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1 Synopsis 

1.1 Alzheimer’s disease 

1.1.1 Epidemiology and risk factors 

In 1906, Alois Alzheimer, a Bavarian psychiatrist, described for the first time a 

neurological syndrome characterized by progressive memory impairment, disordered 

cognitive function and altered behaviour now known as Alzheimer's disease (AD) (1). 

Originally believed to be a rare form of dementia, AD has emerged as the most 

prevalent form of late-life mental failure in humans (2). While the causes of the disease 

remain unclear, the consequences for society are devastating. Current estimates 

suggest that 44 million people live with dementia worldwide, which is further predicted 

to triple by 2050 as the population ages (3). According to estimates of prevalence rates 

in Europe, nearly 1.6 million of the elderly suffered from dementia in Germany at the 

end of 2014, with about two thirds affected by AD (4). As the primary risk factor, age 

plays a decisive role in the onset of AD so that prevalence rates increase steeply with 

age while the number of patients doubles at intervals of about five years after age 65 

(5). Family history (genetics) and environmental factors are further risk factors that play 

an important role. Here, mutations in the amyloid precursor protein (APP), presenilin-

1 (PS-1) and presenilin-2 (PS-2) cause the familial, early-onset form of AD (6). In 

contrast, mutations of the apolipoprotein E-e4 (APOE4) gene increase the risk of 

developing the sporadic, late-onset form of AD (6). Finding the causes of the sporadic 

form of Alzheimer's disease is difficult. Since many influencing factors can play a role, 

risk factors are identified by means of epidemiological investigations, that is, by means 

of complex statistical procedures. Most prominent associations are a decreased 
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reserve capacity of the brain, including reduced brain size, low educational and 

occupational attainment, low mental ability in early life, and reduced mental and 

physical activity during late life (7). However, whether there is a causal relationship 

between the disease and these risk factors is often unclear. 

1.1.2 Pathophysiology 

There are a variety of different hypotheses describing the nerve cell death and the 

associated cognitive decline in AD. These include, for example, genetics, oxidative 

stress, dysfunctional calcium homeostasis, hormonal, inflammatory-immunological, 

vascular and cell-cycle dysregulation (8). However, the most proposed pathogenic 

mechanisms are the I) amyloid cascade hypothesis along with the II) tau 

hyperphosphorylation. 

The amyloid hypothesis suggests that amyloid plaques are formed by aggregated 

amyloid-beta (Aβ) peptides that in turn are generated by proteolytic cleavage of APP 

(Fig. 1) (9). APP is a large type-1 transmembrane protein, which is constitutively 

expressed in many cell types (10) but at high levels in the brain and metabolized in a 

rapid and highly complex fashion by a series of sequential proteases, including the 

intramembranous γ-secretase complex (11). In the α-secretase pathway, α-secretase 

cleaves APP within the Aβ domain, releasing a large soluble APP fragment without 

production of Aβ. Instead, in the pathogenic condition, the β-secretase pathway is 

activated, causing the β-site APP cleaving enzyme (BACE1) to primarily cleave APP 

and to generate a membrane bound soluble C-terminal fragment (12). A subsequent 

cleavage of the C-terminal fragment by the γ-secretase activity further generates Aβ40 

and Aβ42. Under normal conditions, brain Aβ is degraded by peptidases and cleared 

from the brain in a balanced process of in- and efflux (7). Under pathogenic conditions, 

these peptides aggregate into soluble oligomers and larger insoluble fibrils in plaques 
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outside the cell leading to inflammation, oxidative stress, synaptic dysfunction and 

neuronal cell death as depicted in Fig. 1a. However, the hypothesis is challenged by 

the fact that some older people may have amyloid deposits but display normal or near-

normal cognitive function (13). In addition, APP constructs that have been introduced 

into the mouse genome lead to cognitive decline but most of the classic AD-associated 

pathologies do not develop. This relevant evidence suggests that amyloid alone may 

not be decisive for the disease. 

A B 

 

 

Fig. 1 Pathogenesis of Alzheimer’s disease. A) Amyloid cascade hypothesis and B) Pathological 
aggregation of tau. Adapted from A) Ballard, C., et al. (2011). "Alzheimer's disease." Lancet 377(9770): 
1019-1031 (14) and B) Ballatore, C., et al. (2007). "Tau-mediated neurodegeneration in Alzheimer's 
disease and related disorders." Nat Rev Neurosci 8(9): 663-672 (15). 

In contrast, the tau hypothesis states that abnormal phosphorylation of the 

microtubule-associated protein (MAP) tau results in the transformation of normal adult 

tau to aggregated, paired helical filaments (PHFs), which manifest as neurofibrillary 

tangles (NFTs) in the neuronal soma (Fig. 1b) (8). The primary function of tau, which 

is particularly abundant in the axons of neurons, is to stabilize microtubules (15). 
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Microtubules are tubular filaments of proteins which, together with the intermediary 

filaments and the actin filaments, form the cytoskeleton of eukaryotic cells. In total, 

there are six major isoforms of tau expressed in the adult human brain, all of which are 

alternatively spliced from a single gene. In AD brain, all of the six tau isoforms are 

hyperphosphorylated and aggregated into PHFs (16). Tau hyperphosphorylation starts 

intracellularly and leads to sequestration of normal tau and other microtubule-

associated proteins, which causes disassembly of microtubules and thus impaired 

axonal transport, compromising neuronal and synaptic function (7). However, the 

structural transitions from the native conformation of tau to its neurotoxic polymers 

remains to be elucidated.  

In general, AD is considered a multifactorial disorder in which protein alterations, 

oxidative stress, neuroinflammation, immune deregulation, impairment of 

neuronal−glial communication, and neurotoxic agents trigger neuronal degeneration, 

and the balance among these factors may vary from patient to patient. Whether 

amyloid plaques and/or tau hyper phosphorylation are causes or consequence of AD 

is unknown. This, however, prompts researchers to seek alternative explanations for 

the cause(s) of human AD. One promising new field is epigenetics, which in addition 

to the traditional genetic basis for inheritance, deals with mechanisms that affect gene 

expression without modifying the genome. Being subject of this work, one prominent 

epigenetic process is RNA interference in which RNA molecules such as microRNAs 

(miRNAs) inhibit gene expression or translation by specifically targeting different 

mRNA molecules.
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1.1.3 Neurochemical biomarkers 

The term “biomarker”, an acronym for “biological marker”, refers to a broad 

subcategory of medical signs – that is, objective indications of medical state observed 

from outside the patient – which can be measured accurately and reproducibly (17). 

The World Health Organization (WHO) in coordination with the United Nations and the 

International Labor Organization, has defined a biomarker as “any substance, 

structure, or process that can be measured in the body or its products and influence or 

predict the incidence of outcome or disease” (18).  

The core neurochemical biomarkers for AD are the proteins amyloid-beta1–42 (Aβ1–42), 

total-tau (t-tau), and phospho-tau181 (p-tau), which are measured in cerebrospinal fluid 

(CSF) respectively (19). CSF is produced by the choroid plexus, a secretory tissue 

located in the ventricular system of the brain, and can be sampled during a lumbar 

puncture (20). A review by Blennow et al., 2010 showed that lower levels of Aβ1–42 and 

higher levels of t-tau and p-tau, and especially a high ratio of t-tau/Aβ1–42 or p-tau/Aβ1–

42, are found in patients with AD compared to patients with FTD or normal controls, 

with a sensitivity and specificity reaching 85–90% (21). However, many more studies 

have examined the diagnostic quality of these and other biomarkers. A recent meta-

analysis by Olsson et al., 2016 proved the CSF core markers and CSF NfL (the light 

protein of neurofilament) as strongly associated with AD and mild cognitive impairment 

(MCI). MCI is considered an intermediate stage between the expected cognitive 

decline of normal aging and the more-serious decline of dementia (22). Due to their 

consistency, Olsson et al. hypothesised to use these markers in clinical practice and 

clinical research. However, they also tested blood-based biomarker and reported that 

plasma t-tau was the only blood biomarker that discriminates patients with Alzheimer’s 

disease from controls while this did not apply to plasma levels of Aβ1–42 and Aβ1–40. A 
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comment to that study pointed out that, nevertheless, CSF biomarkers have to be 

interpreted together with data from a full medical assessment of the patient. And the 

authors added that the overlap in pathology between Alzheimer's disease and other 

neurodegenerative disorders, and the high proportion of cognitively normal elderly 

patients with Alzheimer's disease-like changes may preclude CSF protein biomarkers 

from achieving a specificity of 100% (23).  

Taken together, the comprehensive meta-analysis and other studies show that 

traditional CSF protein biomarker are far from being an ideal choice and that most 

blood-based (protein-) marker do not reach statistical difference. Consequently, 

alternative biomarkers in CSF and especially in the blood are of great interest to 

improve both the diagnostic performance for the classification of AD (and MCI) and to 

provide less invasive sampling strategies with respect to blood. 

1.2 Frontotemporal lobar Degeneration 

1.2.1 Epidemiology 

Frontotemporal lobar degeneration (FTLD), also referred to as frontotemporal 

dementia (FTD), comprises a heterogeneous group of syndromes that is caused by 

progressive degeneration of the frontal lobes (24). The group consists of the 

behavioural variant (bvFTD) with patients suffering from disturbances in behaviour and 

changes in personality. And the primary progressive aphasia (PPA) including the non-

fluent (nfvPPA), semantic (svPPA) and logopenic (lvPPA) variants that are associated 

with deficits in language (25). The corticobasal syndrome (CBS), progressive 

supranuclear palsy (PSP) and FTD with amyotrophic lateral sclerosis (FTD-ALS) 

extend the FTLD spectrum. The average age of onset is between 50 and 60 years, 

however, the range is very large (20 – 85 years). Clinically, bvFTD is the manifesting 
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syndrome of FTLD in 50–57% of autopsy-confirmed cases, whereas roughly 40% of 

autopsy-confirmed FTLD cases are PPA (26). The primary motor manifestations of 

FTLD (CBS, PSP and MND) are seen as the initial symptoms in less than 5% of cases. 

Compared to AD, FTLD is much rarer and it is estimated that about 3 - 9% of all 

dementia patients suffer from FTLD (for comparison: about 70% of all dementias are 

caused by Alzheimer's disease) (27). Reported prevalence rates for bvFTD and PPA 

range from 10-30 / 100,000 whereas PSP and CBS are even less frequent with 1-5 / 

100,000 (28).  In general, epidemiologic data suggest that FTLD is a common cause 

of early-onset (age <65 years) dementia, with an incidence and prevalence similar to 

Alzheimer’s disease (29). Median survival in FTLD has been estimated at 6–11 years 

from symptom onset and 3–4 years from diagnosis (29). Overall, survival is shorter 

and cognitive and functional decline are more rapid than in Alzheimer’s disease. 

Compared to AD, memory deficits develop late in FTLD whereas changes in behaviour 

and personality as well as language impairment occur early during the disease. Due to 

the increased prevalence, the focus of this work is on the behavioral variant of the 

FTLD spectrum. 

1.2.2 Genetics and pathophysiology 

Currently, there are no known non-genetic risk factors for FTLD. In fact, the FTLD 

spectrum exhibits a strong genetic component as demonstrated in Fig. 2a. Nearly 40% 

of cases are familial, while 10-15% are caused by an autosomal dominant pattern of 

inheritance (26). As demonstrated in Fig. 2a (lower part), these FTLD families can be 

explained predominantly by known mutations in C9 open reading frame 72 (C9orf72), 

the progranulin gene (GRN) and the gene for microtubule-associated protein Tau 

(MAPT) (26) as well as TANK-binding kinase 1 (TBK1), which, however, occurs less 

frequent (30).
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A B 

  

Fig. 2 Neuropathological classification of frontotemporal lobar degeneration (FTLD). A) 
Deposits of tau, TDP-43 or FUS are mostly found in the cytoplasm. In rare cases, deposits can detected 
with markers for the Ubiquitin Proteasome System (UPS). The frequency of tau, TDP-43, FUS and UPS 
deposition (color code see deposits) varies significantly according to the clinical diagnosis. Genetic 
causes of FTD subtypes are sorted by frequency. B) Molecular Mechanisms of FTLD. Scheme of a 
neuron with nucleus and axon. Adapted from Burger, K., et al. (2017). "Pathomechanisms and clinical 
aspects of frontotemporal lobar degeneration." Nervenarzt 88(2): 163-172 (28). 

The neuropathology of FTLD is complex and the aggregation of proteins is a key 

feature that, due to recent advances in neuropathological studies, enables the 

classification of FTLD according to the type of protein found in the pathological 

aggregates in post-mortem brain tissue. These protein aggregates predominantly 

consist of Tau (FTLD-Tau), TDP-43 (FTLD-TDP), to a lesser extent of FUS (FTLD-

FUS) or the very rare UPS (Fig. 2a upper part), and occur with different frequencies 

across the FTLD subtypes (Fig. 2a lower part).  

Considering Tau, six isoforms exist as described earlier in section 1.1.2. However, 

three isoforms have three microtubule binding repeats (3R), and three of which have 

four repeats (4R) (31). This is especially important since Tauopathies are subclassified 

according to the predominant species of tau that accumulates. Approximately one-half 

of all patients with bvFTD have tau aggregates: 3R tau in Pick's disease, and 4R tau 

in PSP and CBD (32). 

In contrast, TDP-43 protein is also found in approximately one-half of bvFTD cases on 

histological examination, and is seen in all cases of FTD-ALS (32). In addition, there 

are three major patterns of TDP-43 pathology: Type A, Type B, and Type C, which 
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correlate with different forms of FTD but won’t be described in further detail. 

Importantly, mutations in the TDP-43 gene itself rarely cause FTD, usually with ALS. 

The two more common genetic mutations associated with TDP-43 pathology are GRN 

and C9orf72. In turn, a smaller proportion of patients with FTD have pathology without 

TDP-43 or tau aggregates (5%). The majority of these cases have FUS protein deposit 

(33). 

In addition to the aggregation of proteins, other mechanisms that contribute to the 

pathogenesis of FTLD are described (Fig. 2c), since in most patients, proteins 

aggregate in the absence of a mutation. To give an example, genetic mutations 

affecting autophagy receptor proteins (ubiquilin-2, optineurin, SQSTM1/p62) and 

regulators (VCP) may impair clearance of autophagy substrates with pathological 

consequences (34). Furthermore, hexanucleotide expansion in the C9orf72 gene was 

found to be implicated in many cases of familial and sporadic ALS and FTD (35). The 

extended repeat RNA found in C9orf72 patients is highly concentrated in tiny foci in 

the nucleus, where it is likely to sequester many RNA-binding proteins, which in turn 

may impair neuronal RNA metabolism and gene expression (36).  

1.2.3 Neurochemical biomarkers 

The diagnosis of FTLD syndromes is currently only based on clinical symptoms and 

hampered by the great overlap of the clinical manifestation within the FTLD subtypes 

and with other types of dementia (e.g. AD) or movement disorders. It is even assumed 

that 10-30% of FTD patients are wrongly diagnosed and rather suffering from AD (37). 

As described earlier, changes in protein metabolism or function seem to play a pivotal 

role in the pathogenesis of FTLD, so that many studies have been performed to 

investigate proteomic alterations in CSF of FTLD patients compared with controls, 
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other neurodegenerative diseases or within FTLD subgroups (38). In fact, the AD 

biomarkers Tau, pTau and Aβ1–42 are the most intense studied proteins in CSF of 

FTLD patients, usually in the context to test their selectivity for AD and differentiate AD 

from other dementias (39). Using different combinations of these biomarkers and 

including NfL, sensitivities of 61-86% and specificities of 92-100% have been reported 

to separate AD from FTLD (40). Other proteins such TDP-43, progranulin but also 

growth factors and neuropeptides have been investigated in CSF but the AD core 

biomarkers as well as NfL are still the most promising biomarker candidates for the 

differential diagnosis of FTLD as recently reviewed by Oeckl et al., 2016 (40). However, 

contradictory results have been reported (41) showing that protein-based biomarkers 

in the CSF can be problematic and require further analysis.  

In contrast, investigations on blood-based biomarker for FTLD are limited and 

contradicting results exist as well. Using ELISA, it has been shown that total TDP-43 

concentrations in blood plasma are increased in clinical FTLD patients compared to 

AD patients and healthy controls (42). Conversely, a different study has reported a 

significant decrease in plasma total TDP-43 of FTLD-TDP patients with genetic 

confirmation (43). The same lack of difference was found when comparing plasma 

levels of neuropathological confirmed FTLD patients with AD patients or in the 

comparison between FTLD pathological subtypes (44). Hence, more effort is needed 

to evaluate alternative non-protein biomarkers such as circulating miRNAs towards 

their diagnostic value and to shed light on the identification of the underlying 

proteinopathy that causes the various FTLD syndromes.
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1.3 Role and properties of microRNAs 

1.3.1 Biogenesis and function 

MiRNAs are a diverse class of small (~ 22 nts), noncoding RNAs that selectively bind 

messenger RNA (mRNA) to regulate its activity at the post-transcriptional level (45). 

This function is considered an epigenetic mechanism that can sustainably influence 

the expression of genes in a cell and thus lead to alterations in the phenotype. The 

genomic organization (46) and transcriptional activity (47) of miRNAs is complex. For 

simplicity, only the canonical pathway of miRNA biogenesis will be described and the 

enzymatic steps explained that are required to produce a functional miRNA (Fig. 3). 

The initial transcription of miRNA genes is mediated by RNA polymerase II, which 

results in the expression of a primary miRNA (pri-miRNA) with several kilobases of 

length (48). As a consequence, the pri-miRNAs fold into hairpins, and consequently 

act as substrates for two members of the RNase III family of enzymes, Drosha and 

Dicer (49). Drosha and the double-stranded-RNA-binding protein, DGCR8, are part of 

the microprocessor complex (50) that initiates the maturation process by cropping the 

stem–loop of the pri-miRNA to release a small hairpin-shaped precursor RNA of ~65 

nucleotides in length (pre-miRNA) (51). The pre-miRNA is then exported to the 

cytoplasm by Exportin 5 (XPO5) in a Ran-GTP-dependent manner (52). In the 

cytoplasm, the pre-miRNA is further processed by Dicer and its partner protein TRBP 

(53), producing a duplex RNA of ∼22 nt with its 3′ ends having a two nucleotide 

overhang. While only the active strand (named the guide strand) is incorporated into 

the RNA induced silencing complex (RISC), the passenger strand (miRNA*) gets 

degraded. Thermodynamic features of the duplex appear to play an important role in 

this decision; the strand with the weakest binding at its 5′-end is more likely to become 
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the guide strand (54). The RISC consist of Dicer, TRBP, and Argonaute2 and identifies 

its targets based on complementarity between the miRNA guide strand and the 3’-

untranslated region of the mRNA (55). The selectivity to bind and regulate only certain 

mRNAs is determined by the seed sequence defined by the nucleotides at position 2-

8 at the 3'-end of the respective miRNA (56). Specific miRNA binding therefore either 

lead to endonucleolytic cleavage or translational repression and thus to a 

downregulation of the targeted mRNA and its protein levels, respectively. 

 

Fig. 3 Biogenesis of miRNA. Adapted from Bushati, N. and S. M. Cohen (2007). "microRNA 
functions." Annu Rev Cell Dev Biol 23: 175-205 (57)
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1.3.2 microRNA characteristics 

A uniform naming convention for miRNAs is not only necessary to characterize their 

diversity, genomic organization or sequence homologies but also important for a better 

interpretation of transcriptional expression data. Originally called the microRNA 

Registry (58), the current version of miRBase (http://www.mirbase.org/, version 21.0, 

accessed 31 January 2018) contains 28645 entries representing hairpin precursor 

miRNAs, expressing 35828 mature miRNA products in 223 species. As reviewed by 

Prichard et al., 2012 (59) the miRNA nomenclature is shown in Fig. 4 and defined as 

follows:  Most miRNAs are named with a species prefix and a number that designates 

the specific miRNA. For example, hsa-miR-21 indicates Homo sapiens microRNA 

number 21, as hsa is the prefix for Homo sapiens. Prefixes may also be added to the 

name to convey information about mature (e.g. miR-16, note upper case “R”) vs. 

miRNA primary transcript (e.g., pri-mir-16 and pre-mir-16). In addition, suffixes are 

sometimes added to designate whether the mature miRNA arose from the 3’ or 5’ arm 

of the pre-miRNA. For example, miR-142-5p designates a mature form based on the 

capitalization of the ‘R’ in ‘miR’ that arose from the 5 prime (i.e.,-5p) arm of the pre-

miRNA hairpin. MiRNAs that comprise families that are related in sequence may have 

lower case letters following the name (e.g. miR-20a and miR-20b). In some cases, 

multiple transcriptional units at different loci in the genome encode miRNAs that are 

identical in sequence in their mature form; in this case a numerical suffix is appended 

by a dash to designate the different genomic origins (e.g. miR-16-1 and miR-16-2). 

The ‘*’ (star) is appended to some miRNA names (e.g. miR-9*), especially in datasets 

generated using older miRNA profiling platforms. The designation of ‘*’ is meant to 

indicate the “minor species” of the two mature miRNAs that are produced from the 3’ 

and 5’ arms of the pre-miRNA duplex (i.e. forming the miRNA:miRNA* duplex). It is 

http://www.mirbase.org/
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now recognized that both the dominant (non-star) and ‘*’ forms can be functional and 

in some cases may be present at comparable concentrations in the cell, or the miRNA* 

form might even be at higher concentration depending on the precursor gene used and 

the cell, tissue, or species being examined. For these reasons, it has been 

recommended the miRNA/miRNA* nomenclature be dropped in favour of using ‘-3p’ 

or ‘-5p’ suffix in every case. This is especially important to avoid conflicting results as 

it may cause confusion when comparing old and new miRNA names. A useful tool that 

tracks und updates miRNA names is called miRBase Tracker 

(http://www.mirbasetracker.org/) and provides support towards this problem (60). 

However, the large amount of information from various RNA sequencing approaches 

and the associated problems of correct annotation has question the reliability of some 

signals in miRBase. As a consequence, other databases such as MirGeneDB 

(http://mirgenedb.org/) based on alternative annotation criteria have been established 

to minimize the amount of false positive signals (61). 

 

Fig. 4 MicroRNA Nomenclature. Shown is the original miRBase nomenclature and exemplarily a 
hairpin precursor of the canonical miR-9-5p and miR-9-3p sequences that are highlighted in red and 
orange, respectively. Adapted from Pritchard, C. C., et al. (2012). "MicroRNA profiling: approaches and 
considerations." Nat Rev Genet 13(5): 358-369 (59).

Naming Convention Meaning Example(s) 

3 letter prefix Species identification 
hsa (human) 
dme (fruit fly) 

pri-mir or pre-mir  
(note lower case “r”) 

primary transcript (pri-mir)  
precursor transcript (pre-mir)  

pri-mir-16 
pre-mir-16 

miR mature miRNA hsa-miR-16 

-3p or 
-5p 

miRNA originating from the 3’ or 5’ end of the pre-mir, 
respectively 

hsa-miR-142-3p 
hsa-miR-142-5p 

a or  
b 

miRNAs closely related in sequence and evolutionary origin 
hsa-miR-20a 
hsa-miR-20b 

-1 or  
-2 

Identical miRNA sequences that originate from different 
genomic loci 

hsa-miR-16-1 
hsa-miR-16-2 

miR* (star) ‘Passenger strand’ (retired after miRBase v16) hsa-miR-9* 

 

http://www.mirbasetracker.org/
http://mirgenedb.org/
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1.3.3 Role of microRNAs in dementia 

A function of miRNAs during nervous system development in vivo has initially been 

shown using constitutive Dicer knockout zebrafish. As a consequence, these animals 

were unable to process pre-miRNAs into their mature counterparts and loss-of-function 

resulted in severe morphological malformations of the brain and spinal cord (62). In 

order to assess more specific functions of miRNAs, studies also performed expression 

profiling of miRNAs during the different stages of neural development. Signals such as 

let-7, miR-9 and miR-124 were identified as global regulators of neurogenesis (63).  

MiRNAs have also shown to control of the efficiency of synaptic transmission to several 

forms of plasticity. Schratt et al., 2006 showed that brain-specific miR-134 is localized 

to the synaptodendritic compartment of rat hippocampal neurons and negatively 

regulates the size of dendritic spines, postsynaptic sites of excitatory synaptic 

transmission, by mediating the inhibition of Limk1 that controls spine development (64). 

These early studies collectively showed that miRNAs operate in the regulation of 

neuronal signalling pathways related to the central nervous system. 

So far, there have been a number of studies investigating various miRNAs and their 

possible role in the pathogenesis of AD as demonstrated in Fig. 5. Here, first causal 

evidence that linked impaired miRNA expression to AD came from a study by Hebert 

et al., 2008 (65). They identified the miR-29a/b-1 cluster as a potential major 

suppressor of BACE1 protein expression, where decreased miRNA levels in sporadic 

AD led to increased levels of BACE1 and consequently to an accumulation of amyloid-

beta. Based on microarray analysis, another important study by Wang et al., 2008 

demonstrated that levels of miR-107, which is strongly expressed in neurons, were 

decreased in human cerebral cortical gray matter early in the pathological progression 

of AD and correlated with increased levels of BACE1 mRNA (66). In turn, other studies 
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like Hebert et al., 2009 showed that miRNAs belonging to the miR-20a family (that is, 

miR-20a, miR-17-5p and miR-106b) can also directly regulate APP expression in vitro 

and at the endogenous level in neuronal cell lines (67). In addition, they found a tight 

correlation of these miRNAs with APP during brain development and in differentiating 

neurons. Another study by Lehmann et al., 2001 showed that extracellular let-7, a 

highly abundant regulator of gene expression in the CNS, activated the RNA-sensing 

Toll-like receptor (TLR) 7 and induced neurodegeneration through neuronal TLR7 (68). 

They also showed AD patients contained increased CSF levels of let-7b and that 

extracellular introduction of let-7b into the CSF of wild-type mice by intrathecal injection 

resulted in neurodegeneration.  

There are now several studies that associate deregulated miRNAs with FTLD as well. 

Buratti et al., 2008 first reported TDP-43 as part of a group of 19 proteins that are 

specifically associated with the Drosha / DGCR8 microprocessor complex (see 1.3.1) 

and therefore to the biogenesis of miRNA (69). In a follow-up approach they found 

impaired expression levels of let-7b and miR-663 following TDP-43 knockdown in 

cultured cells (70). Another study by Jiao et al., 2010 reported that miR-29b levels led 

to decreased levels of human progranulin at both the mRNA and protein level and that 

a knockdown of endogenous miR-29b increased the production and secretion of 

progranulin in NIH3T3 cells (71). Since progranulin deficiency is thought to cause some 

forms of FTLD, they suggested miR-29b might be targeted therapeutically to increase 

progranulin levels in some FTLD patients. A more recent study by Gascon et al., 2014 

showed that AMPA receptor (transmembrane receptor for glutamate that mediates fast 

synaptic transmission) subunits were regulated by the brain-enriched miR-124, whose 

abundance was markedly decreased in the superficial layers of the cerebral cortex of 

mice expressing the mutant CHMP2B (72). CHMP2B mutations are a rare cause of 

autosomal dominant FTLD. They demonstrated that ectopic miR-124 expression in the 
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medial prefrontal cortex of mutant mice decreased AMPA receptor levels and partially 

rescued behavioural deficits. 

In summary, there is increasing evidence that miRNAs play important roles in the 

regulation of relevant genes that are directly associated with pathogenic mechanisms 

in AD and FTLD and may therefore represent important targets for therapeutic 

treatment options. 

 

Fig. 5 microRNAs affecting neuronal pathways implicated in AD pathogenesis. Schematic 
representation of a neuron showing APP processing and amyloid-beta generation (enlarged). 
MicroRNAs regulating neuronal processes affected in AD are indicated, showing those that are either 
up-regulated (red) or down-regulated (green) in AD patients. Arrows point to the associated targets 
shown to be regulated by the specific microRNAs listed. Adapted from: Schonrock, N. and J. Gotz 
(2012). "Decoding the non-coding RNAs in Alzheimer's disease." Cellular and Molecular Life Sciences 
69(21): 3543-3559 (73). 
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1.3.4 Detection of circulating microRNAs in body fluids 

Circulating miRNAs are in many ways promising biomarkers. This is based on the fact 

that miRNAs 1) are released into circulation (74), 2) can reliably be detected by RT-

qPCR (75), which can easily be integrated into a clinical laboratory, 3) show differential 

stability against physiological confounders such as pH (76), RNAse activity (77, 78) 

and temperature (freeze-thawing) (79) and 4) show differential expression levels in 

neurodegenerative diseases (80). A typical workflow for the detection and analysis of 

circulating miRNAs is illustrated in Fig. 6. 

 

 

Fig. 6 Workflow to detect and analyse circulating miRNAs as biomarkers in body fluids. 
Adapted from Steer, C. J. and S. Subramanian (2012). "Circulating microRNAs as biomarkers: a new 
frontier in diagnostics." Liver Transpl 18(3): 265-269 (81).
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As described earlier, the biogenesis of miRNAs results in the intracellular expression 

of a number of diverse miRNA signals that subsequently control the transcriptional 

activity of specifically targeted genes. However, there are several mechanisms by 

which miRNAs can enter the bloodstream. Either passive due to apoptotic or necrotic 

cells where the RNA transcripts form complexes with specific RNA-binding proteins 

(for example, miRNAs bind to the AGO2 protein) or active via secretion where the 

fusion of a multivesicular body with the plasma membrane leads to the release of 

exosomes (74). These circulating vesicles contain specific miRNAs and are thought to 

be involved in cell–cell communication (82). As a consequence, miRNAs are present 

in various body fluids such as blood including plasma and serum, CSF, urine or saliva 

(83). The first step in a protocol towards detection starts with the extraction of total 

RNA from these liquid biopsies. A bunch of commercial Kits that are mainly based on 

traditional single-step extraction using guanidinium thiocyanate-phenol-chloroform 

according to Chomczynski (84) are available on the market. These kits often include 

an initial cell lysis followed by a phenol-chloroform phase separation and a subsequent 

purification using ethanol. According to the literature, the miRNeasy Kit (Qiagen) has 

proven a reliable way to efficiently isolate RNA including miRNAs from body fluids 

compared to other methods (85). Towards quantification, many properties that are 

unique to miRNAs pose challenges to their accurate detection (59). The short 

sequence (~22 nts) and lack of a poly(A) tail of mature miRNAs preclude the annealing 

of traditional (universal) primers and a selective enrichment. MiRNAs within a family 

(for example, the let-7 family) can differ by as little as a single nucleotide, making the 

ability to discriminate between forms with single nucleotide differences important. In 

addition, there is a certain degree of sequence length heterogeneity that tends to vary 

among different miRNAs that are called “isomiRs” (86). However, the large majority of 

miRNAs typically show only modest length heterogeneity. Finally, the variance in 
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miRNA GC content leads to a wide variance in melting temperatures (Tm) for annealing 

reactions, creating miRNA-specific biases in high-throughput approaches. Despite 

these challenges, three major approaches (Fig. 6) are currently well-established: 

reverse transcription–qPCR (RT-qPCR), hybridization-based methods such as DNA 

microarrays and high-throughput sequencing i.e. RNA-seq. A recent study by 

Mestdagh et al., 2014 evaluated these miRNA profiling platforms in a large quality 

control (miRQC) study (87). They developed robust quality metrics to objectively 

assess platform performance in terms of reproducibility, sensitivity, accuracy, 

specificity and concordance of differential expression as demonstrated in Fig. 7. 

Overall, the authors stated that each platform has specific strengths and weaknesses. 

For example, sequencing provides very specific and reproducible results, but is less 

sensitive for low RNA input samples (e.g. CSF) whereas microarrays seem highly 

reproducible but generally less accurate and sensitive. In contrast, qPCR generally 

provides a good combination of all parameters, but with large differences within the 

individual methods and compared to samples with low RNA input. As a consequence, 

the TaqMan based OpenArray method (ABI) is a good choice for an initial screening 

study due to its high sensitivity. In contrast, the SYBR Green based miRCURY system 

(Exiqon) has performed well in terms of specificity and reproducibility (Fig. 7), 

parameters that provide reliability and that are of great importance to the area. There 

is certainly no doubt that next generation sequencing technology will become the 

leading methodology in miRNA research. Yet, the previously high cost, time and 

instrumentation requirement have prevented the establishment in laboratory routine. A 

potential biomarker, however, should be easy, fast, inexpensive and reliable to 

measure. Since qPCR provides superior sensitivity accompanied by high accuracy and 

the fact that body fluids generally contain rather small amounts of RNA, qPCR is still 

considered gold standard in this setting (88). Guidelines such as MIQE (89) have 
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already been established for qPCR to increase transparency, thus ensuring better 

comparability of qPCR-based studies. However, several studies do not adhere to 

MIQE, which complicates an interpretation and challenges the obtained results. Based 

on these considerations, RT-qPCR was used in accordance with the MIQE guidelines 

to quantify expression levels of circulating miRNAs in body fluids in this work. 

 

Fig. 7 Radial plot of performance metric z-scores from the miRQC study. Z-scores for eight 
metrics are shown. M1=reproducibility; M2=titration response; M3=accuracy; M4=accuracy low-input 
RNA; M5=sensitivity; M6=sensitivity low-input RNA; M7=specificity MS2 RNA; M8=assay cross-
reactivity. Higher z-scores correspond to a better performance and each radial plot has an identical 
scale, which makes plots directly comparable. qPCR: EX=miRCury (Exiqon), OA=OpenArray (Life 
Technologies), TM=TaqMan Cards (Life Technologies), TMp=TaqMan Cards preAmp (Life 
Technologies), QI=miScript (Qiagen), QU= qScript (Quanta BioSciences), WA=SmartChip (WaferGen), 
microarray: AF=microarray (Affymetrix), AG=microarray (Agilent), NS=nCounter (Nanostring), 
sequencing: IL=TruSeq (Illumina), IT=Ion Torrent (Life Technologies). Adapted from Mestdagh, P., et 
al. (2014). "Evaluation of quantitative miRNA expression platforms in the microRNA quality control 
(miRQC) study." Nat Methods 11(8): 809-815 (87).
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1.4 Objective 

The accurate diagnosis of dementia such as Alzheimer’s disease or frontotemporal 

dementia currently requires a careful assessment of clinical history, cognitive testing, 

neurological examination, and structural brain MRI. Traditional protein biomarker exist, 

however, there are certain circumstances related to their detection such as standard 

operating procedures, harmonization, quality control, establishment of reference 

material and methods, and comparison of analytical platforms. As matter of fact, 

validated AD biomarkers are currently detected only in the CSF, which limits their 

usage in screening or monitoring patients. 

Hence, there is currently no single biomarker that meets the high requirements that 

are necessary to make an easy, fast, cheap and accurate diagnosis. MiRNAs are in 

many respects a promising alternative, but so far contradictory results, caused by 

methodological diversity, have prevented progress of the field. 

The overarching aim of this work was to measure expression levels of circulating 

miRNAs in body fluids by using RT-qPCR and subsequently to assess their value as 

potential biomarkers for neurodegenerative disease such as AD and FTLD. The work 

consists of two consecutive studies that differ mainly in the number and composition 

of samples and miRNAs as well as the method used. 

The first study focused on a small cohort of Alzheimer patients compared to a 

heterogeneous disease control group and was considered an initial screening study 

based on a high-throughput approach using RT-qPCR OpenArray technology that 

encompassed the detection of >1000 miRNAs to 1) gain an overview of the number of 

miRNAs detectable in CSF, 2) assess the quality of expression strength and frequency, 

3) identify differentially expressed miRNAs, 4) investigate the miRNA biomarker 



 27 

potential in comparison to classical protein biomarker amyloid-beta, tau and p-tau, and 

4) consider the general applicability of the method. 

The second study was considered a candidate approach that compared to the first 

study, based on a medium-throughput RT-qPCR method using the SYBR Green 

miRCURY system with a focus on 1) reliability of miRNA expression data using 

appropriate quality controls, 2) samples collected from multiple clinical centers across 

Germany, 2) homogenous patient groups including bvFTD, AD and cognitively healthy 

control cases, III) miRNA expression levels detected in both serum and CSF samples 

and IV) a limited set of miRNAs (n=96). As in the first study, the goal was to examine 

and evaluate the measured miRNAs for their use as potential biomarkers under these 

aspects. 

1.5 Results 

1.5.1 Publication 1 “MicroRNA Profiling of CSF Reveals Potential Biomarkers to 

Detect Alzheimer`s Disease” (Denk et al., 2015) 

In this preliminary screening study we profiled the expression of in total 1266 circulating 

miRNAs (miRBase version 14) in CSF of 22 AD patients and 28 disease controls (i.e. 

n=5 cognitively healthy controls, n=2 patients with normal pressure hydrocephalus 

(NPH), n=9 patients with FTLD and n=12 patients with cognitive impairment due to 

affective disorders or vascular disease) by using the TaqMan OpenArray platform 

including pre-amplification. One goal was to gain an overview of the number, level of 

expression and frequency of the analyzed miRNAs. Applying an expression cutoff of 

Cq ≤ 34 resulted in 411 positively detected miRNAs, which suggested that ~37% are 

actively expressed in the brain. In total, 729 signals were consequently either not 

detected or did not meet the criteria. Considering only those showing an expression 
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frequency n ≥ 3, i.e. the number of positive miRNAs in each group that passed the Cq 

cutoff, further reduced the number to n=204 miRNAs. Of these, expression levels and 

frequencies were in the ranges as illustrated in Fig. 8a-b. The results show that only a 

small proportion of the circulating miRNAs measured in CSF (~n=60) is strongly 

expressed (Cq < 26) correspondingly with high frequency (> 84%) and that basically 

expression levels of miRNAs were observed to also negatively correlate with their 

frequencies (R2=40%) as shown in Fig. 8c.  

 

Fig. 8 Quality of CSF expression data obtained by TaqMan OpenArray with pre-amplification. 
Depicted are the n=204 most abundant and frequently expressed miRNAs and their respective, A) 
ranges of expression levels, B) expression frequencies based on n=50 CSF samples and C) correlation 
of expression levels vs expression frequencies and classification into MoR set A (mean Cq 25.06) and 
set B (mean Cq 28.2). FOC=Frequency of occurrence, MoR = Measure of Relevance. 

Since we were also interested in the extent to which significantly deregulated miRNAs 

were present in the pool we compared expression levels of AD and controls cases. 

Using a simple t-test, we observed 11 miRNAs with significantly different expression 

levels, however, in total we identified 74 miRNAs as down- and 74 as differentially 

upregulated each with a fold change ≥ |1.5| (Fig.1 Denk et al., 2015). In order to 

consider also the non-significant miRNAs as potential biomarker candidates, we used 

an explorative statistical non-hypothesis based method called “Measure of Relevance” 

(MoR) (90). Due to the differences in data quality, we classified the n=204 miRNAs into 

a set A and set B including higher and more frequently expressed as well as lower and 

less frequently expressed signals, respectively (Fig. 8c). Initially, we analyzed set A 

using MoR followed by a reliability investigation, which included a repetitive random 
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subsampling to improve the results. As a consequence, only miRNAs identified by MoR 

in ≥80% of cases after repetitive subsampling were considered reliable biomarkers to 

discriminate AD from control cases. The reliability investigation identified miR-4449, 

miR-1274a, miR-4674 and miR-106a without and miR-4449, miR-1274a, miR-146a, 

miR-335 and miR-100 after substitution of missing values as reliable biomarker 

candidates (Fig 2a-b, Denk et al., 2015). Set A also included CSF protein biomarker 

levels of total tau, p-tau and Aβ1–42. In this case, both, total tau as well as p-tau scored 

with 100%, confirming the functionality the MoR approach as well as the high 

discriminatory value of these signals. Interestingly, Aβ1–42 was not identified as a 

reliable biomarker, which was probably due to the fact that Aβ1–42 levels vary across 

various dementia forms, again displaying that its degree of information as a single 

biomarker may not suffice in clinical routine diagnostics due to its low specificity. We 

also used MANCOVA and confirmed the reliable biomarkers miR-1274A, miR-100 and 

miR-146a at Bonferroni corrected significance. The covariates sex and age did not 

exert significant effects on the considered miRNAs.  

We subsequently analyzed set B using MoR. However, set B covered only moderately 

expressed and less frequent miRNAs so that we couldn’t perform a reliability 

investigation. The MoR-method identified miR-505-5p, miR-4467, miR-766, miR-375, 

miR-708, miR-3622b-3p, miR-296, miR-219 and miR-103 as informative signals, which 

was further confirmed by MANCOVA for each individual signal (Fig. 3, Denk et al., 

2015). Next, we were interested to see to what extent the potential biomarkers were 

able to classify candidate AD cases. Using discriminant analyses, the combination of 

miR-146a (AUC=0.64) and p-tau (AUC=0.79) allowed a correct classification with 

86.4% accuracy (S5 Dataset, Denk et al., 2015). Another discriminant analysis 

performed on the most reliable biomarker miR-100 from set A (Fig 2B and 2C and S3 

Dataset, Denk et al., 2015) and the most abundant miR-103 and miR-375 from set B 



 30 

(S2 Dataset and S3 Dataset, Denk et al., 2015) revealed for the two test groups a total 

correct classification rate of 96% after substitution of missing values, positively 

classifying controls and AD cases with 96.4% and 95.5% accuracy, respectively. ROC 

curve analysis showed an AUC of 0.72 (miR-100), an AUC of 0.87 (miR-103) and an 

AUC of 0.99 (miR-375) for this combination (S5 Dataset, Denk et al., 2015). In addition, 

a complex correlation pattern was identified in which the biomarker candidate miR-

146a correlated negatively with the protein levels tau and Aβ42 of the cerebrospinal 

fluid exclusively in the Alzheimer group (R2~30%). 

In summary, the results from the discovery study showed that 1) only small subset of 

miRNAs is detectable in CSF, 2) an even smaller portion appears to circulate in CSF 

with increased expression levels and frequency, 3) the measurable miRNAs show 

differential expression levels equally up- and downregulated in AD compared to 

disease controls, 4) a subset of de-regulated miRNAs were identified as biomarker 

candidates for AD by demonstrating moderate to superior classification performance 

compared to disease controls and scored as good as protein biomarker tau and p-tau 

and even better than levels of Aβ1-42, and 5) that complex correlation pattern of miRNAs 

with classical protein biomarker further support its role in the regulation of genes in AD 

pathogenesis. 
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1.5.2 Publication 2 “Specific serum and CSF microRNA profiles distinguish sporadic 

behavioural variant of frontotemporal dementia compared with Alzheimer 

patients and cognitively healthy controls” (Denk et al., 2018) 

In this study, we changed from a screening to a more candidate oriented approach by 

switching from TaqMan OpenArray to SYBR Green based miRCURY technology with 

a focus on reliability (as discussed in 1.3.4). Hence, we further increased the number 

of samples to n=48 bvFTD, n=48 AD and n=44 cognitively healthy controls and 

extended our investigation towards serum. Overall, we concentrated on two almost 

identical miRNA panels (each n=96 miRNAs) - one measured in CSF and the other 

measured in serum.  

 

 

Fig. 9 Quality of expression data obtained by miRCURY assays without pre-amplification. 
Depicted are miRNAs of CSF (mean Cq 33.6) and serum (mean Cq 28.9) panel (without controls) and 
their respective A–B) ranges of expression levels, C–D) expression frequencies based on n=140 (CSF) 
and n=131 (serum) samples and E–F) correlation of expression levels vs expression frequencies.  

One objective was to evaluate our protocol towards data reliability. Looking at the 

quality of expression data, CSF yielded much lower and less frequently expressed 
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signals compared to serum (Fig. 9a-d). Most CSF miRNAs are in the range Cq 32-36 

(Fig. 9a) with ~60% signals showing frequencies > 84% (Fig. 9c), whereas serum 

miRNAs appear more heterogeneous being predominantly in a higher range of Cq 24-

32 (Fig. 9b) with ~90% signals showing frequencies > 84% (Fig. 9d). Both, CSF and 

serum miRNAs are measured at a constant high frequency until Cq 34, then expression 

levels and frequencies show a strong negative correlation (Fig. 9e-f). Using artificial 

and endogenous quality control miRNAs, the protocol also demonstrated 1) constant 

extraction efficiency with low intra-assay variation, 2) constant efficiency of the reverse 

transcription step, 3) no hemolysis of serum samples and 4) reduced technical variation 

after normalizing CSF and serum data to a subset of miRNAs identified by GeNorm 

and NormFinder (S2 Figure, Denk et al., 2018). Data reliability was also demonstrated 

by constant PCR efficiencies (E = 0.95-0.98) for a subset of assays and high day-day 

reproducibility for serum (R2=0.99) and to a lesser extent for CSF (R2=0.97) (S3-S4 

Figure, Denk et al., 2018). In summary, the protocol generated reliable data, however, 

with miRNAs measured in serum having an overall higher quality compared to miRNAs 

detected in CSF and that appear more variable at lower expression levels. Another 

objective was to analyse any associations of miRNA expression levels in CSF and 

serum. However, a global correlation of miRNA expression levels between serum and 

CSF was not observed. Rather, a large number of inter-correlations in the serum 

dataset were observed. As a consequence, cluster analysis revealed that miRNA 

expression pattern in serum reflect, in part, their affiliation to a specific miRNA family 

or genomic cluster, which was specifically altered in bvFTD, AD, and control groups. It 

was concluded that the profile of circulating miRNAs is more similar to the intracellular 

profile than expected. Accordingly, deregulated miRNAs identified outside the cell may 

contain information to detect alterations of intracellular origin - a valuable property of a 

circulating biomarker. Due to the high correlative nature in the serum data, we further 
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applied factor analysis to identify potential biomarker pattern. Applying factor analysis 

we identified a 3-factor model characterized by a 29-miRNA-signature that explained 

80% of the variance classifying healthy controls with 97%, bvFTD with 77% and AD 

with 72% accuracy. Using statistical validation, total classification performance ranged 

between 60 – 84%. Interestingly, some of the miRNAs that correlated with the 

individual factors of the model could be assigned to different miRNA families and 

clusters. Most of these miRNAs were also confirmed by MANOVA as deregulated 

between AD, bvFTD and control cases with BH corrected significance. Almost all of 

these signals were regulated in the same direction e.g. miR-320a was down-regulated 

in AD and bvFTD compared to healthy controls - opposite effects could not be 

observed. Compared to CSF, serum miRNAs generally showed superior classification 

performance to discriminate AD and bvFTD cases from healthy controls by displaying 

AUC values of up to 0.97 and specificities and sensitivities ranging from 92 – 96%, 

respectively. CSF miRNAs performed more moderately but indicated a trend towards 

classifying bvFTD from AD cases with AUC values of 0.73 that demonstrated 78% 

sensitivity and 68% specificity, respectively. Interestingly, several serum miRNAs from 

our 3-factor-model also correlated with CSF levels of amyloid-beta and pNfH either in 

the control- or bvFTD group, which further supports their role as potential biomarkers 

to detect the progressive neuronal decay observed in dementias such as AD or bvFTD.  
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1.6 Discussion 

It has been about 10 years since the first reports of altered miRNA abundance and 

speciation: (i) in anatomical regions of the brain targeted by the AD process after post-

mortem examination, (ii) in blood serum, and (iii) in CSF (91-93). Since then an in depth 

overview of the peer-reviewed literature has provided no general consensus of what 

miRNAs are up- or down regulated in any tissue or biofluid compartment in thousands 

of AD patients (94) as reviewed by Wu et al., 2016 (95) and Kumar et al., 2016 (96). 

Various sources of (technical) variability have led to inconsistencies in the miRNA 

profiling data for these studies (97) and prevented the assessment of whether 

circulating miRNAs in body fluids can act as biomarkers for neurological disorders such 

as AD.  

Instead of comparing up- or down-regulated miRNAs, it is more practical at this point 

to review previous studies for their data reliability. This would provide an overview of 

reliable studies, identify potential vulnerabilities and improve future studies to drive the 

field forward. To this regard, I established a “study reliability score” (SRS), which 

considers key confounders to rate studies whether they are technically sound or not. 

Each included item in the SRS is assigned points based on its potential impact on the 

study reliability as listed in Tab. 1. The items and its corresponding weights are then 

summarized into a so called “study reliability index” (SRI), which allows to directly 

compare and evaluate studies based their reliability. The SR score includes the 

following items: I) sample size, II) normalization strategy, III) fold change (effect size), 

IV) hemolysis, V) multicenter study and VI) MIQE compliance. As there are too few 

studies on CSF to make a meaningful comparison, I have evaluated only the studies 

on serum miRNA biomarkers in AD compared to healthy controls. As a consequence, 
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only biomarker identified in Denk et al., 2018 were evaluated towards classification 

performance and reliability. 

Tab. 1 Possible factors that challenge the reproducibility of miRNA profiling data from body 
fluids and that can be used to assess their reliability. The study reliability index SRI consists of 
different items, whose consideration and extent are summarized into a study reliability score called SRS 
to evaluate individual studies according to their reliability. The reference column provides valuable 
literature including tools and methods with respect to each confounding factor that support the reader 
to improve individual protocols. FC = fold change. 

Confounder Reference SRS [items] SRS [points] 

Sample collection (97) - - 

CSF (98) - - 

Serum / Plasma (99, 100) - - 

Hemolysis (75, 101) Yes 2 = yes 
0 = no 

Storage (102) - - 

Cohort size (103, 104) Yes 0.05 / sample (max 5 / group) 

Multicenter  Yes 2 = yes 
0 = no 

RNA isolation (85, 105-108) - - 

Platform (59, 87, 109-112) - - 

RT-qPCR1 (106) - - 

NGS2 (113-117) - - 

Microarray3 (118-120) - - 

Normalisation (121-125) Yes 0.5 / spike and/or miRNA (max 3) 

MIQE (RT-qPCR)4 (89, 126) Yes 2 = yes 
0 = no 

isomiRs (86, 127, 128) - - 

Fold change (129) Yes 0.5 = FC < 1.5 
1.5 = 1.5 ≤ FC ≤ 2 
3.0 = FC ≥ 2 

Total  6 23 

Related confounders are 1 RNA input, PCR inhibitors, reverse transcription and PCR step 2 library preparation, 
alignment, ribosomal RNA, bioinformatic data processing 3 labelling and cross-hybridization, 4 especially parameters 
such as no template controls, melting curve analysis, PCR efficiency, intra- and inter-assay variation, limit of 
detection and basic information that haven’t been assessed and reported in related studies. 
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In total, 12 studies qualified for a comparison because they reported diagnostic 

sensitivities and specificities of miRNA biomarker candidates for AD in serum. To 

increase transparency, only miRNAs (n=13) which displayed differential expression 

levels in AD compared to healthy controls and above a fold change of |1.5| at 

Bonferroni corrected significance were selected from the study Denk et al., 2018. 

These serum miRNA biomarkers scored mediocre in comparison to the other studies 

with an average diagnostic sensitivity of 83% as shown Fig. 10a. Nevertheless, they 

were slightly above the combined sensitivity of 81%. By contrast and with an average 

specificity of 86%, the n=13 miRNA candidates were among the top four studies as 

displayed in Fig. 10b. However, most studies and their biomarker signature(s) 

performed poorly in terms of reliability as demonstrated by the SR index in Fig. 10c 

and its respective items included in the SR score displayed in Fig. 10d. 

 

Fig. 10 Classification performance of potential serum miRNA biomarkers for AD compared to 
the extent of their reliability. I compared the classification performance of different serum biomarker 
signatures in AD compared to controls from several studies and evaluated these with regard to their 
reliability by means of the SRI and SRS. Depicted are A) the diagnostic sensitivity, B) the diagnostic 
specificity, C) the reliability of each study by means of the SRI and D) the SRS and its contributing items. 
The most reliable (optimal) study would indicate a SRI = 1.0, which equals a SRS with 23 points. In total, 
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n=13 miRNAs from Denk et al., 2018 that displayed different expression levels ≥ |1.5| in AD compared 
to healthy controls at Bonferroni corrected significance were included. Sens = sensitivity, Spec = 
specificity. 

In summary, this means that 1) blood-based miRNA signals indicate promising 

biomarker for AD with acceptable classification performance, 2) that classification 

performance of serum biomarkers in AD does not necessarily correlate with the 

reliability of the study they have been identified by and 3) that there is room for 

improvement with regard to the items included in the SR index. One shortcoming 

associated with the SR index is that not all parameters have been taken into 

consideration. IsomiRs for example are miRNA variants that differ from the sequence 

on their 5′- and/or -3′ end, that also circulate in body fluids (127) and that show 

differential expression in AD (130). However, common RT-qPCR based methods are 

currently not able to distinguish isomiR variants (128). This bias is of great importance 

and cannot be controlled until RT-qPCR detection chemistry progress. Secondly, a 

systematic basis for evaluation towards the SRI items needs to be established in order 

to rule out an arbitrary award of points. And third, SRI items such as sample size may 

outweigh due to their redundancy. Nevertheless, the SRI reveals that the criteria and 

quality controls of the studies investigating circulating miRNAs in body fluids for AD 

are in need of improvement. General guidelines for qPCR like MIQE (89) already exist 

but due to methodological variety and the small amount of RNA and microRNA in body 

fluids, the items in Tab. 1 should be given more focus and greater consideration. 

Additional literature including tools and methods for avoiding pitfalls are also listed. In 

addition, inter- and intra-platform differences further contribute to variability (87). 

Hence, basic parameters such as limit of detection, linear dynamic range, PCR 

efficiency and intra-assay variation are critical to define an expression cutoff and to 

discard off-scale data. This can be assessed by absolute quantification by means of 

standard curves (131, 132). Each study should provide such information to prove the 
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reliability of microRNA profiling data of the individual protocol and to qualify for a direct 

comparison of expression levels of circulating miRNAs and thus allowing the field to 

proceed more rapidly. With regard to miRNA biomarker in CSF, information are still 

very limited, which complicates a comparison of signals. With regard to miRNA 

biomarker for bvFTD, miRNA expression data is limited as well. However, in Denk et 

al., 2018, we generally observe similar de-regulated expression patterns in bvFTD as 

in AD, which points to a common basis of impairment. However, FTLD and AD are 

heterogeneous diseases and our studies looked at a limited panel of miRNAs in a 

cross-sectional setting. As diagnosis and detection towards proteinopathies advance, 

stratification will improve thus increasing the chance to detect other differentially 

expressed miRNAs better classifying related dementia types. From an economic point 

of view, the classical CSF protein biomarker tests are expensive. On the other hand, a 

biomarker test based on an 8-miRNA signature and the method used in Denk et al., 

2018 would cost ~30 € per sample, which makes the identification and establishment 

of a microRNA-based biomarker by using RT-qPCR economically attractive. 

In summary, at the present time it cannot be conclusively assessed whether circulating 

microRNA are suitable as a biomarker for Alzheimer or frontotemporal dementia. As 

with the classical CSF protein biomarker - hundreds of studies and standardization 

efforts will be necessary to establish specific miRNA signatures for the stratification, 

monitoring or diagnosis of AD or FTLD. However, new advances in both sequencing 

and qPCR research, including careful optimization and standardization of techniques 

and protocols as demonstrated in Denk et al., 2018 will certainly foster progress toward 

highly specific miRNA based biomarker signatures in neurodegenerative diseases 

such as Alzheimer’s disease and frontotemporal dementia.  
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2 List of abbreviations 

AD  Alzheimer's disease 

AGO2 argonaute-2 

APOE4 apolipoprotein E-e4 

APP amyloid precursor protein 

Aβ amyloid-beta 

BACE1 β-site APP cleaving enzyme 

bvFTD behavioural variant  of frontotemporal dementia 

C9orf72 chromosome 9 open reading frame 72 

CBS corticobasal syndrome 

CHMP2b charged multivesicular body protein 2B 

CNS central nervous system 

FC fold change 

Fig figure 

FTD-ALS frontotemporal dementia with amyotrophic lateral sclerosis 

FTLD frontotemporal lobar degeneration 

FTLD-TDP frontotemporal dementia TAR DNA-binding protein-43 

FUS fused in sarcoma 

GC guanine-cytosine content 

GRN progranulin 

hsa homo sapiens 

lvPPA logopenic variant primary progressive aphasia 

MANCOVA multiple analysis of covariance 

MAPT microtubule-associated protein tau 

MCI mild cognitive impairment 

MIQE Minimum information for publication of quantitative real-time PCR 

experiments 

miR microRNA 

miRNA microRNA 

MND motor neuron disease 

MoR measure of relevance 

mRNA messenger RNA 

NfL neurofilament light chain 
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nfvPPA nonfluent-agrammatic primary progressive aphasia 

NGS next generation sequencing 

NPH normal pressure hydrocephalus 

NTF neurofibrillary tangles 

PHF paired helical filaments 

PPA primary progressive aphasia 

pre-miR precursor microRNA 

pri-miR primary microRNA 

PS-1 presenilin-1 

PS-2 presenilin-2 

PSP progressive supranuclear palsy 

p-tau phosphorylated tau 

qPCR quantitative real-time polymerase chain reaction 

RISC RNA induced silencing complex 

RT-qPCR reverse transcription quantitative real-time polymerase chain reaction 

SRI study reliability index 

SRS study reliability score 

svPPA semantic variant primary progressive aphasia 

Tab table 

TBK1 serine/threonine-protein kinase 

TDP-43 TAR DNA-binding protein 43 

TRBP transactivation response RNA binding protein 

t-tau total tau 
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Abstract 

The miRBase-21 database currently lists 1881 microRNA (miRNA) precursors and 2585 

unique mature human miRNAs. Since their discovery, miRNAs have proved to present a 

new level of epigenetic post-transcriptional control of protein synthesis. Initial results point 

to a possible involvement of miRNA in Alzheimer’s disease (AD). We applied OpenArray 

technology to profile the expression of 1178 unique miRNAs in cerebrospinal fluid (CSF) 

samples of AD patients (n = 22) and controls (n = 28). Using a Cq of 34 as cut-off, we identi- 

fied positive signals for 441 miRNAs, while 729 miRNAs could not be detected, indicating 

that at least 37% of miRNAs are present in the brain. We found 74 miRNAs being down- 

and 74 miRNAs being up-regulated in AD using a 1.5 fold change threshold. By applying 

the new explorative “Measure of relevance” method, 6 reliable and 9 informative biomarkers 

were identified. Confirmatory MANCOVA revealed reliable miR-100, miR-146a and miR- 

1274a as differentially expressed in AD reaching Bonferroni corrected significance. MAN- 

COVA also confirmed differential expression of informative miR-103, miR-375, miR-505#, 

miR-708, miR-4467, miR-219, miR-296, miR-766 and miR-3622b-3p. Discrimination analy- 

sis using a combination of miR-100, miR-103 and miR-375 was able to detect AD in CSF by 

positively classifying controls and AD cases with 96.4% and 95.5% accuracy, respectively. 

Referring to the Ingenuity database we could identify a set of AD associated genes that are 

targeted by these miRNAs. Highly predicted targets included genes involved in the regula- 

tion of tau and amyloid pathways in AD like MAPT, BACE1 and mTOR. 
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Alzheimer`s disease (AD) is a neurodegenerative, progressive disorder, which primarily affects 

people over the age of 65 [1]. Individuals suffer from memory deficiencies and other cognitive 

impairments as a result of synaptic dysfunction and neuronal decay. The development of pre- 

ventive or curative therapeutic options as well as the establishment of favorable clinical bio- 

markers for (early) diagnosis and treatment efficacy is a permanent issue [2]. In spite of well- 

established diagnostic criteria such as traditional guidelines from the National Institute of 
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MicroRNA Profiling of CSF for Alzheimer`s Disease 

Neurological Disorders and Stroke–Alzheimer’s Disease and Related Disorders Association 

(NINCDS-ADRDA), sensitivity and specificity of AD diagnosis is still lower than desirable. 

Amyloid-β (Aβ1–42), total-tau (tau) and phospho-tau (p-tau) are currently used as suitable ce- 

rebrospinal fluid (CSF) biomarkers to detect AD [ 3]. These proteins are components of the 

pathogenic hallmarks of AD, amyloid plaques and neurofibrillary tangles, and can be reliably 

measured in CSF if meticulous collection procedures are applied [4]. Another issue is the rela- 

tively less conclusive diagnosis of AD in contrast to related dementia pathologies such as vascu- 

lar dementia, frontotemporal lobe dementia (FTLD), or Lewy body dementia. 

It is commonly accepted that the late onset form of AD, which occurs after the age of 65, 

and accounts for about 90% of all AD cases, develops within complex interactions of multiple 

risk factors including genetic components, environmental influences and epigenetic mecha- 

nisms, making the identification of novel and informative biomarkers a challenging task [5, 6]. 

In the last decade, it has become increasingly clear that epigenetic mechanisms, such as DNA 

methylation, RNA editing or RNA interference considerably contribute to the development 

and course of AD pathophysiology [7]. RNA interference, especially, may offer potential for 

new diagnostic and therapeutic options for treatment of AD [8]. 

Central to this epigenetic process are miRNAs, a subclass of small noncoding RNAs, which 

are transcribed from either intra- or intergenic regions modulating gene expression post-tran- 

scriptionally by targeting mRNAs for cleavage or translational repression via base complemen- 

tarity [9]. Their significant role in the proliferation, differentiation, function and maintenance 

of neuronal cells has already been demonstrated in several experimental systems [10]. More- 

over, they are specifically expressed in neurons where they are suggested to function in synapse 

formation [11], synapse plasticity [ 12] and the differentiation of neurites [ 13]. The potential 

role that differentially expressed miRNAs may play in AD pathophysiology was first demon- 

strated by Lukiw (2007) [ 14] in hippocampal tissue and by Cogswell et al. (2008) [ 15], who 

studied miRNA expression changes in CSF and regions of the brain most affected by AD pa- 

thology. Furthermore, Hébert et al. (2008) showed that a loss of the miR-29a/b-1 cluster corre- 

lates with increased beta-secretase (BACE1) activity in Alzheimer’s disease pointing to a 

potential causative association [ 16]. Pathogenetically, it is suggested that elevated levels of 

BACE1 expression and activity might initiate or accelerate AD pathophysiology contributing 

to accumulated amyloid peptides [ 17]. In addition, Wang et al. (2008) reported that a change 

in neuronal miR-107 expression, which also targets BACE1, could contribute to the pathogene- 

sis of AD [18]. Liu et al. (2012) provided strong evidence in AD SAMP8 (senescence-accelerat- 

ed mouse prone 8) mice models, which have age-related learning and memory deficits, that 

miR-16 can regulate amyloid-precursor protein (APP) in vivo and that abnormally low expres- 

sion of miR-16 levels potentially lead to APP accumulation [19]. 

Hence, miRNAs may provide valuable insight into the cellular mechanisms by which AD re- 

lated genes are expressed or inhibited, thus improving the current understanding of cause or 

consequence of the disease progression at molecular level. They are considered as extremely 

stable [20, 21] and, owing to their function as regulators of gene expression, as well as their 

presence as circulating molecules in various body fluids [ 22], may arguably carry promise as 

biomarkers [23–25]. When measuring circulating miRNAs in neurodegenerative diseases such 

as AD, CSF is the best material, beside brain tissue, for pathological assessment and the identi- 

fication of informative signals. Low RNA content in CSF, limited sample size and methodologi- 

cal problems accompanied by low detection limits have led to the production of conflicting 

results [26, 27]. Nevertheless, recent advances in technology and the development of guidelines 

may now facilitate research in this field. In our case, the entire qPCR protocol was performed 

on the basis of the MIQE guidelines (Minimum Information for Publication of Quantitative 

Real-Time PCR Experiments) [28] to reduce technical variability and to provide sufficient 
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Table 1. Summary of demographic data. 

Variable Control group AD group p 

Mean ± SD. Demographic data for the control- and AD group samples including cognitively healthy controls, NPH, FTLD as well as controls with cognitive 

impairment due to affective disorders or vascular disease and patients with probable AD and MCI due to AD. Given are numbers for each group and 

gender, the averages for age, total tau, p-tau, Aβ1–42, total RNA and RNA purity. 

doi:10.1371/journal.pone.0126423.t001 

experimental detail to increase data transparency and validity. We profiled the expression of 

1178 unique mature miRNAs (miRBase, version 14) in a patient cohort comprised of AD cases 

(n = 22) and a set of disease controls (n = 28) in human CSF drawn in a naturalistic approach 

from patients presenting to our memory clinic. Testing against disease controls instead against 

healthy probands is in our view a better way to differentiate towards AD specific changes in the 

miRNA signature. 

Materials and Methods 

Patient data and CSF 

We measured the expression of miRNAs in CSF samples of a total of 50 probands by OpenAr- 

ray RT-qPCR. The study cohort consisted of a naturalistic control group (n = 28) including 

cognitively healthy test subjects (n = 5), patients with normal pressure hydrocephalus (NPH) 

(n = 2), patients with FTLD (n = 9) and patients with cognitive impairment due to affective dis- 

orders or vascular disease (n = 12). This control group was compared to a group of AD cases 

(n = 22) composed of patients with probable AD (mild late onset AD) (n = 19) and mild cogni- 

tive impairment due to AD (n = 3). The groups were stratified for gender. Patients selected in 

this study referred to the memory clinic of the University Hospital Hamburg-Eppendorf. All 

patients underwent a diagnostic work-up and were diagnosed according to ICD-10 [ 29] and 

NINCDS-ADRDA criteria [30] to identify patients with AD involving new criteria and guide- 

lines to diagnose AD supplanting the previous guidelines first published in 1984 [31–35]. Vas- 

cular dementia was diagnosed accordingly, FTLD (combining frontotemporal dementia and 

progressive non-fluent aphasia) according to the New Diagnostic Criteria for the Behavioural 

Variant of Frontotemporal Dementia [36, 37]. MCI diagnoses were made according to the cri- 

teria of Petersen [38]. Patients with mixed dementia etiologies were excluded. The present de- 

mographic data is summarized in Table 1. 

CSF was obtained by lumbar puncture in a sitting position according to standard proce- 

dures [39]. 4 ml CSF was collected into a polypropylene test tube for routine diagnosis as well 

as for further studies. CSF was free of blood contaminations and tested for hemoglobin. The 

sample was centrifuged (1600 g, 4°C, 15 min) and frozen within 30–40 min after the puncture 

and stored at -80°C until use. The CSF was at no time thawed/refrozen. 
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Number 28 22 

Gender (f/m) 14/14 13/9 ns 

Age 61.0 ± 12.7 72.1 ± 8.5 0.0009 

total tau [pg/ml] 308.9 ± 227.7 708.5 ± 282.9 < 0.0001 

p-tau [pg/ml] 52.6 ± 28.5 92 ± 93.3 0.0003 

Aβ1–42 [pg/ml] 719.9 ± 406.7 446.7 ± 164.1 0.0025 

total RNA [ng/μl] 6.9 ± 3.4 6.7 ± 2.6 ns 

purity [260/280 nm] 2.3 ± 0.7 2.3 ± 0.6 ns 
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Ethics Statement 

Procedures were approved by the local ethics-committee of the Ärztekammer Hamburg. All 

patients and/or their relatives gave written informed consent. All clinical investigations have 

been conducted according to the principles expressed in the Declaration of Helsinki and have 

been carried out according to the international Good Laboratory Practice (GLP) and Good 

Clinical Practice (GCP) standards. 

Immunochemistry 

The CSF levels of Aβ1–42, total tau, and phospho181-tau were measured using commercial ELI- 

SAs (Innogenetics, Ghent, Belgium) according to the manufacturer’s protocol. Cut-off values 

for AD suspicious biomarker concentrations were > 540 pg/ml for total tau, > 61 pg/ml for p- 

tau and < 240 + 1.186 x total tau pg/ml for Aβ1–42 values [3]. 

RNA extraction, reverse transcription–qPCR and miRNA quantification 

All qPCR experiments were designed and performed in compliance with the MIQE guidelines 

[28, 40]. We included a checklist to provide experimental detail related to each MIQE item (S1 

 Dataset). 

Total RNA including small RNA was isolated using the mirVana PARIS Kit (Ambion, PN 

AM1556) following the manufacturer’s recommendations. In brief, the samples were homoge- 

nized in a denaturing lysis solution, spiked with kshv-miR-K12-1-5p (artificial miRNA) and 

subjected to an acid-phenol:chloroform extraction. After first separation of the two phases, an 

additional spiking with ath-miR159a cDNA was performed. Hereafter, the samples were puri- 

fied on a glass-fiber filter and quantified using a Bioanalyzer 2100 (Agilent Technologies). Con- 

centration and purity were measured using the Nanodrop ND1000 (Peqlab). 

Total RNA was converted to cDNA using Megaplex stem-loop RT primer (Life Technolo- 

gies, PN 4444750) for Human Pool A and B and custom RT primer for Pool C and D in combi- 

nation with the TaqMan MicroRNA Reverse Transcription Kit (Life Technologies, PN 

4366596). This allowed simultaneous cDNA synthesis of 377 unique miRNAs for each Pool A 

and B and 212 unique miRNAs for each Pool C and D. In brief, 3 μl of total RNA was supple- 

mented with RT primer mix (10x), dNTPs with dTTP (100 mM), Multiscribe Reverse Tran- 

scriptase (50 U/μl), RT buffer (10x), MgCl2 (25 mM), and RNase inhibitor (20 U/μl) in a total 

reaction volume of 7.5 μl. Thermal-cycling conditions were as follows: 40 cycles at 16°C for 2 

minutes, 42°C for 1 minute, and 50°C for 1 second, followed by reverse transcriptase inactiva- 

tion at 85°C for 5 minutes. 

The RT product (7.5 μl) was preamplified by using the TaqMan PreAmp Master Mix (Life 

Technologies, PN 4391128) and preamplification primers (Life Technologies, PN 4444750) in 

a 40 μl PCR reaction. For each pool of stem-looped RT primers in the cDNA reaction, a differ- 

ent pool of PreAmp Primers (Human Pool A and B resp. custom PreAmp primers Pool C and 

D) was used. Thermal cycling conditions were as follows: 95°C for 10 minutes, 55°C for 2 min- 

utes, and 72°C for 2 minutes, followed by 16 cycles of 95°C for 15 seconds and 60°C for 4 min- 

utes. 4 μl PreAmp product was diluted in 156 μl 0.1x TE-Buffer. 

The performance of RNA extraction, RT-qPCR and preamplification was checked by run- 

ning single quantitative PCRs including the assays for U6 snRNA, ath-miR-159a, and kshv- 

miR-K12-1-5p on a 7900HT Fast Real-Time PCR System (Life Technologies, Darmstadt, Ger- 

many). In brief, 1 μl of the diluted preamplified product was supplemented with 10 μl TaqMan 

Universal PCR Master Mix, No AmpErase UNG(2x), 1 μl individual TaqMan Assay (20x) and 

8 μl aqua dest. Thermal cycling conditions were as follows: 95°C for 10 minutes, followed by 40 

cycles at 95°C for 15 seconds and 60°C for 1 minute. 
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miRNA quantification was performed with the TaqMan OpenArray Human MicroRNA 

Panel according to the recommended protocol (TaqMan OpenArray MicroRNA Panels, PN 

4461306) for the reactions A and B (Life Technologies, PN 4461104) on one array with in total 

818 TaqMan assays and two custom OpenArray plates for reaction C and D (Life Technologies, 

PN 4461104) separately, each on an individual array with 212 miRNA assays. For each reaction 

A and B, 45 μl of PCR reaction mix containing 22.5 μl of TaqMan OpenArray Real-Time PCR 

Master Mix (Life Technologies, PN 4462159) and 22.5 μl 1:40 prediluted preamplified product 

were prepared. For each reaction C and D, 25 μl of PCR reaction mix containing 12.5 μl of Taq- 

Man OpenArray Real-Time PCR Master Mix and 12.5 μl 1:40 prediluted preamplified product 

were prepared. 5 μl of each prepared master mix were loaded in one well of a 384-well plate 

several times to obtain a usable format for automatic pipetting. TaqMan OpenArray Human 

MicroRNA Panels and custom OpenArray plates were then automatically loaded using the 

AccuFill System (AccuFill System User Guide, PN 4456986). Up to 3 resp. 12 samples per 

OpenArray plate were cycled simultaneously on a Biotrove OpenArray NT Cycler (Life Tech- 

nologies) using OpenArray Real-Time qPCR Analysis Software (v1.0.4) with a pre-assigned cy- 

cling program to calculate quantification cycle (Cq) defined as the number of cycles at which 

the fluorescence signal is significantly above the threshold. 

The NormFinder algorithm was applied using GenEx software version 5.4.3 (MultiD) to 

identify reference genes. The arithmetic mean of their Cq values was calculated for normaliza- 

tion and was subtracted from all miRNAs of each pool to yield ΔCq values. Relative miRNA ex- 

pression levels between test groups were calculated by using the 2(-ΔΔCt) method [ 41]. Relative 

expression levels of individual miRNAs were presented as 2(-ΔCt) in log2 scale. 

miRNA target predictions 

MiRNA targets were predicted in silico by using the microRNA target filter tool implemented 

in Ingenuity Pathway Analysis (IPA) (Ingenuity Systems, www.ingenuity.com). Prediction 

confidence was set to experimentally observed and highly predicted targets. Disease filter was 

limited to “neurological” and “psychological”, i.e. psychiatric disorders. Species was set to 

human and only tissues and primary cell lines of the central nervous system and CNS cell lines 

were considered for filtering. 

Statistical analysis 

We set Cq ≤ 34 as cut-off to define a miRNA as positive or as actively expressed. From all posi- 

tive miRNAs in the sample population only those showing an occurrence frequency (FOC) of 

at least 3 in each of the considered two groups (n = 199 miRNAs and Tau, p-tau and Aβ1–42) 

were considered for statistical analysis. The subset was further divided into a set A of 59 abun- 

dant markers (FOC≥19 in the control- and ≥17 in the AD group) and a set B including 143 

less abundant markers (FOC≤18 in the control- and ≤16 in the AD group). Finally, 202  

potential markers were statistically evaluated: 

We first applied the explorative ‘Measure of Relevance’ (MoR) method (Yassouridis et al., 

2012) to the 202 potential markers in order to identify the most informative miRNAs (further 

called as “informative biomarkers”), i.e. miRNAs that can differentiate well between AD and 

control groups [42]. The explorative MoR method, which is based on a measure containing rel- 

evant information of the distribution form, location and dispersion parameters of the samples, 

enables reasonable reduction of data dimensionality without the need for test decisions, correc- 

tions of significance levels and other presumptions. Especially for our two samples that possess 

relative small sizes (28 and 22) compared to the large number (202) of potential markers, infer- 

ential statistics applied to all of them are not advisable, not only because of the commenced 
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power weakness to detect significances after correction of the level of significance but also be- 

cause the considered miRNAs (e.g. for miRNA families) will likely display dependencies to 

each other. Therefore, we decided to apply first the aforementioned explorative analysis for 

identifying the most informative miRNAs and thereafter to perform confirmatory statistical 

analysis only to them. This method works as follows: 

In a two-sample problem each of the considered variables—irrespective of their abundance 

—is provided after suitable transformations and rank allocations with a positive number (mea- 

sure of relevance) which is proportional to the capability degree of the variable to discriminate 

between the samples. The higher the discrimination capability of a variable, the more informa- 

tive it is towards the two-sample problem. All attached MoR-values are then sorted in an as- 

cending order (information chain) along which a critical value by means of a suitable 

algorithm (stop criterion) has to be determined. After the determination of the critical value all 

variables with corresponding MoR-values bigger than the critical value of the information 

chain are declared as informative variables. If the critical value is higher than all MoR-values, 

none of the variables is considered informative. We chose at least 0.57 as critical value as it cor- 

responds to a medium to large effect size with effect sizes higher in set A compared to set B. 

To further improve the results of the explorative analysis an additional reliability investiga- 

tion by applying repeatedly the MoR method to randomly chosen smaller and different sub- 

groups of the considered groups was performed. For receiving a sufficient number of such 

subgroups only those 59 potential markers with at least 17 positive signals in each group (set 

A) were considered for the reliability analysis. For the other 143 miRNAs (set B) the explorative 

analysis was restricted to a unique application of the MoR method. For the reliability analysis 

800 different sub-samples were used with 15 probands randomly chosen from each group. Var- 

iables among the 800 repetitions proven to be informative with a relative frequency (RF) over 

0.8 were also declared as reliable biomarker candidates (further called as “reliable biomarkers”) 

because they are able to distinguish very well between AD and control group at the exploratory 

level. The reliability investigation was performed twice: once without substitution and once by 

substitution of missing values with group mean. After identifying the reliable biomarker candi- 

dates of set A and the most informative variables of set B, inferential statistics followed by ap- 

plying multivariate analyses of covariance (MANCOVA) with sex and age as covariates. Those 

miRNAs among the biomarker candidates, which revealed significant differences between the 

AD and control group after Bonferroni adjustments on the confirmatory level, were designated 

as significant biomarkers. To explore the discrimination power of the informative miRNAs 

from set A and set B some of their combinations were additionally subjected to a discriminant 

analysis. For testing associations between miRNA markers and predicted mRNA targets in am- 

yloid and tau pathways according to IPA’s database, Pearson’s correlation coefficients were cal- 

culated and proved about significance. For testing significance in some demographic variables 

with metrical or non-metrical data structure, two-sided student t-tests and x²-test were applied, 

respectively. As nominal level of significance α = 0.05 was accepted and corrected according to 

the Bonferroni procedure, whenever post-hoc multiple tests have to be performed. 

Results 

CSF miRNA expression profile in the sample population 

After profiling the expression of in total 1266 (1178 w/o controls) miRNAs (miRBase version 

14) in CSF of 22 AD patients and 28 disease controls, 441 (380 in control- 359 in AD group) 

miRNAs were positively detected in our sample cohort (S2 Dataset). For 729 miRNAs we did 

not find detectable traces in CSF. This is an indication that at least 37% of the investigated miR- 

NAs appear in CSF and are potentially active in the brain corresponding well with the fact, that 
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Fig 1. Volcano plot of group comparisons. Comparisons of 199 miRNAs assessed in OpenArray analysis of smallRNA isolated from CSF of patients with 
AD (n = 22) and controls (n = 28). The volcano plot displays the relationship between fold change and significance between the two groups, applying a 

student’s t-test. The y-axis depicts the negative log10 of p-values of the t-tests (the horizontal slider at 1.3 corresponds to a p-value of 0.05, a higher value 

indicates greater significance) and the x-axis is the difference in expression between the two experimental groups as log2 fold changes (vertical sliders 

indicate miRNAs as either up- or down regulated above a fold change of 1.5). Highlighted in green are the most reliable (6 abundant miRNAs from set A with 

RF2:0.8) and in red the most informative (9 less abundant miRNAs from set B above the critical MoR value d = 0.57) biomarkers according to the MoR- 
method (see Figs 2 and 3). 

doi:10.1371/journal.pone.0126423.g001 

about a third of the approximately 20.000 different genes that make up the human genome are 

active in adult brain [43]. Fig 1 displays only those miRNAs from set A (n = 56) and set B 

(n = 143) to illustrate only corresponding fold changes of potential markers that have been de- 

tected in both groups with an FOC of at least 2: 3. All remaining miRNAs were not included in 

statistical analysis either due to low expression levels or low occurrence frequencies. When 

comparing AD cases with controls, 74 miRNAs were identified as down-regulated and 74 miR- 

NAs up-regulated, using a fold change threshold 2: 1.5. (Fig 1). Moreover, Fig 1 highlights 15 

miRNAs that were identified as reliable or informative biomarkers by using the MoR-method. 

A problem in miRNA studies is often the lack of suitable normalization procedures. For  

CSF no consensus exists. We identified mir-21, miR-24, miR-328, miR-99b, miR-let-7c and 

miR-1274B as not regulated between groups, and as potential reference genes for normaliza- 

tion of miRNA expression levels in CSF. The application of the explorative MoR method based 

on standardized differences of ranks works almost independent of data structures. However, 
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normalization procedures are also necessary on the confirmatory level, i.e. in our case the sub- 

sequent MANCOVA analyses. 

The difference in mean age between the two groups reached statistical significance (t-test, 

p<0.05) (Table 1), prompting us to define age as a covariate, although we did not find associa- 

tions of miRNAs expression with age. Regarding sex, a possible second covariate, the two 

groups were stratified and therefore statistically significant differences between groups (x²-test, 

p = ns, Table 1) should not arise. However, similarly to some studies already reporting gender 

effects on some miRNAs for e.g. human brain tissue [44], we found gender specific differences 

for miR-106a, miR-17 and miR-320 in set A and miR-19a, miR-221, miR-532, miR-95 in set B. 

Therefore, we decided to control the results towards age and sex by considering these variables 

as covariates in the confirmatory MANCOVAs. 

Identification of potential biomarkers applying the “Measure of 
Relevance” method 

Reliability analysis in set A. As already reported for obtaining robust and better results in 

the explorative analysis a reliability investigation based on the MoR-method was performed on 

set A. This included 59 potential markers with n = 56 highly expressed (mean Cq 25.06) 

miRNA species with elevated FOC and CSF markers tau, p-tau and Aβ1–42. Without substitu- 

tion of the missing values the reliability investigation identified among the 59 biomarker candi- 

dates in set A, miR-4449, miR-1274a, miR-4674 and miR-106a as reliable biomarker 

candidates with RF 2' 0.8 threshold (Fig 2A). After substitution of missing values by group 

mean, miR-4449, miR-1274a, miR-146a, miR-335 and miR-100 were found as reliable candi- 

dates with RF 2' 0.8 (Fig 2B). Interestingly, miR-106a that proved to be a reliable biomarker 

candidate without substitution after missing-values substitution lost this property. A possible 

explanation would be that after missing values substitution, which generally reduces the pooled 

variance between groups, the MoR-values of other miRNAs will be somewhat higher than of 

miR-106a and push the position of miR-106a below the critical MoR-value of the information 

chain. Classical CSF biomarkers total tau, p-tau and Aβ1–42 were also subjected to the reliability 

analysis as internal controls to validate the MoR algorithm of correctly identifying reliable bio- 

marker candidates and to compare relative frequencies with miRNAs from set A. In this case, 

both, total tau as well as p-tau scored with RF = 1.0, confirming functionality of the MoR ap- 

proach (Fig 2A and 2B). Interestingly, Aβ1–42 was not identified as a reliable biomarker (Fig 2A 

 and 2B). This is probably due to the fact that Aβ1–42 protein levels vary widely across various 

dementia forms, again displaying that its degree of information as a single biomarker may not 

suffice in clinical routine diagnostics due to its low specificity [45]. The 6 reliable miRNA bio- 

marker candidates from set A, tau and p-tau were subsequently subjected to MANCOVA after 

substitution of missing values by the corresponding group mean with age and sex as covariates 

in order to prove by inferential means the capability of these miRNAs to distinguish between 

the AD and control group. MANCOVA revealed a significant group effect [Wilks multivariate 

test of significance; F(8,39) = 8.79, sig of F < 0.00001]. Bonferroni correction pointed to a sig- 
nificant differential expression of miR-1274A, F(1, 46) = 16.58, p = 0.000, miR-100 [F(1, 46) = 

7.85, p = 0.007], miR-146a [F(1, 46) = 4.78, p = 0.034] and naturally tau [F(1, 46) = 22.67, 

p = 0.000] and p-tau [F(1, 46) = 13.96, p = 0.001] between groups (Fig 2C). In this case, miR- 

1274A, miR-100 and miR-146a (Fig 2A and 2C and S3 Dataset) were confirmed as reliable and 

significant biomarkers. The covariates sex and age did not seem to exert significant effects on 

the considered miRNAs [Wilks multivariate test of significance; F(16,78) = 0.85, sig of 

F = 0.629]. IPA analyses predicted GRIN2A (miR-4449); IRAK3 (miR-4674); MAPT (miR- 

PLOS ONE | DOI:10.1371/journal.pone.0126423 May 20, 2015 8/ 18 

 

 

 

 

  

  

  

  

 

  

     

 

 



 55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MicroRNA Profiling of CSF for Alzheimer`s Disease 

Fig 2. Reliability investigation. Plot of relative frequencies denoting for a miRNA how often among 800 MoR repeats with random subsamples of the 
original groups it has been crystallized as informative (original groups: controls n = 28, AD n = 22 subjects). (A) Relative frequencies of set A miRNAs with 
reliable biomarker candidates over the solid red line (RF = 0.8); (B) Relative frequencies of set A miRNAs with reliable biomarker candidates over the solid 

red line (RF = 0.8) after substitution by corresponding group means; (C) Bar diagram of the reliable biomarker signals of set A. Stars (*) over the bars point to 

significant p-values (MANCOVA, p < α*, where α* is Bonferroni corrected α = 0.05) and therewith to significant biomarkers. 

doi:10.1371/journal.pone.0126423.g002 

146a); ADAM19, BDNF (miR-335) and mTOR, TARDPB (miR-100) as targets of our deregu- 

lated miRNAs from set A (S4 Dataset). 

Informative miRNAs in set B. Set B covered all moderately expressed (mean Cq 28.2) 

miRNAs (n = 143) with lower FOC and was exclusively subjected to a unique MoR analysis. 

Applying the MoR approach 9 out of the 143 potential miRNA biomarker candidates were 

identified as informative (Fig 3). The MoR plot illustrates the 9 most informative miRNAs, hsa- 

miR-505-5p, hsa-miR-4467, hsa-miR-766, hsa-miR-375, hsa-miR-708, hsa-miR-3622b-3p, 

hsa-miR-296, hsa-miR-219 and hsa-miR-103, each reaching a MoR value :2 0.57 (critical MoR 

value on the information chain). The 9 informative miRNAs were subsequently subjected to 

MANCOVA again with sex and age as covariates. After substitution of missing values by the 

corresponding group mean, MANCOVA revealed a significant group effect [Wilks multivari- 

ate test of significance; F(9,38) = 90.79, sig of F < 0.00001] for all informative miRNAs identi- 

fied in set B. This effect was further shown to be highly significant for each individual marker 
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MicroRNA Profiling of CSF for Alzheimer`s Disease 

Fig 3. Measure of Relevance for miRNA expression data in CSF. Application of the MoR approach to miRNAs of set B for identifying relevant expression 
differences between controls and AD cases. In the control group n = 28 and in the AD group n = 22 subjects were examined. MoR-values over the red line are 
to be declared as informative (critical MoR-value for the informative designation d = 0.57). Bar diagram of the most informative biomarker signals of set B. 

Stars (*) over the bars point to significant p-values in MANCOVA (MANCOVA, p < α*, where α* is Bonferroni corrected α = 0.05). 

doi:10.1371/journal.pone.0126423.g003 

by reaching Bonferroni corrected significance (Fig 3; univariate F-tests, p < 0.000). Further- 
more, the covariates sex and age did not show a significant association with the miRNAs. Most 

relevant gene targets identified by IPA were BACE1, REST for miR-103, MAPT for miR-219 

and CDK5R1 for miR-375 (S4 Dataset). 

miR-146a expression levels implicated in tau pathomechanism 

Increased levels of tau protein and its phosphorylated derivate as well as decreased levels of ex- 

tracellular Aβ1–42 peptides have been proven as markers to detect AD in CSF [1]. It remains 

still unclear to what extent these proteins contribute to AD pathogenesis and whether the ex- 

pression of one protein explains the toxic effect of the other. We investigated correlations of 

our significant miRNA signals with these classical biomarkers. According to Ingenuity’s data- 

base, miR-146a is highly predicted to target the MAPT gene. MiR-146a expression levels were 

significantly upregulated in CSF of AD patients (Fig 2C) and showed a significantly inverse 

correlation with tau and Aβ1–42. Lower miR-146a expression levels were accompanied by 

higher levels of tau (AD cases: r = -0.5142, p = 0.0171) and Aβ1–42 (AD cases: r = -0.5364, 

p = 0.01), and vice versa in our AD group (Fig 4A and 4B). No significant correlation with con- 

centrations of p-tau was observed in the AD group (Fig 4C). In the control group no significant 

correlations with miR-146a emerged. We also found significant correlations between miR-103 

targeting BACE1 and both tau for the whole study sample (r = -0.4223, p = 0.045) and Aβ1–42 

(r = 0.5980, p = 0.024) for the control group. MiR-375, which is thought to downregulate 

CDK5R1, was downregulated in our AD cases and correlated significantly with Aβ1–42 

(r = 0.7481, p = 0.002). 
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Classification 

The combination of miR-146a and p-tau as biomarkers already allowed correct classification in 

86.4% of all cases performing discriminant analysis. Using ROC curve analysis the combina- 

tion showed an AUC of 0.64 for miR-146a and an AUC of 0.79 for p-tau (S5 Dataset). Another 

discriminant analysis performed on the most reliable biomarker miR-100 from set A (Fig 2B 

 and 2C and S3 Dataset) and the most abundant miR-103 and miR-375 from set B (S2 Dataset 

and S3 Dataset) revealed for the two test groups a total correct classification rate of 96% after 

substitution of missing values, positively classifying controls and AD cases with 96.4% and 

95.5% accuracy, respectively. ROC curve analysis showed an AUC of 0.72 (miR-100), an AUC 

of 0.87 (miR-103) and an AUC of 0.99 (miR-375) for this combination (S5 Dataset). 

Discussion 

Due to its direct and intimate relationship with brain tissue we consider CSF a more suitable 

and informative material for the potential monitoring of neurophysiological changes in AD. 

Fig 4. Scatter plot: Correlation of CSF miR-146a expression and levels of total tau, p-tau and Aβ1–42. Correlation significances were proven by Pearson 
correlation coefficients. Data were analysed applying Cq 32 as cut-off for miR-146a expression levels. Expression levels of miR-146a (2^-dCt log2) are 

inversely correlated with concentrations of total tau and Aβ1–42 in the AD group: (A) miR-146a expression levels vs. tau, AD cases: r = -0.5142, 98% CI 

-0.8065 to -0.01993, p = 0.0171; (B) miR-146a expression levels vs. Aβ1–42, AD cases: r = -0.5364, 98% CI -0.8121 to -0.06519, p = 0.0101. (C) No 

significant correlations were observed for concentrations of p-tau and miR-146a expression levels in the AD- and control group. Aβ1–42 = b-amyloid 42; 

CI = confidence interval; p-tau = phosphorylated tau. 

doi:10.1371/journal.pone.0126423.g004 
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To the best of our knowledge, we have profiled the largest number of unique miRNAs 

(n = 1178) in CSF from the largest AD/control (n = 22/28) sample cohort. We reported here 

that at least 37% of miRNAs are expressed in the human brain, i.e. 441 out of 1178 investigated 

miRNAs showed detectable traces pointing to transcriptional activity in CSF. This observation 

corresponds well with the fact that the highest expression of tissue specific miRNAs is also 

found in the brain [46]. Consistent with results of the Cogswell study [15], which looked at a 

smaller set of miRNAs, we also observed an even distribution of under- and overexpressed 

microRNAs in CSF of patients with AD compared to a control group. The number of detected 

miRNAs in our study was considerably higher than those reported in a recent miRNA profiling 

study by Frigerio et al. [47]. This is probably due to the different platform used and the inclu- 

sion of a preamplification step in our protocol. We applied OpenArray technology including a 

preamplification step on a larger set of patients (n = 50) to overcome some obstacles that may 

have caused contradicting results [48]. The preamplification step improves sensitivity and in- 

creases the number of detectable miRNAs without introducing a systemic bias in the estima- 

tion of miRNA expression [49]. However, we observed a great overlap of detected miRNAs in 

our dataset with those reported by Frigerio et al. [47]. 

For the first time, we applied a sophisticated and exploratory statistical approach (Measure 

of Relevance) to analyse miRNA expression data in order to identify potential biomarkers. The 

Measure of Relevance algorithm detected 15 informative miRNA markers in our CSF samples. 

Of those 15 candidates, 3 of 6 miRNAs from set A, on which a reliability analysis could be per- 

formed, were also inferentially confirmed at Bonferroni corrected significance by MANCOVA. 

Thus, miR-100, miR-1274a and miR-146a might be strong candidates for new AD biomarkers. 

Beside its biomarker potential miR-100 could also be an interesting target for therapeutic in- 

terventions. Due to a high seed pairing stability and its CG dinucleotide rich seed site, miR-100 

is supposed to have only few mRNA targets, among them mTOR (mammalian target of rapa- 

mycin) and TARDPB [50]. Recently, it was shown that reducing mTOR signalling increases 

lifespan. There is an association between mTOR and tau, which is linked to GSK3β and autop- 

hagy function. A reduction of mTOR signalling might alleviate pathologically increased tau 

phosphorylation [51]. While Caccamo et al. provided preclinical data indicating that reducing 

mTOR signalling may be a valid therapeutic approach for tauopathies, our results suggest that 

this salvage pathway may already be active in AD patients by up-regulation of miR-100 (fold 

change 2.17). Interestingly, we found on a trend-level a negative correlation of CSF miR-100 

concentrations with CSF p-tau in our controls (r = -0.42, p = 0.065) but not in our AD samples 

(r = -0.0188, p = 0.941). This might point to a ceiling effect. Furthermore, miR-100 is up-regu- 

lated in the medial frontal gyrus of AD patients but not in hippocampus in analogy to the ex- 

pected tau progression in AD, which could explain elevated CSF concentrations of miR-100 

due to the release during atrophic processes [15]. 

An unexpected result was the identification of miR-1274a, which resembles a t-RNA and 

probably not a real miRNA, as significantly deregulated in AD, whereas miR-1274b was identi- 

fied as a reference gene at the same time, demonstrating stable expression levels across our 

study population. According to annotated miRbase.org, the mature sequences of miR-1274 are 

considered as fragments of a Lys tRNA and are proposed to be endogenous retroviral elements 

[52]. It is reported that genes from human endogenous retroviruses have been detected as tran- 

scripts and proteins in the central nervous system, frequently in the context of neuro-inflam- 

mation. These elements have also been implicated in multiple sclerosis and other neurological 

diseases and should, according to our findings, be subject of further investigation [53]. 

MiR-146a is a brain-specific miRNA that is also associated with neuro-inflammation [54]. 

It is suggested that pro-inflammatory and innate immune system-associated factors play a role 

in pathways that drive the pathological AD process [55]. In line with results of Alexandrov 
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MicroRNA Profiling of CSF for Alzheimer`s Disease 

(2012) we also observed significant increases of miR-146a expression in AD and proved miR- 

146a to be abundant in CSF [56]. Another study reported that miR-146a expression is induced 

by NF-kB and considered to downregulate complement factor h, an important repressor of the 

inflammatory immune response of the brain, which could explain differential expression in 

AD brain and relate neuro-inflammation to AD pathogenesis [57]. Analysing correlations of 

miRNA expression levels with clinical biomarkers (tau, p-tau and Aβ1–42) yielded a complex 

correlation pattern for miR-146a, which is also predicted to target MAPT in-silico (S4 Dataset). 

We found high miR-146a expression in our AD patients (fold change 1.81) and significant neg- 

ative correlations of miR-146a with tau and Aβ1–42 levels, pointing to a possible inhibitory 

mechanism of miR-146a on tau production. Changes of miR-146a concentrations in CSF ex- 

plained 26% of tau and 29% of Aβ1–42 variation in the AD group. The similar impact of miR- 

146a on these biomarkers possibly suggests a further nexus between Aβ1–42 and tau pathologies 

in AD. Another study has found elevated expression levels of miR-146a in CSF and brain re- 

gions affected by AD and also in mouse models implicating a role of miR-146a in AD patho- 

genesis [58, 59]. Furthermore, we did not see any significant correlations of miR-146a with tau, 

p-tau or Aβ1–42 concentrations in the control group. Hence, these findings may be specific for 

our AD patients. 

Frigerio et al. reported miR-27a-3p to be significantly reduced in CSF of AD compared to 

controls and to correlate with tau, p-tau and Aβ1–42 [47]. We could not replicate the reported 

correlations with high tau and low Aβ1–42 CSF concentrations and did not observe a downregu- 

lation of miR-27a-3p in our AD samples. 

Interestingly, we observed that in addition to the 6 miRNAs from set A, also potential mark- 

ers such as miR-9, which did not exceed the 0.8 threshold, scored substantially higher than am- 

yloid-beta after the reliability analysis as indicated in Fig 2A and 2B. MiR-9 is specifically 

enriched in the brain [60] and suggested part of a network, that indirectly regulates the APP 

processing, Aβ production and accumulation [61]. 

Moreover, we could also confirm the 9 informative miRNAs (miR-505-5p, miR-4467, miR- 

766, miR-375, miR-708, miR-3622b-3p, miR-296, miR-219 and miR-103) from set B as signifi- 

cant biomarkers by MANCOVA all reaching Bonferroni corrected significance. However, the 

low FOC in set B did not only prevent a reliability analysis but may also have reduced the prop- 

erty of these miRNAs to be robust biomarkers as a direct consequence. By performing discrimi- 

nant analysis including candidate miRNAs of both subsets as well as in combination with CSF 

protein marker, we could, irrespective of FOC, demonstrate overall classification rates of 96% 

(miR-100, miR-375 and miR-103) and 86.4% (miR-146a and p-tau). This clearly demonstrated 

that already a limited number of miRNAs may be sufficient to detect AD in CSF and support 

our hypothesis that miRNAs could be promising and robust biomarkers for the diagnosis of 

neurodegenerative diseases like AD. Comparing results with those found in other body fluids, 

overall classification rates observed with CSF-based miRNAs are substantially higher [62]. 

The few biomarker screening studies [15, 47, 56, 63–65] who investigated CSF miRNA ex- 

pression levels in AD did not lead to the unequivocal identification of biomarkers (S6 Dataset), 

in part due to problems with replicability [26, 48, 65]. Several miRNA profiling protocols for 

the detection of miRNAs, as reviewed in Pritchard et al. (2012), exist [27]. Mestdagh et al. 

(2014) suggested that differences in these protocols may explain some of the divergent results 

[66]. Recently, our RT-qPCR approach has been validated by Carre et al (2014) by using plas- 

ma samples [67]. Validation results showed that this customized method is not only sensitive 

and highly specific but also repeatable and accurate to detect circulating miRNAs in body flu- 

ids. According to established guidelines in the field, we favour—at least to allow a better com- 

parability and transparency—to adhere to the MIQE guidelines or report the extent to which 

these guidelines were applied (S1 Dataset). 
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MicroRNA Profiling of CSF for Alzheimer`s Disease 

The experiments reported here demonstrate that differentially expressed miRNAs in CSF 

present informative markers that are able to detect AD compared to heterogeneous controls. 

However, developing microRNAs into accurate and useful tools for diagnosis of AD, will re- 

quire an extensive phase of validation with multiple replication studies. This compares to the 

intensive work that was required to establish and approve the use of the classical protein mark- 

ers tau, p-tau and beta-amyloid species in clinical routine diagnosis. These traditional CSF 

markers are in use in the field of dementia diagnosis for over two decades now and are far from 

being implemented as an easy standardized laboratory method due to pre-analytical and ana- 

lytical problems that are still unsolved [68]. One can assume that this will also be an issue in 

miRNA based diagnostic procedures. Another negative aspect is that only a limited number of 

miRNAs appear to abundantly circulate in CSF. We suggest future investigations to focus on 

those miRNAs, like in our set A, which demonstrate high occurrence frequencies and high ex- 

pression levels. A further limitation is the currently observed inter-platform variability and di- 

versity of different experimental procedures to measure miRNA expression levels that led to 

inconsistencies among comparable studies (S6 Dataset) [69]. More work is required to increase 

data transparency (e.g. adherence to MIQE if usinq RT-qPCR) and to allow better comparisons 

of miRNA expression data. This is an important prerequisite on the way to establish the clinical 

utility of circulating miRNAs in CSF in AD diagnosis. In addition to these pre-analytical con- 

siderations, it is important that further pilot screening or candidate approach studies are based 

on larger patient cohorts than those reported thus far. This limitation needs to be addressed to 

compensate for technical and confounding variation when looking at circulating miRNAs with 

low expression levels [70]. 

However, it is advantageous that miRNAs are robust and stable in CSF and very resistant to 

RNAse activities that cause many problems with e.g. mRNA measurements [21]. The stability 

of miRNAs may greatly facilitate the standardization of sampling and detection procedures 

solving an issue that currently hampers the use of beta-amyloid as a biomarker for AD, which 

requires stringent pre-analytic sample procedures to deliver reliable results [71]. 

In summary, we have found putative new AD biomarkers, which display some promising 

attributes and face validity with view to their targets, and which, if developed into diagnostic 

markers, could prove to be an advantageous opportunity in clinical routines for neurodegener- 

ative diseases such as AD. Another upcoming field is the development of miRNA treatment 

strategies. The identification of dysregulated miRNAs is a first step to this endeavor. 

Supporting Information 

S1 Dataset. MIQE checklist. E = essential, D = desired, MP = manufacturer’s protocol, N/ 

A = not applicable. 

(XLSX) 

S2 Dataset. MiRNAs detected in ante-mortem CSF of AD- and control group patients. N/ 

A = not applicable, ND = not detected (Cq > 34). 
(XLSX) 

S3 Dataset. Scatter plots of differentially regulated miRNAs in CSF of AD patients. Log2-- 

transformed miRNA expression ratios obtained from RT-qPCR analysis are plotted for the 

most reliable (RF ≥ 0.8) miRNAs from set A: (A) miR-100, (B) miR-146a, (C) miR-1274B and 

the most informative (MoR-value d≥0.57) miRNAs from set B: (D) miR-505*, (E) miR-375, 

and (F) miR-103. All miRNAs were statistically confirmed by MANCOVA at Bonferroni cor- 

rected significance α = 0.05). Each data point represents one sample. For each sample, fold 
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change in miRNA expression is calculated over its mean expression in the control group. 

(TIF) 

S4 Dataset. In-silico predicted mRNA targets of miRNA biomarker from set A and B.    

MiRNA targets were predicted in silico by using the microRNA target filter tool implemented 

in Ingenuity Pathway Analysis (IPA) (Ingenuity Systems, www.ingenuity.com). Set = array set, 

target gene = predicted target, confidence = prediction confidence, pathway = related 

biological pathway. 

(XLSX) 

S5 Dataset. ROC curve analysis. ROC curves for the combination of (A) miR-146a and p-tau, 

and (B) miR-100, miR-103 and miR-375 to separate 28 control- from 22 AD cases. 

(TIF) 

S6 Dataset. Differentially expressed CSF miRNAs in AD. Listed are CSF miRNAs from com- 

parable studies that were identified as significantly deregulated in AD compared to controls. 

MiRNAs in green indicate replicated markers and in bold novel markers that were identified in 

our study according to the MoR method. 

(DOCX) 
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5 Summary / Zusammenfassung  

Currently, there is not a single parameter that meets the high requirements of a reliable 

biomarker to diagnose severe forms of dementia, such as Alzheimer's disease. 

MicroRNAs are small, noncoding ribonucleic acids that regulate the activity of genes 

and, through their beneficial properties, are promising candidates as biomarkers in 

diagnostics and as potential targets for therapeutic intervention. 

In this cumulative dissertation I summarize my contribution to two research articles. 

They describe the characterization of circulating microRNAs as alternative biomarkers 

for Alzheimer's disease and frontotemporal dementias. 

In the first publication, a broad range of different microRNAs was measured in the 

cerebrospinal fluid of Alzheimer's disease patients and a heterogeneous control group 

by means of pre-amplification-based quantitative PCR high-throughput technology 

(TaqMan OpenArray, ABI). It became clear that only a small part of the microRNAs 

could be detected, whereby the proportion of strongly expressed and thus frequented 

signals was lower. Accordingly, a greater portion of the data showed incomplete 

expression levels, which correlated more strongly with the expression frequency. 

Relative quantitation identified a variety of differentially regulated microRNAs in the 

Alzheimer’s group. Using the exploratory "MoR" algorithm, the abundant signals miR-

1274a, miR-146a, and miR-100 were found to be reliable and the less abundant signals 

miR-505-5p, miR-4467, miR-766, miR-375, miR-708, miR-3622b-3p, miR-296, miR-

219 and miR-103 were identified as informative and by means of MANCOVA also as 

statistically significant biomarkers. Interestingly, the degree of information of some 

microRNA candidate biomarker was identical to that of the traditional Alzheimer protein 

biomarkers tau, pTau and even higher compared to Aβ42. The combination of miR-100, 

miR-103 and miR-375 finally demonstrated a classification rate of 96%, whereby 
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controls and Alzheimer's patients were correctly classified with an accuracy of 96.4% 

and 95.5%, respectively. In addition, a complex correlation pattern of miR-146a with 

Tau and Aβ42 was identified, suggesting miR-146a to be involved in the pathogenesis 

of Alzheimer's disease. In summary, the study showed that the detection of circulating 

microRNAs in the cerebrospinal fluid by high-throughput PCR is possible but careful 

consideration should be given to the microRNAs identified as potential biomarker 

candidates, since the majority of microRNAs are expressed only in small amounts. 

Based on the findings and limitations of the first study as well as on further literature 

research, in the follow-up study I 1) changed detection chemistry (miRCURY, Exiqon) 

and profiled miRNAs without pre-amplification, 2) increased the number of samples to 

44 healthy controls and 48 patients with Alzheimer's disease and frontotemporal 

dementia, 3) incorporated improved quality controls and 4) measured two comparable 

panels of 96 microRNAs each in cerebrospinal fluid and also in serum. Overall, the 

signals were significantly more expressed in the serum and thus better to detect in 

comparison to those in cerebrospinal fluid. Standard curves and inter-assay 

experiments showed that the miRCURY assays also measured linearly towards the 

low range, have consistently high amplification efficiencies, and the day-to-day 

reproducibility of the signals in serum was ~ 99% and in cerebrospinal fluid ~ 97%, 

respectively. Further quality measures identified reference microRNAs for 

normalization and controlled potential contamination by hemolytic serum samples. One 

goal was to compare the microRNA pool of cerebrospinal fluid and blood serum. In 

contrast to other protein biomarkers such as neurofilaments, however, no association 

could be observed globally between microRNA expression levels in cerebrospinal fluid 

and serum. The result of a cluster analysis suggested that the circular microRNA profile 

closely resembles that in the cell, which would enable and support the detection of 

intracellular changes also in body fluids. While factor analysis of serum data ultimately 
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resulted in a complex 3-factor model classifying healthy controls with superior 

performance, the cerebrospinal fluid microRNAs displayed rather moderate differences 

between Alzheimer's disease and frontotemporal dementias. Interestingly, a significant 

portion of microRNAs from the 3-factor model correlated on the one hand with 

cerebrospinal fluid protein levels of neurofilaments and on the other hand with those of 

Aβ42 (R2~20-40%).  

Overall, the experiments show that microRNAs in serum and CSF can are promising 

biomarker candidates for Alzheimer’s disease and frontotemporal dementia. However, 

further studies, with larger cohorts and stricter quality controls, are needed to improve 

and ensure the reliability and reproducibility of the data as well as their comparability 

in the field.
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Aktuell gibt es keinen einzigen Parameter, der den hohen Anforderungen eines 

aussagekräftigen Biomarkers zur Diagnose von schwerwiegenden Formen von 

Demenzen wie der Alzheimer Krankheit entspricht. MikroRNAs sind kleine, nicht-

kodierende Ribonukleinsäuren, die die Aktivität von Genen regulieren und durch ihre 

positiven Eigenschaften vielversprechende Kandidaten als Biomarker in der 

Diagnostik und als mögliche Ziele für therapeutische Maßnahmen darstellen. 

In der vorliegenden kumulativen Dissertation fasse ich meinen Beitrag zu zwei 

Forschungsartikeln zusammen. Sie beschreiben die Charakterisierung von 

zirkulierenden mikroRNAs als alternative Biomarker für die Alzheimer Krankheit und 

frontotemporale Demenzen. 

In der ersten Veröffentlichung wurde zunächst ein breites Spektrum an verschiedenen 

mikroRNAs in der Gehirn-Rückenmarks-Flüssigkeit von Alzheimer Patienten und einer 

heterogenen Kontrollgruppe mittels auf quantitativer PCR und Präamplifikation 

basierender Hochdurchsatz Technologie (TaqMan OpenArray, ABI) gemessen. Es hat 

sich herausgestellt, dass nur ein kleiner Teil der mikroRNAs nachgewiesen werden 

konnte, wobei der Anteil stark exprimierter und damit frequentierter Signale geringer 

war. Dementsprechend zeigte ein größerer Teil der Daten unvollständige 

Expressionslevel, wobei diese mit der Expressionsfrequenz stärker korrelierten. 

Relative Quantifizierung konnte eine Vielzahl differentiell regulierter mikroRNAs in der 

Alzheimer Gruppe nachweisen. Durch den explorativen „MoR“ Algorithmus konnten 

die abundanten Signale miR-1274a, miR-146a und miR-100 als reliable und die 

weniger abundanten Signale miR-505-5p, miR-4467, miR-766, miR-375, miR-708, 

miR-3622b-3p, miR-296, miR-219 und miR-103 als informative und mittels MANCOVA 

auch als statistisch signifikante Biomarker identifiziert werden. Interessant war, dass 

der Informationsgehalt einiger mikroRNA Biomarker Kandidaten im Vergleich zu den 

traditionellen Alzheimer Proteinbiomarkern Tau, pTau identisch und gegenüber Aβ42 
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sogar höher erschien. Die Kombination aus miR-100, miR-103 und miR-375 

demonstrierte schließlich eine Klassifikationsrate von 96%, wobei Kontrollen und 

Alzheimer Patienten jeweils mit einer Genauigkeit von 96.4% und 95.5% korrekt 

klassifiziert werden konnten. Darüber hinaus wurde ein komplexes Korrelationsmuster 

von miR-146a mit Tau und Aβ42 identifiziert, wobei miR-146a eine mögliche 

Regulation der Alzheimer Pathogenese beigemessen wurde. Zusammenfassend ist 

der Nachweis von zirkulierenden mikroRNAs in der Gehirn-Rückenmarks-Flüssigkeit 

mittels Hochdurchsatz PCR möglich, wobei die als potentielle Biomarker Kandidaten 

identifizierten mikroRNA vorsichtig zu bewerten sind, da die überwiegende Anzahl an 

mikroRNAs nur in geringen Mengen exprimiert sind.  

Basierend auf den Befunden und Limitierungen der ersten Studie als auch auf weiteren 

Literaturrecherchen wurde in einer Folgestudie 1) die Nachweismethode gewechselt 

(miRCURY, Exiqon) und auf eine Präamplifikation verzichtet, 2) die Anzahl der Proben 

auf 44 gesunde Kontrollen und je 48 Patienten mit Alzheimer und frontotemporaler 

Demenz erhöht, 3) verstärkt Qualitätskontrollen eingebaut und 4) zwei vergleichbare 

Panel von je 96 mikroRNAs in der Gehirn-Rückenmarks-Flüssigkeit und auch im 

Blutserum gemessen. Insgesamt waren die Signale im Serum deutlich stärker 

exprimiert und damit im Vergleich zu denen in der Gehirn-Rückenmarks-Flüssigkeit 

besser zu detektieren. Standardkurven und inter-assay Experimente zeigten, dass die 

miRCURY assays auch im niedrigen Bereich linear messen können, konsistent hohe 

Amplifikationseffizienzen besitzen und die Reproduzierbarkeit (Tag-zu-Tag) der 

Signale im Serum bei ~ 99% und in der Gehirn-Rückenmarks-Flüssigkeit bei ~97% 

lag. Weitere Qualitätsmaßnahmen identifizierten Referenz-mikroRNAs zur 

Normalisierung und kontrollierten mögliche Verunreinigungen durch hämolytische 

Serumproben. Ein Ziel war es, den mikroRNA Pool von Gehirn-Rückenmarks-

Flüssigkeit und Blutserum zu vergleichen. Im Gegensatz zu anderen 
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Proteinbiomarkern wie den Neurofilamenten, konnte global jedoch keine Assoziation 

zwischen Gehirn-Rückenmarks-Flüssigkeit und Bluterserum beobachtet werden. Das 

Ergebnis einer Clusteranalyse legte nahe, dass das zirkuläre mikroRNA Profil stark 

dem in der Zelle ähnelt, wodurch intrazelluläre Veränderungen auch in 

Körperflüssigkeiten nachzuweisen wären. Während eine Faktorenanalyse der Serum 

Daten schließlich in einem komplexen 3-Faktor Modell resultierte, und gesunde 

Kontrollen mit hoher diagnostischer Güte klassifizierte, zeigten die mikroRNAs in der 

Gehirn-Rückenmarks-Flüssigkeit eher moderate Unterschiede zwischen der 

Alzheimer Krankheit und den frontotemporalen Demenzen. Interessant war, dass ein 

erheblicher Teil der mikroRNAs des 3-Faktor Modells einerseits mit den 

Proteinkonzentrationen von Neurofilamenten und andererseits mit denen von Aβ42 aus 

der Gehirn-Rückenmarks-Flüssigkeit korrelierte (R2~20-40%).  

Insgesamt zeigen die Versuche, dass mikroRNAs im Serum und in der Gehirn-

Rückenmarks-Flüssigkeit als potentielle Biomarker Kandidaten für die Alzheimer 

Krankheit oder frontotemporale Demenzen fungieren können. Allerdings sind weitere 

Studien, mit größeren Kohorten und strengeren Qualitätskontrollen notwendig, um die 

Reliabilität und Reproduzierbarkeit der Daten als auch ihre Vergleichbarkeit im Feld zu 

verbessern und zu gewährleisten. 
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