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Chapter 1

Introduction

The term quantum field theory refers to a wide range of models in physics which are
expected to describe for example elementary particles in nature. A quantum field theory
comes with a vector space called the state space, which is often an infinite-dimensional
Hilbert space. A common feature of quantum field theories is locality that roughly says
that the theory is only determined by what happens on a small scale and that spacelike
separated fields are independent. Independent subsystems are assigned the tensor product
of the individual state spaces, which reflects the quantum nature of the theory.

There are several proposals for axiomatising quantum field theories which implement
the above features. One approach is called Algebraic or Axiomatic Quantum Field Theory
[HK] which assigns to a region in spacetime an algebra of observables and is usually defined
on manifolds with Lorentzian signature. The assignment of observables is compatible with
inclusion and the observables on spacelike separated regions commute with each other,
which implements locality.

The approach we take in this thesis is often called functorial quantum field theory.
We will only consider theories on Riemannian manifolds with Euclidean signature, these
are also referred to as statistical field theories. More precisely, a n-dimensional functorial
quantum field theory is a symmetric monoidal functor from a geometric bordism category
Bord, into a symmetric monoidal category &, subject to suitable continuity conditions.
The category Bord, has objects (n — 1)-dimensional closed manifolds and morphisms are
n-dimensional compact Riemannian manifolds with parametrised boundary modulo some
equivalence relation. The target category S in our examples will be the category of (super)
vector spaces or the category of Hilbert spaces. The quantum nature of the theory is im-
plemented in monoidality: disjoint union of manifolds are mapped to the tensor product
of the vector spaces assigned to the connected components. Locality is reflected in func-
toriality, i.e. the assignment of morphisms between state spaces is compatible with cutting
and glueing of manifolds. This definition is motivated by topological field theory [Ati] and
2-dimensional conformal field theory [Segl, Seg2]. There are also several versions of func-
torial (topological) field theories, called extended field theories, which implement higher
versions of locality, see e.g. [BD].

Functorial field theories come in different flavours, depending on the kind of bordism
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8 Chapter 1. Introduction

category and the type of target category and there exist a vast variety of constructions of
them. In this thesis we study two classes of 2-dimensional functorial quantum field theories
and explain how one obtains examples of them via the state-sum construction. The first
class is topological field theory on r-spin surfaces, where we equip surfaces with r-spin
structures and consider them modulo diffeomorphisms. We give a combinatorial model of
r-spin surfaces, which is convenient for the state-sum construction of r-spin topological
field theories. We give an example of such a theory when r is even, which computes the
Arf invariant of r-spin surfaces. As an application of this topological field theory and the
combinatorial model we compute mapping class group orbits of r-spin surfaces, extending
results of [Ran] and [GG]. This part of the thesis is available as a preprint in [RS1].

The second class of functorial field theories which we consider here is called area-
dependent quantum field theory, where we consider surfaces up to area-preserving dif-
feomorphisms. Contrary to topological field theories, which have finite-dimensional state
spaces, area-dependent quantum field theories allow for infinite-dimensional state spaces,
which make them attractive to study. We classify these theories in terms of some algebraic
data which we call commutative regularised Frobenius algebras. We consider defect lines,
which are embedded 1-dimensional manifolds, and give a state-sum construction of area-
dependent quantum field theories with defects where the input data is a set of regularised
Frobenius algebras, which label surface components cut out by the defect lines, and a set
of bimodules over these regularised algebras, which label the defect lines. We then show
that under some assumption the fusion of defect lines corresponds to the tensor product of
bimodules over these regularised algebras. The main example is 2-dimensional Yang-Mills
theory with Wilson lines as defects, which we study in greater detail. This part of the
thesis is available as a preprint in [RS2].



Chapter 2

Functorial quantum field theories

As we briefly explained in the introduction, functorial quantum field theory is a possible ax-
iomatisation of quantum field theory. In Section 2.1 we give an overview of different classes
of functorial field theories, like topological field theory and volume-dependent quantum
field theory. Then we summarise our results on topological field theory on r-spin surfaces
(Section 2.2) and on area-dependent quantum field theory with defects (Section 2.3). We
assume familiarity with braided monoidal categories and refer the reader to [EGNO].

2.1 Functorial quantum field theories

In this section we will study some special classes of 2-dimensional functorial field theories.
In order to put them into context we start discussing n-dimensional functorial field theories
for arbitrary n € Z>; and then specialise to dimensions 1 and 2. We stress that the purpose
of this section is not to give precise definitions of functorial field theories, but to give a
general picture. All manifolds in this section will be smooth and oriented unless specified
otherwise.

2.1.1 Topological and volume-dependent field theories

In order to formulate functorial quantum field theory in n dimensions, we need the notion
of a bordism category Bord™™¢ where objects are closed (n — 1)-dimensional manifolds
and morphisms are equivalence classes of n-dimensional compact Riemannian manifolds
with boundary parametrisation, which identifies the source and target objects with the
boundary of the n-manifold. The equivalence relation is given by isometries compatible
with the boundary parametrisation. Then a metric functorial field theory or metric FF'T
for short is a symmetric monoidal functor

Z : Bord®™® —» S (2.1.1)

to some symmetric monoidal category S. Instead of trying to give a precise definition of
Bord™¢'ric we refer to [StTe] and we just note that finding examples of such theories in

9



10 Chapter 2. Functorial quantum field theories

dimensions higher than 1 is in general a hard task. One can however look at other bordism
categories, where the equivalence relation is coarser than being isometric. In the following
diagram we present three subclasses of metric FFTs and in the rest of this section we
explain how these are defined.

metric FFTs

/ \

conformal FFTs i volume dependent FFT's

/ (2.1.2)

topological FFTs

One possibility to make the study of functorial field theories more tractable is to forget
about the metric on the n-dimensional manifolds. This amounts to changing the source
category in (2.1.1) to the category of topological bordisms Bord,,, which is defined similarly
as Bord™°™¢ but without a metric for the n-dimensional manifolds, which are often referred
to as bordisms, and where equivalence classes are taken with respect to diffeomorphisms.
The disjoint union of manifolds endows this category with a symmetric monoidal structure.
An n-dimensional topological functorial field theory or TFT is a symmetric monoidal
functor

Z : Bord, — S . (2.1.3)
For a review on topological field theories see e.g. [Koc, Car, CR]. We write
Fun ™ (Bord,, S) (2.1.4)

for the category of n-dimensional TFTs and we note that it inherits the symmetric monoidal
structure of S. TFTs with values in § = Vect have the property that their state spaces
are finite-dimensional.

Lemma 2.1.1 (e.g. [CR, Sec.2.4]). Let n € Z>, and Z : Bord,, — Vect be a TF'T. Then
for every object O € Bord,, the vector space Z(0) is finite-dimensional.

The key idea of the proof is that one can decompose a cylinder over any (n — 1)
dimensional closed manifold O as in Figure 2.1. Then evaluating the TF'T yields duality
morphisms for O.

A general feature of many quantum field theories is that their state spaces are infinite-
dimensional. To recover this property, we could remember the conformal structure induced
by the metric on bordisms. This way we arrive to the notion of the category of conformal
bordisms and conformal FF'T or CFT. In dimension n = 2, axioms for these theories have
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Figure 2.1: A decomposition of a cylinder over an (n — 1) dimensional closed manifold, which
we schematically draw as a circle.

been given in [Segl, Seg2] and some existence results have been proven recently in [Ten].
Note that if a CFT is independent of the conformal structure, then it is necessarily a TFT.

Another way to allow for infinite-dimensional state spaces is to consider manifolds
with volume. The category of n-dimensional bordisms with volume Bord,"* has the same
objects as Bord, and the morphisms are pairs (M,v), where M is a morphism in Bord,
and v : mo(M) — R.q is a function representing the volume of each component of M. We
furthermore allow zero volume cylinders in order to have identities in the category. One
could alternatively define the morphisms to have Riemannian manifolds modulo volume
form preserving diffeomorphism, which is the same information [Mos, Ban], so this way we
would get an equivalent category. A volume dependent FFT is then a symmetric monoidal
functor

Z: Bord!' — S, (2.1.5)

into a symmetric monoidal category with topological spaces as hom-sets, which is continu-
ous on the hom-sets. The topology on the hom-sets of Bord," is that of the disjoint union

over M € Bord,(U,U") of RES(M)‘ (or Rs¢ for components of M that are cylinders). In

other words, Z(U Moy ,v) is jointly continuous as a function in the volume parameters
assigned to the connected components of M with values in S(Z(U), Z(U’)). For the precise
definition in 2 dimensions we refer to Section 4.2. Volume dependent FFTs are essentially
different from CFTs in the following sense. A diffeomorphism preserving the conformal
class of the metric does not necessarily preserve the volume form and conversely a volume
form preserving diffeomorphism does not necessarily preserve the conformal class.

Take a cylinder with volume v € Ry and decompose it as in Figure 2.1. Now each
of the connected components has a positive volume and this cylinder is not the identity
morphism in the category. In fact, in this category no object, except for the empty (n—1)-
dimensional manifold, has a dual and the argument used in the proof of Lemma 2.1.1 does
not apply. However this argument implies that if S = Hilb then for U € Bord, " the Hilbert
space Z(U) is separable (cf. Lemma 4.1.13 and Theorem 4.2.10). This also allows volume
dependent FFTs with values in Hilb to have infinite-dimensional state spaces. Note that
if a volume dependent FFT is actually independent of the volume, then it is necessarily a
TFT. Conversely one can show that if for all bordisms M the zero volume limit of Z(M)
exists, then the zero volume limit of Z is a TFT (Remark 4.2.11) and all state spaces Z(U)
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are necessarily finite-dimensional.

Remark 2.1.2. The category Bord?®, is enriched in Top, the category of topological
spaces, in particular the hom-sets are topological spaces. One could thus define volume-
dependent theories to be Top-enriched symmetric monoidal functors Bord,"* — S for some
Top-enriched symmetric monoidal target category S. This would make the explicit mention
of continuity in the volume parameters unnecessary. The reason we do not do this here
is that it restricts the choice of target category. In particular, our main example — Hzlb
with strong operator topology — is not Top-enriched (Remark 4.1.11). On the other hand,
‘Hilb with norm topology is Top-enriched, but this leads to another problem. Namely, the
version of Bord " we use has identities in the form of zero-area cylinders (recall that only
cylinder components are allowed to have zero area). This can be shown to imply that
a volume-dependent QFT Bord" — (Hilb with norm-top.) must take values in finite-
dimensional Hilbert spaces (Corollary 4.1.14). Hence, to have an interesting theory one
has to remove the zero-volume cylinders. This can be done, but we do not pursue this
further in the present thesis.

To further illustrate the relations of these subclasses of theories let us look at the
case when n = 1. Now conformal invariance is equivalent to independence of the metric,
therefore the notion of CFT and TFT is the same. On 1-dimensional manifolds the metric
is given by the distance, hence metric FFTs and volume dependent theories coincide.

(in dimension 1) metric FFTs

T

conformal FFTs volume dependent FFTs

~ o

topological FFT's

2.1.2 Topological field theories in two dimensions

In 2 dimensions, compact manifolds up to diffeomorphism are classified by non-negative
integers: the number of connected components and the genus and the number of boundary
components of each component. Due to this simple classification, topological field theories
are well understood. They are given by commutative Frobenius algebras in S, which are
unital algebras and counital coalgebras such that the comultiplication is a module morph-
ism. We write cFrob(S) for the symmetric monoidal category of commutative Frobenius
algebras, see e.g. [Koc].
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Theorem 2.1.3 ([Dij], [Abr], [Koc, Thm. 3.6.19]). The functor

fun ®,sym (BOrd278> %C.FrOb (S> (2 1 7)
Z—Z(Sh a

is an equivalence of symmetric monoidal categories.

One can endow Bords with some extra structure in order to get more interesting TFTs.
An example of such TFTs is called equivariant TFTs, where one considers surfaces with
principal G-bundles for some finite group G. These can be classified similarly as ordinary
TFTs and the corresponding algebraic structure is called crossed Frobenius G-algebra
[Tur2]. In Chapter 3 we put r-spin structures on surfaces, which are certain principal
Z.-bundles over the oriented orthonormal frame bundle of the surface, and study r-spin
TFTs.

There is an extension of the bordism category where manifolds are endowed with a
stratification, i.e. embedded lower dimensional manifolds, and a labeling of the strata with
elements of some fixed sets. In the two dimensional case defects would correspond to
embedded 0- and 1-dimensional submanifolds, but for simplicity here we only consider 1-
dimensional defects. The connected components of these are labeled by a set D; (“defect
conditions”) and the connected components of the complement of the defect lines are
labeled by another set Dy (“world sheet phases”). We write Bords (Dy, Dy) for this
category, for details we refer to Section 4.2.3. The corresponding topological field theories
with defects have been studied in 2 and higher dimensions e.g. in [DKR, Car, CRS].

The proof of Theorem 2.1.3 uses a generators and relations description of the bordism
category and the existence of a normal form of compact surfaces. For bordisms with defects
there is no such description currently available, which indicates that the corresponding
TFTs are far more complex than TFTs without defects. Although there is no classification
of defect TFTs similar to Theorem 2.1.3, there exists a systematic way of constructing
examples of TFTs with defects in 2 dimensions from a simple set of algebraic data, which
we briefly explain in the next section.

2.1.3 State-sum construction

The state-sum construction of TFTs is based on a cell decomposition of bordisms, which
can be for example a triangulation or a PLCW decomposition, and some data assigned
to the cells. This data is subject to conditions, which then ensure that the construction
is invariant under local changes of the cell decomposition, such as the Pachner moves in
2 dimensions [Pac]. The first such models in 2 dimensions were proposed by [BP, FHK],
this construction has been further generalised in [LP1] for so called open-closed TFTs and
defect lines have been included in [DKR].

The algebraic data for the state-sum construction of 2-dimensional TFTs without de-
fects with values in a symmetric monoidal category S can be given in terms of a strongly
separable symmetric Frobenius algebra in A € §. The state-sum TFT assigns Z(A), the
center of A, to a circle. The action of the functor on morphisms is more involved, the
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rough idea is the following. One picks a triangulation of the surface and interprets the
dual graph of this triangulation as a morphism in S by assigning the multiplication and
comultiplication of A to the trivalent vertices. Then one shows that this morphism is
independent of the triangulation using the Frobenius algebra axioms.

For a TFT with defects the algebraic data is a set of strongly separable symmet-
ric Frobenius algebras, which label components of the complement of the embedded 1-
dimensional manifold. Defect lines are labeled by bimodules over these algebras. For the
full description of 2-dimensional TFTs with defects we refer to the corresponding construc-
tion of area-dependent theories with defects in Section 4.3.

The 3-dimensional state-sum construction, called the Turaev-Viro model, was proposed
in [TV]. The algebraic data assigned to the cells of a triangulation are given in terms of
a spherical fusion category [BW]. An example of a 4-dimensional state-sum TFT is the
Crane—Yetter model [CY], where the input data is a ribbon category, but no complete
description of state-sum constructions in 4 dimensions exists.

2.2 Topological field theory on r-spin surfaces

The first main part of this thesis is about topological field theory on r-spin surfaces [RS1].
The r-spin group Spin}, for r a positive integer is the r-fold cover of the rotation group SOs
in 2 dimensions and Spind = R is the universal cover. In higher dimensions the situation
is essentially different, as the universal cover Sping of SOy is a 2-fold cover for every d > 3.
One defines an r-spin structure over a surface ¥ similarly as an ordinary spin structure.
It is a principal Spini-bundle over ¥ which factorises through the oriented orthonormal
frame bundle of . With this definition a 1-spin surface is just an oriented surface, if r = 2
one obtains ordinary spin structures and the case r = 0 corresponds to framings of the
surface.

We note here that for the above definition of an r-spin structure, more precisely for
the definition of the oriented orthonormal frame bundle, one needs a Riemannian metric
on the surface. We avoid this by considering instead the oriented frame bundle, which is
principal bundle with structure group GLJ, the group of 2 x 2 invertible matrices with
positive determinant. One then replaces Spin}, with the appropriate cover é\i; of GL;.
In the commutative diagram of Lie groups

Spiny, —— SO,

e ~

{0} — Z, i . {0} (2.2.1)

S e

the morphisms ¢ and 7 are homotopy equivalences, hence the groupmds of r-spin structures
defined in terms of Spinj- and SOs-bundles and in terms of GL2 and GLJ-bundles are
equivalent. For more details see e.g. [Nov, Sec. 3.2].
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In order to be able to define the category of r-spin bordisms Bord;, we need com-
pact r-spin surfaces whose boundary components are parametrised with annuli with r-spin
structure. The isomorphism classes of r-spin structures on an annulus are in bijection with
Z,. Therefore an object in Bordj will be a finite set together with a map into Z,, which
correspond to “circles with r-spin structures”. Morphisms are diffeomorphism classes of 7-
spin surfaces with boundary parametrisation. We define a 2-dimensional r-spin topological
field theory with values in S to be a symmetric monoidal functor

Z: Bordy - S (2.2.2)

into a symmetric monoidal category S.

We give a combinatorial model of r-spin surfaces based on [Nov]. There the combin-
atorial model is given in terms of a triangulation, which for our purposes is cumbersome
to work with, as a large number of triangles is needed even for the simplest surfaces. Our
model uses a more convenient cell decomposition called PLCW-decompositions [Kir| (see
Section 3.1.2). This allows one to describe a connected surface of genus g with b boundary
components with g + b > 1 as a single 2-cell glued along the edges of a (4g + 3b)-gon.

The combinatorial model consists of the following data:

e a PLCW decomposition of ¥ such that each boundary component consists of a single
edge and a single vertex,

e a choice of a marked edge for each face (before identification of the edges),
e an orientation of each edge,

e an edge index s, € Z, for each edge e.

The edge indices need to satisfy an admissibility condition around each vertex, see Sec-
tion 3.1.3. One obtains an r-spin structure form this combinatorial data by considering
the trivial r-spin structure on each face and setting the transition functions between the
faces using the edge indices and orientations. This r-spin structure extends uniquely to
the vertices due to the admissibility condition. The above set of data encodes isomorphism
classes of r-spin structures on a given surface redundantly. We determine the equivalence
relation capturing this redundancy in Theorem 3.1.13.

The next application of the combinatorial model is the state-sum construction of r-
spin TFTs (Section 3.2). This construction is again based on the one given in [Nov],
but is considerably easier to evaluate on surfaces, as we work with PLCW decompositions
instead of triangulations. Here we take S to be an additive idempotent complete symmetric
monoidal category with infinite direct sums in the r = 0 case. The input data is a Frobenius
algebra A € S with invertible window element o Aon : I — A, whose Nakayama
automorphism N satisfies N = id4. We write Z4 for the r-spin TFT obtained from the
construction. We show that the functor Z,4 equips the object

Z'(A) =B 2 (2.2.3)

AEZLy
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where Z) is the value of Z4 on the circle with r-spin structure corresponding to \ € Z,,
with a unital associative Z,-graded algebra structure which can be understood as a Z,-
graded version of the centre of an algebra (Proposition 3.2.10). For r = 2, this algebraic
structure on state spaces has also been found in [MS]. State-sum constructions in the r = 2
case were previously considered in [BT, NR, GK].

Frobenius algebras with N7 = id appear in [DK] under the name of A,-Frobenius
algebras in relation to r-spin surfaces. In [Ster| A,-Frobenius algebras have been used
to describe r-spin TFTs defined on “open bordisms”, meaning that the objects in the
bordism category are disjoint unions of intervals. Our r-spin TFTs are defined on “closed
bordisms”, meaning that objects are disjoint unions of circles.

We give an example in the case when r is even. Let S := SVect be the category of super
vector spaces over some field k£ not of characteristic 2 and A the Clifford algebra Cl(1) =
k @ k6 in one odd generator 6. This algebra becomes a Frobenius algebra with the counit
g(1) = 1/2 and £(f) = 0. One quickly checks that C¢(1) satisfies the conditions for the
state-sum construction. Then Zy = k6 for A € Z, and the following holds (Section 3.4.1
and Theorem 3.4.8):

Theorem 2.2.1. Let X be an r-spin surface of genus g with b ingoing boundary compon-
ents of r-spin structures Ay, ..., \y, € Z, and no outgoing boundary components. Then

Zay(D) (0N @ -+ @ 0M) = 2179 (— )M (2.2.4)

where Arf(X) € Zs is the Arf-invariant of the r-spin structure of ¥ as defined in [Ran, GGJ.

Since Z¢y(1y is an r-spin TFT, Zgy1)(2) is invariant under the action of the mapping
class group of ¥. Therefore it follows that the r-spin Arf-invariant is constant on mapping
class group orbits, a fact already shown in [Ran, GG] by different means. For usual spin
structures, so r = 2, the fact that a spin-TFT can compute the Arf-invariant (incidentally,
for the same algebra) was already noticed in [MS, Gun, BT, GK]. From this point of
view Theorem 2.2.1 is not surprising as an r-spin structure for even r also defines a 2-spin
structure, and this correspondence is compatible with the Arf-invariant.

In [Ran, Thm.2.9] mapping class group orbits of r-spin structures on a connected
surface X, of genus g with b boundary components have been calculated for g, b > 1 when
r =2, and for ¢ > 2, b > 1 when r > 0; in [GG, Prop. 5| the orbits are given for g > 0,
b =0 in case r > 0. The r-spin Arf invariant has been used to distinguish two orbits for r
even and g > 2. We extended these results for arbitrary g and b and give an alternative
proof using the combinatorial formalism of Section 3.1. In [Sal, Prop.3.13 and 3.15] a
counting of orbits with a different treatment of boundary parametrisations is done.

In order to state our theorem we need to fix some conventions. We call an integer
d € Z>o a divisor of r if there exists an integer n such that d - n = r. In particular, every
non-negative integer, including 0, is a divisor of 0. Let us denote by ged(a,b) € Zsq the
non-negative generator of the ideal generated by a and b in Z. Similarly one can define
ged(a, b, ¢) € Z>o, etc. With this definition, ged(a,0) = a for all a € Zsy.
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Let ¥,; be a closed connected oriented surface of genus ¢ > 0 with b > 0 ingoing
boundary components and no outgoing boundary components. For A;,... .\, € Z, de-
note by R"(Xgp)x,...», the set of isomorphism classes of r-spin structures on X,; which
near the boundary circles restrict to the annulus r-spin structures given by Ay, ..., A, (see
Section 3.1.1 for details).

We will also need the abelian group Og(r) defined as the quotient:

Oo(r) := (Z.)*/(R;, Hij, G |i,j = 1...b,i # j) . (2.2.5)

The generators G, R;, f[ij € Hle Z, of the subgroup have components (G); = 1, (f%,)k =
51,16()\1 — 1), (sz)z = (HU)] = )\z + )‘j -1 and (Hzg)k = O fOI‘ k’ 7é Z,]
Our second main result is:

Theorem 2.2.2. Let r > 0 and let X, and Ay, ..., \, be as above.

1. The set of isomorphism classes of r-spin structures R"(2,5)x,
and only if

,,,,, x, 1s non-empty if

2-29=> "\ (modr). (2.2.6)

2. If the condition in Part 1 is satisfied, then the number of isomorphism classes is:

r b> g |RT(2975)>\1 ----- /\b|
0 |g=0andbe{0,1} 1
else infinite
>0 b=0 r29
>1 r29+b—1

3. Suppose the condition in Part 1 is satisfied. Consider the action of the mapping class
group of ¥, (which fixes the boundary pointwise) on R"(X), .., by pullback. The
number of orbits is

.....

g conditions number of orbits
0 (none) |Og()]
r even and at least one \; odd | 2 - #(divisors of ged(r, Ay, .. ., /\b))
else #(divisors of ged(r, Ay, ..., )\b))
> 2 T even 2
r odd 1
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Parts 1 and 2 of the theorem are proved in Proposition 3.1.19, Part 3 is proved in
Section 3.5. The existence condition in Part 1 and the counting for » > 0 in Part 2 is
well-known for closed surfaces from complex geometry, where it relates to roots of the
canonical bundle. The counting in Parts 2 and 3 extends results obtained in [Ran, GGJ,
as explained above, using different methods.

Remark 2.2.3. 1. We formulated Theorem 2.2.2 for ingoing boundary components
to avoid notational complications. However, in the bordism category Bordj one
naturally has ingoing and outgoing boundary components. To incorporate these,
define R; = A\; — 1 for an ingoing boundary component and R; = 1 — \; for an
outgoing boundary component. If one expresses Theorem 2.2.2 in terms of the R; by
replacing \; with R; + 1 everywhere, the result applies to connected bordisms with
both ingoing and outgoing boundary components. The proof in Proposition 3.1.19
and in Section 3.5 is given in terms of the R;.

2. Let X,Y € Bord} and ¥ a bordism in Bord, with |X| ingoing and |Y| outgoing
boundary components. Denote with B C Bord;(X,Y’) the subset of all morphisms
which have the same underlying surface as . Since morphisms in Bordj are diffeo-
morphism classes of r-spin bordisms, Part 3 of Theorem 2.2.2 precisely computes the
number of elements in B.

3. We will see in Section 3.5 that Oy(r) as defined in (2.2.5), and which appears in Part 3
of Theorem 2.2.2, is naturally in bijection with orbits of the mapping class group for
g =0 and b > 0. An explicit expression for the number of elements in Oy(r) can be
found in Lemma 3.1.18 (b = 0), Corollary 3.1.20 (b = 1), Equation 3.5.4 (b = 2) and
Proposition 3.5.1 (b > 2), but the general result is somewhat cumbersome. Here we
just list the answer for b =0, 1, 2:

b ‘ condition ‘ |Oo(r)]
0,1 (none) 1
2 | r=0and A\; = X\ = 1 | infinite
else ged(r, Ay — 1)

Recall that we assume the condition in Part 1 of Theorem 2.2.2 to hold. In particular,
for g =0, b =2 we have \; + A\ =2 (mod 7).

2.3 Area-dependent quantum field theory

In this section we consider 2-dimensional volume dependent FFTs in detail and we refer to
such theories as area-dependent QFTs, or aQFTs! for short [RS2]. For simplicity we take

'This should not be confused with Algebraic QFT or Axiomatic QFT, for which the abbreviation
AQFT is used.
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S to be the category of Hilbert spaces with the strong operator topology on the hom-sets
and we write for an aQFT Z : Bordy"** — Hilb. The precise definition can be found in
Section 4.2.1. Area-dependent theories in general have been considered in [Bru] and briefly
in [Seg3, Sec. 1.4] (see also [Bar, Sec.4.5]). A construction of area-dependent theories using
triangulations with equal triangle area has been given in [CTS].

Recall that by Theorem 2.1.3 2d TFTs correspond to commutative Frobenius algebras
and that by Lemma 2.1.1 the state spaces of TFTs are finite-dimensional. The state-
sum construction of 2d TFTs in Section 2.1.3 takes a strongly separable (not necessarily
commutative) Frobenius algebra A as an input (Section 2.1.3) and produces a TFT, which
in turn corresponds to the centre Z(A) of A by the above theorem.

The generalisation of these results to aQFTs is for the most part straightforward. We
just add a positive real parameter to all structure morphisms, which we think of as “area
parameters” and impose the condition that compositions of morphism depend on the sum
of these areas.

For example, consider a unital associative algebra object A in Hilb together with morph-
isms 4 : A® A — A, the multiplication, and n : C — A, the unit. These have to satisfy
associativity and unitality:

po(ida®p) =po(p®ida) , po(ida®n) =po(n®ids) =ida . (2.3.1)

A regularised algebra is then defined as follows (see Section 4.1.1). It is an object A € Hilb
together with two families of morphisms p, : A® A — A and n, : C — A, for a € R,
such that, for all aq, as, b1,bs € Rog with a; + as = by + bs,

IU/CL1 o (ldA ®:ua2) = ,LLbl o (:ubz ® 1dA> I lual © (ldA ®77a2) = /j’bl © (nbl ® ldA) : (232)

The unit condition is one of the places where a little more thought is required: note that
we do not demand that in the second equation in (2.3.2) we obtain id4. Instead we define
P, := g, o (ida ®n,,) : A — A, where a = a; + ap. By the second condition in (2.3.2) this
is indeed independent of the choice of ai,as in the decomposition a = a; + a;. We now
impose two conditions: P, has to be continuous? in a and it has to satisfy lim,_,q P, = id 4.
It is important for the formalism to not require p, and 7, to have zero-area limits on their
own. Simple consequences of this definition are that u, and 7, are continuous in a, and
that P, is a semigroup, P, o P, = P,.

The algebraic cornerstone of this part of the thesis is the notion of a regularised
Frobenius algebra (RFA), which is a regularised algebra and coalgebra (with families A,
and ¢, for area-dependent coproduct and counit), subject to the usual compatibility con-
dition, suitably decorated with area parameters (Definition 4.1.4). One difference between
Frobenius algebras and RFAs is that the latter do not form a groupoid. Although RFA
morphisms are mono and epi (Proposition 4.1.19), it may happen that the inverse of a

homomorphism of Frobenius algebras is not bounded, hence not a morphism in #Hilb (Re-
mark 4.1.20).

2For more general monoidal categories than Hilb we need to add another continuity condition. We
refer to Definition 4.1.1 for details. In Hilb this condition is automatic — see (4.1.4) and Corollary 4.1.16.
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In Section 4.1.5 we consider Hermitian RFAs, or 1-RFAs i.e. RFAs for which uf = A,
and 7] = ¢, for every a € R.g, and classify them (Theorem 4.1.28):

Theorem 2.3.1. Every Hermitian RFA is a Hilbert space direct sum of finite-dimensional
Hermitian RFAs.

Finite-dimensional RFAs in turn are very simple: they are just usual (by definition
finite-dimensional) Frobenius algebras A together with an element H in the centre Z(A) of
A. The area-dependence is obtained by setting P, := exp(aH) and defining p, := P, o p,
etc., see Proposition 4.1.24. This makes RFAs sound not very interesting, but note that,
conversely, for an infinite direct sum of finite-dimensional RFAs to again define an RFA
one has to satisfy non-trivial bounds, as detailed in Proposition 4.1.18.

Our first main theorem in Chapter 4 generalises the classification of 2d TF'Ts in terms
of commutative Frobenius algebras as given in Theorem 2.1.3. Let aQFT (Hilb) denote the
category of aQFTs with values in Hilb and ¢RFrob(Hilb) the category of commutative
RFAs in Hilb. In Theorem 4.2.10 we show:?

Theorem 2.3.2. There is an equivalence of categories

aQFT (Hilb) = cRFrob(Hilb)

zos 2. (2.3.3)

In Sections 4.3.2 and 4.3.3 we furthermore generalise the state-sum construction of
TFTs. We find that a strongly separable symmetric RFA A (as defined in Section 4.1.1)
provides the data for the state-sum construction of an aQFT, and the resulting aQFT
corresponds, via Theorem 2.3.2, to the commutative RFA given by the centre of A, see
Theorem 4.3.11.

The main example of an aQFT is 2-dimensional Yang-Mills (2d YM) theory for a
compact semisimple Lie group G [Mig, Rus, Wit1], in which case the Hilbert space assigned
to a circle is CI?(@G), that is, square integrable class functions on G. We treat this example
in detail in Section 4.4.

An important example of an RFA is L?(G), the square integrable functions on a compact
semisimple Lie group G. Here, the structure maps p, and A, do have zero area limits given
by the convolution product and by Ag(f)(g, k) := f(gh). The unit and counit families 7,
and €, on the other hand do not have a — 0 limits, see Section 4.4.1 for details.

L?*(G) is a 1-RFA and hence by Theorem 2.3.1 a direct sum of finite-dimensional RFAs
(Proposition 4.4.2). Furthermore L?*(G) is strongly separable and the 2d YM theory is
defined via the state-sum construction from L?*(G). The center of L*(G) is C1*(G) which
is the state space of the 2d YM for a circle.

We have seen that the first new feature one encounters when passing from 2d TFTs
to aQFTs is the possibility of infinite-dimensional state spaces. When one develops the

3In [Seg3, Bar] the classification is instead in terms of algebras with a non-degenerate trace and an
approximate unit. However, it is implicitly assumed there that the zero-area limit of the pair of pants
with two in-going and one out-going boundary circles exists. This is not true for all examples as the
commutative RFAs in Remark 4.1.32 illustrate.
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theory in the presence of line defects one encounters a second new feature, namely that
line defects can be transmissive to area or not. Let us explain this point in more detail.

The category of bordisms with area and defects Bordy ™"/ (Dy, D) is defined similarly
as Bord;ef (Dy, Dy) for defect labels D; and world sheet phases Dy. It is natural to equip
the connected components of the defect-submanifold with a length parameter [ € R..
This is suggested by the motto: “If in an n-dimensional volume-dependent theory with
defects the surrounding n-dimensional theory is trivial, one should end up with an (n—1)-
dimensional volume-dependent theory.” We will attach an independent area parameter to
each connected surface component of the complement of the defect-submanifold.

A defect aQFT is defined to be a symmetric monoidal functor

Z : Bord{"* " (Dy, Dy) — Hilb | (2.3.4)

and where Z is demanded to be continuous in the area and length parameters (Defini-
tion 4.2.17).

Let Z be a defect aQFT and consider a surface > with defect lines where one such line
(or circle) is labeled by z € D;. Suppose the area of the connected surface component
to the right of that line is a and that to the left is b. The defect condition z is called
transmissive if for all such surfaces ¥, Z(X) only depends on a + b, and not on a and b
separately (i.e. not on a — b). We interpret this as area flowing through the defect line
labeled x without affecting the value of Z.

To construct examples of defect aQFTs in a systematic way, in Sections 4.3.5-4.3.7 we
generalise the state-sum construction of defect TFTs given in [DKR] to accommodate area-
and length-dependence. If defect aQFTs are evaluated on bordisms without defects, one
just obtains an aQFT as before, though one which depends on the label from D, attached
to the surface. Indeed, we will choose

D3 = { strongly separable symmetric RFAs } . (2.3.5)

A defect line separating connected components of ¥ labeled by A and B in D, is in turn
labeled by an A-B-bimodule M, which is in addition dualisable. Bimodules over regularised
algebras are defined in Section 4.1.6. They are objects M € Hilb together with a bounded
linear map pqp 1 A® M ® B — M, which now depends on three parameters a,l,b € R,
subject to some natural conditions, see Definition 4.1.37. In the state-sum construction
a, b are interpreted as area and [ as length in a rectangular plaquette bisected by the defect
line. A bimodule is dualisable if it forms part of a dual pair of bimodules, we refer to
Definition 4.1.43 for details. Altogether:

DP* = { dualisable bimodules over strongly separable symmetric RFAs } . (2.3.6)

Our main result with regard to defect aQFTs is (Theorem 4.3.14 and Proposition 4.3.17):
Theorem 2.3.3. The state-sum construction defines a defect aQFT

Z% : Bordy™ % (DS, D) — Hilb .
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.&o/
Figure 2.2: Surface with parallel defect lines. The defect lines are the dotted lines in the figure.

In this figure they both start and end on a boundary component. The defect lines both have
length [ and the area of the surface component between them is a.

Crucially, one can define the tensor product M ® 4N of bimodules. It satisfies a universal
property (Definition 4.1.49), and it can be shown to exist in some natural cases® at least
in Hilb (Proposition 4.1.60). The tensor product of bimodules is designed to model the
“fusion of defect lines” in a defect aQFT in the following sense. Let ¥(a) be a bordism with
two parallel defect lines, one labeled by M € D, and the other by N € Dy, and assume the
connected surface component separating them is labeled by A € D, (Figure 2.2).> Denote
the area assigned to this component by a and assume that the two defect lines have the
same length label [. Let ¥’ be equal to ¥(a), except that the component separating M and
N has been collapsed, resulting in a single defect line which is now labeled by M ®4 N.
Then (Theorem 4.3.20 and Remark 4.3.21):

Theorem 2.3.4. lim, ,o Z2%(3(a)) = Z%(¥).

An important example of a defect aQFT is again provided by 2d YM theory with G
as above. In this case, the label set for two-dimensional connected components is just
the strongly separable RFA Dy = {L?(G)} (corresponding to the 2d YM theory without
defects given by (), and a possible choice for D; is a collection of bimodules of the form
R® L?(G) where R denotes a finite-dimensional unitary representation of G. A defect line
labeled by R ® L?(G) € D; corresponds to a Wilson line observable labeled by R. In the
case G is connected, Wilson lines are transmissive, if and only if the G-representation R
labeling it is a direct sum of trivial representations (Section 4.4.3). Examples of defects
that are not Wilson lines can be obtained by twisting the action on the regular bimodule
L*(G) by appropriate automorphisms of G' (Lemma 4.4.16).

As expected, the fusion of Wilson lines labeled R and S is given by the G-representation
R ® S, which in terms of Theorem 2.3.4 follows from the bimodule tensor product (R ®
L*(Q)) ®12() (S ® L*(G)) = (R® S) ® L*(G) (Proposition 4.4.10).

4These bimodules need to be left and right modules as well (which is not automatic). For details see
Remark 4.1.38 and Lemma 4.1.59.

5These bimodules also need to be such that their tensor product has a dual, for more details see
Lemma, 4.1.55, the precise conditions of Theorem 4.3.20 and Remark 4.3.21.



Chapter 3

Topological field theory on r-spin
surfaces and the Arf invariant

This chapter contains a detailed study of topological field theories on r-spin surfaces. This
part of the thesis has appeared in [RS1]. In Section 3.1 we describe the combinatorial
model for r-spin structures and state its main properties. In Section 3.2 we use this model
to give a state-sum construction of r-spin TFTs, and we compute the value of these TFTs
on several bordisms as an example. In Section 3.3, the action of a set of generators of
the mapping class group on 7-spin structures is expressed in terms of the data of the
combinatorial model. In Section 3.4 we show that for r even, the r-spin state-sum TFT
for the two-dimensional Clifford algebra computes the r-spin Arf-invariant. Section 3.5
contains the proof of Theorem 2.2.2 and also an explicit count of the mapping class group
orbits in the genus 0 case. Finally, in Appendix 3.A we relate the description of r-spin
structures in terms of PLCW-decompositions that we use here to the triangulation-based
model of [Nov]. We furthermore give the proofs of those properties of the combinatorial
model and of r-spin state-sum TFTs which require the triangulation-based model and have
been omitted in the main text.

3.1 Combinatorial description of r-spin surfaces

In this section we present the combinatorial model for of r-spin structures and state its
properties. We start by reviewing the definition of an r-spin structure (Section 3.1.1) and of
the decomposition of surfaces we will use (Section 3.1.2). The main results in this section
are the bijection of the combinatorial data modulo an appropriate equivalence relation
and isomorphism classes of r-spin structures (Theorem 3.1.13 in Section 3.1.3) and the
counting of these isomorphism classes for compact connected surfaces (Proposition 3.1.19
in Section 3.1.5).

23
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3.1.1 r-spin surfaces

Here we recall the definition of r-spin structures and of related notions, following [Nov].
Denote by GLj (R) the set of real 2x2 matrices of positive determinant, and let pf; :
CfivL; — GL3 (R) be the r-fold connected cover for r € Z-o and the universal cover for
r = 0. Note that in both cases the fibres are isomorphic to Z, = Z/rZ. By a surface
we mean an oriented two-dimensional smooth manifold. For a surface ¥ we denote by
Fgr+¥X — ¥ the oriented frame bundle over ¥ (“oriented” means that orientation on the
tangent space induced by the frame agrees with that of X).

Definition 3.1.1. 1. An r- -spin_ structure on a surface ¥ is a pair (n,p), where 7 :
P=Y — Y is a prmmpal GL -bundle and p : P73 — Fgr+X is a bundle map
intertwining the GL2 and G L] -actions on P and Fgp+% respectively.

2. An r-spin surface is a surface together with an r-spin structure.

3. A morphism of r-spin surfaces f : X — Y is a bundle map between the r-spin
surfaces, such that the underlying map of surfaces f is a local diffeomorphism, and
such that the diagram

7
Py ——— Py
D p
M df. M (3.1.1)

FGLE _— FGLZ/

2 ~

wo T

commutes, where df, denotes the induced map from the derivative of f.

4. A morphism of r-spin structures over ¥ is a morphism of r-spin surfaces whose
underlying map of surfaces is the identity on ¥. We write

R" (%) (3.1.2)
for the set of isomorphism classes of r-spin structures on .

Note that p : Pg;X — Fgp+X is a Z,-principal bundle (r € Z(). Also, morphisms
of r-spin structures are always isomorphisms as they are maps of principal bundles. A
diffeomorphism of r-spin surfaces is a morphism of r-spin surfaces with a diffeomorphism
as underlying map of surfaces. Let us denote by

(%) (3.1.3)
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the diffeomorphism classes of r-spin surfaces with underlying surface ». Note that by
construction we have a surjection

R(Z) = D'(D), (3.1.4)

given by passing to orbits under the action of the mapping class group of ¥ acting on
R"™(X). As we shall see, this surjection is almost never injective.

Even though we do not need it in the rest of the paper, let us mention that a 0-spin
structure is the same as a framing. A framing of X is a homotopy class of A framing of ¥
is a homotopy class of trivialisations of the oriented frame bundle over X. of the oriented
frame bundle over ¥. Let T'(X) denote the set of framings of 3. We have:

Proposition 3.1.2. There is a bijection T'(X) — R().

Proof. Take a framing and pick a representative trivialisation, i.e. an isomorphism of G Ly
principal bundles ¢ : Fg 3 — GL3 x ¥. Define

— (0] i _
Dy = [GL(; NN VS LN FGLZ] ,
— 0 P
T, = [GL2 SEOLLNYoN RN 1 (3.1.5)

Then p, := (7,,p,) is a 0-spin structure. Changing ¢ by a homotopy gives an isomorphic
0-spin structure [Hus, Ch. 4, Thm.9.9]. This defines a map F : T(X) — R(2).

Next we define a map in the opposite direction. Since GL, is contractible, for any
—~—0
0-spin structure ( = (7 : P5;% — X,p), 7 is a trivialisable G L, principal bundle [Stee,

~ —~—0
Thm. 12.2]. Let ¢¢ : PgzX — GL, x 3 denote such a trivialisation. Then there exists a
unique morphism of principal GL3 bundles ¢, : Fg1 X — GL3 x ¥ such that

Py — % GLyx %

pl lpoGindE (3.1.6)

Far® — % 5 GLI x %

commutes. Again by contractability, any two choices of trivialisations gEC are homotopic
and so the corresponding ¢ are homotopic, too. By the same argument, different choices
of representatives of isomorphism classes of 0-spin structures give homotopic ¢.’s. This
defines a map G : R%(X) — T(2).

The two maps F' and G are inverse to each other. Indeed, for [¢] € R°(X), the O-spin
structure one obtains after constructing F(G([¢])) is isomorphic to ¢ via ¢, as in (3.1.6), so
that indeed F(G([¢])) = [¢]. Conversely, starting from a homotopy class of trivialisations
[p] € T(X), in computing G(F([¢])) we see that in (3.1.6) we can take ¢ = id and ¢ = ¢,
so that G(F([¢])) = [¢]. O
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After this aside on framings, let us return to r-spin surfaces and give a basic example
which will later serve to parametrise the boundary components of r-spin bordisms.

Example 3.1.3. For x € Z let C" denote the r-spin structure on C* given by the trivial
principal G Ly-bundle GL, x C* and the map

p”:é\i;XCX%GL;xCX

(97 Z) = (Zn.png(g),Z) ) (317)
where 2 € C* acts on M € GLj by
Rez —Imz
2 M = (Imz o ) M. (3.1.8)

Since the évL;—action is from the right and pg; is a group homomorphism, p* indeed
—~r
intertwines the G Ly- and G L] -actions.

Lemma 3.1.4 ([Nov, Sec.3.4]). C* and C* are isomorphic r-spin structures if and only
if Kk =K' (mod r). The map Z, — R"(C*), k +— [C"] is a bijection.

In the case that r» > 0, it will be convenient to fix once and for all a set of representatives
of Z, in Z, say {0,1,...,r —1}, and to agree that for A\ € Z,, C* stands for C*, with x € Z
the chosen representative for .

Notations 3.1.5. For an r-spin surface X, by abuse of notation we will often use the same
symbol ¥ to denote its underlying surface. That is, ¥ stands for the triple X, n,p from
Definition 3.1.1 (1).

A collar is an open neighbourhood of S! in C*. An ingoing (resp. outgoing) collar is
the intersection of a collar with the set {z € C* | [z2] > 1} (resp. {z € C* | |z] <1}). A
boundary parametrisation of a surface X is:

1. A disjoint decomposition Bj, U Boyy = m(0%) (the in- and outgoing boundary com-
ponents). Bi, and/or By, are allowed to be empty.

2. A collection of ingoing collars Uy, b € By,, and outgoing collars V., ¢ € Bgy, together
with a pair of orientation preserving embeddings

Gn: || U=Se [ Ve dou - (3.1.9)

bEBin CEBout

We require that for each b, the restriction ¢i,|, maps S' diffeomorphically to the
connected component b of 03, and analogously for ¢y

V.-
An r-spin boundary parametrisation of an r-spin surface X is:

1. A boundary parametrisation of the underlying surface ¥ as above; we use the same
notation notation as in (3.1.9).
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2. A pair of maps fixing the restriction of the r-spin structure to the in- and outgoing
boundary components
\: By, — Z, and i Bouwt — 7. (3.1.10)
b— X\ c > e

3. A pair of morphisms of r-spin surfaces which parametrise the in- and outgoing bound-
ary components by collars with r-spin structure,

owm: | U= S e [ Vo pou - (3.1.11)

beBiy c€Bout

Here, Ub)‘ ® is the restriction of C* to the ingoing collar U,, and analogously V/< :=
Ctely,. The maps of surfaces underlying @i, /ou¢ are required to be the maps @i /ou
n (3.1.9) from Part 1.

Note that by Lemma 3.1.4, the maps A, 4 in part 2 are not extra data, but are uniquely
determined by the r-spin surface ¥ and the boundary parametrisation.

For diffeomorphisms between r-spin surfaces with parametrised boundary we only re-
quire that they respect germs of the boundary parametrisation. In more detail, let ¥ be
as in (3.1.11) and let

|| Pl =2« || QF: tou (3.1.12)

deB), ecB,

out

be another r-spin surface with boundary parametrisation. A diffeomorphism of r-spin
surfaces with boundary parametrisation ¥ — = is an r-spin diffeomorphism f : ¥ — =
subject to the following compatibility condition. Let b € BZ be an ingoing boundary
component of ¥ and let f,(b) € mo(0=) be its image under f. We require that f,(b) € B
and that A\, = py, ). Furthermore, there has to exist an ingoing collar C' contained in both
Uy and Py, ) such that the diagram

Uy <2 %

N / ‘ (3.1.13)
pri® win -
Py ) =

of r-spin morphisms commutes. An analogous condition has to hold for each outgoing
boundary component ¢ € Bgy.

By an r-spin object we mean a pair (X, p) consisting of a finite set X and a map
p: X — 7., v+ p,. Below we will construct a category whose objects are r-spin objects,
and whose morphisms are certain equivalence classes of r-spin surfaces, which we turn to
now.
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Definition 3.1.6. Let (X, p) and (Y, 0) be two r-spin objects. An r-spin bordism from
(X, p) to (Y,0) is a compact r-spin surface ¥ with boundary parametrisation as in (3.1.11)
together with bijections S, : X — By, and Bou : Y — By such that

5out
> Bout

X Fin s Bin Y
\ / and \ / (3.1.14)
P A g iz
Z, Loy

commute. We will often abbreviate an r-spin bordism ¥ from (X, p) to (Y,0) as ¥ : p — o.

Given r-spin bordisms . : p — o and = : ¢ — 7, the glued r-spin bordism Zo3 : p — 7
is defined as follows. Denote by Y the source of o, i.e. 0 : Y — Z,. For every y € Y, the
boundary component 3= (y) of ¥ is glued to the boundary component 3= (y) of = using the
r-spin boundary parametrisations ¢Z, and ¢Z. The diagrams in (3.1.14) ensure that the
r-spin structures on the corresponding collars are restrictions of the same r-spin structure
on C*.

Two r-spin bordisms between the same r-spin objects, ¥, : (X,p) — (Y,0) are
called equivalent if there is a diffeomorphism f : ¥ — Y’ of r-spin surfaces with boundary
parametrisation such that with f. : mo(0%X) — m(0%),

Bin Bout

Bin Bout
= l l N v (3.1.15)

B o
in / / out
B B

out

X e and e

commute. Let [Z] : 0 — 7 and [X] : p — o be equivalence classes of r-spin bordisms. The
composition [Z] o [¥] := [0 X] : p — 7 is well defined, that is independent of the choice
of representatives =, X of the classes to be glued. In the following we will by abuse of
notation write the same symbol 3 for an r-spin bordism ¥ and its equivalence class [Y].

Definition 3.1.7. The category of r-spin bordisms Bordj has r-spin objects as objects
and equivalence classes of r-spin bordisms as morphisms.

Bordj is a symmetric monoidal category with tensor product on objects and morphisms
given by disjoint union. The identities and the symmetric structure are given by r-spin
cylinders with appropriately parametrised boundary.

3.1.2 PLCW decompositions

In Section 3.1.3 we will use a cell decomposition to combinatorially encode r-spin structures
on surfaces, and in Section 3.2.3 we will use this description to build an r-spin TF'T. For
explicit calculations it is helpful to keep the number of faces and edges to a minimum.
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The notion of a PLCW decomposition from [Kir|, and which we review in this section, is
well suited for such calculations. For example, there is a PLCW decomposition of a torus
consisting of 1 face, 2 edges and 1 vertex, see Figure 3.1. For comparison, using simplicial
sets would require at least 2 faces, 3 edges and 1 vertex; using simplicial complexes (i.e.
triangulations, as in [Nov]) would require at least 14 faces, 21 edges and 7 vertices (see e.g.
[Lut]).

Now we turn to the definitions following [Kir]. Let C' € RY be a compact set, let C
denote its interior and let ¢' := C'\ C' denote its boundary. Let BN = [-1,1]Y € RY
denote the closed N-ball, or rather a piece-wise linear (PL for short) version thereof. Then
BN = §N-1 s the (PL-version of the) (N — 1)-sphere. A PL map ¢ : C — RM is called
a regular map if |i(c) is injective. A compact subset C' C RY is a generalised n-cell (or
simply cell), if C' = ¢(B") and C' = ¢(B") for a regular map ¢ : B® — C, which we call
a characteristic map of C'. A generalised cell decomposition is a finite collection of cells
such that the interiors of cells do not intersect and the boundary of any cell is a union
of cells. Examples are shown in Figure 3.1 and in Figure 3.2. We denote the n-skeleton
of K by K™, which is the union of the set of k-cells K; with k < n, and we define the
dimension dimK of K to be the highest integer n for which the set of n-cells is nonempty.
We denote the set of boundaries of an n-cell C' € K,, by 0(C') C K,,_1. A regular cell map
f : L — K between generalised cell decompositions L and K is a piecewise linear map
f:Ucer C = Upex D such that for every C' € L with characteristic map ¢ there is a cell
D = f(C) € K for which f o ¢ is a characteristic map. An example of a regular cell map
is shown in Figure 3.1, a non-example is shown in Figure 3.25).

Definition 3.1.8. A PLCW decomposition K is a generalised cell decomposition of di-
mension n such that if n > 0

e K" !is a PLCW decomposition and

e for any n-cell A € K,, with characteristic map ¢ there is a PLCW decomposition L
of S"1 such that ¢|gn-1: L — K" ! is a regular cell map.

>

Figure 3.1: Glueing a torus from a rectangle. Each step is a regular cell map and each generalised
cell decomposition is a PLCW decomposition.
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b) c)

Figure 3.2: a) A generalised cell decomposition which is not a PLCW decomposition. There
are one 2-cell, four 1-cells and four O-cells. One can visualise it by folding a paper and glueing
it only along the bottom edge. b) A triangle with two sides identified and a 1-gon, both PLCW
decompositions. The map between them is not a regular cell map as the edge in the middle has
no image. ¢) A PLCW decomposition of a sphere into two faces, one edge (red line) and one
vertex.

Examples of PLCW decompositions are shown in Figure 3.1, Figure 3.2 b) and ¢). A
generalised cell decomposition which is not a PLCW decomposition is shown in Figure 3.2
a). Each PLCW decomposition can be related by a series of local elementary moves (cf.
Section 3.1.4 below), and each PLCW decomposition can be refined to a simplicial complex
[Kir, Thm. 6.3]. For more details see [Kir, Sec. 6-8].

From now on we specialise to 2 dimensional PLCW decompositions. Let 3 be a compact
surface with a PLCW decomposition Y5, ¢, Yo. We call these sets faces, edges and
vertices respectively; one can think of faces as n-gons with n > 1. For g +b > 1, PLCW
decompositions also allow for a decomposition of any compact connected surface X,; of
genus g and with b boundary components into a single face which is a (4g + 3b)-gon, see
Section 3.1.5.

To apply PLCW decompositions to smooth manifolds, we can use that a PLCW de-
composition can be refined to a simplicial complex, and that PL cell maps for a simplicial
complex can be approximated by smooth maps, giving smooth manifolds [Mun, Sec. 10].

3.1.3 Combinatorial description of r-spin structures

In this section we extend the combinatorial description of r-spin structures in [Nov], which
uses a triangulation of the underlying surface, to PLCW decompositions. We will only
consider PLCW decompositions where the boundary components consist of a single vertex
and a single edge.

Let ¥ be a surface with parametrised boundary, with a PLCW decomposition, with
a marking of one edge of each face and an orientation of each edge. We do not require
that the orientation of the boundary edges corresponds to the orientation of the boundary
components, but we orient the faces according to the orientation of the surface. This
induces an ordering of the edges of each face, the starting edge being the marked one, see
Figure 3.3. By an edge index assignment we mean a map s : 21 — Z,, € — S,.
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Figure 3.3: Figure of a face with adjacent edges and vertices in a marked PLCW decomposition.
The orientation of the face is that of the paper plane, the orientation of the edges is indicated by
an arrow on them. The half-dot indicates the marked edge of the face the half-dot lies in. The
arrow in the middle shows the clockwise direction along the marked edge e and v is the vertex
sitting on the boundary of e in clockwise direction. Note that the clockwise vertex v of the edge
e is determined by the orientation of the face and not by the orientation of the edge e.

Definition 3.1.9. We call an assignment of edge markings, edge orientations and edge
indices a marking of a PLCW decomposition and a PLCW decomposition together with a
marking a marked PLCW decomposition.

For a vertex v € ¥y let D, be the number of faces whose marked edge has v as its
boundary vertex in clockwise direction (with respect to the orientation of the face), as
shown in Figure 3.3. Let 0~!(v) C ¥; denote the edges whose boundary contain v:

O ') ={e€eX|vedl)}. (3.1.16)

The orientation of an edge gives a starting and an ending vertex, which might be the same.
Let N5 (resp. N°4) be the number of edges starting (resp. ending) at the vertex v and
let

N, = Nstart ¢ yend (3.1.17)

We note that an edge which starts and ends at v contributes 1 to both N5 and to N,
For every edge e € 07! (v) let

—1 if e starts and ends at v,
Se =< S if e is pointing out of v, (3.1.18)
—1—s. if e is pointing into v.
Recall the maps A : By, — Z, and p : By — Z, from (3.1.10), as well as our convention
that we only consider PLCW decompositions with exactly one vertex and one edge on

each boundary component. For a vertex v on a boundary component let us write by slight
abuse of notation u for this boundary component and let

/\u —1 if € Biny
R, := . (3.1.19)
1—py ifué€ Boy.
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We call a marking admissible with given maps A\ and p, if for every vertex v € ¥, which
is not on the boundary and for every vertex u € ¥y on the boundary vertex and one edge
on each boundary component) the following conditions are satisfied:

> $=D,—N,+1 (mod ) , (3.1.20)
ecd~1(v)

Z 5. =D,—N,+1—-R, (mod ) . (3.1.21)
e€d~1(u)

For an arbitrary marking of a PLCW decomposition of ¥ one can define an r-spin
structure with r-spin boundary parametrisation on ¥ minus its vertices by taking the
trivial r-spin structure on faces and fixing the transition functions using the marking. The
above r-spin structure extends uniquely to the vertices of ¥, if and only if the marking is
admissible for A and p. The r-spin boundary parametrisations are given by the inclusion of
r-spin collars (as prescribed by A and p) over the collars of the boundary parametrisation
of . For more details on this construction we refer the reader to Appendix 3.A.3.

Definition 3.1.10. Denote the r-spin structure with r-spin boundary parametrisation
defined above by (s, A, u).

There is some redundancy in the description of an r-spin structure via a marking. A one-
to-one correspondence between certain equivalence classes of markings and isomorphism
classes of r-spin structures will be given in Theorem 3.1.13 below. As preparation we first
give a list of local modifications of the marking which lead to isomorphic r-spin structures.

Lemma 3.1.11. The following changes of the marking of the PLCW decomposition of
(but keeping the PLCW decomposition fixed) give isomorphic r-spin structures:

1. Flip the orientation of an edge e and change its edge index s, — —1 — s, (see
Figure 3.4(1)).

2. Move the marking on an edge e of a polygon to the following edge counterclockwise
and change the edge index of the previously marked edge s, — s, — 1, if this edge is
oriented counterclockwise, s, — s. + 1 otherwise (see Figure 3.4 (2a) and (2b)).

3. Let k € 7. Shift the edge index of each edge of a polygon by +k, if the edge is
oriented counterclockwise with respect to the orientation of the polygon, and by —k
otherwise. If two edges of a polygon are identified (i.e. are given by the same e € %),
do not change its edge index. For an illustration, see Figure 3.4 Part 3. We call this
a deck transformation.

These operations on the marking commute with each other in the sense that the final edge
indices do not depend on the order in which a given set of operations 1-3 is applied.

Note that the operation in 3 is the same as moving around the marking of a face
completely by applying operation 2. This lemma is proved in Appendix 3.A.4.
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Figure 3.4: Moves of Lemma 3.1.11 for a face of . All edge orientations and markings are
arbitrary unless shown explicitly. (1) Flipping the edge orientation of e. (2a), (2b) Moving the
edge marking for a face. (3) Shifting the edge indices for a face. The dotted edges es and e; are
identified, hence the edge index remains unchanged. The edges e; and ey are counterclockwise
oriented, hence the 4k shift of the corresponding edge indices s; and ss, the edge e4 is clockwise
oriented, hence the —k shift of sy.

Let ¥ be a surface with a fixed PLCW decomposition. Write (m,o0,s) for a given
marking of 3, where m denotes the edge markings of the faces, o the edge orientations and
s the edge indices (cf. Definition 3.1.9). Let M(X){5" denote the set of all admissible
markings for the maps A and g on . The operatlons in Lemma 3.1.11 generate an
equivalence relation ~g, on M(X){5". Let us denote equivalence classes by [m, o, s].
The following lemma gives a more concrete description of the equivalence classes.

Lemma 3.1.12. Let (m,o0,s) € M(X){5CW. We have:
1. For every choice m’, o’ there is some s' such that [m, o, s| ~gy [/, 0, §'].

2. For a given choice of edge indices § we have [m, 0, s| ~gx [m, 0, §] if and only if s and
§ are related by a sequence of deck transformations (operation 3) in Lemma 3.1.11.

Proof. The first statement is immediate from operations 1 and 2 in Lemma 3.1.11. For the
second statement recall that operations 1-3 commute, and operation 3 is redundant. Any
sequence of operations can thus be written as M = [ (op. 1 for edge e) [[;(op. 2 for face f).
Since m and o do not change, operation 1 for an edge e must occur in pairs, leav-
ing s. unchanged, and operation 2 for a face f must occur in multiples of the number
of edges of that face, so that the total change is expressible in terms of operation 3,
M = [];(op. 3 for face f). O

Let R"(X)x, denote the isomorphism classes of r-spin structures with r-spin boundary
parametrisation for the maps A and p. The following theorem is proved in Appendix 3.A 4.
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a) b)
“w
i f'yf
5w —> S
. v v
w’ w’

Figure 3.5: Elementary moves of a marked PLCW decomposition. Figure a) shows edges
between faces f and f’ (which are allowed to be the same). The edges are marked so that the
vertex w is the clockwise vertex for the face f (cf. Figure 3.3). This convention is not restrictive as
one can change the orientation of the edges and the markings using Lemma 3.1.11. In Figure b),
on the left hand side the horizontal edge between the vertices v and v" (which are allowed to be
the same) is marked for the top polygon, but not for the bottom polygon, and it has edge index
0. For the joint polygon on the right hand side, the marked edge is taken to be that from the
bottom polygon on the left. Note that this latter convention for the markings is not restrictive,
as using Lemma 3.1.11 one can move the markings around.

Theorem 3.1.13. Let ¥ be a surface with PLCW decomposition. The map

M(ESEW ) e — RY(D)ap

| [m,o0,s] — [2(s, A\, p)] (3.1.22)

is a bijection. On the right hand side it is understood that the edge markings and orient-
ations of ¥ are given by m, o.

Remark 3.1.14. When combined with Lemma 3.1.12, this shows that for a fixed edge
marking and orientation the admissible edge index assignments up to deck transformations
are in bijection with the isomorphism classes of r-spin structures with r-spin boundary
parametrisation for the maps A\ and p.

3.1.4 Elementary moves on marked PLCW decompositions

In the previous section we defined the r-spin structure (s, A, ) in terms of a marked
PLCW decomposition, and we explained how to change the marking while staying within
a given isomorphism class of r-spin structures. In this section we state how the marking
needs to change when modifying the underlying PLCW decomposition by elementary moves
in order to produce isomorphic r-spin structures.

Definition 3.1.15. An elementary move on a PLCW decomposition of a surface is either
e removing or adding a bivalent vertex as shown in Figure 3.5 a), or

e removing or adding an edge as shown in Figure 3.5 b).
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Figure 3.6: The edge index of an univalent vertex is fixed by only the marking and orientation
of edges. Removing a univalent vertex induces an isomorphism of r-spin structures.

By [Kir, Thm. 7.4], any two PLCW decompositions can be related by elementary moves.
We prove the following proposition in Appendix 3.A.4.

Proposition 3.1.16. The elementary moves in Figure 3.5 induce isomorphisms of r-spin
structures.

The edge index of an edge with a univalent vertex is fixed by the orientation and the
marking of the edge, in particular it is independent of the rest of the edge indices. In
Lemma 3.A.6 we will show that removing univalent vertices induces an isomorphism of
r-spin structures. For an illustration, see Figure 3.6.

3.1.5 Example: Connected r-spin surfaces

In this section we illustrate how one can use the combinatorial formalism to count iso-
morphism classes of r-spin structures. This recovers results obtained in [GG, Ran| using a
different formalism.

Notations 3.1.17. Whenever it does not cause confusion we will use the same symbols
for edge labels and for edge indices. For example for e € ¥; we will simply write e € 7Z,
instead of s, € Z,.

Lemma 3.1.18. There exists r-spin structures on the sphere if and only if r =1 or r = 2.
If there exists an r-spin structure on the sphere then it is unique up to isomorphism.

Proof. Let us consider the sphere decomposed into two 1-gons, one edge u and one vertex v
as in Figure 3.2 ¢), with edge index u (cf. Notations 3.1.17). Let us collect the ingredients
for the vertex condition (3.1.20). The edge u starts and ends at the vertex, therefore
4 = —1 from (3.1.18).

The number N, of in- and outgoing edges for v is N, = 1+ 1 = 2, cf. (3.1.17). The
number of faces with v in clockwise direction from their marked edge is D, = 2, since the
edge is marked for both faces. The vertex condition (3.1.20) then reads

—-1=2-2+1 (mod 1),

which holds if and only if r = 1 or r = 2. The edge index u can be set arbitrarily by
operation 3 in Lemma 3.1.11, and together with Remark 3.1.14 we see that for any two
values of u the r-spin structures on the sphere are isomorphic. ]
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79 ()
A7

Figure 3.7: PLCW decomposition of ¥, for g +b > 1 using only one face, shown after glueing
(Fig. a) and before glueing (Fig.b) — the edges labeled with the same symbols are identified. In
Fig. b, the bigger arrows indicate the marked edge, namely edge 71 in case b > 0 and edge s; in
case b = 0.

Proposition 3.1.19. Let Y ; be a connected surface of genus g with b boundary com-

ponents and with maps A\ and p. There exists an r-spin structure on ¥, if and only
if

X(Zgp) = Z R, (mod 1), (3.1.23)

u€mo(0%)

where x(X,,) = 2 —2g — b denotes the Euler characteristic and R,, was defined in (3.1.19).
If (3.1.23) holds, the number |R"(X,p)x,| of isomorphism classes of r-spin structures on
Y4 1s given by:

r b7 g |RT(Zg,b)/\,,u
0 |g=0andbe{0,1} 1
else infinite
> 0 b=0 r29
b>1 r29+b—1

A similar result has been obtained for the existence of r-spin structures on closed
hyperbolic orbifolds for » > 0 in [GG, Thm. 3]. Note that in complex geometry, (3.1.23)
(for r > 0 and b = 0) is just the condition for the existence of an r-th root of the canonical
line bundle (see e.g. [Wit2]).



3.2. State-sum construction of r-spin TF'Ts 37

Proof. The case g = b = 0 has been discussed in Lemma 3.1.18, so we can assume g+b > 1.
Decompose X, into a (4g+3b)-gon consisting of 29420 inner edges, b boundary edges, one
inner vertex vy and b boundary vertices v;, j = 1,...,b, as shown in Figure 3.7 a) and b).
Assign the edge indices s;, ¢;, r; and u;, where i = 1,...,g and j = 1,...,b. Mark the
edge s if g # 0 or the edge ry if g = 0, see Figure 3.70).

We now evaluate the admissibility condition at each vertex. For the boundary vertex
v; there is the incoming inner edge r; and the boundary edge u; which starts and ends at
the same vertex v;. Therefore by (3.1.18), relative to v; one has 7; = —r; —1 and 4; = —1.
For either of the two markings (for g # 0 and for g = 0) D,, = 0 and N,, = 3, therefore
we have

-1;—1-1=0-3+1-R,, (mod r) forj=1,...,0b. (3.1.24)

Thus the r; are uniquely fixed by the boundary parametrisation A, yu to be r; = R,,, (mod )
for all j.

For the inner vertex vy there are b edges leaving the vertex and 2¢g edges which start
and end there. Therefore by (3.1.18), relative to vy one has 7; = r; and §; = t; = —1.
D,, =1and N,, =4g + b, and so

er_2gz 1—(4g+0b) +1 (mod ) . (3.1.25)

j=1

Combining (3.1.24) and (3.1.25) one obtains (3.1.23).

By Remark 3.1.14, for a fixed marking and orientation, edge index assignments up to
deck transformations are in bijection with r-spin structures. From (3.1.24) and (3.1.25)
every (s;,t;,uj) € (Z,)*" gives an admissible edge index assignment. A deck transform-
ation on the face shifts the u; parameters simultaneously and leaves the s; and ¢; para-
meters fixed. By a simple counting we get the number of isomorphism classes of r-spin
structures. [

Corollary 3.1.20. There is a unique r-spin structure on the disk with boundary condition
A = 2 (ingoing boundary) or A = 0 (outgoing boundary), and no r-spin structure else.

Let R; := Ry, from (3.1.19) and let us denote the r-spin structure on X, given by the
parameters s;,t;,u; € Z, fori =1,...,gand j =1,...,0 from Figure 3.7 by

Eg,b(si,t@',uj7Rj) (3126)
(and recall from Notation 3.1.17 that the same symbols denote edges and the assigned edge

indices).

3.2 State-sum construction of r-spin TFT's

Our first application of the combinatorial description of r-spin structures is a state-sum
construction of r-spin TFTs, see [BT, NR, GK] for the 2-spin case and [Nov] for general
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A B C

Figure 3.8: String diagram notion of a morphism f € S(A® B® C,D ® E), the symmetric
braiding c4 g and the identity id4.

Figure 3.9: String diagrams we will use for the structure morphisms of a Frobenius algebra.

r. We generalise the construction in [Nov| from triangulations to PLCW-decompositions,
which are much more convenient for explicit computations. In Sections 3.2.1 and 3.2.2
we present some algebraic preliminaries, and in Section 3.2.3 we explain how suitable
Frobenius algebras produce an r-spin TFT via a state-sum construction (Theorem 3.2.8).
In Section 3.2.4 we compute the value of the state-sum TFT on connected r-spin bordisms.

3.2.1 Algebraic notions

Let S denote a strict symmetric monoidal category with tensor product ®, tensor unit I
and braiding c. We use the graphical calculus as shown in Figure 3.8, and we will omit the
labels for objects if they are understood, as e.g. in Figure 3.9.

An object A € S together with morphisms i € S(A® A, A) (multiplication), n € S(L, A)
(unit), A € S(A,A® A) (comultiplication) and € € S(A,I) (counit), see Figure 3.9, is a
Frobenius algebra if the following relations hold:

Ay

These relations imply that a Frobenius algebra is in particular an associative algebra and
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T= N N~ = N = &k

Figure 3.10: The window element 7, the Nakayama automorphism N, its inverse N~! [Nov,
Sec. 5.3] and our string diagram abbreviation for the k’th power of N.

coassociative coalgebra, see [Koc, Prop.2.3.24]. For more details on the definition of al-
gebras, coalgebras and Frobenius algebras in monoidal categories we refer to e.g. [FS].
For a Frobenius algebra A we define the window element 7 = o A on [LP1] and the
Nakayama automorphism N = (ida ®(g o p1))o(caa ® ida)o(idg ®(A on)), see Figure 3.10.
Then 7 is central (as follows from an easy calculation) and N is a morphism of Frobenius
algebras (see [FS] and [NR, Prop.4.5]). A is called symmetric if eopoca s =cop. It can
be shown from a straightforward calculation that A is symmetric if and only if N =id4.

Lemma 3.2.1. Let A € § Frobenius algebra with Nakayama automorphism N. Then for
every n € 7

= = = (3.2.3)

Proof. The first and second equations are proven in [Nov, Lem. 5.12]. The third equation
follows from a direct calculation. O

A morphism x : I — A is called invertible if there is a morphism ' : I — A such that
po(k®@k') =n=po (k' @k). In this case we write k! instead of x’ for the unique inverse.

Let r € Zso, (4, 1,m, A, €) be a Frobenius algebra in & with invertible window element
7 and with Nakayama automorphism NV, such that N” = id4 (for » = 0 this last condition
is empty). A Frobenius algebra with N = idy is called a A,-Frobenius algebra in [DK,
Prop.1.41]. Define

Pyi=(t7" (=) opocaso(id@N"*) oA €End(A). (3.2.4)

We collect some properties of Py in the following lemma.
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Lemma 3.2.2. P, is an idempotent, and for any A\, Ay € Z, one has that:

NoP,, =P, oN (3.2.5)
o (Py ® Py) =Py 0opo (P ®Py) n=~Fon, (3.2.6)
(p)q@P/\Q)OA:(P)\1®P)\2)OAOP/\1+)\2,2, €:€OP2. (327)

Proof. That P, is an idempotent is a direct generalisation of [Nov, Lem.5.12(1)]. The
additional (77! - (—)) removes the “bubble” p o A. The identity (3.2.5) is immediate from
the definition of P, in (3.2.4) and the fact that N is an automorphism of Frobenius algebras.
The first identity in (3.2.6) is a more general version of [Nov, Lem. 6.8] and the proof works
along the same lines. To show the second identity in each of (3.2.6) and (3.2.7) just write
out the definition of Py, N and N~'. For the first identity in (3.2.7) use (3.2.6) together
with

((E e} Iu) X ldA) o (ldA RP\ ® ldA) o) (ldA ®(A o 77)) = Pg_/\, (328)

which follows from a direct calculation. O]

3.2.2 The Z,-graded center

Let A € S be a Frobenius algebra with invertible window element. Let S be furthermore
additive (in particular, finite direct sums distribute over tensor products) and assume that
the idempotents P, split in S, i.e.

Po= A 2, 4|, ZA‘—*MN—%ZA]:idZH (3.2.9)
for some object Z, € §. For r = 0 assume furthermore that S has countably infinite direct
sums which distribute over the tensor product. We can now define:

Definition 3.2.3. Let r € Zso. The Z,-graded center of a Frobenius algebra A with
invertible window element and which satisfies N™ = id is the direct sum

Z'(A) =P 2\ . (3.2.10)

AEZ,
This is a Z,-graded object and we call A\ € Z, the degree of Z,.

Next we will endow Z"(A) with an algebra structure induced by A. Write
e . Z/\ — ZT(A) (3211)

for the embeddings of the summands in (3.2.11) and p, for the induced projections which
satisfy

Pxy

Z>\1 21—) ZT(A) — Z>\2 = 5)\17)\2 idZ)\1 . (3212)
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Lemma 3.2.2 suggests to define, for A\, \s € Z,,
tx; ®lag H TA1+A2
Hxg ne = Z)\l ®Z>\2 — S ARA A ——> Z>\1+)\2] . (3213)

By the universal property of direct sums (which in the countably infinite case for r = 0
still distribute over ® by our assumptions) there is a unique map

p:Z"(A)®@ Z"(A) — Z"(A) (3.2.14)
which satisfies i o (ex, ® €x,) = €x,42, © fia, .0, Let us furthermore define
7= []1 AT Zy 9 zr(A)] (3.2.15)

The morphisms i and 7 are degree preserving. It is straightforward to verify that Z"(A)
together with p and 7 becomes an associative unital Z,-graded algebra in S.
One can restrict the Nakayama automorphism of A on the Z,’s by

Ny, = [ZA ENy/RENGIEN ZA] (3.2.16)

A

As in [Nov, Lem. 5.12/3] on verifies that
NEAM = iq,, (3.2.17)

Recall from the introduction that ged(a, b) denotes the non-negative generator of the ideal
(a,b) C Z. In particular, for r = 0 we have ged(1 — A,r) = |1 — A|. The product g is in
general not commutative, but a simple computation shows that its components satisfy:

_ -1 .
Hxgxg © €2y, .25, = Hxg\ © <NA2 ® leM)

(3.2.18)

= /‘1’/\27/\1 (¢] <idZ>\2 ®N>—:)\2> .

Let N : Z"(A) — Z"(A) be the unique morphism such that N o ey = ey o N, for all \.

Combining the fact that N is an automorphism of Frobenius algebras with the definition

of ji and 7 and using (3.2.5) shows that N is an algebra automorphism. By (3.2.17) we
have N" = id. We collect the above results in the following proposition.

Proposition 3.2.4. Let A be as in Definition 3.2.3. The Z,-graded center Z"(A) of A is
an associative unital algebra via fi, ) and is equipped with the algebra automorphism N
satisfying N" = id. The algebra Z"(A) satisfies the commutativity conditions, for A € Z,,

_ . _ A
O Czr(A),zr(A) © (6)\®1d) = o (6)\®N ) .

Corollary 3.2.5. The component Z, of Z"(A) is a subalgebra and is the centre of A.
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Frobenius algebra structure for r > 0

For the rest of this section let us assume that » > 0. Since now Z, is finite, we can define
the coproduct as the sum

— _ A e e
A=Y [ZT(A) P inae —2 20 © 2y, D (A @ 27 (4)]

A A2 EZy
(3.2.20)
with component maps
Asra = [Zrins =25 A 2000 A0 4 2202 7, @ 7, | (3.2.21)
We define the counit
£i= [ZT(A) LN AN L I RN ]1} . (3.2.22)

The morphisms A and & have degree +2 and -2 respectively. Note that we inserted a
multiplication with 7 and its inverse in the definition of & and A. The reason for this is
that we want these maps to match the structure maps calculated in Section 3.2.4 from the
state-sum construction.

It is straightforward to see that altogether Z"(A) becomes a Frobenius algebra, just
verify (3.2.1) and (3.2.2) restricted to individual summands of Z"(A) by using Lemma 3.2.2
to move projectors past structure maps of A and by the properties of A itself. Altogether
we have:

Proposition 3.2.6. Let A be as in Definition 3.2.3. For r > 0, the Z, graded center of A
together with i, 1, A, £ Is a Z-graded Frobenius algebra. The morphisms ji and 7 have
degree 0, while A has degree 2 and & has degree —2.

Remark 3.2.7. 1. The condition N" = id4 amounts to A being a representation of
the group Z,. Instead of defining this in a general category, let k£ be a field and let
us assume that A € Rep,(Z,), the category of k-linear representations of Z,.. Then
the algebra Z7(A) is the full center of A as defined in [Dav], and is in particular
a commutative algebra in Z(Repy(Z,)), the monoidal center of Rep,(Z,). To see
this one needs to check that Z"(A) has the form of the full center as given in [Dav,
Prop. 9.6], which has been done in (3.2.18).

Note, however, that unless »r = 1 or r = 2, the counit £ and the comultiplication A
are not degree preserving, i.e. Z"(A) is not a Frobenius algebra in Z(Z,) with these
structure maps.

2. For r = 0 one still obtains for every A\, Ay € Z a non-degeneracy condition, which we
do not explain in detail.
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Figure 3.11: a) Left and right sides (e,l) and (e,r) of an inner edge e, determined by the
orientation of ¥ (paper orientation) and of e (arrow). The edge index of e is s.. b) Convention
for connecting tensor factors belonging to edge sides (e,l) and (e, r) of an inner edge e with the
tensor factors belonging to the morphism g..

3.2.3 State-sum construction

Let again » > 0 and A € S be a Frobenius algebra with invertible window element 7 and
with N” = id4. In this section we define a symmetric monoidal functor Z, : Bordj — S,
that is, a TF'T on two-dimensional r-spin bordisms.

Recall the direct sum decomposition Z"(A) = @,., Zx of the Z,-graded centre from
Definition 3.2.3. We define the TFT Z4 on objects as follows: Let p : X — Z, be an r-spin
object. Then

Za(p) = Q) Z,. - (3.2.23)

zeX

To define Z4 on morphisms is more involved and will take up the remainder of this
section. Let (X, p) and (Y, o) be two r-spin objects. Let ¥ : p — ¢ be an r-spin bordism
with maps A : By, — Zy, g : Boww — Z,. Choose a decorated PLCW decomposition
Yo, 31, 2o of the surface ¥ with admissible edge index assignment s such that the r-spin
structure with parametrised boundary (s, A, 1) from Definition 3.1.10 is isomorphic to
the r-spin structure of the r-spin bordism > : p — o. Recall that B;, and B,,; denote the
in- and outgoing boundary components respectively and that by our conventions they are
in bijection with edges on the boundary.

For a face f € ¥ which is an ng-gon let us write (f, k), k = 1,...,ny for the sides of
f, where (f,1) denotes the marked edge of f, and the labeling proceeds counter-clockwise
with respect to the orientation of f. We collect the sides of all faces into a set:

We double the set of edges by considering ¥; x {l, 7}, where “I” and “r” stand for left
and right, respectively. Let £ C ¥; x {l,r} be the subset of all (e,l) (resp. (e, 7)), which
have a face attached on the left (resp. right) side, cf. Figure 3.11 a). Thus for an inner
edge e € ¥ the set E contains both (e, () and (e, ), but for a boundary edge ¢’ € ¥; the
set F contains either (¢/,1) or (¢/,7). By construction of S and E we obtain a bijection

O:E—S | (e,x)—(f k), (3.2.25)

where e is the k'th edge on the boundary of the face f lying on the side x of e, counted
counter-clockwise from the marked edge of f.



44 Chapter 3. Topological field theory on r-spin surfaces

For every vertex v € ¥ in the interior of > or on an ingoing boundary component of
Y. choose a side of an edge (e, z) € E for which v € d(e). Let

V %0\ Bowt — E (3.2.26)

be the resulting function.
To define Z4(X) we proceed with the following steps.

1. Let us introduce the tensor products

AS — ® A(f,k) 7 AE = ® A(e,x) ,
(

(f,k)es e,x)€EE

Ain = ® Al A = ® Aleout)

bEBin CeBout

(3.2.27)

Every tensor factor is equal to A, but the various superscripts will help us distinguish
tensor factors in the source and target objects of the morphisms we define in the
remaining steps.

2. For an edge e € X7 we set

( . —Se— .
A(e,zn) Ll) A(e,m) e € an
I A5 A0 A M AlD @ Aleout) o c B surface is left of e
Ge = n A idy @Nset+! .
ILAS A A 22" Aleout) & Aler) ;e € By, surface is right of e
i setl .
(I AR A A ﬂ; Aled) @ Aler) ; e inner edge
(3.2.28)
cf. Figure 3.11. Define the linear map
C:=) ge : Ain = Ap @ Aous , (3.2.29)

ecy
where it is understood that the tensor factors in Agp ® A, are assigned as indicated
in (3.2.28).
3. Note that since all tensor factors in Ag are algebras, so is Ag itself. For a : I — A
and (e, x) € E write
a(e’m):77®"'®a®"'®771]1—>AEa (3.2.30)

where a maps to the tensor factor A*). Define z : I — Ag as the following product
in the k-algebra S(I, Ag):

z= J[ H"@. (3.2.31)

’UGEO\Bout

Finally, we let ) be the endomorphism of Ag obtained by multiplying with z,
Y= [AE =0, AE} . (3.2.32)
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4. Let pM :=id4 and let u™ denote the n-fold product for n > 2. Ass1gn to every face
f € ¥, obtained from an ng-gon the morphism ¢ o u(”f) Ay ® - ® A (fmg) — I
and take their tensor product:

F=Q) (cop™)): Ag—1. (3.2.33)

f€Xa

5. We will now put the above morphisms together to obtain a morphism L : A;, — A
Denote by TTg the permutation of tensor factors induced by & : £ — S,

o Ap = Ag . (3.2.34)

Using this, we define
K= [AE R LN N 11] , (3.2.35)
L= [Am G Ay @ Ay ot Aout] . (3.2.36)

6. Let TT;, and TT,,; denote the permutation of tensor factors induced by the maps 3;,
and S, respectively:

M :Zalp) = Q) Z,, = Q) 2, - (3.2.37)

{L’GX bEBin

Mour = Q) Zy. = Q) Zs, = Zal0) . (3.2.38)

cEBout yey

Using these permutations and the embedding and projection maps ¢y, my from (3.2.9)
we construct the morphisms linking the action of Z4 on objects to the tensor products

Ain/out :

] | o
Ein = | Za(p) == Q) 2y, MAW] : (3.2.39)
bEB;n

gout = Aout CEBout e ® Z c nout ( )

c€Bout

(3.2.40)

We have now gathered all ingredients to define the action of Z4 on morphisms:

ZA(D) = [ZA(,O) Ly Mo S g £ Z(0 )] . (3.2.41)

Theorem 3.2.8. Let A € S be a Frobenius algebra with invertible window element T and
with N = id 4.
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1. The morphism defined in (3.2.41) is independent of the choice of the marked PLCW
decomposition and the assignment V.

2. The state-sum construction yields a symmetric monoidal functor Z, : Bordy — S
whose action on objects and morphisms is given by (3.2.23) and (3.2.41), respectively.

The proof of this theorem works by reducing to the corresponding statement for trian-
gulations and is given in Appendix 3.A.5.

Remark 3.2.9. The above construction yields a TFT on the category of closed r-spin
bordisms, where the complete boundary of the r-spin bordisms is parametrised, so the
parametrised boundary is a closed manifold. One can define a different r-spin bordism
category, called the open-closed r-spin bordism category, where only a one dimensional
submanifold of the boundary of r-spin surfaces is parametrised. The subcategory of the
latter generated by the open cup, the open pair of pants and their duals is called the
open r-spin bordism category. In [Ster] a TFT on open r-spin bordisms was constructed
using A,-Frobenius algebras [DK, Prop. I.41] which are Frobenius algebras whose Nakayama
automorphism N satisfies N = id.

3.2.4 Evaluation of state-sum TFTs on generating r-spin bord-
isms

In this section we apply the state-sum construction from Theorem 3.2.8 to pairs of pants
and discs with r-spin structure. On the one hand, these bordisms generate Bordj, and on
the other hand, we will recover the algebra structure of the Z,-graded center Z"(A) of A
in this way. Finally, we evaluate Z4 on a connected bordism of genus g with only ingoing
boundary components.

Pair of pants as multiplication

Consider the r-spin 3-holed sphere parametrised as in Section 3.1.5 with 2 ingoing boundary
components By, = {uj,us} and 1 outgoing boundary component B,,; = {u3} between r-
spin objects p : {x1,22} — Z, and o : {y} — Z, with Si,(z;) = w; (i = 1,2) and
Bout(y) = uz. Let Ay := Ay, Ao i= Ay, and A3 := py,. Then by (3.1.19) R,, = A\ — 1,
R,, = Aa—1and R,, = 1 —\3. Substituting these and x(3p3) =2—-0—3 = —1in (3.1.23)
gives

/\1 + /\2 = )\3 (mod T’) . (3242)
Denote this r-spin bordism by

5172(U1,U2,U3, )\17 )\2) = 2073(U1,U2,U3, )\1 - 17 )\2 - 17 1-— )\3) p— 0,
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(cf. (3.1.26)). The sets S, E are (see Figure 3.7)

S={(f,k)|k=1,...,9y~{1,...,9} , (3.2.43)
E :{(u17T)7 (UQ,T), (rhl)v (7"1,7‘), <T27l)7 (T27T>7 (’r?nl)’ (7’3,7“), (u3’r)}
~{1,...,9} , (3.2.44)

where in (3.2.44) the isomorphism is given by the order of elements of E as listed. We have
one inner vertex vy and 3 boundary vertices vy, v and vz, with vs placed on the outgoing
boundary component. We set

Vi(vg) : = (ra, 1), Vi(vy) : = (ug,7), V(ve) : = (ug,r) . (3.2.45)
Following the steps of the state-sum construction we get:
2. For the various edge indices
C=N""T"@N "' @0, ® gr, ® grs ® Gus

from (3.2.29). Recall from Notation 3.1.17 that the same symbols denote edges and
the assigned edge indices.

3. For the inner vertex and the ingoing vertices we set
2= (Y2 @ @ (1) @
from (3.2.31) according to the map V in (3.2.45).
4. For the single 9-gon F = £ o ¥ from (3.2.33).

5. The permutation is IMe = (12543)(89) from (3.2.34) where we use the cycle notation
for the permutation of tensor factors. After a calculation using associativity of the
product and the last equation of (3.2.3), the morphism £ in (3.2.36) is

— —1 — -1 1
P)‘ION U1 ®P)\2ON U2 P)‘1<‘_)\2OJ\7“3+

A® A AAL A Al . (3.2.46)

6. For the in- and outgoing boundary components we get &, = iy, ® ty, and Epyr =
T+, from (3.2.39) and (3.2.40), since the permutations induced by S;, and Bou
from (3.2.37) and (3.2.38) are identities. Also note that p,, = Ay, etc. Finally by
composing £ with &, and &, as in (3.2.41) we obtain

ZA (SLQ(Ul, Uz, Us, )\17 )\2))

N, EAp Ag N

Ny MeN;, s (3.2.47)
Iy ®@Zyy ——— 20, @ Zxg — Dnjirg — Zoitxa

Observe that Z4 (S512(0,0,0, A1, A2)) = pia, ., from (3.2.13).
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Cup as unit

Consider a disk with outgoing boundary. By Corollary 3.1.20, we get a unique r-spin
structure for boundary parametrisation, namely p = 0. Note that the map f,,; is unique.
Using the notation in (3.1.26) we write Sig := Xg1(u,0) : @ — p. with p : {x} — Z,
ps = 0. However, since the r-spin structure is actually independent of u we may as well
set u = 0. We have

S={(f.k)| k=123 ~{1,23}, (3.2.48)
E ={(r1,0),(r1,r), (uy,7)} =~ {1,2,3} . (3.2.49)

There is an inner vertex vy and an outgoing boundary vertex v, and we set
V(vo) := (ur,7) . (3.2.50)
By the state-sum construction one has
2. For the 2 edges C = g,, ® gy, from (3.2.29).
3. For the inner vertex z = n®? @ 77! from (3.2.31).
4. For the single 3-gon F = ¢ o u® from (3.2.33).

5. The permutation is e = (23) from (3.2.34). Putting the above together according
to (3.2.36) we get

L=PFyon. (3.2.51)

6. For the (empty) in- and outgoing boundary components we get &, = idy and &,y = 7o
from (3.2.39) and (3.2.40). From (3.2.41) we finally get

Za(S10) = 1B AT 2] . (3.2.52)

Za(S1,0)
/7

Observe that |I Zy = @,\leZ,\] =7 from (3.2.15)).

Pair of pants as comultiplication

Consider a 3-holed sphere with the parametrisation as above, just with in- and outgoing
boundary components exchanged, i.e. A;, Ay stand for outgoing boundary components, A3
for the ingoing etc. Then from (3.1.23) one has:

M A+ A —2= )3 (mod 7). (3.2.53)
Denote this r-spin surface with parametrised boundary by

So1 (U1, ug, uz, A1, A2) = B g(ug, ug, uz, 1 — A, 1 =X, A3 —1) 10 = p,
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(cf. (3.1.26)). The morphism £ in (3.2.36) assigned to it by the state-sum construction is

[A g 20N g 2om (D), g gy g DuoN @RV A®A} . (3.2.54)
and from (3.2.41) one obtains
ZA (52,1(u17 U2, U3, /\17 /\2>> -
A_llzf)\272 A>\1,>\2 ;11®N:§
Z)\1+/\2,2 Z)\IJF)\Q,Q E— Z)\l & Z)\Q _— Z)\l X Z,\2 (3255)

Observe that Z4 (521(0,0,0, A1, A2)) = Ay, ., from (3.2.21). While the above morphism
is defined also for r = 0, as was remarked in Section 3.2.2 one can sum these morphisms
only in the case when r # 0, in which case one obtains (3.2.20).

Cap as counit

Consider an r-spin disk with ingoing boundary. By Corollary 3.1.20, the boundary para-
metrisation has A = 2 and the r-spin structure is independent of the edge indices. De-
note this r-spin surface with parametrised boundary with Sp; := ¥01(0,2) : ¢ — 0, (cf.
(3.1.26)), with o : {*} — Z, 0, = 2. By the state-sum construction one has

Z4(S0.1) = [22 LNy IR | (3.2.56)

Observe that |@xez Zx = Zs EZICON ]I}

= ¢ from (3.2.22).

We collect the above computations for Z4 evaluated on generators in the following
proposition:

Proposition 3.2.10. Let A € S be a Frobenius algebra with invertible window element
7 and with N = idy,, and let Z4 be the r-spin TFT Z, defined in Theorem 3.2.8. The
the Z,-graded center Z"(A) is equal to @,., Za(A) with product and unit (restricted
to the corresponding graded components) given by Z4 (S12(0,0,0, A1, A2)) and Z4(S1),
respectively. For r > 0, we obtain an equality of Frobenius algebras.

For r = 2, the above relation between state spaces and the Z,-graded center was already
observed in [MS].
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Connected r-spin bordisms

Finally, let us evaluate Z4 on a general connected r-spin bordism with only ingoing bound-
ary components, that is, on 3, (s;, t;, u;, A\; — 1) in the notation of (3.1.26). Write

(s, t) == @ @ (3.2.57)

Using the decomposition of 3, from Figure 3.7 a), a straightforward computation along
the same lines as above gives the following proposition.

Proposition 3.2.11. Let 3, (s;, t;, u;, A\;j—1) denote the r-spin surface of Definition 3.1.10
with only ingoing boundary components. Then

(N7 o).
1

g b
ZA(Zg,b(Siatia Uy, >\J - 1)) =¢€0 (7—_1 ’ (_)) © H ¢(sl7tz) © H’(b) ©
=1 Jj=

(3.2.58)

3.3 Action of the mapping class group

Since the TFT is defined on diffeomorphism classes of r-spin surfaces with parametrised
boundary, it is of natural interest to calculate these classes. Bundles related by homo-
topic underlying surface diffeomorphisms are isomorphic, therefore studying diffeomorph-
ism classes of r-spin surfaces is the same as finding the orbits of the mapping class group
acting on the set of isomorphism classes of r-spin structures on fixed surfaces. Here by
mapping class group (MCG) we mean diffeomorphisms of the surface which restrict to
the identity on the boundary, up to smooth homotopy which fix the boundary, see [FM,
Sec.2.1].

We consider Y, 5, a connected surface of genus g with b boundary components. Generat-
ors of the MCG of ¥ ;, are given by Dehn twists along loops in Y, as shown in Figure 3.12.
For g = 0 this can be shown combining [FM, Thm. 4.9, Prop. 3.19 and Sect. 9.3]; for g > 1
this is shown in [FM, Sect. 4.4.4].

We will compute the action of these generators on the set R"(3,)x,, of isomorphism
classes of r-spin structures with parametrised boundary for given maps A : B;, — Z, and
i Byt — Z, in terms of the parametrisation given in Section 3.1.5. We will then use
these results in Section 3.5 in order to prove our main result, Theorem 2.2.2.
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Figure 3.12: Dehn twists along the following loops provide a choice of generators of the MCG.
a) Loops in Xop: {0, hij|i,5 = 1,...,b, 0 # j}. Here, 0; denotes the boundary component j
and, for b > 2, h;; denotes the connected sum of 9; and J;. The connected sum is taken with
respect to a choice of points on each loop and a path between these points, so that the result is
as shown in the figure. Note that h;; = hj;.

b) Loops in ¥y for g > 1: {0;, hyj } as before, and { fi,a;,b;,de |1 =1,...,b,l=1,...,9, x =
1,...,9—1}. Here, f; denotes the connected sum of 9; and by; d,, denotes the connected sum of
b, and —b,11 and occurs only if g > 2.

Lemma 3.3.1. Consider a surface with a PLCW decomposition which has a cylinder
inside decomposed into a square with identified opposite edges as in Figure 3.13. A Dehn
twist around the edge labeled by t sends t — t 4+ s and does not change the other edge
labels.

Proof. First refine the decomposition of Figure 3.13a) as in Figure 3.14a). This gives an
isomorphic r-spin structure to the original one by Proposition 3.1.16. Pulling back the -
spin structure along the induced action of the Dehn twists yields the r-spin surface shown
in Figure 3.14 b). Now apply Part 3 of Lemma 3.1.11 on the upper triangle to obtain
Figure 3.14¢). Remove the middle edge by Proposition 3.1.16 to get the r-spin surface
described by Figure 3.13b). O

Lemma 3.3.2. Recall the parametrisation of r-spin structures on ¥, from (3.1.26) and
Figure 3.7. Let | denote a loop in ¥4 and let D; denote the isomorphism of r-spin surfaces
induced by a Dehn twist around [. We write

17 V)

Dl (Egyb(si, ti, Uy, RJ)) = Zg’b<81- t/ U;-, Rj> . (331)

Then the action of Dehn twists along the loops shown in Figure 3.12 is as listed in the
following table (only the parameters that change are listed):
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Figure 3.13: Action of a Dehn twist along the edge labeled by ¢t. The two vertical edges labelled
by s are identified.

jagngs

Figure 3.14: Pulling back the r-spin structure along an (inverse) Dehn twist along the edge
labeled by t: a) insert the diagonal edge labelled 0; b) carry out a Dehn-twist along the upper
horizontal edge labelled t; ¢) apply a deck transformation to the top right triangle to change the
label of the diagonal edge to O.

loop | effect on parameters

9; | u;=u;—R;

hij i=ui+ R+ Ry +1 and uj=wu;j+ R+ R;+1
a; | sh=s;—t

by |ti=t;—s;

fi |vy=uj+si+1+R; and t) =1 —s—1-R;

di |ti=t;+sip1—5+1 and t =t —sip1+85—1

Proof. e a;, b;: For the loops a; and b; the statement is a direct consequence of Lemma 3.3.1.
For example for a; split the edge ¢; in two by inserting a vertex, then insert an edge parallel
to s1. Then apply the lemma and remove the previously added edge and vertex.

e 0;: For the loop 0; the statement follows along the same lines, together with (3.1.24).

e f;: We prove the statement for f; in the example 7 = 2. Let s := s; and p =

First find the curve f; on the polygon decomposition, insert the dotted edges parallel to
the loop f5 using Proposition 3.1.16 and change orientations using Lemma 3.1.11 (1) as in
Figure 3.15. We need to consider the part of the decomposition which is a cylinder glued
together from two rectangles as shown in Figure 3.16 a). Then proceed with the sequence
of steps shown in Figure 3.16. Finally apply a deck transformation by —p — s — 1 on the
rectangle bounded by the edges with edge index ¢1, p+ s+ 1, us and p + s. The result
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Up—1 U2
/ "?\

Tb—1 " &
Ty T2 Y S re
Up Arb—l A A SOA U
» i Lt

Figure 3.15: The loop f» (above, in 2 segments, between edges ro and s;) and the loop dy—1
(below, in 4 segments, between edges ty_1, sg—1, ty and s4) on the PLCW decomposition.

a b
) —1 0 ) s 0

p
V2)
p
p+s+1
p+s+1

—1 0 —s—2 0

o
S~—
=

+2s+1p+s+1

<
<
0
p+s+1
(a]
1
p+s+1

—s—2 —1 —s—2 0 —s—2 0 —1 0

Figure 3.16: Calculation of the Dehn twist along the loop f2. a) The cylinder along the loop
f2. The empty dot denotes the boundary vertex, the full dot the inner vertex. The vertical edges
labeled by p are identified. b) Move the marking to the s edge (Lemma 3.1.11 (2)), shift the labels
on the left square by s+ 1 (Lemma 3.1.11 (3)), and remove the middle edge (Proposition 3.1.16).
¢) Add an edge between two opposite corners with edge index 0. d) Move the markings and flip
the middle edge orientation. e) Apply a Dehn twist along the top horizontal edges (marked s
and 0). f) Apply a deck transformation to the top left triangle and move right marking. g)

Remove the diagonal edge, insert new vertical edge. h) Shift edge indices on left square, move
left marking.
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a) b)
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Figure 3.17: Calculation of a Dehn twist along the loop dy—1. The left-most and right-most
vertical edges are identified in all figures. a) The cylinder along the loop dy—i. b) Move the
markings, flip the “p” edge orientation and shift the edge indices on the 3 rectangles on the left.
c) Remove the 3 inner edges and add a new edge. d) Do a Dehn twist along the dy_; loop. e)
Shift the edge indices on the upper triangle by s — p — 1; flip the orientation of the middle edge
and then remove the middle edge; put back 3 edges. f) Move the markings, flip the first and
fourth edge orientation. g) Shift the edge indices on the 3 rectangles on the left.
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Figure 3.18: Part of the PLCW decomposition after a Dehn twist along the loop dgy—1. We shift
the edge indices by @ := s — p — 1 on the following polygons: on the 2 triangles marked by dots;
on the rectangle with edge labels Q — 1, p, —1 and t; on the triangle below with edge labels —1,
q and 0; on the rectangle below with edge labels 0, (), —1 and t; on the triangle below with edge

labels @, p and t.

()

Figure 3.19: The loop hj2 (in two segments between the edges r; and r3) in the PLCW
decomposition of 3, ; and a cylinder around it.

a) b) d)
0 —1 —1 7"1+7"2 T1+T2 T1—|—7’2+1 T1—|—7’2
ry (] Trg To () 7”2{ ™ Ty T2 ™ )
0 =1 0o " 0 ] 0 ~1

Figure 3.20: Dehn twist along the loop his. a) Take the cylinder from Figure 3.19. b) After
changing the marking one obtains a similar cylinder as in Figure 3.16 a). ¢) Do the same steps
as in Figure 3.16 to apply the Dehn twist. d) Change back the marking.
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is a decomposition as on Figure 3.15 with ¢; replaced by t; — p — s — 1 and wus replaced
by us + p+ s+ 1. Now remove the newly added edges via Proposition 3.1.16 (flipping the
edges labelled —1) to arrive to the statement.

e d;: We treat the case i = g — 1 as an example by applying a similar argument as before.
Let s := 541, p:= 54, t :=t,_1 and q := t,. First add vertices and dotted edges parallel
to the loop d,—; as shown in Figure 3.15. We will concentrate on the cylinder cut out by
these edges, as shown in Figure 3.17 a). Proceed along the steps shown in Figure 3.17,
after which one is left with the marked PLCW decomposition shown in Figure 3.18. Let
@ = s — p — 1 and shift edge indices by @) according to the steps in Figure 3.18. This
amounts to

t—t—Q and gq—q+ Q,

after removing the newly added edges and vertices.

e 1i;;: We show the computation for ¢ = 1, j = 2 as an example, for other values of ¢ and j
the argument is the same. Add vertices and dotted edges parallel to the loop hq as shown
in Figure 3.19. We then follow the steps in Figure 3.20. As the last step, one shifts the
edge indices by r1 + 13+ 1 = R; + Ry + 1 by a deck transformation on the square which
has edges u; and uy on opposite sides. O

3.4 r-spin TFT computing the Arf-invariant

In this section we give an example for the state-sum construction of r-spin TFTs, namely
for the two-dimensional Clifford algebra in super vector spaces, and we compute its value
on connected r-spin bordisms (Section 3.4.1). We then recall the definition of the Arf
invariant for r-spin surfaces and observe that the TFT obtained from the Clifford algebra
computes this invariant (Section 3.4.2).

3.4.1 r-spin TFT from a Clifford algebra

Let r € Z>o be even and let k£ be a field not of characteristic 2. Let C¢ € SVect be the
Clifford algebra with one odd generator 6, i.e. Cf = k & kf with 6% = 1. We turn C/ into
a Frobenius algebra via

c1)=2, £6)=0, A(l):%(1®1+8®9), A(G):%(«9®1+1®0). (3.4.1)

Lemma 3.4.1. For the Frobenius algebra C¢ the following hold.
1. 7=poAon=mn, hence C¢ has invertible window element.
2. The Nakayama automorphism is given by N (™) = (—1)"0™.

3. For A € Z,, P\(6™) = 1 [1+ (—=1)*™] 6™, hence Z = ko*.
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s+1)(t+1

4. The morphism ¢, from (3.2.57) is given by ¢s; = %(—1)( ) idey.

Proof. 1. 7(1)=poAon(l)=p(3(0"®6™) =1=mn(1). Its inverse is 7.
2. N(1) =1 in any Frobenius algebra. We calculate N () in steps:
=0 (1lel+000)2— (1001 -00®0)/2+— —0 .

3. We calculate Py(0™) in steps according to (3.2.4):

1 1
6" (0" @1+ 0" ®0) SO @1+ (—)'0m "t 2 0)
1 1
> 5(1 0™+ (=)™ @™ ) 59m(1 + (=)™ .
We see that if A\ and m have the same parity this is the identity, otherwise this is
zero, i.e. Py is a projection onto k.6”.

4. We calculate ¢, +(6™) in steps according to (3.2.57):

1

1
m 1 m—n n 1 m—n n—
0 |—>§n5:06 ® 6 |—>Zl E 0 ® 6" ® 6P

n,p=0

1
1
HZ_L Z (=1)E+DE—p)+E+Dpgm—n o gn=p o gp

n,p=0

1
1
7 Z (—1)EHDE=p)HE D+ (—plpgm—n o gp & =P
n,p=0
1 1
~gm _ 1\ (s+1)(n—p)+(t+1)p+(n—p)
,_)49 Z( 1) P p+(n—p)p

n,p=0
1
1 1
_Zem }: (_1)(s+1+p)(t+1+nfp)f(s+1)(t+1) _ §9m(_1)(s+1)(t+1)

?

n,p=0

where at the last step we execute first the summation over n for a fixed p and notice

that we either get 0 or 2.
O

Let Z¢ denote the TF'T from Theorem 3.2.8 given by the Frobenius algebra C?¢ and
recall from Section 3.1.5 the r-spin structure with parametrised boundary 3, 4(s;, t;, uj, Aj—
1) with only ingoing boundary components and where g + b > 1. By calculating (3.2.58)
in Proposition 3.2.11 and using (3.1.23) we get the following proposition.

Proposition 3.4.2. The value of the TFT Z¢y is

Ze(Sga(sis iy, Ay — D)0V ©- - © 0%) = 279(—1) T on Dt DT,
(3.4.2)
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The following corollary will be used to distinguish 2 MCG orbits on R"(X,;)s,, for
g > 2 and r even.

Corollary 3.4.3. Assume that g > 1 or that b > 1 and at least one of the \;’s is odd
(by (3.1.23) in this case b > 2 and at least two \;’s are odd). Then the following map is
surjective:

RT(Egyb))\ — {+1, —1}
[Eg,b<3i7 ti, Uj, )\j — 1)] — 2g—1 . ch(Zgb(si, ti7 U]’, )\j — 1))(9)\1 XX GAI’) (343)

Remark 3.4.4. 1. One can show, using a similar argument as in [Nov, Sec. 6.5], that
for any choice of Frobenius algebra A € Vect with invertible window element and
with N” = idy the TFT Z4 of Section 3.2.3 is independent of the r-spin structure.
The idea is that if there exists a symmetric Frobenius algebra structure on an algebra
A, then Z4 is independent of the r-spin structure for every other Frobenius algebra
structure on A as well.

2. Let r be a positive integer and let us consider the category of Z,-graded k-vector
spaces Vectyz, . By using the correspondence between braided monoidal structures on
Vectyz, and quadratic forms on Z, [JS] (see [FRS, App. A] for a review) one can check
that for odd r there is only one symmetric monoidal structure on Vecty,.. For even
r there are two: the trivial one inherited from Vect and the non-trivial one given by
the super grading.

3. One may wonder whether taking Vect;, with some choice of symmetric monoidal
structure would yield more examples of r-spin TFTs than what one can find with
target Vect or SVect. Part 2 shows that this is not so: All symmetric monoidal
structures on Vecty, are inherited from Vect or SVect (and only from the former for
r odd). Thus all algebras A € Vecty, as in Theorem 3.2.8 are also algebras in Vect,
respectively SVect, with the same properties, and produce the same results in the
state-sum construction.

3.4.2 The r-spin Arf-invariant

Let ¥ be a compact r-spin surface with parametrised boundary with maps A : B;, — Z,
and p : By — Z,. By a curve in ¥ we mean a smooth immersion v : [0,1] — ¥ (i.e.
has nowhere vanishing derivative), and which is either closed, or which starts and ends on
the boundary of ¥. In the former case we require in addition that the tangent vectors at
the start and end point agree: £~(0) = 4~(1). In the latter case we require that the start
and end points are the images of 1 € S! € C under the boundary parametrisation maps
and that the tangent vector of the curve is the same as the tangent vector of the boundary
curve. Two curves vy and vy, with v4(0) = ~1(0) and 70(1) = 71(1) are homotopic if there
is a homotopy (s,t) — 7s(t) between them, such that for each s, 75 is a curve in the above
sense. In particular, since %'y must remain nonzero everywhere along the homotopy, one
cannot “pull straight” a loop in the curve.
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Figure 3.21: Two arcs p,q € A(y) of a curve v on a face f. Here f, = f, = f, 8¢, = —se
Seq = Seq> 5%} = +1 and S?q =0.

_]_7

P

Pick a lift vp : [0,1] — FgrX of v to the oriented frame bundle by taking the tangent
vector of y (which is non-zero since 7 is an immersion) and adding another non-zero and
non-parallel vector such that the orientation induced by them agrees with the orientation
of the surface. Such a lift of a curve in ¥ to Fgp X is unique up to homotopy, see e.g. [Nov,
p.26]. Also, if two curves in ¥ are homotopic, then their lifts to Fg X are homotopic as
well.

Consider a disc D around 1 in C* with r-spin structure D" given by the restriction
of C* for k € Z, as in Example 3.1.3. As on a contractible surface, all r-spin structures
are isomorphic (see e.g. [Nov, Lem.3.10]), there is an isomorphism of r-spin structures
D® — D*. In fact, there are exactly r such isomorphisms, and we pick the one which acts
as the identity on the fibre over 1 (by Example 3.1.3, the fibre and projection over 1 € C*
agree for all C*). This construction will be needed to assign a holonomy to curves between
different boundary components.

Recall that P73 is a principal Z, bundle over Fip 3. Pick a lift 4 : [0,1] — Pgz% of

7r to the r-spin bundle. Since the fibers of Pz;X 2y Fo1 Y are discrete, this lift is unique
after fixing it at one point and homotopic curves in Fg % lift to homotopic curves in Pg7 3.
If v is a closed curve let ((v) € Z, denote the holonomy of 5 at v(0) = ~(1). If 7 is not
closed, use the isomorphism D° — D* from above to identify the fibers Z, over the start-
and end-point of g, and let again ((7) € Z, denote the resulting holonomy of 4.

We now explain how to compute these holonomies in terms of the combinatorial de-
scription of r-spin structures. Take a decorated PLCW decomposition of > with edge index
assignment s and consider the r-spin structure (s, A\, u) given by Definition 3.1.10. We
may assume the PLCW decomposition to be fine enough so that its edges split v into a set
of arcs A(y) as in Figure 3.21. Then for every a € A(y) there is a face f, € 35 containing
a and an edge ¢, in the boundary of f, where the arc a leaves the face f, (see Figure 3.21).
Let us assume that e, is not a boundary edge. For s., the edge index of the edge e, let
8¢ = s, if the edge e, and a cross positively, and 8¢ = —s., — 1 otherwise (see again
Figure 3.21 for conventions). Let 5% = +1 if the clockwise vertex of the marked edge of the

face f, is on the right side of a (before glueing the edges) and S;a = 0 otherwise. If v is not
a closed curve, let egare (resp. €enq) denote the boundary edge where « starts (resp. ends),
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and let s, (resp. s..,) be its edge index. Recall that at the starting (ending) point of
v the tangent vector of v is parallel to the boundary edge. Set 3., = —Sey., — 1 if the
edge egay and the tangent vector point in the same direction and S, , := s.,,.., otherwise.
Set 5S¢, = Se., if the edge eenq and the tangent vector point in the same direction and
Seqnq \= —Se.q — 1 otherwise.

The proof of the following lemma relies on the relation to triangulations introduced in
Appendix 3.A and is given in Appendix 3.A.6.

Lemma 3.4.5. Let v be a curve in X. Then:

1. If oy bounds a disc D embedded in ¥, ((y) = 1 if y is oriented counter-clockwise
around the boundary of D and ((v) = —1 otherwise.

2. If 4/ is a curve homotopic to v then ((v') = ((v);

3. We have

5 0 ;7 Is closed |
C(y) = Z (8¢, +0%)+ {A 7 is close (3.4.4)

a€A(v) Segare + 1 57 18 DOL closed .

Note that in Part 3, in case the curve goes from boundary to boundary, the edge index
of the boundary edge where the endpoint of the curve lies is included in the sum over A(7).

Let g+0b > 1 and consider a compact connected surface X, of genus g with b boundary
components with parametrised ingoing boundary and fix a set of curves in the surface ¥,
as shown in Figure 3.22 a). Let us consider a marked PLCW decomposition of X,; as
in Section 3.1.5 and recall the corresponding r-spin structure X,;(s;, i, uj, A; — 1) from
(3.1.26).

Corollary 3.4.6. The holonomies of the curves in Figure 3.22 are

C(a;) = 55, C(bi) =ti, Clcj) =uj —up+1

Iy
—~
&
~—
I

1=, (3.4.5)
foro=1,...,gand j=1,...,b—1.

Proof. We only show the calculation of the latter two holonomies. There is only one face,
let us denote it by f. The tangent vectors of the edge u, and the loop ¢; point in the same
direction and the loop starts at this edge (up = €sgart), therefore §{:b = Sewrare = —Up — 1;
the tangent vectors of the edge u; and the loop ¢; point in the same direction and the loop
ends at this edge (u; = €ena), therefore §£j = Se..q = Uj; the clockwise vertex determined
by the marked edge of the face f is on the right side of the curve ¢; so 5;] = 1. Taking the
sum of all these we get ((¢;) =u;+1—u, —14+1 =u; —u, + 1. The edge r; and the
loop 0; cross negatively and the clockwise vertex is on the right side of the loop, so we get
C0;))=—r;—1+1=1—-\,. O
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Figure 3.22: a) A set of curves in Xgp: {a;bicj|i=1,...,9:5=1,...,b—1}. b) These
curves in the PLCW decomposition of ¥4, (cf. Figure 3.7). The bigger arrows on the edges show
the marked edge: r1 for b > 0 and s; for b = 0.

Definition 3.4.7 (|GG, Sec.5] and [Ran, Sec.2.4]). Let r > 0 be even. The r-spin Arf-
invariant of the r-spin surface X, is

S

g -1

Arf(Sgp) = Y (Cla) + 1) - (C(b:) +1) + Y (Cle;) +1)- () +1)  (mod 2). (3.4.6)

1

i=1 j

Notice that for r even, r-spin structures naturally factorise through 2-spin structures.
Therefore it makes sense to talk about the Arf-invariant of them, which was introduced for
2-spin structures [Joh]. Arf(3,,) is invariant under the action of the mapping class group
of ¥, 4, which has been proven in [GG, Lem. 7] and [Ran, Prop. 2.8]. We provide a different
proof of this result in the corollary to the following theorem.

Theorem 3.4.8. The TF'T Zs computes the r-spin Arf-invariant:
Zar(Zgp(sis tiyuj, Ay — D)(OM @ - @ M) = 2179 . (—1)ATEgulsitin =) = (3.4.7)
Proof. This is immediate from Proposition 3.4.2, Corollary 3.4.6 and Definition 3.4.7. [

Since the morphisms in Bord; are diffeomorphism classes of r-spin bordisms (rel bound-
ary), we get (cf. Remark 2.2.3(2)):

Corollary 3.4.9. The r-spin Arf invariant is constant on mapping class group orbits.
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3.5 Counting mapping class group orbits

In this section we present the proof of Part 3 of Theorem 2.2.2. As we advertised it in
Part 3 of Remark 2.2.3, we give an explicit expression for the number of mapping class
group orbits of r-spin structures on Xg;, i.e. |Op(r)|, depending on the value of r and
the R;’s. Our proof follows the same ideas used in [GG] and in [Ran| to count orbits.
Specifically, in [GG, Prop. 5] the number of orbits is given for general r > 0, ¢ > 0 and
b =0, and in [Ran, Thm. 2.9] it is given for r = 2 in case ¢ = 1, b > 0, and for general r > 0,
in case g > 2, b > 0. Indeed, the authors of [GG, Ran] also calculate how the lifts of Dehn
twists act on the isomorphism classes of r-spin structures in terms of a parametrisation
and use these operations to reduce the parametrisation to a simpler form. Our proof uses
the combinatorial model we introduced in Section 3.1.3, which is is different from the
parametrisation used in [GG, Ran], and we add the missing cases g =0, b > 0 and g = 1,
b > 0 for arbitrary r» > 0.

Recall that a non-negative integer d € Zx( is a divisor of r if there exists an integer n
such that d-n = r. In particular, with this definition every non-negative integer is a divisor
of 0. As before we denote by ged(a, b) € Z>o the non-negative integer that generates the
ideal generated by a and b in Z.

The g =0 case

For g = 0 the MCG is generated by Dehn twists along loops d; and h;; shown in Figure 3.12.
The cases b = 0 and b = 1 have been treated in Lemma 3.1.18 and in Corollary 3.1.20, so
let us assume b > 2.

e Recall from Proposition 3.1.19 that the set of isomorphism classes of r-spin structures
is given by Hle Z./{G), where G = (1,1,...,1).

e By applying Lemma 3.3.2 for the loop 9;, ¥ou(u;, R;) and ¥gp(u}, R;) are in the
same orbit if

uj = u; + Ry (mod 7) . (3.5.1)

e By applying Lemma 3.3.2 for the loop hij, You(u;, ;) and Xgp(uj, R;) are in the
same orbit if

u; =u;+ R+ Rj+1 (mod r) ,
u=u;+ R+ R +1 (mod ) . (3.5.2)

Let n € Z>( and let Ri,ﬁij € Hle Zy for i,5 = 1,...,b, i # j have components

N ~ ~

(R,)k = 5i,kRi7 (HU)Z = (Hzg)] = Rz + Rj +1 and (sz)k =0 for k 7& Z,] Let us define the
quotient group

Oo(n) := (Zn)°/(R;, Hij, G) . (3.5.3)
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By construction, the set Og(r) is in bijection with orbits under the action of the MCG
on isomorphism classes of r-spin structures. This proves the g = 0 case of Part 3 of
Theorem 2.2.2. Notice that in case b = 2, Oy(r) can be computed explicitly by hand:

OO(T> = chd(Rl,r) X chd(Rg,T)/<G> = chd(R1,r) ) (354)

since by (3.1.23) Ry + Ry = 0 (mod r). We continue with computing the order of the set
OO (7’)

Explicit count of MCG orbits in the g = 0 case

Proposition 3.5.1. The number of orbits |Oy(r)| of the mapping class group on the set of
isomorphism classes of r-spin structures on Xy, with b > 2 and with boundary parameters
Rj,j: 1,...,b, is:

o r=20:

% |0p(0)] =00 if b=2 and Ry = Ry = 0,

% |O0p(0)| = ged (2(R; + 1) (R + 1), Ri(Ri + 1)|j, k # 4,5 # k) ifb > 3and R; = 0
for ani € {1,...,b},

* |0p(0)] = |Oo(Ry - Ry - - - Ry)| else.

o > 0: Let r = pi*...p7", a; > 0, be the prime decomposition of r. Then |Oy(r)| =
HiL:1 |Oo(pi')|, with |Oy(p;*)| as computed in Lemma 3.5.3.

In the following we give the proof of this proposition.’ Let us first suppose that r > 0
and let 7 = p{" ...p7" be the prime factorisation of r. The following lemma, whose proof
is elementary, allows one to consider each p]“ separately.

Lemma 3.5.2. Let ¢ : (Zn)" — (Z,1)" x -+ X (Z,21)" be the isomorphism of abelian
groups provided by the Chinese Remainder Theorem. Let U = (uq,...,uy) be the sub-
group of (Z,,)® generated by N elements u,, € (Z,)®, and let V = ¢(U) be its image. Then
V' is generated by the LN elements ug,l@), l=1,...,L,m=1,..., N, whose components in

b
(Zy2:)" are

() = U mod P i=1 (3.5.5)
E 0 1#

This lemma allows us to write Oy(r) = []r_, Oo(p*). The key observation is the next

lemma.

Lemma 3.5.3. Let a € Z~( and p a prime number. Then the order of Oy(p®) is given as
follows:

'We are indebted to Ehud Meir for showing us how to obtain an explicit expression for the order of
Op(r) by first passing to the prime factorisation and then analysing each prime separately.
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p | #{Rx divisible by p} | |Oo(p®)]
2 0 or odd 1
2 ng(2a, {Rk S.t. 2|Rk}, {Rk +1s.t 2 J[ Rk})
> 2 and even 2
> 2 2 ged(p®, { Ry s.t. p|Ri},{Rir + 1 s.t. pt Ry})
%2 1

Proof. We start by rewriting
a b b
Oo(p™) = (10 Zucatnogm ) /(Hi G) = (o1 Zyo) {Hip,G) . (35.6)

where we defined 3; € {0,1,...,a} via ged(R;, p®) = p%. Let H;; € Hle Ly, for i,j =
1,...,b, i # j have components (H;;); = R;+1, (H;;); = Ri+1 and (H,;), = 0 for k # 4, j.
That iS, [:[ij = 1144 in H?:l Zpﬂi.

Note that R; = S;p” for some integer S; (which may still be divisible by p). Now if
some R; is not divisible by p, then 3; = 0 and so this factor can be omitted from the above
product. Let

Ic{1,2,...,b} (3.5.7)

consist of elements 7 for which 3; > 0. The generators H;; now split into two sets, namely
H;j withi,5 € I,7# j, and Hi(k), with ¢ € I, k ¢ I, whose only non-zero component is the
1’th one, which is equal to R, + 1. We arrive at

Oo(p®) = (ILic; Zype:) /(Hij, 7Y ay . (3.5.8)

Pick a pair 4,5 € I with ¢ # j and such that 8; < 3;. Then in A := Z,s, x Zpaj we
have H;; = (1, R; + 1). Since R; is divisible by p, R; + 1 is not, and hence is invertible
modulo p%. Let g € Z be such that ¢(R;+1) =1 mod p%. Since 8; < j; this implies also
that ¢ =1 mod p% (as R; =0 mod p%). Altogether, in A we have ¢(1, R; +1) = (1,1).
Conversely, (R; +1)(1,1) = (1,R; + 1) in A, and so we can replace the generator H,; by
H,; € [Ler Z,p5. which has entries 0 everywhere except for in positions ¢, j € I, where it
has entry 1. The group Og(p®) can thus be written as

Oo(r") = (Iier Zyo) /(g HY . G) = (Tt 2ot ) /5, G) . (35.9)

where now, for i € I,
p’Bw/' = ged (p*, Ry, {Rie + 1}rgr) - (3.5.10)
At this point we distinguish cases by the number of elements in I:

e |I| =0,1: In this case G already generates the group and so Oy(p®*) = {0}.
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e |I| = 2: Then I = {i,j} for some i # j and H;; = G. Thus Oy(p*) = Z. with
v = ged (p®, { Ri }wers { R + L}rgr)-

o |I| > 3: Then Hyy + Hy3 — Hoz has 2 at the first component and 0 everywhere
else. This means that one can take the first component (mod 2), and by a similar
argument also for all the other components, that is

Oo(p®) = {0}  ifp#£2. (3.5.11)

If p = 2, first note that if || is odd, then using G one can generate a 1 in any one
component, with zeros in all other components, so furthermore

00(2%) = {0}  if |I] odd . (3.5.12)

If |7] is even, by the above argument we can take every entry (mod 2), and it is then
easy to see that there are exactly two orbits:

Op(2%) = Zy if || even . (3.5.13)

]

Next we turn to the case » = 0.

Lemma 3.5.4. If R; #0 for every i = 1,...,b then Oy(0) = Og(Ry - Ry-+- Rp). If R; =0
for some i and b = 2 then the order of Oy(0) is infinite. If R; = 0 for some i and b > 3
then the order of Oy(0) is ged (2(R; + 1)(Ri + 1), Re(Ri + 1) |5,k #4,j # k).

Proof. Let us assume that R; # 0 for every ¢ = 1,...,b. Then observe that
HZR (H;;,G) = Og(Ry - Ry--- Ry) , (3.5.14)

by ged(R; - Ry -+ Ry, R;) = R; as in (3.5.6).
Assume that there is an i such that R;; = 0. If b = 2 then using (3.1.23) we see that
Ry = Ry =0. Hence R, = Ry = 0, Hys = G and so (3.5.3) reduces to Oy(0) = Z*/(G) 2 Z.
Suppose now that b > 3. For simplicity we take iy = 1. Note that the element
djorHij —Ghas =1+ 3. (R +1) = -2+ Z?=1(Rj + 1) as the first component
and 0 everywhere else. But by (3.1.23) we have that ZLI(RZ- + 1) = 2, so that we get
G=>" j>1 Hij, .e. the generator G is redundant. Furthermore, the following elements are

in the subgroup (H,;) of Z x H?:z Zg;, fori,5 > 1,1 # j:

RjHlj - (RJ<RJ —|- 1),0, P ,O) ;
(Ri + 1)Hy; + (R; + 1)Hy; — Hyy = (2(R; + 1)(R; +1),0,...,0) . (3.5.15)
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Write g = ged(2(R; + 1)(R; + 1), R;(R; + 1)|i,j > 1,7 # j) and consider the map
b
¢ O() HZRl —)Z , (al,...,ab) — a1 —Z(R]+1)CL] . (3516)
j=2

Note that this map is indeed well-defined on the quotient and is a surjection. The map
ULy — [1ooy Zr, | (Hy), m — (m,0,...,0) is equally well defined thanks to the elements
in the subgroup listed in (3.5.15). By construction, ¢ot) = id. We now show that ¢o¢ =
The composition maps

b
(ay,...,a) — ([al ) (Rj+ 1)a .,0) . (3.5.17)
=2
By adding Z?:z a;H; ; we get back (ay,...,ap). Thus |Op(0)| = g. O

This completes the proof of Proposition 3.5.1, i.e. the explicit count of MCG orbits in
the g = 0 case mentioned in Part 3 of Remark 2.2.3.
The g =1 case
By Lemma 3.3.2; the set of MCG orbits is in bijection with

O1(r) := (Z?« X H?:l chd(Ri,r)> /T, (3.5.18)

the set of orbits under the action a group 7' generated by the following affine-linear trans-
formations. Write an element of the above product as

T=(s,t;up,...,up) . (3.5.19)

Then T is generated by the transformations (recall that d; in Lemma 3.3.2 only appears
for g > 1)

Tg(f) (8 t U + 1 , Uy, + 1) R

T.(Z) = (s — ttul,...,ub),

To(Z) = (s, — s;up, ..., up)

T (T) = (s,t —s—1—Rjjur,...,u; +s+1,...,u)  1<5<b,

Ty, (Z) = (s, t5ur, o yug + Ry + 1,0 uy + R+ 1,000 w) 5 1<i<j<b. (3.520)

It will be convenient to replace T, by Tj := Tb’lej which acts as
T3(%) = (s,t — (Rj+ 1);up,...,u; +s+1,...,u) . (3.5.21)
Another convenient combination of generators is
Ts := T, T, ' Tu(Z) = (—t, s;up, ... ,wp) (3.5.22)

Note that T, and T}, give an action of SL(2,Z) on Z2. The orbits of this action are
parametrised by divisors of 7:
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Lemma 3.5.5. Let D, denote the set of divisors of r. The map D, — Z2?/SL(2,7),
d — [(0,d)], is a bijection.

Proof. Surjectivity: Let (s,t) € Z? be arbitrary and let g := ged(s,t) and d := ged(r, g),
in particular d € D,. We can find u,v € Z such that us + vt = g and x,y € Z such that
xr +yg = d. Consider the elements

A= (t/g _3/9> and B = (g/d _r/d) (3.5.23)

u v x Y

in SL(2,7Z). They satisfy A[(s,t)] = [(0,9)] = [(r,g)] and B[(r, g)] = [(0,d)] in Z2. So we
have that BA[(s,t)] = [(0,d)].

Injectivity: Let d,d’" € D, and assume that (0,d) and (0, d’) lie on the same SL(2, Z)-orbit.
That is, there is an A € SL(2,Z) such that A(0,d) = (0,d') holds in Z2. Tt follows that
there is an integer a € Z such that ad = d' (mod r). Conversely, there is an integer a’ such
that a’'d’ = d (mod r). These relations, together with the fact that d and d' are divisors of
r, show that the ideal (r,d,d') in Z generated by r, d, d' is equal to (d) and equal to (d').
But then d = +d’, and since both are non-negative, we have d = d'. O

To analyse the set of orbits O;(r) we distinguish three cases by the number of boundary
components.

e b = 0: In this case T is generated by T, and T} only and we can directly use Lemma 3.5.5
to conclude that |Oy(r)| = |D,|.

e b = 1: In this case, T(s,t;u1) = (s,t;u; + 1), which removes the factor Zgeq(g, ) in
(3.5.18). The remaining non-trivial generators acting now on Z? are T,, T, and T} (s,t) =
(s,t —(R1+1)). But by (3.1.23) we have R; + 1 = 0, and so T3 also acts trivially. This
reduces us to the b = 0 case and we again have |Oy(r)| = |D,|.

e b > 2: The generators T and Tj,, commute with all generators. Let U C T' be the
subgroup generated by Tg and T}, and write

A= (Zz <1, chd(Rim) /U (3.5.24)

Note that the quotient by U amounts to dividing out a subgroup, and so A is still an
abelian group. In the following, we will consider the action of 7' on A. By construction,
we have A/T = Oy(r).

For all i # j we have

Xij(7) = TR E) = (st — 2Ry + )Ry + 1),y up) (3.5.25)

where u; = u; + (s + 1)(R; + 1), uj = uj + (s + 1)(R; + 1) and uj, = uy for k # i, j. We can
set u; and u; back to u; and to u; respectively by acting with Th_;_l, and so in A we just
have that
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Condition (3.1.23) now reads Y0 (R; + 1) = 0. Using this, we compute the iterated
composition

b
II Xu@) = (st +2(R; + 1)(R; + Lsua,...,w) . (3.5.27)
i=1,i#j
The R;’s power of T} acts as TjR"(f) = (s,t = Rj(Rj+1);u,...,up), so that altogether we
find elements Y; € T" which act on A as
The cases R; even and R; odd behave differently:

e R; even: the action of TjRj can be obtained as a power of Y},

e R; odd: an appropriate combination of TjRj and Y; maps @ to (s, t+R;+1;uq, ..., up).
We define

1) R
P {Q(Rz—i- ) 3 R; even (3.5.20)

Ri+1 R odd

and g := ged(r, Py, ..., P,). With this notation, 7" contains an element that maps (s, t; %)
to (s,t+P;;u), j =1,...,b. By conjugating with Ts from (3.5.22) one furthermore obtains
a group element that maps (s, t; @) to (s+ P;, t;@). We are therefore reduced to considering
the T-orbits in

A= (22 % Ty Zagaion ) /U (3.5.30)

As before, A’ is an abelian group, and by construction we have A'/T = O4(r).

The above expression for g can be simplified. Indeed, the number of times a prime
p > 3 divides P; is equal to the number of times it divides R; + 1, as the presence of a
factor of 2 makes no difference. For the prime p = 2 note that 2 divides P; exactly once if
R; is even, and at least once if R; is odd. One easily checks that with

g =ged(r,Ri+1,...,Ry+1) (3.5.31)

we have

(3.5.32)

/

~)2g" ; reven and at least one R; even,
g g ; else.

At this point it is easy to give a lower bound on the number of orbits: Consider the
projection A" — Z2,, (s,t, 1) — (s,t), with ¢’ as in (3.5.31). On Z, the generators T, T}
Th,; all act trivially, so that we obtain a surjection

2
AT — Zy/SL(2,Z) . (3.5.33)

By Lemma 3.5.5, the right hand side consists of Dy, many orbits. Altogether,
0] > D] . (3.5.34)
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We now give an upper bound for the number of orbits. From Lemma 3.5.5 we know
that each orbit contains a representative

= (0,d;uq,...,up), (3.5.35)

where d now is a divisor of g. Since irrespective of the parity of R;, adding 2(R; + 1) to
the second entry of A’ acts trivially, we have TJQ(@ =(0,d;uy,...,u;+2,...,u).
We now go through various cases depending on the parity of r and the R;:

e 7 odd: In this case ged(r, R;) is odd for all j, and the above shift by 2 can be
replaced by a shift by 1, so that each orbit in A’/T contains an element (0, d;0, ..., 0).
Furthermore, by (3.5.32) we have g = ¢’ and so the lower bound (3.5.34) is strict.

e 1 even: Define J C {1,2,...,b} as
J={j| R, even} . (3.5.36)

Suppose that j ¢ J, i.e. that R; is odd. Then adding R; + 1 acts trivially on the
second component in A’, and so T;(y) = (0,d;uq,...,u;+1,...,up). In this way one
can set all entries u; of @ to zero for which j # J. Depending on the number of even
R;’s, we see different behaviour:

> |J| = 0: All R; are odd and hence g = ¢’ and each orbit contains a representative
(0,d;0,...,0). Thus the lower bound (3.5.34) is strict.

> |J| odd: This case cannot occur as Z?Zl(Rj + 1) = 0 by (3.1.23). Indeed,
taking this mod 2 and using that R; + 1 is even for j ¢ J shows that 0 =
>jes (R +1) = |J| (mod 2).

> |J| > 2 even: We already know that every entry of i can be reduced mod 2. Let
i,j € J with i # j. Applying the generator 7}, and reducing mod 2 shows that
we can find an element of U that maps ¢'to (0, d;uy, ..., u+1, ..., u;+1,. .. ug).
Without loss of generality let us assume that 1 € J. Using the above shifts, and
the mod 2 reduction we have anyway, we can transform (0, d; @) to one of

(0,d;0,0,...,0) or (0,d;1,0,...,0). (3.5.37)
Furthermore, acting with T} shows that, for e € {0, 1},
(0,d;e,0,...,0) and (0,d+ (R;+1);e+1 (mod 2),0,...,0) (3.5.38)

lie on the same T-orbit.

By definition, d is a divisor of g = 2¢’. But using (3.5.38) on a given orbit we
can always find a representative of the form (3.5.37) where d is actually a divisor
of ¢’. Indeed, in the present case ¢’ is odd, and so if d divides g but not ¢’, it
must be even, and d + R; 4+ 1 is odd. As in the proof of Lemma 3.5.5 we can
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use the SL(2,7Z) action to replace d + Ry + 1 by ged(0,d + Ry + 1,2¢") which is
odd and hence a divisor of ¢'.

From the surjection (3.5.33) we know that different divisors d of ¢’ lie on different
orbits of 7.

It remains to show that for each d € Dy, the two elements in (3.5.37) lie on
distinct orbits. We can assume without loss of generality that all boundary
components are ingoing by changing the corresponding R; to —R;, since by this
operation we do not change the parity. With this assumption we use Proposi-
tion 3.4.2 for ¥ ,(0,d,¢€,0,...,0, Ry, ..., Ry). One computes the RHS of (3.4.2)
to be

(—1)dHiteE+D) (3.5.39)

Since R; 4+ 1 is odd, different values of € produce different signs.

Altogether, we have shown that in the present case, the number of orbits is
|O1(r)] =2|Dy| . (3.5.40)

This proves the g = 1 case of Part 3 of Theorem 2.2.2.

The g > 2 case

For g > 2 one can set s; = 0 for every i = 1, ..., g as before and by using Lemma 3.3.2 for
the loops 0; and f; one can set u; = 0 for every j = 1,...,b. Then using the lemma for
the loops d; one can set t; = 0 for i = 2,...,g. Let us focus on (s1, 1, 2, t2) and apply the
lemma for the following loops:

loop d1 loops a2, by
_—

(0,¢,0,0) (0,t —1,0,+1) (0, —1,0,—1) =22 (0, — 2,0,0).
This shows that there are at most 2 orbits for r even and 1 orbit for » odd. Again, as in
the g = 1 case we assume that all boundary components are ingoing. By Corollary 3.4.3
there are at least 2 orbits for r even.

This completes the proof of the g > 2 case of Part 3 of Theorem 2.2.2 and thereby the

proof of the entire theorem.

3.A Appendix: From triangulations to PLCW de-
compositions

By a triangulation of a surface we mean a smooth simplicial complex for the surface such
that each boundary component consists of 3 edges and 3 vertices. In [Nov] a combinatorial
description of r-spin surfaces was given using triangulations. The purpose of this appendix
is to show how to obtain the combinatorial description of r-spin surfaces using PLCW
decomposition of Section 3.1 from triangulations.
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Figure 3.23: The 3 edges and 3 vertices of a boundary component together with the additional
marking of one edge. The curly arrow shows the orientation of the boundary component and the
empty vertex shows the ending vertex of the additionally marked edge.

3.A.1 r-spin surfaces with triangulations

Let us summarise the results of [Nov]. More precisely let us look at the differences between
that formalism and the formalism developed in Section 3.1.

Let X be a marked triangulation of a surface with parametrised boundary, i.e. every
edge has an orientation and an edge index and every face has a marked edge. Let us assume
that all boundary components are ingoing and recall the notions of Section 3.1.3. Put an
additional marking on one of the edges of each boundary component b. The induced
orientation of the boundary component gives a starting and and ending vertex of this
additionally marked edge, see Figure 3.23. For a boundary vertex u let a,, := +1 if it is
an ending vertex for the additionally marked edge and «,, := 0 otherwise. We furthermore
assume that the orientation of boundary edges agrees with the induced orientation of the
boundary components. The marking is called admissible for a given map A m(0X) — Z,
b Ny, if the following hold for every inner vertex v and every boundary vertex u on a
boundary component b.

Y s=D,—N,+1 (mod r) | (3.A.1)
e€d~1(v)

> 4=D,—No+1l+a-(1-XN) (mod 7) . (3.A.2)
ecd1(u)

Here, D, /y, Ny, and 5. are defined as in Section 3.1.3. According to the construction in
[Nov, Sec.4.8] we proceed as follows:

e Define an r-spin structure on » minus edges and vertices by giving the interior of the
faces the r-spin structure C°.

e Define transition functions for every pair of faces fixed by the edge indices to extend
the above to ¥ minus vertices.

e There is a unique r-spin structure 3(s) extending to the vertices if and only if the
edge index assignment is admissible. Extend the r-spin structure to the vertices.
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e The r-spin boundary parametrisation map is the inclusion of the r-spin collars ac-
cording to the map A. The inclusions map 1 € C* to the boundary vertex determined
by the extra marking of the given boundary component.

3.A.2 Distinguishing in- and outgoing boundary components

The glueing of r-spin surfaces with parametrised boundary is defined as follows. First
for every k € Z, we specify an r-spin lift I* : C* — C?>* (5° in [Nov, Eqn. (3.35)]) of
the map z — 27! given by an element ¢ € Z,. Take two boundary components with
r-spin structure on a neighbourhood of these components C* and C>*. We can glue these
boundary components along their r-spin boundary parametrisation composed with 7.
To define outgoing boundary components we precompose the above boundary para-
metrisations with I for outgoing boundary components. (For convenience we will choose
e = 0, as different choices of € can be seen as composition with different r-spin cylinders.)
Then one can glue r-spin boundary components along in- and outgoing boundary para-
metrisations as described in Section 3.1.1. We now give more details on the construction.
Let ¥ be an r-spin surface with ingoing r-spin boundary parametrisation

o || oz
bETro(@E)

for a map \ : mo(9%) — Z, which maps b — X,. In order to distinguish in- and outgoing
boundary components we first fix two sets By, Bowt C mo(0X) as in Section 3.1.1. Let
IA:ZT—>ZT be the map x — 2 — x. We define maps A : By, = Z, and u : By — Z, by
A=\, and p:= 1o M|p,,. For the in- and outgoing r-spin boundary parametrisations
we set

Yin == Sa||_|beB- Ub)\b and Pout, = @|I—|C€Bout UC)\C ° ( |_| ISC)

m
c€Bout

respectively. The admissibility condition (3.A.2) needs to be changed since we are para-

metrising outgoing boundary components ¢ € B,,, with C?>~*¢ instead of with C*. This
means that for a vertex v on an outgoing boundary component c the factor a, needs to be
—1 instead of 41, since 1 — (2 — A.) = —(1 — \,).

3.A.3 Refining PLCW decompositions of r-spin surfaces

By a series of radial subdivisions we mean radially subdividing the 1-cells and then the
2-cells, see Figure 3.24. This means splitting each edge in two by adding a vertex, adding a
vertex to the interior of each face and adding edges between this new vertex and all other
vertices of this face. The following lemmas follow from straightforward calculations.

Lemma 3.A.1. Let L. be a PLCW decomposition obtained by a series of radial subdi-
visions from a PLCW decomposition K with admissible marking. Assign to new edges
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S4 S3
S
S4 3 S3
Sq
s 82
S5 S9
S5 S92
S1 S S1

Figure 3.24: New edge indices after a series of radial subdivision. The new edge connecting the
new vertex in the middle with the vertex which was in the clockwise direction of the marked side
of the face (cf. Figure 3.3) has edge index -2, all other new edges inside the face have edge index
-1. The admissibility conditions (3.A.1) and (3.A.2) at the vertices remain unchanged at the old
vertices and they are satisfied at the new vertices.

Ty
Vo

N
i

LJ
U U
2 U3

Figure 3.25: Refinement at a boundary component b. Edges without labels have edge index -1,
the edges between vy and vy with edge label r, are identified.

the markings, orientations and edge labels as shown in Figure 3.24. The vertex conditions
(3.A.1) and (3.A.2) are satisfied at the old and new vertices.

Since we assumed that every boundary component consists of a single vertex and a
single edge, applying two series of radial subdivisions gives four vertices and four edges on
each boundary component. In order to get a triangulation we will modify this refinement
as follows.

Lemma 3.A.2. Let L be a marked PLCW decomposition obtained by applying the steps
in Lemma 3.A.1 twice on another PLCW decomposition K with admissible marking. Add
7 triangles at each boundary component and assign the marking to the new edges as shown
in Figure 3.25 and put the extra markings on edges on boundary components so that the
ending vertex is vy in Figure 3.25. Then the conditions (3.A.1) and (3.A.2) hold at old
and new vertices.
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Sketch of proof. Let us assume that at each boundary component there are only two edges
connecting to the single vertex: the boundary edge and another one coming from the
interior of the surface. In such a situation the refinement is shown in Figure 3.25. The
conditions (3.A.1) and (3.A.2) can be checked by hand at every vertex.

If there are boundary components where more edges connect to the boundary vertex
from the interior in the original PLCW decomposition, checking the conditions (3.A.1) and
(3.A.2) is similar, but we omit the figure here. O

We now have all the ingredients needed to define an r-spin structure with r-spin bound-
ary parametrisation using the tools developed by [Nov]. We proceed as follows.

e Take a surface with parametrised boundary and a marked PLCW decomposition with
some edge indices s and maps A : By, — Z, and u : Boy — Zy.

e Refine this marked PLCW decomposition as described in Lemma 3.A.2. This is a
triangulation by [Kir, Thm. 6.3].

The new marking obtained this way is admissible in the sense of [Nov] (i.e. (3.A.1) and
(3.A.2) hold) if and only if the marking of the original PLCW decomposition is admissible
in the sense of Section 3.1.3 (i.e. (3.1.20) and (3.1.21) hold).

Definition 3.A.3. Let (s, A, 1) denote the r-spin structure on ¥ obtained by the above
steps.

3.A.4 Proofs for Section 3.1

Proof of Lemma 3.1.11. Operation 1 follows directly from part 2 of [Nov, Lem. 4.11].

For Operation 3 do a deck transformation [Nov, Part 1 of Lem.4.11] on all triangles
inside the polygon.

For Operation 2 first notice that moving the marking of a polygon to the next clockwise
edge amounts to changing the edge indices as in Figure 3.26. This is done by a deck
transformation on all filled triangles.

It is a straightforward calculation to show that these operations commute with each
other. [

Proof of Theorem 3.1.15. Let ¥ be a surface with PLCW decomposition. Let ¥’ the same
surface, but now with a triangulation as obtained by a two-fold series of radial subdivisions
as in Section 3.A.3. For clarity, in this proof we will write X for the surface without
decomposition underlying both ¥ and ¥'.

In [Nov, Sec. 4.8] M (3 )E\“ang the set of admissible markings for a fixed triangulation of

¥ with only ingoing boundary components and fixed map A has been defined along with

a similar equivalence relation as ~ ;,, which we denote by ~f.*"¢. [Nov, Thm. 4.18] gives

the isomorphism from the quotient of this set by Ngiang to R"(X)5 the isomorphism classes
of r-spin structures. By a simple reparametrisation as in Section 3.A.2 one obtains from

this the set of admissible markings for in- and outgoing boundary components M (¥’ )&ifng
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a) d)

59

M

s—1s—1s—1 s—

Figure 3.26: Shifting the marking on a face of a PLCW decomposition clockwise. All unlabeled
edges have index -1. a) Part of a face of a marked PLCW decomposition showing the marked
edge. b) The corresponding triangulation after two series of radial subdivisions. ¢) Execute a
deck transformation on the 12 filled triangles. d) The PLCW decomposition with shifted marked
edge which produces the triangulation shown in c).

and the set of isomorphism classes of r-spin structures with in- and outgoing boundary
components R"(X), ,. Thus we get a bijection

M(S)yiame ) uiene T gr(s), (3.A.3)

Let us denote by o : M(Z)FLEW — M(S/){%*" the map that sends a marked PLCW

decomposition to its refinement according to Section 3.A.3. Since the generators of the
equivalence relation ~g, are built up from generators of the equivalence relation Ng}iwg

(see the proof of Lemma 3.1.11 above), we get a well defined map

M) e~ MU s (3
By construction the composition of the maps (3.A.3) and (3.A.4) is the map (3.1.22) in
the statement of the theorem. It therefore remains to show that & is a bijection.

a is surjective: Let (m/,0',s') be an admissible marking of ¥'. As a first step, use the
relation ~¢.""® to change the edge markings m’ and orientations o’ to the form prescribed
in Section 3.A.3, resulting in a marking (m”,0”,s"”). Next follow the algorithm described
in Figure 3.27 to bring all edge indices of ¥’ in the interior of faces of ¥ to the form shown

in Figure 3.25. Denote the resulting marking by (m”,0”,5). Let e be an interior edge of
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Figure 3.27: To convert the edge indices of all edges of the triangulation in the interior of
some face of the PLCW decomposition to the form shown in Figure 3.25 apply the following
algorithm to all faces: I) Pick a triangle in area I; proceeding clockwise around the vertex, use
deck transformations on each triangle to bring the edge index of each edge radiating from the
central vertex to the prescribed value (—1 or —2); note that the final edge in this procedure
automatically has the correct index due to the admissibility condition around the central vertex.
IT) Pick a triangle ¢ in region II which shares an edge with region I but whose neighbour ¢ in
anti-clockwise direction of region II does not. Use a deck transformation on ¢ to set the edge index
of the edge on the boundary of region I to the value in Figure 3.25; proceed clockwise around
region II setting the edge index between two triangles of region II to the correct value; the edge
indices between II and I are determined by the admissibility condition (and so automatically as
stated in Figure 3.25); finally, the edge between ¢’ and ¢ has the correct value by the admissibility
condition around the vertex between region I and II shared by ¢ and ¢'. III) If the face in question
has a boundary component, then in region III one proceeds in the same way as in region II.

Y and let eq, ..., e4 be the edges of ¥/ which cover e, and v;9, v93, v34 the three additional
vertices on e. The admissibility condition around vy, v93, v34 implies that the edge indices
on ey, ...,eq must all be equal. The same argument shows that edge indices on boundary
components are all equal. This shows that (m”, 0", §) lies in the image of «.

a is injective: Let (m,o,s), (m/,d,s") € M(E)}-CW such that a[(m,o,s)] = a[(m/,d, s')],
i.e. a(m,o,s) ~8 o(m/, o, s'). Notice that Lemma 3.1.12 and Remark 3.1.14 apply to
marked triangulations as well. This means that we can assume that the marked edges and
the edge orientations agree (m = m’ and o = o) for the PLCW decomposition and the
triangulation as well. Furthermore, a(m, o, s) and a(m,o,s’) are related by a series D of
deck transformation on the triangulation: D(a(m,o,s)) = a(m,o,s’).

Write 0a(k) for a deck transformation by & units on the triangle A of the triangu-
lation of »’. Deck transformations on different triangles commute, so we can write the
sequence of deck transformations as D = [, da(ka). It is not hard to see that the
identity D(a(m,o0,s)) = a(m,o,s’) requires the ka for all A belonging to a given face
of the PLCW-decomposition of Y to be equal. But this precisely means that D can
be written as a product of deck transformations on the PLCW-decomposition of ¥, i.e.



3.A. Appendix: From triangulations to PLCW decompositions 7

o

SA SA
Figure 3.28: Pachner 3-1 move
Sc sc+s+1
N

SD Sp = V
%

SA Sa+s+1
Figure 3.29: Pachner 2-2 move

(m,0,58) ~gx (M, 0,5). O

In the following we are going to give some tools that relate different marked triangula-
tions and marked PLCW decompositions which parametrise isomorphic r-spin structures.
First we recall [Nov, Prop.4.19 and 4.20].

Lemma 3.A.4. Let X and Y be two r-spin surfaces with triangulation and with the same
underlying surface related by a Pachner 3-1 or 2-2 move as in Figure 3.28 and 3.29. Then
these two r-spin structures are isomorphic.

We define the T},-moves for n > 2 as in Figure 3.30, which takes a 2n-gon glued together
from 2n triangles to a 2n-gon glued together from 2(n — 1) triangles.

Lemma 3.A.5. The T, move induces an isomorphism of r-spin structures.

Proof. First we show that one can obtain the T, move on a triangulation without any

So + 1
Figure 3.30: T, move for n > 2. We remove or add the filled triangles.
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-~/

Figure 3.31: T5 move without marking

Figure 3.32: Induction step for the T}, 11 move

marking by a series of Pachner moves by induction on n. For n = 2 do a Pachner 2-2 move
and then a Pachner 3-1 move as in Figure 3.31. Now assume that the statement holds for
n and show for n + 1. First we do two Pachner 2-2 moves and then apply a 7}, move as in
Figure 3.32 to get exactly the T},,1 move.

Since the Pachner moves in Figures 3.28 and 3.29 only change the marking locally, it is
enough to check how the marking can possibly change near the vertices that are touched
by these moves. If one calculates (3.1.20) for these vertices before and after a 7;, move one
sees that the marking can only change according to Figure 3.30. [

Lemma 3.A.6. Removing a univalent vertex (whose edge was not marked) induces an
isomorphism of r-spin structures.

Proof. When we remove an edge from a PLCW decomposition we need to compare the as-
sociated triangulation with marking from Definition 3.A.3 and then use the above defined
moves to go from one to the other. The part of the triangulations that need to be
transformed into one another together with the transformation steps are shown in Fig-
ure 3.33. [

Proof of Proposition 3.1.16.
Move b) in Figure 3.5 for v # v': As in the proof of Lemma 3.A.6 we need to compare
the marked triangulations associated to the marked PLCW decompositions. The part
of the triangulations that need to be transformed into one another together with the
transformation steps are shown in Figure 3.34.

Since we did local moves which induce isomorphisms of r-spin structures, it is enough
to check how the edge indices will change at those vertices which have been touched by
the above moves. These vertices are marked with a circle. Observe that at the vertices vy,
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v

52

S
S1 S9 1
000 000 000 000

Rt

82 000

Figure 3.33: The part of the triangulations that need to be transformed into one another in
case of removing or adding an univalent vertex v with its edge. The dotted edges have edge index
-2, all other unlabeled edges have edge index -1. The orientation of the edges is left implicit,
cf. Definition 3.A.3. We need to remove the 24 numbered triangles from the middle, we proceed
by removing them in pairs. We use the T, moves consecutively: first remove the two triangles
marked by 1, then the two triangles marked by 2, etc until finally removing the two triangles
marked by 12.

down down

U and v, one does not get any condition on s. The vertices v, v/, v and ve°"™ get
identified with others.
Assume that the vertices v and v’ are distinct and that s, = s; (i = 1,...,4). At these

two vertices one obtains s = 0 (mod ).

Move a) in Figure 3.5: When removing a bivalent vertex as in Figure 3.5 a), a similar
argument applies.

Move b) in Figure 3.5 for v = v': Indeed, look at the original PLCW decomposition and
assume that the vertices v and v’ are the same. Insert a bivalent vertex on the edge, remove
one of the two new edges by the above and then the univalent vertex with its edge using
Lemma 3.A.6. Again, one obtains s =0 (mod 7).

This completes the proof of the proposition. ]
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Figure 3.34: The part of the triangulations that need to be transformed into one another in
case of removing or adding an edge between the vertices v and v’ (cf. Figure 3.5 b)). The edges
between v, v;” and vy have edge index -2, all other edges without edge index have edge index
-1. We need to remove the 24 triangles from the middle, of which 12 has been numbered in pairs.
We use the T, moves consecutively: first remove the two triangles marked by 1, then the two
triangles marked by 2, etc until finally removing the two triangles marked by 6. Then do the
same thing again for the mirror pairs.

3.A.5 Proof of Theorem 3.2.8

For Part 1 a direct computation shows that the morphism assigned to a PLCW decom-
position and the morphism assigned to the triangulation obtained by the refinement of the
PLCW decomposition are the same. One needs to use that multiplication with the 771’s
in the state-sum construction amount to canceling the “bubbles” p o A. Independence of
the choice of the function V' follows from the fact that 7 is a central element.

Next we check independence from the triangulation and from the choice of marking (for
a given r-spin structure). Let us assume that ¥ has b ingoing and no outgoing boundary
components. Let T4(X) denote the morphism in S assigned to X using a triangulation
by the state sum construction of [Nov]. Note that we get three tensor factors of A for
each boundary component, since each boundary component consists of three edges. Now
we explain how to reduce A®3 to A for each boundary component. Recall that we used
the notation (13) for the cyclic permutation of the first and third tensor factors. Compos-
ing Ta(2) with ®°_,(13) o (A ®ida) 0 Ao (772 - (=)) o 1y, we obtain the morphism in
(3.2.41). To show this we use that the factors of 77! remove the “bubbles” po 7. If ¥ has
outgoing boundary components, it is easy to see that composing with appropriate factors
of I'; j. maps of [Nov, Sec.5.4] and my, o u® o (13) again yields the morphism in (3.2.41).
Independence of the details of the triangulation is shown in [Nov, Thm.5.10]. This latter
theorem also states that T4(3) = T4 (X') for isomorphic r-spin surfaces ¥ and ¥', so that
the assignment Z4 : Bordj — S is well defined on morphisms.
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Figure 3.35: Detail of a face with interior edges of a refined PLCW decomposition with the
segment p € A(7) of the curve ~ crossing it. Using Part 2, we can assume that the segment of
the curve crosses as shown in the figure. All edge indices without edge labels are —1. Notice that
when crossing the dotted area, the lift of the curve does not pick up any of the w, contributions.

LN AN AN
LD AN AN

Figure 3.36: The different values of k. for different positions of the crossing curve segment.
The edge e is where the line segment leaves the triangle.

For Part 2 functoriality can now be seen easily from the above discussion and by using
[Nov, Prop.5.11], since the embeddings and projectors ¢y, and 7y, compose to Py,, which
can be omitted due to [Nov, Prop.5.13]. Monoidality and symmetry follow directly from
the construction. This completes the proof of Theorem 3.2.8.

3.A.6 Proof of Lemma 3.4.5

Part 1 does not involve the marked PLCW decomposition and is shown in [Nov, Lem. 3.12].

Part 2 follows directly from the discussion in the main text: homotopic curves in X
(in the sense described in the beginning of Section 3.4.2) have homotopic lifts in Fg %
and homotopic curves in Fizr X have the same lifts in P=7 after fixing them at the same
starting point.

For Part 3, we are going to calculate the holonomy by summing up the contributions
for all arcs A(y) as in (3.4.4).

The contribution for p € A(7) can be computed as follows. Take the face f, which p
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Seend Seend Seend SeStaTt Seitart Sestart

TR, [

Figure 3.37: Detail of two (not necessarily different) faces with two boundary edges of a refined
PLCW decomposition where the curve « starts (b) and ends (a), i.e. at the image of 1 € C*
under the boundary parametrisation. All edge indices are —1 unless otherwise noted.

crosses and take its refinement to a triangulation as in Section 3.A.3. Let us first assume
that this face has only inner edges, as in Figure 3.35. Let ey, be the edge where p leaves the
face f,. The contribution of p can now be calculated by summing up for each triangle the
“w.” contributions of [Nov, Section4.7]. For a given triangle ¢t and edge e, where the curve
leaves t, the contribution is w, = 8. + k. by [Nov, (4.33)], where k. is given in Figure 3.36.

First the curve crosses 3 triangles, which give a contribution of
(04+0)4+(04+0)4+(04+0)=0.

Notice that when afterwards crossing the dotted area, the lift of the curve does not pick
up any of contributions: for every group of 4 triangles the contribution is

(=241 + 0+ 1)+ (=24 1)+ (0+1)=0.

If the marked edge of the face f,, is on the right side of p with respect to the orientation of f,
then the curve has crossed the corresponding edge with edge label -2 and the contribution
is

5% =1
Finally the curve crosses 6 triangles, which give a contribution of
(240D 4+ 0O+ +(—2+1)+(-1+1)+(-14+1)+ (5, +1) =5, .

This proves the formula (3.4.4) if v is a closed curve.

If the curve v starts and ends on the boundary of the surface then we take it into
account as follows. The parts of the triangulation where v starts and ends is shown in
Figure 3.37. As described in the main text we have r-spin isomorphisms D* — D° of some
neighbourhoods of the starting and ending point of v, both sending these two points to
1 € D° C C°. Under these isomorphisms the neighbourhood of 1, together with a part of
~v and the boundary edges is shown in Figure 3.38. This way we can handle v as a closed
curve and by Part 3 we can modify the curve by a homotopy as in Figure 3.38, so that it
crosses the edges egary and eepq.
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DO

Seend

Figure 3.38: Detail of D° with the image of the identification of the neighbourhoods of the
starting and ending point of 7. The circle denotes the two boundary components mapped onto
each other. We obtain a closed curve which, by using Part 2, we are allowed to change by a
homotopy to the dotted curve. This allows us to compute the holonomy in terms of the “w.”
contributions as before.

We can now calculate the contribution of these crossed triangles as before. The curve
first crosses the boundary triangle in Figure 3.38 picking up the contribution

§estart + ]‘ :
Then it crosses the two triangles in Figure 3.37 b) picking up the contribution
(04+0)+(-140).

After crossing inner edges finally it crosses the two triangles in Figure 3.37 a), using
Figure 3.38, picking up the contribution

(O + 1) + (O + §eend) ‘

Summing up the above contributions, we get formula (3.4.4).
This completes the proof of Lemma 3.4.5.






Chapter 4

Area-dependent quantum field
theory with defects

In this chapter we present area-dependent quantum field theories in detail. This part
of the thesis has appeared in [RS2]. In Section 4.1 we collect all the required algebraic
preliminaries about regularised algebras and RFAs, as well as their modules. In Section 4.2
we state the definition of an aQFT without and with defects, and we show that aQFTs
without defects correspond to commutative RFAs. Section 4.3 contains the state-sum
constructions, first the one without defects and then the version with defects. It is shown
how the data needed for the state-sum construction can be obtained from RFAs and from
dualisable bimodules, and how the tensor product of bimodules and the fusion of defect
lines are related. Finally, in Section 4.4 we give a detailed treatment of our main example,
2d YM theory with Wilson lines as defects.

4.1 Regularised Frobenius algebras

4.1.1 Definition of regularised algebras and Frobenius algebras

Let (S,®,1) be a strict! monoidal category whose hom-sets are topological spaces such
that composition is separately continuous.

We stress that we do not require the composition of S to be jointly continuous, nor the
tensor product of S to be (jointly or separately) continuous. The reason is that our main
example — the category of Hilbert spaces with bounded linear maps and strong operator
topology — has none of these properties, see Remark 4.1.11 below.

Definition 4.1.1. A regularised algebra in § is an object A € § together with families of

L Although our examples of such categories will not be strict, it can be show that one can always
find an equivalent strict monoidal category with these properties such that the equivalence functor is a
homeomorphism on hom-sets.

85
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CDE A B A
ida=|  oap=
A B A A B

Figure 4.1: Graphical notation of morphisms in a strict (symmetric) monoidal category S. Here
a morphism f € S(A® B,C ® D ® E), the identity id4 € S(A, A) and the symmetric braiding
o4,p are shown. The tensor product of morphisms is depicted by drawing the morphisms next
to each other and composition of morphisms is stacking them on top of each other.

morphisms
fa € S(A®? A) and 1, € S(I, A) (4.1.1)
for every a € R+, called product and unit, such that the following relations hold:
1. for every a,ay,as, by, b € Ryg, such that a; + as = by + by = a,

Hay © (idA ®77a2) = M, © (nb2 ® ldA) ) (412)
Hay © (1dA ®#a2) = Hp, © (:ubz ® ldA) )

2. Let P, € S(A, A) be given by (4.1.2), i.e. P, = pg, © (ida @ 1,,). We require:

(a) lima_>0 Pa = ldA
(b) The assignments
RZ, — S(A®", A®™)
(a1, an) s Po @@ Py, (4.1.4)

are jointly continuous for every n > 1.

Let A, B € S be regularised algebras. A morphism of regularised algebras A S Bisa
morphism in S such that for every a € Ry

Ne =fom', pio(f®f)=1Fou.

Note that continuity is imposed only on P, but not on u, or n,. However, we will see
shortly that continuity of p, and 7, is implied by the definition. On the other hand, it is
important not to impose the existence of an @ — 0 limit on pu, and 7,; in Section 4.1.3 we
will see examples where this limit does not exist, which would then have been excluded.

We will often use string diagram notation to represent morphisms in strict monoidal
categories, our conventions are given in Figure 4.1. The morphisms in (4.1.1) are drawn as

A A

Ha=me M= (4.1.5)

A A I
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and the relations in (4.1.2) and (4.1.3) are

A A A A 4
) al bl
o= AP = 4o =P and A _ (4.1.6)
a2 bo
A1 I A A A A AA A A

The next lemma gives some simple consequences of the above definition. In particular,
part 4 shows that even though we imposed no continuity condition on the tensor product
of §, as far as morphisms built from a regularised algebra are concerned, everything is even
jointly continuous.

Lemma 4.1.2. Let A be a regularised algebra. Let ay,as,bi,bs,c1,co € Ry such that
a1+a2:b2+b2 =] + Co.

1. Let n,, € S(I, A) be a family of morphisms which satisfy (4.1.2). Then 7, = n, for
every a € Ry.

2. Pay ©MNay = Naytar and Py, 0 Py = Py,
3. Pal O fhay = Hby © (sz ® 1d> = Hey © (1d ®P62) = Hai+as-

4. In the monoidal sub-category of S tensor generated by A, u, and n,, every morphism
is jointly continuous in the parameters.

Proof. Let a,b,c € Ryy.

Part 1: Let us write P, , := , o (1, ® id4) for the morphism in (4.1.2). From (4.1.2) we
have that

fa © (M @ 1) = fa © (Ne @ 11p) (4.1.7)
as both sides only depend on the sum of the parameters. We then have that
Patyote=Pypome (4.1.8)

and using that the composition is separately continuous together with limg, 0 Ppys =
limg 0 P, = ida we get that 7, = 7. for every ¢ € Ry,.
Part 2: The first equation follows from Part 1, because P, on, satisfies (4.1.2). The second

equation follows from associativity (4.1.3) and from the first one:

Paopb =ay O(’?az ®:ub1) O(an ®1d) = HUp, © (Pa‘”?bz ®1d)
=Hp; © (Naty, @1id) = Pory (4.1.9)

where a = a; + a, and b = b; + bs.
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Part 3: The first two equalities follow from the associativity of i, and the definition of P,.
For the last equality note that with ¢ = ¢; + ¢ we have

PeoPyopia = Peyy o pta = e © (b @ fa) = fey © (Ney @ fass) = Pe © flats - (4.1.10)

Finally we use separate continuity of the composition and lim, ,o P, = id 4.

Part 4: Let ©q, oy @ A¥" — A®™ be a morphism in S tensor generated by p, and 7,,

involving a total of N copies of the latter two morphisms, with parameters aq,...,an.

One can write @,,,. 4, in the form gpg) o (@fil Pai_gl_@) o ¢§§) for some €1,e9 € Ry

and morphisms gog) and gpg). Then by separate continuity of the composition of & and
joint continuity of ®Z]\i1 P,, in (4.1.4), the morphism ¢, ., is jointly continuous in the

parameters aq,...,ay. O]

As a special case of Part 4 of the above lemma we get:
Corollary 4.1.3. In a regularised algebra the maps a + i, and a — 7, are continuous.

Next we introduce the dual concept to a regularised algebra. A regularised coalgebra
in S is an object A € S together with families of morphisms

Ayt A— A% and e,: A1 (4.1.11)

for a € R, called coproduct and counit, such that the following relations hold: for all
a,a, as, by, by > 0, such that a; + ao = by + by = a,

(idA®€a2)OAa1 = (8b2®’idA)OAb1 = P; s (4112)
(ZdA X Aa2) e} Aal = (Ab2 &® ZdA) o} Abl y (4113)
lim,_,o P, = id4, and the assignments
RSy — S(A®", A®™)
(a1,...,an) = P, ®---® P, (4.1.14)

are jointly continuous for every n > 1. A morphism of regularised coalgebras, is a morphism
of the objects which is compatible with A, and ¢, in the obvious way. Note that for a
regularised coalgebra the dual statements of Lemma 4.1.2 hold. For the morphisms in
(4.1.11) we introduce the following graphical notation:

A A

Do= Yo = | (4.1.15)

A key notion in this paper is the following:
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Definition 4.1.4. A regularised Frobenius algebra (or RFA in short) in S is a regularised
algebra A, which is also a regularised coalgebra, such that

A A A A A A
ay by c1
\ = N\ T (4.1.16)
A A A A A A

holds for all a; + as = by + by = ¢ + ¢o. A morphism of RFAs, is a morphism of regularised
algebras and coalgebras.

In an RFA the semigroup homomorphism P, from the algebra structure and P! from
the coalgebra structure coincide:

Lemma 4.1.5. For an RFA we have P, = P, for all a > 0.

Proof. Let a,b € Ryg be arbitrary. Choose ay,as, bs, by € Ry such that a = a1 + ao,
b="0b1+0byand a>0by and b>a; (eg b1 =5, a1 = %) By relation (4.1.16) one has that

(:ua2 ® 1dA> © (ldA ®Abz) = Atl1-i-¢12—b1 O Uby+by—ay (4117)
Composing (4.1.17) with id4 ®ep, from the left and with 7,, ® id4 from the right yields
P,o P, = P.oP,. (4.1.18)

We can take the b — 0 limit on both sides of (4.1.18) and use separate continuity of the
composition in S to get P, = P.. O

Remark 4.1.6. Requiring that lim, ,o P, = id does not imply that P, is mono or epi
for every a € Rx, as the following example in Hilb illustrates.? Let L € Ryy and H :=
L*([0, L]). Define P, € B(H) for f € H to be right shift by a,

0 ifrx<a

(Pa(f))(z) = { : (4.1.19)

flx—a) ifz>a

This is neither mono nor epi for any choice of a € R+, and for a > L we even have P, = 0.

Usual (non-regularised) Frobenius algebras have an equivalent characterisation via a
non-degenerate invariant pairing. The same is true in the regularised setting, as we now
illustrate. Let A a regularised algebra A together with a family of morphisms ¢, : A — I
for a € Ry such that for all a; + ay = b; + by we have €,, o 1, = €p, © pp,. We call the
pairing 3, := €4, © ita, non-degenerate if there is a family of morphisms 7, : T — A®? such
that

(ldA ®ﬂa1) © (’Yaz ® 1dA) = P, = (51)1 ® ldA) © (ldA ®7b2) (4120)
for all a1 + as :b1+62:a.

2We would like to thank Reiner Lauterbach for explaining this example to us.
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Lemma 4.1.7. 1. For all a,b > 0,

(P, ®1id4) 07 = Yass = (ida ®P,) 07 , (4.1.21)

2. The relation (4.1.20) defines ~, uniquely.

3. The map a — 7, is continuous.

Proof. Part 1: From (4.1.20) one has that

(ida ®Bp) © (Vata ®ida) = Poypre = (idsg @Bpiz) 0 (7, ® idy). (4.1.22)

Tensoring with id4 from the right and composing with ~. from the right gives

(ldA ®Pb+c) @) 7a+:p = (ldA ®Pb+c+1) @) f)/a. (4123)

Taking the limit b,c — 0 gives the second equation of (4.1.21). One obtains the first
equation of (4.1.21) similarly.

Part 2: If T', is a family of morphisms satisfying (4.1.20), then it also satisfies (4.1.21).
Then

Coipre = (lda®@Pyyc) oy = (da ®6p, ®ida) o (T ® Vo) = (Poyp ®1ida) 0 e

= Ya+b+c -

(4.1.24)

Part 3: Continuity of 7, is clear from Part 1 by continuity of P, and separate continuity
of the composition in S. [

We can now give the alternative characterisation of an RFA.

Proposition 4.1.8. Let A be a regularised algebra and let ¢, : A — 1 be a family of
morphisms such that the pairing €,, © jt,, only depends on a; + as. If €4, © pig, is non-
degenerate, then A is a regularised Frobenius algebra with counit €, and coproduct

Ay = (e, ®id4) o (Ida ®7a,) (4.1.25)
for some a, + ay = a.

Proof. By (4.1.21) and Part 3 of Lemma 4.1.2, A, indeed only depends on a = a; + as.
Checking the algebraic relations (4.1.2), (4.1.3), (4.1.12), (4.1.13) and (4.1.16) of an RFA
is analogous as for ordinary Frobenius algebras. From these follows that P, = P,, so in
particular lim, ,o P, =id4 and (4.1.14) holds. O

Note that the converse of the proposition holds trivially: if A is a regularised Frobenius
algebra then ¢, is non-degenerate in the above sense with v, = Ay, 0 7,,.

Let the category S be in addition symmetric with braiding . Then we call a regularised
algebra A € § commutative if pu, o 0 = p, for all a € R.y. The centre of a regularised
algebra A is an object B € § and a morphism ip : B — A such that

MaOOO(iB®idA):/Lao(iB@idA) (4126)
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for all @ € R.y, which is universal in the following sense. If there is an object C' and
a morphism f : C' — A satisfying the above equation then there is a unique morphism

f : C — B such that the diagram
1B A
/ (4.1.27)
f

commutes. This implies in particular that ip is mono [Dav]. If the centre exists then one
has the induced morphism P, € S(B, B) such that P, oip =igo P,.

Lemma 4.1.9. If the centre of a regularised algebra exists, lim,_,o P, exists and the maps

(a1, ) = Ppy @@ Py, (4.1.28)

QO —5

are jointly continuous for every n > 1, then it is a commutative regularised algebra.

Proof. Similarly as one gets P,, one has induced multiplication and unit g and 7). Checking
associativity an~d unitality is now straightforward. The limit lim,_.o P, = idg follows from
P,oig =1ipo P, by separate continuity of composition in S. ]

A regularised algebra is separable if there exists a family of morphisms e, € S(I, A® A)
for every a € R such that

1. (Hal & ldA) e} (ldA ®6a2) = (ldA ®,ub1) ©) (6[,2 & ldA) and

2. gy O €qy = g

The e, are called separability idempotents. A regularised algebra A is strongly separable
if it is separable and furthermore

3. 0a40€, = €.

These notions are direct generalisations of separability and strong separability for algebras,
see e.g. [Kan, LP1].

For an RFA A, we call the family of morphisms 7, := pt, 0 Ay, 014, for ai,as,a3 € Ry
with @ = a1 + as + a3 the window element of A, cf. [LP1, Def.2.12]. We call the window
element invertible if there exists a family of morphisms z, € S(I, A) for a € R-¢ (the
inverse) such that fig, 0 (T, ® Zas) = May+ag+as = Hay © (Zas @ Tay ). From a direct computation
one can verify that if there exists another family of morphisms 2, which satisfies the above
equation then z/ = z, for every a € R.g, that is the inverse of the window element is
unique. In the following we write 7, for the inverse of 7,. It is easy to check that the
window element and its inverse satisfy (4.1.26), that is, they factorise through the centre
if the centre exists.

An RFA is symmetric if €,, 0 4, 0 0 = €3, 0 ptp,. The following is a direct translation
of [LP1, Thm. 2.14] for strong separability for symmetric Frobenius algebras.

Proposition 4.1.10. A symmetric RFA is strongly separable if and only if its window
element is invertible.

Proof. Set e, := Ay, o7,.'. Conversely set 7,1 1= (g,, ®ida) 0 €q,. O
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4.1.2 RFAs in the category of Hilbert spaces

Let Hilb denote the symmetric monoidal category of Hilbert spaces and bounded linear
maps with the strong operator topology on the hom-sets and the Hilbert space tensor
product. We write B(H, K) := Hilb(H,K) and B(H) := Hilb(H,H) for the hom-sets.

Remark 4.1.11. 1. In H:lb the composition of morphisms is separately continuous,
but not jointly continuous. The tensor product is not separately continuous, in fact
even tensoring with the identity morphism of an infinite-dimensional Hilbert space
is not continuous. Furthermore, taking adjoints is not continuous in Hilb. For more
details see [Hal, Prob. 211] and [KR, Sec. 2.6].

2. Instead of the strong operator topology one could use the so called ultrastrong-x
operator topology in which taking adjoint is continuous and tensoring is separately
continuous [Bla, Prop.1.8.6.4].> However in this topology composition of morphisms
is still not jointly continuous [RA, Prop. 46.1-2].

We give the following technical lemma which will be useful later.

Lemma 4.1.12. Let f : X — X’ and g : Y — Y’ be morphisms in Hilb, both mono (resp.
epi). Then fRg: X ®Y — X' ®Y’ is mono (resp. epi).

Proof. 1f f and g are both epi, then their image is dense. Then the algebraic tensor product
of im(f) and im(g) is dense in X ® Y and it is contained in im(f ® g), which is hence
dense. This means that f ® g is epi.

If f and g are both mono, then ff and g' are both epi. But then ff ® ¢' = (f ® ¢) is
epi and hence f ® g is mono. O

The next lemma shows in particular that an RFA in Hilb has a Hilbert basis with at
most countably many elements.

Lemma 4.1.13. Let A € Hilb be an RFA.
1. The Hilbert space underlying A is separable.
2. For all a € Ry, P, is a trace class operator (and hence compact).

Proof. Part 1: Let { ¢; | j € I } be a complete set of orthonormal vectors in A and write
Yar (1) = Dpier @6 © dryhe. By [Kub, Cor.5.28], independently of the countability of the
indexing set I, there are at most countably many non-zero terms in the above sum. Thus
for a given ay there is a countable set of pairs (k,l) € I x I such that vfé # 0. Define
I(as) C I to be the countable set of all elements of I that appear in such a pair. Let

J:=|J IA/n)CI and A;:=span{¢;|jeJ}CA. (4.1.29)

TLEZ>0

3We thank Yuki Arano for explaining this to us.
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Note that J is countable and A; is separable. By (4.1.20), for every v € A and n € Z+
we have that

Pip(v) €Ay and  lim Py(v) =v, (4.1.30)
n—oo

since lim,, o P/, = id4 in the strong operator topology. Since A; is closed, v is an element
of A;. We have shown that A; = A, and hence that A is separable.

Part 2: First let us compute the following expression for some aq, as € R-q:

Bar 00070y (1) = D Bay (5 @ i)yl (4.1.31)

j,kel

This is an absolutely convergent sum, since the lhs is a composition of bounded linear
maps. We can rewrite this expression using (4.1.20) to get

Bay 00070 (1) = Y Bay (05 @ r)vk (5] 60)

jklel

= 3" (01(Bar @ ida)e; © b1 @ L))

kel

=5 (651(Ba ©1da); © Y b1 ® 3L (4.1.32)

Jjel klel

= (](Ba, ®ida) © (ida @7, (1)) ;)
jel
= (65| Paty)
jEI
which is again an absolutely convergent sum. By [Con2, Ex. 18.2] P, is a trace class operator

if and only if » . (¢, Pa¢;) is absolutely convergent for every choice of orthonormal basis
{¢,}, which we just have shown. In this case we have that

tr(Pa) = Y (| Pady) - (4.1.33)

Jjel
[

Let A € Hilb be an RFA. By the Part 2 of Lemma 4.1.13 and [EN, Thm.I1.4.29],
a — P, (for @ > 0) is norm continuous. The following corollary shows that if we had
defined Hilb to have the norm operator topology on hom-sets all examples of RFAs in Hilb
with self-adjoint P, would be finite-dimensional.

Corollary 4.1.14. Let A € Hilb be an RFA such that lim,_,o P, = ids in the norm
topology on B(A). Then A is finite-dimensional.

Proof. From Lemma 4.1.13 (2) we know that P, is compact for every a € R.o. By [Conl,
Prop. VI1.3.4] the subspace of compact operators is closed in norm operator topology. These
together with lim, .q P, = id4 imply that id4 is compact, which in turn implies that A is
finite-dimensional. ]
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The following lemma will be instrumental in showing that various joint continuity
conditions hold automatically in Hilb. A similar statement can be found in [KMD, Sec. 2].

Lemma 4.1.15. Let H; € Hilb (i = 1,2). Let X be a subset of a finite-dimensional
normed vector space (e.g. X = Rsq). Equip X with the induced topology and let a St

be two continuous maps X — B(H,). Then the map X2 — B(H,®Hs), (a,b) — S5 ®SZE2)
is jointly continuous.

Proof. We will first show that the map a — ‘
X. Let K C X be compact. By strong continuity we have that for every h € H,; the

S((f)H is bounded on compact subsets of

map a — S(Si)(h) is continuous, so in particular the map a +— HSC(LZ)(h)H is continuous,
hence bounded on K. By the Uniform Boundedness Principle [Conl, Ch.III.14] the map
55| is bounded on K.

ar |

Now we turn to the claim in the lemma. Let ag, by € X and k,e € Ry be fixed. We
will show that the map (a,b) — sV @ 5’52) is continuous at (aq, by).
For T € "1 ® M, take a sequence {7, }, in the algebraic tensor product of H; and H,

n—oo

such that T,, —— T'. We have the estimate

|5 @ s - s

ag

Yo ST
(4.1.34)

<||(s® @ 5 - 5P & 52| IT - Tl + || (5P @ 57 - 5P @ ST,

We give an estimate for the first term on the rhs of (4.1.34). Fix some §; > 0. Then
by the above boundedness result there is a x > 0 such that for every a,b € X with
la — ap| + [b — by| < &1 we have

HS((ZDH <k and HS,SQ) <K. (4.1.35)

So we have

SH @S2 — s @ s S

<l - s

sl

< k2 || SO| - [ 52 = Ve

(4.1.36)

Since T,, === T', we can choose n (which we keep fixed from now on) such that

3

T = To|| < —— (4.1.37)
2Ny b
Putting (4.1.36) and (4.1.37) together we get
£
W%”@%”—%?@%%HMT—E“gﬁ. (4.1.38)
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We give an estimate for the last term in (4.1.34). Recall that each T, was chosen in
the algebraic tensor product of H; and Hs. Thus T, is a finite sum of elementary tensors,

tn
T,=) @y (4.1.39)
j=1

for t,, € Zs1, 23, € HY and y) € H?). Using this, we get:

(s — sty @ ST + 50 @ (5 - ST,

<3 (o - sl 5
j=1

(4.1.40)

[l + S - ot - [ 557 = 55w

)

By strong continuity of a +— S we can chose &, > 0 such that for every a,b € X with
la — ap| + [b — by| < 62 we have

j < 2) (), i

(S — §Wyzill « — = and H(s< — 8y |l < — | (4.1.41)

157 = Sl < o) L Y ) T
for every j = 1,...,t,, since these are only finitely many conditions to satisfy. Let ¢ :=

min {01, d2}. Then for every a,b € X with |a — ag| + [0 — bg| < & we have that
H(Sél) 28 - 80 & s)T,|| < % . (4.1.42)

Finally, using (4.1.38) and (4.1.42) we have that

H SV @ s? - s @ sbf))TH <e. (4.1.43)
[

By iterating the previous lemma we see that the definition of a regularised algebra
simplifies in Hilb. Namely it is enough to check that a — P, is continuous, rather than
having to consider multiple tensor products.

Corollary 4.1.16. The continuity condition (4.1.4) in Hilb is automatically satisfied for
any n > 2 if it holds for n = 1.

4.1.3 Examples of regularised algebras and RFAs in Vect'd and
Hilb

Let Vect' denote the symmetric monoidal category of finite-dimensional complex vector
spaces with the usual tensor product of vector spaces and the topology on the hom-sets
induced by any norm on the vector spaces. In the following we list examples of regularised
algebras and RFAs in Vect™ and Hilb.
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1. Let A be an algebra in Vect™ with multiplication p and unit 1 and set p, := p - €%,
Ny := n - e for some 0 € C. Then A is a regularised algebra. One can similarly
obtain an RFA from a Frobenius algebra.

A Frobenius algebra in Vect™ is always finite-dimensional. In Example 1 we equipped

them with an RFA structure for which all @ — 0 limits exist. The converse also holds in
the following sense.

Proposition 4.1.17. Let A € RFrob(Hilb). The following are equivalent.
1. A is finite-dimensional.

2. All of the following limits exist:
hrnaﬁ\O Na » hma%[) Ha lirna%O €a 5 hmaﬁo Aa .

Proof. (1 = 2): If A is finite-dimensional, then the map a — P, is norm continuous, hence
P, = e for some H € B(A). Then ny := e %y, is independent of a and n, = P, o,
hence lim,_.qn, = 1o exists. One similarly proves that the other limits exist as well.

(1 <= 2): The morphisms given by these limits define a Frobenius algebra structure on
A, hence A is finite-dimensional. ]

2. Consider the polynomial algebra C[z] and complete it with the Hilbert space structure
given by (z",2™) = &, f(m) for some monotonously decreasing function f : N —

(0,1] € R and denote by C[z] its Hilbert space completion. Let P,(z") := e®*a"
for 0 € R (note the x in the exponent). We now show that this defines a bounded

operator. Let y € Clz] with y = > _¥»2". Then

2m

1P = 3 (%) flntmlnP < 3 s ol < e ol

|
n,meN n,meN (2m) ’

where we used that f is monotonously decreasing.

Let us assume that

sup {Z FR)VFO) flk — Z)} < 00 (4.1.44)

keN | 5o

holds, e.g. f(m) = (14+m)~2? or f(m) = e ™. Then the operator

M : Clz] — Clz] ® Clz]

e z’f: R o (4.1.45)

=0
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is bounded. The adjoint of M is the standard multiplication

p: Clz] ® Clz] — Clz]

oF @zt —

(4.1.46)
which is therefore also a bounded operator. Then defining p, := P, o p and 7,(1) :=
P,(1) gives a regularised algebra in Hilb. Note, however, that this regularised algebra
cannot be turned into a regularised Frobenius algebra because P, is not trace class,
cf. Lemma 4.1.13.

3. Consider the Frobenius algebra A := C[z]/(z%) in Vect™ with e(z*) = 04-1. Let
h € A and define P,(f) := e®"f, e, := €0 Py, 1y := P, on and i, := P, o u. Then
Clz]/(z?) is an RFA, denoted Aj,. Unless d = 1, this RFA is not separable.

Proposition 4.1.18. Let I be a countable (possibly infinite) set. For k € I let Fy, € Hilb
be a (possibly infinite-dimensional) RFA. Then @, ., Fi, (the completed direct sum of
Hilbert spaces) is an RFA in Hilb if and only if, for every a € R+,

sup ||u§H < oo and sup HA’;H <00, (4.1.47)
kel kel
STlER <00 and Y|k < oo, (4.1.48)
kel kel

where pk, AF ek and n* denote the structure maps of Fy.

Proof. Let F := @, ; I and fix the value of a.
(=): Let us write x;, for the k'th component of € F' = @, ., Fi. Then for every k € I

[Ag]] = sup [[AL(z)]| = sup [[Aa(z)]| < sup [[Adll - [lzell = [|Aa]l < o0,
TR EFY x€EF} rrLEF)
llzxll=1 llzxll=1 llzkll=1

so in particular sup,, HA’;H < 00. A similar proof applies to the case of u,. We calculate
the norm of 7,:

nall* = (DI =" It = 1981

kel kel

which is finite if and only if 7, is a bounded operator. If ¢, is bounded, then by the Riesz

Lemma there exists a unique v € F such that g,(z) = (v,2) and ||g,|| = ||v|. Then
(i, zk) = (v, 33,) = q(ar) = F(zx). So again by the Riesz Lemma ||¥|| = [|u]|. We have
that

2 2 2 2
leall® = llol® =" lloel® =D |k -

kel kel
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(«<): The operators 7, and ¢, are bounded by the previous discussion. For A, one has

that
2

= sup ZHA a:k

12" = Sup || Aa(z) I*= Sup

ZA ZEk

||§ﬁ:1 H:c|| 1 kel Hl’” 1k6[
< sup S ol < (sup ) - s 3 el = s < o
=1 kel : (25E) ket

so A, is bounded. For u, the proof is similar.

Then one needs to check that a — P, := Zke] PF is continuous. Let ¢ € Ryg, ag € R
and f € @,; Fr with components f; be fixed. Let a’ > ap and 0 < E < ¢ be arbitrary.
Since P, — P,, is a bounded operator, one can find J,; C I finite, such that for every a < a’

> P =PisI < E.
JENT
Then let ' > 0 be such that for every |a — ag| < ¢
>R = Pl <<~
JE€EJ 4

which can be chosen since the sum is finite and each P’ is continuous by assumption.
Finally let § := min {0’,a’ — ao}. By construction we have that for every |a — ag| < 6,

I(Pa = Pa)fIIP =3 |[(PF =PI <.

J€elI

O

All examples of RFAs known to us are of the above form. For Hermitian RFAs, which we
will introduce in Section 4.1.5, we can show that they are necessarily of the above form.
Note that the same RFA F}, cannot appear infinitely many times, as otherwise the bounds
(4.1.48) would be violated.

Now we continue our list of examples with some special cases.

4. Let (e, 0n),c; be a countable family of pairs of complex numbers such that for all

a>0
2

<00 . (4.1.49)

—aog

sup‘eke a"’“‘ < oo and Z

kel kel €k

Then A., := @,c; Cfi, the Hilbert space generated by orthonormal vectors fy,
becomes an RFA by Proposition 4.1.18 via

ta(fre @ f;) := Onjerfre *F Z Ji ek (4.1.50)
wel ©
Alf) = 2Tk e Ealfi) 1= exe™" . (4.1.51)

€k
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This RFA is strongly separable (with 7, = 7,) and commutative.

5. Let I := Z-o and consider the one-dimensional Hilbert spaces Cf, and Cg; with
| fel® = k% and ||gi||> = k1. Let F:= @;°, Cfi and G := @2, Cg; be the Hilbert
space direct sums, so that

(fis F)p = 0k gk* and (g, gj)6 = Ongh™ " . (4.1.52)
Define the maps
F —(lk2 F > —ak2
to (fr ® fi) =056 fo,  m (1):=) e fir,
A ,; (4.1.53)

AP(fr) =™ o @ fu . el(fi) =e"

and similarly for G' by changing fi to gx. These formulas define strongly separable
(with 7, = 7,) commutative RFAs by the previous example with (e, o) = (K71, k?)
for F' and with (ex,01) = (k, k?) for G. Note that lim, o ul" exists and has norm
1, but lim,_,o & does not: the set { ||1& (gr ® g)|| / llgr ® gill =k | k € Zso } is not
bounded.

Define the morphism of RFAs ¢ : FF — G as
V(fe) =g for k=1,2,....

It is an operator with ||¢|| = 1 and is mono and epi, but it does not have a bounded
inverse, as the set { || (gx)|| / llgxll = k* | k € Z<¢ } is not bounded. This is an ex-
ample illustrating that the category Hilb is not abelian: a morphism can be mono and
epi without being invertible. The example also shows that RFA morphisms which are
mono and epi need not preserve the existence of zero-area limits. Isomorphisms, on
the other hand, being continuous with continuous inverse, do preserve the existence
of limits.

6. Consider L?(G), the Hilbert space of square integrable functions on a compact
semisimple Lie group G with the following morphisms:

wl1) = Y e (Vv u(F)e) = [ Pl ey
veG

P.(f) = pna(1) @ f), pta:=Poopu, (4.1.54)
calf) = /G (@)@ de, Af)(ey) = floy) . Aei=AoP,,

where f € L*(G), F € L*(G x Q) = L*(G) ® L*(G), G is a set of representatives of
isomorphism classes of finite-dimensional simple unitary G-modules, oy is the value
of the Casimir operator of the Lie algebra of G in the simple module V', xy is the
character of V', and fG denotes the Haar integral on G. These formulas define a
strongly separable RFA in Hilb (with 7, = 7,), for details see Section 4.4.1.
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7. The centre of the previous RFA is C1?(G), the Hilbert space of square integrable class
functions on G, with multiplication, unit and counit given by the same formulas, but
with the following coproduct:

Ad(f) = eV (dim(V) ™ xv ®@ xv fv | (4.1.55)

ved
where f =3, ca fyxy € CI*(G). This is a strongly separable RFA in Hilb (with
(1) = Lyege @ (dim(V)) ™ xv and 7,1(1) = Sy eg e (dim(V))* xv). For

more details see Section 4.4.1.

4.1.4 Tensor products of RFAs and finite-dimensional RFAs

We denote the category of regularised algebras in S by R.Alg (S) and the category of RFAs
in § by RFrob(S). In this section we investigate under which conditions one can endow
these categories with a monoidal structure. Then we describe the case S = Vect™ in detail.

Proposition 4.1.19. Any morphism of RFAs is mono and epi.

Proof. Let ¢ : A — B be a morphism of RFAs and let 1, := (id4 ®37) o (ida ®p ®idp) o
(v ®idp). Then po,, = PZ, and 1,0 p = P2,. We show that ¢ is epi, showing that
it is mono is similar. Let f,¢g € S(B, X) for an object X such that fo@ = gop. After

composing with 1, from the right for a,b € Roo we get f o P5, = go PB,. This last
equation holds for every a,b € R, so we can take the limit a,b — 0 to get f = g. O

Remark 4.1.20. As we saw in Example 5, not every morphism of RFAs in Hilb is invert-
ible, hence RFrob(Hilb) is not a groupoid.

However we have the following:
Corollary 4.1.21. The category RFrob (Vectfd) is a groupoid.

Proposition 4.1.22. Assume that S has a symmetric structure o and that for A, B €
RFrob(S) the assignments

(a1,...,a0) > PA® P’ ®---® Pl ® PP (4.1.56)
are jointly continuous for every n > 1. Then A ® B is an RFAs by

pa®P = (g @ pl) o (oo @id) , 7" =nllen]

AP = ([d@o®id) o (AL @ AL) | el®P =clwel. (4.1.57)

Proof. Checking the algebraic relations is straightforward. The continuity of the maps in
(4.1.56) assures that the continuity condition holds for the tensor product. O

If condition (4.1.56) holds for every pair A, B € RFrob(S) we can define a symmetric
monoidal structure on RFrob(S), where the symmetric structure is inherited from S. The
tensor unit is the trivial RFA.
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Proposition 4.1.23. RFrob(Hilb) and RFrob (Vectfd) are symmetric monoidal categor-
ies with the above tensor product.

Proof. In Vect™ the tensor product is continuous, so there the statement is trivial. In
Hilb Corollary 4.1.16 assures that the condition (4.1.56) holds for every pair A, B €
RFrob(Hilb). ]

Finite-dimensional regularised algebras and regularised Frobenius algebras

In the rest of this section we classify finite-dimensional regularised (Frobenius) algebras.
The forgetful functor from finite-dimensional Hilbert spaces to Vect' is an equivalence
of categories, therefore in this subsection we will only consider regularised (Frobenius)
algebras in the latter.

Denote with Alg? (Vectfd) the category with objects pairs (F, H), where F' € Vect is
an algebra and H € Z(F) is an element in the centre of F', and morphisms ¢ : (F, H) —
(F',H') such that ¢ : F — F’ is a morphism of algebras and ¢(H) = H'. Analogously,
denote with Frob? (Vectfd) the category of pairs of Frobenius algebras and elements in
their centre.

We define a functor D : RAlg (Vectfd) — Alg? (Vectfd) as follows: on objects as
D(A) == (A, £1,(1)]a=0) and on morphisms as identity. The same definition also gives a
functor D : RFrob (Vectfd) — }"robZ(Vectfd).

Proposition 4.1.24. The functors
D:RAlg (Vectfd) — Alg? (Vectfd) and D :RFrob (Vectfd) — Frob? (Vectfd)

are equivalences of categories.

Proof. The inverse functor sends (A, H) to the regularised algebra A with P, := e

lq := P, op and n, := P, on, where p and n are the multiplication and unit of A. [
Remark 4.1.25. Let (A, H) € Alg?(Vect). Then

DA H)= €D D' (Ay, Pra,(H))

AespH

as regularised algebras, where A, denotes the generalised eigenspace of H corresponding
to the eigenvalue A and Pry, is the projection onto it. If D~(A, H) is furthermore an
RFA then the above decomposition is valid as RFAs.

4.1.5 Hermitian RFAs in H:lb

We start by recalling the notion of a dagger (or {-) symmetric monoidal category S, e.g.
from [Sel]. A dagger structure on S is a functor (=)' : & — S°P which is identity on
objects, (—)" =ids, (f ® g)! = fT ® g' for any morphisms f, g and O'(T]’V =oyy.

Let § be as in the beginning of Section 4.1.1 and fix a f-structure on S. We do not
require (—)' to be continuous on hom-spaces, cf. Remark 4.1.11.
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Definition 4.1.26. A Hermitian regularised Frobenius algebra (or 1-RFA for short) in S
is an RFA in S for which uf = A, and ] = &, (and therefore P, = PJ). We denote by
T-RFrob(S) the full subcategory of RFrob(S) with objects given by {-RFAs.

In the following we specialise to S = Hilb with dagger structure given by the adjoint.
Note that t-RFrob(Hilb) is symmetric monoidal.

Example 4.1.27. Let us look at the examples from Section 4.1.3. In Example 1, if the
Frobenius algebra A € Hilb is a f-Frobenius algebra (see e.g. [Vic, Def. 3.3]) and if 0 € R
then P, is self-adjoint and hence A is a -RFA. In Section 4.4.1 we will show that the RFAs
in Examples 6 and 7 are -RFAs. The two RFAs in Example 5 are not {-RFAs, as one can
easily confirm that the summands Cf; and Cg; for £ > 1 are not -RFAs. We compute
e.g. for Cf that

<fk7 ,ua(fk & fk)> = eiak2k2 and <Aa(fk>7 fk ® fk> = eiak2k4 3 (4158)
so clearly, if k > 1 then ul # A,.

Let f-Frobf (Hilb) denote the category which has objects countable families ® =
{F;, aj}j ¢; of {-Frobenius algebras F); and real numbers o, such that for every a € R

sup {e7%% |||} < oo and g €29 ||y, ||* < oo . (4.1.59)
je ,
jel

A morphism ¥ : ® — &’ consists of a bijection f : I = I" which satisfies 0; = o(;) and
a family of morphisms of Frobenius algebras v; : F; — F J’c( N (which are automatically

invertible [Koc, Lem. 2.4.5]). We will write ¥ = <f, {¥i}jer)-

Let ® € {-Frob’ (Hilb) with the notation from above. Then by Proposition 4.1.24,
D~ (Fj,0;idp,) for j € I is an RFA. Using Proposition 4.1.18, we get an RFA structure
on P jer Fj. The next theorem shows that the resulting functor is an equivalence.

Theorem 4.1.28. There is an equivalence of categories T-Frob™ (Hilb) — +-RFrob (Hilb)
given by @ — @, F;.*

Proof. We define the inverse functor. Let F' € {-RFrob(Hilb) and fix a € R-y. Then P,
is self-adjoint and therefore can be diagonalised. Let sp(F,) denote the point spectrum®
of P,. Furthermore, by Lemma 4.1.13 P, is of trace class, and hence compact. Thus it
has at most countably many eigenvalues and the eigenspaces with non-zero eigenvalues are
finite-dimensional. Let

F= & F. (4.1.60)

ocEsppt(Pa)

4We would like to thank André Henriques for explaining to us this decomposition of t-RFAs, or rather
the corresponding decomposition of Hermitian area-dependent QFT's via Corollary 4.2.14.

5The point spectrum of a bounded operator is the set of eigenvalues. Every compact operator on an
infinite-dimensional Hilbert space has 0 in its spectrum, but it need not be an eigenvalue.
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be the corresponding eigenspace decomposition of P,.

Claim: The eigenvalue « of P, on F, is of the form e~ for some o, € R. In particular
0 is not an eigenvalue.

To show this, first assume that c(a) := a # 0, so that F, is finite-dimensional, and
simultaneously diagonalise P,, P, and P,,;, on F,. Then on a subspace where all three
operators are constant with values c(a), ¢(b) and c(a + b) one has that c(a)c(b) = c(a + b).
Furthermore a — c¢(a) is a continuous function Ry — R and ¢(0) = 1 since a — P, is
strongly continuous at every a € R>( and lim, o P, = idp. So the unique solution to the
above functional equation is ¢(a) = e~ for some o, € R.

Finally let us assume that a = 0. Clearly, ker(P,) C ker(FP, ) for every b € R>. Since P,
is self-adjoint, we have for v € Fy that 0 = P,(v) = PJ/Q o Py/2(v). But then P,js(v) =0
and similarly, for every n € Zsq we have that P,/ (v) = 0. Altogether we have that
Fy = ker(P,) = ker(F,) for every b € Rxg. So lim,_,g P, = idp implies that F = {0}.
Claim: The eigenspaces are f-Frobenius algebras by restricting and projecting the structure
maps of F.

To show this, first confirm that the structure maps do not mix eigenspaces of P,, because

P, commutes with them. Then checking {-RFA relations is straightforward and these are
T-Frobenius algebras, cf. Proposition 4.1.17.

Claim: The convergence conditions in (4.1.59) are satisfied by the above obtained family
of T-Frobenius algebras F,, and real numbers .
This can be shown directly by computing the norm of the structure maps.

Showing that the two functors give an equivalence of categories is now straightforward.
O
Corollary 4.1.29. Let A € Hilb be a 1-RFA. Then P, is mono and epi.

Proof. From the proof of Theorem 4.1.28 we see that P, is mono. Since P, is self-adjoint
we get that P, is epi. O

Lemma 4.1.30. Every {-Frobenius algebra in Hilb is semisimple.

Proof. Let F' denote a t-Frobenius algebra in Hilb and let ( := po A = A*o A, which is an
F-F-bimodule morphism and an F-F-bicomodule morphism. It is a self-adjoint operator,
so it can be diagonalised and F' decomposes into Hilbert spaces as

F = F, (4.1.61)
a€sp(¢)
where F,, is the eigenspace of ¢ with eigenvalue «.

Now we show that (4.1.61) is a direct sum of Frobenius algebras. Let o # 5 and take
a € F,, be Fz. We have

((ab) =al(b) = Bab

ZC(a);? = aab (4.1.62)
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since ¢ is a bimodule morphism. Then (4.1.62) shows that ab = 0, so (4.1.61) is a decom-
position as algebras.

Similarly one shows that (4.1.61) is a decomposition as coalgebras. We have for every
a € F,, using Sweedler notation:

A(C(a)) =Claq)) @ a) = ag) @ ((a) (4.1.63)
=al(a) = aap) ® a) ,
which shows that the comultiplication restricted to F, lands in F, ® F,.
We now show that 0 is not in the spectrum. Let us assume otherwise. Then Fj is a
Frobenius algebra. We have ((z) = A* o A(x) = 0 for every x € Fy, and so also A(z) =0,
which is a contradiction to counitality. Therefore 0 is not in the spectrum of (, i.e. ( is
injective.
Now the only thing left to show is that each summand F,, is semisimple. Take A(1)-«
projected on F, ® F,. This is a separability idempotent for the algebra F,, hence F, is
separable, hence semisimple. O

-1

Let e € C\ {0}, 0 € R and let C., denote the one-dimensional {-RFA structure on C
given by

€ 4.1.

. (4.1.64)
—1.
€

Let C' € Hilb be a one-dimensional {-RFA and ¢ € C. Then by Proposition 4.1.24,
€qa =¢90 P,. Set € :=¢gy(c) € C and ¢ € R to be such that P,(c) = e *¢. Then

C—Cc,

4.1.65
c—1 ( )

is an isomorphism of RFAs.

Corollary 4.1.31. Let C' be a commutative {-RFA in Hilb. Then there is a family of
numbers {e;, O'j}jel, where ¢; € C and o; € R, satisfying

sup {e " |e;| 7'} < oo and E e 2% e |* < o0 (4.1.66)
jer :
Jel

for every a € R such that C = @, C., ,, as RFAs.

jel
Proof. By Theorem 4.1.28 and Lemma 4.1.30, C' is a direct sum of semisimple algebras.
By the Wedderburn-Artin theorem every semisimple commutative algebra is a direct sum
of one-dimensional algebras. Using the isomorphism (4.1.65) we get the above family of
numbers. The finiteness conditions come from (4.1.59). O
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Remark 4.1.32. In some cases none of the structure maps of a commutative Hermitian
RFA admit an ¢ — 0 limit. A concrete example can be given as follows. Fix 1/2 > § > 0.
Then the family of numbers {n'/*, n}n€Z>0 satisfies (4.1.66) and the structure maps g,
Ay, Mo, €4 Of the corresponding commutative -RFA from Corollary 4.1.31 do not have an
a — 0 limit.

Lemma 4.1.33. Let ¢ : C., — Co ,» be a morphism of RFAs. Then p(1) = ¢/€ € U(1)
and o = o’.

Proof. From ¢ o1, = 1., one has that for every a € Rsq, ¢(1)e*e™ = (¢)*¢*". Since
€ #0, € # 0 and ¢(1) # 0, one must have ¢ = ¢’ and hence ¢(1)e* = (¢/)*. One similarly
obtains from €/, 0 ¢ = ¢, that € p(1) = e. Combining these we get that |©(1)| = 1 and that
o(l) =¢/€. O

Proposition 4.1.34. Every morphism of commutative T-RFAs in Hilb is unitary, in par-
ticular the category of commutative t-RFAs in Hilb is a groupoid.

Proof. Let ¢ : C — ' be a morphism of commutative -RFAs. By Corollary 4.1.31 we
assume that C' = @,c; C, », and C' = P,y Ce ot By a similar argument as in the
proof of Lemma 4.1.33, we see that ¢ does not mix the C, ,,’s with different o’s. Let

Cyo =P jer C,»; and define C! similarly. These are both finite-dimensional, since these

are eigenspaces of the P,’s with eigenvalue e~ . Let ¢ := ¢|c,. Then ¢ is a morphism
of finite-dimensional RFAs so it is a bijection by Corollary 4.1.21. Let us write g; = 1
(j = 1,n,) for the generator of C,,. in C; and ¢g; = 1 (j = 1,n,) for the generator of
Ce o1 in € and write p(g;) = DALl

From the equation ¢ o = p/ o (p ® ) one has for every j, k, [ that

Sin(€) 1t = M ()

o If j # k then ¢/'p* = 0 for every such k and for every [. This means that in the
matrix /' in every row there might be at most one nonzero element. Since ¢ is
bijective there is also at least one nonzero element in every row in the latter matrix
and the same holds for every column. We conclude that the matrix of ¢ is the product
of a permutation matrix 7 and a diagonal matrix D.

o If j =k and if ¢! # 0 then ¢/' = (¢/¢;)", which give the nonzero elements of the
diagonal matrix.

Now 71 o ¢ restricts to RFA morphisms of the one-dimensional components, hence by
Lemma 4.1.33 the diagonal matrix D is unitary. Therefore ¢ is unitary, ¢ is the direct sum
of unitary matrices so ¢ is unitary and in particular invertible. O
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4.1.6 Modules over regularised algebras

We define modules over a regularised algebra in such a way that the action map now
depends on two real parameters. This may seem odd at first sight but is motivated by the
application to area-dependent field theory later on, see Section 4.2.3.

Definition 4.1.35. A left module over a regularised algebra A (or left A-module) in S is
an object U € § together with a family of morphisms

U

a,l
o= @) €S(AUU) (4.1.67)

AU
for every a,l € Ry called the action, such that they satisfy the following conditions.
1. For every a =a; +as =by + by and [ =11 + Iy
Payiy © (1da ®payis) = pPoy a0 (, ®idy) . (4.1.68)

and the morphisms
Quy = Pay © (ay ©idy) (4.1.69)

satisfy lim, 0 QY = idy.
2. The assignment

(R, U {0}) = S(U,U)

4.1.70
(0.1) = QY )
is jointly continuous.
One similarly defines right modules.
Note that the morphisms Qfl]l form a semigroup,
C(L]hh ° 111]2,12 = tlz]1+a2,l1+l2’ (4'1'71)

and we have a continuous semigroup homomorphism RQZO — S(U,0), (a,l) — le.

Remark 4.1.36. As in the case of regularised algebras, one would want to impose (4.1.70)
for n-fold tensor products for every n > 1. However in Section 4.3.6 we will see that the
natural condition would be to have this for a set of different modules, which would lead
to the notion of “sets of mutually jointly continuous modules”, which is cumbersome to
define. Instead, we will impose this condition later in Section 4.3.6. When considering
regularised algebras and modules in Hzlb, this continuity condition will be automatic, see
Lemma 4.1.15.
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The definition of bimodules in terms of left and right modules requires an extra con-
tinuity assumption, so we spell it out in detail:

Definition 4.1.37. An A-B-bimodule over regularised algebras A and B is an object
U € S together with a family of morphisms

U
Palp = o €S(A®U®B,U) (4.1.72)
AU B
for every a,l,b € R such that the following conditions hold.
1. Forevery a =ay +as =a} +al, b=>by +by =0, +by,and | =1; + I,

Par,dr by © (14 ®Pasiap, @ idp) = pay s, © <fo2 ®idy ®Mz§2> , (4.1.73)
the morphisms QF;, := pa, .16, © (nd @idy ®nf) satisfies that limg -0 QY = idy
and

2. the map

(R, U {0}) = S(U,U)

4.1.74
(Cl, l? b) = le,b ( )

is jointly continuous.

A bimodule is called transmissive, if p,;; depends only on a + b, or, in other words, if
Patula—u is independent of w. As with the inclusion of the extra parameter [, the notion
of transmissivity is motivated by the application to area-dependent quantum field theory,
see Section 4.2.3.

Remark 4.1.38. Let U be a left A-module and a right B-module such that the left and
right actions paLJ and pfm commute. That is for every a,b € Roy and [; + Il = mq + meo

Palp = pill o (pfl2 ® idB) = pﬁml o (idA ®p£m2) ) (4.1.75)

If paup is jointly continuous in the parameters, then U is an A-B-bimodule. Note that in
contrast to the case of usual bimodules over associative algebras, which are defined to be
left and right modules with commuting actions, here we have to impose the extra condition
of joint continuity.

Conversely, let U be an A-B-bimodule with action p,;;. If the limit

ot = lim pag, © (id ey @nf) (4.1.76)

with b = by + by exists for every a,l € Ry and remains jointly continuous in the limit, then
U becomes a left A-module with action pil. Similarly, if the analogous a — 0 limit exists
then U becomes a right B-module. In Appendix 4.A we give an example which illustrates
that these limits do not always exist.
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Example 4.1.39. Let Autg zro(s)(A) denote the invertible morphisms in RFrob(S)(A, A).
Then for a, 5 € Autrzros)(A) we can define a transmissive bimodule structure oAz on A
by twisting the multiplication from the two sides and letting the [-dependence be trivial.
That is, for every a,b,l € Ry we define the action to be

Pa,lb = Ha © (1d ®,ub) o (a ® ldA ®6) ) (4177)

which is jointly continuous in the parameters, since the composition in S is separately
continuous, and since we can rewrite pg p = P. 0 py iy with @’ + b + ¢ = a+ b. Note that
B~ wAs = p-10adia, is a bimodule isomorphism, so it is enough to consider twisting on
one side.

The proof of the following proposition is similar to that of Proposition 4.1.18.
Proposition 4.1.40. Let F' =, ; I and G = @, ; G; be RFAs in Hilb as in Propos-

ition 4.1.18. Let My; € Hilb be an Fj-Gj-bimodule with action pyf{, fork el and j € J.
Then M = @keue‘] My, is an F-G-bimodule in ‘Hilb if and only if for every a,l,b € Ry

piulk{) } < 00 . (4.1.78)

kel,jeJ

A morphism U %V of left modules over a regularised algebra A is a morphism in S
which respects the action:

B0y = o0 (idr@9), (41,79

for all a,l € R.y. One similarly defines morphisms of right modules and bimodules. Denote
with A-Mod(S) the category of left modules over A in S.

Recall from Proposition 4.1.24 that for a regularised algebra A € Vect™ the pair
D(A) = (A, H) consists of the underlying algebra of A and an element H in its centre. Let
A-Mod? (Vectfd) denote the following category. Its objects are pairs (U, Hy), where U is a
left A-module in Vect'd and Hy € End4(U). Its morphisms are left A-module morphisms
¢:U — V, such that Hy o ¢p = ¢ o Hy.

As in the case of regularised algebras in Vect™® (cf. Proposition 4.1.17), the semigroup
(a,1) — le is norm continuous and hence Qfl]’l = evHatltHu for H, Hyy € Enda(U) such
that H4 o Hy = Hy o Hy.

Let us define a functor D : A-Mod(Vect™) — A-Mod?(Vect™®) as follows. The A-
module structure on D(U) is given by p” = QY, _, 0 p, and Hy is defined as above. On
morphisms D is the identity.

Proposition 4.1.41. The functor D : A-Mod(Vect') — A-Mod? (Vect') is an equival-
ence of categories.

Proof. The A-module structure on D~'(U, Hy) is given by pY, = e®atHv o pU with
Hy=pY(H ® —) € Endy(U), where pY is the action on U. O
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Remark 4.1.42. Let A, B € Vect be regularised algebras and U € Vect'® an A-B-
bimodule U € Vect'. As before we have QY,, = e*atHutbts where Hy, Hy, Hp €
End, 5(U) are bimodule homomorphisms. Then U is transmissive if and only if H4 = Hp.

Let us assume now that S is symmetric. We now introduce a notion of duals for
bimodules.

Definition 4.1.43. Let A, B € S be regularised algebras. A dual pair of bimodules is an
A-B-bimodule U € § and a B-A-bimodule V' € S together with families of morphisms for
every a,l,b € Ry

Yagp € SILV RU) , Baip € S(UR V), (4.1.80)

jointly continuous in the parameters, which we denote with

vV U
(a,1,b)

Yalb = : Bajp = : (4.1.81)
(a,l,b)
I u Vv

such that for a; + as = a, by + by = b and [; + I = | we have

v I (az2,l2,b2) (llz,lz,bz)H U
Vo o_ U _
alb = , Qaup = , (4.1.82)
(a1,11,b1) (a1,11,b1)
I V U I
and for every a; + as = az + a4, by + by = by + by and [y + I, = I3 + |4 we have
V U —(D V ;io? U (al,ll,b1) D (a47l4»b4)
~ o) ~
N :‘ Y &
= A and g =7 4.1.83
3 (4.1.83)
(a1,01,01) A B (aa,ls,05) A B U BV A U BV A

Let us compare this situation to Lemma 4.1.7. There the continuity of v, in the
parameter was automatic, but in Definition 4.1.43 we demanded continuity explicitly. The
reason for this is that the argument in the proof of Lemma 4.1.7 does not apply, as we have
not required that idy ®QaU,l,b is continuous in the parameters, see Remark 4.1.36. However
one can easily check that for every a; +as = az +aq, l1 + 1o = I3+ 14 and by + by = b3 + by

<1dV ®Q([Ji7l1,b1> © Pya27127b2 = (Q:L/g,l37b3 ® ldU) o 7‘147[47174 . (4184)

Furthermore, in Hilb this is equal t0 Vo, +a0,11+12,b1+bs-
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Note that (4.1.83) implies that the action on V' is determined by the action on U:

%
(as,13,b3)

p}l/:u, = (a2,12,b2) (4.1.85)

(a1,11,b1)

BV A
We similarly define dual pairs of left and right modules and we omit the details here.

Example 4.1.44. Let A € S be a symmetric RFA, a € Autgrons)(A) and 4Aiq be the
twisted transmissive bimodule from Example 4.1.39. Then (,Aiq, o-14iq) is a dual pair of
bimodules with duality morphisms

Bags = a0 ppo (ida®a) and  7u = (a7 @ida) o Agom, (4.1.86)
for a,l,b € R.y. Note that these morphisms only depend on a + b.

Remark 4.1.45. If (U, V) is a dual pair of bimodules with duality morphisms ~,,;; and
Baip, then (V,U) is also a dual pair of bimodules with duality morphisms oy, © 74, and

5a,z,b ooyu-

Duals of bimodules over associative algebras are unique up to unique isomorphism.
In the following we will see that under some assumptions this will be true for duals of
bimodules over regularised algebras too. Let (U,V) and (U, W) be two dual pairs of
bimodules and define

(az,l2,b2) (az,l2,b2)

Palp yUN » Yaup h« (4.1.87)

(a1,11,b1) (a1,11,b1)

which satisfy for a = ay + as, b = b; + by and [ = [; + [ that

14 w
Pay,l1,b1 © waz,lmbz = Qa,l,b and wahll,bl O Pas,laby = Qa,l,b : (4'1'88)

Using separate continuity of the composition and (4.1.88) one can show the following (we
omit the details):

Lemma 4.1.46. If the limits

alllggocpalb and a%lzfgo%” (4.1.89)

exist, then g0 and 1y are mutually inverse bimodule isomorphisms between V' and

w.
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In general we do not know if V = W not even in Hilb.

Remark 4.1.47. A related concept of duals was introduced in [ABP] where duals are
parametrised by Hilbert-Schmidt maps. The authors introduced the notion of a nuclear
ideal in a symmetric monoidal category, which in Hilb consists of Hilbert-Schmidt maps
HSO(H,K) for H,K € Hilb [ABP, Thm.5.9]. Part of the data is an isomorphism 6 :
HSO(H,K) = B(C,H ® K), where H now denotes the conjugate Hilbert space. For
f € HSO(H,K) and g € HSO(K, £) in a nuclear ideal the “compactness” relation holds:

(idz @0(fT)T) o (0(g) @idy) =go f . (4.1.90)

Our definition of duals fits into this framework as follows. Let A, B be a regularised
algebras and U an A-B-bimodule in Hilb with dual V. Then one can show that QJ, , is a
trace class map, and hence Hilbert-Schmidt, cf. Lemma 4.1.13. Using the above notation
let H=K=L:=U,

/ ZZQZM y 9 52@3/,1/,1;/ ) c[LJ,l,b ::g(fT)T ’Ygf,z’,bf :=0(g) . (4.1.91)

Then (4.1.90) is exactly one half of the duality relation (4.1.82) and (U, U) is a dual pair
of bimodules in the sense of Definition 4.1.43.

4.1.7 Tensor product of modules over regularised algebras

Let A € S be a regularised algebra, M, N € § right and left A-modules respectively and
U € S an A-A-bimodule. Let pil = pgm o (4 ®idyga) and paL’l = an’lva, o (idagpy ®n4)
for a’' +d" = a.

Definition 4.1.48. The tensor product of M and N over A is an object M ® 4 N together
with a morphism 7y ,v: M @ N - M ®4 N in S, which is a coequaliser of pgf[l ® Qi\fl
and Q) ® pl; for every pair of parameters (a,1) € RZ,.

If S is symmetric with braiding o, one similarly defines the cyclic tensor product
(mo,v 1 U =04 U) to be a coequaliser of pl; and pl, 0 o4y for every (a,l) € R2,.

Let A, B,C € S be regularised algebras, V' a B-A-module and W an A-C-module. Let
m: VW =V 4 W denote a coequaliser of the morphisms

\% %74 % %74
(b2,1,a) | (a2,lc2) (b2,1,a2) | (a,l,c2)
Pl 14\ 4\ SN A\ /?\ (4.1.92)
ai c1 ai C1 ’
b1 bl

VA W vV AW

for every parameter aq, as, by, ba, 1, 2,1 € Ryg with a = a1 +asg, b =014+ by and ¢ = ¢; + ¢
(which of course may or may not exist). If the tensor product B ® (—) ® C preserves
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coequalisers of families of morphisms, then the universal property of the coequaliser induces
a morphism pypei: B (V@4 W)®@C —V ®4 W from the morphism

Vs W

(b,l,al) (a3,l,c) ) (4193)

as a4

BV w C

where a1 + ay = a3 + ay. If the limit pp; . 1= limg_,0 Papc; exists and is jointly continuous
in all three parameters, then it gives a B-C-bimodule structure on V@4 W.

Definition 4.1.49. The tensor product of V- and W over A is the B-C-bimodule V @4 W
with the action p,.; together with the coequaliser 7 : V@ W — V @4 W.

The following proposition shows that in Vect' the tensor product of modules over

regularised algebras reduces to the tensor product over ordinary associative algebras. The
proof is straightforward and we omit it.
Proposition 4.1.50. Let A be a regularised algebra in Vect'®, M and N right and left A-
modules, respectively. Let D(M) = (M, Hy) and D(N) = (N, Hy) be the corresponding
underlying modules and module morphisms from Proposition 4.1.41. Then D(M ®4 N) =
(M®aN,Hy®aHy), where M ® 4 N is the tensor product of the underlying modules over
the underlying algebra and Hy; ® 4 Hy is the induced morphism on the tensor product.

For the rest of the section let S be symmetric monoidal and idempotent complete, and
A € § astrongly separable regularised algebra with separability idempotents e,. We define
the following morphisms

M N U

(a1,1) (as,!) (a1,l,a3)

M N U

with 2?21 a; = a, b =0, +by, c=cy +cyand [y + I = [. From a direct computation it
follows that

M,N M,N _ M,N
Dalvll © Da27l2 - Da1+a2,l1+12 (4195)
U U _ nU
Dahll © Daz,lz - Da1+a2,l1+l2 (4196)
v\w V,W _ W
a1,b1,c1,l1 asz,ba,co,li T T aitasz,bi+ba,c1tcoli+lo (4197)
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for every ay,as,li,lo,b1,00 € Ryg. So if Déw’N = limg 0 D%’N exists, then it is an
idempotent. In this case we write

DN — [M O N 5 mDMN) 5 M N]
(4.1.98)
id,,, iy = [im(Dé”’N) S MeNS im(Déw’N)}

for the projection 7 and embedding ¢ of its image im(Dy""). Similarly, if DY := limg o DY,

(resp. D[‘)/’ = limg p e 10 D(‘l/bmg ,) exists, then it is also an idempotent and we similarly write
. . VW
7, ¢ and im(DY) (resp. im(Dy")).
. VW .
Let us assume that lim, 4.0 D, ., exists and define

im(D(‘)/’W)

VW o _
a,b,c,l T

(4.1.99)

for ay,as,as,b,c,l € Roy with a = a1 + as + as.

Proposition 4.1.51.
1. If D)™™ exists then (m,im(Dy)M™N) is the tensor product M 4 N.

2. If DY exists then (m,im(D{)) is the cyclic tensor product O U.

3. IfD(‘)/’W and py . 1= limg_yo ﬁ;/,’;/’z,l exists for every b, ¢, | € Ry and is jointly continuous
in the parameters then (7,im(Dg)""W') with action py. is the tensor product V@4 W .

Proof. We will only treat the third case, in the other two cases one proceeds analogously.
We show that (m,im(Dy"")) is a coequaliser of the morphisms in (4.1.92). Let p :=
(a,b,c,l), p':=(a,b,c,l') and ¢ : V@ W — Y be such that

popk=ypopl. (4.1.100)

Let ¢ := por. We need to show that ¢ = @ ox and that ¢ is unique. Compose both sides
of (4.1.100) with

Vv A w

(b3, 1, ah)

by
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with @} +ay =d', b] + 0, =0 and ¢ + ¢, = ¢ to get

SOODerp 900( p+p’®Qp+p)

D(‘)/ W ©, which we needed to show. Uniqueness

Now taking the limit p,p’ — 0 gives @ o
of ¢ follows from 7mo . = idim(D(‘)/’W)'

It is easy to see that the morphism p,p.; induced by (4.1.93) is the morphism in
(4.1.99).

O

Corollary 4.1.52. Consider A as a bimodule over itself. If D§ exists then (1 :04 A — A)
is the centre of A.

Proof. Using the previous notation we show that ¢ :04 A — A satisfies the universal
property of the centre. So let ¢ : Y — A be such that

o (idg ®p) = g 00 o (ida @) . (4.1.101)

Set ¢ := mo p. We need to show that 1 o p = . From (4.1.101) one obtains that
D, op = P,oy. Then taking the limit a — 0 gives Dy o ¢ = ¢ which is what we needed
to show. Uniqueness of ¢ follows again from 7o+ =idy , 4. O

Example 4.1.53. Let A € S be a strongly separable symmetric RFA, o, 8 € Autgzrons)(A)
oAid, pAia be the twisted transmissive bimodules from Example 4.1.39. Let us assume that
lim,_o Dyt grom (4.1.94), lim, 0 ptq and lim, o A, exist. Then (,Aiq) @4 (54ia) =
aopAia and the projection 7 : 4 Aiq ® gAia = aopdia 1s given by m = oo (B ®ida).

Remark 4.1.54. For A a strongly separable symmetric RFA, the tensor product over A
actually automatically satisfies a stronger coequaliser condition. Let us illustrate this in
the first case of Proposition 4.1.51: define Ly, 4,1 := pi ;@ Q2 and R, 0,0 := Q3 @ pl |
for a; > 0. Then m: M ® N — M ®4 N is defined as the coequaliser of L, ,; and Ry 4,
but it is straightforward to verify that also mo L, 4,1 = 70 Rgj 4, holds for all a; > 0 such
that a1 + as = a3z + a4.

Using Proposition 4.1.51 and the dual action in (4.1.85) one can show the following.
Lemma 4.1.55. Let (V,V) be a dual pair of B-A-bimodules and (W, W) a dual pair
of A-C-bimodules. Let us assume that D(‘)/’W and D(‘)MV exist and that lim,_q ﬁ;/”;zl and

lim,_. ﬁZVbZ , exist and are jointly continuous in their parameters. Let for a,b,c,l € Ryg

WeaV VoaW (b,1,a;V)
|
| | T | (a,l,c; W)
Tabed = v and By, = A . (4.1.102)
(a,l,c; W)

IV IR

_
V®AW W®aV

(b,1,a;V)
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. ~VW . VW . .. .
If limg_y07, )., and lim,_,o B, ., exist for every b,c,l € R. and are jointly continuous,

then (V @4 W,W ®4 V) is a dual pair of B-C-bimodules.

4.1.8 Tensor products in Hilb
We now consider the case & = Hilb. Note that in Hilb cokernels exist. If f: X — Y

is a morphism in Hilb then 7 : Y — Y/im(f) is a cokernel of f where 7 is the canonical
projection and im(f) is the closure of im(f).
After some preparatory lemmas we will discuss tensor products of modules over regu-

larised algebras.

Lemma 4.1.56. Tensoring with identity in Hilb preserves cokernels.

Proof. Let f: X — Y, mp = coker(f) : Y — Y/im(f), Z € Hilb and 7¢gia, := coker(f @
idy):Y®Z - Y®Z/im(f ®idyz). The claim of the lemma boils down to the observation
that im(f)®Z = im(f ® idz), which in turn follows since both sides are closed and contain
im(f) ® Z as a dense subset. O

Lemma 4.1.57. Let A be a regularised algebra, and let M and N be right and left A-
modules and U an A-A-bimodule. Let p,q € (Rxg)? arbitrary and set ¢, := p;,w ® Q]])V —

Q) @ p). If QY and QM are epi for every r € (Rsg)?, then im(yp,) = im(g,).

Proof. Let p := (p1,p2) and q := (q1, ¢2). It is enough to show that im(¢,) = im(¢p,) in the
case when p; > ¢; and py > ¢o. Then we have that

op = g0 (@)L, ®ida®Q;,) (4.1.103)

from which we directly get that im(p,) C im(p,).

Now we show that im(yp,) C im(yp,). We write R := Q) ®id4 ®Q,’, and choose an
arbitrary y € M ® A® N. Let z = ¢,(y). By Lemma 4.1.12, R is epi, so we can choose a
sequence (2,)neny in M ® A® N, for which lim,,_,., R(2,) = y. Applying ¢, to both sides

gives lim,, o ¥p(2,) = @, and thus z € im(yp,). O]

Proposition 4.1.58. Let A be a regularised algebra, and let M and N be right and left
A-modules and U an A-A-bimodule. If Qf%, Q, and QY are epi for every a,1,b € Ry
then the following tensor products exist:

M®sN, O4U. (4.1.104)

Proof. Let us use the notation of Lemma 4.1.57. Let 7 be the projection

M®N — M ® N/im(g,) (4.1.105)

for some p € (Rs()?, which is independent of p by Lemma 4.1.57. But this means exactly
that 7 is the cokernel of @, for every p € (Rs)?, and is hence a tensor product M ®4 N.
A similar argument shows that O U exists. O
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Lemma 4.1.59. If V € Hilb is a left B-module and a right A-module such that the two
actions commute as in (4.1.75) then it is a B-A-bimodule via p,, as in (4.1.75).

Proof. The algebraic conditions are clear, and it remains to show that the two-sided action
p;/,l,b is jointly continuous in all three parameters. Since the composition is separately
continuous and we have QY 0 py .y = pu. ool L b it is enough to show that @, is
jointly continuous in all 3 parameters. Let pa , be the left action and ,0 be the right action.
Then we have Qalb QGJ1 o Qz2,b for any a,b,l,1;,lo € Ry with [; + Iy =1.

Let ¢ > 0 and v € V. We show that Q(‘;’l’b is continuous at (ag, l, by) € (Rsg)3. Let us
fix 0 < Ify < lp. For | > [{ we have the estimate

1% R R
H< alb ao,lo,bo H( al-lh — ao,lo A )Qz' ,bo + Qal U (ng,b - Ql(),b())) UH

H al—l) — ao,lo—l{,)ng,bov ' H(Q;Z,b - Q;Z,bo>v
(4.1.106)

Qa,l—l()

Using the joint continuity of QaL’l at the point (ag,ly — [j)) we can find d; > 0 such that
for every a,l € Ry with |a — ag| + |(I — 1)) — (Io — I{))] < 61 the first term in the second
line of (4.1.106) is smaller than €/2. For a,l € R.q with |a —ap| + |l —1lg| < by and [[ <1

there exists a K > 0 such that HQGZ 0

< K since ( HQ l|| is continuous. Finally

since Ql, » is continuous in b we can choose d; > 0 such that (QF, — Ql{) bO)UH < e/(2K)

for every b € R with [b— bo| < 03. Altogether we have that |[(QY,, — QY , ,,)v| < ¢ for
every a,l,b € R.g with |a — ag| + |l = lo| + |b — by| < min {(51,(52,l0 o} O

Recall that the converse statement of Lemma 4.1.59 is not true. In Appendix 4.A we
give an example of a bimodule in Hilb which is not a left module.

Proposition 4.1.60. Let A, B, C be regularised algebras in ‘Hilb, V a B-A-bimodule, W
an A-C-bimodule, both coming from left/right modules as in Lemma 4.1.59. If Qy, , and

Z[,/l,c are epi for every a, b, c,l € R.q, then the tensor product of bimodules

Ve, W (4.1.107)

exists.

Proof. By the assumption V is a right A-module and W is a left A-module. Since Ql‘:ha
and Qa 1. are epi, the @’s for the corresponding right and left module structures on V' and
W are epi as well. Let 7 : VW — V ®4 W be the tensor product of these right and left
modules, which exists by Proposition 4.1.58. Since the left and right actions for V and W
commute as in (4.1.75), 7 is a coequaliser for (4.1.92).

By Lemma 4.1.56, tensoring with identity preserves cokernels, so the universal property
of the cokernel induces a morphism pgpc;: B® (V@4 W)@ C =V ®4 W from (4.1.93).
Since V is a left B-module and W is a right C' module, the morphism in (4.1.93) with
parameter a = 0 exists and induces the morphism pg.;, which is clearly the a — 0 limit
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of Pap.ci and which is clearly jointly continuous in its parameters. So altogether we have
shown that V ®4 W as the tensor product of bimodules exists. O

For the rest of this section we restrict our attention to tensor products over strongly
separable regularised algebras.

Lemma 4.1.61. Let A,M,N,U be as in Lemma 4.1.57 and suppose that A is strongly
separable. If QM é\{l and le are epi for every a,l,b € R+, then the following limits of

a,l’

the maps in (4.1.94) exist:
lim DMN " lim DY, . (4.1.108)

a,l—0 ’ a,l—0 ’
The above idempotents are projectors onto the respective tensor products.

Proof. We will only show that the first limit exists, the second can be shown similarly.
Abbreviate p = (a,l) and D, = D%’N. Recall the morphism ¢, from Lemma 4.1.57. Let

us identify M ® N/im(p,) with the orthogonal complement of im(y,) in M @ N and let D,
be the projection onto this closed subspace. Since on this subspace the left and right actions
are identified, one has that D, = Dy o (QM ® QL) for appropriate p,p1, p2 € (Rsg)?, so
lim,_,o D, = Dy. By Proposition 4.1.58 we know that the image of Dy is the tensor product
M &y N. ]

Proposition 4.1.62. Let A be a strongly separable algebra and let V' be a B-A-bimodule
and W an A-C-bimodule, such that QXl,a and QY . are epi for every a,b,c,| € Rsy.

a,l,c

1. If the limit lim,_,q Pap ., Of the morphism in (4.1.99) exists, then the tensor product
VeaW (4.1.109)

exists and is a B-C-bimodule via ﬁ(‘)/,}?;l as in Proposition 4.1.51.

2. If V and W are transmissive then V ® 4 W exists and is transmissive as well.

Proof. Similarly as in Lemma 4.1.61, for V' and W we again have that V ® 4 W exists as
a cokernel. What is left to be shown is that we get an induced action on V ®4 W. By
Lemma 4.1.56, tensoring with identity preserves cokernels, so we get an induced morphism
from (4.1.93), which coincides with the morphism in (4.1.99). By our assumptions the
a — 0 limit of this morphism exists. It can be shown by iterating Lemma 4.1.15 that the
action on V ®4 W is jointly continuous in the parameters, so V®4 W is a bimodule.

If the bimodules were transmissive then the morphism ﬁX’IKZJ from (4.1.99) depends only
on a + b+ ¢ and not on the differences of these parameters. In particular its a — 0 limit
and hence the tensor product V ®4 W exists and the tensor product is transmissive. [J

We have seen two different conditions for the existence of tensor product of bimodules.
In the state sum construction we will use both and our main examples will satisfy both
of these conditions, too. Note that the existence of tensor product does not automatically
mean that it closes on bimodules with duals. For the natural candidate for the dual of
V ®4 W to exist one would need to establish the existence of the limits in (4.1.102).



118 Chapter 4. Area-dependent quantum field theory with defects

4.2 Area-dependent QFTs with and without defects
as functors

In this section we define the symmetric monoidal categories of two-dimensional bordisms
with area, with and without defects. Using these, area-dependent QFTs are defined as
symmetric monoidal functors from such bordisms to a suitable target category S. In
the case without defects we classify such functors in terms of commutative regularised
Frobenius algebras in &, mirroring the result for two-dimensional topological field theories.

Below, by manifold we will always mean an oriented smooth manifold.

4.2.1 Bordisms with area and aQFTs

We first recall the definition of the category of 2-dimensional oriented bordisms [Koc, Car],
and then extend this definition to include an assignment of an area to each connected com-
ponent of a bordism. Using these notions we define area-dependent QFT as a symmetric
monoidal functor with depends continuously on the area.

Let S be a compact closed 1-manifold. A collar of S is an open neighbourhood of S in
S x R. An ingoing (outgoing) collar of S is the intersection of S x [0, +00) (respectively
S x (—00,0]) with a collar of S. Let S*™¥ denote S with the reversed orientation. A surface
is a compact 2-dimensional manifold. A boundary parametrisation of a surface ¥ is:

1. A pair of compact closed 1-manifolds S and T
2. A choice of an ingoing collar U of S and an outgoing collar V' of T'.
3. A pair of orientation preserving smooth embeddings
iU =XV gou , (4.2.1)
such that ¢i, U ¢ouws maps (S x {0})™ L (T x {0}) diffeomorphically to 0%.

For two compact closed 1-manifolds S, T, a bordism ¥ : S — T is a surface X together with
a boundary parametrisation. The in-out cylinder over S is the bordism S x [0,1] : S — S.
Let ¥ : S — T be a bordism as in (4.2.1) and let ¥’ : S — T" with

it X Y Y o (4.2.2)

be another bordism. The two bordisms X, : S — T are equivalent if there exist an
orientation preserving diffeomorphism f : ¥ — ', as well as ingoing and outgoing collars
C and D of S and T contained in the collars U, X and V', Y, respectively, such that the
diagram

U2y y &y

™S
i ~

C D (4.2.3)

7
.

X B Yin y Z/ (‘Pout’Y
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commutes.

Given two bordisms ¥ : S = T and Z : T — W, we define Zo ¥ : S — W to be
the surface glued using the boundary parametrisations ¢~ and ¢ and with ¢ and ¢,
parametrising the remaining boundary. The composition [Z] o [¥] := [E0X]: S — W is
well defined, that is, it is independent of the choice of representatives =, 3 of the classes
to be glued.

The category of bordisms Bords has compact closed 1-manifolds as objects and equi-
valence classes of bordisms as morphisms.

The category Bord, becomes a f-category as follows. Let the functor (—)T : Bordy —

Bords be identity on objects. Let S € Bords and let us define the inversions

tg: S XR—= S xR

(5,1) = (s, —t) . (4.2.4)

Let ¥ : S — T be a bordism with boundary parametrisation maps as in (4.2.1). We define
(2)": T — S to be the bordism

Bl = Gout 0 b Lp(V) = X = 1g(U) : @l = dm o Ls (4.2.5)

/

with reversed orientation and new boundary parametrisation maps ¢}, and ¢, ;.

After this quick review we can introduce the bordism category we are interested in:

Definition 4.2.1. A bordism with area (X, A : m(X) — Rxg) : S — T consists of a
bordism ¥ : S — T and an area map A. The value of the area map is always strictly
positive, except on connected components equivalent to in-out cylinders, where it is allowed
to take value 0 as well. The value A(c) for ¢ € my(X) is called the area of the component c.

Two bordisms with area (X,A4), (X, A") : S — T are equivalent if the underlying
bordisms are equivalent with diffeomorphism f : ¥ — ¥’ and if the following diagram
commutes:

fe Rso , (4.2.6)

70(2/>
where f, : mo(X) — mo(X') is the map induced by f.

Remark 4.2.2. Allowing zero area for connected components which are equivalent to
in-out cylinders will ensure that the category of bordisms with area defined below has
identities. Allowing zero area for all surfaces, in particular for “in-in” and “out-out”
cylinders, would make state spaces of corresponding area-dependent quantum field theories
finite-dimensional, see Remark 4.2.11 below. Requiring all surface components to have
strictly positive area and adding identities to the category by hand would — at least in
the example that the area-dependent theory takes values in Hilb and under some natural
assumptions — not give a richer theory. Hence we opted for the definition above.



120 Chapter 4. Area-dependent quantum field theory with defects

Given two bordisms with area (X, A4y) : X — Y and (E,A4z) : Y — Z, the glued
bordism with area (Z o X, Azox) : X — Z is the glued bordism together with the new
area map A=,y defined by assigning to each new connected component the sum of areas
of the connected components which were glued together to build up the new connected
component.

Let [((E,Az)] : T — W and [(X, Ax)] : S — T be equivalence classes of bordisms with
area. The composition [(Z, Az)]o[(X, Ax)] := [(E0X, Azox)] : S — W is again independent
of the choice of representatives (=, Az), (X, Ax) of the classes to be glued. In the following
we will by abuse of notation write the same symbol (X, .A) for a bordism with area (X, .A)
and its equivalence class [(2,.4)].

Definition 4.2.3. The category of bordisms with area Bords ** has the same objects as
Bordy and equivalence classes of bordisms with area as morphisms.

Both Bords and Bords"* are symmetric monoidal categories with tensor product on
objects and morphisms given by disjoint union. The identities and the symmetric structure
are given by equivalence classes of in-out cylinders (with zero area). There is a forgetful
functor

F : Bordy™** — Bord, , (4.2.7)

which forgets the area map.

Next we introduce the following topology on hom-sets of Bords"**. Fix a bordism
¥ : S — T in Bords. Define the subset Uy, C Bordg™*(S,T) as

Us = FYZ) = {(Z,A)[A: (D) > Rso} =2 (Rag)™ x (Rsg)™ (4.2.8)

where N, is the number of connected components of ¥ equivalent to a cylinder over a
connected 1-manifold and N, = |mo(X)| — N.. The topology on Us; is that of (Rso)™™ x
(RZO)NC. We define the topology on Bords™*(S,T) to be the disjoint union topology of
the sets Us. One can quickly convince oneself of the following fact:

Lemma 4.2.4. The composition and the tensor product of Bords"** are jointly continuous.

After these preparations we can finally define:

Definition 4.2.5. Let S be a symmetric monoidal category whose hom-sets are topological
spaces and whose composition is separately continuous. An area-dependent quantum field
theory with values in S or aQF'T in short is a symmetric monoidal functor Z : Bordy"** —
S, such that for every S,T" € Bordy ™ the map

Zgr : Bords™(S,T) — S(Z(5), Z2(T)) (4.2.9)
(3, A) = Z(X,A)

1s continuous.
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The continuity requirement can equivalently be stated as follows. For every bordism
3 :S8 — T in Bords,, the map

Us = (Rso)™ x (Rs)™ — S(Z(S), Z(T)) (4.2.10)
(A(x))xem(z) = Z(Za "4)

is continuous.

The following lemma shows that it is enough to require this continuity condition to
hold for cylinders with area. The proof is similar to the proof of Part 4 of Lemma 4.1.2
and we omit it.

Lemma 4.2.6. Let Z : Bordy™** — S be a symmetric monoidal functor and for every
S € Bordg™® let (S x [0,1],.A) denote a cylinder with area. If for every S € Bordg™® the
assignment

(Rs0) ™S 5 S(Z2(9), 2(9))

(A(2))zero(s) — Z(S x [707 1], A), (4.2.11)

is continuous, then Z is an aQFT.

aQF Ts together with natural transformations form a category aQFT (S). Assume that
for 21,25 € aQFT (S) and all S, T € Bordy"™* the map

(Zl X ZQ)SJ" : BOT‘d;ma(S, T) — S(Zl(S) X ZQ(S), Zl(T> X ZQ(T)) (4212)
(3, A) = Z1(5,A) ®@ Z5(%, A)

is continuous. Then (4.2.12) defines an aQFT which we denote with Z; ® Z5. If the
continuity condition (4.2.12) holds for every Z;, Z; € aQFT (S) then aQFT (S) becomes
a symmetric monoidal category. For example, combining Lemma 4.1.15 and Lemma 4.2.6
we see that aQFT (Hilb) is symmetric monoidal.

The category Bordg™® becomes a t-category via the functor which is the same as (4.2.5)

on the bordisms and which does not change the area maps. Following the terminology of
[Turl, Sec.5.2] we define:

Definition 4.2.7. Let us assume that S is a f-category. We call an aQFT Z : Bords" ™ —
S Hermitian, if the diagram

Bordgres —2 S
- l()T (4.2.13)
Bordgre —2 S

commutes.

4.2.2 Equivalence of aQFTs and commutative RFAs

Let S2,, : (S')”™ — (S')"" denote the (n + m)-holed sphere with m ingoing and n out-
going boundary components and let (S2,  a): (S')"™ — (S')“" denote the corresponding

n,m>
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bordism with area a. Let us consider the following family of bordisms:
Na = (SiO’ a) ;€= (S(Q),laa) y e = (Si%a) ) Aa = (Sg,ha) ) (4'2'14)
for a € R.g. In addition, it is useful to set
P, :=(S7,.a) . (4.2.15)

Lemma 4.2.8. The morphisms in (4.2.14) endow S' € Bord{"** with the structure of a
commutative regularised Frobenius algebra in Bords" .

Proof. Checking the algebraic relations (4.1.2), (4.1.3), (4.1.12), (4.1.13) and (4.1.16) of
an RFA and commutativity is analogous to the case of ordinary Frobenius algebras, see
e.g. [Koc, Sec.3.1]. The morphism P, from Part 2 in Definition 4.1.1 is now given by P,
in (4.2.15).

The limit lim,_,o P, = ids: is immediate as the identities in Bordy"** are cylinders with
0 area. The continuity condition in (4.1.4) follows equally directly from the definition of
the topology on hom-sets in Bord," . [

From the above lemma it is maybe not surprising that aQFTs with values in § are in
one-to-one correspondence with commutative RFAs in S, in complete analogy to topolo-
gical field theory. To give the precise statement and the equivalence functors, we need to
introduce some notation.

Let A € § be a commutative RFA. Let a € Ry, u((lo) = N, ,ugl) =P, uf) ‘= e and
forn >3

i = p,g;;” o (id yetn—2) @flasz) - (4.2.16)

Let A((IO) = Eq, A((ll) =P, A((lz) = A, and for n > 3
AL = (id go-2 @A2) 0 ALY (4.2.17)
We will use the same notation for the structure maps (4.2.14) of the commutative RFA

S' € Bordgree.
For an object S € Bords"** let

zZA9) = ) A, (4.2.18)

z€mo(S)

where A®) = A for every x € my(S) and the superscript keeps track of tensor factors.

Let S,T € Bords ™, (344, a) € Bords"**(S,T) a connected bordism with area a whose
underlying surface is of genus g and has b = |my(S)| + |70(T)| many boundary components.
We say that (2,4, a) is of normal form, if

(o (S))) A . g AUT0(T))
bs fia (Bay/(29)%Hay ) (29)) Aa
(g ) = | § =5 (SHHIm@I 2y gt i) B, gt

y (S1)HImo(DI Y1y

(4.2.19)
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for some aq, as, az € Ryg such that a; +as+ a3 = a and orientation preserving diffeomorph-
isms g and Y. Every connected bordism with area is equivalent to a bordism with area
of normal form with the same area. By forgetting about the area, this is the normal form
for ordinary bordisms, see e.g. [Koc, Sec. 1.4.16]. Let us pick a representative of (£, a)
which is of normal form and let

N M((I\Tro(S)\)
ZA(S,a) 1= | ZA(8) L& ARG L 4
(4.2.20)
(Day/(29)%Hay/(29))0 Ag;’o(T)I) v
A s A s A®Imo(T)] ¥ ZA(T) |

where Ug and ¥, denote the permutation of tensor factors induced by the bijections g
and v respectively. For g = 0 the morphisms in the middle of the compositions in (4.2.19)
and (4.2.20) are ids: and id4 respectively. For a bordism with area (3,.4), where X is not
necessarily connected we define

ZA(E, A) 1= @eenym) Z2(c, Alc)) - (4.2.21)
Lemma 4.2.9.

1. Let Z € aQFT(S). Then Z(S'), with structure maps given by the images of the
bordisms (4.2.14) under Z, is a commutative RFA.

2. Let A € § be a commutative RFA. Then the assignments in (4.2.18) and (4.2.21)
define an aQFT Z4.

Proof.
Part 1 follows directly from Lemma 4.2.8 and the continuity condition for Z.

Part 2: Proving that Z4 is a symmetric monoidal functor is similar to the case of topological
field theories Bordy, — S [Abr, Thm. 3], and we omit it. The continuity condition (4.2.9)
amounts to Lemma 4.1.2 Part 4. O]

Now consider the functor

G :aQFT(S) = ¢cRFrob(S)
Z— Z(SY,

(4.2.22)
<Z LN z’) — (Z(Sl) Pz, z'(sl)) .

Theorem 4.2.10. The functor G defined in (4.2.22) is an equivalence of categories.

Proof. Let the inverse functor H be given by the assignments in Lemma 4.2.9 Part 2. Then
it is easy to see that G o H = idcr 7rop(s). The rest of the proof is very similar to the proof
of [Abr, Thm. 3|, on the equivalence between 2-dimensional topological field theories and
commutative Frobenius algebras, and we omit it. O
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Remark 4.2.11. If all zero area limits of Z € aQFT (Hilb) exist, then the RFA Z(S') is
finite-dimensional. This follows from Theorem 4.2.10 and Proposition 4.1.17.

Proposition 4.2.12. Assume that S is a symmetric monoidal category and that the
conditions of Proposition 4.1.22 hold for every pair Ay, Ay € cRFrob(S). Then

1. the categories cRFrob(S) and aQFT (S) are symmetric monoidal,
2. the functor G in (4.2.22) is an equivalence of symmetric monoidal categories.

Proof. As we already discussed after Proposition 4.1.22, ¢cRFrob(S) is a symmetric mon-
oidal category. The equivalence from Theorem 4.2.10 shows that the tensor product of
aQFTs in (4.2.12) equally satisfies the continuity condition. Hence aQFT (S) is monoidal
(and clearly symmetric). It is easy to see that the equivalence G is symmetric monoidal. [

Combining the above proposition with Proposition 4.1.23, we get:
Corollary 4.2.13. The categories aQFT (Vectfd) and aQFT (Hilb) are symmetric mon-
oidal.
Corollary 4.2.14. The restriction of the functor G in (4.2.22) to the category of Hermitian
aQFTs with values in S gives an equivalence to the category of -RFAs in S.

Corollary 4.1.31 together with Corollary 4.2.14 shows that a Hermitian aQFT in Hilb is
determined by a countable family of numbers {¢;, 0;},, satisfying convergence conditions
given in Corollary 4.1.31.

4.2.3 Bordisms and aQFTs with defects

We start by recalling some notions from field theories with defects [DKR, Car, CRS]. Let
Dy and D, denote sets, which we call labels for defect lines and phases, and s,t : D1 — Ds
maps of sets which we call source and target respectively. These maps describe the possible
geometric configurations of defect lines and surface components, which we will explain in
the following in more detail. We refer to this set of data as a set of defect conditions and
write D := (D, D, s,1).

Using a fixed set of defect conditions D we introduce some notions. Let k € {1,2}. A
k-manifold with defects is a compact k-manifold X, together with (see Figure 4.2)

1. a finite decomposition into (k—1)- and k-dimensional submanifolds X = X (h—1] U X[
and

2. maps d; : To(Xppqi—2) = Dy for I = 1,2,
such that the following hold.
o X1 N Xy =10,

® X[;_1) is an embedded oriented (k—1)-dimensional submanifold, which is either closed

or 8X[k,1} C 0X
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V' Hdup)) = dolly) s(da(p)) = da(r,) 2
dl‘(P) < >
lp (p> +) Tp lc t(dl (C)) d:(dQ)(ZC)
S(d1(p) = dalry) 1(ca(p)) = da(ly) N >
di(p) s(dyi(c)) = da(re)
<€ ® <€ 2
Tp (p, _) lp T_l

Figure 4.2: A neighbourhood of the submanifold X[;_;) in a k-manifold with defects.

a) case k = 1: The arrows show the orientation of the 1-manifold S, (p, +) denotes a positively
oriented point p € Sjg and (p, —) denotes a negatively oriented point. These orientations allow
us to define a left and right side I, 7, € mo(S};)) of p. We require for (p, +) that t(d1(p)) = da(l})
and that s(di(p)) = da(rp) and for (p, —) that the s and ¢ are exchanged: s(di(p)) = da(lp) and
t(di(p)) = da(ryp).

b) case k = 2: The arrows marked with 1 and 2 show the orientation of the surface 3, the arrow on
the line shows the orientation of ¢ € mo(¥;]). The orientations of ¥[;; and Xy allow us to define
left and right side I., 7. € mo(X)) of c. We require that for a defect line di(c) the phase label on
its right side is s(d1(c)) = da(r.) and that the phase label on its left side is ¢(d1(c)) = da(lc)-

e X is a k-dimensional submanifold with orientation induced from X and
e d; and dy are compatible with the maps s and ¢ as shown in Figure 4.2.

We call a closed 1-manifold with defects a defect object and a 2-manifold with defects a
surface with defects. In particular, for a defect object S the set Sjo) is a finite set of distinct
oriented points. For a surface with defects ¥, every connected component of X is the
image of a smooth embedding [-1,1] — ¥ or S* — 3.

A morphism of surfaces with defects f : ¥ — ¥’ is an orientation preserving smooth
map of surfaces such that the restrictions f \g[k] map the submanifolds Y onto Z’[k], they
are diffeomorphisms onto their image, and they make the diagrams

7o(S) -

(4.2.23)
d dj,

Dy,

commute for k =1, 2.
Let S be a defect object. A collar of S is a surface with defects C' = Cjy) U Cjy such
that

e (' is an open neighbourhood of S x {0} in S x R and
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Figure 4.3: A collar C = C};jUCY of S. The dotted circle in the middle shows S x {0} with its
orientation, the dots with labels (p;, £) for i = 1,...,3 show Spy) with orientations, the straight
lines with the arrows show the submanifold Cy; with its orientation. In the figure both Cj;) and
Clg) have 3 connected components, the labels w; and w; for ¢ = 1,...,3 show the values of d; and
ds respectively.

e ([ is the intersection of S x R with C' with orientation induced from the orientation
of Sj1) as shown in Figure 4.3,

o di(c) =di (cN (S x {0})) for c € my(Cpy) and k =1,2.

An example of a collar is shown in Figure 4.3. An ingoing (outgoing) collar with defects
is the intersection of a collar with defects and S x [0, +00) (respectively S x (—o0,0]).
A boundary parametrisation of a surface with defects ¥ consists of the following:

1. A pair of defect objects S and T.
2. An ingoing collar U of S and an outgoing collar V' of T'.

3. A pair of morphisms of surfaces with defects
Oin U= 2=V dous (4.2.24)

We require that ¢y, U ¢oue maps (S x {0})* U T x {0} diffeomorphically onto 0%.

A bordism with defects ¥ : S — T is a surface ¥ together with a boundary paramet-
risation. The in-out cylinder over S is the bordism with defects S x [0,1] : § — S. We
define the equivalence of bordisms with defects similarly as in Section 4.2.1, now using
diffeomorphisms of surfaces with defects that are compatible with the boundary paramet-
risation on common collars of defect objects. Given two bordisms with defects ¥ : S — T
and = : T — W, we can glue them along the boundary parametrisations to obtain a bor-
dism with defects Zo X : § — W. This glueing procedure is compatible with the above
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notion of equivalence. The category of bordisms with defects Bordﬁ)f has defect objects
as objects and equivalence classes of bordisms with defects as morphisms.

After this preparation we turn to bordisms with area and defects.

Definition 4.2.15. A bordism with area and defects (X, A,L) : S — T consists of a
bordism with defects ¥ : S — T, an area map A : m9(Xz) — Rso and a length map
L : mo(Xp)) = Rso, which are only allowed to take value 0 on connected components of
3 equivalent to in-out cylinders with defects. The value A(c) for ¢ € my(Xjg) is called the
area of the component ¢ and the value of L(z) for x € mo(Xp;)) is called the length of the
defect line x.

Two bordisms with area and defects (X, A, £), (X', A", L") : S — T are equivalent if the
underlying bordisms with defects are equivalent with diffeomorphism f : ¥ — ¥’ and if
the following diagrams commute:

To(Xp2) mo(Xp)
~ ~
fx RZQ and fx RZO . (4225)
, /A’ / /[:/
mo(py) o (3

Given two bordisms with area and defects (X, Ay, Ls) : X — Y and (2, Az, Lz) :
Y — Z, the glued bordism with area and defects (Z o X, Azox, Lzox) : X — Z is the
glued bordism with defects together with the new area map Az.x defined by assigning to
each new connected component of (Z o E)[Q] the sum of areas of the connected components
which were glued together to build up the new connected component and with a similarly
defined new length map L=.5.. As before, this glueing procedure is compatible with the
above notion of equivalence.

Definition 4.2.16. The category of bordisms with area and defects Bordiga’def has the

same objects as Bord;fﬂe)f and equivalence classes of bordisms with area and defects as
morphisms.

Both Bord;f;)f and Bord, readef are symmetric monoidal categories with tensor product
on objects and morphisms given by disjoint union. The identities and the symmetric
structure are given by equivalence classes of in-out cylinders (with zero area and length).

We introduce a similar topology on hom-sets of Bord;ga’def as for Bordy"** only that
we now need to take into account the topology related to the lengths.

Definition 4.2.17. Let S be a symmetric monoidal category whose hom-sets are topolo-
gical spaces and composition is separately continuous. A defect area-dependent quantum
field theory with values in S (or defect aQF'T for short) is a symmetric monoidal functor
Z: Bordﬁ)ea’def — 8, such that for every S, T € Bordz‘fﬂr)ea’def the map

Zsr : Bordyy™I(S,T) — S(2(S), 2(T)) (4.2.26)
(3, A,L) = Z(2,A,L)
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Figure 4.4: Collars on the opposite sides of S x {0}.

1s continuous.

Remark 4.2.18. Checking the continuity condition in (4.2.26) can be done by checking
only for cylinders, similarly as in Lemma 4.2.6 for aQFTs without defects. To see this, one
needs to cut surfaces with defects along circles which intersect with every defect line.

We turn the categories Bordzdg andBord;’ITDfa’def into f-categories in a similar way as
Bord, and Bords"** in Section 4.2.1. That is, it M : S — T is a bordism with area
and defects, then MT : T — S is a bordism with area and defects with (MT)y = My
for k = 1,2 with opposite orientation and with the same area maps and same defect
labels. The boundary parametrisation is changed in the following way. The new collars are
obtained from the old collars by extending the old ones and restricting them to the other
side of S! x {0} as illustrated in Figure 4.4. The boundary parametrisation maps are the
old ones composed with the maps g and ¢y from (4.2.4). We stress that in the definition
of the dagger structure on Bordﬁga’def we have not included an involution on the set of
defect labels ID. This is important since we want the dagger to act as identity on objects.
With these conventions it makes sense to consider MToM : T — T, which is relevant when
considering reflection positivity, see e.g. [GJ, Ch.6]. For a cylinder C' = S x [0, 1] we have
that CT = C.

Let us assume that S is a dagger category. We call a defect aQFT Z : Bord;ga’def — S
Hermitian if it is compatible with the dagger structures.

In Section 4.3.5 we give a state-sum construction of defect aQFTs, and in Section 4.4.3
we discuss our main example, 2d YM theory with Wilson lines.

4.3 State-sum construction of aQFTs with defects

The state-sum construction of two-dimensional TFTs (see [BP, FHK] and e.g. [LP1, DKR])
has a straightforward generalisation to aQFTs which we investigate in this section. We
start by giving the conditions on weights for plaquettes, edges and vertices in order to
obtain state-sum aQFT without defects, and we explain the relation of these weights to
RFAs, as well as the connection to the classification of aQFTs in terms of commutative
RFAs assigned to S' (Sections 4.3.1-4.3.3). Then we extend this state-sum construction
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a) . b)
W -
I . / 1 f f"
W — e
o/ v v
w’ w’

Figure 4.5: Elementary moves of PLCW decompositions with area. Figure a) shows edges e, ¢’
and between faces f and f’. (The two faces are allowed to be the same.) When we remove the
vertex w” and the edge ¢/, the new area maps should be the same outside the shown region and
such that the area of the connected component of the surface does not change. Figure b), shows
an edge e between two faces f and f’. When we remove the edge e and merge the faces f and f’
to f”, the new area maps should again be the same outside the shown region and such that the
area of the connected component of the surface does not change.

to aQFTs with defects and show that the weights for plaquettes traversed by defect lines
are given by bimodules. We define the fusion of defect lines and show that it matches the
tensor product of bimodules (Sections 4.3.4-4.3.7).

4.3.1 PLCW decompositions with area

In Section 4.3.2 we will use PLCW decompositions [Kir] to build aQFTs. For a compact
surface X this consists of three sets ¥, X1 and Yy whose elements are subsets of 3. Their
elements are called vertices, edges and faces. Faces are embeddings of polygons with n > 1
edges, edges are embeddings of intervals and vertices are just points in . Faces are glued
along edges so that vertices are glued to vertices. For example a PLCW decomposition of
a cylinder S' x [0, 1] could consist of a rectangle with two opposite edges glued together.
From this one can obtain a PLCW decomposition of a torus S! x S! by glueing together
the other two opposite edges. For more details on PLCW decomposition we refer to [Kir]
and for a short summary to Section 3.1.2.

We are going to need PLCW decompositions of surfaces with area, which we define now.
Let (3,.A) be a surface with strictly positive area for each connected component and let
Yo, X1, 2o be a PLCW decomposition of 3. Let Ay : ¥ — R~ be maps for k& € {0, 1,2},
which assign to vertices, edges and faces an area, such that for every connected component
x € m(X) the sum of the areas of vertices, edges and faces of x is equal to its area A(z).
A PLCW decomposition of a surface with area (¥,.A) consists of a choice of ¥j and Ay
for k € {0,1,2}.

Definition 4.3.1. An elementary move on a PLCW decomposition of a surface is either
e removing or adding a bivalent vertex as shown in Figure 4.5 a), or

e removing or adding an edge as shown in Figure 4.5 b).
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By [Kir, Thm. 7.4], any two PLCW decompositions can be related by these elementary
moves. The elementary moves in Figure 4.5 map PLCW decompositions with area to
PLCW decompositions with area.

4.3.2 State-sum construction without defects

Let us fix a symmetric monoidal idempotent complete category & with symmetric struc-
ture o which has topological spaces as hom-sets and separately continuous composition of
morphisms.

Let A € S be an object and consider the following families of morphisms

(o €S(AA), B, eS(A®AT) and W e S(I, A%™) (4.3.1)

for a € Ryp and n € Z>,. We call 3, the contraction and W' the plaquette weights. We
will use the following graphical notation for these morphisms:

A AA A

G=9Y" Ba = Wy = : (4.3.2)
A A

We introduce the morphisms P,, D, : A — A in order to be able to state the conditions
these morphisms need to satisfy:

al
Pa1+a2 = and Dao+a1+a2+a3 = A‘ T , (433)
for every ag, a, as,as € Ry (it will follow from the axioms below that these compositions
indeed depend on the sum of the parameters only).

Consider the following conditions on the morphisms in (4.3.1): for every a, ag, a1, as, ag €
R-o, and for every n € Z>4,

1. Cyclic symmetry:

N: ‘ H and Q/\ (4.3.4)
| an_ | | an_ |

2. Glueing plaquette weights:

| ai;n | | ag;m | |ao+a1+a2;n+m—2 |

. (4.3.5)
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3. Removing a bubble:

| az;n + 2 | |a1+a2+a3;n |

(4.3.6)

4. “Moving (, around”:

#al ‘ as a2 a1 +a2 —asg
= and _
# ag \ = as (4.3.7)
| az;n | |a1+a2*a3;n |

5. lim,_,o P, = id4 and the assignments

(Rso)™ — S(A®™, A®™) (438)
(a1,...,ap) —~ P, ® - ® P, o
are jointly continuous for every n > 1.

6. The limit lim,_,o D, exists.

Definition 4.3.2. We call the family of morphisms in (4.3.1) satisfying the above condi-
tions state-sum data and denote it with

A = (A, o, B W) (4.3.9)

Lemma 4.3.3. Let A = (A, (,, 84, W) denote state-sum data. Then the assignments
a+— Cq, a— B, and a — W' are continuous for every n > 1.

Proof. We only sketch that a — W and a — (, are continuous. By using Condition 2 we

have that
€1
T I 70 N T | - R

| a;n | a—gn | €92,2 | | a—g;n

for every a > ¢ € Ry with € = €1 + 9. So by separate continuity of the composition and
Condition 5, the assignment a — W' is continuous. To see continuity of (, we first use
Conditions 2 and 4 and we get that

40 Pyre = Carpo P, (4.3.11)

for every a, b, c € R.y. Condition 5 now allows us to take the limit ¢ — 0, and continuity
again follows from that of Py,.. H
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CL) 1
(e.1) / e~ /\ 6"“ /\
e (f,in)

Figure 4.6: a) Left and right sides (e,l) and (e,r) of an inner edge e, determined by the
orientation of ¥ (paper orientation) and of e (arrow). b) Convention for connecting tensor factors
belonging to edge sides (e,l) and (e,r) of an inner edge e with the tensor factors belonging to

the morphism Bf:l)(e). ¢) Conventions for the labels of the tensor factors for an ingoing boundary
edge f with (f,l) € E

Let us fix state-sum data A using the notation of (4.3.9). In the rest of this section we
define a symmetric monoidal functor Z4 : Bords™** — S using this data.

The next lemma is best proved after having established the relation between state-
sum data and RFAs in Lemma 4.3.7 below, when it becomes a direct consequence of
Lemma 4.3.10 and we omit the proof.

Lemma 4.3.4. We have that
D, o Dy = D4y (4.3.12)

for every a,b € Rsq. In particular, the morphism Dy = lim,0 D, € S(A, A) is idem-
potent.

Recall that we assumed that S is idempotent complete, so the idempotent Dy splits:
let Z(A) € S denote its image and let us write

Do = [A Ty Z(A) A] , [Z(A) ENJILEN Z(A)] —idy) . (4.3.13)
We define the aQFT Z, on objects as follows: Let S € Bords"**. Then
Zu(9) = Q) Z(4)W (4.3.14)

z€mo(S)

where Z(A)®) = Z(A) and the superscript is used to label the tensor factors.

In the remainder of this section we give the definition of Z, on morphisms. Let (X2, .A) :
S — T be a bordism with area and let us assume that (X, .A) has no component with zero
area. Choose a PLCW decomposition with area 3., Ay for k € {0, 1,2} of the surface with
area (2,A), such that the PLCW decomposition has exactly 1 edge on every boundary
component. By this convention 7y(.S) LU mo(7) is in bijection with vertices on the boundary
and with edges on the boundary.

Let us choose an edge for every face before glueing, which we call marked edge, and let
us choose an orientation of every edge. For a face f € ¥y which is an ng-gon let us write
(f,k), k=1,...,ny for the sides of f, where (f,1) denotes the marked edge of f, and the
labeling proceeds counter-clockwise with respect to the orientation of f. We collect the
sides of all faces into a set:

={(f,B)| feXyk=1,...,ns}. (4.3.15)
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We double the set of edges by considering ¥; x {l,7}, where “I” and “r” stand for left
and right, respectively. Let £ C X1 x {l,r} be the subset of all (e, 1) (resp (e,7)), which
have a face attached on the left (resp. right) side, cf. Figure 4.6 a). Thus for an inner edge
e € 3 the set E contains both (e, () and (e, r), but for a boundary edge ¢’ € ¥ the set F
contains either (¢/,1) or (¢/,7). By construction of F' and F we obtain a bijection

O:F—FE, (fk)—(ex), (4.3.16)

where e is the k’th edge on the boundary of the face f lying on the side x of e, counted
counter-clockwise from the marked edge of f.

For every vertex v € ¥y in the interior of X or on an ingoing boundary component of
¥ choose a side of an edge (e,z) € E for which v € d(e). Let

V¥ \m(T) = FE (4.3.17)

be the resulting function.
To define Z, (%, A) we proceed with the following steps.

1. Let us introduce the tensor products

® Afk: ® A(em

(f.k)eF (e;x)EE

® A (b,in) 7 Ouut 1= ® A (c,out) '

bemo(S) cemo(T)

(4.3.18)

Every tensor factor is equal to A, but the various superscripts will help us distinguish
tensor factors in the source and target objects of the morphisms we define in the
remaining steps.

2. Recall that by our conventions there is one edge in each boundary component and
that we identified outgoing boundary edges with m(7"). Define the morphism

C:= ® 55:1)(6) : Oin X OE — Oout 5 (4319)

e€Xi\mo(T)

where 5,(481)(@ = B4, (e), and where the tensor factors in Oy, ® Op are assigned to those
of B4,(e) according to Figure 4.6 b) and c).

3. Define the morphism

vi=JI &) €50505), (4.3.20)
v€Xo\mo(T)
where
(e =id®--- ®G®- - ®id € S(Og, OF) , (4.3.21)

where ¢, maps the tensor factor A% to itself.
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4. Assign to every face f € ¥y obtained from an ns-gon the morphism

P
Wiy = Wa(p 1 1= Ay @ - @ Agag) (4.3.22)

and take their tensor product:

F=Q (Wj2(f)) 1— Op . (4.3.23)

fEX

5. We will now put the above morphisms together to obtain a morphism £ : A;, — Agus.
Denote by ITg the permutation of tensor factors induced by ® : ' — F,

Using this, we define
K = [1[ ENO TNV FEA OE] , (4.3.25)

idoin ®RIK

L= [Om I Oin & OE £> Oout:| . (4326)

6. Using the embedding and projection maps ¢4, m4 from (4.3.13) we construct the
morphisms:

En = ® L(:) : Z0(S) = On y Eou = ® 7T1(46) : Oout — Z4(T) ,  (4.3.27)

bemo(S) cemo(T)

where (V) = 1y © Z(A)® = A® and 7P = 74 0 A® = Z(A)®. We have all
ingredients to define the action of Z, on morphisms:

Zu(5,A) = [ZA(S) Gy 00 B O £ 2,(T)] (4.3.28)

Now that we defined Z,p) on bordisms with strictly positive area, we turn to the
general case. Let (3,4) : S — T be a bordism with area and let ¥, : S, — T, denote
the connected component s of (X, .4) with strictly positive area. We have that in Bords"*

(5,A4) = (54, A U(S\ 24,0) (4.3.29)

where A, denotes the restriction of A to m9(X,). The bordism with zero area (3 \ X, 0)
defines a permutation k : mo(S \ Sy) — (T \ T%). Let Z4(X\ 324,0) : 25(S\ 54) —
Z,(T'\ T4) be the induced permutation of tensor factors. We define

Zu(S,A) = Z4(S\ 4, 0) ® Z4(Sy, Ay) | (4.3.30)

where Z4 (34, Ay) is defined in (4.3.28).
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)

Figure 4.7: A face with a univalent vertex.

Theorem 4.3.5. Let A be state-sum data.

1. The morphism defined in (4.3.28) is independent of the choice of the PLCW decom-
position with area, the choice of marked edges of faces, the choice of orientation of
edges and the assignment V.

2. The state-sum construction yields an aQFT Z, : Bordy™* — S whose action on
objects and morphisms is given by (4.3.14) and (4.3.30), respectively.

Proof. Part 1:

First let us fix a PLCW decomposition with area. Independence of the choice of edges
for faces and orientation of edges follows directly from Condition 1. Independence of the
assignment V' follows from iterating Conditions 1 and 4.

In order to show independence of the PLCW decomposition with area first notice that
all conditions on A depend on the sum of the parameters. This implies that the construction
is independent of the distribution of area, i.e. the maps A (k € {0, 1,2}). We need to check
that the construction yields the same morphism for two different PLCW decompositions,
but for this it is enough to check invariance under the elementary moves in Figure 4.5.
Invariance under removing or adding an edge (Figure 4.5 b)) follows from Condition 2.
To show invariance under splitting an edge by adding a vertex (Figure 4.5 a)) we use the
trick used in the proof of [DKR, Lem. 3.5]. There the edge splitting is done inside a 2-gon
(see [DKR, Fig. 14]), and that move in turn follows if one is allowed to add and remove
univalent vertices as shown in Figure 4.7 (together with adding edges as in Figure 4.5 b)).
But this follows from Condition 3.

Part 2:
We start by showing that if (S x [0, 1],.4) : S — S is an in-out cylinder with positive area
then the assignment

(A(x))wEWo(SX[O,l]) — ZA<S X [O, 1], .A) (4.3.31)
is continuous and the limit

}tir% Zp(S x [0,1], A) : Z4(S) — Z4(95) (4.3.32)
%
is a permutation of tensor factors.

Let us consider one connected component of S x [0, 1]. By Part 1, we can pick a PLCW
decomposition of this cylinder which consists of a square with two opposite edges identified,
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and the other two edges being the in- and outgoing boundary components. The morphism
L from (4.3.26) is exactly D, from (4.3.3), where a is the area of this component.

Now by looking at Z4 (S x [0, 1], A) with different area maps, we see that the difference
is in the £ maps in (4.3.26), and is given by a factor of @),c, () Fa, for some a, €
Rs>,. Therefore by separate continuity of the composition in & and by Condition 5, the
assignments in (4.3.31) are continuous for all positive parameters. By Condition 6 the
limits in (4.3.32) exist, and we get the required permutations.

Next we show functoriality. We now assume that all components of the following
bordisms have positive area. This is not a restriction since we can always take the areas
of in-out cylinders to zero to get arbitrary bordisms with area. Let

> W

|:S (ZvAE)/ T (EvAE)

be two bordisms with area. Pick PLCW decompositions with area so that at every outgoing
boundary component of (X, .4y) there is a square with two opposite edges identified and
one edge on the boundary. Applying Z, on them we get

Zu(3, Ax) = [ZA(S) LN O L % o2, Foy ZA(T)] ,

out

ZA(E,AE) = |:ZA(T) i) OE f) OE OEut ZA(W):| s

where 1) = @, (1) Do, for some a, € Rso. Note that OZ, = 0. Composing these
morphisms yields using (4.3.13) the morphism

Zu(Z, A=) 0 Z,4(5, As) = {ZA(S) N N s B NI RN R ZA(W)] ,
where 1) = @), exo(r) Do- For the composition of these bordisms with area (20X, A=.yx) pick
the PLCW decomposition with area obtained by glueing the two decompositions together
at the boundary components corresponding to 7. By construction, £°* contains a copy
of D, for every connected component of 7. Notice that when we compute Z, (=, A=) o
Z,y(%, As), by (4.3.13), we also get a copy of Dy for every connected component of 7.
Since D, o Dy = D, by Lemma 4.3.4, Dy can be omitted and the above composition is
equal to Z,(ZE 0 3, Azox).

The continuity conditions of Lemma 4.2.6 hold, as we have already checked them before;

monoidality and symmetry follow from the construction, so altogether we have shown that
Z, is indeed an aQFT. [

Remark 4.3.6. By looking at this proof we see that Conditions 1-6 are not only sufficient,
but also necessary, at least if one requires independence under the elementary moves of
PLCW decompositions locally, that is, for the corresponding maps I — A®™,



4.3. State-sum construction of aQFT's with defects 137

4.3.3 State-sum data from RFAs

In this section we show that there is a one-to-one correspondence between state-sum data
for a given object in S and RFA structures on the same object (subject to certain con-
ditions), see Theorem 4.3.9. Furthermore we show in Theorem 4.3.11 that the state-sum
aQFT given in terms of such an RFA is classified by the centre of this RFA, cf. The-
orem 4.2.10. We will keep using the notation of the previous section.

Lemma 4.3.7. The state-sum data A determines a strongly separable symmetric regular-
ised Frobenius algebra structure on A € S by setting

=W, ay+az “= (idA ® B};) o (W2 ®idas2) ,  (4.3.33)
Eartas = PBay © Wy, ®ida) ,  Agyya, = (idas2 @ Ba,) 0 (W2 ®ida) (4.3.34)

for every ay,as € Ryg. In terms of the graphical calculus these morphisms are:

a1/2
al = , a1+a2* = ai/2 7 (4335)
a;l az;3 : \
a1 + a2 a2
I - , 01+a2\(: 3? ! (4.3.36)
1; az;

Let k(A) denote this RFA.

Proof. We are going to show that (4.1.2) holds. Checking the rest of the algebraic relations
of an RFA is similar and it uses the algebraic relations listed in Conditions 1-4. The rhs
of (4.1.2) is

ay/2

I a2
def. a1/2  Cond.?2 def.
ay = = = Laj+az ,
153 - ;2
as ay; ag; 1 ay;

using Condition 2. The lhs is

ay/2
Nﬂ Cond. 1 a1/2 Cond. 2 Cond. 1 def.
aitaz .
al, |a2,1| | a3 |a2,1| ay;2 al:

The continuity conditions for tensor products of P,’s hold by Condition 5, which also
states that lim, ,o P, = id4. We have now shown that A is an RFA. It is symmetric by
Condition 1. To show that A is strongly separable, by Proposition 4.1.10 we need to check
that the window element of A is invertible. Similar to the calculation above, and using
Condition 3, one checks that (,, o W, is inverse to the window element. ]
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Lemma 4.3.8. Let A € S be a strongly separable symmetric regularised Frobenius algebra
with separability idempotent e, € S(I, A®?). Define the following families of morphisms
for ai, as,as € R>0, n e ZZI,

Ca1+a2+t13 = (5a1 ® :ua2> © (€a3 ® idA) ) 5a1+t12 = €ay O Hay (4337)
W:l-i-az = At(z?) © Nay » Doy tastas = Cay © flay © 04,40 AV (4'3'38)

where A((ﬁ) is as in (4.2.17). Suppose that lim,_,, D, exists. Then the families of morphisms
Cas Ba and W} define state-sum data, which we denote with ()(A). Also, the morphism D,
defined in (4.3.3) is the same as the morphism D, defined in (4.3.38) for every a € Rxo.

Proof. Conditions 5 and 6 are satisfied by our assumptions. The algebraic conditions can be
checked by direct computation, here we only give the ideas how one can do this. Cyclicity
in Condition 1 follows from the Frobenius relation (4.1.16) and A being symmetric. The
glueing condition Condition 2 follows from the Frobenius relation (4.1.16) from counitality
(4.1.12) and from coassociativity (4.1.13). Condition 3 follows from A being strongly
separable, Condition 4 follows from the fact that the window element of A is commutative.

O

Let us fix an object A € § and denote the sets
e L := {state-sum data on A },
e F := {strongly separable symmetric RFA structures on A such that lim, o l~?a exists}.

From a direct calculation one can show the following theorem.

Theorem 4.3.9. Let xk and €2 denote the maps of sets

L F (4.3.39)
&

defined by Lemmas 4.3.7 and 4.3.8 respectively. Then k and () are inverse to each other.

In the following we make use of the notion of RFAs in order to prove some technical
results used in the state-sum construction in Section 4.3.2. The following lemma is a direct
generalisation of [LP1, Prop. 2.20] and was partially proved in Corollary 4.1.52.

Lemma 4.3.10. Let A be state-sum data and let A denote the corresponding RFA from
Lemma 4.3.7. Then D, o Dy, = D, for every a,b € R.g and the image of the idempotent
Dy := lim,_,o D, is the centre Z(A) of the RFA A. It is an RFA with the restricted
structure maps of A.

Using Lemma 4.3.10 and Theorem 4.2.10, we have the direct translation of [LP1,
Thm. 4.7].



4.3. State-sum construction of aQFT's with defects 139

Theorem 4.3.11. Let A be state-sum data, let A denote the corresponding RFA and let
Z(A) denote its centre. Let Z, denote the state-sum aQFT of Theorem 4.3.5 and let G
be the equivalence in (4.2.22). Then

Z(A) = G(2,) . (4.3.40)

The following lemma gives a concise expression for the value of a state-sum area-
dependent QFT on a genus ¢ surface with b outgoing boundary components.

Lemma 4.3.12. Let A be state-sum data and A the corresponding RFA.

1. We have the following identities:

2. Let (S,5,a) : 0 — (S")“* be a connected bordism of genus g with b > 1 outgoing
boundary components and area a. Then

Zu(Bgpa) =¥ Hsoa] ) 0 My (4.3.42)

witha="0b-a' + ZT& aj.
3. Let (C,a) : S'US' — @ be a cylinder with two ingoing components and area a. Then
Zy(Cra) = €40 oy O flay 0 (L ®1) (4.3.43)
with a = ag + a1 + as.
Proof. Parts 1 and 3 follow from a simple calculation.

We will only sketch the proof for Part 2. Pick a PLCW decomposition of ¥, as shown
in Figure 4.8 and apply the state-sum construction to get the morphism £ of (4.3.26),

which is:
c—/ﬁ'-m XA XA (13.44)

The rest of the calculation is straightforward, but tedious, therefore we omit it here. Note
that in order to get the Dy’s at the boundary components, which then cancel with the 7’s,
we need to insert b — 1 factors of (,/’s and their inverses. O
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Figure 4.8: A convenient PLCW decomposition of ¥, using a single face, which is a (4g + 3b)-
gon. The dots show the vertices and the thick lines the edges.

In the rest of this section we discuss how one can build Hermitian aQFTs via the state-
sum construction. Let us assume that § is equipped with a f-structure. The state-sum
data A is called Hermitian if it satisfies

G=¢C, Bil=w? and (WH)'=

for every a,ap € Ryg and n € Z>.

One can easily check the following statements. If A is Hermitian, then the RFA k(A)
from Lemma 4.3.7 is a {-RFA. Conversely, let A be a {-RFA. Then the state-sum data
Q(A) is Hermitian. Also, if A is Hermitian, then the state-sum aQFT Z, is Hermitian.

4.3.4 PLCW decompositions with defects

In this section we introduce a cell decomposition of bordisms with defects, which is used in
Section 4.3.5 to build defect aQFTs. We will use the notation of Sections 4.2.3 and 4.3.1
and fix a set of defect conditions D = (Dy, Dy, s,1).

Let ¥ = Xj;) U Xy be a surface with defects. A PLCW decomposition with defects
of ¥ is a PLCW decomposition Y, 31, s of the surface ¥ which satisfies the following
conditions.

1. For every p € ¥, the intersection p N X = () is empty.
2. Every intersection of an element of 3; and Xy is transversal.
3. For every e € Xy, e N X is either empty or consists of precisely one point.

4. For every f € %o, if f N Xy # 0, then it is diffeomorphic to an interval with the
boundary points on edges of f.
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l/

Figure 4.9: A face with defect f € ¥9et| the defect line is marked with a thick line with the
arrow showing its orientation. For example, the edge e lies in ${** and the edge ¢’ in XS™PY.
The area maps have values A3 (f) = (ay,1,a2), APt (e) = (a}, 1, ay) and AS™PY (/) = b for
this particular face and two edges.

5. For every boundary component b € mo(0%) for which b X} = 0, there is 1 boundary
edge.

6. For every boundary component b € m(X) for which b N X # 0, every boundary
edge contains exactly one point in Y.

If the above conditions hold then the sets of faces and edges split in two disjoint sets. For
k€ {1,2} let X;™"% C %) be the subset of cells which do not intersect with Xp;; (empty

cells) and let Xdefect .= ¥, \ $™PY be the subset of cells which intersect with Sy (cells
with a defect). An example is shown in Figure 4.9. Let

be a map which assigns to a vertex v an edge e for which v € J(e), similarly as in (4.3.17).
This map splits ¥ into two disjoint sets L5™PY 1= V=1(5{™PY) and Ydefect .= /—1(ydefect)

Let (3,4, £) be a surface with area and defects with strictly positive areas and lengths
and let g, X1, X3 be a PLCW decomposition with defects of ¥ = ¥ U . Let

Azmpty : szpty — Rey , (4.3.47)
for £ € {0,1,2} be maps which assign to empty vertices, edges and faces an area, and let
A(liefect . E(liefect N (R>0)3 , (4348)

for £ € {0,1,2} be maps which assign to vertices, edges and faces with defects an area on
the half edges and half faces at the two sides of a defect line and a length of a defect line
as explained in Figure 4.9. We require of the maps in (4.3.47) and (4.3.48) that for every
connected component & € m(Xjg) the sum of the areas of corresponding vertices, (half)
edges and (half) faces of z is equal to its area A(z). We require the analogous condition
on lengths of defect lines. In the case k = 0 in (4.3.48) the three parameters A (v) for
a vertex v contribute to the same components as those of the edge V(v).

In the following we will write Ay (x) for both Afect(z) and A" () and mean the
latter depending on the type of x € ¥;. A PLCW decomposition of a surface with area
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b)

e

Figure 4.10: Additional elementary moves of PLCW decompositions with defects. In Figure a),
an edge which is crossed by a defect line (curved line with arrow) is split in two by adding a new
vertex (denoted with a dot). In Figure b), an edge which is crossed by a defect line is removed.
In Figure ¢), an edge which is not crossed by any defect line is removed. Note that here only one
of the faces can be crossed by defect lines.

and defects (X,.A, L) consists of a choice of a PLCW decomposition with defects and a
choice of maps as in (4.3.47) and (4.3.48).

Elementary moves on a PLCW decomposition with defects of a surface with defects (and
area) are elementary moves of PLCW decompositions which respect the conditions listed
above. The additional moves are shown if Figure 4.10. In [DKR, Lem. 3.6] it is argued that
any two PLCW decompositions with defects can be related by these elementary moves.

4.3.5 State-sum construction with defects

After introducing PLCW decompositions with defects let us turn to the state-sum con-
struction of defect aQFTs. We will again use the notation of Sections 4.2.3 and 4.3.4 and
fix a set of defect conditions D = (D, Ds, s, ).

State sum data and some preparatory notions

As for the state-sum construction without defects in Section 4.3.2, we start with giving
state-sum data with defects A(D). This consists of

1. state-sum data A, = (A,, Y, BY, W¥™") for every y € D, as in Definition 4.3.2,

2. a pair of objects X,, X, € S for every x € D; together with the following families of
morphisms:
C:;:le,b € S(X;ﬂ X;:) ) (il,b € S(X:E & X$7]I) )

_ 4.3.49
W™ e SILX, ® Af(’;) RX,® A?&) ( )
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for every a,l,b € R.q, every n,m > 0 and € € {£}, where we used the following
notation:

X=X, and X, =X,. (4.3.50)

We will use the following graphical notation for these morphisms. For y € Dy,

A, (a;y) Ay Ay Ay
AN | I [
Ay Ay Ay

v e S(A,, Ay) from (4.3.3) and for z € D,

Xe (a,1,b; ) X, Ay At() X Asa) As(o)
Cal = % (@ bbiwe) s Papp = and W™ = Y ‘ * (4.3.52)
X¢ X, X, a,l,b;z,m,m
Let us define
s(x,+) :=s(x), tlz,+):=1t(z), (43.53)
s(x,—):=t(z), tlz,—):=s(x).
By a defect list of length n we mean an equivalence class of ordered lists
= [(x1,€1,. .., Zn, )] , (4.3.54)

where z; € Dy and ¢; € {£} (i = 1,...,n). The x;, ¢ have to satisfy, for i = 1,...,n and
setting x,+1 := T1, €441 1= €1,

S(ZEZ', Ei) = t(xi—i—h €i+1> . (4355)

Two such lists (z1,€1,...,Zn,€,) and (2], €],..., 2 € ) are equivalent if they are related

»Ynr n

by a cyclic permutation. Let us introduce the shorthand, for a chosen representative of z,
Xe =X @ @ X" . (4.3.56)

Different choices of representatives are related by cyclic permutations of tensor factors. Let
us introduce the following morphisms:
XI‘ Xl’
(a1,01,b1,2) (a1,11,b1, )

(z4) ._ -
Quip = Qalb " (4.3.57)
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where a = ay; +as, b =0, + by and | = 1 + [5,

(al,ll,bl,m) At(x)Xx As(m) At(m) X A al,ll,bl,x)
(z,+) § (z,—)
T, + = T,—)
Fogp = $ y Fapp = ) e (4.3.58)
ag,la,bo;x,1,1 ag,la,bo;x, 1,1 _
X
where a = ag + a1 + as, b="5by + by and [ = [; + I and
(@) Xai (b)) X5 (ahus) (ahym)  Xgn
N AL
T . (z1.61) (z2,82) (zn.,en)
-] (M g . s
X Xz X
where a = (a; +a}+df,...,a,+a,+al, 1) € (Rso)"™ and the values of y; are determined

by z via (4.3.55), i.e. y; = s(xz, ez) = t(wit1,€i41). Different choices of representatives of
z induce different morphisms via (4.3.59), which are related by conjugating with cyclic
permutations of tensor factors.

With these preparations, we can now state the conditions state-sum data with defects
A(D) have to satisfy. Namely, let x € Dy, € € {£} and let z be a defect list. Then:

1. Glueing plaquette weights with defects:
Xx At(x) (ag, lo, bo; ) At(z) X, As(ﬁ) AS(I) XzAt(x) X, As(x)

f ST
| ai,l1,b152,n1,m1 | | az,lz2,ba;x,n2, ma | | a,l,b;x,n,m
for every a = ag + ay + as, n = ny + no, ete.
2. Glueing plaquette weights with and without defects:
Xy Ay (@t@) Ay Xe (@) X, Ay Xo As)
| ay,l,b;z,n1,m | az,t( a,l,b;x,n,m
_ B (4.3.61)
X Ay Xo Asy Gos@ A Xo Av(z) Xo Asa)

NI e 11

a,1,by;2,n,ma | | beista).me a,1,b;z,n,m
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for every a = ag + ay + as, b="0y+ b1 + b, | € Rug, n =nq + Ny, m = mq + mo.

3. “Moving (’s around”:
(ar,l1,b152,+) (b1; s(x)) (b1; 5(2))

| ag, b2, baiw,mm | | a,l, by, n,m | | a,l,by;z,n,m |
(a1,l1,b1;2,—) (a1;t(z)) (ay;t(z)) (4362)
| az,la,ba;z,nym | [ az, bz, n,m | | a. L bizmm |

for a; +as = a, b1+b2 :b, l1+l2:l, n,mZO
4. The limit lim, o £7 exists, and limg ;0 ngl? = idxe.

5. For every n,m > 0 with n +m > 1, (z;,¢) € Dy x {£} fori=1,...,n, p; € D, for

7 =1,...,m the assignment
R s (@0 @, @i e @4,
i=1 j=1 i=1 j=1
(a, 1, by s L bty en) = QU @ (R) PP (4.3.63)
i=1 j=1

is jointly continuous.

We have the analogue of Lemma 4.3.4, which can be proven using Conditions 1, 2 and 4.

Lemma 4.3.13. For every defect list z of length n € Z>; and a,d’ € (Rs)"",

EZo Ei, = Eég/ . (4.3.64)
In particular, the morphism
Ey = liH(l] E? e S(X,, X,) (4.3.65)
a—0 ¢ -

is idempotent.

Let us fix state-sum data with defects A(D). In the rest of this section we define a
symmetric monoidal functor Z,mpy : Bordzga’def — &S using this data.

By our assumptions, the idempotents in (4.3.65) split. Let Z(X,) € S denote the image
and write 7, and ¢, for the projection and embedding, i.e.

Be=[X. B 2(X) B X,| | idgey = [200) B X, B 2(X)] . (43.66)

Note that different choices of representative in (4.3.56) give the same image Z(X,) since

the idempotents Ej commute with cyclic permutations.

We will also write X (()b ) = Ady(v),

b)
)

—~

Lg)) =ty 1 Z(Auw) = Apey  and w7 =ma, o0 Age) = Z(Age) - (4.3.67)
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=b

Figure 4.11: Positive crossing of an oriented edge e and a defect line c.

Defining Z, p)

We define the aQFT Z4 @) on objects as follows: Let S € Bord§ Bea’def and ¢ € mp(S). If
¢ N Sjgp = 0 then let z(c) := () be the empty list, and Z(X())(C) = Z(Ady(e)). Otherwise,
for every ¢ € my(.S) let

Q(C) = [(dl(’l}), E(v))UECﬂS[O]] (4368)

be the defect list given by the defect labels dy(v) and orientations €(v) of the defects in ¢
in the cyclic order determined by the orientation of c. We define Z,py on objects as

Zup)(9) = Q) Z(Xu) (4.3.69)

cemo(S)

where as in (4.3.14) the superscript is used to label the tensor factors.

The definition of Z4p) on morphisms is again more involved. Let (X, A4,L£) : S = T
be a bordism with area and defects and assume that it has no component with zero area
or length. Choose a PLCW decomposition with area and defects (with the same notation
as in Section 4.3.4) of the surface with area and defects (X, .4, £).

Let us choose a marked edge for every face in X5™" and for every face in ¥:3°fct let
the marked edge be the one where the defect line leaves. Also let us choose an orientation
of every edge, requiring that the orientation of edges in X{°°* are such that the edges and
the defect lines cross positively as shown in Figure 4.11.

We introduce the sets of sides of faces F' for faces and the set of sides of edges F
and the bijection ® : FF — E from (4.3.16) as in Section 4.3.2. We choose the map

V 350\ mo(T) — E as in (4.3.17) so that the map V from (4.3.46) satisfies
— forge
‘%mmZPMMﬂLEJQ&L (4.3.70)

where the map ‘forget’ is (e, ) +— e. In addition, V" has to satisfy that if v is on the left side
of the defect line crossing the edge V (v) then V (v) = (V(v), ), otherwise V (v) = (V (v),1).

It will be convenient for the state-sum construction to know the phase labels of surface
components in which faces and edges that are not intersected by defect lines lie. Similarly
we will need to know the defect line labels of components intersected by faces and edges.
Therefore we introduce the following for k£ € {1, 2}:

o if 2 € XY we write dy(7) = di(x) = da(p) for the component p € (X)) in which
x lies,
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f1 f2

€1 €2 “

Figure 4.12: Notation for phase labels of empty cells and defect line labels of cells with defects.
The phase label of the surface component left to the defect line is p, the phase label of the surface
component to the right is ¢ and the defect label is z, i.e. t(x) = p and s(z) = g. The face f; and
the edges e; and es on the left are empty, i.e. f1 € Egmpty and ej, es € E‘fmpty. The corresponding
phase labels are da(f1) = di(f1) = da(e1) = di(e1) = da(e2) = di(e2) = p. The face fo on the
right and the edge e3 on the right are intersected by a defect line, i.e. fo € Y3t and ez € Ngefect,
The corresponding defect labels are dy(f2) = di(e3) = .

Figure 4.13: Objects from the state sum data with defects assigned to edges crossed by a defect
line with defect line label x € D;.

o if x € Tt we write di(z) = di(g) for the defect line ¢ € mo(Xpy)) intersected by z,

which we illustrate in Figure 4.12.
After introducing these notations we are ready to define Z,m)(X, .4, L£). We proceed
with the following steps.

1. Let f € %3 be a face with ny sides. If f € S5™Y then let RU® = Ay p. If
f € X3¢ then let n$ be the number of the edge where the defect with label x enters

f. Then let
X, ifk=1,
Ay if 1 <k <nf,
BRI = § (4.3.71)
. if k=ns,
As(x) if n?c < k,
and for a side of an edge (e,y) € E
RV . = R*Mew) (4.3.72)

For these conventions see Figure 4.13.
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Let us introduce the tensor products

® Rfk ® Rey)

(f,k)eF (e;y)EE
bzn) cout) (4'3'73)
- @ X Oowi= ® X
bemo(S) cemo(T

using the notation from (4.3.66) and (4.3.71). The various superscripts will help us
distinguish tensor factors in the source and target objects of the morphisms we define
in the remaining steps.

We define the morphism

C= @ B9 0u®0p— O, (4.3.74)

eEEl\Tro(T)

where 3(¢) = ﬁjll((ee)) with the tensor factors given in Figure 4.6.

We define the morphism

V= JI i) €8(08,05), (4.3.75)
v€Xo\mo(T)
where
e [1d@ @G 0 @i pife e o o
— ld®.®<’(§ll(e)7+/_®®ld ,lfBEE(liefeCt E, E 9 ..

where ¢, maps the tensor factor RY) to itself, and a € Ry or a € R?,

For f € 9% let n; and n$ be as in step 1 and

di(f),ns—n3%,n%—2
Who =Waip 7 (4.3.77)

for f € 5" let n; be as before and
I{rf L ‘Irdl(f)vnf
Ao (f) - T Af) (4378)

In both cases the labeling of tensor factors is such that it matches (4.3.71). Define
the morphism

Fi= @ (Whp) i1 0 (4.3.79)

feXs
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5. We again put the above morphisms together as in Step 5 of Section 4.3.2:

K = [11 2o0p 1 0, % OE] , (4.3.80)
L= {Oin on R 005 S oout} , (4.3.81)

where TTg is defined as in (4.3.24).

6. Using the embedding and projection maps from (4.3.66) we construct the following
morphisms:

b c
En = ® L(z()b) c Zam)(S) = Om,  Eou = ® W;()c) : Oout = Zamy(T) -

bemo(S) cemo(T)
(4.3.82)
We finally define the action of Z,p)y on morphisms:
gin out
Zuoy (S, A L) = | Zup)(S) 2 O 5 O 225 ZA(D)(T)] . (4.3.83)

We defined Zyp) on bordisms with defects with strictly positive area and length and
now we give the definition in the general case. Let (X, A4,L£) : S — T be a bordism with
area and defects and let ¥, : S, — T denote the connected component of (3,.A) with
strictly positive area and length. The complement of >, again defines a permutation of
tensor factors as in Section 4.3.2, so we define:

ZA(D)(Z, A, E) = ZA(D)(E \ >, 0, 0) & ZA(D)<E+, Ay, £+) , (4384)

where A, denotes the restriction of A to mo((34)w), £ = 1,2, and £, is defined similarly
and Zym) (34, A4, L) is defined in (4.3.83).
We have the analogous theorem of Section 4.3.2.

Theorem 4.3.14. Let A(D) be state-sum data with defects.

1. The morphism defined in (4.3.83) is independent of the choice of the PLCW decom-
position with area and defects, the choice of marked edges of faces, the choice of
orientation of edges and the assignment V.

2. The state-sum construction yields an aQFT Zym) : Bordchfmea’def — S given by
(4.3.69) and (4.3.84), respectively.

Sketch of proof. We only sketch some part of the proof of Part 1. We will check invariance
under the additional elementary moves in Figure 4.10. Invariance under moves b) and c)
directly follow from Condition 1 and 2 respectively. Invariance under move a) can be shown
using the same trick as in the proof of Theorem 4.3.5 Part 1 by combining the moves b)
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and c) together with the move in Figure 4.7. We note that one needs to use Condition 3
to show independence of the choice of the map V.

Let (C, A, L) be a cylinder over a circle with defects with defect list z and equal defect
line lengths. The morphism in (4.3.81) associated to (C,.A, £) is E% from (4.3.59).

The proof of Part 2 goes along the same lines as the proof of Part 2 of Theorem 4.3.14.
Joint continuity in the areas and lengths follows from Condition 5. ]

4.3.6 State-sum data with defects from bimodules

The purpose of this section is to give an algebraic characterisation of state-sum data
with defects. We show that given state-sum data with defects for some objects we get
a particular RFA and bimodule structure on the objects. This suggests that conversely
given a particular RFA and bimodule structure on some objects we can get state-sum data
on these objects. As before, we keep the notation form the previous sections.

Lemma 4.3.15. For every p € Dy and x € D, let us fix objects A, and X, in § and
state-sum data with defects A(D) for these objects. For a = ay + ag + ag, | =l + I and
b= bl + b2 let

(as,t(z)) Xe

(b1, 5(2))

(4.3.85)

(a1,1l1,b1,2)

As(x)

Then the state-sum data A(D) determines

e astrongly separable symmetric RFA structure on A, for every p € Dy as in Lemma 4.3.7
and

e astructure of a dual pair of Ay(y)-Ay(x)-bimodules on (X,, X,) for every x € Dy, where
the actions on X, and X, are given by p7,, and pj,, from (4.3.85) respectively, and

the pairing by f3;,, and the copairing by 73, , :== W, ’l?;)o.

Proof. Checking associativity (4.1.73) can be easily done using the graphical calculus and
Conditions 1 and 2. The rest of the conditions on the action follow directly from the other
conditions. Also checking that the duality morphisms satisfy (4.1.82) is straightforward.

]

Remark 4.3.16. We note that contrary to the state-sum construction of topological field
theories, in general one cannot define left and right actions on the object X, as the action
(4.3.85) always comes with three strictly positive additive parameters. If for example the
limit limy pg 5, © (idAt(meZ ®,r]l‘)425(l‘)) exists, then one can define a left action on X, cf.
Remark 4.1.38. Note, however, that these limits need not exist, see Appendix 4.A for an
example.
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The previous lemma indicates that one should be able to give state-sum data with
defects from a set of strongly separable symmetric RFAs and bimodules with duals. The
following lemma shows that if these bimodules satisfy some conditions pairwise, then we
indeed can obtain state-sum data, in particular the limits lim,_,o £% in Condition 4 exists.

Proposition 4.3.17. For everyp € Dy and x € D, let A, be a strongly separable symmet-
ric RFA and (X, X,) a dual pair of Ay(z)-As(z)-bimodules with pairing B;l’b and copairing
Yarp- Forn,m € Zsq set

®n Rm
_ Ao As@)
Xy m™ ™ X, —m™

(4.3.86)

with some distribution of the parameters on the rhs which sums up to a, b and . Further-
more, let

€
X.Z’
(az2,l1,b2;2,¢€)

Calp = , (4.3.87)

—1
itz 0) | o

Xa

where 7,1 denotes the inverse of the window element of Ag(z,e)- Suppose the following two
conditions hold:

1. Let (1, €1; 20, €2) € (Dy x {£})* be such that s(x1,e;) = t(z4, €5) from (4.3.55). Let
Y; := Xg fori = 1,2 and recall the morphisms Dzb};l“ and D}:fl from (4.1.94). We
require that the limits

. Yi,Yita . Y;
lim Dmb’c’ ; and lim Da,z
a,b,c,l—0 a,l—0

(4.3.88)

exist.

2. For every n,m € Zso withn+m > 1, (z;,¢;) € Dy x {£} fori=1,...,n, p; € Dy
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for j =1,...,m the assignment
(R, U{0})" x (Roo)™ = S <® X5 QA QX @ ®Apj)
i=1 j=1 i=1 j=1
(a1,01,01, - s Ly b sy ) = R Q0 @ R P (4.3.89)
i=1 j=1

is jointly continuous.

Then (4.3.37), (4.3.38), (4.3.86), (4.3.87) and 3, , define state-sum data with defects.

Proof. From Lemma 4.3.8 we get the part of the state-sum data for elements of Dy, so we
turn directly to the part of the data for D;.

Checking the algebraic relations of Conditions 1, 2 and 3 can be done easily using the
graphical calculus, and is similar to the case of RFAs and state-sum data without defects.

The last part of Condition 4 follows directly from X being bimodules over RFAs.
Condition 5 is just (4.3.89).

The only thing left to show is the first part of Condition 4, namely that for every defect
list z of length n > 1 the limit lim,,o £ exists. Let us introduce the shorthand Y; := Xi.
If n =1 then E% = fow from (4.1.94) and the limit a,b,! — 0 exists by assumption.
Now let n > 2. First rewrite EZ as

n—1
T Yo 11 3 -1 : Yi,Yip1 .
E@ = 0Vi®®Yp_1,Ys © (Dal,bhchli ® ld) 0y @ -@Yn_1,Yn ° H id ®Dai7bivcivli ®id (4390)
=1

with the appropriate distribution of the parameters. Since the limits in (4.3.88) exist, we
can rewrite (4.3.90) as

n—1
B = (Q;“; ® ) Q}j;) o EE (4.3.91)
=1

with some distribution of the parameters, where EOQ is the morphism obtained by taking
the limits in the parameters of Df?fl to 0 in (4.3.90) separately. The joint continuity
condition in (4.3.89) together with (4.3.91) shows that the joint limit exists and is given

by EZ. 0

Remark 4.3.18. For strongly separable symmetric RFAs and dual pairs of bimodules in
‘Hilb, conditions 1 and 2 in Proposition 4.3.17 are automatically satisfied, see Lemmas 4.1.15
and 4.1.61.
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4.3.7 Defect fusion and tensor product of bimodules

In this section we are going to assume that the state-sum data is given in terms of strongly
separable symmetric RFAs and dual pairs of bimodules for which the conditions of Proposi-
tion 4.3.17 hold. In Theorem 4.3.19 we show that the state spaces (4.3.69) can be explicitly
computed in terms of tensor products of the bimodules over the intermediate RFAs, and
in Theorem 4.3.20 we give the compatibility between the tensor product of bimodules and
the fusion of defect lines.

Theorem 4.3.19. Let A(D) be state-sum data given in terms of RFAs and bimodules as
in Proposition 4.3.17, Zum)y the state-sum aQFT from Section 4.3.5 and S € Bord;ga’def
be connected with corresponding defect list x of length n > 1. Let us assume that for
every (x;,€¢;) € Dy x {£} (i = 1,2) satisfying s(x1,€1) = t(x2,€2) of (4.3.55) the limit

€1 €2
_Xih X2

lim p b (4.3.92)
of the morphism in (4.1.99) exists. Then with B; := Ay, ¢, we have
Zym)(S) = Z(Xy) =Op, X3} ®p, -+ ®p,, X; . (4.3.93)

Proof. We will prove the theorem for n = 3, for general n the proof is similar. Let Y; := X7/
for i = 1,2,3. Let D® := limg .50 be’fc/fl from (4.1.94) and let 72* and +** denote the
corresponding projection and embedding of its image Y5 ®p, Y3. By Proposition 4.1.51

. . . Y1,Y2®pB,Y3 .
Y, ®@p, Y3 is a Bi-Bs-bimodule. We show that D% := limgpcivo D,y - exists:
i Y2®p, Y3
(51,1, 01) (a3, L,e1)
. Y1,Y2®B,Y3 .
bhrlna[) Da,b,c,l - hma,b,c,l—>0 b2 €2
a,o,c, 6&2
i Y2 ®p, Y3
Yo ®p, Y3
Y, | 23 |

def. .. (b1,1,a1) (as,l,a}) /
= hma’a/’bﬁvlﬁo 1 (a3:l701)

bo Cc2
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where in the last equation we used associativity of the action on Y5 and took the limits
separately (the joint limit exists for the same reason as in the proof of Proposition 4.3.17).
Let 723 and '3 denote the projection and embedding of the image of D'?* which is
Y1 ®p, Y2 ®p, Y3. Note that the projectors for (Y} ®p, Y2) ®p, Y3 and V] ®p, (Ys ®p, Y3)
are the same, hence they have the same image and we can omit the brackets.

Similarly one shows using (4.3.90) that

Yi ®Bl }/2 ®BQ YE)’
Y ®p, Yo ®p, Y3

(a1,1,a3)

Y1®pB,Y2®B,Y3 .
Dy 7077 = limg 0 =

(4.3.95)

Y ®p, Yo ®p, Y3

Yl ®B1 }/2 ®BQ }/3
Let 7© and © denote the projection and embedding of the image of DY1®81Y2®5,Y3 which

is Op, Y1 ®p, Yo ®p, Ys. Now a simple computation shows that
Y1 ®p, Y2 ®p, Y3 Yi Yo Y3

(4.3.96)

Yi ®Bl }6®B2 Y3

i'Yo Y

satisfy t o = Eg and 7ot = ide, vies, vsep,vss that is the image of Fy is exactly
Op, Y1 ©p, Y2 O, Ys. =

Let X be a bordism with defects. We say that two defect lines xo, xy € X[y) are parallel if
there is an isotopy ¢ — x; between them such that for every t € (0, 1) x; does not intersect
any defect line and in case xy and x; start and end on the boundary of 3, z; starts (resp.
ends) on the same boundary component as xy and x;. Let us consider two bordisms with
area and defects:

1. (3, A, L), which has two parallel defect lines with length [ labeled with a B-A-
bimodule V' and an A-C-bimodule W, and with a surface component with area a
between them and

2. (¥, A", L") which is the same as (X, .4, £) except that the defect line z is removed
from Xp; and the surface component between xy and ; is collapsed. The remaining
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Figure 4.14: Detail of the chosen PLCW decomposition of ¥ depending on the starting and
ending points of the parallel defect lines (Parts a)-d)) and the part of the corresponding morph-
isms given by the state-sum construction (Parts a’)-d’)). In Part a) the defect lines start and
end on an ingoing boundary component, in Part b) they start on an ingoing and end on an out-
going boundary component, in Part ¢) they start and end on an outgoing boundary component
and in Part d) the defect lines are closed loops. In Parts a’)-d’) the numbers attached to the
vertices for readability relate to the parameters as follows: 1=(b1,l1,a1;Y1), 2=(bo,l2,a4; Y1),
3=(a3, l2, c2;Y2), 4=(as, 1, c1;Y2), 5=(b3,13, ag; Y1), 6=(ar,l3,c3;Y2).

defect line z is labeled by V ®4 W. The length of z; is [ and the area and length of

the other defect lines and surface components are unchanged.

Theorem 4.3.20. Let A(D) be state-sum data satisfying the conditions of Theorem 4.3.19.
Let us assume that, in addition, the limits

i A VW < AVIW
im %, and  lm G5, (4.3.97)
exist for every b, c,l € Ryy Then we have
Zap) (3, AL L) = lim 2, (3, A, £). (4.3.98)
a—r

Sketch of proof. Let us choose a PLCW decomposition of ¥ which contains two rectangles,
each of which is containing one of the parallel defect lines. For ¥’ we choose a PLCW
decomposition which contains a rectangle containing the defect line. Depending on where
the defect lines start and end we have 4 essentially different cases that we need to consider
and which we show in Figure 4.14 Parts a)-d).
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The corresponding detail of the morphism Zump)(X,.A, L) is shown in Figure 4.14
Parts a’)-d"). We see that after taking the limit a — 0, and looking at the definition
of the bimodule Y; ®4 Y2 and its dual Y ®4 Y; in Definition 4.1.49 and in Lemma 4.1.55,
we obtain exactly Z,my (¥, A', L'). O

Remark 4.3.21. For RFAs and bimodules in Hilb which are left and right modules as well
and for which @, is epi for every a,l,b € R (cf. Remark 4.1.38 and Proposition 4.1.60),
the conditions of Theorem 4.3.19 are automatically satisfied, since the limits in (4.3.88)
exist by Lemma 4.1.61 and those in (4.3.92) by Proposition 4.1.60.

We stress here that one should not necessarily expect that the limits in (4.3.97) exist. It
may happen that when one brings two defect lines near each other the correlators of the
quantum field theory diverge, for an example in conformal field theory see e.g. [BB].

4.4 Example: 2d Yang-Mills theory

The state-sum construction of 2d Yang-Mills theory has been introduced by [Mig], was
further developed for G = U(N) in [Rus|, and has been summarised in [Witl]; for a
review see [CMR]. There, partition functions and expectation values of Wilson loops were
calculated. The proof of convergence of the (Boltzmann) plaquette weights has been shown
in a different setting in [App]. In this section we will heavily rely on the representation
theory of compact Lie groups, a standard reference is e.g. [Kna.

4.4.1 Two RFAs from a compact group G

Let G be a compact semisimple Lie group and f dx the Haar integral on G with the
normalisation [ o ldr = 1. We denote with L?(@G) the Hilbert space of square integrable
complex functions on G, where the scalar product of f g € L*(G) is given by (f,g) :=

i f(a:)*gA(x)dx
Let GG denote a set of representatives of isomorphism classes of finite-dimensional simple
unitary G-modules. Then for V' € G with inner product (—, —)y and an orthonormal basis

{el 3™ et
JJ/ :G—=C
g = (dim(V))"*(ef', g.e] )v

denote a matrix element function and let My, denote the linear span of these. The matrix
element functions are orthonormal [Kna, Cor.4.2]: for VW € G, i,j € {1,...,dim(V)}
and k,l € {1,...,dim(IW)}

(4.4.1)

(fijs Fal ) = G judv,w (4.4.2)
where oy = 1if V = W and 0 otherwise. The character of V' is defined as
dim(V

)
v = (dim(V)TE Y AT (44.3)
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The Peter-Weyl theorem provides a complete orthonormal basis of L?(G) in terms of matrix
element functions and of the square integrable class functions CI?(G) in terms of characters:

[(G)= P My and CP*G)=EPCxy (4.4.4)

vea ved

as Hilbert space direct sums. Note that L?(G)®L*(G) = L*(GxG) and CI*(G)RCI*(G) =
CI?(G x @) isometrically by mapping f ® f’ to the function (g,¢") — f(g)f'(¢’). We will
often use these isomorphisms without further notice.

In the following we will define a {-RFA structure on L?(G) and CI*(G). Let us start
with defining the operator
A:L*(G) = L*(G) ® L*(G)
[ AG) =[(z,y) = flay)] ,

which has norm 1. Let pu:= AT : L?(G) ® L*(G) — L*(G) be its adjoint, which is given by
the convolution product. For F' € L?(G) ® L*(GQ)

(4.4.5)

w(F)(y) = /GF(x,xly) dx . (4.4.6)

Let V € G and let us denote with oy € R the value of the Casimir operator of G in the
module V. We define for a € R+
M. : C — L*(G)
1—=n.(l) = Z e “vdim(V)xy . (4.4.7)
ved

Lemma 4.4.1. The sum in (4.4.7) is absolutely convergent for every a € R.

Proof. This follows from [App, Sec. 3], which we explain now. Let us fix a maximal torus
of G and let T denote its Lie algebra, let At C T* denote the set of dominant weights and
let (—,—) be the inner product on 7™ induced by the Killing form and | — | the induced
norm. We will use that, since G is semisimple, there is a bijection of sets [Kna, Thm. 5.5]

G S At
V)\ A

From [Sug, (1.17)] and [App, (3.2)] we have that (by the Weyl dimension formula) for
V € G with dominant weight A\, € AT

dim(V) < Ny ™, (4.4.9)
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where N € R. is a constant independent of V' and 2m = dim(G) — rank(G).
From [Sug, Lem. 1.1] we can express the value of the Casimir element in V' using the
highest weight Ay of V' and the half sum of simple roots p as

oy = (Av, )\V + 2[)) . (4410)
It follows directly [App, (3.5)] that
M|? <oy . (4.4.11)

We can give an estimate for the norm of Ay as follows. The choice of simple roots gives
a bijection Z'** &) — A+ which we write as n — A(n). Using the proof of [Sug, Lem. 1.3]
there are Cy, Cy € Rs such that for every n € Zr2(@)

CyInll < [A(n)] < Cyln]| (4.4.12)

where HnH2 = Z;irik(G) n?.

Let b(j) denote the number of n € Z*™&) with ||n|* = j. We can easily give a (very
rough) estimate of this by the volume of the rank(G)-dimensional cube with edge length

2412 + 1:

We compute the squared norm of 7, following the computation in [App, Ex. 3.4.1].

||77a”2 _ Z(dim(v))Qe—QaUv (4'4:'8) Z (dim(VA))26_2aUV>\

veG ACAT
(4.4.9) (4.4.11)
< N Y PPre o< N2 YD ape
AEAT ACAT
S NGRS el = NACE 3T a() e
nezrank(G) ]:1
H L N Cam S (2712 4 1)@ jmg-2as
j=1
which converges. -

Finally we define the counit as e, := n] : L>(G) — C. Explicitly, for f € L*(G),

ca(f)=a, [) = Z e vdim(V) /GXV(x)f(x_l) dzr . (4.4.15)

veG
Again for a € Ry let
P, L*(G) = L*(G
@) (@) (4.4.16)
foum.®f),

fo = Pyopand A, ;== Ao P,.
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Proposition 4.4.2. L?(G), together with the family of morphisms fiq, 1., A, and &, for
a € Ry defined above is a strongly separable symmetric 1-RFA in Hilb.

Before proving this proposition let us state a lemma. Let V' € G and define

:ut‘z/ = :ua|MV®MV ) 77;/ = e—aUvdim(V)Xv 5

Az‘z/ = A|MV s 5(‘1/ = €a|MV .

(4.4.17)

From a computation using orthogonality of the l‘J/ we can obtain the following formulas:

Pu(fY) = eV ¥ € My | (4.4.18)

pa(fl @ fiy) = dpe™ v (dim(V)) T2 £} € My, (4.4.19)
dim(V)

Au(flf) = eV (dim(V)™2 Y e fi € My @ My (4.4.20)
k=1

ea(fY) = eV (dim(V))"/%5;; . (4.4.21)

Lemma 4.4.3. Let V € G. Then My is a strongly separable symmetric t-RFA in Hilb
with the structure maps in (4.4.17).

Proof. Checking the algebraic relations is a straightforward calculation. As an example,
we compute the window element of M, .

dim(V)
pY oAV ol = Z 1Y o AY (f¥)e v (dim (V)12

dlm(V)

. VgV VvV —(az2+as)oy
= E o, (fire @ frr)e
e (4.4.22)

dim(V)

= D fier ety (dim(V) 2

k=1

_ —(a1+az2+a3)ov 3; _ 2V
e dim(V)xy = Ny +astas -

which is clearly invertible. ]

Proof of Proposition 4./.2. Let V &€ G and let us compute the following norms.

dim (V)
—2ao0y d 2 _ —2aUVd- 14 |4
72 H (dim (V)" {xv, xv) = e im(V) kzl::l (o fu) (4.4.23)
= e 2%V (dim(V))? .
Let o = th]ml @i [, € My and compute
dim(V
AT @ = v (dim(V Z eI F @ fI = e lol®, (4.4.24)

i,5,k=1
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so ||AY|| = e V. Since My is a {-RFA, ||V || = ||[n¥ || and ||u¥ || = ||AY .

We now would like to take the direct sum of the RFAs My for all V € G so we check
the conditions of Proposition 4.1.18: the sum is convergent since it is the squared norm of
ne € L*(G) and the supremum is clearly bounded. Therefore L?*(G) is an RFA.

Checking that L?(G) is strongly separable, symmetric and Hermitian is straightforward
using Lemma 4.4.3. O

Now we turn to define an RFA structure on CI?(G).
Proposition 4.4.4. The centre of L*(G) is CI?(G) and it is a commutative T-RFA.

Proof. Let us compute the morphism D, from (4.3.3), which is the same as D, from (4.3.38)
by Lemma 4.3.8. For ¢ = 3. S0V oV € L*(G) we find:

i,j=1 zg

Do(p) = pay © Tr2(6),02(G) © Dy (9)

dim(V
= [lay © OL2(G),12(C) Z Z gp:; ® f,:; o010V (dim(V))—l/z
ved i.j,k=1
dim(V) (4.4.25)
= Z Z pre 7 (dim (V) 103 fin
ved i.j,k=1
dim(V)
- Z Z (pzz aUV dlm(V)) 1/2
veGg =1

From this equation we immediately have that Dg|cizq) = Palciz()- We now show that
Dal(ciz(cy+ = 0. Using (4.4.4), we have that ¢ € (C1*(G))* C L*(G) if and only if for every
Wed {(xw,®) = 0. We can compute this using the orthogonality relation (4.4.2) to get
the following: ¢ € (CI2(G))* if and only if for every W € G we have that Zdlm W) o = 0.
By (4.4.25) we get that D,(¢) = 0.

Altogether, this shows that the limit lim,_,o D, (in the strong operator topology) exists
and Dy is an orthogonal projection onto Cl?(G). Therefore by Lemma 4.3.10 the centre of
L3(G) is CI*(G). Tt is a 1-RFA, since L?(G) is a -RFA and Dy is self-adjoint. O

2For completeness we give the comultiplication AY PO of CI?(G). For ¢ = Y oved oy €
ClI*(Q)

AT D) = 37 Ve (dim(V) Pxv @ Xy (4.4.26)
ved

Remark 4.4.5. Note that for both L?(G) and C1*(G), the a — 0 limit of the multiplication
and comultiplication exists (by definition), but the a — 0 limit of the unit and counit does
not.
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4.4.2 State-sum construction of 2d Yang-Mills theory

In this section we give state-sum data for the 2d YM theory following [Wit1]. The plaquette
weights WF: C — (L*(G))®" for k € Z>o and a € R > 0 are

WH) (zy, ..., 28) = Z e vdim(V)xy (z1 - - xp) (4.4.27)

and the contraction and (, are given by
/Ba = (Wf)T 9 Ca = Pa ) (4428)

where P, is as in (4.4.16).
Proposition 4.4.6. The morphisms (4.4.27) and (4.4.28) define state-sum data.

Proof. We prove this by showing that the morphisms in (4.4.27) and (4.4.28) can be ob-
tained from the RFA L*(G) via Lemma 4.3.8.

Since the inverse of the window element of L?(G) is simply 7,, we immediately get that
(o = P,. Let us look at the morphisms W¥. For k = 1 we have W}! = n,. Let us assume

that for k > 1 we have W, = A,(fi) 0 7a,. Then for k 4+ 1 we see that

ai+az

(ld® st ® 1d ®Aa3) o W(flJrag(l)

=([{d®- - ®id®A,,) Z e’(m*“?)""dim(V)XV(xl )
ved

= Z e (@Fa2tas)ov Qim (V) yy (@ - - - Tppp) -
ved

That 8, = (W2)' follows from L%(G) being a {-RFA.
Finally we need to check that the limit lim,_.q D, exists, which we have already checked
in the proof of Proposition 4.4.4. [

After this preparation we are ready to define 2d YM theory, which maps S! to the
centre of L*(G), see Proposition 4.4.4.

Definition 4.4.7. The 2-dimensional Yang-Mills (2d YM) theory with gauge group G is
the area-dependent QFT

2%y« Bords™*" — HMilb

v s Bordy ™ = il (4.4.29)
St — CI*(G)

of Theorem 4.3.5 obtained from the state-sum data in (4.4.27) and (4.4.28).

Next we compute Z%,, on connected surfaces with area and b > 0 outgoing boundary
components. For b = 0 the result agrees with [Wit1, Eqn. (2.51)] (see also [Rus, Eqn. (27)]).
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Proposition 4.4.8. Let (X,a) : (S")?» — (S")? be a connected bordism of genus g
with by, ingoing and by, outgoing boundary components and with area a. Then for V; € G
for j =1,..., by we have

Z\C{fM (E,CL) (XV1 Q- & XVbin)
Yvege 7 (dim(V)XE - (xy) et if by, =0
=< eV (dim(V}) )X®) -+ (yy, )Blout ifby, >1land Vi =--- =V,

0 else

(4.4.30)

in

where x(X) = 2 — 2g — by, — bou Is the Euler characteristic of ¥. For by, = 0 (boy, = 0) the
source (the target) is C and the factors of xy or xv, are absent.

Proof. We first consider the case that b := by, > 1 and by, = 0. The map ¢, from (4.3.41)
is given by

dim(V)
Ca(fl) = wo (i[d®(noop@,ze) | Y ¢ ([dm(V))™ i ® fig ® £
e l=1
’ 4.4.31
dim(V) ( )
= Z e~V (dim(V)) " 20udpfy = eV (dim(V) 2 £
ke l=1
Using this, we compute for ao,...,as41 € Ryo with a = Zf;rol a; that
g
AS;)H o H Da; © Nag = A((ll;)ﬂ Z e~ (a—agt1)ov (dim(V))l_QgXV
i=1 ved
= (@1, me) = | D eV (dim(V) " xy (2 - )
ved
(4.4.32)

Finally, according to Part 2 of Lemma 4.3.12, we need to compose (4.4.32) with 7° to get
(4.4.30), where 7 : L?*(G) — CI?*(G) is the projection onto the image of Dy. To arrive at
(4.4.30), we further compute

Pxvlera) =7y (dim(V)) R () fil ()

™

(4.4.33)
= (dim(V))l_bXV(xl) ooxv(a) .

For the case by, = boys = 0 we use functoriality. Let ¥’ the surface obtained by cutting
out a disk from ¥. Compose Z$,; (X', a — a') with e, and use (4.4.21).
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For the case by, # 0 we need to turn back outgoing boundary components by composing
with cylinders with two ingoing boundary components and with area a, which we denote
with (C,a). Using Part 3 of Lemma 4.3.12, for U,WW € G we have

Z3u(C,a)(xu, xw) = e "oy . (4.4.34)
Using the result for the b, = 0 case and (4.4.34) we get the claimed expression. ]

Remark 4.4.9. As already noted in Remark 4.4.5, 1, and €,|ci2(@), i.e. the value of ZG,
on a disc with one outgoing (resp. one ingoing) boundary component, do not have zero area
limits. On the other hand, the expression (4.4.30) has a zero area limit if g + blﬁ% > 2.
Indeed, the xy are orthogonal for different V' and have norm ||xv| = 1, and for a given
o € Z the sum ), _a(dim(V))* converges if o < —2. To see this, use the bijection from
(4.4.8) and the estimate from (4.4.9) to get

D (@im(V)* < ) (dim(R)* < N YA, (4.4.35)

ve& AEAT AeA+

which converges for —ma > rank(G) by [Sug, Lem. 1.3]. Then use that m = (dim(G) —
rank((G))/2 and that 3rank(G) < dim(G) to get o« < —1, and since « is an integer o < —2.
These limits are related in [Wit1] to volumes of moduli spaces of flat connections (see e.g.
[KMT] for more results and references). For example for G = SU(2) we have, for g > 2
and bin = bout = 07

a—0

lim 290, (2,a) (1) =Y n~2*2=((29-2) , (4.4.36)
n=1

where ( is the Riemann zeta-function. For general GG, these functions are also referred to
as Witten zeta-functions, see e.g. [KMT].

4.4.3 Wilson lines and other defects

As we learned in Section 4.3.6, defect lines in the state-sum construction can be obtained
from some bimodules over RFAs. In order to describe Wilson line observables in 2d YM
theory, we are going to consider bimodules over L?(G) induced from finite-dimensional
unitary G-modules.

Let V € G and consider the Hilbert space V ® L?*(G), which we identify with L*(G, V),
the Hilbert space of square integrable functions with values in V. Let us define a map

£:VeLHG) = L*G)oV e L(G)
v f e [(z,y) = fzy)y.ol '

One can easily check that ||¢]] = 1. We define the left action of L*(G) on V ® L*(G) via
the adjoint of &:

poo = L(G) @V @ LHG) = Ve L*(G)

PRV [ {wH/Gw(y)y'vf(y‘lx)dy :

(4.4.37)

(4.4.38)



164 Chapter 4. Area-dependent quantum field theory with defects

and for a,l € R

PE1 = Po(na ® =) © pig (4.4.39)

with trivial [-dependence. In the rest of this section all length-dependence will be trivial,
hence we drop the index [ from the notation:

ohim gk, QE=Qh . et (4.4.40)

In Proposition 4.4.10 we prove that this is indeed an action, however one can also under-
stand this from a different argument. If we consider L?(G) with pointwise multiplication
and the same comultiplication A, then it is a unital and non-counital Hopf algebra. This
Hopf algebra coacts on V' via v + [z — z.v], where, as above, we identified L?*(G)®V with
L*(G,V). Then L*(G) coacts on V & L*(G) as in (4.4.37) and taking the adjoint gives the
action (4.4.39).

We define the right action of L?*(G) on V @ L*(G) to be multiplication on the second
factor:

Ve LHG)® LA(G) = Ve L*G)

(4.4.41)
v fRe—v@m(foe).

We will often write pf(p ®v® f) = ¢.(v® f), etc. By acting with 1, and n, from the left
and right, respectively, we get

QZ?LQ(G)(U ® f)(z) = /G2 na(y) yv fy ez (2) dy dz . (4.4.42)

Similarly as for V @ L*(G), we define the left action of L*(G) on L*(G) ® V to be
multiplication on the first tensor factor:

ph P LA (G) @V = LA(G)eV

4.4.43
PR fRu (@ fl@v, ( )

and we define the right action of L?(G) on L*(G) ® V as follows. First let

i LAG) Ve LAG) = LA(G)®V
o (4.4.44)
fOvep— xH/Gf(xy )y wely)dy|
and finally

Py =P (— @m) o py - (4.4.45)
Next we define the duality morphisms for the pair (V& L*(G), V*® L?(G)) of bimodules.

Let {e) }?i:nf(v) denote an orthonormal basis of V' as in Section 4.4.1 and {19}/}?:?(‘/) the
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dual basis. Let

dim(U) dim(V)

Yop(1) = Z Z Z e e @el @ fi

ved ki=1 j=1
Yap(1) = (idra@ov- @05 (1 @ =) 0 Y04(1) |

(4.4.46)

and

Pop(v® f @I ®g) :=1D(v) . () f(y)g(y~'a™) dydz (4447)
5a,b = ﬁO,b o (pg(ﬁa & —) (%9 isz(G)@)V*) .

Recall that we identified V ® L?*(G) with square integrable functions on G with values
in V, which we denote with L?(G,V). We will be particularly interested in a subspace of
L*(G,V) consisting of G-invariant functions:

LHG, V) ={feL*GV)|g.flg zg) = f(z) for every g,z € G } . (4.4.48)

Note that L?(G,C)¢ = CI?*(G).
Proposition 4.4.10. Let V,W € G and let V* be the dual G-module of V. Then

1. V®L?*(G) is a bimodule over L?(G) via (4.4.39) and (4.4.41), L*(G)®V is a bimodule
over L*(@G) via (4.4.43) and (4.4.45),

2. (Ve L*(GQ)) @2 (W L*(G)) = (Ve W) ® L*(G),
3. OL2(G) (V ® L2(G)) = L2(G, V)G,

4. (V@ L*(G), L*(G) ® V*) is a dual pair of bimodules with duality morphisms given
by (4.4.46) and (4.4.47).

If furthermore G is connected then

5. the bimodule V ® L*(G) is transmissive if and only if V is the trivial G-module
V =C.

Proof. Part 1:

We only treat the case of V ® L*(G), the proof for L?*(G) ® V is similar. We start by
showing associativity of the left action. Let ¢y, € L*(G) and v ® ¢ € V ® L*(G) and
recall that we abbreviate pl (1 ® v ® 1) = ¢1.(v @ ¥). Then

erlorlo @)@ = | e vl ) dyds (1.4.49)

w2 @ @1).(v@Y)) () = /G2 o (2) o1 (27 w) wo e (wr) dwdz (4.4.50)
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Changing the integration variable y = 271w in (4.4.49) we get (4.4.50). Using associativity
of p{ and the unitality of 4, we get that lim,_,0 Q% = idygr2q) for QL = pa, o (N4, @ —).
Clearly, the assignment a — pL is continuous, and pL satisfies the associativity (4.1.68).
Therefore V ®@ L*(G) is a left L?(G)-module.

It is easy to see that V ® L?(G) is also a right L?(G)-module, so we are left to check two
conditions. First, that the two actions commute as in (4.1.75), which can be shown similarly
as associativity of pL before. Second, that the two sided action is jointly continuous in the
3 parameters, which can be shown by a similar argument as in the proof of Lemma 4.1.15.

Part 2:

Let V=V ®@L}G), W =WL*G), v feVand w®g € W. We compute from
(4.1.94) that

DIV (we feowe g)(r,y) = / v @ tw fs)na(s™ at)g(ty) dsdt .
G2

So using that lim,_,o P, = id, we get that

D(‘)/’W(v RfRW®R g)(r,y) = /Gv ® taw f(at)g(t ty)dt . (4.4.51)

By Proposition 4.1.51, the image of the idempotent DX’W is the tensor product V@Lz(g) w.
Let 10 @ fRw®g)=v® f(w®g) and (v @w R f)(z,y) :=v @z Lwf(ry). Then we
have that mo 1 = idygwerz(q) and

vor(v® fRw®g)(r,y) =ve / el f(t)g(t wy) dt
G

which is equal to (4.4.51) after substituting ¢’ := z~'t. We have shown that 7 and + is the

projection and embedding of the image of Dg/ W so in particular the image is V ® 12(@) W =
V @ W ® L*(G). The induced action on V@ W ® L*(G) from (4.1.99) is

fon =0y @py My oDy o, (4.4.52)

which can be shown to agree with the action on V ® W ® L?(G) by a straightforward
calculation.

Part 3:
Recall (V®L?(G))% from (4.4.48). Let a € Rsg, v € V and f € L?(G). Then from (4.1.94)
we have

DY (w® f)(z) = / naly=""2) yov fy~2) dy dz
G (4.4.53)

w= 271 _
Y /2 na(wz) y.v fy 1wy) dy dw .
G
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fo® fe(VeLAG) then DY (v® f) = (idy ®F,)(v @ f) and hence v ® f € im(DY).
Let h € G and compute

h.DZ(U ® f)(h 'zh) = /G2 na(wh™'xh) hy.v f(y twy) dy dw

naeCZZQ(G)/ Na(hwh™'x) hy.v £y wy) dy dw
G2

Zhghl/ na(Zx) hy'U f(y—lh—lwhy) dy dz (4454)
G2

o= 2x)q.v “Lw yA
= /qzna( )q.v f(qg  wq)dgd
=D (v® f)(z) .

Since h.(=) : V ® L*(G) — V @ L*(G) is continuous, we can exchange it with lim,_o(—),
so D (v® f) e (V@ L*(G))¢. Using the identification V ® L?(G) = L?(G, V) we arrive
at im(DY) = L*(G, V)%, which is, by Proposition 4.1.51, Or2(q) (V @ L*(G)).

Part 4:
It is easy to see from the definition of 3,; and 7, that the zig-zag identities in (4.1.82)
hold. So we only need to show that J,; intertwines the actions as in (4.1.83). We compute

usle- 0@ @ 9©0) = [ mp@den s gl dedyds

Bos(v® f @ (gR1).0) = /Gg m(2) f()g(y~ 27 ) (@ 0) (v)(x) da dy dz

St [ @e@le) [yl e dedyds (4459)
G3

y:x’lu

ey (e wa)p(a) (@) o u)g(u w ) da du dw

"bECE(G)/ n(w)e(2)9(z.0) f(r ) g(u 'w™) do dudw
G3

which are equal. Composing with QZ?LQ(G) ® QZ;®L2(G) shows that (4.1.83) holds for every

a,b € Ry too.

Part 5:

Since pap = Qap © poo, it is enough to consider Q,p. As we already noted in (4.1.71),
Q- : (Rs)* — B(V) is a two parameter strongly continuous semigroup. This defines
two one parameter semigroups Q! = Qq0, Q7 := Qop and @, depends solely on a + b,
if and only if these two one parameter semigroups are the same, see also the discussion
before Definition 2.4 in [KS]. One parameter semigroups are completely determined by
their generators, so we calculate these now.
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Figure 4.15: Cylinder (C,a*,a®, V) with ingoing boundaries and a Wilson line with label
V € G. The area of the surface components left and right to the Wilson line is o’ and aff
respectively.

Let v € V and W € G. Then
Qap(v @ 1) () = "V Qap(v ® [V )(x)

= e tow /G Z e vdim(U)xu(s) s.v i?/(s_lm) ds . (4.4.56)
UeG

Using this, and writing H; for the generator of Q* for i = 1,2, we have

(0 ® (&) = - Qb @ flamola)

= lim Z —ope Udim(U) /GXU(S) s i‘;-v(s_lx) ds

a—0 /
UeG

(4.4.57)

and Hy(v® f}) = —owv @ f}.
Let v := e,f and W := C. Note that M¢ are constant functions. Then

Hi(ef ®1) = (—Jv)dim(V)/ xv(s)s.ef ds = —oye] @1,
e
which is nonzero if and only if V 2 C. Furthermore, Hy(ef ® 1) = 0. So if V % C then
V ® L*(G) is not transmissive.
Clearly, if V = C then C ® L?(G) = L*(G) and by unitality of the product on L*(G)
the bimodule C ® L*(G) is transmissive. O

In terms of Section 4.3.7, we can interpret these results as follows. Let (S!,V,+) be
a circle with a positively oriented marked point where a Wilson line with label V' € G
crosses. Then the corresponding state space is

ZSu(ShLV,+) = L*(G,V)° . (4.4.58)

Let VW € G. Furthermore, the fusion of two Wilson lines with labels V' and W is again
a Wilson line with label V @ W.

In the following we show that the value of Z§,; on closed surfaces with Wilson lines
agrees with the expression in [CMR, Sec.3.5]. Let (£, A4) = (X, A, £) be a closed surface
with area and defects with £ = 0. Since X is closed, the defect lines in 3, denoted with
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3, are closed curves. In order to compute Z$y; on (X, .A) we decompose it into convenient
smaller pieces as follows. For every z € X with defect label d;(z) = V, ® L*(G) for some
V, € G take a collar neighbourhood of x in 3, which is a cylinder with z running around it.
Denote the corresponding bordism with area and defects with both boundary components
ingoing with (C,,ak, a®,V,), where aZ and aZ are the area of the surface components to

Ty Yo x )

the left and right of x respectively. Denote with (3, A’) the bordism with area with all

outgoing components, which is formed by removing |_|x€2[1] (Cy,al,a® V) from (3, A). We

Ty Yy Yo

have

(A = ([ (Coabiaf Vi) o (5,4) (4.4.59)

$EE[1]

Note that (X', A’) is a bordism with area but without defects, therefore using Propos-
ition 4.4.8 and monoidality we can compute Z%,; on it. The final ingredient we need
is:

Lemma 4.4.11. Let (C,a,b,V) be a cylinder with a Wilson line with label V & G as

in Figure 4.15, U € Gandlet UQV Dwee WOV be the decomposition into simple
G-modules, for some integers N},. Then

Z\?M(C) a, b7 V) (XU X XW) = e_aUU_bUWN[I]/YV . (4460)

Sketch of proof. The morphism Z%,,(C,a,b,V) is given by the diagram

(0,b2; V)

CE(G) CI(G)

(0,b1;V)

After a straightforward calculation and some manipulation of multiple integrals we get for

o, € CI?(G) that
Z9u(C,a,b,V)(p @ ¢) = /Gs na(2)e(z ) xv(W)(y~'p m(p) dpdydz . (4.4.62)
Finally using

/G o @xw(y™) = N, | (4.4.63)

which follows from basic properties of characters and character orthogonality, we get
(4.4.60). [
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Remark 4.4.12. The computation of the defect cylinder in the above lemma allows one
to interpret states of the 2d YM theory in terms of Wilson lines. Namely, let (D, a,b, V)
be a disc with outgoing boundary and with embedded defect circle oriented anti-clockwise
and labeled by V € G. The area inside the circle is a and the one outside is b. The
corresponding amplitude is

(v, 24(D,a,b,V)) = Z4,(C. 4.5, V) (s ® xw)
— Z e—aaU—bGWdim(U)NZ{/V ) (4464)
veG

For a given W, the sum is finite. One checks from this expression that

lim Z¢\(D,a,b,V) = xv . (4.4.65)
b—0

Thus we can picture the state xy € Z$,,(S!) informally as the disc (D, 00,0, V) with zero
area outside of the circle and infinite area inside the circle (and which is hence not an
allowed bordism with area). From this point of view the action (4.4.60) of the cylinder
is no surprise as by Theorem 4.3.20 it amounts to the fusion of defect lines, which by
Proposition 4.4.10 (2) is given by the tensor product of G-representations.

Proposition 4.4.13. For x € X let p}; € m(X') be the connected component which is
glued to C, on the right side of x in (4.4.59) and define p% € my(X') similarly to be the
connected component glued from the left. Using the notation from above we have

U, z
20 A= I I X e @m@) N ", (4.4.66)

pEmo(X) T€Xn) U, el

where a, € Ry is the area of p.

The expression in (4.4.66) matches the expression in [CMR, (3.28)] (see also [Rus,
Sec. 5]).

Defects from automorphisms of G

Another way of obtaining bimodules is by twisting the actions on the trivial bimodule by
an algebra automorphism as we saw in Example 4.1.39. In the rest of this section we will
introduce automorphisms of L*(G) (seen as an RFA) using automorphisms of G.

Let o € Aut(G), V € G and denote with oV the G-module obtained by precomposing
the action on V' with . Let H denote the Haar measure on G and o*H the induced
measure. This is a left invariant normalised measure, hence by the uniqueness of such
measures o*H = H. As a consequence, the Haar integral is invariant under Aut(G).

Lemma 4.4.14. Let o € Aut(G). Then precomposition with « is an automorphism of
the RFA L*(G) and defines a group homomorphism Aut(G) — Autg g (L (G))°P.
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Proof. Clearly, invariance of the Haar measure implies that a* = (=) o « is unitary. We
first show that o* commutes with the product. Let ¢y, ps € L*(G) and compute:
(1 0a) ® (@2 0a))(x) —/ pi(a(2))pa(a(z"'2)) dz
) ¢ (4.4.67)
= / P1(Y)pa(y~ () dy = plpr @ pa)(a()) |
G

where we used that the Haar measure on G is invariant under «. Next, we show that
Na © Q& = Tq-

e 02 = Z e Vdim(V)yy o a = Z e Vdim(V)xav

ve& ve& (4 A 68)
= ¢ dim(V)Xav =1
ve&

where we used that oV has the same dimension as V' and that the Casimir element is
invariant under «. The latter can be understood as follows. The Lie group automorphism
« induces an automorphism on the Lie algebra of GG, and the Casimir element is defined in
terms of an orthonormal basis of the Lie algebra with respect to an invariant non-degenerate
pairing, for example the Killing form.

Since L?(G) is a -RFA and o* is a unitary regularised algebra morphism, o* is an RFA
morphism. O

Let Ly := o4+ L*(G)iq denote the transmissive twisted bimodule from Example 4.1.39.
By Examples 4.1.44 and 4.1.53 these bimodules have duals and can be tensored together,
i.e. we can label defect lines with them. For convenience we list these results here. Then

e (Lo, Ly-1) is a dual pair of bimodules,
° La1 ®L2(G) La2 = LQQOal, for aq, an € Allt(G),
o Orzg) La = {f € L*(G) | flgza(g™)) = f(z) for every g,x € G },

where the last equation can be computed from D of (4.1.94).
The following lemma can be proven similarly as Lemma 4.4.11.

Lemma 4.4.15. Let a € Aut(G) and (C,a,b, L,) denote a cylinder as in Figure 4.15 with
the defect line labeled with L. Then for U,W € G we have

ZGu(Crab, Lo)(xu @ xw) = e TG gy (4.4.69)

The following lemma shows that for some particular choices of «, these bimodules could
provide new examples.

Lemma 4.4.16. Let a € Aut(G) and V € G. Then

1. L, = Lig = L*(G) as bimodules if and only if « is inner,
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furthermore if G is connected,

2. L, 2V ® L*(G) as bimodules if and only if « is inner and V = C as G-modules.

Proof. Part 1: Let us assume that a(r) = g~'zg for for some g € G. We define ¢ : L, —
Liq as ¢o(f)(z) := f(gx), which is clearly bounded and invertible. To show that it is an
intertwiner calculate for ¢ € L?*(G) and f € L,:

/¢g yg) [y~ gz) = 2=g yg—/@/) (927 'x) = .p(f)(x) . (4.4.70)

Conversely, let us assume that L, = Lig. Let (S' x [0,1],a,b, L,) be a cylinder as in
Lemma 4.4.15, just with one of the boundary components being outgoing. Then we have
that

ZGu(S' % [0, 1), a,b, La) (xv) = e @V x v

@

(4.4.71)

But since L, = Liq, by a direct computation one can see that the operator in (4.4.71) is
the same as the operator assigned to a cylinder without defect lines and with area a + b,
so we have for every V € G that

XoV =XV 5 (4.4.72)

which is equivalent to ,V = V for every V € G. This means that the highest weight of
oV and V are equal for every V € G, which holds if and only if a corresponds to the
trivial automorphism of the Dynkin diagram of GG. This is equivalent to o being an inner
automorphism [Kna, Ch. VII].

Part 2 follows directly from the fact that L, is transmissive, Part 1 of this lemma and
Part 5 of Proposition 4.4.10. O]

Using Lemma 4.4.15 and Part 1 of Lemma 4.4.16 we can show the following proposition.

Proposition 4.4.17. Let (X, A) and (X', A’) be as in Proposition 4.4.13 with every defect
line x € Xy labeled by L, for o, € Aut(G). Then

Z\C;M YA = H H Z e %% (dim(U,)* (p)(SMUpvapﬁ ) (4.4.73)

peEmo(X) €Xn) U,el

where a, € R~ is the area of p. In particular, if o, is inner for every x € ¥y then (4.4.73)
agrees with (4.4.30), the value of Z$,; on (%, A) without defects.

The following is an example of a non-trivial twist-defect.

Example 4.4.18. Let us assume that G is furthermore simply connected. Then Out(G),
the group of outer automorphisms of G, is isomorphic to the group of automorphisms of
the Dynkin diagram of G [Kna, Ch. VII].
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Let G := SU(N) for N > 3. Then Out(G) = Z, and its generator, which we now denote
with «a, corresponds to complex conjugation. We have that ,V = V* for every V € G.
We can apply Proposition 4.4.17, so for example for a torus 72 with one non-contractible
defect line with defect label L, we have

SU(N —ao
Zpn (@ a) = Y e (4.4.74)

UeG, UxU*

4.A Appendix: A bimodule with singular limits

In this example we illustrate that not every bimodule over regularised algebras comes from
a left and right module with commuting actions. Namely, we construct two regularised
algebras AL and A and an A*-A%-bimodule M, such that the two-sided action p,;; does
not provide a left module structure as in Remark 4.1.38 since the limit in (4.1.76) does not
exist.

Let A be C[z]/(z?) as an algebra in Hilb with orthonormal basis {1,z}. Let n € Z>;
and M, € Hilb be spanned by orthonormal vectors vy and v;. We define a left A-module
structure on M,, by

zwvg=¢"v; and zw =0. (4.A.1)

Since A is commutative, (4.A.1) defines a right A-module structure on M, as well and
together we have an A-A-bimodule structure.

Next we turn A into a regularised algebra in two ways. Let hY := 2 —n € A and
denote with (A%, ,uf’Ll, 77(’14 ﬁ) the regularised algebra structure on A defined as in Example 3
by setting

P (p) := ™ p (4.A.2)

for p € AL and a € R+(. Note that 77(;4 " e~ (14 ax). Similarly, define the regularised
algebra A using h® := z — n3.

We turn the A-A-bimodule M, from above into an AZ-AZ-bimodule over regularised
algebras via Proposition 4.1.41 and by taking the [-dependence to be trivial. We denote

the resulting action by pfg. The semigroup action is given by
Qulp (m) = eth" Ty — eman =t (1 4 (a4 b)a)m (4.A.3)

for m € M,,.
Let us consider

Ab= P AL, A= P AF and M= P M, . (4.A.4)

nGZzl HGZ21 HGZ21
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We claim that for every a,b € Ry we have

and Z Hnb

nel>1 nel>

< 0 (4.A.5)

and furthermore
sup {‘
nEZZl

So by Proposition 4.1.18, A* and AF are regularised algebras and by Proposition 4.1.40
M is a AL-AF-bimodule. However the limit

lim p), o (idAL®M ®nbA;R) ) (4.A.7)
b—0" 7

AL
He™

}<oo and  sup {Hp al }<oo (4.A.6)

nEZZl

R
o o {Ju

nEZZ 1

where b = b; + by, does not exist, i.e. M is not a left A*-module.
Showing (4.A.5) is a direct calculation and we omit it. We now show that (4.A.6) holds.
We compute for p = po + p1x € AL, m = mgvyg + myv; € M, and ¢ = qo + @1z € AR that
par(p®@m®q) = QL (pg.m)
=Quy <poqomovo + ((poql + pigo)moe”™ +poqom1> v1> (4.A.8)

an—bn3

_ ’I’L2
=e (pOQOmOUO + (POCIOm1 + [pogo(a + b) + (poq1 + p1go)]moe ) U1> :

Using this we compute the value of the adjoint of the action on f = fyvg + fiv; as

(p(ll\%)T (f) - e—an—bn3 (fO + ((l + b)€n2f1> 1 X Vo (029 1

(4.A.9)
+ et gy <1®v1®1+e”2(1®vo®x+m®vo®l)> :
Let f have || f|| = 1 and compute the norm of (4.A.9)
H(pg{,y)* ()| = e-2an—2m (‘fo +a+ e f] 4 AP (1 + 262”2)) . (4.A.10)
from which we get by estimating |fo| < 1 and |f;| < 1 that
||p || H( )TH < ¢~ 2an—2bn’ (1 + 2(a + 6)6"2 + (2 + (a+ b)2) 62"2) ) (4.A.11)

By a similar argument, without giving the details, we obtain the following estimates:

|

From (4.A.11) and (4.A.12) it follows that (4.A.6) holds.

AL

i i <e (240417 (4.A.12)

§ g 2an (2 +a + a2) and H,u?g
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Finally we give a lower estimate of the norm of the morphism in (4.A.7) restricted to
AL @ M, without the b — 0 limit:

2
ot o (1dagone, @t )| = ol © (i agons, @1

1 2
Z ef2anf2bn3§ ((1 + (a+b)e"2) 4 1 +62n2> ]

(4.A.13)

We arrived at this estimate by computing the norm of the adjoint of (4.A.7) before taking
the limit b — 0 evaluated at f € M,, as we did in (4.A.10), and then by choosing
fo= = \% Thus the b — 0 limit in (4.A.7) cannot give a bounded operator.






Chapter 5

Outlook

The two projects in this thesis serve as good starting points for future projects. Here we
give some of the directions in which one could continue working. We list some points for
r-spin TFTs first:

To our knowledge there are no essentially different examples of r-spin TFTs other
than the ones presented in Chapter 3, and even those cannot distinguish all mapping
class orbits of r-spin surfaces. In particular, when r is odd we only know examples of
r-spin TFTs which are not sensitive to the r-spin structures on surfaces. A possible
way of obtaining new examples, which may also be able to distinguish more mapping
class group orbits could be using the orbifold or push construction of [SW].

It is desirable to combine our closed r-spin TFTs with the open r-spin TFTs of [Ster].
Then we should find a classification in the spirit of Theorem 2.1.3, as it has been
done in the oriented case in [LP1] and in the r = 2 case in [MS] and extend the
state-sum construction of open-closed TFTs [LP2].

This leads us to the next point, namely to consider fully extended r-spin TFTs. In
the case of 7 = 2 in [Gun] it is shown that fully extended 2-spin TFTs correspond
to Frobenius algebras with N? = id. This result should be possible to generalise to
arbitrary values of r by looking at homotopy fixed points of the r-spin group action
on the bordism bicategory using methods of [HV].

Another direction is to include defect lines in r-spin TFTs. This is motivated by a
larger project, where we want to understand the relation of (2-)spin TFTs to N' =1
supersymmetric TFTs and then extend those notions to N/ = 2 supersymmetric
TFTs. This is important in the quest of understanding defect bicategories of Landau-
Ginzburg models from a TFT point of view and compare results with [CM].

Now we give some ideas for aQFTs:

The most natural direction to continue would be to consider 3-dimensional FFTs and
state-sum constructions of them. In the topological case, the state-sum construction,
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Chapter 5. Outlook

called the Turaev-Viro model [TV], takes as input a spherical fusion category. It
would be interesting to understand the corresponding algebraic structure for the
volume-dependent case. Furthermore one could study how different codimensional
defects are related in 2- and 3-dimensional volume dependent theories.

The tensor product of bimodules over RFAs should be studied further, especially
to understand the condition better when dualisable bimodules close under tensor
product. Then it would be interesting to see what kind of defect bicategories [DKR]
one can obtain from the state-sum aQFTs from strongly separable RFAs and bimod-
ules.

A direct generalisation of 2d YM theory would be to replace L?(G) with an analytic
quantum group. There are different versions of deformations of 2d YM theories (g-
and (g, t)-deformed), e.g. in [SzTi]. We would like to understand these deformations
using our framework for aQFTs with (analytic) quantum groups.

A special case of 2d YM theory is when the group G is finite, which is a state-
sum TFT from the group algebra C[G]. The relation of this TFT to orbifolds, see
e.g. [BCP, Ex. 1], is that state-sum models are orbifolds of the trivial theories. The
present investigation suggests that including area-dependence may be useful to treat
orbifolds by compact Lie groups, such as the one investigated in [GS].



Acknowledgments

I would like to thank my advisor, Ingo Runkel, for his help and guidance from the beginning
of my MSc studies until my PhD defense and especially for his patience while reading the
first drafts of the two papers which make up the major part of this thesis. I am furthermore
indebted to the two referees, Nils Carqueville and Richard Szabo, who accepted to read
and referee my thesis on a very short notice. Without the help of Ingo, Nils and Richard
it would not have been possible to defend my thesis this early.

I also would like to warmly thank Ehud Meir and Stefan Wagner for their time and
thorough explanations of various ideas in algebra and functional analysis; Lukas Miiller,
Louis-Hadrien Robert and Lukas Woike for their help with several questions in topology
and for the many discussions. Many thanks go to my office mates Ilaria Flandoli and Jan
Hesse and to my flatmate and PhD brother Lorenz Hilfiker for the great time we spent
together and to Aron Szabé and Vincent Koppen for their helpful comments on my defence
presentation and their help with ETEX.

Furthermore I would like to thank Yuki Arano, Alexei Davydov, Tobias Dyckerhoff,
Pau Enrique Moliner, André Henriques, Chris Heunen, Reiner Lauterbach, Catherine
Meusburger, Sebastian Novak, Gregor Schaumann, Walker Stern for helpful discussions
and comments.

I am thankful for the members of the Department of Algebra and Number Theory
of the University of Hamburg, in particular to Christoph Schweigert and the research
group Algebra and Mathematical Physics for hosting such a great scientific environment.
I would like to thank Gerda Mierswa Silva for kindly supporting me (not only) as the
spokesperson of the PhD students. I gratefully acknowledge the financial support of the
Research Training Group 1670 “Mathematics Inspired by String Theory and Quantum
Field Theory” and for the amazing environment in the last three years.

Finally T would like to thank my friends and family for their support.

179






Bibliography

[ABP]

[Abr]

[App]

[Ati]

[Ban]

[Bar]

[BB]

[BCP)

S. Abramsky, R. Blute, and P. Panangaden, Nuclear and trace ideals in tensored
*-categories. J. Pure and Applied Algebra 143 (1999) 3-47, [math/9805102
[math.CT]].

L. Abrams, Two dimensional topological quantum field theories and Frobenius
algebras. J. Knot Theor. Ramif. 5 (1996) 569-587.

D. Applebaum, Infinitely divisible central probability measures on compact Lie
groups — reqularity, semigroups and transition kernels. Ann. Probab. 39 (2011)
24742496, [1006.4711 [math.PR]].

M.F. Atiyah, Topological quantum field theory. Publications Mathématiques de
I'THES 68 (1988) 175-186.

A. Banyaga, Formes-volume sur les variétés a bord. Enseignement Math. 2 (1974)
127-131.

B.H. Bartlett. Categorical Aspects of Topological Quantum Field Theories. PhD
thesis, Utrecht University, 2005, [math/0512103 [math.QA]].

C. Bachas and I. Brunner, Fusion of conformal interfaces. Journal of High Energy
Physics 2008 (2008) 085, [0712.0076 [hep-th]].

I. Brunner, N. Carqueville, and D. Plencner. A quick guide to defect orbifolds.
In R. Donagi, M.R.Douglas, L.. Kamenova, and M. Rocek, editors, String-Math
2015. AMS, 2014, [1310.0062 [hep-th]].

J. Baez and J. Dolan, Higher-dimensional Algebra and Topological Quantum Field
Theory. J. Math. Phys. 36 (1995) 60736105, [q-alg/9503002].

B. Blackadar. Operator Algebras: Theory of C*-Algebras and Von Neumann Al-
gebras. Encyclopaedia of Mathematical Sciences. Springer, 2006.

C. Bachas and P.M.S. Petropoulos, Topological models on the lattice and a
remark on string theory cloning. Comm. Math. Phys. 152 (1993) 191-202,
[hep-th/9205031].

181


http://arxiv.org/abs/math/9805102
http://arxiv.org/abs/math/9805102
http://dx.doi.org/10.1142/S0218216596000333
http://dx.doi.org/10.1214/10-AOP604
http://dx.doi.org/10.1214/10-AOP604
http://arxiv.org/abs/1006.4711
http://dx.doi.org/10.1007/bf02698547
http://dx.doi.org/10.1007/bf02698547
http://dx.doi.org/10.5169/seals-46898
http://dx.doi.org/10.5169/seals-46898
http://arxiv.org/abs/math/0512103
http://dx.doi.org/10.1088/1126-6708/2008/02/085
http://dx.doi.org/10.1088/1126-6708/2008/02/085
http://arxiv.org/abs/0712.0076
http://arxiv.org/abs/1310.0062
http://dx.doi.org/10.1063/1.531236
http://arxiv.org/abs/q-alg/9503002
http://dx.doi.org/10.1007/BF02097063
http://arxiv.org/abs/hep-th/9205031

182

[Bru]

[BT]

[(BW]

[Conl]

[Con2]

[CR]

[CRS]

[CTS]

BIBLIOGRAPHY

I. Brunner. Area preserving symmetry in two-dimensional quantum field theory.
BONN-IB-95-36, diploma thesis, 1995.

J.W. Barrett and S.O.G. Tavares, Two-dimensional state sum models and spin
structures. Comm. Math. Phys. 336 (2015) 63-100, [1312.7561 [math.QA]].

J.W. Barrett and B. Westbury, Invariants of piecewise-linear 3-manifolds.
Transactions of the American Mathematical Society 348 (1996) 3997-4022,
[hep-th/9311155].

N. Carqueville, Lecture notes on 2-dimensional defect TQFT. 1607.05747
[math.QA].

N. Carqueville and D. Murfet, Adjunctions and defects in Landau-Ginzburg mod-
els. Adv. Math. 289 (2016) 480566, [1208.1481 [math.AG]].

S. Cordes, G. Moore, and S. Ramgoolam, Lectures on 2D Yang-Mills Theory,
Equivariant Cohomology and Topological Field Theories. Nucl.Phys.Proc.Suppl.
41 (1995) 184-244, [hep-th/9411210].

J.B. Conway. A Course in Functional Analysis, volume 96 of Graduate Texts in
Mathematics. Springer-Verlag, 1994.

J.B. Conway. A Course in Operator Theory, volume 21 of Graduate Studies in
Mathematics. American Mathematical Society, 2000.

N. Carqueville and I. Runkel, Introductory lectures on topological quantum field
theory. 1705.05734 [math.QA].

N. Carqueville, I. Runkel, and G. Schaumann, Orbifolds of n-dimensional defect
TQFTs. 1705.06085 [math.QA].

B.G.C. Cunha and P. Teotonio-Sobrinho, Quasi-Topological Field Theories in
Two Dimensions as Soluble Models. Int. J. Mod. Phys A13 (1998) 3667-3690,
[hep-th/9703014].

L. Crane and D.N. Yetter, A categorical construction of 4D TQFTs. Quantum
Topology 3 (1993) 120-130, [hep-th/9301062].

A. Davydov, Centre of an algebra. Adv. Math. 225 (2010) 319 — 348, [0908.1250
[math.CT]].

R.H. Dijkgraaf. A geometrical approach to two-dimensional Conformal Field The-
ory. PhD thesis, Utrecht University, 1989, https://dspace.library.uu.nl/
handle/1874/210872.

T. Dyckerhoff and M. Kapranov. Crossed simplicial groups and structured sur-
faces. In T. Pantev, C. Simpson, B. Toén, M. Vaquié, and G. Vezzosi, editors,


http://dx.doi.org/10.1007/s00220-014-2246-z
http://arxiv.org/abs/1312.7561
http://dx.doi.org/10.1090/S0002-9947-96-01660-1
http://arxiv.org/abs/hep-th/9311155
http://arxiv.org/abs/1607.05747
http://arxiv.org/abs/1607.05747
http://dx.doi.org/10.1016/j.aim.2015.03.033
http://arxiv.org/abs/1208.1481
http://dx.doi.org/10.1016/0920-5632(95)00434-B
http://dx.doi.org/10.1016/0920-5632(95)00434-B
http://arxiv.org/abs/hep-th/9411210
http://arxiv.org/abs/1705.05734
http://arxiv.org/abs/1705.06085
http://dx.doi.org/10.1142/S0217751X98001724
http://arxiv.org/abs/hep-th/9703014
http://dx.doi.org/10.1142/9789812796387_0005
http://dx.doi.org/10.1142/9789812796387_0005
http://arxiv.org/abs/hep-th/9301062
http://dx.doi.org/10.1016/j.aim.2010.02.018
http://arxiv.org/abs/0908.1250
http://arxiv.org/abs/0908.1250
https://dspace.library.uu.nl/handle/1874/210872
https://dspace.library.uu.nl/handle/1874/210872
http://dx.doi.org/10.1090/conm/643

BIBLIOGRAPHY 183

[DKR]

[EGNO]

[EN]

[FHK]

Stacks and Categories in Geometry, Topology, and Algebra, volume 643. AMS,
2015, [1403.5799 [math.AT]].

A. Davydov, L. Kong, and I. Runkel. Field theories with defects and the
centre functor. In H. Sati and U. Schreiber, editors, Mathematical Foundations
of Quantum Field and Perturbative String Theory. AMS, 2011, [1107.0495
[math.QA]].

P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor Categories. American
Mathematical Society, 2015.

K.J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equa-
tions. Graduate Texts in Mathematics. Springer New York, 1999.

M. Fukuma, S. Hosono, and H. Kawai, Lattice topological field theory in two
dimensions. Comm. Math. Phys. 161 (1994) 157-175, [hep-th/9212154].

B. Farb and D. Margalit. A Primer on Mapping Class Groups. Princeton Math-
ematical Series. Princeton University Press, 2012.

J. Fuchs, I. Runkel, and C. Schweigert, TFT construction of RCFT correlators:
III: simple currents. Nucl. Phys. B 694 (2004) 277-353, [hep-th/0403157].

J. Fuchs and C. Stigner, On Frobenius algebras in rigid monoidal categories. Arab.
J. Sci. Eng. 33-2C (2008) 175-191, [0901.4886 [math.CT]].

H. Geiges and J. Gonzalo, Generalised spin structures on 2-dimensional orbifolds.
Osaka J. Math. 49 (2012) 449-470, [1004.1979 [math.GT]].

J. Glimm and A. Jaffe. Quantum Physics: A Functional Integral Point of View.
Springer-Verlag, 2. edition, 1987.

D. Gaiotto and A. Kapustin, Spin TQFTs and fermionic phases of matter. Int.
J. Mod. Phys. A 31 (2016) 1645044, [1505.05856 [cond-mat.str-ell].

M.R. Gaberdiel and P. Suchanek, Limits of minimal models and continuous orbi-
folds. Journal of High Energy Physics 1203 (2012) 104, [1112.1708 [hep-th]].

S. Gunningham, Spin Hurwitz numbers and topological quantum field theory.
Geom. Topol. 20 (2016) 1859-1907, [1201.1273 [math.QA]].

P.R. Halmos. A Hilbert Space Problem Book. Graduate Texts in Mathematics.
Springer New York, 2012.

R. Haag and D. Kastler, An algebraic approach to quantum field theory. J. Math.
Phys. 5 (1964) 848-861.

D. Husemoller. Fibre Bundles. Graduate Texts in Mathematics. Springer, 3rd
edition, (1994).


http://dx.doi.org/10.1090/conm/643
http://dx.doi.org/10.1090/conm/643
http://dx.doi.org/10.1090/conm/643
http://dx.doi.org/10.1090/conm/643
http://dx.doi.org/10.1090/conm/643
http://arxiv.org/abs/1403.5799
https://doi.org/10.1090/pspum/083/2742426
https://doi.org/10.1090/pspum/083/2742426
http://arxiv.org/abs/1107.0495
http://arxiv.org/abs/1107.0495
http://dx.doi.org/10.1007/BF02099416
http://arxiv.org/abs/hep-th/9212154
http://dx.doi.org/10.1515/9781400839049
http://dx.doi.org/10.1515/9781400839049
http://dx.doi.org/10.1515/9781400839049
http://dx.doi.org/10.1515/9781400839049
http://dx.doi.org/10.1016/j.nuclphysb.2004.05.014
http://arxiv.org/abs/hep-th/0403157
http://arxiv.org/abs/0901.4886
http://arxiv.org/abs/1004.1979
http://dx.doi.org/10.1142/S0217751X16450445
http://dx.doi.org/10.1142/S0217751X16450445
http://arxiv.org/abs/1505.05856
http://dx.doi.org/10.1007/JHEP03(2012)104
http://arxiv.org/abs/1112.1708
http://dx.doi.org/10.2140/gt.2016.20.1859
http://arxiv.org/abs/1201.1273
http://dx.doi.org/10.1063/1.1704187
http://dx.doi.org/10.1063/1.1704187
http://dx.doi.org/10.1007/978-1-4757-2261-1
http://dx.doi.org/10.1007/978-1-4757-2261-1
http://dx.doi.org/10.1007/978-1-4757-2261-1
http://dx.doi.org/10.1007/978-1-4757-2261-1
http://dx.doi.org/10.1007/978-1-4757-2261-1

184

[HV]

[Joh]

[J5]
[KS]

[KMD]

[Kan]

[Kir]

[KMT]

[Kna

[Koc]

[KR]

[Kub]

ILP1]

ILP2]

BIBLIOGRAPHY

J. Hesse and A. Valentino, The Serre automorphism via homotopy actions and
the Cobordism Hypothesis for oriented manifolds. 1701.03895 [math.QA].

D. Johnson, Spin structures and quadratic forms on surfaces. J. London Math.

Soc. 2 (1980) 365-373.
A. Joyal and R. Street, Braided tensor categories. Adv. Math. 20 (1993) 102.

R. Khalil and Sh. Al-Sharif, On the generator of two parameter semigroups. Appl.
Math. Comput. 156 (2004) 403-414.

R. Khalil, R. Al-Mirbati, and D. Drissi, Tensor product semigroups. FEuropean
Journal of Pure and Applied Mathematics 3 (2010) 881-898.

T. Kanzaki, Special type of separable algebras over a commutative ring. Proc.
Japan Acad. 40 (1964) 781-786.

A. Kirillov, Jr., On piecewise linear cell decompositions. Algebr. Geom. Topol.
12 (2012) 95-108, [1009.4227 [math.GT]].

Y. Komori, K. Matsumoto, and H. Tsumura, Zeta-functions of weight lattices
of compact connected semisimple Lie groups. Siauliai Math. Semin. 18 (2015)
149-179, [1011.0323 [math.NT]].

AW. Knapp. Lie Groups Beyond an Introduction. Progress in Mathematics.
Birkhauser Boston, 2002.

J. Kock. Frobenius Algebras and 2D Topological Quantum Field Theories. Cam-
bridge University Press, 2004.

R.V. Kadison and J.R. Ringrose. Fundamentals of the Theory of Operator Algeb-
ras: Elementary theory, volume 1. Academic Press, 1983.

C.S. Kubrusly. Elements of Operator Theory. Elements of Operator Theory.
Springer Verlag, 2001.

A.D. Lauda and H. Pfeiffer, State sum construction of two-dimensional open-
closed topological quantum field theories. J. Knot Theor. Ramif. 16 (2007) 1121
1163, [math/0602047 [math.QA]].

A.D. Lauda and H. Pfeiffer, Open-closed strings: Two-dimensional extended tqfts
and frobenius algebras. Topology Appl. 155 (2008) 623-666, [math/0510664
[math.AT]].

F.H. Lutz, Triangulated Manifolds with Few Vertices: Combinatorial Manifolds.
math/0506372 [math.CO].

A.A. Migdal, Recursion equations in gauge field theories. Sov. Phys. JETP 42
(1975) 413.


http://arxiv.org/abs/1701.03895
http://dx.doi.org/10.1112/jlms/s2-22.2.365
http://dx.doi.org/10.1112/jlms/s2-22.2.365
http://dx.doi.org/10.1006/aima.1993.1055
http://dx.doi.org/10.1016/j.amc.2003.07.038
http://dx.doi.org/10.1016/j.amc.2003.07.038
http://dx.doi.org/10.2140/agt.2012.12.95
http://dx.doi.org/10.2140/agt.2012.12.95
http://arxiv.org/abs/1009.4227
http://arxiv.org/abs/1011.0323
http://dx.doi.org/10.1017/CBO9780511615443
http://dx.doi.org/10.1017/CBO9780511615443
http://dx.doi.org/10.1017/CBO9780511615443
http://dx.doi.org/10.1142/S0218216507005725
http://dx.doi.org/10.1142/S0218216507005725
http://arxiv.org/abs/math/0602047
http://dx.doi.org/10.1016/j.topol.2007.11.005
http://arxiv.org/abs/math/0510664
http://arxiv.org/abs/math/0510664
http://arxiv.org/abs/math/0506372

BIBLIOGRAPHY 185

[Mos|

[MS]

[Mun]

[Nov]|

[RS1]

[RS2]

[Rus]

[Sal]

[Segl]

[Seg2]

[Seg3]

J. Moser, On the volume elements on a manifold. Trans. Amer. Math. Soc. 120
(1965) 286—294.

G.W. Moore and G. Segal, D-branes and K-theory in 2D topological field theory.
hep-th/0609042.

J.R. Munkres. Elementary Differential Topology, volume 54 of Annals of Math-
ematics Studies. Princeton University Press, 1966.

S. Novak. Lattice topological field theories in two dimensions. PhD thesis,
Universitat Hamburg, 2015, http://ediss.sub.uni-hamburg.de/volltexte/
2015/7527.

S. Novak and I. Runkel, State sum construction of two-dimensional topological
quantum field theories on spin surfaces. J. Knot Theor. Ramif. 24 (2015) 1550028,
[1402.2839 [math.QA]].

U. Pachner, P.L. homeomorphic manifolds are equivalent by elementary shellings.
European J. Combin. 12 (1991) 129-145.

H. Reinhard and R. Alfred. Photons In Fock Space And Beyond. World Scientific
Publishing Company, 2015.

O. Randal-Williams, Homology of the moduli spaces and mapping class groups
of framed, r-Spin and Pin surfaces. J. Topol. 7 (2014) 155-186, [1001.5366
[math.GT]].

I. Runkel and L. Szegedy, Topological field theory on r-spin surfaces and the Arf
wvariant. 1802.09978 [math.QA].

I. Runkel and L. Szegedy, Area-dependent quantum field theory with defects.
1807.08196 [math.QA].

B.E. Rusakov, Loop averages and partition functions in U(N) gauge theory on
two-dimensional manifolds. Mod. Phys. Lett. A 5 (1990) 693.

N. Salter, Monodromy and vanishing cycles in toric surfaces. 1710.08042
[math.AG].

G.B. Segal. The Definition Of Conformal Field Theory. In Differential Geomet-
rical Methods in Theoretical Physics, pages 165-171. Kluwer, 1988.

G.B. Segal. Two-Dimensional Conformal Field Theories And Modular Functors.
In Mathematical physics, pages 22-37. Swansea, 1988.

G.B. Segal. Topological Field Theory (’Stanford Notes’). Lecture notes from ITP
Workshop on Geometry and Physics, July-August 1999.


http://dx.doi.org/10.2307/1994022
http://dx.doi.org/10.2307/1994022
http://arxiv.org/abs/hep-th/0609042
http://dx.doi.org/10.1515/9781400882656
http://dx.doi.org/10.1515/9781400882656
http://dx.doi.org/10.1515/9781400882656
http://dx.doi.org/10.1515/9781400882656
http://ediss.sub.uni-hamburg.de/volltexte/2015/7527
http://ediss.sub.uni-hamburg.de/volltexte/2015/7527
http://dx.doi.org/10.1142/S0218216515500285
http://arxiv.org/abs/1402.2839
http://dx.doi.org/10.1016/S0195-6698(13)80080-7
http://dx.doi.org/10.1112/jtopol/jtt029
http://arxiv.org/abs/1001.5366
http://arxiv.org/abs/1001.5366
http://arxiv.org/abs/1802.09978
http://arxiv.org/abs/1807.08196
http://dx.doi.org/10.1142/S0217732390000780
http://arxiv.org/abs/1710.08042
http://arxiv.org/abs/1710.08042

[SzTi]

[Stee]

[Ster]

[Turl]
[Tur2]

[TV]

[Vic]

[Wit1]

[Wit2]

BIBLIOGRAPHY

P. Selinger, Dagger compact closed categories and completely positive maps. Elec-
tron. Notes Theor. Comput. Sci. 170 (2007) 139-163.

S. Stolz and P. Teichner. Supersymmetric field theories and generalized cohomo-
logy. In H. Sati and U. Schreiber, editors, Mathematical Foundations of Quantum
Field Theory and Perturbative String Theory, volume 83, pages 279-340. AMS,
2011, [1108.0189 [math.AT]].

R.J. Szabo and M. Tierz, ¢-deformations of two-dimensional Yang-Mills theory:
Classification, categorification and refinement. Nucl. Phys. B 876 (2013) 234-308,
[1305.1580 [hep-th]].

N.E. Steenrod. The Topology of Fibre Bundles, volume 14 of Princeton Mathem-
atical Series. Princeton University Press, (1951).

W.H. Stern, Structured Topological Field Theories via Crossed Simplicial Groups.
1603.02614 [math.CT].

M. Sugiura, Fourier series of smooth functions on compact lie groups. Osaka J.
Math. 8 (1971) 33-47.

C. Schweigert and L. Woike, Orbifold Construction for Topological Field Theories.
1705.05171 [math.QA].

J.E. Tenner, Geometric realization of algebraic conformal field theories.
1611.01176 [math-ph].

V.G. Turaev. Quantum Invariants of Knots and 3-manifolds. de Gruyter, 1994.

V. Turaev. Homotopy Quantum Field Theory. European Mathematical Society,
2010. With Appendices by M. Miiger and A. Virelizier.

V. Turaev and O.Y. Viro, State sum invariants of 3-manifolds and quantum 65-
symbols. Topology 31 (1992) 865-902.

J. Vicary, Categorical formulation of quantum algebras. Comm. Math. Phys. 204
(2011) 765-796, [0805.0432 [quant-ph]].

E. Witten, On quantum gauge theories in two dimensions. Comm. Math. Phys.
141 (1991) 153-209.

E. Witten. Algebraic Geometry Associated with Matrix Models of Two Dimen-
stonal Gravity. In L.R. Goldberg and A.V. Phillips, editors, Topological Methods
in Modern Mathematics, pages 235-269. Publish or Perish, Inc., 1993.


http://dx.doi.org/10.1016/j.entcs.2006.12.018
http://dx.doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1090/pspum/083/2742432
https://doi.org/10.1090/pspum/083/2742432
https://doi.org/10.1090/pspum/083/2742432
http://arxiv.org/abs/1108.0189
http://dx.doi.org/10.1016/j.nuclphysb.2013.08.001
http://arxiv.org/abs/1305.1580
http://dx.doi.org/10.1515/9781400883875
http://dx.doi.org/10.1515/9781400883875
http://dx.doi.org/10.1515/9781400883875
http://dx.doi.org/10.1515/9781400883875
http://arxiv.org/abs/1603.02614
http://arxiv.org/abs/1705.05171
http://arxiv.org/abs/1611.01176
http://dx.doi.org/10.4171/086
http://dx.doi.org/10.4171/086
https://doi.org/10.1016/0040-9383(92)90015-a
http://dx.doi.org/10.1007/s00220-010-1138-0
http://dx.doi.org/10.1007/s00220-010-1138-0
http://arxiv.org/abs/0805.0432
https://doi.org/10.1007/bf02100009
https://doi.org/10.1007/bf02100009

Summary

In this thesis we study two classes of 2-dimensional functorial field theories and give a state-
sum construction of these theories. In the first part of this thesis we look at topological field
theories on r-spin surfaces. We define a combinatorial model of r-spin surfaces, which is
suitable for for the state-sum construction. The latter takes a Frobenius algebra A, whose
window element is invertible and whose Nakayama automorphism N satisfies N = id, as an
input and produces an r-spin topological field theory Z4. For r even we give an example of
such a state-sum topological field theory with values in super vector spaces, where A = C/
is the Clifford algebra with one odd generator and we show that Z computes the Arf
invariant of r-spin surfaces. As an application of the combinatorial model and this 7-
spin topological field theory we compute mapping class group orbits of r-spin structures
extending results of Randal-Williams and Geiges, Gonzalo.

In the second part of the thesis we consider area-dependent quantum field theories.
An important feature of these theories that, contrary to topological field theories, they
allow for infinite-dimensional state-spaces. We classify these theories in terms of regular-
ised Frobenius algebras and give a state-sum construction of them, for which the input
data is now a strongly separable regularised Frobenius algebra. We then extend the state-
sum construction to include defect lines, which we label with bimodules over strongly
separable regularised Frobenius algebras. We show that the fusion of defect lines corres-
ponds to the tensor product of bimodules over regularised algebras. The main example of
area-dependent quantum field theories is 2-dimensional Yang-Mills theory with a compact
semisimple Lie group G with Wilson lines as defects, which we treat in great detail. We
finally introduce other defect lines by twisting by outer automorphisms of G.
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Zusammenfassung

In dieser Doktorarbeit werden zwei Klassen von zweidimensionalen funktoriellen Quanten-
feldtheorien untersucht und entsprechende Zustandssummenkonstruktionen werden gege-
ben. Im ersten Teil der Doktorarbeit werden topologische Feldtheorien auf r-Spin-Oberfléa-
chen betrachtet. Ein kombinatorisches Modell von r-Spin-Oberflichen wird definiert, die fiir
die Zustandssummenkonstruktion geeignet ist. Diese Konstruktion nimmt eine Frobenius-
Algebra A mit folgenden Eigenschaften als Input. Fiir den Nakayama-Automorphismus
N von A gilt N" = id und das Fensterelement von A ist invertierbar. Die Konstruktion
produziert eine r-Spin topologische Feldtheorie Z,. Wenn r eine gerade Zahl ist, wird ein
Beispiel von einer solchen Zustandssummenfeldtheorie mit Werten in Supervektorraumen
gegeben. Die Frobenius-Algebra A = CV ist die Clifford-Algebra mit einem ungeraden Er-
zeuger. Es wird gezeigt, dass Z¢ die Arf-Invariante von r-Spin Oberflichen berechnet.
Als Anwendung des kombinatorischen Modells und dieser r-Spin topologischen Feldtheorie
werden Abbildungsklassenbahnen von r-Spin-Strukturen berechnet. Diese erweitern Resul-
taten von Randal-Williams und Geiges, Gonzalo.

Im zweiten Teil der Doktorarbeit werden flachenabhéngige Quantenfeldtheorien be-
trachtet. Eine wichtige Eigenschaft dieser Theorien ist, im Gegensatz zu topologischen
Feldtheorien, dass deren Zustandridume unendlich dimensional sein diirfen. Diese Theorien
werden durch regularisierte Frobenius-Algebren klassifiziert und eine Zustandssummen-
konstruktion wird gegeben. Hier ist das Inputdatum eine stark separable regularisierte
Frobenius-Algebra. Die Konstruktion wird dann um Defektlinien erweitert, die mit Bimo-
duln iiber stark separablen regularisierten Frobenius-Algebren bezeichnet sind. Es wird
gezeigt, dass das Fusionprodukt von Defektlinien dem Tensorprodukt von Bimoduln iiber
regularisierten Algebren entspricht. Das Hauptbeispiel flichenabhéngiger Quantenfeldtheo-
rien ist die zweidimensionale Yang-Mills Theorie mit einer kompakten halbeinfachen Lie-
Gruppe G und mit Wilson-Linien als Defekten. Dieses Beispiel wird ausfiihrlich betrachtet,
und schlieBlich werden durch &ufleren Automorphismen von G getwistete Defektlininen ein-
gefithrt und untersucht.
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