-
cial, permanent, or transient protein-protein interaction are calculated. Addition-
ally to the introduced web services further applications like Protoss can be found
on the ProteinsPlus server (http://proteinsplus.zbh.uni-hamburg.de).

5.5
Conclusion and Future Directions

In this chapter, an overview of existing computational tools and methods, which
can assist in answering relevant questions in biocatalysis research, has been given.
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Novel computational methods have been presented aiming at the discovery and
optimization of new catalytic enzymes for biotechnological processes. The basic
principles of these methods were presented, and their successful application to
various important questions arising during biocatalysis research were exemplified.

A central question in the field of white biotechnology, namely functional
analysis of active sites of proteins, was successfully addressed for a comprehen-
sive spectrum of biotechnologically relevant enzymes. It was shown that the
developed and optimized approaches for function prediction can be applied to
catalytically relevant protein classes as well as to predict enzyme substrate speci-
ficity of newly discovered enzymes. The methods can help to gain insight into
the catalytic mechanism of an enzyme. Furthermore, they can be used to predict
mutation sites in the binding pocket and to optimize the catalytic activity of the
enzyme.

The generation of further knowledge about potential binding partners of an
enzyme, which can be a particular substrate or another protein, is of special
interest in many projects. Scoring functions enable the energetic estimation of
protein-ligand as well as protein-protein interactions. In this way, the energetic
effect of mutations, the stability analysis of protein structures at different temper-
atures as well as the improvement of selectivity of protein-protein interactions
can be investigated. Furthermore, applying automated alanine scanning – or
in more general terms in silico mutation of any amino acid residue into any
other arbitrary residue – allows a comfortable analysis and optimization of
enzymes.

The wide range of possible applications shown in this chapter gives an idea about
the usefulness of computational methods for biocatalysis research. The presented
computer-based methods constitute only a fraction of computational tools that
can and should be intensively used in biotechnological research opening up the
wealth of available data and getting new insights and cross-links between struc-
tures for rational enzyme design and analysis.
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ABSTRACT: Water molecules play important roles in many
biological processes, especially when mediating protein−ligand
interactions. Dehydration and the hydrophobic effect are of
central importance for estimating binding affinities. Due to the
specific geometric characteristics of hydrogen bond functions
of water molecules, meaning two acceptor and two donor
functions in a tetrahedral arrangement, they have to be
modeled accurately. Despite many attempts in the past years,
accurate prediction of water moleculesstructurally as well as
energeticallyremains a grand challenge. One reason is
certainly the lack of experimental data, since energetic
contributions of water molecules can only be measured
indirectly. However, on the structural side, the electron density
clearly shows the positions of stable water molecules. This information has the potential to improve models on water structure
and energy in proteins and protein interfaces. On the basis of a high-resolution subset of the Protein Data Bank, we have
conducted an extensive statistical analysis of 2.3 million water molecules, discriminating those water molecules that are well
resolved and those without much evidence of electron density. In order to perform this classification, we introduce a new
measurement of electron density around an individual atom enabling the automatic quantification of experimental support. On
the basis of this measurement, we present an analysis of water molecules with a detailed profile of geometric and structural
features. This data, which is freely available, can be applied to not only modeling and validation of new water models in structural
biology but also in molecular design.

■ INTRODUCTION

In order to fully understand complex biomolecular structures,
the role of water molecules needs to be comprehended in
greater detail. Water molecules form part of the environment of
biological macromolecules, in which they can on the one hand
stabilize protein folding by mediating interactions and on the
other sustain the dynamics of the protein.1−5 Enzymatic
reactions often directly involve one water molecule, i.e., as
reactant for hydrolysis reactions,6,7 or as steric hindrance to
guide stereoselectivity8. Further, water molecules stabilize
biological complexes by mediating protein−protein or
protein−ligand interactions, in which mediated hydrogen
bonds are often as abundant as direct interactions.9−12

In addition to the aforementioned biological processes, water
molecules also play an essential role in energetic effects upon
binding of, for example protein and ligand or protein and
protein, due to their contribution to hydration and dehydration
as well as the hydrophobic effect.13−19 On the one hand, energy
is needed in order to dehydrate hydrophilic atoms of the
protein and the ligand. On the other hand, energy is also gained
by releasing water molecules into the bulk solvent and the
hydrophobic effect. Therefore, in order to correctly estimate
protein−ligand binding affinities, water molecules have to be

taken into account when developing drugs. However, it is not
yet understood how water molecules exactly contribute to the
binding affinity.20,21 It is hardly possible to experimentally
measure the energy contribution of an individual water
molecule. Even if a water molecule in the binding site can be
displaced, for instance by an extension of the ligand, the
resulting binding affinity is a combination of those two effects,
replacement and substitution.22−24

Different computational methods have been developed lately
that try estimate the energetic cost or gain of water molecule
displacement to guide rational drug design. Herein, two
different approaches exist: first, classification of X-ray crystallo-
graphic water molecules25−28 and, second, computer based
prediction of water molecule positions29−36 (Table 1). As early
as 1985, Goodford developed a method, which calculates
energies between diverse probe groups and a protein in a grid-
based manner.30 One of these probes resembled water, enabling
the prediction of water molecule positions in three examples in
good agreement to X-ray crystallographic water molecules.
However, its overall applicability has not been proven.
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Recently, more elaborate and time-expensive methods have
been developed, from which some use molecular dynamics
simulations in order to place water molecules and estimate their
binding affinity contributions (e.g., WaterMap32,33). These
programs can be separated into three main types−simulation-
based, docking-based, and grid-based. Furthermore, they can be
classified according to their overall prediction aim (See Table
1). Most of the time it is not known which water molecules will
be displaced upon binding and which ones remain in the
protein binding site, thus mediating between protein and
ligand. However, it is assumed that those water molecules
remaining in the protein complex are more stable than the ones
being displaced upon complex formation.
Diverse characterizations of water molecules have been

conducted, ranging from structural analysis to thermodynamic
description.37−44 Water molecules in protein−ligand interac-
tions have been of great interest and different analyses have
shown that those bridging protein and ligand often have three
or more interactions compared to only one interaction on
average in protein−protein interfaces.37,38 Furthermore, water
molecules prefer interactions to the backbone rather than to the
side chain, indicated by the number of interactions as well as
thermodynamically.38−40 Dunitz has approximated the entropic
gain of transferring a water molecule from protein into bulk
water to be up to 7 cal/mol at room temperature.41 Using
inhomogeneous fluid solvation theory the impact of α-helix and
β-sheet on the thermodynamic properties of water molecules
has been analyzed. Herein, the thermodynamics of water
molecules are affected up to a distance of 4 Å from β-sheets and
4.3 Å from α-helices.42,43 In an application of the method
WaterMap, it was estimated that charged amino acids display
the most favorable hydration sites, whereas backbone, aromatic,
and aliphatic amino acids are less favorable.44 In this
publication we want to keep the focus on structural
characteristics of crystallographic water molecules. More
detailed information about thermodynamics of water molecules
can be found in ref 45.
In order to retrieve experimental data for water molecules in

biological complexes, crystal structures are the major source.
However, X-ray crystallographic experiments result in dif-
fraction patterns, which have to be interpreted further in order
to acquire the molecular structure. The temperature factor (B-
factor) is an indicator of thermal motion of each atom and is
often taken as a criterion to identify flexible regions in protein
structures. However, the B-factor depends on the refinement

procedure: its interpretation can be artifactural if crystal
contacts are neglected and it varies between different structures.
The B-factor does not inform whether an atom is resolved by
electron density, but it does indicate its structural flexibility and
disorder. Electron density, which is available for many
structures nowadays, is the fundamental experimental data
available for water molecules (See Table 2). Two measure-

ments exist that describe electron density for specific parts of a
structure: the real-space R-factor (RSR) and the real-space
correlation coefficient (RSCC).46 The RSR was developed as
an objective interpretation of electron density maps and for the
localization of errors during density map interpretation. It is
calculated by using the observed electron density from the
crystallographic experiment and the calculated electron density
derived from the built structure. The lower the RSR is (in a
range from 0 to 1) the better the fit of the structure in the
electron density. The RSCC, in contrast to the RSR, is the
correlation coefficient between the two maps resulting in a
value between −1 (complete anticorrelation) and 1 (complete
correlation). One drawback of the RSCC arises when it is
calculated for atoms with weak densities, but correct intensity
distributions. This is especially problematic for water molecules
since even a good score might be achieved with low resolution.
For protein−ligand complexes, it was shown lately by Hawkins
et al.47 that neither RSR nor RSCC can adequately capture the
difference between observed and calculated data.
Water molecules resolved by X-ray crystallography exist at

local energy minima of the position.48 However, not all atoms
present in molecular structures are supported by electron
density. Most water molecules are too flexible to be resolved.
Furthermore, water molecules found in the crystallographic
structure vary strongly in their experimental support. For a
detailed study of water molecules in proteins and at protein
interfaces, a quantitative measure of electron density support is
therefore mandatory to exclude noise arising from unresolved
water molecules.
In order to exploit electron density for this task, we

developed a new value, called EDIA (= Electron Density for
Individual Atoms), which describes the experimental electron
density around a single atom, for instance around a single water
molecule. Using EDIA, we conducted an extensive evaluation of
water molecules from a high-resolution subset of the PDB49,
containing 5485 PDB structures and over 2.3 million water
molecules. In the following sections, we give a detailed
description of the selected data set and its diversity. The
newly developed EDIA measure will be explained in detail.
According to the EDIA value, the water molecules of the data
set are examined with regard to several structural and geometric

Table 1. Methods for Positioning Water Molecules within
Biological Complexes and Prediction of Water Molecule
StabilityStructurally and Energetically

method type method name prediction task

simulation-
based

Grand Canonical Monte Carlo
simulation (GCMC)29

binding free energy
estimation

GIST35 displaceability,
thermodynamic analysis

JAWS34 binding affinity estimation
SZMAP31 orientation and

displaceability
WaterMap32,33 energy (enthalpic and

entropic) contribution
docking-
based

WaterDock36 conserved vs displaceable

grid-based GRID30 energy (enthalpic)
contribution

WaterFlap water score (“happiness”)

Table 2. Values Used as Structural Quality Criteria for
Identification of Modeling Errors and Structural
Uncertainties

value advantage disadvantage

B-factor • included in PDB file • can be misinterpreted, e.g. due to
crystal packing• indicator of thermal

motion
RSR • normalized value [0

(good) to 1 (bad)]
• resolution and density threshold
dependent

RSCC • no density threshold used • weak density with correct
intensity distribution might lead to
a good score

• normalized value [−1
(anticorrelation) to 1
(correlation)]
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characteristics, such as hydrogen bonding preferences and their
structural environment. Finally, we show detailed examples of
frequently discussed issues like “hydrophobic bubbles”40 or
modeling errors, which can still be found in high-resolution
data.

■ MATERIALS AND METHODS
Data Set. A high-resolution Protein Data Bank49 subset was

compiled using the following advanced search criteria:
resolution ≤ 1.5 Å, experimental method = X-ray, molecule
type = protein. All structures between 2000-01-01 and 2014-02-
01 were selected that had an external link to the EDS server50,
ensuring the availability of electron density data for all chosen
structures. Using all criteria, a data set of 5526 PDB structures
was compiled (Figure 1, date of download: February 1, 2014).

In the next step, two extremes were discarded: those PDB
structures with less than 20 water molecules and those with
more than 4000, resulting in a final data set of 5485 PDB
structures with 2 330 581 water molecules (See Table S1).
Electron Density-Based Value. The electron density is

provided as a 3D grid for the asymmetric unit, the smallest unit
of volume that by application of symmetry operations is able to
reconstruct the unit cell. The unit cell on the other hand is the

smallest volume that only by translational application can
recreate its pattern in space. We developed an automated
estimation of electron density around a single atom not
covalently bound to other heavy atoms, called Electron Density
for Individual Atoms (EDIA). EDIA is the weighted sum of
experimental electron density values around a single atom a in
its van der Waals radius:

∑
ω σ

ω μ=
∑ ·

· −
∈ ∈

a
p

p f pEDIA( )
1

( )
( ) ( ( ) )

p S a S a( ) p ( ) (1)

where ω(p) describes a weight function for grid point p, σ, the
electron density threshold, and S(a) the subset of grid points
around an atom a. The function f(p) reflects the density value
at grid point p, and μ, the mean density of the electron density
map. In order to allow comparisons between different
structures, the EDIA is normalized by the standard deviation
σ of the respective electron density map of the asymmetric unit.
Each grid point of the electron density map is associated with

a measured density value. In eq 1 S(a) is the subset of all grid
points G that are within the van der Waals radius of atom a:

= ∈ ||⎯ →⎯⎯ | ≤S a p G px r( ) { }a avdW( ) (2)

The distance in angstroms of a grid point p to the atom center
xa is |⎯ →⎯⎯ |pxa . The distribution of electron density around an atom,

caused by the vibration of the atom itself as well as the
distribution of electrons around an atom, is resembled using a
Gaussian weight:

ω = δ− |⎯ →⎯⎯ |p( ) e px1/2( / )a
2

(3)

The width of the Gaussian bell δ was defined as the covalent
radius of the atom. This results in a weight of 0.5 when the
distance of a grid point to the center of the atom is equal to its
covalent radius. The Gaussian distribution was combined with a
linear function g(p) in order to get no further density
contributions of grid points with a distance greater than the
van der Waals radius of the atom (Figure 2a):

Figure 1. Data set compilation and the effect of each search criterion
on the number of PDB structures.

Figure 2. (a) Gaussian weight combined with linear function for EDIA calculation. (b) 2D scheme of an atom and its surrounding electron density
grid, with grid points contributing (red dots) and not contributing (blue dots) to EDIA: cov = covalent radius of atom a, vdW = van der Waals radius
of atom a, (p0/ω(p0)) = starting point of linear function (red dashed line).
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The slope of the linear function was selected such that the
overall function remains continuously differentiable by passing
through the points (p0, ω(p0)) and (rvdW, 0.0), with p0 = (rvdW/
2) + [(rvdW

2/4) − δ2]1/2.
Only density values ρ at grid points p that are above the

density threshold σ (= map mean density + standard deviation,
threshold typically applied for density visualization) were added
up (Figure 2b):

ρ ρ σ

ρ σ
=
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p p

p
( )

( ), ( )

0, ( ) (5)

By excluding very low density values, the noise in the EDIA can
be substantially reduced.
Preprocessing of PDB Structures. In order to analyze the

hydrogen bond network, hydrogen positions were calculated
using Protoss.51 Protoss adds hydrogens and places them into
the structure optimizing the hydrogen bond network
accounting for tautomers and protonation states. Herein, it
not only considers the amino acids of the protein but also water
molecules, metals and ligands. Using an empirical scoring
function, Protoss generates an optimal hydrogen bond network
for a biological complex. This preprocessing step was applied
once for each PDB complex. Afterward, each water molecule of
the complex was analyzed individually in its surrounding (4.5 Å
radius around the center of the water oxygen).
Descriptor Calculation. For the characterization of water

molecules within their surrounding environment, several
descriptors were calculated (See Table 3).

Hydrogen Bond Descriptors. Hydrogen bonds of water
molecules to donors or acceptors were identified if the opening
angle between ideal donor and acceptor direction was less than
50° and the distance between hydrogen and acceptor was
within a range of 1.9 ± 0.5 Å. For each hydrogen bonding
function only the geometrically best hydrogen bond was
accepted. In this way, bifurcate hydrogen bonds were excluded.
The total number of hydrogen bonds and the mean length of
the hydrogen bonds were calculated for each water molecule.
Additionally, the hydrogen bonding partners were recorded, i.e.,

atom type, functional group, acceptor or donor, backbone or
side chain.

Hydrophobicity-Based Descriptors. In order to classify the
surrounding of a water molecule, two types of hydrophobicity-
related values were applied. First, the fraction of hydrophobic
atoms in a 4.5 Å surrounding sphere was calculated (Figure 3a):

=hydrophobicity

number of hydrophobic atoms

surrounding a water molecule (4.5 Å)
total number of atoms

surrounding a water molecule (4.5 Å)
(6)

Second, the size of the hydrophobic surface patches of
surrounding atoms (≤4.5 Å) was calculated. Here, only those
surface patches being closer than 2 Å to the water molecule
were considered. For normalization, the fraction was used.
(Figure 3b):

=

hydrophobic surface
surface area of hydrophobic atoms

pointing towards a water molecule (2 Å)
surface area of all atoms

pointing towards a water molecule (2 Å) (7)

Water Cluster. The water content of the surroundings of a
water molecule was analyzed using water clusters. Herein,
within a distance of 3.5 Å, the surrounding was checked for
other water molecules. If another water molecule is present,
another test, which checked for the presence of further water
molecules, was performed. This procedure was prolonged until
no further water molecule was identified. Finally, the total
number of water molecules within one cluster was counted.

Allocation of Water Molecules. Since water molecules
occupy different positions within a biological complex, a further
classification into surface (S), protein−ligand interface (PLI),
protein−protein interface (PPI), and captured (C, also often
called “buried”) was performed. This categorization was carried
out using the molecular surface area (MSA, Figure 4). Water
molecules were classified as PLI, if protein and ligand atoms
were found within a 4.5 Å radius around the oxygen atom.
Analogous classification was performed for PPI water
molecules, which have atoms of two different protein chains

Table 3. Summary of Descriptors Used to Characterize
Water Molecules

descriptor type description details

hydrogen bond
descriptors

number of
hydrogen bonds

• to all modeled atoms
• to protein and ligand atoms as well as
metals

mean length of
hydrogen bonds

• to all modeled atoms
• to protein and ligand atoms as well as
metals

hydrogen bond
partners

• atom type
• functional group
• acceptor or donor
• side chain or backbone

proximity-
based
descriptors

hydrophobicity • proportion of hydrophobic atoms
within 4.5 Å radius

hydrophobic
surface

• proportion of hydrophobic surface
pointing toward the water molecule

water clusters • water molecules within 3.5 Å radius

Figure 3. Hydrophobicity-based descriptors. (a) Ball-and-stick
represented atoms are within 4.5 Å distance and contribute to
hydrophobicity (hydrophobicity = 0.623). (b) Molecular surface of a
water molecule surrounded by protein (hydrophobic surface = 0.372):
orange = hydrophilic, blue = hydrophobic (molecular graphics were
created using UCSF Chimera52).
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within a radius of 4.5 Å. In both cases, we additionally checked
that at least 65% of their MSA was covered, since they would
otherwise lie in the outer rim of either PLI or PPI. Water
molecules were classified as C if more than 90% of their MSA
was covered by a single protein chain, which means it has more
than three covered hydrogen bonding functions. All remaining
water molecules were classified as S.
Data Set Compositions. The high-resolution data set was

divided into different subsets to allow a detailed structural
analysis of different classes of water molecules. Apart from the
classification into S, C, PLI, and PPI, the data set was further
classified according to diverse structural criteria (See Table 4).

■ RESULTS AND DISCUSSION
Data Set Composition. The data set is highly diverse with

respect to the water content of the PDB structures (Figure 5a).

Some complexes have very low water content with less than
one water molecule per two amino acids (13%). Others in
contrast are more highly hydrated with more than three water
molecules per two side chains (19%). One of the “dry” proteins
is a heat-labile enterotoxin of E. coli with one water molecule
per 100 amino acids (PDB ID: 4fo2). Its biological unit is a
pentamer; mostly water molecules of the inner protein parts
were modeled while an outer solvation layer is nearly absent.
A structure of a “wet” protein is an antifreeze protein of L.

dearborni, which consists of only one very small subunit (63
amino acids) and up to four water molecules per amino acid
(PDB ID: 1ucs). This protein does not have any inner water
molecules (C, PLI, or PPI), but an extensive solvation layer
with many close water molecules. The structure is very well-
resolved (0.62 Å) and even hydrogen atoms could be modeled.
However, the distances between water molecules are often very
small, if not even clashing. The intention of the authors was to
model different interaction networks, which are indicated by
reduced occupancies of water molecules.53 Multiple water
molecules are modeled into the electron density of oxygen and
hydrogen atoms (Figure 6a). This example (PDB ID: 1ucs)
shows that even if the structures are of high-resolution, it
should not be taken as a guarantee for easily interpretable data.
Few other modeling errors also captured our interest, such as
the fusion of a water molecule with an amino acid side chain
(Figure 6b). This error would not be detected with EDIA,
because electron density from the amino acid is available.
However, it can be detected using either the electron density
difference map ( fo − fc map), since too many electrons are
available; or the difference of Gaussian operator, since the
position of the water molecule has clearly no circular density
distribution. Overlaps of water molecules were also identified in
11 PDB structures. Those contain multiple water molecules
with identical coordinates of the oxygen atom (PDB ids: 2ghc,
2hc1, 2yqb, 3t6f, 3ziy, 3zjp, 4a8n, 4af9, 4ayp, 4ayr, 4b8x).
Furthermore, two structures included overlaid ligands with
different occupancies (overlap of biotin and biotin-D-sulfoxide
(PDB id: 3t6f), overlay of β-D-glucose and α-D-glucose (PDB
id: 4af9), in both cases the ligand with the higher occupancy
was kept for further analysis) and 36 structures contained
unknown ligands that were represented by oxygen atoms only
(See Table S1).
In literature it is often mentioned that the number of

observed water molecules depends on the resolution of the
structure.10,48,54,55 Figure 5b shows that within structures of our
high-resolution data set, the ratio of water molecules hardly
varies. In all cases, the median number of water molecules per
amino acid is close to one, with a minimum of one water
molecule per 100 amino acids (PDB id: 4fo2) and a maximum
of nearly four water molecules per one amino acid (PDB id:
1ucs).
The data set compromises a wide range of protein complexes

including complexes without any ligands (25%) and those
containing ligands, cofactors, and crystallization buffer mole-
cules (75%). Protein complexes range from small monomers to
multimers, with more than 40% of the data set containing more
than one protein chain. The size of the proteins ranges from 12
(peptides) to 5480 amino acids. Using the classification of
water molecules described in the Materials and Methods
section, the data set contains 127 988 PPI and 80 717 PLI water
molecules, 264 584 captured (C), and 1 857 292 surface (S)
water molecules (Figure 7).

Figure 4. Classification of water molecules: P = protein, L = ligand, PA
= protein A, PB = protein B.

Table 4. Subsets of the High Resolution Data Set, Their
Compositions, and Abbreviations Used for the Analysis of
Water Molecules

data set
abbreviation data set composition

Hbondall water molecules interacting with protein, ligand, and water
molecules

HbondPL water molecules interacting with protein and ligand
HbondH2O water molecules interacting with water molecules
HB water molecules that cannot form any hydrogen bond and lie

within a highly hydrophobic surrounding (= hydrophobic
bubbles)

WINDall well-integrated water molecules (≥three hydrogen bonds)
without electron density interacting with protein, ligand, and
water molecules

WINDPL well-integrated water molecules (≥three hydrogen bonds)
without electron density interacting with protein or ligand
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EDIA Values. The histogram of all EDIA values for the
high-resolution data set approximately displays an extreme
value distribution (Figure 8a). The individual EDIA values
resemble well the graphically observable electron density
(Figure 8b−f), with zero meaning no electron density and
values above one describing clear electron density. Visual
inspection of water molecules, their corresponding electron

density, and the EDIA give confidence that the EDIA captures
the measured electron density.
EDIA was further used to differentiate between well-resolved

(with clear electron density) and insufficiently resolved
(insufficient electron density) water molecules. As a cutoff
value we used EDIAThrs = 0.24, which is the median EDIA value
of all water molecules from the data set minus one standard
deviation. The median was chosen, because it is less affected by
outliers, especially arising from a few very high EDIA values.
Note that a cutoff value of zero was not used because
surrounding and very close atoms might cause a slight increase
of a water’s EDIA value. While this has very little effect on
resolved water molecules, it leads to a very small EDIA for
unresolved water molecules. Visual inspection confirmed the
chosen threshold of 0.24 (see Figure 8c and d), above which
water molecules are considered as sufficiently resolved. This
leads to 8.9% (208 052) of all water molecules of the data set
being classified as insufficiently resolved by electron density,
from which the majority (93.4%) belongs to the group of
surface water molecules (See Table 5). This meets previous
expectations and confirms the applicability of the EDIA.

Hydrogen Bonding Characteristics of Water Mole-
cules. Water molecules were analyzed for their hydrogen
bonding characteristics, wherein a maximum of four hydrogen
bonds, two donor and two acceptor functions, was assumed.
Bifurcated hydrogen bonds were excluded by considering only
the geometrically best hydrogen bond for each hydrogen
bonding function (see the Materials and Methods section).
Three separate statistics were created: (1) all hydrogen

bonds to explicitly modeled atoms were counted for all water
molecules, (2) only water molecules sufficiently resolved by
electron density (EDIA ≥ EDIAThrs) were considered, (3) only
water molecules unresolved by electron density (EDIA <
EDIAThrs) were taken into account (see Table 6).
The first statistic, which includes all water molecules, results

in a mean number of hydrogen bonds of 2.15 (Hbondtotal) from
which 1.22 (HbondH2O) are formed to other water molecules.
As expected, the second statistic, describing only water
molecules with clear electron density, does not vary much
from the first one. However, looking at water molecules
without clear electron density in the third statistic, the mean
number of hydrogen bonds decreases significantly (Hbondtotal =
1.65). In both sets, meaning water molecules resolved by
electron density and unresolved ones, the high proportion of
surface water molecules causes a bias in the mean number of
hydrogen bonds (See Table 5 and Figure 9).

Figure 5. (a) Histogram of the number of water molecules per amino acid for the data set of 5485 PDB structures: median = 0.89, standard deviation
= 0.51. (b) Box plot of resolution dependent number of water molecules per amino acid: number of water molecules per category (≤1 Å) 177, (1.1
Å) 296, (1.2 Å) 487, (1.3 Å) 826, (1.4 Å) 1349, (1 Å) 2340. Box limits are median ± one standard deviation.

Figure 6. (a) Two alternative water molecules are modeled into the
density of one water molecule, H2O-A-256H2O-A-182: 1.275 Å,
H2O-A-284H2O-A-136: 0.995 Å (PDB id: 1ucs). (b) Oxygen atom
of the water molecule B-2179 fuses with sulfur atom of methionine B-
208 (PDB id: 2jae). Electron density is only shown for methionine and
water molecule. Difference electron density (not displayed) indicates
too many electrons at the water position: blue = electron density map
(2fo − fc) at 1σ (molecular graphics were created using UCSF
Chimera52).

Figure 7. Classification of water molecules according to their position
in the complex and their contribution to the data set of 2.3 million
water molecules is displayed.
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Therefore, water molecules were further classified according
to their position in the biological complex (S, C, PLI, PPI, see
the Materials and Methods section), allowing a more detailed
view on their hydrogen bonding characteristics (see Figure 9).
As expected, in all four categories the mean number of
hydrogen bonds (Hbondtotal) decreases from resolved to
unresolved water molecules (see Table 5). The most drastic
decrease can be seen for unresolved captured water molecules,
which form about one hydrogen bond less in comparison to
resolved captured water molecules. These results show that
modeled water molecules in positions without experimental
proof are less integrated into the hydrogen bonding network.
The likelihood of “missing partners” is a bias of surface water

molecules. Either further shells of water molecules are not
resolved and remain unmodeled or they might interact with

neighboring protein chains that are not in the asymmetric unit
considered here. Analyzing the number of bulk water accessible
hydrogen bonding functions, surface water molecules have a
mean of 1.69 and 2.06 accessible hydrogen bonding functions
for resolved and insufficiently resolved water molecules. These
numbers might be slightly overestimated, given that we tested
whether 75% of the volume of a water molecule would fit in the
ideal direction of a hydrogen bonding function. In total this
leads to 3.67 hydrogen bonds for both resolved as well as
unresolved surface water molecules, close to the number of
about 3.5 hydrogen bonds on average in bulk at 298 K.56−58

Hydrophobic Bubbles. Surprisingly, we found captured
water molecules that are resolved by electron density (meanEDIA
= 0.88 ± 0.56) but do not form any hydrogen bonds with
protein, ligand atoms, or water molecules (Figures 9a and 10).
These water molecules resemble so-called hydrophobic
bubbles.40 In total, only 1438 (0.54%) of all captured water
molecules are hydrophobic bubbles sufficiently resolved by
electron density (0.06% of the whole data set). They are highly
constrained in their position inside the protein, which is
probably the reason why they are resolved by electron density;
but display a higher thermal motion than PPI, PLI, or other
captured water molecules and about the same B-factor as
surface water molecules (see Table 7). Since these hydrophobic
bubbles must be highly energetically unfavorable, as they are
spatially constrained and cannot compensate the enthalpic loss
by hydrogen bond formation, they might present predeter-
mined breaking points of protein structures. An alternative
explanation for some of the hydrophobic bubbles would be that
the electron density comes from a noble gas, which was used to
solve the phase problem.59−61 The electron density of a noble
gas would be hardly differentiable from a water molecule
especially if the position is only partially occupied.

Well-Integrated Unresolved Water Molecules. Another
interesting result is given by water molecules that are not
resolved (EDIA < EDIAThrs) but are very well integrated into a
hydrogen bonding network forming three or four hydrogen
bonds to protein or ligand (see Figure 11). In total 769 of those
are found in our data set (referred to as WINDPL). The number
increases substantially to 34 217 if surrounding water molecules
are considered as a hydrogen bonding partner (referred to as
WINDall). Simply accounting for the high number of formed
hydrogen bonds, the water molecule would be expected to be
resolved by electron density. However, there is little or no
experimental proof for the water molecule to be in this place.
One of the reasons for the lack of electron density might be
their hydrogen bonding partner. Compared to resolved water
molecules, WINDall water molecules build 13% to 40% more

Figure 8. (a) EDIA histogram for all water molecules in the data set, mean = 0.981, median = 0.868, standard deviation = 0.625. (b−f) Examples of
EDIA values and the corresponding visualization (3fpc, 1.4 Å). (b) Electron density map (2fo − fc map, blue mesh) at 1σ for the whole region is
shown. (c−f) 2fo − fc at 1σ is only shown for the water molecule itself (molecular graphics were created using UCSF Chimera52).

Table 5. Numbers of Water Molecules in Each Classa after
Separation According to EDIAThrs

well-resolved H2O
(EDIA(H2O) ≥ EDIAThrs)

insufficiently resolved H2O
(EDIA(H2O) < EDIAThrs)

C 258106 (97.6%) 6478 (2.4%)
PLI 77673 (96.2%) 3044 (3.8%)
PPI 123,731 (96.7%) 4257 (3.3%)
S 1663019 (89.5%) 194273 (10.5%)

aCaptured C, protein−ligand interface PLI, protein−protein interface
PPI, surface S.

Table 6. Hydrogen Bonding Characteristics of Water
Moleculesa

H2O
position

Hbondtotal ±
stdev

HbondH2O ±
stdev

all 2.15 ± 0.97 1.22 ± 0.93
H2O EDIA ≥ EDIAThrs all 2.12 ± 0.96 1.15 ± 0.92

S 1.98 ± 0.94 1.19 ± 0.93
C 2.70 ± 0.83 0.87 ± 0.79
PLI 2.47 ± 0.92 1.03 ± 0.89
PPI 2.60 ± 0.90 1.31 ± 0.94

H2O EDIA < EDIAThrs all 1.65 ± 0.89 1.14 ± 0.89
S 1.62 ± 0.89 1.15 ± 0.89
C 1.88 ± 0.96 0.76 ± 0.79
PLI 2.03 ± 0.92 1.04 ± 0.88
PPI 2.09 ± 0.95 1.24 ± 0.95

aCaptured C, protein−ligand interface PLI, protein−protein interface
PPI, surface S. Hbondtotal = all hydrogen bonds to protein. Ligand or
other water molecules were considered. HbondH2O = hydrogen bonds
only to other water molecules were considered. stdev = one standard
deviation.
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hydrogen bonds to other water molecules (see Table 8). These
water molecules may not have a favored position, since they
interact less often with amino acids, and their molecular motion
might therefore be too high to be detected during X-ray
crystallography (see Table 7). A closer look at the 769 WINDPL
as well as WINDall water molecules and their surroundings
often reveals highly flexible regions in which the water
molecules are incorporated (see Table 7).

Hydrogen Bonding Partners and Proximity Prefer-
ences of Water Molecules. Classified water molecules were
further analyzed concerning hydrogen bonding partner
preferences and their favored surroundings.
First, we analyzed whether water molecules primarily interact

with backbone or side chain functional groups. Therefore, we
calculated the ratio of hydrogen bonding functions from
backbone to side chain in our high-resolution data set. The
distribution of backbone hydrogen bonding functions as
opposed to side chain ones is shifted toward the backbone by

Figure 9. Histograms of hydrogen bonds formed by all water molecules from the data set. Data is separated for each class of water molecules, each
class represents 100% of its water molecules. Hydrogen bonds of water molecules (a, c, e) with electron density (EDIA ≥ EDIAThrs) and (b, d, f)
without electron density (EDIA < EDIAThrs). (a and b) All hydrogen bonds (to protein, ligand, and other water molecules) are counted. (c and d)
Only hydrogen bonds to explicit partners, protein or ligand, are counted. (e and f) Only hydrogen bonds to other water molecules are counted.
Numbers in the legend are the mean number of hydrogen bonds for each class.

Figure 10. Examples for hydrophobic bubbles. (a) H2O-I-1613, EDIA
= 0.45 (PDB ID: 3ak8) and (b) H2O-A-535, EDIA = 1.58 (PDB ID:
4h5i): blue = 2fo − fc map at 1σ (molecular graphics were created
using UCSF Chimera52).

Table 7. Average B-Factor for Water Molecules with EDIA ≥ EDIAThrs (total, S, C, PLI, PPI, HB), Well-Integrated Water
Molecules with EDIA < EDIAThrs

a and for All High-Resolution Proteins

total S C PLI PPI WINDall WINDPL HB Protein

B-factor 27.42 29.35 18.35 22.71 23.40 44.03 45.60 28.97 15.66

aWINDall ≥ three hydrogen bonds to protein, ligand, or other water molecules; WINDPL ≥ three hydrogen bonds to protein or ligand. HB =
hydrophobic bubbles.
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65%. Most of the hydrogen bonding functions of the protein
backbone are satisfied due to their secondary structure patterns
(α-helices and β-sheets). Therefore, it is not surprising, that
PLI and PPI water molecules are more likely to interact with
amino acid side chains (see Table 9). Especially PLI water
molecules satisfy hydrogen bonding functions of side chains,
whereas captured water molecules preferably interact with the
protein backbone. The latter was also found in previous
studies.39,62 We found that PPI water molecules slightly favor
side chain interaction (52%), however to a smaller extent than

estimated by Ahmed et al. (78.5%)40 but more than found by
Rodier (45%)10.
Second, atom-based preferences were dissected. It is

noticeable that all water molecules are more likely to interact
with oxygen atoms than the proportion of nitrogen to oxygen
atoms of the high-resolution proteins would suggest. Similar to
the backbone to side chain preferences, captured and PLI water
molecules display the most extremes, with PLI water molecules
interacting by 73% with oxygen atoms (See Table 9).
Third, since water molecules have two acceptor and donor

functions each, we examined whether they do have any bias
toward acceptor or donor interaction partners. Herein, the
proportion is for all water molecules highly similar to the
acceptor/donor distribution of the high-resolution proteins.
Only PLI water molecules and well-integrated water molecules
with insufficient electron density (referred to as WINDall) show
a greater bias toward acceptor interaction partners than water
molecules from the other categories (see Table 9).
The last two results are directly connected to each other.

Most of the time oxygen atoms are acceptors, wherein nitrogen
atoms are more often present as donors. The proportion of
oxygen acceptors in the high-resolution data set is nearly
double the amount of nitrogen donors, 18 times the number of
oxygen donors, and more than 100 times the amount of
nitrogen acceptors. Therefore, it is most likely that water
molecules interact with oxygen acceptors. Additionally, these
results are in accordance with previous findings using quantum
mechanical calculations.63 Interactions from water molecules to
either nitrogen or oxygen do not lead to significant differences
in the estimated binding energy. However, water molecules
interacting with acidic groups leads to an increase in binding
affinity. This correlates well with the finding, that glutamate and
aspartate are frequent interaction partners (see Table 10).
Given the different classes of water molecules we further

investigated their functional group and amino acid preferences.
Six different groups were formed, wherein each corresponds to
one or more amino acid types (see Table 10). The preferences
were then compared to the mean occurrence of amino acids in
the high-resolution protein structures. Most noticeable is the
high proportion of hydrogen bonds of water molecules to
aspartate and glutamate residues (for C, PLI, and PPI). This
probability is compared to the normal occurrence of aspartate
and glutamate residues in proteins, which are the most
abundant ones. Within protein−protein interfaces water
molecules have a high probability to interact with arginine
residues. Herein, the frequency is nearly as high as the normal
occurrence of arginine residues within the protein. These
findings are consistent with previous studies.10,40 The results

Figure 11. Examples for well-integrated, unresolved (EDIA <
EDIAThrs) water molecules (a) H2O-B-2135, EDIA = 0.16 (PDB ID:
4bgb) and (b) H2O-A-2254, EDIA = 0.00 (PDB ID: 1of8); blue = 2fo
− fc map at 1σ, orange dashed lines = hydrogen bonds with distances
in angstroms (molecular graphics were created using UCSF
Chimera52).

Table 8. Hydrogen Bonding Partners of Water Molecules
with Sufficient Electron Density (C, PLI, PPI, S: EDIA ≥
EDIAThrs) Compared to Well-Integrated Unresolved Water
Moleculesa

Hbond to H2O Hbond to PL

C 32.27% 67.73%
PLI 41.55% 58.45%
PPI 50.37% 49.63%
S 59.98% 40.02%
WINDall 73.06% 26.94%
WINDPL 6.93% 93.07%

aWINDall ≥ three hydrogen bonds to protein, ligand, or other water
molecules; WINDPL ≥ three hydrogen bonds to protein or ligand;
EDIA < EDIAThrs; Hbond = hydrogen bond; PL = hydrogen bond
formed with either protein or ligand.

Table 9. Hydrogen Bonding Partner Preferences of Water Molecules with Sufficient Density (total, C, PLI, PPI, S: EDIA ≥
EDIAThrs) Compared to Well-Integrated Unresolved Water Moleculesa and the Respective Occurrence in the High-Resolution
Proteins

total S C PLI PPI WINDall WINDPL protein

BB/SC 0.529 0.511 0.605 0.473 0.483 0.398 0.457 0.653
N/O 0.312 0.311 0.325 0.275 0.316 0.251 0.385 0.471
Don/Acc 0.325 0.322 0.341 0.293 0.329 0.254 0.396 0.363

aWINDall ≥ three hydrogen bonds to protein, ligand, or other water molecules; WINDPL ≥ three hydrogen bonds to protein or ligand; EDIA <
EDIAThrs; BB/SC = ratio of backbone to side chain interactions; N/O = ratio of interactions to nitrogen or oxygen atoms of the protein, Don/Acc =
ratio of hydrogen bonds to donor or acceptor functions of the protein. A ratio of 0.5 means equal distribution of the interaction partners. For the
different categories of water molecules hydrogen bond partners are considered, wherein for the protein column available functions/atoms of the
high-resolution data set are counted.
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are in accordance with the above analysis, in which oxygen
atoms as well as acceptors dominated the interaction partners
of PLI water molecules. Only well-integrated water molecules
with insufficient electron density (referred to as WINDPL) show
a higher number of hydrogen bonds to carboxyl groups.
Interestingly, the latter water molecules also have more
interactions with lysine and arginine than their mean
occurrence in the high-resolution protein structures (see
Table 10 WINDPL). Another noticeable result is the small
number of hydrogen bonds of surface water molecules with
histidine or tryptophan, in accordance with previous studies
that have shown that those amino acids are found less often on
protein surfaces.64,65

Finally, water molecules were analyzed for proximity
preferences as described in the Materials and Methods section.
The hydrophobicity of their direct surrounding, their hydro-
phobic surface area, and the size of water clusters was examined

(see Table 11). Noticeable is the relatively high proportion of
hydrophobic atoms in the surrounding of captured water
molecules, while the hydrophobic surface around them is
comparably low. The latter characteristic allows captured water
molecules to be well integrated into the protein complex. The
difference between hydrophobicity and hydrophobic surface is
even more remarkable, when looking at WINDPL water
molecules with 0.609 and 0.298 respectively. This shows, in
accordance to the very high B-factor, that those areas are highly
flexible (see Figure 11b).
Water clusters have on average 18 water molecules for all

water molecules with an EDIA value greater than EDIAThrs (see
Table 11). This number might appear quite large in comparison
to previous studies.66,67 However, previous analyses have
focused on water clusters in cavities and not the whole protein.
Additionally, the water clusters analyzed here have been
detected based on a distance criterion only (see the Materials

Table 10. Functional Group and Corresponding Amino Acid Preferences of Water Molecules with Sufficient Density (total, C,
PLI, PPI, S: EDIA ≥ EDIAThrs) Compared to Well-Integrated Unresolved Water Moleculesa and the Respective Occurrence in
the High-Resolution Proteins

interaction partner total S C PLI PPI WINDall WINDPL protein

functional group (amino acid) amide (N, Q) 4 3 5 4 4 3 8 8
imidazole/indole (H/W) 1 1 2 1 1 0 1 4
amine (K) 2 2 1 2 2 2 8 6
carboxyl (D, E) 7 7 8 8 8 6 13 12
guanidine (R) 2 2 3 2 4 2 9 5
hydroxyl (S, T, Y) 5 4 8 6 6 3 12 15

hydrophobic amino acids − − − − − − − 50
ligand 1 0 0 16 0 0 0 −
H2O 54 60 32 42 50 73 7 −
backbone 24 20 41 20 24 10 41 −

aWINDall ≥ three hydrogen bonds to protein, ligand, or other water molecules; WINDPL ≥ three hydrogen bonds to protein or ligand; EDIA <
EDIAThrs. For the water molecules hydrogen bond partners are considered (in percent), wherein for the protein the mean proportion of the
respecting functional group is given (in percent). (−) No contribution.

Table 11. Proximity Preferences of Water Molecules with Sufficient Density (total, C, PLI, PPI, S: EDIA ≥ EDIAThrs) Compared
to Well-Integrated Unresolved Water Moleculesa

total S C PLI PPI WINDall WINDPL

hydrophobicity 0.617 0.613 0.639 0.607 0.625 0.594 0.609
hydrophobic surface 0.567 0.579 0.513 0.505 0.544 0.502 0.298
water cluster size 18 17 13 17 31 92 13

aWINDall ≥ three hydrogen bonds to protein, ligand, or other water molecules; WINDPL ≥ three hydrogen bonds to protein or ligand; EDIA <
EDIAThrs.

Figure 12. Modeling errors. (a) H2O-B-1166 modeled into electron density that would better be suited for an ion (EDIA = 5.83, electron density
difference map ( fo − fc) indicates too little electrons modeled). Orange lines indicate possible ion coordination geometry (PDB ID: 1hyo). (b) H2O-
A-352 modeled into the electron density of methionine A-239 (distance 1.725 Å). The electron density difference map indicates missing electrons at
the water position and too many electrons at the sulfur of methionine, EDIA = 4.38 (PDB ID: 2rdq). (c) H2O-B-1328 modeled into alternative site
chain conformation of Histidine B-985, EDIA = 1.73 (PDB ID: 1hyo). blue = 2fo − fc map at 1σ, green = fo − fc map at 3σ (molecular graphics were
created using UCSF Chimera52).
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and Methods section). Interestingly, PPI water molecules show
the biggest average number of water molecules within one
water cluster among the four classes. Unsurprisingly, well-
integrated, unresolved water molecules have a huge number of
water molecules in one cluster if hydrogen bonds to water
molecules are taken into account, relating again to their higher
mobility.
Identification of Modeling Errors. Astonishingly, more

than 1200 water molecules show very high EDIA values above
median plus four standard deviations (EDIA > 3.3). Visual
inspection of a random sample of 10% of those locations
suggests modeling errors in over 75% (Figure 12a), with the
electron density difference map showing too few electrons
modeled in the position where the water molecule was placed.
Most of those water molecules would better be substituted by
ions, for which in at least 20% very good coordination
geometries, such as octahedral or tetrahedral, can be found.
A further misinterpretation of the electron density was

detected as water molecules may be built into the electron
density of alternative amino acid configurations (Figure 12b
and c). Identification of those modeling errors is more complex,
as electron density supposed for other atoms is available.
Automated identification of modeling errors or misinter-
pretation will be approached in future EDIA development.

■ CONCLUSION
Water molecules play an important role in many biological
aspects, not only in mediating protein−ligand interactions, but
also contributing fundamentally to binding affinity by
dehydration and the hydrophobic effect. As those water
molecules resolved by X-ray crystallography exist at local
energy minima it would be advantageous to reliably predict
those positions upon modeling molecular complexes.
In order to analyze the characteristics of water molecules a

high-resolution subset consisting of 5485 structures from the
PDB was compiled. Our evaluation has shown that high
resolution itself is no guarantee for electron density support of
each individual water molecule. Analyzing the electron density
is unavoidable to differentiate between well resolved and
unresolved water molecules. Therefore, a new measure based
on electron density was developed, called EDIA. Advantages
compared to already existing measurements, like B-factor, RSR,
and RSCC are a direct comparison between modeled structure
and electron density, as well as an intuitive interpretation of the
value itself. Normalization by the standard deviation of the
electron density map allows direct comparison of water
molecules from different structures.
In order to detect misinterpretations of the electron density

map and modeling errors the EDIA could be enhanced by
taking the electron density difference map into account. In this
way, further areas of too little or too many electrons in the
modeled structure could be detected in an automated manner.
Further water molecules misleadingly placed in electron density
supposed for alternative amino acid or ligand conformations
could be detected using a Difference of Gaussian filter.68

Herein, two different sigma levels would be applied to the
electron density map. Subtracting one image from the other
preserves positions with drastic shifts, but discards all points
that are at continuous areas, thus eliminating noise. As water
molecules have a fairly circular, secluded distribution of
electron density, it would become apparent if the underlying
electron density, in which the water molecule is placed, is more
stretched out and extensive as it is the case for amino acid side

chains or ligands. Both aspects will be evaluated in our future
development of EDIA.
The new measure EDIA can support the differentiation of

water molecules that should be excluded from an analysis due
to insufficient electron density support (EDIA < 0.24), from
those that actually have implications for further modeling.
Water molecules with unrealistically high EDIA values (EDIA >
3.3) need more attention due to a high probability of a wrong
interpretation of the electron density. Even though very rarely,
hydrophobic bubbles with good EDIA values were observed in
this data set (1438 ≙ 0.52%) and showed that they may be of
biological relevance. Otherwise, such highly unfavorable
locations for water molecules would not be expected to exist.
The observation from this evaluation provide further support
for validating water molecules in crystal structures as well as
implications for further characterization and modeling. In a
subsequent analysis it would be highly interesting to investigate
the underlying thermodynamics in order to understand why
experimentally observed water molecules seem to be stable in
their surroundings. This refers in particular to water molecules
in a hydrophobic environment.
Many computational methods that aim to predict water

molecule locations have been lately developed. However, little
has been undertaken for the validation of water molecules in
protein structures. As proven by the number of water molecules
without electron density (208 052 ≙ 8.9% of the data set), a
simple comparison with structurally modeled water molecules
might not be sufficient. Herein, this well characterized high-
resolution data set allows an extensive evaluation of water
prediction methods, including the possibility to differentiate
between water molecules well-resolved by electron density and
those not supported by electron density.
In summary, the EDIA serves two purposes. First, properties

and functions of meaningful modeled water molecules in crystal
structures can be characterized and comprehended. Second, it
can support the validation of computational methods for
placing water molecules.
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ABSTRACT: Macromolecular structures resolved by X-ray
crystallography are essential for life science research. While
some methods exist to automatically quantify the quality of the
electron density fit, none of them is without flaws. Especially
the question of how well individual parts like atoms, small
fragments, or molecules are supported by electron density is
difficult to quantify. While taking experimental uncertainties
correctly into account, they do not offer an answer on how
reliable an individual atom position is. A rapid quantification of this atomic position reliability would be highly valuable in
structure-based molecular design. To overcome this limitation, we introduce the electron density score EDIA for individual
atoms and molecular fragments. EDIA assesses rapidly, automatically, and intuitively the fit of individual as well as multiple atoms
(EDIAm) into electron density accompanied by an integrated error analysis. The computation is based on the standard 2fo − fc
electron density map in combination with the model of the molecular structure. For evaluating partial structures, EDIAm shows
significant advantages compared to the real-space R correlation coefficient (RSCC) and the real-space difference density Z score
(RSZD) from the molecular modeler’s point of view. Thus, EDIA abolishes the time-consuming step of visually inspecting the
electron density during structure selection and curation. It supports daily modeling tasks of medicinal and computational
chemists and enables a fully automated assembly of large-scale, high-quality structure data sets. Furthermore, EDIA scores can be
applied for model validation and method development in computer-aided molecular design. In contrast to measuring the
deviation from the structure model by root-mean-squared deviation, EDIA scores allow comparison to the underlying
experimental data taking its uncertainty into account.

■ INTRODUCTION

Protein crystal structures are essential in gaining insights into
biochemical processes. Depending on the quality of exper-
imental data, the positions of individual atoms are regularly
determined. In an iterative refinement process with assistance
from the proposed molecular model, the final model is derived
from the measured reflection intensities.1 In many cases, the
resulting model is the starting point of structure exploitation
neglecting the gap toward the experimentally determined
electron density map. In the past, measurements to assess the
quality of protein structure models originating from X-ray
crystallography on the global as well as on the local scale have
been intensely discussed.2−4 While global measures such as the
diffraction precision index (DPI)5 and the R factor6 exist,
analyzing and measuring the experimental support for
substructures or regions in the structure such as binding
pockets and ligands is still an active field of research.3,7 Atoms
in the protein structure models are usually annotated with
occupancy and B factor. Both are calculated based on the initial
structure factors as a step in the overall protein refinement
procedure. The occupancy is set to less than one if the atom has
an alternate location. The B factor mirrors local motion at the
respective location. Since the B factor is a value optimized by
the refinement program including user and program dependent

constraints,8−10 it can only be calculated for atom models,
present at the refinement stage of the structure and is tightly
coupled to the aforementioned constraints.
The analysis of electron density maps offers an alternative

path for structure validation. The 2fo − fc and the fo − fc
electron density (difference) maps are often used for visual
inspection. The fo map contains the experimentally observed
electron density, and the fc map the calculated density derived
from the structure model. The comparison of the fo to the fc
map is used in different flavors. The analysis of the (squared)
sum of errors fo − fc is the base for the two well-known real-
space refinement methods11,12 implemented in, e.g. Coot,13

Moe 2015.10,14 and ARP/wARP.15 As advancement, the real-
space R factor (RSR) was proposed by Jones et al.16 in 1991.
The RSR compares the observed against the expected electron
density around a specific atom or a group of atoms with the
sum as the normalization factor (eq 1). It ranges from 0 to 1 in
which 0 stands for a good density overlap. The RSR publication
does not give definitions of all necessary parameters like the
fitted scaling factor and the size of the electron density spheres
required to calculate the expected density.

Received: June 27, 2017
Published: October 5, 2017

Article

pubs.acs.org/jcim

© 2017 American Chemical Society 2437 DOI: 10.1021/acs.jcim.7b00391
J. Chem. Inf. Model. 2017, 57, 2437−2447

Cite This: J. Chem. Inf. Model. 2017, 57, 2437-2447



ρ ρ
ρ ρ

=
∑ | − |
∑ | + |

RSR(area) obs calc

obs calc (1)

Consequently, reimplementations of the RSR differ in the
chosen radii as well as the method to compute the expected
electron density. In general, the RSR is resolution dependent
due to the unspecified minimum grid spacing of the electron
density map. Additionally, the fitting of the scaling factor can
introduce an error.17 RSR in its normalized form (RSR-Z) is
used in the PDB structure validation pipeline. Unfortunately,
ligands can not be checked thoroughly due to missing statistical
data necessary for RSR-Z calculation.3 RSR’s correlation
coefficient (RSCC)18 was developed subsequently and is the
most commonly used comparison metric so far. As a correlation
coefficient, it ranges from −1 to 1. The RSCC avoids the need
for an electron density scaling factor. Still, the other
problematic issues of the RSR prevail. Thus, the RSR and
RSCC are problematic when comparing structures with
different resolutions as well as the same structure scored via
different programs. In the context of structure comparison, a
variation of the RSR, called the RSRn,

19 was developed. The
RSRn scales the RSR of a structure model against the RSR of
the crystallized ligand. By avoiding the resolution dependency,
the RSRn allows better comparison between structures of
different resolutions if the crystallized ligand is suitable for
normalization. Nevertheless, all three methods do not check for
clashing atoms, do not report the intensity of the local electron
density and do not consider unaccounted density beyond the
electron density radius of the atom. Thus, they can not detect a
nonfitting electron density shape.3 A recent development, the
real-space difference density Z score17 (RSZD) reports
significant difference density peaks in the electron density
sphere of an atom. It employs consecutive significance tests on
the difference map. The RSZD can be split into the RSZD+ and
RSZD− to ease the interpretation of reported outliers. RSZD−
(below −3σ) marks areas with modeled atoms but no
supporting density while RSZD+ (above 3σ) marks areas
with unmodeled electron density. As RSZD measures how well
the model fits the experimental data, the accompanying RSZO
measures the precision of the model. It calculates the signal-to-
noise ratio marking the regions well-defined by electron density
with values larger than 1σ. The effects of fc on the RSCC,
RSZD, and RSZO can be startling due to the methods used and
values such as annotated B factors and occupancies integrated
in the calculation of fc. In addition, an electron density fit
calculation in high throughput mode as applicable in molecular
modeling should aim to avoid recalculation of, i.e., fc for a fo −
fc map per ligand conformer as much as possible. When
curating a validation data set such as the Astex,20 Iridium,21

CSAR 2012,22 and PDBbind core set 2013,23 visual inspection,
in combination with the RSCC or a density correlation
coefficient based on the 2fo − fc and fc map24 has been used.
But since available high quality data has rapidly increased, a
manual inspection is not feasible anymore and an automated
evaluation procedure is needed.
In this paper we introduce a novel approach of the electron

density support for individual atoms (EDIA) and its
combination for multiple atoms (EDIAm) in crystal structures.
A preliminary version of EDIA was developed by Nittinger et
al.25 to score the quality of water molecules. While the initial
version was limited to oxygen atoms of water molecules, we
now present a generic concept allowing the analysis of any
given atom or structure for its fit into the electron density while

avoiding the aforementioned pitfalls. Both 2fo − fc and fo maps
can be used in its calculation. In the following, the computation
of EDIA is outlined and tested toward numerical stability. We
then apply EDIAm with the help of 2fo − fc maps from the
PDBe26 on ligands and residues in a high resolution PDB
subset. Then we analyze EDIA on the Astex Diverse Set. EDIA
and EDIAm are subsequently compared to RSCC, RSZD,
RSZO, B factor, and RMSD. The comparison to RMSD is of
particular interest for evaluating sets of molecular models such
as those resulting from docking calculations.

■ METHOD

EDIA is a method estimating the electron density support for
an individual atom in a crystal structure. An EDIA value ranges
from 0−1.2, the upper bound results from the truncation of the
density score as explained later on. EDIA assumes a spherical
shaped electron density for heavy atoms. As hydrogens rarely
have electron density spheres themselves, they are per default
excluded from the calculation. For the EDIA description, we
will use the following nomenclature and abbreviations: s(a)
represents the electron density radius sphere around atom a.
The sphere with two times the electron density radius is called
sphere of interest of atom a. The surrounding of atom a defined
as the difference between the sphere of interest and s(a) for
atom a is called d(a). For a well-resolved atom s(a) is expected
to be filled with electron density while d(a) should not contain
unaccounted electron density. The calculation is divided into
three phases: (1) the oversampling of the raw electron density
grid, (2) the EDIA value calculation itself, and (3) the
combination of EDIA values into overall values for whole
molecules or molecular fragments. The oversampling procedure
increases the density of grid points to guarantee at lest 27 grid
points in s(a) for every atom a. Details of this step can be found
in SI 2.1.2
The EDIA calculation itself can be summarized as follows:

After assigning an electron density radius to each atom a, three
values are calculated for each grid point p in the sphere of
interest of a: a distance-dependent weighting factor w(p, a), an
ownership value o(p, a) reflecting the interference of
neighboring atoms, and the density score z(p) truncated at
1.2σ in which σ denotes the root-mean-square (RMS) value of
the electron density.27 Since the mean electron density is
approximately zero, the RMS is roughly equal to the standard
deviation of the map. The truncation balances the often very
high density values in s(a) against those in d(a) so that density
found in d(a) has full penalty strength. The EDIA value for
atom a is then the weighted mean over the product w(p, a)o(p,
a)z(p) over all assigned grid points (see eq 2). The calculation
of w() and o() will be summarized below; additional
information can be found in SI 2.
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∑
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Atom Radius Determination. Tickle17 approximates the
electron density radius r for an atom by calculating the radius
integral over the atom density. In his method, r depends on the
B factor, element, charge, and structure resolution. Our aim is
to mark overly flexible atoms as problematic to flag uncertain
atomic positions. Combined with the problematic constrained
optimization of B factors,8−10 we decide to avoid the usage of
the annotated atomic B factors. Instead, we analyze the B
factors of all PDB complexes with ligands per resolution
interval from 0.5 to 3.0 Å with a step size of 0.5 Å. The mean B
factor per resolution interval is then used in the calculation of r.
Six resulting electron density radii per element, charge, and
resolutions of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 Å are tabularized for
fast lookup. The radius r for an atom is then linearly
interpolated based on the resolution of the overall structure
and the atom’s charge. We assume a spherical shape for the
electron density when computing the EDIA. Hence, we suggest
to only compute EDIA values for structures with a resolution of
at least 2.0 Å. The atomic scattering factors in an experiment
with a resolution worse than 2.0 Å can not be approximated by
the Gaussian functions anymore.28 Nevertheless, EDIA is
parametrized up to a resolution of 3.0 Å to allow the evaluation
of older validation data sets such as the Iridium set.21 The
resulting atom radii are given in the SI 2.1.1.
Point Weighting. With the help of a weighting curve

(Figure 1), EDIA can discriminate between necessary and
superfluous electron density in the vicinity of an atom. If the
grid point p is in d(a), the density is regarded as superfluous
and weighted negatively for a. If p is outside of the sphere of
interest of a, the weight is set to 0. The weighting curve consists

of three connected parabolas P1, P2, and P3 to be numerically
stable and efficient to compute. The full parametrization of the
weighting curve can be found in SI 2.1.3.

Grid Point Ownership. In order to model the molecular
structure, we define an ownership function o(p, a), assigning
grid points to atoms. Due to o(p, a), EDIA is able to handle
covalently bound atoms, correctly identify atomic clashes and
superfluous density in the vicinity of an atom. The calculation is
based on three sets defined for a grid point p: Let S(p) be all
atoms containing p in their electron density sphere, D(p) all
atoms containing p in their sphere of interest excluding S(p).
Furthermore, we define I(p, a) ⊆ S(p) omitting all atoms
covalently bound to a. Note that I(p, a) contains the atom a
itself. For calculating o(p, a) we distinguish four cases as shown
in Figure 2. Let us first assume a ∈ S(p). In case a is the only

atom in I(p, a), the density fully belongs to a and o(p, a) is set
to 1.0. Otherwise, the ownership is shared between the atoms
in I(p, a). Note that due to the construction of I(p, a), if S(p)
contains covalently bound atoms, p is fully assigned to all of
them. Let us now assume a ∈ D(p). In case S(p) is not empty,
the density belongs to a different atom and o(p, a) is set to 0.
Otherwise, the ownership is shared between the atoms in D(p).
Finally, in case a is neither in S(p) nor in D(p), the ownership
is set to 0. For sharing the ownership within a set of atoms X,
weights are calculated incorporating the distance of p to the
atoms in X (see eq 3):
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o p a
X

pa
pb
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1 if 1

1 otherwise
b X (3)

The resulting ownership decision tree is shown in Figure 2.
Identification of Error Types. EDIA can be used to detect

problematic parts in a structure by quantifying the fit of the
structure to the given electron density. Furthermore, it can be
decomposed to automatically identify the two most frequently
occurring error types: electron density sphere clashes and
missing as well as unaccounted density. Also, the combination
of both as possibly shifted electron density can be identified. An
electron density sphere clash is detected when another atom b
shares more than 10% of all grid points with a in its inner
electron density sphere s(a) (eq 4). An example can be found
in Figure 3. In a distance of 1.66 Å, magnesium is positioned
next to Oxygen 2 B in 2′-Deoxyguanosine-5′-Diphosphate
(DGI) in the Nucleoside Diphosphate Kinase (3b6b29).
Because the atoms have in this case an electron density sphere
of 1.26 (Mg2+) and 1.38 Å (O), the electron density spheres
overlap profoundly.

Figure 1. Weighting curve w(p, a). A weight is assigned to a grid point
p in the sphere of interest of atom a based on its distance to the atom
center of a. The weighting curve, depending on the electron density
radius r of a, shown in black, is composed of three parabolas P1
(green), P2 (blue), and P3 (red). The weight turns to zero beyond the
sphere of interest.

Figure 2. Ownership decision tree for grid point p in the sphere of
interest of atom a. If p lies outside of the sphere of interest of a, o(p, a)
is 0.0. S(p): set of atoms containing p in s(b). D(p): set of atoms
containing p in d(b). I(p, a) ⊆ S(p): set of atoms not covalently bound
to a.
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Unaccounted density is detected in the vicinity of an atom a
when the negatively weighted part of the EDIA is above 0.2 (eq
5, Figure 3d: atoms in yellow and lime green).
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When the positively weighted part of the EDIA falls below 0.8,
not enough electron density is detected (see eq 6, Figure 3d:
atoms in light blue and blue). The score is equivalent with a
sphere of radius 0.81r filled with electron density of 1σ around
atom a at the resolution of 1 Å.
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If both unaccounted and missing density are detected, it is
labeled as possibly shifted electron density.
EDIAm. We suggest eq 7 based on the power mean to

compute the EDIAm value for a set of atoms U in regard to
electron density fit.
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Herein, the temporary correction of +0.1 safeguards the EDIAm
value against overweighting a single EDIA value close to zero.
In principle many functional forms could be used to accumulate
EDIA values over atom collections. The power mean behaves
like a soft minimum function which we feel appropriate to
detect unsupported structural features in small molecules and
fragments like amino acids. The tendency to reflect the
minimum of a given set of scores strongly increases with an

increasing negative deviation from the score set mean. The
EDIAm results in a value below 0.8 if about one EDIA value
drops below 0.3 or three EDIA drop values below 0.35 (see
Figure 4). Thus, structures with varying degree of weakly

resolved substructures can receive an identical EDIAm. This
reflects our opinion of only selecting well-supported structures
with an automatic analysis. EDIAm is a measurement for
graveness of structural inconsistency seen at least once in the
set of atom scores, it does not strongly reflect the number of
affected atoms leading to the respective EDIAm. Structures with
an EDIAm below 0.8 should be manually inspected before being
used further. Structures with identical EDIAm can be
discriminated in identifying the number and size of connected
components with at least two heavy atoms that are well
supported (EDIA of at least 0.8). The sum of all heavy atoms in
such well-resolved substructures normalized by the number of
the overall heavy atoms in the structure is called OPIA (overall
percentage of well-resolved interconnected atoms). Examples
for OPIA are given in the Results section, Figure 7.

Numerical Stability. We examine the scoring range and
numerical stability of EDIA in creating artificial test cases with
various degrees of supporting electron density (SI 2.2). Each
molecular fragment is then deflected up to 1 Å from its original
position in either the x, z, or diagonal direction. Full
experiments and results can be found in SI 2.3. EDIA shows
a score development strongly coupled to the degree of
displacement from the electron density. Only when unac-
counted density surrounds the atom in the test case, EDIA
fluctuates visibly. This is due to the different slopes in the
positive and negative weighting curve as well as due to the
oscillating number of grid points present in the EDIA
calculation when moving the atom over the grid (see Figures
S8 and S9).
Based on the artificial test cases, we aim to identify resolution

independent scoring ranges for EDIA. Therefore, we inspect
the EDIA values per constructed example at its initial position
up to the displacement of half the grid space diagonal, which is
the maximum positional uncertainty in the grid. As result, the
following three EDIA quality intervals are identified:

Figure 3. 2′-Deoxyguanosine-5′-diphosphate (DGI) in 3b6b as an
example for all three errors detected by EDIA. Magnesium 138 D and
Oxygen 2 B are recognized as clashing with a distance of 1.66 Å and
electron density radii of rMg:1.26 Å and rO:1.35 Å. All atoms are shown
in element, EDIA (see Figure 5), and EDIA error coloring. EDIA error
analysis color code: white no error; yellow density in d(a); light blue
not enough density in s(a); blue clash, not enough density in s(a);
lime green clash, too much density in d(a). The 2fo − fc map is shown
at a contour level of 1σ. Figure 4. Development of EDIAm when increasing the number of

problematic EDIA in the set of scores with the default score of 1.0.
The y-axis shows the minimum number of scores with a value of 0.1
(blue), 0.35 (green), and 0.65 (orange) to let EDIAm drop below 0.8.
In, e.g., a set of five atoms, one score of 0.35 and four of 1.0 result in an
EDIAm below 0.8.
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• [0.8, 1.2]: Atom is well covered with electron density.
• [0.4, 0.8[: Atom shows minor inconsistencies with the

electron density fit.
• [0.0, 0.4[: Atom shows substantial inconsistencies with

the electron density fit.

The type of inconsistency can be identified by the integrated
error analysis as introduced above. The three intervals are
visually represented by blue, pink, and red atom colors
following the color scheme in Figure 5.

■ RESULTS
In a series of experiments we evaluate different aspects related
to the performance of EDIA. We start in showing statistical
results on EDIAm calculation on a large portion of the Protein
Data Bank followed by the evaluation of EDIA on the Astex
Diverse Set. We then present and discuss the relationship
between EDIAm values and B factors as given in PDB
structures. Subsequently, we compare EDIA and EDIAm values
with RSCC and RSZD calculations. Finally, we analyze the
robustness of EDIAm against structural shifts of the ligand
molecule and compare the decrease of EDIAm values with the
increase of RMSD values.
Automated Protein Structure Assessment. As starting

point for a high quality structure data set, we screen all 32 844
protein−ligand complexes in the earlier defined high resolution
PDB subset (SI 1). The run time per complex is on average 0.4
min on a Linux openSUSE 13.1 cluster equipped with Intel
cores (2.2Ghz to 2.7 Ghz) and at least 8 GB RAM. The
resulting EDIAm of the 45 113 ligands of interest30 are given in
Figure 6. The ligand EDIAm versus resolution plot can be found

in SI 3.6. 77% of the ligands show an EDIAm of at least 0.8 and
thus fit well in their electron density. Multiple examples are
listed in Figure 7. The ligands in Figure 7a−c share an EDIAm
of 0.2 due to badly supported atoms. The differing relative
amount of well supported atoms is mirrored in the annotated
OPIA as the overall percentage of well-resolved interconnected
atoms. OPIA allows to discriminate between overall badly

supported ligands (Figure 7a) and ligands with only a partially
unsupported structure (Figure 7c). Ligands of the latter may be
a starting point for subsequent structure optimization.

Comparison with the Astex Diverse Set. The Astex
Diverse Set consists of 85 protein−ligand complex structures
with a resolution of at least 2.5 Å.20 Hartshorn et al. calculated a
density correlation between the 2fo − fc and fc map24 for
structure selection and combined it with manual inspection of
the electron density. We examine the Astex Diverse Set to
evaluate the performance of EDIAm on a small, widely used
data set. The distribution of all EDIAm values colored by
resolution cutoff is displayed in Figure 8. The majority (81 of

Figure 5. EDIA color scheme.

Figure 6. Distribution of all EDIAm of the 45 113 evaluated ligands in
the high resolution PDB subset. 76.7% are well resolved with an
EDIAm of at least 0.8.

Figure 7. Examples of ligands with differend EDIAm and the rounded
percentage of atoms in good substructures (OPIA) in the high quality
PDB subset. Parts a−c show a difference in OPIA while having the
same EDIAm of 0.2. They are accompanied by three examples with an
EDIA of 0.5, 0.8, and 1.09 to show the difference in density fit support.
SC2, 1PS, and A4L have atoms with an occupancy below 1. SC2’s
sulfur has an EDIA value of 0.
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85) have an EDIAm value of at least 0.8. The lower EDIAm
values in four cases express the need for manual inspection but
can still be used in some validation scenarios. Biphenyl
propanoic acid (1q4g,37 Figure 9a) and butyl-dihydro-

imidazo-pyridazine-dione (1n2v,38 Figure 9b) with atomic
EDIA values around 0.27 both do not pass the automatic
EDIA scan due to weakly supported carbon atoms. R-
Roscovitine (1unl,39 Figure 9c) and benzyl-benzyloxymethyl-
isopropyl uracil (1jla,40 Figure 9d) both have minimum atomic
EDIA values around 0.49 accompanied by medium-supported
benzole rings that let EDIAm drop below 0.8. We advise to also

exclude structures with a resolution larger than 2.0 Å to avoid
distorted electron density. Taking these two criteria, the
historic Astex Diverse Set would be reduced to 47 structures.

B Factor Comparison. EDIA uses a resolution dependent
B factor for the overall structure, disregarding the annotated
atomic B factors. Thus, computing EDIA for a structure checks
against unusual B factors and suggests an explanation for the
problem with its integrated error analysis. In our search for
example structures, we calculate the normed annotated B
factors for every residue in the high resolution PDB data set (SI
1, 32 844 structures) and compare it against its EDIAm (SI
Figure S13). The full analysis can be found in SI 3.2. In 16%,
the annotated B factor disagrees with the EDIAm. 5210
structures have at least one residue in which the annotated B
factor is more than 175% the expected B factor while the
EDIAm reports a well-supported residue (case 1). In contrast,
36 structures have B factors of maximally 25% the expected B
factor while the EDIAm reports a badly supported residue (case
2). A case-2 example is Isoleucin 126 A in the FIMH Lectin
(5aap,41 Figure 10a). The isoleucine side chain is present in

four alternate conformations, all annotated with low B factors
and an occupancy of 0.16−0.44. EDIA does not consider
occupancy, and only reports the atom’s qualitative fit with an
automatic error analysis. Thus, EDIA detects missing electron
density at, e.g., conformation A but leaves the interpretation up
to the user. In contrast, residues 233 to 236 in chain A of
Cytochrome P450 CYP 125 (3iw0,42 Figure 10b) are case-1
examples with B factors over 39 Å. While there is enough
electron density to support atoms, it is also stretched out. Even
though EDIA error analysis annotates numerous atoms with

Figure 8. EDIAm versus resolution of all ligands in the Astex Diverse
Set. Red lines mark the resolution cutoff at 2.0 Å and the EDIAm cutoff
of 0.8. 47 ligands have an EDIAm of at least 0.8, and a resolution of 2.0
Å and smaller.

Figure 9. All ligands in the Astex Diverse Set with an EDIAm below
0.8. Minimal atomic EDIA scores are annotated and marked in the
respective molecule. The 2fo − fc map is shown at 1σ.

Figure 10. Examples in which B factor disagrees with EDIA quality
categorization. B factor color gradient: red 50 Å2; orange 40 Å2; yellow
30 Å2; light green 20 Å2; dark green 5 Å2. EDIA error analysis color
code: white no error; yellow density in d(a); light blue not enough
density in s(a). EDIA color scheme is shown in Figure 5.
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having unassigned electron density in their environment, EDIA
still identifies most of the atoms as well-supported. Never-
theless, the EDIA values point attention to this regions for
which a precise atom position is increasingly difficult to derive
from electron density. Besides cases with only a few deviating
values, our analysis also reports 211 structures in which at least
50% of the residues have a deviating B factor and EDIAm value.
Of those, 205 fall into case-1 for which an example was already
presented. Case-2 occurs in six structures: Xanthomonin
(4nag43), Prion Protein (4ubz44), Cyclophilin (3rcg45), Z-
DNA(4hig,46 2elg47), and the High-Potential Iron Sulfur
Protein (3a3948). These six out of 201 proteins with a
resolution of maximally 1 Å in the data set are very small. They
also show highly compact electron density around each atom
position, consequently resulting in EDIAm of approximately 0.7.
We assume the shape of the electron density to be an artifact of
the refinement procedure for structures with high resolution.
Correlation with RSCC. We correlate EDIA and EDIAm

with the broadly adopted RSCC.18 RSCC values for amino
acids were calculated with an electron density sphere radius of
1.5 Å using Mapman.49 For the evaluation, all 8283 residues
closer than 10 Å to the ligand in the Iridium HT21 structures
are used. The EDIAm and RSCC agree in 84% of all cases in
marking the residues as well-resolved with an overall correlation
coefficient of 0.62 (see SI 3.3, Figure S15). 11% of the residues
are differently categorized. The RSCC by Mapman is based on
the precomputed fc map which considers annotated B factors

and occupancies. In cases of low occupancies, weak density in
the fc map may agree with weak density in the 2fo − fc map
resulting in a high RSCC. On the contrary, EDIAm reports
weak density in 2fo − fc map indicating poor electron density
support for the structure. As an example, Arginine 191 A in
CDC42 Kinase 1 (1u4d50) with an RSCC of 0.92, and an
EDIAm of 0.09 is presented in Figure 11a. On the other hand,
expected density may be not as voluminous as the observed
density, resulting in a low RSCC. In some cases such as in
Glycine 13 A in CDK2 (1fvt,51 Figure 11b) EDIAm still accepts
the residue as well supported due to the resolution dependent
mean B factor in the EDIA computation.
Unfortunately, the Mapman implementation of the RSCC

does not report RSCC values on the atomic level. We therefore
used an in-house implementation based on the oversampled
electron density grid of EDIA and a Gaussian shaped fc.12 With
a Pearson correlation coefficient of 0.86 on 66.009 data points,
the RSCC and EDIA show a significant correlation (see Figure
S16). Four examples are shown as representatives for deviating
quality assessment (Figures 11c and d, S18). In the cases of
Glutamate 509 A in Phosphodiesterase 4B (1xm6,52 Figure
S18a) and Aspartatic Acid 134 A in CDC42 Kinase 1 (1u4d,50

Figure 11c), both residues have a voluminous electron density
to support every atom in the residue but only at the intensity
level of 0.5σ. Because RSCC does not explicitly include the
intensity level, it scores the atoms as well supported. EDIA
mirrors the intensity level of electron density at this position

Figure 11. Four examples with Mapmans RSCC (RSCCM) and EDIAm as well as atomic RSCC and EDIA scores are shown to display the
differences between both scoring schemes. Each residue is colored in both its element and EDIA colors. The 2fo − fc map is shown at 1σ unless
noted otherwise.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.7b00391
J. Chem. Inf. Model. 2017, 57, 2437−2447

2443



thus hinting toward lower density support. In the case of
Methionine 124 A in the activated CDC42 Kinase (1hq2,50

Figure 11d) and Cysteine 42 A in the Pyrophosphokinase
(3ptb,53 Figure S18b), the EDIA score declares the residue as
well supported while the RSCC of the respective carbon marks
it as badly resolved. In both cases, the electron density is
slimmer than expected. RSCC relies on shape comparison
integrating an fc map in the calculation. The shape and resulting
effects of fc on the RSCC can be startling for the user. EDIA
only uses the familiar 2fo − fc map with a weighting scheme to
weight down fuzzy borders in its scoring calculation making
EDIA values more intuitive and comprehensible.
Correlation with RSZD and RSZO. In the following, we

compare EDIAm to RSZD and RSZO as implemented in
EDSTATS.17 We compute the RSZD+, RSZD−, and RSZO of
the backbone and side chain atoms as well as the EDIAm for
both atom sets in the binding pocket of the Iridium HT data
set. The result is displayed in Figure S20. Tickle defines the
threshold for the RSZD to be below −3 or above +3 for
inaccurate structures.17 In the case of RSZO, the local precision
score should be at least 1σ to allow local interpretation of the
electron density.17 For about 85% in the case of RSZD and 86%
in the case of RSZO of all atom sets, they and EDIA agree in
marking the atom sets as well reproduced by the electron
density. EDIA seems to be more sensitive with 11% of the
atoms in the EDIA medium quality range while still in the [−3,
+ 3] range of RSZD values. 11% of all atom sets are also in the
medium EDIA range while staying above RSZO’s 1σ threshold.
The backbone EDIAm for Glutamate 241 I in Triosephosphate
Isomerase (1ml1,54 Figure 12a) and the side chain EDIAm for

Isoleucine 94 A in the HIV-1 Reverse Transcriptase (1c1b55

Figure S21a) report only medium quality while the RSZD does
not report any outliers and the RSZO reports a clear signal.
The first case elucidates the difference between EDIA and
RSZO. While RSZO reports the strength of the local signal,
EDIA factors in the shape of the local data. Here, spacious
electron density and high B factors are present. Serious

disagreements between the two scoring schemes can be found
in the EDIA range [0.0, 0.4[ with unproblematic RSZD scores
in 1% of all cases. RSZO and EDIA disagree in 1% of all cases
as well. As example, Leucine 42 A in a Dihydroorotate
Dehydrogenase (1d3h,56 Figure 12b) and Lysine 140 A in
Hemaglutinin (1hgg,57 Figure S21d) are shown. They display a
low side chain EDIAm while having no significant RSZD peaks
in both directions. While there is not enough electron density
in the 2fo − fc map at a contour level of 1σ to pinpoint the
exact position of the residue, the RSZD does not detect
significant peaks in the fo − fc map due to the high B factor of
the substructures. In these two cases, the RSZO reports
problematic local density though. The last case enlightens the
different focus of RSZD and EDIA. While the RSZD is used by
crystallographers to detect modeling inaccuracies, EDIA
supports the modeler to distinguish reliable from less reliable
atom positions. This ability is in parts carried out by RSZO but
falls short in the case of voluminous density annotated with
high B factors. EDIA safeguards the modeler against such
unusual disorder beyond the range of the predetermined
resolution dependent B factor. More examples can be found in
SI 3.4

Evaluation of Spatial Displacement. Method validation
in molecular modeling is heavily based on measuring spatial
displacement between the experimentally resolved and
computationally predicted molecular structures. It is measured
with the root-mean-squared deviation (RMSD) in the range [0,
∞] with 0 signifying no deviation between the two structures.
Depending on the application, an RMSD cutoff is selected to
separate correctly from incorrectly placed structures. An RMSD
of 2 Å is a frequently applied cutoff in the evaluation of docking
experiments.58 Since RMSD is based on absolute atom
coordinates, it can not integrate local experimental uncertain-
ties. In the search for better evaluation methods, Hawkins et
al.59 have considered the RSCC and RSR but found it lacking
due to the not existing correlation with RMSD in the interval
from 0 to 2 Å. Here, we examine this correlation between
RMSD and EDIAm in systematically exploring the conforma-
tional space of the respectively first ligand for Mc/Pc603 Fab-
Phosphocholine Complex (2mcp60), Methionine Aminopepti-
dase 2 (1r5861), Phosphate Synthase (1of662), Protein Kinase
CHK1 (2br163), and Beta-Xylanase (1fh964) from the Iridium
HT data set. The exact experiment is described in SI 3.5.
Overall, at least 1764 poses per structure are systematically
generated. The EDIAm anticorrelates with a Pearson correlation
coefficient of maximally −0.93 with the RMSD in all five cases
(Table S5, Figure S22). The correlation plots reveal a sigmoid
shape with an EDIAm plateau up to an RMSD of 0.4 Å. From
an RMSD of 1.5 Å on, the EDIAm is in all cases below 0.2
marking the second plateau of the sigmoid shape. Figure 13 and
S23 show several ligand poses of 3-amino-2-hydroxyamide
(1r58) at an RMSD of 0.8 Å. The resulting EDIAm, initially at
0.93, thus stretches from 0.72 to 0.31. While the RMSD
measures the displacement of atoms from its model positions in
any direction, EDIAm describes the fit into the underlying
electron density directly showing inconsistencies to the
experimental data.

■ CONCLUSION
EDIA is a new method to quantify the electron density support
of individual atoms in crystal structures with a resolution of up
to 2 Å. In contrast to existing methods, EDIA does not rely on
a structure to electron density conversion and takes the

Figure 12. Selected residues with RSZD, RSZO, and EDIA scores. In
each example, the RSZD and EDIA disagree in their quality
assessment. Every example is shown in element and EDIA coloration.
RSZDbb, RSZObb:RSZD, or RSZO of the backbone atoms, RSZDs,
RSZOs:RSZD, or RSZO of the side chain atoms. EDIAm is listed in the
ordering: EDIAm for backbone, EDIAm for side chain atoms. The 2fo −
fc map is visualized with a contour level of 1σ. The fo − fc map is
shown above 3σ in green and below −3σ in red.
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covalent structure of the molecules explicitly into account. The
scores for a set of atoms such as a ligand, a residue or a
functional group can be combined with the power mean. The
resulting EDIAm value serves as an easily interpretable indicator
score to discriminate between well and medium to badly
resolved structural components. A rapid, objective, automatic,
and reproducible analysis can thus be performed over any
collection of atoms in a structure such as ligands, binding
pockets, secondary structure elements, or complex interfaces.
We examined EDIA scores on structures with different
resolutions and the most frequent unit cell and grid spacing
configurations. In this way, we were able to define generally
applicable scoring intervals for EDIA values supporting
noncrystallographers in interpreting the structure model.
We have shown numerous examples accompanied by

comparisons to RSCC and RSZD illustrating the usefulness
and practical advantages of EDIAm. RSCC and RSZD both
tolerate flexible atoms in integrating fc in their calculation.
Although this makes sense from a crystallographic point of
view, it make the analysis of spatial certainty for a modeler
more complex. Instead, EDIA has a stricter concept of tolerable
flexibility by using a mean B factor for the overall structure. We
analyzed the behavior of EDIAm with respect to slight structural
changes demonstrating the relationship to RMSD values. Also,
EDIA was compared to B factors. It was shown, that the EDIA
error analysis assists in B factor interpretation and that EDIA
identifies highly unusual B factors. We calculated EDIAm values
for a high resolution PDB subset of 32 844 structures classifying
77% of its ligands as well resolved. In automatically scoring
electron density support in new structures in the PDB, it is now
possible to create benchmark sets for modeling efforts of
statistically significant size such as the Platinum data set.65 With
the help of the EDIA and its integrated error analysis, a guided
tour through complexes of interest can be taken. Along with
information from the PDB header, considering B factors, and
occupancies as well as crystal contacts, EDIA values could help
modelers and medicinal chemists to inspect a binding pocket of
interest. It could also be integrated into the PDB quality
assurance tools to detect poor substructure quality. Further-

more, EDIA also allows the comparison of a computed ligand
pose to the original underlying experimental data. In the future,
we will use EDIA for the evaluation of docking tools. In
contrast to a state-of-the-art RMSD evaluation, EDIAm directly
relates to the underlying electron density rather than to its
interpreted model. Therefore, EDIA scores are able to support
scientists along the whole process from structure elucidation to
its use in molecular design.
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ABSTRACT: Noncovalent interactions play an important
role in macromolecular complexes. The assessment of
molecular interactions is often based on knowledge derived
from statistics on structural data. Within the last years, the
available data in the Brookhaven Protein Data Bank has
increased dramatically, quantitatively as well as qualitatively.
This development allows the derivation of enhanced
interaction models and motivates new ways of data analysis.
Here, we present a method to facilitate the analysis of
noncovalent interactions enabling detailed insights into the nature of molecular interactions. The method is integrated into a
highly variable framework enabling the adaption to user-specific requirements. NAOMInova, the user interface for our method,
allows the generation of specific statistics with respect to the chemical environment of substructures. The substructures as well as
the analyzed set of protein structures can be chosen arbitrarily. Although NAOMInova was primarily made for data exploration in
protein−ligand crystal structures, it can be used in combination with any structure collection, for example, analysis of a carbonyl
in the neighborhood of an aromatic ring on a set of structures resulting from a MD simulation. Additionally, a filter for different
atom attributes can be applied including the experimental support by electron density for single atoms. In this publication, we
present the underlying algorithmic techniques of our method and show application examples that demonstrate NAOMInova’s
ability to support individual analysis of noncovalent interactions in protein structures. NAOMInova is available at http://www.
zbh.uni-hamburg.de/naominova.

■ INTRODUCTION

Noncovalent interactions play a major role in the selectivity and
affinity within a protein, in protein−protein interactions, as well
as between small molecules and proteins. A thorough
understanding of their geometrical preferences within their
chemical context is mandatory for structure-based design
projects from medicinal chemistry to biocatalysis and pesticide
development. The assessment of molecular interactions is often
based on knowledge derived from statistics on structural data.1,2

The main public resource for protein structures, the
Brookhaven Protein Data Bank (PDB),3 is constantly growing
quantitatively as well as qualitatively. Because the focus on data
quality has increased over the last years, structure factors are
mandatory for new resolved structures deposited in the PDB
since 2008. In February 2017, structure factors for almost
60 000 PDB files were available from the PDBe Web site
(Protein data bank in Europe, http://www.ebi.ac.uk/pdbe/).
This way, the verification of the experimental support for a
structure is possible. Given this wealth of data, tools are needed
that are able to analyze and visualize geometrical distributions
of noncovalent interactions in large sets of protein complexes
taking the quality of atomic positions into account.
In 1997, the tool IsoStar4 was published, which is, to our

knowledge, until today the only tool that can be used to analyze
the geometric distribution of specific atoms or functional
groups around a central molecular structure. IsoStar presents

data derived from the Cambridge Structural Database (CSD)5

and the PDB. For the used PDB structures, the main quality
criterion used is a resolution of below 2.0 Å. A predefined set of
frequently occurring functional groups was used to generate the
data for each of its combinations. The data are stored in
separate files, which have to be loaded separately into the
program. User-defined substructures can only be added from
the CSD data set using a combination of two other tools,
IsoGen and ConQuest.6 Moreover, the IsoStar user interface
provides only a few possibilities to further analyze the collected
data in detail, for example, selecting only atoms from a specific
amino acid or only looking at inter/intramolecular interactions.
In addition to IsoStar, the tool SuperStar7 uses the data from

IsoStar to highlight hot spots within a protein−ligand interface,
indicating the likelihood of a specific functional group to occur
in this region. Also in this context, advanced filters to adapt the
presented data to specific needs are missing.
Here, we present NAOMInova, a new way for interactively

analyzing geometric preferences of noncovalent interactions
around user-defined substructures on any user-selected data.
NAOMInova stores all relevant data from a collection of
protein structures in an SQLite database. This data can be used
to analyze the distribution of interaction atoms in the vicinity of
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user-defined substructures. Different filters allow precise
tailoring of the presented interacting atoms according to the
demand of a user. Moreover, the experimental support of
individual atoms can be taken into account using the EDIA
value (electron density of individual atoms).8,9 Thus, the
analyzed data set can be separated into those with good
electron density and those that have to be analyzed more
carefully. As an example, the following questions can
conveniently be answered using NAOMInova: Do oxygens in
ligands and waters have different preferred geometrical
parameters when involved in a hydrogen bond to an amide?
What are the most frequent interaction directions of a specific
substructure that occurs in a ligand? What are the resulting
geometries of a specific interaction in all structures resulting
from my latest MD simulation?
With these features, NAOMInova goes beyond the IsoStar

approach in various aspects. First, any collection of protein
structures can be analyzed. This can be beneficial if, for
example, only structures derived from an in-house data set
should be analyzed or if statistical distributions within all
structures of a MD simulation should be conducted. Second,
substructures for which distributions of interacting atoms are
calculated can be defined by a user. Third, the calculated data in
NAOMInova are stored in one SQLite database. Thus, all data
can be loaded with one file and different data sets can be
created from one individual database. Moreover, the fast query
operations provided by SQLite make interactive filtering by
various filter criteria possible. Fourth, NAOMInova uses a much
more exact quality criterion than the overall resolution of a
structure.
In this publication, we present the data handling and give a

general overview of NAOMInova. Finally, we show examples
for geometric analyses with NAOMInova and its potential

application in drug development tasks. The graphical user
interface (GUI) connected to NAOMInova is presented and
briefly explained in the Supporting Information (see the section
entitled Graphical User Interface).

■ METHODS

Overview. The methodology behind NAOMInova com-
prises four steps (schematically illustrated in Figure 1). First of
all, a database is compiled out of a collection of protein
structures. During this step, all relevant data, including the
structural data of a protein and its ligands, are stored in an
SQLite database. This process is explained in more detail in the
Database Construction section. Afterward, molecular sub-
structures can be registered and added to the database. Herein,
all occurrences of the defined substructures are detected in the
protein structures and their ligands. Interacting atoms in the
vicinity of these occurrences (in the following called partner
points) are collected and also stored in the database. This part
is explained in the Substructure Registration and Substructure
Detection and Data Collection sections. A database created in
this process is stored as one single file and can be subjected to
many analyses. Protein structures can be added to an existing
database, and also substructures can be included or deleted.
Hence, the first two steps can be seen as preparation steps that
have to be performed only occasionally.
Using a compiled database, a set of partner points in the

surrounding of a registered substructure can be filtered
according to the demands of a user. The filter comprises
different attributes of the partner point, for example, the
element type, its connection to the substructure (intra or inter),
or its distance to the substructure. This step is explained in the
Filtering section. Finally, the filtered set of partner points can
be visualized and the distribution can be analyzed geometrically.

Figure 1. Schematic overview of the NAOMInova method. The two data preparation steps are highlighted in green. The data analysis steps are
highlighted in red. (1) A database is compiled out of protein structures. (2) New substructures are added to a database. This process includes
registrations and detection of the substructures and the collection of partner points. (3) A set of partner points for a given substructure can be
generated using the filtering process. (4) A set created by filtering can be visualized. The back-link functionality can be used to inspect the original
structure for every partner point.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.7b00291
J. Chem. Inf. Model. 2017, 57, 2132−2142

2133



For each visualized partner point, a link to its original structure
is stored, called the back-link. Hence, for each partner point, the
original structure can be visualized in order to deduce reasons
for specific structural characteristics. The visualization is
explained in the Data Visualization section.
Database Construction. NAOMInova allows the analysis

of potential interaction partners of custom-defined chemical
substructures. The data required for the detection and
visualization of interaction partners are stored in an SQLite
database. As a first step, all protein structures are processed to
compile a database file. In this procedure, structural information
on a given input file is interpreted using the NAOMI software
library10 and stored in different database tables. The same
database technology for proteins and small molecules has been
used previously11−13 and will therefore only be described briefly
here. The main purpose of the used tables is to store the
relevant information on protein−ligand complexes in a
compressed way, efficiently providing the necessary structural
information upon request. Conceptually, small molecules and
proteins are stored in different tables of the database. This
separation is done because different attributes are required for
the two different molecule classes, for example, chain ID or the
amino acid type. Herein, a small molecule is defined as a
chemical component from an input file consisting of less than
six residues. Hence, this category comprises water molecules,
metal ions, short peptides, and ligands. For small molecules,
two different tables exist. The topology of small molecules is
stored in one table using a textual representation. The 3D
coordinates are stored in a second table. This way, the topology
of a small molecule occurring several times in a data set has to
be stored only once. On the opposite, the coordinates are
stored for each small molecule. For example, the topology of a
water molecules is only stored once in the database; however,
the exact coordinates for each water molecule are stored each
time in combination with a reference key to the respective
topology.
For proteins, the topology and the 3D coordinates of

individual amino acids are stored in two different tables. Here,
the same concept as that used for small molecules is applied.
The topology of an amino acid is only stored once, whereas the
3D coordinates are stored for every amino acid. A third table
stores the connection of individual amino acids using foreign
keys. Protein−ligand complexes are represented by only one
table in our database concept. Herein, foreign keys mapping to
small molecules as well as to proteins are stored pairwise. A
ligand is here defined as a small molecule that is not water and
not metal. Before entered into the database, structures are
preprocessed with Protoss to decide on tautomeric forms and
protonation states and to optimize the hydrogen bond
network.14 The optimization also includes flipping ambiguous
conformations of histidine, glutamine, and asparagine that
cannot be distinguished from the electron density itself.
Additionally, the EDIA value for each atom is calculated and
stored in a separate table. EDIA values represent the
experimental electron density support of individual atoms.
They can only be computed for structures with a resolution
below 2.5 Å and if an 2fo-fc electron density map is available.8,9

The EDIA ranges between 0.0 and 1.2. Atoms having an EDIA
value above 0.8 are considered well supported by experimental
data.8,9

Substructure Registration. During the substructure
registration process, substructures can be defined by a user
and are checked for compatibility. Overall, every substructure is

associated with four attributes: (1) a 3D template molecule, (2)
a molecular pattern (SMARTS15), (3) a unique name, and (4)
an EDIAmin. In the following, these attributes are explained in
more detail.

3D Template Molecule. Each substructure requires a 3D
template molecule in order to ensure the conformational
identity of the detected hits. There are two different
possibilities how the molecular structure of this template can
be defined. First of all, a small molecule with 3D coordinates
can be provided by the user. Alternatively, the topology of the
template molecules can be defined by a SMILES16 pattern. In
this case, the 3D coordinates are calculated using UNICON.17

From this molecular structure, atoms can be selected that
define the geometry of the substructure.

Molecular Patterns. The molecular pattern specified with
the SMARTS language defines the exact molecular substructure
that will be searched in the database. The SMARTS pattern can
be autogenerated by selecting heavy atoms in the 3D template
molecule. Afterward, the pattern can be adapted manually.
Conceptually, we differentiate between two different parts using
SMARTS recursionsa fragment part and a molecular context.
A graphical explanation of the SMARTS concept used in
NAOMInova is shown in Figure 2a. The fragment part

describes a molecular fragment. This fragment has to match
the selected atoms in the 3D template molecule. All matching
atoms detected in the protein or ligand later will be
superimposed onto these template atoms. Thus, every atom
described within this part of the expression corresponds to
exactly one atom in the molecular fragment. Atomic
ambiguities such as the logical OR (SMARTS symbol: “,”) or
a bond of any type (SMARTS symbol: “∼”) are in principle
allowed here. However, these ambiguities may lead to hits that
differ in their molecular structure, for example, different bond

Figure 2. Schematic explanation of the SMARTS concept used in
NAOMInova. The fragment part is depicted in green. The molecular
context of the SMARTS is depicted in orange. (a) Example of a
SMARTS pattern. Each atom in the fragment part corresponds to
exactly one atom in the 3D molecular template, indicated by black
arrows. (b) The molecular context is not used for superimposing.
Therefore, the depicted SMARTS pattern matches all three molecules
while geometric matching is limited to the Ethylamine fragment.
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lengths or angles. In the data collection step, only small
geometric deviations between the template atoms and the
detected matching atoms will be accepted (see the Substructure
Detection and Data Collection section for detailed informa-
tion). Moreover, the described molecular fragment must have
at least two atoms to avoid point symmetries.
Each atom of the substructure can be further specified using

the recursive notation of the SMARTS language (molecular
context). The molecular context is not used for superimposing
but only for the detection of substructures in a SMARTS
matching procedure. The further specification of each atom
with recursive SMARTS allows the definition of an
unambiguous context, independent of the exact conformation
of these atoms. Figure 2b shows an example of such a scenario.
Here, a substructure with cylohexane as its molecular context is
defined. Because cyclohexane can have different conformations,
it should be specified in the molecular context. This way, hits
with any cyclohexane conformation will be found in the data
set.
Unique Name. For each substructure, a unique name has to

be provided. This name is used as a unique key in the database.
EDIAmin. A lower bound for the EDIA value (EDIAmin) has to

be defined for each substructure. Detected hits of the
substructures in a protein and in ligands are only processed if
their combined EDIA value (EDIAm

8,9) is above this lower
bound. Additionally, partner points in the vicinity of a detected
match are only used if they fulfill this lower bound, as well. A
short explanation of the EDIAm calculation is provided in the
Supporting Information (see the EDIAm Calculation Details
section ).
During the registration process, the validity of the attributes

is checked, including the uniqueness of the name and the
correctness of the SMARTS pattern. Afterward, all attributes
are stored in a specific table of the database using the unique
name as a key.
Substructure Detection and Data Collection. For data

aggregation, each SMARTS pattern is searched in all proteins
and ligands found in the protein structure collection employing
a standard substructure matching algorithm.18 In general, we
are following the procedure described in Nittinger et al.19 For
all hits fulfilling the EDIAmin criteria, the RMSD between the
matching atoms and the corresponding atoms in the 3D
template molecule is calculated. If the RMSD is below 0.2 Å,
the matching atoms are transformed onto the template atoms.
The low cutoff value of the RMSD was chosen to ensure a
superimposition with low deviation necessary to derive
meaningful data. For subsequent data collection, partner points
in the vicinity of the matching atoms are detected. Herein, a
partner point has to fulfill four criteria:

• It has a maximal distance of 4.5 Å to at least one
matching atom of the substructure.

• Its element type is oxygen, nitrogen, sulfur, a halogen, or
a metal.

• The EDIA of the partner point has to be larger than
EDIAmin of the current substructure.

• It is not connected to the matching atoms via four bonds
or less.

These parameters were chosen in order to only hit interacting
atoms around a central substructure. Apart from the EDIA
criterion, these initial parameters are not user-adjustable and
can only be further restricted by the subsequent filtering
process. All partner points are transformed into the reference

coordinate system of the template molecule. Each partner point
is then stored in the database alongside several attributes, for
example, its element type, its EDIA value, and its coordinates.
The corresponding atom in the original protein or ligand
structure is stored for each partner point in order to be able to
provide the original structure for each data point. Moreover, the
substructures a partner point is part of are stored using all
currently registered substructures from the database.
Due to possible symmetries within the substructures, three

different cases of symmetry have to be considered during the
data collection step: (i) point symmetry, (ii) rotational
symmetry, and (iii) substructure symmetry. A point symmetry
was excluded by not allowing substructures containing only a
single atom. Rotational symmetry can occur if, for example, a
substructure contains two atoms only. In these cases, the
detected partner points are randomly distributed on a circle
around the symmetry axis. Substructure symmetries may occur
if planar substructures are used, for example, a benzene ring.
Here, the SMARTS pattern would match the same set of atoms
several times. In these cases, all detected substructure hits are
stored individually. Additionally, the information about the
number of hits is stored in the database. Thus, in the data
visualization, the user can decide if all symmetry hits should be
displayed or only an arbitrarily picked first one.

Filtering. For the filter process, only the definition of a
central substructure is mandatory. All other filter criteria for
partner points, as element type, location (e.g., protein, ligand),
or distance, are optional. A list of all possible filter criteria and
their values are shown in the Supporting Information (Table
S1). All resulting partner points are collected in a set, which can
be visualized and further analyzed concerning its spatial
distribution as well as its structural origins.

Data Visualization. For data visualization, a GUI has been
developed. An overview of this interface and screenshots are
provided in the Supporting Information (see the Graphical User
Interface section). Briefly, the sets created by filtering can be
visualized either with the used 3D template of the substructure
(set view) or in a pocket of interest (pocket view). In both
visualizations, the partner points in a set can be displayed either
as spheres or as a density grid. The density grid is calculated by
first placing a grid with a spacing of 0.4 Å onto all partner
points. Using trilinear interpolation, the density of each grid
point is determined. The exact calculation of the density values
for each grid point is explained in the Supporting Information
(see the Density Grid Calculation section).
By selecting a partner point in any of the two visualizations,

the original structure is shown in a separate tab using the back-
link functionality. Herein, the atoms in the original structure
corresponding to the partner point and the substructure are
highlighted, and the broader chemical environment can be
analyzed.
Moreover, histograms for distance and angle distributions

can be generated. Besides absolute counts for each bin, volume-
normalized values are shown for distances and spherical angles.
The normalization is explained in detail in the Supporting
Information (see the Histogram Normalization section).

■ RESULTS AND DISCUSSION

In the following, performance analyses of the main function-
alities are presented: (i) database construction, (ii) substructure
detection and data collection, and (iii) filtering. In the second
part, example applications are shown demonstrating NAOMI-
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nova’s ability to spatially analyze interactions and to guide
molecular design projects.
Performance. First of all, a data set containing all PDB

structures with a resolution better than 2.5 Å and with available
electron density was created (downloaded November 2016
from PDB and PDBe). This data set, denoted in the following
as “PDB2.5”, contains 56 807 protein−ligand structures. For
PDB2.5, a NAOMInova database was created for performance
analysis. Overall, the average runtime for adding a single
structure to the database is 29 s (Figure 3a). This value does

not increase through the different slices of data. That means
that the process of adding a structure does not slow down with
database size. The majority of the runtime (92%) is used for
calculating the EDIA values. The highest runtimes in each data
block are reached for structures with a very high number of
atoms (≥60 000).
In order to assess the dependency of the database size on the

number of inserted PDB structures, sets with increasing
numbers of randomly selected PDB structures were created
from PDB2.5. For each set, a NAOMInova database was
calculated (Figure 3b). The database size grows approximately

linearly with the number of inserted PDB structures. Overall, a
database containing all structures of PDB2.5 has a size of 22 GB.
The performance for adding custom-defined substructures

highly depends on the used SMARTS pattern and the chosen
EDIAmin value. Two main factors have to be considered
concerning the runtime here: The more complex the SMARTS
pattern, the longer the runtime of the matching algorithm.
However, fewer results will be detected, and thus, fewer
transformations have to be performed. As an example, three
different substructures were registered and added to the
database: (1) “CN1” with SMARTS pattern “C[NH2]”, (2)
“CN2” with SMARTS pattern “[C$(C[CR1])][NH2]”, and
(3) “CN3” with SMARTS pattern “[C$(CC1CCCCC1)]-
[NH2]”. All three substructures describe the same molecular
structure but differ in their molecular context. For all three
substructures, the 3D template molecule was defined using the
SMILES C[NH2]. The EDIAmin threshold was set to 0.8. The
common molecular structure is schematically depicted in Figure
4a. The molecular contexts of the individual substructures are
displayed in Figure 4b−d. In Figure 4e−g, the runtime needed
for the data collection step is plotted against the number of hits
for databases containing different numbers of PDB files.
As expected, more hits are detected for CN1 than for CN2

and CN3. For each of the different substructures, a linear
dependency between the number of hits and the runtime can
be observed. The linear regression curves are displayed as blue
lines in Figure 4e−g. The slope of this curve increases from
CN1 to CN2 and CN3, indicating that the detection of one hit
is more time-consuming for a more complex SMARTS pattern
than that for a simpler one.
The increase in disk size of a database by adding

substructures only depends on the number of detected partner
points. Roughly, one partner point adds 380 bytes to the
database.
The runtime needed for querying partner points was assessed

using the database containing the PDB2.5 data set and the three
substructures CN1, CN2, and CN3 from the previous step. For
each of the added substructures, three different filtering steps
were performed. First of all, all partner points for the respective
substructure were queried. Second, only oxygens were
requested. Eventually, the database was only filtered for
oxygens derived from ligands. The runtime and the number
of detected partner points are shown in Table 1.
As expected, the runtime for querying partner points from

the database depends on the number of results. In general,
queries with up to 1.9 × 107 results can be answered in less
than 90 s. Most of the used queries can even be answered in
less than 1 s. It can be concluded that NAOMInova is able to
support interactive analyses even if large data sets are used.

■ APPLICATION EXAMPLES

NAOMInova can be applied in very heterogeneous scenarios.
Its primary use is for the analysis of large, generic structure
collections. Moreover, it can also be used for detailed analysis
of smaller, focused collections summarizing the data available
for a target class or even from a MD run on a single structure.
Here, we will apply NAOMInova on two data sets, the general
set of the PDB-bind21 and an ensemble of 408 carbonic
anhydrase (CA) structures. For both scenarios, the used
SMARTS expressions, the number of detected substructure
hits, and the number of partner points are shown in Table 2. In
both examples, the EDIAmin of the substructures is set to 0.8,

Figure 3. Performance measurements for database creation with
NAOMInova. (a) A whisker plot shows the time for adding one PDB
file to the database for subsequent data slices of 10 000 structures. The
blue box shows the lower and upper quartile, and the whiskers
represent 90% of the results, from 5 to 95%. The median is shown as a
magenta line. The mean is indicated by the yellow square. (b) The bar
plot shows the disk size of databases with increasing numbers of PDB
files.
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the suggested cutoff for atoms well supported by electron
density.8,9

Analyzing Carbonyl Interaction Patterns. We use PDB-
bind to demonstrate the potential of analyzing the interaction
preference of a certain functional group across a large database,
which can be linked to affinity data. As a concrete example, the
overall distribution of atoms around a nonfurther-specified
carbonyl group was employed. The question, What are the
interaction preferences of a carbonyl oxygen atom? is addressed.
Herein, the overall distribution of atoms around the carbonyl
structure was analyzed. Using this example, we highlight the
importance of carefully analyzing the geometry around
functional groups. In this case, especially the significant
difference between the distribution with and without the
carbonyl plane is defined. To this end, a database with all
protein−ligand structures from the general set of PDB-bind
(version 2016) was compiled. The substructure “carbonyl” was
defined with the SMARTS pattern “OC” and an EDIAmin of
0.8. The 3D template molecule was defined using the SMILES
pattern OC. In total, about 1.06 × 107 partner points were
detected.

The distribution of all detected partner points in a hydrogen
bond distance range (2.6−3.5 Å) to any atom of the
substructure is shown in Figure 5c. Additional information
about the density of the point distribution is visualized in
Figure 5d. It can be seen that most of the partner points are
above the oxygen atom even though single partner points can
also be found further below. In this first analysis, the plane of
the carbonyl is not defined. Therefore, the points are evenly
distributed around the carbonyl group. However, more detailed

Figure 4. Substructure added to a NAOMInova database for runtime measurements. (a) General depiction of the molecular structure represented by
all three substructures (CNH2). The carbon atom is indicated with “←1”. This carbon atom is further specified by a recursive SMARTS shown in
(b−d) in boxes. (b−d) Specific depiction of the recursion in the SMARTS pattern of CN1, CN2, and CN3, respectively. (b) The carbon is not
further defined. (c) The carbon atom has to be connected to any aliphatic ring. (d) The carbon atom has to be connected to a cyclohexane. The
large gray circle represents the carbon that is further defined by the different recursions. The SMARTS patterns were visualized using the
SMARTSviewer.20 (e−g) The number of hits is plotted against the overall runtime for adding CN1, CN2, and CN3 to the database, respectively. A
linear regression curve is depicted as a blue dotted line in all three plots.

Table 1. Runtimes and Number of Received Partner Points
(pps) for Querying Three Different Filters on Three
Different Substructures Based on the PDB2.5 Data Set along
with Mean Values and Standard Deviations of the Run
Times of Three Independent Experiments

filter criteria for partner points CN1 CN2 CN3

no filter 1.9 × 107 pps, 12 930 pps, 140 pps,
90 s ± 0.2 s <1 s <1 s

element type = oxygen 1.4 × 107 pps, 10 224 pps, 112 pps,
67 s ± 0.1 s <1 s <1 s

element type = oxygen, 1.7 × 105 pps, 536 pps, 20 pps,
location = ligand 2.7 s ± 0.05 s <1 s <1 s

Table 2. Runtime and Database Size for Two Data Sets,
PDB-bind and CAa

PDB-bind (general set) CA ensemble

number of structures in data set 13 308 408
DB size before entering
substructures

4.7 GB 73 MB

DB size after entering
substructures

22 GB 74 MB

number of substructure hits carbonylb: 5.5 × 106 Gln92b: 334
planar carbonylb:
5.5 × 106

Thr199b: 335

Thr200b: 336
number of partner points carbonylb: 2.2 × 107 Gln92b: 3025

planar carbonylb:
2.6 × 107

Thr199b: 2971

Thr200b: 1362
time for adding all substructures 1:23 h 1:03 min
aNumbers are for structures with EDIAmin ≥ 0.8; amino acid numbers
correspond to PDBid 1zsb.31 Further information about the
substructure selection can be found in the section Application
Examples. bSMARTS and SMILES pattern for carbonyl: OC, 3D
template: OC; planar carbonyl: OCC, 3D template: OCC;
Gln92: [NH2][C$(CCCC(NC(O)CC(C)CC)C(O)-
NCCc1ccccc1)]O, 3D template: [NH2]CO; Thr199:
[OH]C[C$(C(NC(O)CCC(C)C)C(O)NCC(C)O)], 3D tem-
plate: [OH]CC; Thr200: OC[C$(C(NC(O)CC(C)O)C(O)-
N1CCCC1)], 3D template: [OH]CC.
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analysis of the data reveals distinct differences among the
different groups of partner points. Figure 5a shows the
distribution of the angle between the carbonyl bond and the
vector from the oxygen atom to a partner point separated for
different groups of partner points. Herein, backbone atoms
reveal a maximum in the 180° direction, that is, head-to-head to
the oxygen atom and in between the two electron lone pairs
(Figure 5b). The distribution of water molecules around
carbonyl oxygen atoms on the other hand exhibits an optimum
at 140−150°, which is in better agreement with the assumed
electron lone pair directions at about 120° (Figure 5a). This
difference in distribution might be due to the spatial restrictions
of the partner points, that is, if water molecules have more
space around the carbonyl functional group, they rather
assemble in ideal interaction directions, whereas backbone
atoms are more restricted in their position due to the overall
protein structure (Figure 5b,e).
In a next step, the substructure was extended to a “planar

carbonyl” using the SMARTS pattern “OCC”. Accordingly,
the 3D template molecule was defined using the same
expression. This way, a plane was defined and the partner
point distribution with respect to in- and out-of-plane direction
could be analyzed in greater detail. In total, about 2.6 × 107

partner points were detected for this substructure. This number
is slightly higher than that for OC because in the initial
process of adding substructures to the database partner points
are included when they are within 4.5 Å of any atom of the
functional group.
Partner atoms from protein side chains and ligands have their

preferred positions in approximate agreement with the lone pair
directions. The in-plane angles show a plateau between 120 and
160°, while the out-of-plane angle has a clear maximum at 0°
(Figure 6a,b). Noteworthy is the second peak at 40° in the out-
of-plane distribution for ligands (Figure 6b,c). The underlying
structures reveal both hydrogen bond interactions (Figure 6d)
as well as close contacts due to metal coordination (Figure 6e).

In accordance with the observation above, backbone atoms
have their main peak for the in-plane angle between 160 and
180° (Figure 6a). Water molecules have their in-plane angle
peak at 150° (Figure 6a). Closer examination reveals that most
of those water molecules are integrated in an extended
hydrogen bond network and form multiple hydrogen bonds
(>two hydrogen bonds, Figure 6f−h). Therefore, they might be
more restricted and form nonideal interactions trying to fulfill
as many hydrogen bonds as possible.
The example of the carbonyl with and without plane

definition shows the potential of NAOMInova to geometrically
analyze large amounts of data in great detail. The back-link
function helps understand deviations from the expected, ideal
distributions. Moreover, our example demonstrates the
necessity of an interactive tool with back-link functionality.
Protein structures as available today have a strong geometric
bias. On the one hand, specific functional groups are highly
overrepresented. On the other hand and even more important,
functional groups appear in highly overrepresented structural
motifs and protein folds. The back-link functionality is
therefore indispensable for detecting artificial histogram
peaks. A detailed analysis of hydrogen bond geometries for a
large collection of functional groups has recently been
performed with NAOMInova.19 One major aspect, which can
also be observed in the shown carbonyl example, is the great
deviation in out-of-plane direction. Bissantz et al.29 specified the
out-of-plane angle between the donor−hydrogen···acceptor as
less than 30°. Because hydrogen atoms are not resolved in most
crystal structures, we prefer to measure the out-of-plane angle
between the donor, oxygen, and carbonyl carbon. Here, we
found that the majority of donor···acceptor−carbon angles,
which are hydrogen-atom-independent, are within 25°, with
variations up to 80°. Similarly to the majority of our detected
angles, Ippolito et al.30 derived an out-of-place angle of 20−30°.

Carbonic Anhydrase Ensemble−Ligand Extension. CA
catalyzes the reversible hydration of carbon dioxide to

Figure 5. Distribution of partner points around carbonyl functional groups in the PDB-bind. Filter criteria: ligand as the central structure location,
distance to any atom 2.6−3.5 Å, only polar partner points (oxygen, nitrogen, sulfur); the substructure and corresponding partner point are
highlighted in light blue.
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bicarbonate.32,33 Different CAs with different physiological
roles are present in humans. Mis-regulations can cause diseases
like glaucoma and cancer.
In order to answer the question How could a f ragment binding

to CA be extended?, we analyzed an ensemble of CA binding
pockets and searched for amino acids frequently interacting
with parts of known ligands. The ensemble data set of CA
structures was taken from the NHSE set.34 Briefly, it was
generated using ASCONA35 for structural alignment and
SIENA34 for binding site ensemble generation using 100%
site identity and a resolution cutoff of 2.5 Å. Three common
amino acids were identified that often directly interact with the
ligandtwo threonine side chains buried in the pocket and one
glutamine side chain at the rim of the binding pocket (Thr199,
Thr200, and Gln92 based on PDBid: 1zsb31). For each of these
amino acids, a SMARTS pattern describing the interacting
atoms (hydroxyl group or amide group) in the substructure
part and the two neighboring amino acids in the molecular
context was designed. For example, using the CC[OH] for
mapping of the threonine residues leads to unambiguous
mapping of the interacting oxygen atom. To distinguish
between Thr199 and Thr200, the remaining amino acid and

the neighboring ones (one left, one right) were defined as the
molecular context using recursive SMARTS. This way, for each
amino acid of interest, a tripeptide was defined that led to
unambiguous matching in CA. Because the respective
sequences of amino acids are unique in the set of CAs, only
the targeted amino acids are hit during the substructure search.
The exact SMARTS and SMILES patterns used to define the
substructure and the 3D template molecules are given in Table
2.
Threonine 199 is conformationally restrained in the binding

pocket (Figure 7a). Distinct patches for surrounding side
chainshistidines (that coordinate the zinc) and asparagine
as well as a conserved water molecule can be observed (Figure
7g,j). Interestingly, threonine 199 has no backbone interactions
at all within a 3.5 Å distance (Figure 7d). Almost always it
interacts with a sulfonamide functional group of ligands, with
little variations in its position (Figure 7m). Threonine 200 on
the other hand has backbone atoms as surrounding partners but
no side-chain atoms within a 3.5 Å distance (Figure 7e,h).
Three tetrahedrally arranged patches of water molecules can be
observed (Figure 7k), which are partially displaced by ligand
atoms (Figure 7n). Glutamine 92 has distinct patches for the

Figure 6. In- and out-of-plane angle distributions around carbonyl functional groups. Filter criteria: ligand as the central structure location, distance
to carbonyl oxygen 2.6−3.5 Å, only polar partner points (oxygen, nitrogen, sulfur); the substructure and corresponding partner point are highlighted
in light blue. 3D coordinates of hydrogen atoms were calculated with Protoss.14
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surrounding backbone as well as side-chain atoms (Figure 7f,i).
Herein, the oxygen atom of the primary amide always interacts
with a histidine side chain. The nitrogen atom of the primary
amide on the other hand interacts with water molecules (Figure
7l), which can be displaced by ligand atoms (Figure 7o).
In the uninhibited structure of CA, two water molecules

coordinate the zinc in addition to the histidine side chains
(Figure 8a). Those two water molecules are displaced by the
sulfonamide group of the ligands (Figure 8b), which then
coordinates the zinc and blocks the enzymatic function of CA.
We used NAOMInova to analyze the functional groups that

were used to displace the water molecules around the nitrogen
of the primary amide of glutamine 92. Therefore, we
superimposed the distribution of water and ligand atoms
surrounding this glutamine into the CA pocket (Figure 8b).
Using the back-link functionality, the respective structures that
reach to the glutamine side chain were easily accessible (for
example ligands, see Figure 8c−f). One of those structures
revealed a dual-tail ligand, where a triazole group displaces the
water molecule and a nitrogen acceptor of the triazole group

interacts with the glutamine side chain (Figure 8f). Overall,
different polar extensions have been used to displace the water
molecule and interact directly with the glutamine side chain.
Here, NAOMInova allows comprehensive analysis of the

data, facilitates easy access to the corresponding structures, and
gives ideas for potential extensions of the ligand in a drug
development process. In principle, similar analyses could be
done by simply superimposing structures of the same protein
followed by visually inspecting the interactions with a ligand.
However, with more than 100 structures, such a visual analysis
can be difficult. In this respect, NAOMInova provides the
perfect means for spatial analyses of larger data collections.

■ CONCLUSIONS

In this publication, we presented a method for the interactive
geometric analysis of preferred interaction directions of user-
defined substructures in protein complexes. We integrated the
method into a software tool named NAOMInova. The great
strength of our method is its flexibility concerning the used data
sets, the analyzed substructures, and the filtering properties.

Figure 7. Distribution of partner points around three different amino acid side chains for CA. Amino acid numbers correspond to PDBid 1zsb; the
CA database was filtered for atoms at 2.6−3.5 Å distance; pps = partner points.
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First, the set of analyzed PDB structures can be freely chosen.
Even large data sets of up to 60 000 complexes can be handled.
Second, the substructures can be defined using the powerful
SMARTS language. Even though NAOMInova was mainly
developed with the purpose to analyze strong hydrogen bonds,
also weak hydrogen bonds, that is, C−H···O/N, can be
analyzed by defining a respective substructure containing the
C−H of interest. Still, one remaining limitation is the analysis
of interactions between carbons, such as π−π interactions,
beause carbon atoms are not stored as partner atoms. The pure
number of carbons would cause extensive growth of the
database, requiring substantial improvements of software and
the used hardware. These enhancements are the subject of
further development. Third, NAOMInova has various filter
options on atomic attributes, which can be used to tailor the
distribution of partner points to specific needs. Herein, not only
protein−ligand interactions can be analyzed in detail.
NAOMInova can also be used to analyze intraprotein
interactions as well as protein−protein interactions. Another
strength of NAOMInova is its ability to assess the quality of the
analyzed data, which allows one to increase the reliability of
derived hypotheses. Here, EDIA values can be used to analyze
only atoms well represented in the underlying experimental
electron density. Moreover, structural anomalies can be easily
traced back from every data point to its originating protein
structure using the back-link functionality.
All calculated data are stored in one SQLite database, which

does not require any server infrastructure and can be used on a
standard desktop PC. Once calculated, the speed of the data
retrieval system allows for interactive analysis of the data.
We presented two possible application scenarios showing

how NAOMInova can be used to analyze the spatial
distribution of interaction partners around a functional group
and how ideas can be deduced in order to chemically extend a
fragment based on other ligands in the same binding site. Even

more types of analyses are possible with NAOMInova,
including the distribution of spatial interactions in protein−
protein interfaces or the analysis of interactions over time in
MD simulations.
Overall, our method integrated in NAOMInova enables

structure-based data mining in the ever-growing Protein Data
Bank. This way, knowledge about structural features is provided
almost instantaneously with many applications in molecular
design.
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processor, 16 GB of main memory, and a Samsung 950 pro
PCIe solid-state drive (512 GB, model nvme) with a btrfs file
system and a standard configuration of a Linux openSUSE 13.1
distribution. NAOMInova is part of the NAOMI ChemBio
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zbh.uni-hamburg.de/naominova, free for academic use and
evaluation purposes. All feedback is greatly appreciated and
supports the further development of NAOMInova. Structural
preprocessing functionality including Protoss and EDIA are
also available as a web service at http://proteins.plus.

■ ACKNOWLEDGMENTS

The author thank Gudrun Lange and Robert Klein from Bayer
CropScience for fruitful discussions during the analysis of
interaction geometries.

■ REFERENCES
(1) Panigrahi, S. K.; Desiraju, G. R. Proteins: Struct., Funct., Genet.
2007, 67, 128−141.
(2) Zimmermann, M. O.; Lange, A.; Zahn, S.; Exner, T. E.; Boeckler,
F. M. J. Chem. Inf. Model. 2016, 56, 1373−1383. PMID: 27380316.
(3) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.
N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data
Bank. Nucleic Acids Research 2000, 28, 235−242.
(4) Bruno, I. J.; Cole, J. C.; Lommerse, J. P.; Rowland, R. S.; Taylor,
R.; Verdonk, M. L. J. Comput.-Aided Mol. Des. 1997, 11, 525−537.
(5) Allen, F. H. Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58, 380−
388.
(6) IsoStar User Guide and Tutorials, Cambridge Crystallographic
Data Centre, 2017 CSD Release. http://isostar.ccdc.cam.ac.uk/docs/
isostar/isostar.html (accessed March 2017).
(7) Verdonk, M. L.; Cole, J. C.; Watson, P.; Gillet, V.; Willett, P. J.
Mol. Biol. 2001, 307, 841−859.
(8) Nittinger, E.; Schneider, N.; Lange, G.; Rarey, M. J. Chem. Inf.
Model. 2015, 55, 771−83.
(9) Meyder, A.; Nittinger, E.; Lange, G.; Klein, R.; Rarey, M. 2017,
unpublished results.
(10) Urbaczek, S.; Kolodzik, A.; Groth, I.; Heuser, S.; Rarey, M. J.
Chem. Inf. Model. 2013, 53, 76−87. PMID: 23176552.
(11) Schomburg, K. T.; Bietz, S.; Briem, H.; Henzler, A. M.;
Urbaczek, S.; Rarey, M. J. Chem. Inf. Model. 2014, 54, 1676−1686.
PMID: 24851945.
(12) Hilbig, M.; Rarey, M. J. Chem. Inf. Model. 2015, 55, 2071−2078.
PMID: 26389652.
(13) Inhester, T.; Bietz, S.; Hilbig, M.; Schmidt, R.; Rarey, M. J.
Chem. Inf. Model. 2017, 57, 148−158. PMID: 28128948.
(14) Bietz, S.; Urbaczek, S.; Schulz, B.; Rarey, M. J. Cheminf. 2014, 6,
12.
(15) Daylight SMARTS examples, Daylight Chemical Information
Systems, Inc.. http://www.daylight.com/dayhtml_tutorials/languages/
smarts/smarts_examples.html (accessed March 2017).
(16) Weininger, D. J. Chem. Inf. Model. 1988, 28, 31−36.
(17) Sommer, K.; Friedrich, N.-O.; Bietz, S.; Hilbig, M.; Inhester, T.;
Rarey, M. J. Chem. Inf. Model. 2016, 56, 1105−1111. PMID:
27227368.
(18) Ehrlich, H.-C.; Rarey, M. J. Cheminf. 2012, 4, 13.
(19) Nittinger, E.; Inhester, T.; Bietz, S.; Meyder, A.; Schomburg, K.
T.; Lange, G.; Klein, R.; Rarey, M. J. Med. Chem. 2017, 60, 4245−
4257. PMID: 28497966.
(20) Schomburg, K.; Ehrlich, H.-C.; Stierand, K.; Rarey, M. J. Chem.
Inf. Model. 2010, 50, 1529−1535. PMID: 20795706.
(21) Liu, Z.; Li, Y.; Han, L.; Li, J.; Liu, J.; Zhao, Z.; Nie, W.; Liu, Y.;
Wang, R. Bioinformatics 2015, 31, 405−12.
(22) Reddy, G. S. K. K.; Ali, A.; Nalam, M. N. L.; Anjum, S. G.; Cao,
H.; Nathans, R. S.; Schiffer, C. A.; Rana, T. M. J. Med. Chem. 2007, 50,
4316−4328. PMID: 17696512.

(23) Medina, J. R.; Blackledge, C. W.; Heerding, D. A.; Campobasso,
N.; Ward, P.; Briand, J.; Wright, L.; Axten, J. M. ACS Med. Chem. Lett.
2010, 1, 439−442.
(24) Gut, H.; Xu, G.; Taylor, G. L.; Walsh, M. A. J. Mol. Biol. 2011,
409, 496−503.
(25) Cheng, W.; Li, Q.; Jiang, Y.-L.; Zhou, C.-Z.; Chen, Y. PLoS One
2013, 8, e71451.
(26) Song, H.; Sung, H. P.; Tse, Y. S.; Jiang, M.; Guo, Z. Acta
Crystallogr., Sect. D: Biol. Crystallogr. 2014, 70, 2959−2969.
(27) Nemecz, k.; Taylor, P. J. Biol. Chem. 2011, 286, 42555−42565.
(28) Ferguson, A.; Larsen, N.; Howard, T.; Pollard, H.; Green, I.;
Grande, C.; Cheung, T.; Garcia-Arenas, R.; Cowen, S.; Wu, J.; Godin,
R.; Chen, H.; Keen, N. Structure 2011, 19, 1262−1273.
(29) Bissantz, C.; Kuhn, B.; Stahl, M. J. Med. Chem. 2010, 53, 5061−
5084.
(30) Ippolito, J. A.; Alexander, R. S.; Christianson, D. W. J. Mol. Biol.
1990, 215, 457−471.
(31) Huang, C.-c.; Lesburg, C. A.; Kiefer, L. L.; Fierke, C. A.;
Christianson, D. W. Biochemistry 1996, 35, 3439−3446. PMID:
8639494.
(32) Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.;
Gudiksen, K. L.; Weibel, D. B.; Whitesides, G. M. Chem. Rev. 2008,
108, 946−1051. PMID: 18335973.
(33) Pinard, M. A.; Mahon, B.; McKenna, R. Probing the Surface of
Human Carbonic Anhydrase for Clues towards the Design of Isoform
Specific Inhibitors. BioMed Res. Int. 2015, 2015, 1.
(34) Bietz, S.; Rarey, M. J. Chem. Inf. Model. 2016, 56, 248−259.
(35) Bietz, S.; Rarey, M. J. Chem. Inf. Model. 2015, 55, 1747−1756.
(36) Håkansson, K.; Wehnert, A.; Liljas, A. Acta Crystallogr., Sect. D:
Biol. Crystallogr. 1994, 50, 93−100.
(37) Genis, C.; Sippel, K. H.; Case, N.; Cao, W.; Avvaru, B. S.;
Tartaglia, L. J.; Govindasamy, L.; Tu, C.; Agbandje-McKenna, M.;
Silverman, D. N.; Rosser, C. J.; McKenna, R. Biochemistry 2009, 48,
1322−1331. PMID: 19170619.
(38) Moeker, J.; Mahon, B. P.; Bornaghi, L. F.; Vullo, D.; Supuran, C.
T.; McKenna, R.; Poulsen, S.-A. J. Med. Chem. 2014, 57, 8635−8645.
PMID: 25254302.
(39) Tanpure, R. P.; Ren, B.; Peat, T. S.; Bornaghi, L. F.; Vullo, D.;
Supuran, C. T.; Poulsen, S.-A. J. Med. Chem. 2015, 58, 1494−1501.
PMID: 25581127.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.7b00291
J. Chem. Inf. Model. 2017, 57, 2132−2142

2142



D.1. Published Articles

Large-Scale Analysis of Hydrogen Bond Interaction Patterns in Protein-

Ligand Interfaces.

[D5] Nittinger, E.; Inhester, T.; Bietz, S.; Meyder, A.; Schomburg, K.; Lange, G.; Klein, R.; Rarey, M.
Large-Scale Analysis of Hydrogen Bond Interaction Patterns in Protein-Ligand Interfaces. J.
Med. Chem. 2017, 60 (10): 4245-4257.

http://pubs.acs.org/articlesonrequest/AOR-K746IyzEeHqWswwz7eCC

Reproduced with permission from
Nittinger, E.; Inhester, T.; Bietz, S.; Meyder, A.; Schomburg, K.; Lange, G.; Klein, R.; Rarey, M. Large-
Scale Analysis of Hydrogen Bond Interaction Patterns in Protein-Ligand Interfaces. J. Med. Chem.
2017, 60 (10): 4245-4257..
Copyright 2017 American Chemical Society.

207

http://pubs.acs.org/articlesonrequest/AOR-K746IyzEeHqWswwz7eCC


Large-Scale Analysis of Hydrogen Bond Interaction Patterns in
Protein−Ligand Interfaces
Eva Nittinger,†,∥ Therese Inhester,†,∥ Stefan Bietz,† Agnes Meyder,† Karen T. Schomburg,†,§

Gudrun Lange,‡ Robert Klein,‡ and Matthias Rarey*,†
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ABSTRACT: Protein−ligand interactions are the fundamental
basis for molecular design in pharmaceutical research, biocatalysis,
and agrochemical development. Especially hydrogen bonds are
known to have special geometric requirements and therefore
deserve a detailed analysis. In modeling approaches a more
general description of hydrogen bond geometries, using distance
and directionality, is applied. A first study of their geometries was
performed based on 15 protein structures in 1982. Currently
there are about 95 000 protein−ligand structures available in the
PDB, providing a solid foundation for a new large-scale statistical
analysis. Here, we report a comprehensive investigation of geometric and functional properties of hydrogen bonds. Out of 22
defined functional groups, eight are fully in accordance with theoretical predictions while 14 show variations from expected
values. On the basis of these results, we derived interaction geometries to improve current computational models. It is expected
that these observations will be useful in designing new chemical structures for biological applications.

■ INTRODUCTION

Hydrogen bonds (H-bonds) are fundamental interactions in
protein−ligand complexes and are the main reason for
protein−ligand selectivity. A thorough understanding of H-
bond geometries is mandatory in medicinal chemistry for
structure-based design approaches. Many modeling applications
related to protein−ligand complexes, ranging from docking and
scoring to detailed analysis of binding events and catalytic
function, are based on H-bonds. Therefore, computational tools
relying on interactions and theoretical considerations need an
accurate geometric representation of H-bond interactions in
order to retrieve relevant results for drug and pesticide
development.
The conceptual model of an H-bond was first developed in

the 1920s. Since then, intensive research has been conducted,
ranging from structural studies on α-helices1 and β-sheets2 in
proteins to the determination of H-bond geometries3−21 and to
studies exploring intramolecular hydrogen bonding in ligand
design.22,23

Theoretical models for H-bond geometries have been
derived from molecular structure theories. The valence shell
electron pair repulsion (VSEPR)24,25 model is one of the best
accepted models, and all our results described herein were
compared to this model. The VSEPR model assumes that the
valence electron pairs surrounding an atom will repel each
other and adopt a geometrical arrangement that minimizes this
repulsion.
Two main questions are addressed in the present study. First,

what are the preferred H-bond geometries that are observed in

protein−ligand structures? Second, are the preferred geo-
metries derived from experimental structures in accordance
with the theoretical predictions based upon the VSEPR model?
Frequency distributions of H-bond distances and angles have

been calculated from various data sets of experimental
structures: small molecule crystal structure data from the
Cambridge Structural Database (CSD),26 neutron diffraction
data, which include the hydrogen atom positions,8 or protein
data from the PDB.27 They focused on the analysis of H-bonds
formed by backbone amides,3,9,19 distinguishing backbone from
side chain H-bonds,16,18 the description of oxygen H-
bonds4,5,7,11 or on other functional groups8,10,12,15 (see Table
1). Since the last study using data from the PDB,21 the amount
of data in the PDB has increased dramatically and enables a
substantiated new analysis.
Since protein−ligand complexes and their interactions are

our main focus, we used the large number of high-resolution
protein structures currently available in the PDB. We defined
22 typical H-bond acceptor and donor functions for the
generation of comprehensive geometric interaction distribu-
tions. Since the hydrogen position is rarely available from the
X-ray crystallography experiment, we have not taken the
hydrogen position into account for the determination of
interacting angles.
The selected 22 functional groups were analyzed with respect

to their distance from surrounding polar atoms, i.e., oxygen or
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nitrogen atoms.28 Furthermore, the angular distribution of
polar atoms surrounding the functional groups has been
analyzed extensively. Both consistencies and differences to the
VSEPR model were observed. In this paper, we discuss the
retrieved H-bond angles in protein−ligand complexes,
including a detailed analysis of single cases diverging from
the interaction geometries predicted by the VSEPR model. Our
studies identified new geometric features important for the
formation of H-bonds between protein and ligand. These and
the special case analyses have enabled us to construct an
improved computational model for hydrogen bonding
interactions, which is expected to be of value to medicinal
chemists.

■ MATERIALS AND METHODS
We extracted two different data sets, one from high and one
from medium resolution structures within the PDB. The

analysis focused on functional groups relevant to protein
structures and was extended to functional groups often
occurring in ligands.

Data Sets. Data quality obviously plays a crucial role in the
analysis of molecular interactions on the atomic level.
Additionally, the number of structures should be high in
order to retrieve statistically reliable results. We therefore
extracted protein−ligand structures from the PDB using the
following advanced search criteria: experimental method = X-
ray, molecule type = protein (exclusion of RNA and DNA),
chain length ≥ 50 amino acids, and ligand = true (search date,
April 27, 2016). HR set: a high-resolution protein−ligand set
with resolution of ≤1.5 Å, resulting in 8783 structures. MR set:
a medium-resolution protein−ligand subset with resolution of
≤2.5 Å, resulting in 65 266 structures.
The HR set forms the basis for the characterization of

functional groups frequently occurring in protein−ligand

Table 1. Overview of Previous Studies on H-Bond Geometriesa

year author data (source)
differentiation of
functional groups additional information and conclusions

1975 Kroon et al.4 45 (mols) N Analysis of 196 O−H···O H-bonds
Majority of H-bonds is not linear

1979 Vinogradov6 95 (PDB) Y Analysis of 439 H-bonds
Linear H-bonds X−H···Y > 150°

1981 Ceccarelli et al.7 24 (ND) Y Analysis of 100 O−H···O H-bonds
25% of H-bonds are bifurcated

1982 Jeffrey et al.8 32 (ND) Y Analysis of 168 H-bonds
Charged groups are more often bifurcated than uncharged ones

1984 Taylor et al.9 889 (CSD) Y Analysis of 1509 N−H···OC H-bonds
Short H-bonds are more linear

1984 Baker et al.10 15 (PDB) Y Differentiation of SC
Almost all donor functions are fulfilled

1984 Murray-Rust et al.11 NA (CCDF) Y H-bond geometries to oxygen
Majority of partners in electron lone pair direction

1990 Ippolito et al.12 50 (PDB) Y Differentiation of SC
Planar groups tend to form H-bonds 2−30° out of plane

1991 Preissner et al.13 13 (PDB) N Distinction of SS elements (α-helices, β-sheets)
25% of all H-bonds bifurcated (higher in SS)

1992 Sticke et al.14 42 (PDB) Y Derive conclusions for protein folding
H-bond angles coincide with atom hybridization
On average 1.1 H-bonds per residue

1996 Mills et al.15 48 000 (CSD) Y Differentiation of 39 FG
Shorter H-bonds have a higher directionality

2003 Kortemme et al.16 698 (PDB) N Derivation of H-bond potentials
BB, SC separation
Calculation of hydrogen atoms with CHARMM19

2004 Molcanov et al.17 230 (CSD) Y Analysis of 230 ester interactions
H-bond geometry depends on syn/anti arrangement

2004 Sarkhel et al.18 28 (PDB) N BB, SC separation
Bifurcated H-bonds are longer
Strong interactions in proteins show deviations from a linear geometry

2007 Podtelezhnikov et al.19 247 (PDB) N Machine learning approach to derive H-bond potentials
Analysis in interpeptide BB H-bonds
Optimization of H-bond geometry and strength

2007 Panigrahi et al.20 251 (PDB) N Analysis of NH···O, O−H···O, C−H···O H-bonds in PL complexes
Calculation of hydrogen atoms with MOE and MMFF94x

2008 Liu et al.21 4535 (PDB) Y Derivation of distance- and angle-dependent H-bond potentials by potential of
mean force approach

Placement of hydrogen atoms
aSpecification of data source: mols = small molecules, PDB = protein structures from the PDB, ND = neutron diffraction data, CSD = small
molecules from the CSD, CCDF = Cambridge structural data file; FG = functional group, SS = secondary structure, SC = side chain, BB = backbone,
PL = protein−ligand.
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structures. The MR set forms an additional data pool in case
the number of interaction partners for a functional group taking
the HR set alone was too low for statistical analysis (less than
350 data points for each hydrogen atom or electron lone pair).
Selection of Functional Groups. Table 2 summarizes all

functional groups considered in this analysis. Details about the

detection of functional groups in protein structures can be
found in the Supporting Information section S1. For each
functional group and its binding partner the structural unit to
which it belongs and which is either protein backbone (BB-
unit), protein side chain (SC-unit), or ligand (Lig-unit) was
kept for analysis. In this way, possible statistical bias due to
structural artifacts can be tracked and considered upon analysis.
In addition, the units to which the interacting partners belong
are listed, which is either ”Lig-unit” or “Any-unit”.
Structural Alignment of Functional Groups. In order to

enable a comparison of the H-bond geometries, all detected
functional groups were superimposed on a template structure
of the respective functional group. The alignment allows the
rejection of ambiguous geometries, the equal processing of
functional groups for further analysis, and an easy visualization.
The coordinates of the atoms within the templates have been
chosen using ideal geometries according to the VSEPR model
calculated within the NAOMI framework.29 All template

structures can be found in the Supporting Information section
S2.
As a first step, an atom-mapping to the corresponding

template was calculated. Since the exact location of delocalized
bonds and hydrogen positions cannot be reliably conducted
from most PDB files, atoms were considered as equal if their
element type and their number of connected heavy atoms were
identical. Hydrogen atoms were not used during this mapping
step. A more precise explanation of the mapping procedure for
functional groups can be found in the Supporting Information
section S3 and Figure S1.
An rmsd-optimal superposition was determined using the

Kabsch algorithm.30 If the best superposition had an rmsd ≤
0.2 Å, all nitrogen and oxygen atoms are selected that are closer
than 4.5 Å to any atom of the functional group and are at least
five bonds apart from any polar atom of the functional group.
The structural unit (ligand, side chain, or backbone) was stored
for each functional group in a SQLite database. Additionally,
information about the partner atoms was stored: element and
valence state in order to determine whether an atom might be
an acceptor or donor, functional group (if possible), residue
type (if possible), coordinate, structural unit (ligand, side chain,
backbone, or water), minimal distance to any atom of the
functional group, and covalent relation to the functional group,
i.e., intra- or intermolecular.
All angles calculated in the course of this study were derived

using the template coordinates of the functional groups and the
transformed coordinates of partner atoms stored in the
database.

Hydrogen Bond Angles. Atom pairs were analyzed in two
different ways. A single angle was measured relative to the
direction of the neighboring heavy atoms (see Figure 1). In the
special case of single-bonded sp2 hybridized oxygen atoms, in-
and out-of-plane angles were determined (see Figure 2).

Frequency Distributions. Frequency distributions of H-
bond distances and angles are represented by histograms.
Histograms were generated for each polar atom of a functional
group. Partner atoms are only considered if an H-bond could
be actually formed; i.e., the histogram for the hydroxyl donor is
generated only with potential acceptor partner positions and
the other way around. The decision as to whether an atom can

Table 2. Functional Groups Used for Evaluationa

functional group can be Don can be Acc unit
partner
unit

amide, primary y y Lig Any
SC Lig

amide, secondary (E or Z) y y Lig Any
BB Lig

amide, tertiary n y Lig Any
amine, primary y y Lig Any
amine, secondary y y Lig Any
nitrogen (sp2), primary y n Lig Any
nitrogen (sp2), secondary y n Lig Any
amine, tertiary n y Lig Any
carbonyl n y Lig Any
carboxyl n y Lig Any

SC Lig
ether n y Lig Any
ester n y Lig Any
guanidine y n Lig Any

y n SC Lig
hydroxyl y y Lig Any

SC Any
enole y y Lig Any

SC Lig
imidazole y y SC Lig
imine y y Lig Any
nitrile n y Lig Any
phosphate y y Lig Any
sulfate y y Lig Any
sulfonamide y y Lig Any
aThe H-bond donor and acceptor functionality can depend on the
protonation state of the functional group (can be Don, can be Acc);
unit = structural unit, the functional group belongs to: Partner unit =
structural unit, the interacting atoms surrounding the functional group
belong to Lig = ligand; SC = side chain; BB = backbone; Any = any
surrounding nitrogen or oxygen atom belonging to: ligand, side chain,
backbone, or water.

Figure 1. Measured angles for atom pairs depend on the number of
heavy atom bonds: A = polar atom; P = polar partner atom. Angle
between heavy atom and 0° direction: one heavy atom (HA) = 180°,
two HA = 120°, three HA = 109.5°.

Figure 2. In-plane (red) and out-of-plane (blue) measurement for sp2

hybridized oxygen atoms.
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be a donor or an acceptor is based on the NAOMI atom types,
an extension of the valence state.29,31 This way, aromaticity as
well as existing resonance forms can be described. Using these
atom types, one can derive the number of lone pairs as well as
the number of potential hydrogen atoms. For some functional
groups this can lead to ambiguities. For instance, the nitrogen
atoms of imidazoles can be either a donor or an acceptor
depending on the tautomeric form. In these cases, the center
group was treated once as donor and once as acceptor and both
histograms were analyzed.
The frequency distributions were determined by counting

the experimental structures with values falling into equidistant
intervals of H-bond distances or angles. In order to obtain a
measure for the relative probabilities that allow us to identify
the preferred distances and angles, we have to divide these
counts by the volume spanned by a particular interval. The
resulting quantity has the dimension count per volume, and we
therefore refer to it as density. The volume (Vi) of a distance
interval is calculated using formula 1, that of an angle interval
using formula 2.

π= − −V r r
4
3

( )i i i
3

1
3

(1)

π α α= | − |−V R
2
3

cos( ) cos( )i i i1 (2)

=D
V

counti
i

i
(3)

with [ri−1, ri] being the ith distance interval in Å, [αi−1, αi] the
ith angle interval in radian, and R being an arbitrary cutoff
distance. For the sake of comparability, counts and densities in
the histograms are given in percent.
Nomenclature. Throughout this section the following

nomenclature will be used (see Table 3):
Unit: the structural unit of the functional group.
Partner unit: the structural unit of potentially interacting

atoms surrounding the functional group.
Example: primary amide N-SC-unit to Lig-partner unit

describes a nitrogen atom of a primary amide functional group
derived from an amino acid side chain surrounded by nitrogen
or oxygen atoms from ligands.

■ RESULTS AND DISCUSSION
Occurrence of Functional Groups. A minimum of 95% of

interacting pairs could successfully be superimposed on the
template for each functional group (see Table S1). In order to
draw meaningful conclusions, at least 350 interacting partner

atoms for each donor or acceptor function of a functional group
had to be available for the analysis. If the HR set provided less
than 350 pairs, the MR set was included. This was mostly the
case for groups that occur in ligands only. If still less than 350
data points were available, the functional group was excluded
from further evaluation. Detailed results can be found in Table
S2.

Coverage of Hydrogen Bonds. The MR data set was
used to calculate the percentage of hydrogen bonds covered
using the 22 defined functional groups. Herein, every oxygen
and nitrogen atom with either an electron lone pair or an
attached hydrogen were classified as acceptor or donor,
respectively.29,31 Using our 22 defined functional groups, 99%
of all nitrogen and oxygen donors and acceptors were covered
(see Table 4). A separate analysis of nitrogen and oxygen atoms
reveals that oxygen atoms are well covered in protein and
ligand structures. However, nitrogen atoms show a lower
percentage, which is for both protein and ligand due to cyclic
nitrogen atoms, especially to those in aromatic rings. Ring
systems have a great influence on the hydrogen bond
functionality. Therefore, we deliberately chose histidine as a
representative for aromatic nitrogen atoms. The nitrogen atoms
of the histidine ring can be acceptor or donor and are abundant
in protein structures. The analysis of aromatic nitrogen atoms
in aromatic rings further supports the selection of histidine as a
representative. In both cases (five- and six-membered aromatic
rings) the interaction geometries agree very well with the
observed geometries from histidine (Figure S3, Figure 9, and
Figure 10).

Distance Distribution. The distances between a polar
atom of a structural unit and its partner atoms were analyzed to
define the cutoff distance between two polar atoms. Within this
distance we can assume that neighboring atom pairs are indeed
H-bonded. Outside this distance we can exclude pairs of atoms,
which are close neighbors without forming a hydrogen bond.
The maximum in the distributions of different polar partner

atoms around functional groups shows only small variations
between 2.7 and 3.0 Å (Figure 3a, for all distance histograms
see Figure S2). The distance distribution of carbon atoms was
used to define a cutoff for the maximal H-bond distance
considered here (see Figure 3b). The number of carbon atoms
increases with distances greater than 3.0 Å. In order to exclude
potentially non-hydrogen bonding atoms, we restricted there-
fore the atom−atom distance for the analysis of angular
distributions between 2.6 and 2.9 Å.

Angle Distribution. Quantum mechanical calculations
have shown that hydrogen-bond energies show a strong
directionality.32 Therefore, the analysis of angular distributions
is of special interest. Out of the 22 functional groups, eight are
fully in accordance with the theoretical considerations from the
VSEPR model, i.e., hydroxyl, imidazole, guanidinium, and all
amines (see Figure 4 for an example). Overall, donor directions
agree better with the VSEPR model than acceptor directions.
This section, however, will focus on those functional groups
deviating from previous studies or theoretical considerations.
Detailed information for all functional groups can be found in
the Supporting Information.

Angle Distributions at sp2 Oxygen Atoms. According to the
VSEPR model, the expected electron lone pair directions of sp2

oxygen atoms should exhibit an in-plane angle of about 60° and
out-of-plane angles of 0° to accommodate the trigonal planar
geometry (see Figure 5).

Table 3. Nomenclature for the Results Sectiona

functional group surrounding

atom structural unit partner unit

-Lig
O Lig

-SC -unit -partner unit
N Any

-BB

aAtom specification is used if the functional group contains oxygen
and nitrogen atoms. Lig = ligand, SC = side chain, BB = backbone,
Any = any surrounding nitrogen or oxygen atom belonging to ligand,
side chain, backbone, or water.
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The VSEPR geometry is best matched by the carboxyl group,
which showed a mean in-plane angle of about 55°. The out-of-
plane angle shows deviations of up to 25° (see Figure 5b and
Figure 5c). All other angle distributions of sp2 hybridized
oxygens show greater variations from the ideal lone pair
directions.

The angular distributions of some functional groups have
well-defined maxima, e.g., secondary amides from the ligand
unit (see Figure 5g and Figure S4), while the maxima in the
distribution around esters (see Figure 5d) and tertiary amides
(see Figure 5i) are rather diffuse. This is partly due to the
number of interaction points available for the analysis.
Noticeable are the similar angle distributions of ketones and
primary amides (see Figure 5a,e,f). These functionalities deviate
on average by 10−15° in their in-plane angle from the
geometry expected by the VSEPR model. In addition, the
angles of the sp2 oxygens in secondary and tertiary amides and
esters also group together (see Figure 5d,g−i). These three
functional groups deviate significantly from the ideal in-plane
lone pair direction with a maximum in the angular distribution
between 30° and 35°. Additionally, they have a significant
number of partner atoms located between the two electron lone
pairs, i.e., at an in-plane angle close to 0°. A potential
explanation for the deviations might be bifurcated hydrogen
bonds. However, since hydrogen atoms are mostly unavailable
in protein crystal structures, no definite answer can be given.
Furthermore, the double bond “pushes” the electron lone pairs
slightly together,33 which might be a reason for the maximum at
55° for the carboxylate. This effect might cause slight
differences from the ideal interaction direction but will certainly
not lead to deviations up to 30°. High resolution structures
with outliers have been examined, and example structures can
be found in Figure S5.
Another observation is a greater deviation of the out-of-plane

angle compared to the in-plane angle for all analyzed groups.
Due to symmetry, the out-of-plane would need to be mirrored
on the x-axis of Figure 5 to display its whole range (see Figure
6). Previous studies7,12 observed that more partner points are

Table 4. Percentage of H-Bonds Covered with the 22 Functional Groups Used in This Study Based on the MR Data Set with
overall 101 522 836 Atoms with Donor or Acceptor Functiona

H-bond location (acyclic) location (cyclic)

atom type protein ligand total protein ligand total

N Acc 9.5 (10.7) 2.1 (5.7) 5.2 (7.8) 32.4 (89.3) 5.6 (94.3) 16.8 (92.2)
Don 91.6 (91.7) 40.6 (48.7) 91.5 (91.5) 7.1 (8.3) 11.3 (51.3) 7.2 (8.5)

O Acc 99.9 (99.9) 92.2 (95.1) 99.7 (99.8) 0.1 (0.1) 4.7 (4.9) 0.2 (0.2)
Don 98.9 (98.9) 88.9 (90.2) 98.0 (98.2) 1.1 (1.1) 9.7 (9.8) 1.8 (1.8)

total Acc 99.7 (99.7) 83.4 (86.4) 99.4 (99.4) 0.2 (0.3) 4.8 (13.6) 0.3 (0.6)
Don 92.4 (92.4) 76.7 (79.7) 92.2 (92.2) 6.5 (7.6) 10.1 (20.3) 6.5 (7.8)
All 96.0 (96.1) 80.9 (83.9) 95.8 (95.8) 3.4 (3.9) 6.8 (16.1) 3.4 (4.2)

aNumbers indicate the percentage of the interacting atoms that are covered by the used 22 functional groups. Numbers in parentheses give the
percentage from the total number of interacting atoms (101 522 836) in each category.

Figure 3. Distance histogram of (a) a primary amide Lig-unit to a Any-
partner unit and (b) a carbonyl Lig-unit to Any-partner unit. Green
dashed line indicates upper cutoff value for atom−atom distances.

Figure 4. Histograms of tertiary amine functional groups: (a) of the nitrogen donor; (b) of the nitrogen acceptor.
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found in-plane of the lone pairs. Another study of the energetic
dependency of the H-bond geometry, based upon a model
system using formamide/formaldehyde, showed larger energy
differences for out-of-plane deviations than for in-plane
deviations.34 Our analysis, however, suggests that exactly the
contrary is the case, namely, that there are only small energetic
differences for out-of-plane angles that broaden the distribution
of out-of-plane angles, than for in-plane angles, that results in a
narrower angle distribution.
Notable is also the primary amide distribution, O-Lig-unit to

Any-partner unit, which shows a “side arm” of partner atoms
with a high out-of-plane angle (40−60°) and an in-plane angle
of 0−25° (see Figure 5e and Figure S6). Further analysis of the
partners responsible for the “side arm” shows that the majority
of these amides have an aromatic ring directly bound to the
primary amide and most of the ligands in this group are
nicotinamide adenine dinucleotide phosphate (NAD) deriva-
tives (for an example, see Figure 7). The direct connection of
the primary amide to the aromatic ring may cause a
delocalization leading to a different tautomeric state of the
primary amide group, which then consists of a hydroxyl group

and a sp2 iminyl nitrogen. In this case one would expect a
tetrahedral arrangement of partner atoms around the oxygen
instead of trigonal planar geometry. The example from Figure 7
additionally contains a water molecule that forms an H-bond
with the NAD with an out-of-plane angle significantly deviating
from the ideal value. Even though the distance to the amide

Figure 5. Heat map of potentially interacting partner atoms for functional groups with sp2 oxygen. For each detected partner atom, the distribution
of in-plane (x-axis) and out-of-plane (y-axis) angles are shown. White dashed line indicates ideal geometry according to VSEPR model. Color scheme
shows percentage of partner atoms.

Figure 6. In-plane and out-of-plane angle distribution of carboxylate
side chains. Image was generated by applying symmetry operations:
green x = ideal interaction direction according to VSEPR model.

Figure 7. Example for special case of primary amide angle distribution,
O-Lig-unit to Any-partner unit; atom pair between nicotinamide
adenine dinucleotide phosphate and backbone nitrogen of serine 207-
B: (a) overview, (b) side view of interaction pattern, (c) top view of
interaction pattern with distinct out-of-plane deviation (PDB code
4cm3, resolution 1.95 Å; molecular graphics were created using UCSF
Chimera35).
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with 3.15 Å is rather large, suggesting a weak hydrogen bond, it
further supports a potential tetrahedral geometry for the
primary amide oxygen atom.
Angle Distribution at Hydroxyl Groups. Hydroxyl groups

attached to a sp3 hybridized carbon need to be differentiated
from enols attached to an sp2 carbon. According to the VSEPR
model for sp3 hybridized oxygen, a tetrahedral geometry would
exhibit angles of about 70.5°, which correlates well with our
statistical analysis (see Figure S7). According to the VSEPR
model, enols should ideally have a trigonal planar geometry,
which results in a 60° maximum in the angle histogram.
However, our data show that enols that are either part of
ligands or are side chains (tyrosine) have a slightly shifted
maximum between 65° and 70° in the angular distribution (see
Figure S7). This angle is more similar to a tetrahedral
coordination. However, the point distributions around enol
groups of side chains suggest two main interaction directions in
plane with the aromatic ring (see Figure 8c,d), which resembles

a sp2 hybridization. The distribution around enols in ligand
units on the other hand is less clear (see Figure 8a), but the
main proportion of partner points is also located in plane with
the aromatic ring (see Figure 8b, see higher (red) density
areas). The more diverse distribution around enols in ligand
units might be due to further substituents of the aromatic ring.
Those have not been respected in this study but can lead to a
difference in the polarity of the aromatic ring and lead to a
tetrahedral geometry.
Deeper analysis revealed that tyrosine side chains show

higher deviations of up to 30° from the plane of the aromatic
ring than enol groups in ligands (see Figure 8). These findings
are similar to a previous study of intermolecular H-bonds of
phenols.36 In their study, the angle between the H-bond donor
functionality and its H-bond partner deviates from the plane of
the aromatic ring by up to 40° with even higher deviations for
the acceptor depending on additional substitution of the
aromatic ring.

Angle Distribution at Imidazole Nitrogen Atoms. The
imidazole ring of histidine side chains can function as H-bond
acceptor as well as donor depending on its tautomeric state. As
expected from the VSEPR model, donor and acceptor density
distributions have their main peak at 0° (see Figure 9). The

donor distribution has a second peak around 50° in the case of
the ε-nitrogen but not in case of the δ-nitrogen (see Figure 9b
and Figure 10a,b). A further analysis revealed that these
histidine side chains mostly coordinate metal ions (see Figure
10c,d). Additional atoms that coordinate the metal ion as well
are also in close distance to the imidazole nitrogen, thus giving
rise to the 50° peak. Therefore, this peak does not represent H-
bond interactions and will be excluded from further conclusions
drawn for H-bond geometries.

Angle Distribution at Amide Nitrogen Atoms. The nitrogen
atom of the amide functional group has a trigonal planar
geometry. Due to the geometry definition according to the
VESPR model, primary amides should have a distribution
maximum in the frequency distribution at 60°, secondary
amides at 0°. The nitrogen atom of tertiary amides cannot form
any H-bonds.
The angle distributions in H-bonds between primary amides

in protein side chains (N-SC-unit) and ligands (Lig-partner
unit) and between secondary amides in ligands (N-Lig-unit) to
any atoms (Any-partner unit) are in accordance with the
VSEPR model (see Figure S8). However, the distribution
derived for the interaction of primary amides in ligands with
any atoms (N-Lig-unit to Any-partner unit) shows a deviation
of 10° from the predicted ideal direction (see Figure 11a). A
closer examination reveals that this shift is due to intra-
molecular interactions. They account for 17% of all partners of
these primary amides and show a predominant preference for
the anti-directed hydrogen of the nitrogen atom (see Figure
S9).
Deviations from the predicted direction can also be observed

for H-bonds between the secondary amides in the protein
backbone (N-BB-unit) to ligands (Lig-partner unit, see Figure
11b). In the count and the density distribution, the peaks are

Figure 8. Partner atom (a) and density (b) distribution around enole
groups Lig-unit to Any-partner unit: red = 50%, green = 25%, blue =
10% of maximum density value. (c, d) Partner atom distribution
around enol groups SC-unit (=Tyr) to Lig-partner unit. Light blue
atoms = linker.

Figure 9. Imidazole (=His) partner angle histogram: (∗) histogram
corresponds to the indicated nitrogen; green dashed line indicates
ideal geometry according to VSEPR model.
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shifted by 15−20° from the expected peak at 0°. This
observation is less prominent in the angle distribution of H-
bonds between amides in ligands (N-Lig-unit) and any partner
(Any-partner unit). Therefore, this observed shift might be due
to spatial constraints from secondary structure elements as well
as the orientation of close amino acid side chains (see Figure
S10).
Angle Distribution at Guanidine Groups. The nitrogen

atoms of the guanidine group can be further differentiated into

sp2 hybridized nitrogen atoms. Each sp2 hybridized nitrogen
would ideally have a trigonal planar geometry with bond angles
of 120°. According to the VSEPR model, the maximum is
expected at 60° and is indeed located between 60 and 65° (see
Figure 12). A slight shift of density toward greater angles can be

observed. The proximity of neighboring nitrogen atoms within
the guanidine gives rise to this slight shift toward greater angles
(see Figure 13). Similar observations were made in previous
studies on H-bond geometries of protein side chains.12

Angle Distribution at Ether Groups. The peak of the ether
partner distribution would be expected to be around 55°
assuming an ideal tetrahedral geometry. However, for the ether
functional group the density distribution of partner points
results in a continuous density with no separation of the two
electron lone pairs (see Figure 14). Previous studies based on
small molecule data found similar distributions.11,15 However,
no obvious reasons for this large difference to the expected lone
pair directions could be found.

Angle Distribution at Amine and sp2 Hybridized Nitrogen
Groups. Depending on the hybridization state of the covalently
bound atom, nitrogen atoms are expected to have a trigonal
planar or tetrahedral geometry.
In the case of tetrahedral amines, partner atoms are expected

around primary amines at 70.5° and around secondary amines
at about 55°, both for donor and acceptor functions. In the case
of tertiary amines, the partner atoms would ideally be around
0°. In case of a sp2 hybridized, planar geometry, the nitrogen
atom can only function as donor and the VSEPR model would
predict partner acceptors at 60° for primary sp2 hybridized
nitrogen and at 0° for secondary sp2 hybridized nitrogen. All
histograms have their main peak at the expected angles (see
Figure S11).
Additional information about the geometry of the interaction

surface can be retrieved from the partner distribution of sp2

Figure 10. Special cases of imidazole partner distributions. (a, b)
Molecule partner positions around imidazole in 2.6−2.9 Å distance.
(b) Tilted side view on histidine side chain and the partner point
distribution forming two main patches and a second ring around the ε-
nitrogen in 35°−60° around the ideal interaction direction. (c) His 59-
A complexes the iron of a heme group, and all nitrogen atoms are
within 2.9 Å distance (PDB code 3tgc; resolution, 1.40 Å). (d) His
232-A complexes zinc 301-A and is within 2.76 Å distance of O1 of
ligand AZ4, which already participates in two interactions, one to the
metal and one to a water molecule (PDB code 4jp4; resolution, 1.43
Å); light blue atoms = linker (molecular graphics were created using
UCSF Chimera35).

Figure 11. Amide partner angle histogram. Green dashed line indicates
ideal geometry according to VSEPR model.

Figure 12. Guanidine partner angle histogram. Green dashed line
indicates ideal geometry according to VSEPR model.

Figure 13. Examples for guanidine proximity effect; light blue atom =
linker.
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hybridized nitrogen (see Figure 15). Tertiary amines and
secondary sp2 hybridized nitrogen only have a single acceptor
or donor function, respectively. For both groups, about 90% of
the partner atoms are within 35° from the ideal interaction
direction (see Figure 4 and Figure 15a). A circular distribution
of partner atoms can be observed around the interaction
directions of primary sp2 hybridized nitrogen (see Figure 4b).
Additionally, the distributions are in accordance with the 35°
deviations derived from tertiary amines and secondary sp2

hybridized nitrogen. The deviation from the ideal acceptor
direction (see Figure 4b) is highly similar to that of the
imidazole acceptor (see Figure 10), with only slight differences
in the absolute intensities.
Angle Distribution at Oxoacid Atom Pairs. In our data, all

distributions of oxoacids have a maximum of partner contacts at
angles between 55° and 65° as expected from the VESPR
model (see Figure S12). Both sulfate and phosphate oxygens
show a slight increase in the distribution between 0° and 15°.
For phosphate oxygens, this effect is to a large extent due to
coordination of a metal ion. Other atoms, which also
coordinate the metal ion, are in close proximity to the

phosphate oxygen (see Figure 16a). However, in the case of
sulfate, a general explanation is more difficult to find. In many

cases, the sulfate was integrated in extensive H-bond networks.
In order to accommodate all surrounding donor functions, the
deviations from the ideal interaction direction had to be less
strict (see Figure 16b).
Previous studies37,38 based on CSD data observed smaller

angles for the ideal interaction direction than the one observed
here. The first study37 defined the range of the interaction
angles of oxoacids as between 30° and 70° (angle between P−
O and either oxygen or nitrogen donor), and the second38

observed a main direction between 30° and 35° (angle between
P−O and hydrogen atom). While the deviation between our
findings and the second study is clearly influenced by the
considered atoms defining the angles, the difference to the first
might show the influence of the data used for the analysis, i.e.,
within molecules versus protein−ligand interactions.
Sulfonamide had too few partner points around the oxygen

atoms to draw meaningful conclusions. Therefore, only the
partner points around the nitrogen atom were analyzed (see
Figure S13). Their maximum is at the expected angle of 70.5°.

Influence of Resolution on the Hydrogen Bond
Geometries. Two further evaluation steps were performed
to investigate the influence of the quality of the X-ray data on
the derived interaction geometries. First, the MR data set was
divided into better than 1.5 Å and between 1.5 and 2.5 Å.
Second, electron density was considered and only well-resolved
functional groups and partner atoms were evaluated. Herein,
the electron density of individual atoms (EDIA)39,40 was used

Figure 14. (a) Ether partner angle histogram; (b−d) partner points
around ether; (e, f) partner density distribution (red = 50%, green =
25%, blue = 10% of maximum density value); light blue atoms =
linker; green dashed line indicates ideal geometry according to VSEPR
model.

Figure 15. (a) Histogram of secondary sp2 hybridized nitrogen. (b) Partner atom distribution of primary sp2 hybridized nitrogen; green dashed line
indicates ideal geometry according to VSEPR model; light blue atoms = linkers.

Figure 16. Example cases for phosphate and sulfate peaks between 0°
and 15°. (a) Phosphate group coordinates metal (PDB code 4n9u;
resolution, 2.11 Å). (b) Sulfate is integrated in extensive H-bond
network (PDB code 1o28; resolution, 2.10 Å; molecular graphics were
created using UCSF Chimera35).
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to automatically differentiate between well resolved and less
reliable functional groups and the partner atoms (EDIA cutoff:
0.8). This evaluation has been done for four different functional
groups: (1) carboxylates, for which the electron lone pairs vary
only slightly from the VSEPR expectations (Figure 5b and
Figure 5c), (2) ketones, deviating by 15° from the expected
electron lone pair directions (Figure 5a), (3) the nitrogen
atoms of secondary amide (E isomer), with an average
deviation for the donor direction of the nitrogen by 10°
(Figure 11b), (4) ether oxygens, which have the highest average
deviations from the expected electron lone pair directions (55°,
Figure 14a).
The main interaction directions are not influenced by the

resolution of the protein structures; i.e., specific geometric
models used as input in the crystal structure refinement do not
alter the distribution of partner atoms. This means that the
deduced interaction geometries are not biased by the input of
specific geometric models, though we expected that for lower
resolution structures, the influence of the geometry models
used in the refinement process might become visible. Overall,
however, only minor differences in the angle distributions can
be observed using either different resolution criteria or the
EDIA criteria (see Figures S14−S17). Therefore, the derived
interaction geometries are reliable and meaningful and do not
show the influence of geometric models such as force field
parameters used during structure refinement.
Statistically Derived Model for Interaction Geo-

metries. The detailed analysis of partner distributions around
functional groups allows the deduction of general geometric H-
bond models.
For all interaction geometries a main interaction direction

(“Optimum”) was defined. Additionally, two threshold values
were defined: first, the ideal angle deviation (“First deviation”),
which includes about 65% of all partner points; second, the
maximum angle deviation (“Maximum”), which covers about
95% of all partner points. H-bonds with an angle between
“Optimum” and “First deviation” will be classified as ideal H-
bonds. Those with an angle between “First deviation” and

“Maximum” are distorted. If the angle deviates more than the
“Maximum”, we assume that no H-bond is formed. In addition
to the angle deviations we also describe the geometric surface
of the interaction direction, i.e., by a spherical cone, a capped
cone, or a spherical rectangle (see Figure S18).
In order to reduce complexity, we tried to combine as many

functional groups as possible for the definition of interaction
geometries (see Table 5). Five main groups of interaction
geometries were defined: (1) sp2 hybridized oxygen acceptors,
(2) generic oxygen acceptors, (3) oxoacid acceptors, (4)
nitrogen acceptors, and (5) generic donors.
The sp2-hybridized oxygen atoms were further divided into

four subgroups since their partner atom distributions show
distinct differences: (1) carboxyl, (2) ketones and primary
amides, (3) secondary and tertiary amides, and (4) ester. Due
to their different ranges of in- and out-of-plane angles, their
interaction surface is best represented by a so-called spherical
rectangle.
The group of “generic oxygen acceptors” includes the

acceptor function of hydroxyl groups. Due to larger deviations
of the enol group compared to the nonconjugated hydroxyls,
the acceptor geometries are described separately. The sp3

hybridized oxygen atom of the ester functional group had too
few partner atom points to draw significant conclusions. That is
in agreement with a theoretical and statistical analysis, which
led to a similar observation, namely, that sp3 oxygen atoms
directly connected to an sp2 carbon rarely form H-bonds.41

The distribution of interacting atoms around oxoacids is best
described by a capped cone, i.e., a “halo” around the oxygen
atom, as previously described by Bruno et al.38

A few other functional groups could not be statistically
analyzed because too few partner points were identified. They
are combined with those functional groups that best resemble
their chemical features; i.e., the nitrile acceptor is described like
any other nitrogen acceptor.

Table 5. Deviations for Different Interaction Geometries

deviation

functional group representatives geometry Optimum First deviation Maximum

Category: sp2 Hybridized Oxygen Acc
carboxyl rectangle in, 55°; out, 0° in, 20°; out, 30° in, 35°; out, 55°
ketone, amide (primary) rectangle in, 45°; out, 0° in, 20°; out, 30° in, 40°; out, 60°
amide (secondary, tertiary) rectangle in, 30°; out, 0° in, 20°; out, 30° in, 40°; out, 60°
ester rectangle in, 35°; out, 0° in, 25°; out, 35° in, 45°; out, 65°
Category: Generic Oxygen Acc
ether,a ester (sp3)a,c rectangle in, 0°; out, 0° in, 10°; out, 40° in, 25°; out, 70°
hydroxyla rectangle in, 70.5°; out, 0° in, 15°; out, b in, 40°; out, b
hydroxyl (conjugated)a rectangle in, 60°; out, 0° in, 15°; out, 30° in, 40°; out, 50°
Category: Oxoacid Acc
phosphate, sulfate, sulfonamidec capped cone 55° 15° 40°
Category: Nitrogen Acc
imidazole, nitrile,c amine (tertiary) cone 0° 15° 40°
amine (secondary) cone 55° 15° 40°
amine (primary) cone 70.5° 15° 40°
Category: Generic Don
amine, amide, guanidine, imidazole, hydroxyl,c hydroxyl (conjugated) cone 0° 15° 40°

aThe in-plane is defined by the C−O bond and the ideal interaction direction. bOut-of-plane angle deviation for freely rotatable hydroxyl oxygen
acceptor cannot be derived from this study. cFunctional groups with a statistically insignificant number of partner atoms were combined with most
suitable ones.
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■ CONCLUSION

The increase of available high-quality protein structures has
allowed a new statistical evaluation of interaction geometries. In
this study, 22 diverse functional groups and the preferred
positions of potentially interacting partner atoms have been
analyzed in detail. The importance of accurate H-bond
geometry models can be observed in lactate dehydrogenase A
(LDHA) compounds.42 Here, the exchange of a carbon to a
nitrogen leads to a second H-bond with nonideal geometry.
Overall, this change does not lead to a significant change in
binding affinity (Figure 17).
Lately “unconventional” H-bonds, like halogen bonds and

weak H-bonds, e.g., C−H···O interactions, have drawn
attention (for more information see reviews in refs 43−45).
Due to the inferior strength of these weak interactions, they
play only a minor role in the explanation of binding events.46

Furthermore, due to the greater distances between the heavy
atoms, they are less easily separable from van der Waals
contacts.28 Therefore, in our analysis we focused on the
characteristics of strong H-bonds between free electron pairs of
nitrogen or oxygen and hydrogen atoms covalently bound to
nitrogen or oxygen. Comparison to the expectation of the
widely accepted VESPR model and findings of previous studies
showed both differences and similarities. In general, donor
directions varied less often from the expected ideal interaction
directions. However, electron lone pair directions deviate to a
greater extent from the theoretical predicted directions. In
particular, we observed significant deviation from the expected
angle for sp2 hybridized oxygen atoms. The deviation in out-of-
plane direction was higher than in in-plane direction. Amines
are in accordance with the VSEPR model, whereas oxoacids
agreed more closely with a tetrahedral geometry than
previously observed.38

H-bond angles of functional groups in proteins show more
narrow distributions than the same functional groups in ligands.
This suggests that functional groups in proteins are more
restricted than those in ligands. The angle in the secondary
amide from the protein backbone diverges more from the ideal
angle than that from the Lig-unit. In order to fulfill its H-bond
potential, it may need to adapt and build H-bonds with
constrained interaction geometries. Furthermore, the distribu-
tions of partner atoms around functional groups not only
represent the energetic prevalence but also contain adaptions
due to steric hindrance. For example, a shift of the ideal
interaction direction around nitrogen atoms of secondary

amide BB-unit to Lig-partner unit might be due to close side
chains. Another example is the hybridization of the oxygen
atom of enols that might be affected by additional substituents
of the aromatic ring.
Our analysis showed the geometric range of H-bond angles

in protein−ligand structures, which would not be detectable
using small molecule data only. Even though confined to the
optimal H-bond length, unexpected geometries have been
found, e.g., artificial peak for imidazole side chains due to metal
interactions, great differences between sp2 hybridized oxygen
atoms. Most cases showed that such geometries are not caused
by H-bonds but are mostly due to proximity effects, extended
H-bond networks, or coordination to metals, which automati-
cally gives rise to close neighbor contacts. If these geometries
were to be included in computational models, e.g., for scoring
protein−ligand interactions, then wrong or at least biased
results could arise.
Even though the geometries were concluded from protein−

ligand interactions, they are also valid for protein−protein and
even ligand−ligand interactions (Figures S19−S22). Especially
if backbone atoms are in close distance, they influence the
distribution of partner atoms. Protein−protein interactions
were, as expected at the beginning of this study, influenced by
secondary structure element but also by short intra amino acid
distances; i.e., the carboxylate group of the side chain is in close
distance to the nitrogen donor of its backbone. However, the
majority of the short distance protein−protein contacts is
within the derived geometries and can thus be described and
identified by them.
Especially for less well resolved structures, the refinement

process has a greater influence on the final protein model. The
influence of the refinement process was analyzed by splitting
our data set into structures with high and medium resolution.
Additionally, the electron density was taken into account as a
quality criterion by calculating EDIA values for the functional
group as well as its partner atoms. The angle distributions
derived for a subset of functional groups (carbonyl, carboxyl,
secondary amide, and ether) do not show significant differences
using structures with different resolutions. Therefore, the H-
bond geometries concluded from this study are indeed due to
structural characteristics of the protein−ligand complexes.
From our comprehensive analysis of the geometric

distribution of atoms around functional groups, general models
for H-bond geometries can be concluded. These may assist
further understanding of protein−ligand interactions and help

Figure 17. Example of a superimposed ligand pair that only deviates in one atom (change from amide, gray, PDB code 4ajo, to urea group, green,
PDB code 4ajn). The interaction deviations for the nitrogen atoms of the urea group increase, while the binding affinity remains constant (amide 69
nM to urea 93 nM).42
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guide the future development of computational models for
protein−ligand interactions.
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ABSTRACT

With currently more than 126 000 publicly avail-
able structures and an increasing growth rate, the
Protein Data Bank constitutes a rich data source
for structure-driven research in fields like drug dis-
covery, crop science and biotechnology in general.
Typical workflows in these areas involve manifold
computational tools for the analysis and predic-
tion of molecular functions. Here, we present the
ProteinsPlus web server that offers a unified easy-
to-use interface to a broad range of tools for the
early phase of structure-based molecular modeling.
This includes solutions for commonly required pre-
processing tasks like structure quality assessment
(EDIA), hydrogen placement (Protoss) and the search
for alternative conformations (SIENA). Beyond that,
it also addresses frequent problems as the genera-
tion of 2D-interaction diagrams (PoseView), protein–
protein interface classification (HyPPI) as well as
automatic pocket detection and druggablity assess-
ment (DoGSiteScorer). The unified ProteinsPlus in-
terface covering all featured approaches provides
various facilities for intuitive input and result visu-
alization, case-specific parameterization and down-
load options for further processing. Moreover, its
generalized workflow allows the user a quick famil-
iarization with the different tools. ProteinsPlus also
stores the calculated results temporarily for future
request and thus facilitates convenient result com-
munication and re-access. The server is freely avail-
able at http://proteins.plus.

INTRODUCTION

Three-dimensional (3D) structures of macromolecules are
often the starting point for achieving an in-depth under-
standing of protein function. Their use has a long tradi-

tion in early-phase drug design applying tools like homol-
ogy modeling, molecular docking and molecular dynam-
ics simulation. Before any of these methods can be applied,
the structure must be pre-processed and usually further an-
alyzed. The preparation of a macromolecular model of-
ten includes the addition of hydrogen atoms, the identifi-
cation of potential binding sites and the assembly of al-
ternative conformations. While there have been substantial
efforts of the worldwide Protein Data Bank (PDB) (1) to
include information on the quality of deposited structures
(2–5), additional validation of the atomic position reliabil-
ity can be required for highly specific and more demand-
ing applications. Visualization approaches are generally re-
quired for the analysis and interpretation of structural data
and can further assist communication tasks like the illustra-
tion of molecular interactions. Other examples for advanced
structure-based applications are the assessment of binding
site druggability or the analysis of protein–protein interac-
tions (PPI).

A wide range of tools has been developed to address these
issues. However, the usability of these tools is occasionally
restricted by platform dependencies, installation obstacles
or non-trivial user interfaces. Especially command line tools
might be challenging for non-expert users. Therefore, it is
desirable to circumvent these issues by providing web ser-
vices offering platform-independent usage and easy-to-use
interfaces. For two of our own approaches, we already pro-
vided a web server (6,7). Both had their own interface fit-
ting the specific requirements of the underlying methods.
Thus, adding new functionalities or tools requires parallel
refactoring or the development of a new web service. This
does not only lead to a lack of interoperability but might
also constitute a barrier for the users who need to familiar-
ize themselves with different interfaces. In order to address
these issues, we developed ProteinsPlus which currently in-
tegrates the two former and four new state-of-the-art ap-
proaches. It also offers a unified, easy-to-use interface via
a single web server. The integrated services cover a broad
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range of elementary tasks frequently occurring in structure-
related life sciences.

THE PROTEINSPlus SERVER

The main objective during the development of ProteinsPlus
was to create a general workflow to access and preprocess
structural data for all kinds of life science research. The re-
sulting workflow starts with the selection of a PDB ID or the
upload of a custom PDB file and optionally a ligand file in
SD format as input. ProteinsPlus gives an immediate visual
impression of the overall protein structure and contained
ligand molecules. Afterward, the user can choose an appli-
cation service of interest (see below), set additional tool con-
figurations and start the calculation. The results will auto-
matically be displayed after the calculation is finished. To
provide the best possible user experience, ProteinsPlus uses
a caching system to store calculation results. With this sys-
tem users can access results at a later time and share them
with colleagues.

In order to allow for processing various kinds of
structure-based tasks, a unified interface is needed that fa-
cilitates the integration of different services and meets high
usability standards. The single main interface (cf. Figure 1)
is divided into three panels and has a menu bar at the top to
display additional target related information and to control
the panels. The first panel visualizes 3D structural informa-
tion with the NGL web viewer (8). Below is a control panel
that allows to switch between different graphical represen-
tations, change the background color, display a molecular
surface, clip the scene in z-direction and take a screenshot
of the visualized data. If the given PDB file contains ligand
molecules, these are additionally depicted as standard struc-
ture diagrams in the second panel and are further annotated
with their PDB identifier and a unique SMILES string (9)
(which is hidden per default). A click on a specific structural
diagram highlights the ligand in the NGL viewer panel and
also selects the ligand for the tool configuration. The third
panel displays all tool related information and offers the
ability to set options and trigger the calculations. After a
calculation is finished, the result page will also be displayed
in this panel. Depending on the applied tool, the result page
contains various opportunities to manipulate the structure
representation in the NGL viewer panel. This includes the
visualization of calculated structural elements, the coloring
of the depicted elements and the possibility to automatically
focus on certain substructures. Linking the individual re-
sults with a commonly used 3D visualization supports the
general understanding of different structural properties and
simplifies the result interpretation.

Currently, the ProteinsPlus server comprises six services
addressing the most important tasks at the beginning of
structure analysis. The following sections introduce the
main aspects of these approaches.

Protoss––hydrogen prediction

A common barrier to the application of three-dimensional
structures is the incomplete representation of the respec-
tive macromolecules in many available data sources. This is
primarily reasoned in shortcomings of the respective struc-
ture elucidation methods. For example, in the case of X-ray

crystallography, insufficient resolution leads almost gener-
ally to the lack of hydrogen atom positions and frequently
also impedes a differentiation of similar chemical elements
which, in turn, increases the risk of erroneous side-chain
orientations. Besides that, another common problem is the
lack of additional information on bond orders and atom
hybridization in many publicly distributed structural data
sources. This is especially relevant for the interpretation of
complexed ligands and atypical residues. However, a multi-
tude of structure-based applications rely on a detailed rep-
resentation of the considered molecules. For example, an
accurate assessment of molecular interactions normally re-
quires the knowledge of all atom positions, especially for the
investigation of strongly directed interactions like hydrogen
bonds. Therefore, several approaches have been developed
for completing a structural model by missing elements such
as hydrogen atoms and bond types and additionally improv-
ing unlikely side-chain orientations. (11–20)

The ProteinsPlus server allows to tackle these tasks by
applying our hydrogen prediction software Protoss (21,22).
Starting with a macromolecular structure, Protoss first
identifies unknown bond types on the basis of atom dis-
tance analysis. Following this, possible alternative states
of polar moieties are detected and mutual energetic influ-
ences of these states are analyzed resulting in an interac-
tion network. Finally, Protoss selects an optimal state for
each group on the basis of a network optimization algo-
rithm. The selected states eventually define the presence and
position of polar hydrogen atoms as well as the orienta-
tion of ambiguous side chains. It is noteworthy that Pro-
toss is able to consider alternative states of arbitrary chem-
ical moieties (cf. Figure 2 for an example), while the vast
majority of competitive tools focuses on the treatment of
groups occurring in proteinogenic amino acids. Our large
scale evaluation studies demonstrated that Protoss, in com-
parison to alternative approaches, benefits from this more
elaborate modeling of chemical variability in terms of im-
proved optimization capabilities for molecular interaction
networks of protein–ligand interfaces. In the ProteinsPlus
web interface, the completed structures are visualized in the
NGL viewer panel and provided for download in PDB for-
mat. Processed ligand molecules and atypical residues can
additionally be downloaded in SD format. Due to its low
computation times, the results of a Protoss calculation can
mostly be provided within a few seconds.

PoseView––2D interaction diagrams

The increasing amount of protein–ligand complex
structures––both from experimental sources and com-
putational predictions––makes the availability of efficient
visual inspection tools mandatory. The classic approach
of inspecting such structure collections is looking at each
of them in a 3D representation. This requires the user to
rotate and translate the view until all features are visible.
It can neither be used for the comparative visualization
of many complexes nor for print and share. In text books
and scientific publications, 2D representations which illus-
trate the key interactions between protein and ligand are
frequently applied in this case. Various tools exist to
condense the information about participating amino acids
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Figure 1. EDIA analysis for the crystal structure of an archaeal class I CCA-adding enzyme in complex with cytidine-5′-triphosphate (CTP) (PDB ID: 1R89
(10)). This figure demonstrates how the ProteinsPlus web server can be used to assess the quality of a protein structure and analyze potential uncertainties
in the structure. The panel on the right side shows the results from the EDIA calculation along with a short description of the quality measure. The
detailed results for the EDIAm (structure score) for molecular substructures are displayed. For CTP 501 A, the EDIAm score is very low, indicating
possible uncertainties in the structure. The binding site of this CTP molecule is shown in the left panel in the NGL web viewer, allowing a detailed visual
inspection. All atoms in the structure are colored according to their individual EDIA score (as explained in the right panel). Additionally, the electron
density map (2fo-fc) at 1 � is displayed. It is clearly recognizable that most atoms in the cytosine moiety receive very low EDIA scores. This is consistent
with the observation that around these atoms no electron density is observed at 1�. The figure also highlights the menu bar at the top and all three panels
with red rectangles, the NGL viewer with the control panel on the left, the ligand panel with structure diagrams in the middle and the tool panel with the
result page of EDIA at the right.

and relevant interactions into a 2D structure diagram.
MOE (24) and LeView (25) create diagrams that depict
the ligand in atomic detail while residues of the pocket are
shown as circles. LigPlot+ (26) and PoseView (27) show
all interacting structural elements in atomic detail. Unlike
LigPlot+, which generates 2D coordinates by flattening
out the input 3D structure, PoseView generates structure
diagrams from scratch focussing only on the best layout.
Thus, it is able to draw about 80% of the Ligand Expo PDB
subset without overlaps (28). Furthermore, PoseView aims
at depicting all structure diagrams following the IUPAC
drawing conventions. It is also integrated into the RCSB
PDB website itself. An example of a PoseView diagram is
given in Figure 2.

The ProteinsPlus server facilitates to create PoseView in-
teraction diagrams for ligands from PDB structures or ad-
ditionally provided custom molecules in a fully automated
fashion. Before identifying the involved amino acids, Pro-
toss (see preceding section) is used for pre-processing the
active site to define the protonation as well as tautomeric
form of the protein and ligand. The resulting interaction
diagram can be viewed directly in the browser and can be
downloaded in various file formats (PDF, SVG and PNG).

EDIA––structural quality elucidation

Like any other experimental technique, structure elucida-
tion has its limitations related to resolution and precision.
Therefore, the examination of structural uncertainty is an
advisable initial step for all applications based on macro-
molecular models. For structures determined with X-ray
crystallography, a number of measures exist that objectively
quantify the electron density fit, e.g. the real-space correla-
tion coefficient (29) or the real-space difference density Z-
score (30). Recently, we developed the electron density score
for individual atoms (EDIA) (31) as a measure for estimat-
ing how well each atom position in a certain structure is
supported by the experimental electron density. For all life
scientists basing their research on individual structural fea-
tures of a protein or a nucleic acid, it is essential to know this
degree of experimental support for each atom, functional
group or ligand molecule.

Based on a 2fo-fc map, EDIA applies a grid-based ap-
proach to analyze the electron density distribution in a
sphere around a certain atom considering both, density
shape and intensity. It avoids the use of annotated B-factors
by using a statistically determined resolution dependent B-
factor. Therefore, EDIA overcomes known weaknesses of
existing approaches like strong shape dependency (4) and
tolerating overly flexible atoms that cause weak, stretched
out electron density. The EDIA formula can be decomposed
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Figure 2. PoseView interaction diagram of dopa decarboxylase in complex
with the inhibitor carbidopa (PDB ID: 1JS3 (23)). The automatically gen-
erated depiction clearly illustrates the molecular interactions described in
the primary publication, e.g. the ’salt bridge between the carboxylate group
of ASP 271 and the protonated pyridine nitrogen’ (23). The PoseView in-
teraction analysis is based on hydrogen orientations and protonation states
calculated with Protoss (22).

to allow an automatic analysis explaining the reasons for a
low EDIA score. Furthermore, EDIA scores can be com-
bined using the power mean to score molecular fragments
(EDIAm) and thus facilitate the identification of well re-
solved substructures. EDIAm is also a very valuable addi-
tion to calculating RMSD values for investigation of re-
docking capability, since the EDIAm truthfully reports the
displacement from the experimental data while the RMSD
reports the displacement from the interpreted coordinates.

Within ProteinsPlus, EDIA and EDIAm scores are pre-
sented in an interactive table and the structure in the NGL
viewer panel is recolored based on the EDIA coloring
scheme. This allows an instantaneous differentiation of well
resolved (blue) and weakly supported (red) substructures
(see Figure 1). For comparison, the electron density can be
displayed at a level of 1�. Additionally, the result tables and
the 3D visualization contain mutual links that allow to fo-
cus on a certain substructures in the NGL viewer panel by
selecting an element from the result tables or filtering the en-
tries of the result tables by clicking a certain residue in the
viewer area. The download package consists of all EDIA
and EDIAm scores in combination with the structure in a
PDB file containing EDIA values in the B-factor column
and the error analysis in the occupancy column. All EDIA
scores of an average-sized structure can be computed in ∼4
min.

SIENA––structure ensemble assembly

When working with experimental structures of macro-
molecules, another highly relevant limitation is the inher-
ent incapability of a single structure to properly represent
the molecule’s flexibility or other variations like its muta-
tion sensitivity. As a straightforward approach to circum-
vent this drawback, multiple structures of the same target
can be employed, often even without major adaption of
the applied tools. Ideally, such ensembles can also be com-
piled from experimental data. While this remains difficult
for nucleic acids, for which so far only a limited amount
of refined structures exist, for many proteins there is al-
ready a sufficient number of structural alternatives avail-
able. The required ensemble generation process involves the
challenge of selecting an appropriate set of structures. This
includes the differentiation of desired and undesired vari-
ations as well as the identification of structural artefacts
and inconsistencies in data annotation. Furthermore, typ-
ical preprocessing steps like a residue-wise alignment, su-
perposition and hydrogen prediction (cf. Protoss) can sup-
port the direct applicability of the ensemble. In order to sup-
port all these tasks, we have developed an adaptive ensemble
assembly approach called SIENA (32) that allows a case-
specific generation and preprocessing of structure ensem-
bles. Due to the high relevance of molecular interactions
for protein functions, SIENA has a specific focus on the
treatment of user-defined substructures like protein binding
sites. SIENA achieves a quick access to alternative struc-
tures by a combination of an indexed database and an align-
ment technique (33) that is specifically geared to the pro-
cessing of alternative binding site conformations. Addition-
ally, it provides a set of various filters that allow a use-case
specific adaption of the ensemble compilation. Among oth-
ers, this includes functionalities for the assertion of struc-
tural consistency and an interaction-driven approach for
ensemble reduction leading to a small but diverse set of rep-
resentative structures. Various evaluation experiments high-
light that SIENA allows for accurate and efficient ensemble
preprocessing for sequence identities over than 70%.

Within the ProteinsPlus server, SIENA can be triggered
with a user-defined binding site query in combination with
various filtering conditions to eliminate unwanted struc-
tures. Typical application scenarios like flexibility analysis,
virtual screening and ligand pose comparison are supported
by a one-click selection opportunity of predefined parame-
terization settings. The superimposed structures of the re-
sulting binding site ensembles, which are usually provided
within a few seconds, can be visualized in the NGL visu-
alization area individually. Furthermore, the ProteinsPlus
server allows to download the generated ensemble in form
of an archive file that contains all superimposed structures,
a sequence alignment of the binding site residues and a sta-
tistical overview of certain ensemble measures like binding
site RMSD or the number of mutated amino acids.

DoGSiteScorer––binding site detection

Target assessment is one of the major challenges in early
drug discovery. Besides aspects such as medical rationale
and commercial attractiveness, knowledge about the ability
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Figure 3. Predicted pockets using DoGSiteScorer for Hexokinase IV in
complex with �-D-glucose only (PDB ID: 3QIC (34)). An ensemble was
generated with SIENA using 3QIC as query structure and �-D-glucose
as reference ligand. The figure includes all ligand molecules from this en-
semble with more than six heavy atoms and within a distance of 5 Å
from any protein atom in the 3QIC structure. As indicated by the super-
position of ligands and DoGSiteScorer pocket predictions, the two best-
ranked pockets correspond very well to the allosteric binding site (green)
and the substrate binding site (yellow). Interestingly, the allosteric binding
site is identified as the most druggable pocket (Drug-Score calculated by
DoGSiteScorer: 0.81), which is in good agreement with the distribution of
activating ligands found by SIENA. The ATP binding site, which is rela-
tively solvent exposed, is not detected as one pocket but still well covered
when considering the union of the two neighboring pockets depicted in
yellow and blue.

of a target to bind a drug like molecule, i.e. called druggabil-
ity, is of utmost importance (35). The binding site of a pro-
tein is the key to its function. Given a protein structure, the
first step is, thus, the identification of potential cavities and
a precise description of them. If a ligand-bound structure
is available, this ligand defines the binding site. Neverthe-
less, additional allosteric or novel sites in ligand-free struc-
tures are of interest in prospective analyzes. In such cases,
automatic methods to predict and rank cavities are inves-
tigated, e.g. FPocket (36), SiteMap (37) or DoGSiteScorer
(38). Binding site detection methods rely solely on the 3D
structure of the protein and use geometric and/or energetic
information to detect cavities. Furthermore, these methods
are able to estimate the druggable potential of a pocket us-
ing linear combinations (37), exponential functions (36) or
machine learning models (38) derived from selected pocket
descriptors, such as volume, enclosure or hydrophobicity.

DoGSiteScorer, is a grid-based pocket detection (39) and
druggability prediction (38) method. The (sub)pocket de-
tection step (39) has been evaluated on several benchmark
dataset (Weisel dataset (40), PDBbind (41), sc-PDB (42))
and showed superior results. For druggability prediction
(38), DoGSiteScorer uses a small set of physico-chemical
and geometric descriptors combined with a support vector
machine (SVM) trained and evaluated on the freely avail-
able druggability dataset (DD) (43). Validation on the com-
plete DD yielded 88% correct predictions. DoGSiteScorer
has been applied in several studies (>180 citations of ref-
erences (7,38,39)) and was listed within the selected online
resources supporting drug discovery in 2013 (44).

DoGSiteScorer is part of the ProteinsPlus server and
can be used to detect binding sites on a target of interest
(see Figure 3). It discloses information about the properties

of the detected pockets as well as their druggability. This
knowledge can be used to prioritize targets for drug discov-
ery or structures/binding sites for docking; or to compare
pockets. As input, only a protein structure is required (PDB
format or PDB ID). After pocket calculation, a sortable ta-
ble appears that lists all pockets, together with the values
for pocket surface, volume and druggability score. Addi-
tional descriptors can be displayed upon request. Per de-
fault, the largest pocket is shown in mesh representation in
the NGL visualization (color corresponds to the table). Ad-
ditional pockets can interactively be en-/disabled. All data,
the pocket volumes (CCP4 format), the pocket residues
(PDB format) as well as the full descriptor table (text for-
mat), is available for download.

HyPPI––protein–protein interactions classification

PPIs play key roles in biological regulatory pathways.
Therefore, they are of central importance for the under-
standing of biological processes. Furthermore, they are of
special interest for the development of small molecule mod-
ulators and lately received more attention in drug discovery
(45–47). The PDB contains a substantial amount of struc-
tural data related to protein–protein complexes. However,
the asymmetric unit (the smallest structure that cannot be
recreated using symmetry operations) deposited in the PDB
file is not necessarily composed of a biological-relevant
protein–protein complex. The protein–protein complex
might only be due to crystallization conditions (crystal arte-
fact) or the biological-relevant complex must be generated
by applying symmetry operations first. Since experimental
methods for the determination of the oligomeric state of
a complex are costly and time-consuming, it is of interest
to develop an automated discrimination of biological com-
plexes (permanent or transient) and crystal artefacts. Di-
verse methods exist which try to predict PPIs based on the
computation of free energies or classification models based
on physico-chemical and geometrical descriptors, e.g. PQS
(48), NOXclass (49), EPIC (50), PISA (51), DiMoVo (52),
CRK (53), OringPV (54), IPAC (55) or IChemPIC (56).
Most of those methods achieve high accuracies of 85–97%.
However, they use a large amount of descriptors to discrim-
inate those complexes (22–213 descriptors).

The prediction tool HyPPI underlying ProteinsPlus dis-
criminates biological complexes and crystal artefacts. The
most promising descriptors we found to characterize the
different PPIs are the hydrophobic binding energy and the
proportion of the interface ratios (IFquotient). The hy-
drophobic binding energy is calculated according to the de-
solvation term of the HYDE scoring function (57). The
IFquotient measures the proportion of the subunits’ relative
interface area with respect to the molecular surface of the
unbound subunit. Thus, it represents the symmetry of the
PPI. Using only these two descriptors for the discrimination
of biological complexes and crystal artefacts, we achieve a
state-of-the-art accuracy of 92.5% on our training set of 254
complexes (49) and 77.9% on an independent test set (152
complexes from different sources (58–62)) which is com-
parable to the performance of the aforementioned tools.
Within the ProteinsPlus server, the discrimination of a PPI
can be triggered with HyPPI by selecting the respective sub-

Downloaded from https://academic.oup.com/nar/article-abstract/45/W1/W337/3787830
by Staats- und Universitätsbibliothek Hamburg user
on 04 January 2018



W342 Nucleic Acids Research, 2017, Vol. 45, Web Server issue

units. As a result, the probability for each class––biological
(permanent or transient) versus crystal artefact––is given.
This way, the user directly gets an indication of the reliabil-
ity of the classification.

SUMMARY AND OUTLOOK

ProteinsPlus presents a unified interface for various
structure-based modeling tools. It makes the installation of
large modeling software packages for an initial inspection
of protein structural data dispensable. Therefore, the server
is of special interest to life scientists with an occasional
need to work with protein structures. The integrated NGL
web viewer gives a first impression of the input structure
and the calculated results. Thanks to the caching system,
users can also share the results or check them later without
any further calculation. With currently six tools, the uni-
fied easy-to-use interface and the generalized workflow, the
ProteinsPlus web server is a valuable resource for structure-
based life science research. For the future, we plan to extend
its functionality by additional modeling techniques and fur-
ther improve its usability, e.g. by predefined use case param-
eterizations and by a pipeline functionality which allows
to use previously calculated results as input for other inte-
grated tools.
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A B S T R A C T

Nowadays, computational approaches are an integral part of life science research. Problems related to inter-
pretation of experimental results, data analysis, or visualization tasks highly benefit from the achievements of
the digital era. Simulation methods facilitate predictions of physicochemical properties and can assist in un-
derstanding macromolecular phenomena. Here, we will give an overview of the methods developed in our group
that aim at supporting researchers from all life science areas. Based on state-of-the-art approaches from struc-
tural bioinformatics and cheminformatics, we provide software covering a wide range of research questions. Our
all-in-one web service platform ProteinsPlus (http://proteins.plus) offers solutions for pocket and druggability
prediction, hydrogen placement, structure quality assessment, ensemble generation, protein–protein interaction
classification, and 2D-interaction visualization. Additionally, we provide a software package that contains tools
targeting cheminformatics problems like file format conversion, molecule data set processing, SMARTS editing,
fragment space enumeration, and ligand-based virtual screening. Furthermore, it also includes structural
bioinformatics solutions for inverse screening, binding site alignment, and searching interaction patterns across
structure libraries. The software package is available at http://software.zbh.uni-hamburg.de.

1. Introduction

Many biological and medicinal research questions highly benefit
from the insights given by protein structure elucidation. Structural
biology plays a key role in understanding, utilization, and manipulation
of protein function. Therefore, the steadily increasing amount of pub-
lically available structures in the Protein Data Bank (PDB) (Berman
et al., 2000) constitutes a highly valuable resource for structure-based
research. Structural bioinformatics contributes to this field with mani-
fold powerful approaches. Computational methods are involved in
structure elucidation, analysis, and quality assessment (Arzt et al.,
2005; Goldsmith-Fischman and Honig, 2003; Kleywegt, 2000). Fur-
thermore, they facilitate structure visualization, comparison, and the
prediction of macromolecular properties. Preprocessing tools can be
used to find appropriate data, to complete structures by missing ele-
ments, or to derive knowledge from the structural data that is needed
for subsequent applications. Computational simulations like molecular
dynamics, docking, and free-energy approximation support the

understanding of physiological effects and aim to reduce the amount of
necessary but expensive experimental analyses (Leach, 2001). In a si-
milar manner, approaches from cheminformatics assist research on
small molecules in areas like medicinal chemistry or biotechnology in
general (Gasteiger and Engel, 2006). They support essential data
management tasks like the identification of identical compounds, the
storage in chemical databases, or filtering by molecular properties.
Further applications are file conversion, pattern recognition in sets of
similar molecules, or the enumeration of alternative conformations,
tautomers, and protonation states. Cheminformatics also covers appli-
cations with a more predictive character. Examples are the generation
of novel molecules (de novo design) (Schneider and Fechner, 2005) and
the prediction of bioactive molecules (ligand-based virtual screening)
(Koeppen et al., 2011). Several research questions in life sciences ap-
pear exactly at the interface of these two areas of computational sci-
ence. Structure-based design is one of the key tools in early-phase drug
and agrochemical discovery. Also, the development of novel techniques
in biocatalysis benefits from this approach (Schneider et al., 2016). In
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basic research, fields like chemical genomics and metabolomics show
strong relationships to both fields. Based on a unique software infra-
structure named NAOMI (Urbaczek et al., 2011, 2013, 2014), we have
developed a wide range of methods that target problems related to
chemistry and structural biology. The NAOMI software library supports
cheminformatics and structural biology alike making it an ideal plat-
form for the analysis of protein–ligand complexes. The software tools
that we have built on the basis of these methods assist researchers from
all areas of life science. Depending on their concrete application range
and the respective user community, we either provide the tools as
stand-alone software or in context of our web server ProteinsPlus. In the
following, we will briefly introduce all available applications grouped
by their implementation strategy and scientific area. An overview of all
web services and stand-alone applications is given in Table 1.

2. Web services

Providing the functionality of computational approaches via web
services has various advantages over classical stand-alone approaches.
Web services are usually the method of choice for providing access to
large amounts of preprocessed data. They are platform independent,
circumvent installation issues, and are thus accessible to the vast ma-
jority of the scientific community. Furthermore, web services mostly
employ reduced, easy-to-use interfaces and therefore achieve higher
usability and a more intuitive application behavior. For these reasons,
we offer web-based solutions for many structure-related research
questions. In order to support quick familiarization with the supplied
functionality, all of our services are integrated into a single web plat-
form, called ProteinsPlus (Fährrolfes et al., 2017), offering a unified
interface and a standardized workflow for all featured applications.
ProteinsPlus can either operate on a PDB structure (by providing the
PDB ID) or on files uploaded by the user (PDB format for macro-
molecules, SD format for small molecules). The provided structure is
visualized as a three-dimensional model using the NGL viewer (Rose
and Hildebrand, 2015) (cf. Fig. 1). Its integration into ProteinsPlus al-
lows several control options including various depiction styles for both
protein and ligands, surface visualization, and screenshot generation.
The 3D window is also used to illustrate the results for most of the tools
integrated into ProteinsPlus, e.g. binding pockets, predicted hydrogen
positions, or electron density fit. Based on a molecule perception al-
gorithm (Urbaczek et al., 2013), ligand molecules are additionally de-
picted as structure diagrams and SMILES strings. Textual results are
presented as sortable tables and can be downloaded for further pro-
cessing.

ProteinsPlus covers solutions for multiple problems like structure

preprocessing, analysis, and visualization issues as well as the predic-
tion of macromolecular properties. One of the most essential tasks in
the context of structure-based research questions is the assessment of
the structure's quality. Due to experimental uncertainties and modeling
inaccuracies, there might be less experimental evidence for certain
parts of a structural model. As this affects the reliability of subsequent
interpretations and calculations, it is of great importance for many
structure applications to identify such structural uncertainties. In the
case of X-ray crystallography, some of these potential error sources can
be detected by comparing the experimental electron density with the
derived structural model. Various measures have been developed that
quantify differences of experimental and modeled structure re-
presentations (Jones and Kjeldgaard, 1997; Tickle, 2012) albeit with
slightly different purposes. Our recently developed electron density
score for individual atoms (EDIA) (Nittinger et al., 2015) aims at the
identification of structural elements insufficiently supported by ex-
perimental data. In contrast to other methods, this also includes highly
flexible substructures, although different uncertainties are still captured
with a single consistent measure. Furthermore, EDIA facilitates an
atom-wise quality description which, e.g., can be used for an intuitive
graphical representation (as included in ProteinsPlus) or the exclusion
of unreliable atoms from conformation-critical analysis strategies.

Another common problem is that most protein structures do not
provide a full and precise model of all atoms. Usually, this is due to
certain drawbacks of the approaches applied for structure elucidation.
For X-ray crystallography, the major issues are the identification of
hydrogen positions and the identification of certain side chain or-
ientations, which are both often complicated by insufficient resolution
(Davis et al., 2003, 2008). Additionally, numerous structures also lack
detailed information on bond orders of atypical residues and ligand
molecules. However, many applications dealing with the assessment of
molecular interaction like binding affinity estimation or molecular
dynamics simulations rely on a complete and accurate atomistic model
of the protein. Our hydrogen prediction approach Protoss (Lippert and
Rarey, 2009; Bietz et al., 2014) can be used to complete a given
structural model by hydrogen atoms, assign unknown bond types, and
correct erroneous side chain orientations. In order to achieve an op-
timal orientation of hydrogen atoms, Protoss optimizes the orientation
of rotatable hydrogen atoms and considers alternative protonation
states in both ligand and protein moieties. In contrast to this, most
competing tools (Brünger and Karplus, 1988; Bass et al., 1992;
McDonald and Thornton, 1994, 1995; Hooft et al., 1996; Word et al.,
1999; Li et al., 2007; Bayden et al., 2009; Labute, 2009; Krieger et al.,
2012) mainly handle those functional groups existing in proteins while
neglecting the majority of groups occurring in ligand molecules. This

Table 1
Summary of all presented NAOMI-based web services and stand-alone applications.

Web services Function Main reference

DoGSiteScorer Predicts the location of binding pockets and estimates their druggability. Volkamer et al. (2012)
EDIA Assesses the conformity of structural atom positions with the experimental electron density. Nittinger et al. (2015)
HyPPI Indicates whether protein–protein interactions are permanent, transient, or due to crystallization artefacts.
PoseView Draws 2D interaction diagrams of protein–ligand interactions. Stierand et al. (2006)
Protoss Adds hydrogen atoms to a macromolecular structure and optimizes their position with respect to polar interactions. Bietz et al. (2014)
SIENA Searches alternative binding site structures within the PDB. Bietz and Rarey (2016)

Stand-alones Function Main reference

ASCONA Calculates alignments of protein binding site conformations. Bietz and Rarey (2015)
FSees Enumerates novel molecules from a molecular fragment library. Lauck and Rarey (2016)
MONA Facilitates visualization and interactive processing of large molecular data sets. Hilbig et al. (2013)
mRAISE Identifies similar molecules via a ligand-based virtual screening approach. von Behren et al. (2016)
PELIKAN Searches user-defined protein–ligand interaction patterns in large structural databases. Inhester et al. (2017)
SMARTSeditor Supports an interactive design of SMARTS patterns. Schomburg et al. (2013)
UNICON Facilitates automatable coordinate generation, sampling of tautomers, protonation states and conformations as well as

conversion of different file formats for small organic compounds.
Sommer et al. (2016)
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more precise modeling allows Protoss to reduce the number of un-
desirable atom contacts in the binding site and reaches a better
agreement with manually assigned protonation states of ligand mole-
cules.

Besides missing or misplaced atoms, another major drawback is that
single structures determined by crystallographic approaches do not
properly represent important aspects of a macromolecule's nature like
its structural flexibility or its sensitivity to mutations. A straightforward
manner to consider and investigate these aspects is to use a set of al-
ternative structures of a certain target. Still, a reasonable application of
such structural ensembles requires a careful ensemble generation. With
SIENA (Bietz and Rarey, 2016), the ProteinsPlus server contains a
powerful tool for ensemble generation that can be applied for various
use cases. SIENA detects all relevant structures from the PDB using
ASCONA (Bietz and Rarey, 2015), an alignment algorithm specifically
adapted to the treatment of alternative conformations. In contrast to
predefined ensemble datasets (Verdonk et al., 2008; An et al., 2005;
Kufareva et al., 2012), SIENA allows to adapt the ensemble assembly to
meet the specific requirements of different ensemble applications. This
is realized with the aid of various alignment configurations and addi-
tional property filters. For example, SIENA can be used to identify
structural artefacts like missing atoms or chemically modified residues
and, thus, to ensure the structural consistency of the ensemble, a
property that is highly relevant for ensemble docking. It also includes
algorithms that reduce the size of large ensembles to a small set of
representative structures, covering either the overall conformational
space or the more local variety of interaction capacities within the
binding site.

In addition to the preprocessing tools described above, ProteinsPlus
also covers frequently required structure analysis tasks. Since the

binding site of a protein is the key to its function, DoGSiteScorer
(Volkamer et al., 2010, 2012) provides functionalities for automated
protein pocket detection and druggability analysis. Both aspects are
highly relevant for the assessment and prioritization of target proteins,
especially in drug discovery projects. Pocket detection (Volkamer et al.,
2012; Le Guilloux et al., 2009; Halgren, 2009) algorithms can be ap-
plied for the recovery of known binding sites as well as the identifica-
tion of novel cavities, e.g. for allosteric modulators. They also lay the
foundation for calculating pocket descriptors that allow property pre-
diction or target comparison. DoGSiteScorer uses a purely structure-
based approach for the prediction of potential binding sites. Pockets can
be split into smaller subpockets, which allows a more granular pocket
description and indicates potential ligand expandabilities. For all
identified cavities it further derives a set of physicochemical and geo-
metric descriptors, which can be consulted to gain deeper insights into a
protein's functionality. Additionally, DoGSiteScorer applies these de-
scriptors for druggability prediction using a support vector machine.
The resulting druggability scores can be used to rank the identified
pockets and select the most promising ones for further investigations.
Within the ProteinsPlus server, users can visualize the pockets predicted
by DoGSiteScorer as an overlay with the 3D structure and sort them by
their calculated features. An example is given in Fig. 2.

Another problem that requires predictive analysis is the assessment
of protein–protein interactions (PPI). PPIs are the foundation of reg-
ulatory pathways and are therefore essential for the understanding of
signal transduction processes (Pawson and Nash, 2003). Other promi-
nent examples where protein–protein complex formations play a major
role for protein function are transcription factors, oligomeric enzymes,
and the composition of immunoglobulins. The involvement of these
complexes in pathological phenomena also provokes the interest of

Fig. 1. The ProteinsPlus server. The right panel
shows an ensemble of triacyl-glycerol acylhydrolase
calculated with SIENA (Bietz and Rarey, 2016). Two
alternative conformations from this ensemble are
depicted in the left panel using the NGL viewer (Rose
and Hildebrand, 2015). The middle panel illustrates
the ligand from the query structure.

Fig. 2. Alditol oxidase in complex with sorbitol (PDB ID 2VFT
Forneris et al., 2008). (a) The five largest pockets and (b) the
best scored subpocket identified by DoGSiteScorer, here vi-
sualized as colored grids. (b) Shows that the largest subpocket
(depicted in purple) is in good agreement with the binding
mode of sorbitol and the cofactor FAD. The figure has been
created with the NGL viewer (Rose and Hildebrand, 2015) as
integrated in ProteinsPlus. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to
the web version of the article.)
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drug design campaigns in targeting protein–protein interfaces (Wells
and McClendon, 2007; Ivanov et al., 2013; Villoutreix et al., 2014). The
PDB provides a solid basis for structure-based investigations of PPIs. In
this context, it is necessary to differentiate between complexes that
have a biological impact and those that occur only due to crystallization
artefacts. Further, it is relevant to distinguish permanent and transient
complexes, especially for inhibiting protein–protein interactions. Var-
ious approaches exist that can be applied for predicting such classifi-
cations (Henrick and Thornton, 1998; Zhu et al., 2006; Block et al.,
2006; Krissinel and Henrick, 2007; Bernauer et al., 2008; Schärer et al.,
2010; Liu and Li, 2010; Mitra and Pal, 2011; Da Silva et al., 2015).
Within the ProteinsPlus server the PPI prediction tool HyPPI is used for
this task. It is based on an energy approximation using the desolvation
term of the HYDE scoring function (Schneider et al., 2013) and the
interface area ratio of both binding partners representing the interface
symmetry. With only these two descriptors, HyPPI achieves a state-of-
the-art accuracy for the discrimination of permanent, transient, and
artificial complexes. The result is indicated by a probability value for
each possible class that allows an additional assessment of the predic-
tion precision.

Protein function is often strongly related to a protein's interaction
with small molecules like substrates, activators, or inhibitors. Thus, a
clear depiction of molecular interactions is essential for knowledge
exchange. Since two-dimensional figures are still the conventional
means for such tasks, there are two major alternatives: Following the
first strategy, a three-dimensional model is projected onto a two-di-
mension layer. Although this is a more realistic representation, it also
raises the necessity of choosing a tradeoff between depicting an ade-
quate amount of information and preventing superfluous overlaps that
impede an intuitive interpretation. The second approach illustrates the
molecules using a two-dimensional simplification abstracting from the
spatial constitution. A classic example of this concept is the early-in-
troduced convention to depict molecules by 2D structure diagrams. In a
similar manner, protein–ligand interfaces can be depicted by neglecting
the overall spatial orientation of the participating moieties but still il-
lustrating their main interactions. Several tools have been developed
which address this very task (Clark and Labute, 2007; Laskowski and
Swindells, 2011; Caboche, 2013). Our tool PoseView (Stierand et al.,
2006; Stierand and Rarey, 2007) distinguishes itself from other ap-
proaches by depicting all moieties from the protein–ligand interface at
atomic detail following IUPAC conventions. It optimizes the overall
layout from scratch considering only the depicted molecular interac-
tions between the ligand and the surrounding protein residues but uses
no further spatial relations as geometric constraints. This way, it can
draw about 80% of all interfaces for molecules from the LigandExpo
dataset without graphical overlaps (Stierand and Rarey, 2010). Within
ProteinsPlus, PoseView can be applied to any structure from the PDB or,
alternatively, to a custom protein–ligand complex provided by the user.
PoseView figures are also used at the PDB webpage to describe the
molecular interactions of a protein's ligands.

3. Future extensions to ProteinsPlus

In the future, ProteinsPlus will be developed further with the aim of
providing a more comprehensive interface and augmenting its func-
tionality. On the one hand, we plan to extend the ProteinsPlus interface
to allow partial integration into foreign websites. This will facilitate a
more straightforward access to specific requests. On the other hand, we
will integrate additional tools. In particular, we plan to support a web-
based access to our protein binding site screening engines TrixP (von
Behren et al., 2013) and iRAISE (Schomburg et al., 2014).

TrixP is a virtual screening technology for the comparison of protein
binding sites. This task is relevant for problems like the classification of
structurally resolved proteins with unknown function, identification of
potential substrates, or the discovery of new inhibitors. The detection of
similar binding sites can also indicate possible adverse effects of drugs

or highlight opportunities for developing poly-pharmacological ligands.
Because of its high biological relevance and broad application range,
many approaches exist which address binding site comparison (see
Kellenberger et al., 2008; Nisius et al., 2012; Jalencas and Mestres,
2013 for reviews). TrixP compares binding sites on the basis of ab-
stracting descriptors (Schlosser and Rarey, 2009) encoding pharmaco-
phore properties and their geometrical distances. Due to their discrete
character, these descriptors can be efficiently searched using a bitmap
index which, in turn, allows a much more efficient identification of
similar binding sites compared to classical linear search routines. While
alignment-free, fingerprint-based methods – which often also provide
considerable speed-up – exhibit a loss of interpretability, TrixP still
provides a structural alignment for the identified binding site matches
and does therefore not suffer from this limitation. Furthermore, TrixP
also accounts for a certain degree of protein flexibility by accepting
partial shape similarity during the descriptor comparison. Compared to
other state-of-the-art methods, the TrixP predictions exhibit mostly
equivalent and partially superior results. The integration of TrixP into
ProteinsPlus will allow to search for similar binding sites across all
known binding sites in PDB structures. This process can benefit from
using the SIENA approach via identifying and eliminating equivalent
binding sites for redundancy reduction.

Another strategy that tackles phenomena like adverse effects, poly-
pharmacology, and target-specificity from a different perspective is
protein target prediction. Starting with a certain ligand molecule, the
problem to be solved is the detection of all proteins possibly complexing
the ligand. In order to avoid expensive experimental analyses for ob-
taining a molecule's target profile, computational methods can be ap-
plied (Keiser et al., 2007; Hopkins, 2008; Campillos et al., 2008;
Rognan, 2010). Our inverse screening protocol iRAISE (Schomburg
et al., 2014) addresses this task with a structure-based procedure. It
employs similar pharmacophore feature-based descriptors and index-
based search technique as TrixP (see above). In order to deal with noise
observed for scoring functions when applied to different targets (Wang
et al., 2012), iRAISE employs a tailor-made scoring cascade. Several
normalization approaches with respect to the score of a structure's co-
crystallized ligand and the mutual coverage of target pocket and placed
ligand are included. By this means iRAISE was able to outperform a
classical docking protocol applied to target prediction. Furthermore, its
structure-based strategy has the additional advantage of providing
binding mode hypotheses. This might help to understand modes of
action and highlight opportunities for lead optimization. A large-scale
evaluation also showed that iRAISE exhibits superior performance
compared to a sequence-based method for off-target prediction in the
case of more distantly related targets, while the latter exhibits a better
enrichment for ligands that bind to proteins with higher sequence
identity. Thus structure- and sequence-based methods might be used in
combination as they complement each other.

4. Desktop applications

Compared to web services, desktop applications might be the fa-
vorable solution for certain methods that require a more comprehensive
interface or shall be incorporated in fully automated workflows. Using
in-house hardware can also be of advantage if an application requires
high data traffic or the user's input data is confidential. For these rea-
sons, we also provide many of our approaches as stand-alone software
solutions. In order to reduce technical barriers, all of our tools can be
directly used after downloading and unzipping the respective package.
Additional installation is possible and might improve personal work
habits but is not required for any application. Most applications are
available for Windows, Linux, and macOS. The collection of software
tools is comprised of several approaches targeting problems from
structural biology. Users that prefer a local tool set-up can work with
the stand-alone executables of iRAISE for inverse screening and target
profiling and SIENA for ensemble generation (cf. Section 2).
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Additionally, we also offer a stand-alone software package of the
alignment approach ASCONA (Bietz and Rarey, 2015), which is applied
by SIENA for the alignment of alternative binding site conformations.
ASCONA has a strong focus on the alignment of alternative conforma-
tions and the detection of substructures like binding sites rather than
aligning the whole protein, although this is also supported. Concerning
these purposes, most other alignment techniques have the disadvantage
that they either rely on detecting similar structures, which is obviously
counter-productive when dealing with alternative conformations, or
they apply only sequence-based descriptors but neglect structural fea-
tures, which makes it impossible to distinguish multiple copies of the
same peptide chain in homo-oligomeric proteins. However, this is often
necessary for obtaining a distinct residue assignment if the binding site
is formed by the interface of different subunits. ASCONA combines the
benefits of both approaches and thus constitutes a unique solution for
aligning binding site conformations. Besides that, it also supports other
residue-wise alignment and structural superposition tasks as long as the
input structures exhibit a sequence similarity of at least 70%.

The investigation of interaction patterns in protein–ligand interfaces
is of great interest to drug discovery. Typical tasks for this application
are the detection of specific embeddings of molecular substructures in
their chemical environment. Moreover, interaction preferences of spe-
cific molecular substructures can be revealed. The tool PELIKAN
(Inhester et al., 2017) can be used to rapidly mine large sets of pro-
tein–ligand interfaces for specific geometrical arrangements of atoms.
The underlying method goes beyond other existing applications
(Hendlich et al., 2003; Weisel et al., 2012). Firstly, its very flexible
query system allows a user to search for arbitrary geometrical patterns.
A query consists of search points, representing atoms in the pro-
tein–ligand interface, including atoms from water molecules and me-
tals. The geometrical arrangement can be defined using distance and
angle constraints as well as constraints for precalculated interactions
(cf. Fig. 3). The molecular environment of a search point can be defined
using the powerful SMARTS language. This geometrical search can be

combined with numerical and textual constraints for different proper-
ties of protein–ligand complexes. Secondly, the mined set of pro-
tein–ligand structures is variable and can be freely defined by the user.
PELIKAN works with an SQLite database storing all relevant informa-
tion, which does not need any server infrastructure. Thus, PELIKAN can
be used to find specific interaction patterns either within the complete
PDB or in all resulting structures of a virtual screening or an MD si-
mulation. On the tools website (http://www.zbh.uni-hamburg.de/
pelikan), precalculated databases constructed from different sets of
protein–ligand databases are provided.

5. Cheminformatics desktop applications

Processing large molecular data sets is probably the most elemen-
tary task in many cheminformatics related areas. Projects related to
statistical analyses of chemical libraries, database maintenance, or
candidate collection across multiple input sources require stable and
efficient software solutions addressing common problems like duplicate
removal or calculation of and filtering by molecular properties.
Therefore, a consistent handling of molecules from different input
formats is an essential basis of every cheminformatics library. Enriching
large collections of small organic molecules by additional representa-
tions is a fundamental preprocessing step in the workflows of high
throughput screening or molecular docking. This mostly requires the
enumeration of alternative conformers, tautomers, and protonation
states in order to cover a molecule's relevant state space as well as
possible. There are many applications which are able to process large
amounts of input data, but unfortunately in many cases not all standard
file formats are supported. Even more important, file format conversion
often comes along with the introduction of erroneous molecule re-
presentations. Our molecule converter UNICON (Sommer et al., 2016)
bundles the key elements of the NAOMI software library including its
consistent chemical model that allows for a stable and highly accurate
conversion of the most commonly used file formats like SDF, MOL2,

Fig. 3. Geometrical arrangements of atoms within pro-
tein–ligand interfaces can be searched with PELIKAN.
Background: Screenshot of the query design tab of PELIKAN.
A query consists of a set of search points which match atoms
(displayed as green spheres). The spatial arrangement of
search points can be defined using distance and angle con-
straints. The query can be designed from scratch or from a
pocket of interest. Foreground: Screenshot of the result pre-
sentation tab of PELIKAN. All resulting hits can be visualized
in a 3D viewer and superimposed based on the atoms
matching the search points from the query. These atoms are
highlighted with colored spheres. (For interpretation of the
references to color in this figure legend, the reader is referred
to the web version of the article.)
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SMILES (Weininger, 1988), InChI (Heller et al., 2013), PDB, and PDBx/
mmCIF. The NAOMI molecule representation based on valence states
(Urbaczek et al., 2014) also allows us to identify different molecule
representations (tautomers and protonation states) as the same mole-
cule and to enumerate alternative molecular states. It is also able to
extend the available molecule information with 2D and 3D structure
coordinates and generate conformer ensembles. With this comprehen-
sive functionality, UNICON is perfectly suited for all kinds of molecule
conversion tasks as well as automated preprocessing of large compound
libraries and could easily be integrated into automatic workflows.

Pipeline tools are commonly applied for the processing of chemical
datasets as they have the advantage that their functionality is fully
automatable and usually also extensible by custom software solutions.
On the other hand, they are less flexible if the composition of the data
processing workflow depends on intermediate results and requires
manual inspection. For this reason, we also offer a solution for the latter
scenario. MONA (Hilbig et al., 2013; Hilbig and Rarey, 2015) supports
interactive, case-driven preparation and visualization of small-molecule
datasets and aims especially at applications where the workflow op-
erations are not known beforehand. MONA integrates solutions for the
intuitive visualization of molecular dataset, statistical analyses, filtering
properties, and various combinatorial operations for processing mul-
tiple molecule sets. Also based on the NAOMI library, MONA can
consistently handle molecular entities from different input formats and
calculate a broad range of commonly applied molecular properties. The
internal application of a molecular database supports instant access to
precalculated data, reduces the runtime for many commonly required
tasks and thus allows interactive processing of molecule sets with up to
a million entries. Furthermore, MONA's graphical interface inspires an
intuitive and spontaneous workflow creation and is therefore particu-
larly valuable for users inexperienced with the set-up of more compli-
cated workflow engines or direct database queries.

Besides other criteria, MONA can create molecule sets on the basis
of SMARTS. SMARTS patterns are an essential and powerful means for
tasks like the description of chemical moieties, database searches, or
filtering out undesired molecules from a data set. However, the strong
expressive power and the manifold application possibilities of the
SMARTS language come along with the disadvantages that SMARTS
strings are not easily interpretable and even more difficult to create.
With SMARTSeditor (Schomburg et al., 2013), we provide a unique tool
that allows the user a convenient and interactive design of complex
SMARTS patterns. Based on the intuitive SMARTSviewer (Schomburg
et al., 2010) visualization concept, which is derived from structure
diagrams, even very complex SMARTS patterns can be depicted in an
easily interpretable manner. With the SMARTSeditor functionality,
these graphical SMARTS representation can be manipulated inter-
actively. In the case that the user has a certain pattern in mind, a typical
SMARTS generation workflow could start with composing a scaffold
from the provided set of ring templates and common functional groups
by drag-and-drop operations. Afterwards, further elements can be
added, edited, or removed interactively. The user can additionally
provide a molecule data set, which is visualized in a structure diagram
panel and all substructures matching the generated SMARTS pattern
will instantaneously be highlighted upon every editing step. Moreover,
SMARTSeditor also supports scenarios, where no clear idea of a pattern
exist. The integrated SMARTSminer (Bietz et al., 2015) approach allows
the user to find frequently occurring patterns in a set of molecules or
discriminative patterns that separates one dataset from another. In both
cases, the search is not limited to simple substructures but can also
derive more generalizing and specifying atomic features. A combination
of automatic pattern generation and subsequent interactive refinement
constitutes a powerful approach for an efficient design of chemical
patterns.

Another cheminformatics-based application is the systematic gen-
eration of new molecules, which, e.g., plays an important role in drug
design. Several studies have found that known drug molecules can be

described by simple physicochemical properties (Lipinski et al., 2001;
Ghose et al., 1999; Veber et al., 2002; Reichel, 2006; Oprea et al.,
2001). Therefore, molecules with these properties have a high like-
lihood of being pharmaceutically relevant. In addition, newly designed
molecules should be synthesizable. FSees (fragment space exhaustive
enumeration system) is an efficient and deterministic method to sys-
tematically generate all molecules with a user-defined physicochemical
profile (Lauck and Rarey, 2016). The basis for this algorithm are
Fragment Spaces (Rarey and Stahl, 2001), a combinatorial chemical
space constituting of molecular fragments and connection rules. The
latter determine which fragments can be connected and are derived
from chemical reactions. In order to apply FSees, a fragment space must
be constructed from a library of known molecules (Degen et al., 2008;
Lauck and Rarey, 2016). Then this space is enumerated with specific
physicochemical constraints thus yielding a library of new molecules.
FSees has been applied to different use-cases. First, molecules were
constructed from known inhibitors for a specific target. It was shown
that the resulting libraries represent a source of promising lead struc-
tures. Next, FSees was applied in a fragment-based design context. In
this scenario, all generated molecules share a user-defined structural
entity, e.g. a certain scaffold. Finally, a library of 0.5 billion lead-like
molecules was generated from approved drugs containing mostly novel
compounds (Lauck and Rarey, 2016). This library is available for
download free of charge from http://www.zbh.uni-hamburg.de/hells.

In order to identify potential drugs for a certain target protein in
such large libraries, efficient screening engines are needed. Ligand-
based virtual screening can assist addressing this purpose by searching
for promising candidates in databases which are too large to be eval-
uated experimentally. mRAISE (von Behren et al., 2016; von Behren
and Rarey, 2017) is a new method which tackles this problem utilizing
the previously described screening technology of TrixP and iRAISE (see
Section 3) with adaptations to better fit the ligand-based context.
Structural ligand alignments calculated based on descriptor matches are
scored using atom-centered Gaussian functions in combination with
weights representing biochemical similarity or dissimilarity of the re-
spective atoms. The performance of mRAISE is comparable to state-of-
the-art methods (Grant et al., 1996; Taminau et al., 2008; Roy and
Skolnick, 2015) and due to the index-based search technology used for
descriptor comparison, virtual screening with mRAISE on preprocessed
databases shows an excellent balance between computing time and
result quality compared to other methods.

6. Summary

Computational approaches play an important role in modern life
science research. We offer a wide range of software applications that
target multiple important issues in the fields related to structural
biology, chemistry, medicine, and biotechnology. Our software collec-
tion includes many state-of-the-art technologies that are made available
either via our unified web service platform ProteinsPlus or our desktop
application package. Due to the increasing amount of biological data,
the need for tools to manage and exploit this wealth of information will
grow further. While today mostly specially trained experts deal with
bioinformatics, we strongly believe that computational methods will
belong to the standard repertoire of research tools for every life scientist
soon. The ProteinsPlus server aims at making tools available to non-
experts in structural biology. As a future advancement we intend to
interconnect various functionalities of ProteinsPlus in order to provide
interactive workflows. With this service and several easy-to-use tools
we hope to contribute in paving the road into a digital life science era.
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ABSTRACT

Reliable computational prediction of protein side chain conformations and the energetic impact of amino acid mutations

are the key aspects for the optimization of biotechnologically relevant enzymatic reactions using structure-based design. By

improving the protein stability, higher yields can be achieved. In addition, tuning the substrate selectivity of an enzymatic

reaction by directed mutagenesis can lead to higher turnover rates. This work presents a novel approach to predict the con-

formation of a side chain mutation along with the energetic effect on the protein structure. The HYDE scoring concept

applied here describes the molecular interactions primarily by evaluating the effect of dehydration and hydrogen bonding

on molecular structures in aqueous solution. Here, we evaluate its capability of side-chain conformation prediction in classic

remutation experiments. Furthermore, we present a new data set for evaluating “cross-mutations,” a new experiment that

resembles real-world application scenarios more closely. This data set consists of protein pairs with up to five point muta-

tions. Thus, structural changes are attributed to point mutations only. In the cross-mutation experiment, the original pro-

tein structure is mutated with the aim to predict the structure of the side chain as in the paired mutated structure. The

comparison of side chain conformation prediction (“remutation”) showed that the performance of HYDEprotein is qualita-

tively comparable to state-of-the art methods. The ability of HYDEprotein to predict the energetic effect of a mutation is eval-

uated in the third experiment. Herein, the effect on protein stability is predicted correctly in 70% of the evaluated cases.

Proteins 2017; 85:1550–1566.
VC 2017 Wiley Periodicals, Inc.

Key words: protein side chain conformation; protein stability; mutation effect; bioengineering; protein design; HYDE scoring;

dehydration; hydrogen bonding.

INTRODUCTION

Protein mutations have different effects on a protein’s

function and stability. A mutation can stabilize the pro-

tein or tip the complex balance of destabilizing and sta-

bilizing forces within a protein to complete unfolding.

Next to the effects on protein stability, mutations can

also have large effects on the protein’s function. Exchang-

ing an amino acid certainly has numerous effects, for

example, altering the proteins enzymatic function, its

substrate specificity, or even blocking its function

completely.1

In pharmaceutical sciences, it is often crucial to under-

stand the effect of a natural mutation on a drug target

protein. Is the modified protein still binding the drug

compound? What changes in specificity and binding free

energy are related to the mutation? In biotechnology, a

protein’s function is exploited to get a profitable product.

Often much better yields can be achieved if a protein’s

function can be enhanced by a favorable mutation. Such

a mutation might improve the thermostability of the

protein and therefore allows running the reaction at

higher temperatures and prolonging the lifetime of the
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protein in reaction conditions. Furthermore, a mutation

might shift or broaden the substrate specificity of an

enzyme.

One possibility to explore mutations is random or

directed experimental mutagenesis.2–4 During the past

decades, however, more rational computer-based

approached have been pursued. Herein, the Rosetta5 soft-

ware package has a very broad impact among other exist-

ing methods.6 Two recent examples are the increase of the

thermostability of an Aspergillus oryzae cutinase with

rational design applying Rosetta modeling7 and the engi-

neering of a transcription factor with the Rosetta proto-

col.8 Using these rational computational approaches, the

number of experiments can be reduced substantially.

Recent methods are frequently based on exploiting the

high amount of available data to derive computational

models. A basis for such an approach can be common

amino acid sequences or amino acid conformations often

observed in crystal structures. While this approach is cer-

tainly a sensible one, the developed model is often highly

complex and does not give rational insights. The ques-

tion we are addressing in this manuscript is whether we

are already at the point of predicting the energetic

impact of mutations on a proteins structure based on

modeling of interactions on the atomic level using a

physics-based approach.

There are two main questions which could be addressed

by computational mutation prediction. (1) Which effect

does a mutation have on the protein stability? (Right now

most of the tools focus on the effect on protein stability

and not on the effect on the function, exceptions are

reviewed by Henikoff et al.9) (2) How does the structure

of the mutated protein look like (prediction of the

mutated side-chain conformation and its close environ-

ment)? The answer to the first question is mainly impor-

tant if amino acids far from the active site or protein

interfaces are mutated and the conformation is less rele-

vant. The answer to the second questions is important if

steric and physicochemical features within the active site,

within a tunnel to the protein’s active site, or a protein’s

interface are crucial to the protein’s function.

Available methods can be grouped into those estimat-

ing DDG differences (energy difference between the pro-

tein’s original and mutated amino acid resulting from

noncovalent interactions), thus the overall energetic

effect on the protein stability, and those focusing on the

geometry for predicting the resulting protein structure

including the side-chain conformation of the mutated

amino acid. The performance of a method predicting

DDG values can be assessed by correlation with measured

DDG values or, more coarse-grained, by comparing the

sign of DDG values (i.e., does the method predict cor-

rectly if a mutation is stabilizing or destabilizing). The

ability of a method to predict a protein conformation

correctly can be measured by comparing RMSD or

Chi(X)-angle differences of predicted amino acid

conformations. Herein, existing crystal structures of pro-

teins are used to predict the mutated amino acid side-

chain conformation while keeping all surrounding amino

acids fixed. Generally, two Chi-angles are measured for

the mutated amino acid as a success criterion, v1-angle

(N-CA-CB-CG) and v2-angle (CA-CB-CG-CD). For a

successful prediction, both v-angles have to be within

6408 of the crystal conformation.

The computational methods predicting DDG values are

usually divided into sequence- or structure-based meth-

ods, which are combining descriptors with machine learn-

ing approaches. MuPro is an example of a sequence-based

method using a support vector machine.10 The tool

achieves an accuracy of 84% when classifying the change

in the DDG value. Comparing protein sequence versus ter-

tiary structure as input the methods encounter nearly no

performance difference. Structure-based methods can also

rely on computational energy-based modeling such as

molecular dynamics, Monte Carlo, force-field-based

approaches, and statistical energy potentials (see Masso

et al.11 for an overview). The most prominent approaches

are AUTO-MUTE,11 CUPSAT,12,13 Prethermut,14 Dmu-

tant,15 FoldX,16 PoPMuSiC,17 iMUTANT,18,19 MuPro,10

MultiMutate,20 SCide,21 SRide,22 and Scpred.23

Khan and Vihinen24 compared the predictive power

of sequence- and structure-based tools on ProTherm25

data and find varying strength in predictive power. Pro-

Therm is the data set most often used for evaluation and

training of mutation prediction methods. The collection

of protein mutations from literature, annotated with

thermodynamic data, and links to other database like the

Protein Data Base is accessible via a webserver.26

I-Mutant 3.0 achieved the best performance with an

accuracy of 0.64. They also point out that they often

obtained worse results than the authors, showing that

each tool clearly performs best in the hands of the

expert. Potapov et al.27 compared energy-function based

methods: CC/PBSA,28 EGAD,29 FoldX,16 I-Mutant2.0,19

Rosetta,30 and Hunter.31 They observe that all methods

are able to predict a correct trend but fail in the details.

In their evaluation, the best correlation coefficients

between experimental and predicted DDG values were

around 0.59 while the worst performance resulted in an

R-value of 0.26. Most recent methods such as MAE-

STRO32 aim at improving the prediction of the DDG

trend with a machine learning approach. On a ProTherm

subset, they achieve similar results as others in the field

with a Pearson’s correlation coefficient of about 0.7 for

predicted versus experimental DDG values.

Protein side-chain conformation prediction has already

been addressed for a long time.33 Existing methods can

be differentiated according to their main solution strat-

egy into four main groups: (1) knowledge-based rotamer

library approaches, (2) energy functions, (3) machine

learning, and (4) statistical methods.34–40 The confor-

mational space is commonly explored using the
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backbone-dependent rotamer library developed by Dun-

brack et al.34–37 The frequency of observed conforma-

tions in experimental protein structures is also used to

derive a probability applied in pseudoenergy functions.

With their latest approach (SDWRL437), Dunbrack et al.

achieve an accuracy of the v1-angle of 86% and v1 1 v2

of 75% and for high-resolution protein structures 89%

for v1 and 80% for v1 1 v2. Recent approaches refine

these frequency-based rotamer libraries with other crite-

ria like energetic effects to reduce the needed number of

conformers for sampling.38 Energy-based approaches

make use of force fields such as CHARMM to predict

side-chain conformations40 or train a scoring function

based on physicochemical terms; that is, contact surface,

volume overlap, backbone dependency, electrostatic inter-

actions, or desolvation energy.39 Both approaches

achieve similar accuracies like the rotamer-based

approaches, while especially the force-field approaches

are computationally more time consuming.

Machine learning methods, knowledge-based derived

rotamer libraries and energy functions, and statistical

methods all depend on the data available for learning.

While the amount and quality of available data continu-

ously grows, these methods will nevertheless always

depend on the cases most prominently present in the

data and the assumption that most prominent features

are indeed energetically preferred. In contrast to these

approaches, we are focusing on the ability to predict

mutation effects by computationally modeling molecular

interactions at the atomic level using simple physics. In

the HYDE energy function applied here, molecular inter-

actions are modeled in great detail, trying to map the

energetic landscape in geometric models.41 Predicting

mutation effects in proteins can show how well these

modeling approaches are in practice today. HYDEprotein

allows DDG difference and residue conformation analysis.

Together with a numerical optimizer, the optimal confor-

mation is identified and a score assesses the energetic dif-

ference to a mutated structure.

In this publication, we introduce the application of

the HYDE scoring function to protein mutational effects

(HYDEprotein) including a freely available, new data set

for benchmarking mutation prediction tools. A compari-

son to conventional methods is of special interest as

HYDEprotein, based on a generic physical approach, was

not developed for mutational prediction. HYDEprotein

results are compared with those of Khan et al.24 Further-

more, a variety of experiments are performed to assess

the performance of HYDEprotein: remutation, cross-

mutations, and protein stability predictions. To perform

these experiments, we introduce a new data set of about

10,000 pairs of crystal structures containing mutations of

which about 9,000 remain when mutations to PRO and

ALA are omitted. In this contribution, besides the intro-

duction of the HYDEprotein approach, we want to

establish an evaluation strategy more extensive and closer

to real-world applications.

METHODS

For predicting side-chain conformations and energetic

mutation effects, two steps have to be performed: genera-

tion of conformations of the mutated amino acid and

ranking of these. Ideally, a conformation highly similar

to the one found in a crystal structure is ranked first.

In the following, we describe how we implemented

those two steps followed by the three evaluation experi-

ments remutation, cross-mutation, and energy prediction

of mutations. Finally, the data sets used for the evalua-

tion experiments are described.

Steps of the computational mutation
strategy

Amino acid mutation generation

In a protein structure, a mutation is carried out as fol-

lows: First, the side-chain atoms of the original residue

are removed from the structure. Then a default configura-

tion of the mutated amino acid is added to the mutation

site, with the backbone atoms guiding the transformation

of the atom coordinates. Next, conformations are gener-

ated for the amino acid, starting from the default confor-

mation by systematic rotation at each rotatable bond.

Here, an enumeration approach is chosen, going from

fine to coarse granules to avoid conformational explosion

for amino acids with flexible chains. The first rotatable

bond is rotated in 608 steps, the second in 908 steps, the

third in 1208 steps, and the fourth one is only rotated

once. With this approach, the number of conformations is

kept on a computationally manageable level, for example,

72 rotamers are generated for GLU and only six for SER.

Note that these conformations are considered as starting

points for the subsequent optimization and are therefore

not meant to be in energetic local optima.

Optimization of the amino acid conformation

Before scoring the quality of the given conformation, it

is necessary to optimize the conformation in accordance

to the degrees of freedom of the scoring function. The

objective function of the GeoHYDE optimizer applied

here consists of the interaction model of HYDE with

modifications to make it numerically stable in combina-

tion with a Lennard–Jones potential to avoid atomic

clashes.41 In addition, GeoHYDE contains terms to guar-

antee low-energy conformations for both the considered

amino acid and the surrounding protein: all amino acid

conformations are evaluated based on a customized intra-

molecular Lennard–Jones potential in combination with a

continuous knowledge-based torsion potential based on

the TorsionLib.42,43 For the optimization, all rotatable
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bonds including those to hydrogen-bond donors are fully

flexible. Note that bond length and other bond angles are

not modified. Owing to the complexity of the GeoHYDE

energy landscape, the search for the minimum can only

take place locally, making multiple conformations as start-

ing points for the optimization necessary. More imple-

mentation details of the optimization are given in Section

1 of the Supporting Information.

For most of the experiments, only the mutated residue

is flexible while the rest of the protein is kept rigid.

However, for the cross-mutation and for the prediction

of a mutation effect, we tested the HYDEprotein perfor-

mance with a flexible active site (active site residues that

have at least one heavy atom within a pocket of 6.5 Å

around the mutated residue).

Scoring of amino acids with HYDEprotein

Before scoring with HYDEprotein, a preprocessing of

the structures is undertaken: crystallographic water mole-

cules are optionally removed, hydrogens are assigned,

and tautomeric and protonation states and hydrogen ori-

entations are calculated with Protoss.44 HYDEprotein

applies the basic principles of the HYDE scoring func-

tion41 to an amino acid. The HYDE scoring function

incorporates three main energetic effects: hydrogen bond-

ing, the hydrophobic effect, and desolvation. In protein–

ligand complexes, HYDE estimates the energetic differ-

ences between the unbound and the bound state. It is

not calibrated on affinity data of small molecules.

Instead, log P increments are derived from a set of small

molecules with experimentally measured values.45 Owing

to the general concept of the HYDE scoring function

and the independence of experimentally measured affin-

ity data, its scoring concepts can also be applied to score

protein–protein interactions or energetic contributions of

single amino acid side chains. The free energy estimated

by HYDE for a single side-chain represents the difference

between the unfolded primary protein chain and its

folded, tertiary structure.46

The amino acid atom scores are summed up into a

total HYDE-score. For assessing not only the score of the

investigated amino acid itself but also the contribution of

the surrounding amino acids, a score is calculated as the

sum of all HYDEprotein scores for all residues in the

pocket. The pocket of a residue consists of all other resi-

dues that are within a 11.5 Å radius of the mutated resi-

due. This “large” site was chosen to better describe

mutations of smaller residues such as GLY into larger

ones such as LYS and ARG. If water molecules, ions, or

ligands are part of the pocket, their score is also added

to the total HYDEprotein score. For a classification of the

amino acid mutation, that is, whether it is energetically

favorable or unfavorable, the original amino acid is

scored in the same way. In Figure 1, an example for

HYDEprotein scores for an unfavorable [Fig. 1(A)] and a

favorable [Fig. 1(B)] residue are shown. The example

protein is a b-glucosidase chosen from the data set used

for remutation analysis (see the section “Remutation

experiment”). In this figure, the intuitive HYDE atom

coloring is shown where red-colored atoms being ener-

getically unfavorable and green-colored atoms are ener-

getically favorable, while white-colored atoms are neutral.

Characterization of amino acids

To evaluate and analyze the performance of our

method in different scenarios, we classified amino acids

as being “buried” or “solvent accessible.” For this, we

used the rather strict criterion that a buried amino acid

must have at least 20 other residues in its proximity, that

is, within a radius of 6.5 Å.

Evaluation experiments

Remutation experiment

In a remutation experiment, a single amino acid is

removed from the structure and inserted back keeping

the rest of the structure constant including crystallo-

graphic water in place. The original amino acid confor-

mation is scored and then a side-chain conformation

prediction is carried out as described above, independent

from the original conformation, and scored as well.

As performance metrics, we used the ones that are

prominent in the scientific field: RMSD and Chi (v)-

angle differences. For calculating RMSD, only the protein

side-chain atoms without Cb are used. A closer look

reveals that the two metrics can give a substantially dif-

ferent picture. Even a conformation with large v-angle

differences can have a small RMSD, see example in Fig-

ure 2. Here, an ARG is remutated and the found confor-

mation has a low RMSD (0.5 Å) but high v1 and v2

angle differences (43.38 and 67.28) and thus low rota-

tional accuracy. However, all interactions would be

achieved with the predicted conformation.

In the field of predicting amino acid side-chain con-

formations, mostly a v-angle cutoff of 6408 is used to

classify a prediction as successful. We used this cutoff as

well, to allow a comparison to other methods. Addition-

ally, we evaluated a smaller cutoff of 208, which in our

view is more suitable to detect correct predictions. We

calculate RMSD and v-angle differences not only to the

original amino acid conformation in the crystal structure

but also to the optimized original amino acid conforma-

tion. This conformation was optimized the same way as

the mutated amino acid conformation.

Cross-mutation experiment

We created a new experiment called “cross-mutation,”

referring to cross-docking experiments, where a ligand

from one co-crystallized complex is docked into a com-

plex which is crystallized with a different ligand. In a
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cross-mutation experiment, we take two crystal protein

structures with one (or more) mutation(s) and mutate

the residues into the amino acid types of the other struc-

ture, then compare the conformation with the crystal-

lized mutation. A schematic example can be found in

Figure 3.

A data set of protein pairs containing 1–5 mutations

was compiled (see the section “Data sets”). For each sin-

gle mutation pair (one mutation only), we did the cross-

mutation experiment in both directions. For the multiple

mutation pairs (more than one mutation), we did each

mutation separately. For the cross-mutations, all crystal

waters were removed before structure prediction and

scoring.

To investigate the mutual interference of several muta-

tions, we analyzed if an additional described mutation

occurs in the pocket around the mutated amino acid. As

a performance metric, we used RMSDs and v-angle dif-

ferences, comparing the conformation of the mutated

amino acid to the conformation of the crystallized con-

formation. For the RMSD calculation, the complete

backbones were used for the superposition, which may

result in higher values if there is backbone flexibility. The

cross-mutation experiment is much more difficult than

the remutation experiment, as the surrounding amino

acids might have different conformations in the crystal

structure. In those cases, for which the mutation with

rigid amino acids in the pocket resulted only in clashing

conformations, we repeated this experiment with a flexi-

ble pocket in which amino acids within the pocket

Figure 1
Example of scoring amino acids of a b-glucosidase (PDB code 4I3G). (A) SER 249 B in atom colors. (B) SER 249 B in HYDE scoring colors. The

residue gets an unfavorable HYDEprotein score of 12.52. While the hydrogen donor of the hydroxyl group forms a weak hydrogen bond, the hydro-
gen bond acceptor cannot engage in any hydrogen bond, thus is highlighted in red. The same applies for the backbone oxygen, which is also

highlighted in red. (C) TYR 82 B in atom colors. (D) TYR 82 B in HYDE scoring colors. The residue gets a favorable HYDEprotein score of 211.45.
The hydroxyl group forms a hydrogen bond with ideal geometry and the hydrophobic atoms are in contact with hydrophobic partners.

Figure 2
Remutation example where a low RMSD is reached (ARG 345 B, PDB
code 1UR1), but the rotational accuracy is low; pink 5 crystal structure,

blue 5 mutated amino acid conformation. [Color figure can be viewed
at wileyonlinelibrary.com]
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(6.5 Å around the investigated amino acid) are allowed

to rotate during the optimization step.

Energy prediction of mutations

In the third experiment, we wanted to assess how well

our method is able to predict if a mutation has a stabi-

lizing, a destabilizing, or no effect on the protein stabil-

ity. We compare the HYDEprotein score of the mutated

amino acid to the HYDEprotein score of the original

amino acid: if the difference is negative, the mutation is

expected to be energetically stable otherwise unstable.

Khan et al. evaluated the ability of methods to predict

neutral mutations (“negatives”) versus mutations of hav-

ing “any” effect on the protein stability (“positives”). In

our evaluation, however, we decided to evaluate if our

method predicts the correct effect, that is, stabilizing,

destabilizing, or no effect. Thus we applied two evalua-

tion strategies: First, we put the neutral cases aside and

evaluated if our method correctly identifies the stabiliz-

ing and destabilizing cases simply by evaluating the sign

of the HYDE-score difference of the mutation. Second,

we tested if our method is able to categorize correctly all

three cases. For the first evaluation experiment, we calcu-

lated the same performance metrics as Khan et al. in

their evaluation: accuracy, specificity, sensitivity, and

Matthew’s correlation coefficient (see Khan et al.24 for

definitions). For the second evaluation experiment, we

calculated the percentage of correct predictions for all

classes separately next to the accuracy.

For this experiment, the mutation was carried out as

described in the section “Steps of the computational

mutation strategy.” The PDB structures were stripped of

all crystal waters before the mutation. Default parameters

were used otherwise. A flexible pocket was used for

mutations leading only to clashing solutions (see the sec-

tion “Cross-mutation experiment”).

Data sets

Remutation data

For the remutation experiment, we created a data set

of 100 random crystal structures as no established bench-

mark data set exists for this experiment. We only selected

high-resolution crystal structures from the data set of

Nittinger et al.47 and remutated all amino acids except

ALA and GLY. ALA and GLY are omitted because they

have no alternative conformations. For a representative

number of reliable protein side-chain conformations, we

randomly selected 100 high-resolution crystal structures

with available electron density. We decided not to use

the data set compiled by Pottel et al.,48 who used a set

of 98 PDB structures, because their set was selected

focusing on mutations in the protein–ligand interface. A

list of the PDB codes of these 100 crystal structures is

provided in Section 2 of the Supporting Information.

Cross-mutation data set

For our new developed cross-mutation experiment, we

compiled a new data set. The PDB structures were

selected from the same data set of high-quality crystal

structures as above (criteria: high resolution (�1.5 Å)

and electron density data available).47 Within this data

set, we searched for pairs of homologous proteins deviat-

ing only by 1 (single) to 5 (multiple) mutations with the

tool SIENA.49 SIENA assembles ensembles based on the

alignment algorithm ASCONA50 (for details, see

Figure 3
Schematic representation of a cross-mutation experiment. Two complexes containing a mutation are aligned. For each complex, the amino acid is

mutated into the one from the other complex. Finally, the conformation of the mutated amino acid is compared to the original crystal conforma-
tion in the other complex. [Color figure can be viewed at wileyonlinelibrary.com]
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Supporting Information, Section 3). In this study, we

applied SIENA for searching alternative structures of the

whole query protein using the following filter criteria:

sequence identity parameter 5 0.9; maximum number of

mutations 5 5; and maximum total backbone RMSD 5 3

Å. This way, a sequence similarity of 90% and the addi-

tional total limit of 5 mutations (replacements) in the

calculated global sequence alignment are ensured. The

additional RMSD cutoff was applied to eliminate

strongly deviating protein conformations.

For each protein, a list of conformations containing

the following information is generated: the partner PDB

code, the backbone RMSD of the aligned complexes, the

position and type of original amino acid, the position

and type of mutated amino acid, and the number of

mutations between these two proteins. We filtered the

data set to contain only standard amino acids (not mod-

ified) with valid coordinates for each atom. Furthermore,

we excluded structures where either the original or the

mutated site contains a ligand; as this could influence

the conformation of the amino acid and thus makes

them not comparable. Furthermore, only buried amino

acids were kept in this experiment. Please note that the

terms “mutated” and “original” here are just used for

convenience, the assignment of wild type and mutated is

not of relevance here.

The data set can be found in the Supporting Informa-

tion. There the PDB codes for each pair and the amino

acid mutations are listed with protein chain identifier,

residue position, and amino acid codes. For complete-

ness, we listed in the Supporting Information all protein

PDB pairs, which are in total 10,002. For the evaluation,

however, we used only those cross-mutations where the

target is not ALA or GLY or PRO. This leaves in total

8,855 cases.

Table I gives an overview of the number of mutations

within the cross-mutation data set: For each amino acid

(row), the count of how many times it was mutated to

another amino acid (column) is given. Please note here:

first, the distribution is not equal; some mutations are

more likely than others, like VAL to LEU and vice versa.

Additionally, for many combinations, no data is present

as this data set relies on the available PBD structures.

Second, not all mutations are present in both directions,

for example, the mutation LEU to VAL is counted 401

times, the mutation VAL to LEU only 325 times. The

reason for this is that each amino acid is classified as

“buried” separately. As we only consider conformation

predictions of mutations to buried amino acids, some of

the pairs were discarded.

Energy prediction data

For the energetic classification of mutations, we used

the data set that Khan and Vihinen24 compiled for their

evaluation of DDG prediction tools. Adopting their evalu-

ation strategy, we defined mutations within a DDG of 6

0.5 kcal/mol as neutral, DDG> 0.5 kcal/mol as stabilizing,

and DDG<20.5 kcal/mol as destabilizing (please note

the sign of the DDG value: in ProTherm, a positive DDG

indicates stabilization and a negative DDG destabilization).

All required structures were downloaded from PDB (www.

pdb.org) and used without modification.

Some of the mutations Khan et al. extracted from Pro-

Therm25 are omitted because the amino acids are incom-

plete or modified in the downloaded crystal structure (see

Supporting Information, Section 4). In total, the data set

Table I
Counts of Amino Acid Mutations in the Cross-Mutation Data Set. [Color table can be viewed at wileyonlinelibrary.com]
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comprises 1721 data points, of which 182 are stabilizing,

652 neutral, and 887 destabilizing mutations.

Two obstacles have to be faced with the ProTherm data

set of Khan et al.: first, not all the crystal structures in

this data set are of high quality; second, the methods eval-

uated by Khan et al. are all evaluated on different subsets

of this data. As some of these methods were trained on

parts of the ProTherm data set, Khan et al. excluded the

data from their evaluation. Therefore, each method is

evaluated on a different subset of the whole data set, mak-

ing a direct comparison impossible. To respect the differ-

ent structural qualities, we categorized the data into “all

cases,” “medium-resolution cases” (PDB structures with a

resolution <2.5 Å), and “high-resolution cases” (PDB

structures with a resolution <1.5 Å).

RESULTS AND DISCUSSION

Remutation results

In this experiment, we remutated all buried resi-

dues of 100 random high-resolution PDB complexes

into themselves; the original conformation was

neglected during the prediction. We compared the

best scored conformation according to HYDEprotein to

the original crystal conformation. Two scenarios were

considered in the conformation prediction: all crystal

waters were removed from the complex and all crystal

waters were kept present in the complex. In Table II,

the results are summarized: for each amino acid, the

percentage of RMSDs smaller than 1.0 Å, the mean

RMSD, the percentage of the first v1-angle smaller

208 and 408, and the percentage of the first two v
angles smaller 208 and 408 are listed. We consider all

amino acids except ALA, GLY, and PRO; here, the

conformational space is not affected by rotational

freedom.

Including crystal waters in the conformation predic-

tion improves the performance in almost all cases (better

results with waters included for (a) RMSD <1.0 Å: 15/17

amino acids; (b) v1< 208: 15/17 amino acids; (c)

v1 1 v2< 208: 11/13 amino acids). This effect is expected

as the rotational freedom of an amino acid is often

restricted by water molecules and the conformation

Table II
Results of Conformation Prediction for Flexible Amino Acids With Crystal Water (wW) and Without Crystal Water (woW)

AA Without/with water % RMSD< 1.0 � Mean RMSD % X1< 208 (<408) % X1 1 X2< 208 (408)

SER woW 61.50 0.91 55.67(60.83)
wW 66.83 0.81 61.17(65.83)

THR woW 80.87 0.53 74.76(80.55)
wW 87.64 0.35 82.02(87.48)

VAL woW 87.72 0.30 72.16(74.67)
wW 88.49 0.29 72.71(75.37)

CYS woW 89.77 0.37 84.66(91.48)
wW 89.20 0.39 84.66(90.34)

ASN woW 87.34 0.54 86.39(91.77) 72.15(84.49)
wW 93.33 0.38 93.65(97.78) 73.02(86.98)

ASP woW 89.58 0.46 87.26(93.82) 74.13(87.64)
wW 95.38 0.32 95.00(98.85) 76.92(92.69)

HIS woW 92.38 0.41 94.29(95.71) 78.57(86.19)
wW 93.30 0.30 95.22(95.69) 79.43(89.95)

ILE woW 77.28 0.67 80.79(88.19) 61.59(67.90)
wW 78.11 0.64 81.35(88.74) 63.42(68.83)

LEU woW 79.53 0.59 69.80(83.64) 58.69(64.06)
wW 81.17 0.55 71.07(85.09) 60.01(65.32)

PHE woW 97.11 0.31 97.66(99.86) 96.69(98.48)
wW 97.38 0.30 98.07(100.0) 96.97(98.76)

TRP woW 93.08 0.53 94.62(96.92) 93.85(93.85)
wW 98.46 0.33 98.46(98.46) 98.46(98.46)

GLN woW 64.48 1.06 68.85(78.69) 60.66(67.21)
wW 85.08 0.54 86.74(91.71) 82.32(85.64)

GLU woW 81.41 0.69 77.89(87.44) 71.86(82.91)
wW 87.94 0.45 89.45(93.97) 82.41(90.95)

MET woW 51.86 0.92 69.34(82.52) 53.87(63.04)
wW 51.00 0.93 69.34(80.80) 51.29(60.74)

TYR woW 96.63 0.28 97.62(98.41) 93.65(97.82)
wW 97.02 0.21 97.82(97.82) 92.86(97.22)

LYS woW 48.57 1.35 60.00(73.33) 45.71(53.33)
wW 51.43 0.97 66.67(82.86) 50.48(62.86)

ARG woW 60.61 1.37 63.64(78.79) 55.15(63.64)
wW 84.85 0.65 80.61(91.52) 72.73(80.61)

The percentage of conformations below 1.0 Å RMSD, the mean RMSD, the v1-angle differences below 408 and 208, and the v1 1 v2 differences below 408 and 208 are

given. Bold numbers are discussed in detail in the “Results” section.
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might be supported by water-mediated hydrogen bonds.

This result is further supported by the fact that side

chains with more rotatable bonds have a greater decrease

in performance if water molecules are not included in

the conformation prediction; that is, ARG achieves v1

differences <208 of 81% with water molecules but only

64% without water molecules.

Our method performs best on large aromatic amino

acids such as TYR (97% of v1 1 v2< 408), TRP (98% of

v1 1 v2< 408), and PHE (98% of v1 1 v2< 408). In the

case of ARG, we achieve a satisfying performance with a

mean RMSD of 0.65 Å by including the crystal waters.

However, ignoring the water molecules, the performance

decreases to a mean RMSD of 1.37 Å. For SER, TYR,

and ARG, the histograms for the v1 and the RMSDs are

shown in Figure 4.

As a baseline experiment, we tested if our optimization

algorithm is able to identify the crystal conformation of

SER, TYR, and ARG. Therefore, we optimized the crystal

conformation of these residues. Almost all the optimized

conformations were found with an RMSD below 0.5 Å

(see Fig. 4, pink bars). In the remutation experiment, the

correct conformations (RMSD below 0.5 Å) are almost

always found for TYR. For SER and ARG, on the other

hand, the correct conformations are only identified in

two-thirds of the cases (see Fig. 4, blue bars).

The results show that SER is the most difficult to pre-

dict, which was also observed by others in the field.37

An example is shown in Figure 5: the original conforma-

tion of SER 935 A of a clathrin adaptor protein (PBD

code 1KYF) is scored with a HYDE-score of 2.4 as ener-

getically unfavorable. In this conformation, the hydrogen

acceptor of the hydroxyl group is interacting with the

amide nitrogen of ASN-A-852 and the hydrogen donor

forms a weak H-bond with the carbonyl-oxygen of CYS-

A-931. In the remutation, the best scored conformation

has a high RMSD (2.6 Å) and a large v1 angle difference

(1638) to the original conformation. In this HYDEprotein-

favored conformation, the hydroxyl group can form mul-

tiple interactions with a water-cluster nearby resulting in

an energetically favorable score of 20.3.

Table III summarizes the mean and median RMSD

and the percentages of v1 and v1 1 v2 smaller than 408

and 208 for all amino acids (except ALA, GLY, and

PRO). The mean and median RMSD are calculated

according to Krivov et al.37 by averaging over the aver-

ages of the amino acid types. Krivov’s method SCWRL4

applies the widely used backbone-dependent Dunbrack

Figure 4
Detailed performance metrics of remutation for SER, TYR, and ARG. Top row: histograms for the RMSDs of SER, TYR, and ARG below 0.5, 1.0,
1.5, 2.0, 2.5, and 3.0 Å thresholds. Pink bars: RMSD of optimized crystal conformation versus crystal conformation. Blue bars: remutated confor-

mation versus original conformation. Lower row: histograms for X angle differences below 58, 108, 208, 408, and 908 cutoffs of remutated versus
original conformation, chi1–5: v-angles starting with v1 (N-CA-CB-CG) to v5 (CD-NE-CZ-N) for arginine. [Color figure can be viewed at

wileyonlinelibrary.com]
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rotamer library. SRWL4 is trained on 100 protein struc-

tures and tested on 379 structures, while our method is

not trained on mutational data and tested on 100 high-

resolution protein structures (see the section Methods).

Using our method, we achieve better RMSD values,

while the results for v-angles below 408 are comparable

(Table III). Since Krivov et al. did not evaluate the per-

centage of correct v-angles below 208, we cannot com-

pare the performance on this level. However, our results

show that 81% of the v1-angles and 71% of the v1 1 v2-

angles are below 208and therefore very close to the origi-

nal conformation.

Cross-mutation results

The cross-mutation data set contains in total 10,002

protein pairs, of which 1170 have a single mutation,

1833 two-, 865 three-, 4361 four-, and 1773 five-point

mutations. In each cross-mutation experiment, all amino

acid mutations were analyzed separately. This means that

a protein pair with five point mutations results in 10

mutation experiments; that is, every mutation is analyzed

individually, thus resulting in five mutations in each

direction.

We classified the mutations into three different catego-

ries: “single” mutations are those cases where only one

amino acid is mutated in the complexes. “multisimple”

are those structure pairs, where more than one point

mutation occurs. These are most likely harder to predict

as the complex might undergo higher conformational

changes than with a single point mutation. These multi-

case mutations are done one by one. Effects of other

mutations cannot be seen with our method. The third

category are so-called “multihard” cases with more than

one mutation and an additional mutation close to the

currently investigated mutation site (i.e., within 6.5 Å

around the amino acid). In these cases, the complete

pocket might change the conformation, thereby making

it harder to find the correct conformation. All predic-

tions were performed without crystal water, as these

might be replaced by mutations of smaller amino acids

into larger ones or are placed at other positions.

Table IV summarizes the overall performance analysis

of the cross-mutation experiment. Compared to the

remutation experiment, our results here show a decrease

in performance with a median RMSD between the origi-

nal and the predicted side-chain position of 1.15 Å on

all cases. Considering the category single, only the

median RMSD of 0.58 Å is smaller and comparable to

the remutation experiment. In the multisimple class, the

performance decreases to a median RMSD of 0.94 Å and

Figure 5
(A) Original crystal conformation of SER 935 A of 1KYF, HYDEprotein score: 2.4. (B) Conformation found in the remutation, score: 20.3. Water

molecules are reoriented by Protoss44 due to the changed environment. [Color figure can be viewed at wileyonlinelibrary.com]

Table III
Summary of the Remutation Experiments Based on 100 High-
Resolution Structures and Comparison to Krivov et al.37 (Results Based

on 379 Test Cases)

With water Without water Krivov et al.

Mean RMSD 0.56 0.48 0.82
Median RMSD 0.22 0.21 –
% X1 < 408 85 87 89.3
% X1 < 208 78 81 –
% X1 1 X2 < 408 77 79 79.7
% X1 1 X2 < 208 68 71 –

Mean RMSD, median RMSD, %v1 and %v2 angles between 408 and 208, with

and without water in the complex.
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decreases even further for the multihard cases with a

median RMSD of 1.46 Å. A similar pattern can be

observed for the rotational angle performance statistics:

for the single cases, the v1< 408 and< 208 are with 85%

and 72% almost as good as in the remutation experi-

ment. In case of the multihard category, the percentages

drop to 46% and 30%, respectively. The same holds true

for the comparison between the v1 and v2-angle differ-

ence in the original and the remutated side chains. The

performance is comparable to the remutation experiment

for the single cases (74% and 65%). For the multihard

cases, percentages of only 32% and 19% were achieved.

Note that the data set contains about six times more

multisimple and multihard cases than single cases and is

therefore biased toward multicases.

For a more detailed analysis of the performance, we

analyzed the v1 difference smaller 408 for all mutations

separately. The results are shown as a heat map in

Table V. We find cases which a 100% correctly predicted

throughout different types of mutations: from small to

larger amino acids like GLY to THR, or VAL to PHE;

from hydrophobic to hydrophilic amino acids like LEU

to GLU and also from large to small ones like ARG to

LEU. This shows that the method is not biased toward

one type of mutations. The cases where the method does

not find a conformation close to the crystal one also

involve different types of mutations (compare Table V).

Mutations starting from ALA, GLN, and ARG are best

predicted (compare last column of Table V) while con-

formations of mutations to PHE, TYR, LYS, ASN, and

HIS were identified most successfully (compare last row

Table V).

Table VI shows the mutation pairs for which only

clashing solutions were found by the “rigid” mutation

method. Unsurprisingly, mutations starting from smaller

amino acids such as GLY and ALA are more likely to

produce clashing solutions only than starting with large

amino acids such as ARG and LYS. For some mutation

pairs such as ALA to TRP or GLY to ASP, all occurrences

in the data set result in clashing conformations.

As the backbone RMSD between the two proteins of a

mutation pair in the data set can be at most 3.0 Å

(SIENA filtering criterion), the reason for clashes are

more likely induced by side-chain rearrangements near

the mutated residue. Therefore, we evaluated if our

method is able to find nonclashing solutions for these

cases when all amino acids in the proximity of the

Table IV
Results of the Cross-Mutation Experiment

Category All Single Multisimple Multihard

Count 7549 956 3051 3542
Median RMSD 1.15 0.58 0.94 1.46
% X1< 408 60.97 84.73 70.47 46.39
% X1< 208 46.06 72.07 56.93 29.67
% X1 1 X2< 408 47.56 73.95 57.13 32.19
% X1 1 X2< 208 35.16 64.85 44.35 19.23

All cases in sum and split into three categories are shown. This evaluation does

not contain the cases where only clashing solutions were found. These were in

total 1313 of the 8855 cases.

Table V
Percentages of Amino Acid Mutations, Where v1 Angle Differences are Below 408. [Color table can be viewed at wileyonlinelibrary.com]

SER THR CYS VAL LEU ILE MET PHE TYR TRP ASP GLU ASN GLN HIS LYS ARG SUM

ALA 28.5 94.1 87.9 17.0 100.0 78.0 0.0 44.7 80.0 - 83.3 65.6 55.6 100.0 100.0 100.0 100.0 70.9

GLY 100.0 100.0 - - - - - - - - - - - - - - 0.0 66.7

SER 100.0 11.5 0.0 - - - - 100.0 - - 0.0 - - - - 0.0 35.3

THR 85.7 58.8 64.9 66.7 75.9 - - - - 0.0 - - - - - - 58.7

CYS 39.6 0.0 - - - - - 100.0 - - - - - - - - 46.5

VAL 70.6 7.3 - 38.5 63.7 83.3 100.0 - - 79.2 0.0 - - 0.0 12.5 - 45.5

LEU 7.7 0.0 100.0 4.1 47.9 99.5 100.0 - - 50.0 100.0 100.0 100.0 6.8 100.0 100.0 65.4

ILE 100.0 73.1 - 35.6 15.4 64.0 100.0 - - 0.0 90.1 72.6 50.0 - - - 60.1

MET - 10.2 - 31.6 86.9 0.0 - - - - - - 49.7 - 100.0 88.0 52.3

PHE 0.0 - 100.0 0.0 99.0 98.8 0.0 97.9 62.5 - - - - 100.0 - 0.0 55.8

TYR 0.0 51.2 31.3 - 100.0 0.0 - 98.4 - 0.0 - - - - - - 40.1

TRP - - - - 33.3 - - 81.6 - - - - - - - 0.0 38.3

ASP - 0.0 - 9.1 100.0 0.0 - - - - 72.7 97.9 100.0 - - - 54.2

GLU 0.0 - 50.0 - 100.0 93.1 - - - - 56.3 - 86.3 100.0 - 0.0 60.7

ASN 33.3 - - - - 100.0 - - - - 100.0 - 66.7 50.0 - - 70.0

GLN - 50.0 - - 100.0 33.3 96.5 - - - 40.0 76.2 - 100.0 - 100.0 74.5

HIS - - - 27.3 5.3 - - 100.0 - - 80.7 40.0 79.0 95.7 - 100.0 66.0

LYS - - - - 100.0 - 0.0 - - - - - - - - 50.0 50.0

ARG - - - - 100.0 - 87.5 - - - - 0.0 - - - 100.0 71.9

SUM 42.3 44.2 62.8 21.0 74.6 53.7 53.9 89.3 94.5 62.5 48.9 49.4 81.0 81.0 65.3 82.5 48.9

Target Amino

acid

Star�ng Amino acid

Schomburg et al.

1560 PROTEINS



mutation are flexible upon optimization. In summary, 844

of these 1313 clashing cases could be resolved (64%). How-

ever, introducing more flexibility also allows the optimizer

to explore alternative local minima, making it harder to

identify the global minimum (crystal structure conforma-

tion). Of the 844 conformations, only 208 (25%) have an

RMSD smaller than 1 Å compared to the aligned crystal

structure. On the other hand, the v-angle performance is

more promising, with 59% of the v1 angle differences

below 408 (58% below 208) and 32% of v1 1 v2 angle dif-

ferences below 408 (24% below 208). The RMSD perfor-

mance is not as good as the v1 angle performance since the

alignment is a global one and even small backbone changes

might result in a not exact side-chain alignment.

Finally, we show two detailed examples of successfully

resolved clashes upon cross-mutation (Fig. 6). In Figure

Table VI
Percentages of Amino Acid Mutations, Where Only Clashing Solutions are Found. [Color table can be viewed at wileyonlinelibrary.com]

SER THR CYS VAL LEU ILE MET PHE TYR TRP ASP GLU ASN GLN HIS LYS ARG AVG

ALA 2.7 5.6 12 71.4 32 0 77 53.5 28.6 100 0 46 63 94 0 0 47 37.2

GLY 2.09840010010010010017977

SER 6.130000100013.33713.2

THR 2.71000151031.500

CYS 9.036.2900

VAL 0 0 0 0 0 70 0 0 75 33 17.8

LEU 0 0 0 14.7 1 0 62.2 100 100 0 0 0 0 20 0 0 18.6

ILE 0 0 0 0 0 1.19 100 0 0 0 0 9.2

MET 8.400044.06.3161

PHE 3.8008.5196.70000600

TYR 3.208.5100000

TRP 7.1050

ASP 2.402207000

GLU 3.403.33001000

ASN 9.83.3300110

GLN 0 0 0 0 0 0 83.3 0 10.4

HIS 0 0 75 0 0 0 0 0 9.4

LYS 0.0000

ARG 0.00000

AVG 7.3 11.0 4.2 29.8 2.3 3.6 9.6 47.8 54.8 83.2 9.1 14.6 27.4 23.8 35.0 6.7 8.6

Target Amino

acid

Star�ng Amino acid

Figure 6
Examples of remedy of clashes by flexibility of amino acid side chains. In yellow, is shown the mutated protein; in blue, the nonmutated structure;

in purple, the conformations of the fully flexible pocket side chains are depicted. (A) Yellow: 4KVP with PHE 157. Blue: 3D06 with VAL 157. Pur-
ple: mutated residue PHE 157 and results of side-chain optimization. (B) Yellow: 4FCS with TRP 164. Blue: 3FMU with SER 164. Purple: mutated

residue TRP 164 and results of side-chain optimization. [Color figure can be viewed at wileyonlinelibrary.com]
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6(A), an oncogenic mutant (VAL157PHE) of the tumor

suppressor protein p53 is superimposed with the original

nonmutated structure. As a third structure, the confor-

mations identified by keeping the side chains flexible are

depicted. In the nonmutated structure, LEU 145 is

rotated into the pocket and thus would clash with PHE

157 if it would be kept rigid during the mutation pro-

cess. In the optimized pocket (purple), it is moved out

of the way while the other side chains are kept in place.

The RMSD of the mutated conformation of PHE com-

pared to the crystal structure is 0.68 Å. In Figure 6(B), a

mutation (SER164TRP) of a versatile peroxidase is

shown (yellow: PDB 4FCS, TRP 164; blue: PDB 3FMU,

SER 164). The side-chain causing the clash here is ARG

257. It seems to be very flexible at this position, as in the

3FMU crystal structure, two alternating conformations

are given. In the mutation experiment replacing the SER

with TRP and allowing all amino acid side chains to

rotate, this ARG adapts a different conformation (pur-

ple). The conformation found (purple) differs from the

crystal structure, but allows the TRP to achieve the same

conformation as in the crystal structure (RMSD: 0.13 Å).

Energy-prediction results

In the energy-prediction experiment, we assess the

methods capabilities to predict the effect of a mutation

on the overall energy of a protein. Three types are possi-

ble: stabilizing, destabilizing, or neutral mutations. In the

first experiment, we omitted the neutral cases and

assessed if our method correctly identifies stabilizing and

Table VII
Results of the Stability Prediction Experiment by Evaluating the Cor-

rectness of Stabilizing Versus Destabilizing Effects on the Data Set of
Khan et al.24

Subset # mutations TP FP TN FN Acc TNR TPR MCC

All 1069 125 325 562 57 0.64 0.63 0.69 0.24
Buried 336 24 73 222 17 0.73 0.75 0.59 0.24
Medium resolution 701 95 196 370 40 0.66 0.65 0.70 0.29
High resolution 220 35 65 103 17 0.63 0.61 0.67 0.24
High-resolution

buried
85 13 23 44 5 0.67 0.66 0.72 0.31

# mutations, number of mutations; TP, number of true positives (stabilizing

mutations); TN, number of true negatives (destabilizing mutations); FP, false pos-

itives; FN, false negatives; Acc, accuracy; TNR, true negative rate/specificity; TPR,

true positive rate/sensitivity.

Figure 7
A favorable mutation of THR 62 A into VAL 62 A of a DNA-binding protein (PDB code 1VQB). (A) Energetically unfavorably contributing origi-

nal amino acid side-chain scored with HYDEprotein; red 5 unfavorable energy contributions; green 5 favorable energy contribution. (B) Mutated
side chain with mainly favorable energy contribution. [Color figure can be viewed at wileyonlinelibrary.com]

Table VIII
Results of the Stability Prediction Experiment With Clashes Removed

Due to a Fully Flexible Site

Subset # mutations TP FP TN FN Acc TNR TPR MCC

All 1069 135 354 533 47 0.62 0.60 0.74 0.26
Buried 336 26 88 207 15 0.69 0.70 0.63 0.23
Medium resolution 701 103 217 349 32 0.64 0.62 0–76 0.30
High resolution 220 40 71 97 12 0.62 0.58 0.77 0.29
High-resolution

buried
85 13 26 41 5 0.63 0.61 0.72 0.27

# mutations, number of mutations; TP, number of true positives (stabilizing

mutations); TN, number of true negatives (destabilizing mutations); FP, false pos-

itives; FN, false negatives; Acc, accuracy; TNR, true negative rate/specificity; TPR,

true positive rate/sensitivity.

Evaluation of the correctness of stabilizing versus destabilizing effects on the data

set of Khan et al.24
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destabilizing mutations. A mutation is classified as desta-

bilizing if the differences in the HYDEprotein score of the

original versus the mutated amino acid are positive and

stabilizing otherwise. As we are relying on high-quality

crystal structures in the HYDE scoring method due to

the detailed geometric modeling of hydrogen bonds, we

classified the data set provided by Khan et al.24 and only

evaluated buried mutations (see the section “Methods”).

Table VII shows the results of this experiment. Matthew’s

correlation coefficient is with 0.31 best for the high-

resolution buried cases, followed by 0.29 for the

medium-resolution cases, indicating a marginal better

performance for buried structures. The correlation is

within the range of other methods,24 although the corre-

lation coefficients are not directly comparable, due to the

usage of different data sets for the evaluation of the

other methods.

Figure 7 shows an example for a stabilizing mutation.

According to ProTherm data, mutating THR A 62 of a

DNA binding protein (PDB code 1VQB) to VAL stabil-

izes the protein with a DDG of 1.3 kJ/mol. In Figure

7(A), the original amino acid is highlighted in the HYDE

coloring scheme and shows mainly energetically unfavor-

able contributions (red). The amino acid side-chain is

involved in unfavorable interactions with ILE-A-2 and

VAL-A-63 in the crystal structure, which leads to a pen-

alty in the HYDE scoring function. The total score of the

amino acids is with 0.86 unfavorable. Figure 7(B) shows

the mutation to the hydrophobic VAL. This resolves the

energetically unfavorable situation: not only the amino

acid itself is scored much better (HYDE-score of 25.7)

but also the surrounding amino acids achieve a favorable

score of 213.5. This stabilizing mutation was found by

Sandberg et al.,51 who also evaluated the activity of the

protein mutants. They found that this mutation is stabi-

lizing but not improving the activity of DNA binding.

This illustrates a common effect: stabilization does not

necessarily mean that the mutant is also more active.

In the experiment as described above, a mutation

resulting in only clashing conformations of the mutated

amino acid side chain was counted as destabilizing,

despite its experimentally validated effect. In a second

experiment, we re-evaluated these cases allowing the sur-

rounding amino acids to be flexible, thus the pocket side

chains can be rotated during the optimization (Table

VIII). The HYDEprotein score is used to determine the

best conformation. Of the original 94 cases with clashing

solutions (83 destabilizing and 13 stabilizing), 50 could

be resolved using this setup. Only three structures

remained for which only clashing solutions were found

and the mutation was classified as stabilizing. Unfortu-

nately, for those mutations, no crystal structures are

available in the PDB. Therefore, we could not investigate

how the protein structures accommodate the mutated

amino acids. It might be that in these cases, a backbone

movement is needed, as the amino acids are in rather

tight pockets.

Figure 8 shows one example where the site of the

amino acid mutation is in a rigid pocket and only clash-

ing solutions are found even though the experimental

DDG is favorable. Anderson et al.52 reported a stabilizing

mutation of SER A 117 to PHE A 117 of a T4 lysozyme

(PDB code 2LZM), which leads to a higher thermostabil-

ity of the protein (4.88C higher melting point). Keeping

all amino acids in the pocket flexible, a nonclashing

mutation is achieved due to rearranging LEU A 121 and

LEU A 113; a rearrangement also described by Anderson

et al. Achieving a HYDE-score of 23.5, the hydrophobic

PHE is scored much better in its hydrophobic environ-

ment than the original SER. Owing to an unsatisfied

oxygen atom pointing into the hydrophobic pocket, SER

got an unfavorable HYDE-score of 4.4.

Finally, we included neutral mutations as a potential

outcome and evaluated the capability of the method to

distinguish these three mutation effects: stabilizing,

destabilizing, or neutral. For neutral cases, we used an

HYDEprotein score of 61 as a cutoff. The results are

Figure 8
Cross-mutation with fully flexible pocket amino acids. Mutation of SER
A 117 to PHE of a T4 lysozyme (PDB code 2LZM). Original crystal

structure in yellow; cross-mutated structure in purple. To accommodate
the larger PHE amino acid, LEU 121 and LEU 133 are moved out of

the way. [Color figure can be viewed at wileyonlinelibrary.com]

Table IX
Percentage of Correct Predicted Mutation Effects by HYDEprotein for

Stabilizing, Destabilizing, and Neutral Cases on the Data Set of Khan
et al.24

% Correct

Stabilizing Destabilizing Neutral Total

All 55.49 54.23 25.61 43.52
Buried 53.66 71.86 12.03 53.30
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shown in Table IX: for each class, the percentage of cor-

rectly predicted cases is given, and the total percentage of

correctly predicted cases. The evaluation shows that in

this three-class prediction, our method better predicts

stabilizing and destabilizing effects: 54% and 72% cases

are predicted correctly for the buried subset, respectively.

However, the neutral cases are only in 12–26% predicted

correctly. In general, buried amino acids are more likely

to be correctly predicted (compare Table IX). This evalu-

ation shows that a prediction method such as HYDEpro-

tein should be used to predict strong effects like clearly

stabilizing or destabilizing.

CONCLUSION

In this work, we focused on two major aspects: (1) the

evaluation of HYDEprotein to predict protein mutations

and (2) the introduction of a thorough evaluation strat-

egy including a benchmarking data set with protein

mutation pairs.

We assessed the performance of HYDEprotein to predict

protein structure changes in the context of mutations.

The most basic task is to predict the side-chain confor-

mation of an amino acid within its native structural

environment. Assessing this task, we found that HYDE-

protein is performing comparably to the other state of the

art protein conformation prediction tools. In contrast to

these, HYDEprotein is a physically motivated scoring func-

tion without any supervised training to mutation data.

In the second part of this publication, we introduced a

novel cross-mutation performance experiment and a new

data set. This experiment is in our opinion more difficult

and represents a more realistic application scenario than

the simple remutation experiment. Not surprisingly, a

performance drop can be found in this setup. We would

like to encourage other researchers to use this experi-

ment in combination with the data set for their perfor-

mance evaluation (data set can be found in the

Supporting Information).

In the third experiment, we evaluated the ability of

HYDEprotein to predict the energetic effect of a mutation.

Herein, HYDEprotein shows promising results as soon as

the mutational effect is clearly stabilizing or destabilizing.

Future development will go into the correct identifica-

tion of energetically neutral effects that are more difficult

to predict. The results are especially encouraging as

HYDE has not been trained on mutational data and thus

exploits the physical basis to predict protein stability and

provides a deeper insight into protein stability. Therefore,

we are convinced that with HYDEprotein, we are on a

promising way toward predicting mutation effects.

HYDEprotein could be further enhanced by considering

the alternative conformations of amino acids given in the

PDB files. In our study, consistently, the first conforma-

tion listed in the PDB file was chosen for analysis.

However, the second conformation might lead to better

results. Furthermore, mutations into CYS are currently

not analyzed concerning their ability to form disulfide

bridges. Thus, mutations to CYS might give wrong

results. Another potential enhancement could be the

usage of conformation libraries rather than applying an

unguided enumeration strategy as these libraries have

been shown to improve current methods.34–37

Two effects that are neglected by most mutation pre-

diction methods are backbone flexibility and the correct

handling of water molecules. Both aspects are very com-

plex and not easy to solve. However, they could lead to a

great enhancement of the method’s accuracy. Especially,

backbone flexibility will certainly be necessary to cor-

rectly predict mutations that lead to a greater conforma-

tional change. Currently, water molecules are represented

implicitly in HYDE, if no v-ray observed ones are pre-

sent. However, the correct placement and integration of

water molecules displays a further aspect of

improvement.

Compared to methods based on the assumption that

structural observations are energetically favorable,

HYDEprotein can even be applied if no previous informa-

tion is available. As the contribution of molecular inter-

actions is modeled on a pure physical basis, a prediction

of underrepresented or complete missing mutations in

available data will be possible. HYDEprotein is showing

promising results on mutation conformation prediction

while it could profit from relevant finding in the field

like conformational libraries.
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ABSTRACT: Water molecules are of great importance for
the correct representation of ligand binding interactions.
Throughout the last years, water molecules and their
integration into drug design strategies have received
increasing attention. Nowadays a variety of tools are available
to place and score water molecules. However, the most
frequently applied software solutions require substantial
computational resources. In addition, none of the existing
methods has been rigorously evaluated on the basis of a large number of diverse protein complexes. Therefore, we present a
novel method for placing water molecules, called WarPP, based on interaction geometries previously derived from protein
crystal structures. Using a large, previously compiled, high-quality validation set of almost 1500 protein−ligand complexes
containing almost 20 000 crystallographically observed water molecules in their active sites, we validated our placement strategy.
We correctly placed 80% of the water molecules within 1.0 Å of a crystallographically observed one.

■ INTRODUCTION

A good understanding of water molecules and their
interactions with proteins and small molecules is essential for
the prediction of protein−ligand binding geometries and
affinities. Not surprisingly, the interest in individual water
molecules and their contribution to molecular interactions, and
by this to the binding affinity, has increased dramatically in the
past years. Not only do water molecules mediate interactions
between protein and ligands, but also, their displacement can
be a major contributor to protein−ligand binding affinity.1,2

This increased interest is also reflected by the number of
tools and methods available nowadays for the prediction,
placement, and scoring of water molecules, ranging from rather
simple geometric scoring criteria to extensive molecular
dynamics (MD) simulations. Available methods can be
separated into four different classes: (1) empirical and
knowledge-based methods (Consolv,3 WatCH,4 WaterScore,5

PyWATER,6 Proasis WaterRank,7 the relevance metric,8

AQUARIUS2,9,10 WATGEN,11 AcquaAlta,12 WaterDock,13

Tetrahedron-water-cluster model,14 Fold-X,15 HINT (Hydro-
pathic Interactions) toolkit,16 Dowser++17), (2) statistical and
molecular mechanics methods (GRID,18−20 3D-RISM,21,22

MCSS,23−25 WaterFLAP,26 wPMF,27 SZMAP28), (3) MD
simulation methods (WaterMap,29,30 GIST,31 STOW,32

WATCLUST,33 SPAM,34 WATsite,35,36 GCT,37−39 BiKi
Hydra40), and (4) Monte Carlo simulation methods
(RETI,41,42 the double decoupling method,43,44 double
decoupling with RETI,45 MCRS,46 JAWS,47 GCMC48−50).
The first category can be further classified according to the aim
of the method. Some of those methods identify conserved

crystallographically determined water molecules, others try to
assign a relevance score to them, while others place and/or
score water positions. The number of protein structures used
for evaluation of the methods declines throughout the four
classes. Empirical and knowledge-based methods have been
evaluated on seven to 193 structures, statistical and molecular
mechanics methods on zero to 100 structures, MD simulation
methods on fewer than 10 structures, and Monte Carlo
simulation methods on fewer than 15 structures. Table 1
provides a comprehensive list of all of these methods, including
short descriptions and information about their evaluation. We
refer to a recent review51 and perspective52 on water for more
detailed information about the various methods.
A consistent, reliable, and fast water placement procedure is

important for different application scenarios. Crystal structures
with low resolution (>2.7 Å) do not allow modeling of water
molecules.69 Usually, protein−ligand docking poses are
generated without water molecules. However, water molecules
are important for the correct estimation of their binding
affinity. Most of the frequently used software solutions for
water placement are time-consuming, preventing their dynamic
application to a large number of protein−ligand complexes.
Especially for the development of water placement and

prediction methods, the data used for training as well as
evaluation display an important and at the same time difficult
aspect. The individual energy contribution of a water molecule
cannot be measured experimentally. The difference in energy
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measured upon displacement of a water molecule is always in
combination with the extension of the ligand. Additionally, the
experimental evidence for a specific location of a water
molecule should be included. An ideal data set would contain
not only the oxygen atom position of the water molecule but
also the orientations of the hydrogen atoms. Those “ideal” data
could be retrieved from neutron diffraction data. To date,
however, too few structures are available for large-scale
evaluation purposes (142 structures are currently deposited
in the Protein Data Bank (PDB)70). Thus, protein structures
determined by X-ray crystallography in combination with their
electron density data display a foundation for data set
assembly.
Here we present a method for placing water molecules on

the basis of interaction geometries derived from a large-scale
analysis of PDB structures.71 Our water placement procedure,
WarPP, relies on structural characteristics of protein
complexes. Previously defined interaction surfaces71 have
been exploited to define areas that are energetically favorable
for water molecules. For validation, we applied WarPP to a
high-resolution PDB subset72 including water molecules with
experimental evidence using the electron density of individual
atoms (EDIA) score.72 Last, our placement strategy was
applied to single test cases of relevant drug targets:73

bromodomain and Bruton’s tyrosine kinase.

■ METHODS

Water Placement. Our method to place water molecules
consists of three main steps (Figure 1): (1) identification of
free space, (2) generation of explicit water molecules, and (3)
refinement of water positions. As a preprocessing step, all of
the crystallographically observed water molecules were

removed from the structure, and the hydrogen-bond network
was optimized using Protoss.74 The orientations of hydrogen
atoms and electron lone pairs are mandatory for WarPP.
However, including crystallographically modeled water mole-
cules during the hydrogen-bond network optimization would
lead to a substantial bias, with hydrogen atoms and electron
lone pairs oriented toward the water molecules. Thus, the
crystallographic water molecules were removed, and the dry
hydrogen-bond network was optimized to avoid this bias.

Selection Step. Initially, volumes sufficiently large to
accommodate a water molecule must be identified (section 1
in Figure 1). Every polar nitrogen or oxygen atom with either
an unsaturated hydrogen-bond function or a nonideal
interaction geometry was selected. The geometry score from
HYDE was applied with a cutoff value of 0.85. This value
indicates that a hydrogen bond is statistically less favorable
than solvating water molecules.75 The geometric score is

defined by four measurements (Figure 2) and the following
combination:

α β‐ = · · ·f f d f d f f(H bond) ( ) ( ) ( ) ( )dev dev 1 dev 2 dev dev (1)

The four geometric measures were selected to symmetrically
represent a hydrogen-bonding interaction: the heavy-atom
distance (d1), the distance between the lone pair and the
hydrogen atom (the so-called head−head distance, d2), the
donor angle (α), and the acceptor angle (β). Every geometric
measure can achieve a score between 0 and 1, depending on
the deviation from the ideal distance/angle. Overall, fdev(H-
bond) results in a score between 0 and 1.
The polar atoms were assigned interaction directions on the

basis of large-scale analysis of hydrogen-bond geometries in
protein−ligand complexes71 using NAOMInova.76 On the basis
of this analysis of hydrogen bonds, interaction surfaces (IASs)
were defined.71 Those surfaces were discretized using a dot
distance (dD) of 0.4 Å (section S1 and Figure S1), with every
point resembling a potential water position (PWP). Every
PWP was assigned a geometric score according to its position.

Figure 1. Major steps of the developed water placement workflow,
including the main aspects performed in each step (left) and their
corresponding effects on the placed water molecules (right);
Abbreviations: IA, interaction; PWP, potential water position; FIP,
free interaction point; SASA, solvent accessible surface area. Detailed
information about the parametrization (parameters: radius for the
selection of relevant FIPs, rrel; available interaction surface cutoff for
mandatory FIPs, pman; shifting radius cutoff, rcutoff; number of shifting
repetitions, ncyc; maximum distance radius, rmax; and single linkage
clustering radius, rslc) can be found in section S1 in the Supporting
Information. The remaining parameters (the shifting vector sj and the
FIP position pj) are explained in Methods.

Figure 2. (a) Four measurements for the geometric score calculation.
D is the donor heavy atom; H is the hydrogen atom; A is the acceptor
heavy atom; Lp is a lone pair; d1 is the distance between the donor
and acceptor heavy atoms; d2 is the distance between the hydrogen
atom and the lone pair, with distances D−H = 1 Å and A−Lp = 1 Å;
α is the donor angle (H−D−A); β is the acceptor angle (Lp−A−D).
(b) Example plot of the geometric score ( fdev) distribution over the
angle deviation from the ideal geometry to the maximum allowed
deviations. The hydrogen-bond geometry definitions for water
molecules are given in Table S1.
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The geometric score ( fdev) is defined as shown in eq 1 and
Figure 2. Here d1, d2, and the angle at the water molecule (α
for water as the donor, β for water as the acceptor) were set to
have ideal geometries. Thus, the score was determined only by
the angle at the interacting protein or ligand atom.
The PWPs were then classified as either available (free

interaction points (FIPs)) or covered (i.e., other protein or
ligand atoms made this position unavailable for a water
molecule) (section 1 in Figure 1). For PWP−ligand/protein
atom overlap, adjusted atom radii were used to allow
hydrogen-bond distances shorter than the sum of the van
der Waals radii of polar atoms (see Parametrization of WarPP).
All of the remaining, non-overlapping PWPs (i.e., the FIPs)
were subsequently used to generate explicit water positions. In
theory, a water molecule could be placed on each FIP.
However, this would lead to too many water molecules in close
proximity. Therefore, relevant FIPs were selected using a
distance cutoff of rrel to any surrounding FIPs from other
nearby IASs. If no other IASs were within the distance cutoff,
the FIP was discarded. The only exceptions were FIPs from
“mandatory” IASs with a specific proportion of available
surface area (pman). Those FIPs were termed “mandatory”
because they often reflect water molecules in narrow cavities.
Additionally, isolated FIPs were removed. Since the selection
process depends on the surrounding IASs, the removal of FIPs
is order-independent.
Repetition Step. Placing a water molecule for every relevant

FIP would still result in too many placed waters. Therefore, the
following selection strategy was applied (section 2 in Figure 1).
In order to detect FIPs that allow multiple hydrogen bonds,
the FIPs were shifted toward each other for a specific number
of cycles (ncyc). The aim of the iterative shifting procedure was
to draw FIPs toward better geometries. The actual shift of each
FIP was defined by its own assigned geometric score as well as
the geometric scores of the FIPs within a cutoff distance rcutoff
(Figure 1).
Every FIP position pj is shifted by a shifting vector sj, which

is calculated using all FIPs i within the distance rcutoff and
weighted on the basis of the geometric score f j of the FIP. For
every FIP j, geometry-weighted shifting vectors dji with the
surrounding FIPs i in the distance rcutoff are calculated:

=
+

· −
f

f f
d p p( )ji

i

i j
j i

(2)

For all FIPs i on IAS k (FIP(k)), a normalized shifting vector is
calculated:
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The weighted shifting vector is calculated for every IAS k
separately. Then the shifting vector is calculated as
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Because of the normalization by the number of interaction
surfaces (|IAS|), every IA contributes equally independent of
the actual number of FIPs on each surface. To obtain the final
position of FIP j in the current cycle, pj(t), the shifting vector is
added to the position from the previous cycle, pj(t − 1):

= − +t tp p s( ) ( 1) (t)j j j (5)

The shifting cycles were repeated to finally result in clusters
of FIPs. In every cycle, the distance cutoff rcutoff was increased
by a specific percentage up to a final distance cutoff rmax.

Refinement of Water Positions. After sufficient conver-
gence of the FIPs was reached, single-linkage clustering was
applied with a distance cutoff of rslc to retrieve explicit water
positions. The clustering of the points was again weighted by
the assigned geometric scores (eq 1). Since only structurally
relevant water molecules were of interest, only those positions
with less than 50% solvent-accessible surface area (SASA) were
kept (50% SASA is about the available surface area when two
hydrogen-bonding interactions are formed; data not shown).
The placed water molecules (section 2 in Figure 1) are
sometimes located in close proximity to each other. Therefore,
a water refinement step was added to move water molecules to
a correct hydrogen bond distance between them (section 3 in
Figure 1).
All of the placed water molecules were optimized using a

gradient-based numerical optimization. The scoring function
was designed to be simultaneously easily optimizable
continuously differentiable and without singularities (like,
e.g., the Lennard-Jones potential has)and to model the
experimentally observable characteristics as closely as possible.
Herein, three different distance terms were modeled: (1)

between water molecules and apolar atoms to avoid clashes,
(2) between water molecules and polar atoms to represent
hydrogen-bonding interactions, and (3) between water
molecules to shift them to correct hydrogen-bond distances.
The scoring function was the weighted sum of these terms.
The numerical optimization itself was performed using an

in-house implementation of the Broyden−Fletcher−Gold-
farb−Shanno (BFGS) algorithm (see ref 77 for a detailed
description of this algorithm). A simple backtracking line
search (described in ref 78) was used to determine the step
size. To preserve the positive-definiteness of the Hessian
approximation, a damped BFGS update strategy was employed
(as described in ref 79). Excessive movement of water
molecules during optimization was prevented by limiting the
step size such that no water molecule moved more than 0.5 Å
in each BFGS iteration.
The whole procedure, from the identification of free space to

the optimization of placed water positions, was repeated to
account for water networks within the protein structure.
Herein, the already-placed water molecules from the previous
round were considered in the same way as protein and ligand
atoms. For the correct representation of the interaction
network, the hydrogen-bond network of the protein−ligand
complex, including the placed water molecules, was optimized
using Protoss before the second iteration.

Data Sets. High-Resolution PDB Subset.72 To evaluate the
developed water placement procedure, WarPP, a previously
compiled PDB subset72 exclusively containing structures with
resolution less than 1.5 Å was employed. All of the water
molecules contained in this subset were filtered by their
underlying electron density using EDIA (preliminary version
for water molecules).72 Furthermore, the high-resolution water
molecules were differentiated according to their position as at
the protein complex surface, at the protein−ligand interface
(PLI), at the protein−protein interface (PPI), or captured (i.e.,
surrounded by protein). More details about the EDIA
calculation and the classification of water molecules are
provided in our previous publication.72 In this study, only
the PLI water molecules of relevant ligands (i.e., no buffer

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.8b00271
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

E



molecules or common cofactors) were used for evaluation
purposes. Because of the recent development of EDIA
applicable to multiple atoms (EDIAm

80), the ligands were
further checked for their quality using a minimum EDIAm of
0.8, i.e., a sufficient coverage of electron density. Thus, 1491
protein complexes with 2397 active sites and almost 20 000
water molecules were finally selected (see section S2 for
further information).
Drug Targets.73 Two different protein targets were selected

to show the benefit of our method: bromodomain (BRD)81

and Bruton’s tyrosine kinase (BTK).82−85 Nine BRD and nine
BTK structures were selected to analyze the effect of displaced
water molecules. Three different aspects were evaluated
concerning the quality of our method: recreation of the
water position, number of placed water molecules in a specified
“area of interest”, and recreation of the hydrogen-bond
network. Another reason for the selection of these structures
was a recent comparison of 3D-RISM, SZMAP, WaterFLAP,
and WaterMap.73 For both targets, structural pairs are available
where minor changes to the ligands cause a disruption of the
surrounding water network. Thus, those tools were used to
place and score water positions. Here we used the first part of
the results, the prediction of water positions, to compare our
method to state-of-the-art software solutions.

■ RESULTS AND DISCUSSION

This section is split into three parts. First, the parametrization
of the water placement procedure, WarPP, is briefly
summarized. Second, the large-scale evaluation of WarPP is
described. Third, the single test cases for placement of water
molecules in the BTK and BRD structures are discussed.
Parametrization of WarPP. Because of the relatively small

number of free parameters, they were adjusted manually. The
definitions and parametrization of the free parameters of the
above-described method for placing water moleculesdot
distance (dD), atom radii adjustment (radj), radius for relevant
FIPs (rrel), proportion of free IA surface area for mandatory
FIPs (pman), radius increase (ri) and maximum radius (rmax) for
shifting of FIPs, number of cycles (ncyc), and single linkage
clustering distance (rslc)are explained in section S1 in the
Supporting Information.
Large-Scale Water Placement Evaluation. On the basis

of the high-resolution PDB subset,72 the sensitivity (eq 6) and
precision (eq 7) of WarPP were evaluated:

=
+

=sensitivity
TP

TP FN
TP

no. of crystal waters (6)

=
+

=precision
TP

TP FP
TP

no. of predicted waters (7)

where TP is the number of true positives, which is the number
of placed water molecules within X Å of a crystallographically
determined water molecule; FP is the number of false
positives, given by the number of placed water molecules
without a crystallographically determined water molecule
within X Å; and FN is the number of false negatives, which
is the number of crystallographically determined water
molecules without a placed water molecule within X Å. (The
number of true negatives (TN), corresponding to “free space”
with no crystallographically determined water molecule within
X Å, cannot be calculated.)

The active site of the protein was defined as all atoms within
a distance r = 8.0 Å of any ligand atom, with the full amino acid
side chain considered as soon as one of its atoms is within
range. To account for boundary effects (as exemplarily shown
in Figure 3), the active-site radius was extended to 10.5 Å for
placement of water molecules.

For sensitivity analysis, only those crystallographic water
molecules within 8.0 Å of a ligand atom that had two or more
possible hydrogen bonds to either the protein or the ligand
were used (19 808 water molecules). The sensitivity gives
information about how many crystallographically observed
water molecules are not detected by our method. Thus, all of
the water molecules interacting with the protein or ligand
should be matched by our method.
The method’s precision is more difficult to evaluate because

the number of water molecules where no crystallographic water
molecules are observed is analyzed. However, multiple reasons
for nonavailable crystallographic waters are at hand: First, the
water might be too flexible to be defined to a specific position,
which is frequent for waters at the protein surface and the rim
of the active site. Second, water molecules might not have been
placed during structure refinement. Our method not only
identifies water molecules in confined volumes but also places
water molecules that are closer to the surface of the PLI
resulting from two or more close interaction surfaces.
Therefore, the precision was calculated using all of the
crystallographically observed water molecules with sufficient
EDIA (0.24 < EDIA < 3.3). Additionally, for the afore-
mentioned reasons, we considered only the placed water
molecules classified as at the PLI, at the PPI, or captured.
Overall, our method can recall 48% of the crystallo-

graphically observed water molecules within 0.5 Å and 80%
within 1.0 Å (Figure 4a). The precision of our method is 66%
at 1.0 Å (Figure 4b), which means that on average our method
places three water molecules for two crystallographically
observed ones. However, as mentioned before, some of the
water molecules might not be resolved by crystallography for
various reasons. Therefore, in addition to the sensitivity and
precision, we analyzed the pairwise distance and EDIA
distribution of the placed water molecules. In the case that
many water molecules are closely placed, the interpretation of
the results is very difficult. The pairwise distance distribution of

Figure 3. Exemplary representation of active-site selection. Black
spheres represent the ligand. The white region is the active site with r
= 8.0 Å, and the gray region is the bigger active site with r = 10.5 Å. x
denotes a crystallographic water molecule within the active site, and
⊗ indicates a placed water molecule matching the crystallographically
observed one.
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crystallographically observed water molecules showed the main
peak at around 2.8 Å, the ideal hydrogen-bond distance
(Figure S11). The distribution of the placed water molecules is
in accordance with the distribution of the crystallographically
observed water molecules (Figure S12). Thus, it also
demonstrates that the parametrization of the optimized scoring
function accurately captures the experimental observations.
The EDIA distributions were generated for crystallographically
observed water molecules, water molecules placed by WarPP,
and randomly placed water molecules using a grid-based
approach (Figure S13). For randomly placed water molecules,
a 3D grid was generated for the active site with a voxel distance
of 2.2 Å. Every available (i.e., not covered by protein or ligand
atoms) voxel was used for calculating the EDIA. In order to
achieve better sampling, the 3D grid was shifted separately in
the x, y, and z directions for half the voxel distance. The
distribution of EDIA values for water molecules placed by
WarPP has a greater number of small (i.e., bad) EDIA values
compared with the EDIA distribution of crystallographically
observed water molecules. However, the EDIA distribution of
placed water molecules is about 40% better than that of
randomly placed water molecules.
An overview of our water placement shows that many

interface water molecules were matched well (Figure 5a). Also,
the tetrahedrally coordinated water molecule in HIV protease
(HOH-A-1037) was placed with great accuracy (0.14 Å).
Water networks are also recreated in our water placement

procedure (Figure 5b). Further examples of the consistency of
WarPP are shown in Figure 6. In addition to crystallo-
graphically observable water molecules, WarPP also predicts
water positions where electron density is available but no water
molecules were placed (Figure 6a). In this example, the
unaccounted electron density was within the active site, and
the placed water molecule was within hydrogen-bond distance
to a backbone nitrogen and could potentially interact with
another water molecule. An example of the limitations of
WarPP, provided by the thrombin S1 pocket, is shown in
Figure 6c. The deeply buried water molecule (HOH-H-3098)
was not matched by a placed water molecule. The reason is the
identification of free interaction directions. The only possible
interaction for this particular water molecule was the backbone
carbonyl oxygen of Phe-H-227. However, this oxygen atom
already forms two geometrically high-quality interactions to
two backbone nitrogen atoms (Ser-H-214 and Trp-H-215).
Thus, no free interaction direction is available for which a
water molecule would need to be placed, even though the free-
space identification correctly identified a small number of
available points around the crystallographic water molecule.

Single-Case Evaluation. On the basis of three different
protein families that were previously used for the evaluation of
water placement and scoring methods,73 the accuracy of water
molecule placement was evaluated as well as compared to that
by other state-of-the-art methods: 3D-RISM, SZMAP, Water-
FLAP, and WaterMap.

Figure 4. (a) Sensitivity of optimization of crystallographically observed water molecules (X-ray) and the water placement procedure with (WP w/
opt) and without optimization (WP w/o opt). The optimization of crystallographically observable water molecules should result in only minor
movements, which indicates a correct parametrization of the optimization function. (b) Precision of WarPP with optimization.

Figure 5. Example cases of water placement. (a) Accurate placement of a highly integrated water molecule in HIV protease (PDB ID 1kzk,86

HOH-A-1037, circled in black). (b) Recreation of a water network (PDB ID 3az387). Light-blue spheres represent placed water molecules; water
molecules shown as a red oxygen atom with white hydrogen atoms are X-ray-observed water molecules.
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The placement of water molecules for different protein
targets was compared to the placement in the previous study.73

Herein, the placement was evaluated concerning three different
aspects: (1) the distance of each crystallographically observed
water molecule to the closest placed water molecule, with
every placed water molecule considered only once; (2) the
number of placed water molecules in a certain area of interest,
i.e., to evaluate the ease of interpretation of the method; and
(3) the recreation of the water network.
The distances between the oxygen atoms of the observed

and placed water molecules were measured to quantify the
accuracy of the placement procedure. Our water placement
procedure placed 81% of water molecules in BRD structures
(Figure 7a,b) and 60% of those in BTK structures (Figure
7c,d) within 1.0 Å of the crystallographically observed ones. In
the previous study, WaterMap achieved the highest accuracies
for both targets (∼90%). The accuracies for BRD varied for
the other tools between 60% (3D-RISM) and 78% (Water-
FLAP), while apart from WaterMap, all of the other tools
achieved accuracies of around 60% for BTK.

Apart from the single distances, the number of placed water
molecules gives valuable information about the interpretability
of the results. Therefore, a so-called “area of interest” was
defined using spheres that resembled the active site. The
number of placed water molecules within this area was counted
for each software tool and compared to the number of
crystallographically observed ones. WarPP placed the same
number of water molecules as crystallographically observable
ones in both targets. Here one must point out that the total
number of water molecules placed for each structure
individually did not always match exactly. WaterMap also
placed roughly the same number of water molecules as
observed experimentally, while SZMAP and WaterFLAP
placed 30−60% more water molecules. The numbers of
water molecules placed by 3D-RISM were fewer in BRD
structures and more in BTK structures compared with the
numbers of crystallographically observable waters.
Last, the recreation of the water network was analyzed using

pairwise distances between the oxygen atoms of the water
molecules. The pairwise distances were calculated for the
crystallographically observed water molecules and separately

Figure 6. Example cases showing the consistency of WarPP. (a) No X-ray water, electron density, placed water: water molecules are correctly
placed in unaccounted electron density (green mesh) (PDB ID 1c5u88). (b) No X-ray water, no electron density, placed water: water molecules are
placed in confined volumes (PDB ID 1j9689). (c) X-ray water, electron density, no placed water: an unidentified water molecule (yellow circle,
HOH-H-3098) is in a tight cavity of thrombin; yellow arrows indicate hydrogen-bonding interactions of the carbonyl oxygen of Phe-H-3098 to the
backbone nitrogen atoms of Ser-H-214 and Trp-H215 (PDB ID 2zff90). (d) X-ray water, no electron density, no placed water: there is a narrow
polar area within the protein with no free space; the crystallographically placed water molecule has no electron density (inset) (PDB ID 3fpc91).
Light blue spheres represent placed water molecules; water molecules shown as a red oxygen atom with white hydrogen atoms are X-ray-observed
water molecules.
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for the placed water molecules. As an objective criterion, the
networks were then compared using root-mean-square
deviation (RMSD) values. The water network is important
especially for further usage of the water placement (i.e.,
scoring). The water molecules might be close to each other
and thus form hydrogen bonds. If the water placement cannot
correctly recreate those distances, the formation of hydrogen
bonds might not be possible. Compared with the state-of-the-
art methods, WarPP was best in recreating the pairwise
distances in BRD structures (average RMSD = 0.51 Å) and
second best for BTK (average RMSD = 0.69 Å), while
WaterMap was most accurate for BTK structures (average
RMSD = 0.43 Å).
Overall, our water placement procedure based on geometric

criteria derived from protein crystal structures, WarPP, gave
results comparable to those of state-of-the-art software
solutions based on the selected 18 structures of BRD and
BTK targets. In addition to the achieved sensitivity, WarPP is
fast, with an average run time of 6.8 s per active site (Figure 8).
It is thus well able not only to place water positions for docking
poses but also to generate different water networks upon
exploitation of protein flexibility.

■ CONCLUSIONS

Many methods for the evaluation of water molecules have been
developed throughout the last years. One great drawback of
nearly every method is the evaluation strategy, which is often
based on a few selected protein structures only. Additionally, a
major problem is the lack of experimental data for single water
molecules. Individual energy contributions cannot be meas-
ured experimentally, and the only experimental data available
in substantial quantities to support the position of water
molecules is electron density. Therefore, we used the

previously developed EDIA score72,80 as a basis for our
evaluation of water molecules well-supported by electron
density.
Here we have described a new method for placing water

molecules in protein structures. On the basis of a large-scale
evaluation of 2400 protein−ligand interfaces containing 20 000
water molecules, this evaluation is to our knowledge the most
extensive among water placement methods. Our geometry-
based method achieved a sensitivity of 80% for placement of a
water molecule within 1.0 Å of a crystallographically observed
water molecule.
A comparison to state-of-the-art methods based on two

relevant drug targets with nine protein−ligand structures each
showed that our developed water placement procedure is at
least comparable and in some cases even superior to those
methods.

Figure 7. Superimposed structures of (a) BRD with crystallographically observed water molecules, (b) BRD with water molecules placed by
WarPP, (c) BTK with crystallographically observed water molecules, and (d) BTK with water molecules placed by WarPP. A list of corresponding
PDB IDs can be found in Table S3. Molecular graphics were generated using Chimera.92

Figure 8. Run times for placing water molecules within an active site
of 10.5 Å (left) and for each water molecule placed (right).
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WarPP was designed to place water molecules in protein−
ligand structures resolved by X-ray crystallography. For the
high-resolution data set, structures containing DNA or RNA
were excluded. In direct connection to the mentioned aspect is
the composition of the evaluation data set. A data set for which
multiple lines of evidence exist (i.e., neutron diffraction data)
would be ideal. However, in our opinion such idealistic data
sets that are additionally freely available to the public do not
exist for many structures. Additionally, we think that using an
idealistic but small data set for a computational method such as
the presented one would not allow a statistical valid evaluation.
Thus, using a large data set, such as our high-resolution data
set, allows the determination of a realistic application range.
On the basis of the free hydrogen-bond directions as a starting
point for WarPP, water molecules that are at least partially
enthalpically stabilized are placed. From our point of view, a
detailed reason for the stabilization of water molecules in
protein structures cannot always be identified. However, water
molecules that are solely entropically stabilized, in so-called
“hydrophobic bubbles” completely surrounded by hydrophobic
residues, cannot be placed with our method. Since our method
relies on freely available hydrogen-bond functions, the latter
water molecules cannot be predicted. According to one of our
previous publications,72 among all water molecules with
experimental evidence in protein crystal structures, about
0.5% are in hydrophobic bubbles. An often-mentioned
problem of water placement methods is the recreation of
water−water networks. This problem is addressed in part by
WarPP’s two iteration processes. In the second iteration, water
molecules placed in the first one are considered, and water−
water contacts are thus modeled. However, this does not lead
to a “full” solvation shell of the protein complex.
The investigation of water placement as well as the

contribution of individual water scores, such as recently
published by Aldeghi and co-workers,93 can aid a better
understanding of the role of water molecules in protein
structures and help during drug development strategies.
Finally, the water placement procedure based on geometric

criteria is reproducible and comprehensible in combination
with a short run time. WarPP allows consistent placement in
protein−ligand structures where no water molecules were
placed (i.e., due to low resolution of the crystal structure) as
well as for docking poses. Furthermore, it displays a solid
foundation for further analysis of protein−ligand complexes as
well as scoring of protein−ligand complexes with a consistent
and reliable representation of water molecules.
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Abstract. Targeting the interaction with or displacement of the ‘right’ water molecule can 
significantly increase inhibitor potency in structure-guided drug design. Multiple 
computational approaches exist to predict which waters should be targeted for displacement to 
achieve the largest gain in potency. However, the relative success of different methods 
remains underexplored. Here, we present a comparison of the ability of five water prediction 
programs (3D-RISM, SZMAP, WaterFLAP, WaterRank, and WaterMap) to predict 
crystallographic water locations, calculate their binding free energies, and to relate differences 



2 

 

in these energies to observed changes in potency. The structural cohort included an HIV 
protease structure, nine Bruton’s Tyrosine Kinase (BTK) structures, and nine bromodomain 
structures. Each program accurately predicted the locations of most crystallographic water 
molecules. However, the predicted binding free energies correlated poorly with the observed 
changes in inhibitor potency when solvent atoms were displaced by chemical changes in 
closely related compounds. 

Introduction. 
Recently, targeting crystallographically observed water molecules for displacement or 

specific interaction to improve ligand affinity has proved successful in drug discovery. An 
array of computational methods now exist that attempt to predict which specific water(s) in a 
binding site should be targeted for displacement to achieve the largest gain in potency. 
Existing programs analyze water locations and energetics using different approaches ranging 
from simply scoring observed crystallographically observed water molecules, to grid-based 
sampling methods, to extensive use of molecular dynamics simulations to generate water 
positions and their corresponding energies (Table 1). Our interest in assessing water analysis 
tools was based on achieving a better understanding of hydration in active sites so that, 
ultimately, our ability to design molecules with increased potency, selectivity, binding 
kinetics, etc. can be achieved prospectively with proper use of these computational tools. 
 
Table 1. Water placement tools used in this study. 

 
WaterMapa SZMAPb WaterFLAPc 3D-RISMd Proasis WaterRanke 

Method MD simulation Grid-based Grid-based Grid-based Geometry-based 

Scoring of X-ray water N
f
 Y Y N Y 

Water prediction Y Y Y Y N 

Water score (unit) ΔG ΔΔG ΔGwat (kcal) ΔGhyd (kcal/mol) Geometric score 

Uses original PDB file N (minimized) Y Y Y Y 

a Maestro Version 2015-04. b SZMAP Version 1.2.0.7. c FLAP Version 2.2.0. d MOE Version 2015.10. e Proasis Version 3. 
 f WaterMap accepts X-ray water coordinates as starting points for MD simulations. 

 

Molecular dynamics (MD) simulations are utilized by the program WaterMap.[1] In that 
case, a 2 ns simulation is run on a semi-constrained protein (only hydroxyl rotors allowed to 
move) within a box of waters to determine the preferred locations of water. Simulations can 
include static ligands with only hydroxyl rotors being free to move. Inhomogeneous solvation 
theory[2, 3] is then applied to determine the enthalpies and entropies of predicted waters. 
Recently, Carlson et al.[4] reported success with an unconstrained mixed-solvent molecular 
dynamics method that identifies water sites that are likely to be undisplaceable. Other 
simulation-based methods include Grand Canonical Monte Carlo (GCMC)[5], Just Add Water 
moleculeS (JAWS)[6] and double decoupling-Monte Carlo[7]. Monte Carlo methods may 
permit better sampling than MD-based methods but were not assessed in this study. 
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Grid-based methods include WaterFLAP[8], SZMAP[9], 3D-RISM[10, 11] and WaterScore 
(GIST)[12]. WaterFLAP (Fingerprints for Ligands And Proteins) locates water hydration sites 
using their proprietary GRID molecular interaction fields followed by scoring for 
hydrophobic and entropic character using their CRY and ENTR fields.[8] The implicit-water 
nature of using GRID technology is taken one step further with SZMAP, in which explicit 
waters are placed at grid points within the active site, followed by calculation of the 
energetics of each probe water relative to the same probe with charges removed, and 
separately, with van der Waals terms removed. The latter is termed a ‘vacuum’ probe. 3D-
RISM (3D Reference Interaction Site Model) produces an approximate average solvent 
distribution around a rigid solute.[10, 11] Based on the density functional theory of liquids in 
the grand canonical ensemble, 3D-RISM produces an approximate average solvent 
distribution around a rigid solute using statistical mechanical methods. The evaluation of self-
consistent equations generates solvent density maps that suggest the location of solvent 
molecules (waters).  The contribution to the total solvation free energy can then be computed 
at each point on a grid allowing one to infer the displaceability of individual waters.  

WaterRank[13, 14] provides a more enthalpic determination of existing waters in crystal 
structures but does not predict the location of such waters prospectively. WaterRank provides 
an assessment of water displaceability by statistically analyzing geometries of waters within 
existing crystal structures. Others tools such as AQUARIUS[15, 16], SuperStar[17, 18], and 
Consolv[19] are beyond the scope of this study. 

Correlations between observed changes in potency and energetic calculations of displaced 
waters using a specific program have been reported. Abel et al. showed a respectable 
correlation (R2=0.81) between calculations from an early version of WaterMap on 31 
congeneric ligand pairs of inhibitors for Factor Xa spanning a range over 6 kcal/mol of 
relative free energies.[1] Beuming and colleagues used WaterMap on PDZ domains and found 
a correlation between the calculated free energies of explicit water molecules and the peptide 
ligands that displaced them.[20] Chrencik and colleagues used WaterMap retrospectively to 
explain the large potency increase with the installation of a nitrile-containing moiety on their 
pan-JAK inhibitor by identifying a high energy water in the region occupied by the nitrile 
group.[21] Laha and co-workers examined a thiazole-based series of CDK5 inhibitors, using 
WaterMap's assessment of two specific hydration sites to explain increased potency for 
ligands that displaced a high-energy water and decreased potency for ligands that displaced a 
relatively stable water[22]. In addition to these examples there are cases where WaterMap 
was used to obtain enrichment with virtual screening.[23, 24]. 

Comparisons of specific pairs of water calculations programs have recently appeared. 
Nguyen et al., compared GIST to WaterMap using a series of factor Xa inhibitors.[25] 
Bodnarchuk et al. used N9-Neuraminidase to look at JAWS, GCMC, and double-
decoupling.[26] Mason et al. applied a combination of GRID, WaterMap and SZMAP to a set 
of G-protein coupled receptors to assess the druggability of GPCR binding sites.[27] 
Bortolato and Mason analyzed the properties of the active sites and associated waters within 
protein-ligand complexes of 12 congeneric adenosine A2A receptor antagonists as using a 
combination of WaterMap, SZMAP, GRID, and GCMC, concluding that the methods were 
complementary.[28] A comprehensive review on the role of water in the protein matrix 
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recently appeared, in which water calculation tools are described in detail.[29] However, to 
our knowledge, no direct comparison of the ability of multiple programs to predict water 
locations and energetics, and map those predictions to differences in potency across multiple 
protein and ligand families have been reported. 

The most challenging aspect of analyzing solvent positions in protein structures is 
predicting their energetic contribution to the complex. In ligand design, success of such 
predictions cannot be assessed on their own, and instead the quality of the prediction is 
indirectly read out as the relative affinity of a new ligand bearing atom(s) to displace a given 
water molecule compared to the reference ligand. This approach conflates prediction of water 
energy estimates with the quality of the ligand design that displaces it and therefore makes it 
difficult to objectively interpret. To address this inherent difficulty, we compared solvent 
energy calculations across 19 high resolution crystallographic protein-ligand complexes, nine 
of which were newly refined and deposited to the pdb. The cohort of crystal structures ranged 
from 1.0Å -2.1Å resolution, the majority of which were better than 2Å resolution. These 
structures were selected because ligands displaced specific solvent molecule(s) through 
conservative changes to the chemical structure of the ligand and with minimal shifts of 
binding pose relative to the protein. To assess the generality of our conclusions, we analyzed 
complexes from three protein families, Bromodomains (BRD), Bruton’s Tyrosine Kinases 

(BTK), and an HIV protease. 
In this study, the following software tools for predicting and scoring water molecules were 

evaluated: WaterMap (Schrödinger, Maestro Version 2015-04)[1], SZMAP (OpenEye, 
Version 1.2.0.7)[9], Proasis WaterRank (Desert Scientific, Proasis Version 3)[14], 
WaterFLAP (Molecular Discovery, FLAP Version 2.2.0)[8], and 3D-RISM (Chemical 
Computing Group, MOE Version 2015.10)[10, 11]. Three aspects concerning the accuracy of 
the programs were evaluated: (1) precision in the prediction of the location of 
crystallographically observed water molecules; (2) re-creation of the crystallographic water 
network using predicted water oxygen positions; and (3) correlation between predicted water 
energies and the observed structure-activity relationships (SAR). 

 
Data Sets. 

Crystal structures of protein-ligand complexes of HIV protease, BTK, and BRDs were 
selected to facilitate comparison of solvent networks by considering well-refined structures of 
better than 2.1Å resolution containing ligands with only minor chemical changes. In total, ten 
novel structures were determined to fill in the cohort. All of the structures crystals were 
grown by established methods and structures determined by molecular replacement. 
Accession codes and data and refinement statistics are provided in Supporting Information 
(Tables S1 and S2). Binding affinities, as measured in in vitro displacement assays, were 
available for all small molecule inhibitors, allowing a comparison of the energetics of water 
displacement to the effect on potency to be made. 

Bromodomains (BRD). Four compounds (Figure 1a) co-crystallized with three proteins, 
BRD-9, BRD-4, and TAF-1, were selected for the analysis of displaced water molecules.[30] 
In these bromodomain structures, four left-handed alpha helices are packed in an antiparallel 

bundle. Two loop regions are present between helices A and Z (ZA loop) and B and C 
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(BC loop) and the acetylated lysines bind in the hydrophobic pocket created by these loop 
regions with their amides usually forming a direct hydrogen bond to a conserved asparagine 
located at the beginning of the BC loop (Figure 1b). The ligands in the bromodomain 
structures we studied possess a pyrrolopyridone core that also contains hydrogen bond 
interactions to this Asn100 (BRD9 numbering) through the carbonyl oxygen of the pyridone 
and the NH of the pyrrolo moiety. The tail extending from the pyridone portion of the core 
makes numerous vdW interactions with a neighboring lipophilic shelf in the protein that is 
formed primarily by Gly43, Phe44, and Phe45 and other nearby lipophilic residues. A total of 
nine Bromodomain structures were analyzed (Table 2, Figure 1c). Although the sequences are 
not identical, the topologies of the acetyllysine binding sites are identical with only minor 
motion of the protein heavy atoms observed. The binding sites were therefore superimposed. 
This afforded an ideal opportunity to assess the role of water displacement on ligand binding 
potency. Each compound displaced different water molecules within each protein structure, 
causing complete displacements of water molecules or rearrangements of the water network 
in most cases. 

Details of the competition TR-FRET based binding assay used to assess 1, 2, 4, and 5 have 
previously been described.[30, 31] 

 
Figure 1. a) Co-crystallized BRD inhibitors. Compound numbering was taken from Crawford 
et al.[30] b) Crystal structure of the complex of compound 5 with BRD9. Conserved amino 
acids and adjacent secondary structural elements are labeled. c) Superposition of all 9 
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inhibitors showing consistency of binding mode, protein conformation, and water occupation. 
Waters chosen for the analysis are numbered. Amino acid numbering is based on BRD9. 

Table 2. Bromodomain structures and their corresponding crystallographic water oxygen 
numbers, taken from Crawford et al.[30]. Binding affinities were also taken from Crawford et 
al.[30]. 

Compound IC50 
(µM)a Protein X-ray 

Resolution (Å) 
Observed Watersb PDB accession 

code #0 #1 #2 #3 #4 
2 0.092 BRD4(1) 1.45 x x x x x 5i80 
4 0.46 BRD4(1) 1.40 c x x d - 5i88 
1 13.7 BRD9 1.04 x x x x x 5i40 
2 0.23 BRD9 1.15 x x x x x 5i7x 
4 0.16 BRD9 1.45 x x x x x 5i7y 
5 1.4 BRD9 1.03 x x x x x 6bqa 
2 0.059 TAF1(2) 1.21 x x x x x 5i29 
4 0.41 TAF1(2) 2.14 e x x - - 6bqd 
5 0.046 TAF1(2) 1.49 f x x g - 5i1q 

a) IC50 values were not significantly shifted by assay components, as the concentrations of the biotinylated competitor and 
bromodomain protein were well below the IC50 values. 
b) Crystallographic waters present in the complexes are denoted by “x”. Cells with dashes correspond to waters that were 
displaced by the ligand in the complex 
c-g) Denotes waters with ≥ 1.2 Å shifts in position relative to water molecules in the reference X-ray complexes (compound 2 
with BRD4(1) and TAF1(2)). Specific distances (in Å) were: c, 1.2; d, 2.9; e, 1.2; f, 1.3; g, 3.0. 

 

Bruton’s Tyrosine Kinases (BTK).[32–35] Nine BTK inhibitors (eight previously 
unpublished) were selected to examine their effect on the water network within the kinase 
ATP binding site (Figure 2a). All inhibitors bind in the same canonical orientation (Figure 
2c), with the core heterocycle and linker NH forming two hydrogen bonds to Met477 of the 
hinge. An internal water network adjacent to this heterocycle, stabilized by interactions with 
the inhibitors, the gatekeeper Thr474, and Lys430 is observed across all complexes. The left-
hand portion as shown in Figure 2b extends into solvent. As previously reported[36], these 
inhibitors induce a conformational rearrangement of the activation loop, creating a selectivity 
pocket formed in part by Gln412, Phe413, Asn526, and Tyr551. Germane to this analysis, the 
core heterocycles and protein active sites are well superimposable among the nine inhibitors 
with little protein motion observed between complexes. Eight water molecules were identified 
that are adjacent to the inhibitors and conserved across many of the X-ray complexes. Two of 
the eight water molecules are deeply buried in the binding site, whereas the remaining six 
form two clusters that interact with each other. Compound 7 contains a hydroxymethyl 
extension of the methyl in 6, prepared to examine the effect on potency conferred by 
interactions with waters 3, 5, and 6 (Figure 2c), along with Asp539, and Lys430. The 
marginal 2x difference in potency suggests there is little to be gained by making these 
interactions. The 8-9 pair of compounds probed the extension of the right-hand side further 
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into the selectivity pocket, potentially to displace water 8 in this region. The loss in potency of 
8 relative to 9 suggests the potency difference is controlled partially by changes in the left-
hand portion, coupled with a displacement of water 1 (for N-Me compound 8), which is 
retained in the NH analog 9. Analog 10 contains a hydroxyethyl as opposed to the 
hydroxymethyl in 11, designed to probe deeper into the internal water cavity formed by 
waters 2, 5, and 6, potentially displacing one or more of them. Little difference in potency is 
observed between them, again suggesting there is little to be gained by disturbing the water 
network in this area. Compounds 12 and 13 (as well as 8-9) contain a heterocycle NH versus 
N-Me to examine the effect of displacing water 1, which forms a water-mediated interaction 
in the NH heterocycle analogs (9 and 13) between inhibitor NH and the backbone carbonyl of 
Glu475. Both N-Me analogs (8 and 12) show decreased potency relative to their NH 
counterparts 9 and 13, respectively, suggesting water 1 is relatively thermodynamically stable 
and difficult to displace. Finally, compound 14 contains a tricyclic right-hand heterocycle, 
designed to remove a hydrogen bond donor, along with an extension on the left-hand side to 
pick up additional interactions with the protein close to the solvent front. This latter 
compound is in early clinical development[37].  
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Figure 2. a) Co-crystallized BTK inhibitors. Compounds were divided into sets of closely 
related ligands to facilitate comparison of crystallographically observed waters within their 
protein complexes. b) BTK active site with conserved amino acid side chains. c) 
Superposition of all 9 inhibitors showing consistency of binding mode, protein conformation, 
and water occupation. Waters chosen for the analysis are numbered. 
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Table 3. BTK inhibitors, their corresponding water molecule IDs, and X-ray resolutionsa. 

Compound IC50 
(µM)b 

X-ray 
Resolution 

(Å) 

Observed Watersc PDB 
Accession 

Code #1 #2 #3 #4 #5 #6 #7 #8 
6 0.012 1.65 - x x e x x x x 6aub 
7 0.0064 2.05 - x x f x - x x 6bik 
8 0.145 2.01 - x x g x x x x 6ep9 
9d 0.0013 1.66 x x x h x x x x 6aua 
10 0.0045 2.15 x x x x x x x x 6bke 
11 0.0013 1.85 x x x i x x x x 6bkh 
12 0.005 1.70 - x x x x x x x 6bkw 
13 0.0016 1.40 x x x x x x x x 6bln 
14 0.00091 1.59 - x j x k x x x 5vfi 

a) Compound 13 was selected as the reference structure because all eight waters were present in the X-ray complex.  
b) For assay details, see the S1 in the Supporting Information. 
c) Crystallographic waters present in the complexes are denoted by “x”. Cells with dashes correspond to waters that were 
displaced by the ligand in the complex. 
d) The ligand in this X-ray complex was modeled with two ring conformations. Conformation A was chosen for the present 
work. The water molecules of interest were identical between the two conformations.  
e-k) These waters were ≥ 1.5 Å from the corresponding water molecules in the reference structure (compound 13). Specific 
distances (in Å) were: d, 1.71; e, 1.64; f, 1.69; g, 1.94; h, 2.10; i, 1.55; j, 1.71. 
 

Human Immunodeficiency Virus (HIV) Protease. An HIV protease/inhibitor X-ray complex 
(1kzk[38]) was selected to analyze the effect of a single water molecule that is well integrated 
in the binding site (Figure 3). This water (HOH-A-1037) is nearly ideally coordinated, 
forming two interactions each to the protein and the bound ligand. Since it has been proven 
difficult to replace this water molecule, with no observed gain in binding affinity in doing 
so[38, 39], this water molecule should be rated as thermodynamically stable by all water 
prediction programs. 

 
Figure 3. HIV protease inhibitor and corresponding protein-ligand interface with interacting 
water molecules included (PDB accession code 1kzk). The key water analyzed in this study is 
labeled, along with other key residues that form hydrogen bonds to the ligand. Numbers in 
parentheses denote the protein chain. 



10 

 

Methods. 

Selection of Crystallographic Water Molecules. In a previous report30, five specific water 
molecules that mediate protein-ligand interactions in BRD structures were analyzed in 
relation to the observed structure activity relationships. These five waters were selected for 
the present study. Water molecules in BTK structures were selected based on their proximity 
to the bound ligand, their invariance across crystal structures, and their displacement by 
ligand modifications across selected matched pairs of inhibitors. Specifically, two water 
clusters (Figure 2c, waters numbered 1,2,3 and 4,5,6) that were affected by ligand alterations 
were selected. Additionally, two water molecules that appear in all complexes in confined 
areas of the protein adjacent to the inhibitors (#7 and #8) were chosen due to their presumed 
thermodynamic stability. As stated previously, for HIV protease38, a single well integrated 
water molecule that mediates interactions between ligand and flaps on the protein was chosen. 
Because the crystal structures emanated from multiple crystallographers across multiple labs, 
all water molecules were checked for electron density manually as well as with an automatic 
criterion, called EDIA (Electron Density of Individual Atoms).[40, 41],[42]  

Evaluation Criteria. Four different aspects concerning computational placement of water 
molecules were analyzed to assess the accuracy of each program: (1) Distance between 
predicted and crystallographically observed water oxygens; (2) Number of predicted and 
crystallographically observed water molecules in an ‘area of interest’; (3) Difference between 
the water distance networks formed by the predicted and crystallographically observed water 
oxygens, and (4) Correlation of the predicted water energies with the experimentally observed 
SAR. 

Distance of Predicted to Crystallographically Observed Water Oxygens. Each predicted 
water oxygen was assigned to the closest available crystallographically observed water 
oxygen. Thus, every crystallographic water oxygen in this area had only one predicted water 
oxygen assigned to it. After each crystallographic water oxygen had a predicted water oxygen 
matched to it, the distance between the predicted and crystallographic water oxygen was 
measured. 

Number of Predicted Water Molecules. The overall number of predicted water molecules in 
an ‘area of interest’ was counted. The area of interest was defined for each protein target to 
enclose the protein-ligand interfacial region and associated crystallographically observed key 
waters that were selected for analysis (Figure 4). Predicted waters that fell outside this area of 
interest were classed as ‘missed’ by the programs. The radii of the spheres defining these 
areas were set to accommodate crystallographic waters plus a 2.5 Å tolerance.  
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Figure 4. a) An ‘area of interest’ used to define predicted water molecules in BRD and TAF 

structures, illustrated using the BRD9/1 complex. A cyan point is shown that depicts the 
sphere center. Sphere radius was chosen to be 5 Å to encompass conserved internal waters 
(numbered 0-4) observed across all crystal structures. b) ‘Areas of interest’ for placed water 

molecules in BTK, illustrated using compound 13. These areas were defined by placing three 
4.5 Å radius spheres around points placed on the amide nitrogen and oxygen atoms, and the 
pyridazinone ring nitrogen (atoms highlighted with cyan points). Sphere radii were chosen to 
encompass conserved internal waters. Water molecule 8 (far right edge) was included using a 
separate 2.5 Å radius sphere due to its distance from the remaining waters. 

Assignment of equivalent water identities became increasingly difficult in cases where the 
program predicted large numbers of waters within the area of interest. In some instances, 
some predicted waters could not be assigned and were excluded from tabulations. 

Re-creation of the Water network. Measuring distances between individual water oxygens, 
and counting the number of predicted versus crystallographic water molecules are not enough 
to judge the quality of a water prediction program. Therefore, the observed and predicted 
water-water distance networks were analyzed by measuring pair-wise distances between the 
oxygen atoms of relevant water molecules. These distance networks were then compared to 
each other using a root-mean squared-deviation (RMSD) metric. Specifically, the distances 
between the crystallographic water oxygens were compared to the distances between the 
predicted water oxygens within each network. Every crystallographic water was assigned to 
one predicted water. In cases where the program failed to predict a nearby water oxygen 
position (nearest predicted water was >2.5 Å from a crystallographic position), the next 
closest unassigned water oxygen was used, resulting in an increased RMSD in these cases. 
Thus, smaller RMSD values reflect greater fidelity in the recreation of the water network. 

Energetic Contribution of Water Molecules and SAR Consistency. Energies were calculated 
for predicted and crystallographic water molecules. Calculating energetics of observed 
crystallographic waters allowed a direct assessment of the differences between the programs 
to be made. Energetics for crystallographic coordinated waters could be retrieved from 

a b 
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SZMAP, WaterFLAP, and WaterRank. We analyzed the relationships between the calculated 
energies and the experimentally observed SAR, and examined the intercorrelation of the 
energies between the programs. Evaluations were run on the protein-ligand complex by 
removing crystallographically observed waters, retaining the ligand, and allowing the 
programs to place calculated waters back into the protein-ligand complex. Evaluations were 
also run using the holo structure, where crystallographically observed waters and ligands 
were removed, leaving an empty active site for the programs to place calculated waters back 
into. WaterRank could not be evaluated by these approaches because it does not offer water 
placement. 

Program Options. All software (Table 1) was used with default options. An aim of this 
study was to compare results from the programs as supplied ‘out of the box’ without 

additional adjustment of internal program settings. The only exception was the application of 
WaterMap to BTK complexes. To reduce the computational time to a manageable level, the 
active site around the larger BTK inhibitors was reduced in size from the default 10.0 Å to 8.0 
Å surrounding the inhibitor, and the simulation time was decreased from 2 ns to 1.5 ns. All 
complexes were prepared using the procedures recommended for each program before the 
water placement and/or energy predictions were run. 
 

Results. 
Program Output. Each program generates a different output. Therefore, the numbers have 

to be interpreted appropriately. All programs, except WaterRank, generate water energies. 
Negative energy values indicate waters in a thermodynamically stable environment whereas 
positive energy values indicate an unfavorable and therefore rather unstable water 
environment. Therefore, waters with negative energies are thought to be more difficult to 
displace than those with positive energies. It should be noted that absolute numbers that 
resulted from the different programs cannot be compared directly. Some estimate ΔG values 

(WaterMap), some ΔΔG (SZMAP), and others ΔGwat or ΔGhyd (WaterFLAP and 3D-RISM). 
Therefore, only relative numbers are compared throughout this study. 

WaterRank produces a geometric score for each observed crystallographic water where the 
hydrogen bond distances and angles between the hydrogen bond partners are compared to 
ideal values of 2.8 Å and 109.5° (tetrahedral angle).[14] Only protein atoms are considered as 
hydrogen bond partners while ligand atoms are excluded. A maximum of two donors and two 
acceptors are allowed as potential water molecule partners. Higher WaterRank scores reflect 
smaller deviations from ideal coordination geometry. An ideal, tetrahedrally coordinated 
water molecule is given a maximum score of 6.0. WaterRank scores are classified into 
categories according the likelihood of the waters to be displaced: ‘easy to displace’ (scores 0 – 
2.3) and ‘possible to replace’ (scores 2.3 – 4.0).[14, 43] 

Bromodomains (BRD). Five water molecules were previously identified as conserved 
across all Bromodomain structures (Figure 5).[30] These water molecules were not only 
conserved in ligand-bound structures, but also in the apo structures of the proteins. They were 
therefore analyzed for their placement by each program as well as their energetic 
contributions to binding affinity. 
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Figure 5. Overlay of TAF1(2) structures using ASCONA[44, 45]. The TAF1(2)/compound 2 
complex is shown (magenta ribbon, crystallographically observed water oxygens as red 
spheres) superimposed onto the apo structures from the following complexes taken from the 
PDB: 3uv5 (yellow), 3aad (green), and 1eqf (purple). Water oxygens are numbered according 
to reference 30; note their near invariant positions across the complexes. 

Distance to Crystallographic Water Molecules. The distance to crystallographic water 
molecules provides information about the accuracy of the predicted water locations by each 
method (Figure 6 and S5). WaterMap achieved greater than 70% accuracy at correctly placing 
water molecules within 0.5Å of their observed positions (~90% placed within 1Å, Figure 6). 
However, water molecule #1 (Figure 7), which is buried inside the pocket and mediates 
interactions between protein and ligand, was not placed in four out of the nine simulations 
(distance from the crystallographic position to the nearest predicted water molecule was 
>2.5Å). No underlying cause for this failure was identified. A similar environment 
surrounding that water position was present in structures where the water was accurately 
placed (Figure S6 and Table S3). WaterFLAP, SZMAP, and 3D-RISM placed water 
molecules within 1Å of their crystallographically observed positions with a success rate of 
approximately 80%, 70%, and 60%, respectively. 

 
Figure 6. Distance of predicted water molecules to the corresponding 41 crystallographic 
water molecules across all nine Bromodomain complexes. 
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Figure 7. Predicted versus observed water molecules for the Bromodomain BRD9/1 complex. 
Crystallographic water oxygens are in red. Hydrogen bonds between 1, protein, and a 
crystallographic water are shown as dashed lines with cylinders. Water oxygen atoms placed 
by WaterFLAP (yellow), SZMAP (pink), 3D-RISM (green), and WaterMap (blue) are 
superimposed. WaterMap did not predict the tightly bound water molecule #1 (circled). 

Number of predicted water molecules. An ‘area of interest’ was defined using a sphere that 
included internal crystallographically observed water molecules that were conserved across 
all Bromodomain complexes. Specifically, a carbonyl oxygen common to all BRD ligands 
and a conserved amide backbone oxygen (Met65 sidechain in the case of BRD9) were chosen 
to define the center of the sphere (Figure 4). Inclusion of surface exposed water molecules 
would give rise to too much variability in water placement due to too few contacts these 
waters make with the protein. 

WaterMap predicted a similar number of water molecules as were present in the crystal 
structures, with a total of 43 out of 48 crystallographic waters reproduced (Table 4). 3D-
RISM generated a similar number of placed waters (42 out of 48), with too few water 
molecules predicted in some structures (TAF1 #4) and too many in others (BRD4 #2). 
WaterFLAP on the other hand predicted more water molecules in all structures. The highest 
number of water molecules was predicted by SZMAP, in some cases double the number of 
water molecules in the ‘area of interest’ than were observed in the crystal structures (Figure 
8). SZMAP placed multiple waters in close proximity to one another near crystallographic 
observed water molecules. Clustering these groups of placed water molecules to arrive at a 
consensus placed water position might be a way to post process SZMAP results to arrive at 
more realistic predicted water positions. The SZMAP result illustrates the difference in the 
aim of the SZMAP program compared to other methods. SZMAP was not developed to place 
specific water molecules, but rather to indicate areas where a ligand might be 
modified/expanded to capture predicted water sites. The fact that SZMAP placed multiple 
waters in closely packed clusters complicated the interpretation of results from this program 
and made direct, clear comparisons with the other programs difficult. 
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Table 4. Number of crystallographically observed and predicted water molecules by each 
program within the ‘area of interest’ for BRD and TAF complexes (see Figure 4). 

Compound Protein Crystal Structure 3D-RISM SZMAP WaterFlap WaterMap 
2 BRD4(1) 6 8 11 9 6 
4 BRD4(1) 5 4 12 6 5 
1 BRD9 6 5 6 7 5 
2 BRD9 6 5 7 7 6 
4 BRD9 6 5 5 9 5 
5 BRD9 6 5 8 9 5 
2 TAF1(2) 6 4 12 7 4 
4 TAF1(2) 3 2 5 6 3 
5 TAF1(2) 4 4 8 7 4 

Sum 
 

48 42 74 67 43 

 

Figure 8. Crystallographically observed key water oxygens (in red, numbered) and SZMAP-
placed water oxygens for the TAF1(2)/2 complex. Clusters of closely placed waters are 
apparent. 

Re-creation of the water distance network. Pairwise distance matrices between 
crystallographically observed water oxygens were created for all Bromodomain complexes as 
well as water oxygens placed by the different programs (Figure 9 and Figures S7-S9). For 
each protein structure, the matrix of placed water oxygens was compared to the corresponding 
matrix from the crystal structures. As an objective criterion for comparing the re-creation of 
water networks by each program, the RMSD was calculated for each pair-wise distance 
difference (Table 5, Table S4). 
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Figure 9. Re-creation of the water network. (a) Pairwise distance map of observed 
crystallographic (left) and WaterFLAP placed (right) water molecules present in the BRD4 
complex with compound 2. Numbers in the matrix are the pairwise distances in Å. (b) 
Overlay of the crystallographically observed (red) and WaterFLAP predicted (yellow) water 
oxygens and network from this complex. 

WaterFLAP and WaterMap performed similarly well in recreating the observed water 
networks in the Bromodomain complexes. Each produced the smallest RMSD for four out of 
nine targets, with similar average RMSDs of 0.61 and 0.64 respectively. For complexes where 
WaterMap could not place water molecule #1 accurately, the RMSD values were relatively 
high, e.g., TAF1 with 2 (RMSD of 1.43). SZMAP achieved an average RMSD below 1.00 for 
seven out of nine targets and an overall RMSD of 0.84, with only two out of 41 placed water 
molecules greater than 2.5 Å from the crystallographic versions. Note that these results are 
directly connected with the number of placed water molecules. As greater numbers of waters 
were predicted by a program, the probability that one of them was proximal to a 
crystallographic water increased. At the same time, an inaccurately placed water molecule 
that was chosen to match the crystallographic water molecule could lead to a distorted, 
inaccurately created water network. With these caveats in mind, we found that 3D-RISM 
produced the highest variation from the crystallographically observed water networks. The 
lowest RMSD obtained from 3D-RISM calculations (BRD4 with 2) was higher than the 
overall RMSD averages of the other tools. Interestingly, placing water molecules in the holo 
structure of the proteins, i.e. the protein without the ligand present, led to much better results 
for 3D-RISM (Table S4). Using the holo structures, the water networks could be re-created 
using 3D-RISM placed water molecules with an RMSD below 1.00 in all cases. The overall 
RMSD for 3D-RISM (0.79) for holo structures was superior to that of SZMAP (0.93) and 
WaterFLAP (0.86) calculations. WaterMap on the other hand achieved the same accuracy 
(overall RMSD of 0.64) in re-creating the water network with placed water molecules without 
the ligand present. 
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Table 5. RMSD of pair-wise distance matrices between crystallographic and computationally 
placed water molecules in the Bromodomain protein-ligand structures. Numbers in 
parentheses (x/y) denote the number of placed water molecules x >2.5 Å away from 
crystallographic water molecules y. 

Protein Compd Crystal Structure 3D-RISM SZMAP WaterFLAP WaterMap 
BRD4 2 0 0.87  0.44  0.81  0.19  
BRD4 4 0 1.38  0.61  0.40  0.07  
BRD9 1 0 1.16 (1/5) 0.88 (1/5) 1.58  0.97 (1/5) 
BRD9 2 0 0.95 (1/5) 0.91  0.58  0.24  
BRD9 4 0 0.96 (1/5) 1.59 (1/5) 0.65 (1/5) 1.01 (1/5) 
BRD9 5 0 0.93  1.23  0.66  1.02 (1/5) 
TAF1 2 0 2.64 (1/5) 0.55  0.38  1.43 (1/5) 
TAF1 4 0 3.37 (2/3) 0.39  0.13  0.69  
TAF1 5 0 1.54 (1/4) 0.95  0.33  0.18  

Averages   1.53 (7/41) 0.84 (2/41) 0.61 (1/41) 0.64 (4/41) 
 
Energetic Contribution of Waters and Consistency with SAR. An overlay of all BRD9 

structures (Figure 10) shows that the expansion of the ligand from 1 to 2 to 4 and 5 leaves the 
water network undisturbed. The hydrophobic tails of 4 and 5 extend into the back of the 
pocket, leading to a slight shift of Phe45, Tyr106, and Ile113 for some complexes. Therefore, 
the observed differences in binding affinities among these ligands cannot be 100% directly 
compared to the calculated water molecule energetics due to these slight shifts in protein 
conformation. However, since there is virtually no difference in the water network upon 
binding of the different ligands, the energies of the water molecules should remain fairly 
similar for all BRD9 structures. This assumption was analyzed using two different 
approaches: (1) scoring the observed crystallographic water molecules with SZMAP, 
WaterFLAP and Proasis WaterRank; and (2) scoring predicted water molecule positions with 
3D-RISM, SZMAP, WaterFLAP, and WaterMap. 

 
Figure 10. Overlay of BRD9 complexes showing an undisturbed network of conserved water 
oxygens (red spheres). Compound 1 is green, 2 is magenta, 4 is orange, and 5 is cyan. 
Residues whose conformations are somewhat altered are labeled.  
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Water molecules #0 to #3 all received the same WaterRank score for the different BRD9 
structures (Figure 11; WaterRank graph). Water molecule #4 had two scores of 2.3 (BRD9 
with compounds 1 and 5) and two of 3.8 (BRD9 with 2 and 4). These scores are consistent 
with the unchanged X-ray water network observed across all BRD9 structures. The energies 
for SZMAP-scored water molecules across BRD complexes were very similar with a 
somewhat higher variation noted for water molecule #4 (Figure 11; SZMAP graph). 
WaterFLAP-calculated energies showed greater variation among BRD complexes (Figure 11, 
see the WaterFLAP graph). However, the overall energy profile was similar. A comparison of 
the different tools revealed similar results between WaterRank and WaterFLAP. Both tools 
generated similar water molecule rankings, i.e., water molecule #0 received higher scores than 
#1. SZMAP on the other hand scored water molecules #0 and #1 similarly.  

 
Figure 11. Predicted energies of crystallographic water positions. 3D-RISM and WaterMap do 
not allow the scoring of crystallographically observed water molecules, so they were not 
included. 

The predicted energies for placed water molecules were less consistent and quite variable 
(Figure 12). The ranking of water molecules across BRD complexes according to their 
predicted energies even varied within the same program. The overall shapes of the graphs 
varied in many cases from complex to complex; this was true for each program tested. For 
example, 3D-RISM predicted water molecule #1 to be slightly unfavorable and water 
molecule #2 to be more unfavorable in BRD9 with compounds 1 and 5, but with 2 the 
opposite result was seen. For compound 4, both water molecules were scored nearly the same. 
It appears that in general, slight changes in the predicted water molecule positions seemed to 
profoundly affect the calculated energies. Moreover, only a limited trend between the 
different tools could be observed. 3D-RISM predicted water molecule #1 to be very favorably 
contributing to binding, whereas WaterMap and WaterFLAP rated it as unfavorable. 



19 

 

 
Figure 12. Predicted energies of placed water molecules. WaterRank can only score observed 
crystallographic water molecules so it is not included here. Waters placed >2.5 Å apart from 
the corresponding crystallographic water are circled in red. Connecting lines are for 
visualization purpose only. 

Compared to the BRD9 structures, the ligands in BRD4 and TAF1 extend further into the 
water network, displacing water molecules and disrupting the water network (Figure 13).  

 

Figure 13. Overlay of a) two BRD4 (left); and b) three TAF1 (right) crystal structure 
complexes. Compound 2 and associated crystallographic water oxygens are in red; 4 is green, 
and 5 is cyan. 

a) BRD4/2 and BRD/4 complexes b) TAF1/2, TAF1/4, and TAF1/5 complexes 
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The binding of compound 4 to BRD4 decreases compared to 2 (Figure 14). Upon binding of 
4, water molecule #4 gets displaced and water molecules #0 and #3 are shifted. Extending the 
ligand (compare 2 to 4) also leads to a drop in affinity for TAF1. In this complex, water 
molecules #3 and #4 are displaced and #0 is shifted. A shift of the double bond in the 
pyridone N-side chain from the beta-gamma to the terminal position (see 4 and 5) results in a 
shift rather than a displacement of water molecule #3, leading to increased affinity (Figure 
14). 

 
Figure 14. Affinity and water molecule changes for BRD4 and TAF1 compounds. 

The predicted energies for the water molecules were analyzed in two ways to draw 
conclusions related to the observed changes in affinity. The calculated energies for individual 
water molecules and the overall energy change for the entire water network were analyzed. 
Because some BRD ligands displaced waters on binding, comparisons between the observed 
changes in potency and the energies of the displaced waters could be made (Figure 14). Water 
molecule #3 was expected to be contributing favorably to the overall binding affinity, because 
its displacement in TAF1 with 4 led to a decrease in affinity. However, its shift (but not 
displacement) in TAF1 with 5 led to a potency increase. Because reduced affinity is seen 
when water molecule #4 is displaced while water molecules #0 and #3 are only shifted, water 
molecule #4 was also expected to contribute favorably to the binding affinity. 

WaterRank scores for the crystallographic water molecules #3 and #4 in BRD4 and TAF1 
are right at the edge of their classification ranges. Each of these four water molecules received 
a WaterRank score of 2.3 indicating they are between ‘easy to displace’ (scores 0 – 2.3) and 
‘possible to replace’ (scores 2.3 – 4.0, Table 6). Both water molecules were scored favorably 
by SZMAP. SZMAP predicted water molecule #4 to be even more stable than water molecule 
#3. However, since water molecule #4 is displaced in all BRD4 and TAF1 structures, we 
would have expected water molecule #3 to be energetically more favorable than #4. The 
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scores of crystallographic water molecules were more divergent for WaterFLAP, varying 
from unfavorable (BRD4 water molecule #3) to favorable (BRD4 water molecule #4). 
 

Table 6. Predicted energies for crystallographic water molecules. 

Protein Compound Water ID WaterRank SZMAP WaterFLAP 
BRD4 2 3 2.3 -0.87 0.82 
BRD4 2 4 2.3 -1.33 -0.99 
TAF1 2 3 2.3 -0.99 -0.18 
TAF1 2 4 2.3 -1.83 -0.32 

 

Similar to the RMSD evaluation of predicted water positions, the energy scores of the 
placed water molecules were highly diverse (Table 7). 3D-RISM predicted water molecules 
#3 and #4 to be unstable across all complexes, whereas SZMAP scored all waters to be 
favorably contributing. WaterFLAP rated water molecule #3 as unstable, whereas #4 had a 
favorable contribution. WaterMap scores were all unfavorable. Water molecule #4 was even 
more unfavorable than #3 across these complexes. 

Overall, the individual water energies were not consistent with the corresponding SAR. 
Additionally, the results differed greatly for all programs, with no clear trend being 
discernable between the calculated energies and potency. 
 

Table 7. Predicted free energies for placed water molecules in BRD and TAF1 complexes. 

Protein Compound Water ID 3D-RISM SZMAP WaterFLAP WaterMap (ΔH) 
BRD4 2 3 2.13 -1.92 0.64 2.08 (-2.27) 
BRD4 2 4 2.38 -1.73 -1.62 8.38 (-3.89) 
TAF1 2 3 5.45 -1.97 0.35 3.96 (-0.20) 
TAF1 2 4 0.28 -4.59 -1.96 7.05 (-2.96) 

 

Examination of the water network in TAF1 shows that the change from 2 to 4 disrupts the 
water network - the extensive hydrogen bond network of the water molecules to the protein 
surface is broken (Figure 15). The change from 4 to 5 re-established this water network - 
water molecules now form hydrogen bonds to each other, reaching out to water molecules at 
the protein surface. The change of the double bond from the beta-gamma to the terminal 
position of the hydrophobic chain (5 to 4) alters the conformation of the ligand in a way that 
interrupts the hydrogen bond network in this rather narrow area of the pocket. To analyze this, 
we calculated the average score of the water network for each structure and recorded the 
change in the average water score for the different compounds (Table 8). 
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Figure 15. Overlay of TAF1 with compounds 4 (green) and 5 (cyan). Protein-ligand hydrogen 
bonds are shown as grey lines containing cylinders. A well-ordered water network extending 
from ligand to the protein surface is seen for 5 (cyan dashed lines), while 4 displaces water 0 
and one of the surface interfacial waters, disrupting this network. 

The average score of the water network in TAF1 should be favorable for 2, decrease for 4, 
and increase again for 5. This trend could only be observed for the average water network 
score predicted by WaterMap (Table 8). However, the average WaterMap scores were 
extremely unfavorable, i.e. the whole water network was calculated to be unstable. SZMAP 
and WaterFLAP average water network scores showed the correct trend from 2 to 4 (a 
decrease in the energy contribution), but failed to identify the gain in energy on binding of 5. 
Conversely, 3D-RISM showed the correct trend of a more favorable water network for 5 than 
4, but in general all predicted average energies were calculated to be unfavorably contributing 
to the binding affinity. In short, an average ‘happiness’ of the calculated water network was 
seemingly unrelated to the observed change in potency of the BRD and TAF ligands. 
 
Table 8. Average water energies for TAF1 compounds. Green arrows denote an expected 
increase in energy based on potency difference that is correctly predicted by a given 
calculation. Red arrows show expected decrease in energy based on SAR that is correctly 
predicted by a given calculation. The absence of an arrow denotes a predicted change in 
energy that is inconsistent with the observed change in potency. 

Protein Compound 3D-RISM SZMAP WaterFLAP WaterMap (ΔH) 
TAF1(2) 2 2.47 -4.00 -1.18 5.20 (1.69) 

   ↓ ↓ ↓ 
TAF1(2) 4 1.98 -3.85 -1.00 7.16 (4.27) 

  ↓   ↓ 
TAF1(2) 5 0.30 -3.06 -0.78 6.25 (1.54) 
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Bruton’s Tyrosine Kinase (BTK). Eight conserved water molecules were analyzed for 
their correct placement and energetic contributions. 

Distance to Crystallographic Water Molecules. WaterMap predicted water molecules most 
accurately in BTK structures, with more than 70% placed within 0.5 Å of the 
crystallographically observed waters and more than 90% within 1.0 Å (Figure 16 and Figure 
17). All other methods achieved about 60% accuracy within 1.0 Å. For predictions on holo 
structures (Figure S10), the accuracy of WaterMap decreased more than for the other tools. 
WaterMap and WaterFLAP were nearly equal in their accuracies of predicting water positions 
in holo structures. 

 
Figure 16. Distance of predicted water molecules to the corresponding 66 crystallographic 
water molecules within all nine BTK complexes. 

 
Figure 17. Predicted versus observed water molecules for BTK/6 complex. Crystallographic 
water oxygens are shown in red and labeled by water number. Water oxygen atoms placed by 
WaterFLAP (yellow), SZMAP (purple), 3D-RISM (green), and WaterMap (blue) are 
superimposed. Additional crystallographic water oxygens that were not analyzed in this study 
are shown in grey. A solvent accessible surface has been added  
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Number of predicted water molecules. The ‘area of interest’ in BTK structures was defined 
using three spheres of 4.5 Å radius around conserved ligand atoms and an additional sphere of 
2.5 Å radius around the isolated water #8 (Figure 4b). 

The number of placed water molecules by WaterMap in the ‘area of interest’ showed the 

best agreement with the number of crystallographically observed water molecules (Table 9). 
The second most accurate was 3D-RISM with a total of 80 placed water molecules, while 
SZMAP and WaterFLAP displayed reduced accuracy. WaterFLAP clearly placed the highest 
number of waters (98 versus 65 observed by crystallography), perhaps due to the large size of 
the BTK binding site. 
 

Table 9. Number of placed water molecules by each program within the ‘area of interest’ of 

BTK (Figure 4b).  

Compound Crystal Structure 3D-RISM SZMAP WaterFLAP WaterMap 
6 7 9 10 11 7 

7 8 10 8 11 8 

8 6 10 10 11 6 

9 6 10 9 12 6 

10 7 9 8 11 8 

11 9 8 10 10 8 

12 7 9 9 11 9 

13 9 8 14 11 9 

14 6 7 9 10 6 

Sum 65 80 87 98 67 

 
Re-creation of the water network. For the water network analysis, the pairwise distances 

between the oxygen atoms of all eight key water molecules were calculated. The predicted 
water molecule distances were then compared to the crystallographic water network. Two 
diagonals were compared to capture the main distance relations between the water molecules 
(Figure 18a). Using only these two diagonals allowed the two water clusters (cluster 1: waters 
#0, #1, #2, and cluster 2: waters #4, #5, #6) to be compared, while at the same time the 
distances between the clusters and the single water molecules were captured, but the RMSD 
was not artificially lowered by including many large distances. 
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Figure 18. Re-creation of the water network within BTK complexes. (a) Pairwise distance 
map of crystallographically observed (left) and SZMAP placed (right) water molecules 
present in the BTK structure of 6. Numbers in the matrix are the pairwise distances in Å 
between the oxygen atoms. Only the two highlighted diagonals were considered for 
comparison (inset in a). (b) Overlay of the crystallographically observed (red) and the 
SZMAP placed (yellow) water oxygens and network from this complex. 

The crystallographically observed water clusters can be easily identified in the distance 
matrices (Figure 18a) because they are the only water molecules within hydrogen bond 
distances to each other. The distance matrices for the placed water molecules in the complex 
as well as holo version (Figures S12 and S13) were then compared to the crystallographically 
observed water distance matrix (Figure S11) by calculating the RMSDs (Table 10, Table S5). 

WaterMap most accurately re-created the water network with an average RMSD of 0.48 Å 
(Table 10). Additionally, none of the placed water molecules had a greater distance than 2.5 Å 
from any crystallographically observed water molecule, i.e. all crystallographic waters were 
matched. WaterFLAP also re-created the water network well, with only one water molecule 
being missed. Due to the large number of placed water molecules by WaterFLAP and 
SZMAP (Table 9), the re-creation of the water network was less accurate. This ranking well 
reflected the correlation of placed and crystallographic waters (Table 9, Figure 16). 
Table 10. RMSD of pair-wise distance matrices between crystallographic and computationally 
placed water molecules in the BTK protein-ligand structures. Numbers in parentheses (x/y) 
denote the number of placed water molecules x >2.5 Å away from X-ray water molecules y. 

Compound Crystal structure 3D-RISM SZMAP WaterFLAP WaterMap 
6 0.0 0.45  0.70  3.09  0.31  
7 0.0 0.76  1.38 (1/6) 0.97  0.43  
8 0.0 0.69  1.31 (1/7) 0.62  0.18  
9 0.0 0.41  0.88  1.01  0.27  
10 0.0 0.56 (1/7) 0.80  0.94 (1/7) 0.50  
11 0.0 1.59 (1/8) 0.79  0.74  0.46  
12 0.0 0.98 (1/7) 0.93  0.62  1.09  
13 0.0 0.4  1.05  0.96  0.88  
14 0.0 0.73  0.84  0.4  0.2  

Averages  0.73 (3/65) 0.96 (2/65) 1.04 (1/65) 0.48 (0/65) 
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Energetic Contribution of Water Molecules and SAR Consistency. Four different aspects 
were analyzed concerning the prediction of water locations and energetics within BTK 
complexes: (1) Displacement of water #1; (2) Predicted energies for highly integrated waters 
#7 and #8; (3) Disruption of the cluster formed by waters #4, #5, #6; and (4) Average energy 
contribution for each water molecule. The displacement of water #1 was analyzed using the 
structure pairs 8/9 and 12/13 (Figure 19c and d). Structure pair 12/13 only differed by a 
methyl group attached to the pyridazinone ring – the methyl in 12 displaced water #1. In 
addition to the difference in the methyl group, the structure pair 8/9 also differed in its left-
hand terminal group. In this region, the rings vary slightly, but since this portion points 
primarily into solvent, it was not expected to alter the predicted water molecule arrangement 
inside the 'area of interest'. For both structure pairs, the displacement of water #1 led to a 
decrease in affinity (from 0.0013 µM for 9 to 0.145 µM for 8 and from 0.0016 µM for 13 to 
0.005 µM for 12). Therefore, water #1 contributed favorably to the overall energy. 

 
Figure 19. Selected structure pairs used for the analysis of the effects of ligand modifications 
on the water network. Ligand 2D diagrams are shown in Figure 2; their potencies are shown 
in Table 3. a) Structure pair 6/7 (magenta/cyan); b) 6/14 (magenta/cyan); c) 8/9 
(magenta/cyan); d) 10/11 (cyan/magenta); e) 12/13 (cyan/magenta). Water oxygens are 
colored with respect to the ligand. In panel e), 12 contains an additional water molecule 
(orange). Synthesis of inhibitors can be found in Table S6. 



27 

 

Only SZMAP and WaterFLAP scored the predicted water #1 energetically favorably for 
both structure pairs (Table 11). According to 3D-RISM, water #1 in the 12/13 pair had nearly 
no energetic contribution, while in pair 8/9 it was predicted to be energetically unfavorable. 
WaterMap on the other hand rated water #1 in both cases as thermodynamically unstable, 
with an unfavorable positive energy score. WaterRank scores for the crystallographically 
observed water molecules were barely in the range of ‘possible to replace’. 

In addition to the favorable contribution of water #1, waters #7 and #8 were of interest due 
to their being buried in the binding pocket. Water #7 forms four interactions, one with the 
ligand, two with the protein and one with another water molecule. Water #8 displays three 
interactions with the protein. The high number of interactions between water #8 and protein 
coupled with the fact that this water could never be replaced by modifying the ligand (data not 
shown) indicated that waters #7 and #8 should receive favorable calculated energy scores. 
WaterFLAP most consistently scored waters #7 and #8 favorably in structure pair 12/13, 
while SZMAP was most consistent for structure pair 8/9 (Table 11). 3D-RISM rated all 
waters in both structure pairs as favorably contributing, although the absolute energy values 
varied quite significantly (Table 11, 3D-RISM column). The predicted energies by SZMAP 
for water #8 in structure pair 12/13 were favorable for 12 and unfavorable for 13. This might 
be due to the selection of the predicted waters, which is more difficult for SZMAP due to the 
higher number of predicted water molecules. WaterMap rated both waters in all four 
structures as highly unfavorable. In particular, water #7 received a very high energy score, 
which confirmed previous observations from BRD structures where a highly integrated water 
molecule also received a very unfavorable free energy score ( G > 5 kcal/mol). Overall, 
water #8 was in most cases scored more favorably than water #7. Finally, WaterRank scores 
for compounds 9, 12, and 13 were lower than expected for water molecules that displayed 
near ideal interaction geometries. Only 8 showed a high WaterRank score for water #8. 

 
Table 11. Predicted free energies for water molecules of interest in the pairs of structures from 
Figure 19. WaterRank scores are for crystallographically observed water molecules, all other 
scores are for predicted waters. 

Compound Water ID 3D-RISM SZMAP WaterFLAP WaterMap (ΔH) WaterRank 
6 2 -1.17 0.94 0.07 2.68 (-1.91) 3.8 
6 3 -7.16 -7.05 -0.35 0.87 (-4.14) 2.2 
6 4 4.99 -1.94 2.04 1.30 (-1.53) 0.0 
6 5 -0.12 -4.55 -3.20 0.43 (-4.77) 3.9 
6 6 5.03 -2.29 0.87 2.93 (-1.28) 2.3 
7 3 -5.07 2.34 -1.05 2.30 (-2.53) 3.5 

14 2 5.96 0.82 1.23 1.54 (-3.07) 1.0 
14 3 -3.53 -6.60 0.76 2.33 (-2.48) 2.3 
14 4 3.56 -1.76 -0.49 2.01 (0.28) 1.0 
14 5 2.59 -7.15 -0.34 3.77 (-1.19) 2.2 
14 6 0.96 -2.08 -0.14 4.77 (1.33) 2.3 
10 4 5.52 -1.93 2.00 0.98 (-0.26) 0.0 
10 5 4.61 -8.25 0.13 1.50 (-3.86) 2.3 
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10 6 0.14a 1.88 -0.67 3.12 (-0.19) 2.2 
11 3 -5.45 -9.06 -0.68 2.60 (-1.79) 1.0 
11 4 5.2 -4.20 -0.52 0.66 (-1.16) 0.0 
11 5 6.21 -6.29 -1.78 2.69 (-2.63) 2.5 
11 6 -1.51 1.89 2.68 4.14 (2.86) 2.3 
9 1 1.54 -6.96 -3.40 6.99 (1.73) 2.3 
9 7 -5.48 -3.19 3.13 8.52 (4.04) 2.2 
9 8 -9.40 -7.88 -2.23 5.75 (0.65) 3.9 
8 7 -3.13 -3.49 3.16 7.20 (2.77) 3.6 
8 8 -11.19 -6.25 -1.77 5.64 (0.69) 5.6 

13 1 0.25 -8.43 -2.66 2.99 (-2.00) 2.3 
13 7 -4.12 -4.98 -1.25 7.02 (2.02) 2.2 
13 8 -4.20 -5.92 -3.22 4.85 (-0.24) 3.9 
12 7 -0.02 -6.63 -1.14 7.87 (2.93) 2.3 
12 8 -8.90 0.75 -3.16 4.88 (-0.20) 3.9 

a) The predicted water molecule was >2.5 Å away from the closest crystallographically observed one. 

Three structure pairs – 6/7, 6/14, and 10/11 – were used to analyze the water cluster formed 
by waters #4, #5, #6 (Figure 19 a, b and e). Structure pair 6/7 differs by the presence of water 
#6 (Figure 19 a). However, the extension of this substituent from methyl to hydroxymethyl 
did not place the terminal hydroxy into the pocket where water is present. A closer 
examination of the temperature factor and electron density of water #6 in structure 7 suggests 
that its position may only be partially occupied. This led to the conclusion that the energetic 
contribution of water #6 should be neutral or unfavorable. Due to the greater hydrophilicity, 
this hydroxymethyl group when combined with an additional acceptor moiety due to the 
change from pyridine to pyridazine in the central linker ring stabilized the water network and 
resulted in an increased affinity of 7. Water #3 is particularly stabilized due to a hydrogen 
bond interaction with the nitrogen of the pyridazine. Only WaterFLAP scored water #3 more 
favorably for 7 relative to 6 (Table 11). WaterScore also showed a difference in stabilization 
of water #3 (2.2 in 7 to 3.5 in 6). 

Despite the substantial structural differences between 6 and 14, they align very well in the 
active site of BTK (Figure 19 b). Waters #4, #5, and #6 are shifted in the BTK/14 complex 
due to cyclization relative to 6. The change from the methyl to hydroxymethyl substitution 
helps stabilize water #2. Only SZMAP predicted all waters in 14 to have a negative energy 
score. WaterFLAP also predicted all three waters to be energetically favorable, however, the 
total energy contribution of the three was reduced relative to 6 with a significant loss in 
energy of water #5 (Table 11). 

Structure pair 10/11 contains shifts of waters #3 and #6. As observed for the 6/7 pair, the 
shift of water #6 is not related to the extension of the hydroxymethyl substituent to a 
hydroxyethyl. Therefore, the energetic conclusions – water #6 being relatively neutral or 
slightly unfavorable – are supported. However, the substitution of the ligand disrupts the 
hydrogen bond of water #3 and the aromatic nitrogen of the pyridazine ring leads to a slight 
decrease in affinity (compare 11, 0.0013µM to 10, 0.0045µM). The programs all scored water 
#6 very differently, from favorable to unfavorable. SZMAP predicted scores for water #6 
were the most consistent from 10 to 11 (Table 11). 
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The overall energy contribution of the different water molecules was then analyzed. 
Average scores for each water in the 9 BTK structures were calculated and compared among 
the different tools (Figure 20). Only very limited correlation for the predicted energies was 
observed for the different programs. The overall shapes of the curves (irrespective of the 
actual values) varied significantly. Interestingly, the average water scores predicted by 
WaterMap were all unfavorable, while the average SZMAP scores were all favorable.  

 
Figure 20. Average energies for predicted waters across all nine BTK complexes. Water ID is 
shown on the X-axis (middle of the plot). The total number of observed water molecules for 
each water position were as follows: #1, 4; #2, 9; #3, 8; #4, 9; #5, 9; #6, 8; #7, 9; and #8, 9. 
Connecting lines are for visualization purpose only. 

Human Immunodeficiency Virus (HIV) Protease. As a last example, a tetrahedrally 
coordinated water (HOH-A-1037) from an HIV protease complex (1kzk38) was chosen for 
analysis. Due to the large number of hydrogen bonds this water forms to the protein and 
bound ligand, it was expected to be easy to predict as well as score. 

Distance to Crystallographic Water Molecules. All tools only placed one water molecule in 
the HIV protease complex, which made the identification of the correct one very easy. 
Additionally, all placed water molecules were within 1 Å distance to the crystallographically 
observed one (Figure 21 and Table 12). WaterFLAP placed the water molecule most 
accurately (0.15 Å away from the crystallographically observed water). As observed 
previously, the accuracy of the water placement of 3D-RISM increased when the ligand was 
omitted. 
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Figure 21. Placement of water oxygens in HIV protease (1kzk.pdb). The observed 
crystallographic water molecule of interest (HOH 1037 from chain A) is displayed in ball-
and-stick (red oxygen with white hydrogens added by MOE). Other crystallographic water 
oxygens are in red. Water oxygens placed by WaterFLAP (yellow), SZMAP (purple), 3D-
RISM (green), and WaterMap (blue) are superimposed. 

Table 12. Distances (Å) between predicted and crystallographically observed water oxygens 
in the complex and holo form of HIV protease. 

  3D-RISM SZMAP WaterFLAP WaterMap 

Complex 0.22 0.72 0.15 0.20 

Holo 0.17 0.52 0.22 0.76 

 

Re-creation of the water network. The observed crystallographic water molecule is 
interacting with four surrounding atoms, two on the ligand and two on the protein site. 
Interestingly, the hydrogen bond heavy atom distances to the protein are both longer than the 
ones to the ligand (Table 13). Analyzing the distances of the surrounding atoms to the 
predicted water molecules showed that both 3D-RISM and WaterFLAP shortened the distance 
to the nitrogen atom of Ile-B-50, while the other distances remain unchanged. SZMAP also 
shortened the distance to Ile-B-50, but at the same time the distances to the nitrogen of Ile-A-
50 and O32 of the ligand JE2 increased to a non-optimal range. WaterMap kept the distances 
to the ligand atoms unchanged and shortened the distance to the nitrogen atom of Ile-A-50, 
but elongated the distance to the nitrogen atom of Ile-B-50. 



31 

 

Table 13. Distances between crystallographically observed (HOH-A-1037) and placed water 
oxygens to surrounding protein and ligand atoms in HIV protease (1kzk). Distances are 
measured between heavy atoms. Those in green indicate a more optimal hydrogen bond 
distance (2.6-2.9 Å), those in bold red a less optimal distance compared to the 
crystallographic ones. 

Distance [Å] Crystal structure 3D-RISM SZMAP WaterFLAP WaterMap 

P
ro

te
in

 

Ile-A-50 N 3.00 3.02 2.51 3.09 2.89 

Ile-B-50 N 3.01 2.80 2.87 2.88 3.19 

L
ig

an
d JE2 O32 2.74 2.86 3.37 2.76 2.73 

JE2 O10 2.84 2.88 2.86 2.86 2.83 

Energetic Contribution of Water Molecule and Consistency with SAR. This well-integrated 
water molecule was expected to contribute favorably to the binding affinity. Apart from being 
well integrated in the protein-ligand complex, this water has proven to be hard to displace and 
is present in the apo structure of HIV protease (Figure 22). Both SZMAP and WaterFLAP 
scored the crystallographically observed water molecule as thermodynamically stable, i.e. 
favorably contributing to ligand binding (Table 14). WaterRank on the other hand, which is a 
geometry-based score, rated the crystallographically observed water molecule to be between 
‘easily’ and ‘possible’ to replace (Table 14, Figure 23). The relatively low score is likely 
related to the fact that only water-protein interactions are considered. Water-ligand 
interactions are not included in the geometry assessment made by WaterRank. 

 
Figure 22. Superimposed HIV protease structures and water molecules. The apo structure of 
HIV protease (PDB accession code 1g6l) is shown in a blue ribbon with blue water oxygen 
atoms, superimposed onto the present ligand-bound complex (PDB accession code 1kzk) in a 
dark red ribbon with red water oxygens. Green dashed lines indicate hydrogen bonds between 
the ligand and water HOH-A-1037. The corresponding water molecule in the apo structure is 
enclosed by the pink circle. 

H
2
O-A-1037 
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Table 14. Predicted water scores for the crystallographically observed water molecule (HOH-
A-1037) within the HIV protease complex (1kzk). 

 
SZMAP WaterFLAP WaterRank 

Complex -1.18 -4.69 2.2 

 

 
Figure 23. WaterRank scores for the HIV protease complex (1kzk) in the vicinity of the active 
site. The backbone ribbon of HIV protease is shown in grey, the ligand in light blue, and the 
WaterRank scores are color coded (‘easy to displace’ (scores of 0 – 2.3) in green, ‘possible to 

replace’ (scores of 2.3 – 4.0) in orange). The highly integrated water (HOH A 1037) is 
circled. 

All water prediction tools except WaterMap rated the water molecule placed in the complex 
structure as thermodynamically stable (Table 15). 3D-RISM and SZMAP also scored the 
water molecule in the holo form as favorably contributing to ligand binding, while 
WaterFLAP predicted the water molecule to be slightly unfavorable. The WaterMap score 
increased for the placed water molecule in the holo structure, but it was still rated as 
thermodynamically unstable. As observed previously, the more restrained the water molecule 
is, the less favorable it was rated by WaterMap. 
 

Table 15. Predicted water scores for placed water molecules in the HIV protease complex 
(1kzk). 

 
3D-RISM SZMAP WaterFLAP WaterMap 

Complex -4.69 -5.68 -4.91 5.01 
Holo -5.68 -2.99 0.16 1.27 

 



33 

 

Conclusions. 
Four different water prediction tools – 3D-RISM, SZMAP, WaterFLAP, and WaterMap – 

were analyzed for their abilities to accurately predict water molecule locations and energetic 
contributions. Four different aspects relevant for a qualitative assessment of the tools were 
analyzed – accuracy in water placement, number of predicted water molecules, re-creation of 
the hydrogen bond network, and correlation of water energies with observed SAR. 
WaterRank scores were also calculated as a null hypothesis test, since these scores are based 
solely on an analysis of the geometric coordination of each crystallographic water molecule. 
To support these analyses, multiple new protein/ligand crystallographic complexes (2 BRD 
and 7 BTK) were determined at high resolution. These data, combined with previously 
published data from these proteins as well as an HIV protease formed the test set for assessing 
water energy prediction software. 

Overall, the placement of water molecules was fairly accurate, with all programs predicting 
60-90% of water oxygens within 1 Å of their observed locations. WaterMap in particular 
achieved very high accuracies for all analyzed systems – BRD, BTK, and HIV, with >=70% 
of water oxygens located within 0.5 Å of observed. The other tools achieved somewhat 
reduced placement accuracies, but at the same time their results were less easy to interpret due 
to the higher number of predicted water oxygens resulting from the calculations. This is to 
some extent due to the original purpose of the tools. For example, SZMAP was not developed 
to predict specific water molecule locations, but rather to generate ideas for potential 
alterations of the ligand. Therefore, more waters are placed than would actually fit into the 
binding pocket. 

The results for the re-creation of the water network were variable for the protein families 
analyzed. For BRD compounds, WaterFLAP and WaterMap achieved almost the same 
accuracies. However, WaterMap was not able to accurately place 4 out of 41 
crystallographically observed waters while WaterFLAP found all except one. In contrast, the 
re-creation of the water network in BTK structures was most accurate for WaterMap, which 
did not miss any crystallographic waters. By contrast, WaterFLAP was significantly less 
accurate for BTK, missing only one out of 66 waters. 

A major problem for all tools was a consistent prediction of energetic contributions of water 
molecules. The tools seldom agreed with each other and also the consistency within each tool 
was very low. WaterMap showed specific drawbacks when highly integrated and constrained 
water molecules were evaluated. Without exception, WaterMap scored them unfavorably, 
even when the experimental SAR suggested otherwise. WaterFLAP scores on the other hand 
seemed to be strongly dependent on the number of hydrogen bonds potentially formed by the 
water molecules. The scoring of crystallographically observed water molecules led to more 
stable results, however, the different methods did not agree with each other. For BRD 
structures, WaterFLAP and WaterRank achieved similar rankings of the waters of interest. 
Even for the rather easy example of water molecule A-1037 within HIV protease, the 
predicted energies were not consistent. 3D-RISM, SZMAP, and WaterFLAP all scored the 
water molecule highly favorable, while WaterMap predicted it to be unfavorable. 
Interestingly, according to WaterRank, the water molecule is between ‘easy and ‘possible’ to 
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replace. This observation is certainly contrary to the visual observation of the tight 4-
coordinate coordination of this water. 

Overall, diverse methods from the straightforward WaterRank, to the simulation heavy 
WaterMap, were analyzed throughout this study using different protein systems – 
Bromodomains, Bruton’s Tyrosine Kinases, and an HIV protease – with no clear advantage of 
one tool over any other emerging. Based on these results, we recommend that future 
development of water prediction tools should focus specifically on a more consistent score 
prediction. Small variations in the water position should not have a dramatic effect on the 
predicted energy. This would lead to a more accurate and more reliable prediction, which is 
important if these tools are to be used for prospective predictions of potencies when deciding 
on which water to target for replacement. 

One can argue that the shifts in ligands from structure to structure can affect these 
calculations, particularly when one is attempting to equate calculated energetic differences of 
displaced waters to observed differences in potencies. Changes in ligand structure also change 
the nature of direct protein-to-ligand contacts, which can also influence binding affinity and 
cloud these conclusions. We have attempted to minimize these effects by carefully choosing 
pairs of ligands with very similar binding modes and virtually superimposable protein active 
sites. We hoped that we would be able to discern relative differences within chemical series, 
perhaps rank ordering ligands from more to less potent based on water energetics, as opposed 
to making absolute predictions of potency differences. This proved not to be the case.  

As previously described, all input protein/ligand/water complexes were initially processed 
using the recommended protein preparation procedure within each program. Thus, each 
complex was set up (histidine tautomers, Asn and Gln flips, protonation states, etc.) with 
crystallographically observed waters present. This provided a ‘best case’ scenario when 

waters and ligand were removed for prediction by the programs. One could argue that, for a 
true test of a program’s ability to place waters accurately, each complex should be re-prepared 
without waters and ligand present prior to the water prediction step. This was not done in the 
present work. 

So what can medicinal chemists take away from this analysis? The good news is that most 
crystallographic waters can be predicted by these programs with a few notable exceptions. 
The bad news is that energetics calculated by water prediction software should not be used for 
compound design. One will simply have to target key predicted waters with ligand 
modifications to assess impact on potency.  Fortunately, given the reasonable accuracy in 
predictions of crystallographically observed water locations, one can use these calculations as 
a guide for where to substitute ligands to affect crystallographic water displacement. These 
results will be furnished to the vendors, with the hope that future refinements in the energy 
calculations will yield more robust correlations with observed changes in potency.  
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