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Introduction
This thesis is devoted to establish a theory of logarithmic structures on E∞ differential
graded k-algebras (E∞ dgas) where k is a commutative ring with unit. The concept of
logarithmic structures has its origin in algebraic geometry [Kat89]. The relevance of
logarithmic structures for homotopy theory became apparent in the work of Hesselholt
and Madsen who used logarithmic structures for the description of algebraic K-theory of
local fields [HM03]. Motivated by the aim to extend structural results about the algebraic
K-theory of commutative rings to the algebraic K-theory of commutative ring spectra,
Rognes transferred this notion to homotopy theory [Rog09].

A pre-log structure on a commutative ring A is a commutative monoid M together
with a map of commutative monoids α : M → (A, ·) from M to the underlying multiplica-
tive commutative monoid of A. The triple (A,M,α) is called a pre-log ring. The datum
(M,α) is a log structure on A if the map α−1(A×) → A× from the sub commutative
monoid α−1(A×) ⊆M of elements mapping to the units A× of A is an isomorphism. A
log ring is a commutative ring A equipped with a log structure (M,α). An easy example
is the trivial log ring (A,A×, A× ↪→ A).

As a homotopical generalization of log rings, Rognes introduced log ring spectra where
commutative symmetric ring spectra play the role of commutative rings. Exploiting
the Quillen equivalence between commutative I-spaces and E∞ spaces [SS12], for a
commutative symmetric ring spectrum A, there is a commutative I-space ΩI(A) defined
by m 7→ Ωm(A(m)), representing the underlying multiplicative E∞ space of A. In this
way, commutative I-spaces may be viewed as a homotopical counterpart of commutative
monoids, and Rognes related them to commutative symmetric ring spectra via a Quillen
adjunction. Further, for a commutative symmetric ring spectrum A, there is a sub
commutative I-space GLI1 (A) of ΩI(A) that models the grouplike E∞ space of units
of A. One drawback is that both commutative I-spaces ΩI(A) and GLI1 (A) do not carry
any information about the negative dimensional homotopy groups of A. Consequently,
the functors ΩI and GLI1 do not distinguish between a commutative symmetric ring
spectrum and its connective cover so that they cannot detect periodicity phenomena in
stable homotopy theory. For example, the connective cover map of complex topological
K-theory ku→ KU induces a weak equivalence GLI1 (ku) ∼−→ GLI1 (KU).

Sagave and Schlichtkrull managed to overcome this problem in [SS12] by employing the
more elaborate index category J . The latter is given by Quillen’s localization construction
Σ−1Σ on the category of finite sets and bijections Σ. Hence, the classifying space BJ is
homotopy equivalent to Q(S0), which is the underlying additive E∞ space of the sphere
spectrum S. The categories I and J are examples of well-structured index categories
which is a suitable framework to obtain model structures on (structured) diagram spaces.
Sagave and Schlichtkrull prove that for a well-structured index category K satisfying some
assumptions, the model category of commutative K-spaces is Quillen equivalent to E∞
spaces over the classifying space BK. So commutative J -spaces are Quillen equivalent to
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E∞ spaces over Q(S0) that Sagave and Schlichtkrull describe as graded E∞ spaces. For a
commutative symmetric ring spectrum A, the commutative J -space ΩJ (A) is built from
all spaces Ωm2(A(m1)). This makes it possible to specify a sub commutative J -space
GLJ1 (A) of ΩJ (A) from which we can recover all units in the graded ring π∗(A).

A pre-log structure on a commutative symmetric ring spectrum A is a commutative
J -space M together with a map of commutative J -spaces α : M → ΩJ (A). The re-
sulting pre-log ring spectrum (A,M,α) is a log ring spectrum if the base change map
α−1(GLJ1 (A))→ GLJ1 (A) of the structure map α along the inclusion GLJ1 (A)→ ΩJ (A)
is a weak equivalence.

In joint work Rognes, Sagave and Schlichtkrull introduced logarithmic topological
Hochschild homology which is an extension of ordinary topological Hochschild homology
[RSS15]. The logarithmic topological Hochschild homology of appropriate pre-log ring
spectra participates in interesting localization homotopy cofibre sequences that are similar
to localization sequences for algebraic K-theory. This is significant for achieving results
on algebraic K-theory of commutative ring spectra by means of localization techniques
and trace maps from algebraic K-theory to topological Hochschild homology [RSS15]. For
instance, topological K-theory spectra yield convenient logarithmic ring spectra which
can be regarded as objects sitting in between the connective and the periodic versions of
the respective topological K-theory spectra ([RSS15],[RSS18],[Sag14]). Moreover, the
tamely ramified extension of the inclusion of the connective Adams summand ` into the
p-local connective topological complex K-theory spectrum ku(p) is formally étale with
respect to logarithmic topological Hochschild homology [RSS18].

The log ring spectra considered so far either come from log rings or involve topo-
logical K-theory spectra. The goal of this thesis is to provide a framework to gain new
examples through algebraic objects. Richter and Shipley constructed a chain of Quillen
equivalences connecting commutative Hk-algebra spectra to E∞ dgas [RS17]. Using this,
we develop a concept of log structures in the algebraic setting.

Pre-log structures on E∞ dgas
An intermediate model category in Richter and Shipley’s chain of Quillen equivalences
between commutative Hk-algebra spectra and E∞ dgas is the category of commutative
symmetric ring spectra in simplicial k-modules C(SpΣ(smod)) (see Subsection 2.3). We
relate this model category to commutative J̄ -spaces.

Proposition (Proposition 2.30). There is a Quillen adjunction

CSJ̄ C(SpΣ(smod)).
ΛJ̄

ΩJ̄
(0.1)

Here the category J̄ (see Definition 1.7) arises from the category J by defining an
equivalence relation on the morphism sets of the latter. The idea for the category J̄
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results from the fact that the action of the symmetric group Σn on the pointed space
of the n-sphere Sn permutes coordinates, while the action of Σn on the n-sphere chain
complex Sn(k) is just the sign action. The category J̄ is a well-structured index category,
too (see Proposition 1.13), and the induced map of grouplike E∞ spaces BJ → BJ̄
models the first Postnikov section of the sphere spectrum S.

We employ the category C(SpΣ(smod)) as a model for E∞ dgas. Given the above
Quillen adjunction (0.1), we define pre-log structures on E∞ dgas as follows.

Definition (Definition 2.32). Let A be an object in C(SpΣ(smod)). A pre-log structure
on A is a pair (M,α) consisting of a commutative J̄ -space M and a map of commutative
J̄ -spaces α : M → ΩJ̄ (A). If (M,α) is a pre-log structure on A, we call the triple
(A,M,α) a pre-log cdga.

In consideration of Sagave and Schlichtkrull’s definition of pre-log ring spectra, the
following proposition confirms that the above definition of pre-log cdgas is reasonable.

Proposition (Proposition 2.36). For a positive fibrant object A in C(SpΣ(smod)) and
(m1,m2) in J̄ such that m1 ≥ 1, the space ΩJ̄ (A)(m1,m2) is weakly equivalent to the
space Ωm2(U(A)(m1)) where U denotes the forgetful functor to commutative symmetric
ring spectra in pointed simplicial sets.

Making use of this result, we see that a homology class in the graded homology ring of
an E∞ dga gives rise to a pre-log cdga.

Example (Example 2.39). Let A be a positive fibrant object in C(SpΣ(smod)), and
let (m1,m2) be in J̄ such that m1 ≥ 1. Let [x] be a homotopy class in πm2−m1(U(A))
represented by a map x : Sm2 → U(A)(m1) in pointed spaces. The above proposition
ensures that the latter corresponds to a point in the space ΩJ̄ (A)(m1,m2). By adjunction
there is a map of commutative J̄ -spaces α : C(F J̄(m1,m2)(∗))→ ΩJ̄ (A) where we write C
for the monad associated to the commutativity operad in spaces and F J̄(m1,m2) for the
left adjoint of the evaluation functor with respect to J̄ -level (m1,m2). We obtain the
pre-log cdga (A,C(F J̄(m1,m2)(∗)), α).

Apart from this, the previous proposition leads to the definition of units of A as a sub
commutative J̄ -space GLJ̄1 (A) of ΩJ̄ (A) (see Definition 2.42), and with this a condition
for a pre-log cdga to be a log cdga.

Definition (Definition 2.44). Let A be a positive fibrant object in C(SpΣ(smod)). A
pre-log cdga (A,M,α) is a log cdga if the base change map α−1(GLJ̄1 (A))→ GLJ̄1 (A) of
the structure map α along the inclusion GLJ̄1 (A)→ ΩJ̄ (A) is a weak equivalence.

An elementary example is the trivial log cdga (A,GLJ̄1 (A),GLJ̄1 (A)→ ΩJ̄ (A)). Fur-
thermore, there is a construction called logification which turns a pre-log cdga into a log
cdga (see Construction 2.47).
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Group completion in commutative diagram spaces and logarithmic
topological Hochschild homology of log cdgas
Commutative K-spaces are Quillen equivalent to E∞ spaces over BK for a well-structured
index category K fulfilling a few assumptions. As a special case, commutative I-spaces
are Quillen equivalent to E∞ spaces. Taking this into account, we prove the following
theorem.

Theorem (Theorem 3.22). There is a chain of Quillen equivalences linking commutative
K-spaces to commutative I-spaces over BIK where BIK is a commutative I-space model
of BK.

With the help of this and the additional assumption that the simplicial monoid BK is
grouplike, we provide a notion of group completion in commutativeK-spaces. Our approach
is model categorical which has the advantage that we get functorial group completions
for all objects without extra conditions. We identify a left Bousfield localization on
commutative K-spaces as a group completion model structure. We do this by verifying that
the latter is Quillen equivalent to a localized model structure on commutative I-spaces
over BIK in order to build on Sagave and Schlichtkrull’s work on group completion in
commutative I-spaces [SS13].

Theorem (Theorem 3.37). Suppose that the simplicial monoid BK is grouplike. There is
a group completion model structure on commutative K-spaces in which fibrant replacements
model group completions. A map of commutative K-spaces is a group completion if the
associated map of E∞ spaces is a group completion in the usual sense.

Specializing the index category to be J̄ , the group completion functor on commutative
J̄ -spaces generates more examples of pre-log cdgas and is an essential foundation for the
definition of logarithmic topological Hochschild homology of log cdgas.

Definition (Definition 4.23). Let (A,M,α) be a cofibrant pre-log cdga. We define the
logarithmic topological Hochschild homology THH(A,M,α) via the pushout diagram

THHHk(ΛJ̄ (M)) ΛJ̄ (Bcy(M)) ΛJ̄ ((Bcy(M))rep)

THHHk(A) THH(A,M,α).

∼=

(0.2)

The functor THHHk denotes ordinary topological Hochschild homology where the
ground ring is given by the Eilenberg MacLane spectrum Hk. This can be identified with
derived Hochschild homology which is also known as Shukla homology (see Remark 4.21).
The left vertical map in the diagram (0.2) is determined by applying the functor THHHk

to the adjoint ΛJ̄ (M)→ A of the structure map α : M → ΩJ̄ (A). The top horizontal
map in (0.2) is induced by the repletion map Bcy(M)→ (Bcy(M))rep (see Definition 4.8)
where the source Bcy(M) is the cyclic bar construction of the commutative J̄ -space M
(see Definition 4.1) and the repletion map can be viewed as a group completion relative
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to M . We show that the definition of logarithmic topological Hochschild homology is
homotopy invariant under logification (see Proposition 4.25). More than that, we give a
criterion for a morphism of log cdgas to be formally étale through the eyes of logarithmic
topological Hochschild homology (see Definition 4.26) and present approaches towards
examples.

In this work we provide several examples of pre-log cdgas and log cdgas. These mostly
result from adapting the corresponding examples of (pre-) log ring spectra to the algebraic
context. So far it is unclear how to construct interesting pre-log structures on E∞ dgas
so that e.g. tamely ramified extensions of E∞ dgas give rise to formally log THH-étale
morphisms of pre-log cdgas. As a guiding example, it would be crucial to establish
suitable pre-log structures on the cochains of a space X with coefficients in k.

Organization
This thesis is organized as follows:
In the first section we introduce the category J̄ (see Definition 1.7). We discuss Sagave
and Schlichtkrull’s machinery of well-structured index categories and in doing so focus on
the properties of the category J̄ .
The second section is dedicated to the definition of log structures on E∞ dgas. We
first collect preliminary results about diagram spaces and symmetric spectra. Then we
move on to Richter and Shipley’s chain of Quillen equivalences between commutative
Hk-algebra spectra and E∞ dgas (see Theorem 2.16). Afterwards we relate symmetric
spectra to J̄ -spaces to derive from this the definition of pre-log structures on E∞ dgas
(see Definition 2.32). We specify units of E∞ dgas (see Definition 2.42) and the logification
process (see Construction 2.47). In addition, we give some examples of pre-log cdgas and
log cdgas. Other than this, we discuss an alternative approach to set up log structures on
E∞ dgas via diagram chain complexes. Along with this, we provide a homotopy colimit
formula on diagram chain complexes (see (2.47)) and argue that the latter does not have
to admit a model structure in which the fibrant objects are precisely the objects that are
homologically constant and the homotopy colimit functor detects the weak equivalences
(see Example 2.57).
In the third section we start with analyzing the interaction of left Bousfield localizations
with comma categories in a general context. We prove that in a sense, left Bousfield
localization commutes with forming a comma category (see Proposition 3.4). We
continue with stating Sagave and Schlichtkrull’s chain of Quillen equivalences connecting
commutative K-spaces to E∞ spaces over BK for a well-structured index category K
satisfying a couple of assumptions (see Theorem 3.7). Motivated by this, we show that
commutative K-spaces are Quillen equivalent to commutative I-spaces over BIK (see
Theorem 3.22). This outcome together with the result on left Bousfield localizations and
comma categories are substantial ingredients to characterize a localized model structure
on commutative K-spaces as a group completion model structure later (see Theorem 3.37).
Finally, in the last section we describe the cyclic and replete bar constructions as well as
general repletion of commutative diagram spaces (see Definition 4.1, Construction 4.4,
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Definition 4.8). After this, we set the index category to be J̄ and give sense to logarithmic
topological Hochschild homology of log cdgas (see Definition 4.23).

Notation
Throughout this thesis, let k denote a discrete commutative ring with unit. We distinguish
the different homs occuring in this work as follows. For a category C and X and Y
objects in C, we write C(X,Y ) for the set of maps from X to Y and HomC(X,Y ) for the
internal hom object in C. If the category C is enriched over a category D, we denote the
D-enriched hom of X and Y in C by HomCD(X,Y ). More notation will be introduced as
we need it.

Acknowledgements
First I would like to thank my advisors Prof. Dr. Birgit Richter and PD Dr. Steffen
Sagave. They suggested this project, and I am grateful for their guidance and advice as
well as their patience, helpfulness and continuous encouragement. I would like to thank
PD Dr. Steffen Sagave for not only allowing me to visit him regularly at the Radboud
University Nijmegen but also for coming to the University of Hamburg several times to
keep the project going.
I would like to thank Prof. Dr. Birgit Richter and PD Dr. Steffen Sagave for their
idea of defining the category J̄ , and I would like to thank PD Dr. Steffen Sagave for
Example 2.57 and for encouraging me to compare commutative K-spaces to commutative
I-spaces over BIK.
Furthermore, I gratefully acknowledge the financial support by the University of Hamburg
and the DFG Priority program SPP 1786 "Homotopy Theory and Algebraic Geometry".
I am grateful for the opportunity to spend the first year of my PhD studies at the
Mathematical Institute of the University of Bonn. As a member of the topology group I
benefitted from the many interesting topological activities going on there.
Moreover, I would like to thank Markus Hausmann and Jan Hesse for helpful discussions
and Simon Ahrens and Markus Hausmann for proofreading a preliminary version of this
thesis.
Finally, I would like to thank Johannes Schulz, Anke Schulz, Gisela Schulz and Simon
Ahrens for their persistent support.

6



1 The category J̄
We introduce the category J̄ and discuss some properties. The category J̄ arises
from Sagave and Schlichtkrull’s category J by defining an equivalence relation on the
morphism sets of the latter. With the category J̄ at hand, we develop a notion of pre-log
structures on E∞ differential graded k-algebras in Section 2. We explain Sagave and
Schlichtkrull’s concept of well-structured index categories and apply this to the category J̄ .
Well-structured index categories are a useful tool to obtain model structures on diagram
spaces.

1.1 Definitions
In this subsection we recall Sagave and Schlichtkrull’s definition of the category J .
We specify an equivalence relation on the morphism sets of this category to define the
category J̄ .

Let I be the category of finite sets with objects m = {1, . . . ,m} for m ≥ 0, with
the convention that 0 = ∅, and injective maps as morphisms. Every map in I(m,n)
can be factored into the standard inclusion ιm,n : m → n followed by a permutation
in Σn. For n ≥ m + 2, this factorization is not unique. The morphism set I(m,n)
is isomorphic to Σn/Σn−m. The ordered concatenation t makes I a symmetric strict
monoidal category with unit 0 and non-trivial symmetry isomorphisms the shuffle maps
χm,n : m t n → n tm (see [SS12, p. 2124]). The classifying space BI is contractible
because the category I has the initial object 0.

We define an equivalence relation on the morphism set I(m,n). A map α : m → n is
equivalent to a map α′ : m → n if and only if there exists a map σ in the alternating
group An such that α = σ ◦ α′. We denote the equivalence class of α by [α]. Let
I(m,n)/∼ be the set of equivalence classes.

Lemma 1.1. For a triple l, m and n of objects in I, there is a composition law
I(l,m)/∼× I(m,n)/∼ → I(l,n)/∼ defined by ([α], [β]) 7→ [β ◦ α].

Proof. We prove that this assignment is well-defined. Let α, α′ : l → m and σ in Am
such that α = σ ◦ α′, and let β, β′ : m→ n and τ in An such that β = τ ◦ β′. We have to
show that β ◦ α is equivalent to β′ ◦ α′. We write β′ = ξ′ ◦ ιm,n where ξ′ is in Σn. Then
we find that

β ◦ α = τ ◦ β′ ◦ σ ◦ α′

= τ ◦ ξ′ ◦ ιm,n ◦ σ ◦ α′

= τ ◦ ξ′ ◦ (σ t id) ◦ ιm,n ◦ α′

= τ ◦ ξ′ ◦ (σ t id) ◦ (ξ′)−1 ◦ ξ′ ◦ ιm,n ◦ α′

= τ ◦ ξ′ ◦ (σ t id) ◦ (ξ′)−1 ◦ β′ ◦ α′
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where ω = τ ◦ ξ′ ◦ (σ t id) ◦ (ξ′)−1 is in Σn and

sgn(ω) = sgn(τ) · sgn(ξ′) · sgn(σ t id) · (sgn(ξ′))−1

= sgn(τ) · sgn(σ)
= 1.

Beware that the sign sgn(ω) does not depend on the choice of factorization of β′ whereas
the definition of the map ω does rely on the choice of factorization of β′. But we can
proceed as above for any other choice of factorization of β′ to obtain a suitable even
permutation.

Definition 1.2. We define Ī to be the category with objects m in I and morphisms
Ī(m,n) = I(m,n)/∼.

Lemma 1.3. The morphism set Ī(m,n) is determined by

Ī(m,n) ∼=



∅, m ≥ n+ 1,
∗, m = 0,
∗, m = 1, n = 1,
∗, m ≥ 1, n ≥ m+ 2,
Σ2, m ≥ 1, n = m+ 1,
Σ2, m ≥ 2, n = m.

Proof. We show that Ī(m,n) is trivial for m ≥ 1 and n ≥ m+ 2. Let α be in Ī(m,n)
such that α(i) = i for 1 ≤ i ≤ m. We claim that every map α′ in Ī(m,n) is equivalent
to α. Let α′ be in Ī(m,n). We define σ̃ : im(α′)→ n by σ̃(i) = α ◦ (α′)−1(i). We next
want to define a permutation σ : n→ n so that the restriction of σ to im(α′) is σ̃ and
sgn(σ) = 1. For this, we have to specify the restriction of σ to n \ im(α′) in such a way
that sgn(σ) = 1. Without pinning the restriction of σ to n \ im(α′) down yet, we write
down all already visible inversions. If the number of these is even, we define the map σ
to send n \ im(α′) order-preservingly to {m+ 1, . . . , n}. Let the number be odd. Let i be
the smallest element in n \ im(α′), and let î be the second smallest element in n \ im(α′).
We define σ(i) = m+ 2 and σ(̂i) = m+ 1. We define the map σ to take the rest of the
elements in n \ im(α′) order-preservingly to {m+ 3, . . . , n}. So we gain only one more
inversion, namely (i, î) so that sgn(σ) = 1.
The remaining cases are clear.

Note that there is a projection functor I → Ī. The category Ī inherits a symmetric
strict monoidal structure from I. Let t : Ī × Ī → Ī be the functor defined on objects
by (m,n) 7→m t n and on morphisms by ([α], [β]) 7→ [α t β]. This is well-defined: Let
α, α′ : l→m and σ in Am such that α = σ ◦ α′, and let β, β′ : n→ p and τ in Ap such
that β = τ ◦ β′. Then σ t τ is in Σm+p with sgn(σ t τ) = 1, and

α t β = (σ ◦ α′) t (τ ◦ β′)
= (σ t τ) ◦ (α′ t β′).
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The unit is 0, and the symmetry isomorphisms are the equivalence classes of the shuffle
maps [χm,n] : m t n→ n tm.

Definition 1.4. [SS12, Definition 4.2] The category J has as objects pairs (m1,m2) of
objects in I, and a morphism (m1,m2)→ (n1,n2) is a triple (α1, α2, ρ) with α1 : m1 → n1
and α2 : m2 → n2 morphisms in I and ρ : n1\im(α1)→ n2\im(α2) a bijection identifying
the complement of α1 in n1 with the complement of α2 in n2. The composition of two
morphisms

(l1, l2) (α1,α2,ρ)−−−−−−→ (m1,m2) (β1,β2,φ)−−−−−→ (n1,n2)

is defined by (β1 ◦ α1, β2 ◦ α2, ψ), where ψ is the bijection

n1 \ im(β1 ◦ α1) ψ−→ n2 \ im(β2 ◦ α2)

specified by

ψ(s) =
{

φ(s), s ∈ n1 \ im(β1),
β2 ◦ ρ(t), s = β1(t) ∈ im(β1 |m1\im(α1)).

We also refer to ψ as φ∪(β2◦ρ◦β−1
1 ). The ordered concatenation in both entries defines

a symmetric strict monoidal structure on the category J . Let t : J × J → J be the
functor given on objects by ((m1,m2), (n1,n2)) 7→ (m1tn1,m2tn2), and on morphisms
by ((α1, α2, ρ), (β1, β2, φ)) 7→ (α1 tβ1, α2 tβ2, ρtφ), where ρtφ is the bijection induced
by the bijections ρ and φ. The unit is (0,0), and the symmetry isomorphisms are

(m1,m2) t (n1,n2)
(χm1,n1 ,χm2,n2 ,id∅)−−−−−−−−−−−−−→ (n1,n2) t (m1,m2)

[SS12, Proposition 4.3].

Remark 1.5. The category J is isomorphic to Quillen’s localization construction Σ−1Σ
on the category of finite sets and bijections Σ [SS12, Proposition 4.4]. Thus, the
classifying space BJ is homotopy equivalent to Q(S0) [SS12, Corollary 4.5]. The latter
is the underlying additive E∞ space of the sphere spectrum S.

As for the category I, we define an equivalence relation on the set J ((m1,m2), (n1,n2)).
A map (α1, α2, ρ) : (m1,m2)→ (n1,n2) is equivalent to a map (α′1, α′2, ρ′) : (m1,m2)→
(n1,n2) if and only if α1 = α′1 and there exists a map σ in An2 such that α2 = σ ◦ α′2
and ρ = σ ◦ ρ′, that is, (α1, α2, ρ) = (idn1 , σ, id∅) ◦ (α′1, α′2, ρ′). We write [α1, α2, ρ] for the
equivalence class of (α1, α2, ρ). Let J ((m1,m2), (n1,n2))/ ∼ be the set of equivalence
classes.

Lemma 1.6. For a triple (l1, l2), (m1,m2) and (n1,n2) of objects in J , there is a compo-
sition law J ((l1, l2), (m1,m2))/ ∼ ×J ((m1,m2), (n1,n2))/ ∼ → J ((l1, l2), (n1,n2))/ ∼
defined by ([α1, α2, ρ], [β1, β2, φ]) 7→ [β1 ◦ α1, β2 ◦ α2, φ ∪ (β2 ◦ ρ ◦ β−1

1 )].

Proof. We show that this assignment is well-defined. Let (α1, α2, ρ) be equivalent to
(α′1, α′2, ρ′) meaning that α1 = α′1 and that there is a σ in Am2 such that α2 = σ ◦ α′2 and
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ρ = σ ◦ ρ′, and let (β1, β2, φ) be equivalent to (β′1, β′2, φ′) meaning that β1 = β′1 and that
there is a τ in An2 such that β2 = τ ◦ β′2 and φ = τ ◦ φ′. We observe that

(β1, β2, φ) ◦ (α1, α2, ρ)
= (idn1 , τ, id∅) ◦ (β′1, β′2, φ′) ◦ (idm1 , σ, id∅) ◦ (α′1, α′2, ρ′)
= (idn1 , τ, id∅) ◦ (β′1 ◦ idm1 , β

′
2 ◦ σ, φ′) ◦ (α′1, α′2, ρ′)

= (idn1 , τ, id∅) ◦ (idn1 , (β′2 ◦ σ ◦ (β′2)−1) t idn2\im(β′2), id∅) ◦ (β′1, β′2, φ′) ◦ (α′1, α′2, ρ′)
= (idn1 , τ ◦ ((β′2 ◦ σ ◦ (β′2)−1) t idn2\im(β′2)), id∅) ◦ (β′1, β′2, φ′) ◦ (α′1, α′2, ρ′),

and that
sgn(τ ◦ ((β′2 ◦ σ ◦ (β′2)−1) t idn2\im(β′2))) = 1.

Therefore, the composite (β1, β2, φ)◦(α1, α2, ρ) is equivalent to (β′1, β′2, φ′)◦(α′1, α′2, ρ′).

Definition 1.7. Let J̄ be the category with objects (m1,m2) in J and morphisms
J̄ ((m1,m2), (n1,n2)) = J ((m1,m2), (n1,n2))/∼.

Let d ∈ Z. We write J̄d for the full subcategory of J̄ whose objects (m1,m2) in
J̄ satisfy m2 − m1 = d. The category J̄ is the disjoint union over d ∈ Z of the
subcategories J̄d,

J̄ =
∐
d∈Z
J̄d.

There is a projection functor J → J̄ . The category J̄ inherits a symmetric strict
monoidal structure from J . The functor t : J̄ × J̄ → J̄ sends ((m1,m2), (n1,n2)) to
(m1 t n1,m2 t n2) and maps ([α1, α2, ρ], [β1, β2, φ]) to [α1 t β1, α2 t β2, ρ t φ]. This is
well-defined: Let (α1, α2, ρ), (α′1, α′2, ρ′) : (l1, l2) → (m1,m2) and σ in Am2 such that
(α1, α2, ρ) = (idm1 , σ, id∅)◦(α′1, α′2, ρ′), and let (β1, β2, φ), (β′1, β′2, φ′) : (n1,n2)→ (p1,p2)
and τ in Ap2 such that (β1, β2, φ) = (idp1 , τ, id∅) ◦ (β′1, β′2, φ′). We remark that σ t τ is
in Σm2+p2 with sgn(σ t τ) = 1, and that

(α1, α2, ρ) t (β1, β2, φ) = ((idm1 , σ, id∅) ◦ (α′1, α′2, ρ′)) t ((idp1 , τ, id∅) ◦ (β′1, β′2, φ′))
= (idm1tp1 , σ t τ, id∅) ◦ ((α′1, α′2, ρ′) t (β′1, β′2, φ′)).

The unit is (0,0), and the symmetry isomorphisms are

(m1,m2) t (n1,n2)
[χm1,n1 ,χm2,n2 ,id∅]−−−−−−−−−−−−→ (n1,n2) t (m1,m2).

1.2 Well-structured index categories
We continue with introducing Sagave and Schlichtkrull’s theory of well-structured index
categories which is a convenient device to establish model structures on diagram spaces.
For more background we refer to [SS12, §5]. As an application, we focus on the properties
of the category J̄ .

Let (K,t,0K) be a small symmetric monoidal category and let A be a subcategory
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of automorphisms. We assume that A is a normal subcategory, that is, for each isomor-
phism α : m→ n in K the object m belongs to A if and only if the object n does, and
in this case conjugation by α specifies an isomorphism from the automorphism group
A(m,m) to the automorphism group A(n,n) by sending γ to α ◦ γ ◦ α−1. In addition,
we require that the subcategory A is multiplicative meaning that the monoidal structure
map t : K ×K → K restricts to a functor A×A → A. (But we do not demand that A
contains the unit 0K for the monoidal structure.) We think of N0, that is, the ordered set
of natural numbers 0→ 1→ 2→ . . ., as a symmetric monoidal category via the additive
structure. For a small category C, the set of connected components π0(NC) is defined to
be the coequalizer of the maps

NC[1] NC[0].
d0

d1

Let B and C be categories, let F : B → C be a functor, and let c be an object of C. Recall
that the category (F ↓ c) of objects of B over c is the category in which an object is a
pair (b, γ) where b is an object in B and γ is a morphism γ : F (b)→ c in C. A morphism
(b, γ)→ (b′, γ′) is a morphism β : b→ b′ in B such that the diagram

F (b) F (b′)

c
γ

F (β)

γ′

commutes. We refer to this category as the comma category (F ↓ c). If B = C and F
is the identity functor, we write (C ↓ c) for the comma category (F ↓ c). The comma
category (c ↓ F ) is defined dually (see [Mac98, II. §6]).

Definition 1.8. [SS12, Definition 5.2] A well-structured relative index category is a triple
consisting of a small symmetric monoidal category (K,t,0K), a strong symmetric monoidal
functor λ : K → N0, and a normal and multiplicative subcategory of automorphisms A
in K. These data are required to satisfy the following conditions.

(i) A morphism m→ n in K is an isomorphism if and only if λ(m) = λ(n).

(ii) For each object m in A and each object n in K, each connected component of the
comma category (m t − ↓ n) has a terminal object.

(iii) For each object m in A and each object n in K, the canonical right action of the
automorphism group A(m,m) on the comma category (m t − ↓ n) induces a free
action on the set of connected components of the comma category (m t − ↓ n).

(iv) Let KA be the full subcategory of K generated by the objects in A. The inclusion
functor KA → K is homotopy right cofinal.

In condition (ii) and (iii) for each object m in A and each object n in K, we employ the
functor m t − : K → K to form the comma category (m t − ↓ n). We use the notation
(K,A) to indicate a well-structured relative index category. Considering the case when A
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is the discrete category of identity morphisms in K, denoted by OK, the above definition
breaks down to the notion of a well-structured index category which is the following
definition.

Definition 1.9. [SS12, Definition 5.5] A well-structured index category K is a small
symmetric monoidal category equipped with a strong symmetric monoidal functor
λ : K → N0 such that

(i) a morphism m→ n in K is an isomorphism if and only if λ(m) = λ(n), and

(ii) for each pair of objects m and n in K, each connected component of the comma
category (m t − ↓ n) has a terminal object.

Example 1.10. (i) We endow the category I with the functor λ : I → N0 defined
by λ(m) = m. The category I is a well-structured index category by [SS12,
Corollary 5.9]. Further, the category of finite sets and bijections Σ is the full
automorphism subcategory of I. The pair (I,Σ) specifies a well-structured relative
index category by [SS12, Corollary 5.10].

(ii) Similarly, we enhance the category J with the functor λ : J → N0 given by
λ(m1,m2) = m1. Then the category J is a well-structured index category by [SS12,
Corollary 5.9], and the pair (J ,Σ × Σ) defines a well-structured relative index
category by [SS12, Corollary 5.10].

Sagave and Schlichtkrull show in [SS12] that a well-structured relative index category
(K,A) gives rise to a certain model structure on K-spaces which is proper, monoidal and
lifts to the category of structured K-spaces for any Σ-free operad. For a well-structured
index category K, the associated model structure on K-spaces is called the projective
K-model structure (see [SS12, Definition 6.21], Proposition 2.7). If K is one of the
categories I or J and A is given by the respective full automorphism subcategories,
then (K,A) induces a flat model structure on K-spaces (see [SS12, §3.8, §4.27]). At the
beginning of Section 2 we collect some more results of [SS12].

Lemma 1.11. Let (m1,m2) and (n1,n2) be objects in J̄ such that m1 ≤ n1 and
m2 ≤ n2.

(i) Every map [α1, α2, ρ] : (m1,m2) t (k1,k2)→ (n1,n2) in J̄ admits a factorization
of the form

(m1,m2) t (k1,k2) (m1,m2) t (l1, l2)

(n1,n2)

[(idm1 ,idm2 ,id∅)t(γ1,γ2,ω)]

[α1,α2,ρ] [β1,β2,φ]

with [β1, β2, φ] an isomorphism in J̄ .
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(ii) Suppose that the map [β1, β2, φ] : (m1,m2) t (l1, l2)→ (n1,n2) is an isomorphism
in J̄ . Then a map [α1, α2, ρ] : (m1,m2) t (k1,k2)→ (n1,n2) in J̄ factors as

[β1, β2, φ] ◦ [(idm1 , idm2 , id∅) t (γ1, γ2, ω)]

if and only if β1|m1 = α1|m1 in I and [β2|m2 ] = [α2|m2 ] in Ī. The map [γ1, γ2, ω]
is unique if the factorization exists.

Proof. (i) Let (α1, α2, ρ) : (m1,m2) t (k1,k2)→ (n1,n2) be a representative of a map
[α1, α2, ρ] in J̄ . We choose bijections β1 : m1 t l1 → n1 and β2 : m2 t l2 → n2 in I
where the map β1 is an extension of the map α1 and the map β2 is an extension
of the map α2. Let γ1 = ιk1,l1 and γ2 = ιk2,l2 be the standard inclusions. We
get that β1 ◦ (idm1 t ιk1,l1) = α1 and β2 ◦ (idm2 t ιk2,l2) = α2 in I. The bijection
ω : l1 \ im(ιk1,l1)→ l2 \ im(ιk2,l2) is specified by the following diagram of bijections

n1 \ im(α1) n1 \ im(β1 ◦ (idm1 t ιk1,l1)) im(β1|(m1tl1)\im(idm1tιk1,l1 ))

(m1 t l1) \ im(idm1 t ιk1,l1)

(m2 t l2) \ im(idm2 t ιk2,l2)

n2 \ im(α2) n2 \ im(β2 ◦ (idm2 t ιk2,l2)) im(β2|(m2tl2)\im(idm2tιk2,l2 ))

=

ρ

=

β−1
1

ω

β2

= =

where we set ω = β−1
2 ◦ ρ ◦ β1. Hence, we obtain a factorization

(α1, α2, ρ) = (β1, β2, id∅) ◦ ((idm1 , idm2 , id∅) t (ιk1,l1 , ιk2,l2 , β
−1
2 ◦ ρ ◦ β1))

in J . Passing to equivalence classes this yields a factorization

[α1, α2, ρ] = [β1, β2, id∅] ◦ [(idm1 , idm2 , id∅) t (ιk1,l1 , ιk2,l2 , β
−1
2 ◦ ρ ◦ β1)]

in J̄ .

(ii) First assume that the map [α1, α2, ρ] : (m1,m2) t (k1,k2) → (n1,n2) in J̄ has a
factorization

[α1, α2, ρ] = [β1, β2, φ] ◦ [(idm1 , idm2 , id∅) t (γ1, γ2, ω)].

Spelling out the composition this means that

[α1, α2, ρ] = [β1 ◦ (idm1 t γ1), β2 ◦ (idm2 t γ2), β2 ◦ ω ◦ β−1
1 ].

From this we conclude that β1|m1 = α1|m1 in I and [β2|m2 ] = [α2|m2 ] in Ī.
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Secondly, let (β1, β2, φ) : (m1,m2) t (l1, l2)→ (n1,n2) be a representative of a map
[β1, β2, φ] in J̄ , and let (α1, α2, ρ) : (m1,m2) t (k1,k2)→ (n1,n2) be a representa-
tive of a map [α1, α2, ρ] in J̄ . We assume that β1|m1 = α1|m1 and β2|m2 = α2|m2

in I. Let γ1 : k1 → l1 be the map in I such that α1|k1 = β1|l1 ◦ γ1, and let
γ2 : k2 → l2 be the map in I such that α2|k2 = β2|l2 ◦ γ2. Let the bijection
ω : l1 \ im(γ1)→ l2 \ im(γ2) be given by ω = β−1

2 ◦ ρ ◦ β1 (compare part (i)). Thus,
the map (α1, α2, ρ) can be factored as

(β1, β2, φ) ◦ ((idm1 , idm2 , id∅) t (γ1, γ2, ω))

in J , and passing to equivalence classes the map [α1, α2, ρ] can be factored as

[β1, β2, φ] ◦ [(idm1 , idm2 , id∅) t (γ1, γ2, ω)]

in J̄ .
Note that if the factorization of the map [α1, α2, ρ] exists, the map [γ1, γ2, ω] is
uniquely determined by the maps [α1, α2, ρ] and [β1, β2, φ] in J̄ .

Corollary 1.12. Let (m1,m2) and (n1,n2) be objects in J̄ .

(i) Suppose that m1 ≤ n1 and m2 ≤ n2. An object ((l1, l2), [β1, β2, φ]) is terminal in its
connected component of the comma category ((m1,m2) t − ↓ (n1,n2)) if and only
if the map [β1, β2, φ] is an isomorphism in J̄ .

(ii) For the comma category ((m1,m2) t− ↓ (n1,n2)), the set of connected components
π0(N ((m1,m2) t − ↓ (n1,n2))) is isomorphic to the set I(m1,n1)× Ī(m2,n2).

Proof. (i) Let the object ((l1, l2), [β1, β2, φ]) be terminal in its connected component of
the comma category ((m1,m2) t − ↓ (n1,n2)). Assume that the map [β1, β2, φ] is
not an isomorphism in J̄ . From Lemma 1.11(i) we know that the map [β1, β2, φ]
admits a factorization

[β1, β2, φ] = [β̃1, β̃2, φ̃] ◦ [(idm1 , idm2 , id∅) t (γ1, γ2, ω)]

with [β̃1, β̃2, φ̃] an isomorphism in J̄ . Since the map [β1, β2, φ] is not an isomor-
phism, the map [γ1, γ2, ω] cannot be an isomorphism in J̄ . But this contradicts
the assumption that the object ((l1, l2), [β1, β2, φ]) is terminal in its connected
component. Therefore, the map [β1, β2, φ] is an isomorphism.

Reversely, let ((l1, l2), [β1, β2, φ]) be an object in ((m1,m2) t − ↓ (n1,n2)) with
[β1, β2, φ] an isomorphism in J̄ . Let ((k1,k2), [α1, α2, ρ]) be an object in the con-
nected component of ((l1, l2), [β1, β2, φ]). Then Lemma 1.11(ii) ensures that there is
a unique morphism [γ1, γ2, ω] : (k1,k2)→ (l1, l2) such that

[α1, α2, ρ] = [β1, β2, φ] ◦ [(idm1 , idm2 , id∅) t (γ1, γ2, ω)]

in J̄ . So the object ((l1, l2), [β1, β2, φ]) is terminal in its connected component.
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(ii) If m1 ≥ n1 + 1 or m2 ≥ n2 + 1, the comma category ((m1,m2) t − ↓ (n1,n2))
is the empty category and the set I(m1,n1)× Ī(m2,n2) is the empty set. Thus,
the statement holds. Assume now that m1 ≤ n1 and m2 ≤ n2. The assign-
ment π0(N ((m1,m2) t − ↓ (n1,n2)))→ I(m1,n1)× Ī(m2,n2) that sends a class
[((l1, l2), [β1, β2, φ])] to (β1|m1 , [β2|m2 ]) defines a bijection.

Proposition 1.13. The category J̄ together with the functor λ : J̄ → N0, given by
λ(m1,m2) = m1, determines a well-structured index category.

Proof. (compare [SS12, proof of Proposition 5.8]) We notice that the functor λ is strong
symmetric monoidal. Let [α1, α2, ρ] : (m1,m2) → (n1,n2) be a morphism in J̄ . If
the map [α1, α2, ρ] is an isomorphism in J̄ , it follows that m1 = n1. Conversely, if
λ(m1,m2) = λ(n1,n2), we observe that 0 = n1−m1 = n2−m2 and so, n2 = m2. Hence,
the map [α1, α2, ρ] has to be an isomorphism. Furthermore, let (m1,m2) and (n1,n2)
be a pair of objects in J̄ . If m1 ≥ n1 + 1 or m2 ≥ n2 + 1, then the comma category
((m1,m2) t − ↓ (n1,n2)) is the empty category so that condition (ii) in Definition 1.9 is
an empty statement. Suppose now that m1 ≤ n1 and m2 ≤ n2. From Corollary 1.12(i)
we learn that an object ((k1,k2), [α1, α2, ρ]) is terminal in its connected component of
the comma category ((m1,m2)t− ↓ (n1,n2)) if and only if [α1, α2, ρ] is an isomorphism
in J̄ .

Remark 1.14. Let Σ× Σ̄ denote the full automorphism subcategory of J̄ . We point out
that the pair (J̄ ,Σ× Σ̄) does not specify a well-structured relative index category since
condition (iii) in Definition 1.8 is not satisfied. Indeed, let (m1,m2) be in Σ× Σ̄ and let
(n1,n2) be in J̄ such that n1 ≥ m1, and m2 ≥ 2 and n2 ≥ m2 + 2. By Corollary 1.12(ii)
the set of connected components of the comma category ((m1,m2) t − ↓ (n1,n2)) is
isomorphic to the set I(m1,n1)× Ī(m2,n2). The latter is isomorphic to I(m1,n1) due
to Lemma 1.3. Besides, the group Σ̄m2 = Ī(m2,m2) is isomorphic to Σ2 by Lemma 1.3.
The action ϕ of Σm1 × Σ̄m2 on I(m1,n1)× Ī(m2,n2),

(Σm1 × Σ̄m2)× (I(m1,n1)× Ī(m2,n2)) ϕ−→ I(m1,n1)× Ī(m2,n2),

is given by
ϕ((σ, [τ ]), (α, [∗])) = (α ◦ σ, [∗]).

If [τ ] 6= [idm2 ], then ϕ((idm1 , [τ ]), (α, [∗])) = (α, [∗]). Thus, the action ϕ is not free. In
particular, we cannot employ Sagave and Schlichtkrull’s machinery in [SS12] for obtaining
a flat model structure on J̄ -spaces.

To right induce the model structure on K-spaces associated with a well-structured
relative index category (K,A) on the category of commutative monoids in K-spaces, the
pair (K,A) has to fulfill the following property.

Definition 1.15. [SS12, Definition 5.3] A well-structured relative index category (K,A)
is very well-structured if for each object m in A, each object n in K, and each i ≥ 1, the
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canonical right action of the group ΣioA(m,m)×i on the comma category (mtit− ↓ n)
induces a free action on the set of connected components of the comma category
(mti t − ↓ n).

Remark 1.16. In the above Definition 1.15 the group ΣioA(m,m)×i is the semi-direct
product of the symmetric group Σi acting from the right on the i-fold product of the group
of automorphisms A(m,m). The action on the comma category (mti t− ↓ n) is defined
via the homomorphism Σi oA(m,m)×i → K(mti,mti) which sends (σ, (f1, . . . , fi)) to
σ∗ ◦ (f1 t . . . t fi) where σ∗ is the block permutation map.
Furthermore, we emphasize that A cannot contain the unit object 0K if the pair (K,A)
is a very well-structured relative index category.

For a well-structured index category K, we write K+ for the full subcategory of K
whose objects m satisfy λ(m) ≥ 1. We denote the corresponding discrete subcategory of
identity morphisms by OK+.

Example 1.17. Let Σ+ denote the full automorphism subcategory of I+, and let
Σ+ ×Σ stand for the full automorphism subcategory of J+. The pairs (I,OI+), (I,Σ+),
(J ,OJ+) and (J ,Σ+ × Σ) define very well-structured relative index categories by [SS12,
Corollary 5.9, Corollary 5.10].

Let e ∈ Z≥0. We write J̄(≥e,−) for the full subcategory of J̄ whose objects (m1,m2)
in J̄ satisfy m1 ≥ e. For e = 0, the category J̄(≥0,−) is the category J̄ , and for e = 1,
the category J̄(≥1,−) is the category J̄+.

Lemma 1.18. The inclusion functor ιe : J̄(≥e,−) → J̄ is homotopy right cofinal.

Proof. We proceed as in the proof of [SS12, Corollary 5.9]. Let (m1,m2) be in J̄ . We
have to prove that the classifying space B((m1,m2) ↓ ιe) is contractible. We pick a
morphism [α1, α2, ρ] : (0,0)→ (l1, l2) in J̄ such that l1 ≥ e. Let

− t [α1, α2, ρ] : ((m1,m2) ↓ J̄ )→ ((m1,m2) ↓ ιe)

be the functor which sends an object ((a1,a2), [η1, η2, ψ] : (m1,m2)→ (a1,a2)) to

((a1,a2) t (l1, l2), (m1,m2) = (m1,m2) t (0,0) [(η1,η2,ψ)t(α1,α2,ρ)]−−−−−−−−−−−−−→ (a1,a2) t (l1, l2)),

and a morphism
(m1,m2)

(a1,a2) (b1,b2)

[η1,η2,ψ]

[θ1,θ2,ω]

[β1,β2,φ]

to

(m1,m2)

(a1,a2) t (l1, l2) (b1,b2) t (l1, l2).

[(η1,η2,ψ)t(α1,α2,ρ)]

[(θ1,θ2,ω)t(α1,α2,ρ)]

[(β1,β2,φ)t(idl1 ,idl2 ,id∅)]
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In addition, let (ιe)∗ : ((m1,m2) ↓ ιe)→ ((m1,m2) ↓ J̄ ) be the functor induced by the
inclusion functor ιe : J̄(≥e,−) → J̄ . There is a natural transformation

id((m1,m2)↓ιe) → (− t [α1, α2, ρ]) ◦ (ιe)∗.

For ((a1,a2), [η1, η2, ψ] : (m1,m2)→ (a1,a2)), the object

((a1,a2), (m1,m2) [η1,η2,ψ]−−−−−→ (a1,a2))

is taken to

((a1,a2) t (l1, l2), (m1,m2) [(η1,η2,ψ)t(α1,α2,ρ)]−−−−−−−−−−−−−→ (a1,a2) t (l1, l2)).

Further, there is a natural transformation id((m1,m2)↓J̄ ) → (ιe)∗ ◦ (− t [α1, α2, ρ]). For
((a1,a2), [η1, η2, ψ] : (m1,m2)→ (a1,a2)), the object

((a1,a2), (m1,m2) [η1,η2,ψ]−−−−−→ (a1,a2))

is mapped to

((a1,a2) t (l1, l2), (m1,m2) [(η1,η2,ψ)t(α1,α2,ρ)]−−−−−−−−−−−−−→ (a1,a2) t (l1, l2)).

These natural transformations produce homotopies between the morphisms idB((m1,m2)↓ιe)
and B(− t [α1, α2, ρ]) ◦B((ιe)∗), and between the morphisms idB((m1,m2)↓J̄ ) and

B((ιe)∗) ◦B(− t [α1, α2, ρ]).

Hence, the space B((m1,m2) ↓ ιe) is homotopy equivalent to B((m1,m2) ↓ J̄ ), which
is contractible because the comma category ((m1,m2) ↓ J̄ ) has the initial object
((m1,m2), id(m1,m2)).

Proposition 1.19. The pair (J̄ ,OJ̄+) specifies a very well-structured relative index
category.

Proof. To understand that the pair (J̄ ,OJ̄+) determines a well-structured relative index
category, it remains to show (iv) in Definition 1.8, that is, that the inclusion functor
J̄+ → J̄ is homotopy right cofinal. But this follows from Lemma 1.18. The next step is
to prove that the well-structured relative index category (J̄ ,OJ̄+) is very well-structured.
Let (m1,m2) be in OJ̄+, let (n1,n2) be in J̄ , and let i ≥ 1. If i · m1 ≥ n1 + 1 or
i ·m2 ≥ n2 + 1, then the comma category ((m1,m2)ti t − ↓ (n1,n2)) is empty so that
the condition in Definition 1.15 automatically holds. Suppose that i · m1 ≤ n1 and
i ·m2 ≤ n2. We know from Corollary 1.12(ii) that the set of connected components of the
comma category ((m1,m2)ti t − ↓ (n1,n2)) is isomorphic to I(mti1 ,n1)× Ī(mti2 ,n2).
The action of the group Σi o {[idm1 , idm2 , id∅]}×i on the set I(mti1 ,n1)× Ī(mti2 ,n2) is
the map

(Σi o {[idm1 , idm2 , id∅]}×i)× (I(mti1 ,n1)× Ī(mti2 ,n2))→ I(mti1 ,n1)× Ī(mti2 ,n2)

which sends the element ((σ, ([idm1 , idm2 , id∅], . . . , [idm1 , idm2 , id∅])), (α, [β])) to the ele-
ment (α◦σ∗ ◦ (idm1 t . . .t idm1), [β ◦σ∗ ◦ (idm2 t . . .t idm2)]). This action is free because
m1 ≥ 1.
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The following lemma is a practical device for establishing model structures on diagram
spaces where the indexing category is a product category.

Lemma 1.20. Let ((K,t,0K),A, λK) and ((L, t̃,0L),B, λL) be well-structured relative
index categories such that the morphisms in K, and L respectively, preserve or raise the
value of λK, and λL respectively.

(a) The pair ((K×L, (t, t̃), (0K,0L)),A×B), equipped with the functor λK×L : K×L →
N0 given by λK×L(k, l) = λK(k) + λL(l), defines a well-structured relative index
category.

(b) If the pairs (K,A) and (L,B) are very well-structured relative index categories, then
so is the pair (K × L,A× B).

Proof. (a) The product of two small symmetric monoidal categories is again a small
symmetric monoidal category. As the functors λK and λL are strong symmetric
monoidal, so is the functor λK×L. More than that, we notice that A × B is a
normal and multiplicative subcategory of automorphisms in K × L. We verify the
conditions (i) to (iv) in Definition 1.8.
(i) A morphism (k, l)→ (k′, l′) is an isomorphism in K×L if and only if k→ k′ is an

isomorphism in K and l→ l′ is an isomorphism in L. The latter is equivalent to
λK(k) = λK(k′) and λL(l) = λL(l′). This implies that λK×L(k, l) = λK×L(k′, l′).
Taking into account the assumption that morphisms in K, and L respectively,
can only preserve or raise the value of λK, and λL respectively, we can deduce
from λK×L(k, l) = λK×L(k′, l′) that λK(k) = λK(k′) and λL(l) = λL(l′).

(ii) Let (a,b) be in A × B, and let (k, l) be in K × L. The comma category
((a,b)(t, t̃)− ↓ (k, l)) is isomorphic to the product of comma categories
(a t − ↓ k)× (bt̃− ↓ l). Hence, we obtain an isomorphism

π0(N ((a,b)(t, t̃)− ↓ (k, l))) ∼= π0(N (a t − ↓ k))× π0(N (bt̃− ↓ l)).

The terminal object in a connected component of the comma category

((a,b)(t, t̃)− ↓ (k, l))

is the product of the terminal objects of the corresponding connected components
of the comma categories (a t − ↓ k) and (bt̃− ↓ l).

(iii) This condition follows by making use of the isomorphisms in (ii).
(iv) The category (K×L)A×B is isomorphic to the product category KA ×LB. The

inclusion functor KA × LB → K×L is homotopy right cofinal. To see this, let
(k, l) be in K×L. The space N ((k, l) ↓ (KA ×LB → K×L)) is contractible as
being isomorpic to the product of the contractible spaces N (k ↓ (KA → K))
and N (l ↓ (LB → L)).
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(b) Let (a,b) be in A × B, let (k, l) be in K × L and let i ≥ 1. We again exploit the
isomorphisms given in (a)(ii). So we get that the canonical right action of the group
Σi o (A(a,a)×i × B(b,b)×i) on the category (ati t − ↓ k) × (bt̃it̃− ↓ l) induces
a free action on π0(N (ati t − ↓ k))× π0(N (bt̃it̃− ↓ l)) defined by the given free
actions.

Remark 1.21. We point out that we only need the assumption about the morphisms
in K, and L respectively, preserving or raising the value of λK, and λL respectively, to
prove the reverse direction of condition (i) in Definition 1.8. Our main examples, the
categories I, J and J̄ , satisfy this assumption.

1.3 The classifying space BJ̄

In the sequel we determine the classifying space BJ̄ . We do this by identifying the non-
negative components of J̄ with a Grothendieck construction (in the sense of Thomason
[Tho79, Definition 1.1]). Our arguments are similar to [SS, 2.8-2.10].

For n ≥ 0, we think of Σn as the category with a single object ∗ and morphisms
Σn(∗, ∗) = Σn. As for the category I, we have an equivalence relation on the morphism
set Σn(∗, ∗) = Σn

∼= I(n,n). A map a in Σn is equivalent to a map a′ in Σn if and
only if there exists a map σ in An such that a = σ ◦ a′. We remark that a map a in Σn

is equivalent to a map a′ in Σn if and only if sgn(a) = sgn(a′). Let Σ̄n := Σn/∼ be
the quotient set. We write Σ̄n for the category with a single object ∗ and morphisms
Σ̄n(∗, ∗) = Σ̄n. For n ≤ 1, the category Σ̄n is trivial and for n ≥ 2, the category Σ̄n is
isomorphic to Σn/An ∼= {±1}.

Let Cat denote the category of small categories. We consider the functor Σ̄ from
the category I to Cat, which maps an object m in I to the category Σ̄m and takes a
morphism α : m→ n in I to the functor Σ̄(α). The latter sends a map [a] in Σ̄m to

Σ̄(α)[a] = [(α, incl) ◦ (a t idn\im(α)) ◦ (α, incl)−1]

in Σ̄n,

n n.

m t (n \ im(α)) m t (n \ im(α))

Σ̄(α)[a]

[(α,incl)−1]
[atidn\im(α)]

[(α,incl)]

This is well-defined: Suppose that a is equivalent to a′, that is, there exists a map σ
in Am such that a = σ ◦ a′. Then (α, incl) ◦ (σ t idn\im(α)) ◦ (α, incl)−1 is in Σn with
sgn((α, incl) ◦ (σ t idn\im(α)) ◦ (α, incl)−1) = sgn(σ) = 1 and

(α, incl) ◦ (a t idn\im(α)) ◦ (α, incl)−1

= (α, incl) ◦ (σ t idn\im(α)) ◦ (α, incl)−1 ◦ (α, incl) ◦ (a′ t idn\im(α)) ◦ (α, incl)−1.
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For d in I, we write Σ̄(d t −) for the functor obtained from Σ̄ by precomposition with
the endofunctor d t − on I. For d = 0, this is just the functor Σ̄.

The Grothendieck construction on the I-category Σ̄(d t −), denoted by I
∫

Σ̄(d t −),
is the category with objects (m, ∗), where m is in I and ∗ is in Σ̄d+m, and morphisms
(α, [a]) : (m, ∗) → (n, ∗), where α : m → n is in I and [a] : ∗ → ∗ is in Σ̄d+n. The
composition of morphisms

(l, ∗) (α,[a])−−−−→ (m, ∗) (β,[b])−−−→ (n, ∗)

is given by
(β, [b]) ◦ (α, [a]) = (β ◦ α, [b] ◦ Σ̄(d t −)(β)[a]).

Lemma 1.22. Let d be in I. The category I
∫

Σ̄(dt−) is isomorphic to the category J̄d.
Proof. We prove the claim by determining two functors that are inverse to each other. On
the one hand, let F : I

∫
Σ̄(d t −)→ J̄d be the functor that sends (m, ∗) to (m,d tm),

and that takes a morphism (α, [a]) : (m, ∗)→ (n, ∗) to the morphism

(m,d tm)
[α,a◦(iddtα),a◦(iddt(α,incl))|n\im(α)]−−−−−−−−−−−−−−−−−−−−−−−−→ (n,d t n).

This is well-defined: Let a be equivalent to a′ meaning that there is a σ in Ad+n such
that a = σ ◦ a′. Then a ◦ (idd t α) = σ ◦ a′ ◦ (idd t α), and

a ◦ (idd t (α, incl)) |n\im(α)= σ ◦ a′ ◦ (idd t (α, incl)) |n\im(α) .

Hence, the morphism (α, a ◦ (idd t α), a ◦ (idd t (α, incl)) |n\im(α)) is equivalent to
(α, a′ ◦ (idd t α), a′ ◦ (idd t (α, incl)) |n\im(α)).
On the other hand, let G : J̄d → I

∫
Σ̄(d t_) be the functor that sends (m,d tm) to

(m, ∗), and that maps [α1, α2, ρ] : (m,d tm)→ (n,d t n) to

(m, ∗) (α1,[(α2,incl)◦(iddtmtρ)◦(iddt(α1,incl)−1)])−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (n, ∗).

Let (α1, α2, ρ) be equivalent to (α′1, α′2, ρ′), that is, α1 = α′1 and there exists a σ in Ad+n
such that α2 = σ ◦ α′2 and ρ = σ ◦ ρ′. We get that

(α2, incl) ◦ (iddtm t ρ) ◦ (idd t (α1, incl)−1)
= (σ ◦ (α′2, incl) ◦ (iddtm t σ)−1) ◦ ((iddtm t σ) ◦ (iddtm t ρ′)) ◦ (idd t (α1, incl)−1)
= σ ◦ (α′2, incl) ◦ (iddtm t ρ′) ◦ (idd t (α1, incl)−1).

Thus, G is well-defined, too.
We notice that F ◦ G(m,d tm) = (m,d tm) and G ◦ F (m, ∗) = (m, ∗). More than
that, we show that both compositions of functors are the identity on morphisms. First,

F ◦G([α1, α2, ρ])
= F (α1, [(α2, incl) ◦ (iddtm t ρ) ◦ (idd t (α1, incl)−1)])
= [α1, (α2, incl) ◦ (iddtm t ρ) ◦ (idd t (α1, incl)−1) ◦ (idd t α1),

(α2, incl) ◦ (iddtm t ρ) ◦ (idd t (α1, incl)−1) ◦ (idd t (α1, incl))|n\im(α1)].
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To realize that the second component (α2, incl)◦(iddtmtρ)◦(iddt(α1, incl)−1)◦(iddtα1)
is α2, we spell out the composition in the diagram

d tm d t n d tm t (n \ im(α1)) d tm t ((d t n) \ im(α2))

d t n.

iddtα1

α2

iddt(α1,incl)−1 iddtmtρ

(α2,incl)

In addition, the restriction of

(α2, incl) ◦ (iddtm t ρ) ◦ (idd t (α1, incl)−1) ◦ (idd t (α1, incl)) = (α2, incl) ◦ (iddtm t ρ)

to n \ im(α1) is ρ. Secondly,

G ◦ F (α, [a])
= G([α, a ◦ (idd t α), a ◦ (idd t (α, incl))|n\im(α)])
= (α, [(a ◦ (idd t α), incl) ◦ (iddtm t (a ◦ (idd t (α, incl))|n\im(α))) ◦ (idd t (α, incl)−1)]).

The second component

[(a ◦ (idd t α), incl) ◦ (iddtm t (a ◦ (idd t (α, incl))|n\im(α))) ◦ (idd t (α, incl)−1)]

can be identified with [a] which we can read off from the diagram

d t n d tm t (n \ im(α))

d tm t ((d t n) \ im(a ◦ (idd t α)))

d t n.

a

iddt(α,incl)

iddtmt(a◦(iddt(α,incl))|n\im(α))

(a◦(iddtα),incl)

Let e ∈ Z≥0. We denote by I≥e the full subcategory of I with objects m in I such that
m ≥ e. For e = 0, the category I≥0 is the category I, and for e = 1, the category I≥1 is
the category I+.

Lemma 1.23. Let e, e′ ∈ Z≥0 such that e′ ≥ e. The inclusion functor ιe′,e : I≥e′ → I≥e
is homotopy right cofinal.

Proof. We argue as in the proofs of [SS12, Corollary 5.9.] and Proposition 1.19. Let m
be in I≥e. We have to show that the classifying space B(m ↓ ιe′,e) is contractible. We
choose a morphism α : 0→ l in I such that l ≥ e′. Let − t α : (m ↓ I≥e)→ (m ↓ ιe′,e)
be the functor given on objects by

(a,m η−→ a) 7→ (a t l,m = m t 0 ηtα−−→ a t l)
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and on morphisms by

m

a b

η θ

β

7→
m

a t l b t l.

ηtα θtα

βtidl

Furthermore, let (ιe′,e)∗ : (m ↓ ιe′,e)→ (m ↓ I≥e) be the functor defined by the inclusion
functor ιe′,e : I≥e′ → I≥e. There are natural transformations between the identity
functor id(m↓ιe′,e) and (− t α) ◦ (ιe′,e)∗, and between the identity functor id(m↓I≥e) and
(ιe′,e)∗◦(−tα). These give rise to homotopies between idB(m↓ιe′,e) andB(−tα)◦B((ιe′,e)∗),
and between idB(m↓I≥e) and B((ιe′,e)∗) ◦ B(− t α). Thus, the space B(m ↓ ιe′,e) is
homotopy equivalent to B(m ↓ I≥e). But the latter is contractible because the comma
category (m ↓ I≥e) has the initial object (m, idm).

Proposition 1.24. The classifying space BJ̄ is weakly equivalent to Z× RP∞.

Proof. The category J̄ is a permutative category. Hence, the classifying space BJ̄ is
an E∞ space by [May74, Theorem 4.9]. Besides, since BJ̄ =

∐
d∈ZBJ̄d, we get that

π0(BJ̄ ) = Z. So BJ̄ is a grouplike E∞ space. From this we can conclude that all
connected components BJ̄d of BJ̄ are homotopy equivalent. Let d ∈ Z≥0. Thomason’s
homotopy colimit theorem yields that there is a homotopy equivalence

hocolimIN (Σ̄(d t −)) ∼−→ N (I
∫

Σ̄(d t −))

[Tho79, Theorem 1.2]. Using that the inclusion functor I≥2 → I is homotopy right
cofinal by Lemma 1.23, we obtain that the induced map of homotopy colimits

hocolimI≥2N (Σ̄(d t −))→ hocolimIN (Σ̄(d t −))

is a weak equivalence by [Hir03, Theorem 19.6.7.(1)]. Further, the functor Σ̄(dt−) : I≥2 →
Cat is isomorphic to the constant functor constI≥2{±1} : I≥2 → Cat. This is because
for m in I≥2, the category Σ̄d+m is isomorphic to the category {±1}, and for a morphism
α : m→ n in I≥2, the functor Σ̄(d t −)(α) : Σ̄d+m → Σ̄d+n is isomorphic to the identity
functor on {±1}. The latter holds as for a representative a of [a] in Σ̄d+m, the sign of a
is equal to the sign of (idd tα, incl) ◦ (at id(dtm)\im(iddtα)) ◦ (idd tα, incl)−1. Therefore,
the functor N (Σ̄(d t −)) can be identified with the functor N (constI≥2{±1}) which is
isomorphic to constI≥2N{±1}. This implies that

hocolimI≥2N (Σ̄(d t −)) ∼= hocolimI≥2constI≥2N{±1}
' N{±1}.

By Lemma 1.22 the category I
∫

Σ̄(d t −) is isomorphic to the category J̄d. Altogether,
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we find that

BJ̄d =| N J̄d |
∼=| N (I

∫
Σ̄(d t −)) |

'| N{±1} |
' RP∞,

and BJ̄ ' Z× RP∞.

Remark 1.25. Let d ∈ Z≥0. There is an alternative way to determine the classifying
space BJ̄d. We write J̄d,(≥2,−) for the full subcategory of J̄d whose objects (m1,m2) in J̄d
satisfy m1 ≥ 2. It follows from Lemma 1.18 that the inclusion functor J̄d,(≥2,−) → J̄d is
homotopy right cofinal. Thus, the induced map

hocolimJ̄d,(≥2,−)
constJ̄d,(≥2,−)

∗ → hocolimJ̄dconstJ̄d∗

is a weak equivalence by [Hir03, Theorem 19.6.7.(1)]. Moreover, arguing as in the
proof of Lemma 1.22, we see that the category J̄d,(≥2,−) is isomorphic to the category
I≥2

∫
Σ̄(d t −). As the functor Σ̄(d t −) : I≥2 → Cat is isomorphic to the constant

functor constI≥2{±1} : I≥2 → Cat (see proof of Proposition 1.24), we can identify the
category I≥2

∫
Σ̄(d t −) with the product category I≥2 × {±1}. So we obtain that

hocolimJ̄d,(≥2,−)
constJ̄d,(≥2,−)

∗ ∼= hocolimI≥2×{±1}constI≥2×{±1}∗

= N (I≥2 × {±1})
∼= N (I≥2)×N{±1}.

This is weakly equivalent to N{±1}, because the space N (I≥2) is contractible.

Remark 1.26. The homotopy groups of the space Z× RP∞ are given by

πl(Z× RP∞, ∗) ∼=


Z, l = 0,
Z/2Z, l = 1,
0, l ≥ 2.

Considering the Quillen equivalence between grouplike E∞ spaces and connective spectra
[May09, Corollary 9.5], the induced map BJ → BJ̄ of grouplike E∞ spaces models the
first Postnikov section of the sphere spectrum S in connective spectra (see Remark 1.5).
In Subsection 3.2 we recall Sagave and Schlichtkrull’s chain of Quillen equivalences
between commutative K-spaces and E∞ spaces over BK for a permutative well-structured
index category K such that the inclusion functor K+ → K is homotopy right cofinal and
the pair (K,OK+) is very well-structured (see Theorem 3.7). Applying this result to
the category J yields that commutative J -spaces are Quillen equivalent to E∞ spaces
over Q(S0) (see Remark 1.5). In analogy with algebra where Z-graded monoids can
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be identified as monoids over the additive monoid (Z,+) of the integers Z, Sagave and
Schlichtkrull view commutative J -spaces as Q(S0)-graded E∞ spaces, where Q(S0)
plays the role of (Z,+) and the sphere spectrum S the role of the integers Z (see [SS12,
p. 2120]).
The category J̄ is more algebraic than the category J because the grading is over
BJ̄ ' Z × RP∞ instead of BJ ' Q(S0). We think of commutative J̄ -spaces as
(Z×RP∞)-graded E∞ spaces. The fact that π0 of the classifying space BJ̄ is equal to Z
can be interpreted as a Z-grading, and the fact that the fundamental group of BJ̄ is
isomorphic to Z/2Z corresponds to graded commutativity. Since the higher homotopy
groups of BJ̄ vanish, the category J̄ is in a sense minimal with these properties. For
these reasons, the category J̄ is a suitable indexing category in the algebraic set-up. This
also becomes more evident in the next section where we define pre-log structures on E∞
dgas via commutative J̄ -spaces.
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2 Pre-log structures on E∞ dgas
This section is devoted to establishing pre-log structures in the algebraic setting. We recall
Richter and Shipley’s chain of Quillen equivalences between commutative Hk-algebra
spectra and E∞ differential graded k-algebras (E∞ dgas). Employing the intermediate
model category of commutative symmetric ring spectra in simplicial k-modules in this
chain, we construct the Quillen adjunction (ΛJ̄ ,ΩJ̄ ) between the latter and commutative
J̄ -spaces, on which our definition of pre-log structures is based. We define units for E∞
dgas to determine whether a pre-log structure is a log structure. We give some examples
of pre-log cdgas and log cdgas. Further, we explain the drawbacks of another approach
to specify pre-log structures via diagram chain complexes. For this, as minor results,
we provide a homotopy colimit formula for diagram chain complexes and show that in
contrast to diagram spaces indexed by a well-structured index category, diagram chain
complexes indexed by a well-structured index category do not always carry a model
structure in which the homotopy colimit functor detects the weak equivalences.

2.1 Preliminaries on diagram spaces
We start with collecting several results about diagram spaces from [SS12] which are
relevant for our theory. For more details we refer to [SS12].

We write S for the category of spaces where spaces mean unpointed simplicial sets.
Let K be a small category. A K-space is a functor M : K → S. The category of K-spaces
is the functor category SK [SS12, Definition 2.1]. The category SK is bicomplete with
limits and colimits constructed K-levelwise. Moreover, the category SK is enriched,
tensored and cotensored over S. For a K-space M and a space T , the tensor M × T is
the K-space defined by (M × T )(k) = M(k)× T , and the cotensor MT is the K-space
specified by MT (k) = HomS(T,M(k)) [SS12, Lemma 2.2].

For a K-space M , the homotopy colimit of M over K can be modelled by the Bousfield-
Kan homotopy colimit of M over K, which is defined as the realization of the bisimplicial
set

[s] 7→
∐

k0
α1←−... αs←−ks ∈NK[s]

M(ks) (2.1)

(see [BK72, XII.§5]). A realization functor is provided by the diagonal functor ([BK72,
XII.5.2], [Hir03, Theorem 15.11.6]).

Assume that (K,t,0K) is a small symmetric monoidal category. The symmetric monoidal
structure of K and the cartesian product of S give rise to a closed symmetric monoidal
structure of SK, the Day convolution product of SK (see [Day70a, §3.2], [Day70b, §4]).
For K-spaces M and N , the monoidal product M �N is the left Kan extension of the
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K-levelwise cartesian product along t : K ×K → K,

K ×K K

S × S

S.

t

M×N

M�N

×

So the K-space M �N is given by

(M �N)(k) = colimmtn→kM(m)×N(n) (2.2)

where the colimit is taken over the comma category (− t − ↓ k). The monoidal unit
is the K-levelwise discrete K-space UK = K(0K,−), and there are natural symmetry
isomorphisms τM,N : M �N → N �M .

For an object k in the category K, the evaluation functor EvKk : SK → S sends a K-spaceM
to the space EvKk (M) = M(k). This functor possesses a left adjoint FKk : S → SK, which
maps a space T to the K-space FKk (T ) = K(k,−)×T . For k and l in K, there is a natural
isomorphism

FKk (S) � FKl (T ) ∼= FKktl(S × T ), (2.3)

for each pair S and T in S.

In [SS12, §6] Sagave and Schlichtkrull describe various model structures on K-spaces
associated to a well-structured relative index category (K,A). We restrict to the cases in
which A is given by either OK or OK+. For the rest of this subsection suppose that K
is a well-structured index category, that the inclusion functor K+ → K is homotopy
right cofinal and that the pair (K,OK+) is very well-structured. The category of spaces
is equipped with the standard model structure. The latter is cofibrantly generated
with generating cofibrations IS = {∂∆n → ∆n, n ≥ 0}, generating acyclic cofibrations
JS = {Λi,n → ∆n, n > 0, 0 ≤ i ≤ n} and weak equivalences those maps which induce
isomorphisms on homotopy groups (see [Hov99, §3, Theorem 3.6.5]).

Definition 2.1. (see [SS12, pp. 2148-2149])

(i) A map f : M → N of K-spaces is a (positive) level equivalence/ (positive) level
fibration if the map f is K(+)-levelwise a weak equivalence/ fibration of spaces.

(ii) A map f : M → N of K-spaces is a (positive) K-cofibration if the map f has the
left lifting property with respect to (positive) level fibrations that are (positive)
level equivalences.

(iii) We define the set I(+)level
SK by I

(+)level
SK = {FKk (i),k ∈ OK(+), i ∈ IS}, and the

set J (+)level
SK by J (+)level

SK = {FKk (j),k ∈ OK(+), j ∈ JS}.
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Proposition 2.2. ([Hir03, Theorem 11.6.1], [SS12, Proposition 6.7]) The category
of K-spaces carries a cofibrantly generated (positive) projective level model structure
with I(+)level

SK as its set of generating cofibrations and J (+)level
SK as its set of generating

acyclic cofibrations. In this model structure the (positive) level equivalences/ (positive)
level fibrations are the weak equivalences/ fibrations, and the (positive) K-cofibrations are
the cofibrations.

Remark 2.3. The (positive) K-cofibrations are characterized in [SS12, Proposition 6.8].
The (positive) projective level model structure on SK is an S-model structure ([Hov99,
Definition 4.2.18], [SS12, Proposition 6.10]) and proper [Hir03, Theorem 13.1.14].

Definition 2.4. (see [SS12, Definition 6.14, p. 2152])

(i) A map f : M → N of K-spaces is a K-equivalence if the induced map of homotopy
colimits hocolimKf : hocolimKM → hocolimKN is a weak equivalence of spaces.

(ii) A map f : M → N of K-spaces is a (positive) K-fibration if the map f is a (positive)
level fibration and for every morphism α : k→ l in K(+), the induced square

M(k) M(l)

N(k) N(l)

M(α)

f(k) f(l)
N(α)

is homotopy cartesian in spaces.

For a K-space M and k in K, there is a map of bisimplicial sets

const∆opM(k)→ ([s] 7→
∐

k0
α1←−... αs←−ks ∈NK[s]

M(ks))

which in simplicial degree [s] is given by the inclusion, that is, the space M(k) is sent by
the identity to the summand M(k) indexed by

k id←− . . . id←− k ∈ NK[s].

Applying the diagonal functor induces a map of spaces M(k)→ hocolimKM . The square

M(k) hocolimKM

{k} BK
(2.4)

is a pullback square (see proof of [GJ09, Lemma IV.5.7]).

We say that a K-space M is homotopy constant with respect to morphisms in K(+) if
for every morphism α : k→ l in K(+), the induced map M(α) : M(k)→M(l) is a weak
equivalence of spaces. (Positive) K-fibrant K-spaces are in particular homotopy constant
with respect to morphisms in K(+). The following proposition is a useful tool to determine
the homotopy type of (positive) K-fibrant K-spaces.
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Proposition 2.5. Let M be a K-space that is homotopy constant with respect to mor-
phisms in K(+). The pullback square (2.4) is homotopy cartesian for every object k
in K(+).

Proof. First, we assume that the K-space M is homotopy constant with respect to
morphisms in K. An application of [GJ09, Lemma IV.5.7] yields the claim. Let M be
then homotopy constant with respect to morphisms in K+. Again, the result [GJ09,
Lemma IV.5.7] implies that the pullback square

M(k) hocolimK+M

{k} BK+

is homotopy cartesian for every object k in K+. As the inclusion functor K+ →
K is homotopy right cofinal by assumption, the induced maps of homotopy colimits
hocolimK+M → hocolimKM and hocolimK+constK+∗ → hocolimKconstK∗ are weak
equivalences by [Hir03, Theorem 19.6.7.(1)]. So we can conclude that the pullback
square (2.4) is homotopy cartesian.

Remark 2.6. Let M be a K-space that is homotopy constant with respect to morphisms
in K(+), and let k be in K(+). We write z for the point {k}. The homotopy cartesian
square (2.4), which is a homotopy fibre square, induces a long exact sequence of homotopy
groups

. . .→ π3(BK, z)→ π2(M(k), z)→ π2(hocolimKM, z)→ π2(BK, z)→ π1(M(k), z)
→ π1(hocolimKM, z)→ π1(BK, z)→ π0(M(k))→ π0(hocolimKM)→ π0(BK).

If the category K is I, the classifying space BI is contractible. Consequently, the natural
map M(k)→ hocolimIM is a weak equivalence. As another example, assume that the
category K is J̄ . From Proposition 1.24 we know that the classifying space BJ̄ is weakly
equivalent to Z× RP∞ and that hence the homotopy groups of the space BJ̄ are given
by

πl(BJ̄ , z) ∼= πl(Z× RP∞, ∗) ∼=


Z, l = 0,
Z/2Z, l = 1,
0, l ≥ 2

(see Remark 1.26). Therefore, we find that πl(M(k1,k2), z) ∼= πl(hocolimJ̄M, z) for
l ≥ 2.

Moreover, let α : k→ l be a morphism in K(+). The induced map α∗ : FKl (∗)→ FKk (∗),
defined by precomposition with the map α, is a K-equivalence [SS12, Lemma 6.15]. We
factor the map α∗ through the mapping cylinder Cyl(α∗) into a (positive) K-cofibration jα∗
followed by a homotopy equivalence rα∗ ,

FKl (∗) Cyl(α∗) FKk (∗).jα∗

α∗

rα∗
∼ (2.5)
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Let J (+)′ be the set of morphisms of the form jα∗�i where � stands for the pushout
product and i is an element in IS . We specify the set J (+)

SK = J
(+)level
SK ∪ J (+)′ (see [SS12,

p. 2152]).

Proposition 2.7. [SS12, Proposition 6.16] The category of K-spaces has a cofibrantly
generated (positive) projective K-model structure with I(+)level

SK as its set of generating
cofibrations and J (+)

SK as its set of generating acyclic cofibrations. In this model structure
the K-equivalences are the weak equivalences, the (positive) K-fibrations are the fibrations
and the (positive) K-cofibrations are the cofibrations.

Remark 2.8. The (positive) projective K-model structure on SK is an S-model structure
[SS12, Proposition 6.19] and proper [SS12, Corollary 11.10.(i)].

Furthermore, Sagave and Schlichtkrull explain how to right induce model structures
on K-spaces to model structures on structured K-spaces (see [SS12, §9]). Let D be an
operad in spaces. We say that the operad D is Σ-free if the action of the symmetric
group Σn on the space D(n) is free for all n ≥ 0 [SS12, Definition 9.1]. For example, an
E∞ operad in spaces is a Σ-free operad which is contractible in all levels n ≥ 0. The
commutativity operad C in spaces, specified by C(n) = ∗ for all levels n ≥ 0, is not Σ-free.
To the operad D we can associate a monad D by defining

D(M) =
∐
n≥0
D(n)×Σn M

�n.

Here M�0 indicates the monoidal unit UK (see [SS12, p. 2161]). We write DSK for the
category of D-algebras in K-spaces. The category DSK is bicomplete, and the forgetful
functor from DSK to SK preserves limits and filtered colimits [SS12, Lemma 9.2]. Sagave
and Schlichtkrull point out that in order to right induce model structures on SK to model
structures on DSK, the action of the symmetric group Σn on the K-space D(n)×M�n

has to be sufficiently free for n ≥ 0. This condition can be fulfilled by assuming that the
operad D is Σ-free or by exploiting that the pair (K,OK+) is very well-structured (see
[SS12, p. 2162]).

Proposition 2.9. [SS12, Proposition 9.3]

(i) Suppose that the operad D is Σ-free. The projective K-model structure on SK lifts
to a right-induced model structure on DSK. This (right-induced) projective K-model
structure on DSK is cofibrantly generated with D(I level

SK ) as its set of generating
cofibrations and D(JSK) as its set of generating acyclic cofibrations.

(ii) The positive projective K-model structure on SK lifts to a right-induced model
structure on DSK. This (right-induced) positive projective K-model structure
on DSK is cofibrantly generated with D(I+level

SK ) as its set of generating cofibrations
and D(J+

SK) as its set of generating acyclic cofibrations.

Remark 2.10. We obtain the analogous result for the (positive) projective level model
structure on SK [SS12, Proposition 9.3]. All these right-induced model structures on DSK
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are S-model structures (see [SS12, p. 2163]) and right proper (see [SS12, p. 2170,
Corollary 11.5]). Moreover, the positive projective K-model structure on commutative
K-spaces CSK is proper [SS12, Corollary 11.10.(ii)].

Remark 2.11. Let D be an E∞ operad. The adjunction

D(SK)+ DSK,
id

id

which passes from the positive projective K-model structure to the projective K-model
structure on DSK, is a Quillen equivalence by [SS12, Proposition 9.8]. Further, the map ε
of operads in spaces from D to the commutativity operad C induces a Quillen equivalence

D(SK)+ CSK
ε∗

ε∗

where the categories DSK and CSK are endowed with the respective positive projective
K-model structures (see [SS12, §9.11, Proposition 9.12]). We make use of both results in
Section 3.

2.2 Preliminaries on symmetric spectra
In the following we briefly outline some facts about symmetric spectra. We use the
general setting of symmetric spectra as introduced in [Hov01, §7-§9]. For a summary see
also [RS17, §2].

Let (C,⊗,1C) be a bicomplete closed symmetric monoidal category. The category Σ of
finite sets and bijections is a subcategory of the category I and inherits a strict symmetric
monoidal structure from the latter. A symmetric sequence in the category C is a functor
X : Σ → C. The category of symmetric sequences is the functor category CΣ [Hov01,
Definition 7.1]. The category CΣ inherits a closed symmetric monoidal structure from C.
For X and Y in CΣ, the monoidal product X � Y is given by

(X � Y )(n) =
∐

p+q=n
Σn ×Σp×Σq X(p)⊗ Y (q).

The C-enriched hom of X and Y in CΣ is determined by

HomCΣ
C (X,Y ) =

∏
n≥0

HomCΣn (X(n), Y (n)).

Let L be an object in C. The symmetric sequence Sym(L), specified in the nth level
by L⊗n equipped with the permutation action, is a commutative monoid in CΣ (see
[Hov01, p. 104]).

Definition 2.12. [Hov01, Definition 7.2] The category of symmetric spectra in the
category C with respect to the object L, denoted by SpΣ(C, L), is the category of right
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Sym(L)-modules in CΣ. That is, a symmetric spectrumX is a sequence of Σn-objectsX(n)
in C together with Σn-equivariant maps σn,1 : X(n)⊗ L→ X(n+ 1) for all n ≥ 0 such
that the composites

X(n)⊗ L⊗p X(n+ 1)⊗ L⊗p−1 . . . X(n+ p)
σn,1⊗idL⊗p−1

σn,p

are Σn × Σp-equivariant for all n, p ≥ 0. Morphisms in SpΣ(C, L) are morphisms of
symmetric sequences that are compatible with the right Sym(L)-module structure.

For m ≥ 0, the evaluation functor Evm : SpΣ(C, L)→ C takes a symmetric spectrum X
to its mth level X(m) in C. This functor has a left adjoint Fm : C → SpΣ(C, L) such
that Fm(T )(n) is the initial object in C if n ≤ m− 1, and

Fm(T )(n) = Σn ×Σn−m T ⊗ L⊗n−m

if n ≥ m [Hov01, Definition 7.3]. Note that F0(1C) = Sym(L) (see [Hov01, p. 105]).

The category SpΣ(C, L) is a closed symmetric monoidal category (SpΣ(C, L),∧, Sym(L)),
which is enriched, tensored and cotensored over the category C. For X and Y in
SpΣ(C, L), the smash product ∧ of X and Y is the symmetric spectrum X ∧ Y defined
as the coequalizer of

X � Sym(L)� Y X � Y.

Here one map is induced by the right action of Sym(L) on X, and the other map is given
by first applying the twist map in the symmetric monoidal structure on CΣ and then
employing the right action of Sym(L) on Y (see [Hov01, p. 105]). We write C(SpΣ(C, L))
for the category of commutative monoids in (SpΣ(C, L),∧, Sym(L)). The C-enriched hom
of X and Y in SpΣ(C, L) is the object HomSpΣ(C,L)

C (X,Y ) in C, described by the equalizer
of

HomCΣ
C (X,Y ) HomCΣ

C (X � Sym(L), Y )

where one morphism executes the right action of Sym(L) on X and the other morphism im-
plements the right action of Sym(L) on Y . For X in SpΣ(C, L) and T in C, the tensor of X
over T , denoted by X∧T , is specified by X∧F0(T ), which in spectrum degree n is given by
(X∧F0(T ))(n) = X(n)⊗T . The cotensor ofX over T is defined by HomSpΣ(C,L)(F0(T ), X)
that in spectrum degree n is given by HomSpΣ(C,L)(F0(T ), X)(n) = HomC(T,X(n)) (see
[Hov01, p. 105]).

If the category C is left proper and cellular, and the object L is cofibrant in C, then the
category SpΣ(C, L) has a projective level model structure. In this model structure the
weak equivalences/ fibrations are levelwise weak equivalences/ fibrations in C, and the
cofibrations are determined by the left lifting property with respect to the class of acyclic
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fibrations [Hov01, Theorem 8.2]. The projective level model structure on SpΣ(C, L) has a
left Bousfield localization with respect to the set of maps

{Fn+1(Acof ⊗ L) ζA
cof

n−−−→ Fn(Acof), n ≥ 0, A ∈ {V,W : V →W ∈ IC}}. (2.6)

Here (−)cof denotes a cofibrant replacement in C, the object A runs through the domains
and codomains of the generating cofibrations IC of C, and the map ζAcof

n is the adjoint of
the map

Acof ⊗ L→ Fn(Acof)(n+ 1) = Σn+1 ×Acof ⊗ L

corresponding to the identity element of Σn+1. The localized model structure is called
the projective stable model structure [Hov01, Definition 8.7].

Proposition 2.13. [Hov01, Theorem 8.11] The projective stable model structure makes
SpΣ(C, L) into a symmetric monoidal model category.

There are positive versions of both model structures which are necessary to right induce
the respective model structures on C(SpΣ(C, L)). In the positive projective level model
structure on SpΣ(C, L) the weak equivalences/ fibrations are levelwise weak equivalences/
fibrations in C for positive levels, and the cofibrations are again specified by the left
lifting property with respect to the class of acyclic fibrations. The positive cofibrations
are precisely those cofibrations in the projective level model structure on SpΣ(C, L)
which are isomorphisms in spectrum level zero (see [RS17, p. 2018], compare [MMSS01,
Theorem 14.1]). We adapt the localizing set (2.6) by taking only positive n into account,
and form the left Bousfield localization of the positive projective level model structure to
obtain the positive projective stable model structure on SpΣ(C, L). We refer to [HSS00],
[MMSS01], [Shi04], [Shi07], [RS17] and [PS18] in the case that C is the category of pointed
simplicial sets, simplicial k-modules or (non-negative) chain complexes.

2.3 Commutative Hk-algebra spectra are Quillen equivalent to E∞ dgas
In this subsection we give a short review of the chain of Quillen equivalences connecting
commutative Hk-algebra spectra with E∞ differential graded k-algebras. For more details
see [Shi07] and [RS17].

In [SS03b] Schwede and Shipley prove the following theorem.

Theorem 2.14. [SS03b, Theorem 5.1.6] There is a chain of Quillen equivalences con-
necting Hk-modules in SpΣ(S∗, S1) to unbounded chain complexes.

In [Shi07] Shipley shows a structured version of this result.

Theorem 2.15. [Shi07, Theorem 1.1] There is a chain of Quillen equivalences relating
Hk-algebra spectra to unbounded differential graded k-algebras.
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To prove this, Shipley establishes the following chain of Quillen equivalences (2.7)
between Hk-modules Hk-mod and unbounded chain complexes Ch(k), which is different
to Schwede and Shipley’s chain of Quillen equivalences in [SS03b, §B.1],

Hk-mod SpΣ(s(k-mod), k̃(S1)) SpΣ(ch(k), S1(k))

Ch(k) SpΣ(Ch(k),S1(k))

k̃(−)∧k̃(Hk)Sym(k̃(S1))

U Φ∗◦N

L

i

F0

C0

Ev0

(2.7)

(see [Shi07, p. 357, Proposition 2.10, Proposition 4.9]). The category of Hk-modules
in SpΣ(S∗, S1) carries the right-induced projective stable model structure, created
by the forgetful functor to the projective stable model structure on SpΣ(S∗, S1) (see
[SS00, Theorem 4.1.(2)]). The categories SpΣ(s(k-mod), k̃(S1)), SpΣ(ch(k), S1(k)) and
SpΣ(Ch(k), S1(k)) are equipped with the respective projective stable model structures.
The category of unbounded chain complexes Ch(k) has the projective model structure
[Hov99, Theorem 2.3.11].
Let k̃ : S∗ → s(k-mod) be the functor such that k̃(X)[n] is the free k-module on the
non-basepoint simplices in X[n]. Applying the functor k̃ to each spectrum level of an
Hk-module in SpΣ(S∗, S1) produces a k̃(Hk)-module in SpΣ(s(k-mod), k̃(S1)). In the
Quillen equivalence (k̃(−) ∧k̃(Hk) Sym(k̃(S1)), U) of (2.7), the functor U denotes the
forgetful functor, and the underlying symmetric spectrum in pointed simplicial sets
of Sym(k̃(S1)) is Hk (see [Shi07, pp. 357-358, p. 372]).
The subsequent Quillen equivalence (L,Φ∗ ◦ N) in (2.7) is an extension of the clas-
sical Dold-Kan correspondence between simplicial k-modules and non-negative chain
complexes,

s(k-mod) ch(k).
N

Γ

Since the category of symmetric sequences in k-modules (k-mod)Σ is an abelian category,
applying the normalization functor N levelwise, yields an equivalence of categories

(s(k-mod))Σ (ch(k))Σ
N

Γ

[Ric15, Proposition 4.3]. The normalization functor N is lax symmetric monoidal (see
[Mac63, Corollary VIII.8.9]). Hence, there is a map

Sym(S1(k)) Φ−→ N(Sym(k̃(S1)))

in C(SpΣ(ch(k),S1(k))) which is induced by the shuffle transformation. We obtain a
functor

Φ∗ ◦N : SpΣ(s(k-mod), k̃(S1))→ SpΣ(ch(k), S1(k)),

where Φ∗ is the associated change-of-rings morphism (see [Shi07, p. 358]). But the
functor Γ is not lax symmetric monoidal because the Alexander-Whitney map is not
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symmetric (see [SS03a, §2.3]). Schwede and Shipley explain in general how to produce a
left adjoint on the categories of monoids and modules when given a Quillen adjunction
between the underlying categories with a lax (symmetric) monoidal structure on the right
adjoint plus some other assumptions (see [SS03a, §3.3]). In this way, the functor Φ∗ ◦N
possesses a left adjoint denoted by L.
The inclusion functor i : ch(k)→ Ch(k) from non-negative chain complexes to unbounded
chain complexes, whose right adjoint C0 is the good truncation functor, induces the
Quillen equivalence (i, C0) in (2.7). The remaining Quillen equivalence in (2.7) is given
by the adjoint pair (F0,Ev0).

Moreover, Richter and Shipley extend Shipley’s result [Theorem 2.15] in the follow-
ing sense.

Theorem 2.16. [RS17, Corollary 8.3] There is a chain of Quillen equivalences between
commutative Hk-algebra spectra and E∞ differential graded k-algebras.

The following diagram displays Richter and Shipley’s chain of Quillen equivalences

C(Hk-mod) C(SpΣ(s(k-mod), k̃(S1)))

C(SpΣ(Ch(k),S1(k))) C(SpΣ(ch(k), S1(k)))

E∞(SpΣ(Ch(k), S1(k)))s,+ E∞(SpΣ(Ch(k),S1(k)))s

E∞Ch(k)

k̃(−)∧k̃(Hk)Sym(k̃(S1))

U

Φ∗◦N

C0

ε∗

LN

i

ε∗

id

id
Ev0F0

(2.8)

(see [RS17, Theorem 3.3, Theorem 4.1, Theorem 6.6, Corollary 7.3, Proposition 8.1,
Theorem 8.2]). Here Richter and Shipley fix a cofibrant E∞ operad in chain com-
plexes (see [RS17, p. 2031]). The categories C(Hk-mod), C(SpΣ(s(k-mod), k̃(S1))),
C(SpΣ(ch(k),S1(k))), C(SpΣ(Ch(k), S1(k))) and E∞(SpΣ(Ch(k),S1(k)))s,+ carry the
right-induced positive projective stable model structures so that the forgetful functor to
the positive projective stable model structures on the respective underlying categories of
symmetric spectra determines the weak equivalences and fibrations [RS17, Theorem 3.1].
The category E∞(SpΣ(Ch(k),S1(k)))s is endowed with the right-induced projective stable
model structure (see [Spi01, Theorem 4.3]), and the category E∞Ch(k) has the right-
induced projective model structure created by the forgetful functor to the projective model
structure on Ch(k) (see [Spi01, Theorem 4.3], [BM03, Theorem 3.1, Example 3.3.3]).
Note that the functor LN in (2.8) is not equal to the functor L in (2.7). The functor LN
is constructed in [Ric15, Lemma 6.4], again using the general machinery of [SS03a, §3.3].
The map ε of operads in chain complexes from the fixed E∞ operad to the commutativity
operad gives rise to the Quillen equivalence (ε∗, ε∗) in (2.8). The adjacent Quillen equiva-
lence in (2.8) passes from the right-induced positive projective stable model structure to
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the right-induced projective stable model structure on E∞(SpΣ(Ch(k), S1(k))).
A guiding example is the commutative Hk-algebra spectrum F (X+, Hk) (see [Scha,
Example I.3.6, Example I.3.46],[Ric, §3.2], [RS17, p. 2013]) which under the chain of
Quillen equivalences (2.8) corresponds to a chain model of the singular cochains on the
space X with coefficients in k (see [RS17, p. 2013]). The E∞ structure on the latter is
parametrized by the Barratt-Eccles operad in chain complexes (see [BF04, §1.1, Theo-
rem 2.1.1]). The homotopy groups of the function spectrum F (X+, Hk) are isomorphic
to the cohomology groups of the space X with coefficients in k,

π∗(F (X+, Hk)) ∼= H−∗(X, k). (2.9)

We employ later the intermediate category C(SpΣ(s(k-mod), k̃(S1))) in (2.8) as well as
the Quillen equivalence

SpΣ(s(k-mod), k̃(S1)) SpΣ(ch(k),S1(k))
Φ∗N

L

in (2.7) to develop a notion of pre-log structures on E∞ differential graded k-algebras.

From now on we abbreviate the category k-mod by mod, the category s(k-mod) by smod,
the category ch(k) by ch and the category Ch(k) by Ch. In addition, we denote the
category SpΣ(S∗, S1) by SpΣ, the category SpΣ(s(k-mod), k̃(S1)) by SpΣ(smod), and the
category SpΣ(ch(k), S1(k)) by SpΣ(ch). Further, to ease notation we write Sm for the
m-sphere chain complex Sm(k) for m ∈ Z.

2.4 Symmetric spectra and J̄ -spaces
Let (C,⊗,1C) be a bicomplete closed symmetric monoidal category, and let L be an
object in C.

The category SpΣ can be viewed as diagram spectra with respect to the category
of finite sets and bijections Σ [MMSS01, Example 4.2]. Recall that the category Σ is a
subcategory of the category I. The relation of the latter category and the category SpΣ

is discussed in [SS12, §3.16], [Sch09, §3.1] and [Scha, I.§3.4]. Exploiting this, Sagave
and Schlichtkrull define a strong symmetric monoidal functor F−(S−) : J op → SpΣ

which sends (m1,m2) to Fm1(Sm2) [SS12, Lemma 4.22]. Generalizing this definition, we
can replace the category SpΣ by the category SpΣ(C, L), so that we obtain the functor
F−(L⊗−) : J op → SpΣ(C, L) that takes (m1,m2) to Fm1(L⊗m2). As an example, we
investigate the functor F−(S−) : J op → SpΣ(ch) and explain that the latter does factor
through the projection J op → J̄ op. For the functor F−(S−) : J op → SpΣ, this is false.
The reason for this is that while the action of the symmetric group Σn on the pointed
simplicial set Sym(S1)(n) = Sn permutes coordinates, the action of Σn on the chain
complex Sym(S1)(n) = Sn is only the sign action.

We begin with considering in the generalized setting the morphisms introduced by
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Sagave and Schlichtkrull in [SS12, §3.16]. In the example where C is the category of chain
complexes and L is the one-sphere chain complex S1, we point out that these morphisms are
compatible with the equivalence relation imposed on the morphisms sets of the category I
(see Subsection 1.1). Afterwards, we specify the functor F−(L⊗−) : J op → SpΣ(C, L) and
the induced functor F−(S−) : J̄ op → SpΣ(ch) and show that they are strong symmetric
monoidal. With the help of the functor F−(S−) : J̄ op → SpΣ(ch), we build the Quillen
adjunction (ΛJ̄ ,ΩJ̄ ) between the model categories CSJ̄ and C(SpΣ(smod)), on which
our definition of pre-log structures on E∞ differential graded k-algebras is based.

For a finite set Z, we use the notation L⊗Z for the |Z|-fold monoidal product of the
object L in order to keep track of the different copies of L. If Z = ∅, we follow the
convention that L⊗∅ = 1C .

Lemma 2.17. (i) Let α : m→ n be a map in the category I. The canonical extension
of the map α to a bijection (α, incl) : mt(n\im(α))→ n gives rise to an isomorphism

L⊗m ⊗ L⊗n\im(α) (α,incl)∗−−−−−→ L⊗n (2.10)

in C. If α is an element in I(n,n) = Σn, this specifies the usual Σn-action on L⊗n.
Plugging in the chain complex S1 for L, the equivalence class of α, which is [α] in
the category Ī, induces an isomorphism

Sm ⊗ Sn\im(α) [(α,incl)]∗−−−−−−→ Sn (2.11)

in chain complexes.

(ii) For a pair of morphisms α : l → m and β : m → n in I, there is a canonical
bijection (β, incl) : (m \ im(α)) t (n \ im(β)) → n \ im(β ◦ α). This leads to an
isomorphism

L⊗m\im(α) ⊗ L⊗n\im(β) (β,incl)∗−−−−−→ L⊗n\im(β◦α) (2.12)
in C. Inserting the chain complex S1 for L, and passing to the equivalence classes [α]
and [β] in Ī, we get an induced isomorphism

Sm\im(α) ⊗ Sn\im(β) [(β,incl)]∗−−−−−−→ Sn\im(β◦α) (2.13)

in chain complexes.

(iii) For morphisms α : m→ n and β : p→ q in I, there is a canonical identification of
(ntq) \ im(αt β) with (n \ im(α))t (q \ im(β)), and an associated isomorphism is

L⊗(ntq)\im(αtβ) ∼= L⊗n\im(α) ⊗ L⊗q\im(β) (2.14)

in C. Plugging in the chain complex S1 for L, we obtain for the corresponding
equivalence classes [α] and [β], an isomorphism

S(ntq)\im(αtβ) ∼= Sn\im(α) ⊗ Sq\im(β) (2.15)

in chain complexes.
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Proof. (i) For the isomorphism (2.10) compare [SS12, §3.16 (3.3)]. To see that the
isomorphism (2.11) is well-defined, let α be equivalent to α′, meaning that there is a σ
in An such that α = σ◦α′. As sgn(σ) = 1, the induced map σ∗ : Sn\im(α′) → Sn\im(α)

is the identity. Hence, we can identify the map (α, incl)∗ with (α′, incl)∗.

(ii) For the isomorphism (2.12) compare [SS12, §3.16 (3.4)]. The isomorphism (2.13) is
well-defined, because if α is equivalent to α′ and β is equivalent to β′, we can iden-
tify Sm\im(α) with Sm\im(α′), Sn\im(β) with Sn\im(β′) and Sn\im(β◦α) with Sn\im(β′◦α′)

as in part (i).

(iii) For the isomorphism (2.14) compare [SS12, §3.16 (3.5)]. The same argument as
in part (i) ensures that the isomorphism (2.15) is independent of the choice of
representatives of the respective equivalence classes.

Let X be an object in SpΣ(C, L). For a map α : m → n in I, there is an induced
structure map α∗ : X(m)⊗L⊗n\im(α) → X(n) which is determined as follows. We choose
a bijection β : l→ n \ im(α) for an object l in I, so that we get a bijection

m t l m t (n \ im(α)) n.idmtβ (α,incl)

This gives rise to the structure map α∗

X(m)⊗ L⊗n\im(α) X(m)⊗ L⊗l X(m+ l) X(n),

α∗

idX(m)⊗(β∗)−1 σm,l ((α,incl)◦(idmtβ))∗

which does not depend on the choice of the map β. In this way, the standard inclusion
ιm,mt1 : m→m t 1 induces the structure map σm,1 : X(m)⊗ L→ X(m+ 1) and the
automorphisms of m yield the Σm-action on X(m). For more details on this viewpoint
of the category SpΣ(C, L) compare [SS12, p. 2129] and [Sch09, §3.1].

Let m ≥ 0. Recall the functor Fm : C → SpΣ(C, L) from Subsection 2.2. Observ-
ing that the morphism set I(m,n) is isomorphic to Σn/Σn−m, we notice that for an
object C in C, the object Fm(C)(n) is isomorphic to

∐
α∈I(m,n)C ⊗ L⊗n\im(α). A mor-

phism β : n→ p in I induces the structure map β∗ : Fm(C)(n)⊗ L⊗p\im(β) → Fm(C)(p).
This sends a (coproduct) summand indexed by the map α : m → n to the summand
indexed by the composite map β ◦α, by using the isomorphism (2.12) in Lemma 2.17 (ii),

C ⊗ L⊗n\im(α) ⊗ L⊗p\im(β) idC⊗(β,incl)∗−−−−−−−−→ C ⊗ L⊗p\im(β◦α).

Moreover, let m, m̃ ≥ 0, and let C and C̃ be objects in C. There is a natural isomorphism

Fm(C) ∧ Fm̃(C̃)
∼=−→ Fm+m̃(C ⊗ C̃) (2.16)
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(see [Hov01, p. 105]). This isomorphism (2.16) can be made explicit by exploiting
an alternative description of the smash product ∧ and the isomorphisms (2.12) in
Lemma 2.17(ii) and (2.14) in Lemma 2.17(iii). In general, for a pair of symmetric
spectra X and Y in SpΣ(C, L), the smash product ∧ of X and Y in level n can be written
as

(X ∧ Y )(n) = colimα : ptq→nX(p)⊗ Y (q)⊗ L⊗n\im(α)

where the colimit is taken over the comma category (−t− ↓ n) (compare [SS12, p. 2130],
[Sch09, p. 710]). Using this, the map (2.16) in level n is given by

colimα : ptq→n(
∐

β∈I(m,p)
C ⊗ L⊗p\im(β))⊗ (

∐
β̃∈I(m̃,q)

C̃ ⊗ L⊗q\im(β̃))⊗ L⊗n\im(α)

−→
∐

γ∈I(mtm̃,n)
C ⊗ C̃ ⊗ L⊗n\im(γ).

Here for each object ((p,q), α : p t q → n) in the comma category (− t − ↓ n), the
summand indexed by the maps β : m→ p and β̃ : m̃→ q is sent to the summand indexed
by the composite map

m t m̃ βtβ̃−−→ p t q α−→ n

via the following composite of isomorphisms

C ⊗ L⊗p\im(β) ⊗ C̃ ⊗ L⊗q\im(β̃) ⊗ L⊗n\im(α)

idC⊗τL⊗p\im(β),C̃⊗id
L⊗q\im(β̃)⊗L⊗n\im(α)

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ C ⊗ C̃ ⊗ L⊗p\im(β) ⊗ L⊗q\im(β̃) ⊗ L⊗n\im(α)

−→ C ⊗ C̃ ⊗ L⊗(ptq)\im(βtβ̃) ⊗ L⊗n\im(α)

idC⊗C̃⊗(α,incl)∗
−−−−−−−−−−→ C ⊗ C̃ ⊗ L⊗n\im(α◦(βtβ̃))

where the second isomorphism is induced by the isomorphism (2.14) in Lemma 2.17 (iii).
Under the isomorphism (2.16), the symmetry isomorphism

Fm(C) ∧ Fm̃(C̃)
τFm(C),Fm̃(C̃)−−−−−−−−→ Fm̃(C̃) ∧ Fm(C)

matches with the map Fm+m̃(C ⊗ C̃) → Fm̃+m(C̃ ⊗ C) which in spectrum degree n
takes a summand indexed by the map α : m t m̃→ n to the summand indexed by the
composite map

m̃ tm χm̃,m−−−→m t m̃ α−→ n

via the isomorphism

C ⊗ C̃ ⊗ L⊗n\im(α) τC,C̃⊗id
L⊗n\im(α)−−−−−−−−−−−→ C̃ ⊗ C ⊗ L⊗n\im(α◦χm̃,m)

(compare [SS12, p. 2130]).
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Construction 2.18. We define the functor F−(L⊗−) : J op → SpΣ(C, L) that sends
(m1,m2) to Fm1(L⊗m2). A morphism (α1, α2, ρ) : (m1,m2) → (n1,n2) in J induces a
morphism (α1, α2, ρ)∗ : Fn1(L⊗n2)→ Fm1(L⊗m2) which in spectrum degree p,∐

γ∈I(n1,p)
L⊗n2 ⊗ L⊗p\im(γ) (α1,α2,ρ)∗(p)−−−−−−−−→

∐
δ∈I(m1,p)

L⊗m2 ⊗ L⊗p\im(δ),

takes a summand L⊗n2 ⊗ L⊗p\im(γ) indexed by the map γ : n1 → p to the summand
L⊗m2 ⊗ L⊗p\im(γ◦α1) indexed by the composite map

m1
α1−→ n1

γ−→ p.

The isomorphism L⊗n2 ⊗ L⊗p\im(γ) → L⊗m2 ⊗ L⊗p\im(γ◦α1) is specified by the following
chain of isomorphisms

L⊗n2 ⊗ L⊗p\im(γ) L⊗m2 ⊗ L⊗n2\im(α2) ⊗ L⊗p\im(γ)

L⊗m2 ⊗ L⊗p\im(γ◦α1) L⊗m2 ⊗ L⊗n1\im(α1) ⊗ L⊗p\im(γ).

(α2,incl)∗⊗id
L⊗p\im(γ)

id
L⊗m2⊗ρ∗⊗id

L⊗p\im(γ)

id
L⊗m2⊗(γ,incl)∗

Due to the adjunction of Fn1 to the evaluation functor Evn1 , the morphism (α1, α2, ρ)∗
is adjoint to a morphism L⊗n2 → Fm1(L⊗m2)(n1) that is determined by the composite

L⊗n2 L⊗m2 ⊗ L⊗n2\im(α2) L⊗m2 ⊗ L⊗n1\im(α1)

∐
δ∈I(m1,n1) L

⊗m2 ⊗ L⊗p\im(δ).

(α2,incl)∗ id
L⊗m2⊗ρ∗

incl

Lemma 2.19. The assignment F−(L⊗−) : J op → SpΣ(C, L) is a functor.

Proof. (compare [SS12, proof of Lemma 4.22]) The above assignment makes use of the
isomorphisms (2.10) in Lemma 2.17 (i) and (2.12) in Lemma 2.17 (ii). It holds that
F−(L⊗−)(idm1 , idm2 , id∅) = idFm1 (L⊗m2 ). Moreover, let

(l1, l2) (α1,α2,ρ)−−−−−−→ (m1,m2) (β1,β2,φ)−−−−−→ (n1,n2)

be a composable pair of morphisms in J . We need to check that

(α1, α2, ρ)∗ ◦ (β1, β2, φ)∗ = (β1 ◦ α1, β2 ◦ α2, φ ∪ (β2 ◦ ρ ◦ β−1
1 ))∗. (2.17)

For this, let p be a spectrum degree. We show that the diagram

∐
γ∈I(n1,p) L

⊗n2 ⊗ L⊗p\im(γ) ∐
δ∈I(m1,p) L

⊗m2 ⊗ L⊗p\im(δ)

∐
ε∈I(l1,p) L

⊗l2 ⊗ L⊗p\im(ε)

(β1,β2,φ)∗(p)

(β1◦α1,β2◦α2,φ∪(β2◦ρ◦β−1
1 ))∗(p)

(α1,α2,ρ)∗(p)
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commutes. The morphism (β1, β2, φ)∗(p) sends a summand L⊗n2 ⊗ L⊗p\im(γ) indexed by
the map γ : n1 → p to the summand L⊗m2 ⊗L⊗p\im(γ◦β1) indexed by the composite map

m1
β1−→ n1

γ−→ p

via the following chain of isomorphisms

L⊗n2 ⊗ L⊗p\im(γ) L⊗m2 ⊗ L⊗n2\im(β2) ⊗ L⊗p\im(γ)

L⊗m2 ⊗ L⊗p\im(γ◦β1) L⊗m2 ⊗ L⊗n1\im(β1) ⊗ L⊗p\im(γ).

(β2,incl)∗⊗id
L⊗p\im(γ)

id
L⊗m2⊗φ∗⊗id

L⊗p\im(γ)

id
L⊗m2⊗(γ,incl)∗

(2.18)

The morphism (α1, α2, ρ)∗(p) then maps the summand L⊗m2 ⊗ L⊗p\im(γ◦β1) indexed by
the composite map

m1
β1−→ n1

γ−→ p

to the summand L⊗l2 ⊗ L⊗p\im(γ◦β1◦α1) indexed by the composite map

l1
α1−→m1

β1−→ n1
γ−→ p

via the following chain of isomorphisms

L⊗m2 ⊗ L⊗p\im(γ◦β1) L⊗l2 ⊗ L⊗m2\im(α2) ⊗ L⊗p\im(γ◦β1)

L⊗l2 ⊗ L⊗p\im(γ◦β1◦α1) L⊗l2 ⊗ L⊗m1\im(α1) ⊗ L⊗p\im(γ◦β1).

(α2,incl)∗⊗id
L⊗p\im(γ◦β1)

id
L⊗l2⊗ρ∗⊗id

L⊗p\im(γ◦β1)

id
L⊗l2⊗(γ◦β1,incl)∗

(2.19)
On the other hand, the morphism (β1 ◦ α1, β2 ◦ α2, φ ∪ (β2 ◦ ρ ◦ β−1

1 ))∗(p) takes the
summand L⊗n2 ⊗ L⊗p\im(γ) indexed by the map γ : n1 → p to the summand

L⊗l2 ⊗ L⊗p\im(γ◦β1◦α1)

indexed by the composite map

l1
α1−→m1

β1−→ n1
γ−→ p

via the following chain of isomorphisms

L⊗n2 ⊗ L⊗p\im(γ) L⊗l2 ⊗ L⊗n2\im(β2◦α2) ⊗ L⊗p\im(γ)

L⊗l2 ⊗ L⊗p\im(γ◦β1◦α1) L⊗l2 ⊗ L⊗n1\im(β1◦α1) ⊗ L⊗p\im(γ).

(β2◦α2,incl)∗⊗id
L⊗p\im(γ)

id
L⊗l2⊗(φ∪(β2◦ρ◦β−1

1 ))∗⊗id
L⊗p\im(γ)

id
L⊗l2⊗(γ,incl)∗

(2.20)
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It remains to argue that the chain of isomorphisms (2.18) composed with the chain of
isomorphisms (2.19), which is

L⊗n2 ⊗ L⊗p\im(γ) L⊗m2 ⊗ L⊗n2\im(β2) ⊗ L⊗p\im(γ)

L⊗m2 ⊗ L⊗p\im(γ◦β1) L⊗m2 ⊗ L⊗n1\im(β1) ⊗ L⊗p\im(γ)

L⊗l2 ⊗ L⊗m2\im(α2) ⊗ L⊗p\im(γ◦β1)

L⊗l2 ⊗ L⊗p\im(γ◦β1◦α1) L⊗l2 ⊗ L⊗m1\im(α1) ⊗ L⊗p\im(γ◦β1),

(β2,incl)∗⊗id
L⊗p\im(γ)

id
L⊗m2⊗φ∗⊗id

L⊗p\im(γ)

id
L⊗m2⊗(γ,incl)∗

(α2,incl)∗⊗id
L⊗p\im(γ◦β1)

id
L⊗l2⊗ρ∗⊗id

L⊗p\im(γ◦β1)

id
L⊗l2⊗(γ◦β1,incl)∗

coincides with the chain of isomorphisms (2.20). This means we need to verify that the
composite

(idL⊗l2 ⊗ (γ◦β1, incl)∗)◦(idL⊗l2 ⊗ ρ∗ ⊗ idL⊗p\im(γ◦β1))−1◦((α2, incl)∗ ⊗ idL⊗p\im(γ◦β1))−1

◦(idL⊗m2 ⊗ (γ, incl)∗)◦(idL⊗m2 ⊗ φ∗ ⊗ idL⊗p\im(γ))−1◦((β2, incl)∗ ⊗ idL⊗p\im(γ))−1

(2.21)
is equal to the composite

(idL⊗l2 ⊗ (γ, incl)∗) ◦ (idL⊗l2 ⊗ (φ ∪ (β2 ◦ ρ ◦ β−1
1 ))∗ ⊗ idL⊗p\im(γ))−1

◦ ((β2 ◦ α2, incl)∗ ⊗ idL⊗p\im(γ))−1.
(2.22)

For this, we analyze the following diagram of bijections in I,

n2 t (p \ im(γ)) m2 t (n2 \ im(β2)) t (p \ im(γ))

l2 t (n2 \ im(β2 ◦ α2)) t (p \ im(γ)) m2 t (n1 \ im(β1)) t (p \ im(γ))

l2 t (n1 \ im(β1 ◦ α1)) t (p \ im(γ)) m2 t (p \ im(γ ◦ β1))

l2 t (m2 \ im(α2)) t (p \ im(γ ◦ β1))

l2 t (m1 \ im(α1)) t (p \ im(γ ◦ β1))

l2 t (p \ im(γ ◦ β1 ◦ α1)).

(β2,incl)tidp\im(γ)

(β2◦α2,incl)tidp\im(γ) idm2tφtidp\im(γ)

idm2t(γ,incl)idl2t(φ∪(β2◦ρ◦β−1
1 ))tidp\im(γ)

idl2t(γ,incl)

(α2,incl)tidp\im(γ◦β1)

idl2tρtidp\im(γ◦β1)

idl2t(γ◦β1,incl)

(2.23)
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We claim that composing the top horizontal map with the right vertical map

(idl2 t (γ ◦ β1, incl)) ◦ (idl2 t ρ t idp\im(γ◦β1))−1 ◦ ((α2, incl) t idp\im(γ◦β1))−1

◦ (idm2 t (γ, incl)) ◦ (idm2 t φ t idp\im(γ))−1 ◦ ((β2, incl) t idp\im(γ))−1

agrees with composing the left vertical map with the bottom diagonal map

(idl2 t (γ, incl))◦(idl2 t (φ ∪ (β2◦ρ◦β−1
1 )) t idp\im(γ))−1◦((β2◦α2, incl) t idp\im(γ))−1.

To show this, we insert commutative diagrams in the diagram (2.23). For lack of space
we use the following abbreviations

A = n2 t (p \ im(γ))
B = m2 t (n2 \ im(β2)) t (p \ im(γ))
C = m2 t (n1 \ im(β1)) t (p \ im(γ))
D = m2 t (p \ im(γ ◦ β1))
E = l2 t (m2 \ im(α2)) t (p \ im(γ ◦ β1))
F = l2 t (m1 \ im(α1)) t (p \ im(γ ◦ β1))
G = l2 t (p \ im(γ ◦ β1 ◦ α1))
H = l2 t (n2 \ im(β2 ◦ α2)) t (p \ im(γ))
I = l2 t (n1 \ im(β1 ◦ α1)) t (p \ im(γ))
J = l2 t (m2 \ im(α2)) t (n2 \ im(β2)) t (p \ im(γ))
K = l2 t (m2 \ im(α2)) t (n1 \ im(β1)) t (p \ im(γ))
M = l2 t (m1 \ im(α1)) t (n1 \ im(β1)) t (p \ im(γ))

a = (β2, incl) t idp\im(γ)

b = idm2 t φ t idp\im(γ)

c = idm2 t (γ, incl)
d = (α2, incl) t idp\im(γ◦β1)

e = idl2 t ρ t idp\im(γ◦β1)

f = idl2 t (γ ◦ β1, incl)
g = (β2 ◦ α2, incl) t idp\im(γ)

h = idl2 t (φ ∪ (β2 ◦ ρ ◦ β−1
1 )) t idp\im(γ)

i = idl2 t (γ, incl)
j = (α2, incl) t idn2\im(β2) t idp\im(γ)

q = idl2 t idm2\im(α2) t φ t idp\im(γ)

r = idl2 t ρ t idn1\im(β1) t idp\im(γ)

s = idl2 t ρ t φ t idp\im(γ)
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t = (α2, incl) t idn1\im(β1) t idp\im(γ)

u = idl2 t idm2\im(α2) t (γ, incl)
v = idl2 t idm1\im(α1) t (γ, incl)
w = idl2 t (β1, incl) t idp\im(γ).

The diagram (2.23) is then the outer diagram of the following diagram of bijections in I,

A B C D

H J K E

M F

I G

a b c

g j t

q u

d

r
s

w

v

f

e

h

i

(2.24)

where the map J → H is induced by the bijection in Lemma 2.17(iii). We can read off
that all diagrams being part of the diagram (2.24) commute. This implies the claim
which in turn yields that the composite (2.21) is the same as the composite (2.22). Thus,
we can conclude that the equation (2.17) is true.

Lemma 2.20. The functor F−(S−) : J op → SpΣ(ch) factors through the projection
J op → J̄ op.

We refer to the induced functor J̄ op → SpΣ(ch) as F−(S−), too.

Proof. Let (α1, α2, ρ), (α′1, α′2, ρ′) : (m1,m2) → (n1,n2) be equivalent morphisms, that
is, there exists a σ in An2 such that (α1, α2, ρ) = (idn1 , σ, id∅) ◦ (α′, α′2, ρ′). Hence,
for the induced maps, we get that (α1, α2, ρ)∗ = (α′, α′2, ρ′)∗ ◦ (idn1 , σ, id∅)∗. Since
sgn(σ) = 1, the induced map (idn1 , σ, id∅)∗ is the identity. Therefore, the map [α1, α2, ρ]∗
is well-defined.

Lemma 2.21. The functor F−(L⊗−) : J op → SpΣ(C, L) is strong symmetric monoidal.

Proof. (compare [SS12, proof of Lemma 4.22]) There is a morphism

Sym(L) νF−(L⊗−)
−−−−−−→ F0(1C)

which is the identity. In addition, the isomorphism (2.16) yields that for (m1,m2)
and (n1,n2) in J op, there is an isomorphism

Fm1(L⊗m2) ∧ Fn1(L⊗n2)
λ
F−(L⊗−)
(m1,m2),(n1,n2)−−−−−−−−−−→ Fm1+n1(L⊗m2 ⊗ L⊗n2) = Fm1+n1(L⊗m2+n2).

(2.25)
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One can check that this isomorphism (2.25) is natural in ((m1,m2), (n1,n2)), so that we
obtain a natural transformation λF−(L⊗−), and that the latter together with νF−(L⊗−) is
coherently associative, unital and commutative. We unravel commutativity. Let (m1,m2)
and (n1,n2) be in J op. We have to show that the diagram

Fm1(L⊗m2) ∧ Fn1(L⊗n2) Fn1(L⊗n2) ∧ Fm1(L⊗m2)

Fm1+n1(L⊗m2+n2) Fn1+m1(L⊗n2+m2)

τ
Fm1 (L⊗m2 ),Fn1 (L⊗n2 )

λ
F−(L⊗−)
(m1,m2),(n1,n2) λ

F−(L⊗−)
(n1,n2),(m1,m2)

(χn1,m1 ,χn2,m2 ,id∅)
∗

(2.26)

commutes. We investigate the above diagram (2.26) in spectrum degree n. For an object
((p,q), α : p t q→ n) in the comma category (− t− ↓ n), the summand

L⊗m2 ⊗ L⊗p\im(β) ⊗ L⊗n2 ⊗ L⊗q\im(β̃) ⊗ L⊗n\im(α) (2.27)

indexed by the maps β : m1 → p and β̃ : n1 → q, is mapped to the summand

L⊗n2 ⊗ L⊗q\im(β̃) ⊗ L⊗m2 ⊗ L⊗p\im(β) ⊗ L⊗n\im(α◦χq,p) (2.28)

by the twist map τFm1 (L⊗m2 ),Fn1 (L⊗n2 )(n). If we apply the morphism λ
F−(L⊗−)
(n1,n2),(m1,m2)(n)

to the summand (2.28), we get the summand

L⊗n2tm2 ⊗ L⊗n\im(α◦χq,p◦(β̃tβ)) (2.29)

indexed by
n1 tm1

β̃tβ−−→ q t p χq,p−−−→ p t q α−→ n.

The other way round, the morphism λ
F−(L⊗−)
(m1,m2),(n1,n2)(n) sends the summand (2.27) to the

summand
L⊗m2tn2 ⊗ L⊗n\im(α◦(βtβ̃)) (2.30)

indexed by
m1 t n1

βtβ̃−−→ p t q α−→ n.

The morphism (χn1,m1 , χn2,m2 , id∅)∗(n) takes the summand (2.30) to the summand

L⊗n2tm2 ⊗ L⊗n\im(α◦(βtβ̃)◦χn1,m1 ) (2.31)

indexed by
n1 tm1

χn1,m1−−−−→m1 t n1
βtβ̃−−→ p t q α−→ n.

We notice that
α ◦ χq,p ◦ (β̃ t β) = α ◦ (β t β̃) ◦ χn1,m1

so that the summand (2.29) agrees with the summand (2.31). Hence, the diagram (2.26)
commutes.
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Corollary 2.22. The functor F−(S−) : J̄ op → SpΣ(ch) is strong symmetric monoidal.

Proof. This follows from Lemma 2.20 and Lemma 2.21.

We recall the Dold-Kan correspondence on the level of symmetric spectra, that is, the
Quillen equivalence

SpΣ(smod) SpΣ(ch)
Φ∗◦N

L

(see [Shi07, Proposition 2.10.(2)], (2.7)).

Definition 2.23. Let ΩJ̄ : SpΣ(smod)→ (smod)J̄ be the functor that sends a symmetric
spectrum A to the J̄ -simplicial k-module ΩJ̄ (A) = HomSpΣ(smod)

smod (L(F−(S−)), A), and a
morphism of symmetric spectra f : A→ B to the induced map of J̄ -simplicial k-modules

HomSpΣ(smod)
smod (L(F−(S−)), A)

HomSpΣ(smod)
smod (id,f)

−−−−−−−−−−−−→ HomSpΣ(smod)
smod (L(F−(S−)), B).

Remark 2.24. Let A be in SpΣ(smod), and let (m1,m2) be in J̄ . Using adjunctions,
we can break down the definition of ΩJ̄ (A)(m1,m2) as follows

ΩJ̄ (A)(m1,m2) = HomSpΣ(smod)
smod (L(Fm1(Sm2)), A)

= HomSpΣ(smod)
mod (L(Fm1(Sm2)) ∧ k̃(∆(−)+), A)

∼= HomSpΣ(smod)
mod (L(Fm1(Sm2)), Fsmod(k̃(∆(−)+), A))

∼= HomSpΣ(ch)
mod (Fm1(Sm2), φ∗ ◦N(Fsmod(k̃(∆(−)+), A)))

∼= Homch
mod(Sm2 , N(Homsmod(k̃(∆(−)+), A(m1)))).

This is in simplicial degree [q] isomorphic to the m2-cycles of the chain complex
N(Homsmod(k̃(∆q+), A(m1))) denoted by Zm2(N(Homsmod(k̃(∆q+), A(m1)))).

In the following we write ⊗̂ for the symmetric monoidal product in simplicial k-modules
which is forM and M̃ in smod in simplicial degree [q] given by (M⊗̂M̃)[q] = M [q]⊗M̃ [q]
with a diagonal action of face and degeneracy operators.

Example 2.25. A model in C(SpΣ(smod)) for the function spectrum F (X+, Hk)
in C(Hk-mod) is the object HomSpΣ(smod)(F0(k̃(X+)),Sym(k̃(S1))) which we denote
by Fsmod(k̃(X+),Sym(k̃(S1))). To see this, we apply the forgetful functor

U : C(SpΣ(smod))→ C(Hk-mod)
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to Fsmod(k̃(X+),Sym(k̃(S1))). Let n be a spectrum degree. We obtain that

U(Fsmod(k̃(X+), Sym(k̃(S1))))(n) = U(Homsmod(k̃(X+),Sym(k̃(S1))(n)))
= U(Homsmod

mod (k̃(X+)⊗̂k̃(∆(−)+),Sym(k̃(S1))(n)))
∼= U(Homsmod

mod (k̃(X+ ∧∆(−)+), Sym(k̃(S1))(n)))
∼= S∗(X+ ∧∆(−)+, Hk(n))

= HomS∗(X+, Hk(n))
= F (X+, Hk)(n).

If we apply the functor ΩJ̄ to Fsmod(k̃(X+), Sym(k̃(S1))), we get that for (m1,m2) in J̄ ,
the simplicial k-module ΩJ̄ (Fsmod(k̃(X+),Sym(k̃(S1))))(m1,m2) is isomorphic to

Zm2(N(Homsmod(k̃(∆(−)+),Homsmod(k̃(X+),Sym(k̃(S1))(m1)))))
∼= Zm2(N(Homsmod(k̃(∆(−)+ ∧X+), k̃(Sm1))))

(see Remark 2.24).

Lemma 2.26. The functor ΩJ̄ : SpΣ(smod)→ (smod)J̄ possesses a left adjoint functor
LΩJ̄ : (smod)J̄ → SpΣ(smod).

Proof. First, we observe that for (m1,m2) in J̄ , a simplicial k-moduleM and a symmetric
spectrum A, there are isomorphisms

(smod)J̄ (F J̄(m1,m2)(M),ΩJ̄ (A)) ∼= smod(M,EvJ̄(m1,m2) ◦ ΩJ̄ (A))

= smod(M,HomSpΣ(smod)
smod (L(Fm1(Sm2)), A))

∼= SpΣ(smod)(F0(M) ∧ L(Fm1(Sm2)), A).

Thus, the functor EvJ̄(m1,m2) ◦ ΩJ̄ is right adjoint to the functor F0(−) ∧ L(Fm1(Sm2)).
Considering this, for (m1,m2) in J̄ and M in smod, we set

LΩJ̄ (F J̄(m1,m2)(M)) = F0(M) ∧ L(Fm1(Sm2)).

Every object X in (smod)J̄ can be written as a coequalizer of

⊕
[α1,α2,ρ]∈J̄ ((m1,m2),(n1,n2)) F

J̄
(n1,n2)(X(m1,m2))

⊕
(p1,p2)∈J̄ F

J̄
(p1,p2)(X(p1,p2))

where on a summand indexed by [α1, α2, ρ], one map is determined by the morphism

k(J̄ ((n1,n2),−))⊗̂X(m1,m2)
idk(J̄ ((n1,n2),−))⊗̂X([α1,α2,ρ])
−−−−−−−−−−−−−−−−−−−→ k(J̄ ((n1,n2),−))⊗̂X(n1,n2),
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and the other map is given by the morphism

k(J̄ ((n1,n2),−))⊗̂X(m1,m2)
k([α1,α2,ρ]∗)⊗̂idX(m1,m2)−−−−−−−−−−−−−−−−→ k(J̄ ((m1,m2),−))⊗̂X(m1,m2).

As a left adjoint, LΩJ̄ has to preserve colimits and thus for X in (smod)J̄ , we de-
fine LΩJ̄ (X) as the coequalizer of

⊕
[α1,α2,ρ]∈J̄ ((m1,m2),(n1,n2)) LΩJ̄ (F J̄(n1,n2)(X(m1,m2)))

⊕
(p1,p2)∈J̄ LΩJ̄ (F J̄(p1,p2)(X(p1,p2))).

(2.32)

We check that the functor LΩJ̄ is indeed left adjoint to the functor ΩJ̄ . Let X be
in (smod)J̄ , and let A be in SpΣ(smod). Let LΩJ̄ (X)→ A be a map in SpΣ(smod). By
definition this is a map from the coequalizer of (2.32) to A. Exploiting that for (p1,p2)
in J̄ , the functor LΩJ̄ ◦ F

J̄
(p1,p2) is left adjoint to the functor EvJ̄(p1,p2) ◦ ΩJ̄ , the latter

corresponds to morphisms X(p1,p2)→ ΩJ̄ (A)(p1,p2) in smod for (p1,p2) in J̄ , such
that for every morphism (m1,m2)→ (n1,n2) in J̄ , the induced square

X(m1,m2) X(n1,n2)

ΩJ̄ (A)(m1,m2) ΩJ̄ (A)(n1,n2)

commutes. This specifies a morphism X → ΩJ̄ (A) in (smod)J̄ .

In addition, there is a free-forgetful adjunction (k, U) between J̄ -spaces and J̄ -simplicial
k-modules. Composing the latter with the adjunction (LΩJ̄ ,Ω

J̄ ), we obtain an adjunction
between SJ̄ and SpΣ(smod),

SJ̄ (smod)J̄ SpΣ(smod).
k

U

L
ΩJ̄

ΩJ̄
(2.33)

Recall that in general, given an adjunction

C D
F

G

between symmetric monoidal categories (C,⊗,1C) and (D,�,1D) with a lax symmetric
monoidal structure (νG, λG) on the right adjoint G, the left adjoint F inherits a lax
symmetric comonoidal structure (ν̃F , λ̃F ) as follows. The counit map ν̃F : F (1C)→ 1D
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is the adjoint of the unit map νG : 1C → G(1D). For X and Y in C, the natural map
λ̃FX,Y : F (X ⊗ Y )→ FX � FY is defined as the composite

F (X ⊗ Y ) F (ηX⊗ηY )−−−−−−−→ F (GFX ⊗GFY )
F (λGFX,FY )
−−−−−−−→ FG(FX � FY ) εFX�FY−−−−−→ FX � FY

where η denotes the adjunction unit and ε the adjunction counit. If on the contrary, the
left adjoint F has a strong symmetric monoidal structure (νF , λF ), this gives rise to a
lax symmetric monoidal structure (νG, λG) on the right adjoint G. Explicitly, the unit
map νG : 1C → G(1D) is specified by the composite

1C
η1C−−→ GF (1C)

G((νF )−1)−−−−−−→ G(1D).

For V and W in D, the natural map λGV,W : GV ⊗GW → G(V �W ) is determined by
the composite

GV ⊗GW ηGV⊗GW−−−−−−→ GF (GV ⊗GW )
G((λFGV,GW )−1)
−−−−−−−−−−→ G(FGV �FGW ) G(εV �εW )−−−−−−−→ G(V �W )

(see [SS03a, §3.2]).

Lemma 2.27. The functor ΩJ̄ : SpΣ(smod)→ (smod)J̄ is lax symmetric monoidal.

Proof. To prove the statement, we use that on the one hand the functor

L : SpΣ(smod)→ SpΣ(ch)

is lax symmetric comonoidal because its right adjoint Φ∗ ◦N is lax symmetric monoidal
(see [Shi07, Proposition 2.10.(2)]), and on the other hand that the functor

F−(S−) : J̄ op → SpΣ(ch)

is strong symmetric monoidal by Corollary 2.22. As the functor L is lax symmetric
comonoidal, L comes with a morphism ν̃L : L(Sym(S1)) = L(F0(S0)) → Sym(k̃(S1))
and natural morphisms λ̃LX,Y : L(X ∧ Y ) → L(X) ∧ L(Y ) for X and Y in SpΣ(ch).
The morphism ν̃L induces a map const∆opk → HomSpΣ(smod)

smod (L(F0(S0)),Sym(k̃(S1)))
which is adjoint to the required map νΩJ̄ : k(U J̄ )→ ΩJ̄ (Sym(k̃(S1))). Let A and B be
in SpΣ(smod), and let (m1,m2) and (n1,n2) be in J̄ . We get a natural morphism

ΩJ̄ (A)(m1,m2)⊗̂ΩJ̄ (B)(n1,n2)→ ΩJ̄ (A ∧B)(m1 t n1,m2 t n2)
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via the composition

ΩJ̄ (A)(m1,m2)⊗̂ΩJ̄ (B)(n1,n2)

= HomSpΣ(smod)
smod (L(Fm1(Sm2)), A)⊗̂HomSpΣ(smod)

smod (L(Fn1(Sn2)), B)

→ HomSpΣ(smod)
smod (L(Fm1(Sm2)) ∧ L(Fn1(Sn2)), A ∧B)

HomSpΣ(smod)
smod (λ̃L

Fm1 (Sm2 ),Fn1 (Sn2 ),id)
−−−−−−−−−−−−−−−−−−−−−−−−→ HomSpΣ(smod)

smod (L(Fm1(Sm2) ∧ Fn1(Sn2)), A ∧B)

HomSpΣ(smod)
smod (L((λF−(S−)

(m1,m2),(n1,n2))
−1),id)

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ HomSpΣ(smod)
smod (L(Fm1+n1(Sm2+n2)), A ∧B)

= ΩJ̄ (A ∧B)(m1 t n1,m2 t n2).

This map gives rise to a natural morphism λΩJ̄
A,B : ΩJ̄ (A)�ΩJ̄ (B)→ ΩJ̄ (A∧B). Since the

map νΩJ̄ as well as the natural transformation λΩJ̄ are defined by using the morphisms
making the functor L lax symmetric comonoidal and the functor F−(S−) strong symmetric
monoidal, they are coherently associative, unital and commutative. We spell out unitality.
Let A be in SpΣ(smod). We have to show that the following diagrams commute

k(U J̄ ) � ΩJ̄ (A) ΩJ̄ (Sym(k̃(S1))) � ΩJ̄ (A)

ΩJ̄ (A) ΩJ̄ (Sym(k̃(S1)) ∧A)

νΩJ̄ �id
ΩJ̄ (A)

left unitor λΩJ̄
Sym(k̃(S1)),A

ΩJ̄ (left unitor)

ΩJ̄ (A) � k(U J̄ ) ΩJ̄ (A) � ΩJ̄ (Sym(k̃(S1)))

ΩJ̄ (A) ΩJ̄ (A ∧ Sym(k̃(S1))).

id
ΩJ̄ (A)

�νΩJ̄

right unitor λΩJ̄
A,Sym(k̃(S1))

ΩJ̄ (right unitor)

We argue that the second diagram commutes. To prove that the first diagram commutes,
we can proceed analogously. Let (m1,m2) and (n,n) be in J̄ . It suffices to show that
the map

HomSpΣ(smod)
smod (L(Fm1(Sm2)), A)⊗̂k(J̄ ((0,0), (n,n)))

right unitor−−−−−−−→ HomSpΣ(smod)
smod (L(Fm1+n(Sm2+n)), A)
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is equal to the composite

HomSpΣ(smod)
smod (L(Fm1(Sm2)), A)⊗̂k(J̄ ((0,0), (n,n)))

id
ΩJ̄ (A)(m1,m2)

⊗̂νΩJ̄ (n,n)
−−−−−−−−−−−−−−−−−→

HomSpΣ(smod)
smod (L(Fm1(Sm2)), A)⊗̂HomSpΣ(smod)

smod (L(Fn(Sn)),Sym(k̃(S1)))

λΩJ̄
A,Sym(k̃(S1))−−−−−−−−→ HomSpΣ(smod)

smod (L(Fm1+n(Sm2+n)), A ∧ Sym(k̃(S1)))
ΩJ̄ (right unitor)(m1tn,m2tn)−−−−−−−−−−−−−−−−−−−→ HomSpΣ(smod)

smod (L(Fm1+n(Sm2+n)), A).

Let [α1, α2, ρ] : (0,0)→ (n,n) be a morphism in J̄ . The (right unitor)-morphism sends
a map f : L(Fm1(Sm2))→ A to

L(Fm1+n(Sm2+n))
L([idm1tα1,idm2tα2,ρ]∗)
−−−−−−−−−−−−−−−−→ L(Fm1(Sm2)) f−→ A. (2.34)

The map idΩJ̄ (A)(m1,m2)⊗̂ν
ΩJ̄ (n,n) takes f : L(Fm1(Sm2))→ A to

(L(Fm1(Sm2)) f−→ A,L(Fn(Sn)) L([α1,α2,ρ]∗)−−−−−−−−→ L(F0(S0)) ν̃L−→ Sym(k̃(S1))),

which is then mapped to

L(Fm1+n(Sm2+n))
L((λF−(S−)

(m1,m2),(n,n))
−1)

−−−−−−−−−−−−−−→ L(Fm1(Sm2) ∧ Fn(Sn))
λ̃L
Fm1 (Sm2 ),Fn(Sn)
−−−−−−−−−−−→ L(Fm1(Sm2)) ∧ L(Fn(Sn))
idL(Fm1 (Sm2 ))∧L([α1,α2,ρ]∗)
−−−−−−−−−−−−−−−−−−→ L(Fm1(Sm2)) ∧ L(F0(S0))
f∧ν̃L−−−→ A ∧ Sym(k̃(S1)) right unitor−−−−−−−→ A

(2.35)

by the composite ΩJ̄ (right unitor)(m1 t n,m2 t n) ◦ λΩJ̄
A,Sym(k̃(S1)). Using that the

morphisms ν̃L and λ̃L are counital and that λ̃L is a natural transformation, we see that
the composite (2.34) coincides with the composite (2.35).

The free-forgetful adjunction (k, U) in (2.33) lifts to the level of commutative monoids
as the left adjoint k is strong symmetric monoidal. On the grounds that the functor
ΩJ̄ : SpΣ(smod) → (smod)J̄ is lax symmetric monoidal by Lemma 2.27, it defines
a functor on the level of commutative monoids, ΩJ̄ : C(SpΣ(smod)) → C((smod)J̄ ).
Although the lax symmetric monoidal structure on the functor ΩJ̄ gives rise to a lax
symmetric comonoidal structure on the functor LΩJ̄ (see remarks before Lemma 2.27),
these comonoidal structure morphisms are not isomorphisms in general so that the
functor LΩJ̄ is not lax symmetric monoidal. In particular, the functor LΩJ̄ does not pass
to a functor on the monoid categories (see [SS03a, p. 303]). Applying the usual machinery
of [SS03a, §3.3], we figure out a left adjoint to the functor ΩJ̄ : C(SpΣ(smod)) →
C((smod)J̄ ) as follows.
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Lemma 2.28. The functor ΩJ̄ : C(SpΣ(smod))→ C((smod)J̄ ) has a left adjoint functor
Lmon

ΩJ̄ : C((smod)J̄ )→ C(SpΣ(smod)).

Proof. Taking into account that the functor C ◦ LΩJ̄ : (smod)J̄ → C(SpΣ(smod)) is left
adjoint to the functor ΩJ̄ ◦ U : C(SpΣ(smod))→ (smod)J̄ , we set

Lmon
ΩJ̄ (C(M)) = C(LΩJ̄ (M))

for M in (smod)J̄ . Every object X in C((smod)J̄ ) can be expressed as a coequalizer of

CC(X) C(X)

where one map is induced by the structure map ξ : C(X)→ X and the other map is the
multiplication of the monad C applied to X which is µCX : CC(X) → C(X). So for X
in C((smod)J̄ ), we define Lmon

ΩJ̄ (X) as the coequalizer of

Lmon
ΩJ̄ (CC(X)) Lmon

ΩJ̄ (C(X)).
C(L

ΩJ̄
(ξ))

Lmon
ΩJ̄

(µCX)
(2.36)

Let X be in C((smod)J̄ ), and let A be in C(SpΣ(smod)). Let Lmon
ΩJ̄ (X) → A be a

morphism in C(SpΣ(smod)). By definition this is a morphism from the coequalizer
of (2.36) to A. Considering that the functor Lmon

ΩJ̄ ◦ C is defined as C ◦ LΩJ̄ , that the
functor ΩJ̄ commutes with the forgetful functor U , and that there are adjoint pairs
(LΩJ̄ ,Ω

J̄ ) and (C, U), the latter corresponds to a map X → ΩJ̄ (A) in C((smod)J̄ ).

Altogether, we get a commutative diagram of adjunctions

SJ̄ (smod)J̄ SpΣ(smod)

CSJ̄ C((smod)J̄ ) C(SpΣ(smod)).

k

C
U

L
ΩJ̄

C
ΩJ̄

C

k

U U
Lmon

ΩJ̄

U

U

ΩJ̄

(2.37)

We continue with showing that the adjunctions in the above diagram (2.37) are homo-
topically well-behaved.

Lemma 2.29. For every morphism [α1, α2, ρ] : (m1,m2)→ (n1,n2) in J̄ , the induced
map [α1, α2, ρ]∗ : Fn1(Sn2)→ Fm1(Sm2) is a stable equivalence in SpΣ(ch).

Proof. We observe that we can write a morphism [α1, α2, ρ] : (m1,m2)→ (n1,n2) in J̄
as a composition of an isomorphism and a morphism which is the equivalence class of a
morphism where the first and second entry are the standard inclusions. More precisely,
we choose factorizations α1 = ξ1 ◦ ιm1,n1 where ξ1 is in Σn1 and α2 = ξ2 ◦ ιm2,n2 where ξ2
is in Σn2 , so that

[α1, α2, ρ] = [ξ1, ξ2, id∅] ◦ [ιm1,n1 , ιm2,n2 , ξ
−1
2 ◦ ρ ◦ ξ1].
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The induced map [ξ1, ξ2, id∅]∗ is a level equivalence in SpΣ(ch). Considering the localizing
set (2.6), we notice that the composition

Fm1+n1−m1(Sm2+n2−m2) = Fm1+n1−m1(Sm2+n2−m2−1 ⊗ S1)
ζS
m2+n2−m2−1
m1+n1−m1−1−−−−−−−−−−→ Fm1+n1−m1−1(Sm2+n2−m2−1) = Fm1+n1−m1−1(Sm2+n2−m2−2 ⊗ S1)
ζS
m2+n2−m2−2
m1+n1−m1−2−−−−−−−−−−→ . . .

. . .

→ Fm1+1(Sm2+1) = Fm1+1(Sm2 ⊗ S1)
ζS
m2
m1−−−→ Fm1(Sm2)

(2.38)
is a stable equivalence in SpΣ(ch). The above composite (2.38) is isomorphic to the induced
map [ιm1,n1 , ιm2,n2 , ξ

−1
2 ◦ ρ ◦ ξ1]∗ so that the latter is a stable equivalence in SpΣ(ch), too.

We conclude that the morphism [α1, α2, ρ]∗ is a stable equivalence in SpΣ(ch).

Proposition 2.30. (i) The adjunction (LΩJ̄ ◦ k, U ◦ΩJ̄ ) is a Quillen adjunction with
respect to the (positive) projective J̄ -model structure on SJ̄ and the (positive)
projective stable model structure on SpΣ(smod).

(ii) The adjunction (Lmon
ΩJ̄ ◦ k, U ◦ ΩJ̄ ) is a Quillen adjunction with respect to the

positive projective J̄ -model structure on CSJ̄ and the positive projective stable
model structure on C(SpΣ(smod)).

Proof. (i) We prove that the functor LΩJ̄ ◦ k preserves (positive) cofibrations and
(positive) acyclic cofibrations. According to [Hov99, Lemma 2.1.20], it suffices to
show that the functor LΩJ̄ ◦ k maps the generating (positive) cofibrations in SJ̄ to
(positive) cofibrations in SpΣ(smod) and the generating (positive) acyclic cofibrations
to (positive) acyclic cofibrations. Let F J̄(m1,m2)(i) : F J̄(m1,m2)(∂∆l)→ F J̄(m1,m2)(∆l)
be an element in I

(+)level
SJ̄ . We find that the map LΩJ̄ ◦ k(F J̄(m1,m2)(i)) can be

identified with the map

F0(k(∂∆l))∧L(Fm1(Sm2))
F0(k(i))∧idL(Fm1 (Sm2 ))
−−−−−−−−−−−−−−−→ F0(k(∆l))∧L(Fm1(Sm2)). (2.39)

The map F0(k(i)) is a cofibration in SpΣ(smod), and the object L(Fm1(Sm2)) is
cofibrant in SpΣ(smod), because the object Fm1(Sm2) is cofibrant in SpΣ(ch) and L
is a left Quillen functor. Applying the pushout product axiom to the two cofibrations
F0(k(i)) : F0(k(∂∆l))→ F0(k(∆l)) and 0→ L(Fm1(Sm2)) yields that the map (2.39)
is a cofibration in SpΣ(smod) (see [Shi07, Proposition 2.9]). Assume that (m1,m2)
is in J̄+. The map LΩJ̄ ◦ k(F J̄(m1,m2)(i)) is isomorphic to the map

Fm1(k(∂∆l)⊗̂Γ(Sm2))
Fm1 (k(i)⊗̂idΓ(Sm2 ))−−−−−−−−−−−−→ Fm1(k(∆l)⊗̂Γ(Sm2))
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which is the zero map const∆op0→ const∆op0 in spectrum level zero. Hence, the
map LΩJ̄ ◦ k(F J̄(m1,m2)(i)) is a positive cofibration in SpΣ(smod).
Let F J̄(m1,m2)(j) be an element in J (+)level

SJ̄ . The pushout product axiom with respect
to the acyclic cofibration F0(k(j)) and the cofibration 0→ L(Fm1(Sm2)) ensures
that the morphism LΩJ̄ ◦ k(F J̄(m1,m2)(j)) is an acyclic cofibration in SpΣ(smod).
If (m1,m2) is in J̄+, the morphism LΩJ̄ ◦ k(F J̄(m1,m2)(j)) being isomorphic to
Fm1(k(j)⊗̂idΓ(Sm2 )) is the zero map const∆op0→ const∆op0 in spectrum level zero,
and thus a positive acyclic cofibration in SpΣ(smod).
Let [α1, α2, ρ] : (m1,m2)→ (n1,n2) be a morphism in J̄(+), and let i be a gener-
ating cofibration in spaces so that j[α1,α2,ρ]∗�i is an element in J (+)′. We claim
that the morphism LΩJ̄ ◦ k(j[α1,α2,ρ]∗�i) is an acyclic cofibration in SpΣ(smod). As
the functor LΩJ̄ ◦ k respects tensors and colimits, we obtain that the morphism
LΩJ̄ ◦ k(j[α1,α2,ρ]∗�i) is isomorphic to (LΩJ̄ ◦ k(j[α1,α2,ρ]∗))�k(i). Recall the fac-
torization of the map [α1, α2, ρ]∗ through the mapping cylinder Cyl([α1, α2, ρ]∗)
(see (2.5)),

F J̄(n1,n2)(∗) Cyl([α1, α2, ρ]∗) F J̄(m1,m2)(∗).
j[α1,α2,ρ]∗

[α1,α2,ρ]∗

∼
r[α1,α2,ρ]∗

From the first part of the proof we deduce that the morphism LΩJ̄ ◦k(j[α1,α2,ρ]∗) is a
cofibration in SpΣ(smod). The functor LΩJ̄ ◦ k preserves mapping cylinders so that
we get a factorization of the morphism LΩJ̄ ◦ k([α1, α2, ρ]∗), being isomorphic to
idF0(const∆opk) ∧ L([α1, α2, ρ]∗), through the respective mapping cylinder (compare
[HSS00, Construction 3.1.7]). The map [α1, α2, ρ]∗ : Fn1(Sn2) → Fm1(Sm2) is a
stable equivalence by Lemma 2.29, between cofibrant objects in SpΣ(ch). As L is a
left Quillen functor and the object F0(const∆opk) is cofibrant in SpΣ(smod), the map
idF0(const∆opk) ∧ L([α1, α2, ρ]∗) is a stable equivalence (see [Shi07, Proposition 2.9]).
Further, the map LΩJ̄ ◦ k(r[α1,α2,ρ]∗) is a stable equivalence (compare [HSS00,
Construction 3.1.7]). By two out of three the map LΩJ̄ ◦ k(j[α1,α2,ρ]∗) is a stable
equivalence. Moreover, the map k(i) is a cofibration in simplicial k-modules. The
pushout product axiom with respect to the acyclic cofibration LΩJ̄ ◦ k(j[α1,α2,ρ]∗)
and the cofibration k(i) implies that the map (LΩJ̄ ◦ k(j[α1,α2,ρ]∗))�k(i) is an
acyclic cofibration in SpΣ(smod). If [α1, α2, ρ] is a morphism in J̄+, the morphism
(LΩJ̄ ◦ k(j[α1,α2,ρ]∗))�k(i) is the zero map const∆op0→ const∆op0 in spectrum level
zero, and so a positive acyclic cofibration in SpΣ(smod).

(ii) Since the model structure on CSJ̄ as well as on C(SpΣ(smod)) is created by the
respective forgetful functors, the functor U ◦ ΩJ̄ : C(SpΣ(smod))→ CSJ̄ is a right
Quillen functor.
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Definition 2.31. We define ΛJ̄ = Lmon
ΩJ̄ ◦ k.

From now on we mostly omit the forgetful functor U in the notation of the functor U◦ΩJ̄ .

2.5 Definition of pre-log structures
We now have the ingredients to define pre-log stuctures on E∞ differential graded k-
algebras. As a model for the latter, we employ the category C(SpΣ(smod)), which
is an intermediate category in the chain of Quillen equivalences between C(Hk-mod)
and E∞Ch (see (2.8)). We provide several examples of pre-log cdgas.

Definition 2.32. (compare [SS12, Definition 4.31]) Let A be in C(SpΣ(smod)). A pre-log
structure on A is a pair (M,α) consisting of a commutative J̄ -space M and a map of
commutative J̄ -spaces α : M → ΩJ̄ (A). If (M,α) is a pre-log structure on A, we call the
triple (A,M,α) a pre-log cdga. A map of pre-log cdgas (f, f b) : (A,M,α) → (B,N, β)
is a map f : A → B in C(SpΣ(smod)) and a map f b : M → N in CSJ̄ such that
ΩJ̄ (f b) ◦ α = β ◦ f b. We call the resulting category the category of pre-log cdgas.

Remark 2.33. (compare [RSS15, Definition 4.5 and the corresponding remark]) The
category of pre-log cdgas carries a cofibrantly generated projective model structure, in
which a map (f, f b) is a weak equivalence/ fibration if and only if both the map f and
the map f b are weak equivalences/ fibrations. In this model structure a pre-log cdga
(A,M,α) is cofibrant if the commutative J̄ -space M is positive cofibrant and the adjoint
structure map ad(α) : ΛJ̄ (M)→ A is a positive cofibration of commutative symmetric
ring spectra in simplicial k-modules.

Example 2.34. (compare [Sag14, Example 3.5]) Let M be a commutative J̄ -space. The
adjunction unit of (ΛJ̄ , U ◦ΩJ̄ ) gives rise to the canonical pre-log structure (M,M →
ΩJ̄ (ΛJ̄ (M))) on ΛJ̄ (M).

Example 2.35. (compare [Sag14, Example 3.6]) Let (B,N, β) be a pre-log cdga, and
let f : A→ B be a morphism in C(SpΣ(smod)). The pullback diagram

(ΩJ̄ (f))∗(N) ΩJ̄ (A)

N ΩJ̄ (B)

(ΩJ̄ (f))∗(β)

ΩJ̄ (f)

β

(2.40)

induces a pre-log structure ((ΩJ̄ (f))∗(N), (ΩJ̄ (f))∗(β)) on A. We call this pre-log
structure the direct image pre-log structure on A with respect to the map f and the
pre-log structure (N, β). Because of the commutativity of the pullback diagram (2.40),
there is a morphism of pre-log cdgas (A, (ΩJ̄ (f))∗(N), (ΩJ̄ (f))∗(β))→ (B,N, β).

For a (positive) fibrant object A in SpΣ(smod), the following proposition is crucial to
understanding the homotopy type of the J̄ -space U(ΩJ̄ (A)).

54



Proposition 2.36. Let A be (positive) fibrant in SpΣ(smod), and let (m1,m2) be in J̄(+).
The space U(ΩJ̄ (A))(m1,m2) is weakly equivalent to the space Ωm2(U(A)(m1)).

Proof. We prove that the symmetric spectrum L(Fm1(Sm2)) is weakly equivalent to
Fm1(k̃(Sm2)). Then we exploit this to show the claim.
The symmetric spectrum L(Fm1(Sm2)) is isomorphic to Fm1(Γ(Sm2)). Using that

Sm2 = S1⊗m2 ∼= (N(k̃(S1)))⊗m2

(see [Shi07, p. 358]), we get a map

Γ(Sm2) ∼= Γ((N(k̃(S1)))⊗m2)
Γ(λN

k̃(S1),...,k̃(S1)
)

−−−−−−−−−−−→ Γ(N(k̃(S1)⊗̂m2)) ∼= k̃(Sm2).

Here the lax symmetric monoidal structure map of the normalization functor λN
k̃(S1),...,k̃(S1)

is given by the shuffle map (see [Mac63, Corollary VIII.8.9]) which is a chain homo-
topy equivalence. As the functor Γ preserves weak equivalences, the induced map
Γ(λN

k̃(S1),...,k̃(S1)) is a weak equivalence. Since the left Quillen functor Fm1 preserves weak
equivalences between cofibrant objects, the induced map

L(Fm1(Sm2)) ∼= Fm1(Γ(Sm2))
Fm1 (Γ(λN

k̃(S1),...,k̃(S1)
))

−−−−−−−−−−−−−−−→ Fm1(k̃(Sm2))

is a weak equivalence.
The category SpΣ(smod) with respect to the (positive) projective stable model structure
is a monoidal model category [Shi07, Proposition 2.9], and an analogon of [Hir03,
Corollary 9.3.3.(2)] in the case that the enrichment is over simplicial k-modules holds. So
given the weak equivalence Fm1(Γ(λN

k̃(S1),...,k̃(S1))) : L(Fm1(Sm2))→ Fm1(k̃(Sm2)) between
(positive) cofibrant objects and a (positive) fibrant object A in SpΣ(smod), the induced
map

HomSpΣ(smod)
smod (Fm1(k̃(Sm2)), A)→ HomSpΣ(smod)

smod (L(Fm1(Sm2)), A) (2.41)

is a weak equivalence. We apply the forgetful functor U : smod→ S∗ to the simplicial
k-module HomSpΣ(smod)

smod (Fm1(k̃(Sm2)), A),

U(HomSpΣ(smod)
smod (Fm1(k̃(Sm2)), A)) ∼= U(HomSpΣ(smod)

mod (Fm1(k̃(Sm2 ∧∆(−)+)), A))
∼= U(Homsmod

mod (k̃(Sm2 ∧∆(−)+), A(m1)))
∼= HomS∗(S

m2 , U(A)(m1))
= Ωm2(U(A)(m1)).

(2.42)

Example 2.37. Recall that a pre-log structure on a discrete commutative ring A is a pair
(M,α) consisting of a commutative monoid M and a map α from M to the underlying
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multiplicative commutative monoid of A denoted by (A, ·) [Rog09, Definition 2.1]. For
instance, let 〈x〉 = {xj , j ≥ 0} be the free commutative monoid on a generator x. There
is a pre-log structure on the polynomial ring k[x] given by the pair (M, ξ) where the map
ξ : 〈x〉 → (k[x], ·) sends xj to 1k · xj (compare [Rog09, Definition 2.12]). The pre-log ring
(k[x], 〈x〉 , ξ) gives rise to a pre-log cdga as follows. Applying the Eilenberg-MacLane
functor H to k[x] yields the commutative Hk-algebra spectrum H(k[x]). The underlying
multiplicative commutative monoid of zero simplices of the space (H(k[x]))(0) is equal to
(k[x], ·). We can view the commutative monoid 〈x〉 as a discrete simplicial commutative
monoid. There is a composite map of spaces

〈x〉 ξ−→ (H(k[x]))(0)→ U(k̃(H(k[x])) ∧k̃(Hk) Sym(k̃(S1)))(0)
∼=−→ U(HomSpΣ(smod)

smod (F0(k̃(S0)), k̃(H(k[x])) ∧k̃(Hk) Sym(k̃(S1))))
∼=−→ U(HomSpΣ(smod)

smod (L(F0(S0)), k̃(H(k[x])) ∧k̃(Hk) Sym(k̃(S1))))

= U(ΩJ̄ (k̃(H(k[x])) ∧k̃(Hk) Sym(k̃(S1))))(0,0).

(2.43)

Here the second map is specified by the adjunction unit of the Quillen equivalence
(k̃(−) ∧k̃(Hk) Sym(k̃(S1)), U) (see Subsection 2.3). For the third and fourth map see the
proof of Proposition 2.36, (2.42) and (2.41), and note the isomorphisms

L(F0(S0)) ∼= F0(Γ(S0)) ∼= F0(k̃(S0)).

The composite morphism (2.43) in S is adjoint to a morphism

αx : F J̄(0,0)(〈x〉)→ U(ΩJ̄ (k̃(H(k[x])) ∧k̃(Hk) Sym(k̃(S1))))

in CSJ̄ so that we get the pre-log cdga (k̃(H(k[x]))∧k̃(Hk)Sym(k̃(S1)), F J̄(0,0)(〈x〉), αx).

Remark 2.38. Let A be (positive) fibrant in SpΣ(smod), let (m1,m2) be in J̄(+) and
let l ∈ Z≥0. We note that

πl+m2−m1(U(A)) = colimuπl+m2−m1+u(U(A)(u))
∼= colimuπl+u(Ωm2−m1(U(A)(u))).

Exploiting that U(A) is (positive) fibrant in SpΣ(S∗, S1), this is isomorphic to

colimuπl+u(Ωm2(U(A)(m1 + u))) ∼= colimuπl(Ωm2+u(U(A)(m1 + u)))
∼= πl(Ωm2(U(A)(m1))).

By Proposition 2.36 the latter is isomorphic to πl(U(ΩJ̄ (A))(m1,m2), ∗).

Example 2.39. (compare [Sag14, Example 3.4]) Let A be a positive fibrant object in
C(SpΣ(smod)), and let (m1,m2) be an object in J̄+. Let [x] be a homotopy class in
πm2−m1(U(A)) represented by a map x : Sm2 → U(A)(m1) in S∗. The latter corresponds
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to a point in U(ΩJ̄ (A))(m1,m2) (see Remark 2.38). By adjunction we obtain a map of
commutative J̄ -spaces α : C(F J̄(m1,m2)(∗))→ U(ΩJ̄ (A)). We set C(x) = C(F J̄(m1,m2)(∗))
and call the pre-log structure (C(x), α) the free pre-log structure on A. This yields the
pre-log cdga (A,C(x), α). Analogously to [SS13, Example 3.7] we compute that

hocolimJ̄C(x) ∼= hocolimJ̄
∐
n≥0
J̄ ((mtn1 ,mtn2 ),−)/Σn

∼=
∐
n≥0

(hocolimJ̄ J̄ ((mtn1 ,mtn2 ),−))/Σn

∼=
∐
n≥0

B((mtn1 ,mtn2 ) ↓ J̄ )/Σn.

Taking into account that m1 ≥ 1, the space B((mtn1 ,mtn2 ) ↓ J̄ ) carries a free Σn-action.
Further, since ((mtn1 ,mtn2 ), id(mtn1 ,mtn2 )) is the initial object in the comma category
((mtn1 ,mtn2 ) ↓ J̄ ), the space B((mtn1 ,mtn2 ) ↓ J̄ ) is contractible. Thus, the space∐
n≥0B((mtn1 ,mtn2 ) ↓ J̄ )/Σn is weakly equivalent to

∐
n≥0BΣn.

2.6 Units, log structures and logification
In this subsection we define units of commutative J̄ -spaces and of commutative symmetric
ring spectra in simplicial k-modules. With this notion at hand, we can formulate a
condition for a pre-log cdga to be a log cdga. Moreover, we explain a construction called
logification, which turns a pre-log cdga into a log cdga.

Let (K,t,0K) be a small symmetric monoidal category. The homotopy colimit functor
hocolimK (see (2.1)) is lax monoidal. For K-spacesM and N , there is a natural composite

hocolimKM × hocolimKN
∼=−→ hocolim(k,l)∈K×KM(k)×N(l)

→ hocolim(k,l)∈K×K(M �N)(k t l)→ hocolimK(M �N)
(2.44)

where the second map is determined by the universal natural transformation of (K ×K)-
diagrams M(k)×N(l)→ (M �N)(k t l) and the third map is induced by the monoidal
structure of K (compare [SS13, p. 641]). So for a commutative K-space M , the space
hocolimKM is a simplicial monoid with product

hocolimKM × hocolimKM
∼=−→ hocolim(k,l)∈K×KM(k)×M(l)

→ hocolim(k,l)∈K×KM(k t l)→ hocolimKM.

As the symmetry isomorphism χk,l : k t l→ l t k in K can differ from the identity, the
simplicial monoid hocolimKM is not commutative in general (see [Sag16, pp. 1209-1210]).
Arguing as in [Sch09, §6.1], one can show that the space hocolimKM is an E∞ space.
In particular, the monoid of connected components π0(hocolimKM) is commutative
since the induced morphism M(χk,l) : M(k t l) → M(l t k) provides a path between
the products xy and yx of elements x in M(k) and y in M(l). We recall the following
definition from [Sag16].
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Definition 2.40. [Sag16, Definition 2.5] Let M be a commutative K-space.

(i) If the commutative monoid π0(hocolimKM) is a group, we say that M is grouplike.

(ii) The units M× of M is the grouplike sub commutative K-space of M with M×(k)
consisting of those path components ofM(k) which map to a unit in the commutative
monoid π0(hocolimKM).

Remark 2.41. Let K be a permutative well-structured index category. Suppose that the
inclusion functor K+ → K is homotopy right cofinal, and that the pair (K,OK+) is very
well-structured. In Subsection 3.2 we state Sagave and Schlichtkrull’s chain of Quillen
equivalences between commutative K-spaces and E∞ spaces over the classifying space BK
under which a commutative K-spaceM corresponds to the E∞ space hocolimKM over BK.
Exploiting this, we can justify the definition of a grouplike commutative K-space (see the
beginning of Subsection 3.7).
The inclusion of the units M× → M realizes the inclusion (π0(hocolimKM))× →
π0(hocolimKM) (see [Sag16, p. 1210]).

Furthermore, Remark 2.38 motivates the following definition.

Definition 2.42. (compare [SS12, Definition 4.25]) Let A be a positive fibrant object
in C(SpΣ(smod)). The units of A, denoted by GLJ̄1 (A), is the commutative J̄ -space
(ΩJ̄ (A))×.

Remark 2.43. (compare [SS12, p. 2137], [Sag14, p. 460]) Let A be positive fibrant in
C(SpΣ(smod)). The inclusion of the units iA : GLJ̄1 (A)→ ΩJ̄ (A) is an inclusion of path
components and hence a positive J̄ -fibration in CSJ̄ .

Definition 2.44. (compare [SS12, Definition 4.33]) Let A be a positive fibrant object in
C(SpΣ(smod)), and let (M,α) be a pre-log structure on A. We consider the pullback
diagram

α−1(GLJ̄1 (A)) GLJ̄1 (A)

M ΩJ̄ (A).

iA

α

(2.45)

If the base change map α−1(GLJ̄1 (A))→ GLJ̄1 (A) in (2.45) is a weak equivalence, the
pair (M,α) is a log structure on A. We then call the triple (A,M,α) a log cdga.

As the positive projective J̄ -model structure on commutative J̄ -spaces is right proper
(see Remark 2.10), the above condition for a pre-log cdga to be a log cdga is homotopy
invariant.

Example 2.45. (compare [SS12, p. 2142]) The inclusion of the units iA : GLJ̄1 (A) →
ΩJ̄ (A) induces the trivial log cdga (A,GLJ̄1 (A), iA).
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Example 2.46. (compare [Sag14, Example 3.9]) Let (B,N, β) be a log cdga, and let
f : A→ B be a morphism between positive fibrant objects in C(SpΣ(smod)). Assume
that either the morphism β is a positive J̄ -fibration or that the morphism f is a positive
fibration. Without loss of generality suppose that the former holds. We consider the
commutative cube

(GLJ̄1 (f))∗(β−1(GLJ̄1 (B))) GLJ̄1 (A)

β−1(GLJ̄1 (B)) GLJ̄1 (B)

(ΩJ̄ (f))∗(N) ΩJ̄ (A)

N ΩJ̄ (B).

GLJ̄1 (f)
iA

∼

(ΩJ̄ (f))∗(β)

ΩJ̄ (f)
β

iB

The front, top and bottom square are pullback squares so that the back square is a
pullback square, too. Thus, the commutative J̄ -space (GLJ̄1 (f))∗(β−1(GLJ̄1 (B))) is
isomorphic to the pullback ((ΩJ̄ (f))∗(β))−1(GLJ̄1 (A)). Due to (B,N, β) being a log cdga,
the base change map β−1(GLJ̄1 (B))→ GLJ̄1 (B) is a J̄ -equivalence. Therefore, the base
change map ((ΩJ̄ (f))∗(β))−1(GLJ̄1 (A))→ GLJ̄1 (A) is a J̄ -equivalence so that the triple
(A, (ΩJ̄ (f))∗(N), (ΩJ̄ (f))∗(β)) is a log cdga, and

(A, (ΩJ̄ (f))∗(N), (ΩJ̄ (f))∗(β))→ (B,N, β)

is a morphism of log cdgas.

The following construction associates a log cdga to a pre-log cdga.

Construction 2.47. (compare [RSS15, Construction 4.22], [Sag14, Construction 3.11])
Let (A,M,α) be a pre-log cdga where A is positive fibrant. We factor the base change
map α−1(GLJ̄1 (A))→ GLJ̄1 (A) in (2.45) into a positive cofibration followed by a positive
acyclic J̄ -fibration,

α−1(GLJ̄1 (A)) G GLJ̄1 (A).∼

We define the commutative J̄ -space Ma by the pushout square

α−1(GLJ̄1 (A)) G

M Ma.
fb

(2.46)
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Since the positive projective J̄ -model structure on CSJ̄ is left proper (see Remark 2.10),
the square (2.46) is actually a homotopy pushout square. The maps α : M → ΩJ̄ (A) and

G GLJ̄1 (A) ΩJ̄ (A)∼ iA

give rise to a map α̃ : Ma → ΩJ̄ (A) by the universal property of the pushout. Let
ad(α̃) : ΛJ̄ (Ma)→ A be the adjoint map in C(SpΣ(smod)). We factor the map

A ∧ΛJ̄ (M) ΛJ̄ (Ma)
idA∧ΛJ̄ (M)

ad(α̃)
−−−−−−−−−−−→ A ∧ΛJ̄ (M) A→ A,

into a positive cofibration followed by a positive acyclic fibration in C(SpΣ(smod)),

A ∧ΛJ̄ (M) ΛJ̄ (Ma) Aa A.i ∼

Let the map αa : Ma → ΩJ̄ (Aa) in CSJ̄ be the adjoint of the map

ΛJ̄ (Ma) A ∧ΛJ̄ (M) ΛJ̄ (Ma) Aa
g i

in C(SpΣ(smod)) where the map g is the cobase change map. The diagram

ΛJ̄ (M) ΛJ̄ (Ma)

A A ∧ΛJ̄ (M) ΛJ̄ (Ma) Aa,

ΛJ̄ (fb)

ad(α) ad(αa)g

h

f

i

where the map h is the cobase change map and the map f is defined by composition,
commutes. Hence, we obtain a map of pre-log cdgas (f, f b) : (A,M,α)→ (Aa,Ma, αa).
If the pre-log cdga (A,M,α) is cofibrant, then so is (Aa,Ma, αa).

Lemma 2.48. Let (A,M,α) be a pre-log cdga where A is positive fibrant. The pre-log
cdga (Aa,Ma, αa) is a log cdga. If the pre-log cdga (A,M,α) is a log cdga, the map
(f, f b) : (A,M,α)→ (Aa,Ma, αa) is a weak equivalence.

We call the map (f, f b) : (A,M,α)→ (Aa,Ma, αa) the logification of (A,M,α).

Proof. The proof is analogous to the proof of [Sag14, Lemma 3.12]. Let ĜLJ̄1 (A)

be the sub J̄ -space of ΩJ̄ (A) with ĜLJ̄1 (A)(m1,m2) consisting of those path com-
ponents of ΩJ̄ (A)(m1,m2) which do not map to a unit in the commutative monoid

π0(hocolimJ̄ΩJ̄ (A)). In other words, ĜLJ̄1 (A) denotes the complement of GLJ̄1 (A)
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in ΩJ̄ (A). Further, let M = M̃
∐
M̂ be the decomposition of the underlying J̄ -space

of M into the part M̃ = M ×ΩJ̄ (A) GLJ̄1 (A) which maps to the units and the part

M̂ = M ×ΩJ̄ (A) ĜLJ̄1 (A) which maps to the nonunits. There are isomorphisms

Ma = M �
α−1(GLJ̄1 (A)) G

= M �
M̃
G

∼= (M̃
∐
M̂) �

M̃
G

∼= G
∐

(M̂ �
M̃
G).

Note that G maps to the units because the map G → GLJ̄1 (A) is a positive acyclic
J̄ -fibration, and that M̂ �

M̃
G maps to the nonunits. Therefore, we get that

(αa)−1(GLJ̄1 (Aa)) = Ma ×ΩJ̄ (Aa) GLJ̄1 (Aa)
∼= G

which is J̄ -equivalent to GLJ̄1 (Aa). We conclude that the triple (Aa,Ma, αa) is a log cdga.

Suppose that the triple (A,M,α) is a log cdga. Since the map α−1(GLJ̄1 (A)) → G
is then a positive acyclic cofibration, the cobase change map f b : M →Ma is a positive
acyclic cofibration. This together with the map f : A→ Aa being a stable equivalence,
yields that the map (f, f b) : (A,M,α)→ (Aa,Ma, αa) is a weak equivalence.

2.7 An approach via diagram chain complexes
We begin with collecting a few results about diagram chain complexes. We present the
idea of an approach to define pre-log structures on E∞ dgas via diagram chain complexes
and explain the reasons why we have refrained from this. In connection to this, we
provide a homotopy colimit formula for diagram chain complexes, and argue that diagram
chain complexes do not have to admit a model structure in which the fibrant objects are
precisely the objects that are homologically constant and the homotopy colimit functor
detects the weak equivalences.

Let (K,t,0K) be a small symmetric monoidal category. A K-chain complex is a functor
X : K → Ch. The category of K-chain complexes is the functor category ChK. The
symmetric monoidal structures of K and Ch give rise to the Day convolution product of
ChK (see [Day70a, §3.2], [Day70b, §4], compare Subsection 2.1). For an object k in the
category K, the evaluation functor EvKk : ChK → Ch sends a K-chain complex X to the
chain complex EvKk (X) = X(k). Its left adjoint FKk : Ch→ ChK takes a chain complex T
to the K-chain complex FKk (T ) = S0(k(K(k,−)))⊗ T .

Recall that the category of chain complexes has a projective model structure [Hov99,
Definition 2.3.3] that is cofibrantly generated with ICh = {il : Sl → Dl+1, l ∈ Z} as its
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set of generating cofibrations, JCh = {0 → Dl, l ∈ Z} as its set of generating acyclic
cofibrations and homology isomorphisms as its weak equivalences [Hov99, Theorem 2.3.11].
The category of K-chain complexes then carries a cofibrantly generated projective level
model structure with I level

ChK = {FKk (i),k ∈ K, i ∈ ICh} as its set of generating cofibrations
and J level

ChK = {FKk (j),k ∈ K, j ∈ JCh} as its set of generating acyclic cofibrations. In this
model structure a map is a weak equivalence/ fibration if it is so K-levelwise in chain com-
plexes. The cofibrations are determined by the left lifting property with respect to acyclic
fibrations [Hir03, Theorem 11.6.1]. A cofibration in the projective level model structure
is K-levelwise a cofibration in chain complexes [Hir03, Proposition 11.6.3]. In particular,
this is K-levelwise in every chain degree a monomorphism, that is, this is K-levelwise
a cofibration in the injective model structure on chain complexes [Hov99, Theorem 2.3.13].

A model for the homotopy colimit on diagram chain complexes is provided by an
algebraic analogon of the Bousfield-Kan homotopy colimit on diagram spaces (see [BK72,
XII. §5], (2.1)). It is the composition of a simplicial replacement functor and a suitable
substitute for the diagonal functor. We explain these functors and show that their
composition defines a model for the homotopy colimit functor.

Definition 2.49. (see [Joa11, Definition 4.3], [RG14, Definition 2.5]) For a K-chain
complexX, we define the simplicial replacement ofX as the simplicial chain complex sr(X)
which in simplicial degree [p] is given by

sr(X)[p] =
⊕

k0
α1←−... αp←−kp∈NK[p]

X(kp).

The face maps di : sr(X)[p] → sr(X)[p − 1] for 0 ≤ i ≤ p, are specified as follows. A
summand X(kp) indexed by

k0
α1←− . . . αp←− kp

is mapped by

• the identity to X(kp) indexed by

k1
α2←− . . . αp←− kp

for i = 0,

• the identity to X(kp) indexed by

k0
α1←− . . . αi−1←−−− ki−1

αi◦αi+1←−−−−− ki+1
αi+2←−−− . . . αp←− kp

for 1 ≤ i ≤ p− 1,

• X(αp) to X(kp−1) indexed by

k0
α1←− . . . αp−1←−−− kp−1

for i = p.
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The degeneracy maps sj : sr(X)[p]→ sr(X)[p+ 1] for 0 ≤ j ≤ p, send a summand X(kp)
indexed by

k0
α1←− . . . αp←− kp

by the identity to X(kp) indexed by

k0
α1←− . . .

αj←− kj
id←− kj

αj+1←−−− kj+1
αj+2←−−− . . . αp←− kp.

This definition is functorial. We call the functor ChK → Ch∆op the simplicial replace-
ment functor (sr).

Recall that a double complex Z is a family {Zp,q, (p, q) ∈ Z× Z} of k-modules together
with k-linear horizontal differentials dh : Zp,q → Zp−1,q and k-linear vertical differentials
dv : Zp,q → Zp,q−1 such that dh ◦ dh = 0 = dv ◦ dv and dh ◦ dv = −dv ◦ dh.
The Moore functor C associates to a simplicial chain complex Y a double complex CY
concentrated in the first and fourth quadrant. The double complex CY in bidegree
(p, q) is given by CYp,q = (Y [p])q. The horizontal differential dh : (Y [p])q → (Y [p− 1])q
is defined as dh = Σp

i=0(−1)idi where the di are the simplicial face maps of Y , and the
vertical differential dv : (Y [p])q → (Y [p])q−1 is the differential of the chain complex Y [p].
The total complex functor with respect to the direct sum, denoted by Tot⊕, from double
complexes to chain complexes takes a double complex Z with horizontal differentials dh
and vertical differentials dv to Tot⊕(Z), which in chain degree l ∈ Z is defined by
(Tot⊕(Z))l =

⊕
p+q=l Zp,q. The differential dTot⊕(Z) : (Tot⊕(Z))l → (Tot⊕(Z))l−1 is

given by dTot⊕(Z)(x) = (−1)qdh(x) + dv(x) for every homogeneous element x ∈ Zp,q.
(Concerning the signs, we follow the convention of Rodríguez González (see [RG, pp.
153-154, pp. 157-158], [RG12, Example (2.4)]).)
The composition of the Moore functor and the total complex functor serves as a substitute
for the diagonal functor in the topological setting. Next we prove that the following
composition of functors

ChK sr−→ Ch∆op C−→ ch(Ch) Tot⊕−−−→ Ch (2.47)

defines a model for the homotopy colimit functor. For this, we first show that the functor
Tot⊕ ◦ C ◦ sr preserves level equivalences. Secondly, we define a natural transformation
from the functor Tot⊕ ◦C ◦sr to the colimit functor colimK, and notice that for a cofibrant
K-chain complex X, the map Tot⊕(Csr(X))→ colimKX is a homology isomorphism.

Remark 2.50. We could replace the Moore functor C by the normalization functor N .
The latter takes a simplicial chain complex Y to the double complex CY/DY where DY
is the degenerate sub double chain complex of CY , that is, for horizontal degree p ≥ 0,
the chain complex DYp,∗ is generated by the images of the degeneracies sj , so that
DYp,q = Σp−1

j=0sj(CYp−1,q) (see [Wei94, p. 266]).

Let Z be a double complex. To compute the homology of Tot⊕(Z) we can use the
spectral sequence {Erp,q(Z), dr} that arises from filtering Tot⊕(Z) by the columns of Z.
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This spectral sequence starts with E0
p,q(Z) = Zp,q and the zeroth differentials d0 are

the vertical differentials dv of Z so that E1
p,q(Z) = Hv

q (Zp,∗). The first differentials
d1 : Hv

q (Zp,∗)→ Hv
q (Zp−1,∗) are induced on homology from the horizontal differentials dh

of Z. Since for a K-chain complex X, the double complex Csr(X) is sitting in the first and
fourth quadrant, the spectral sequence Erp,q(Csr(X)) converges to Hp+q(Tot⊕(Csr(X)))
(see [Wei94, pp. 141-142]).
Proposition 2.51. If f : X → Y is a level equivalence in K-chain complexes, the induced
map Tot⊕(Csr(f)) is a homology isomorphism.
Proof. As homology commutes with direct sums, in every simplicial degree [p] the map
sr(f)[p] : sr(X)[p] → sr(Y )[p] is a homology isomorphism. We consider the spectral
sequences {Erp,q(Csr(X)), dr} and {Erp,q(Csr(Y )), dr} obtained by filtering Tot⊕(Csr(X))
by the colums of Csr(X), and Tot⊕(Csr(Y )) by the colums of Csr(Y ) respectively.
Because the induced map

E1
p,q(Csr(X)) = Hv

q (Csr(X)p,∗)
Hv
q (Csr(f)p,∗)−−−−−−−−−→ Hv

q (Csr(Y )p,∗) = E1
p,q(Csr(Y ))

is an isomorphism for all p and q, the map

H∗(Tot⊕(Csr(X))) H∗(Tot⊕(Csr(f)))−−−−−−−−−−−→ H∗(Tot⊕(Csr(Y )))

is an isomorphism by [Wei94, Comparison theorem 5.2.12].

Let X be a K-chain complex. We define a map

∂1 : sr(X)[1] =
⊕

k0
α1←−k1∈NK[1]

X(k1)→ sr(X)[0] =
⊕

k0∈K
X(k0)

that in chain degree l ∈ Z sends an element x in (X(k1))l where X(k1) is indexed by
α1 : k1 → k0, to the element x− (X(α1))l(x). The map ∂1 is a chain map because X(α1)
is so. The cokernel of ∂1, denoted by coker(∂1), and determined by the pushout diagram⊕

k0
α1←−k1∈NK[1]

X(k1)
⊕

k0∈KX(k0)

0 coker(∂1),

∂1

π

can be identified with colimKX (see [Joa11, Remark 4.5]). We specify the required map
from Tot⊕(Csr(X)) to colimKX with the help of coker(∂1).
Definition 2.52. (see [Joa11, Remark 4.5]) Let ΨX : Tot⊕(Csr(X))→ colimKX be the
map that in chain degree l ∈ Z is given by⊕

p+q=l
⊕

k0
α1←−... αp←−kp∈NK[p]

(X(kp))q (colimKX)l,

x

{
0, p ≥ 1,
πl(x), p = 0.

(ΨX)l
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Lemma 2.53. The map ΨX is a chain map.

Proof. Let l ∈ Z. We have to show that the diagram⊕
p+q=l

⊕
k0

α1←−... αp←−kp∈NK[p]
(X(kp))q (colimKX)l

⊕
p+q=l−1

⊕
k0

α1←−... αp←−kp∈NK[p]
(X(kp))q (colimKX)l−1

(ΨX)l

dTot⊕(Csr(X)) dcolimKX

(ΨX)l−1

(2.48)

commutes. Let x be in (X(kp))q where X(kp) is indexed by

k0
α1←− . . . αp←− kp.

We need to consider three different cases:

• If p = 0 and q = l, the composite (ΨX)l−1 ◦ dTot⊕(Csr(X)) sends x to πl−1d
X(k0)(x)

which as π is a chain map is equal to dX(k0)πl(x). The latter is the value of x under
the composite dcolimKX ◦ (ΨX)l.

• If p = 1 and q = l − 1, the differential dTot⊕(Csr(X)) maps x to

dTot⊕(Csr(X))(x) = (−1)l−1(x− (X(α1))l−1(x)) + dX(k1)(x).

The map (ΨX)l−1 then takes the latter to πl−1((−1)l−1(x− (X(α1))l−1(x))) + 0
which is zero. Applying (ΨX)l to x is zero, too.

• If p ≥ 2 and q = l − p, the differential dTot⊕(Csr(X)) sends x to

dTot⊕(Csr(X))(x) = (−1)l−pΣp
i=0(−1)idi(x) + dX(kp)(x)

which is then taken to zero by the map (ΨX)l−1. If we apply the map (ΨX)l to x,
this is also zero.

In all three cases the diagram (2.48) commutes. Therefore, the map ΨX is a chain
map.

The map ΨX is natural in X so that we obtain a natural transformation

Ψ: Tot⊕ ◦ C ◦ sr→ colimK.

Proposition 2.54. Let X be a cofibrant K-chain complex. The map ΨX : Tot⊕(Csr(X))→
colimKX is a homology isomorphism.

Proof. We start with the case that X is of the form FKk (L) where L is a cofibrant chain
complex. The double complex Csr(FKk (L)) in bidegree (p, q) is given by

Csr(FKk (L))p,q =
⊕

k0
α1←−... αp←−kp∈NK[p]

(S0(k(K(k,kp)))⊗ L)q

∼=
⊕

k0
α1←−... αp←−kp←k∈N (k↓K)[p]

Lq.
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We see that Csr(FKk (L)) ∼= CL[N (k ↓ K)]. As the comma category (k ↓ K) has the
initial object (k, idk), its nerve N (k ↓ K) is contractible. Hence, we deduce that

H∗(Tot⊕(CL[N (k ↓ K)])) ∼= H∗(Tot⊕(Cconst∆opL)).

The normalization of const∆opL is concentrated in the zeroth column where it is L. Thus,
we obtain that

H∗(Tot⊕(Cconst∆opL)) ∼= H∗(Tot⊕(Nconst∆opL))
= H∗(L).

Moreover, it holds that colimKFKk (L) ∼= L. The map

ΨFKk (L) : Tot⊕(Csr(FKk (L)))→ colimKFKk (L) ∼= L

is induced by projecting Csr(FKk (L)) onto the zeroth column and in chain degree l ∈ Z
can be identified with the composite⊕

p+q=l

⊕
k0

α1←−... αp←−kp←k∈N (k↓K)[p]

Lq →
⊕

k0←k∈(k↓K)
Ll → Ll.

We conclude that the map ΨFKk (L) induces an isomorphism in homology.
For the next step we assume that the map ΨX0 : Tot⊕(Csr(X0)) → colimKX0 is a
homology isomorphism, and that X1 is the pushout obtained by attaching an element
of I level

ChK to X0. The functors Tot⊕, C (respectively N), sr and colimK commute with
colimits, so in particular with pushouts. Let FKk (il) : FKk (Sl)→ FKk (Dl+1) be an element
in I level

ChK . The map FKk (il) is K-levelwise a cofibration in the injective model structure on
chain complexes. The induced morphism Tot⊕(Csr(FKk (il))) is still a cofibration in the
injective model structure on chain complexes. We investigate the diagram

Tot⊕(Csr(FKk (Dl+1))) Tot⊕(Csr(FKk (Sl))) Tot⊕(Csr(X0))

colimKFKk (Dl+1) colimKFKk (Sl) colimKX0.

Ψ
FKk (Dl+1)

Tot⊕(Csr(FKk (il)))

Ψ
FKk (Sl) ΨX0

colimK(FKk (il))

By assumption the vertical maps are homology isomorphisms. The gluing lemma with
respect to the injective model structure on chain complexes (see [Hir03, Proposition 13.5.3])
yields that the induced map of pushouts ΨX1 : Tot⊕(Csr(X1))→ colimKX1 is a homology
isomorphism.
In general, for a cofibrant K-chain complex X the map constK0 → X is a retract of
a transfinite composition of pushouts of elements in I level

ChK . We can assume that X
is itself a I level

ChK -cell complex. So there is an ordinal λ and a λ-sequence {Xα, α < λ}
such that X0 = constK0, X = colimα<λXα, and each of the maps Xα → Xα+1 is
the pushout of an element in I level

ChK . By an inductive argument we find that the map

66



ΨXα : Tot⊕(Csr(Xα))→ colimKXα is a homology isomorphism. It remains to show that
the map

colimα<λTot⊕(Csr(Xα)) colimα<λΨXα−−−−−−−−−→ colimα<λcolimKXα (2.49)

is a homology isomorphism. For this, we consider the diagram

Tot⊕(Csr(X0)) Tot⊕(Csr(X1)) Tot⊕(Csr(X2)) . . .

colimKX0 colimKX1 colimKX2 . . . .

ΨX0 ΨX1 ΨX2
(2.50)

In the above diagram (2.50) all objects are cofibrant in the injective model structure on
chain complexes because every object is so. Since Xα → Xα+1 is a cofibration in K-chain
complexes, the induced maps Tot⊕(Csr(Xα)) → Tot⊕(Csr(Xα+1)) and colimKXα →
colimKXα+1 are cofibrations in the injective model structure on chain complexes. It
then follows from [Hir03, Proposition 15.10.12] that the map colimα<λΨXα (2.49) is a
homology isomorphism.

We conclude that Tot⊕ ◦ C ◦ sr defines a model for the homotopy colimit functor on
K-chain complexes.

Remark 2.55. This model for a homotopy colimit functor has been studied by Rodríguez
González. She introduces so-called simplicial descent categories ([RG, Definition 2.1.6],
[RG14, Definition 3.5]) and argues that in this framework a model for the homotopy colimit
functor is the composition of a simplicial replacement functor [RG14, Definition 2.5]
and a simple functor, which is part of the datum of a simplicial descent category [RG14,
Theorem 3.1]. The category of chain complexes is a simplicial descent category [RG,
Proposition 5.2.1]. The simple functor is defined by Tot⊕ ◦ C (see [RG, p. 164]), or
Tot⊕ ◦N respectively (see [RG, Remark 5.2.3]). In [Joa11] Joachimi uses this model for
a homotopy colimit functor on I-chain complexes. Our argumentation above provides an
independent proof of Rodríguez González’ result.

We employ this model in the sequel. We note that we can adjust all arguments made
so far in this Subsection 2.7 to restrict to K-non-negative chain complexes chK.

Originally, we thought of using the intermediate category C(SpΣ(ch)) in the chain
of Quillen equivalences between C(Hk-mod) and E∞Ch (see (2.8)) to define pre-log
structures in the algebraic setting. There is an adjunction

chJ̄ SpΣ(ch)
S̃J̄

Ω̃J̄
(2.51)

where for A in SpΣ(ch), the J̄ -chain complex Ω̃J̄ (A) is defined by

Ω̃J̄ (A) = HomSpΣ(ch)
ch (F−(S−), A).
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From the latter, we deduce that for (m1,m2) in J̄ and M in ch, the symmetric spectrum
S̃J̄ (F J̄(m1,m2)(M)) is specified by S̃J̄ (F J̄(m1,m2)(M)) = F0(M) ∧ Fm1(Sm2), so that for X
in chJ̄ , the symmetric spectrum S̃J̄ (X) is determined by a suitable coequalizer. The
functor S̃J̄ has an explicit description, namely for X in chJ̄ , the symmetric spectrum
S̃J̄ (X) in spectrum degree n is given by

S̃J̄ (X)(n) =
⊕
l≥0

Sl ⊗kΣl X(n, l). (2.52)

As a result of the functor F−(S−) being strong symmetric monoidal by Corollary 2.22, the
functor S̃J̄ is strong symmetric monoidal and the functor Ω̃J̄ is lax symmetric monoidal.
Thus, the adjunction (2.51) lifts to the level of commutative monoids,

C(chJ̄ ) C(SpΣ(ch)).
S̃J̄

Ω̃J̄
(2.53)

Apart from taking the index category J̄ instead of J , this is analogous to Sagave and
Schlichtkrull’s adjunction (SJ ,ΩJ ) between (commutative) J -spaces and (commutative)
symmetric ring spectra in pointed spaces (see [SS12, §4.21]), on which the definition of
pre-log structures in the topological setting is based (see [SS12, Definition 4.31]). The
advantage of this approach is that the left adjoint S̃J̄ is easier to understand (see (2.52))
and has better properties than the functor ΛJ̄ , for example in contrast to the latter,
the functor S̃J̄ is strong symmetric monoidal. Nevertheless, one drawback of working
with this adjunction is that so far, we have not figured out a reasonable model structure
on chJ̄ , beside the projective level model structure [Hir03, Theorem 11.6.1]. We would
aim to specify a model structure on chJ̄ such that the fibrant objects are precisely the
objects that are homologically constant with respect to morphisms in J̄ and such that the
adjunction (2.51) is a Quillen adjunction where SpΣ(ch) is equipped with the projective
stable model structure. For this, we proceed as in [Dug01, §5].

Let K be a small category. We consider the left Bousfield localization of the projective
level model structure on chK [Hir03, Theorem 11.6.1] with respect to the set

S = {FKl (V ) α∗−→ FKk (V ), α ∈ K(k, l), V ∈ {Sl,Dl+1, l ∈ Z≥−1}}

where V runs through the domains and codomains of the generating cofibrations in the
projective model structure on ch. The left Bousfield localization exists, because chK is
cofibrantly generated, left proper and locally presentable, as ch is so.

Lemma 2.56. An object X is fibrant in the localized model structure on chK if and only
if X is homologically constant with respect to morphisms in K.

Proof. We argue as in the proof of [Dug01, Theorem 5.2.(c)]. A K-chain complex X is
fibrant in the localized model structure if and only if X is S-local, that is, for every
element α∗ : FKl (V )→ FKk (V ) in S, the induced map of homotopy function complexes

chK(FKk (V ), X) chK(α∗,id)−−−−−−→ chK(FKl (V ), X) (2.54)
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is a weak equivalence. Using adjointness, the map (2.54) is a weak equivalence if and
only if the map of homotopy function complexes

ch(V,X(k)) ch(id,X(α))−−−−−−−→ ch(V,X(l))

is a weak equivalence. This holds precisely when X is homologically constant by [Dug01,
Proposition A.5].

Dugger shows that if the nerve of the indexing category K is contractible, the S-local
equivalences are the maps for which the induced maps of homotopy colimits are homology
isomorphisms [Dug01, Theorem 5.2.(a)]. The classifying space of the category J̄ is weakly
equivalent to Z× RP∞ by Proposition 1.24, so in particular not contractible. However,
we know that the well-structured index category J̄ (see Proposition 1.13) gives rise to
the projective J̄ -model structure on J̄ -spaces in which the homotopy colimit functor
hocolimJ̄ detects the weak equivalences (see [SS12, Proposition 6.16], Proposition 2.7).
But the following example illustrates that Dugger’s result does not generalize to J̄ -chain
complexes.

Example 2.57. Let k be Z. We define a J̄ -chain complex X by

X(m1,m2) =
{
S0(Q), m1 = m2,

0, m1 6= m2.

The category J̄0 is isomorphic to the category I
∫

Σ̄ due to Lemma 1.22. For a morphism
(α, [a]) : (m, ∗)→ (n, ∗), let the induced map

X(m,m)
X([α,a◦α,a◦(α,incl)|n\im(α)])−−−−−−−−−−−−−−−−−−→ X(n,n)

be multiplication by sgn(a). The J̄ -chain complex X is homologically constant, and
hence by Lemma 2.56 fibrant in the localized model structure on chJ̄ .
We compute the chain complex hocolimJ̄X. Since the inclusion functor J̄0,(≥2,−) → J̄0
is homotopy right cofinal by Lemma 1.18, the induced map of homotopy colimits

hocolimJ̄0,(≥2,−)
X → hocolimJ̄0

X ∼= hocolimJ̄X

is a weak equivalence by [Hir03, Theorem 19.6.7.(1)]. Recall that the category J̄0,(≥2,−)
is isomorphic to the product category I≥2 × Σ2 (see Remark 1.25). Using this, we obtain
that

hocolimJ̄0,(≥2,−)
X ∼= hocolimI≥2×Σ2X

' hocolimI≥2hocolimΣ2X.

Let m be in I≥2. The double complex Nsr(X(m,m)) is Q in bidegrees (0, 0) and (1, 0),
and zero otherwise. The only non-trivial (horizontal) differential Q → Q is multi-
plication by 2. Thus, the homology of hocolimΣ2X(m,m) = Tot⊕(Nsr(X(m,m)))
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is trivial. Alternatively, a result by Quillen (see [Qui73, p. 91]) yields that the ho-
mology of hocolimΣ2X(m,m) is isomorphic to the group homology of Σ2 with coeffi-
cients in Q where Σ2 acts on Q by the sign operation, which is trivial. So the chain
complex hocolimΣ2X(m,m) is quasi-isomorphic to the zero chain complex. As the
functor hocolimI≥2 preserves level equivalences by Proposition 2.51, the chain complex
hocolimJ̄0,(≥2,−)

X is quasi-isomorphic to the zero chain complex.
We conclude that the map X → constJ̄ 0 is a map between homologically constant J̄ -chain
complexes whose induced map of homotopy colimits is a homology isomorphism. Further,
the map X → constJ̄ 0 is not a level equivalence. But [Hir03, Proposition 3.3.4.(1)]
and Ken Brown’s lemma imply that a weak equivalence between fibrant objects in the
localized model structure on chJ̄ is a level equivalence. Therefore, the functor hocolimJ̄
does not detect the weak equivalences in the localized model structure on chJ̄ .

So far, we cannot characterize the S-local equivalences in chJ̄ . Another disadvantage
of employing the adjunction (2.51), or (2.53) respectively, is that morally the category
of (commutative) J̄ -chain complexes does not seem to be an appropriate category to
set up pre-log structures. To understand this, recall the notion of pre-log structures on
discrete commutative rings (see [Rog09, Definition 2.1], Example 2.37). In this sense, the
object Ω̃J̄ (A) should model the underlying multiplicative commutative monoid of an
object A in C(SpΣ(ch)). But J̄ -chain complexes have additive structure. The differentials
are k-linear maps that are responsible for the homotopy theoretical information. We do
not know yet how to get rid of the additive structure on a J̄ -chain complex without
loosing homotopy theory.
Furthermore, we can show an analogon of [SS12, Proposition 4.24], namely that for
an object A in C(SpΣ(ch)), there is an isomorphism of graded commutative k-algebras
H∗(A) ∼= H0(Ω̃J̄ (A)). This should motivate a definition of units. But again we face
the above problem. We are uncertain in which category the units should live such that
their definition is homotopy invariant. Besides, hitherto, we have not come up with an
analogon of the restriction of path components like in the topological setting (see [SS12,
p. 2137, Definition 4.25]). For these reasons we have constructed another adjunction (2.37)
introduced in Subsection 2.4 to make sense of pre-log structures on E∞ dgas.
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3 Group completion in commutative diagram spaces
In this section we develop a notion of group completion in commutative diagram spaces
shaped by a permutative well-structured index category K whose classifying space BK is
grouplike. Our approach is model categorical, which has the advantage that it provides
functorial group completions for all objects without further assumptions. We form the
left Bousfield localization of the positive projective K-model structure on commutative
K-spaces with respect to a set of maps that corepresents shear maps. We characterize
this localized model structure and argue that it is indeed a group completion model
structure. Sagave and Schlichtkrull describe group completion in commutative I-spaces
in [SS13]. We construct a chain of Quillen equivalences between commutative K-spaces
and commutative I-spaces over a commutative I-space model of BK, and exploit this
to build on Sagave and Schlichtkrull’s work. Having a concept of group completion in
commutative J̄ -spaces at our disposal, we present other examples of pre-log cdgas.

3.1 Useful results about comma categories and left Bousfield localizations
We start with collecting a few general results about the interaction of left Bousfield
localizations with comma categories. The main outcome is that in a sense, left Bousfield
localization commutes with forming a comma category (see Proposition 3.4). This is a
crucial ingredient in the upcoming Subsection 3.7 when specifying a group completion
model structure on commutative diagram spaces.

For background on left Bousfield localizations we refer to [Hir03]. Recall that left
Bousfield localizations exist if the model category is for example left proper and cellular
[Hir03, Theorem 4.1.1] or left proper and combinatorial meaning locally presentable and
cofibrantly generated [Bar10, Theorem 4.7].

Let C be a cofibrantly generated simplicial model category which is proper and cel-
lular. Let Z be an object in C. The comma category (C ↓ Z) inherits a cofibrantly
generated simplicial model structure from the category C which is again proper and cellular
([Hir03, Theorem 7.6.5.(1)], [Hir, Theorem 1.5, Theorem 1.7]). In this overcategory model
structure on (C ↓ Z) a map

X Y

Z

f

ρX ρY

is a weak equivalence/ fibration/ cofibration if and only if the underlying map f is so
in C. The space of maps from (X, ρX) to (Y, ρY ) is defined by the pullback diagram

Hom(C↓Z)
S ((X, ρX), (Y, ρY )) HomCS(X,Y )

{ρX} HomCS(X,Z).

HomCS(id,ρY )
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For (X, ρX) in (C ↓ Z) and T in S, the tensor of (X, ρX) and T in (C ↓ Z) is determined
by

X ⊗ T idX⊗tT−−−−−→ X ⊗∆0 ∼= X
ρX−−→ Z

where tT : T → ∆0 is the unique map from T to the terminal object ∆0 in S. The
cotensor of (X, ρX) and T in (C ↓ Z), denoted by (X, ρX)T , is specified by the pullback
diagram

(X, ρX)T XT

Z∆0 ZT .

(ρX)T

ZtT

Let S be a set of maps with cofibrant domains and codomains in C. An object X in C
is called S-local if X is fibrant in C and for every element f : A→ B of S, the induced
morphism of simplicial mapping spaces HomCS(f, id) : HomCS(B,X)→ HomCS(A,X) is a
weak equivalence (see [Hir03, Definition 3.1.4.(1)(a)]). Let Cloc(S) be the left Bousfield
localization of C with respect to S (see [Hir03, Theorem 4.1.1]). The fibrant objects
of Cloc(S) are the S-local objects of C [Hir03, Theorem 4.1.1.(2)]. From now on we assume
that Z is an S-local object in C. We write SZ for the set of morphisms in (C ↓ Z) of the
form

A B

Z

f

ρA ρB

where f is an element of S. We form the left Bousfield localization of the overcategory
model structure on (C ↓ Z) with respect to SZ and denote the localized model structure
by (C ↓ Z)loc(SZ). We compare the latter to (Cloc(S) ↓ Z) which is the overcategory model
structure with respect to Cloc(S). Our next goal is to show that these two model structures
agree.

The following definition is similar to [Hir03, Definition 4.2.2]. Let Λ(S) be the set
of maps obtained by choosing for every element f : A → B of S a factorization into a
cofibration followed by an acyclic fibration

A B′ B
fcof

f

∼
p (3.1)

in C, and considering the pushout product of the map f cof and a generating cofibration i
in spaces, that is,

Λ(S) = {A⊗∆n

∐
A⊗∂∆n

B′ ⊗ ∂∆n
fcof�i−−−−→ B′ ⊗∆n, f ∈ S, i ∈ IS}.

For the reason that the model category Cloc(S) is simplicial [Hir03, Theorem 4.1.1.(4)], the
maps in Λ(S) are acyclic cofibrations in Cloc(S). We define Λ(S) = Λ(S) ∪ JC where JC
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is the set of generating acyclic cofibrations in C. The domains of the maps in Λ(S) are
small with respect to Λ(S)-cell by [Hir03, Theorem 12.4.3, Theorem 12.4.4].

Lemma 3.1. A map g : X → Z is a fibration in Cloc(S) if and only if the map g has the
right lifting property with respect to Λ(S).

Proof. Let the map g : X → Z be a fibration in Cloc(S). Then the map g is a fibration in C
by [Hir03, Proposition 3.3.3.(1)(c)] so that g has the right lifting property with respect
to JC . Let f cof�i : A⊗∆n

∐
A⊗∂∆n

B′ ⊗ ∂∆n → B′ ⊗∆n be an element in Λ(S). Taking
into account that C is a simplicial model category, given the cofibration f cof : A→ B′

and the fibration g : X → Z in C, we get that the induced map

HomCS(B′, X)
HomCS�(fcof ,g)
−−−−−−−−−→ HomCS(A,X)×HomCS(A,Z) HomCS(B′, Z) (3.2)

is a fibration. Since the object Z is S-local, the object X is S-local by [Hir03, Propo-
sition 3.3.14.(1)]. This implies that the map (3.2) is a weak equivalence (see [Hir03,
Corollary 9.3.3.(2)]). Due to adjointness, the map (3.2) being an acyclic fibration is
equivalent to the map g having the right lifting property with respect to f cof�i.

On the other hand, we assume that the map g : X → Z has the right lifting prop-
erty with respect to Λ(S). As the map g has the right lifting property with respect to JC ,
the map g is a fibration in C. Using that the map g has the right lifting property with
respect to Λ(S) and adjointness, we can conclude that the induced map

HomCS(B′, X)
HomCS�(fcof ,g)
−−−−−−−−−→ HomCS(A,X)×HomCS(A,Z) HomCS(B′, Z)

is an acyclic fibration for every f in S. Because the object Z is S-local, we obtain that
the map HomCS(f cof , id) : HomCS(B′, X)→ HomCS(A,X) is a weak equivalence for every f
in S. Thus, the object X is S-local by [Hir03, Corollary 9.3.3.(2)]. So the map g is a
fibration in C between S-local objects which is equivalent to g being a fibration in Cloc(S)
by [Hir03, Proposition 3.3.16.(1)].

Remark 3.2. Let g : X → Z be a map in C. As a result of the previous lemma, we can
apply the small object argument with respect to Λ(S) to get a factorization of the map g
into an acyclic cofibration followed by a fibration

X X̃ Z∼

g

(3.3)

in Cloc(S). Moreover, [Hir, Lemma 1.4] yields that the map X → X̃ is a Λ(S)-cell complex
in Cloc(S) if an only if the map

X X̃

Z
g

is a (Λ(S))Z-cell complex in (Cloc(S) ↓ Z). Therefore, the factorization (3.3) provides a
fibrant replacement of the object (X, g) in (Cloc(S) ↓ Z).
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Lemma 3.3. Let
V W

Z

h

q0

be a map between cofibrant objects in the category (C ↓ Z) such that the map q0 is
homotopic to a map q1 : W → Z in C. The map

V W

Z

h

q0

is a weak equivalence in (C ↓ Z)loc(SZ) if and only if the map

V W

Z

h

q1

is a weak equivalence in (C ↓ Z)loc(SZ).

Proof. Let j = 0, 1. Let (X, ρX : X → Z) be an SZ-local object in the category (C ↓ Z).
The space Hom(C↓Z)

S ((W, qj), (X, ρX)) is defined by the pullback square

Hom(C↓Z)
S ((W, qj), (X, ρX)) HomCS(W,X)

{qj} HomCS(W,Z),

HomCS(id,ρX)

which is a homotopy pullback square because S is right proper and the map HomCS(id, ρX)
is a fibration by [Hir03, Proposition 9.3.1.(2)]. A homotopy from the map q0 to the map q1
corresponds to a path between the points {q0} and {q1} in the space HomCS(W,Z). This
implies that the homotopy fibre Hom(C↓Z)

S ((W, q0), (X, ρX)) is weakly equivalent to the
homotopy fibre Hom(C↓Z)

S ((W, q1), (X, ρX)) (see also [Hir03, Proposition 13.4.7]). By the
same arguments the homotopy fibre Hom(C↓Z)

S ((V, q0 ◦ h), (X, ρX)) is weakly equivalent
to the homotopy fibre Hom(C↓Z)

S ((V, q1 ◦ h), (X, ρX)). Thus, the map

Hom(C↓Z)
S ((W, q0), (X, ρX))

Hom(C↓Z)
S (h,id)

−−−−−−−−−→ Hom(C↓Z)
S ((V, q0 ◦ h), (X, ρX))

is a weak equivalence if and only if the map

Hom(C↓Z)
S ((W, q1), (X, ρX))

Hom(C↓Z)
S (h,id)

−−−−−−−−−→ Hom(C↓Z)
S ((V, q1 ◦ h), (X, ρX))

is a weak equivalence. This finishes the proof.

Proposition 3.4. The model structures (C ↓ Z)loc(SZ) and (Cloc(S) ↓ Z) coincide.
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Proof. Due to an argument of Joyal [Joy, Proposition E.1.10], it suffices to show that the
cofibrations and the fibrant objects in both model structures agree. The cofibrations in
both model structures are the same, as these are the cofibrations in C.
Let

A B

Z

f

be in SZ , with a factorization into a cofibration followed by an acyclic fibration

A B′ B

Z

fcof

f

∼

in (C ↓ Z). Forgetting the augmentation to Z, the map f cof : A→ B′ is a weak equivalence
in Cloc(S). Therefore, it follows from [Hir03, Proposition 3.3.18.(1)] that

(C ↓ Z)loc(SZ) (Cloc(S) ↓ Z)
id

id

is a Quillen adjunction. It remains to prove that the fibrant objects in (C ↓ Z)loc(SZ) are
fibrant in (Cloc(S) ↓ Z). We argue that the functor

id : (Cloc(S) ↓ Z)→ (C ↓ Z)loc(SZ) (3.4)

is also a left Quillen functor. For this, we check that this functor (3.4) preserves weak
equivalences. As the functor (3.4) is already a right Quillen functor, it is enough to show
that the functor (3.4) preserves fibrant replacements of objects in (Cloc(S) ↓ Z).
Let (X, ρX : X → Z) be an object in (Cloc(S) ↓ Z). From Remark 3.2 we know that we
obtain a fibrant replacement of (X, ρX) in (Cloc(S) ↓ Z) by applying the small object
argument with respect to (Λ(S))Z ,

X X̃

Z.

∼

ρX ρX̃

(3.5)

We need to verify that the (Λ(S))Z-cell complex (3.5) is a weak equivalence in the model
category (C ↓ Z)loc(SZ).
We start with explaining that the maps in (Λ(S))Z are weak equivalences in (C ↓ Z)loc(SZ).
The maps in (JC)Z are weak equivalences in (C ↓ Z)loc(SZ), as they are weak equivalences
in (C ↓ Z) by [Hir03, Proposition 3.3.3.(1)(a)]. Let

A⊗∆n
∐
A⊗∂∆n

B′ ⊗ ∂∆n B′ ⊗∆n

Z

fcof�i

ρ(B′⊗∆n)

(3.6)

75



be a map in (Λ(S))Z . The map ρ(B′⊗∆n) : B′ ⊗∆n → Z is homotopic to the map

B′ ⊗∆n B′ ⊗∆0 ∼= B′ Z
idB′⊗t∆n
∼

ρB′

in C, because the space ∆n is contractible. We claim that the map

A B′

Z

fcof

ρB′

is an acyclic cofibration in (C ↓ Z)loc(SZ). The map f cof is a cofibration in C. We consider
the diagram

A B′ B

Z

fcof

f

∼
p

ρB′

in C (see (3.1)). The map p is an isomorphism in the homotopy category Ho(C), and
so the map ρB′ ◦ p−1 : B → Z defines a map in Ho(C). Because B is cofibrant and Z is
fibrant in C, the map ρB′ ◦ p−1 can be represented by a map w : B → Z in C such that
the composite w ◦ p is homotopic to ρB′ . The composite map

A B′ B

Z

fcof

f

∼
p

w◦p
w

lies in SZ and hence is a weak equivalence in (C ↓ Z)loc(SZ). Two out of three ensures
that the map f cof : (A,w ◦ p ◦ f cof)→ (B′, w ◦ p) is a weak equivalence in (C ↓ Z)loc(SZ).
As the composite w ◦ p is homotopic to the map ρB′ , Lemma 3.3 yields that the
map f cof : (A, ρB′ ◦ f cof) → (B′, ρB′) is a weak equivalence in (C ↓ Z)loc(SZ). Since
(C ↓ Z)loc(SZ) is a simplicial model category by [Hir03, Theorem 4.1.1.(4)] and the map
f cof : (A, ρB′ ◦ f cof)→ (B′, ρB′) is an acyclic cofibration in (C ↓ Z)loc(SZ), the map

A⊗∆n
∐
A⊗∂∆n

B′ ⊗ ∂∆n B′ ⊗∆n

Z B′ ∼= B′ ⊗∆0

fcof�i

∼ idB′⊗t∆n
ρB′

is an acyclic cofibration in (C ↓ Z)loc(SZ). This together with the fact that the composite
ρB′ ◦ (idB′ ⊗ t∆n) is homotopic to the map ρ(B′⊗∆n) implies that the map

(A⊗∆n

∐
A⊗∂∆n

B′ ⊗ ∂∆n, ρ(B′⊗∆n) ◦ (f cof�i))→ (B′ ⊗∆n, ρ(B′⊗∆n))
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(see (3.6)) is a weak equivalence in (C ↓ Z)loc(SZ) by Lemma 3.3.
The map (3.5) being a (Λ(S))Z-cell complex means that there is an ordinal λ and a
λ-sequence {(Xα, ρXα), α < λ} such that (X0, ρX0) = (X, ρX) and

colimα<λ(Xα, ρXα) = (X̃, ρX̃),

and each of the maps
Xα Xα+1

Z

is a pushout of an element in (Λ(S))Z . We have shown above that every map in (Λ(S))Z
is an acyclic cofibration in (C ↓ Z)loc(SZ). Hence, each of the maps

Xα Xα+1

Z

is an acyclic cofibration in (C ↓ Z)loc(SZ). So the transfinite composition (3.5) is an
acyclic cofibration in (C ↓ Z)loc(SZ). In this way, we can conclude that the functor (3.4)
respects fibrant replacements.

Let g : V →W be a weak equivalence in C. Since C is right proper, the adjunction

(C ↓ V ) (C ↓W ),
g∗

g∗

induced by composition with and pullback along the map g, is a Quillen equivalence.
The following lemma addresses this question in the localized setting.

Lemma 3.5. Let g : V →W be a weak equivalence in C. The induced adjunction

(Cloc(S) ↓ V ) (Cloc(S) ↓W )
g∗

g∗

is a Quillen equivalence.

Proof. By definition of the model structures, the functor g∗ preserves and reflects
cofibrations and weak equivalences. Let (X, ρX : X → W ) be a fibrant object in the
model category (Cloc(S) ↓W ). Let

(V ×W X)cof V ×W X

V
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be a cofibrant replacement of (V ×W X,V ×W X → V ) in (Cloc(S) ↓ V ). We consider the
diagram

(V ×W X)cof

V ×W X X

V W

∼

ρX

∼
g

in (Cloc(S) ↓ W ). Since the map ρX is a fibration by [Hir03, Proposition 3.3.3.(1)(c)]
and the map g is a weak equivalence in the right proper model category C, the base
change map V ×W X → X is a weak equivalence in C and hence in Cloc(S) by [Hir03,
Proposition 3.3.3.(1)(a)]. Therefore, the composite (V ×W X)cof → V ×W X → X is a
weak equivalence in Cloc(S). The claim follows by [Hov99, Corollary 1.3.16].

3.2 Diagram spaces are Quillen equivalent to spaces over the classifying
space of the indexing category

Let K be a well-structured index category with classifying space BK. Consider the
Barratt-Eccles operad in spaces which has as its nth space the classifying space of
the translation category of the symmetric group Σn and hence is an E∞ operad in
spaces. Here we define an E∞ (diagram) space to be a (diagram) space with an action
of the Barratt-Eccles operad in spaces. In this subsection we briefly recall Sagave and
Schlichtkrull’s chain of Quillen equivalences connecting commutative K-spaces with E∞
spaces over BK. For more details we refer to [SS12, §13].

Let EK be the K-space specified by k 7→ B(K ↓ k). Forgetting the augmentation
K-levelwise gives rise to a map of K-spaces u : EK → constKBK. The adjoint map
colimKEK → BK is an isomorphism (see [SS12, p. 2178]).

Theorem 3.6. [SS12, Theorem 13.2] There is a chain of Quillen equivalences connecting
K-spaces equipped with the projective K-model structure to spaces over BK carrying the
overcategory model structure with respect to the standard model structure on spaces.

Sagave and Schlichtkrull establish in [SS12, §13.1] the following chain of Quillen
equivalences,

SK (SK ↓ EK) (SK ↓ constKBK) (S ↓ BK)
q

t∗ u∗

p

colimK

constK
(3.7)

(see [SS12, Lemma 13.3, Lemma 13.4]). The comma categories (SK ↓ EK) and
(SK ↓ constKBK) come with the overcategory model structures with respect to SK.
The first Quillen equivalence (t∗, q) in (3.7) is induced by composition with and pullback
along the map t : EK → constK∗. The adjacent Quillen equivalence (u∗, p) in (3.7) is
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determined by composition with and pullback along the map u.
In the special case that the nerve of the category K is contractible, the adjunction

SK S
colimK

constK

is a Quillen equivalence [SS12, Proposition 6.23].

If the category K is permutative, the map u : EK → constKBK is a map in E∞SK
[SS12, Lemma 13.8]. Under this assumption, Sagave and Schlichtkrull provide a struc-
tured version of (3.7).

Theorem 3.7. [SS12, Theorem 13.12] Let K be a permutative well-structured index
category. Suppose that the inclusion functor K+ → K is homotopy right cofinal, and that
the pair (K,OK+) is very well-structured. There is a chain of Quillen equivalences relating
commutative K-spaces endowed with the positive projective K-model structure to E∞
spaces over BK given the overcategory model structure with respect to the (right-induced)
standard model structure on E∞ spaces.

The following diagram displays the extended chain of Quillen equivalences,

CSK E∞(SK)+ E∞SK (E∞SK ↓ EK)

(E∞S ↓ BK) (E∞SK ↓ constKBK)

ε∗

ε∗ id

id q

t∗

u∗

constK

p

colimK

(3.8)

(see [SS12, Lemma 13.9, Lemma 13.10, Theorem 13.11]). The category E∞(SK)+ has
the positive projective K-model structure. The category E∞SK carries the projective
K-model structure. The comma categories in (3.8) are equipped with the overcategory
model structures. The map of operads in spaces from the Barratt-Eccles operad to
the commutativity operad gives rise to the Quillen equivalence (ε∗, ε∗) in (3.8). The
subsequent Quillen equivalence in (3.8) passes from the positive projective K-model
structure to the projective K-model structure on E∞SK. The composite derived functor
from CSK to (E∞S ↓ BK) sendsM to the induced map of E∞ spaces hocolimKM → BK.
If the nerve of the category K is contractible, the chain (3.8) boils down to the following
chain of Quillen equivalences between commutative K-spaces and E∞ spaces,

CSK E∞(SK)+ E∞SK E∞S
ε∗

ε∗ id

id

colimK

constK
(3.9)

(see [SS12, Proposition 13.6, Theorem 13.7]). For example, the category of commutative
I-spaces is Quillen equivalent to E∞ spaces.

Motivated by Sagave and Schlichtkrull’s result that on the one hand, commutative
K-spaces are Quillen equivalent to E∞ spaces over BK and on the other hand, E∞ spaces
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are Quillen equivalent to commutative I-spaces, we aim to construct a similar chain of
Quillen equivalences between commutative K-spaces and commutative I-spaces over a
commutative I-space model of BK. An explicit commutative I-space model of BK is
presented in [Sol11] and [SS16]. In the next subsection we recall its definition and some
relevant properties. In addition, we introduce a (K × I)-space which will play the role
of EK in (3.7) and (3.8).

3.3 The diagram spaces EIK and BIK

In this subsection let (K,t,0K) be a small permutative category. Schlichtkrull and Solberg
specify a commutative I-space model of the classifying space BK (see [SS16, §4.14, §7],
[Sol11, Example 3.1.12]). This is defined by applying the nerve functor I-levelwise to
the following functor. Let ΦB(K) : I → Cat be the functor that takes m to the category
ΦB(K)(m) with objects m-tupels (k1, . . . ,km) in K and morphisms

ΦB(K)(m)((k1, . . . ,km), (k′1, . . . ,k′m)) = K(k1 t . . . t km,k′1 t . . . t k′m).

The convention is that ΦB(K)(0) is the category with the empty string ∅ as its only
object and morphisms ΦB(K)(0)(∅, ∅) = K(0K,0K). A map α : m → n gives rise to a
functor ΦB(K)(α) : ΦB(K)(m)→ ΦB(K)(n), which maps an object (k1, . . . ,km) to the
n-tupel (kα−1(1), . . . ,kα−1(n)) where

kα−1(j) =
{

ki, α(i) = j,

0K, j /∈ im(α),
(3.10)

for j = 1, . . . , n. The functor ΦB(K)(α) sends a morphism γ : k1t . . .tkm → k′1t . . .tk′m
to a morphism kα−1(1) t . . .t kα−1(n) → k′

α−1(1) t . . .t k′
α−1(n) that is determined by the

commutative diagram

kα−1(1) t . . . t kα−1(n) k′
α−1(1) t . . . t k′

α−1(n)

k1 t . . . t km k′1 t . . . t k′m
γ

in K. The vertical maps are given by unique bijections as a result of the category K
being permutative. We skip showing that ΦB(K) is functorial in I because this is similar
to our argumentation in Construction 3.8. We define the I-space BIK as N (ΦB(K)).
The I-space BIK is homotopy constant with respect to morphisms in I+. In particular,
the map BK = BIK(1)→ hocolimIBIK is a weak equivalence (see [SS16, Lemma 4.15,
Proposition 4.18, Theorem 4.19, Theorem 7.1], [Sol11, Lemma 5.2.3, Theorem 5.2.9]).
Furthermore, the I-category ΦB(K) is a commutative monoid in CatI . There is a functor
λ

ΦB(K)
m,n : ΦB(K)(m)× ΦB(K)(n)→ ΦB(K)(m t n), specified on objects by

((k1, . . . ,km), (l1, . . . , ln)) 7→ (k1, . . . ,km, l1, . . . , ln)

and on morphisms by (γ, δ) 7→ γ t δ, which is natural in (m,n). A unit for this multipli-
cation is given by ∅ in ΦB(K)(0). This together with the functor λΦB(K)

m,n is coherently
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associative, unital and commutative. Since the nerve functor is a right adjoint, we can
deduce that the I-space BIK is a commutative monoid in the category SI (see [SS16,
Proposition 4.16, p. 7334], [Sol11, Proposition 5.1.2]).

Next we introduce a (K × I)-space which we employ in the upcoming Subsections 3.4
and 3.5 to build a chain of Quillen equivalences between (commutative) K-spaces and
(commutative) I-spaces over BIK.

Construction 3.8. Let ΦE(K) : K × I → Cat be the functor that sends (k,m) to
the category ΦE(K)(k,m) with objects ((k1, . . . ,km), ρ : k1 t . . . t km → k), where
(k1, . . . ,km) is an m-tupel in K, and morphisms

k1 t . . . t km k′1 t . . . t k′m

k.

γ

ρ ρ′

For k in K, we define ΦE(K)(k,0) to be the category with objects (∅, ρ : 0K → k) and
morphisms

0K 0K

k.

γ

ρ ρ′

A morphism ψ : k→ l in K induces a functor ΦE(K)(ψ, id) : ΦE(K)(k,m)→ ΦE(K)(l,m),
defined by postcomposing with the map ψ, that is, an object

((k1, . . . ,km),k1 t . . . t km
ρ−→ k)

is mapped to
((k1, . . . ,km),k1 t . . . t km

ρ−→ k ψ−→ l),

and a morphism
k1 t . . . t km k′1 t . . . t k′m

k

γ

ρ ρ′

to
k1 t . . . t km k′1 t . . . t k′m

k

l.

γ

ρ ρ′

ψ

We see that ΦE(K)(k,m) is functorial in k. Let α : m → n be a morphism in I. The
map α produces a functor ΦE(K)(id, α) : ΦE(K)(k,m)→ ΦE(K)(k,n), which takes an
object ((k1, . . . ,km), ρ : k1 t . . . t km → k) to

((kα−1(1), . . . ,kα−1(n)),kα−1(1) t . . . t kα−1(n) → k1 t . . . t km
ρ−→ k).
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Here kα−1(j) is defined as in (3.10) for j = 1, . . . , n, and the bijection

kα−1(1) t . . . t kα−1(n) → k1 t . . . t km
is unique because the category K is permutative. A morphism

k1 t . . . t km k′1 t . . . t k′m

k

γ

ρ ρ′

is sent to
kα−1(1) t . . . t kα−1(n) k′

α−1(1) t . . . t k′
α−1(n)

k1 t . . . t km k′1 t . . . t k′m

k.

γ

ρ ρ′

We argue that ΦE(K) is functorial in I. Let

m α−→ n β−→ p

be a composite of morphisms in I. We need to verify that

ΦE(K)(id, β ◦ α) = ΦE(K)(id, β) ◦ ΦE(K)(id, α). (3.11)

Let ((k1, . . . ,km), ρ : k1 t . . . t km → k) be an object in ΦE(K)(k,m). The composite
ΦE(K)(id, β) ◦ ΦE(K)(id, α) sends ((k1, . . . ,km), ρ : k1 t . . . t km → k) to the tuple
consisting of the p-tuple (k

α−1β
−1(1), . . . ,kα−1β

−1(p)) and the augmentation map

k
α−1β

−1(1) t . . . t k
α−1β

−1(p) → kα−1(1) t . . . t kα−1(n) → k1 t . . . t km
ρ−→ k

where

k
α−1β

−1(j) =
{

kα−1(i), β(i) = j,

0K, j /∈ im(β),
for j = 1, . . . , p. On the other hand, the functor ΦE(K)(id, β ◦ α) maps the object
((k1, . . . ,km), ρ : k1 t . . . t km → k) to

((k
(β◦α)

−1
(1)
, . . . ,k

(β◦α)
−1

(p)
),k

(β◦α)
−1

(1)
t . . . t k

(β◦α)
−1

(p)
→ k1 t . . . t km

ρ−→ k).

Taking into account that the p-tuple (k
α−1β

−1(1), . . . ,kα−1β
−1(p)) is equal to the p-tuple

(k
(β◦α)

−1
(1)
, . . . ,k

(β◦α)
−1

(p)
) and that the composite bijection

k
α−1β

−1(1) t . . . t k
α−1β

−1(p) → kα−1(1) t . . . t kα−1(n) → k1 t . . . t km

coincides with the bijection

k
(β◦α)

−1
(1)
t . . . t k

(β◦α)
−1

(p)
→ k1 t . . . t km,

it follows that the equation (3.11) is true on objects. Similarly, we understand that the
equation (3.11) holds on morphisms. Therefore, ΦE(K) is a (K × I)-category.
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Definition 3.9. We define EIK to be the (K × I)-space resulting from applying the
nerve functor (K × I)-levelwise to ΦE(K),

EIK = N (ΦE(K)).

Remark 3.10. The K-space EIK(−,1) can be identified with EK. More than that,
for (k,m) in K × I+, the category ΦE(K)(k,m) has the terminal object

((k,0K, . . . ,0K),k t 0K t . . . t 0K = k id−→ k).

Thus, the map t : EIK → constK×I∗ is a weak equivalence in all levels (k,m) in K × I+.
Since the inclusion functor K × I+ → K× I is homotopy right cofinal (see Lemma 1.23),
the induced map

hocolimK×IEIK
hocolimK×It−−−−−−−−→ hocolimK×IconstK×I∗

is a weak equivalence by two out of three (see [Hir03, Theorem 19.6.7.(1)]).

Proposition 3.11. The (K × I)-category ΦE(K) is a commutative monoid in CatK×I .
In particular, the (K × I)-space EIK is a commutative monoid in SK×I .

Proof. Let (k,m) and (l,n) be in K × I. We define a functor

λ
ΦE(K)
(k,m),(l,n) : ΦE(K)(k,m)× ΦE(K)(l,n)→ ΦE(K)(k t l,m t n)

as follows. An object (((k1, . . . ,km), ρ : k1t. . .tkm → k), ((l1, . . . , ln), ν : l1t. . .tln → l))
is mapped to ((k1, . . . ,km, l1, . . . , ln), ρ t ν : k1 t . . . t km t l1 t . . . t ln → k t l), and a
morphism k1 t . . . t km k′1 t . . . t k′m,

k

γ

ρ ρ′

l1 t . . . t ln l′1 t . . . t l′n

k

δ

ν ν′


to

k1 t . . . t km t l1 t . . . t ln k′1 t . . . t k′m t l′1 t . . . t l′n

k t l.

γtδ

ρtν ρ′tν′

The functor λΦE(K)
(k,m),(l,n) is natural in ((k,m), (l,n)). A unit for this multiplication is speci-

fied by (∅, id : 0K → 0K) in ΦE(K)(0K,0). The latter together with the functor λΦE(K)
(k,m),(l,n)

is coherently associative, unital and commutative. We spell out commutativity. For this,
we need to show that the diagram

ΦE(K)(k,m)× ΦE(K)(l,n) ΦE(K)(k t l,m t n)

ΦE(K)(l,n)× ΦE(K)(k,m) ΦE(K)(l t k,n tm),

λ
ΦE(K)
(k,m),(l,n)

τΦE(K)(k,m),ΦE(K)(l,n) ΦE(K)(χk,l,χm,n)
λ

ΦE(K)
(l,n),(k,m)

(3.12)
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commutes where χk,l denotes the symmetry isomorphism in K. Let

(((k1, . . . ,km),k1 t . . . t km
ρ−→ k), ((l1, . . . , ln), l1 t . . . t ln

ν−→ l)) (3.13)

be an object in ΦE(K)(k,m)×ΦE(K)(l,n). The composite ΦE(K)(χk,l, χm,n)◦λΦE(K)
(k,m),(l,n)

sends (3.13) to the tuple consisting of the (n+m)-tuple (l1, . . . , ln,k1, . . . ,km) and the
augmentation map

l1 t . . . t ln t k1 t . . . t km
(χm,n)∗−−−−−→ k1 t . . . t km t l1 t . . . t ln

ρtν−−→ k t l
χk,l−−→ l t k

where (χm,n)∗ denotes the bijection induced by the shuffle map χm,n. The other
way round, the composite λΦE(K)

(l,n),(k,m) ◦ τΦE(K)(k,m),ΦE(K)(l,n) sends (3.13) to the tuple
((l1, . . . , ln,k1, . . . ,km), ν t ρ : l1 t . . . t ln t k1 t . . . t km → l t k). For the reason that
χk,l ◦ (ρ t ν) ◦ (χm,n)∗ = ν t ρ, the diagram (3.12) commutes on objects. Likewise, one
can verify that the diagram (3.12) commutes on morphisms.

Forgetting the augmentation (K × I)-levelwise induces a morphism

ΦE(K)→ constKΦB(K),

which is compatible with the respective commutative monoid structures and hence in
C(CatK×I). Applying the nerve functor yields a map u : EIK → constKBIK in CSK×I .
The adjoint of the map u is colimKEIK → BIK, which is an isomorphism.

3.4 K-spaces are Quillen equivalent to I-spaces over BIK

Let K be a well-structured index category which is permutative. We prove that there is a
chain of Quillen equivalences between K-spaces endowed with the projective K-model
structure, and I-spaces over BIK carrying the overcategory model structure with respect
to the projective I-model structure on I-spaces.

We make use of the following lemma frequently in this subsection.

Lemma 3.12. Let K and L be well-structured index categories. Let M be (K × L)-
cofibrant in SK×L. The map induced by the canonical map from the homotopy colimit to
the colimit

hocolimKhocolimLM → hocolimKcolimLM (3.14)
is a weak equivalence.

Proof. As the objectM is (K×L)-cofibrant, the object colimLM is K-cofibrant by [Hir03,
Theorem 11.6.8.(1)]. The map (3.14) fits into the commutative diagram

hocolimKhocolimLM hocolimK×LM colimK×LM ∼= colimKcolimLM.

hocolimKcolimLM

∼

Here the horizontal and the vertical map are weak equivalences by [SS12, Lemma 6.22].
It follows from two out of three that the map (3.14) is a weak equivalence.
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Lemma 3.13. Let the category SK×I be equipped with the projective (K × I)-model
structure and the category SK with the projective K-model structure. The adjunction

SK×I SK
colimI

constI
(3.15)

is a Quillen equivalence.

Proof. (compare [SS12, proof of Proposition 6.23]) We start with showing that the functor
constI is a right Quillen functor. Let f : M → N be a K-fibration in SK. The induced
map constIf : constIM → constIN is a level fibration in SK×I . Let (k,m)→ (l,n) be
a morphism in K × I. The induced square

(constIM)(k,m) = M(k) (constIM)(l,n) = M(l)

(constIN)(k,m) = N(k) (constIN)(l,n) = N(l)

is homotopy cartesian. Hence, the map constIf is a (K × I)-fibration in SK×I . In
addition, for a K-space M , we have the following weak equivalences

hocolimK×IconstIM ' hocolimKhocolimIconstIM
' hocolimK(NI ×M)
' hocolimKM.

This implies that the functor constI preserves weak equivalences. Thus, the adjunc-
tion (3.15) is a Quillen adjunction.
Let M be a (K × I)-cofibrant (K × I)-space, and let N be a K-fibrant K-space. Assume
that there is a map f : colimIM → N in SK with adjoint ad(f) : M → constIN in SK×I .
We consider the diagram

hocolimKcolimIM hocolimKN.

hocolimKhocolimIM hocolimKhocolimIconstIN

hocolimKf

hocolimKhocolimIad(f)
∼ ∼

Here the vertical maps come from the canonical map from the homotopy colimit to the
colimit, using in the case of the right vertical map that the functor colimI ◦ constI is the
identity functor. The left vertical map is a weak equivalence by Lemma 3.12. By two out
of three we can conclude that the map f is a weak equivalence if and only if its adjoint
ad(f) is so.

Lemma 3.14. Let the category SK×I carry the projective (K × I)-model structure, and
the comma category (SK×I ↓ EIK) the overcategory model structure. The adjunction

(SK×I ↓ EIK) SK×I ,
t∗

q

induced by composition with and pullback along the map t : EIK → constK×I∗, defines a
Quillen equivalence.
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Proof. This holds because the model category SK×I is right proper (see Remark 2.8) and
the map t is a (K × I)-equivalence (see Remark 3.10).

Lemma 3.15. Let SK×I have the projective (K×I)-model structure and SI the projective
I-model structure. Let the comma categories (SK×I ↓ EIK), (SK×I ↓ constKBIK) and
(SI ↓ BIK) be endowed with the overcategory model structures. The composite adjunction

(SK×I ↓ EIK) (SK×I ↓ constKBIK) (SI ↓ BIK),
u∗

p

colimK

constK

where the first adjunction is defined by composition with and pullback along the map
u : EIK → constKBIK, is a Quillen equivalence.

Proof. (compare [SS12, proof of Lemma 13.4]) By definition of the model structures
the functor u∗ respects cofibrations and weak equivalences. Analogous to the proof of
Lemma 3.13 we can see that the functor constK preserves fibrations and weak equivalences.
To show that the Quillen adjunction (colimK ◦ u∗, p ◦ constK) is a Quillen equivalence,
we make use of [Hov99, Corollary 1.3.16]. First, we prove that the functor colimK ◦ u∗
reflects weak equivalences between cofibrant objects. Let

M N

EIK

f

be a map between cofibrant objects in (SK×I ↓ EIK) such that the induced map
hocolimIcolimKf is a weak equivalence. From Lemma 3.12 and two out of three we
deduce that the map hocolimK×If is a weak equivalence. Secondly, we check that for a
fibrant object (Y, Y BIK) in (SI ↓ BIK), the derived counit

colimK(EIK ×constKBIK constKY )cof colimK(EIK ×constKBIK constKY ) Y

BIK

is a weak equivalence. We investigate the following diagram where we abbreviate the
functor hocolimK by (−)hK, and the functor hocolimI by (−)hI respectively,

(((EIK ×constKBIK constKY )cof)hK)hI (colimK(EIK ×constKBIK constKY )cof)hI

((EIK ×constKBIK constKY )hK)hI (colimK(EIK ×constKBIK constKY ))hI

((constKY )hK)hI YhI .

∼

∼

The first horizontal map is a weak equivalence by Lemma 3.12. To see that the composite
map in the second column is a weak equivalence, it suffices to argue that the composite

((EIK ×constKBIK constKY )hK)hI → ((constKY )hK)hI → YhI
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is a weak equivalence. For this, we analyze the diagram

hocolimK(EIK ×constKBIK constKY ) hocolimKconstKY Y

hocolimKEIK hocolimKconstKBIK BIK

pr

pr
(3.16)

in SI . Here the second top and bottom horizontal map pr are given by the projection
maps, using that for an I-space Z, we have

hocolimKconstKZ
∼−→ BK × Z pr−→ Z.

The pullback EIK×constKBIKconstKY in SK×I is I-levelwise a pullback in SK. Therefore,
[SS12, Lemma 11.2] yields that the left square in (3.16) is a pullback square in SI . Besides,
the right square in (3.16) is a pullback square, too. Consequently, the outer square
in (3.16) is a pullback square, which is a homotopy pullback square as the map Y → BIK
is an I-fibration by assumption. To obtain that the upper horizontal composite map
in (3.16) is an I-equivalence, it is enough to show that the lower horizontal composite
map in (3.16) is an I-equivalence, for the reason that SI is right proper (see Remark 2.8).
Exploiting that the (K × I)-space EIK is homotopy constant with respect to morphisms
in K × I+, and that the I-space BIK is homotopy constant with respect to morphisms
in I+, it remains to prove that the composite

hocolimKEIK(−,1)→ hocolimKconstKBIK(1)→ BIK(1) (3.17)

is a weak equivalence. But the map (3.17) can be identified with the map

hocolimKEK → colimKEK ∼= BK,

which is a weak equivalence because the K-space EK is K-cofibrant (see [Hir03, Proposi-
tion 14.8.9], [SS12, Lemma 6.22]).

Theorem 3.16. The category of K-spaces is Quillen equivalent to the category of I-spaces
over BIK.

Proof. Putting together the results of Lemma 3.13, Lemma 3.14 and Lemma 3.15, we get
the following chain of Quillen equivalences between SK and (SI ↓ BIK),

SK SK×I (SK×I ↓ EIK) (SK×I ↓ constKBIK) (SI ↓ BIK).
constI

colimI

q

t∗ u∗

p

colimK

constK
(3.18)

3.5 Commutative K-spaces are Quillen equivalent to commutative I-spaces
over BIK

Let K be a well-structured index category which is permutative. Suppose that the
inclusion functor K+ → K is homotopy right cofinal, and that the pair (K,OK+) is very
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well-structured. The left adjoints involved in the above chain of Quillen equivalences (3.18)
are strong symmetric monoidal. Hence, the adjunctions in (3.18) lift to the level of
commutative monoids,

CSK CSK×I (CSK×I ↓ EIK) (CSK×I ↓ constKBIK)

(CSI ↓ BIK).

constI

colimI

q

t∗ u∗

p

colimK constK (3.19)

Our aim in this subsection is to prove that the adjunctions in the chain (3.19) are Quillen
equivalences. As in Subsection 3.2 we consider the Barratt-Eccles operad in spaces and
define an E∞ monoid in diagram spaces to be a diagram space with an action of the
Barratt-Eccles operad in spaces. In the case of the adjunctions (colimI , constI) and
(colimK ◦π∗, p ◦ constK) we employ the respective adjunctions on the level of E∞ monoids
for exploiting that the underlying diagram space of a cofibrant E∞ diagram space is
cofibrant which is not true for a cofibrant commutative diagram space. The proofs in this
subsection are mainly based on the corresponding proofs in the previous subsection.

Lemma 3.17. Let E∞(SK×I)+ denote the positive projective (K × I)-model structure,
and E∞(SI)+ the positive projective I-model structure. The adjunction

E∞(SK×I)+ E∞(SK)+colimI

constI

is a Quillen equivalence.

Proof. Since both model structures are right-induced, the functor constI is a right Quillen
functor (see Lemma 3.13). Let M be positive cofibrant in E∞(SK×I)+. The identity
functor id : E∞(SK×I)+ → E∞SK×I passing from the positive projective (K × I)-model
structure to the projective (K × I)-model structure, defines the left adjoint in a Quillen
equivalence [SS12, Proposition 9.8]. Thus, the object M is cofibrant in E∞SK×I , and it
follows from [SS12, Corollary 12.3] that the underlying (K×I)-space of M is cofibrant in
the projective (K × I)-model structure on SK×I . By the same arguments the underlying
K-space of colimIM is cofibrant in the projective K-model structure on SK. Given this,
we can continue as in the proof of Lemma 3.13.

Corollary 3.18. Let the category CSK×I be endowed with the positive projective (K×I)-
model structure and CSK with the positive projective K-model structure. The adjunction

CSK×I CSK
colimI

constI
(3.20)

is a Quillen equivalence.
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Proof. The functor constI is a right Quillen functor. We consider the following square of
Quillen adjunctions,

CSK×I CSK

E∞(SK×I)+ E∞(SK)+.

colimI

ε∗
constI

ε∗

colimI

ε∗

constI

ε∗

Here the map of operads in spaces from the Barratt-Eccles operad to the commuta-
tivity operad induces the vertical adjunctions which are Quillen equivalences by [SS12,
Proposition 9.12]. The last lemma and two out of three for Quillen equivalences [Hov99,
Corollary 1.3.15] ensure that (3.20) is a Quillen equivalence.

Lemma 3.19. Let the category CSK×I be equipped with the positive projective (K × I)-
model structure and the comma category (CSK×I ↓ EIK) with the overcategory model
structure. The adjunction

(CSK×I ↓ EIK) CSK×I
t∗

q

defines a Quillen equivalence.

Proof. This follows from the model category CSK×I being right proper (see Remark 2.10)
and the morphism t : EIK → constK×I∗ being a (K × I)-equivalence (see Remark 3.10).

Lemma 3.20. Let E∞(SK×I)+ denote the positive projective (K × I)-model structure,
and E∞(SI)+ the positive projective I-model structure. Let the comma categories
(E∞(SK×I)+ ↓ ε∗(EIK)), (E∞(SK×I)+ ↓ ε∗(constKBIK)) and (E∞(SI)+ ↓ ε∗(BIK))
carry the overcategory model structures. The composite adjunction

(E∞(SK×I)+ ↓ε∗(EIK)) (E∞(SK×I)+ ↓ε∗(constKBIK)) (E∞(SI)+ ↓ε∗(BIK))
u∗

p

colimK

constK

is a Quillen equivalence.

Proof. By definition of the model structures and Lemma 3.15 the functor p ◦ constK
is a right Quillen functor. Like in the proof of Lemma 3.17 we make use of [SS12,
Proposition 9.8] and [SS12, Corollary 12.3] so that we can argue as in the proof of
Lemma 3.15.

Corollary 3.21. Let the category CSK×I come with the positive projective (K × I)-
model structure, and CSI with the positive projective I-model structure. Let the comma
categories (CSK×I ↓ EIK), (CSK×I ↓ constKBIK) and (CSI ↓ BIK) possess the
overcategory model structures. The composite adjunction

(CSK×I ↓ EIK) (CSK×I ↓ constKBIK) (CSI ↓ BIK)
u∗

p

colimK

constK
(3.21)

is a Quillen equivalence.
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Proof. The composite right adjoint p◦constK is right Quillen by the definition of the model
structures and Lemma 3.15. We consider the following diagram of Quillen adjunctions,

(CSK×I ↓ EIK) (CSK×I ↓ constKBIK) (CSI ↓ BIK)

(E∞(SK×I)+ ↓ε∗(EIK)) (E∞(SK×I)+ ↓ε∗(constKBIK)) (E∞(SI)+ ↓ε∗(BIK)).

u∗

ε∗

p

colimK

ε∗
constK

ε∗

u∗

ε∗

p

colimK

ε∗

constK

ε∗

Again the map of operads in spaces from the Barratt-Eccles operad to the commutativity
operad gives rise to the vertical Quillen equivalences by [SS12, Proposition 9.12]. It follows
from Lemma 3.20 and two out of three for Quillen equivalences [Hov99, Corollary 1.3.15]
that (3.21) is a Quillen equivalence.

Theorem 3.22. The category of commutative K-spaces is Quillen equivalent to the
category of commutative I-spaces over BIK.

Proof. From Corollary 3.18, Lemma 3.19 and Corollary 3.21 we know that the adjunctions
in (3.19) are Quillen equivalences.

Remark 3.23. The above theorem allows to think of commutative K-spaces as commu-
tative I-spaces over BIK. In this sense, the category I is universal among the indexing
categories satisfying the assumptions of K.

Let R denote a fibrant replacement functor in CSK, and Q a cofibrant replacement
functor in (CSK×I ↓ constKBIK). We write IIK for the composite derived functor
colimKQ(u∗(EIK × constIR(−))) from CSK to (CSI ↓ BIK) (see (3.19)). Let R′ stand
for a fibrant replacement functor in E∞S, and Q′ for a cofibrant replacement functor
in E∞(SI)+. We write II for the composite derived functor ε∗(Q′(constIR(−))) from
E∞S to CSI (see (3.9)).

Proposition 3.24. Let M be a commutative K-space. The image IIK(M), where we
forget the augmentation to BIK, is weakly equivalent to II(hocolimKM).

Proof. We take advantage of the commutativity of the following diagram of Quillen
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equivalences,

E∞(SK)+ CSK

E∞(SK×I)+ CSK×I

(E∞(SK×I)+ ↓ ε∗(EIK)) (CSK×I ↓ EIK)

(E∞(SK×I)+ ↓ ε∗(constKBIK)) (CSK×I ↓ constKBIK)

(E∞(SI)+ ↓ ε∗(BIK)) (CSI ↓ BIK).

ε∗

constI
ε∗

constI
ε∗

colimI

q
ε∗

colimI

q

ε∗

t∗

u∗

ε∗

t∗

u∗

ε∗

p

colimK
ε∗

p

colimK
ε∗

constK

ε∗

constK

(3.22)

We can assume that M is positive K-fibrant in CSK. The image IIK(M) is equal to
(colimKQ(u∗(EIK × constIM)), colimKQ(u∗(EIK × constIM)) → BIK). The space
hocolimIII(hocolimKM) is weakly equivalent to hocolimKM . So we have to show that
the latter is weakly equivalent to hocolimIcolimKQ(u∗(EIK × constIM)). Exploiting
the Quillen equivalences in (3.22), we observe that M is K-equivalent to the image of
a cofibrant object (N,N → ε∗(EIK)) in (E∞(SK×I)+ ↓ ε∗(EIK)) under the functor
ε∗ ◦ colimI ◦ t∗, that is,

hocolimKM ' hocolimKε∗(colimIt∗(N)). (3.23)

Since colimIt∗(N) is positive cofibrant in E∞(SK)+, its underlying K-space is cofibrant
in the projective K-model structure on SK. Hence, the map

hocolimKcolimIt∗(N)→ colimKcolimIt∗(N)

is a weak equivalence by [SS12, Lemma 6.22]. Using that the derived unit of the adjunction
(ε∗, ε∗) is a weak equivalence, we get that the map

hocolimKcolimIt∗(N)→ hocolimKε∗(ε∗(colimIt∗(N))) (3.24)

is a weak equivalence. But in view of (3.23), the target in (3.24) is weakly equivalent to
hocolimKε∗(M) which is the space hocolimKM . Likewise, we obtain the following chain
of weak equivalences

colimIcolimKu∗(N) ∼← hocolimIcolimKu∗(N)
∼→ hocolimIε∗(ε∗(colimKu∗(N)))
' hocolimIε∗(colimKQ(u∗(EIK × constIM))).
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Altogether, we find that

hocolimKε∗(M) ' colimKcolimIt∗(N)
∼= colimIcolimKu∗(N)
' hocolimIε∗(colimKQ(u∗(EIK × constIM)))

which finishes the proof.

3.6 Localized model structures on commutative diagram spaces
Let K be a well-structured index category which is permutative. Suppose that the
inclusion functor K+ → K is homotopy right cofinal, and that the pair (K,OK+) is
very well-structured. In this subsection we left Bousfield localize the positive projec-
tive K-model structure on commutative K-spaces with respect to a set of maps which
corepresent shear maps. To better understand the localized model structure, we use the
Quillen equivalence between commutative K-spaces and commutative I-spaces over BIK
established in the last subsection. The goal is to show that if the simplicial monoid BK
is grouplike, the localized model structure on commutative K-spaces is Quillen equivalent
to the overcategory model structure on commutative I-spaces over BIK with respect to
a localized model structure on commutative I-spaces. The results in this subsection play
an important role in the next subsection where we prove the latter and argue that the
localized model structure on commutative K-spaces is indeed a group completion model
structure.

Left Bousfield localizations exist on all model categories involved in the chain of Quillen
equivalences (3.19) between commutative K-spaces and commutative I-spaces overBIK.
For this, we can argue as in the proof of [Sag16, Lemma 7.16]: The positive projective
K-model structure on commutative K-spaces is cofibrantly generated and left proper
(see Proposition 2.9, Remark 2.10). The forgetful functor CSK → SK preserves filtered
colimits [SS12, Lemma 9.2] so that the category CSK is locally presentable by [Bor94,
Example 5.2.2.b, Theorem 5.5.9]. Alternatively, in the case that the category K is I,
Sagave and Schlichtkrull verify in [SS13, §A] that the positive projective I-model structure
on CSI is cellular.

To transfer the Quillen equivalences from the previous subsection to the localized
setting, we rely on a criterion by Hirschhorn [Hir03, Theorem 3.3.20.(1)(b)]. The latter
says that given a Quillen equivalence

C D
F

G

and a class S of maps in C, the left Bousfield localization of C with respect to S is Quillen
equivalent to the left Bousfield localization of D with respect to the image of S under the
derived functor of F .
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Let k and l be in K+. We define a map

C(FKktl(∗)) � C(FKl (∗))
sKk,l−−→ C(FKk (∗)) � C(FKl (∗))

in CSK as follows. Because the monoidal product � is the coproduct in CSK, it suffices
to determine morphisms

C(FKktl(∗))→ C(FKk (∗)) � C(FKl (∗))

and
C(FKl (∗))→ C(FKk (∗)) � C(FKl (∗)).

The latter is given by the inclusion of C(FKl (∗)) into the coproduct C(FKk (∗))�C(FKl (∗)),
denoted by iKl . By adjunction a morphism C(FKktl(∗))→ C(FKk (∗)) � C(FKl (∗)) in CSK
corresponds to a point in (C(FKk (∗)) � C(FKl (∗)))(k t l) in S. We know that

(C(FKk (∗)) � C(FKl (∗)))(k t l) ∼= colimptq→ktl(
∐
i≥0
K(kti,p)/Σi)× (

∐
j≥0
K(ltj ,q)/Σj)

(3.25)
(see (2.2), (2.3)). We send a point ∗ to (idk, idl) in K(k,k) × K(l, l), which is the
(i = 1, j = 1)-summand in

(
∐
i≥0
K(kti,k)/Σi)× (

∐
j≥0
K(ltj , l)/Σj)

where the latter is indexed by ((k, l), id : ktl→ ktl) in the colimit system. Postcomposing
with the canonical map to the colimit (3.25) specifies a point in

(C(FKk (∗)) � C(FKl (∗)))(k t l).

Let aKk,l : C(FKktl(∗)) → C(FKk (∗)) � C(FKl (∗)) be the adjoint map in CSK. So we set
sKk,l = iKl + aKk,l. Let SK be then the following set of maps

SK = {C(FKktl(∗)) � C(FKl (∗))
sKk,l−−→ C(FKk (∗)) � C(FKl (∗)),k, l ∈ K+}.

The domains and codomains of the maps in SK are cofibrant in the positive projective
K-model structure on CSK. We denote the left Bousfield localization of the positive
projective K-model structure on CSK with respect to SK by (CSK)loc(SK).

Lemma 3.25. The induced adjunction

(CSK×I)loc(SK×I) (CSK)loc(SK)
colimI

constI

is a Quillen equivalence.
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Proof. Let (k,m) and (l,n) be in K+ × I+. We observe that

colimI(C(FK×I(ktl,mtn)(∗)) � C(FK×I(l,n) (∗))) ∼= colimIC(FK×I(ktl,mtn)(∗)) � colimIC(FK×I(l,n) (∗))
∼= C(colimIFK×I(ktl,mtn)(∗)) � C(colimIFK×I(l,n) (∗))
∼= C(FKktl(∗)) � C(FKl (∗)).

In the same way, we figure out that

colimI(C(FK×I(k,m)(∗)) � C(FK×I(l,n) (∗))) ∼= C(FKk (∗)) � C(FKl (∗)).

We need to argue that the diagram

colimI(C(FK×I(ktl,mtn)(∗)) � C(FK×I(l,n) (∗))) C(FKktl(∗)) � C(FKl (∗))

colimI(C(FK×I(k,m)(∗)) � C(FK×I(l,n) (∗))) C(FKk (∗)) � C(FKl (∗))

colimIsK(k,m),(l,n)

∼=

sKk,l

∼=

(3.26)

commutes. The inclusion into the coproduct iKl : C(FKl (∗))→ C(FKk (∗)) � C(FKl (∗)) can
be identified with the map

C(FKl (∗)) ∼= colimIC(FK×I(l,n) (∗))
colimIiK×I(l,n)−−−−−−−→ colimI(C(FK×I(k,m)(∗)) � C(FK×I(l,n) (∗))) ∼= C(FKk (∗)) � C(FKl (∗)).

In addition, the map aKk,l : C(FKktl(∗))→ C(FKk (∗)) � C(FKl (∗)) agrees with the map

C(FKktl(∗)) ∼= colimIC(FK×I(ktl,mtn)(∗))
colimIaK×I(k,m),(l,n)−−−−−−−−−−−→ colimI(C(FK×I(k,m)(∗)) � C(FK×I(l,n) (∗))) ∼= C(FKk (∗)) � C(FKl (∗)).

Therefore, the diagram (3.26) commutes so that the map colimIsK×I(k,m),(l,n) is isomorphic
to the map sKk,l. Thus, it holds that colimISK×I ∼= SI . The claim then follows from
Corollary 3.18 and [Hir03, Theorem 3.3.20.(1)(b)].

Before we go on, we again fix some notation. LetM be a commutative K-space. Let SKM
be the set of morphisms in (CSK ↓M) whose projection to CSK is an element in SK. We
form the left Bousfield localization of the overcategory model structure on (CSK ↓M)
with respect to SKM and write (CSK ↓M)loc(SKM ) for the localized model structure.

Lemma 3.26. The induced adjunction

(CSK×I ↓ EIK)loc(SK×IEIK
) (CSK×I)loc(SK×I)

t∗

q

defines a Quillen equivalence.
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Proof. As before we want to deduce the claim from Lemma 3.19 and [Hir03, Theo-
rem 3.3.20.(1)(b)]. So we have to check that the image of SK×IEIK under the functor t∗ is
isomorphic to SK×I . For this, it is enough to show that for every (k,m) and (l,n) in
K+ × I+, there exists a map C(FK×I(k,m)(∗)) � C(FK×I(l,n) (∗))→ EIK in CSK×I . Let (k,m)
and (l,n) be in K+ × I+. The spaces EIK(k,m) and EIK(l,n) are non-empty, so that
by adjunction there are maps C(FK×I(k,m)(∗))→ EIK and C(FK×I(l,n) (∗))→ EIK. Note that
at this point we need the assumption that m,n ≥ 1. Since the monoidal product � is the
coproduct in CSK×I , these maps produce a map C(FK×I(k,m)(∗)) � C(FK×I(l,n) (∗)) → EIK
in CSK×I .

Lemma 3.27. The induced adjunction

(CSK×I ↓ EIK)loc(SK×IEIK
) (CSI ↓ BIK)loc(SIBIK)

colimK◦u∗

p◦constK

is a Quillen equivalence.

Proof. As in the proof of Lemma 3.25, we get that the image of SK×I under the functor
colimK is isomorphic to SI . Besides, we know that

colimKEIK ∼= BIK = colimKconstKBIK.

Therefore, Corollary 3.21 and [Hir03, Theorem 3.3.20.(1)(b)] imply the claim.

Our next aim is to show that if the simplicial monoid BK is grouplike, the model
category (CSI ↓ BIK)loc(SIBIK) is Quillen equivalent to ((CSI)loc(SI) ↓ BIK). We prove
this in Subsection 3.7. We end this subsection with yet another auxiliary result which is
needed in Subsection 3.7.

Lemma 3.28. Let g : V →W be an I-equivalence in CSI , and let V and W be homotopy
constant with respect to morphisms in I+. The adjunction

(CSI ↓ V )loc(SIV ) (CSI ↓W )loc(SIW ),
g∗

g∗
(3.27)

induced by composition with and pullback along the map g, determines a Quillen equiva-
lence.

Proof. To prove the claim, we apply a criterion of Hovey [Hov01, Proposition 2.3]. First,
we notice that for an element in SIV , the image under the functor g∗ lies in SIW and thus
is a weak equivalence in (CSI ↓W )loc(SIW ).
Secondly, let (X, ρX : X → V ) be an SIV -local object in (CSI ↓ V ). Let the diagram

X X̃

V

W

∼
j

ρX

ρX̃
g ∼
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display a factorization of the map g ◦ ρX into an acyclic cofibration j followed by a
fibration ρX̃ in the positive projective I-model structure on CSI . The object X is
homotopy constant with respect to morphisms in I+, because the object V is so and
the map ρX is a positive I-fibration. Likewise, the object X̃ is homotopy constant with
respect to morphisms in I+, as the objectW is so and the map ρX̃ is a positive I-fibration.
It follows by Proposition 2.5 and [Hir03, Proposition 13.3.14] that the maps j and g are
positive level equivalences. We claim that (X̃, ρX̃) is an SIW -local object in (CSI ↓W ).
For this, it remains to check that for an element

C(F Imtn(∗)) � C(F In (∗)) C(F Im(∗)) � C(F In (∗))

W

sIm,n

ρC(FIm(∗))�C(FIn (∗))

in SIW , the induced map

Hom(CSI↓W )
S ((C(F Im(∗)) � C(F In (∗)), ρC(FIm(∗))�C(FIn (∗))), (X̃, ρX̃))

Hom(CSI↓W )
S ((C(F Imtn(∗)) � C(F In (∗)), ρC(FIm(∗))�C(FIn (∗)) ◦ sIm,n), (X̃, ρX̃))

Hom(CSI↓W )
S (sIm,n,id) (3.28)

is a weak equivalence. To ease notation we set

A = C(F Imtn(∗)) � C(F In (∗))
B = C(F Im(∗)) � C(F In (∗)).

By adjunction the space HomCSI
S (B, X̃) is weakly equivalent to X̃(m)× X̃(n). Since

the map j is a positive level equivalence, the latter is weakly equivalent to X(m)×X(n),
which again by adjunction is weakly equivalent to HomCSI

S (B,X). Hence, the map
HomCSI

S (id, j) : HomCSI
S (B,X)→ HomCSI

S (B, X̃) is a weak equivalence. By the same
arguments, we find that the map HomCSI

S (id, g) : HomCSI
S (B, V )→ HomCSI

S (B,W ) is a
weak equivalence. In particular, the map HomCSI

S (id, g) induces an isomorphism on π0.
We consider the diagram

∗ HomCSI
S (B, V ) HomCSI

S (B,X)

∗ HomCSI
S (B,W ) HomCSI

S (B, X̃).

HomCSI
S (id,g)∼

HomCSI
S (id,ρX)

HomCSI
S (id,j)∼

HomCSI
S (id,ρX̃)

The induced map of homotopy pullbacks

Hom(CSI↓V )
S ((B,B → V ), (X, ρX))→ Hom(CSI↓W )

S ((B,B →W ), (X̃, ρX̃))
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is a weak equivalence for every given augmentation B → W (see [Hir03, Proposi-
tion 13.4.7]). Analogously, we obtain that the induced map

Hom(CSI↓V )
S ((A,A→ V ), (X, ρX))→ Hom(CSI↓W )

S ((A,A→W ), (X̃, ρX̃))

is a weak equivalence. By assumption (X, ρX) is an SIV -local object in (CSI ↓ V ). Two
out of three then implies that the map (3.28) is a weak equivalence. It is left to show
that (X, ρX) is weakly equivalent to (V ×W X̃, V ×W X̃ → V ) in (CSI ↓ V ). For this,
we investigate the commutative diagram

X

V ×W X̃ X̃

V W.

∼
j

ρX ρX̃

∼
g

Since the model category CSI is right proper (see Remark 2.10) and two out of three
holds, the map X → V ×W X̃ is an I-equivalence. Taken together, the criterion of Hovey
[Hov01, Proposition 2.3] ensures that (3.27) is a Quillen equivalence.

3.7 The group completion model structure on commutative diagram spaces
Let K be a well-structured index category which is permutative. Suppose that the
inclusion functor K+ → K is homotopy right cofinal, and that the pair (K,OK+) is very
well-structured. We finish the proof that if the simplicial monoid BK is grouplike, the
model category (CSK)loc(SK) is Quillen equivalent to ((CSI)loc(SI) ↓ BIK). With this at
hand, we justify that (CSK)loc(SK) defines a group completion model structure. We build
on work of Sagave and Schlichtkrull in [SS13] where they describe group completion in
commutative I-spaces.

Recall from e.g. [May74] that a (simplicial or topological) monoid M is grouplike
if the monoid of connected components π0(M) is a group. For an associative (simplicial
or topological) monoid M , we write B(M) = B(∗,M, ∗) for the bar construction of M
with respect to the cartesian product. A map of homotopy commutative (simplicial or
topological) monoids M → N is a group completion if N is grouplike and the induced
map of bar constructions B(M)→ B(N) is a weak equivalence in spaces. Taking into
account that in the simplicial setting the map of simplicial monoids M → Ω((B(M))fib)
is a group completion where (−)fib denotes a fibrant replacement functor, this implies
that the simplicial monoid N is weakly equivalent to Ω((B(M))fib). In the topological
setting we assume that the topological monoids M and N are well-based, to conclude
from M → N being a group completion that N is weakly equivalent to Ω(B(M)). Spaces
with an action of the Barratt-Eccles operad in spaces are simplicial monoids because the
associativity operad in spaces is a sub operad of the Barratt-Eccles operad in spaces.
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In view of these notions and on the grounds that commutative K-spaces are Quillen
equivalent to E∞ spaces over BK (see Subsection 3.2), the definition of a grouplike
commutative K-space [Definition 2.40(i)] is sensible. In addition, we make the following
definition.

Definition 3.29. (compare [Sag16, Definition 5.4]) A map M → N of commutative
K-spaces is a group completion if N is grouplike and the induced map of bar constructions
B(hocolimKM)→ B(hocolimKN) is a weak equivalence in spaces.

Example 3.30. The commutative I-space BIK is grouplike if the monoid of connected
components π0(hocolimIBIK) ∼= π0(BK) is a group, that is, if the simplicial monoid BK
is grouplike. For example, if K is given by I, J or J̄ , the commutative I-space BIK is
grouplike.

Lemma 3.31. A commutative I-space M is fibrant in (CSI)loc(SI) if and only if M is
positive I-fibrant and grouplike.

Proof. Assume that the commutative I-space M is fibrant in (CSI)loc(SI) which means
thatM is SI-local in CSI by [Hir03, Theorem 4.1.1.(2)]. So in particular, the commutative
I-space M is positive I-fibrant. To show that M is grouplike, let m and n be in I+. The
space HomCSI

S (C(F Im(∗)) � C(F In (∗)),M) is weakly equivalent to

HomCSI
S (C(F Im(∗)),M)×HomCSI

S (C(F In (∗)),M),

which by adjointness is weakly equivalent to M(m) × M(n). Likewise, the space
HomCSI

S (C(F Imtn(∗)) � C(F In (∗)),M) is weakly equivalent to M(m t n)×M(n). The
map

HomCSI
S (C(F Im(∗))�C(F In (∗)),M)

HomCSI
S (sIm,n,id)

−−−−−−−−−−−→HomCSI
S (C(F Imtn(∗))�C(F In (∗)),M)

is a weak equivalence if and only if the map M(m)×M(n)→M(m t n)×M(n) given
by the shear map (x, y) 7→ (xy, y) is a weak equivalence. Recall that for p in I, there is a
pullback square

M(p) hocolimIM

{p} BI

(3.29)

(see [GJ09, proof of Lemma IV.5.7], remarks before Proposition 2.5). If p is in I+, the
above square (3.29) is homotopy cartesian by Proposition 2.5. Since the classifying
space BI is contractible, the base change map M(p)→ hocolimIM is a weak equivalence
in this case. We consider the induced diagram

M(m)×M(n) M(m t n)×M(n)

hocolimIM × hocolimIM hocolimIM × hocolimIM.

∼ ∼ (3.30)
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The horizontal maps in (3.30) are the shear maps. For the bottom horizontal morphism
in (3.30) this means that in simplicial degree [s] an element (x, y) inM(ms)[s]×M(ns)[s]
indexed by

(m0
α1←− . . . αs←−ms ∈ NI[s],n0

β1←− . . . βs←− ns ∈ NI[s])

is mapped to (xy, y) in M(ms t ns)[s]×M(ns)[s] indexed by

(m0 t n0
α1tβ1←−−−− . . . αstβs←−−−−ms t ns ∈ NI[s],n0

β1←− . . . βs←− ns ∈ NI[s]).

We see that the diagram (3.30) is commutative as follows. Let [s] be a simplicial degree,
and let (x, y) be in M(m)[s] ×M(n)[s]. The left vertical map in (3.30) sends (x, y)
to (x, y) in M(m)[s]×M(n)[s] indexed by

(m id←− . . . id←−m ∈ NI[s],n id←− . . . id←− ns ∈ NI[s]).

The bottom horizontal map in (3.30) takes the latter to (xy, y) in M(mtn)[s]×M(n)[s]
indexed by

(m t n id←− . . . id←−m t n ∈ NI[s],n id←− . . . id←− n ∈ NI[s]).

The other way round, the top horizontal morphism in (3.30) maps (x, y) to (xy, y) in
M(m t n)[s]×M(n)[s] which is then sent to (xy, y) in M(m t n)[s]×M(n)[s] indexed
by

(m t n id←− . . . id←−m t n ∈ NI[s],n id←− . . . id←− n ∈ NI[s])

by the right vertical morphism. Because the map HomCSI
S (sIm,n, id) is a weak equivalence

by assumption, two out of three yields that the bottom horizontal map in (3.30) is a
weak equivalence. If we apply the realization functor to the latter, we obtain that this is
a weak equivalence between cofibrant objects in topological spaces and hence a homotopy
equivalence. It follows from [Whi78, III.(4.17)] that the E∞ space hocolimIM is grouplike.

Reversely, let M be positive I-fibrant and grouplike. Exploiting that M is group-
like, [Whi78, III.(4.17)] ensures that the bottom map in (3.30) is a weak equivalence.
Two out of three implies that the top map in (3.30) is a weak equivalence for all m and n
in I+, which is equivalent to the map HomCSI

S (sIm,n, id) being a weak equivalence for
all m and n in I+. Hence, the commutative I-space M is SI-local.

Remark 3.32. Sagave and Schlichtkrull establish in [SS13] a group completion model
structure on commutative I-spaces as the left Bousfield localization of the positive
projective I-model structure with respect to a certain universal group completion map
(see [SS13, §5]). The cofibrations and the fibrant objects in their group completion model
structure agree with the ones in (CSI)loc(SI) (see [SS13, Lemma 5.6], Lemma 3.31).
According to [Joy, Proposition E.1.10], we can conclude that both model structures agree.
In particular, we get that a map M → N is a weak equivalence in (CSI)loc(SI) if and
only if the induced map of bar constructions B(hocolimIM)→ B(hocolimIN) is a weak
equivalence in spaces (see [SS13, Theorem 1.3, §5]).
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Remark 3.33. Suppose that π0(BK) is a group. Let j : BIK (BIK)fib∼ be a
fibrant replacement of BIK in the positive projective I-model structure on CSI . The
commutative I-space (BIK)fib is positive I-fibrant and grouplike and consequently
SI-local by Lemma 3.31.

Proposition 3.34. Suppose that π0(BK) is a group. The identity functor

id : (CSI ↓ BIK)loc(SIBIK) → ((CSI)loc(SI) ↓ BIK)

is the left adjoint in a Quillen equivalence.

Proof. The identity functor id : (CSI ↓ BIK)→ ((CSI)loc(SI) ↓ BIK) is a left Quillen
functor (see [Hir03, Proposition 3.3.4.(1)]). If we factor an element in SIBIK into
a cofibration followed by an acyclic fibration in (CSI ↓ BIK), the identity functor
id : (CSI ↓ BIK) → ((CSI)loc(SI) ↓ BIK) takes the cofibration from the factorization
to a weak equivalence in ((CSI)loc(SI) ↓ BIK). Thus, it follows by [Hir03, Proposi-
tion 3.3.18.(1)] that

(CSI ↓ BIK)loc(SIBIK) ((CSI)loc(SI) ↓ BIK)
id

id

is a Quillen adjunction. Note that this is the same argument as in the beginning of the
proof of Proposition 3.4. Further, let j : BIK (BIK)fib∼ be a fibrant replacement
of BIK in the positive projective I-model structure on CSI . We investigate the following
diagram of adjunctions

(CSI ↓ BIK)loc(SIBIK) (CSI ↓ (BIK)fib)loc(SI
(BIK)fib )

((CSI)loc(SI) ↓ BIK) ((CSI)loc(SI) ↓ (BIK)fib).

j∗

id id

j∗

id
j∗

j∗

id

Here the horizontal adjunctions come from composition with and pullback along the
map j. As the map j is an I-equivalence, Lemma 3.5 implies that the bottom adjunction
is a Quillen equivalence. Since the objects BIK and (BIK)fib are homotopy constant
with respect to morphisms in I+, Lemma 3.28 ensures that the top adjunction is a
Quillen equivalence. Because the object (BIK)fib is SI-local (see Remark 3.33), we gain
from Proposition 3.4 that the upper right and the lower right model structure coincide.
Applying two out of three for Quillen equivalences [Hov99, Corollary 1.3.15] finishes the
proof.

Theorem 3.35. Suppose that π0(BK) is a group. There is a chain of Quillen equivalences
between (CSK)loc(SK) and ((CSI)loc(SI) ↓ BIK).
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Proof. From Lemma 3.25, Lemma 3.26, Lemma 3.27 and Proposition 3.34, we obtain the
following chain of Quillen equivalences connecting (CSK)loc(SK) with ((CSI)loc(SI) ↓ BIK)

(CSK)loc(SK) (CSK×I)loc(SK×I) (CSK×I ↓ EIK)loc(SK×IEIK
)

((CSI)loc(SI) ↓ BIK) (CSI ↓ BIK)loc(SIBIK).

constI

colimI

q

t∗

colimK◦u∗

id

id
p◦constK

With the Quillen equivalence between (CSK)loc(SK) and ((CSI)loc(SI) ↓ BIK) at hand,
we are able to describe the fibrant objects and the weak equivalences in (CSK)loc(SK).

Lemma 3.36. Suppose that π0(BK) is a group. A commutative K-space M is fibrant in
(CSK)loc(SK) if and only if M is positive K-fibrant and grouplike.

Proof. First, let M be fibrant in (CSK)loc(SK), that is, M is SK-local in CSK by
[Hir03, Theorem 4.1.1.(2)]. By definition we get that M is positive K-fibrant. Let
the map j : BIK (BIK)fib∼ be a fibrant replacement of BIK in the positive pro-
jective I-model structure on CSI . Exploiting that the model category (CSK)loc(SK)
is Quillen equivalent to ((CSI)loc(SI) ↓ (BIK)fib) (see proof of Proposition 3.34, Theo-
rem 3.35), we can assume that M is weakly equivalent to the image of a fibrant object
(N, ρN : N → (BIK)fib) in ((CSI)loc(SI) ↓ (BIK)fib) under the composite derived
functors from ((CSI)loc(SI) ↓ (BIK)fib) to (CSK)loc(SK). Since the map ρN is a fibration
in (CSI)loc(SI) and the commutative I-space (BIK)fib is SI-local (see Remark 3.33), the
commutative I-space N is SI-local as well by [Hir03, Proposition 3.3.14.(1)]. It follows
from Lemma 3.31 that N is grouplike. But from Proposition 3.24 we know that the
simplicial monoid hocolimIN is weakly equivalent to hocolimKM , in particular that the
commutative monoid π0(hocolimIN) is isomorphic to π0(hocolimKM). As the former is
a group, we can conclude that the commutative K-space M is grouplike.

Secondly, let the commutative K-space M be positive K-fibrant and grouplike. Using the
chain of Quillen equivalences between CSK and (CSI ↓ BIK) (see Theorem 3.22), we
can assume that M is K-equivalent to the image of a fibrant object (N, ρN : N → BIK)
in (CSI ↓ BIK) under the composite derived functors from (CSI ↓ BIK) to CSK.
Because M is grouplike, the shear map

hocolimKM × hocolimKM → hocolimKM × hocolimKM (3.31)

is a weak equivalence by [Whi78, III.(4.17)]. As the simplicial monoid hocolimKM is
weakly equivalent to hocolimIN by Proposition 3.24, the map (3.31) is a weak equivalence
if and only if the shear map

hocolimIN × hocolimIN → hocolimIN × hocolimIN (3.32)
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is a weak equivalence. Since the map ρN is a positive I-fibration and the commutative
I-space BIK is homotopy constant with respect to morphisms in I+, the commutative I-
space N is homotopy constant with respect to morphisms in I+, too. Thus, Proposition 2.5
yields that for every m and n in I+, the map (3.32) is a weak equivalence if and only if
the shear map

N(m)×N(n)→ N(m t n)×N(n) (3.33)
is a weak equivalence. Using adjointness, the shear map (3.33) is a weak equivalence if
and only if the map

HomCSI
S (C(F Im(∗))�C(F In (∗)), N)

HomCSI
S (sIm,n,id)

−−−−−−−−−−−→ HomCSI
S (C(F Imtn(∗))�C(F In (∗)), N)

is a weak equivalence. Because the commutative I-space BIK is grouplike, we get that
for every m and n in I+, the map

HomCSI
S (C(F Im(∗)) � C(F In (∗)), BIK)

HomCSI
S (sIm,n,id)

−−−−−−−−−−−→ HomCSI
S (C(F Imtn(∗)) � C(F In (∗)), BIK)

is a weak equivalence (see proof of Lemma 3.31). Applying [Hir03, Proposition 13.3.14]
ensures that the map

Hom(CSI↓BIK)
S ((C(F Im(∗)) � C(F In (∗)),C(F Im(∗)) � C(F In (∗))→ BIK), (N, ρN ))

Hom(CSI↓BIK)
S ((C(F Imtn(∗)) � C(F In (∗)),C(F Imtn(∗)) � C(F In (∗))→ BIK), (N, ρN ))

Hom(CSI↓BIK)
S (sIm,n,id)

is a weak equivalence for every possible augmentation C(F Im(∗)) � C(F In (∗)) → BIK.
Taking into account that Quillen equivalences induce weak equivalences between the
homotopy types of mapping spaces, we obtain that for every k and l in K+, the map

HomCSK
S (C(FKk (∗))�C(FKl (∗)),M)

HomCSK
S (sKk,l,id)

−−−−−−−−−−→ HomCSK
S (C(FKktl(∗))�C(FKl (∗)),M)

is a weak equivalence. Therefore, the commutative K-space M is SK-local.

Theorem 3.37. Suppose that the simplicial monoid BK is grouplike. The localized model
structure (CSK)loc(SK) can be characterized as follows.

• A map M → N is a weak equivalence if and only if the induced map of bar
constructions B(hocolimKM)→ B(hocolimKN) is a weak equivalence of spaces.

• The cofibrations are the cofibrations in the positive projective K-model structure
on CSK.

• A commutative K-space M is fibrant if and only if M is positive K-fibrant and
grouplike. Fibrant replacements model group completions. Fibrations are determined
by the right lifting property with respect to the class of acyclic cofibrations.
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We call the model structure (CSK)loc(SK) the group completion model structure. We
denote a fibrant replacement functor in this model structure by (−)gp.

Proof. Let f : M → N be a map of commutative K-spaces. Taking advantage of the
Quillen equivalence between (CSK)loc(SK) and ((CSI)loc(SI) ↓ BIK) (see Theorem 3.35)
and Proposition 3.24, the map f is a weak equivalence if and only if the map

II(hocolimKM) II(hocolimKf)−−−−−−−−−→ II(hocolimKN)

is a weak equivalence in (CSI)loc(SI). This holds if and only if the induced map of bar
constructions

B(hocolimIII(hocolimKM)) B(hocolimIII(hocolimKf))−−−−−−−−−−−−−−−−−→ B(hocolimIII(hocolimKN))
(3.34)

is a weak equivalence in spaces (see Remark 3.32). But the map (3.34) is a weak
equivalence if and only if the map

B(hocolimKM) B(hocolimKf)−−−−−−−−−→ B(hocolimKN)

is a weak equivalence. The statement about the fibrant objects in (CSK)loc(SK) is precisely
Lemma 3.36.

Remark 3.38. Sagave discusses group completion in commutative J -spaces in [Sag16].
His approach is model categorical as well. As we do, Sagave defines the group completion
model structure on commutative J -spaces as the left Bousfield localization of the positive
projective J -model structure with respect to the set SJ (see [Sag16, Theorem 5.5, pp.
1242-1243]). In contrast to our work, in order to describe (CSJ )loc(SJ ), Sagave constructs
a chain of Quillen equivalences between the localized model structure on commutative
J -spaces and the stable model structure on Γ-spaces over a certain explicit Γ-space
defined through the permutative category J (see [Sag16, Definition 3.5, Theorem 5.10,
Corollary 7.17]). It is unclear whether Sagave’s approach also works for the category J̄
instead of the category J . The reason for this is that in the proof of [Sag16, Lemma 7.22]
we need that the monoidal structure map of the functor hocolimJ̄ (see (2.44)) is a weak
equivalence for positive cofibrant commutative J̄ -spaces. To prove that the monoidal
structure map of the functor hocolimJ is a weak equivalence, one makes use of the flat
model structure on J -spaces (see [Sag14, Lemma 2.11]). But we do not have a flat model
structure on J̄ -spaces (see Remark 1.14), and so far we do not know how to prove the
statement.

3.8 More examples of pre-log cdgas
Having a suitable notion of group completion in commutative J̄ -spaces motivates other
examples of pre-log cdgas. We construct a certain direct image pre-log structure on
a given commutative symmetric ring spectrum in simplicial k-modules associated to
a homotopy class in the homotopy groups of the latter. This pre-log structure is an
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analogon of a quite useful pre-log structure in the topological setting (see [RSS18, §4,
§6-§8], [Sag14, §4, §6]).

In the sequel let A be a positive fibrant object in C(SpΣ(smod)). Let (m1,m2)
be in J̄+, and let [x] be a homotopy class in πm2−m1(U(A)) represented by a map
x : Sm2 → U(A)(m1) in S∗.

Lemma 3.39. There is a localization map j : A→ A[1/x] of positive fibrant objects in
C(SpΣ(smod)) such that the induced map π∗(U(j)) : π∗(U(A)) → π∗(U(A[1/x])) takes
the homotopy class [x] in πm2−m1(U(A)) to a unit in πm2−m1(U(A[1/x])), and there is
an isomorphism of graded commutative rings π∗(U(A[1/x])) ∼= (π∗(U(A)))[1/[x]].

Proof. (compare [Schb, Example I.4.65]) Let p ≥ 0. We define the simplicial k-module
Ã[1/x](p) as

Ã[1/x](p) = Homsmod(k̃(Sm2p), A((1 +m1)p)).

The symmetric group Σp acts on the simplicial k-modules k̃(Sm2p) and A((1 + m1)p)
by permuting the p blocks of m2 respectively 1 +m1, that is, by restriction along the
diagonal embedding Σp → Σm2p respectively Σp → Σ(1+m1)p. The action of the symmetric
group Σp on the simplicial k-module Homsmod(k̃(Sm2p), A((1 +m1)p)) is then given by
conjugation. For p, q ≥ 0, there are Σp × Σq-equivariant multiplication maps

Homsmod(k̃(Sm2p), A((1 +m1)p))⊗̂Homsmod(k̃(Sm2q), A((1 +m1)q))
→ Homsmod(k̃(Sm2(p+q)), A((1 +m1)(p+ q)))

which send a pair (f, g) to the composite map

k̃(Sm2(p+q)) ∼= k̃(Sm2p)⊗̂k̃(Sm2q) f⊗̂g−−→ A((1 +m1)p)⊗̂A((1 +m1)q)
µA(1+m1)p,(1+m1)q−−−−−−−−−−−→ A((1 +m1)(p+ q))

where µA denotes the multiplication map of A. Moreover, for p ≥ 0, let

A(p) j̃(p)−−→ Ã[1/x](p)

be the Σp-equivariant morphism that is adjoint to the composite morphism

A(p)⊗̂k̃(Sm2p) ∼= A(p)⊗̂k̃(Sm2)⊗̂p
idA(p)⊗̂ad(x)⊗̂p
−−−−−−−−−−→ A(p)⊗̂A(m1)⊗̂p

µAp,m1,...,m1−−−−−−−→ A((1 +m1)p)

where ad(x) stands for the adjoint map of the map x. For p ≥ 0, we define unit maps
ηÃ[1/x](p) : k̃(S1)⊗̂p → Ã[1/x](p) as the composite

k̃(S1)⊗̂p ηA(p)−−−→ A(p) j̃(p)−−→ Ã[1/x](p)
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where we write ηA for the unit map of A. These data assemble to an object Ã[1/x] in
C(SpΣ(smod)) and a morphism j̃ : A→ Ã[1/x] in C(SpΣ(smod)). Applying the forgetful
functor U : C(SpΣ(smod))→ C(SpΣ) to Ã[1/x] is isomorphic to (U(A))[1/x] as specified
in [Schb, Example I.4.65]. In addition, the underlying morphism U(j̃) : U(A)→ U(Ã[1/x])
in C(SpΣ) can be identified with the morphism U(A)→ (U(A))[1/x] provided by Schwede

in [Schb, Example I.4.65]. Employing a fibrant replacement Ã[1/x] A[1/x]∼ of Ã[1/x]
in C(SpΣ(smod)) yields a morphism j

A Ã[1/x] A[1/x]j̃

j

∼

in C(SpΣ(smod)) that has the desired properties by [Schb, Corollary I.4.69]. For this, we
remark that the homotopy groups of U(Ã[1/x]) and U(A[1/x]) are isomorphic because
the symmetric spectrum (U(A))[1/x] is semistable by [Schb, Proposition 4.67].

Construction 3.40. (compare [Sag14, Construction 4.2]) We consider the free pre-log
structure (C(x), α) on A (see Example 2.39). The homotopy class [x] is a unit in
π∗(U(A[1/x])) so that the composite map

C(x) α−→ ΩJ̄ (A) ΩJ̄ (j)−−−−→ ΩJ̄ (A[1/x])

factors through the map iA[1/x] : GLJ̄1 (A[1/x])→ ΩJ̄ (A[1/x]). We factor the resulting
map C(x)→ GLJ̄1 (A[1/x]) into an acyclic cofibration followed by a fibration in the group
completion model structure (CSJ̄ )loc(SJ̄ ) (see Theorem 3.37),

C(x) (C(x))gp GLJ̄1 (A[1/x]).∼

Since the commutative J̄ -space GLJ̄1 (A[1/x]) is positive J̄ -fibrant and grouplike, it is
fibrant in (CSJ̄ )loc(SJ̄ ) by Lemma 3.36. Hence, the commutative J̄ -space (C(x))gp is
fibrant in (CSJ̄ )loc(SJ̄ ) so that the map of commutative J̄ -spaces C(x) → (C(x))gp

specifies a group completion indeed. Let D′(x) be the pullback of the diagram

(C(x))gp ΩJ̄ (A[1/x]) ΩJ̄ (A)ΩJ̄ (j)

in CSJ̄ . By the universal property of the pullback we obtain a map C(x)→ D′(x) which
we factor into a positive cofibration followed by a positive acyclic J̄ -fibration in CSJ̄ ,

C(x) D(x) D′(x).∼
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The single steps in this construction yield the commutative diagram

C(x)

D(x)

D′(x) ΩJ̄ (A)

(C(x))gp GLJ̄1 (A[1/x]) ΩJ̄ (A[1/x])

α

∼

ΩJ̄ (j)
iA[1/x]

in CSJ̄ . Note that the pre-log structure (D′(x), D′(x) → ΩJ̄ (A)) is the direct image
pre-log structure on A with respect to the map j and the pre-log structure

((C(x))gp, (C(x))gp → GLJ̄1 (A[1/x])
iA[1/x]−−−−→ ΩJ̄ (A[1/x]))

(see Example 2.35). We call the pre-log structure

(D(x), D(x)→ D′(x)→ ΩJ̄ (A))

the direct image pre-log structure on A associated with x. There is a sequence of
morphisms of pre-log cdgas

(A,C(x), α)

(A,D(x), D(x)→ D′(x)→ ΩJ̄ (A))

(A,D′(x), D′(x)→ ΩJ̄ (A))

(A, (ΩJ̄ (j))∗(GLJ̄1 (A[1/x])), (ΩJ̄ (j))∗(iA[1/x]))

(A[1/x],GLJ̄1 (A[1/x]), iA[1/x])

∼

(3.35)

where the fourth pre-log cdga is A together with the direct image log structure with
respect to the map j and the trivial log structure (GLJ̄1 (A[1/x]), iA[1/x]) (see Example 2.35,
Example 2.46). The last two pre-log cdgas in the above sequence (3.35) are log cdgas in
fact.

From Example 2.39 we know that the space hocolimJ̄C(x) is weakly equivalent to∐
n≥0BΣn. The Barratt-Priddy-Quillen theorem implies that the group completion

hocolimJ̄C(x) → hocolimJ̄ (C(x))gp is weakly equivalent to
∐
n≥0BΣn → Q(S0). The

next lemma determines the homotopy type of the space hocolimJ̄D(x) in a special case.
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Lemma 3.41. Let A be a positive fibrant object in C(SpΣ(smod)) such that πq(U(A)) = 0
for q ≤ −1. Let (m1,m2) be in J̄+, and let [x] be a homotopy class in π∗(U(A)) of even
positive degree m2 −m1 represented by a map x : Sm2 → U(A)(m1) in S∗. The space
hocolimJ̄D(x) is weakly equivalent to the non-negative path components of Q(S0) denoted
by (Q(S0))≥0. The composite map

hocolimJ̄C(x)→ hocolimJ̄D(x)→ hocolimJ̄ (C(x))gp

is weakly equivalent to ∐
n≥0

BΣn → (Q(S0))≥0 → Q(S0)

where the latter is the canonical factorization of the group completion map through the
inclusion of the non-negative path components of Q(S0).

Proof. (compare [Sag14, proof of Lemma 4.6]) As the commutative J̄ -space D(x) is
J̄ -equivalent to D′(x), it suffices to prove the statement for the latter. The pullback D′(x)
can be computed J̄ -levelwise. Let (n1,n2) be in J̄+. The space D′(x)(n1,n2) is the
pullback of the diagram

(C(x))gp(n1,n2) ΩJ̄ (A[1/x])(n1,n2) ΩJ̄ (A)(n1,n2).ΩJ̄ (j)(n1,n2)

Recall from Remark 2.38 that for a positive fibrant object B in C(SpΣ(smod)) and
l ∈ Z≥0, there is an isomorphism

πl+n2−n1(U(B)) ∼= πl(U(ΩJ̄ (B))(n1,n2)). (3.36)

First, suppose that n2 − n1 ≤ −1. Taking into account (3.36) (for l = 0), under the base
change map D′(x)(n1,n2)→ ΩJ̄ (A)(n1,n2) a point in D′(x)(n1,n2) is sent to a point in
ΩJ̄ (A)(n1,n2) which would represent a power of an inverse of the homotopy class [x] in
π∗(U(A)). But it follows from the assumption that πq(U(A)) = 0 for q ≤ −1, that the
space D′(x)(n1,n2) is empty.
Secondly, suppose that n2 − n1 ≥ 0. Again in view of (3.36), the fact that the mor-
phism π∗(U(j)) : π∗(U(A))→ π∗(U(A[1/x])) is an isomorphism in non-negative degrees
ensures that the morphism ΩJ̄ (j)(n1,n2) : ΩJ̄ (A)(n1,n2) → ΩJ̄ (A[1/x])(n1,n2) is a
weak equivalence. Hence, due to the model category S being right proper, the base
change map D′(x)(n1,n2)→ (C(x))gp(n1,n2) is a weak equivalence. Observing that the
inclusion functor J̄+ → J̄ is homotopy right cofinal by Lemma 1.18 and that the space
hocolimJ̄ (C(x))gp is weakly equivalent to Q(S0), finishes the proof.

Remark 3.42. In the topological setting forming pre-log structures involving the com-
mutative J -space D(x) [Sag14, Construction 4.2] is convenient, e.g. when identifying
examples of log THH-étale morphisms of pre-log ring spectra (see [RSS18, §6]) or calcu-
lating logarithmic topological Hochschild homology of pre-log ring spectra in examples.
The latter in turn helps to determine the ordinary topological Hochschild homology of the
underlying commutative symmetric ring spectra (see [RSS18, §7-§8]). Our main example,
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the commutative Hk-algebra spectrum F (X+, Hk) for a space X, usually has non-trivial
negative homotopy groups (recall the isomorphism π∗(F (X+, Hk)) ∼= H−∗(X, k) (2.9)).
We point out that we do not have an analogon of the previous lemma in the case that A
is a positive fibrant object in C(SpΣ(smod)) such that πq(U(A)) = 0 for q ≥ 1, that
(m1,m2) is in J̄+, and that [x] is a homotopy class in π∗(U(A)) of even negative degree
m2 −m1. The reason for this is that from the isomorphism (3.36) and the fact that
the morphism π∗(U(j)) : π∗(U(A))→ π∗(U(A[1/x])) is an isomorphism in non-positive
degrees, we can only deduce that for (n1,n2) in J̄+ with n2 − n1 ≤ 0, the map

πl(U(ΩJ̄ (A))(n1,n2)) πl(U(ΩJ̄ (j))(n1,n2))−−−−−−−−−−−−−→ πl(U(ΩJ̄ (A[1/x]))(n1,n2))

is an isomorphism for l + n2 − n1 ≤ 0, that is, l ≤ −(n2 − n1). But from this we cannot
conclude that the map ΩJ̄ (j)(n1,n2) : ΩJ̄ (A)(n1,n2)→ ΩJ̄ (A[1/x])(n1,n2) is a weak
equivalence.
Another problem of working with the commutative J̄ -space D(x) is that so far we do not
have an explicit description of (the homotopy type or the homology groups of) ΛJ̄ (D(x)).
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4 Logarithmic topological Hochschild homology of log cdgas
In the last section we introduce logarithmic topological Hochschild homology of log cdgas.
Our approach resembles Rognes, Sagave and Schlichtkrull’s work in [RSS15]. We make
use of the results in Section 3. First we discuss cyclic and replete bar constructions as
well as general repletion of commutative diagram spaces. After this, we set the index
category to be J̄ and define logarithmic topological Hochschild homology of pre-log cdgas.
We show that this definition is homotopy invariant under logification. Furthermore, we
specify formally log THH-étale morphisms of pre-log cdgas and present two approaches
towards examples.

In the upcoming first two subsections, let K denote a well-structured index category
which is permutative and whose classifying space BK is grouplike. Suppose that the
inclusion functor K+ → K is homotopy right cofinal and that the pair (K,OK+) is a very
well-structured relative index category.

4.1 The cyclic and replete bar constructions
We present the cyclic and replete bar constructions of commutative K-spaces. The
concepts in [RSS15, §3.1, §3.3] directly generalize from the category J to a category K
which satisfies the above assumptions.

Definition 4.1. (compare [RSS15, Definition 3.1, Definition 3.2]) Let M be a commuta-
tive K-space. Let Bcy

• (M) be the cyclic commutative K-space given by [n] 7→ M�n+1.
The face maps di : M�n+1 →M�n for 0 ≤ i ≤ n− 1, multiply adjacent copies of M by
using the multiplication map µM : M �M → M . The face map dn : M�n+1 → M�n

employs the symmetry isomorphism for the symmetric monoidal product � and the
multiplication map µM ,

M�n �M M �M�n M�n.

dn

τ
M�n,M µM�id

M�n−1

The degeneracy maps sj : M�n+1 → M�n+2 for 0 ≤ j ≤ n, insert copies of M along
the unit map UK → M . The cyclic operator tn : M�n+1 → M�n+1 is specified by
the symmetry isomorphism for the symmetric monoidal product �. The cyclic bar
construction Bcy(M) is defined as the realization of Bcy

• (M). The iterated multiplication
maps of M give rise to a natural augmentation map (εM )• : Bcy

• (M)→ constΛM whose
realization is εM : Bcy(M)→M .

A realization functor from simplicial objects in CSK to CSK is given by applying the
diagonal functor from bisimplicial sets to simplicial sets K-levelwise.

Remark 4.2. To define the cyclic bar construction Bcy(M) it actually suffices to assume
that M is an associative K-space.
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Remark 4.3. The category of commutative K-spaces is tensored over spaces (see [SS12,
pp. 2163-2164]). In this way, the cyclic bar construction of M admits a different
description, namely Bcy(M) ∼= M⊗S1 in CSK. The augmentation map εM is determined
by the map S1 → ∗ (compare [RSS15, Lemma 3.3]). As the functor (−)⊗ S1 is a left
Quillen functor, the commutative K-space Bcy(M) has a well-defined homotopy type if
the commutative K-space M is cofibrant in the positive projective K-model structure
on CSK.

Let M be a commutative K-space, and let

M Mgp constK∗∼
ηM (4.1)

be a functorial fibrant replacement of M in the group completion model structure
(CSK)loc(SK) (see Theorem 3.37).

Construction 4.4. (compare [RSS15, Construction 3.11, Definition 3.12]) We factor
the map ηM in (4.1) into an acyclic cofibration followed by a fibration in the positive
projective K-model structure on CSK

M M̃ Mgp.∼

ηM

q

Let Brep
• (M) be the cyclic commutative K-space that is defined by the pullback diagram

Brep
• (M) Bcy

• (Mgp)

constΛM̃ constΛM
gp

(εMgp )•
constΛq

(4.2)

in cyclic commutative K-spaces. By the universal property of the pullback we obtain a
natural map (νM )• : Bcy

• (M)→ Brep
• (M),

Bcy
• (M) Brep

• (M) Bcy
• (Mgp)

constΛM constΛM̃ constΛM
gp.

(νM )•

(εM )•

Bcy
• (ηM )

(εMgp )•
constΛq

(4.3)

The replete bar construction Brep(M) is defined as the realization of Brep
• (M). The

induced map νM : Bcy(M)→ Brep(M) is called the repletion map.

Remark 4.5. Since the model category CSK is right proper (see Remark 2.10) and the
map q : M̃ →Mgp is a positive K-fibration, the realization of the pullback diagram (4.2)
is a homotopy pullback diagram.
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Lemma 4.6. If a map f : M → N is a weak equivalence in the group completion model
structure (CSK)loc(SK) between grouplike objects, then the map f is a K-equivalence.

Proof. Let j : M Mfib∼ and j′ : N Nfib∼ be functorial fibrant replacements in
the positive projective K-model structure on CSK. Since the maps j and j′ are weak
equivalences in (CSK)loc(SK) by [Hir03, Proposition 3.3.3.(1)(a)], it follows from two out of
three that the induced map ffib : Mfib → Nfib is a weak equivalence in (CSK)loc(SK). The
commutative K-space Mfib as well as the commutative K-space Nfib is positive K-fibrant
and grouplike and hence fibrant in (CSK)loc(SK) by Lemma 3.36. Therefore, the map ffib

is a K-equivalence. Two out of three implies that the map f is a K-equivalence.

Corollary 4.7. (compare [RSS15, Lemma 3.13]) If the commutative K-space M is
positive cofibrant and grouplike, the repletion map νM : Bcy(M) → Brep(M) is a K-
equivalence.

Proof. As the map ηM : M → Mgp is a weak equivalence in (CSK)loc(SK) between
grouplike objects, Lemma 4.6 ensures that the map ηM is a K-equivalence. By two out
of three the map q : M̃ →Mgp is a positive acyclic K-fibration. Consequently, the base
change map Brep(M)→ Bcy(Mgp) is a positive acyclic K-fibration (see (4.3)). Because
the map ηM is a K-equivalence between positive cofibrant objects, the induced map
Bcy(ηM ) is a K-equivalence. Thus, two out of three yields that the repletion map νM is a
K-equivalence.

4.2 General repletion
In this subsection we deal with a more general concept of repletion which can be considered
as a relative version of group completion. We transfer Rognes, Sagave and Schlichtkrull’s
results in [RSS15, §3.4] concerning the index category J to the index category K. We
leave out those proofs which translate straightaway and refer to [RSS15] for more details.

Definition 4.8. (compare [RSS15, Definition 3.14]) Let f : N → M be a map of
commutative K-spaces. The repletion N rep →M of N over M is given by factoring the
map f in the group completion model structure (CSK)loc(SK) as an acyclic cofibration
followed by a fibration

N N rep M.∼
νN

f

(4.4)

We call the map νN : N → N rep the repletion map.

Definition 4.9. (compare [RSS15, Definition 3.16]) A map f : N →M of commutative
K-spaces is virtually surjective if the map f gives rise to a surjective homomorphism of
abelian groups

π0(hocolimKNgp) π0(hocolimKfgp)−−−−−−−−−−→ π0(hocolimKMgp).
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Example 4.10. Let M be a commutative K-space. The augmentation map

Bcy(M) εM−−→M

has a multiplicative section M → Bcy(M) which is the realization of the inclusion of the
constant cyclic object constΛM to Bcy

• (M). Therefore, the map εM is virtually surjective
(see [RSS15, proof of Proposition 3.15]).

Lemma 4.11. (compare [RSS15, Corollary 3.18]) Let f : N →M be a virtually surjective
map of commutative K-spaces. The repletion N rep is K-equivalent to the homotopy pullback
of the diagram

Ngp Mgp M
fgp ηM

in the positive projective K-model structure on CSK. The repletion map νN : N → N rep

is given as above in (4.4).

Remark 4.12. Assume that the category K is I, and let f : N → M be a virtually
surjective map of commutative I-spaces. In [SS13] the repletion N rep of N over M is
actually defined as the homotopy pullback of the diagram

Ngp Mgp M
fgp ηM

in the positive projective I-model structure on CSI . The maps ηN : N → Ngp and
f : N → M give rise to the repletion map νN : N → N rep by the universal property of
the pullback (see [SS13, Remark 5.15], compare [Rog09, Definition 8.2]).

Lemma 4.13. (compare [RSS15, Lemma 3.19]) Let M be a commutative K-space.
The commutative K-spaces Bcy(Mgp) and (Bcy(M))gp are K-equivalent as commutative
K-spaces under Bcy(M) and over Mgp.

The last two lemmas yield the following proposition, which relates the replete bar
construction introduced in the previous subsection to the general repletion defined above.

Proposition 4.14. (compare [RSS15, Proposition 3.15]) Let M be a commutative K-
space. There is a natural chain of K-equivalences under Bcy(M) and over M̃ connecting
the replete bar construction Brep(M) to the repletion (Bcy(M))rep of the augmentation
map εM : Bcy(M)→M .

Lemma 4.15. The homotopy pushout (with respect to the positive projective K-model
structure on commutative K-spaces) of grouplike objects is grouplike.

Proof. Let
C A B

be a diagram of commutative K-spaces where C and B are grouplike. Assume without
loss of generality that one of the maps is already a positive cofibration so that there is a
pushout diagram

A B

C C �A B
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in commutative K-spaces. Recall that in general for a K-space M , every point in
π0(hocolimKM) is represented by a zero simplex x in M(k0)[0] with k0 in K. There is a
composite of simplicial monoids

hocolimKC × hocolimKB → hocolimK(C �B)→ hocolimK(C �A B) (4.5)

where the first map is the monoidal structure map of the functor hocolimK (see (2.44))
and the second map is induced by the quotient map C�B → C�AB. The composite (4.5)
in simplicial degree zero is given by the composite∐

k0∈K
C(k0)[0]×

∐
l0∈K

B(l0)[0]
∼=−→

∐
(k0,l0)∈K×K

C(k0)[0]×B(l0)[0]

→
∐

(k0,l0)∈K×K
colimmtn→k0tl0C(m)[0]×B(n)[0]

→
∐

p0∈K
colimmtn→p0C(m)[0]×B(n)[0]

→
∐

p0∈K
(C �A B)(p0)[0].

(4.6)

The last map in the composite (4.6) is the quotient map and hence surjective. Applying
the functor π0 to the composite (4.5) yields the following composite of commutative
monoids

π0(hocolimKC×hocolimKB)→ π0(hocolimK(C�B))→ π0(hocolimK(C�AB)). (4.7)

Assume that there is a point in π0(hocolimK(C �A B)). This is represented by a pair
of zero simplices (x, y) in C(m)[0] × B(n)[0] indexed by a map m t n → p0 in K
with p0 in K. The preimage in π0(hocolimKC × hocolimKB) under the composite (4.7)
is just represented by the pair of zero simplices (x, y) in C(m)[0]×B(n)[0]. Thus, the
composite (4.7) is surjective. The surjectivity of a map of commutative monoids where
the source is a group implies that the target is a group, too. The commutative monoid
π0(hocolimKC × hocolimKB) being isomorphic to π0(hocolimKC)× π0(hocolimKB) is a
group. Consequently, the commutative monoid π0(hocolimK(C �A B)) is a group.

The remaining results in this subsection are mainly consequences of the theory in
Section 3, but play an important role in the upcoming subsection where we prove that
logarithmic topological Hochschild homology is homotopy invariant under logification.
Recall the composite derived functor IIK from commutative K-spaces to commutative
I-spaces over BIK (see Theorem 3.22 and remarks below Remark 3.23). We note that in
general, a left adjoint in a Quillen equivalence preserves pointwise cofibrant homotopy
cocartesian and pointwise cofibrant homotopy cartesian squares, whereas a right adjoint
in a Quillen equivalence respects pointwise fibrant homotopy cocartesian and pointwise
fibrant homotopy cartesian squares. In the following we frequently use that the derived
composite functor IIK preserves homotopy cocartesian as well as homotopy cartesian
squares.
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Lemma 4.16. (i) Let the map f : M → N be a group completion in commutative
K-spaces. The induced map IIK(f) : IIK(M) → IIK(N) is a group completion in
commutative I-spaces, when forgetting the augmentation to BIK.

(ii) Let f : N →M be a virtually surjective map of commutative K-spaces. The induced
map IIK(f) : IIK(N)→ IIK(M) is a virtually surjective map in commutative I-spaces,
when forgetting the augmentation to BIK.

Proof. (i) From Proposition 3.24 we know that the induced map IIK(f) is a weak equiv-
alence if and only if the map II(hocolimKf) : II(hocolimKM) → II(hocolimKN)
is an I-equivalence. Due to π0(hocolimIII(hocolimKN)) ∼= π0(hocolimKN) being
a group, the target of the map IIK(f) is grouplike. In addition, the induced map of
bar constructions

B(hocolimIII(hocolimKM)) B(hocolimIII(hocolimKf))−−−−−−−−−−−−−−−−−→ B(hocolimIII(hocolimKN))

is a weak equivalence in spaces, because the map

B(hocolimKM) B(hocolimKf)−−−−−−−−−→ B(hocolimKN)

is so.

(ii) From part (i) we get that the map IIK(f) is virtually surjective if the induced map

π0(hocolimIII(hocolimKNgp))
π0(hocolimIII(hocolimKfgp))−−−−−−−−−−−−−−−−−−−→ π0(hocolimIII(hocolimKMgp))

(4.8)

is a surjective homomorphism of abelian groups. But this holds because the map (4.8)
is isomorphic to the map π0(hocolimKfgp).

In the following lemma we use the characterization of repletion from Lemma 4.11, and
Remark 4.12 respectively.

Lemma 4.17. Let f : N →M be a virtually surjective map of commutative K-spaces.
Let N rep be the repletion of N over M with repletion map νN : N → N rep. The commu-
tative I-space IIK(N rep) provides a repletion of IIK(N) over IIK(M) with repletion map
IIK(νN ) : IIK(N)→ IIK(N rep), when forgetting the augmentation to BIK.

Proof. By Lemma 4.11 the repletion N rep is K-equivalent to the homotopy pullback of
the diagram

Ngp Mgp M
fgp ηM

in the positive projective K-model structure on CSK. As the derived composite functor IIK
preserves homotopy cartesian squares, the commutative I-space IIK(N rep) is I-equivalent
to the homotopy pullback of the diagram

IIK(Ngp) IIK(Mgp) IIK(M)
IIK(fgp) IIK(ηM )

114



in the positive projective I-model structure on CSI . It follows from Lemma 4.16(i) that
the induced maps IIK(ηM ) : IIK(M)→ IIK(Mgp) and IIK(ηN ) : IIK(N)→ IIK(Ngp) are group
completions, and from Lemma 4.16(ii) that the map IIK(f) : IIK(N)→ IIK(M) is virtually
surjective. Therefore, the repletion of IIK(N) over IIK(M) is I-equivalent to IIK(N rep),
and the repletion map is specified by IIK(νN ) : IIK(N)→ IIK(N rep).

Proposition 4.18. Let

N2 N rep
2 M2

N1 N rep
1 M1

N4 N rep
4 M4

N3 N rep
3 M3

(4.9)

be a diagram of commutative K-spaces in which N rep
i is the repletion of the horizontal

composite map fi : Ni →Mi for i = 1, . . . , 4. If the left and right hand faces are homotopy
cocartesian and the map fi is virtually surjective for i = 1, . . . , 4, the middle square of
repletions is homotopy cocartesian.

Proof. We apply the derived composite functor IIK to the diagram (4.9) to obtain
the following diagram of positive cofibrant commutative I-spaces where we forget the
augmentation to BIK,

IIK(N2) IIK(N rep
2 ) IIK(M2)

IIK(N1) IIK(N rep
1 ) IIK(M1)

IIK(N4) IIK(N rep
4 ) IIK(M4).

IIK(N3) IIK(N rep
3 ) IIK(M3)

(4.10)

From Lemma 4.16(ii) we get that the induced map IIK(fi) is virtually surjective for
i = 1, . . . , 4. Besides Lemma 4.17 implies that the commutative I-space IIK(N rep

i ) is
I-equivalent to the repletion of the map IIK(fi) for i = 1, . . . , 4. Considering that the
derived composite functor IIK respects homotopy cocartesian squares, the left and right
hand faces of (4.10) are homotopy cocartesian. Given this, we can proceed precisely as in
the proof of [RSS15, Lemma 4.26] replacing the category J by the category I. Note that
the statement made at the beginning of the proof of [RSS15, Lemma 4.26] is proved by
Lemma 4.15.

Remark 4.19. In the proof of [RSS15, Lemma 4.26] Rognes, Sagave and Schlichtkrull
exploit the fact that the monoidal structure map of the functor hocolimJ is a weak
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equivalence for positive cofibrant J -spaces. As we do not know whether this holds in
general (e.g. for the category J̄ see Remark 3.38), we make a detour by using the Quillen
equivalence between commutative K-spaces and commutative I-spaces over BIK (see
Theorem 3.22). The monoidal structure map of the functor hocolimI is a weak equivalence
for positive cofibrant commutative I-spaces by [SS13, Lemma 2.25, Proposition 3.2].

4.3 Logarithmic topological Hochschild homology
We define logarithmic topological Hochschild homology of pre-log cdgas and show that
this is homotopy invariant under logification. Our approach is similar to the one in the
topological context by Rognes, Sagave and Schlichtkrull in [RSS15, §4].

Let A be an object in C(SpΣ(smod)). We specify a cyclic object Bcy
• (A) in C(SpΣ(smod))

by Bcy
n (A) = A∧n+1, with structure maps induced by the multiplication and unit map

of A and the symmetry isomorphism for the symmetric monoidal smash product ∧.
Definition 4.20. (compare [Shi00, Definition 4.1.2], [RSS15, Definition 3.5]) Let A be a
positive cofibrant object in C(SpΣ(smod)). We define the topological Hochschild homology
THHSym(k̃(S1))(A) as the realization of the cyclic object THHSym(k̃(S1))

• (A) = Bcy
• (A).

A realization functor from simplicial objects in C(SpΣ(smod)) to C(SpΣ(smod)) is
given by applying the diagonal functor from bisimplicial k-modules to simplicial k-modules
in each spectrum level. Because of the cofibrancy assumption, the definition of topological
Hochschild homology is homotopy invariant.
Remark 4.21. Recall the Quillen equivalence

C(Hk-mod) C(SpΣ(smod))
k̃(−)∧k̃(Hk)Sym(k̃(S1))

U

(see (2.8)) and that the left adjoint k̃(−) ∧k̃(Hk) Sym(k̃(S1)) is strong symmetric monoidal.
For a positive cofibrant object A in C(Hk-mod), the topological Hochschild homology
THHHk(A) in C(Hk-mod) corresponds to THHSym(k̃(S1))(k̃(A) ∧k̃(Hk) Sym(k̃(S1))) in
C(SpΣ(smod)). Moreover, considering that (commutative)Hk-algebra spectra are Quillen
equivalent to (E∞) dgas (see Theorem 2.15, Theorem 2.16), the functor THHHk can be
identified with derived Hochschild homology HHk which is known as Shukla homology (see
[DS07, §4.4]). For instance, let A be a commutative k-algebra and let (HA)cof HA∼

be a cofibrant replacement of HA in C(Hk-mod). If A is a commutative k-flat k-
algebra, the underlying Hk-module spectrum of HA is flat and there are the following
isomorphisms of commutative k-algebras

HHk
∗(A) ∼= THHHk

∗ (HA)
∼= THHHk

∗ ((HA)cof)
∼= THHSym(k̃(S1))

∗ (k̃((HA)cof) ∧k̃(Hk) Sym(k̃(S1))).

(4.11)

For the first isomorphism in (4.11) see also [EKMM97, Theorem IX.1.7].
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Recall the functor ΛJ̄ from Definition 2.31.

Lemma 4.22. Let M be a cofibrant object in the positive projective J̄ -model structure
on CSJ̄ . There is a natural isomorphism

THHSym(k̃(S1))(ΛJ̄ (M)) ∼= ΛJ̄ (Bcy(M)).

Proof. We denote the realization functor by | − |. As a left adjoint, the functor ΛJ̄
commutes with coproducts. Thus, we obtain that

THHSym(k̃(S1))(ΛJ̄ (M)) = |{[n] 7→ (ΛJ̄ (M))∧n+1}|
∼= |{[n] 7→ ΛJ̄ (M�n+1)}|,

which is isomorphic to ΛJ̄ (Bcy(M)).

Definition 4.23. (compare [RSS15, Definition 4.6]) Let (A,M,α) be a cofibrant pre-log
cdga. We define the logarithmic topological Hochschild homology THH(A,M,α) via the
pushout diagram

THHSym(k̃(S1))(ΛJ̄ (M)) ΛJ̄ (Bcy(M)) ΛJ̄ ((Bcy(M))rep)

THHSym(k̃(S1))(A) THH(A,M,α).

∼=

THHSym(k̃(S1))(ad(α))

ΛJ̄ (νBcy(M))

(4.12)

Remark 4.24. The first upper horizontal map in the pushout diagram (4.12) is given
by the isomorphism from Lemma 4.22. The cofibrancy assumption on (A,M,α) requires
the commutative J̄ -space M to be positive cofibrant and the adjoint structure map
ad(α) : ΛJ̄ (M) → A to be a positive cofibration (see Remark 2.33). Therefore, the
pushout square (4.12) is in fact a homotopy pushout square, and the definition of logTHH
is homotopy invariant.
Rognes, Sagave and Schlichtkrull use the replete bar construction Brep(M) instead of the
repletion (Bcy(M))rep to define logarithmic topological Hochschild homology of a pre-log
ring spectrum [RSS15, Definition 4.6]. But the object Brep(M) is in general not positive
cofibrant. Nevertheless, Rognes, Sagave and Schlichtkrull show that their definition is
homotopy invariant [RSS15, Proposition 4.9] by introducing the criterion of SJ -goodness
(see [RSS15, §8]). To check SJ -goodness, Rognes, Sagave and Schlichtkrull employ the
explicit decription of the functor SJ ([SS12, (4.5)], see proof of [RSS15, Lemma 8.4]).
Contrary to this, although we can define ΛJ̄ -goodness analogously, we do not know how
to verify the latter due to the abstract definition of the functor ΛJ̄ . The advantage
of Rognes, Sagave and Schlichtkrull’s definition is that the logarithmic topological
Hochschild homology of a pre-log ring spectrum is isomorphic to the realization of a
cyclic commutative symmetric ring spectrum (see [RSS15, remarks after Definition 4.6]).
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Next we show that logarithmic topological Hochschild homology is homotopy invariant
under logification. The proof resembles the proof of [RSS15, Theorem 4.24]. Besides, it
is an application of the results from Section 3 and the previous two subsections.

Proposition 4.25. Let A be a positive fibrant commutative symmetric ring spectrum in
simplicial k-modules, and let (A,M,α) be a cofibrant pre-log cdga. The logification map
(A,M,α)→ (Aa,Ma, αa) gives rise to a stable equivalence

THH(A,M,α)→ THH(Aa,Ma, αa).

Proof. (compare [RSS15, proof of Theorem 4.24]) We need to verify that the map of
pushouts

THHSym(k̃(S1))(A) ∧ΛJ̄ (Bcy(M)) ΛJ̄ ((Bcy(M))rep)

→ THHSym(k̃(S1))(Aa) ∧ΛJ̄ (Bcy(Ma)) ΛJ̄ ((Bcy(Ma))rep)

is a stable equivalence.
Let P α−1(GLJ̄1 (A))∼ be a cofibrant replacement of α−1(GLJ̄1 (A)) in the positive
projective J̄ -model structure on commutative J̄ -spaces. We investigate the following
pushout square

Bcy(P ) Bcy(P gp)

(Bcy(P ))rep (Bcy(P ))rep �Bcy(P ) B
cy(P gp).

Bcy(ηP )

νBcy(P ) τ

As the map νBcy(P ) is an acyclic cofibration in the group completion model structure
(CSJ̄ )loc(SJ̄ ), so is the cobase change map τ . The source Bcy(P gp) of the map τ is
grouplike because of Lemma 4.13. Due to the induced map π0(hocolimJ̄ νBcy(P )) being
surjective, the target of the map τ is grouplike as well. By Lemma 4.6 the map τ is a
J̄ -equivalence. There is a composite map

P α−1(GLJ̄1 (A)) GLJ̄1 (A) ΩJ̄ (A),∼ iA (4.13)

which factors through GLJ̄1 (A). Hence, the composite map (4.13) extends over the map
ηP : P → P gp. Let the map ΛJ̄ (P ) → A be the adjoint of the composite map (4.13).
The induced map

ΛJ̄ (Bcy(P ))
∼=−→ THHSym(k̃(S1))(ΛJ̄ (P ))→ THHSym(k̃(S1))(A)

factors as a composite

ΛJ̄ (Bcy(P )) ΛJ̄ (Bcy(ηP ))−−−−−−−−→ ΛJ̄ (Bcy(P gp))→ THHSym(k̃(S1))(A).
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We observe that the pushout of the diagram

THHSym(k̃(S1))(A) ΛJ̄ (Bcy(P )) ΛJ̄ ((Bcy(P ))rep)
ΛJ̄ (νBcy(P ))

is isomorphic to the pushout of the diagram

THHSym(k̃(S1))(A) ΛJ̄ (Bcy(P gp)) ΛJ̄ ((Bcy(P ))rep �Bcy(P ) B
cy(P gp)).ΛJ̄ (τ)

Since the map τ is a positive acyclic cofibration, the induced map ΛJ̄ (τ) is a positive
acyclic cofibration. Therefore, the cobase change map

THHSym(k̃(S1))(A)→ THHSym(k̃(S1))(A) ∧ΛJ̄ (Bcy(P )) ΛJ̄ ((Bcy(P ))rep) (4.14)

is a positive acyclic cofibration.
Further, we factor the composite

P α−1(GLJ̄1 (A)) GLJ̄1 (A)∼

into a cofibration followed by an acyclic fibration in the positive projective J̄ -model
structure on commutative J̄ -spaces

P G GLJ̄1 (A).∼

Because of [Hir03, Proposition 13.5.3], the induced map of pushouts M �P G→Ma is a
J̄ -equivalence. We analyze the diagram

ΛJ̄ (Bcy(G)) ΛJ̄ (Bcy(Ma))

ΛJ̄ (Bcy(P )) ΛJ̄ (Bcy(M))

ΛJ̄ ((Bcy(G))rep) ΛJ̄ ((Bcy(Ma))rep)

ΛJ̄ ((Bcy(P ))rep) ΛJ̄ ((Bcy(M))rep)

ΛJ̄ (G) ΛJ̄ (Ma).

ΛJ̄ (P ) ΛJ̄ (M)
(4.15)

As the commutative J̄ -space G is SJ̄ -local by Lemma 3.36 and the map (Bcy(G))rep → G

is a fibration in (CSJ̄ )loc(SJ̄ ), the commutative J̄ -space (Bcy(G))rep is SJ̄ -local by
[Hir03, Proposition 3.3.14.(1)]. In particular, the latter is grouplike due to Lemma 3.36
so that the map νBcy(G) : Bcy(G)→ (Bcy(G))rep is an acyclic cofibration in the positive
projective J̄ -model structure by Lemma 4.6. Thus, the induced map

ΛJ̄ (Bcy(G))
ΛJ̄ (νBcy(G))−−−−−−−−→ ΛJ̄ ((Bcy(G))rep) (4.16)
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is a positive acyclic cofibration. Let the map ΛJ̄ (G)→ A be the adjoint of the composite

G GLJ̄1 (A) ΩJ̄ (A),∼ iA

and let ΛJ̄ (Bcy(G))→ THHSym(k̃(S1))(A) be the induced morphism. We then apply the
functor (−) ∧ΛJ̄ (Bcy(G)) THHSym(k̃(S1))(A) to the upper left hand square in (4.15), and
consider the map from the pushout

(ΛJ̄ ((Bcy(P ))rep) ∧ΛJ̄ (Bcy(P )) ΛJ̄ (Bcy(G))) ∧ΛJ̄ (Bcy(G)) THHSym(k̃(S1))(A)
∼= ΛJ̄ ((Bcy(P ))rep) ∧ΛJ̄ (Bcy(P )) THHSym(k̃(S1))(A)

to ΛJ̄ ((Bcy(G))rep) ∧ΛJ̄ (Bcy(G)) THHSym(k̃(S1))(A). This is a stable equivalence, because
the map (4.14) is a stable equivalence and the map (4.16) is a positive acyclic cofibration.
Moreover, in view of the functors ΛJ̄ and Bcy ∼= (−) ⊗ S1 being left Quillen, the top
and the bottom face of the diagram (4.15) are homotopy cocartesian. The middle square
in (4.15) is homotopy cocartesian because of Proposition 4.18 and the functor ΛJ̄ being
left Quillen. Consequently, the square

THH(A) ∧ΛJ̄ (Bcy(P )) ΛJ̄ ((Bcy(P ))rep) THH(A) ∧ΛJ̄ (Bcy(M)) ΛJ̄ ((Bcy(M))rep)

THH(A) ∧ΛJ̄ (Bcy(G)) ΛJ̄ ((Bcy(G))rep) THH(Aa) ∧ΛJ̄ (Bcy(Ma)) ΛJ̄ ((Bcy(Ma))rep)

(4.17)
where we abbreviate the functor THHSym(k̃(S1)) by THH is homotopy cocartesian. Taking
into account that the left vertical map in (4.17) is a stable equivalence, so is the right
vertical map, which finishes the proof.

4.4 Formally log THH-étale morphisms
In the sequel we specify formally log THH-étale morphisms of pre-log cdgas. We focus
on two approaches to find examples. On the one hand, tamely ramified extensions of
commutative rings, and on the other hand, formally THH-étale morphisms of commutative
Hk-algebra spectra should give rise to formally log THH-étale morphisms of pre-log
cdgas.

Definition 4.26. (compare [RSS18, p. 510]) A map of cofibrant pre-log cdgas (A,M,α)→
(B,N, β) is formally log THH-étale if the induced square

A B

THH(A,M,α) THH(B,N, β)

is homotopy cocartesian in C(SpΣ(smod)).
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Remark 4.27. Let (f, f b) : (A,M,α)→ (B,N, β) be a map of cofibrant pre-log cdgas.
We consider the induced diagram

A B

ΛJ̄ (M) ΛJ̄ (N)

THHSym(k̃(S1))(A) THHSym(k̃(S1))(B)

ΛJ̄ (Bcy(M)) ΛJ̄ (Bcy(N))

THH(A,M,α) THH(B,N, β).

ΛJ̄ ((Bcy(M))rep) ΛJ̄ ((Bcy(N))rep)
(4.18)

To show that the map (f, f b) is formally log THH-étale, we need to prove that the back
face of the diagram (4.18) is homotopy cocartesian. For this, it suffices to show that
the top face and the front face of (4.18) are homotopy cocartesian. To see this, we
observe that the lower left hand square and the lower right hand square of (4.18) are
homotopy cocartesian by definition. The inner square results from applying the functor
THHSym(k̃(S1)) to the top face and is consequently homotopy cocartesian. Thus, the
bottom face of (4.18) is homotopy cocartesian. As the top, front and bottom face of (4.18)
are homotopy cocartesian, we can conclude that the back face of (4.18) is homotopy
cocartesian (compare [RSS18, proof of Theorem 6.3]).
In general it is not sufficient that the upper back square of the diagram (4.18) is homotopy
cocartesian to deduce that the map (f, f b) is formally log THH-étale.

In the upcoming Example 4.29, we investigate a map of pre-log cdgas induced by
a tamely ramified extension of polynomial rings. We make use of the notions cyclic
bar construction, group completion, virtually surjective morphism and repletion of
commutative monoids as defined in [Rog09, §3]. Moreover, the following lemma is helpful.

Lemma 4.28. Let 〈x〉 denote the (discrete simplicial) free commutative monoid on a
generator x.

(i) The cyclic bar construction Bcy(〈x〉) decomposes as a disjoint union of cyclic sets

Bcy(〈x〉) =
∐
j≥0

Bcy(〈x〉 , j) ' ∗ t
∐
j≥1

S1(j)

where the cyclic subset Bcy(〈x〉 , j) = ε−1
〈x〉(x

j) consists of the simplices (m0, . . . ,mq)
with m0 · · ·mq = xj. The cyclic subset Bcy(〈x〉 , 0) is a point, while the cyclic
subset Bcy(〈x〉 , j) for j ≥ 1, is S1-equivariantly homotopy equivalent to S1 with the
degree j action, which we write as S1(j).
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(ii) The group completion 〈x〉gp =
〈
x, x−1〉 = {xj , j ∈ Z} has the cyclic bar construction

Bcy(〈x〉gp), which decomposes as a disjoint union of cyclic sets

Bcy(〈x〉gp) =
∐
j∈Z

Bcy(〈x〉gp , j) '
∐
j∈Z

S1(j)

where Bcy(〈x〉gp , j) = ε−1
〈x〉gp(xj). The cyclic bar construction Bcy(〈x〉gp) contains

the replete bar construction

Brep(〈x〉) =
∐
j≥0

Bcy(〈x〉gp , j) '
∐
j≥0

S1(j)

as the non-negatively indexed summands. The repletion map

Bcy(〈x〉)
ν〈x〉−−→ Brep(〈x〉)

decomposes as the disjoint union of the inclusions Bcy(〈x〉 , j)→ Bcy(〈x〉gp , j) for
j ≥ 0. For j ≥ 1, this inclusion is an S1-equivariant homotopy equivalence, and for
j = 0, this inclusion identifies the source with the S1-fixed points of the target.

(iii) The commutative symmetric ring spectrum ΛJ̄ (F J̄(0,0)(〈x〉)) is naturally isomorphic
to F0(k[x]).

(iv) The commutative symmetric ring spectrum ΛJ̄ (Bcy(F J̄(0,0)(〈x〉))) is naturally iso-
morphic to ΛJ̄ (F J̄(0,0)(B

cy(〈x〉))).

(v) The group completion η〈x〉 : 〈x〉 → 〈x〉gp induces the group completions

F J̄(0,0)(〈x〉)
F J̄(0,0)(η〈x〉)−−−−−−−→ F J̄(0,0)(〈x〉

gp) (4.19)

and

F J̄(0,0)(B
cy(〈x〉))

F J̄(0,0)(B
cy(η〈x〉))

−−−−−−−−−−→ F J̄(0,0)B
cy(〈x〉gp) (4.20)

in CSJ̄ .

(vi) The repletion (Bcy(F J̄(0,0)(〈x〉)))
rep is J̄ -equivalent to F J̄(0,0)(B

rep(〈x〉)). The reple-
tion map

Bcy(F J̄(0,0)(〈x〉))
ν
Bcy(F J̄(0,0)(〈x〉))

−−−−−−−−−−→ (Bcy(F J̄(0,0)(〈x〉)))
rep

can be identified with the induced map

F J̄(0,0)(B
cy(〈x〉))

F J̄(0,0)(ν〈x〉)−−−−−−−→ F J̄(0,0)(B
rep(〈x〉)).

Proof. (i) This statement is [Rog09, Proposition 3.20] which follows from the proof of
[Hes96, Lemma 2.2.3].
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(ii) This statement is [Rog09, Proposition 3.21].

(iii) Let A be an object in C(SpΣ(smod)). Let CS denote the category of commutative
simplicial monoids. Exploiting adjunctions, we find the following isomorphisms

C(SpΣ(smod))(ΛJ̄ (F J̄(0,0)(〈x〉)), A) ∼= CSJ̄ (F J̄(0,0)(〈x〉), U(ΩJ̄ (A)))
∼= CS(〈x〉 , U(ΩJ̄ (A))(0,0)).

Using the isomorphisms L(F0(S0)) ∼= F0(Γ(S0)) ∼= F0(const∆opk) and adjunctions,
we obtain that

U(ΩJ̄ (A))(0,0) = U(HomSpΣ(smod)
smod (L(F0(S0)), A))

∼= U(HomSpΣ(smod)
smod (F0(const∆opk), A))

∼= U(Homsmod(k(∆0), A(0)))
∼= HomS(∆0, U(A(0)))
∼= U(A(0)).

Moreover, again by adjunction we get that

C(SpΣ(smod))(F0(k[x]), A) ∼= CS(〈x〉 , U(A(0))).

Thus, the object ΛJ̄ (F J̄(0,0)(〈x〉)) can be identified with the object F0(k[x]) in
C(SpΣ(smod)).

(iv) We obtain that

ΛJ̄ (Bcy(F J̄(0,0)(〈x〉))) ∼= ΛJ̄ (F J̄(0,0)(〈x〉)⊗ S
1)

∼= ΛJ̄ (F J̄(0,0)(〈x〉 ⊗ S
1))

= ΛJ̄ (F J̄(0,0)(B
cy(〈x〉)))

where we make use of the fact that the left adjoint functor F J̄(0,0) commutes with
tensors. For more details on the definition of Bcy(〈x〉) see [Rog09, Definition 3.16,
Proposition 3.20].

(v) The space hocolimJ̄F
J̄
(0,0)(∗) is contractible and hence, the commutative monoid

π0(hocolimJ̄F
J̄
(0,0)(〈x〉

gp)) ∼= π0(〈x〉gp × hocolimJ̄F
J̄
(0,0)(∗))

∼= π0(〈x〉gp)× π0(hocolimJ̄F
J̄
(0,0)(∗))

∼= π0(〈x〉gp)
= 〈x〉gp
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is a group. The induced map

B(hocolimJ̄F
J̄
(0,0)(〈x〉))→ B(hocolimJ̄F

J̄
(0,0)(〈x〉

gp))

is a weak equivalence, because the map B(〈x〉)→ B(〈x〉gp) is a weak equivalence.
Similarly, considering that the simplicial commutative monoid (Bcy(〈x〉))gp is weakly
equivalent to Bcy(〈x〉gp) (see [Rog09, Proposition 3.20, Proposition 3.21], part (i),
part (ii)), the map (4.20) specifies a group completion.

(vi) As the augmentation map ε
F J̄(0,0)(〈x〉)

: Bcy(F J̄(0,0)(〈x〉)) → F J̄(0,0)(〈x〉) is virtually

surjective in CSJ̄ , Lemma 4.11 implies that the repletion (Bcy(F J̄(0,0)(〈x〉)))
rep is

J̄ -equivalent to the homotopy pullback of the diagram

(Bcy(F J̄(0,0)(〈x〉)))
gp (F J̄(0,0)(〈x〉))

gp F J̄(0,0)(〈x〉).
ε
F J̄(0,0)(〈x〉)

η
F J̄(0,0)(〈x〉)

We employ the above group completions (4.19) and (4.20). The map (4.19) is an
inclusion of path components and hence a positive J̄ -fibration. Exploiting that the
left adjoint functor F J̄(0,0) commutes with tensors and that the model category CSJ̄

is right proper (see Remark 2.10), the repletion (Bcy(F J̄(0,0)(〈x〉)))
rep is J̄ -equivalent

to the pullback of the diagram

F J̄(0,0)(B
cy(〈x〉gp)) F J̄(0,0)(〈x〉

gp) F J̄(0,0)(〈x〉).
F J̄(0,0)(ε〈x〉) F J̄(0,0)(η〈x〉)

The pullback is computed J̄ -levelwise, and the functor F J̄(0,0) preserves pullbacks.
Therefore, the repletion (Bcy(F J̄(0,0)(〈x〉)))

rep is J̄ -equivalent to F J̄(0,0)(B
rep(〈x〉))

(see [Rog09, p. 427]).

Example 4.29. Let p be an odd prime, and let k be the ring of p-local integers Z(p). Let
〈v0〉 → 〈u0〉 be the map of free commutative monoids that sends v0 to up−1

0 . Since the
greatest common divisor of p and p− 1 is 1, the induced map of polynomial rings k[v0]→
k[u0] is a tamely ramified extension. Applying the Eilenberg-Mac Lane functor H yields a
map of commutative Hk-algebra spectra H(k[v0])→ H(k[u0]). Recall from Example 2.37
that there is a pre-log structure (F J̄(0,0)(〈v0〉), αv0) on k̃(H(k[v0]))∧k̃(Hk) Sym(k̃(S1)), and
(F J̄(0,0)(〈u0〉), αu0) on k̃(H(k[u0])) ∧k̃(Hk) Sym(k̃(S1)) respectively. The induced diagram

F J̄(0,0)(〈v0〉) ΩJ̄ (k̃(H(k[v0])) ∧k̃(Hk) Sym(k̃(S1)))

F J̄(0,0)(〈u0〉) ΩJ̄ (k̃(H(k[u0])) ∧k̃(Hk) Sym(k̃(S1)))
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commutes so that we obtain a map of pre-log cdgas

(k̃(H(k[v0])) ∧k̃(Hk) Sym(k̃(S1)), F J̄(0,0)(〈v0〉), αv0)

→ (k̃(H(k[u0])) ∧k̃(Hk) Sym(k̃(S1)), F J̄(0,0)(〈u0〉), αu0).
(4.21)

For a discrete simplicial free commutative monoid 〈x〉, the commutative J̄ -space F J̄(0,0)(〈x〉)
is usually not cofibrant in the positive projective J̄ -model structure on CSJ̄ (compare
[RSS15, remarks before Lemma 5.1]). To determine whether the map (4.21) is formally
log THH-étale, we actually need to pass to the induced map of cofibrant replacements.
But the abstract definition of the functor ΛJ̄ makes it hard to check whether the latter
is formally log THH-étale. Unfortunately, we are only able to show that the map (4.21)
is formally log THH-étale in a naive sense where we mean by naive that we do not
care whether the objects have well-defined homotopy types. For this, we make use of
Remark 4.27, that is, we argue that with respect to the map (4.21) the top face and the
front face of the diagram (4.18) are pushout squares in C(SpΣ(smod)).

From Lemma 4.28(iii) we know that for a discrete simplicial free commutative monoid 〈x〉,
the commutative symmetric ring spectrum ΛJ̄ (F J̄(0,0)(〈x〉)) is naturally isomorphic
to F0(k[x]). The latter is isomorphic to the commutative symmetric ring spectrum
k̃(F0(〈x〉+)) which again is isomorphic to k̃(F0(〈x〉+) ∧Hk) ∧k̃(Hk) Sym(k̃(S1)) as the
functor k̃ is strong symmetric monoidal. In addition, using that F0(〈x〉+) ∧Hk is weakly
equivalent to H(k[x]), the induced square

F0(〈v0〉+) ∧Hk H(k[v0])

F0(〈u0〉+) ∧Hk H(k[u0])

(4.22)

is a pushout square in the category C(Hk-mod). From applying the left adjoint functor
k̃(−) ∧k̃(Hk) Sym(k̃(S1)) to the square (4.22), we deduce that the top face of the dia-
gram (4.18) is a pushout square in the category C(SpΣ(smod)).

We move on to analyze with respect to the map (4.21) the front face of the diagram (4.18).
We take advantage of Lemma 4.28(iv)-(vi). Further, we analyze the diagram

〈v0〉 〈u0〉

Bcy(〈v0〉) Bcy(〈u0〉)

Brep(〈v0〉) Brep(〈u0〉).

(4.23)

Plugging in Hesselholt’s and Rognes’ calculations (see Lemma 4.28(i)-(ii)), we can identify
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the diagram (4.23) with the diagram
∐
j≥0 ∗

∐
j≥0 ∗

∗ t
∐
j≥1 S

1(j) ∗ t
∐
j≥1 S

1(j)

∐
j≥0 S

1(j)
∐
j≥0 S

1(j).

(4.24)

The top horizontal morphism sends a point ∗ indexed by j to the point ∗ indexed by
j(p− 1). The middle horizontal morphism maps the point ∗ to the point ∗, and by the
identity a circle S1(j) indexed by j to S1(j(p − 1)) indexed by j(p − 1). The bottom
horizontal morphism takes by the identity a circle S1(j) indexed by j to S1(j(p − 1))
indexed by j(p − 1). Computing the pushout of the composite left vertical map and
the top horizontal map, we find that the outer square of (4.24) is a pushout square.
Consequently, the outer square of the induced diagram

ΛJ̄ (F J̄(0,0)(〈v0〉)) ΛJ̄ (F J̄(0,0)(〈u0〉))

ΛJ̄ (F J̄(0,0)(B
cy(〈v0〉))) ΛJ̄ (F J̄(0,0)(B

cy(〈u0〉)))

ΛJ̄ (F J̄(0,0)(B
rep(〈v0〉))) ΛJ̄ (F J̄(0,0)(B

rep(〈u0〉)))

is a pushout square in C(SpΣ(smod)). But as for a discrete simplicial free commutative
monoid 〈x〉, the commutative J̄ -space F J̄(0,0)(B

rep(〈x〉)) is not positive cofibrant, we do
not know whether the commutative symmetric ring spectrum ΛJ̄ ((Bcy(F J̄(0,0)(〈x〉)))

rep) is
stably equivalent to ΛJ̄ (F J̄(0,0)(B

rep(〈x〉))). Altogether, we conclude, that the map (4.21)
is log THH-étale in a naive sense. We hope to improve this ansatz to get a homotopy
meaningful statement.

Another source of examples may come from the general assumption that tamely ramified
extensions of commutative ring spectra correspond to formally log THH-étale morphisms
of pre-log ring spectra (see [Rog14, Remark 7.3], [RSS18, p. 510]). An illustrating
example for this is the inclusion of the connective Adams summand into the p-local
connective topological complex K-theory `→ ku(p) which is tamely ramified (see [Aus05,
§10.4], [DLR, Theorem 4.1]) and induces a formally log THH-étale morphism of pre-log
ring spectra [RSS18, Theorem 6.2]. Our approch is to find tamely ramified extensions of
commutative Hk-algebra spectra and to construct suitable pre-log structures such that
the induced morphism of pre-log cdgas is formally log THH-étale.

Definition 4.30. [Rog08, Definition 9.2.1] A map f : A → B in C(SpΣ) is formally
THH-étale if the map B → THHA(B) is a weak equivalence.
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Remark 4.31. The failure of the map B → THHA(B) to be a weak equivalence detects
ramification. Unramified maps of commutative ring spectra are formally THH-étale (see
[DLR, p. 2], [Ric, §8]). In [DLR] Dundas, Lindenstrauss and Richter provide several
examples which propose that (relative) topological Hochschild homology is a suitable
tool for measuring ramification. It is work in progress to develop a conceptional notion of
tame and wild ramification of maps between commutative ring spectra (see [DLR, p. 2]).
Tame ramification might be visible if THHA

∗ (B) resembles HHC
∗ (D) for C → D a tamely

ramified extension of number rings (see [DLR, §4]).

In the sense of [DLR] we present an example of a tamely ramified extension of
commutative Hk-algebra spectra. Recall the cohomology rings of the infinite complex
projective space CP∞ and the infinite quaternionic projective space HP∞,

H−∗(HP∞, k) ∼= π∗(F ((HP∞)+, Hk)) ∼= k[y−4]
H−∗(CP∞, k) ∼= π∗(F ((CP∞)+, Hk)) ∼= k[x−2]

(see e.g. [Hat02, Theorem 3.19, p. 222]). There is a quotient map from CP∞ to HP∞
arising from writing both spaces as quotients of the infinite sphere S∞ and the inclusion
from S1 into S3,

CP∞ = S∞/S1 → S∞/S3 = HP∞. (4.25)
To better understand this map, we investigate the skeleton filtrations of both spaces.
For CP∞, we find that

∗ = CP 0 ⊆ CP 1 ⊆ CP 2 ⊆ . . .
so that the space CPn is the 2n-skeleton of CP∞. Inductively, the space CPn+1 arises
from CPn by attaching a single 2(n+ 1)-cell via the projection map

S2n+1 → S2n+1/S1 = CPn

so that there is a pushout diagram

S2n+1 S2n+1/S1 = CPn

D2n+2 CPn+1.

Similarly, for HP∞, we consider the skeleton filtration

∗ = HP 0 ⊆ HP 1 ⊆ HP 2 ⊆ . . .

so that the space HP ñ is the 4ñ-skeleton of HP∞. Inductively, the space HP ñ+1 is
defined by attaching a single 4(ñ+ 1)-cell to HP ñ via the projection map

S4ñ+3 → S4ñ+3/S3 = HP ñ

so that there is a pushout diagram

S4ñ+3 S4ñ+3/S3 = HP ñ

D4ñ+4 HP ñ+1.
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For n = 2ñ + 1, the map CP 2ñ+1 = S4ñ+3/S1 → S4ñ+3/S3 = HP ñ yields a map
CP 2ñ+2 → HP ñ+1 by the universal property of the pushout. In particular, for ñ = 0,
we obtain a map CP 2 → HP 1 ∼= S4 which ensures that the above map (4.25) takes the
4-cell of CP∞ homeomorphically onto the 4-cell of HP∞. From this, we can deduce
that the induced map on cohomology sends the generator y−4 in H4(HP∞, k) to x2

−2
in H4(CP∞, k), and thus, yl−4 to x2l

−2 for l ≥ 0 (see [Hat02, Example 4.L.4]). Assume
that 2 is a unit in k, for example for p an odd prime, k = Z(p) or k = Fp. The following
proposition indicates that the induced map of function spectra

F ((HP∞)+, Hk)→ F ((CP∞)+, Hk)

is a tamely ramified extension.

Proposition 4.32. Assume that 2 is a unit in k. There is an isomorphism of augmented
graded commutative k[x−2]-algebras

THHF ((HP∞)+,Hk)
∗ (F ((CP∞)+, Hk)) ∼= k[x−2] o k 〈z0, z1, . . .〉

where k[x−2] oM denotes a square-zero extension of k[x−2] by a k[x−2]-module M . The
degree of zj is −(2j + 1), for j ≥ 0.

Proof. We proceed similarly to the proof of [DLR, Theorem 4.1]. We observe that

π∗(F ((CP∞)+, Hk)) ∼= k[x−2]
∼= k[y−4][x−2]/(x2

−2 − y−4)
∼= π∗(F ((HP∞)+, Hk))[x−2]/(x2

−2 − y−4)

is projective over π∗(F ((HP∞)+, Hk)). Thus, we can apply the Bökstedt spectral
sequence with π∗ as the homology theory,

E2
s,t = HHπ∗(F ((HP∞)+,Hk))

s,t (π∗(F ((CP∞)+, Hk)), π∗(F ((CP∞)+, Hk)))
⇒ πs+t(THHF ((HP∞)+,Hk)(F ((CP∞)+, Hk))).

Exploiting [LL92, (1.6)], we obtain that HHk[y−4]
∗ (k[x−2], k[x−2]) is isomorphic to the

homology of the complex

. . .→ Σ−6k[x−2] 0−→ Σ−4k[x−2] 2x−2−−−→ Σ−2k[x−2] 0−→ k[x−2]. (4.26)

As 2 is a unit in k[x−2] we get that

HHk[y−4]
s (k[x−2], k[x−2]) ∼=


k[x−2], s = 0,
Σ−2(2j+1)k, s = 2j + 1, j ≥ 0,
0, s = 2j, j ≥ 1.

Therefore, the E2-page consists of k[x−2] in the zeroth column and k in bidegrees
(2j + 1,−2(2j + 1)) for j ≥ 0. Due to THHF ((HP∞)+,Hk)(F ((CP∞)+, Hk)) being an
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augmented commutative F ((CP∞)+, Hk)-algebra, it follows that F ((CP∞)+, Hk) splits
off THHF ((HP∞)+,Hk)(F ((CP∞)+, Hk)). Consequently, the zeroth column cannot be
hit by any differentials. Next we argue that for degree reasons there are no non-trivial
differentials dr, for r ≥ 2, so that the spectral sequence collapses at the E2-page. Let
r ≥ 2. First, we consider dr : Er2j+1,−2(2j+1) → Er2j+1−r,−2(2j+1)+r−1.

• If 2j + 1 ≤ r − 1, then Er2j+1−r,−2(2j+1)+r−1 = 0.

• If 2j + 1 = r, then E0,−2(j+1) = k(xj+1
−2 ) cannot be hit by dr.

• Let 2j + 1 ≥ r + 1. If r is odd, then Er2j+1−r,−2(2j+1)+r−1 = 0 because 2j + 1− r is
even. If r is even, then Er2j+1−r,−2(2j+1)+r−1 = 0 as −2(2j + 1) + r − 1 is odd.

Secondly, we investigate dr : Er2j+1+r,−2(2j+1)−r+1 → Er2j+1,−2(2j+1).

• If r is odd, then Er2j+1+r,−2(2j+1)−r+1 = 0 since 2j + 1 + r is even.

• If r is even, then Er2j+1+r,−2(2j+1)−r+1 = 0 on account of −2(2j + 1)− r + 1 being
odd.

Moreover, in every fixed total degree there is only one term on the E2-page. Hence,
there are no additive extensions, so that additively we can conclude the desired re-
sult. Since THHF ((HP∞)+,Hk)

∗ (F ((CP∞)+, Hk)) is an augmented graded commutative
π∗(F ((CP∞)+, Hk))-algebra and that everything in the augmentation ideal is sitting in
odd degrees, there can only be the trivial multiplication between any two elements in the
augmentation ideal. The spectral sequence is a spectral sequence of π∗(F ((CP∞)+, Hk))-
modules. The zeroth column k[x−2] acts on k(zj) trivially.

Remark 4.33. If we drop the assumption that 2 is a unit in k in Proposition 4.32, we
do not know whether the spectral sequence collapses at the E2-page or whether we can
exclude additive extensions (see the proof of Proposition 4.32). For example, let k = Z(2).
As in the proof of Proposition 4.32, we figure out that HHZ(2)[y−4]

∗ (Z(2)[x−2],Z(2)[x−2]) is
isomorphic to the homology of the complex (4.26). We compute that

HHZ(2)[y−4]
s (Z(2)[x−2],Z(2)[x−2]) ∼=


Z(2)[x−2], s = 0,
Σ−2(2j+1)Z(2)[x−2]/(2x−2), s = 2j + 1, j ≥ 0,
0, s = 2j, j ≥ 1.

For another example k = F2, using again the complex (4.26), we calculate that

HHF2[y−4]
s (F2[x−2],F2[x−2]) ∼=

{
F2[x−2], s = 0,
Σ−2sF2[x−2], s ≥ 1.

Assume that 2 is a unit in k. In future work we aim to find appropriate pre-log
structures on Fsmod(k̃((HP∞)+),Sym(k̃(S1))), and on Fsmod(k̃((CP∞)+), Sym(k̃(S1)))
respectively, to prove the following conjecture.
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Conjecture 4.34. The induced map of commutative symmetric ring spectra in simplicial
k-modules

Fsmod(k̃((HP∞)+),Sym(k̃(S1)))→ Fsmod(k̃((CP∞)+),Sym(k̃(S1)))

gives rise to a map of pre-log cdgas which is formally log THH-étale.
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Outlook
In this thesis we introduced log cdgas and as a corresponding homotopical invariant
logarithmic topological Hochschild homology whose definition is based on a suitable notion
of group completion in commutative J̄ -spaces. We could translate several examples of
pre-log ring spectra to examples of pre-log cdgas. For instance, the trivial, the canonical,
the direct image or the free pre-log structure on an E∞ dga is defined similarly as the
respective pre-log structure on a commutative symmetric ring spectrum. Further, the
direct image pre-log structure D(x) on an E∞ dga associated to a homology class [x] in
its graded homology ring was specified in the same way as in the topological set-up, once
we had at hand a feasible concept of group completion in commutative J̄ -spaces. But as
already pointed out, we are only able to determine the homotopy type of D(x) if the
homology class [x] has positive degree. In particular, this does not apply in general for
our guiding example, the cochains on a space X with coefficients in k. So far, we have
not figured out other convenient examples of pre-log structures of algebraic nature. This
is surprising considering that studying dgas in contrast to ring spectra, it is often easier
to give a complete description of their homotopy type. Therefore, an extension of this
thesis clearly should be the construction of additional examples of pre-log structures on
E∞ dgas. These should be useful to create concrete examples of formally log THH-étale
morphisms of pre-log cdgas. One first step could be to work out appropriate pre-log
structures so that the tamely ramified extension of commutative Hk-algebra spectra

F ((HP∞)+, Hk)→ F ((CP∞)+, Hk)

induces a formally log THH-étale morphism of pre-log cdgas indeed. Hitherto, one
difficulty to compute logarithmic topological Hochschild homology of a pre-log cdga or
to identify formally log THH-étale morphisms of pre-log cdgas has been the abstract
definition of the functor ΛJ̄ . Up to now, we can explicitly express the latter on free
commutative J̄ -spaces only. But as remarked in [RSS15, Remark 5.8], the free pre-log
structure does not seem to be interesting unless the E∞ dga is concentrated in chain
degree zero. We hope to overcome this problem in the future.
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Summary
In the last decade Rognes, Sagave and Schlichtkrull have established a theory of logarithmic
structures on commutative symmetric ring spectra ([Rog09], [SS12], [Sag14]). This is
relevant for obtaining results on the algebraic K-theory of commutative ring spectra
through localization techniques or trace maps from algebraic K-theory to topological
Hochschild homology ([RSS15], [RSS18]). Recently, Richter and Shipley showed that
for a commutative ring k with unit, there is a chain of Quillen equivalences between
commutative Hk-algebra spectra and E∞ differential graded k-algebras (E∞ dgas) [RS17].
Motivated by the aim to gain new examples of log ring spectra via algebraic objects, we
develop a concept of logarithmic structures on E∞ dgas.
Considering the intermediate model category of commutative symmetric ring spectra in
simplicial k-modules C(SpΣ(smod)) in Richter and Shipley’s chain of Quillen equivalences,
we relate this to commutative J̄ -spaces via the Quillen adjunction (ΛJ̄ ,ΩJ̄ ). Here a
crucial step has been to figure out an index category which is suitable in this algebraic
context and fulfils the axioms of a well-structured index category. It turns out that the
category J̄ that arises from Sagave and Schlichtkrull’s category J by determining an
equivalence relation on the morphism sets, is a reasonable choice. The induced map of
classifying spaces BJ → BJ̄ models the first Postnikov section of the sphere spectrum S.
Given the Quillen adjunction (ΛJ̄ ,ΩJ̄ ), we specify pre-log structures on E∞ dgas. For
a positive fibrant object A in C(SpΣ(smod)) and (m1,m2) in J̄ such that m1 ≥ 1, the
space ΩJ̄ (A)(m1,m2) is weakly equivalent to the space Ωm2(U(A))(m1) where U denotes
the forgetful functor to commutative symmetric ring spectra. This result motivates the
definition of units of an E∞ dga and with it a condition for a pre-log structure to be a
log structure. Moreover, we explain a construction called logification which assigns a
log cdga to a pre-log cdga. We provide several examples of pre-log cdgas and log cdgas.
Apart from this, we discuss the defects of an alternative approach to set up pre-log
structures via diagram chain complexes. In connection to this, we present a homotopy
colimit formula on diagram chain complexes. With the latter, we argue that diagram
chain complexes do not have to possess a model structure in which the fibrant objects are
precisely the objects that are homologically constant and the homotopy colimit functor
detects the weak equivalences.
As an important tool, we study group completion in commutative diagram spaces. We
recall Sagave and Schlichtkrull’s chain of Quillen equivalences linking commutative
K-spaces to E∞ spaces over the classifying space BK where K is a well-structured
index category satisfying a few assumptions. We then show that there is a chain of
Quillen equivalences between commutative K-spaces and commutative I-spaces over a
commutative I-space model of BK. Assuming that the simplicial monoid BK is grouplike
and building on Sagave and Schlichtkrull’s work on group completion in commutative
I-spaces [SS13], we identify a localized model structure on commutative K-spaces as
a group completion model structure. Here a map of commutative K-spaces is a group
completion if the associated map of E∞ spaces is so in the usual sense.
Having a feasible concept of group completion in commutative J̄ -spaces yields more
examples of pre-log cdgas and is a substantial foundation for the definition of logarithmic
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topological Hochschild homology of pre-log cdgas. We verify that the latter is homotopy
invariant under logification. More than that, we give a criterion for a morphism of log
cdgas to be formally étale with respect to logarithmic topological Hochschild homology
and present approaches towards examples.
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Zusammenfassung
Im vergangenen Jahrzehnt haben Rognes, Sagave und Schlichtkrull eine Theorie von
Logstrukturen auf kommutativen symmetrischen Ringspektren entwickelt ([Rog09], [SS12],
[Sag14]). Diese ist zum Beispiel relevant, um mittels Lokalisierungstechniken und Spurab-
bildungen von algebraischer K-Theorie zur topologischen Hochschild-Homologie Resultate
über algebraische K-Theorie von kommutativen Ringspektren zu erhalten ([RSS15],
[RSS18]). Kürzlich haben Richter und Shipley gezeigt, dass es für einen kommuta-
tiven Ring k mit Eins eine Kette von Quillenäquivalenzen zwischen kommutativen
Hk-Algebraspektren und E∞ differentiell graduierten k-Algebren (E∞ dgas) gibt [RS17].
Die Hoffnung ist, neue Beispiele von Logringspektren zu finden, die von algebraischen
Objekten stammen. Aus diesem Grund schaffen wir ein Konzept von Logstrukturen auf
E∞ dgas.
Wir betrachten die Zwischenmodellkategorie der kommutativen symmetrischen Ringspek-
tren in simplizialen k-Moduln C(SpΣ(smod)) in Richter und Shipleys Kette von Quil-
lenäquivalenzen und setzen diese durch die Quillenadjuntion (ΛJ̄ ,ΩJ̄ ) in Bezug zu
kommutativen J̄ -Räumen. Hierbei ist es entscheidend gewesen, eine für den algebrai-
schen Kontext geeignete Indexkategorie zu ermitteln. Diese sollte die Axiome einer
gut-strukturierten Indexkategorie erfüllen, damit wir Sagave und Schlichtkrulls Methodik
anwenden können, um Modellstrukturen auf zugehörigen (strukturierten) Diagramm-
räumen zu etablieren. Es stellt sich heraus, dass die Kategorie J̄ , welche induziert ist
von Sagave und Schlichtkrulls Kategorie J , indem wir eine Äquivalenzrelation auf den
Morphismenmengen spezifizieren, eine passende Wahl ist. Die induzierte Abbildung
von klassifizierenden Räumen BJ → BJ̄ modelliert den ersten Postnikovschnitt des
Sphärenspektrums S.
Mit Hilfe der Quillenadjunktion (ΛJ̄ ,ΩJ̄ ) definieren wir Prälogstrukturen auf E∞ dgas.
Für ein positiv faserndes Objekt A in C(SpΣ(smod)) und (m1,m2) in J̄ mit m1 ≥ 1, ist
der Raum ΩJ̄ (A)(m1,m2) schwach äquivalent zum Raum Ωm2(U(A))(m1), wobei U für
den Vergissfunktor zu kommutativen symmetrischen Ringspektren steht. Dies motiviert
die Definition von Einheiten einer E∞ dga, und damit eine Bedingung für eine Prälog cdga
eine Log cdga zu sein. Außerdem erläutern wir eine Logifizierung genannte Konstruktion,
die einer Prälog cdga eine Log cdga zuordnet. Wir führen mehrere Beispiele von Prälog
cdgas und Log cdgas auf. Abgesehen davon stellen wir einen ursprünglichen Ansatz,
Prälogstrukturen durch Diagrammkettenkomplexe zu erklären, vor, sowie die Gründe,
die uns davon abgehalten haben, diesen weiter zu verfolgen. Damit im Zusammenhang
geben wir eine Homotopiekolimesformel auf Diagrammkettenkomplexen an. Mit dieser
zeigen wir, dass Diagrammkettenkomplexe keine Modellstruktur besitzen müssen, in der
die fasernden Objekte genau die Objekte sind, die homologie-konstant sind, und der
Homotopiekolimesfunktor die schwachen Äquivalenzen detektiert.
Des Weiteren beschäftigen wir uns mit Gruppenvervollständigung in kommutativen
Diagrammräumen. Wir wiederholen Sagave und Schlichtkrulls Kette von Quillenäqui-
valenzen, die kommutative K-Räume mit E∞ Räumen über dem klassifizierenden Raum
BK verbindet, wobei K eine gut-strukturierte Indexkategorie ist, die noch einige Vo-
raussetzungen erfüllt. Wir beweisen dann, dass es eine Kette von Quillenäquivalenzen
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zwischen kommutativen K-Räumen und kommutativen I-Räumen über einem kommuta-
tiven I-Raum-Modell von BK gibt. Unter der Annahme, dass das simpliziale Monoid
BK gruppenähnlich ist, und der Benutzung von Sagave und Schlichtkrulls Arbeit zur
Gruppenvervollständigung in kommutativen I-Räumen [SS13], identifizieren wir eine
lokalisierte Modellstruktur auf kommutativen K-Räumen als eine Gruppenvervollständi-
gungsmodellstruktur. Hierbei ist ein Morphismus von kommutativen K-Räumen eine
Gruppenvervollständigung, falls dies der assoziierte Morphismus von E∞ Räumen im
gewöhnlichen Sinne ist. Mit diesem Konzept von Gruppenvervollständigung in kommu-
tativen J̄ -Räumen geben wir weitere Beispiele von Prälog cdgas an. Ferner ist dieses
essentiell für die Definition von logarithmischer topologischer Hochschild-Homologie von
Prälog cdgas. Wir verifizieren, dass letzteres homotopieinvariant unter Logifizierung ist.
Weiterhin präsentieren wir ein Kriterium für einen Morphismus von Log cdgas formal
étale bezüglich logarithmisch topologischer Hochschild-Homologie zu sein und diskutieren
Herangehensweisen, um Beispiele dafür zu finden.
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