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Introduction

This thesis is devoted to establish a theory of logarithmic structures on E., differential
graded k-algebras (E, dgas) where k is a commutative ring with unit. The concept of
logarithmic structures has its origin in algebraic geometry [Kat89]. The relevance of
logarithmic structures for homotopy theory became apparent in the work of Hesselholt
and Madsen who used logarithmic structures for the description of algebraic K-theory of
local fields [HMO03]. Motivated by the aim to extend structural results about the algebraic
K-theory of commutative rings to the algebraic K-theory of commutative ring spectra,
Rognes transferred this notion to homotopy theory [Rog09].

A pre-log structure on a commutative ring A is a commutative monoid M together
with a map of commutative monoids a.: M — (A, -) from M to the underlying multiplica-
tive commutative monoid of A. The triple (A, M, «) is called a pre-log ring. The datum
(M, «) is a log structure on A if the map a~1(A*) — A* from the sub commutative
monoid a1 (AX) C M of elements mapping to the units A* of A is an isomorphism. A
log ring is a commutative ring A equipped with a log structure (M, «). An easy example
is the trivial log ring (A, A*, A* — A).

As a homotopical generalization of log rings, Rognes introduced log ring spectra where
commutative symmetric ring spectra play the role of commutative rings. Exploiting
the Quillen equivalence between commutative Z-spaces and Eo spaces [SS12], for a
commutative symmetric ring spectrum A, there is a commutative Z-space Q(A) defined
by m — Q" (A(m)), representing the underlying multiplicative Eo, space of A. In this
way, commutative Z-spaces may be viewed as a homotopical counterpart of commutative
monoids, and Rognes related them to commutative symmetric ring spectra via a Quillen
adjunction. Further, for a commutative symmetric ring spectrum A, there is a sub
commutative Z-space GLT(A) of QF(A) that models the grouplike Ey, space of units
of A. One drawback is that both commutative Z-spaces Q7 (A) and GLZ(A) do not carry
any information about the negative dimensional homotopy groups of A. Consequently,
the functors OF and GL% do not distinguish between a commutative symmetric ring
spectrum and its connective cover so that they cannot detect periodicity phenomena in
stable homotopy theory. For example, the connective cover map of complex topological
K-theory ku — KU induces a weak equivalence GLZ (ku) = GLT (KU).

Sagave and Schlichtkrull managed to overcome this problem in [SS12] by employing the
more elaborate index category J. The latter is given by Quillen’s localization construction
Y ~1¥ on the category of finite sets and bijections ¥. Hence, the classifying space BJ is
homotopy equivalent to Q(S°), which is the underlying additive E, space of the sphere
spectrum S. The categories Z and J are examples of well-structured index categories
which is a suitable framework to obtain model structures on (structured) diagram spaces.
Sagave and Schlichtkrull prove that for a well-structured index category K satisfying some
assumptions, the model category of commutative K-spaces is Quillen equivalent to Fo,
spaces over the classifying space BK. So commutative J-spaces are Quillen equivalent to



E spaces over Q(SY) that Sagave and Schlichtkrull describe as graded E, spaces. For a
commutative symmetric ring spectrum A, the commutative J-space Q7 (A) is built from
all spaces Q2™2(A(my)). This makes it possible to specify a sub commutative J-space
GL{ (A) of Q7 (A) from which we can recover all units in the graded ring . (A).

A pre-log structure on a commutative symmetric ring spectrum A is a commutative
J-space M together with a map of commutative J-spaces a: M — Q7 (A). The re-
sulting pre-log ring spectrum (A, M, «) is a log ring spectrum if the base change map
o 1(GLY (A)) — GLY (A) of the structure map o along the inclusion GLY (A) — Q7 (A)
is a weak equivalence.

In joint work Rognes, Sagave and Schlichtkrull introduced logarithmic topological
Hochschild homology which is an extension of ordinary topological Hochschild homology
[RSS15]. The logarithmic topological Hochschild homology of appropriate pre-log ring
spectra participates in interesting localization homotopy cofibre sequences that are similar
to localization sequences for algebraic K-theory. This is significant for achieving results
on algebraic K-theory of commutative ring spectra by means of localization techniques
and trace maps from algebraic K-theory to topological Hochschild homology [RSS15]. For
instance, topological K-theory spectra yield convenient logarithmic ring spectra which
can be regarded as objects sitting in between the connective and the periodic versions of
the respective topological K-theory spectra ([RSS15],[RSS18|,[Sagl4]). Moreover, the
tamely ramified extension of the inclusion of the connective Adams summand /¢ into the
p-local connective topological complex K-theory spectrum ku, is formally étale with
respect to logarithmic topological Hochschild homology [RSS1S].

The log ring spectra considered so far either come from log rings or involve topo-
logical K-theory spectra. The goal of this thesis is to provide a framework to gain new
examples through algebraic objects. Richter and Shipley constructed a chain of Quillen
equivalences connecting commutative Hk-algebra spectra to Eo, dgas [RS17]. Using this,
we develop a concept of log structures in the algebraic setting.

Pre-log structures on E,, dgas

An intermediate model category in Richter and Shipley’s chain of Quillen equivalences
between commutative Hk-algebra spectra and E, dgas is the category of commutative
symmetric ring spectra in simplicial k-modules C(Sp*(smod)) (see Subsection [2.3)). We
relate this model category to commutative J-spaces.

Proposition (Proposition [2.30). There is a Quillen adjunction
_ AT
CSY —— C(Sp*(smod)). (0.1)
07

Here the category J (see Definition [1.7)) arises from the category J by defining an
equivalence relation on the morphism sets of the latter. The idea for the category J



results from the fact that the action of the symmetric group X, on the pointed space
of the n-sphere S™ permutes coordinates, while the action of ¥, on the n-sphere chain
complex S"(k) is just the sign action. The category J is a well-structured index category,
too (see Proposition , and the induced map of grouplike Eo, spaces BJ — BJ
models the first Postnikov section of the sphere spectrum S.

We employ the category C(Sp*(smod)) as a model for E., dgas. Given the above
Quillen adjunction (0.1), we define pre-log structures on E, dgas as follows.

Definition (Definition [2.32). Let A be an object in C(Sp™(smod)). A pre-log structure
on A is a pair (M, a) consisting of a commutative J-space M and a map of commutative
J-spaces a: M — Q7 (A). If (M,a) is a pre-log structure on A, we call the triple
(A, M, a) a pre-log cdga.

In consideration of Sagave and Schlichtkrull’s definition of pre-log ring spectra, the
following proposition confirms that the above definition of pre-log cdgas is reasonable.

Proposition (Proposition . For a positive fibrant object A in C(Sp*¥(smod)) and
(my,my) in J such that my > 1, the space Q7 (A)(my, my) is weakly equivalent to the
space Q™2 (U(A)(my)) where U denotes the forgetful functor to commutative symmetric
ring spectra in pointed simplicial sets.

Making use of this result, we see that a homology class in the graded homology ring of
an F, dga gives rise to a pre-log cdga.

Example (Example . Let A be a positive fibrant object in C'(Sp*(smod)), and
let (mp, my) be in J such that m; > 1. Let [z] be a homotopy class in my,,—m, (U(A))
represented by a map z: S — U(A)(m;) in pointed spaces. The above proposition
ensures that the latter corresponds to a point in the space 07 (A)(m;, my). By adjunction
)(*)) — Qj(A) where we write C

for the monad associated to the commutativity operad in spaces and F(‘fn Lms) for the

. . — . J
there is a map of commutative [J-spaces «: C(F(mhr112

left adjoint of the evaluation functor with respect to J-level (my, my). We obtain the
pre-log cdga (A7C(ng11,m2)<*))va)'

Apart from this, the previous proposition leads to the definition of units of A as a sub
commutative J-space GLY (A) of Q7 (A) (see Definition , and with this a condition
for a pre-log cdga to be a log cdga.

Definition (Definition [2.44)). Let A be a positive fibrant object in C(SpE(smo_d)). A
pre-log cdga (A, M, @) is a log cdga if the base change map a~Y(GLY (A)) — GLY (A) of
the structure map a along the inclusion GL{ (A) — Q7 (A) is a weak equivalence.

An elementary example is the trivial log cdga (A, GL‘F(A), GL‘F(A) — Qj(A)). Fur-
thermore, there is a construction called logification which turns a pre-log cdga into a log
cdga (see Construction [2.47)).



Group completion in commutative diagram spaces and logarithmic
topological Hochschild homology of log cdgas

Commutative K-spaces are Quillen equivalent to E, spaces over BK for a well-structured
index category K fulfilling a few assumptions. As a special case, commutative Z-spaces
are Quillen equivalent to E,, spaces. Taking this into account, we prove the following
theorem.

Theorem (Theorem [3.22). There is a chain of Quillen equivalences linking commutative
KC-spaces to commutative L-spaces over BrIC where BzK is a commutative Z-space model
of BIC.

With the help of this and the additional assumption that the simplicial monoid BIC is
grouplike, we provide a notion of group completion in commutative K-spaces. Our approach
is model categorical which has the advantage that we get functorial group completions
for all objects without extra conditions. We identify a left Bousfield localization on
commutative KC-spaces as a group completion model structure. We do this by verifying that
the latter is Quillen equivalent to a localized model structure on commutative Z-spaces
over Bz in order to build on Sagave and Schlichtkrull’s work on group completion in
commutative Z-spaces [SS13].

Theorem (Theorem . Suppose that the simplicial monoid BK is grouplike. There is
a group completion model structure on commutative IC-spaces in which fibrant replacements
model group completions. A map of commutative K-spaces is a group completion if the
associated map of Fs spaces is a group completion in the usual sense.

_ Specializing the index category to be J, the group completion functor on commutative
J-spaces generates more examples of pre-log cdgas and is an essential foundation for the
definition of logarithmic topological Hochschild homology of log cdgas.

Definition (Definition [4.23). Let (A4, M, «) be a cofibrant pre-log cdga. We define the
logarithmic topological Hochschild homology THH(A, M, «) via the pushout diagram

o

THH* (AT (M)) —— AT (BY(M)) —— AT ((BY(M))™P)

J J (0.2)

THHH*(A) THH(A, M, ).

The functor THH* denotes ordinary topological Hochschild homology where the
ground ring is given by the Eilenberg Mac Lane spectrum Hk. This can be identified with
derived Hochschild homology which is also known as Shukla homology (see Remark [4.21]).
The left vertical map in the diagram is determined by applying the functor THH"*
to the adjoint AY (M) — A of the structure map o: M — Q7 (A). The top horizontal
map in is induced by the repletion map B (M) — (B%Y(M))"™P (see Definition
where the source BY (M) is the cyclic bar construction of the commutative J-space M
(see Definition and the repletion map can be viewed as a group completion relative



to M. We show that the definition of logarithmic topological Hochschild homology is
homotopy invariant under logification (see Proposition . More than that, we give a
criterion for a morphism of log cdgas to be formally étale through the eyes of logarithmic
topological Hochschild homology (see Definition and present approaches towards
examples.

In this work we provide several examples of pre-log cdgas and log cdgas. These mostly
result from adapting the corresponding examples of (pre-) log ring spectra to the algebraic
context. So far it is unclear how to construct interesting pre-log structures on F., dgas
so that e.g. tamely ramified extensions of E., dgas give rise to formally log THH-étale
morphisms of pre-log cdgas. As a guiding example, it would be crucial to establish
suitable pre-log structures on the cochains of a space X with coefficients in k.

Organization

This thesis is organized as follows:

In the first section we introduce the category J (see Definition . We discuss Sagave
and Schlichtkrull’s machinery of well-structured index categories and in doing so focus on
the properties of the category J.

The second section is dedicated to the definition of log structures on F, dgas. We
first collect preliminary results about diagram spaces and symmetric spectra. Then we
move on to Richter and Shipley’s chain of Quillen equivalences between commutative
Hk-algebra spectra and E, dgas (see Theorem . Afterwards we relate symmetric
spectra to J-spaces to derive from this the definition of pre-log structures on E, dgas
(see Deﬁnition. We specify units of E dgas (see Deﬁnition and the logification
process (see Construction . In addition, we give some examples of pre-log cdgas and
log cdgas. Other than this, we discuss an alternative approach to set up log structures on
FE, dgas via diagram chain complexes. Along with this, we provide a homotopy colimit
formula on diagram chain complexes (see ) and argue that the latter does not have
to admit a model structure in which the fibrant objects are precisely the objects that are
homologically constant and the homotopy colimit functor detects the weak equivalences
(see Example [2.57)).

In the third section we start with analyzing the interaction of left Bousfield localizations
with comma categories in a general context. We prove that in a sense, left Bousfield
localization commutes with forming a comma category (see Proposition . We
continue with stating Sagave and Schlichtkrull’s chain of Quillen equivalences connecting
commutative -spaces to Fo, spaces over BK for a well-structured index category K
satisfying a couple of assumptions (see Theorem . Motivated by this, we show that
commutative K-spaces are Quillen equivalent to commutative Z-spaces over BzK (see
Theorem . This outcome together with the result on left Bousfield localizations and
comma categories are substantial ingredients to characterize a localized model structure
on commutative K-spaces as a group completion model structure later (see Theorem.
Finally, in the last section we describe the cyclic and replete bar constructions as well as
general repletion of commutative diagram spaces (see Definition Construction



Definition . After this, we set the index category to be J and give sense to logarithmic
topological Hochschild homology of log cdgas (see Definition |4.23)).

Notation

Throughout this thesis, let k£ denote a discrete commutative ring with unit. We distinguish
the different homs occuring in this work as follows. For a category C and X and Y
objects in C, we write C(X,Y) for the set of maps from X to Y and Hom,(X,Y") for the
internal hom object in C. If the category C is enriched over a category D, we denote the
D-enriched hom of X and Y in C by Hom%(X,Y). More notation will be introduced as
we need it.
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1 The category J

We introduce the category J and discuss some properties. The category J arises
from Sagave and Schlichtkrull’s category J by defining an equivalence relation on the
morphism sets of the latter. With the category J at hand, we develop a notion of pre-log
structures on E, differential graded k-algebras in Section 2 We explain Sagave and
Schlichtkrull’s concept of well-structured index categories and apply this to the category 7.
Well-structured index categories are a useful tool to obtain model structures on diagram
spaces.

1.1 Definitions

In this subsection we recall Sagave and Schlichtkrull’s definition of the category J.
We specify an equivalence relation on the morphism sets of this category to define the

category J.

Let Z be the category of finite sets with objects m = {1,...,m} for m > 0, with
the convention that 0 = (), and injective maps as morphisms. Every map in Z(m,n)
can be factored into the standard inclusion ¢mn: m — n followed by a permutation
in ¥,. For n > m + 2, this factorization is not unique. The morphism set Z(m,n)
is isomorphic to ¥, /%, _,. The ordered concatenation LI makes Z a symmetric strict
monoidal category with unit 0 and non-trivial symmetry isomorphisms the shuffle maps
Xmn: mUn — nUm (see [SS12, p. 2124]). The classifying space BZ is contractible
because the category Z has the initial object O.

We define an equivalence relation on the morphism set Z(m,n). A map a: m — n is
equivalent to a map o/: m — n if and only if there exists a map o in the alternating
group A, such that « = o0 o a/. We denote the equivalence class of a by [a]. Let
Z(m,n)/~ be the set of equivalence classes.

Lemma 1.1. For a triple 1, m and n of objects in I, there is a composition law
Z(l, m)/~ x Z(m,n)/~ — I(l,n)/~ defined by ([a], [B]) — [B o al.

Proof. We prove that this assignment is well-defined. Let o,o/: 1 — m and o in A,,
such that « = 0o/, and let 5,4: m — n and 7 in A, such that 8 = 70 3. We have to
show that (o a is equivalent to 5/ o o/. We write 3’ = ¢’ 0 tm n where & is in X,,. Then
we find that

Boa=T10f cocod
:TofloLmjnoUoo/
=70 o(0cUid)oimnod
:Toflo(al—'id)o(fl)ilOfloLm,nOO/
—rogo(oUid)e(¢) o f od



where w =7 0¢ o (o Uid)o (¢)7!is in &, and

sgn(w) = sgn(7) - sgn(€’) - sgn(o Uid) - (sgn(¢)) ™
= sgn(7) - sgn(o)
= 1.

Beware that the sign sgn(w) does not depend on the choice of factorization of 5’ whereas
the definition of the map w does rely on the choice of factorization of 3. But we can
proceed as above for any other choice of factorization of 8’ to obtain a suitable even
permutation. O

Definition 1.2. We define Z to be the category with objects m in Z and morphisms

Z(m,n) =Z(m,n)/~.

Lemma 1.3. The morphism set Z(m,n) is determined by

0, m>n-+1,

*, m =0,
f(m,n)% *, m=1n=1,

*, m>1n>m+4 2,

Yo, m>1l,n=m+1,

>, m>2,n=m.

Proof. We show that Z(m, n) is trivial for m > 1 and n > m + 2. Let a be in Z(m, n)
such that (i) =i for 1 <4 < m. We claim that every map o in Z(m,n) is equivalent
to a. Let o/ be in Z(m,n). We define &: im(a/) — n by (i) = a o (o/)~1(i). We next
want to define a permutation o: n — n so that the restriction of o to im(«’) is & and
sgn(o) = 1. For this, we have to specify the restriction of o to n'\ im(a/) in such a way
that sgn(o) = 1. Without pinning the restriction of o to n \ im(a’) down yet, we write
down all already visible inversions. If the number of these is even, we define the map o
to send n \ im (o) order-preservingly to {m+1,...,n}. Let the number be odd. Let i be
the smallest element in n \ im(a/), and let 7 be the second smallest element in n \ im(c/).
We define ¢ (i) = m + 2 and (i) = m + 1. We define the map o to take the rest of the

elements in n \ im(a’) order-preservingly to {m + 3,...,n}. So we gain only one more
inversion, namely (i,2) so that sgn(o) = 1.
The remaining cases are clear. O

Note that there is a projection functor Z — Z. The category Z inherits a symmetric
strict monoidal structure from Z. Let U: Z x Z — 7 be the functor defined on objects
by (m,n) — m U n and on morphisms by ([a], [5]) — [ U S]. This is well-defined: Let
a,¢/:1— m and o in A,, such that « = oo/, and let 5,6": n — p and 7 in A, such
that 5 =70 /. Then o U7 is in ¥p,4, with sgn(oc U7) =1, and

aUf=(goa’)U(rof)
=(cuTr)o(d'Up).



The unit is 0, and the symmetry isomorphisms are the equivalence classes of the shuffle
maps [Xm,n): mUn —nlm.

Definition 1.4. [SS12| Definition 4.2] The category J has as objects pairs (mj, mg) of
objects in Z, and a morphism (mj, ms) — (ny, ny) is a triple (aq, g, p) with @ : m; — ny
and ag: my — ny morphisms in Z and p: n; \im(aq) — ny\im(ag) a bijection identifying
the complement of o1 in n; with the complement of ag in ny. The composition of two

morphisms

(11,12) {or0ap), (my, my) Prbed), (ng,ny)

is defined by (B o aq, B2 0 g, 1)), where 1 is the bijection

n; \im(,Bl o al) i) ns \ im(ﬁg o ag)

specified by
o) { o), sem\im(3),
P2 o p(t), s = 61(t) € lm(ﬁl |m1\im(a1))'

We also refer to ¢ as ¢U(B20p0 ] 1). The ordered concatenation in both entries defines
a symmetric strict monoidal structure on the category J. Let U: J x J — J be the
functor given on objects by ((m, msg), (ny,ng)) — (m; Un;, myLing), and on morphisms
by ((a1, @2, p), (51, B2, ¢)) — (a1 U By, e U Ba, pU @), where p LI ¢ is the bijection induced
by the bijections p and ¢. The unit is (0,0), and the symmetry isomorphisms are

) (Xm1 ,n{>Xmo,ny 7id(2)) (

(mp, my) U (ny,n9 nj,ny) L (my, my)

[SS12, Proposition 4.3].

Remark 1.5. The category J is isomorphic to Quillen’s localization construction =13
on the category of finite sets and bijections ¥ [SS12 Proposition 4.4]. Thus, the
classifying space BJ is homotopy equivalent to Q(S°) [SS12, Corollary 4.5]. The latter
is the underlying additive E, space of the sphere spectrum S.

As for the category Z, we define an equivalence relation on the set J((mj, ms), (ny, ng)).
A map (a1, a2, p): (M, my) — (n1,n9) is equivalent to a map (o}, ab, p'): (M1, my) —
(n1,ng) if and only if a3 = o) and there exists a map o in A,, such that as = 00
and p = ooy, that is, (a1, ag, p) = (idn,, 0,idg) o (o], ab, p’). We write [a1, ag, p] for the
equivalence class of (a1, as,p). Let J((m1, ms), (n1,n2))/ ~ be the set of equivalence
classes.

Lemma 1.6. For a triple (11,12), (m1, mg) and (n1,ns) of objects in J, there is a compo-
sition law J((1,12), (my,my))/ ~ xJ((my, ms), (n1,n3))/ ~ = J((11,12), (n1,n3))/ ~
defined by ([ar, a2, pl, [B1, B2, ¢]) = [Bro a1, Baoag, ¢ U(Baopo By h)].

Proof. We show that this assignment is well-defined. Let (a1, ag,p) be equivalent to
(o), oy, p') meaning that «; = ) and that there is a o in A,,, such that as = o 0 oy and



p=ocop, and let (81, B2, ¢) be equivalent to (3, 55, ¢') meaning that f; = 8] and that
there is a 7 in A, such that S = 70 3, and ¢ = 7 0 ¢/. We observe that

(B1, B2, @) o (a1, az, p)

(idny, 7,1dg) © (81, B3, ¢') © (idm, , 0, 1dg) o (o, A, p')

(idn,, 7,1dp) © (B} 0 idmy, B3 0 0,¢) 0 (], a3, p')

(idn,, 7, idg) © (idny, (B5 0 0 0 (83) 1) Uidny\im(ay), idg) © (81, B2, @) © (af, a, o)
= (idny, 70 ((By 000 (8) ") Uidny\im(ay)» idp) o (81, B2, ¢') o (o), @, p'),

and that

sgn(7 o ((By00 0 (B) ") Uldpg\im(ay)) = 1.
Therefore, the composite (51, 52, @)o(a1, g, p) is equivalent to (8], 85, ¢')o(af, ab, p'). O

Definition 1.7. Let J be the category with objects (m1, my) in J and morphisms
J((m1,mz), (n1,nz)) = J((my, ms), (ng,nz))/~.

Let d € Z. We write Jy for the full subcategory of J whose objects (mp, my) in
J satisfy my — m; = d. The category J is the disjoint union over d € Z of the
subcategories jd,

J =11 Ja
dezZ
There is a projection functor J — J. The category J inherits a symmetric strict
monoidal structure from 7. The functor U: J x J — J sends ((mj, ms), (ny,ny)) to
(m; Uny, my Ling) and maps ([aq, ae, p, [B1, B2, ¢]) to [ar U S1, a U Ba, pU ¢]. This is
well-defined: Let (ai,as,p), (), ab,p'): (11,12) = (my,mg) and o in A,,, such that

(ala a2, p) = (ldml 0, 1d®) © (allv O/27 P/)> and let (ﬁb 627 ¢), (617 /Béa d)/) : (1’11, 1’12) — (pb p2)
and 7 in Ay, such that (S1, B2, ¢) = (idp,, 7,1dy) o (81, B3, ¢’). We remark that o Ul 7 is
in X,,4+p, with sgn(o U7) =1, and that

(ala a2ap) U (Blaﬁ?v qb) = ((idmuo-’ ld@) © (O/la 0/2,[)/)) ((idplvT ld@) (Bia Béa ¢/))
= (idmluplaol—lT’ id@)o((alaa% ) (51aﬁ2?¢))‘

The unit is (0,0), and the symmetry isomorphisms are

[Xml ,n{;Xmg,ng 7id0]

(ml, mg) LJ (Ill, Il2) (1’11, 1’12) LJ (ml, mg).

1.2 Well-structured index categories

We continue with introducing Sagave and Schlichtkrull’s theory of well-structured index
categories which is a convenient device to establish model structures on diagram spaces.
For more background we refer to [SS12, §5]. As an application, we focus on the properties
of the category J.

Let (KC,U,0x) be a small symmetric monoidal category and let A be a subcategory
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of automorphisms. We assume that A is a normal subcategory, that is, for each isomor-
phism a: m — n in K the object m belongs to A if and only if the object n does, and
in this case conjugation by « specifies an isomorphism from the automorphism group
A(m, m) to the automorphism group .A(n,n) by sending v to a oy o a~!. In addition,
we require that the subcategory A is multiplicative meaning that the monoidal structure
map U: K x K — K restricts to a functor A x A — A. (But we do not demand that A
contains the unit Ox for the monoidal structure.) We think of Ny, that is, the ordered set
of natural numbers 0 - 1 — 2 — ..., as a symmetric monoidal category via the additive
structure. For a small category C, the set of connected components 7o(NC) is defined to
be the coequalizer of the maps

d
NC[] d:; Neo].
1
Let B and C be categories, let F': B — C be a functor, and let ¢ be an object of C. Recall
that the category (F | c¢) of objects of B over c is the category in which an object is a
pair (b,7) where b is an object in B and ~ is a morphism +: F(b) — ¢ in C. A morphism
(b,v) — (b/,7) is a morphism 3: b — b in B such that the diagram

) =2 F(¥)

e

commutes. We refer to this category as the comma category (F | ¢). If B=C and F
is the identity functor, we write (C | ¢) for the comma category (F' | ¢). The comma
category (c | F') is defined dually (see [Mac98| II. §6]).

Definition 1.8. [SS12| Definition 5.2] A well-structured relative index category is a triple
consisting of a small symmetric monoidal category (K, LI, Ox ), a strong symmetric monoidal
functor A: K — Np, and a normal and multiplicative subcategory of automorphisms A
in IC. These data are required to satisfy the following conditions.

(i) A morphism m — n in K is an isomorphism if and only if A(m) = A(n).

(ii) For each object m in A and each object n in K, each connected component of the
comma category (m U — | n) has a terminal object.

(iii) For each object m in A and each object n in K, the canonical right action of the
automorphism group A(m, m) on the comma category (m Ll — | n) induces a free
action on the set of connected components of the comma category (m U — | n).

(iv) Let K4 be the full subcategory of K generated by the objects in A. The inclusion
functor K4 — K is homotopy right cofinal.

In condition (ii) and (iii) for each object m in A and each object n in K, we employ the
functor m Ll —: K — K to form the comma category (m U — | n). We use the notation
(K,.A) to indicate a well-structured relative index category. Considering the case when .4

11



is the discrete category of identity morphisms in I, denoted by OK, the above definition
breaks down to the notion of a well-structured index category which is the following
definition.

Definition 1.9. [SS12, Definition 5.5] A well-structured index category K is a small
symmetric monoidal category equipped with a strong symmetric monoidal functor
A: KK — Ny such that

(i) a morphism m — n in K is an isomorphism if and only if A(m) = A(n), and

(ii) for each pair of objects m and n in K, each connected component of the comma
category (m Ll — | n) has a terminal object.

Example 1.10. (i) We endow the category Z with the functor A\: Z — Ny defined
by A(m) = m. The category Z is a well-structured index category by [SS12|
Corollary 5.9]. Further, the category of finite sets and bijections ¥ is the full
automorphism subcategory of Z. The pair (Z, X)) specifies a well-structured relative
index category by [SS12, Corollary 5.10].

(ii) Similarly, we enhance the category J with the functor A\: J — Ny given by
A(mi, my) = my. Then the category J is a well-structured index category by [SS12]
Corollary 5.9], and the pair (J,% x X) defines a well-structured relative index
category by [SS12, Corollary 5.10].

Sagave and Schlichtkrull show in [SS12] that a well-structured relative index category
(K,.A) gives rise to a certain model structure on K-spaces which is proper, monoidal and
lifts to the category of structured K-spaces for any 3-free operad. For a well-structured
index category K, the associated model structure on K-spaces is called the projective
K-model structure (see [SS12, Definition 6.21], Proposition . If € is one of the
categories 7 or J and A is given by the respective full automorphism subcategories,
then (K, .A) induces a flat model structure on K-spaces (see [SS12, §3.8, §4.27]). At the
beginning of Section [2[ we collect some more results of [SS12].

Lemma 1.11. Let (m;,my) and (ny,ny) be objects in J such that my < ni and
mo < ng.

(i) Every map [oq, oo, p]: (my, mo) U (ki, ko) — (n1,12) in J admits a factorization
of the form

idm, ,idm,, ,id 2w
(m1, mo) U (ki ky) —oomtdme o002l oy (1, 1)

mm

(n1,n2)

with (B, Ba, #] an isomorphism in J.
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(ii) Suppose that the map [B1, B2, #]: (m1,mg) U (I,12) — (n1,n2) is an isomorphism

in J. Then a map [oy, oo, p]: (my,my) U (ki, ko) — (ny,12) in J factors as

[/817 627 ¢] o [(idm1 ) idmw id@) U ('717 V25 w)}

if and only if B1lm, = @1lm, 0 T and [B2|m,] = [@2|m,] in Z. The map [y1, v, w]
is unique if the factorization exists.

Proof. (i) Let (a1, a2,p): (m1, mg) U (ki,k2) — (n1,n2) be a representative of a map

[, g, p] in J. We choose bijections f1: m; Ul; — nj and So: ma LUl - ngin 7
where the map (7 is an extension of the map «; and the map (9 is an extension
of the map az. Let vy = 1y, ), and 72 = 1,1, be the standard inclusions. We
get that 81 o (idm, U tk, 1,) = o1 and B2 o (idm, U tk,1,) = a2 in Z. The bijection
w1y \ im(ek, 1,) = 12 \ im(ek, 1,) is specified by the following diagram of bijections

ny \ im(a1) = 01\ im(By o (idm, Utk ,1,)) = 0B (g Lty )\ i (id g Ui, 1))
Bt

(my ULy) \ im(idm, Uk, 1)
p w

(my Uly) \ im(idm, L tk,.1,)

B2

ny \ im(az) = 02\ im (B2 o (idm, U tky,15)) = Im(B2] (mytity)\im (idmy Uisey 1))

where we set w = 35 L6 po 8. Hence, we obtain a factorization

(a1, a2, p) = (Br, B2, idp) © ((idm, , idm,, idp) U (i, 1y o 1o B2 © p o B1))
in J. Passing to equivalence classes this yields a factorization

o1, az, p] = [B1, B2, idg] © [(idm, , idmy, idg) U (4 115 o 1, B3 ' © p 0 1))
in j

First assume that the map [a1, s, p]: (my, ms) U (ki,ks) — (ny,ny) in J has a
factorization

[a1, o, p] = [B1, B2, @] © [(idm, » idm,, idg) LI (71,72, w)].

Spelling out the composition this means that

[a1, a2, p] = [B1 © (idm, U71), B2 0 (idmy U7y2), B2 0w o B7 1],

From this we conclude that $1|m; = @1|m, in Z and [Ba|m,] = [@2|m,] in Z.
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Secondly, let (81, B2, ¢): (m1, mo) U (11,12) — (n1,n2) be a representative of a map
[B1, B2, ¢] in J, and let (a1, ag, p): (my, my) L (ki, ko) — (ny,ny) be a representa-
tive of a map [a1, as, p] in J. We assume that 81|m, = @1|m, and £2|m, = @2|m,
in Z. Let v1: ki — 1; be the map in Z such that ai|x, = Bi|;, © 71, and let
v2: ko — Iy be the map in Z such that as|k, = B2/1, © 72. Let the bijection
w: 1y \im(y1) — 1o\ im(72) be given by w = 85 0 po 1 (compare part (i)). Thus,
the map (aq, g, p) can be factored as

(615/827 Cb) o ((idmlaidmza id@) U ('7177%"‘)))

in J, and passing to equivalence classes the map [a1, e, p| can be factored as

[Bla ﬁ?y qb] © [(ldml s idmgvid@) U (71a V25 w)]

in j .
Note that if the factorization of the map [a1, g, p] exists, the map [y1,72,w] is
uniquely determined by the maps a1, aqg, p] and [B1, B2, ¢] in J.

]

Corollary 1.12. Let (mj,my) and (ny,ny) be objects in J.

(i) Suppose that my < ny and mg < ny. An object ((11,12), [B1, B2, ¢]) is terminal in its
connected component of the comma category ((my, mg) U — | (n1,n2)) if and only
if the map [B1, B2, @] is an isomorphism in J.

(ii) For the comma category ((my, m2) U — | (n1,n2)), the set of connected components
mo(N((my, mz) U — | (ny,n3))) is isomorphic to the set Z(my,ny) x Z(ms, ny).

Proof. (i) Let the object ((11,12), [B1, 52, ¢]) be terminal in its connected component of
the comma category ((mj, mo) U — | (nj,ny)). Assume that the map [f1, B2, @] is
not an isomorphism in 7. From Lemma (1) we know that the map [(1, B2, @]
admits a factorization

[517/627 ¢] = [Blu 527 (ZE] o [(ldm171dm271d@) U (717727(*})]

with [B1, Ba, @] an isomorphism in J. Since the map [f1, B2, ¢] is not an isomor-
phism, the map [y1,72,w] cannot be an isomorphism in J. But this contradicts
the assumption that the object ((11,12),[51, 2, #]) is terminal in its connected
component. Therefore, the map [51, 52, ¢] is an isomorphism.

Reversely, let ((11,12), [51, B2, ¢]) be an object in ((mj,ms) U — | (ni,n3)) with
[B1, B2, ¢] an isomorphism in J. Let ((ki,ks), [a1, az, p]) be an object in the con-
nected component of ((13,12), [1, B2, ¢]). Then Lemma [I.11](ii) ensures that there is
a unique morphism [vy1,72,w]: (ki,ka) — (11,12) such that

[abaQnO] = [ﬁbﬁ% ¢] © [(idmlaidmza id@) U (’71,’)’2,0))]

in 7. So the object ((11,12), [B1, B2, ¢]) is terminal in its connected component.
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(ii) If my > ny + 1 or me > ng + 1, the comma category ((mp,mz) U — | (ny,ng))
is the empty category and the set Z(my,n;) x Z(ms, ny) is the empty set. Thus,
the statement holds. Assume now that m; < n; and mg < ns. The assign-
ment o(N((my, my) U — | (n1,1n3))) = Z(my,ny) x Z(my, ny) that sends a class

[((L1,12), [B1, B2, @])] to (Bi|m, [B2|ms,]) defines a bijection.
L]

Proposition 1.13. The category J together with the functor A\: J — Ny, given by
A(my, my) = my, determines a well-structured index category.

Proof. (compare [SS12, proof of Proposition 5.8]) We notice that the functor A is strong
symmetric monoidal. Let [a1,as,p]: (m;,my) — (n1,n2) be a morphism in J. If
the map [o, g, p] is an isomorphism in 7, it follows that m; = n;. Conversely, if
A(my, my) = A\(ny, ng), we observe that 0 = ny —my = ny — my and so, no = mo. Hence,
the map [aq, ag, p] has to be an isomorphism. Furthermore, let (m;, ms) and (n;, ns)
be a pair of objects in J. If my1 > ni + 1 or mg > no + 1, then the comma category
((m1,mg) U — | (n1,n2)) is the empty category so that condition (ii) in Definition [1.9|is
an empty statement. Suppose now that mq < n; and mgy < no. From Corollary @(1)
we learn that an object ((ki, ko), [a1, a2, p]) is terminal in its connected component of
the comma category ((mi, mg) U — | (n1,ny)) if and only if [y, ag, p] is an isomorphism
in J. O

Remark 1.14. Let ¥ x ¥ denote the full automorphism subcategory of 7. We point out
that the pair (J,% x X) does not specify a well-structured relative index category since
condition (iii) in Definition [1.8is not satisfied. Indeed, let (my, my) be in ¥ x ¥ and let
(n1,ng) be in J such that ny > mq, and ma > 2 and ny > ms + 2. By Corollary (ii)
the set of connected components of the comma category ((mj,mg) Ll — | (nj,ng)) is
isomorphic to the set Z(my,n;) x Z(mg, ny). The latter is isomorphic to Z(m1, ny) due
to Lemma Besides, the group %,,, = Z(my, my) is isomorphic to ¥ by Lemma
The action ¢ of ¥, X Ly, on Z(my,ny) x Z(my, ny),

(Ziny X Bmy) X (Z(my,ny) x Z(my,ny)) 2 Z(my,n;) x Z(mgy, ny),
is given by

(o, [7]), (@, [])) = (a0 0, [4]).

If [7] # [idm,], then ¢((idm,, [7]), (e, [*])) = (e, [*]). Thus, the action ¢ is not free. In
particular, we cannot employ Sagave and Schlichtkrull’s machinery in [SS12] for obtaining
a flat model structure on [J-spaces.

To right induce the model structure on K-spaces associated with a well-structured
relative index category (KC,.A) on the category of commutative monoids in IC-spaces, the
pair (KC,.A) has to fulfill the following property.

Definition 1.15. [SS12] Definition 5.3] A well-structured relative index category (IC,.A)
is very well-structured if for each object m in A, each object n in K, and each i > 1, the
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canonical right action of the group ¥; x .A(m, m)*? on the comma category (m“U— | n)
induces a free action on the set of connected components of the comma category

(m“ U — | n).

Remark 1.16. In the above Definition the group ¥; x A(m, m)** is the semi-direct

product of the symmetric group Y; acting from the right on the i-fold product of the group

of automorphisms .A(m, m). The action on the comma category (m“* U — | n) is defined

via the homomorphism ¥; x A(m, m)** — K(m", m"%) which sends (o, (f1,...,f;)) to
o(fiU...U f;) where o, is the block permutation map.

Furthermore, we emphasize that .4 cannot contain the unit object Ox if the pair (K, .4)

is a very well-structured relative index category.

For a well-structured index category K, we write K for the full subcategory of K
whose objects m satisfy A\(m) > 1. We denote the corresponding discrete subcategory of
identity morphisms by OK..

Example 1.17. Let ¥, denote the full automorphism subcategory of Z,, and let
Y4+ x ¥ stand for the full automorphism subcategory of 7. The pairs (Z,O0Z4), (Z,%,),
(J,0J4) and (J, X4 x X) define very well-structured relative index categories by [SS12]
Corollary 5.9, Corollary 5.10].

Let e € Z>o. We write j>€ _y for the full subcategory of J whose objects (my, my)
in J satisfy m; > e. For e = 0, the category J>0 ,—) is the category J, and for e = 1,
the category «721,—) is the category J.

Lemma 1.18. The inclusion functor te: j(ze,f) — J is homotopy right cofinal.

Proof. We proceed as in the proof of [SS12, Corollary 5.9]. Let (mj, ms) be in J. We
have to prove that the classifying space B((mi,ms) | t¢) is contractible. We pick a
morphism [ag, ag, p]: (0,0) — (13,12) in J such that I; > e. Let

— U o, 0, 0): ((my,my) | J) = ((my,my) | c)

be the functor which sends an object ((ai,az), 71,72, %¢]: (m1, my) — (a;, az)) to

(a1, a2) U (11, 1), (my, my) = (my, my) U (0,0) 2000200 a0y U (11, 1)),

and a morphism

(my, my) 101,62,
[mmzﬂﬂj{
[/B 7/8 7¢j|
(ar,a3) ———"— (by,by)
to
m17 m2 [(61,02,w)U(a1,a2,p)]

[(m1,m2,9)U(0n,02,p) ]l
[(B1,82,¢)L(idy ,idy, ,idg)]

(ar,az) U (Iy, 1) (b1, b2) U (11,12).
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In addition, let (te).: ((m1, m2) | te) — ((my, m2) | J) be the functor induced by the
inclusion functor ¢, : \7(26’_) — J. There is a natural transformation

id((ml,mg)ue) — (_ L [Oél, a2, P]) © (Le)*'
For ((31732)7 [771777271/}]: (mlamQ) — (31,82)), the ObjeCt

(a1, a2), (m1, my) Y (4 ay))

is taken to

) [(m1,m2,9) U (1,02,p)] (ar,a2) U (13, 1y)).

Further, there is a natural transformation id((m},m2)¢j) — (Le)x 0 (— U a1, a2, p]). For
((ala 32), [7717 2, @b] : (mla m?) — (alv 32)), the ObJeCt

((ar,az) U (Iy,12), (m1, my

(a1, ), (my, ma) Y% (a;, ay))

is mapped to

) Lonmbleroarll o oy (1, 1),

These natural transformations produce homotopies between the morphisms id g((m; ms){c.)
and B(— U [o1, az, p]) © B((te)«), and between the morphisms id g (m, m,);.7) and

B((te)+) o B(= U a1, az, pl).

Hence, the space B((mj, ms) | tc) is homotopy equivalent to B((mj, mz) | J), which
is contractible because the comma category ((mj,ms) | J) has the initial object
((ml,mg),id(ml,mz)). O

((ar,a2) U (Iy,12), (mq, my

Proposition 1.19. The pair (J,0J,) specifies a very well-structured relative index
category.

Proof. To understand that the pair (j , (9j+) determines a well-structured relative index
category, it remains to show (iv) in Definition that is, that the inclusion functor
J+ — J is homotopy right cofinal. But this follows from Lemma The next step is
to prove that the well-structured relative index category (j , (’)j+) is very well-structured.
Let (my,my) be in OJy, let (ny,n3) be in J, and let 4 > 1. Ifi-my > ny +1 or
i-mg > ng + 1, then the comma category ((mjp, mg)“" LU — | (n1,ny)) is empty so that
the condition in Definition [1.15| automatically holds. Suppose that i - m; < n; and
i-mo < no. We know from Corollary (ii) that the set of connected components of the
comma category ((my, my)"" LI — | (ng,ny)) is isomorphic to Z(my? n;) x Z(m5? ny).
The action of the group %; x {[idm, , idm,, idg]}** on the set Z(my? ny) x Z(ms? ny) is
the map

(8 % {[idm, , idm,, idg]}**) x (Z(m}", n1) x Z(m3", n2)) — Z(m{", n1) x Z(m3", ny)

which sends the element ((o, ([idm, , idm,, idg], - - -, [idm, , idm,,idg])), (o, [5])) to the ele-
ment (a0, 0 (idm, U...Uidm, ), [fo 0«0 (idm, L. ..Uidm,)]). This action is free because
mq Z 1. O
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The following lemma is a practical device for establishing model structures on diagram
spaces where the indexing category is a product category.

Lemma 1.20. Let ((K,U,0x), A, \c) and ((£,0,07),B,\z) be well-structured relative
index categories such that the morphisms in IC, and L respectively, preserve or raise the
value of A, and g respectively.

(a) The pair (K x L, (U,0), (0x,0r)), A x B), equipped with the functor Nicxr: K x L —
No given by Acxc(k,1) = Ac(k) + Az(l), defines a well-structured relative index
category.

(b) If the pairs (K, A) and (L,B) are very well-structured relative index categories, then
s0 is the pair (KX x £, A x B).

Proof. (a

) The product of two small symmetric monoidal categories is again a small

symmetric monoidal category. As the functors A\x and Az are strong symmetric
monoidal, so is the functor Axxs. More than that, we notice that A x B is a
normal and multiplicative subcategory of automorphisms in K x £. We verify the
conditions (i) to (iv) in Definition [1.§]

(i)

A morphism (k,1) — (k/,1') is an isomorphism in X x £ if and only if k — k’ is an
isomorphism in & and 1 — 1 is an isomorphism in £. The latter is equivalent to
Ac(k) = A(K') and Az(1) = Az (V). This implies that Mcx e (k, 1) = Adexe (K, 1).
Taking into account the assumption that morphisms in I, and L respectively,
can only preserve or raise the value of A\, and Az respectively, we can deduce
from )\;ng(k, 1) = )\;ng(k,, 1/) that /\K(k) = )\/C(k,) and )\[,(l) = /\5(1/).

Let (a,b) be in A x B, and let (k,1) be in I x £. The comma category
((a,b)(u,0)— | (k,1)) is isomorphic to the product of comma categories
(al— ] k) x (bU— | 1). Hence, we obtain an isomorphism

ro(V (@, b)(U, 0)— | (k,1))) & mo(N(a L — | K)) x o(A'(blI— | 1)).
The terminal object in a connected component of the comma category

((av b)(l—lv D)_ \L (kv 1))
is the product of the terminal objects of the corresponding connected components
of the comma categories (a U — | k) and (blU— | 1).
This condition follows by making use of the isomorphisms in (ii).

The category (I x L£)axp is isomorphic to the product category K4 x L£g. The
inclusion functor 4 x Lz — K x L is homotopy right cofinal. To see this, let
(k,1) be in K x L. The space N((k,1) | (K4 x Lp — K x L)) is contractible as
being isomorpic to the product of the contractible spaces N'(k | (K4 — K))
and N(1] (L — L)).
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(b) Let (a,b) be in A x B, let (k,1) be in £ x £ and let i« > 1. We again exploit the
isomorphisms given in (a)(ii). So we get that the canonical right action of the group
> % (A(a,a)*? x B(b,b)*%) on the category (a“ Ll — | k) x (bY[I— | 1) induces
a free action on mo(N(a™ U — | k)) x mo(N (bY(I— | 1)) defined by the given free
actions.

O

Remark 1.21. We point out that we only need the assumption about the morphisms
in IC, and L respectively, preserving or raising the value of A, and A\, respectively, to
prove the reverse direction of condition (i) in Definition Our main examples, the
categories Z, J and 7, satisfy this assumption.

1.3 The classifying space B.J

In the sequel we determine the classifying space BJ. We do this by identifying the non-
negative components of J with a Grothendieck construction (in the sense of Thomason
[Tho79, Definition 1.1]). Our arguments are similar to [SS) 2.8-2.10].

For n > 0, we think of ¥, as the category with a single object * and morphisms
Yn(k, %) = X, As for the category Z, we have an equivalence relation on the morphism
set X (%, %) = X, = Z(n,n). A map a in X, is equivalent to a map a’ in 3, if and
only if there exists a map o in A, such that a = o o a’. We remark that a map a in X,
is equivalent to a map a’ in ¥, if and only if sgn(a) = sgn(a’). Let ¥, = %, /~ be
the quotient set. We write 3, for the category with a single object * and morphisms
i]n(*, *) = Y. For n < 1, the category %, is trivial and for n > 2, the category X, is
isomorphic to X, /A, = {£1}.

Let Cat denote the category of small categories. We consider the functor ¥ from
the category Z to Cat, which maps an object m in Z to the category ¥,, and takes a
morphism «: m — n in Z to the functor X(«). The latter sends a map [a] in %, to

Y(a)la] = [(a,incl) o (a U idn\im(a)) © (, incl)*l]

in X,
E(a)la]

n n.
[(a,incl)’l}l T[(a,incl)]
auidn im(a
mU (n)\im(a)) M mU (n )\ im(a))
This is well-defined: Suppose that a is equivalent to a’, that is, there exists a map o
in Ay, such that a = 0 oa’. Then (a,incl) o (o Uidpjm(a)) © (@, incl) ™! is in X, with
sgn((a, incl) o (0 Uidy\im(a)) © (@, incl) ') = sgn(o) = 1 and
(o, incl) o (@ Uidg\im(a)) © (@, incl) ™!

= (a,incl) o (0 U idp\im(a)) © (o, incl) ™! o (a, incl) o (a’ U idn\im(a)) © (@, incl)~ 1.
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For d in Z, we write ¥(d U —) for the functor obtained from ¥ by precomposition with
the endofunctor d U — on Z. For d = 0, this is just the functor X.

The Grothendieck construction on the Z-category ¥(d U —), denoted by Z [ ¥(d LU —),
is the category with objects (m, ), where m is in Z and * is in ¥4,,,, and morphisms
(a,[a]): (m, %) — (n,*), where a: m — n is in Z and [a]: ¥ — * is in Ygy,. The
composition of morphisms

(17*) (a,[a]) (m,*) (B,[0]) (n’*)

is given by -
(8, [0]) o (e, [a]) = (Bo e, [b] o E(d U —)(B)]a]).
Lemma 1.22. Letd be in Z. The category T [ Y (dU—) is isomorphic to the category Jy.

Proof. We prove the claim by determining two functors that are inverse to each other. On
the one hand, let F': Z [ ¥(d U —) — J be the functor that sends (m, *) to (m,d Um),
and that takes a morphism (a, [a]): (m,*) — (n, *) to the morphism

[a,a0(idgUa),ao(idgU(a,incl))|n\im(a)]

(m,d Um) (n,d Un).

This is well-defined: Let a be equivalent to a’ meaning that there is a o in Ay, such
that a =0 oa’. Then ao (idg U «) =0 od o (idg U «), and

a o (idg U (e, incl)) [p\im(a)= 0 0 @’ o (idg U (a,incl)) |n\im(a) -
Hence, the morphism (a,a o (idg U a),a o (idq U (,incl)) [n\im(a)) is equivalent to
(o, a" o (idg U ), a’ o (idg U (c, incl)) [n\im(a))-
On the other hand, let G: J; — Z [ £(d L) be the functor that sends (m,d LI m) to
(m, %), and that maps [a1, a9, p|: (m,dUm) — (n,dUn) to

) (a1, [(@z2,incl)o(idqumUp)o(idgU(aq,inc) ~1)]) (

(m, * n, x).

Let (a1, a9, p) be equivalent to (o, o, p'), that is, a; = o) and there exists a o in Agy,
such that ay = o0 oa) and p =0 o p’. We get that

(cva, incl) o (idqum LI p) o (idg LI (e, incl) ™)
= (0 o (o, incl) o (idgum U o) ™) o ((idgum U o) o (idgum U p')) o (idg U (aq, incl) 1)
= 0 0 (ab,incl) o (idg m U p') o (idq U (a, incl)71).
Thus, G is well-defined, too.

We notice that F'o G(m,d Um) = (m,d Um) and G o F(m, *) = (m, ). More than
that, we show that both compositions of functors are the identity on morphisms. First,

F o G([a, ag,p])
= F(a, [(ag,incl) o (idgum U p) o (idg U (a1, incl)71)])
= [, (az,incl) o (idgum U p) o (idg U (g, incl) ™) o (idg U o),
(v, incl) o (idgum L p) o (idg U (ay,incl) 1) o (idgq U (au, incl)) n\im(ay))-
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To realize that the second component (cz, incl)o (idgqymLp) o (idg L (a1, incl) =)o (idqg Uay )
is ao, we spell out the composition in the diagram

idgUa idqU(aq,incl)~!
— -

dUm dUn dUmU (n)\ im(a)) ™ d Um U ((d Un) \ im(az))

J(CQ incl)
dLUn.

a2

In addition, the restriction of
(v, incl) o (idgum L p) o (idg U (a1,inc) ™) o (idg U (v, incl)) = (o, incl) o (idgum U p)
to n \ im(aq) is p. Secondly,

G o F(a,[a])
= G([a,a 0 (idq Ua),ao (idg U (o, incl))|p\im(a)))
= (o, [(a o (idg U a),incl) o (idgum U (@ o (idg U (@, incl)) [p\im(a))) © (ida U (v, incl)1)]).

The second component
[(a o (idg Ua),incl) o (idaum U (a o (idg U (o, incl))n\im(a))) © (ida U (e, incl) )]
can be identified with [a] which we can read off from the diagram

dL idgU(aincl)
n

dUumU (n\ im(a))

fddumu(ao(iddu(a,ind))|n\im<a))
dumU ((dUn) \ im(ao (idg Ua)))
l(ao(idduQ),incl)
dUn.
O

Let e € Z>o. We denote by Z>. the full subcategory of Z with objects m in Z such that
m > e. For e = 0, the category Z> is the category Z, and for e = 1, the category Z>; is
the category Z,.

Lemma 1.23. Let e,€e’ € Z>qg such that € > e. The inclusion functor tee: Iser — I>e
s homotopy right cofinal.

Proof. We argue as in the proofs of [SS12| Corollary 5.9.] and Proposition Let m
be in Z>.. We have to show that the classifying space B(m | ./ o) is contractible. We
choose a morphism a: 0 — 1in Z such that { > ¢’. Let —Ua: (m | Z>.) — (m | te )
be the functor given on objects by

(a,m1>a)r—>(a|_ll,m:ml_|0nl_l—a>al_ll)
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and on morphisms by

m m
/ X — ”V &““1
a b b al

1 Auidy bUL

Furthermore, let (t¢/¢)s: (M | ter o) = (m | I>¢) be the functor defined by the inclusion
functor ter¢: Iser — Z>.. There are natural transformations between the identity
functor id(my,, ) and (— U @) o (ter ¢)«, and between the identity functor id(y 7. ) and
(tere)x0(—Uav). These give rise to homotopies between idp(ml.,, ) and B(—I_Ioz)OB((_Lelye)*),
and between idgm|7.,) and B((tee)s) 0 B(— U ). Thus, the space B(m | ter.) is
homotopy equivalent to B(m | Z>.). But the latter is contractible because the comma
category (m | Z>.) has the initial object (m,idm). O

Proposition 1.24. The classifying space BJ is weakly equivalent to 7 x RP>.

Proof. The category J is a permutative category. Hence, the classifying space BJ is
an E,, space by [May74, Theorem 4.9]. Besides, since BJ = ez BJg4, we get that
7T0(Bj ) = Z. So BJ is a grouplike E., space. From this we can conclude that all
connected components BJy of BJ are homotopy equivalent. Let d € Z>p. Thomason’s
homotopy colimit theorem yields that there is a homotopy equivalence

hocolimz N (£(d LU —)) = ./\/(I/ Y(du—))

[Tho79, Theorem 1.2]. Using that the inclusion functor Z>2 — Z is homotopy right
cofinal by Lemma [T.23] we obtain that the induced map of homotopy colimits

hocolimz,, V' (£(d U —)) — hocolimz (5(d U —))

is a weak equivalence by [Hir03, Theorem 19.6.7.(1)]. Further, the functor ¥(dU—): Zsg —
Cat is isomorphic to the constant functor constr.,{%1}: Z>o — Cat. This is because
for m in 79, the category Yg4m is isomorphic to the category {£1}, and for a morphism
a:m — n in Zsg, the functor Y(dU =)(): Zgem — Sqpn is isomorphic to the identity
functor on {£1}. The latter holds as for a representative a of [a] in gy, the sign of a
is equal to the sign of (idg U, incl) o (a U id(quim)\im(idque)) © (ida U incl)~!. Therefore,
the functor V/(2(d LU —)) can be identified with the functor A/(constz.,{+1}) which is
isomorphic to constz., N{£1}. This implies that B

hocolimIZQN(i(d LI —)) = hocolimz_,constz, ,N{£1}
~ N{+£1}.

By Lemma the category Z [ £(d Ll —) is isomorphic to the category Jy. Altogether,
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we find that
BJy=|NJy |
~| N(z/i(du Yy

~| N{£1} |
~ RP*,

and BT ~ 7 x RP>. O

Remark 1.25. Let d € Z>o. There is an alternative way to determine the classifying
space BJ;. We write jd,(227,) for the full subcategory of J; whose objects (my, ms) in Jy
satisfy mi > 2. It follows from Lemma that the inclusion functor jd,(zz,—) — Ty is
homotopy right cofinal. Thus, the induced map

hocohmjd’(zz’_ ConStjd,(Zz,— * —> hocohmjdconstjd*

) )

is a weak equivalence by [Hir03, Theorem 19.6.7.(1)]. Moreover, arguing as in the
proof of Lemma we see that the category jd,(ZQ’_) is isomorphic to the category
Iso [X(d U —). As the functor X(d U —): Zso — Cat is isomorphic to the constant
functor constz,,{+1}: Z>o — Cat (see proof of Proposition , we can identify the
category Z>o [ X(d U —) with the product category Z>o x {£1}. So we obtain that

hOCOhmjd,(Zz,f COHStjd,(zz,f) x = hOCOhmIZQx{:l:l}conStIEQX{:tl}*

— N(Zss x {£1})
= N(IZQ) X N{:l:l}.

)

This is weakly equivalent to N'{£1}, because the space N (Z>2) is contractible.

Remark 1.26. The homotopy groups of the space Z x RP* are given by

Z, =0,
m(Z x RP®, %) = 7/22, |=1,
0, 1> 2.

Considering the Quillen equivalence between grouplike E, spaces and connective spectra
[May09| Corollary 9.5], the induced map BJ — BJ of grouplike E, spaces models the
first Postnikov section of the sphere spectrum S in connective spectra (see Remark .
In Subsection we recall Sagave and Schlichtkrull’s chain of Quillen equivalences
between commutative KC-spaces and F, spaces over BK for a permutative well-structured
index category K such that the inclusion functor K — K is homotopy right cofinal and
the pair (IC, OK,) is very well-structured (see Theorem . Applying this result to
the category J yields that commutative [J-spaces are Quillen equivalent to E, spaces
over Q(S°) (see Remark . In analogy with algebra where Z-graded monoids can
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be identified as monoids over the additive monoid (Z, +) of the integers Z, Sagave and
Schlichtkrull view commutative J-spaces as Q(S%)-graded E,, spaces, where Q(S)
plays the role of (Z,+) and the sphere spectrum S the role of the integers Z (see [SS12|
p. 2120)).

The category J is more algebraic than the category J because the grading is over
BJ ~ 7 x RP* instead of BJ ~ Q(SO). We think of commutative j—spaces as
(Z x RP>)-graded E, spaces. The fact that 7o of the classifying space B.J is equal to Z
can be interpreted as a Z-grading, and the fact that the fundamental group of BJ is
isomorphic to Z/2Z corresponds to graded commutativity. Since the higher homotopy
groups of BJ vanish, the category J is in a sense minimal with these properties. For
these reasons, the category J is a suitable indexing category in the algebraic set-up. This
also becomes more evident in the next section where we define pre-log structures on Fo,
dgas via commutative J -spaces.
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2 Pre-log structures on E,, dgas

This section is devoted to establishing pre-log structures in the algebraic setting. We recall
Richter and Shipley’s chain of Quillen equivalences between commutative H k-algebra
spectra and Eo, differential graded k-algebras (E+ dgas). Employing the intermediate
model category of commutative symmetric ring spectra in simplicial k-modules in this
chain, we construct the Quillen adjunction (A7, Q7) between the latter and commutative
J-spaces, on which our definition of pre-log structures is based. We define units for En,
dgas to determine whether a pre-log structure is a log structure. We give some examples
of pre-log cdgas and log cdgas. Further, we explain the drawbacks of another approach
to specify pre-log structures via diagram chain complexes. For this, as minor results,
we provide a homotopy colimit formula for diagram chain complexes and show that in
contrast to diagram spaces indexed by a well-structured index category, diagram chain
complexes indexed by a well-structured index category do not always carry a model
structure in which the homotopy colimit functor detects the weak equivalences.

2.1 Preliminaries on diagram spaces

We start with collecting several results about diagram spaces from [SS12] which are
relevant for our theory. For more details we refer to [SS12].

We write S for the category of spaces where spaces mean unpointed simplicial sets.
Let K be a small category. A K-space is a functor M : K — S. The category of K-spaces
is the functor category SX [SS12] Definition 2.1]. The category S* is bicomplete with
limits and colimits constructed K-levelwise. Moreover, the category S is enriched,
tensored and cotensored over S. For a K-space M and a space T', the tensor M x T is
the K-space defined by (M x T)(k) = M (k) x T, and the cotensor M7 is the K-space
specified by M7 (k) = Homg(T, M (k)) [SS12, Lemma 2.2].

For a K-space M, the homotopy colimit of M over K can be modelled by the Bousfield-
Kan homotopy colimit of M over K, which is defined as the realization of the bisimplicial
set

[s] — 11 M (ks) (2.1)

ko4 <k, eNK[s]

(see [BKT72l, XII.§5]). A realization functor is provided by the diagonal functor ([BKT72,
XIL5.2], [Hix03, Theorem 15.11.6)).

Assume that (K, L, Ox) is a small symmetric monoidal category. The symmetric monoidal
structure of X and the cartesian product of S give rise to a closed symmetric monoidal
structure of SX, the Day convolution product of S* (see [Day70al, §3.2], [Day70b, §4]).
For K-spaces M and N, the monoidal product M K N is the left Kan extension of the
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K-levelwise cartesian product along LI: I x K — I,

KxK—-K
MXN\L
SXS /umn
<|
S.
So the K-space M X N is given by
(M X N)(k) = colimy nkM(m) x N(n) (2.2)

where the colimit is taken over the comma category (— U — | k). The monoidal unit
is the K-levelwise discrete K-space UX = K(0Ox, —), and there are natural symmetry
isomorphisms 7py ny: M XN — N X M.

For an object k in the category IC, the evaluation functor Evﬁ : SK — S sends a K-space M
to the space Evi(M) = M (k). This functor possesses a left adjoint F*: S — S, which
maps a space T to the K-space F*(T) = K(k,—) x T. For k and 1 in K, there is a natural
isomorphism

Fe(S) R FN(T) = Hy(S x 1), (2.3)
for each pair S and T in S.

In [SS12, §6] Sagave and Schlichtkrull describe various model structures on K-spaces
associated to a well-structured relative index category (KC,.A). We restrict to the cases in
which A is given by either OK or OK . For the rest of this subsection suppose that I
is a well-structured index category, that the inclusion functor Ky — K is homotopy
right cofinal and that the pair (IC, OK ) is very well-structured. The category of spaces
is equipped with the standard model structure. The latter is cofibrantly generated
with generating cofibrations Is = {0A,, — A,,n > 0}, generating acyclic cofibrations
Js = {Ain = Ap,n > 0,0 <i < n} and weak equivalences those maps which induce
isomorphisms on homotopy groups (see [Hov99l §3, Theorem 3.6.5]).

Definition 2.1. (see [SS12| pp. 2148-2149])

(i) A map f: M — N of K-spaces is a (positive) level equivalence/ (positive) level
fibration if the map f is KC(1)-levelwise a weak equivalence/ fibration of spaces.

(i) A map f: M — N of K-spaces is a (positive) K-cofibration if the map f has the
left lifting property with respect to (positive) level fibrations that are (positive)
level equivalences.

(iii) We define the set 150" by 160" = {FF(i),k € OK(),i € Is}, and the

set JU Y by TSP = (FE(j),k € OK 4y, ] € Js).
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Proposition 2.2. ([Hir03, Theorem 11.6.1], [SS12, Proposition 6.7]) The category

of K-spaces carries a cofibrantly generated (positive) projective level model structure

with I‘(;,Lc)level as its set of generating cofibrations and Jét)level as its set of generating

acyclic cofibrations. In this model structure the (positive) level equivalences/ (positive)
level fibrations are the weak equivalences/ fibrations, and the (positive) KC-cofibrations are
the cofibrations.

Remark 2.3. The (positive) K-cofibrations are characterized in [SS12, Proposition 6.8].
The (positive) projective level model structure on S* is an S-model structure ([Hov99,
Definition 4.2.18], [SS12], Proposition 6.10]) and proper [Hir03, Theorem 13.1.14].

Definition 2.4. (see [SS12| Definition 6.14, p. 2152])

(i) Amap f: M — N of K-spaces is a K-equivalence if the induced map of homotopy
colimits hocolimg f: hocolimx M — hocolimx N is a weak equivalence of spaces.

(ii) A map f: M — N of K-spaces is a (positive) K-fibration if the map f is a (positive)
level fibration and for every morphism a: k — 1in (), the induced square

M) 2

£k s
M) Ny
is homotopy cartesian in spaces.
For a K-space M and k in K, there is a map of bisimplicial sets
constpop M (k) — ([s] — H M (ks))
kot <k, eNK[s]

which in simplicial degree [s] is given by the inclusion, that is, the space M (k) is sent by
the identity to the summand M (k) indexed by

k& L kenNK]s).
Applying the diagonal functor induces a map of spaces M (k) — hocolimx M. The square

M (k) — hocolimx M
1 ! (2.4)
{k} — BK

is a pullback square (see proof of [GJ09, Lemma IV.5.7]).

We say that a K-space M is homotopy constant with respect to morphisms in K¢y if
for every morphism a: k — 1in (4, the induced map M («a): M (k) — M(1) is a weak
equivalence of spaces. (Positive) K-fibrant IC-spaces are in particular homotopy constant
with respect to morphisms in (. The following proposition is a useful tool to determine
the homotopy type of (positive) K-fibrant IC-spaces.
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Proposition 2.5. Let M be a K-space that is homotopy constant with respect to mor-
phisms in K. The pullback square (2.4) is homotopy cartesian for every object k

Proof. First, we assume that the K-space M is homotopy constant with respect to
morphisms in . An application of [GJ09, Lemma IV.5.7] yields the claim. Let M be
then homotopy constant with respect to morphisms in ;. Again, the result [GJ09L
Lemma IV.5.7] implies that the pullback square

M (k) — hocolimg M

I I

is homotopy cartesian for every object k in Ky. As the inclusion functor X, —
KC is homotopy right cofinal by assumption, the induced maps of homotopy colimits
hocolimyx, M — hocolimx M and hocolim, consti, * — hocolimgconsti* are weak
equivalences by [Hir03, Theorem 19.6.7.(1)]. So we can conclude that the pullback
square is homotopy cartesian. O

Remark 2.6. Let M be a K-space that is homotopy constant with respect to morphisms
in K4y, and let k be in K(;). We write z for the point {k}. The homotopy cartesian
square (2.4)), which is a homotopy fibre square, induces a long exact sequence of homotopy
groups

. — m3(BK, z) = ma(M(k), z) — ma(hocolim M, z) — ma(BK, z) — 71 (M (k), z)
— 71 (hocolimg M, z) — w1 (BK, z) — mo(M (k)) — 7o (hocolimc M) — mo(BK).

If the category K is Z, the classifying space BZ is contractible. Consequently, the natural
map M (k) — hocolimz M is a weak equivalence. As another example, assume that the
category K is J. From Proposition - we know that the classifying space BJ is weakly
equivalent to Z x RP* and that hence the homotopy groups of the space BJ are given
by

Z, 1=0,
m(BJ,2) 2 m(Z x RP®, %) 2 {Z/27Z, 1=1,
0, 1>2

(see Remark |1.26). Therefore, we find that m;(M(ki,ko),z) = m(hocolim 7M, z) for
1 >2.

Moreover, let : k — 1 be a morphism in (). The induced map a*: Fl(x) — FF (%),
defined by precomposition with the map «, is a K-equivalence [SS12, Lemma 6.15]. We
factor the map o through the mapping cylinder Cyl(a*) into a (positive) IC-cofibration ju»
followed by a homotopy equivalence rqx,

a*

T

FE(x) »22 Cyl(ar) —2 FR(x). (2.5)
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Let J) be the set of morphisms of the form jq«i where O stands for the pushout
product and ¢ is an element in Is. We specify the set J ‘(Sz) =J ‘(S;)level uJ (see [SS12|
p. 2152]).

Proposition 2.7. [SS12, Proposition 6.16] The category of K-spaces has a cofibrantly

level
Iéjc) eve

generated (positive) projective K-model structure with as its set of generating

cofibrations and Jét) as its set of generating acyclic cofibrations. In this model structure

the KC-equivalences are the weak equivalences, the (positive) K-fibrations are the fibrations
and the (positive) K-cofibrations are the cofibrations.

Remark 2.8. The (positive) projective K-model structure on S* is an S-model structure
[SS12| Proposition 6.19] and proper [SS12, Corollary 11.10.(i)].

Furthermore, Sagave and Schlichtkrull explain how to right induce model structures
on K-spaces to model structures on structured KC-spaces (see [SS12l §9]). Let D be an
operad in spaces. We say that the operad D is Y-free if the action of the symmetric
group ¥, on the space D(n) is free for all n > 0 [SS12, Definition 9.1]. For example, an
E, operad in spaces is a X-free operad which is contractible in all levels n > 0. The
commutativity operad C in spaces, specified by C(n) = * for all levels n > 0, is not X-free.
To the operad D we can associate a monad D by defining

D(M) = [ D(n) xx, M™"
n>0

Here M™ indicates the monoidal unit U* (see [SS12, p. 2161]). We write DSX for the
category of D-algebras in K-spaces. The category DSX is bicomplete, and the forgetful
functor from DS® to S* preserves limits and filtered colimits [SS12, Lemma 9.2]. Sagave
and Schlichtkrull point out that in order to right induce model structures on S* to model
structures on DS, the action of the symmetric group %, on the K-space D(n) x M®"
has to be sufficiently free for n > 0. This condition can be fulfilled by assuming that the
operad D is Y-free or by exploiting that the pair (K, OK;) is very well-structured (see
[SS12, p. 2162)).

Proposition 2.9. [SS712, Proposition 9.3/

(i) Suppose that the operad D is X-free. The projective K-model structure on S* lifts
to a right-induced model structure on DS®. This (right-induced) projective KC-model
structure on DS® is cofibrantly generated with D(I};,‘C’el) as its set of generating
cofibrations and D(Jgk ) as its set of generating acyclic cofibrations.

(ii) The positive projective K-model structure on S* lifts to a right-induced model
structure on DS*. This (right-induced) positive projective K-model structure
on DSK is cofibrantly generated with D(Ig,éevel) as its set of generating cofibrations
and ]D)(J;,C) as its set of generating acyclic cofibrations.

Remark 2.10. We obtain the analogous result for the (positive) projective level model
structure on S* [SS12, Proposition 9.3]. All these right-induced model structures on DS*
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are S-model structures (see [SS12, p. 2163]) and right proper (see [SS12, p. 2170,
Corollary 11.5]). Moreover, the positive projective K-model structure on commutative
K-spaces CS* is proper [SS12, Corollary 11.10.(ii)].

Remark 2.11. Let D be an E, operad. The adjunction

id
D(SK)+ —— DSk,
id
which passes from the positive projective K-model structure to the projective K-model
structure on DSX is a Quillen equivalence by [SS12, Proposition 9.8]. Further, the map e
of operads in spaces from D to the commutativity operad C induces a Quillen equivalence

D(SF)T == csK

where the categories DS® and CS* are endowed with the respective positive projective
K-model structures (see [SS12, §9.11, Proposition 9.12]). We make use of both results in
Section Bl

2.2 Preliminaries on symmetric spectra

In the following we briefly outline some facts about symmetric spectra. We use the
general setting of symmetric spectra as introduced in [Hov01l, §7-§9]. For a summary see
also [RS17, §2].

Let (C,®,1¢) be a bicomplete closed symmetric monoidal category. The category 3 of
finite sets and bijections is a subcategory of the category Z and inherits a strict symmetric
monoidal structure from the latter. A symmetric sequence in the category C is a functor
X: ¥ — C. The category of symmetric sequences is the functor category C* [Hov01,
Definition 7.1]. The category C> inherits a closed symmetric monoidal structure from C.
For X and Y in C¥, the monoidal product X ®Y is given by

(XoY)(n)= [ Znxs,xz, X(0)©Y(q).
p+g=n

The C-enriched hom of X and Y in C* is determined by

Hom§ (X,Y) = [] Homes, (X (n),Y (n)).
n>0

Let L be an object in C. The symmetric sequence Sym(L), specified in the nth level
by L®" equipped with the permutation action, is a commutative monoid in C* (see
[HovO01l, p. 104)).

Definition 2.12. [Hov01l, Definition 7.2] The category of symmetric spectra in the
category C with respect to the object L, denoted by SpE(C , L), is the category of right
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Sym(L)-modules in C*. That is, a symmetric spectrum X is a sequence of ¥,,-objects X (n)
in C together with ¥,-equivariant maps o,1: X(n) ® L — X (n + 1) for all n > 0 such
that the composites

On,p

on,1®id; @p—1
—_

X(n) ® L®P X(n+1)® L&t X(n+p)

are Y, x Yp-equivariant for all n,p > 0. Morphisms in Sp™ (C, L) are morphisms of
symmetric sequences that are compatible with the right Sym(L)-module structure.

For m > 0, the evaluation functor Ev,,: Sp¥(C, L) — C takes a symmetric spectrum X
to its mth level X(m) in C. This functor has a left adjoint F},: C — Sp>(C, L) such
that F,,(T)(n) is the initial object in C if n < m — 1, and

Fn(T)(n) =y xx,,_,, T® L™
if n > m [Hov01l Definition 7.3]. Note that Fy(1¢) = Sym(L) (see [Hov01l p. 105]).

The category Sp™(C, L) is a closed symmetric monoidal category (Sp™(C, L), A, Sym(L)),
which is enriched, tensored and cotensored over the category C. For X and Y in
Sp>(C, L), the smash product A of X and Y is the symmetric spectrum X A'Y defined
as the coequalizer of

XoSymL) oY =% XY,

Here one map is induced by the right action of Sym(L) on X, and the other map is given

by first applying the twist map in the symmetric monoidal structure on C* and then

employing the right action of Sym(L) on Y (see [HovO01, p. 105]). We write C(Sp™(C, L))

for the category of commutative monoids in (Sp*(C, L), A, Sym(L)). The C-enriched hom
>

of X and Y in Sp¥(C, L) is the object Hom(sjp €D (X,Y) in C, described by the equalizer

of

Hom$™ (X,Y) = Hom& (X ® Sym(L),Y)

where one morphism executes the right action of Sym(L) on X and the other morphism im-
plements the right action of Sym(L) on Y. For X in Sp™(C, L) and T in C, the tensor of X
over T', denoted by X AT, is specified by X A Fy(T'), which in spectrum degree n is given by
(XAFo(T))(n) = X(n)®T. The cotensor of X over T'is defined by Homg = ¢ ) (Fo(T), X)
that in spectrum degree n is given by Homg = ¢ 1) (Fo(T), X)(n) = Home (T, X (n)) (see
[Hov01l, p. 105]).

If the category C is left proper and cellular, and the object L is cofibrant in C, then the
category Sp” (C, L) has a projective level model structure. In this model structure the
weak equivalences/ fibrations are levelwise weak equivalences/ fibrations in C, and the
cofibrations are determined by the left lifting property with respect to the class of acyclic
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fibrations [Hov0l, Theorem 8.2]. The projective level model structure on Sp*(C, L) has a
left Bousfield localization with respect to the set of maps

acof

{Fri1 (AT @ L) 22— F (A, n > 0,Aec {V,IW:V =W e Ip}}. (2.6)

Here (—)°f denotes a cofibrant replacement in C, the object A runs through the domains
and codomains of the generating cofibrations I¢ of C, and the map g‘;?mf is the adjoint of
the map

A QL = F(AD(n+1) =241 x AT L

corresponding to the identity element of 3, ;1. The localized model structure is called
the projective stable model structure [Hov01l, Definition 8.7].

Proposition 2.13. [Hov01, Theorem 8.11] The projective stable model structure makes
SpE(C, L) into a symmetric monoidal model category.

There are positive versions of both model structures which are necessary to right induce
the respective model structures on C(Sp*(C, L)). In the positive projective level model
structure on Sp™(C, L) the weak equivalences, fibrations are levelwise weak equivalences/
fibrations in C for positive levels, and the cofibrations are again specified by the left
lifting property with respect to the class of acyclic fibrations. The positive cofibrations
are precisely those cofibrations in the projective level model structure on SpE(C,L)
which are isomorphisms in spectrum level zero (see [RS17, p. 2018|, compare [MMSSO01],
Theorem 14.1]). We adapt the localizing set by taking only positive n into account,
and form the left Bousfield localization of the positive projective level model structure to
obtain the positive projective stable model structure on SpZ(C , L). We refer to [HSS00],
[MMSS01], [Shi04], [Shi07], [RS17] and [PS18] in the case that C is the category of pointed
simplicial sets, simplicial k-modules or (non-negative) chain complexes.

2.3 Commutative Hk-algebra spectra are Quillen equivalent to ., dgas

In this subsection we give a short review of the chain of Quillen equivalences connecting
commutative H k-algebra spectra with E, differential graded k-algebras. For more details
see [Shi07] and [RS17].

In [SS03b] Schwede and Shipley prove the following theorem.

Theorem 2.14. [SS03b, Theorem 5.1.6] There is a chain of Quillen equivalences con-
necting Hk-modules in SpE(S*, S1) to unbounded chain complezes.

In [Shi07] Shipley shows a structured version of this result.

Theorem 2.15. [Shi07, Theorem 1.1] There is a chain of Quillen equivalences relating
HEk-algebra spectra to unbounded differential graded k-algebras.
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To prove this, Shipley establishes the following chain of Quillen equivalences ([2.7))
between Hk-modules Hk-mod and unbounded chain complexes Ch(k), which is different
to Schwede and Shipley’s chain of Quillen equivalences in [SS03b, §B.1],

k(=) A iy Sym(k(S")) - L
Hk-mod - Sp™(s(k-mod), k(S1)) =—= Sp=(ch(k),S'(k))
d*oN

Fy
Ch(k) ————— Sp*(Ch(k),S'(k))

(see [Shi07, p. 357, Proposition 2.10, Proposition 4.9]). The category of Hk-modules
in SpE(S*,Sl) carries the right-induced projective stable model structure, created
by the forgetful functor to the projective stable model structure on Sp>(S,, S') (see
[SS00, Theorem 4.1.(2)]). The categories Sp™(s(k-mod), k(S')), Sp*(ch(k),S'(k)) and
Sp>(Ch(k),S'(k)) are equipped with the respective projective stable model structures.
The category of unbounded chain complexes Ch(k) has the projective model structure
[Hov99, Theorem 2.3.11].

Let k: S, — s(k-mod) be the functor such that k(X)[n] is the free k-module on the
non-basepoint simplices in X [n]. Appl}iing the functor k to each spectrum level of an

HEk-module in Sp*(S,, S') produces a k(Hk)-module in Sp*(s(k-mod), k(S1)). In the
Quillen equivalence (k(—) Ni(HE) Sym(k(S)),U) of (2.7), the functor U denotes the
forgetful functor, and the underlying symmetric spectrum in pointed simplicial sets
of Sym(k(S1)) is Hk (see [Shi07, pp. 357-358, p. 372]).

The subsequent Quillen equivalence (L, ®* o N) in is an extension of the clas-
sical Dold-Kan correspondence between simplicial k-modules and non-negative chain
complexes,

s(k-mod) $ ch(k).

Since the category of symmetric sequences in k-modules (k-mod)* is an abelian category,
applying the normalization functor N levelwise, yields an equivalence of categories

(s(k-mod))* == (ch(k))*

[Ric15, Proposition 4.3]. The normalization functor N is lax symmetric monoidal (see
[Mac63l, Corollary VIIL.8.9]). Hence, there is a map

Sym(S!(k)) % N(Sym(k(S")))

in C(Sp¥(ch(k),S*(k))) which is induced by the shuffle transformation. We obtain a
functor .
®* o N: Sp¥(s(k-mod), k(S')) — Sp*(ch(k),S!(k)),

where ®* is the associated change-of-rings morphism (see [Shi07, p. 358]). But the
functor I is not lax symmetric monoidal because the Alexander-Whitney map is not
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symmetric (see [SS03a), §2.3]). Schwede and Shipley explain in general how to produce a
left adjoint on the categories of monoids and modules when given a Quillen adjunction
between the underlying categories with a lax (symmetric) monoidal structure on the right
adjoint plus some other assumptions (see [SS03al, §3.3]). In this way, the functor ®* o N
possesses a left adjoint denoted by L.

The inclusion functor i: ch(k) — Ch(k) from non-negative chain complexes to unbounded
chain complexes, whose right adjoint Cy is the good truncation functor, induces the
Quillen equivalence (i,Cjp) in . The remaining Quillen equivalence in is given
by the adjoint pair (Fy, Evg).

Moreover, Richter and Shipley extend Shipley’s result [Theorem [2.15] in the follow-
ing sense.

Theorem 2.16. [RS17, Corollary 8.3] There is a chain of Quillen equivalences between
commutative Hk-algebra spectra and E differential graded k-algebras.

The following diagram displays Richter and Shipley’s chain of Quillen equivalences

(=) Aj(ay Sym(k(S1)) 5
C(HFk-mod) C(Sp™(s(k-mod), k(S1)))

U
LNT\F)*ON

C(Sp™(Ch(k), S'(k))) C(Sp™(ch(k), 8! (k)))

H (2.8)

Eso(Sp™(Ch(k),S" (k)))** Es(Sp™(Ch(k),S' (k)))*

o |Bvo

EoCh(k)

(see [RS17, Theorem 3.3, Theorem 4.1, Theorem 6.6, Corollary 7.3, Proposition 8.1,
Theorem 8.2]). Here Richter and Shipley fix a cofibrant Eo, operad in chain com-
plexes (see [RS17, p. 2031]). The categories C(Hk-mod), C(Sp™(s(k-mod), k(S"))),
C(Sp*¥(ch(k),S*(k))), C(Sp*(Ch(k),S'(k))) and E..(Sp*(Ch(k),S!(k)))*>* carry the
right-induced positive projective stable model structures so that the forgetful functor to
the positive projective stable model structures on the respective underlying categories of
symmetric spectra determines the weak equivalences and fibrations [RS17, Theorem 3.1].
The category Eo(Sp™(Ch(k),S'(k)))* is endowed with the right-induced projective stable
model structure (see [Spi0l, Theorem 4.3]), and the category E.Ch(k) has the right-
induced projective model structure created by the forgetful functor to the projective model
structure on Ch(k) (see [Spi0l, Theorem 4.3], [BMO03), Theorem 3.1, Example 3.3.3]).

Note that the functor Ly in is not equal to the functor L in . The functor Ly
is constructed in [Ricl5, Lemma 6.4], again using the general machinery of [SS03al, §3.3].
The map € of operads in chain complexes from the fixed F, operad to the commutativity
operad gives rise to the Quillen equivalence (e, €*) in . The adjacent Quillen equiva-
lence in passes from the right-induced positive projective stable model structure to
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the right-induced projective stable model structure on E..(Sp”(Ch(k),S'(k))).

A guiding example is the commutative Hk-algebra spectrum F'(X;, Hk) (see [Schal
Example 1.3.6, Example 1.3.46],|Ric, §3.2], [RS17, p. 2013]) which under the chain of
Quillen equivalences corresponds to a chain model of the singular cochains on the
space X with coefficients in k (see [RS17, p. 2013]). The Eo, structure on the latter is
parametrized by the Barratt-Eccles operad in chain complexes (see [BF04, §1.1, Theo-
rem 2.1.1]). The homotopy groups of the function spectrum F'(X,, Hk) are isomorphic
to the cohomology groups of the space X with coefficients in k,

m(F(Xy, Hk)) = H (X, k). (2.9)

We employ later the intermediate category C(Sp®(s(k-mod), k(S1))) in (2.8) as well as
the Quillen equivalence

S (s(k-mod), K(S1)) == Sp¥(ch(k), 5 (k)

in (2.7) to develop a notion of pre-log structures on Eo, differential graded k-algebras.

From now on we abbreviate the category k-mod by mod, the category s(k-mod) by smod,
the category ch(k) by ch and the category Ch(k) by Ch. In addition, we denote the
category Sp™(Sx, S1) by Sp~, the category Sp”(s(k-mod), k(S1)) by Sp™(smod), and the
category Sp™(ch(k),S'(k)) by Sp*(ch). Further, to ease notation we write S™ for the
m-sphere chain complex S™ (k) for m € Z.

2.4 Symmetric spectra and J-spaces

Let (C,®,1¢) be a bicomplete closed symmetric monoidal category, and let L be an
object in C.

The category Sp™ can be viewed as diagram spectra with respect to the category
of finite sets and bijections ¥ [MMSS01, Example 4.2]. Recall that the category ¥ is a
subcategory of the category Z. The relation of the latter category and the category Sp*
is discussed in [SS12, §3.16], [Sch09, §3.1] and [Schal I.§3.4]. Exploiting this, Sagave
and Schlichtkrull define a strong symmetric monoidal functor F_(S~): J°° — Sp™~
which sends (mj, mg) to F,, (5™2) [SS12, Lemma 4.22]. Generalizing this definition, we
can replace the category Sp™ by the category Sp™ (C, L), so that we obtain the functor
F_(L®7): J°% — Sp™(C, L) that takes (mjp,my) to Fp, (L®™2). As an example, we
investigate the functor F_(S™): J° — Sp¥(ch) and explain that the latter does factor
through the projection J°° — J°P. For the functor F_(S™): J°P — Sp>, this is false.
The reason for this is that while the action of the symmetric group ¥,, on the pointed
simplicial set Sym(S!)(n) = S™ permutes coordinates, the action of ¥,, on the chain
complex Sym(S!)(n) = S" is only the sign action.

We begin with considering in the generalized setting the morphisms introduced by
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Sagave and Schlichtkrull in [SS12| §3.16]. In the example where C is the category of chain
complexes and L is the one-sphere chain complex S', we point out that these morphisms are
compatible with the equivalence relation imposed on the morphisms sets of the category Z
(see Subsection . Afterwards, we specify the functor F_(L®7): J°° — Sp™(C, L) and
the induced functor F_(S™): J°° — Sp*¥(ch) and show that they are strong symmetric
monoidal. With the help of the functor F_(S™): J°° — Sp™(ch), we build the Quillen
adjunction (A7, Q7) between the model categories CSY and C(Sp*¥(smod)), on which
our definition of pre-log structures on F., differential graded k-algebras is based.

For a finite set Z, we use the notation L®Z for the |Z|-fold monoidal product of the
object L in order to keep track of the different copies of L. If Z = (), we follow the
convention that L& = 1.

Lemma 2.17. (i) Let a: m — n be a map in the category Z. The canonical extension
of the map « to a bijection (o, incl): mU(n\im(«)) — n gives rise to an isomorphism

L®m ® L®n\im(a) M} L®n (210)

in C. If o is an element in Z(n,n) = X, this specifies the usual ¥, -action on LE™,
Plugging in the chain complex St for L, the equivalence class of o, which is [a] in
the category I, induces an isomorphism

§m g gnlim(a) L@l en (2.11)
in chain complezes.

(i) For a pair of morphisms a:1 — m and B: m — n in Z, there is a canonical
bijection (B,incl): (m \ im(«)) U (n \ im(5)) — n \ im(B o o). This leads to an
isomorphism

rem\im(a) o pen\im(@) G- 7 on\im(goa) (2.12)

in C. Inserting the chain complex St for L, and passing to the equivalence classes [a]
and [B] in I, we get an induced isomorphism

Sm\im(a) ®Sn\im(6) [(B,incl)]. Sn\im(ﬁoa) (213)
in chain complezes.

(i4i) For morphisms a: m — n and $: p — q in Z, there is a canonical identification of
(nUq)\im(aUpB) with (n\im(«a))U(q\im(B)), and an associated isomorphism is

L®(nuq)\im(au5) ~ L®n\im(a) ® L®q\im(ﬁ) (214)

in C. Plugging in the chain complex S' for L, we obtain for the corresponding
equivalence classes [a] and [B], an isomorphism

s(nta)\im(alp) ~ gn\im(@) o ga\im(5) (2.15)

in chain complezes.
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Proof. (i) For the isomorphism compare [SS12, §3.16 (3.3)]. To see that the
isomorphism is well-defined, let o be equivalent to o/, meaning that there is a o
in A, such that o = coa’. As sgn(o) = 1, the induced map o, : SP\im(@) _, gn\im(a)
is the identity. Hence, we can identify the map («,incl), with (a/,incl),.

(ii) For the isomorphism ([2.12]) compare [SS12l §3.16 (3.4)]. The isomorphism (2.13) is
well-defined, because if « is equivalent to o and 3 is equivalent to 8’, we can iden-
tify SMVM(E) yith Sm\m() | gmm(3) wigh SR and §Am590) witly gu\m(Ho0’)

as in part (i).

(iii) For the isomorphism (2.14) compare [SS12, §3.16 (3.5)]. The same argument as
in part (i) ensures that the isomorphism ([2.15]) is independent of the choice of
representatives of the respective equivalence classes.

O

Let X be an object in Sp*(C,L). For a map o: m — n in Z, there is an induced
structure map o, : X (m) ® LE\™@) 5 X (n) which is determined as follows. We choose
a bijection $:1— n \ im(«) for an object 1 in Z, so that we get a bijection

idmUpB (av,incl)
S —

m U1 mLU (n)\im(a))

This gives rise to the structure map o,

((a,incl)o(idmUp))+

id X (1) @(8x) ™1
_—

X (m) @ Lon\im(e) X(m)® L% 2% X (m +1) X(n),

which does not depend on the choice of the map £. In this way, the standard inclusion
tmmu1: M — m U1 induces the structure map o,,1: X(m) ® L — X(m + 1) and the
automorphisms of m yield the ¥,,-action on X (m). For more details on this viewpoint
of the category Sp™(C, L) compare [SS12, p. 2129] and [Sch09, §3.1].

Let m > 0. Recall the functor Fy,: C — Sp>(C, L) from Subsection Observ-
ing that the morphism set Z(m,n) is isomorphic to %, /%, _,,, we notice that for an
object C in C, the object F;,(C)(n) is isomorphic to [1aez(mun) C @ L&\Im(a) - A mor-
phism : n — p in Z induces the structure map £, : Fy,(C)(n) @ LEP\N™B) 5 B (C)(p).
This sends a (coproduct) summand indexed by the map a: m — n to the summand
indexed by the composite map [ o cr, by using the isomorphism in Lemma (ii),

C @ [&n\im(a) g p@p\im(g) Me@Binc.  ~ o 7 gp\im(Boa)
Moreover, let m, m > 0, and let C and C be objects in C. There is a natural isomorphism

Fn(C) A Fi(C) S5 Frpin(C @ 0) (2.16)
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(see [HovOll, p. 105]). This isomorphism (2.16) can be made explicit by exploiting
an alternative description of the smash product A and the isomorphisms (2.12)) in
Lemma (ii) and (2.14) in Lemma (iii). In general, for a pair of symmetric
spectra X and Y in Sp*~(C, L), the smash product A of X and Y in level n can be written
as

(X AY)(n) = colimg. pug—nX (p) ® Y (q) @ L™

where the colimit is taken over the comma category (— L — | n) (compare [SS12, p. 2130],
[Sch09, p. 710]). Using this, the map (2.16) in level n is given by

colimg: plig—sn( H C @ LEP\mB)) g ( H C® L@q\im(é)) & [,®n\im(a)
BEZ(m,p) BET(in,q)
- H C® Cf ® L®n\im('y)'

~E€Z(mLirn,n)

Here for each object ((p,q),a: plUq — n) in the comma category (— U — | n), the
summand indexed by the maps 8: m — p and 8: m — q is sent to the summand indexed
by the composite map

ml_lrh%pl_lqﬁn

via the following composite of isomorphisms
C® [,@P\im(8) RC® L®q\im(5~) ® 7,&n\im(a)

de®T, @p\im(8) ¢®id | gq\im () o L @n\im(a) 5

s O ® C’ ® L®P\im(5) ® L®Q\im(,8) ® L@n\im(a)

s C® 10 ® L®(pUq)\im(,Bl_I/5’) ® [,®n\im(a)
idc®é®(a’ind)*; CRC® L®n\im(a0(5u5))
where the second isomorphism is induced by the isomorphism ([2.14]) in Lemma (iii).
Under the isomorphism (2.16]), the symmetry isomorphism
~ T - (C ~
Fn(C) A Fp(C) I B (C) A Fop(C)

matches with the map Fy,1s(C ® C) = Fppm(C @ C) which in spectrum degree n
takes a summand indexed by the map a: m L m — n to the summand indexed by the
composite map

-~ X1m,m ~

mlm-——mlm—n
via the isomorphism

Tc,&®id gn\im(a)

C® C ® L®n\im(a) C QC® L®n\im(aoxﬁl7m)

(compare [SS12 p. 2130)).
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Construction 2.18. We define the functor F_(L®7): J°° — Sp™(C,L) that sends
(my, my) to Fp,, (L®™2). A morphism (ag,as,p): (my, my) — (ny,ng) in J induces a
morphism (a1, ag, p)*: F,, (L®"2) — F,,, (L®*™2) which in spectrum degree p,

[T 18" LoP\int) (a1,02,0)"(p), [T o™ Lep\m@)
VeHnP) 5€Z(mi.p)

takes a summand L®"2 @ LOP\m() indexed by the map v: n; — p to the summand
L®M2 @ [®P\Im(y°01) jpdexed by the composite map

a1 Y
m; —n; — p.

The isomorphism L®"2 @ LOP\IM() _y [@m2 @ [@P\im(y0a1) jg gpecified by the following
chain of isomorphisms

(ag 7inC1)*®idL®p\im('y)

L®n2 i ©p\im(7) LOmM2 @ [@ns\im(a2) o 1 @p\im(y)

TidL®m2 ®px®id; @p\im(v)

id; @my ®(7,incl)«

LO®m2 g [ @p\im(yoa1) LEm2 & [@ni\im(a1) o 1 @P\im(y)

Due to the adjunction of F),, to the evaluation functor Ev,,, the morphism (a1, ag, p)*
is adjoint to a morphism L®"2 — F,,, (L®™2)(n;) that is determined by the composite

ag,incl) id; @my Qpx
.<7

[, ®n2 ( LBm2 ) [ ®n2\im(az) L®m2 & [ @ni\im(a)

lincl

HéEI(m1,n1) Lem: ® L®p\im(5)_

Lemma 2.19. The assignment F_(L®7): J°P — Sp>(C, L) is a functor.

Proof. (compare [SSlQ proof of Lemma 4.22]) The above assignment makes use of the

isomorphisms (|2 in Lemma [2.17 - and in Lemma [2.17] - (ii). It holds that
F,(L@’—)(idml,idmmid@) = idle(L®m2) Moreover let

(I1,1p) {o.02,0), (my, my) Bu2.9), (nq,ny)

be a composable pair of morphisms in J. We need to check that
(a1,02,p) 0 (B1,B2,0)" = (Broar,faoaz,¢U(B2opo B )" (2.17)
For this, let p be a spectrum degree. We show that the diagram

I ez py L2 © LoP\m) BB 0@ yp . peme @ pep\inG)

(B1roau,B2002,0U(B20p087 1)) * () J(al )

Heel(ll,p) 8L ® L®p\im(e)
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commutes. The morphism (81, B2, ¢)*(p) sends a summand L®"2 @ LZP\m() indexed by
the map : n; — p to the summand L®™2 @ LEP\Im(1°51) jndexed by the composite map

m15—1>n11>p

via the following chain of isomorphisms

") (B2 7ind)*®idL®p\im(“/)

Lo L®p\im Lom2 5 L®n2\im(,82) ® L®p\im(’y)

TidUng ®¢«R1d | @p\im(y) (2' 18)

id; @my ®(7,incl)«

L®m2 @ [ @p\im(yop1) L®mM2 g [ @mi\im(B1) & 1 OP\im(7)
The morphism (a1, az, p)*(p) then maps the summand L®™2 © L&P\Im(1°51) indexed by
the composite map

m1’8—1>n11>p

to the summand L®"2 g L®P\im(1961001) jndexed by the composite map

lla—1>m16—1>n11>p

via the following chain of isomorphisms

(az ,il’lCl)* ®idL®P\im(’Y°51)

Lem2 i [ ®P\im(y0061) LBk g [®m2\im(a2) o §®P\im(y051)

Tidyglg ®px ®idL®P\im(’YOﬂl)

L®12 ® L®p\im(’yoﬁ10a1) idL®12 ®(yop1,incl)«

LB g [@mi\im(a1) g 7@P\im(yo51)
(2.19)
On the other hand, the morphism (31 o ay,B20az,¢U (Baopo By h))*(p) takes the

summand L®"2 @ LOP\IM() indexed by the map v: n; — p to the summand

L ® [,@P\im(yoB10a1)

indexed by the composite map

lla—1>m16—1>l’lll>p

via the following chain of isomorphisms

() (B2002,inc])Bid | gp\im ()

L®n2 @ [®p\im L®L g [®n2\im(B20a2) o 1 @P\Im(v)

Tidy@lg ®(¢U(ﬁ20p061_1))*®idL®p\im('y)
idL®12 ®(’Y71HC1)*

LB & [®p\im(yofioar) L® g [@ni\im(fioar) g @p\im(7)

(2.20)
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It remains to argue that the chain of isomorphisms (2.18) composed with the chain of
isomorphisms (2.19)), which is

(B2,incl)«®id | gp\im(v)

L®n2 i [©p\im(7) LO®m2 & [@n2\im(B2) o 7 OP\im(y)

TidL®m2 ®¢+®id | gp\im()

7 @my ® L®p\im(’yo,31) id; @my ®(,incl)« [ @m2 ® L®n1\im(61) 2 L®p\im(’y)

(QQ 7inC1)*®idL®P\im('YOBl)

LB g [®ma\im(a2) & 7 ®p\im(y051)

Tidy@l? ®p«®id | @p\im(vo8y)

[® ® L®p\im(7°310a1) id; g1, ®(y0B1,incl)«

LBk g [@mi\im(a1) o [ @P\Im(y0B1)

coincides with the chain of isomorphisms (2.20)). This means we need to verify that the
composite

(idL®12 ® (’yoﬁl, incl)*)o(idL@Q ® Psx Q@ idL®p\im('yoﬂ1))_lo((a2’ incl)* ® idL®p\im(»yo,81))_l

o (idL®m2 & (’7, inCl)*)o(idL®m2 ® P ® idL®p\im(7))_1 ° ((BQa ind)* & idL®p\im(W))_1
(2.21)
is equal to the composite

(idL®12 b2y ('77 inCl)*) o (idL®12 ® (¢ U (ﬁQ opo /Bfl))* & idL@p\im(v))_l

. . 1 (2.22)
o ((B2 0 az,incl)s @ id ep\imq) -
For this, we analyze the following diagram of bijections in Z,

(:82 ’inCI) uidp\im('y)

ny U (p \ im(v)) my U (ng \ im(f2)) U (p \ im(7))

(Bgoaz,incl)uidp\im(w)T idmg UpLidp\ i (+)

Iy U (ng \ im(f2 0 a2)) U (p \ im(7)) my L (ng \ im(B1)) U (p \ im(7))
id12I_I(¢U(,820poﬁfl))uidp\im(ﬂ/)T idm,U(7,incl)

Ip U (0 \ im (B 0 ar)) U (p \ im(7)) my U (p \ im(7 © 1))

(a2 7inC1)|—’idp\im(woﬁl)

I U (mg2 \ im(a2)) U (p \ im(vy 0 1))
id, LipUidp s (o8, )
I U (my \ im(a1)) U (p \ im(y © B1))
idy, (7031 incl)

LU(p\im(yofBoar)).

idy, U(y,incl)

(2.23)
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We claim that composing the top horizontal map with the right vertical map

(idy, U (y 0 Br,incl)) o (idy, U p U idp\im(yopr)) " © (a2, incl) Uidpyim(yop))
O

o (idm, U (7, incl)) © (idmy U ¢ L idpyim(y)) ™" © (B2, inel) U idpyim(y)) ™"

agrees with composing the left vertical map with the bottom diagonal map

(idy, U (7y,incl))o(idy, U (¢ U (ﬁgopoﬁl_l)) L idp\im(,},))flo((ﬁzoaz incl) U idp\im(w))fl.

To show this, we insert commutative diagrams in the diagram (2.23)). For lack of space
we use the following abbreviations

A=130(p\ im())
B =y U (my\ im(82)) U (p\ im())
C = my U (my \ im(81)) U (p \ im())
D =m0 (p\ im0 By)
1, U (m3 \ im(a2)) U (p \ im(y 0 1))
=L U (my \im(ay)) U (p \ im(y o 51))
—12u< \im(y 0 By 0 ar))
=1 U (ng \ im(B2 0 a2)) U
I=1U(n; \im(Bioay))UL
=l U (mg \ im(a2)) U (
=l U (mg \ im(a2)) U (
=1 U(m; \ im(ay)) U (

np

\ im(Bs)) U
n; \ im(61)) U (p \ im(y))
\ im($1)) U

a = (B2,incl) Uidp\im(y)
b= idmy U ¢ U idp\jm (o)
¢ = idm, U (7, incl)

d = (g, incl) Uidp\im(yos;)
e = idy, U p Uidp\im(yop:)

f=1idy, U (v o B,incl)

g = (B2 0 ag,incl) Uidp\im(y)

h=idy, U(¢U(BzopoBi)) Uidpime)
i =idy, U (v, incl)

J = (az,incl) Uidp,\im(gs) U idp\im(q)

q = idy, Uidmy\im(az) U @ U idp\im(y)
r=idy, U pUidy\im(s;) U idp\im(y)

s =1dy, U p U ¢ Uidp\im(y)
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t= (CMQ, incl) U idnl\im(ﬁl) U idp\im(fy)
u = idy, U idmg\im(ag) U (v, incl)
v =idy, U idml\im(al) L (v, incl)

w = idy, U (B1, incl) Uidp\jm(y)-

The diagram (2.23)) is then the outer diagram of the following diagram of bijections in Z,

A+* B« -5 D
S T
H J+l1 K-“, E

ST . (2.24)

I—5a

where the map J — H is induced by the bijection in Lemma (iii). We can read off
that all diagrams being part of the diagram commute. This implies the claim
which in turn yields that the composite ([2.21]) is the same as the composite . Thus,
we can conclude that the equation @ is true. O

Lemma 2.20. The functor F_(S7): J°% — Sp~(ch) factors through the projection
T gon

We refer to the induced functor J°° — Sp*(ch) as F_(S™), too.

Proof. Let (a1, az,p), (o), ab, p'): (my, mg) — (n1,n3) be equivalent morphisms, that
is, there exists a o in A,, such that (a1,a9,p) = (idpn,,0,idy) o (¢, ab, p’). Hence,
for the induced maps, we get that (a1, a9,p)* = (&, ab,p')* o (idn,,0,idg)*. Since
sgn(o) = 1, the induced map (idp,, 0,idg)* is the identity. Therefore, the map [aq, o, p]*
is well-defined. O

Lemma 2.21. The functor F_(L®7): J° — Sp™(C, L) is strong symmetric monoidal.
Proof. (compare [SS12] proof of Lemma 4.22]) There is a morphism

VF_(L®*)

Sym(L) — Fy(1¢)

which is the identity. In addition, the isomorphism (2.16) yields that for (mj,ms)
and (nj,ny) in J°P, there is an isomorphism

)\F,(L®—)
le (L®m2) A Fm (L®n2) ) 2)> Fm1+m (L®m2 ® L®n2) = Fm1+n1 (L®m2+n2)'
(2.25)
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One can check that this isomorphism is natural in ((m;, my), (n1,n2)), so that we
obtain a natural transformation A*~(Z% ) and that the latter together with v~ is
coherently associative, unital and commutative. We unravel commutativity. Let (m;p, ms)
and (nj,ng) be in J°P. We have to show that the diagram

T Fmq (L872), Py (LO72)

Fony (LE™2) A Fy, (L#72) Fyy (LE2) A Fypy (L#M2)
F_(L®) l l)\FJL@’) (2.26)

(mj,mg),(n1,n2) (ny,n3),(mj,my)

Froyiny (L®m2+n2) (Xny,mq:Xny,my,idg)

Fn1+m1 (L®n2+m2)

commutes. We investigate the above diagram (2.26)) in spectrum degree n. For an object
((p,q),a: pUq — n) in the comma category (— L/ — | n), the summand

LM g 1,&P\im(5) ® Lo g L®q\im(5) Q [,®n\im(a) (2.27)

indexed by the maps 8: m; — p and 3: n; — q, is mapped to the summand
I,&m2 ® L®q\im(3) ® ,Om2 ® L®P\im(5) ® L®n\im(aoxq,p) (2,28)

r) ()

by the twist map TFp, (L®m2)7Fn1(L®n2)(n). If we apply the morphism )‘(n1,nz),(m1,m2)

to the summand ([2.28]), we get the summand

[, ®n2lims ® L®n\im(a°Xq,PO(3U5)) (229)

indexed by

nlumI%ql_lpxq—’p>pl_lqi>n.

The other way round, the morphism )\f_ (L27) (n) sends the summand ([2.27) to the

. mi,m3),(n1,nz)
summan
L®1’1’12L|n2 B L®n\im(ao(lBuB)) (230)

indexed by
m; Ling %pl_lqgn.

The morphism (Xn;,m; > Xna,ms-1dg)*(n) takes the summand (2.30]) to the summand

L®n2um2 ® L®n\im(ao(6u5’)oxn1’ml) (231)

indexed by
n; LUm; 4>X“1’m1 mi Lin; Luﬁ plq 2 n.
‘We notice that
aOXQaPO(BI—lB) :CVO(IBI_lﬁ)Oan’ml

so that the summand (2.29)) agrees with the summand (2.31). Hence, the diagram ([2.26)

commutes. O
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Corollary 2.22. The functor F_(S™): J°° — Sp¥(ch) is strong symmetric monoidal.
Proof. This follows from Lemma and Lemma [2.21] O

We recall the Dold-Kan correspondence on the level of symmetric spectra, that is, the
Quillen equivalence
L
Sp™(smod) =——= Sp™(ch)
P*oN

(see [Shi07), Proposition 2.10.(2)], (2.7))).

Definition 2.23. Let Q7 : Sp™(smod) — (smod)j be the functor that sends a symmetric
— = >

spectrum A to the J-simplicial k-module Q7 (A4) = Homfﬁlo((fm()d) (L(F-(87)),A), and a

morphism of symmetric spectra f: A — B to the induced map of J-simplicial k-modules

OmSpE(smod) id
Hom™” (med) (1, (g (§7)), A) 2Momed (L), gy Sp¥(emed) o g-y) )

smod smod

Remark 2.24. Let A be in sz(smod_), and let (my, my) be in J. Using adjunctions,
we can break down the definition of Q7 (A)(m1, my) as follows

07 (A) (my, mg) = Hom®® $"Y (L(F,, (8™)), 4)
= Hom? ™V (L(Fy, (S72)) AR(A(), ). A)
~ Hom modsm“ (L(Fyny (82)), Famoa (K(A ), ). A))
~ Hom (™ (Fn, (S7), 6" 0 N(Fumoa (R(A (), ), A))
= Hom,(S™2, N (Hom,oq(k(A (), ), A(m1))).

This is in simplicial degree [g] isomorphic to the ma-cycles of the chain complex
N(msmod(k(Aq+)7 A(ml))) denoted by Zmz (N(msmod(k(Aq+)7 A(ml))))

In the following we write & for the symmetric monoidal product in simplicial k-modules
which is for M and M in smod in simplicial degree [q] given by (M&M)[q] = M[q]® M|q]
with a diagonal action of face and degeneracy operators.

Example 2.25. A model in C(Sp™(smod)) for the function spectrum F(Xy, Hk)
in C(Hk-mod) is the object Homspz(smod)(Fo(k(X+)),Sym(kz(Sl))) which we denote
by Femod(k(X4 ), Sym(k(Sh))). To see this, we apply the forgetful functor

U: C(Sp*(smod)) — C(Hk-mod)
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t0 Femod(k(X ), Sym(k(S1))). Let n be a spectrum degree. We obtain that

U(Fymoa(k(X+), Sym(k(S))))(n) = U(Hom,peq(k(X+), Sym(k(S))(n)))

(Homyiog! (k(X+)&k(A -y, ), Sym(k(S"))(n)))
(Homyog! (k(X+ A Ay, ), Sym(k(Sh))(n)))
>~ S,(X+ AAy, HE(n))

= Homg, (X+, Hk(n))

= F(X,, HE)(n).

U
U

1

If we apply the functor Q7 to Fsmod( (X+) Sym(le(Sl)) we get that for (mp, my) in 7,
the simplicial k-module Q7 (Fymoa(E(X ), Sym(k(S1))))(my, my) is isomorphic to

Zy (N (Homgoa (K(A (), ), Hom gyoq ((X ), Sym(k(S1)) (m1)))))
2 Zimy (N (Homgmoa(K(A ), A X4), k(S™))))

(see Remark [2.24)).

Lemma 2.26. The functor Q7 Sp>(smod) — (Smod)j possesses a left adjoint functor
Loz (smod)? — Sp*(smod).

Proof. First, we observe that for (my, ms) in 7, a simplicial k-module M and a symmetric
spectrum A, there are isomorphisms
007 (4))

(smod)” (FY M), Q7 (A)) = smod (M, EvY

(my,ms) <m )

— smod(M, Hom®?. 5™V (1(F,, (§72)), A))

smod

=~ Sp*(smod)(Fy(M) A L(Fp, (S™)), A).

Thus, the functor EV( ) © Q7 is right adjoint to the functor Fy(—) A L(F, (S™2)).

Considering this, for (my, my) in J and M in smod, we set

mip,mo

FJ

LQ ( (mp,m2)

(M)) = Fo(M) A L(Fn, (S™)).
Every object X in (smod)j can be written as a coequalizer of
_ J _pJ
@[al,a2,p]gj((m1,m2),(n1,n2)) F(nth)(X(mlamZ)) = @(pl,m)ej F(phpz)(X(Pl,Pz))

where on a summand indexed by [a1, ag, p], one map is determined by the morphism

k(7 ((n1,m2), —))®X (m), my)

idy,(7((ny,ng),—)) @X ([a1,02,0]) - -
k(J((n1,n2),-)) N ]{(j((nl,rIQ),_))®X(nlan2)7
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and the other map is given by the morphism

k(7 ((n1,n2), —))©X (my, my)

k([o,00,p]* Did mi,m — %
([, a2,p]")@1d X (m my) E(J((my,m3), —))®X (mg, my).

As a left adjoint, L7 has to preserve colimits and thus for X in (smod)j , we de-
fine L7 (X) as the coequalizer of

_ _ J
Do az.ple T (m1.ms).(m1.02)) L7 (Finy ng) (X (M1, m2)))
(2.32)

— Ga(pl,Pz)ej Los (F(\IZI,pQ)(X(pla P2))).

We check that the functor L7 is indeed left adjoint to the functor Q7. Let X be
in (smod)”, and let A be in Sp”(smod). Let L,7(X) — A be a map in Sp*(smod). By
definition this is a map from the coequalizer of (2.32)) to A. Exploiting that for (P1,P2)

. — _ J . . . \7 j
in J, the functor L7 o F(phpz) is left adjoint to the functor Ev(pl’m) o QY| the latter

corresponds to morphisms X (p1, p2) — Qj(A) (P1,p2) in smod for (p1,p2) in J, such
that for every morphism (mj, mg) — (n1,nz) in J, the induced square

X(ml, l’n2> e X(I’ll, 1’12)
1 1

QJ(A) (ml, 1’1’12) — QJ(A)(I’ll, 1’12)

commutes. This specifies a morphism X — Q7 (A) in (smod)j . O

In addition, there is a free-forgetful adjunction (k, U) between J-spaces and J-simplicial
k-modules. Composing the latter with the adjunction (L7, Q7), we obtain an adjunction
between SY and Sp”(smod),

_ _ L 7
S7 # (smod)” é Sp™(smod). (2.33)
(94

Recall that in general, given an adjunction

F
C—D
G
between symmetric monoidal categories (C,®,1¢) and (D, ®,1p) with a lax symmetric
monoidal structure (¢¥“,\“) on the right adjoint G, the left adjoint F' inherits a lax

symmetric comonoidal structure (7, \F') as follows. The counit map 7 : F(1¢) — 1p
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is the adjoint of the unit map v%:1¢ — G(1p). For X and Y in C, the natural map
A;Y: F(X®Y)— FX ©® FY is defined as the composite

FOG )
F(XoY) 2O, parx @ GFY) — 25 pQFX © FY) X9, pX o FY

where n denotes the adjunction unit and e the adjunction counit. If on the contrary, the
left adjoint F has a strong symmetric monoidal structure (vf', \f'), this gives rise to a
lax symmetric monoidal structure (v, A%) on the right adjoint G. Explicitly, the unit
map v“: 1¢ — G(1p) is specified by the composite

l/F —1
1e ¢ ar1e) S0 qiap).

For V and W in D, the natural map )\‘G/,W: GV @ GW — G(V ©® W) is determined by
the composite

G(AGv,aw) ™)

GVRGW 18VEY, Gp(GVoGW) ——v) L q(raveFGw) S0 v aw)
(see [SS03al, §3.2]).

Lemma 2.27. The functor Q7 : Sp™(smod) — (smod)j is lax symmetric monoidal.

Proof. To prove the statement, we use that on the one hand the functor
L: Sp*(smod) — Sp™(ch)

is lax symmetric comonoidal because its right adjoint ®* o N is lax symmetric monoidal
(see [Shi07, Proposition 2.10.(2)]), and on the other hand that the functor

F_(S7): J°° — Sp*(ch)

is strong symmetric monoidal by Corollary 2.22] As the functor L is lax symmetric
comonoidal, L comes with a morphism #%: L(Sym(S')) = L(Fy(S°)) — Sym(k(S'))
and natural morphisms /\X,Y- L(XANY) = L(X) AL(Y) for X and Y in Sp*(ch).

The morphism #* induces a map COnStAopk — Homfglogmed)(L(Fo(So)), Sym(k(S1)))
which is adjoint to the required map v : k(UJ) — Qj(Sym(k(Sl))). Let A and B be
in Sp¥(smod), and let (m;, my) and (ny,ny) be in J. We get a natural morphism

QJ(A)(ml, m2)®ﬂj(B)(n1, ng) — Qj(A A B)(m1 Unp, mo L ng)
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via the composition

07 (4)(m1, m2)@0Q7 (B)(ny, ng)
— Hom®™® ™Y (1(F, (™)), A)@Hom™ ™ (L(F, (S)), B)

smod smod
b
— Hom3h "V (L(Fp, (872)) A L(Fy, (8™)), A A B)
HomfrI;EO((ismOd) (~L m n 7id) »
Fmq (8™2),Fpq (S™2) frpr)loésmod) (L(le (SmQ) A Fn1 (Snz)), AN B)
HomS2 (o (L O )
d (m1,ms),(ny,n3) Homi;;igsmod) (L(Fm1+n1 (Sm2+n2 ))7 AN B)

= Qj(A/\ B)(m; Un;, my Liny).

This map gives rise to a natural morphism )\SA?:;: 07 (AR (B) — Q7 (AAB). Since the

map 27 as well as the natural transformation A?” are defined by using the morphisms
making the functor L lax symmetric comonoidal and the functor F_(S™) strong symmetric
monoidal, they are coherently associative, unital and commutative. We spell out unitality.
Let A be in Sp¥(smod). We have to show that the following diagrams commute

27 ®id

KUT)R QT (4) —— TN 0T (Sym(k(S1)) B Q7 (4)

. Qj
left umtori L\sym(k(sl)),A

Q7 (left unitor)

Q7 (A) Q7 (Sym(k(S")) A 4)
_ = idnj(A)IX’VQj 7 7 1.
07 (A) R E(UT) 07 (A) K Q7 (Sym(k(S")))
right unitorl ) l’\%ym(k(sl))

Q7 (right unitor)

Q7 (A) Q7 (A A Sym(k(S1))).

We argue that the second diagram commutes. To prove that the first diagram commutes,
we can proceed analogously. Let (mj, ms) and (n,n) be in J. It suffices to show that
the map

Hom®” 6" (L(F,, (S™2)), A)k(J((0,0), (n,n)))
HomSpE(smod) (L(leJrn (Smg—&-n))’ A)

right unitor
EEEE—
smod
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is equal to the composite

HomJ, ™ (L(Fyn, (872)), A)ER(T ((0,0), (n, m)))

smod

. _ ay Szj
07 (4)(my.mg) &Y (1)

Sp™ (smod)
smod

(L(Fy (S72)), A)&Hom ™ 5oV (L,(F,(5™)), Sym (k(S)))

Hom smod

Qj

2B, o S (med) (™) A A Sym(E(SY)))

smod

Q7 (right unitor)(mUn,malin)

Hom ™Y (L(Fyy n(S7)), A).

smod
Let [a1,az,p]: (0,0) — (n,n) be a morphism in 7. The (right unitor)-morphism sends
amap f: L(Fy,, (S™)) — A to

L([idm; Uart,idmy Uasz,p]*)

L(Fy 1 (S7)) L(Fuy (87™)) L 4. (2.34)

The map ide(A)(mth)@yQJ (n,n) takes f: L(Fy,, (S™)) — A to

Z7L

(L(Fpy (S™)) L A, L(F,(sm)) 22240, 1y (89)) 25 Sym((Sh))),
which is then mapped to

mo+n L(()\f;l(i;;),(n7n))71) m n
L(Fm1+n(S 2 )) L(Fm1(S Q)AFn(S ))

S\L
Fny (S™2),Fn (s")

L(Fn, (™)) A L(Fn(S")) (2.35)

W (py, sm2)) A([n,02,0]7)

L(Fyn, (8™2)) A L(Fp(S"))
vl > ri unitor
NP7 A A Sym(E(S1)) ekt umitor, 4
by the composite Qj(right unitor)(m; U n,my LUn) o Agjsym(lé(sl))' Using that the

morphisms 7% and A\X are counital and that AL is a natural transformation, we see that
the composite (2.34) coincides with the composite (2.35)). O

The free-forgetful adjunction (k,U) in lifts to the level of commutative monoids
as the left adjoint k is strong symmetric monoidal. On the grounds that the functor
Q7 : Sp*(smod) — (smod)Y is lax symmetric monoidal by Lemma it defines
a functor on the level of commutative monoids, Q7 : C(Sp*(smod)) — C((smod)7).
Although the lax symmetric monoidal structure on the functor Q7 gives rise to a lax
symmetric comonoidal structure on the functor L, (see remarks before Lemma ,
these comonoidal structure morphisms are not isomorphisms in general so that the
functor L, 7 is not lax symmetric monoidal. In particular, the functor L, 7 does not pass
to a functor on the monoid categories (see [SS03al p. 303]). Applying the usual machinery
of [SS03al, §3.3], we figure out a left adjoint to the functor Q7: C(Sp¥(smod)) —
C((smod)Y) as follows.
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Lemma 2.28. The functor 07 : C(Sp™(smod)) — C((smod)?) has a left adjoint functor
LG C((smod)?) — C(Sp™(smod)).

Proof. Taking into account that the functor C o L7 : (smod)Y — C (Sp™(smod)) is left
adjoint to the functor Q7 o U: C(Sp*(smod)) — (smod)”, we set

Lo7' (C(M)) = C(Lgz (M)
for M in (smod)?. Every object X in C((smod)?) can be expressed as a coequalizer of
CC(X) —= C(X)

where one map is induced by the structure map £: C(X) — X and the other map is the
multiplication of the monad C applied to X which is p§: CC(X) — C(X). So for X
in C((smod)?), we define L33 (X) as the coequalizer of

C(Lg,7(9)
LYF(CC(X)) Lm?c); LIFH(C(X)). (2.36)
o X

Let X be in C((smod)?), and let A be in C(Sp”(smod)). Let LYFN(X) — A be a

morphism in C(Sp™(smod)). By definition this is a morphism from the coequalizer
of (2.36) to A. Considering that the functor L33" o C is defined as Co L7, that the

functor Qj commutes with the forgetful functor U, and that there are adjoint pairs
(Lg7,97) and (C,U), the latter corresponds to a map X — Q7 (A) in C((smod)?). O

Altogether, we get a commutative diagram of adjunctions

L —

ST —# (smod)j <—%> Sp™(smod)
Q
cllu (2.37)
P
cSsJ <T> C((smod)Y) <T> C(Sp*(smod)).
Q

We continue with showing that the adjunctions in the above diagram (2.37)) are homo-
topically well-behaved.

Lemma 2.29. For every morphism [aq, a9, p]: (m1,my) — (ny,ng) in J, the induced
map [, ag, p]*: Fp, (S™2) — F, (S™2) is a stable equivalence in Sp™(ch).

Proof. We observe that we can write a morphism [, ag, p|: (my, mg) — (ny,ng) in J
as a composition of an isomorphism and a morphism which is the equivalence class of a
morphism where the first and second entry are the standard inclusions. More precisely,
we choose factorizations a1 = &1 0 tm; n, Where &; is in 3, and ag = &2 © Ly n, Where &
is in ¥,,, so that

[alaOZQap] = [§1a£27id(2)] o [Lml,n17Lm2,n2>£51 o pogl]-
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The induced map [£1, &2,1dy)* is a level equivalence in SpE(Ch). Considering the localizing
set (2.6]), we notice that the composition

Fm1+m—m1 (Sm2+n2_m2) = Fm1+n1—m1 (Sm2+n2_m2_1 ® Sl)

Sm2+n27m271

Gy ng—my -1 Sm2+n2—m2—1) —

- le+n17m171(8m2+n2—m2—2 ® Sl)

Fm1+n1*m1*1(

Sm2+n27m272
C'm1~|»'n,177n172

§m2
= Py 11(8™) = Frpy 1 (8™ @ 8) 77 Fpy (S™2)

(2.38)
is a stable equivalence in sz (ch). The above composite is isomorphic to the induced
MAD [tmy.nys bmongs &5 0 po&1]* so that the latter is a stable equivalence in Sp¥(ch), too.
We conclude that the morphism [a1, ag, p]* is a stable equivalence in Sp™(ch). O

Proposition 2.30. (i) The adjunction (L7 ok,U o Qj) is a Quillen adjunction with
respect to the (positive) projective J-model structure on SY and the (positive)
projective stable model structure on sz(smod).

(i) The adjunction (ngn ok,Uo Qj) is a Quillen adjunction with respect to the

positive projective J-model structure on CS7 and the positive projective stable
model structure on C(Sp*(smod)).

Proof. (i) We prove that the functor L,7 o k preserves (positive) cofibrations and
(positive) acyclic cofibrations. According to [Hov99, Lemma 2.1.20], it suffices to
show that the functor L7 o k maps the generating (positive) cofibrations in S7 to
(positive) cofibrations in Sp*(smod) and the generating (positive) acyclic cofibrations

(i): £ (OA) = Fy myy (A1)

© 7 (miy,mp)

to (positive) acyclic cofibrations. Let F/

(my,my) .
be an element in Ié;)level. We find that the map Lq7 o k:(F(*Zm mQ)(i)) can be
identified with the map

Fo(k())NAL (£, sm2))

Fo(k(0A)) N L(Fm, (8™2)) » Fo(k(Ar)) A L(Ep, (S™2)). (2.39)

The map Fy(k(i)) is a cofibration in Sp*(smod), and the object L(F,, (S2)) is
cofibrant in Sp*(smod), because the object F,, (S™2) is cofibrant in Sp>(ch) and L
is a left Quillen functor. Applying the pushout product axiom to the two cofibrations
Fo(k(i)): Fo(k(0A;)) — Fo(k(Ap)) and 0 — L(F),, (S™2)) yields that the map
is a cofibration in Sp¥(smod) (see [Shi07, Proposition 2.9]). Assume that (mj, my)

is in J4. The map L7 o k:(F({nl’mQ)(i)) is isomorphic to the map

Finy (k(8)®idpgma))

Fin, (K(0A)&T(S™)) Finy (k(A)®T(S™))
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which is the zero map constpor0 — constaop0 in spectrum level zero. Hence, the

map L,z o k(F7 )(z)) is a positive cofibration in Sp*(smod).

s (m7,m2
Let F, (i] ) m2)( j) be an element in Jé?level. The pushout product axiom with respect

to the acyclic cofibration Fy(k(j)) and the cofibration 0 — L(F,,,(S™?)) ensures

that the morphism L7 o k(F7

(my mz)(j)) is an acyclic cofibration in Sp™(smod).

If (my,my) is in J,, the morphism Loz o k(F7 (7)) being isomorphic to

(my,my)
Fo, (k(j)@idp(gm)) is the zero map constpop0 — constaop( in spectrum level zero,
and thus a positive acyclic cofibration in Sp™(smod).

Let [aq, a9, p]: (M1, mg) — (n1,n2) be a morphism in j(ﬂ, and let i be a gener-
ating cofibration in spaces so that jia, a, <L is an element in J (). We claim
that the morphism Lg7 0 k(jja, a0, [J1) is an acyclic cofibration in Sp>(smod). As
the functor L7 o k respects tensors and colimits, we obtain that the morphism
Los o k(jlay,a0,0+0i) is isomorphic to (Lg7 © k(jja;,a0,p)+)) k(7). Recall the fac-
torization of the map |1, ag, p]* through the mapping cylinder Cyl([a, ag, p]*)

(see (2.5)),

[o1,02,p]*
7 ][a ,ag,pl* T[U‘ ,ag,p]* 7
F(ﬁl,ng)(*) — Cyl([a1, az, p]*) —2r F(‘Zm,mz)(*)-

From the first part of the proof we deduce that the morphism L, 7 o k(j[a17a27p]*) isa

cofibration in Sp™(smod). The functor L, 7 o k preserves mapping cylinders so that
we get a factorization of the morphism L, 7 o k([az, a2, p]*), being isomorphic to
id 7y (const pop k) A L([@1, a2, p]*), through the respective mapping cylinder (compare
[HSS00, Construction 3.1.7]). The map [y, ag, p|*: Fp, (S™2) — F,, (S™2) is a
stable equivalence by Lemma between cofibrant objects in Sp*(ch). As L is a
left Quillen functor and the object Fy(constaepk) is cofibrant in Sp¥(smod), the map
id 7y (const aop k) A L([@1, a2, p]*) is a stable equivalence (see [Shi07, Proposition 2.9]).
Further, the map Lg7 0 k(7(q; a.,0+) 18 @ stable equivalence (compare [HSS00,
Construction 3.1.7]). By two out of three the map L7 © k(jja, as,0<) is @ stable
equivalence. Moreover, the map k(i) is a cofibration in simplicial k-modules. The
pushout product ariom with respect to the acyclic cofibration L7 o k(j[a17a27p}*)
and the cofibration k(i) implies that the map (Los © k(jja;,a0,0+)) 0k (7) is an
acyclic cofibration in Sp*(smod). If [, g, p] is a morphism in 7, the morphism
(Lo 0 k(jlay,a0,0+))E(7) is the zero map constaor0 — constaer( in spectrum level
zero, and so a positive acyclic cofibration in Sp*(smod).

Since the model structure on CS7 as well as on C(Sp*(smod)) is created by the
respective forgetful functors, the functor U o Q7 : C(Sp™(smod)) — CSY is a right

Quillen functor.
O
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Definition 2.31. We define AJ = ngn ok.

From now on we mostly omit the forgetful functor U in the notation of the functor Uo7 .

2.5 Definition of pre-log structures

We now have the ingredients to define pre-log stuctures on E., differential graded k-
algebras. As a model for the latter, we employ the category C(Sp*(smod)), which
is an intermediate category in the chain of Quillen equivalences between C(H k-mod)
and Fo,Ch (see ) We provide several examples of pre-log cdgas.

Definition 2.32. (compare [SS12, Definition 4.31]) Let A be in _C’(sz(smod)). A pre-log
structure on A is a pair (M, «) consisting of a commutative [J-space M and a map of

commutative J-spaces a: M — QJ (A). If (M, «) is a pre-log structure on A, we call the
triple (A, M, ) a pre-log cdga. A map of pre-log cdgas (f, f°): (4, M, ) — (B, N, B)

is a map f: A — B in C(Sp®(smod)) and a map f*: M — N in CSY such that
QI (Y)Y oa = B o fb. We call the resulting category the category of pre-log cdgas.

Remark 2.33. (compare [RSS15, Definition 4.5 and the corresponding remark]) The
category of pre-log cdgas carries a cofibrantly generated projective model structure, in
which a map (f, f°) is a weak equivalence/ fibration if and only if both the map f and
the map f* are weak equivalences/ fibrations. In this model structure a pre-log cdga
(A, M, ) is cofibrant if the commutative J-space M is positive cofibrant and the adjoint
structure map ad(a): AZ (M) — A is a positive cofibration of commutative symmetric
ring spectra in simplicial k-modules.

Example 2.34. (compare [Sagl4, Example 3.5]) Let M be a commutative J-space. The
adjunction unit of QAJ, U o Q7)) gives rise to the canonical pre-log structure (M, M —
Q7 (AI(M))) on AT (M).

Example 2.35. (compare [Sagl4, Example 3.6]) Let (B, N, 3) be a pre-log cdga, and
let f: A— B be a morphism in C'(Sp*(smod)). The pullback diagram

7 Q7 (£))«(B)

QT (f))«(N) ——=5 Q7 (4
l JQ 7 (f) (2.40)
N 7 07 (B)

induces a pre-log structure ((Q27(f))«(N), (27 (f))«(8)) on A. We call this pre-log
structure the direct image pre-log structure on A with respect to the map f and the
pre-log structure (N, 3). Because of the commutativity of the pullback diagram (2.40),
there is a morphism of pre-log cdgas (A, (27 (f))«(N), (27 (f))«(B)) — (B, N, B).

For a (positive) fibrant object A in Sp™(smod), the following proposition is crucial to
understanding the homotopy type of the J-space U(Q7 (A)).
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Proposition 2.36. Let A be (positive) fibrant in Sp”(smod), and let (my1, my) be in T(+)-
The space U(Q7 (A))(my, my) is weakly equivalent to the space Q™2 (U(A)(m1)).

Proof. We prove that the symmetric spectrum L(F,,, (S™2)) is weakly equivalent to

F,, (k(S™2)). Then we exploit this to show the claim.
The symmetric spectrum L(F,,, (S™?)) is isomorphic to Fy,, (I'(S™2)). Using that

s = §1 = (N (R(81)) "
(see [Shi07), p. 358]), we get a map

- (AN cogly) - . -
T(S™2) 2 D((N(k(S1)#m2) — 2850 DN (R(S1)P™2)) 22 k(5™).
N
E(S1),....k(S1)
is given by the shuffle map (see [Mac63l Corollary VIII.8.9]) which is a chain homo-
topy equivalence. As the functor I' preserves weak equivalences, the induced map

F()\é\z 1), Sl)) is a weak equivalence. Since the left Quillen functor F;,, preserves weak

equivalences between cofibrant objects, the induced map

Here the lax symmetric monoidal structure map of the normalization functor A

F, ) .
L(Fyn, (S™)) & Fyn, (T(S™)) K5 Fony (R(S™)
is a weak equivalence.
The category Sp*(smod) with respect to the (positive) projective stable model structure
is a monoidal model category [Shi07, Proposition 2.9], and an analogon of [Hir(3,
Corollary 9.3.3.(2)] in the case that the enrichment is over simplicial k-modules holds. So

given the weak equivalence F},,, (F(Ag(sl) %(Sl))): L(Fpn, (S™2)) — Fppy ((S™2)) between

(positive) cofibrant objects and a (positive) fibrant object A in Sp¥(smod), the induced
map

Hom ™ (oY (1, (F(5™)), A) — Hom’®, (™ (L(F,, (S™2)), A) (2.41)

smod smod

is a weak equivalence. We apply the forgetful functor U: smod — S, to the simplicial
> ~
k-module Hom®P (¥ (EFn,y (K(S™2)), A),

smod

U (Hom®, ™Y (Fy, (R(S™)), A)) 2 U(Hom ™Y (B, (R(S™ A A),)), A))

smod mod

(
o U(HomsmOd(k(Sm2 A A(*)—F)’A(ml)))

mod

(2.42)
0

Example 2.37. Recall that a pre-log structure on a discrete commutative ring A is a pair
(M, «) consisting of a commutative monoid M and a map « from M to the underlying
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multiplicative commutative monoid of A denoted by (A, -) [Rog09, Definition 2.1]. For
instance, let (x) = {z7,j > 0} be the free commutative monoid on a generator z. There
is a pre-log structure on the polynomial ring k[x] given by the pair (M, &) where the map
¢: (x) — (k[z],-) sends 27 to 1; - 27 (compare [Rog09, Definition 2.12]). The pre-log ring
(k[z], (x) , &) gives rise to a pre-log cdga as follows. Applying the Eilenberg-Mac Lane
functor H to k[z] yields the commutative H k-algebra spectrum H (k[x]). The underlying
multiplicative commutative monoid of zero simplices of the space (H (k[x]))(0) is equal to
(k[z],-). We can view the commutative monoid (z) as a discrete simplicial commutative
monoid. There is a composite map of spaces

(x) 5 (H(K[2]))(0) — U(R(H(kz])) Ag gz Sym(k(51)))(0)
U (HomS?, (™ (Fy(R(S%)), k(H (k2])) Ay Sym(E(SY)))

S ( ) (2.43)
U (Hom?P Y (L(Fo(S°)), E(H (K[x])) Ay gy Sym(k(S1))))
i(s

e e H

smod
U@ (k(H (K[2])) Az Sym(k(S1))))(0,0).

Here the second map is specified by the adjunction unit of the Quillen equivalence
k(=) Nian) Sym(k(S1)),U) (see Subsection . For the third and fourth map see the

proof of Proposition (2.42) and (2.41)), and note the isomorphisms
L(Fy(S)) = Fy(I'(S°)) = Fo(k(S)).

The composite morphism (2.43)) in S is adjoint to a morphism

a: B o (2) = UQ7 (k(H ([2])) Agpzpy Sym(k(S1))))

in CS7 so that we get the pre-log cdga (l;:(H(k[a:]))A,;(Hk) Sym(k(S1)), F(‘g,o)(@)), Q).

Remark 2.38. Let A be (positive) fibrant in Sp™(smod), let (mj, my) be in j(+) and
let | € Z>p. We note that

Tigma—mi (U(A)) = colimu 4 mg —m, +u(U(A) ()
= colimy 4, (Q™2 7™ (U (A)(w))).

Exploiting that U(A) is (positive) fibrant in Sp*(S,, S'), this is isomorphic to

colimy, 74, ("2 (U (A)(my + u))) = colim, 7 (Q"2 (U (A)(mq + u)))
=m0 (U(A)(m))).

By Proposition the latter is isomorphic to m (U (27 (A))(my, my), *).

Example 2.39. (compare [Sagl4, Example 3.4]) Let A be a positive fibrant object in
C(Sp¥(smod)), and let (m;, my) be an object in J,. Let [z] be a homotopy class in
Tmgy—m, (U(A)) represented by a map x: S™2 — U(A)(m1) in Si. The latter corresponds
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to a point in U(Q7 (A))(my, my) (see Remark . By adjunction we obtain a map of
commutative J-spaces a: C(F({m,mQ)(*)) — U(Q7(A)). We set C(z) = C(F(‘Znhmz)(*))
and call the pre-log structure (C(z), ) the free pre-log structure on A. This yields the
pre-log cdga (A, C(x),«). Analogously to [SS13, Example 3.7] we compute that

hocolim 7C'(x) = hocolim 7 H J((mf", m5"), -)/%,
n>0
= H (hocolimjj((mlf’n7 m?”% =)/ En
n>0

= [[ B((mi", m5") | J)/%n.

n>0

Taking into account that m > 1, the space B((m{"™, m5™) | J) carries a free ¥,-action.
Further, since ((mj", m5"),id(mun myn)) is the initial object in the comma category
((my™, m5™) | J), the space B((m{™, m5") | J) is contractible. Thus, the space
1,50 B((m{™, m5™) | J)/%, is weakly equivalent to [[,>q BX,.

2.6 Units, log structures and logification

In this subsection we define units of commutative 7. -spaces and of commutative symmetric
ring spectra in simplicial k-modules. With this notion at hand, we can formulate a
condition for a pre-log cdga to be a log cdga. Moreover, we explain a construction called
logification, which turns a pre-log cdga into a log cdga.

Let (IC,U,0x) be a small symmetric monoidal category. The homotopy colimit functor
hocolimy (see (2.1])) is lax monoidal. For KC-spaces M and N, there is a natural composite

hocolimgeM x hocolimx N = hocolim k 1yexx M (k) x N(1)

(2.44)
— hocolimy e x (M X N)(k U1) — hocolimg (M X N)

where the second map is determined by the universal natural transformation of (I x K)-
diagrams M (k) x N(1) - (M X N)(kU1) and the third map is induced by the monoidal
structure of K (compare [SS13|, p. 641]). So for a commutative K-space M, the space
hocolimyx M is a simplicial monoid with product

hocolimx M x hocolimeM = hocolim e yexxxc M (k) x M(1)

— hocolim i ek xx M (k LU1) — hocolimy M.

As the symmetry isomorphism xy1: kU1 — 10Uk in £ can differ from the identity, the
simplicial monoid hocolimx M is not commutative in general (see [Sagl6), pp. 1209-1210]).
Arguing as in [Sch09, §6.1], one can show that the space hocolim M is an E., space.
In particular, the monoid of connected components m(hocolimx M) is commutative
since the induced morphism M (xik1): M(k U1) = M(1Uk) provides a path between
the products zy and yx of elements x in M (k) and y in M (1). We recall the following
definition from [Sagl6].
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Definition 2.40. [Sagl6| Definition 2.5] Let M be a commutative K-space.
(i) If the commutative monoid mo(hocolimx M) is a group, we say that M is grouplike.

(ii) The units M* of M is the grouplike sub commutative K-space of M with M* (k)
consisting of those path components of M (k) which map to a unit in the commutative
monoid 7y (hocolimg M).

Remark 2.41. Let K be a permutative well-structured index category. Suppose that the
inclusion functor K4 — K is homotopy right cofinal, and that the pair (IC, OK.) is very
well-structured. In Subsection [3.2] we state Sagave and Schlichtkrull’s chain of Quillen
equivalences between commutative KC-spaces and F, spaces over the classifying space B/C
under which a commutative C-space M corresponds to the F., space hocolimg M over BIC.
Exploiting this, we can justify the definition of a grouplike commutative K-space (see the
beginning of Subsection .

The inclusion of the units M* — M realizes the inclusion (m(hocolimxM))* —
mo(hocolimx M) (see [Sagl6l p. 1210]).

Furthermore, Remark motivates the following definition.

Definition 2.42. (compare [SS12, Definition 4.25]) Let A be a positive fibrant object
in _C’(sz(smod)). The units of A, denoted by GL{ (A), is the commutative J-space
(Q7(A)".

Remark 2.43. (compare [SS12, p. 2137], [Sagldl p. 460]) Let A be positive fibrant in
C(Sp*¥(smod)). The inclusion of the units i4: GL{({l) — Q7(A) is an inclusion of path

components and hence a positive J-fibration in CSY.

Definition 2.44. (compare [SS12| Definition 4.33]) Let A be a positive fibrant object in
C(Sp™(smod)), and let (M, a) be a pre-log structure on A. We consider the pullback
diagram

a (GL{ (4)) —— GL{ (4)

l [ia (2.45)

M —2 5 QI(A).

If the base change map ofl(GL‘; (4)) — GL‘F (A) in (2.45)) is a weak equivalence, the
pair (M, ) is a log structure on A. We then call the triple (A4, M, «) a log cdga.

As the positive projective J-model structure on commutative J-spaces is right proper
(see Remark , the above condition for a pre-log cdga to be a log cdga is homotopy
invariant.

Example 2.45. (compare [SS12, p. 2142]) The inclusion of the units i4: GL‘lj(A) —

Q7 (A) induces the trivial log cdga (A, GL{ (A),ia).
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Example 2.46. (compare [Sagld, Example 3.9]) Let (B, N, 3) be a log cdga, and let
f: A — B be a morphism between positive fibrant objects in C(Sp”(smod)). Assume
that either the morphism 3 is a positive J-fibration or that the morphism f is a positive
fibration. Without loss of generality suppose that the former holds. We consider the
commutative cube

2
—
=4
=
T
N
Q
=
~q
=
Hw

Q7 (£))«(8)

)
,_S\
S e
2

/\ «7 H%\
/\w
&

\

N

The front, top and bottom square are pullback squares so that the back square is a
pullback square, too. Thus, the commutative J-space (GL{(f))*(B_l(GL‘lj(B))) is
isomorphic to the pullback ((27(f))«(3))~ (GLj(A)). Due to (B, N, ) being a log cdga,
the base change map g~ (GLJ (B)) — GLJ (B) is a J-equivalence. Therefore, the base
change map ((Qj(f)z*(ﬁ)) L(GLY (A)) — GL{(A) is a J-equivalence so that the triple
(A, (Q7(£))«(N), (27 (£))«(8)) is a log cdga, and

(A, (7 ())(N), (27 (£)«(B)) = (B, N, )
is a morphism of log cdgas.
The following construction associates a log cdga to a pre-log cdga.

Construction 2.47. (compare [RSS15, Construction 4.22], [Sagl4, Construction 3.11])
Let (A, M, a) be a pre-log cdga where A is positive fibrant. We factor the base change

map a_l_(GL‘lj(A)) — GLY (A) in (2.45) into a positive cofibration followed by a positive
acyclic J-fibration,

) A

a~Y(GLY (4)) —— G —=» GLY (A).

We define the commutative J-space M® by the pushout square

J J (2.46)
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Since the p081tlve projective J-model structure on 087 is left proper (see Remark [2 ,
the square is actually a homotopy pushout square. The maps a: M — Q7 (A) and

G —» GLY(4) —“» Q7 (A)
give rise to a map &: M — 07 (A) by the universal property of the pushout. Let

ad(@): A (M®) — A be the adjoint map in C(Sp*¥(smod)). We factor the map

_ idaA

AN () AT (M9

Aj(M)ad(&)

ANyson A= A,

into a positive cofibration followed by a positive acyclic fibration in C(Sp*(smod)),

TN

ANz n AT (M) —1s A0 =5 4,

Let the map a%: M* — Qj(A“) in CS7 be the adjoint of the map

AT (M) —L— AN 500 AT (M®) s A

(M)

in C(Sp*(smod)) where the map g is the cobase change map. The diagram

AT (M) LA N AT (M®)

] i~
Ay A/\AJ(M)A (M%) —— A“,

\—/

f

where the map h is the cobase change map and the map f is defined by composition,
commutes. Hence, we obtain a map of pre-log cdgas (f, f°): (A, M,a) — (A%, M*, a%).
If the pre-log cdga (A, M, «) is cofibrant, then so is (A%, M®, a%).

Lemma 2.48. Let (A, M, «) be a pre-log cdga where A is positive fibrant. The pre-log
cdga (A% M* a%) is a log cdga. If the pre-log cdga (A, M,«a) is a log cdga, the map
(f, V) (A, M, o) = (A%, M?, %) is a weak equivalence.

We call the map (f, f°): (A, M,a) — (A% M?, a%) the logification of (A, M, a).

—

Proof. The proof is analogous to theﬁro\of of [Sagld, Lemma 3.12]. Let GLY (A)

be the sub j:space of Qj(A) with GL{(A)(ml,mg) consisting of those path com-
ponents of Q7 (A)(m;, my) which do not map to a unit in the commutative monoid

wo(hocolimjﬂj(A)). In other words, GL{(A) denotes the complement of GL{(A)
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in Q7 (A). Further, let M = M 11 M be the decomposition of the underlying J-space
of M into the part M = M X0 () GL{(A) which maps to the units and the part

—
—

M =M X474 GL‘F (A) which maps to the nonunits. There are isomorphisms

M= MY, g ) ©

=MR;G

= (MIIM) &M G

~ GI(M R G).
Note that G maps to the units because the map G — GL‘li (A) is a positive acyclic
J-fibration, and that M X 77 G maps to the nonunits. Therefore, we get that

(a®)"HGL{ (A%) = M® x5
=G

(40) GL{ (A7)

which is J-equivalent to GL‘lj (A%). We conclude that the triple (A%, M, %) is a log cdga.

Suppose that the triple (4, M, «) is a log cdga. Since the map ofl(GL‘lj(A)) - G
is then a positive acyclic cofibration, the cobase change map f°: M — M is a positive
acyclic cofibration. This together with the map f: A — A% being a stable equivalence,
yields that the map (f, f°): (A, M, ) — (A% M?, a%) is a weak equivalence. O

2.7 An approach via diagram chain complexes

We begin with collecting a few results about diagram chain complexes. We present the
idea of an approach to define pre-log structures on E, dgas via diagram chain complexes
and explain the reasons why we have refrained from this. In connection to this, we
provide a homotopy colimit formula for diagram chain complexes, and argue that diagram
chain complexes do not have to admit a model structure in which the fibrant objects are
precisely the objects that are homologically constant and the homotopy colimit functor
detects the weak equivalences.

Let (K,U,0x) be a small symmetric monoidal category. A K-chain complex is a functor
X: K — Ch. The category of K-chain complexes is the functor category Ch*. The
symmetric monoidal structures of X and Ch give rise to the Day convolution product of
Ch* (see [Day70al, §3.2], [Day70b} §4], compare Subsection . For an object k in the
category IC, the evaluation functor Evf: Ch* — Ch sends a K-chain complex X to the
chain complex Evj(X) = X (k). Tts left adjoint F{*: Ch — Ch* takes a chain complex T
to the K-chain complex FN(T) = S°(k(K(k,—))) @ T.

Recall that the category of chain complexes has a projective model structure [Hov99,
Definition 2.3.3] that is cofibrantly generated with Icy, = {i;: S' — D!*1 1 € Z} as its
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set of generating cofibrations, Jo, = {0 — D!, 1 € Z} as its set of generating acyclic
cofibrations and homology isomorphisms as its weak equivalences [Hov99, Theorem 2.3.11].
The category of K-chain complexes then carries a cofibrantly generated projective level

model structure with Igﬁ’,%l = {Fr(i),k € K,i € Icy} as its set of generating cofibrations
and Jg}}‘l’,%l = {Fl’(C (), k € K,j € Jen} as its set of generating acyclic cofibrations. In this

model structure a map is a weak equivalence/ fibration if it is so K-levelwise in chain com-
plexes. The cofibrations are determined by the left lifting property with respect to acyclic
fibrations [Hir03, Theorem 11.6.1]. A cofibration in the projective level model structure
is KC-levelwise a cofibration in chain complexes [Hir03, Proposition 11.6.3]. In particular,
this is K-levelwise in every chain degree a monomorphism, that is, this is K-levelwise
a cofibration in the injective model structure on chain complexes [Hov99, Theorem 2.3.13].

A model for the homotopy colimit on diagram chain complexes is provided by an
algebraic analogon of the Bousfield-Kan homotopy colimit on diagram spaces (see [BK72,
XII. §5], ) It is the composition of a simplicial replacement functor and a suitable
substitute for the diagonal functor. We explain these functors and show that their
composition defines a model for the homotopy colimit functor.

Definition 2.49. (see [Joalll, Definition 4.3], [RG14) Definition 2.5]) For a K-chain
complex X, we define the simplicial replacement of X as the simplicial chain complex sr(X)
which in simplicial degree [p] is given by

st(X)[p] = o, X(kp).
Kot 2k, eN'K[p]

The face maps d;: sr(X)[p] — sr(X)[p — 1] for 0 < ¢ < p, are specified as follows. A
summand X (k,) indexed by

is mapped by
e the identity to X (k,) indexed by

e
ki <2 ... 2k,
for i =0,

e the identity to X (k,) indexed by

Qi—1

ko(ﬂ...(—kz;l

Q0041

Q42 Qp
ki+1 e kp

for1 <i<p-—1,
e X(ayp) to X(kp—1) indexed by
ko & &k,

for ¢ = p.
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The degeneracy maps s;: sr(X)[p] — sr(X)[p+ 1] for 0 < j < p, send a summand X (k)
indexed by

by the identity to X (k) indexed by

ko <& Mk Sk, & B
This definition is functorial. We call the functor Ch* — Ch®”" the simplicial replace-
ment functor (sr).

Recall that a double complex Z is a family {Z, 4, (p,q) € Z x Z} of k-modules together
with k-linear horizontal differentials d": Z,, — Z,_1,, and k-linear vertical differentials
d’: Zpq — Zpq-1 such that dtodh =0=d"od’ and d" o d’ = —d’ o d".
The Moore functor C associates to a simplicial chain complex Y a double complex C'Y
concentrated in the first and fourth quadrant. The double complex CY in bidegree
(p, q) is given by CY,, = (Y[p]),- The horizontal differential d": (Y[p]), — (Y[p — 1]),
is defined as d" = Efzo(—l)idi where the d; are the simplicial face maps of Y, and the
vertical differential d”: (Y'[p])q — (Y [p])q—1 is the differential of the chain complex Y[p].
The total complex functor with respect to the direct sum, denoted by Tot®, from double
complexes to chain complexes takes a double complex Z with horizontal differentials d”
and vertical differentials d* to Tot®(Z), which in chain degree [ € Z is defined by
(Tot®(Z))i = @prqet Zpq- The differential d™"(?): (Tot®(2)); — (Tot®(Z));_; is
given by d™*(9(z) = (—1)9d"(z) + d°(z) for every homogencous element z € Zpg-
(Concerning the signs, we follow the convention of Rodriguez Gonzilez (see [RG, pp.
153-154, pp. 157-158|, [RG12, Example (2.4)]).)
The composition of the Moore functor and the total complex functor serves as a substitute
for the diagonal functor in the topological setting. Next we prove that the following
composition of functors

CHE = chd” % ch(Ch) 5 cn (2.47)
defines a model for the homotopy colimit functor. For this, we first show that the functor
Tot® o C o sr preserves level equivalences. Secondly, we define a natural transformation
from the functor Tot® o C'osr to the colimit functor colimy, and notice that for a cofibrant
K-chain complex X, the map Tot®(Csr(X)) — colimx X is a homology isomorphism.

Remark 2.50. We could replace the Moore functor C' by the normalization functor N.
The latter takes a simplicial chain complex Y to the double complex CY/DY where DY
is the degenerate sub double chain complex of CY, that is, for horizontal degree p > 0,
the chain complex DY), , is generated by the images of the degeneracies s;, so that

DY,, = E?;ésj(CYp,l,q) (see [Wei94, p. 266)).

Let Z be a double complex. To compute the homology of Tot?(Z) we can use the
spectral sequence {E} (Z),d"} that arises from filtering Tot®(Z) by the columns of Z.
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This spectral sequence starts with qu(Z ) = Zp, and the zeroth differentials d° are
the vertical differentials d" of Z so that E}aq(Z ) = Hj(Zp,). The first differentials
d*: HY(Zpyx) = HY(Zp-1,+) are induced on homology from the horizontal differentials d"
of Z. Since for a K-chain complex X, the double complex Csr(X) is sitting in the first and
fourth quadrant, the spectral sequence E7  (Csr(X)) converges to Hpq(Tot®(Csr(X)))
(see [Wei94, pp. 141-142]).

Proposition 2.51. If f: X — Y is a level equivalence in IC-chain complexes, the induced
map Tot®(Csr(f)) is a homology isomorphism.

Proof. As homology commutes with direct sums, in every simplicial degree [p] the map
st(f)[p]: st(X)[p] — sr(Y)[p] is a homology isomorphism. We consider the spectral
sequences {E7 (Csr(X)),d"} and {E} (Csr(Y)),d"} obtained by filtering Tot®(Csr(X))
by the colums of Csr(X), and Tot®(Csr(Y)) by the colums of Csr(Y) respectively.
Because the induced map

gl . HY (Osx(f)p,e) .
1 (Csr(X)) = HY (Csr(X),.) =" HY(Csr(Y)p.) = b (Csr(Y))

is an isomorphism for all p and ¢, the map

H..(Tot®(Csr(f)))

H.(Tot®(Csr(X))) H.(Tot®(Csr(Y)))

is an isomorphism by [Wei94, Comparison theorem 5.2.12]. O

Let X be a K-chain complex. We define a map

O st(X)[1] = &y X(k1) = st(X)[0] = P X(ko)
KoLk eNK[1] koek
that in chain degree | € Z sends an element z in (X (k;)); where X (k;) is indexed by

a1 ki — ko, to the element z — (X (c1));(z). The map 0; is a chain map because X (o)
is so. The cokernel of 91, denoted by coker(9;), and determined by the pushout diagram

S

o1
KoLk eNK[1] X(k1) — Bipex X (ko)

| k

0 coker(01),

can be identified with colimx X (see [Joalll Remark 4.5]). We specify the required map
from Tot®(Csr(X)) to colime X with the help of coker(d).

Definition 2.52. (see [Joalll Remark 4.5]) Let Wy : Tot®(Csr(X)) — colimx X be the
map that in chain degree [ € Z is given by

@p-i—q:l ®

(¥x)i .
ko(i..Ka—pkpe./\/’]C[p] (X(kp))q — (COthX)l,

{0, p>1,
€T ¢
7I-l(:C)a p:(),
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Lemma 2.53. The map Vx is a chain map.

Proof. Let | € Z. We have to show that the diagram

(Tx)i .
691D+q=l @ko<a—1...<2kpeN1C[p] (X(kp))q ——— (colimg X);
dTotQB(C’sr(X))l JdCOIimICX (2.48)
(Ux)i— .
6Bzo-i-q:l—l D (X (kp))g == (colimg X ); 1

ko .. 2k, eN'K[p]
commutes. Let  be in (X (k,)), where X (k,) is indexed by
ko <L <k,
We need to consider three different cases:

e If p=0and ¢ =, the composite (¥ x);_1 o d™(Cst(X)) gends z to m_1d¥ ko) (z)
which as 7 is a chain map is equal to dX*0)m;(z). The latter is the value of  under
the composite d*°mcX o (W y);.

e If p=1and g =1— 1, the differential dTot®(Csr(X)) maps ¢ to
dTot@(Csr(X))(x) _ (—l)l_l(.%‘ _ (X(al))l—l($)) + dX(kl)(x>_

The map (¥x);_; then takes the latter to m_1((—1)"" (z — (X(a1))i_1(z))) +0
which is zero. Applying (¥ x); to x is zero, too.

o If p>2and g =1— p, the differential dTot®(Osr(X) gends z to
dTOt@(Csr(X))(:L‘) _ (_Dl—pz?zo(_l)idi(x) + dX(kp)(m»)

which is then taken to zero by the map (¥x);_1. If we apply the map (¥ x); to z,
this is also zero.

In all three cases the diagram (2.48) commutes. Therefore, the map Wy is a chain
map. ]

The map Wy is natural in X so that we obtain a natural transformation
U: Tot® o C osr — colimy.

Proposition 2.54. Let X be a cofibrant K-chain complex. The map ¥ x : Tot®(Csr(X)) —
colimx X is a homology isomorphism.

Proof. We start with the case that X is of the form FJ*(L) where L is a cofibrant chain
complex. The double complex Csr(F*(L)) in bidegree (p, q) is given by

Csr(FE(L))pg = D (S°(k(K(k,kp))) ® L)
ko 2k, eN'K[p]

= D Ly.

Ko .. 42k keN (kLK) [p]
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We see that Csr(Fr (L)) = CLIN(k | K)]. As the comma category (k | K) has the
initial object (k,idy), its nerve N (k | K) is contractible. Hence, we deduce that

H,(Tot®(CLIN (k | K)])) & H.(Tot®(CconstaerL)).

The normalization of constaepr L is concentrated in the zeroth column where it is L. Thus,
we obtain that

H.(Tot®(Cconstaop L)) = H,(Tot®(Nconstaon L))
= H.(L).

Moreover, it holds that colimy F{*(L) & L. The map

I

Vpr(r): Tot®(Csr(FX(L))) — colimg FX (L) = L
is induced by projecting Csr(FJ*(L)) onto the zeroth column and in chain degree [ € Z
can be identified with the composite

P, D Ly~ @ Li—L.

PHI=ly O ST keN (kLK) D) ko ke (kiX)

We conclude that the map ¥ FE(L) induces an isomorphism in homology.

For the next step we assume that the map Wy, : Tot®(Csr(Xp)) — colimeXj is a
homology isomorphism, and that X; is the pushout obtained by attaching an element
of Iée}‘l’%l to Xo. The functors Tot®, C' (respectively N), sr and colimx commute with
colimits, so in particular with pushouts. Let F*(i;): FN(S!) — FM(D1) be an element
in Ilce;l’,%l. The map Flic (4;) is K-levelwise a cofibration in the injective model structure on
chain complexes. The induced morphism Tot®(Csr(F}(4;))) is still a cofibration in the

injective model structure on chain complexes. We investigate the diagram

ot® (Csr(FK (i
Tot®(Cse(FE(DI1))) o ) e oor (FE(SY)) —— Tot®(Csr(Xo))

v v
F{f(wml l FEh J\Pxo

limyc (FJ (4
colim FiF (DY) e B @)

colim;gF{{C(Sl) —— colimg Xy.

By assumption the vertical maps are homology isomorphisms. The gluing lemma with
respect to the injective model structure on chain complexes (see [Hir03l, Proposition 13.5.3])
yields that the induced map of pushouts ¥ x, : Tot®(Csr(X;)) — colimg X7 is a homology
isomorphism.

In general, for a cofibrant K-chain complex X the map constx0 — X is a retract of
a transfinite composition of pushouts of elements in Ilceg,%l We can assume that X
is itself a Ig}‘l’,%l-cell complex. So there is an ordinal A and a A-sequence {X,,a < A}
such that Xo = constx0, X = colimy<)X,, and each of the maps X, — X,41 is

the pushout of an element in Ig}‘l’,%l By an inductive argument we find that the map
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Uy, : Tot®(Csr(X,)) — colimg X, is a homology isomorphism. It remains to show that
the map

colima <A Vx,
___%

colimg<)Tot® (Csr(X,,)) colim, < ycolimg X, (2.49)

is a homology isomorphism. For this, we consider the diagram

Tot?(Csr(Xg)) —— Tot?(Csr(X1)) —— Tot?(Csr(X3)) —— ...
WxOl l‘l’xl fPX’Z (2.50)

colimpg Xy ——— > colimg Xy ——— colimg Xog ——— ...

In the above diagram ([2.50)) all objects are cofibrant in the injective model structure on
chain complexes because every object is so. Since X, — Xo41 is a cofibration in K-chain
complexes, the induced maps Tot®(Csr(X,)) — Tot®(Csr(Xay1)) and colimg X, —
colimg X, 41 are cofibrations in the injective model structure on chain complexes. It
then follows from [Hir03 Proposition 15.10.12] that the map colim,\Vx, is a
homology isomorphism. O

We conclude that Tot® o C o sr defines a model for the homotopy colimit functor on
KC-chain complexes.

Remark 2.55. This model for a homotopy colimit functor has been studied by Rodriguez
Gonzélez. She introduces so-called simplicial descent categories (JRGl Definition 2.1.6],
[RG14l Definition 3.5]) and argues that in this framework a model for the homotopy colimit
functor is the composition of a simplicial replacement functor [RG14, Definition 2.5]
and a simple functor, which is part of the datum of a simplicial descent category [RG14l
Theorem 3.1]. The category of chain complexes is a simplicial descent category [RG,
Proposition 5.2.1]. The simple functor is defined by Tot® o C' (see [RG, p. 164]), or
Tot® o N respectively (see [RG, Remark 5.2.3]). In [Joall] Joachimi uses this model for
a homotopy colimit functor on Z-chain complexes. Our argumentation above provides an
independent proof of Rodriguez Gonzalez’ result.

We employ this model in the sequel. We note that we can adjust all arguments made
so far in this Subsection to restrict to K-non-negative chain complexes ch®.

Originally, we thought of using the intermediate category C(Sp>(ch)) in the chain

of Quillen equivalences between C(Hk-mod) and Eo,Ch (see (2.8) to define pre-log
structures in the algebraic setting. There is an adjunction

Y
ch? Q<:>j Sp™(ch) (2.51)

where for A in Sp”(ch), the J-chain complex Q7 (A) is defined by

07 (A) = Hom™ @ (F_(57), A).
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From the latter, we deduce that for ,(mlz my) in J and M in ch, the symmetric spectrum
Sj(anlme)(M)) is specified by Sj_(FJ (M)) = Fo(M) A Fip, (S™2), so that for X
in ch’, the symmetric spectrum S7 (X) is determined by a suitable coequalizer. The

x (my,mj)
functor S$7 has an explicit description, namely for X in ch?, the symmetric spectrum
S7(X) in spectrum degree n is given by

§7(X)(n) = P @, X(n,1). (2.52)
1>0
As a result of the functor F_(S™) being strong symmetric monoidal by Corollary the

functor S7 is strong symmetric monoidal and the functor Q7 is lax symmetric monoidal.
Thus, the adjunction (2.51) lifts to the level of commutative monoids,

C(ch) % C/(Sp=(ch)). (2.53)
Q

Apart from taking the index category J instead of 7, this is analogous to Sagave and
Schlichtkrull’s adjunction (S7, ) between (commutative) J-spaces and (commutative)
symmetric ring spectra in pointed spaces (see [SS12, §4.21]), on which the definition of
pre-log structures in the topological setting is based (see [SS12, Definition 4.31]). The
advantage of this approach is that the left adjoint S7 is easier to understand (see )
and has better properties than the functor A7, for example in contrast to the latter,
the functor S7 is strong symmetric monoidal. Nevertheless, one drawback of working
with this adjunction is that so far, we have not figured out a reasonable model structure
on ch?, beside the projective level model structure [Hir03, Theorem 11.6.1]. We would
aim to specify a model structure on ch? such that the fibrant objects are precisely the
objects that are homologically constant with respect to morphisms in J and such that the
adjunction is a Quillen adjunction where SpE(ch) is equipped with the projective
stable model structure. For this, we proceed as in [Dug01] §5].

Let K be a small category. We consider the left Bousfield localization of the projective
level model structure on ch® [Hir03, Theorem 11.6.1] with respect to the set

S ={F'V) % BE(V),a e Kk, 1),V e {8 D' 1 €21 })

where V' runs through the domains and codomains of the generating cofibrations in the
projective model structure on ch. The left Bousfield localization exists, because ch® is
cofibrantly generated, left proper and locally presentable, as ch is so.

Lemma 2.56. An object X is fibrant in the localized model structure on ch™ if and only
if X is homologically constant with respect to morphisms in K.

Proof. We argue as in the proof of [Dug01, Theorem 5.2.(c)]. A K-chain complex X is
fibrant in the localized model structure if and only if X is S-local, that is, for every
element a*: F/*(V) — F(V) in S, the induced map of homotopy function complexes

b’ (a*id)
e

M (FE(V), X) ™ (F5(V), X) (2.54)
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is a weak equivalence. Using adjointness, the map ([2.54)) is a weak equivalence if and
only if the map of homotopy function complexes

ch(id, X (a))

ch(V, X (k)) ch(V, X (1))

is a weak equivalence. This holds precisely when X is homologically constant by [Dug01}
Proposition A.5]. O

Dugger shows that if the nerve of the indexing category K is contractible, the S-local
equivalences are the maps for which the induced maps of homotopy colimits are homology
isomorphisms [Dug01}, Theorem 5.2.(a)]. The classifying space of the category J is weakly
equivalent to Z x RP* by Proposition so in particular not contractible. However,
we know that the well-structured index category J (see Proposition gives rise to
the projective J-model structure on J-spaces in which the homotopy colimit functor
hocolim 7 detects the weak equivalences (see [SS12, Proposition 6.16], Proposition .
But the following example illustrates that Dugger’s result does not generalize to J-chain
complexes.

Example 2.57. Let k be Z. We define a J-chain complex X by

S°(Q), m1 =ma,
0, mq 7'5 mao.

X(ml,mg) = {

The category Jo is isomorphic to the category 7 i ¥ due to Lemma For a morphism
(o, [a]): (m,*) = (n,*), let the induced map

X ([ev;a0cr,a0(e,incl) ‘n\im(a)])

X(m,m)

X(n,n)

be multiplication by sgn(a). The J-chain complex X is homologically constant, and

hence by Lemma fibrant in the localized model structure on ch?. B B
We compute the chain complex hocolim 7 X. Since the inclusion functor Jy (>2 -y = Jo
is homotopy right cofinal by Lemma [I.T8] the induced map of homotopy colimits

hocohmjo’(ZZ_)X — hocohmjoX i hocohij

is a weak equivalence by [Hir03, Theorem 19.6.7.(1)]. Recall that the category -70,(22,—)
is isomorphic to the product category Z>o x ¥y (see Remark [1.25). Using this, we obtain
that

hOCOhij,(ZQ’_)X = h00011m122X22X
=~ hocolimz, ,hocolimy;, X.

Let m be in Z>9. The double complex Nsr(X(m, m)) is Q in bidegrees (0,0) and (1,0),
and zero otherwise. The only non-trivial (horizontal) differential Q — Q is multi-
plication by 2. Thus, the homology of hocolimy, X (m, m) = Tot®(Nsr(X(m, m)))
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is trivial. Alternatively, a result by Quillen (see [Qui73, p. 91]) yields that the ho-
mology of hocolimy, X (m, m) is isomorphic to the group homology of ¥ with coeffi-
cients in Q where X5 acts on Q by the sign operation, which is trivial. So the chain
complex hocolimy, X (m, m) is quasi-isomorphic to the zero chain complex. As the
functor hocolimz. , preserves level equivalences by Proposition the chain complex
hocolim jo,(>2,_)X is quasi-isomorphic to the zero chain complex.

We conclude that the map X — const 70 is a map between homologically constant J-chain
complexes whose induced map of homotopy colimits is a homology isomorphism. Further,
the map X — const 70 is not a level equivalence. But [Hir03, Proposition 3.3.4.(1)]
and Ken Brown’s lemma imply that a weak equivalence between fibrant objects in the
localized model structure on ch? is a level equivalence. Therefore, the functor hocolim 7

does not detect the weak equivalences in the localized model structure on ch?.

So far, we cannot characterize the S-local equivalences in ch”. Another disadvantage

of employing the adjunction , or respectively, is that morally the category
of (commutative) J-chain complexes does not seem to be an appropriate category to
set up pre-log structures. To understand this, recall the notion of pre-log structures on
discrete commutative rings (see [Rog09, Definition 2.1], Example 2.37). In this sense, the
object Q7 (A) should model the underlying multiplicative commutative monoid of an
object A in C(Sp*(ch)). But J-chain complexes have additive structure. The differentials
are k-linear maps that are responsible for the homotopy theoretical information. We do
not know yet how to get rid of the additive structure on a J-chain complex without
loosing homotopy theory.
Furthermore, we can show an analogon of [SS12, Proposition 4.24], namely that for
an object A in C'(Sp™(ch)), there is an isomorphism of graded commutative k-algebras
H,.(A) = Hy(Q7 (A)). This should motivate a definition of units. But again we face
the above problem. We are uncertain in which category the units should live such that
their definition is homotopy invariant. Besides, hitherto, we have not come up with an
analogon of the restriction of path components like in the topological setting (see [SS12|
p. 2137, Definition 4.25]). For these reasons we have constructed another adjunction
introduced in Subsection to make sense of pre-log structures on F, dgas.
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3 Group completion in commutative diagram spaces

In this section we develop a notion of group completion in commutative diagram spaces
shaped by a permutative well-structured index category K whose classifying space BK is
grouplike. Our approach is model categorical, which has the advantage that it provides
functorial group completions for all objects without further assumptions. We form the
left Bousfield localization of the positive projective K-model structure on commutative
K-spaces with respect to a set of maps that corepresents shear maps. We characterize
this localized model structure and argue that it is indeed a group completion model
structure. Sagave and Schlichtkrull describe group completion in commutative Z-spaces
in [SS13]. We construct a chain of Quillen equivalences between commutative K-spaces
and commutative Z-spaces over a commutative Z-space model of B, and exploit this
to build on Sagave and Schlichtkrull’s work. Having a concept of group completion in
commutative J-spaces at our disposal, we present other examples of pre-log cdgas.

3.1 Useful results about comma categories and left Bousfield localizations

We start with collecting a few general results about the interaction of left Bousfield
localizations with comma categories. The main outcome is that in a sense, left Bousfield
localization commutes with forming a comma category (see Proposition . This is a
crucial ingredient in the upcoming Subsection when specifying a group completion
model structure on commutative diagram spaces.

For background on left Bousfield localizations we refer to [Hir03]. Recall that left
Bousfield localizations exist if the model category is for example left proper and cellular
[Hir03, Theorem 4.1.1] or left proper and combinatorial meaning locally presentable and
cofibrantly generated [Barl(, Theorem 4.7].

Let C be a cofibrantly generated simplicial model category which is proper and cel-
lular. Let Z be an object in C. The comma category (C | Z) inherits a cofibrantly
generated simplicial model structure from the category C which is again proper and cellular
([Hir03l Theorem 7.6.5.(1)], [Hir, Theorem 1.5, Theorem 1.7]). In this overcategory model
structure on (C | Z) a map

x 1 Ly

P)N ’/ﬂY
Z

is a weak equivalence/ fibration/ cofibration if and only if the underlying map f is so
in C. The space of maps from (X, px) to (Y, py) is defined by the pullback diagram
Hom ™ (X, px), (Y, py)) —— Hom§(X,Y)
l Homg(id,py)

{ox} Hom§(X, Z).
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For (X,px) in (C | Z) and T in S, the tensor of (X, px) and T in (C | Z) is determined
by

XoT X9 X g ny2 X 2% 7
where t7: T — Ay is the unique map from T to the terminal object Ag in S. The
cotensor of (X, px) and T in (C | Z), denoted by (X, px)7T, is specified by the pullback
diagram

(XapX)T — XT

| l(PX)T

t

Let S be a set of maps with cofibrant domains and codomains in C. An object X in C
is called S-local if X is fibrant in C and for every element f: A — B of S, the induced
morphism of simplicial mapping spaces Homg( f,id): Homg(B , X) — Homg (A, X) is a
weak equivalence (see [Hir03, Definition 3.1.4.(1)(a)]). Let Cioc(s) be the left Bousfield
localization of C with respect to S (see [Hir03, Theorem 4.1.1]). The fibrant objects
of Cloc(s) are the S-local objects of C [Hir03, Theorem 4.1.1.(2)]. From now on we assume
that Z is an S-local object in C. We write Sz for the set of morphisms in (C | Z) of the
form
/N N

PA\‘ /PB
Z

where f is an element of S. We form the left Bousfield localization of the overcategory
model structure on (C | Z) with respect to Sz and denote the localized model structure
by (C 1 Z)ioc(s,)- We compare the latter to (Cioe(sy 4 Z) which is the overcategory model
structure with respect to Cioc(s). Our next goal is to show that these two model structures
agree.

The following definition is similar to [Hir03, Definition 4.2.2]. Let A(S) be the set
of maps obtained by choosing for every element f: A — B of S a factorization into a
cofibration followed by an acyclic fibration

!
m
A 25 (3.1)

in C, and considering the pushout product of the map f°f and a generating cofibration 4
in spaces, that is,

cof i
AS)={A®A, ] Beor, 25 B @A, fes,icls).
AROA,

For the reason that the model category Cjo(s) is simplicial [Hir03, Theorem 4.1.1.(4)], the

maps in A(S) are acyclic cofibrations in Cjoc(5). We define A(S) = A(S) U Jec where J¢
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is the set of generating acyclic cofibrations in C. The domains of the maps in A(S) are

small with respect to A(S)-cell by [Hir03, Theorem 12.4.3, Theorem 12.4.4].
Lemma 3.1. A map g: X — Z is a fibration in Coe(s) if and only if the map g has the

right lifting property with respect to w

Proof. Let the map g: X — Z be a fibration in Cj,c(s). Then the map g is a fibration in C
by [Hir03l Proposition 3.3.3.(1)(c)] so that g has the right lifting property with respect
to Je. Let f'0i: A® Ay [1agon, B ® 0A, — B'® A, be an element in A(S). Taking
into account that C is a simplicial model category, given the cofibration ff: A — B’
and the fibration g: X — Z in C, we get that the induced map

Homg(f°°,g)
e

Hom$(B', X) Hom$(4, X) X Homg (4,2) Hom$ (B, Z) (3.2)

is a fibration. Since the object Z is S-local, the object X is S-local by [Hir03l, Propo-
sition 3.3.14.(1)]. This implies that the map is a weak equivalence (see [Hir03|,
Corollary 9.3.3.(2)]). Due to adjointness, the map being an acyclic fibration is
equivalent to the map ¢ having the right lifting property with respect to fof;.

On the other hand, we assume that the map g: X — Z has the right lifting prop-
erty with respect to A(S). As the map ¢ has the right lifting property with respect to Je,
the map g is a fibration in C. Using that the map g has the right lifting property with
respect to A(S) and adjointness, we can conclude that the induced map

HOng (fCOfvg)
T

Hom$(B', X) Hom§ (4, X) Xyromg (4,7 Homs(B', Z)

is an acyclic fibration for every f in S. Because the object Z is S-local, we obtain that
the map Hom&(f°f, id): Hom$&(B’, X) — Hom%(A, X) is a weak equivalence for every f
in S. Thus, the object X is S-local by [Hir03, Corollary 9.3.3.(2)]. So the map g is a
fibration in C between S-local objects which is equivalent to g being a fibration in Cjo(s)
by [Hir03l Proposition 3.3.16.(1)].

Remark 3.2. Let g: X — Z be a map in C. As a result of the previous lemma, we can
apply the small object argument with respect to A(S) to get a factorization of the map g
into an acyclic cofibration followed by a fibration

g

T 5 T
X——X—Z (3.3)
in Cjoe(s)- Moreover, [Hirl Lemma 1.4] yields that the map X — X is a A(S)-cell complex
in Cjo¢(s) if an only if the map

X — X

AN
z

is a (A(S))z-cell complex in (Cioe(s) 4 Z). Therefore, the factorization (3.3)) provides a
fibrant replacement of the object (X, g) in (Cioe(s) 4 Z)-
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Lemma 3.3. Let

vV —" oW

N a
Z
be a map between cofibrant objects in the category (C | Z) such that the map qo is

homotopic to a map q1: W — Z in C. The map

Vv —" W

N
7
is a weak equivalence in (C | Z)ioc(s,) if and only if the map

Vv — oW

N va
Z
is a weak equivalence in (C | Z)io¢(5,)-

Proof. Let j =0,1. Let (X, px: X — Z) be an Sz-local object in the category (C | Z).
The space Hom‘(sciz)((I/V, ¢;), (X, px)) is defined by the pullback square

Hom§ ** (W, ¢j). (X, px)) —— Hom&(W, X)

J{ lHomg(id,px)
{qj} HOHI%(W, Z)?

which is a homotopy pullback square because S is right proper and the map Homg (id, px)
is a fibration by [Hir03, Proposition 9.3.1.(2)]. A homotopy from the map go to the map ¢;
corresponds to a path between the points {go} and {¢;} in the space Hom$(W, Z). This

implies that the homotopy fibre Homgjw)((W, q), (X, px)) is weakly equivalent to the

homotopy fibre Hom‘(gciz)((VV, q1), (X, px)) (see also [Hir03, Proposition 13.4.7]). By the
same arguments the homotopy fibre Hom‘(gciz) ((V,qooh), (X, px)) is weakly equivalent
to the homotopy fibre Hom‘(gciz)((v, q1oh),(X,px)). Thus, the map

Hom (%) (h,id)
Hom S (W, qo), (X, px)) —s 2,

C
Hom ") (Vigo o h), (X, px)
is a weak equivalence if and only if the map

C .
Hom‘(S +2) (h,id)

ClZ ClZ
Hom 2 (W, 1), (X, px)) ——=——="= Hom§** (V. a1 0 h), (X, px))
is a weak equivalence. This finishes the proof. O

Proposition 3.4. The model structures (C | Z)ioc(s,) and (Cioe(s) + Z) coincide.
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Proof. Due to an argument of Joyal [Joy, Proposition E.1.10], it suffices to show that the
cofibrations and the fibrant objects in both model structures agree. The cofibrations in
both model structures are the same, as these are the cofibrations in C.

Let

A—L B

\ /
Z
be in Sz, with a factorization into a cofibration followed by an acyclic fibration

f

m
A g5 B
\ Z /
in (C | Z). Forgetting the augmentation to Z, the map f°°f: A — B’ is a weak equivalence
in Cioe(s)- Therefore, it follows from [Hir03, Proposition 3.3.18.(1)] that

id
(C { Z)loc(SZ) T (Cloc(S) l/ Z)

is a Quillen adjunction. It remains to prove that the fibrant objects in (C | Z)ioc(s,) are
fibrant in (Cioe(s) + Z). We argue that the functor

id: (CIOC(S) l Z) — (C \ Z)loc(SZ) (34)

is also a left Quillen functor. For this, we check that this functor preserves weak
equivalences. As the functor is already a right Quillen functor, it is enough to show
that the functor preserves fibrant replacements of objects in (Cioo(s) 4 ).

Let (X, px: X — Z) be an object in (Cioe(s) 4 Z). From Remark we know that we
obtain a fibrant replacement of (X, px) in (Coe(s) + Z) by applying the small object

argument with respect to (A(S))z,

X — X

o (3.5)
px 7 Pz

We need to verify that the (A(S))z-cell complex (3.5) is a weak equivalence in the model

category (C b Z)ioc(s, )

We start with explaining that the maps in (A(S))z are weak equivalences in (C | Z)ioc(s,)-
C

The maps in (J¢)z are weak equivalences in (C | Z)oc(s,,), as they are weak equivalences
in (C | Z) by [Hir03, Proposition 3.3.3.(1)(a)]. Let

cofD,L'

A® Ay agon, B @A, ——2 B'a A,

L e (3.6)
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be a map in (A(S))z. The map ppga,): B'® A, — Z is homotopic to the map

idB/®tAn

B'® A, - B oA =B 2, 7

in C, because the space A, is contractible. We claim that the map

is an acyclic cofibration in (C | Z)oc(s,)- The map fef is a cofibration in C. We consider
the diagram

f
m

A" . p_2,p
N o

in C (see (3.1)). The map p is an isomorphism in the homotopy category Ho(C), and
so the map ppr op~1: B — Z defines a map in Ho(C). Because B is cofibrant and Z is
fibrant in C, the map pp o p~! can be represented by a map w: B — Z in C such that
the composite w o p is homotopic to pp:. The composite map

f
m

AT L p PR
N Swop

lies in Sz and hence is a weak equivalence in (C | Z)jo¢(s,)- Two out of three ensures
that the map f°f: (4, wopo ff) = (B',wo p) is a weak equivalence in (C | Z)10c(S7)-
As the composite w o p is homotopic to the map pp/, Lemma [3.3] yields that the
map fF: (A, pp o f) = (B,pp/) is a weak equivalence in (C | Z)loc(S5)- Since
(C | Z)ioc(s,) s a simplicial model category by [Hir03, Theorem 4.1.1.(4)] and the map
feots (A, ppro ff) — (B, ppr) is an acyclic cofibration in (C | Z)loe(Sy)» the map

fCOfDi

A® Ay agon, B ®0A, B'® A,

\ NlidB/ ®tAn
A

LB B~ Ble Ay

is an acyclic cofibration in (C | Z)i¢(s,)- This together with the fact that the composite
pp o (idp ® ta,) is homotopic to the map P(B'®A,) implies that the map

(AoA, [ B ®0Aw, pmea, o (fC00) = (B'® A, ppraa,))
AROIAR
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(see (3.6)) is a weak equivalence in (C | Z)ioc(s,) by Lemma
The map (3.5) being a (A(S))z-cell complex means that there is an ordinal A and a

A-sequence {(Xq, px,), @ < A} such that (Xo, px,) = (X, px) and

colimyx(Xa, px.) = (X, p%),

and each of the maps
Xo — Xon1

NS
Z

is a pushout of an element in (A(S))z. We have shown above that every map in (A(S5))z
is an acyclic cofibration in (C | Z)jo¢(s,). Hence, each of the maps

Xy —— Xopn

NS
z

is an acyclic cofibration in (C | Z)ic(s,)- So the transfinite composition (3.5) is an
acyclic cofibration in (C | Z)joe(s,)- In this way, we can conclude that the functor (3.4
respects fibrant replacements. ]

Let g: V — W be a weak equivalence in C. Since C is right proper, the adjunction

CLV) == (W),

9

induced by composition with and pullback along the map g, is a Quillen equivalence.
The following lemma addresses this question in the localized setting.

Lemma 3.5. Let g: V — W be a weak equivalence in C. The induced adjunction
(Cloc \ V) g (Cloc(S ! W)

18 a Quillen equivalence.

Proof. By definition of the model structures, the functor g. preserves and reflects
cofibrations and weak equivalences. Let (X,px: X — W) be a fibrant object in the
model category (Cioe(s) + W). Let

(Vxw X)of — 5 Vxy X

~,
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be a cofibrant replacement of (V xy X,V xy X — V) in (Coe(s) 4 V). We consider the
diagram
(V xyy X)cof
\% Xw X — X

| IS

Vv % w
in (Cioe(s) + W). Since the map py is a fibration by [Hir03, Proposition 3.3.3.(1)(c)]
and the map ¢ is a weak equivalence in the right proper model category C, the base
change map V xw X — X is a weak equivalence in C and hence in Cjo¢(5) by [Hir03l,
Proposition 3.3.3.(1)(a)]. Therefore, the composite (V xy X)®f =V xy X = X is a
weak equivalence in Ciye(sy. The claim follows by [Hov99, Corollary 1.3.16]. O

3.2 Diagram spaces are Quillen equivalent to spaces over the classifying
space of the indexing category

Let I be a well-structured index category with classifying space BX. Consider the
Barratt-Eccles operad in spaces which has as its nth space the classifying space of
the translation category of the symmetric group ¥, and hence is an F, operad in
spaces. Here we define an E, (diagram) space to be a (diagram) space with an action
of the Barratt-Eccles operad in spaces. In this subsection we briefly recall Sagave and
Schlichtkrull’s chain of Quillen equivalences connecting commutative K-spaces with Fo
spaces over BIC. For more details we refer to [SS12, §13].

Let EK be the K-space specified by k — B(K | k). Forgetting the augmentation
KC-levelwise gives rise to a map of K-spaces u: EX — constiBX. The adjoint map
colimg EX — BK is an isomorphism (see [SS12l, p. 2178]).

Theorem 3.6. [SS12, Theorem 13.2] There is a chain of Quillen equivalences connecting
KC-spaces equipped with the projective KC-model structure to spaces over BK carrying the
overcategory model structure with respect to the standard model structure on spaces.

Sagave and Schlichtkrull establish in [SS12), §13.1] the following chain of Quillen

equivalences,

ty Use colim
Sk = (S* | EK) — (S | constx BK) %—f (S| BK) (3.7)
constyc

(see [SS12, Lemma 13.3, Lemma 13.4]). The comma categories (S* | EK) and
(S | constx BK) come with the overcategory model structures with respect to SX.
The first Quillen equivalence (., q) in is induced by composition with and pullback
along the map t: EX — consti*. The adjacent Quillen equivalence (uy,p) in is
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determined by composition with and pullback along the map wu.
In the special case that the nerve of the category K is contractible, the adjunction

colim
Sk —= 5§

constc

is a Quillen equivalence [SS12, Proposition 6.23].

If the category K is permutative, the map u: EX — constx BK is a map in EsSF
[SS12, Lemma 13.8]. Under this assumption, Sagave and Schlichtkrull provide a struc-

tured version of (3.7)).

Theorem 3.7. [SS12, Theorem 13.12] Let K be a permutative well-structured index
category. Suppose that the inclusion functor i — IC is homotopy right cofinal, and that
the pair (IC, OK ) is very well-structured. There is a chain of Quillen equivalences relating
commutative K-spaces endowed with the positive projective K-model structure to Foo
spaces over BIC given the overcategory model structure with respect to the (right-induced)
standard model structure on Eo, spaces.

The following diagram displays the extended chain of Quillen equivalences,

€x i tx
CS* —= En(SM)*t # E,Sk ? (ExS* | EK)

qu (3.8)

colim
(ExeS | BK) & (E~S¥ | constic BK)

constic

(see [SS12, Lemma 13.9, Lemma 13.10, Theorem 13.11]). The category Eu.(S*)* has
the positive projective K-model structure. The category E~.S* carries the projective
KC-model structure. The comma categories in are equipped with the overcategory
model structures. The map of operads in spaces from the Barratt-Eccles operad to
the commutativity operad gives rise to the Quillen equivalence (e, €") in . The
subsequent Quillen equivalence in passes from the positive projective K-model
structure to the projective K-model structure on EooS*. The composite derived functor
from CS* to (ExS | BK) sends M to the induced map of E, spaces hocolimx M — BK.
If the nerve of the category K is contractible, the chain boils down to the following
chain of Quillen equivalences between commutative K-spaces and F, spaces,

* id lim
OSK = B (SK)+ %T EoSK %4:} ExS (3.9)
€* i constx

(see [SS12l Proposition 13.6, Theorem 13.7]). For example, the category of commutative
Z-spaces is Quillen equivalent to E, spaces.

Motivated by Sagave and Schlichtkrull’s result that on the one hand, commutative
K-spaces are Quillen equivalent to E, spaces over BK and on the other hand, F., spaces
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are Quillen equivalent to commutative Z-spaces, we aim to construct a similar chain of
Quillen equivalences between commutative K-spaces and commutative Z-spaces over a
commutative Z-space model of BX. An explicit commutative Z-space model of BK is
presented in [Soll1] and [SS16]. In the next subsection we recall its definition and some
relevant properties. In addition, we introduce a (K x Z)-space which will play the role

of EK in (3.7) and (3.8).

3.3 The diagram spaces E7K and BzK

In this subsection let (I, LI, Ox) be a small permutative category. Schlichtkrull and Solberg
specify a commutative Z-space model of the classifying space BK (see [SS16, §4.14, §7],
[Sollll, Example 3.1.12]). This is defined by applying the nerve functor Z-levelwise to
the following functor. Let ®5(K): Z — Cat be the functor that takes m to the category
®5(K)(m) with objects m-tupels (kq, ..., k) in K and morphisms

Op()(m)((ki, ..., km), (K}, .. . K. )) = Kk U...Uky, K, U...UK,).

The convention is that ®5(K)(0) is the category with the empty string () as its only
object and morphisms ®5(K)(0)(0,0) = K(0x,0x). A map a: m — n gives rise to a
functor ®5(K)(a): ®5(K)(m) — ®5(K)(n), which maps an object (ky,...,k;,) to the
n-tupel (kaq(l), e ka—l(n)) where

kiv O[(Z) = ja

L b 3.10)
Ok, J gé 1m<a>7

for j =1,...,n. The functor ®5(K)(«) sends a morphism ~: ki L. ..Uk, — kjU...Uk],

to a morphism kg1 U... Ukg-1(,) = lL/a_l(l) U...u l%—l(n) that is determined by the

commutative diagram

ka—l(l) U...u kail(n) — 1%71(1) U...U k%,l

l !

kiU.. .Uk, ——— K, U...uK,

(n)

in IC. The vertical maps are given by unique bijections as a result of the category K
being permutative. We skip showing that ®5(K) is functorial in Z because this is similar
to our argumentation in Construction We define the Z-space BzK as N(®p(K)).

The Z-space BzK is homotopy constant with respect to morphisms in Z,. In particular,
the map BK = BzK(1) — hocolimzBzK is a weak equivalence (see [SS16l Lemma 4.15,
Proposition 4.18, Theorem 4.19, Theorem 7.1], [Sollll Lemma 5.2.3, Theorem 5.2.9]).

Furthermore, the Z-category ®5(K) is a commutative monoid in CatZ. There is a functor

/\;};ﬂm: ®p(K)(m) x ¢5(K)(n) - 5(K)(m U n), specified on objects by
((kl,...,km),(ll,...,ln)) — (kl,...,km,ll,...,ln)

and on morphisms by (v, d) — L J, which is natural in (m,n). A unit for this multipli-

cation is given by () in ®5(K)(0). This together with the functor Aﬁf’}gm is coherently
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associative, unital and commutative. Since the nerve functor is a right adjoint, we can
deduce that the Z-space BzK is a commutative monoid in the category ST (see [SS16],
Proposition 4.16, p. 7334], [Sollll, Proposition 5.1.2]).

Next we introduce a (K x Z)-space which we employ in the upcoming Subsections
and to build a chain of Quillen equivalences between (commutative) K-spaces and
(commutative) Z-spaces over BzK.

Construction 3.8. Let ®z(K): £ x Z — Cat be the functor that sends (k,m) to
the category ®p(K)(k,m) with objects ((ki,...,kn),p: ki U ... Uk, — k), where
(k1,...,ky) is an m-tupel in K, and morphisms

kiU...Uky ——— K U.. UK,

R

For k in K, we define ®5(K)(k,0) to be the category with objects (0, p: Ok — k) and
morphisms

OK%OK

N
k.

A morphism ¢ : k — lin K induces a functor ®5(K)(¢),id): ®5(K)(k,m) — £ (K)(1,m),
defined by postcomposing with the map v, that is, an object

(ki,....kpn), ki U... Uk, & k)
is mapped to
(ki ... k) ki U. .. Uky Dk 51,

and a morphism

kiU... .Uk, ——— K, U...UK,

Syt

to

kiU... .Uk, ——— K, U...UK,

Sy o7

1y
1.

We see that ®5(K)(k, m) is functorial in k. Let o: m — n be a morphism in Z. The
map « produces a functor ®x(K)(id, «): Pg(K)(k,m) — ®5(K)(k,n), which takes an
object ((ki,...,km),p: ki U... Uk, — k) to

((ka_l(l)7 “e 7ka_1(n))’ka_l(l) U...u ka—l(n) — k1 ... |_|km ﬁ) k)
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Here kg-1;y is defined as in (3.10) for 7 =1,...,n, and the bijection
ka—l(l) ... I_lk§71(n) — k1 ... |_|km

is unique because the category K is permutative. A morphism

kiU... Uk, ——— Ky U...UuK,

\/

is sent to
ka—1(l)|_|...|_|ka—1(n) e 1%—1 IJI_IIL/_l

i) i

kiU...Uk,, 2l K U... UK,

We argue that ®(K) is functorial in Z. Let

a B
m—n-—p

be a composite of morphisms in Z. We need to verify that
Or(K)(id, B o) = Pr(K)(id, B) 0 Pr(K)(id, ). (3.11)

Let ((ki,...,km),p: ki U...Uk,, — k) be an object in ®(K)(k,m). The composite
Or(K)(id, B) o Pr(K)(id, ) sends ((ki,...,km),p: ki U... Uk, — k) to the tuple

consisting of the p-tuple (ka—lﬁ’l - ’ka—lﬁ’l (p)) and the augmentation map
P
ka,1§71(1) U...ud k671§71(p) — kaf1(1) U...ud kafl(n) —-kiUu...uk,, =k
where
ko =k A=
ap ) O/C7 ] ¢ IHI(B),

for j = 1,...,p. On the other hand, the functor ®(K)(id, 5 o @) maps the object
((kl,...,km),pt kiu...Uk,, —)k) to

p
((km—l(l), ... ,km—1(p)),km—1(l) ...y km—l(p) —-ku...uk, = k)

Taking into account that the p-tuple (ka—lﬁ_l(l)’ e ,ka_lg—l(p))
and that the composite bijection

is equal to the p-tuple

k1 ok
ka0 Ko w)

ka_lgfl(l) ...y ka_lgfl(p) — kafl(l) L...U kafl(n) — k1 L...u km

coincides with the bijection

kmf1(1)|_|...l>lkmf1(p)—>k1|_|...|_|km,

it follows that the equation (3.11]) is true on objects. Similarly, we understand that the
equation (3.11)) holds on morphisms. Therefore, ®(K) is a (K x Z)-category.
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Definition 3.9. We define EZK to be the (K x Z)-space resulting from applying the
nerve functor (K x Z)-levelwise to @ (K),

EfK = N(®g(K)).
Remark 3.10. The K-space EzK(—,1) can be identified with EX. More than that,
for (k,m) in I x Z,, the category ®5(K)(k, m) has the terminal object
((k,O;C,...,O]C),kI_lO]CI_l...|_|0]C =k E)k)

Thus, the map ¢t: E7K — constixz* is a weak equivalence in all levels (k,m) in I x Z..
Since the inclusion functor K x Z, — K x Z is homotopy right cofinal (see Lemma )
the induced map

hocolimy « 7t .
——— hocolimy xzconsti x 7%

hocolimy 7 E7KC
is a weak equivalence by two out of three (see [Hir03, Theorem 19.6.7.(1)]).

Proposition 3.11. The (K x T)-category ®(K) is a commutative monoid in Cat™*Z.
In particular, the (K x T)-space E7K is a commutative monoid in S**T.

Proof. Let (k,m) and (1,n) be in K x Z. We define a functor

MW 1yt @E(K) (k,m) x @(K)(1,n) — 5(K)(k U1, mUn)

as follows. An object (((k17 oo k), kiU Uk, = k), (L., L), v L. UL, — 1)
is mapped to ((kg,...,k o), puri kUL Uk, UL UL UL, - kU, and a
morphism

kiU...Uk, — K, u...uk,, Lhu...ul, —> 1, u...ul,
Xk/p' Nk/,

to
kiU...Uk,Ul;U.. n7—6>k’ UK, UL UL UL,

\/

kUl

The functor A(kElil))( 1,n) 1 natural in ((k,m), (I,n)). A unit for this multiplication is speci-

fied by (0,id: Ox — Ox) in @(K)(0x,0). The latter together with the functor )\(k I(n))(l n)
is coherently associative, unital and commutative. We spell out commutativity. For this,
we need to show that the diagram

@R (K)
®5(K)(k,m) x ®p(K)(1,n) —==1C2, $p(K)(k U1, mUn)
T4>E(/<)<k,m),q>E<fC><1,n>l ) l%(lc)(xm,xm,n) (3.12)
(1,n),(k,m)

Op(K)(1,n) x ®p(K)(k,m) op(K)(1Uk,nlUm),
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commutes where i 1 denotes the symmetry isomorphism in K. Let

(K1, k), kU Uk, B k), (L, 1), L U U, 55 1) (3.13)

be an object in ® (L) (k,m) x ®g(K)(L,n). The composite P (L) (Xk 1, Xm,n) oAEI’kEI(IIIC))(I n)

sends (3.13) to the tuple consisting of the (n 4+ m)-tuple (1j,...,1,,ki,..., k) and the

augmentation map

(Xm,n)* Xk,1

LU... UL Uk L.. Uk, ki U.. Uk, ULU... UL " k1 25 10k

where (Xmn)« denotes the bijection induced by the shuffle map xmmn. The other

way round, the composite )\Eliil()’f()l(m) O T 1 (K)(k,m), 5 (K)(1L,n) Sends to the tuple
(L, ... Lk, oo k), vUp: UL UL, UKk UL Uk, — LU k). For the reason that
Xk,1© (pUV) 0 (Xmn)+ = v U p, the diagram commutes on objects. Likewise, one
can verify that the diagram commutes on morphisms. O

Forgetting the augmentation (I x Z)-levelwise induces a morphism
O (K) — constxe®p(K),

which is compatible with the respective commutative monoid structures and hence in
C(Cat™*T). Applying the nerve functor yields a map u: EzK — constx BzK in CSK*Z.
The adjoint of the map w is colim EzK — BzK, which is an isomorphism.

3.4 K-spaces are Quillen equivalent to Z-spaces over Bz K

Let K be a well-structured index category which is permutative. We prove that there is a
chain of Quillen equivalences between K-spaces endowed with the projective K-model
structure, and Z-spaces over Bz/C carrying the overcategory model structure with respect
to the projective Z-model structure on Z-spaces.

We make use of the following lemma frequently in this subsection.

Lemma 3.12. Let K and L be well-structured index categories. Let M be (IC x L)-
cofibrant in S**£. The map induced by the canonical map from the homotopy colimit to
the colimit

hocolimghocolim, M — hocolimycolim M (3.14)

s a weak equivalence.

Proof. As the object M is (K x L)-cofibrant, the object colim,M is K-cofibrant by [Hir03,
Theorem 11.6.8.(1)]. The map (3.14)) fits into the commutative diagram

hocolimghocolimsM -~ hocolimyy M — colimyy M = colimycolimg M.
\ T
hocolimycolim M

Here the horizontal and the vertical map are weak equivalences by [SS12, Lemma 6.22].
It follows from two out of three that the map (3.14]) is a weak equivalence. O
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Lemma 3.13. Let the category S**T be equipped with the projective (K x I)-model
structure and the category S® with the projective K-model structure. The adjunction

colimz

ST —— sk (3.15)

constz
1s a Quillen equivalence.

Proof. (compare [SS12| proof of Proposition 6.23]) We start with showing that the functor
constz is a right Quillen functor. Let f: M — N be a K-fibration in S*. The induced
map constz f: constzM — constzN is a level fibration in S**Z. Let (k,m) — (1,n) be
a morphism in I x Z. The induced square

(constz M )(k,m) = M (k) — (constzM)(l,n) = M(1)
l l
(constzN)(k,m) = N(k) — (constzN)(1,n) = N(I)

is homotopy cartesian. Hence, the map constzf is a (K x I)-fibration in S**Z. In
addition, for a K-space M, we have the following weak equivalences

hocolimy y7constz M ~ hocolimxhocolimzconstz M
~ hocolimy (NZ x M)
~ hocolimx M.

This implies that the functor consty preserves weak equivalences. Thus, the adjunc-
tion is a Quillen adjunction.

Let M be a (K x Z)-cofibrant (I x Z)-space, and let N be a K-fibrant K-space. Assume
that there is a map f: colimzM — N in S* with adjoint ad(f): M — constzN in S**Z.
We consider the diagram

. . hocoli .
hocolimy colimz M ocolimyc f hocolimy V.

NT TN

. . hocolimhocolimzad(f) . X
hocolimyxhocolimz M hocolimxhocolimzconstz N

Here the vertical maps come from the canonical map from the homotopy colimit to the
colimit, using in the case of the right vertical map that the functor colimz o constz is the
identity functor. The left vertical map is a weak equivalence by Lemma [3.12] By two out
of three we can conclude that the map f is a weak equivalence if and only if its adjoint
ad(f) is so. O

Lemma 3.14. Let the category S**T carry the projective (K x I)-model structure, and
the comma category (S**T | E7K) the overcategory model structure. The adjunction

t*
(S}sziEI]C) T) SIC><I7

induced by composition with and pullback along the map t: E7IC — constixz*, defines a
Quillen equivalence.
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Proof. This holds because the model category S**Z is right proper (see Remark [2.8)) and
the map ¢ is a (K x Z)-equivalence (see Remark [3.10)). O

Lemma 3.15. Let S**7T have the projective (K x I)-model structure and ST the projective
T-model structure. Let the comma categories (S**T | E7K), (ST | constx BzK) and
(ST | BZK) be endowed with the overcategory model structures. The composite adjunction

Usx colim
(S | EZK) == (SO | constic BzK) ﬁt (ST | BzK),
constx
where the first adjunction is defined by composition with and pullback along the map
u: BE7IC — constx BZKC, is a Quillen equivalence.

Proof. (compare [SS12 proof of Lemma 13.4]) By definition of the model structures
the functor u, respects cofibrations and weak equivalences. Analogous to the proof of
Lemma we can see that the functor constx preserves fibrations and weak equivalences.
To show that the Quillen adjunction (colimyg o u,, p o constr) is a Quillen equivalence,
we make use of [Hov99, Corollary 1.3.16]. First, we prove that the functor colimy o u,
reflects weak equivalences between cofibrant objects. Let

M— N

N7
BEfK

be a map between cofibrant objects in (S**? | EzK) such that the induced map
hocolimzcolimg f is a weak equivalence. From Lemma [3.12] and two out of three we
deduce that the map hocolimx«zf is a weak equivalence. Secondly, we check that for a

fibrant object (Y, Y — BzK) in (ST | BzK), the derived counit

colimi (E7/C X constx Bz K constxY)! — colimy (E7K X const Bzk consteY) — Y
T BLK

is a weak equivalence. We investigate the following diagram where we abbreviate the
functor hocolimg by (—)nx, and the functor hocolimz by (—)z respectively,

((EZK X constxBric constcY )N e pr = (colimic (EZK X consty Bk constiY ) )z

~] l
((EzK Xconstx Bok consteY )nic)nz — (colimy (EZK X consty By constxY))pr
l l
((consti Y )nic)nz Yz

The first horizontal map is a weak equivalence by Lemma [3.12] To see that the composite
map in the second column is a weak equivalence, it suffices to argue that the composite

((EZK Xconstx Bz consticY ) pic)nz — ((constxeY )nic)nz — Yz
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is a weak equivalence. For this, we analyze the diagram

hocolimy (E7/KC X const Bk constxY) —— hocolimgconstxY Py

l i L (3.16)

hocolimg F7X —————— hocolimyconsti Bz K LN BzK

in SZ. Here the second top and bottom horizontal map pr are given by the projection
maps, using that for an Z-space Z, we have

hocolimyconsticZ = BK x Z 25 Z.

The pullback E7K X constx By constY in SK*T ig T-levelwise a pullback in Sk, Therefore,
[SS12| Lemma 11.2] yields that the left square in is a pullback square in SZ. Besides,
the right square in is a pullback square, too. Consequently, the outer square
in is a pullback square, which is a homotopy pullback square as the map ¥ — BzK
is an Z-fibration by assumption. To obtain that the upper horizontal composite map
in is an Z-equivalence, it is enough to show that the lower horizontal composite
map in is an Z-equivalence, for the reason that ST is right proper (see Remark .
Exploiting that the (K x Z)-space E7K is homotopy constant with respect to morphisms
in IC x Z, and that the Z-space Bz/K is homotopy constant with respect to morphisms
in Z,, it remains to prove that the composite

hocolimg E7/C(—, 1) — hocolimgconstx BzK(1) — BzK(1) (3.17)
is a weak equivalence. But the map (3.17) can be identified with the map
hocolimx EX — colimx EK = BIC,

which is a weak equivalence because the K-space EX is K-cofibrant (see [Hir03, Proposi-
tion 14.8.9], [SS12, Lemma 6.22]). O

Theorem 3.16. The category of K-spaces is Quillen equivalent to the category of Z-spaces
over BzK.

Proof. Putting together the results of Lemma [3.13] Lemma [3.14] and Lemma [3.15] we get
the following chain of Quillen equivalences between S* and (ST | B7K),

colim ty U colim
SK : ST 5 (ST | BIK) == (SO | consti BrK) %—f (ST | BzK).
consty constic
(3.18)
O

3.5 Commutative K-spaces are Quillen equivalent to commutative Z-spaces
over B7KC

Let K be a well-structured index category which is permutative. Suppose that the
inclusion functor £ — K is homotopy right cofinal, and that the pair (}C, OK ) is very
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well-structured. The left adjoints involved in the above chain of Quillen equivalences (|3.18|)
are strong symmetric monoidal. Hence, the adjunctions in (3.18)) lift to the level of
commutative monoids,

colim ty Use
Sk ﬁ% CSHT = (OST | BZK) = (CS™7 | constyc B1K)
constz
colim;g\H\const;c (319)
(CST | B7K).

Our aim in this subsection is to prove that the adjunctions in the chain are Quillen
equivalences. As in Subsection [3.2] we consider the Barratt-Eccles operad in spaces and
define an E,, monoid in diagram spaces to be a diagram space with an action of the
Barratt-Eccles operad in spaces. In the case of the adjunctions (colimz, constz) and
(colimy o 7y, poconstx) we employ the respective adjunctions on the level of Eo, monoids
for exploiting that the underlying diagram space of a cofibrant F, diagram space is
cofibrant which is not true for a cofibrant commutative diagram space. The proofs in this
subsection are mainly based on the corresponding proofs in the previous subsection.

Lemma 3.17. Let Eoo(S**T)* denote the positive projective (K x IT)-model structure,
and Eo(ST)T the positive projective T-model structure. The adjunction

colim
EOO(SICXI)+ 4’4 EOO(SIC)+

constz
is a Quillen equivalence.

Proof. Since both model structures are right-induced, the functor constz is a right Quillen
functor (see Lemma . Let M be positive cofibrant in E,(S¥*%)*. The identity
functor id: Eoo(SM*T)T — ES**T passing from the positive projective (K x T)-model
structure to the projective (K x Z)-model structure, defines the left adjoint in a Quillen
equivalence [SS12, Proposition 9.8]. Thus, the object M is cofibrant in EooSF*T and it
follows from [SS12 Corollary 12.3] that the underlying (}C x Z)-space of M is cofibrant in
the projective (I x T)-model structure on S**Z. By the same arguments the underlying
K-space of colimzM is cofibrant in the projective K-model structure on S*. Given this,
we can continue as in the proof of Lemma [3.13 O

Corollary 3.18. Let the category CS**T be endowed with the positive projective (K x T)-
model structure and CS® with the positive projective K-model structure. The adjunction

colim
CSKAT —= oSk (3.20)

constr

18 a Quillen equivalence.
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Proof. The functor constz is a right Quillen functor. We consider the following square of

Quillen adjunctions,
colimz

CSHT ——— oSk

constr
G*TJ/E* €x J{e*
colim
B (ST 5 B (SK)*.

constr

Here the map of operads in spaces from the Barratt-Eccles operad to the commuta-
tivity operad induces the vertical adjunctions which are Quillen equivalences by [SS12]
Proposition 9.12]. The last lemma and two out of three for Quillen equivalences [Hov99,
Corollary 1.3.15] ensure that is a Quillen equivalence. O

Lemma 3.19. Let the category CS**T be equipped with the positive projective (K x T)-
model structure and the comma category (CS**T | EzK) with the overcategory model
structure. The adjunction

ts
(CST | BrK) ——= OS82

defines a Quillen equivalence.

Proof. This follows from the model category CS**Z being right proper (see Remark [2.10))
and the morphism ¢: E7K — constixz* being a (K x Z)-equivalence (see Remark (3.10)).
O

Lemma 3.20. Let Eo(S**T)* denote the positive projective (K x T)-model structure,
and Es(ST)t the positive projective I-model structure. Let the comma categories
(Exo(S™D)F | (E7K)), (Eoo(S**T)* | ¢*(consti BzK)) and (Es(ST)T | ¢*(BzK))
carry the overcategory model structures. The composite adjunction

(Eoo(SKXTYF L e*(E2K)) “? (EOO(S’CXI)+¢e*(const;cBIIC))COhﬁH:C(EOO(SI)Jr¢e*(BIIC))

is a Quillen equivalence.

Proof. By definition of the model structures and Lemma the functor p o constyx
is a right Quillen functor. Like in the proof of Lemma we make use of [SS12,
Proposition 9.8] and [SS12, Corollary 12.3] so that we can argue as in the proof of

Lemma [3.151 O

Corollary 3.21. Let the category CS**T come with the positive projective (K x I)-
model structure, and CST with the positive projective T-model structure. Let the comma
categories (CS**T | E7K), (CS**T | constxBzK) and (CST | BzK) possess the
overcategory model structures. The composite adjunction

- colim
(CS’sziEIIC) T> (CSKXI\I,COHSTAICBZK) ét (CSZJ,leC) (3.21)
< const ¢

1s a Quillen equivalence.
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Proof. The composite right adjoint poconstx is right Quillen by the definition of the model
structures and Lemma We consider the following diagram of Quillen adjunctions,

Use lim
(CSMT | BrK) == (CS**T | const BzK) 4><_t“ (CST | B7K)
1l Il ol
U colim
(Boo (ST * | e*(EZK)) o (Boo (8*T)* | *(constx BzK)) @t’c(Eoo(sI)we*(BIIC)).
constic

Again the map of operads in spaces from the Barratt-Eccles operad to the commutativity
operad gives rise to the vertical Quillen equivalences by [SS12 Proposition 9.12]. It follows
from Lemma and two out of three for Quillen equivalences [Hov99, Corollary 1.3.15]

that (3.21)) is a Quillen equivalence. O

Theorem 3.22. The category of commutative K-spaces is Quillen equivalent to the
category of commutative T-spaces over BzK.

Proof. From Corollary Lemma and Corollary we know that the adjunctions
in (3.19) are Quillen equivalences. O

Remark 3.23. The above theorem allows to think of commutative K-spaces as commu-
tative Z-spaces over Bz/X. In this sense, the category Z is universal among the indexing
categories satisfying the assumptions of K.

Let R denote a fibrant replacement functor in CSX, and Q a cofibrant replacement
functor in (CS’CXI | constx BzK). We write I,% for the composite derived functor
colimiQ(us (EZK x constzR(—))) from CS* to (CST | B7K) (see (3.19)). Let R’ stand
for a fibrant replacement functor in F..S, and @’ for a cofibrant replacement functor
in E..(ST)*. We write I for the composite derived functor e,(Q’(constzR(—))) from

ES to CST (see (3.9)).

Proposition 3.24. Let M be a commutative K-space. The image IF(M), where we
forget the augmentation to BzK, is weakly equivalent to I* (hocolimyM).

Proof. We take advantage of the commutativity of the following diagram of Quillen
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equivalences,

Eoo(SF)* - sk

colimz | | constz ‘ colimz | | constz
B (SEXT)+ o OSKXT
ts| |4 “ x| |4
(Esa( ST T | (E7K)) ———= (CS™T | E7K) (3:22)
Ux | | P ‘ Ux | |P
(Eoo(SE*T)F | € (constx B7K)) €<:’ (CS**T | constyx B7K)

colimy | | constx ‘ colimy | | constxc
(Ese(ST)T | *(B1K)) m———— (CS” | B1K).

€

We can assume that M is positive K-fibrant in CS*. The image I%(M) is equal to
(colim Q(ux (EZK x constzM)), colimx Q(u«(EZK x constzM)) — BzK). The space
hocolimz I (hocolimy M) is weakly equivalent to hocolim M. So we have to show that
the latter is weakly equivalent to hocolimzcolimiQ (u«(E7/K x constzM)). Exploiting
the Quillen equivalences in , we observe that M is -equivalent to the image of
a cofibrant object (N, N — ¢*(EzK)) in (Ex(SM)* | ¢*(FzK)) under the functor
€4 o colimy o t,, that is,

hocolimg M =~ hocolime, (colimzt.(N)). (3.23)

Since colimzt.(N) is positive cofibrant in Eu(S®)*, its underlying K-space is cofibrant
in the projective K-model structure on S*. Hence, the map

hocolimycolimzt,(IN) — colimycolimzt,(N)

is a weak equivalence by [SS12, Lemma 6.22]. Using that the derived unit of the adjunction
(e, €*) is a weak equivalence, we get that the map

hocolimycolimzt,(N) — hocolimye* (e, (colimzt, (N))) (3.24)

is a weak equivalence. But in view of (3.23)), the target in (3.24]) is weakly equivalent to
hocolimye* (M) which is the space hocolimg M. Likewise, we obtain the following chain
of weak equivalences

colimzcolimu (N) < hocolimzcolimu.(N)
5 hocolimze* (e, (colimguy (N)))
~ hocolimze* (colimx Q (u« (EZK x constzM))).
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Altogether, we find that

hocolimye* (M) ~ colimycolimzt,(N)
= colimzcolimyus(N)
~ hocolimze* (colimcQ(u«(EzK X constzM)))

which finishes the proof. O

3.6 Localized model structures on commutative diagram spaces

Let K be a well-structured index category which is permutative. Suppose that the
inclusion functor K; — K is homotopy right cofinal, and that the pair (I, OK,) is
very well-structured. In this subsection we left Bousfield localize the positive projec-
tive C-model structure on commutative K-spaces with respect to a set of maps which
corepresent shear maps. To better understand the localized model structure, we use the
Quillen equivalence between commutative C-spaces and commutative Z-spaces over Bz
established in the last subsection. The goal is to show that if the simplicial monoid B/XC
is grouplike, the localized model structure on commutative C-spaces is Quillen equivalent
to the overcategory model structure on commutative Z-spaces over BzK with respect to
a localized model structure on commutative Z-spaces. The results in this subsection play
an important role in the next subsection where we prove the latter and argue that the
localized model structure on commutative -spaces is indeed a group completion model
structure.

Left Bousfield localizations exist on all model categories involved in the chain of Quillen
equivalences between commutative KC-spaces and commutative Z-spaces over BzK.
For this, we can argue as in the proof of [Sagl6, Lemma 7.16]: The positive projective
KC-model structure on commutative C-spaces is cofibrantly generated and left proper
(see Proposition Remark . The forgetful functor CS* — SX preserves filtered
colimits [SS12, Lemma 9.2] so that the category CS¥ is locally presentable by [Bor94,
Example 5.2.2.b, Theorem 5.5.9]. Alternatively, in the case that the category K is Z,
Sagave and Schlichtkrull verify in [SS13] §A] that the positive projective Z-model structure
on CS? is cellular.

To transfer the Quillen equivalences from the previous subsection to the localized
setting, we rely on a criterion by Hirschhorn [Hir03, Theorem 3.3.20.(1)(b)]. The latter
says that given a Quillen equivalence

F

C—D

G
and a class S of maps in C, the left Bousfield localization of C with respect to S is Quillen
equivalent to the left Bousfield localization of D with respect to the image of S under the
derived functor of F.
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Let k and 1 be in K. We define a map

C(FSL(+) R TR ()~ C(FS (+)) B C(FE (+)

in CSK as follows. Because the monoidal product X is the coproduct in CS¥ | it suffices
to determine morphisms

C(Fga(*)) = C(F¢ (+) ”C(F(+))
and
C(F* (%) = C(F (%)) RC(F* (%)

The latter is given by the inclusion of C(F{*(x)) into the coproduct C(FX(x)) KC(F/ (%)),
denoted by if*. By adjunction a morphism C(FL (x)) — C(FF(x)) K C(F (%)) in OS*
corresponds to a point in (C(FL(x)) K C(FF(x)))(kU1) in S. We know that

(C(RE()) B CFE (+))) (k 1) 2 colimpqunn ([T 0 p)/S2) x ([T £0%, q)/55)
i>0 3>0

(3.25)

(see (2.2), (2.3)). We send a point * to (idk,id;) in K(k,k) x K(1,1), which is the

(i =1,j = 1)-summand in

(H K(kuivk)/zi) X (H ’C(lujv 1)/Ej)

i>0 §>0

where the latter is indexed by ((k,1),id: kU1 — kU1) in the colimit system. Postcomposing
with the canonical map to the colimit (3.25)) specifies a point in

(C(F¢ (+) B C(F(+))) (k U1).

Let a{gl: C(FL (%) — C(FE(x)) ®C(F) (%)) be the adjoint map in CS*. So we set

sﬁl = Z{C + aﬁl. Let SX be then the following set of maps

S = {C(FS (%) B CEN () = C(FE () RC(FF (), k1€ Ky }.

The domains and codomains of the maps in S* are cofibrant in the positive projective
K-model structure on CS*. We denote the left Bousfield localization of the positive
projective JC-model structure on CS* with respect to S* by (CS’C)loc(Sn).

Lemma 3.25. The induced adjunction

colimz

(CSKXI)IOC(SKXI) — (CS’C)IOC(S’C)

constz

18 a Quillen equivalence.
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Proof. Let (k,m) and (1,n) be in Ky x Z,. We observe that

colimz((C(F(’lc{ljfmuﬂ)(*)) X (C(F(’EIXI)I(*))) = colimzC(F{f{zfmUn)(*)) X colimIC(F(Eﬁ)Z(*))

= C(colimz Fly T i (%)) B C(colimp F 7 (+)
= C(Fygq(+) BC(F ().
In the same way, we figure out that

colimg (C(FA i (+)) B CE 5 (+)) = C(FL () B C(F(+).

We need to argue that the diagram

colimz (C(FNE i () BC(FYE (%)) —— CFS, () BC(F ()

(kUl,mUn) (In)
COlimIS’(Ck,m),(l,n) lsf’l (326)
colimz(C(Fjyeh (+)) B C(F 7 () ——— C(FE () B C(F(x))

commutes. The inclusion into the coproduct i} : C(F{*(x)) — C(FL (%)) ® C(F} (%)) can
be identified with the map

C(Ff(+)) = colimIC(F(llC;)I(*))

colimzi~ %%

" colimz(C(F o () B C(F () = CRE () BC(H ().

In addition, the map a{gl: C(FL (%)) = C(FF (%)) R C(F (%)) agrees with the map

C(FL 1(%)) = colimzC(FAXT (%))

(kUl,mlin)

. KxT
colimzag’ )y (1n)

colimz (C(F o (¥)) B C(Fy (%)) = C(FL (%) R C(F ().

Therefore, the diagram (3.26) commutes so that the map colimz s> ) is isomorphic

(k,m),(1,n
to the map sf’l. Thus, it holds that colimzS**Z = ST. The claim then follows from
Corollary and [Hir03, Theorem 3.3.20.(1)(b)]. O

Before we go on, we again fix some notation. Let M be a commutative C-space. Let S ]’\C4
be the set of morphisms in (C’S’C 1 M) whose projection to CSK is an element in S*. We
form the left Bousfield localization of the overcategory model structure on (CS* | M)
with respect to S5, and write (CS* | M)loc(S]’EI) for the localized model structure.

Lemma 3.26. The induced adjunction
tx
(CSHT ) EIIC)loc(SEIX%) — (CEM ) oe(sicx)

defines a Quillen equivalence.
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Proof. As before we want to deduce the claim from Lemma and [Hir03, Theo-
rem 3.3.20.(1)(b)]. So we have to check that the image of Sg;,c under the functor ¢, is

isomorphic to S**Z. For this, it is enough to show that for every (k,m) and (1,n) in

K4 X I, there exists a map (C(F(’lixnf)(*)) X (C(F(IICE)I(*)) — E7K in OS**Z. Let (k, m)
and (1,n) be in K x Z,. The spaces EzK(k,m) and E7/K(1l,n) are non-empty, so that
by adjunction there are maps (C(F(IIC{XH{)(*)) — EzK and C(F(Ilcﬁ)z(*)) — E7K. Note that
at this point we need the assumption that m,n > 1. Since the monoidal product X is the
coproduct in CS**T, these maps produce a map C(F(’f(xrf)(*)) X (C(F(IICE)I(*)) — EZK

in CS*T, O

Lemma 3.27. The induced adjunction

colimcoux

(CSK*T | E7K) (CST | BrK)uusz
( BI}C)

KXT
10C(SEIIC) poconst

s a Quillen equivalence.

Proof. As in the proof of Lemma we get that the image of SX*Z under the functor
colimy is isomorphic to ST. Besides, we know that

colimx E7K = Bz K = colimygconstx Bz K.
Therefore, Corollary and [Hir03, Theorem 3.3.20.(1)(b)] imply the claim. O

Our next aim is to show that if the simplicial monoid BX is grouplike, the model
category (CST | B1K)1oe(s2 - is Quillen equivalent to ((C8%)10¢(57) + BzK). We prove
z
this in Subsection We end this subsection with yet another auxiliary result which is
needed in Subsection
Lemma 3.28. Let g: V. — W be an I-equivalence in CST, and let V and W be homotopy
constant with respect to morphisms in . The adjunction
gx
(CST LV hiegs) T (O8T L Whorts (3.27)

induced by composition with and pullback along the map g, determines a Quillen equiva-
lence.

Proof. To prove the claim, we apply a criterion of Hovey [Hov0ll Proposition 2.3|. First,
we notice that for an element in S‘I/, the image under the functor g, lies in S%, and thus
is a weak equivalence in (CST | W)IOC(S%V).

Secondly, let (X, px: X — V) be an SZ-local object in (CST | V). Let the diagram
L X
PX

|
lN

Q@

w



display a factorization of the map g o px into an acyclic cofibration j followed by a
fibration p; in the positive projective Z-model structure on CST. The object X is
homotopy constant with respect to morphisms in Z,, because the object V is so and
the map px is a positive Z-fibration. Likewise, the object X is homotopy constant with
respect to morphisms in 7, as the object W is so and the map p 5 is a positive Z-fibration.
It follows by Proposition and [Hir03, Proposition 13.3.14] that the maps j and g are
positive level equivalences. We claim that (X, pg) is an S§-local object in (CST | W).
For this, it remains to check that for an element

s

(+)) BC(F (%)) —=— C(Fq(+)) K C(F (%))

\A W /QC(FI%,(*))&(C(FE(*))

C(FL

mlin

in S%/, the induced map

cST|w
Homy§ * ™) ((C(FL(*)) ” C(FE(*)), pe(rz (nmerz ) (X px))
lHom‘(scsliW) (sI id) (328)

m,n’

CSTIW .
Hom§'® ") (C(FE i (+) K C(Fx (%), pe(FZ (+))RC(FZ(+) © San)s (X5 0%))

)
is a weak equivalence. To ease notation we set

A = C(Fun(+) R C(F (+))

B = C(Fp(+)) K C(F (+)).

By adjunction the space Homgsz (B, X) is weakly equivalent to X (m) x X (n). Since
the map j is a positive level equivalence, the latter is weakly equivalent to X (m) x X (n),
which again by adjunction is weakly equivalent to Homgsz(B, X). Hence, the map
Homgsz (id,7): Homgsz(B , X) — Homgsz(B ,X) is a weak equivalence. By the same
arguments, we find that the map Homgsz(id, g): HomgSI(B, V) — Homgsz (B,W) is a
weak equivalence. In particular, the map Homg‘sz (id, g) induces an isomorphism on 7.
We consider the diagram

SI(

Hom§S™ (id,px)

«+ — Hom§S" (B, V) Hom&S" (B, X)
J NlHomgsz(id,g) NlHomgSI(id,j)

Hom&5” (id,p ¢ .
s —— HomGS™ (B, W) «1oms” 1400)  py.08% (g ).

The induced map of homotopy pullbacks

T A ~
Hom " ) ((B,B - V), (X, px)) = Hom® (B, B —» W), (X, px))
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is a weak equivalence for every given augmentation B — W (see [Hir03, Proposi-
tion 13.4.7]). Analogously, we obtain that the induced map
cSTv csT\w o
Homg ") ((4,4 = V), (X, px)) = Homg™™ (4,4 - W), (X, pz))

is a weak equivalence. By assumption (X, px) is an SZ-local object in (CST | V). Two
out of three then implies that the map (3.28) is a weak equivalence. It is left to show
that (X, px) is weakly equivalent to (V xw X,V xw X — V) in (CS% | V). For this,
we investigate the commutative diagram

X/_\
VxwX —— X
N
v —2 L w.

~

Since the model category C§I is right proper (see Remark ) and two out of three
holds, the map X — V xy X is an Z-equivalence. Taken together, the criterion of Hovey
[Hov01l Proposition 2.3] ensures that (3.27) is a Quillen equivalence. O

3.7 The group completion model structure on commutative diagram spaces

Let K be a well-structured index category which is permutative. Suppose that the
inclusion functor K4 — K is homotopy right cofinal, and that the pair (IC, OK) is very
well-structured. We finish the proof that if the simplicial monoid B is grouplike, the
model category (CS’C)IOC(SIC) is Quillen equivalent to ((CSI)loc(SI) | BzK). With this at
hand, we justify that (CS’C)IOC(S’C) defines a group completion model structure. We build
on work of Sagave and Schlichtkrull in [SS13] where they describe group completion in
commutative Z-spaces.

Recall from e.g. [May74] that a (simplicial or topological) monoid M is grouplike
if the monoid of connected components my(M) is a group. For an associative (simplicial
or topological) monoid M, we write B(M) = B(*, M, x) for the bar construction of M
with respect to the cartesian product. A map of homotopy commutative (simplicial or
topological) monoids M — N is a group completion if N is grouplike and the induced
map of bar constructions B(M) — B(N) is a weak equivalence in spaces. Taking into
account that in the simplicial setting the map of simplicial monoids M — Q((B(M))fP)
is a group completion where (—)f" denotes a fibrant replacement functor, this implies
that the simplicial monoid N is weakly equivalent to Q((B(M))fP). In the topological
setting we assume that the topological monoids M and N are well-based, to conclude
from M — N being a group completion that N is weakly equivalent to Q(B(M)). Spaces
with an action of the Barratt-Eccles operad in spaces are simplicial monoids because the
associativity operad in spaces is a sub operad of the Barratt-Eccles operad in spaces.
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In view of these notions and on the grounds that commutative K-spaces are Quillen
equivalent to F, spaces over B (see Subsection , the definition of a grouplike
commutative K-space [Definition [2.40(i)] is sensible. In addition, we make the following
definition.

Definition 3.29. (compare [Sagl6l Definition 5.4]) A map M — N of commutative
K-spaces is a group completion if N is grouplike and the induced map of bar constructions
B(hocolimg M) — B(hocolimg N) is a weak equivalence in spaces.

Example 3.30. The commutative Z-space BzK is grouplike if the monoid of connected
components 7y (hocolimz BzK) = 7y(BK) is a group, that is, if the simplicial monoid BK
is grouplike. For example, if K is given by Z, J or J, the commutative Z-space BzK is
grouplike.

Lemma 3.31. A commutative Z-space M is fibrant in (CSI)IOC(SI) if and only if M is
positive L-fibrant and grouplike.

Proof. Assume that the commutative Z-space M is fibrant in (CS* J1oc(s7) Which means

that M is SZ-local in CS7 by [Hir03, Theorem 4.1.1.(2)]. So in particular, the commutative
Z-space M is positive Z-fibrant. To show that M is grouplike, let m and n be in Z. The
space Homgsl (C(FL (%)) ®C(FE(%)), M) is weakly equivalent to

Hom§S™ (C(FL (%)), M) x Hom§S" (C(FZ(+)), M),

which by adjointness is weakly equivalent to M (m) x M(n). Likewise, the space
Homgsz (C(FL,,,(¥)) R C(FE(%)), M) is weakly equivalent to M (m Un) x M(n). The
map

Hom§®"(C(FZ,

Hom§(C(F, () ®C(Fy (%)), M) i () KC(F5 (+)), M)

is a weak equivalence if and only if the map M (m) x M (n) - M(m U n) x M(n) given
by the shear map (z,y) — (xy,y) is a weak equivalence. Recall that for p in Z, there is a
pullback square

M (p) —— hocolimz M

l l (3.29)

{p} ———— BT

(see [GJ09, proof of Lemma IV.5.7], remarks before Proposition . If pisin Zy, the
above square is homotopy cartesian by Proposition Since the classifying
space BZ is contractible, the base change map M (p) — hocolimz M is a weak equivalence
in this case. We consider the induced diagram

M(m)x M(n) ———  M(mUn) x M(n)

lw l” (3.30)

hocolimzM x hocolimzM —— hocolimzM X hocolimzM.
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The horizontal maps in (3.30|) are the shear maps. For the bottom horizontal morphism
in (3.30]) this means that in simplicial degree [s] an element (x,y) in M (my)[s] x M (ns)]s]
indexed by

(m()&...&mse./\/l'[s],n(ﬂﬁ &nseNI[s])

is mapped to (zy,y) in M (mg U ng)[s] x M(ny)[s] indexed by

(mg Ung b e m; Ling € NZ[s],ng L L ng € NZ[s)).

We see that the diagram (3.30)) is commutative as follows. Let [s] be a simplicial degree,
and let (z,y) be in M (m)[s] x M(n)[s]. The left vertical map in (3.30) sends (z,y)
to (z,y) in M(m)[s] x M(n)[s] indexed by

mdd . A menNTs,ndd .. & n, e NT]s]).

The bottom horizontal map in (3.30) takes the latter to (zy,y) in M (mUn)[s] x M (n)[s]
indexed by

(m|_|n<£ <—len€./\/’IHnl%d FHGNIH)

The other way round, the top horizontal morphism in (3.30) maps (x,y) to (zy,y) in
M (m Un)[s] x M(n)[s] which is then sent to (zy,y) in M (m Un)[s] x M (n)[s] indexed
by

mun< . A munenNZ[s)ndd . & neNT[d)

by the right vertical morphism. Because the map HomCS (sm as1d) is a weak equivalence

by assumption, two out of three yields that the bottom horizontal map in (3.30) is a
weak equivalence. If we apply the realization functor to the latter, we obtain that this is
a weak equivalence between cofibrant objects in topological spaces and hence a homotopy
equivalence. It follows from [Whi78| II1.(4.17)] that the E+, space hocolimz M is grouplike.

Reversely, let M be positive Z-fibrant and grouplike. Exploiting that M is group-
like, [Whi78 II1.(4.17)] ensures that the bottom map in (3.30) is a weak equivalence.
Two out of three implies that the top map in (3.30)) is a weak equivalence for all m and n

cs

in 7, which is equivalent to the map Homg (sm as1d) being a weak equivalence for

all m and n in Z,. Hence, the commutative Z-space M is ST-local. ]

Remark 3.32. Sagave and Schlichtkrull establish in [SS13|] a group completion model
structure on commutative Z-spaces as the left Bousfield localization of the positive
projective Z-model structure with respect to a certain universal group completion map
(see [SS13, §5]). The cofibrations and the fibrant objects in their group completion model
structure agree with the ones in (CSI)IOC(SI) (see [SS13, Lemma 5.6], Lemma .
According to [Joy, Proposition E.1.10], we can conclude that both model structures agree.
In particular, we get that a map M — N is a weak equivalence in (CSI)IOC( g7y if and
only if the induced map of bar constructions B(hocolimzM) — B(hocolimzNV) is a weak
equivalence in spaces (see [SS13, Theorem 1.3, §5]).
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Remark 3.33. Suppose that m9(BK) is a group. Let j: BzK »> (BzK)f? be a

fibrant replacement of BzK in the positive projective Z-model structure on CSZ. The
commutative Z-space (BZIC)ﬁb is positive Z-fibrant and grouplike and consequently
SZ-local by Lemma m

Proposition 3.34. Suppose that mo(BK) is a group. The identity functor
id: (OST | BrK)ioe(sz_, ) = (O )ioe(s7) 4 BIK)
z

1s the left adjoint in a Quillen equivalence.

Proof. The identity functor id: (CS* | B1K) = ((C8%)1,¢(s7) L B1K) is a left Quillen
functor (see [Hir03, Proposition 3.3.4.(1)]). If we factor an element in ‘S%IK: into
a cofibration followed by an acyclic fibration in (CST | BzK), the identity functor
id: (CS* | BzK) — ((CSI)loc(Sz) 1 BzK) takes the cofibration from the factorization
to a weak equivalence in ((CSZ)IOC(SZ) 1 BzK). Thus, it follows by [Hir03, Proposi-
tion 3.3.18.(1)] that

id
(CST 4 BrK)joeqst ) e ((CSD)sr) b BrK)

100(511311C a

is a Quillen adjunction. Note that this is the same argument as in the beginning of the
proof of Proposition Further, let j: BzK »= (BzK)™ be a fibrant replacement

of BzK in the positive projective Z-model structure on CSZ. We investigate the following
diagram of adjunctions

(ST | BzK)oc(sz,_,

B

VES

((CSI)IOC(SI) \: BIIC) — ((CSI)IOC(SI) ) (BI]C)ﬁb)'

-k

J

*>j* 7z fib
) (CS* | (BzK) )1oc(s(IBIK>ﬁb)

Here the horizontal adjunctions come from composition with and pullback along the
map j. As the map j is an Z-equivalence, Lemma [3.5| implies that the bottom adjunction
is a Quillen equivalence. Since the objects BzK and (BzK) are homotopy constant
with respect to morphisms in Z;, Lemma [3.28| ensures that the top adjunction is a
Quillen equivalence. Because the object (BzK)"" is S%-local (see Remark , we gain
from Proposition that the upper right and the lower right model structure coincide.
Applying two out of three for Quillen equivalences [Hov99, Corollary 1.3.15] finishes the
proof. O

Theorem 3.35. Suppose that mo(BK) is a group. There is a chain of Quillen equivalences
between (CS’C)IOC(S}C) and ((CSI)IOC(SI) 1 BzK).
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Proof. From Lemma [3.25] Lemma [3.26] Lemma [3:27] and Proposition [3:34] we obtain the
following chain of Quillen equivalences connecting (CSIC)IOC(S’C) with ((CSI)IOC(SI) | BzK)

(CSE Yoy Come (CSKXTY, ) s (O | BIK)
loc(S%) consty loc(9 ) q lOC(SEI)C)

colimy ou*\H\poconstK

id
((CSI)IOC(SI) \ BIIC) —_— (CSI 3 BI,C)]OC(SZ )
d BzK

1

O]

With the Quillen equivalence between (CS’C)IOC( gry and ((CSI)IOC( s7y 4 BzK) at hand,
we are able to describe the fibrant objects and the weak equivalences in (CS’C)IOC( SK)-

Lemma 3.36. Suppose that mo(BK) is a group. A commutative K-space M is fibrant in
(CS’C)IOC(S)C) if and only if M is positive K-fibrant and grouplike.

Proof. First, let M be fibrant in (CS’C)loc(s)C), that is, M is SX-local in CS* by
[Hir03l Theorem 4.1.1.(2)]. By definition we get that M is positive K-fibrant. Let

the map j: BzK >~ (BzK)i be a fibrant replacement of BzK in the positive pro-

jective Z-model structure on CSZ. Exploiting that the model category (CS’C)IOC(S)C)
is Quillen equivalent to ((C’SI)IOC( STy 4 (BzK)i?) (see proof of Proposition m Theo-
rem , we can assume that M is weakly equivalent to the image of a fibrant object
(N, py: N — (BzK)™) in ((CSI)loc(SI) 1 (BzK)f") under the composite derived
functors from ((CSI)IOC(SZ) 1 (BzK)fP) to (CS’C>IOC(S}C). Since the map py is a fibration
in (CSI)IOC(SI) and the commutative Z-space (BzK)"" is S-local (see Remark, the
commutative Z-space N is SZ-local as well by [[Hir03, Proposition 3.3.14.(1)]. It follows
from Lemma [3.31] that N is grouplike. But from Proposition [3.24] we know that the
simplicial monoid hocolimz NV is weakly equivalent to hocolimx M, in particular that the
commutative monoid 7y(hocolimzN) is isomorphic to mp(hocolimeM). As the former is
a group, we can conclude that the commutative K-space M is grouplike.

Secondly, let the commutative K-space M be positive K-fibrant and grouplike. Using the
chain of Quillen equivalences between CS* and (CS? | BzK) (see Theorem , we
can assume that M is K-equivalent to the image of a fibrant object (N, py: N — BzK)
in (CST | BzK) under the composite derived functors from (CS% | BzK) to CS¥.
Because M is grouplike, the shear map

hocolimx M x hocolimx M — hocolimxg M x hocolim M (3.31)

is a weak equivalence by [Whi78, II1.(4.17)]. As the simplicial monoid hocolimx M is
weakly equivalent to hocolimz N by Proposition the map (3.31)) is a weak equivalence
if and only if the shear map

hocolimz N x hocolimz N — hocolimz N x hocolimz N (3.32)
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is a weak equivalence. Since the map py is a positive Z-fibration and the commutative
I-space BZK is homotopy constant with respect to morphisms in 7, the commutative Z-
space NN is homotopy constant with respect to morphisms in Z, too. Thus, Proposition [2.5]
yields that for every m and n in 7, the map is a weak equivalence if and only if
the shear map

N(m) x N(n) - N(m Un) x N(n) (3.33)

is a weak equivalence. Using adjointness, the shear map (3.33)) is a weak equivalence if
and only if the map

Homgsl (C(FZ

Hom§" (C(Fy, (+))KC(Fy (%)), N) mun () RC(F7 (), N)

is a weak equivalence. Because the commutative Z-space BzK is grouplike, we get that
for every m and n in Z,, the map

Hom§S" (C(FL (+)) K C(FZ(+)), BzK)

z
Homgs (ern,n,id)

> Homg‘SI (C(FEL

mlin

() B C(Fyg (%)), BzK)
is a weak equivalence (see proof of Lemma . Applying [Hir03, Proposition 13.3.14]
ensures that the map
Hom(§™* P79 (C(F& () B C(FE (+)), C(FA() B C(FE(+) = BZK), (N, pn))
lHomgcsziBI M (5, oid)
Hom(§™> 79 (C(F (1) B C(FE (), C(Fhu (1) B C(FE(x)) = B7K), (N, pw))
is a weak equivalence for every possible augmentation C(FZ (x)) X C(FZ(x)) — BzK.

Taking into account that Quillen equivalences induce weak equivalences between the
homotopy types of mapping spaces, we obtain that for every k and 1 in K, the map

K<
Homgs (Sf,l ,id)

Hom§S" (C(F (+))RC(F*(x)), M) Hom§S" (C(F (+))RC(FF (x)), M)

is a weak equivalence. Therefore, the commutative KC-space M is S*-local. O

Theorem 3.37. Suppose that the simplicial monoid BIC is grouplike. The localized model
structure (CS’C)IOC(SIC) can be characterized as follows.

e A map M — N is a weak equivalence if and only if the induced map of bar
constructions B(hocolimg M) — B(hocolimiN) is a weak equivalence of spaces.

e The cofibrations are the cofibrations in the positive projective K-model structure
on CSK.

o A commutative K-space M 1is fibrant if and only if M is positive K-fibrant and
grouplike. Fibrant replacements model group completions. Fibrations are determined
by the right lifting property with respect to the class of acyclic cofibrations.
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We call the model structure (CSK)IOC(S)C) the group completion model structure. We
denote a fibrant replacement functor in this model structure by (—)8P.

Proof. Let f: M — N be a map of commutative K-spaces. Taking advantage of the
Quillen equivalence between (CS}C)loc(SK) and ((CSI)loc(SI) 1 BzK) (see Theorem [3.35))
and Proposition the map f is a weak equivalence if and only if the map

z i
I (hocolimy M) L (hocolime ), I

hocolimg N)
is a weak equivalence in (C’SI)IOC( s7)- This holds if and only if the induced map of bar
constructions

ocolim7IZ (hocolim
B(hocolimz % (hocolimy M)) Blhocolims 7 (hocolitnyc /)) B(hocolimz % (hocolimg N))
(3.34)
is a weak equivalence in spaces (see Remark |3.32). But the map (3.34) is a weak

equivalence if and only if the map

B(hocolimy M) ZEocctmes),

B(hocolimg N)
is a weak equivalence. The statement about the fibrant objects in (CS ’C)loc( sk 1s precisely
Lemma [3.36 O

Remark 3.38. Sagave discusses group completion in commutative [J-spaces in [Sagl6].
His approach is model categorical as well. As we do, Sagave defines the group completion
model structure on commutative J-spaces as the left Bousfield localization of the positive
projective J-model structure with respect to the set S7 (see [Sagl6, Theorem 5.5, pp.
1242-1243]). In contrast to our work, in order to describe (CSY Jloc(s7): Sagave constructs
a chain of Quillen equivalences between the localized model structure on commutative
J-spaces and the stable model structure on I'-spaces over a certain explicit I'-space
defined through the permutative category J (see [Sagl6, Definition 3.5, Theorem 5.10,
Corollary 7.17]). It is unclear whether Sagave’s approach also works for the category J
instead of the category J. The reason for this is that in the proof of [Sagl6, Lemma 7.22]
we need that the monoidal structure map of the functor hocolim 7 (see ([2.44)) is a weak
equivalence for positive cofibrant commutative J-spaces. To prove that the monoidal
structure map of the functor hocolim s is a weak equivalence, one makes use of the flat
model structure on J-spaces (see [Sagld, Lemma 2.11]). But we do not have a flat model
structure on J-spaces (see Remark [1.14)), and so far we do not know how to prove the
statement.

3.8 More examples of pre-log cdgas

Having a suitable notion of group completion in commutative J-spaces motivates other
examples of pre-log cdgas. We construct a certain direct image pre-log structure on
a given commutative symmetric ring spectrum in simplicial k-modules associated to
a homotopy class in the homotopy groups of the latter. This pre-log structure is an
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analogon of a quite useful pre-log structure in the topological setting (see [RSS18|, §4,

In the sequel let A be a positive fibrant object in C(Sp¥(smod)). Let (mj,my)
be in J4, and let [z] be a homotopy class in ,,—m, (U(A)) represented by a map
x: 8" — U(A)(mq) in S..

Lemma 3.39. There is a localization map j: A — A[l/x] of positive fibrant objects in
C(Sp™(smod)) such that the induced map m,(U(5)): 7 (U(A)) — m(U(A[1/z])) takes
the homotopy class [x] in Tmy—m,(U(A)) to a unit in mp,—m, (U(A[1/x])), and there is
an isomorphism of graded commutative rings m.(U(A[l/z])) = (7 (U(A)))[1/[z]].

Proof. (compare [Schb, Example 1.4.65]) Let p > 0. We define the simplicial k-module
A[l/z](p) as

A[l/z](p) = Homgyoq (k(S™F), A((1 + m1)p)).
The symmetric group ¥, acts on the simplicial k-modules k(S™2P) and A((1 + m1)p)
by permuting the p blocks of msy respectively 1 4 my, that is, by restriction along the
diagonal embedding ¥;, — X, respectively ¥, — X1 ,,)p. The action of the symmetric
group ¥, on the simplicial k-module Hom,,,4(k(S™2P), A((1 +m1)p)) is then given by
conjugation. For p,q > 0, there are ¥, x Y -equivariant multiplication maps

msmod(%(sm2p)v A((l + ml)p))é@Homsmod(%(Squ)v A((l + ml)q))
— Hom goq (K(S™PH9), A((1 + m1)(p + q)))

which send a pair (f, g) to the composite map

k(5200 = F(5m2)k(5™29) 129 A((1 4 my)p)®A((1 + mi)q)

A
M m s m
(1+mq)p,(1+mq)q A((1+m1)(p+q))

where p? denotes the multiplication map of A. Moreover, for p > 0, let

—_~—

i)
A(p) — A[l/z](p)
be the X,-equivariant morphism that is adjoint to the composite morphism

idA<p)®ad(a:)®p
_—

A(p)Bk(S™P) = A(p)@k(S™2)%P A(p)&A(my)®P

where ad(z) stands for the adjoint map of the map x. For p > 0, we define unit maps
A (p): B(SY)®P — A[1/z](p) as the composite

A(

E(shEr 0 A ) 22 A7) (p)
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P

where we write n? for the unit map of A. These data assemble to an object A[l/z] in
C(Sp*¥(smod)) and a morphism j: A — A[1/z] in C(Sp™(smod)). Applying the forgetful

functor U: C(Sp*(smod)) — C(Sp*) to M] is isomorphic to (U(A))[1/x] as specified
in [Schbl, Example 1.4.65]. In addition, the underlying morphism U (7): U(A) — U(A[1/x])
in C(Sp*) can be identified with the morphism U(A) — (U(A))[1/z] provided by Schwede

—_—

in [Schbl Example 1.4.65]. Employing a fibrant replacement A[1/x] = A[1/z] of A[l/x]
in C(Sp™(smod)) yields a morphism j

AL All/z] = A[l)x]

in C(Sp™(smod)) that has the desired properties by [Schb), Corollary 1.4.69]. For this, we

remark that the homotopy groups of U(A[1/z]) and U(A[1/x]) are isomorphic because
the symmetric spectrum (U(A))[1/x] is semistable by [Schbl, Proposition 4.67]. O

Construction 3.40. (compare [Sagl4, Construction 4.2]) We consider the free pre-log
structure (C(z),a) on A (see Example [2.39). The homotopy class [z] is a unit in
7« (U(A[1/z])) so that the composite map
_ Fia _
Clz) 2 07 (4) 29 07 (A1 /2))

factors through the map 4 /4): GL{(A[l/x]) — Q7 (A[1/z]). We factor the resulting
map C(x) — GLY (A[1/z]) into an acyclic cofibration followed by a fibration in the group

completion model structure (CS7), o(87) (see Theorem [3.37)),

T~

C(z) = (C(x))® —» GLY (A[1/a]).

Since the commutative J-space GL‘17 (A[1/z]) is positive J-fibrant and grouplike, it is
fibrant in (C’Sj)loC
fibrant in (C’Sj)loc(sj) so that the map of commutative J-spaces C(x) — (C(z))sP
specifies a group completion indeed. Let D’(x) be the pullback of the diagram

(s7) by Lemma 3.36; Hence, the commutative J-space (C(x))8P is

() —— 09 (A1) 2D 07 (4)

in CS7. By the universal property of the pullback we obtain a map C(z) — D'(z) which
we factor into a positive cofibration followed by a positive acyclic J-fibration in CSY,
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The single steps in this construction yield the commutative diagram

(Cx))® ——» GLY (A[1/a]) 224 QJ(A[l/w])

in CSY. Note that the pre-log structure (D'(z), D' () — Qj(A)) is the direct image
pre-log structure on A with respect to the map j and the pre-log structure

((C(2)), (C(a))# — GLT (A[1/a]) 22 QT (A[1 /a]))
(see Example . We call the pre-log structure
(D(z), D(z) — D'(z) — Q7 (4))

the direct image pre-log structure on A associated with z. There is a sequence of
morphisms of pre-log cdgas

(4,C(x),q)
\L —
(A, D(z), D(z) — D'(z) — Q7 (A))
\LN
(A, D'(z), D'(z) — QI (A)) (3.35)
l
(4, (27 (7)(GLY (A[1/2])), (7 (3))+ (ia11/a))
1

(A1 /2], GL{ (A[1/a]), i aq1/a)

where the fourth pre-log cdga is A together with the direct image log structure with
respect to the map j and the trivial log structure (GLY (A[1/z]), iA[1/a]) (see Example
Example [2.46]). The last two pre-log cdgas in the above sequence ([3.35)) are log cdgas in
fact.

From Example we know that the space hocolim 7C(x) is weakly equivalent to
[1,,>0 BXn. The Barratt-Priddy-Quillen theorem implies that the group completion
hocolim ;C/(x) — hocolim 7(C(z))8P is weakly equivalent to [[,>9 BE, — Q(S°). The
next lemma determines the homotopy type of the space hocolim 7D(z) in a special case.
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Lemma 3.41. Let A be a positive fibrant object in C(Sp™(smod)) such that my(U(A)) = 0
for ¢ < —1. Let (my, my) be in Jy, and let [x] be a homotopy class in 7(U(A)) of even
positive degree mo — my represented by a map x: S™ — U(A)(my) in Sx. The space
hocolim 7 D(z) is weakly equivalent to the non-negative path components of Q(SY) denoted
by (Q(S%))>0. The composite map

hocolim 7C(x) — hocolim 7 D(x) — hocolim 7(C(x))%P

is weakly equivalent to

I BZ: — (Q(5)20 — Q(S°)

n>0
where the latter is the canonical factorization of the group completion map through the
inclusion of the non-negative path components of Q(S?).

Proof. (compare [Sagl4l, proof of Lemma 4.6]) As the commutative J-space D(z) is
J-equivalent to D’(z), it suffices to prove the statement for the latter. The pullback D’(x)
can be computed J-levelwise. Let (ny,ns) be in J,. The space D'(x)(ny,ns) is the
pullback of the diagram

Qj(j)(n1,n2) Qj(A)(nl,rIQ)

(C(x))®(n1,m3) —— Q7 (A[L/2]) (01, m)
Recall from Remark that for a positive fibrant object B in C(Sp*(smod)) and
l € Z>g, there is an isomorphism

Tiny—ny (U(B)) = m(U(Q7(B))(n1,n2)). (3.36)

First, suppose that no —n; < —1. Taking into account (for [ = 0), under the base
change map D'(x)(n1,n3) — Q7 (A)(n1,ny) a point in D’(x)(n1,ny) is sent to a point in
Q7 (A)(n1,n3) which would represent a power of an inverse of the homotopy class [x] in
(U (A)). But it follows from the assumption that m,(U(A)) = 0 for ¢ < —1, that the
space D'(z)(ny, ng) is empty.

Secondly, suppose that no — n; > 0. Again in view of , the fact that the mor-
phism 7. (U(j)): m(U(A)) = m«(U(A[1/x])) is an isomorphism in non-negative degrees
ensures that the morphism Q7 (5)(ny,n3): Q7 (A)(ny,ny) — Q7 (A[1/z])(ng, o) is a
weak equivalence. Hence, due to the model category S being right proper, the base
change map D'(z)(n1,n2) — (C(x))8P(n1, ng) is a weak equivalence. Observing that the
inclusion functor J, — J is homotopy right cofinal by Lemma and that the space
hocolim 7 (C(z))#P is weakly equivalent to Q(S°), finishes the proof. O

Remark 3.42. In the topological setting forming pre-log structures involving the com-
mutative J-space D(x) [Sagld, Construction 4.2] is convenient, e.g. when identifying
examples of log THH-étale morphisms of pre-log ring spectra (see [RSS18| §6]) or calcu-
lating logarithmic topological Hochschild homology of pre-log ring spectra in examples.
The latter in turn helps to determine the ordinary topological Hochschild homology of the
underlying commutative symmetric ring spectra (see [RSS18), §7-§8]). Our main example,
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the commutative H k-algebra spectrum F(X, Hk) for a space X, usually has non-trivial
negative homotopy groups (recall the isomorphism m,(F (X, Hk)) = H *(X, k) (2.9)).
We point out that we do not have an analogon of the previous lemma in the case that A
is a positive fibrant object in C(Sp*(smod)) such that 7,(U(A)) = 0 for ¢ > 1, that
(m1, my) is in J,, and that [z] is a homotopy class in 7.(U(A)) of even negative degree
mgo — mq. The reason for this is that from the isomorphism and the fact that
the morphism 7, (U(j)): m(U(A)) — 7 (U(A[1/z])) is an isomorphism in non-positive

degrees, we can only deduce that for (n;,ng) in J4 with ng —n; <0, the map

n(U(Q7 (4))(ny, ny)) “YETDE0D, 1507 (AfL/2])) (01, 1))

is an isomorphism for [ +ng —ny <0, that is, | < —(n2 — n1). But from this we cannot
conclude that the map Q7 (j)(ny,ng): Q7 (A)(ny,n) — Q7 (A[1/2])(ny,n2) is a weak
equivalence.

Another problem of working with the commutative J-space D(z) is that so far we do not
have an explicit description of (the homotopy type or the homology groups of) A7 (D(x)).
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4 Logarithmic topological Hochschild homology of log cdgas

In the last section we introduce logarithmic topological Hochschild homology of log cdgas.
Our approach resembles Rognes, Sagave and Schlichtkrull’s work in [RSS15]. We make
use of the results in Section [3| First we discuss cyclic and replete bar constructions as
well as general repletion of commutative diagram spaces. After this, we set the index
category to be J and define logarithmic topological Hochschild homology of pre-log cdgas.
We show that this definition is homotopy invariant under logification. Furthermore, we
specify formally log THH-étale morphisms of pre-log cdgas and present two approaches
towards examples.

In the upcoming first two subsections, let K denote a well-structured index category
which is permutative and whose classifying space BK is grouplike. Suppose that the
inclusion functor K — K is homotopy right cofinal and that the pair (I, OK ) is a very
well-structured relative index category.

4.1 The cyclic and replete bar constructions

We present the cyclic and replete bar constructions of commutative K-spaces. The
concepts in [RSS15| §3.1, §3.3] directly generalize from the category J to a category K
which satisfies the above assumptions.

Definition 4.1. (compare [RSS15| Definition 3.1, Definition 3.2]) Let M be a commuta-
tive KC-space. Let B&¥(M) be the cyclic commutative K-space given by [n] + MZn+L,
The face maps d;: M2+t — M™" for 0 < i < n — 1, multiply adjacent copies of M by
using the multiplication map p™: M & M — M. The face map d,,: M*+1 — p&n
employs the symmetry isomorphism for the symmetric monoidal product X and the
multiplication map u™,

M q;
Y Y A V- B - Vi O -

The degeneracy maps s;: M Mntl _y MM +2 for 0 < j < n, insert copies of M along
the unit map UX — M. The cyclic operator t,: M¥Tt — MY+l js specified by
the symmetry isomorphism for the symmetric monoidal product K. The cyclic bar
construction B (M) is defined as the realization of Be”(M). The iterated multiplication
maps of M give rise to a natural augmentation map (ens)e: Be’ (M) — consty M whose
realization is epr: BY (M) — M.

A realization functor from simplicial objects in CS* to CSK is given by applying the
diagonal functor from bisimplicial sets to simplicial sets K-levelwise.

Remark 4.2. To define the cyclic bar construction B% (M) it actually suffices to assume
that M is an associative K-space.
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Remark 4.3. The category of commutative K-spaces is tensored over spaces (see [SS12]
pp. 2163-2164]). In this way, the cyclic bar construction of M admits a different
description, namely BY (M) = M ® S' in CS*. The augmentation map €/ is determined
by the map S* — * (compare [RSS15, Lemma 3.3]). As the functor (—) ® S! is a left
Quillen functor, the commutative K-space B% (M) has a well-defined homotopy type if
the commutative K-space M is cofibrant in the positive projective K-model structure
on CS¥.

Let M be a commutative -space, and let

M Ly M8 — % constix (4.1)

~

be a functorial fibrant replacement of M in the group completion model structure
(CS’C)loc(SIC) (see Theorem (3.37)).

Construction 4.4. (compare [RSS15, Construction 3.11, Definition 3.12]) We factor
the map 7, in (4.1)) into an acyclic cofibration followed by a fibration in the positive
projective K-model structure on CS*

nm
/\
M~ M —% .y pep

Let Bo?(M) be the cyclic commutative K-space that is defined by the pullback diagram

B (M) ——— BY(M®P)
J{ J{(Q\/Igp). (4‘2)

~_ constpq
constyAM —= const M8P

in cyclic commutative KC-spaces. By the universal property of the pullback we obtain a
natural map (vas)e: Be’ (M) — Be¥ (M),

B (nar)

B (M) _var)e, BP(M) ——— B (M?8P)

(EM)-\L l l(eMgp). (4.3)

~, const
consta M —— constp M OmEAd constp MEP,

The replete bar construction B™P(M) is defined as the realization of Be"(M). The
induced map vyr: BY (M) — B™P(M) is called the repletion map.

Remark 4.5. Since the model category CS® is right proper (see Remark [2.10)) and the
map q: M — M?®P is a positive K-fibration, the realization of the pullback diagram (4.2)
is a homotopy pullback diagram.
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Lemma 4.6. If a map f: M — N is a weak equivalence in the group completion model
structure (CS’C)loC(S/c) between grouplike objects, then the map f is a K-equivalence.

Proof. Let j: M = M and j’: N = NP be functorial fibrant replacements in
the positive projective K-model structure on CSX. Since the maps j and j’ are weak
equivalences in (CS’C)IOC( iy by [Hir03 Proposition 3.3.3.(1)(a)], it follows from two out of
three that the induced map ff?: M — Nfb is a weak equivalence in (C’S’C)IOC( sx)- The
commutative C-space M as well as the commutative K-space NI is positive K-fibrant
and grouplike and hence fibrant in (C’S’C)IOC( gy by Lemma Therefore, the map ffiP
is a KC-equivalence. Two out of three implies that the map f is a K-equivalence. O

Corollary 4.7. (compare [RSS15, Lemma 3.13]) If the commutative K-space M is
positive cofibrant and grouplike, the repletion map vyr: BY(M) — B"™P(M) is a K-
equivalence.

Proof. As the map ny: M — M®P is a weak equivalence in (C’S’C)loc(sm) between
grouplike objects, Lemma [£.6] ensures that the map 7,/ is a K-equivalence. By two out
of three the map ¢: M — M?&P is a positive acyclic K-fibration. Consequently, the base
change map B™P(M) — B%(MEP) is a positive acyclic K-fibration (see (4.3)). Because
the map nys is a K-equivalence between positive cofibrant objects, the induced map
B%(nar) is a K-equivalence. Thus, two out of three yields that the repletion map vy is a
KC-equivalence. O

4.2 General repletion

In this subsection we deal with a more general concept of repletion which can be considered
as a relative version of group completion. We transfer Rognes, Sagave and Schlichtkrull’s
results in [RSS15, §3.4] concerning the index category J to the index category K. We
leave out those proofs which translate straightaway and refer to [RSS15] for more details.

Definition 4.8. (compare |[RSSI5, Definition 3.14]) Let f: N — M be a map of
commutative C-spaces. The repletion N™P — M of N over M is given by factoring the
map f in the group completion model structure (CS’C)IOC( Ky as an acyclic cofibration

followed by a fibration
f

N > Nrep M. (4.4)
We call the map vy : N — NP the repletion map.

Definition 4.9. (compare [RSS15, Definition 3.16]) A map f: N — M of commutative
KC-spaces is virtually surjective if the map f gives rise to a surjective homomorphism of
abelian groups

7o (hocolimy f&P)
_—

7o (hocolimyg N8P) 7o (hocolimy M8P).
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Example 4.10. Let M be a commutative C-space. The augmentation map
BY(M) 24 M

has a multiplicative section M — B (M) which is the realization of the inclusion of the
constant cyclic object consty M to BeY(M). Therefore, the map €y is virtually surjective
(see [RSS15, proof of Proposition 3.15]).

Lemma 4.11. (compare [RSS15, Corollary 3.18]) Let f: N — M be a virtually surjective
map of commutative KC-spaces. The repletion NP is KC-equivalent to the homotopy pullback
of the diagram

Nep L e M gy

in the positive projective K-model structure on CS*. The repletion map vy: N — N™P
is given as above in (4.4)).

Remark 4.12. Assume that the category K is Z, and let f: N — M be a virtually
surjective map of commutative Z-spaces. In [SS13] the repletion NP of N over M is
actually defined as the homotopy pullback of the diagram

Nep ST apep M

in the positive projective Z-model structure on CS%. The maps ny: N — N&P and
f: N — M give rise to the repletion map vy: N — NP by the universal property of
the pullback (see [SS13, Remark 5.15], compare [Rog09, Definition 8.2]).

Lemma 4.13. (compare [RSS15, Lemma 3.19]) Let M be a commutative K-space.
The commutative K-spaces BY (M8P) and (BY(M))8P are K-equivalent as commutative
K-spaces under BY (M) and over M$P.

The last two lemmas yield the following proposition, which relates the replete bar
construction introduced in the previous subsection to the general repletion defined above.

Proposition 4.14. (compare [RSS15, Proposition 3.15]) Let M be a commutative K-
space. There is a natural chain of K-equivalences under BY (M) and over M connecting
the replete bar construction B™P(M) to the repletion (B (M))™P of the augmentation
map epr: BY(M) — M.

Lemma 4.15. The homotopy pushout (with respect to the positive projective K-model
structure on commutative K-spaces) of grouplike objects is grouplike.

Proof. Let
C+— A—B

be a diagram of commutative K-spaces where C and B are grouplike. Assume without
loss of generality that one of the maps is already a positive cofibration so that there is a
pushout diagram

A—— B

1 l
CHC&AB

112



in commutative K-spaces. Recall that in general for a K-space M, every point in
mo(hocolimy M) is represented by a zero simplex x in M (ko)[0] with ko in K. There is a
composite of simplicial monoids

hocolimxC' x hocolimx B — hocolimg (C' X B) — hocolimy (C X4 B) (4.5)

where the first map is the monoidal structure map of the functor hocolimyg (see (2.44))
and the second map is induced by the quotient map CXB — C'Kl4 B. The composite (|4.5|)
in simplicial degree zero is given by the composite

[T cko)lo] x [T BW)o] =  [I  Clko)l0] x B(lo)[0]
koek loek (ko,lo)ElCXlC
— H colim | n—kou1, C(m)[0] x B(n)[0]
(ko,lo)E’CXK
— T colitmumn poC(m)[0] x B(m)[0]
poek

— [ (C®a4 B)(po)[0].

pPoeX

The last map in the composite (4.6) is the quotient map and hence surjective. Applying
the functor 7y to the composite (4.5)) yields the following composite of commutative
monoids

mo(hocolimx C' x hocolimg B) — mp(hocolimx (C'® B)) — mg(hocolimy (C' X4 B)). (4.7)

Assume that there is a point in 7p(hocolimx (C X4 B)). This is represented by a pair
of zero simplices (x,y) in C(m)[0] x B(n)[0] indexed by a map m Un — pg in £
with pg in K. The preimage in mp(hocolimxC' x hocolimg B) under the composite
is just represented by the pair of zero simplices (z,y) in C'(m)[0] x B(n)[0]. Thus, the
composite is surjective. The surjectivity of a map of commutative monoids where
the source is a group implies that the target is a group, too. The commutative monoid
mo(hocolimxC' x hocolimy B) being isomorphic to mg(hocolimxC) x mp(hocolimg B) is a
group. Consequently, the commutative monoid 7y (hocolimg (C' X4 B)) is a group. [

The remaining results in this subsection are mainly consequences of the theory in
Section [3| but play an important role in the upcoming subsection where we prove that
logarithmic topological Hochschild homology is homotopy invariant under logification.
Recall the composite derived functor [ ,% from commutative K-spaces to commutative
Z-spaces over BzK (see Theorem and remarks below Remark . We note that in
general, a left adjoint in a Quillen equivalence preserves pointwise cofibrant homotopy
cocartesian and pointwise cofibrant homotopy cartesian squares, whereas a right adjoint
in a Quillen equivalence respects pointwise fibrant homotopy cocartesian and pointwise
fibrant homotopy cartesian squares. In the following we frequently use that the derived
composite functor I,% preserves homotopy cocartesian as well as homotopy cartesian
squares.

113



Lemma 4.16. (i) Let the map f: M — N be a group completion in commutative
K-spaces. The induced map IE(f): IE(M) — IE(N) is a group completion in
commutative I-spaces, when forgetting the augmentation to BzK.

(ii) Let f: N — M be a virtually surjective map of commutative KC-spaces. The induced
map TE(f): IE(N) — TE(M) is a virtually surjective map in commutative Z-spaces,
when forgetting the augmentation to BrK.

Proof. (i) From Proposition we know that the induced map IZ%(f) is a weak equiv-
alence if and only if the map IZ(hocolimy f): IZ (hocolimg M) — I*(hocolimx V)
is an Z-equivalence. Due to mg(hocolimz /% (hocolimxV)) = 7 (hocolimyx N) being
a group, the target of the map IZ(f) is grouplike. In addition, the induced map of
bar constructions

im7I% im
) B(hocolimz I* (hocolimy f)) B(

B(hocolimz I (hocolimy M hocolimz I (hocolimx N))

is a weak equivalence in spaces, because the map

B(hocolimy M) M

B(hocolimg N)
is so.

(ii) From part (i) we get that the map IZ(f) is virtually surjective if the induced map

mo(hocolimz I (hocolimy N8P))

7o (hocolimz I (hocolim f&P))

(4.8)

o (hocolimz I (hocolimy MEP))

is a surjective homomorphism of abelian groups. But this holds because the map (4.8)

is isomorphic to the map 7my(hocolimy f8P).
O

In the following lemma we use the characterization of repletion from Lemma .11} and
Remark respectively.

Lemma 4.17. Let f: N — M be a virtually surjective map of commutative K-spaces.
Let N™P be the repletion of N over M with repletion map vy: N — N™P. The commu-
tative T-space IE(N™P) provides a repletion of IE(N) over IE(M) with repletion map
TE(vN): TE(N) — IE(N™P), when forgetting the augmentation to BzK.

Proof. By Lemma [£.11] the repletion N™P is K-equivalent to the homotopy pullback of

the diagram

fgp

Nep o opgep M ar

in the positive projective -model structure on CS*. As the derived composite functor I ,%
preserves homotopy cartesian squares, the commutative Z-space [ % (N*¢P) is Z-equivalent
to the homotopy pullback of the diagram
IZ(fep

ic (F5P) I,%

T
TE(N®) (veey E ()
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in the positive projective Z-model structure on CSZ. It follows from Lemma (1) that
the induced maps IZ(na): TE(M) — TE(M®) and IE(ny): I5(N) — I£(N®P) are group
completions, and from Lemma (ii) that the map I%(f): IE(N) — I:(M) is virtually
surjective. Therefore, the repletion of IZ(N) over I%(M) is Z-equivalent to IE(N™P),
and the repletion map is specified by I (vy): TE(N) — TE(N™P). O

Proposition 4.18. Let

| | (4.9)

be a diagram of commutative K-spaces in which N;* is the repletion of the horizontal
composite map f;: Ny — M; fori=1,...,4. If the left and right hand faces are homotopy
cocartesian and the map f; is virtually surjective for i =1,...,4, the middle square of
repletions s homotopy cocartesian.

Proof. We apply the derived composite functor I,% to the diagram (4.9) to obtain
the following diagram of positive cofibrant commutative Z-spaces where we forget the
augmentation to Bz,

£ (N2) TE(NS™P) TE(Ms)
TE(Ny) T TE(NTP) | IE(My) (1.10)
I (Ny) LE(NSP) ——— | —— IE(My).
7 7 7

TE(N3) ——————— TE(N™) IE(Ms)

From Lemma M(n) we get that the induced map IZ(f;) is virtually surjective for
i=1,...,4. Besides Lemma implies that the commutative Z-space IE(N;) is
Z-equivalent to the repletion of the map IZ(f;) for i = 1,...,4. Considering that the
derived composite functor [ ,% respects homotopy cocartesian squares, the left and right
hand faces of are homotopy cocartesian. Given this, we can proceed precisely as in
the proof of [RSS15, Lemma 4.26] replacing the category J by the category Z. Note that
the statement made at the beginning of the proof of [RSS15, Lemma 4.26] is proved by
Lemma O

Remark 4.19. In the proof of [RSS15, Lemma 4.26] Rognes, Sagave and Schlichtkrull
exploit the fact that the monoidal structure map of the functor hocolim s is a weak
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equivalence for positive cofibrant [J-spaces. As we do not know whether this holds in
general (e.g. for the category J see Remark , we make a detour by using the Quillen
equivalence between commutative K-spaces and commutative Z-spaces over BzK (see
Theorem. The monoidal structure map of the functor hocolimy is a weak equivalence
for positive cofibrant commutative Z-spaces by [SS13| Lemma 2.25, Proposition 3.2].

4.3 Logarithmic topological Hochschild homology

We define logarithmic topological Hochschild homology of pre-log cdgas and show that
this is homotopy invariant under logification. Our approach is similar to the one in the
topological context by Rognes, Sagave and Schlichtkrull in [RSS15, §4].

Let A be an object in C(Sp*(smod)). We specify a cyclic object B (A) in C(Sp™(smod))
by B (A) = A"+ with structure maps induced by the multiplication and unit map
of A and the symmetry isomorphism for the symmetric monoidal smash product A.

Definition 4.20. (compare [Shi00, Definition 4.1.2], [RSS15] Definition 3.5]) Let A be a
positive cofibrant object in C'(Sp*(smod)). We define the topological Hochschild homology

THHSym(E(Sl))(A) as the realization of the cyclic object THH?ym(TC(Sl))(A) = BJ(A).

A realization functor from simplicial objects in C(Sp*(smod)) to C(Sp™(smod)) is
given by applying the diagonal functor from bisimplicial k-modules to simplicial k-modules
in each spectrum level. Because of the cofibrancy assumption, the definition of topological
Hochschild homology is homotopy invariant.

Remark 4.21. Recall the Quillen equivalence

k(=) A a) Sym(k(S1))
C(Hk-mod) - C(Sp*(smod))

(see (2-8)) and that the left adjoint &(—) Nt Sym(k(S1)) is strong symmetric monoidal.
For a positive cofibrant object A in C(Hk-mod), the topological Hochschild homology
THH*(A) in C(Hk-mod) corresponds to THHSym(’;(Sl))(iﬂ(A) Ni(HE) Sym(k(S1))) in
C(Sp™(smod)). Moreover, considering that (commutative) Hk-algebra spectra are Quillen
equivalent to (Fo) dgas (see Theorem Theorem [2.16)), the functor THH* can be
identified with derived Hochschild homology HH* which is known as Shukla homology (see

[DSO7, §4.4]). For instance, let A be a commutative k-algebra and let (HA)®f =% HA

be a cofibrant replacement of HA in C(Hk-mod). If A is a commutative k-flat k-
algebra, the underlying Hk-module spectrum of H A is flat and there are the following
isomorphisms of commutative k-algebras

HH"(A) =~ THHZK(H A)
= THH* ((H A)*") (4.11)
= THH™ M) (R((HA)%) A 3 Sym(E(S"))).
For the first isomorphism in see also [EKMM97], Theorem IX.1.7].
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Recall the functor A7 from Definition |L_‘ﬂl

Lemma 4.22. Let M be a cofibrant object in the positive projective J-model structure
on CSY . There is a natural isomorphism

THHSY S (AT (M) =2 AT (BY (M)).

Proof. We denote the realization functor by | — |. As a left adjoint, the functor AT
commutes with coproducts. Thus, we obtain that

[n] = (A7 (M)}
[n] = AT (MERHL) Y|

THHSym(’E(sl)) (Aj(M))

1

{
{
which is isomorphic to A7 (BY(M)). O

Definition 4.23. (compare [RSSI15, Definition 4.6]) Let (A, M, «) be a cofibrant pre-log
cdga. We define the logarithmic topological Hochschild homology THH(A, M, o) via the
pushout diagram

Sym(F(S") (AT = AT A pon) 7 .
THHSY (AT (M)) —— AT(BY(M)) ———— AT ((BY(M))™P)
THHSymWSl»(ad(a))I l
THHSym(/;?(Sl))(A) THH(A, M, «).
(4.12)

Remark 4.24. The first upper horizontal map in the pushout diagram is given
by the isomorphism from Lemma The cofibrancy assumption on (A, M, «) requires
the commutative J-space M to be positive cofibrant and the adjoint structure map
ad(a): A (M) — A to be a positive cofibration (see Remark . Therefore, the
pushout square is in fact a homotopy pushout square, and the definition of logTHH
is homotopy invariant.

Rognes, Sagave and Schlichtkrull use the replete bar construction B*P (M) instead of the
repletion (B (M))*P to define logarithmic topological Hochschild homology of a pre-log
ring spectrum [RSS15| Definition 4.6]. But the object B*P(M) is in general not positive
cofibrant. Nevertheless, Rognes, Sagave and Schlichtkrull show that their definition is
homotopy invariant [RSS15, Proposition 4.9] by introducing the criterion of SY -goodness
(see [RSS15, §8]). To check S7-goodness, Rognes, Sagave and Schlichtkrull employ the
explicit decription of the functor S ([SS12, (4.5)], see proof of [RSS1H, Lemma 8.4]).
Contrary to this, although we can define A -goodness analogously, we do not know how
to verify the latter due to the abstract definition of the functor AY. The advantage
of Rognes, Sagave and Schlichtkrull’s definition is that the logarithmic topological
Hochschild homology of a pre-log ring spectrum is isomorphic to the realization of a
cyclic commutative symmetric ring spectrum (see [RSS15, remarks after Definition 4.6]).
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Next we show that logarithmic topological Hochschild homology is homotopy invariant
under logification. The proof resembles the proof of [RSS15, Theorem 4.24]. Besides, it
is an application of the results from Section [3| and the previous two subsections.

Proposition 4.25. Let A be a positive fibrant commutative symmetric ring spectrum in
simplicial k-modules, and let (A, M, «) be a cofibrant pre-log cdga. The logification map
(A, M,a) — (A%, M, %) gives rise to a stable equivalence

THH(A, M, a) — THH(A®, M®, a%).

Proof. (compare [RSS15l, proof of Theorem 4.24]) We need to verify that the map of
pushouts

THHSym(]NC(Sl))(A) /\Aj(BCY(M)) Aj((BCy(M))rep)

= THHS™ D (AD) A 7 ey (1ge9) A7 (B (M)™)

is a stable equivalence.
Let P % a~'(GL{(A)) be a cofibrant replacement of a~*(GL{ (A)) in the positive
projective J-model structure on commutative J-spaces. We investigate the following

pushout square

BY (np)

BY(P) By (PeP)

VBCY(P)I lr

(BY(P))"P —— (BY(P))"? Wpey(p) BY(P#P).

As the map vpey(p) is an acyclic cofibration in the group completion model structure
(CSJ)IOC(Sj), so is the cobase change map 7. The source B%(P®P) of the map 7 is

grouplike because of Lemma m Due to the induced map 7y(hocolim 7VBey(p)) being
surjective, the target of the map 7 is grouplike as well. By Lemma the map 7 is a
J-equivalence. There is a composite map

P —% a Y(GLY (4)) —— GLY (4) —“» Q7 (A), (4.13)

which factors through GL‘F (A). Hence, the composite map (4.13)) extends over the map
np: P — P&, Let the map A7 (P) — A be the adjoint of the composite map (4.13).
The induced map

AT (BY(P)) = THHSY™®S)D (AT (P)) — THHSY™KED) (4)
factors as a composite

AT (B (np))

AT (B (P)) AT (B (PeP)) — THHSY™(R(S)) (4),
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We observe that the pushout of the diagram

THES™EE) (4) AT (Bov(p)) S )

AT((BY(P))*eP)
is isomorphic to the pushout of the diagram

- _ T r _
THHSY™FED) (4) e AT (BY(P)) 20 AT (B (P))P Ripey(p) BY(PE)).

Since the map 7 is a positive acyclic cofibration, the induced map AT (1) is a positive
acyclic cofibration. Therefore, the cobase change map

THHS ™S (4) = THESEED(A) A5 ey ) AT (BY(P)P) (4.14)

is a positive acyclic cofibration.
Further, we factor the composite

P > a~(GLY (4)) — GLY (A)

into a cofibration followed by an acyclic fibration in the positive projective J-model
structure on commutative J-spaces

P G = GLY (A).

Because of [Hir03, Proposition 13.5.3], the induced map of pushouts M Xp G — M* is a
J-equivalence. We analyze the diagram

A (BY(Q)) AT (B (M®))

_ 7/ T _ /

AT (BY(P)) 1 AT (BY(M))
A (B (G))eP) AT (B (M®))reP)
i ] . -
AT ((B¥(P))*P) 1 AT ((B¥ (M))reP)
A (G) AT (M®).
AT (P) — AT (M) —

(4.15)
As the commutative J-space G is S7-local by Lemma and the map (BY(G))™? — G
is a fibration in (CSj)IOC(Sj), the commutative J-space (B%(G))*P is §7-local by
[Hir03l, Proposition 3.3.14.(1)]. In particular, the latter is grouplike due to Lemma m
so that the map vpey(q): BY(G) — (BY(G))™P is an acyclic cofibration in the positive
projective J-model structure by Lemma Thus, the induced map

AT (vgey(y)
—

A (B¥(@)) AT ((B¥(G))™eP) (4.16)
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is a positive acyclic cofibration. Let the map AT (G) — A be the adjoint of the composite
G —» GLY (4) —“» Q7 (A),

and let Aj(BCy(G)) — THHSym(:(Sl))(A) be the induced morphism. We then apply the
functor (—) AAT (Bev(G) THHSym(k(SI))(A) to the upper left hand square in (4.15)), and
consider the map from the pushout

(AT ((BY(P)) Ay (ges(pyy A (BY(G))) Apg (ev () THEP ™ (4)
= AT ((BY(P))™®) Ay (pev ) THH ™) (1)

to Aj((BCy(G))rep) AAT (B (@) THHSym(k(SI))(A). This is a stable equivalence, because
the map is a stable equivalence and the map is a positive acyclic cofibration.
Moreover, in view of the functors A7 and BY = (-) ® S! being left Quillen, the top
and the bottom face of the diagram are homotopy cocartesian. The middle square

in (4.15)) is homotopy cocartesian because of Proposition and the functor A7 being
left Quillen. Consequently, the square

THE(A) Ay ey (pyy A7 (B (P))*®) — THH(A) Ay e (31y) A7 (B (M))P)
l l
o AT (B (G))"*P) — THH(AY) Ay ey agayy A7 (B (M))eP)
(4.17)
where we abbreviate the functor THHSY™((Sh) by THH is homotopy cocartesian. Taking
into account that the left vertical map in is a stable equivalence, so is the right
vertical map, which finishes the proof. ]

THH(A) Ay 7 pper %)

4.4 Formally log THH-étale morphisms

In the sequel we specify formally log THH-étale morphisms of pre-log cdgas. We focus
on two approaches to find examples. On the one hand, tamely ramified extensions of
commutative rings, and on the other hand, formally THH-étale morphisms of commutative
Hk-algebra spectra should give rise to formally log THH-étale morphisms of pre-log
cdgas.

Definition 4.26. (compare [RSS18, p. 510]) A map of cofibrant pre-log cdgas (4, M, a) —
(B, N, ) is formally log THH-étale if the induced square

A B

| !

THH(A, M, o) — THH(B, N, )

is homotopy cocartesian in C'(Sp™(smod)).
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Remark 4.27. Let (f, f): (4, M,a) — (B, N, 3) be a map of cofibrant pre-log cdgas.
We consider the induced diagram

A B
o / | ] /
!

AT (N)
THHSY™ RSN (4) THHSY™*(SN)(B)

_ / ‘ _ /

AT (B (M)) 1 AT(BY(N))
THH(A, M, o) THH(B, N, 5).
) — ) —
AT (B (M))™P) AT((B¥(N))™P)
(4.18)

To show that the map (f, f°) is formally log THH-étale, we need to prove that the back
face of the diagram (4.18) is homotopy cocartesian. For this, it suffices to show that
the top face and the front face of are homotopy cocartesian. To see this, we
observe that the lower left hand square and the lower right hand square of are
homotopy cocartesian by definition. The inner square results from applying the functor
THHSY™*(SY) 6 the top face and is consequently homotopy cocartesian. Thus, the
bottom face of is homotopy cocartesian. As the top, front and bottom face of
are homotopy cocartesian, we can conclude that the back face of is homotopy
cocartesian (compare [RSS18| proof of Theorem 6.3)).

In general it is not sufficient that the upper back square of the diagram is homotopy
cocartesian to deduce that the map (f, f) is formally log THH-étale.

In the upcoming Example [£:29] we investigate a map of pre-log cdgas induced by
a tamely ramified extension of polynomial rings. We make use of the notions cyclic
bar construction, group completion, virtually surjective morphism and repletion of
commutative monoids as defined in [Rog09, §3]. Moreover, the following lemma is helpful.

Lemma 4.28. Let (z) denote the (discrete simplicial) free commutative monoid on a
generator x.

(i) The cyclic bar construction BY ({x)) decomposes as a disjoint union of cyclic sets

BY((x)) = [[ B¥((2) ,j) =+ U ] $*()

j=0 Jj=21

where the cyclic subset BY ((x),j) = e@ (z7) consists of the simplices (mo, ..., mg)

with mg---mg = x7. The cyclic subset BY((x),0) is a point, while the cyclic
subset BY ({x),7) for j > 1, is S'-equivariantly homotopy equivalent to S* with the
degree j action, which we write as S*(j).
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(i) The group completion (x)** = (z,x~ ') = {27, j € Z} has the cyclic bar construction
B ((2)®?), which decomposes as a disjoint union of cyclic sets

BY((2)®) = ] B¥ (@)™ j) = [[ 5'())

JEZ JEZ

where BY ((x)8P | j) = € 1>gp (7). The cyclic bar construction B ((x)5P) contains
the replete bar construction

B*P((z)) = [[ B (()**,5) ~ ][] S*(j)

520 >0

as the non-negatively indexed summands. The repletion map

BY((x)) =% BP((x))

decomposes as the disjoint union of the inclusions BY ({x),j) — BY ((z)® ,j) for
j > 0. For j > 1, this inclusion is an S'-equivariant homotopy equivalence, and for
j =0, this inclusion identifies the source with the S*-fized points of the target.
(iii) The commutative symmetric ring spectrum Aj(F(‘Zp)((x))) is naturally isomorphic
to Fo(klz]).
(iv) The commutative symmetm’c ring spectrum Aj(BCy(F(‘Z 0)((:c>))) is naturally iso-

morphic to A (F (0, 0)(ch(< z))))-

(v) The group completion 1y (x) — (2)® induces the group completions

= ij () =
F o (@) =22 Fg o) ({2)%") (4.19)
and )
. FJ 0)(BY (0(2)))
Fif o) (BY () —22——"5 Fig 0 BY ((2)%) (4.20)
in 087

(vi) The repletion (BCY(F(‘Z 0)(<x>)))rep is J -equivalent to F(‘Z 0)(Brep((:v>)). The reple-
tion map

y ,

. BY(FY  ((2)))
(0,0)

BY(Fg o ((2))) ——=2—

can be identified with the induced map

(B (Fg o) ({)))"”

Fig o) V)

FJ oy (B (1)) F o (BP(())).

Proof. (i) This statement is [Rog09, Proposition 3.20] which follows from the proof of
[Hes96, Lemma 2.2.3].
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(ii)
(iii)

This statement is [Rog09 Proposition 3.21].

Let A be an object in C(Sp™(smod)). Let C'S denote the category of commutative
simplicial monoids. Exploiting adjunctions, we find the following isomorphisms

C(Sp™(smod)) (A7 (F(%O)« x))), A) = CS7(F, 0)(<w>),U(Qj(A)))
~ 0S((z),U(Q7 (4))(0,0)).

3

Using the isomorphisms L(Fp(S°)) = Fo(T'(S?)) = Fy(constaopk) and adjunctions,
we obtain that

U(Q7 (4))(0,0) = U(Hom®™ ™Y (L(Fy(s?)), 4))

Mmod
= U(Ho fgj;gsmOd)(Fo(ConStAopk), A))
2 7 (Hom o ((Ao), A(0)))
~ Homg (Ao, U(A(0)))
= U(A(0)).

Moreover, again by adjunction we get that
C(Sp™ (smod))(Fy(k[a]), A) = CS({x) , U(A(0)))-

Thus, the object Aj(Fj 0)((:1:>)) can be identified with the object Fy(k[z]) in

(o,
C(Sp*(smod)).
We obtain that
AT (BY (F o, ((2))) 2 AT (F o) ({2)) @ 8"
= AT (F o) ((z) ® 1))
= AT (F 0 (BY ((x)))

where we make use of the fact that the left adjoint functor F(o 0) commutes with
tensors. For more details on the definition of BY((x)) see [Rog09, Definition 3.16,
Proposition 3.20].

(v) The space hocolim jF(g,o)(*) is contractible and hence, the commutative monoid

mo(hocolim 7B o ((x)2)) 2 mo( () x hocolim 7 F o (+)

1

3

|
3

.’L'>gp)

(
o
o

)

(
(x)8P) x ﬂo(hocoliij(*gO)(*))
(
g

Py

= (X
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is a group. The induced map

T Ve
B(hocolim 7 Fy

(o, )(<x))) — B(hocoliijgvo)«@gP))

is a weak equivalence, because the map B((z)) — B({x)®") is a weak equivalence.
Similarly, considering that the simplicial commutative monoid (B% ((z)))8P is weakly
equivalent to BY ((z)®P) (see [Rog09} Proposition 3.20, Proposition 3.21], part (i),
part (ii)), the map specifies a group completion.

(vi) As the augmentation map e BCY(F(‘Z’O)((@)) — F(‘go)((aj)) is virtually

FJ o (@)

surjective in CS7, Lemma [4.11|implies that the repletion (BCY(F(‘Z 0)((x>)))rep is
J-equivalent to the homotopy pullback of the diagram

FI (@) : BT e -

(B (Fg o) (a)))#P — 22— (B o ()8 22— F o ({2)).

We employ the above group completions (4.19) and (4.20). The map (4.19) is an

inclusion of path components and hence a positive J-fibration. Exploiting that the

left adjoint functor F(‘g 0) commutes with tensors and that the model category CSY

is right proper (see Remark [2.10)), the repletion (BCY(F(‘g 0)((1:>)))rep is J-equivalent
to the pullback of the diagram

J
F(o,o)(n(90>)

. FJ olewy) - :
(0,0) \*(z)
> F(‘g,g)(<x>gp) < F(‘g7o)(<$>)-

F o (B ((2)))

The pullback is computed J-levelwise, and the functor F (‘g o) breserves pullbacks.

Therefore, the repletion (B (Fg o ()™ is J-equivalent to Fgg o (B™P((x)))
(see [Rog09, p. 427]).
0

Example 4.29. Let p be an odd prime, and let k be the ring of p-local integers Z,). Let

(vo) — (up) be the map of free commutative monoids that sends vy to ug_l. Since the
greatest common divisor of p and p — 1 is 1, the induced map of polynomial rings k[vg] —
k[uo] is a tamely ramified extension. Applying the Eilenberg-Mac Lane functor H yields a
map of commutative Hk-algebra spectra H (k[vo]) — H (k[uo]). Recall from Example

tha:c there is a pre-log structure (F(%,o)(<vo>)’ vy) on k(H (k) Ni(HE) Sym(k(S1)), and
(F(‘g,o)(<u0>), vyy) on k(H (k[ug))) Ni(HE) Sym(k(S1)) respectively. The induced diagram

((v0)) —— Q7 (k(H (K[v0)) Afsryy Sym(k(Sh)))

!

(o)) —— QF (B(H (kfua])) A(gap) Sym(E(S1))
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commutes so that we obtain a map of pre-log cdgas

(RCH ({oo])) A gy Sym(R(SY), F ) (00)), )

: ¢ ~ _ (4.21)
= (k(H (kluo))) Ajgiy Sym(k(S1)), Fg g ({u0)); g )-

For a discrete simplicial free commutative monoid (z), the commutative J-space F(g,o) ((x))

is usually not cofibrant in the positive projective J-model structure on CSY (compare
[RSS15) remarks before Lemma 5.1]). To determine whether the map is formally
log THH-étale, we actually need to pass to the induced map of cofibrant replacements.
But the abstract definition of the functor A7 makes it hard to check whether the latter
is formally log THH-étale. Unfortunately, we are only able to show that the map
is formally log THH-étale in a naive sense where we mean by naive that we do not
care whether the objects have well-defined homotopy types. For this, we make use of
Remark that is, we argue that with respect to the map the top face and the
front face of the diagram are pushout squares in C(Sp™(smod)).

From Lemma [4.28(iii) we know that for a discrete simplicial free commutative monoid (x),

the commutative symmetric ring spectrum A7 (FZ ((x))) is naturally isomorphic

(0,0
to Fo(k[x]). The latter is isomorphic to the commutative symmetric ring spectrum

E(F0(<$>+)) which again is isomorphic to fc(Fo(<az>+) N HE) Ni(HE) Sym(k(S1)) as the
functor k is strong symmetric monoidal. In addition, using that Fo((x) ) A Hk is weakly
equivalent to H(k[z]), the induced square

Fo({vo) ) N Hk —— H (k[vo))
l (4.22)
Fo((uo); ) N Hk —— H(k[uo))

is a pushout square in the category C (Hk-mod). From applying the left adjoint functor
k(—) NiHr) Sym(k(S1)) to the square (4.22)), we deduce that the top face of the dia-

gram ([£.18) is a pushout square in the category C(Sp™(smod)).

We move on to analyze with respect to the map (4.21]) the front face of the diagram (4.18)).
We take advantage of Lemma iv)-(vi). Further, we analyze the diagram

1 1
BY ((vg)) — B ({ug)) (4.23)
1 1

Plugging in Hesselholt’s and Rognes’ calculations (see Lemma [4.28(i)-(ii)), we can identify
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the diagram (4.23)) with the diagram

Hjso* ————— Lo *

l l
* U1 8'(7) — U151 5() (4.24)
l l

szo SHj) —— szo SH(3)-

The top horizontal morphism sends a point * indexed by j to the point % indexed by
j(p —1). The middle horizontal morphism maps the point * to the point *, and by the
identity a circle S'(j) indexed by j to S'(j(p — 1)) indexed by j(p — 1). The bottom
horizontal morphism takes by the identity a circle S*(j) indexed by j to S'(j(p — 1))
indexed by j(p — 1). Computing the pushout of the composite left vertical map and
the top horizontal map, we find that the outer square of is a pushout square.
Consequently, the outer square of the induced diagram

AT (F ) ((v0))) ——— AT (F o (o))

{ 1
AT (F 0 (BY ((00)))) — A (F ) (B ({uo))))
{ 1

AT (F 0)(B*P({v0)))) — AT (F o) (B*P({u0))))

is a pushout square in C(Sp*(smod)). But as for a discrete simplicial free commutative
monoid (z), the commutative J-space F(‘g 0)(Brep(<x))) is not positive cofibrant, we do

not know whether the commutative symmetric ring spectrum A7 ((BCY(F(‘Z 0)((x>)))rep) is

stably equivalent to A7 (F (%’O)(Brep«x)))). Altogether, we conclude, that the map (4.21))
is log THH-étale in a naive sense. We hope to improve this ansatz to get a homotopy
meaningful statement.

Another source of examples may come from the general assumption that tamely ramified
extensions of commutative ring spectra correspond to formally log THH-étale morphisms
of pre-log ring spectra (see [Rogl4l, Remark 7.3], [RSS18, p. 510]). An illustrating
example for this is the inclusion of the connective Adams summand into the p-local
connective topological complex K-theory ¢ — ku,) which is tamely ramified (see [Aus03),
§10.4], [DLR), Theorem 4.1]) and induces a formally log THH-étale morphism of pre-log
ring spectra [RSS18] Theorem 6.2]. Our approch is to find tamely ramified extensions of
commutative Hk-algebra spectra and to construct suitable pre-log structures such that
the induced morphism of pre-log cdgas is formally log THH-étale.

Definition 4.30. [Rog08, Definition 9.2.1] A map f: A — B in C(Sp¥) is formally
THH-étale if the map B — THHA(B) is a weak equivalence.
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Remark 4.31. The failure of the map B — THH”(B) to be a weak equivalence detects
ramification. Unramified maps of commutative ring spectra are formally THH-étale (see
[IDLR, p. 2], [Ric, §8]). In [DLR] Dundas, Lindenstrauss and Richter provide several
examples which propose that (relative) topological Hochschild homology is a suitable
tool for measuring ramification. It is work in progress to develop a conceptional notion of
tame and wild ramification of maps between commutative ring spectra (see [DLR] p. 2]).
Tame ramification might be visible if THHZ(B) resembles HHS (D) for C — D a tamely
ramified extension of number rings (see [DLRJ §4]).

In the sense of [DLR] we present an example of a tamely ramified extension of
commutative Hk-algebra spectra. Recall the cohomology rings of the infinite complex
projective space CP* and the infinite quaternionic projective space HP>°,

H™(HP®, k) 2 . (F((HP®) ., HE)) = ky_4

H*(CP* k) Z m(F((CP*) 4y, Hk)) = k[x_2]
(see e.g. [Hat02, Theorem 3.19, p. 222]). There is a quotient map from CP> to HP>
arising from writing both spaces as quotients of the infinite sphere S* and the inclusion

from S! into S3,
CP>® = 5>/8! — §°/8% = HP>™. (4.25)

To better understand this map, we investigate the skeleton filtrations of both spaces.
For CP*°, we find that
x=CP°CCP'CcCP*C...

so that the space CP" is the 2n-skeleton of CP*°. Inductively, the space CP™*! arises
from CP" by attaching a single 2(n 4 1)-cell via the projection map

82n+1 N S2n+1/Sl — (CPTL
so that there is a pushout diagram

SQn—i—l N SQn—l—l/sl = Cpr

i !

D2n+2 (Cpn+1 )
Similarly, for HP°, we consider the skeleton filtration
+=HP° CHP! CHP?C ...

so that the space HP" is the 47n-skeleton of HP>. Inductively, the space HP"*! is
defined by attaching a single 4(7 + 1)-cell to HP" via the projection map

S4ﬁ+3 N S4ﬁ+3/s3 —_ HPﬁ
so that there is a pushout diagram

St —, GAn+3 /§3 — HPT
l !

D4ﬁ+4 H Pﬁ+1 .
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For n = 27 + 1, the map CP?***! = g4i+3 /gl _, G4n+3 /93 — HP" yields a map
CP?"+2 — HP™ ! by the universal property of the pushout. In particular, for # = 0,
we obtain a map CP? — HP! = §* which ensures that the above map takes the
4-cell of CP*° homeomorphically onto the 4-cell of HP*°. From this, we can deduce
that the induced map on cohomology sends the generator y_4 in H*(HP>, k) to 22,
in H*(CP>, k), and thus, ', to 2%, for I > 0 (see [Hat02, Example 4.1.4]). Assume
that 2 is a unit in k, for example for p an odd prime, k = Z, or k = F),. The following
proposition indicates that the induced map of function spectra

F((HP™)4, Hk) — F((CP*)4, Hk)
is a tamely ramified extension.

Proposition 4.32. Assume that 2 is a unit in k. There is an isomorphism of augmented
graded commutative k[x_s]-algebras

THHY (HEP)HR (p(CP>),, HE)) 2 kz_o] % k (20, 21, . . .)

where k[z_9] X M denotes a square-zero extension of klx_o] by a k[x_s]-module M. The
degree of zj is —(2j + 1), for j > 0.

Proof. We proceed similarly to the proof of [DLR] Theorem 4.1]. We observe that
T (F(CP¥)s, HE)) = k[o_s]

= kly_al[z o]/ (225 — y4)
= o (F((HP®) 4, HE))[z 2]/ (225 — y-4)

is projective over m,(F((HP>)y, HEk)). Thus, we can apply the Bokstedt spectral
sequence with 7, as the homology theory,

E2, = HHPEP ) o (R(CP®) 1, HE)), m(F((CP)4, HE)))
= o (THHFEPZHR (P(CP®) 1, HE))).

Exploiting [LL92) (1.6)], we obtain that HHI:[y*‘d(k[x,g], k[x_3]) is isomorphic to the
homology of the complex

= DOk 0] & D k[r_s] 22 2%z ] O k[z_a). (4.26)

As 2 is a unit in k[z_2] we get that

k[x—Q]v s=0,
HHA-4) (k[z_o), k[z_o]) 2 { £-2C+D s =25 41,5 >0,
0, s=2j,5>1.

Therefore, the E2-page consists of k[z_s] in the zeroth column and k in bidegrees
(27 4+ 1,—2(2j 4+ 1)) for j > 0. Due to THH(HP™)+.HE)(p((CP>),  HE)) being an
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augmented commutative F((CP*)y, Hk)-algebra, it follows that F((CP>),, Hk) splits
off THH!((HP=)+.HE) (p((CP>),, Hk)). Consequently, the zeroth column cannot be
hit by any differentials. Next we argue that for degree reasons there are no non-trivial
differentials d”, for r > 2, so that the spectral sequence collapses at the F?-page. Let

. . /r'. r s
r > 2. First, we consider d": E2j+17_2(2j+1) — E2j+1_r7_2(2j+1)+r_1.

e [f2j4+1<r—1, then E 0.

'8 —
2j+1—r,—2(2j+1)+r—1 —

o If 2j + 1 =7, then Ey_ ;1) = k(z/5") cannot be hit by d’.

e Let 27+ 1>r+1. If r is odd, then E§j+1_r (241 = 0 because 27 +1 —r is
even. If r is even, then E§j+1ir,72(2j+1)+r71 =0as —2(25+1)+r—1is odd.

Secondly, we investigate d": EJ

.
120241 —r1 L

2j+1,-2(2j+1)"

e If r is odd, then E§j+1+T —9(2j41)—r41 = 0 since 2j 4+ 1 4 r is even.

e If r is even, then EJ = 0 on account of —2(2j + 1) —r + 1 being

25+ 147, —2(2j+1)—r+1
odd.

Moreover, in every fixed total degree there is only one term on the E2-page. Hence,
there are no additive extensions, so that additively we can conclude the desired re-
sult. Since THHL(EF™)+Hk) (F((CP*>)4,HEk)) is an augmented graded commutative
T (F((CP>),, Hk))-algebra and that everything in the augmentation ideal is sitting in
odd degrees, there can only be the trivial multiplication between any two elements in the
augmentation ideal. The spectral sequence is a spectral sequence of m,(F((CP>), Hk))-
modules. The zeroth column k[z_s] acts on k(z;) trivially. O

Remark 4.33. If we drop the assumption that 2 is a unit in & in Proposition we
do not know whether the spectral sequence collapses at the E?-page or whether we can
exclude additive extensions (see the proof of Proposition [4.32). For example, let k = Z(y).

As in the proof of Proposition [4.32, we figure out that HH%(Q)[y_‘d (Zy[x—2], Z(9)[r—2]) is
isomorphic to the homology of the complex (4.26]). We compute that

L)z 2], s =0,
Z(2) [y—a] ~ —2(2j+1) . .
HH; (Z)lw—2], Zz)|x—2]) = { & LZylz—o]/(202), s=2j+1,7>0,
0, §=2j,7>1.

For another example k = [y, using again the complex (4.26)), we calculate that

]FQ[LU_Q], s = 07

HHP2W-1(Fo[z_o]. Folz_o])
. ( 2[.92 2}, 2[$ 2]) {Zstz[x—ﬂ, s> 1.

Assume that 2 is a unit in k. In flgture work we aim to find appropriate pre-log
structures on Fypoq (k((HP>), ), Sym(k(S1))), and on Fypeq(k((CP*) ), Sym(k(SY)))
respectively, to prove the following conjecture.
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Conjecture 4.34. The induced map of commutative symmetric ring spectra in simplicial
k-modules

Famod (k((HP*)),Sym(k(5"))) = Famoa(k((CP>)1), Sym(k(S")))

gives rise to a map of pre-log cdgas which is formally log THH-étale.
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Outlook

In this thesis we introduced log cdgas and as a corresponding homotopical invariant
logarithmic topological Hochschild homology whose definition is based on a suitable notion
of group completion in commutative J-spaces. We could translate several examples of
pre-log ring spectra to examples of pre-log cdgas. For instance, the trivial, the canonical,
the direct image or the free pre-log structure on an F, dga is defined similarly as the
respective pre-log structure on a commutative symmetric ring spectrum. Further, the
direct image pre-log structure D(z) on an E4 dga associated to a homology class [z] in
its graded homology ring was specified in the same way as in the topological set-up, once
we had at hand a feasible concept of group completion in commutative J-spaces. But as
already pointed out, we are only able to determine the homotopy type of D(x) if the
homology class [z] has positive degree. In particular, this does not apply in general for
our guiding example, the cochains on a space X with coefficients in k. So far, we have
not figured out other convenient examples of pre-log structures of algebraic nature. This
is surprising considering that studying dgas in contrast to ring spectra, it is often easier
to give a complete description of their homotopy type. Therefore, an extension of this
thesis clearly should be the construction of additional examples of pre-log structures on
E dgas. These should be useful to create concrete examples of formally log THH-étale
morphisms of pre-log cdgas. One first step could be to work out appropriate pre-log
structures so that the tamely ramified extension of commutative H k-algebra spectra

F((HP™),, Hk) — F((CP®),, Hk)

induces a formally log THH-étale morphism of pre-log cdgas indeed. Hitherto, one
difficulty to compute logarithmic topological Hochschild homology of a pre-log cdga or
to identify formally log THH-étale morphisms of pre-log cdgas has been the abstract
definition of the functor AY. Up to now, we can explicitly express the latter on free
commutative J-spaces only. But as remarked in [RSS15, Remark 5.8], the free pre-log
structure does not seem to be interesting unless the F,, dga is concentrated in chain
degree zero. We hope to overcome this problem in the future.

131



References

[Aus05]

[Bar10]

[BFO4]

[BK72]

[BMO3]

[Bor94]

[DayT70a)]

[Day70b]

[DLR]

[DS07]

[Dug01]

[EKMMO97]

[GJ09]

Christian Ausoni. Topological Hochschild homology of connective complex
K-theory. Amer. J. Math., 127(6):1261-1313, 2005.

Clark Barwick. On left and right model categories and left and right Bousfield
localizations. Homology Homotopy Appl., 12(2):245-320, 2010.

Clemens Berger and Benoit Fresse. Combinatorial operad actions on cochains.
Math. Proc. Cambridge Philos. Soc., 137(1):135-174, 2004.

Aldridge K. Bousfield and Daniel M. Kan. Homotopy limits, completions
and localizations. Lecture Notes in Mathematics, Vol. 304. Springer-Verlag,
Berlin-New York, 1972.

Clemens Berger and Ieke Moerdijk. Axiomatic homotopy theory for operads.
Comment. Math. Helv., 78(4):805-831, 2003.

Francis Borceux. Handbook of categorical algebra. 2, volume 51 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge,
1994. Categories and structures.

Brian J. Day. Construction of biclosed categories. PhD thesis, University of
New South Wales, 1970.

Brian J. Day. On closed categories of functors. In Reports of the Midwest
Category Seminar, IV, Lecture Notes in Mathematics, Vol. 137, pages 1-38.
Springer, Berlin, 1970.

Bjgrn I. Dundas, Ayelet Lindenstrauss, and Birgit Richter. Towards an
understanding of ramified extensions of structured ring spectra. To ap-
pear in Mathematical Proceedings of the Cambridge Philosophical Society,
DOI:10.1017/S0305004118000099.

Daniel Dugger and Brooke Shipley. Topological equivalences for differential
graded algebras. Adv. Math., 212(1):37-61, 2007.

Daniel Dugger. Replacing model categories with simplicial ones. Trans.
Amer. Math. Soc., 353(12):5003-5027, 2001.

Anthony D. Elmendorf, Igor Kriz, Michael A. Mandell, and J. Peter May.
Rings, modules, and algebras in stable homotopy theory, volume 47 of Mathe-
matical Surveys and Monographs. American Mathematical Society, Provi-
dence, RI, 1997. With an appendix by Michael Cole.

Paul G. Goerss and John F. Jardine. Simplicial homotopy theory. Modern
Birkhduser Classics. Birkhduser Verlag, Basel, 2009. Reprint of the 1999
edition.

132



[Hat02]

[Hes96]

[Hir]

[Hir03]

[HMO3]

[Hov99]

[Hov01]

[HSS00]

[Joall]

[Kat89]

[LL92]

[Mac63]

[Mac98]

Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge,
2002.

Lars Hesselholt. On the p-typical curves in Quillen’s K-theory. Acta Math.,
177(1):1-53, 1996.

Philip S. Hirschhorn. Overcategories and undercategories of model categories.
arXiv:1507.01624.

Philip S. Hirschhorn. Model categories and their localizations, volume 99 of
Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI, 2003.

Lars Hesselholt and Ib Madsen. On the K-theory of local fields. Ann. of
Math. (2), 158(1):1-113, 2003.

Mark Hovey. Model categories, volume 63 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 1999.

Mark Hovey. Spectra and symmetric spectra in general model categories. J.
Pure Appl. Algebra, 165(1):63-127, 2001.

Mark Hovey, Brooke Shipley, and Jeff Smith. Symmetric spectra. J. Amer.
Math. Soc., 13(1):149-208, 2000.

Ruth Joachimi. About a Quillen equivalence between chain complexes and
diagrams of chain complexes. Diplomarbeit, Mathematisches Institut der
Universitat Bonn, 2011.

André Joyal. The theory of quasi-categories and its applications. lecture
notes, 2008. Available at:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.154.
4968.

Kazuya Kato. Logarithmic structures of Fontaine-Illusie. In Algebraic
analysis, geometry, and number theory (Baltimore, MD, 1988), pages 191—
224. Johns Hopkins Univ. Press, Baltimore, MD, 1989.

Michael Larsen and Ayelet Lindenstrauss. Cyclic homology of Dedekind
domains. K-Theory, 6(4):301-334, 1992.

Saunders MacLane. Homology. Die Grundlehren der mathematischen Wis-
senschaften, Bd. 114. Academic Press, Inc., Publishers, New York; Springer-
Verlag, Berlin-Go6ttingen-Heidelberg, 1963.

Saunders MacLane. Categories for the working mathematician, volume 5 of
Graduate Texts in Mathematics. Springer-Verlag, New York, second edition,
1998.

133


http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.154.4968
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.154.4968

[May74]

[May09]

[MMSS01]

[PS18]

[Qui73]

[RG]
[RG12]

[RG14]

[Ric]
[Ric15]

[Rog08]

[Rog09]

[Rogl14]

[RS17]

[RSS15]

J. Peter May. E, spaces, group completions, and permutative categories.
pages 61-93. London Math. Soc. Lecture Note Ser., No. 11, 1974.

J. Peter May. What precisely are E, ring spaces and FE, ring spectra? In
New topological contexts for Galois theory and algebraic geometry (BIRS
2008), volume 16 of Geom. Topol. Monogr., pages 215-282. Geom. Topol.
Publ., Coventry, 2009.

Michael A. Mandell, J. Peter May, Stefan Schwede, and Brooke Shipley. Model
categories of diagram spectra. Proc. London Math. Soc. (3), 82(2):441-512,
2001.

Dmitri Pavlov and Jakob Scholbach. Symmetric operads in abstract symmet-
ric spectra. Journal of the Institute of Mathematics of Jussieu, page 1-52,
2018.

Daniel Quillen. Higher algebraic K-theory. I. pages 85-147. Lecture Notes
in Math., Vol. 341, 1973.

Beatriz Rodriguez Gonzalez. Simplicial descent categories. arXiv:0804.2154.

Beatriz Rodriguez Gonzilez. Simplicial descent categories. J. Pure Appl.
Algebra, 216(4):775-788, 2012.

Beatriz Rodriguez Gonzalez. Realizable homotopy colimits. Theory Appl.
Categ., 29:No. 22, 609-634, 2014.

Birgit Richter. Commutative ring spectra. arXiv:1710.02328.

Birgit Richter. On the homology and homotopy of commutative shuffle
algebras. Israel J. Math., 209(2):651-682, 2015.

John Rognes. Galois extensions of structured ring spectra. Stably dualizable
groups. Mem. Amer. Math. Soc., 192(898):viii+137, 2008.

John Rognes. Topological logarithmic structures. In New topological contexts
for Galois theory and algebraic geometry (BIRS 2008), volume 16 of Geom.
Topol. Monogr., pages 401-544. Geom. Topol. Publ., Coventry, 2009.

John Rognes. Algebraic K-theory of strict ring spectra. In Proceedings of
the International Congress of Mathematicians—Seoul 2014. Vol. II, pages
1259-1283. Kyung Moon Sa, Seoul, 2014.

Birgit Richter and Brooke Shipley. An algebraic model for commutative
HZ-algebras. Algebr. Geom. Topol., 17(4):2013-2038, 2017.

John Rognes, Steffen Sagave, and Christian Schlichtkrull. Localization
sequences for logarithmic topological Hochschild homology. Math. Ann.,
363(3-4):1349-1398, 2015.

134



[RSS18]

[Sagl4]

[Sagl6]

[Schal

[Schb]

[Sch09]

[Shi00]

[Shi04]

[Shi07]

[Soll1]

[Spi01]

[SS]

[SS00]

[SS03a]

John Rognes, Steffen Sagave, and Christian Schlichtkrull. Logarithmic
topological Hochschild homology of topological K-theory spectra. J. Eur.
Math. Soc. (JEMS), 20(2):489-527, 2018.

Steffen Sagave. Logarithmic structures on topological K-theory spectra.
Geom. Topol., 18(1):447-490, 2014.

Steffen Sagave. Spectra of units for periodic ring spectra and group completion
of graded Fo, spaces. Algebr. Geom. Topol., 16(2):1203-1251, 2016.

Stefan Schwede. Symmetric spectra. preprint, 2012. Available at:
http://www.math.uni-bonn.de/people/schwede/SymSpec-v3.pdf.

Stefan Schwede. An untitled book project about symmetric spectra. preprint,
2007. Available at:
http://www.math.uni-bonn.de/people/schwede/.

Christian Schlichtkrull. Thom spectra that are symmetric spectra. Doc.
Math., 14:699-748, 2009.

Brooke Shipley. Symmetric spectra and topological Hochschild homology.
K -Theory, 19(2):155-183, 2000.

Brooke Shipley. A convenient model category for commutative ring spectra.
In Homotopy theory: relations with algebraic geometry, group cohomology,
and algebraic K -theory, volume 346 of Contemp. Math., pages 473-483. Amer.
Math. Soc., Providence, RI, 2004.

Brooke Shipley. HZ-algebra spectra are differential graded algebras. Amer.
J. Math., 129(2):351-379, 2007.

Mirjam Solberg. Injective braids, braided operads and double loop spaces.
Master thesis, The University of Bergen, 2011. Available at:
http://bora.uib.no/handle/1956/5766.

Markus Spitzweck. Operads, algebras, and modules in model categories and
motives. PhD thesis, Universitdt Bonn, 2001. Available at:
http://hss.ulb.uni-bonn.de/2001/0241/0241 .htm.

Steffen Sagave and Christian Schlichtkrull. Virtual vector bundles and graded
Thom spectra. arXiv:1410.4492v3. To appear in Mathematische Zeitschrift.

Stefan Schwede and Brooke Shipley. Algebras and modules in monoidal
model categories. Proc. London Math. Soc. (3), 80(2):491-511, 2000.

Stefan Schwede and Brooke Shipley. Equivalences of monoidal model cate-
gories. Algebr. Geom. Topol., 3:287-334 (electronic), 2003.

135


http://www.math.uni-bonn.de/people/schwede/SymSpec-v3.pdf
http://www.math.uni-bonn.de/people/schwede/
http://bora.uib.no/handle/1956/5766
http://hss.ulb.uni-bonn.de/2001/0241/0241.htm

[SS03b]

[SS12]

[SS13]

[SS16]

[Tho79]

[Wei94]

[Whi78]

Stefan Schwede and Brooke Shipley. Stable model categories are categories
of modules. Topology, 42(1):103-153, 2003.

Steffen Sagave and Christian Schlichtkrull. Diagram spaces and symmetric
spectra. Adv. Math., 231(3-4):2116-2193, 2012.

Steffen Sagave and Christian Schlichtkrull. Group completion and units in
Z-spaces. Algebr. Geom. Topol., 13(2):625-686, 2013.

Christian Schlichtkrull and Mirjam Solberg. Braided injections and double
loop spaces. Trans. Amer. Math. Soc., 368(10):7305-7338, 2016.

Robert W. Thomason. Homotopy colimits in the category of small categories.
Math. Proc. Cambridge Philos. Soc., 85(1):91-109, 1979.

Charles A. Weibel. An introduction to homological algebra, volume 38 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 1994.

George W. Whitehead. Elements of homotopy theory, volume 61 of Graduate
Texts in Mathematics. Springer-Verlag, New York-Berlin, 1978.

136



Summary

In the last decade Rognes, Sagave and Schlichtkrull have established a theory of logarithmic
structures on commutative symmetric ring spectra ([Rog09], [SS12], [Sagl4]). This is
relevant for obtaining results on the algebraic K-theory of commutative ring spectra
through localization techniques or trace maps from algebraic K-theory to topological
Hochschild homology ([RSS15], [RSS18]). Recently, Richter and Shipley showed that
for a commutative ring k& with unit, there is a chain of Quillen equivalences between
commutative Hk-algebra spectra and Fo, differential graded k-algebras (E, dgas) [RS17].
Motivated by the aim to gain new examples of log ring spectra via algebraic objects, we
develop a concept of logarithmic structures on E., dgas.

Considering the intermediate model category of commutative symmetric ring spectra in
simplicial k-modules C' (SpE(smod)) in Richter and Shipley’s chain of Quillen equivalences,
we relate this to commutative J-spaces via the Quillen adjunction (A7, Q7). Here a
crucial step has been to figure out an index category which is suitable in this algebraic
context and fulfils the axioms of a well-structured index category. It turns out that the
category J that arises from Sagave and Schlichtkrull’s category J by determining an
equivalence relation on the morphism sets, is a reasonable choice. The induced map of
classifying spaces BJ — BJ models the first Postnikov section of the sphere spectrum S.
Given the Quillen adjunction (A7, Q7), we specify pre-log structures on E,, dgas. For
a positive fibrant object A in C(Sp*(smod)) and (my, my) in J such that m; > 1, the
space Q7 (A)(my, my) is weakly equivalent to the space Q72(U(A))(m1) where U denotes
the forgetful functor to commutative symmetric ring spectra. This result motivates the
definition of units of an F,, dga and with it a condition for a pre-log structure to be a
log structure. Moreover, we explain a construction called logification which assigns a
log cdga to a pre-log cdga. We provide several examples of pre-log cdgas and log cdgas.
Apart from this, we discuss the defects of an alternative approach to set up pre-log
structures via diagram chain complexes. In connection to this, we present a homotopy
colimit formula on diagram chain complexes. With the latter, we argue that diagram
chain complexes do not have to possess a model structure in which the fibrant objects are
precisely the objects that are homologically constant and the homotopy colimit functor
detects the weak equivalences.

As an important tool, we study group completion in commutative diagram spaces. We
recall Sagave and Schlichtkrull’s chain of Quillen equivalences linking commutative
K-spaces to E,, spaces over the classifying space BIC where K is a well-structured
index category satisfying a few assumptions. We then show that there is a chain of
Quillen equivalences between commutative K-spaces and commutative Z-spaces over a
commutative Z-space model of BX. Assuming that the simplicial monoid BK is grouplike
and building on Sagave and Schlichtkrull’s work on group completion in commutative
Z-spaces [SS13], we identify a localized model structure on commutative K-spaces as
a group completion model structure. Here a map of commutative K-spaces is a group
completion if the associated map of E, spaces is so in the usual sense.

Having a feasible concept of group completion in commutative J-spaces yields more
examples of pre-log cdgas and is a substantial foundation for the definition of logarithmic
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topological Hochschild homology of pre-log cdgas. We verify that the latter is homotopy
invariant under logification. More than that, we give a criterion for a morphism of log
cdgas to be formally étale with respect to logarithmic topological Hochschild homology
and present approaches towards examples.
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Zusammenfassung

Im vergangenen Jahrzehnt haben Rognes, Sagave und Schlichtkrull eine Theorie von
Logstrukturen auf kommutativen symmetrischen Ringspektren entwickelt ([Rog09], [SS12],
[Sagl4]). Diese ist zum Beispiel relevant, um mittels Lokalisierungstechniken und Spurab-
bildungen von algebraischer K-Theorie zur topologischen Hochschild-Homologie Resultate
iber algebraische K-Theorie von kommutativen Ringspektren zu erhalten ([RSS15],
[RSS18]). Kiirzlich haben Richter und Shipley gezeigt, dass es fir einen kommuta-
tiven Ring k mit Eins eine Kette von Quillendquivalenzen zwischen kommutativen
Hk-Algebraspektren und Eo, differentiell graduierten k-Algebren (Eo dgas) gibt [RS17].
Die Hoffnung ist, neue Beispiele von Logringspektren zu finden, die von algebraischen
Objekten stammen. Aus diesem Grund schaffen wir ein Konzept von Logstrukturen auf
F dgas.

Wir betrachten die Zwischenmodellkategorie der kommutativen symmetrischen Ringspek-
tren in simplizialen k-Moduln C(Sp*¥(smod)) in Richter und Shipleys Kette von Quil-
lendquivalenzen und setzen diese durch die Quillenadjuntion (AY,Q7) in Bezug zu
kommutativen J-Raumen. Hierbei ist es entscheidend gewesen, eine fiir den algebrai-
schen Kontext geeignete Indexkategorie zu ermitteln. Diese sollte die Axiome einer
gut-strukturierten Indexkategorie erfiillen, damit wir Sagave und Schlichtkrulls Methodik
anwenden konnen, um Modellstrukturen auf zugehérigen (strukturierten) Diagramm-
raumen zu etablieren. Es stellt sich heraus, dass die Kategorie 7, welche induziert ist
von Sagave und Schlichtkrulls Kategorie 7, indem wir eine Aquivalenzrelation auf den
Morphismenmengen spezifizieren, eine passende Wahl ist. Die induzierte Abbildung
von klassifizierenden Riaumen BJ — BJ modelliert den ersten Postnikovschnitt des
Sphérenspektrums S. o

Mit Hilfe der Quillenadjunktion (A7, QY) definieren wir Prilogstrukturen auf E,, dgas.
Fiir ein positiv faserndes Objekt A in C(Sp*¥(smod)) und (my, my) in J mit m; > 1, ist
der Raum Q7 (A)(mj, my) schwach dquivalent zum Raum Q™2(U(A))(m1), wobei U fiir
den Vergissfunktor zu kommutativen symmetrischen Ringspektren steht. Dies motiviert
die Definition von Einheiten einer F, dga, und damit eine Bedingung fiir eine Prélog cdga
eine Log cdga zu sein. Auflerdem erldutern wir eine Logifizierung genannte Konstruktion,
die einer Prilog cdga eine Log cdga zuordnet. Wir fiihren mehrere Beispiele von Prélog
cdgas und Log cdgas auf. Abgesehen davon stellen wir einen urspriinglichen Ansatz,
Prélogstrukturen durch Diagrammkettenkomplexe zu erklédren, vor, sowie die Griinde,
die uns davon abgehalten haben, diesen weiter zu verfolgen. Damit im Zusammenhang
geben wir eine Homotopiekolimesformel auf Diagrammkettenkomplexen an. Mit dieser
zeigen wir, dass Diagrammkettenkomplexe keine Modellstruktur besitzen miissen, in der
die fasernden Objekte genau die Objekte sind, die homologie-konstant sind, und der
Homotopiekolimesfunktor die schwachen Aquivalenzen detektiert.

Des Weiteren beschéftigen wir uns mit Gruppenvervollstindigung in kommutativen
Diagrammraumen. Wir wiederholen Sagave und Schlichtkrulls Kette von Quillendqui-
valenzen, die kommutative K-Rdume mit E,, Rdumen iiber dem klassifizierenden Raum
BK verbindet, wobei IC eine gut-strukturierte Indexkategorie ist, die noch einige Vo-
raussetzungen erfiillt. Wir beweisen dann, dass es eine Kette von Quillendquivalenzen
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zwischen kommutativen C-Rdumen und kommutativen Z-Rdumen iiber einem kommuta-
tiven Z-Raum-Modell von BK gibt. Unter der Annahme, dass das simpliziale Monoid
BIC gruppenéhnlich ist, und der Benutzung von Sagave und Schlichtkrulls Arbeit zur
Gruppenvervollstandigung in kommutativen Z-Raumen [SS13|, identifizieren wir eine
lokalisierte Modellstruktur auf kommutativen JC-Rdumen als eine Gruppenvervollstandi-
gungsmodellstruktur. Hierbei ist ein Morphismus von kommutativen K-Rdumen eine
Gruppenvervollstédndigung, falls dies der assoziierte Morphismus von F., Rdumen im
gewOhnlichen Sinne ist. Mit diesem Konzept von Gruppenvervollstandigung in kommu-
tativen J-Réumen geben wir weitere Beispiele von Prilog cdgas an. Ferner ist dieses
essentiell fiir die Definition von logarithmischer topologischer Hochschild-Homologie von
Prilog cdgas. Wir verifizieren, dass letzteres homotopieinvariant unter Logifizierung ist.
Weiterhin préasentieren wir ein Kriterium fiir einen Morphismus von Log cdgas formal
étale beziiglich logarithmisch topologischer Hochschild-Homologie zu sein und diskutieren
Herangehensweisen, um Beispiele dafiir zu finden.
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