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Introduction

The representation theory of �nite groups plays an important role in many di�erent areas not only

in mathematics but also in physics and even chemistry. Di�erent aspects of this theory are relevant

for di�erent �elds. The classi�cation of �nite simple groups, for instance, wouldn't have been ac-

complished without the character theory of their representations and the process led to completely

new branches of modern mathematics, such as the theory of vertex algebras. An application in

physics, more speci�cally quantum mechanics, is for example the study of the symmetry group of

the Hamiltonian or of the permutation group in many-body problems.

It is well known that the �nite-dimensional representations over an algebraically closed �eld k

of a �nite group G form a category Rep(G), which comes with several additional structures. First of

all, for any two G-representations V ,W we can build the direct sum of k-vector spaces V ⊕W , which

carries again the structure of a G-representation. In characteristic zero, every G-representation V

decomposes into a direct sum of irreducible G-representations, of which only �nitely many equiva-

lence classes exist. In this case, Rep(G) is what is called a �nite semisimple category. For chark 6= 0

this is in general not the case and the category Rep(G) is called non-semisimple. Moreover, we

can build the algebraic tensor product V ⊗W of two G-representations, which is endowed with the

diagonal G-action. Together with the trivial G-representation I, which plays the role of the so-called
tensor unit for this tensor product, this turns Rep(G) into what is called a monoidal category. In

the semisimple case, character theory is used in order to determine the fusion rules of Rep(G), i.e.

the decomposition of the tensor product Ui ⊗ Uj of two irreducible G-representations into a �nite

direct sum of powers of irreducible representations:

Ui ⊗ Uj ∼=
⊕
k∈I

U
⊕mkij
k

The number mk
ij ∈ Z≥0 is called the multiplicity of Uk in Ui ⊗ Uj . Furthermore, for every G-

representation V we can endow the dual space V ∗ with a G-action given by precomposition with

the inverse. The canonical evaluation and coevaluation maps on V and V ∗ are G-intertwiners satis-

fying certain compatibility conditions. This duality together with the above tensor structure turns

Rep(G) into a so-called fusion category. An additional structure inherited from the category of

�nite-dimensional vector space is the action of the symmetric group Sn on n-fold tensor products
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V ⊗ · · · ⊗ V of a G-representation V . This action appears for example in Schur-Weyl duality and

gives rise to what is called a braiding on Rep(G), i.e. a natural isomorphism σV,W : V ⊗W →W ⊗V
satisfying certain coherence conditions. In addition, this braiding is symmetric, i.e. it satis�es the

symmetry condition σW,V σV,W = idV⊗W , which is due to the fact that we have an action of Sn

instead of the braid group Bn � Sn. The category Rep(G) can be seen as the prototypical example

of a symmetric braided fusion category. In fact, it is an important result by Deligne [Del90] that

for chark = 0 every positive ribbon symmetric braided fusion category C is equivalent to Rep(G)

for some group G. Without going into detail here, we simply recall that ribbon categories allow for

the notion of dimension of an object and positivity requires these dimensions to take non-negative

integral values. In this thesis, we construct braided categories which are exactly of the opposite

type, in the sense that the braiding is maximally non-degenerate, i.e. cV,W ◦ cW,V = id for all W if

and only if V is isomorphic to direct sum of �nitely many copies of the tensor unit I. Braided fusion

categories with non-degenerate braiding are called modular, and they are fairly well-understood

in the �nite semisimple case [EGNO15], with important examples coming for instance from the

previously mentioned vertex algebra theory. Much less is known about non-semisimple modular

tensor categories, although they play an important role in logarithmic conformal �eld theory and

low-dimensional topology (for a motivation, see Section 0.2). In particular one is interested in a

good stock of examples. In the semisimple case, given a braided fusion category that is not mod-

ular, under some conditions it is possible to turn this into a modular category and the idea is to

"mod out" the largest subcategory of the form Rep(G) [Bru00]. This procedure goes under the name

modularization and we are interested in a non-semisimple analogue.

One of the main goals of this thesis is to produce examples of non-semisimple modular tensor

categories as representation categories of factorizable quasi-Hopf algebras (see Section 0.3). Before

we give a motivation (see Section 0.2), we are going to introduce the relevant objects and concepts,

starting with the notion of a non-semisimple modular tensor category. We assume the reader to be

familiar with the material presented in [Kas95].

0.1 Non-semisimple modular tensor categories

To begin with, we �x the notion of a premodular category. Throughout this thesis, k denotes an

algebraically closed �eld of characteristic zero. A monoidal k-linear abelian category C is called

premodular if it has a braiding cX,Y : X ⊗ Y → Y ⊗ X, duals X∨ and a self-dual twist θX :

X → X. Moreover, it should satisfy several �niteness conditions which can be summarized by the

requirement that C is equivalent to the category RepA of �nite-dimensional representations of a

�nite-dimensional k-algebra A as a k-linear abelian category. In particular, C possesses only �nitely
many isomorphism classes of simple objects. In other words, a premodular category is a �nite k-

linear abelian ribbon category. Note that in contrast to [EGNO15], we did not assume semisimplicity,
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meaning that objects in C do not have to be isomorphic to direct sums of simple objects. One of

the main features of ribbon categories is that they admit a consistent theory of traces of morphisms

Tr : End(X)→ End(I) ∼= k. We can thus de�ne the so-called S-matrix

S := (sXY )X,Y ∈O(C),

with entries sXY := Tr(cY,XcX,Y ). These can be interpreted as invariants of the Hopf link, i.e.

the link consisting of two circles passing through each other, with circles colored by elements X,Y

in the set O(C) of equivalence classes of simple objects. In the semisimple case, the premodular

category C is called modular, if this S-matrix is non-degenerate. As we will see in the motivational

part, it is desirable to have a notion of modularity in the non-semisimple setting. This has been

de�ned by Lyubashenko [KL01]: in a premodular category, the coend

KC :=

∫ X∈C
X∨ ⊗X

has a canonical structure of a Hopf algebra (see next section) in C. For example, if C = RepH is

the representation category of a �nite-dimensional Hopf algebra H, then KC is isomorphic to the

dual Hopf algebra H∗ endowed with the coadjoint action. Moreover, the monodromies cY ∨,XcX,Y ∨

induce a symmetric Hopf pairing ωC : KC ⊗ KC → I via the universal property of the coend. The

premodular category C is called modular if ωC is non-degenerate. In the �nite semisimple case, the

coend is given by KC =
⊕

i∈I U
∨
i ⊗ Ui, where the Ui's are representatives of the �nitely many

equivalence classes of simple objects. In general it is not easy to compute the coend and hence

to check whether a premodular category is modular. Fortunately, Shimizu [Shi16] gave several

equivalent conditions for C to be modular of which the following two turned out to be very useful

for us: An object X ∈ C is called transparent, if cY,XcX,Y = idX⊗Y holds for every other object

Y ∈ C. The transparent objects form a full subcategory C′ ⊆ C, which is called the Müger center

of C. Shimizu showed that C is modular if and only if C′ ∼= Vectk. On the other hand, Etingof,

Nykshych and Ostrik [ENO04] introduced a braided tensor functor

F : C � Crev → Z(C) (1)

from the Deligne product C�Crev to the center Z(C) of C, which is de�ned in terms of the braiding

and the reverse braiding in C. The category C is called factorizable if this functor is an equivalence.

Again, Shimizu showed that for a premodular category factorizability is equivalent to modularity.

If C is a premodular category, it is very natural to ask the question whether we can associate to C a
modular category D, which should be minimal in some sense. In the semisimple setting, the relevant

notions have been introduced by Bruguierès [Bru00]: a linear ribbon functor F : C → D between a

semisimple premodular category C and a semisimple modular category D is called a modularization

if it is dominant, i.e. for every object D ∈ D we have idD = p ◦ i for some i : D → F (C),

p : F (C) → D, C ∈ C. It has been shown in [Bru00] and [Müg00] that a premodular category C
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admits a modularization if and only if the twist θX is trivial for every transparent object X ∈ C.
For the non-semisimple case, the following de�nition is used in the thesis:

De�nition 0.1.1. A linear ribbon functor between premodular categories F : C → D is a modular-

ization of C, if D is modular and

F (KC/Rad(ωC)) ∼= KD,

where Rad(ωC) denotes the radical of the Hopf pairing ωC.

We should point out here, that there are other approaches in order to de�ne a non-semisimple

modularization. For example, the notion of a dominant functor still makes sense in this case. It is

therefore tempting to de�ne a modularization of C as an exact sequence C′ → C F−→ D of tensor

categories in the sense of [BN11], where C′ is the Müger center of C and D is modular. At least in the

setting of Thm. 0.6, both de�nitions coincide. It would also be interesting to generalize the actual

construction of a modularization in [Bru00] to the non-semisimple case. A step in this direction has

been made in [BN11], where the authors show that a dominant functor F : C → D with exact right

adjoint is equivalent to the free module functor C → modC(A) for some commutative algebra A in

the center of C. One of the reasons for choosing the given de�nition is its closeness to one of the

equivalent de�nitions of a modular tensor category. We conjecture that it reduces to the de�nition

of Bruguierès in the semisimple case.

Before we describe the other important objects in this thesis in more detail, we give a motivation

for studying non-semisimple modular tensor categories.

0.2 Motivation

One of the main reasons to study modular tensor categories is the role they play in the description

of 2d conformal �eld theories obeying suitable �niteness conditions. More precisely, it is believed

that the chiral part of a 2d conformal �eld theory, more precisely the monodromies of chiral blocks,

is encoded in the underlying modular tensor category. This has been made precise in the �nite

semisimple case [Zhu96][Hua05]. For certain classes of two-dimensional conformal �eld theories, the

associated modular tensor categories arise as representation categories of certain vertex operator

algebras (VOA). For a detailed introduction to VOA's, we refer to [FBZ04].

Recall that a VOA is an in�nite-dimensional graded vector space V , together with a product

V ⊗ V → V ((z, z−1)) (state-�eld correspondence), where V ((z, z−1)) denotes the space of formal

Laurent series with co�cients in V , a unit |0〉 ∈ V (vacuum vector) and an operator T : V → V

(translation operator) subject to several axioms. Moreover, a VOA is required to carry an action

of the Virasoro algebra, which should be compatible with the other structure. Without going too

much into detail, we just mention that a VOA allows for the de�nition of so-called chiral n-point
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functions (even though they are multivalued) on the sphere, which are also called conformal blocks.

Conformal blocks with three marked points de�ne a tensor product on the representation category

V −Mod and the structure of conformal blocks with four marked points determines an associativity

constraint for this tensor product, turning V − Mod into a monoidal category. Also, moving the

marked points around each other and considering the corresponding monodromy leads naturally to

a braiding on this category, which should be non-degenerate by construction. If a VOA moreover

allows for duals and a ribbon structure, its representation category is expected to form a modular

tensor category, even though this has not been made precise in the general case.

The physically interesting examples of chiral 2d conformal �eld theories are often neither �nite

nor semisimple. It is therefore desirable to build a good stock of examples in both cases, with a

mathematically precise description in terms of modular tensor categories. As we have mentioned,

in this thesis we are interested in the �nite but non-semisimple case, giving rise to so-called loga-

rithmic conformal �eld theories. One of the best understood examples of a logarithmic conformal

�eld comes from so-called W-algebras:

Without going into detail here, we just remark that there is a general approach (see [FT10]) to

construct a non-semisimple VOA from a simple complex simply-laced Lie algebra g and a 2pth root

of unity generalizing the so-called triplet VOA W(p) (see [FGST06] for a de�nition), which is the

case g = sl2. The class of VOA's coming from this approach is referred to as W-algebras. It is

believed that the representation categories of this class of VOA's are ribbon equivalent to repre-

sentation categories of certain �nite-dimensional quasi-Hopf algebras. In the case of the so-called

triplet VOA W(p), an equivalence of C-linear categories between W(p)−Mod and the representa-

tion category of the small quantum group uq(sl2) at a primitive 2pth root of unity q was proven in

[NT09]. However, it was soon observed that this particular example of a small quantum group (see

Sec. 0.4) does not allow for an R-matrix, meaning that the above equivalence can not be extended

to an equivalence of braided categories. Recently, it was shown that the coproduct of uq(sl2) can

be modi�ed in a way, such that one obtains a factorizable ribbon quasi-Hopf algebra ūΦ
q (sl2), coin-

ciding with uq(sl2) as an algebra [CGR17]. At least in the case p = 2, this quasi-Hopf algebra was

known before and it has been shown that in this case we indeed obtain a ribbon equivalence [GR17].

Since the premodular and modular categories we are interested in are representation categories

of (quasi-)Hopf algebras with several additional structures, we will now describe these objects in

more detail.

0.3 Factorizable ribbon (quasi-)Hopf algebras

Before we discuss the case of quasi-Hopf algebras, we brie�y recall the relevant notions for an

ordinary Hopf algebra. A bialgebra is an associative unital k-algebra (H,m, η) together with algebra
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maps ∆ : H → H ⊗ H and ε : H → k turning H into a coassociative counital coalgebra. A

convolution inverse of the identity id : H → H is called an antipode and denoted by S. If it

exists, it is unique and H is then called a Hopf algebra. The coproduct ∆ allows to de�ne an H-

module structure on the tensor product V ⊗W of two H-modules V,W . This turns the category

RepH of �nite-dimensional left H-modules into a k-linear abelian monoidal category with trivial

associator, which is �nite if H is �nite-dimensional. Moreover, pre-composition with the antipode

(or its inverse) de�nes a left H-module structure on the dual space V ∗ of an H-module V . Together

with the ordinary evaluation and coevaluation from �nite-dimensional vector spaces, this turns

RepH into a category with left and right duals, more precisely, into a rigid category. A braiding

on RepH can be achieved by an additional structure on the Hopf algebra H, namely a universal

R-matrix R ∈ H ⊗ H. In the following, we will often use the suggestive notation R = R1 ⊗ R2.

The axioms for an R-matrix are modelled in a way, s.t. the action v ⊗ w 7→ R2.w ⊗ R1.v is an H-

intertwiner and satis�es the hexagon axioms of a braided category. A Hopf algebra with R-matrix is

called quasi-triangular. Finally, a ribbon element ν ∈ H is de�ned in a way, s.t. the action v 7→ ν.v

de�nes a ribbon twist in RepH . In sum, a �nite-dimensional ribbon Hopf algebra has a premodular

representation category.

Inspired by the previous section it is now natural to ask, whether the premodular category RepH is

modular. To answer this, we �rst introduce the notion of factorizability for a Hopf algebra. A �nite-

dimensional quasi-triangular Hopf algebra (H,R) is called factorizable if its monodromy matrix

M := R21R ∈ H ⊗H, where R21 = R2 ⊗R1 is non-degenerate, i.e. we can write M =
∑
i E

i ⊗ F i

for two bases Ei, F j ∈ H. In [Sch01], Schneider proves that factorizability of RepH is equivalent

to H being factorizable. If H is a �nite-dimensional ribbon Hopf algebra, this means that RepH is

modular if and only if H is factorizable.

For the class of Hopf algebras we considered in this thesis, namely small quantum groups (see

section 0.4), our scan showed that only a few of them are factorizable. As ribbon Hopf algebras,

the remaining still de�ne premodular categories, which one could ask to be modularizable. In the

cases when this is possible, the resulting category is very rarely again the representation category

of a Hopf algebra (see 0.6), but rather of a quasi-Hopf algebra, which we want to introduce now:

As we pointed out above, the representation category of a bialgebra H has a monoidal structure

with trivial associator in the sense that the forgetful functor RepH → Vectk is monoidal. This is due

to the fact that, as a coalgebra, H is a coassociative. In order to allow for non-trivial associators,

we have to weaken the coassociativity axiom by picking an invertible element Φ ∈ H ⊗H ⊗H, s.t.

(H ⊗∆)∆(h) · Φ = Φ · (∆ ⊗H)∆(h). Moreover, Φ should satisfy a 3-cycle condition, so that the

action u⊗v⊗w ∈ U ⊗V ⊗W 7→ Φ1.u⊗Φ2.v⊗Φ.w ∈ U ⊗V ⊗W satis�es the pentagon axioms of a

monoidal category. An algebraH together with a coassociator Φ and a quasi-coassociative coproduct

satisfying all the other axioms of a bialgebra is called a quasi-bialgebra. A direct consequence of

this change of axioms is that the antipode S : H → H is not unique anymore. It comes with

two additional elements α, β ∈ H, s.t. they de�ne evaluation and coevaluation for the dual space
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V ∗, endowed with the same module structure as before. Such a collection (H,Φ, S, α, β) is called a

quasi-Hopf algebra. Again, an R-matrix R ∈ H ⊗H for a quasi-Hopf algebra is de�ned in a way,

s.t. the action v⊗w ∈ V ⊗W 7→ R2.w⊗R1.v ∈W ⊗V satis�es the hexagon axioms, but now with

non-trivial associator coming from Φ. The notions of ribbon quasi-Hopf algebras and factorizable

Hopf algebras are adjusted similarly (see [BN03] and [BT04]). Again, for a �nite-dimensional ribbon

quasi-Hopf algebra, the representation category RepH will be modular if H is factorizable.

In order to construct the above mentioned factorizable quasi-Hopf algebras, we furthermore need

quasi-analogues of several well-known constructions from the Hopf-case, such as Yetter-Drinfeld

modules, Nichols algebras, Radford biproducts and Drinfeld doubles. All these notions exist also in

the case of a quasi-Hopf algebra and are carefully introduced in the second part of this thesis.

0.4 Example: Small quantum groups and their representa-

tions

In this thesis, we provide modular tensor categories as representation categories of a particular

family of �nite-dimensional Hopf algebras and quasi-Hopf algebras. The former we want to describe

now. We �rst note that for convenience, we set k = C in the �rst part of the thesis although we

only need k to be algebraically closed and of characteristic zero. even though we could have worked

with It is known that the universal enveloping algebra of a semisimple �nite-dimensional complex

Lie algebra g can be naturally deformed to a Hopf algebra Uq(g) over the �eld of rational functions

over Q. With some care, it is possible to specialize the indeterminate q to any speci�c value in C×.
From now on, q will be a primitive `th root of unity. This case is particularly interesting, since

in contrast to the generic case the representation theory of Uq(g) is not semisimple. In [Lus90],

Lusztig constructs a surjetive homomorphism from Uq(g) to the ordinary enveloping algebra U(g).

He realizes that the kernel of this homomorphism is a �nite-dimensional Hopf algebra, which is

called the Lusztig kernel or small quantum group and denoted by uq(g). The small quantum group

is generated by skew-primitive elements Eαi , Fαj and grouplikes K±αk , where the αi's are choices of

simple roots in the root lattice of g. Amongst other, these generators satisfy the relations

KαiEαjK
−1
αi = q(αi,αj)Eαj KαiFαjK

−1
αi = q−(αi,αj)Fαj .

They can be interpreted as an action of the root lattice ΛR on uq(g). This action allows us to

extend the small quantum group by an arbitrary intermediate lattice ΛR ⊆ Λ ⊆ ΛW , which will

serve as an additional parameter for our search for factorizable Hopf algebras. In [Lus90], Lusztig

also constructs an "almost R-matrix" Θ̄ ∈ uq(g)− ⊗ uq(g)+ in the Borel part of uq(g), from which

we construct actual factorizable R-matrices in the �rst part of this thesis.

We should point out that part of our construction of the quasi-Hopf algebras arising as modu-

larizations of small quantum groups is based on [AS02], where the authors give a more abstract

characterization of the Borel part of small quantum groups in terms of Nichols algebras of Cartan
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type.

This thesis is divided into two parts: in the �rst part we determine those (extended) small quantum

groups, which have a (pre-)modular representation category. In the second part, we describe the

modularization of the premodular representation categories. To this end, we systematically con-

struct a whole class of �nite-dimensional quasi-triangular quasi-Hopf algebras generalizing small

quantum groups and the above mentioned quasi-Hopf algebra ūΦ(sl2).

We now describe the two parts of the thesis in more detail:

0.5 Factorizable R-matrices for small quantum groups

The central objects of the �rst part of the thesis are extensions of small quantum groups, as

introduced in section 0.4. They are parameterized by the following data:

• a �nite-dimensional simple complex Lie algebra g

• a natural number `, determining a primitive root of unity q = exp (2πi/`)

• an intermediate lattice ΛR ⊆ Λ ⊆ ΛW between the root lattice ΛR and the weight lattice ΛW

• a sublattice Λ′ ⊆ CentΛR(ΛR) of the centralizer CentΛR(ΛR) ⊆ ΛR.

As we have mentioned, Lusztig showed that there is a so-called quasi-R-matrix Θ̄ ∈ u−q (g)⊗ u+
q (g)

for the small quantum group uq(g), behaving similar to a proper R-matrix. In [Mül98], Müller

showed that the ansatz R = R0Θ̄ gives rise to an actual R-matrix of the extended small quantum

group u := uq(g,Λ,Λ
′) if certain conditions are ful�lled. Here, R0 ∈ u0 ⊗ u0 entirely lives in the

coradical u0 = C[Λ/Λ′] of u. In [LN15], it was checked explicitly, for which input parameters (with

�xed Λ′) and for which choices of R0 these conditions are ful�lled. In [LO17], we reinterpreted

the conditions in [Mül98] as the non-degeneracy of a certain bihomomorphism f̂ : G1 ×G2 → C×

of �nite abelian groups. From this, we were able to extend the result in [LN15] to an arbitrary

sublattice Λ′ ⊆ CentΛR(ΛR) and give a single closed condition for the existence of an R-matrix of

the above form, involving all relevant parameters.

In Theorem 5.1.6 we give a necessary and su�cient condition for an R-matrix of the form R = R0Θ̄

to be factorizable, which corresponds to Repu being factorizable. To this end, we show that the

invertibility of the monodromy matrix of R is equivalent to the invertibility of the monodromy

matrix of R0. It turned out that it is invertible if and only if the radical Rad0 of the so-called

symmetrization Sym(f̂) (see Def. 5.1.2) of the above mentioned bihomomorphism f̂ is trivial. For

further use, we compute the radical of Sym(f̂) for all possible choices of R0.

We prove that the simple transparent objects in Repu are all 1-dimensional and that the corre-

sponding group of all transparent objects is in fact isomorphic to Rad0. Finally, we show that for
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every R-matrix of the form R = R0Θ̄ there exists a ribbon element ν ∈ u, turning Repu into a pre-

modular category. We summarize our results in the following table, containing all quasi-triangular

extensions of small quantum groups together with their group of transparent objects. The columns

of the table are labeled by

1. the �nite dimensional simple complex Lie algebra g

2. the natural number `, determining the primitive root of unity q = exp
(

2πi
`

)
3. the number of possible R-matrices for the Lusztig ansatz

4. the subgroups Hi ⊆ H = Λ/ΛR introduced in Theorem 3.1.3

5. the subgroups Hi in terms of generators given by multiples of

fundamental dominant weights λi ∈ ΛW

6. the group pairing g : H1 ×H2 → C× determined by its values on generators

7. the group of transparent objects T ⊆ Λ/Λ′ introduced in Lemma 5.4.5.

g ` # Hi
∼= Hi (i=1,2) g T ⊆ Λ/Λ′

all

` odd 1

Z1 〈0〉 g = 1

0

` ≡ 0 mod 4 1 Zn2

∞

Zn−1
2 , 2 - x

Zd 〈d̂λn〉 g(d̂λn, d̂λn) = exp
(

2πik
d

)
An≥1 Zn2 , 2 | x

π1 = Zn+1
d | n+ 1 d̂ = n+1

d gcd
(
n+ 1, d`, k`− n+1

d n
)

= 1

x = d`
gcd(`,d̂)

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 0

` ≡ 2 mod 4 2 Z2 〈λn〉 g(λn, λn) = ±1 Z2

Bn≥2
` ≡ 0 mod 4 2 Z2 〈λn〉 g(λn, λn) = ±1 Zn2π1 = Z2

` odd 1 Z2 〈λn〉 g(λn, λn) = (−1)n+1 Z2

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Zn−2
2
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` ≡ 2 mod 4 1

Z2 〈λn〉

g(λn, λn) = 1 Zn−1
2

Cn≥3
` ≡ 0 mod 4 2 g(λn, λn) = ±1 Zn2π1 = Z2

` odd 1 g(λn, λn) = −1 Z2

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z2(n−1)
2

` ≡ 2 mod 4 1

Z2

H1
∼= 〈λ2n−1〉

g(λ2n−1, λ2n) = (−1)n

Z2n
2

` ≡ 0 mod 4 2δ2|n g(λ2n−1, λ2n) = ±1, n even

H2
∼= 〈λ2n〉

` odd 1 g(λ2n−1, λ2n) = −1 0
D2n≥4
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π1 = Z2 × Z2
` ≡ 2 mod 4 1

Z2 〈λ2n〉

g(λ2n, λ2n) = (−1)n+1 Z2n−1
2

` ≡ 0 mod 4 2δ2-n g(λ2n, λ2n) = ±1, n odd Z2n
2

` odd 1 g(λ2n, λ2n) = −1 Z2

` even 2

Z2 × Z2 〈λ2n, λ2n+1〉

g(λ2(n−1)+i, λ2(n−1)+j) = ±1 Z2n
2

` odd

det(K) = K12 +K21 = 0 mod 2 Z2

det(K) = K12 +K21 = 1 mod 2 Z2
2

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z2n
2

` ≡ 2 mod 4 1

Z2 〈2λ2n+1〉

g(2λ2n+1, 2λ2n+1) = 1

Z2n+1
2

` ≡ 0 mod 4 2 g(2λ2n+1, 2λ2n+1) = ±1

D2n+1≥5
` odd 1 g(2λ2n+1, 2λ2n+1) = −1 Z2

π1 = Z4

` even 4

Z4 〈λ2n+1〉
g(λ2n+1, λ2n+1) = c, c4 = 1 Z2n+1

2

` odd 2 g(λ2n+1, λ2n+1) = ±1 Z2

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z6
2

` ≡ 0 mod 3 3

Z3 〈λn〉

g(λn, λn) = c, c3 = 1
Z6

2, 2 | `
E6

` ≡ 1 mod 3 2 g(λn, λn) = 1, exp
(

2πi2
3

)
π1 = Z3

0, 2 - `
` ≡ 2 mod 3 2 g(λn, λn) = 1, exp

(
2πi
3

)
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` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z6
2

` even 2

Z2 〈λn〉
g(λn, λn) = ±1 Zn2E7

π1 = Z2
` odd 1 g(λn, λn) = 1 Z2

E8 ` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z8
2

F4 ` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z2
2

G2 ` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z2
2

Table 1: Solutions for R-matrices

From the last column, one can already see that the premodular category Repu is almost never

modular, which is equivalent to T being trivial, for an even root of unity q. The only exception is

when g = Bn and ` ≡ 2 mod 4. The canonical next step is to use the method of modularization, as

described in Section 0.1.

0.6 Modularization of small quantum groups

We now turn to the second part of this thesis, the modularization of the premodular category Repu
from the previous section. We start with the representation category Repu0 of the Cartan part

u0 = C[G], where G = Λ/Λ′, (see Sec. 0.5) which we from now on identify with the category of

�nite dimensional Ĝ-graded vector spaces VectĜ. The braiding on Repu0 induced by the element

R0 ∈ C[G] ⊗ C[G] is transported to a braiding on VectĜ. It is induced by a bihomomorphism

σ : Ĝ× Ĝ→ C×, which is simply the Fourier transform of R0. The non-modularity of this category

is in a precise sense measured by the radical T := Rad(B) of the associated bihomomorphism

B := σσT , so the idea is to simply take the quotient Ĝ/T . The problem is that σ might not be

well-de�ned on Ĝ/T and so we wouldn't have a braiding on VectĜ/T . The solution to this problem

is to allow for so-called abelian 3-cocycles (ω, σ) ∈ Z3
ab(Ĝ/T ) (see [Mac52]) instead of ordinary

bihomomorphisms σ ∈ Bihom(Ĝ/T ). Categorically speaking, this corresponds to allowing for a

non-trivial associator on VectĜ/T , induced by the 3-cocycle ω ∈ Z3(Ĝ/T ). This 3-cocycle ful�lls

two additional compatibility conditions with the 2-cochain σ ∈ C2(Ĝ/T ), corresponing to the

hexagon equations of a braided monoidal category. In Section 5 in the second part of the thesis, we

start with an abelian group G, an abelian 3-cocycle (ω, σ) ∈ Z3
ab(Ĝ/T ) and a �nite set of elements

χi ∈ Ĝ. From this, we can de�ne a Nichols algebra B(V ) in the braided monoidal category Vect
(ω,σ)

Ĝ/T
.
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Surprisingly, this Nichols algebra satis�es the same relations as the Nichols algebra associated to

the braided vector space V with diagonal braiding given by qij = σ(χ̄i, χ̄j). If this Nichols algebra

is �nite-dimensional, we can build the Drinfeld double D(u(ω, σ)≤0) of the Radford biproduct

u(ω, σ)≤0 := B(V )#kĜω over the function algebra kĜω , considered as a quasi-Hopf algebra with

coassociator induced by ω. Both notions have been generalized to the quasi-Hopf case (see [BN02]

and [HN99b]). After this, we de�ne an both algebra and coalgebra embedding j : kĜ → D(ω, σ),

which takes values in the center of D(ω, σ). After modding out a certain biideal associated to this

embedding, we end up with a �nite-dimensional quasi-Hopf algebra u(ω, σ), which we refer to as

small quasi-quantum group. We show that there exist a canonical choice of R-matrix for this quasi-

Hopf algebra, induced by the 2-cochain σ. Moreover, we show that u(ω, σ) is factorizable if and

only if T = 0. We give a list of important relations of the small quasi-quantum group u(ω, σ):

∆(Fi) = Kχ̄i ⊗ Fi

∑
χ,ψ

θ(χ|χ̄i, ψ)−1ω(χ̄i, ψ, χ)−1 δχ ⊗ δψ

+ Fi ⊗ 1

∑
χ,ψ

ω(χ̄i, χ, ψ)−1 δχ ⊗ δψ


∆(Ei) =

∑
χ,ψ

θ(ψ|χχ̄i, χi)−1ω(ψ, χ, χ̄i)
−1 δχ ⊗ δψ

Ei ⊗ K̄χi +

∑
χ,ψ

ω(χ, ψ, χ̄i)
−1 δχ ⊗ δψ

 1⊗ Ei

∆(Kχ) = (Kχ ⊗Kχ)P−1
χ ∆(K̄χ) = (K̄χ ⊗ K̄χ)Pχ, Pχ :=

∑
ψ,ξ

θ(χ|ψ, ξ) δψ ⊗ δξ

[Eai Kχi , F
b
j ]σ = δijσ(χi, χ̄i)

(
1−KχiK̄χi

)∑
ξ

ai(ξ)bi(ξχi)

ω(χ̄i, χi, ξ)
δξ

 , where

Eai := Ei

∑
ξ

ai(ξ) δξ

 F bj := Fj

∑
ξ

bj(ξ) δξ

 , with ai, bj solutions to Eq. 5.8.

KχEi = σ(χ, χi)EiKχQ
−1
χ,χi , K̄χEi = σ(χi, χ)EiK̄χQχ,χi , Qχ,ψ :=

∑
ξ

θ(χ|ξ, ψ) δξ

KχFi = σ(χ, χ̄i)FiKχQ
−1
χ,χ̄i , K̄χFi = σ(χ̄i, χ)FiK̄χQχ,χ̄i

S(Fi) = −

∑
ψ

ω(ψ̄, χ̄i, χiψ)dσ(χi, ψ, ψ̄)θ(ψ̄|ψχi, χ̄i)−1δψ

KχiFi

S(Ei) = −EiK̄−1
χi

∑
ψ

ω(χ̄iξ̄, χ̄i, ξ)

ω(ξ̄, χ̄i, χi)
δξ


ε(Kχ) = ε(K̄χ) = 1, ε(Ei) = ε(Fi) = 0, 1u(ω,σ) = K1

In the next section we interpret the initial small quantum group u as a small quasi-quantum

group u(1, σ) associated to the data G = Λ/Λ′ and χi = q(αi,_). If the associated quadratic form

Q(χ) := σ(χ, χ) of the abelian 3-cocycle (1, σ) vanishes on T , then for every set-theoretic section
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s : Ĝ/T → Ĝ, we �nd an explicit abelian 3-cocycle (ω̄, σ̄) ∈ Z3
ab(Ĝ), s.t. π∗(ω̄, σ̄) is cohomologous

to (1, σ). We refer to the condition Q|T = 1 as u(1, σ) being modularizable. Moreover, we �nd an

algebra embedding M : u(ω, σ) → u(1, σ). Our modularization functor is going to be a restriction

functor along this algebra homomorphism. The main result of this part of the thesis is Thm. 6.0.6:

Theorem (Lentner-O-Gainutdinov, 2018). Let u be an extended small quantum group with R-

matrix R = R0Θ̄. If u is modularizable in the above sense, then there exists a factorizable small

quasi-quantum group u(ω̄, σ̄) and a modularization in the sense of Def. 0.1.1

F : Repu −→ Repu(ω̄,σ̄).
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Part II

Factorizability of small quantum

groups
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Chapter 1. Introduction

The aim of the �rst part of this thesis is to provide modular tensor categories from extended small

quantum groups uq(g) at a primitive `th root of unity q for a �nite-dimensional simple complex Lie

algebra g. Lusztig [Lus90] has constructed these �nite-dimensional Hopf algebras and provided an

ansatz for an R-matrix R0Θ̄, where the �xed element Θ̄ ∈ uq(g)− ⊗ uq(g)+ is constructed from a

dual basis of PBW-generators, while R0 ∈ uq(g)0 ⊗ uq(g)0 is a free parameter subject to certain

constraints given in [Mül98]. Lusztig gives a canonical solution for R0 whenever ` has no common

divisors with root lengths, otherwise there are cases where no R-matrix exists [KS11]. Of particular

interest in conformal �eld theory [FGST06, FT10, GR17] is the most extreme case where all root

lengths (α, α) divide `. In particular, this thesis adresses the question which modular tensor cate-

gory appear in these cases. In Lemma 4.5.1, we observe that these extremal cases give especially

nice R-matrices. However, in general they are not factorizable and will require modularization in

order to match the CFT side. This will be done in the second part of the thesis.

But even if there are no common divisors with the root length, the resulting braided tensor categories

may not ful�ll the non-degeneracy condition and hence provides no modular tensor category. Both

obstacles for being factorizable, existence and non-degeneracy of an R-matrix, can be be resolved

by extending the Cartan part of the small quantum group by a choice of a lattice ΛR ⊆ Λ ⊆ ΛW

between root- and weight-lattice, respectively a choice of a subgroup of the fundamental group

π1 := ΛW /ΛR, corresponding to a choice of a Lie group between adjoint and simply-connected

form. These extensions are already present in [Lus90] as the choice of two lattices X,Y with pairing

X×Y → C× (root datum). In this way the number of possible R-matrices increases and the purpose

of our paper is to study them all.

In [LN15], the authors have already constructed some solutions R0 in this spirit (under some ad-

ditional assumptions). In this thesis, we conclude this e�ort: First we introduce more systematical

techniques that allow us to compute a list of all quasitriangular structures (without additional

assumptions, so we �nd more solutions). Then our new techniques allow us to determine, which

of these choices ful�ll the non-degeneracy condition. We also determine which cases have a ribbon

structure. A main role in the �rst part is played by a natural pairing a` on the fundamental group

2



π1 which depends only on the common divisors of ` with the fundamental group and encapsulates

the essential `-dependence. In the generic case, the non-degeneracy of the braiding turns out to

depend only on the 2-torsion of the abelian group in question.

Our result produces a list of modular tensor categories for representations of small quantum groups.

Moreover, we use our methods to explicitly describe the so-called group of transparent objects in

the non-factorizable cases. The main output of this part of the thesis is Table 1, where we list

all solutions for quasi-triangular small quantum groups together with their group of transparent

objects.
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Chapter 2. Preliminaries

2.1 Lie-Theory

Throughout this part of the thesis, g denotes a �nite-dimensional simple complex Lie algebra. We

�x a choice of simple roots ∆ = {αi | i ∈ I}, so that the Cartan matrix C is given by Cij = 2
(αi,αj)
(αi,αi)

,

where ( , ) denotes the normalized Killing form. For a root α, we de�ne dα := (α,α)
2 and set di = dαi .

By ΛR := Z[∆] and Λ∨R := Z[∆∨] we denote the (co)root lattice of g.

By ΛW , we denote the weight lattice spanned by fundamental dominant weights λi, which are

de�ned by the equation (λi, αj) = δi,jdi. Finally, we de�ne the co-weight lattice Λ∨W as the Z-span
of the elements λ∨i := λi

di
. The quotient π1 := ΛW /ΛR is called the fundamental group of g.

One can easily see that the Killing form restricts to a perfect pairing ( , ) : Λ∨W ×ΛR → Z and that

we get a string of inclusions ΛR ⊆ Λ∨R ⊆ ΛW ⊆ Λ∨W .

2.2 Lusztig's Ansatz for R-matrices

The starting point for the works [Mül98] and [LN15] was Lusztig's ansatz in [Lus93], Sec. 32.1, for

a universal R-matrix of Uq(g). Namely, for a speci�c element Θ̄ ∈ U≥0
q ⊗ U≤0

q from a dual basis

and a suitable (not further speci�ed) element in the coradical R0 ∈ U0
q ⊗ U0

q we are looking for

R-matrices of the form

R = R0Θ̄.

We remark that there is no claim that all possible R-matrices are of this form. However they are an

interesting source of examples, motivated by the interpretation of uq(g) as a quotient of a Drinfeld

double and thus well-behaved with respect to the triangular decomposition. This ansatz has been

successfully generalized to general diagonal Nichols algebras in [AY15]. In our more general setting

Uq(g,Λ,Λ
′), we have

R0 ∈ C[Λ/Λ′]⊗ C[Λ/Λ′].

This ansatz has been worked out by Müller in his Dissertation [Mül98] for small quantum groups

uq(g) which we will use in the following, leading to a system of quadratic equation on R0 that are

equivalent to R being an R-matrix:
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Theorem 2.2.1 (cf. [Mül98], Thm. 8.2). Let u := uq(g). (a) There is a unique family of elements

Θβ ∈ u−β ⊗ u
+
β , β ∈ ΛR, such that Θ0 = 1 ⊗ 1 and Θ =

∑
β Θβ ∈ u ⊗ u satis�es ∆(x)Θ = Θ∆̄(x)

for all x ∈ u.

(b) Let B be a vector space-basis of u−, such that Bβ = B ∩ u−β is a basis of u−β for all β. Here, u−β
refers to the natural ΛR-grading of u−. Let {b∗ | b ∈ Bβ} be the basis of u+

β dual to Bβ under the

non-degenerate bilinear form ( · , · ) : u− ⊗ u+ → C. We have

Θβ = (−1)trβqβ
∑
b∈Bβ

b− ⊗ b∗+ ∈ u−β ⊗ u
+
β .

Theorem 2.2.2 (cf. [Mül98], Theorem 8.11). Let Λ′ ⊂ {µ ∈ Λ | Kµ central in uq(g,Λ)} a subgroup
of Λ, and G1, G2 subgroups of G := Λ/Λ′, containing ΛR/Λ

′. In the following, µ, µ1, µ2 ∈ G1 and

ν, ν1, ν2 ∈ G2.

The element R = R0Θ̄ with an arbitrary R0 =
∑
µ,ν f(µ, ν)Kµ⊗Kν is a R-matrix for uq(g,Λ,Λ

′),

if and only if for all α ∈ ΛR and µ, ν the following holds:

f(µ+ α, ν) = q−(ν,α)f(µ, ν), f(µ, ν + α) = q−(µ,α)f(µ, ν), (2.1)∑
ν1+ν2=ν

f(µ1, ν1)f(µ2, ν2) = δµ1,µ2f(µ1, ν),
∑

µ1+µ2=µ

f(µ1, ν1)f(µ2, ν2) = δν1,ν2f(µ, ν1), (2.2)

∑
µ

f(µ, ν) = δν,0,
∑
ν

f(µ, ν) = δµ,0. (2.3)
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Chapter 3. Conditions for the Existence of R-Matrices

3.1 A �rst set of conditions on the group Λ/Λ′

The target of our e�orts is a Hopf algebra called small quantum group uq(g,Λ,Λ
′) with Cartan part

u0
q = C[Λ/Λ′]. It is de�ned e.g. in [LN15] and depends on lattices Λ,Λ′ de�ned below. For Λ = ΛR

the root lattice and this is the usual small quantum group; the choice of Λ′ di�ers in literature.

In the previous section we have discussed an R = R0Θ̄-matrix for the quantum group uq(g,Λ,Λ
′)

can be obtained from an R0-matrix of the form

R0 =
∑
µ,ν∈Λ

f(µ, ν)Kµ ⊗Kν ∈ C[Λ/Λ′]⊗ C[Λ/Λ′].

In the following we collect necessary and su�cient conditions for R = R0Θ̄ to be an R-matrix.

De�nition 3.1.1. We �x once-and-for-all a �nite-dimensional simple complex Lie algebra g and a

lattice Λ between root- and weight-lattice

ΛR ⊆ Λ ⊆ ΛW .

These choices have a nice geometric interpretation as quantum groups associated to di�erent Lie

groups associated to the Lie algebra g.

Another interesting choice is ΛR ⊆ Λ ⊆ Λ∨W
∼= Λ∗R, which would below pose no additional compli-

cations and may produce further interesting factorizable R-matrices.

De�nition 3.1.2. We �x once-and-for-all a primitive `-th root of unity q.

For Λ1,Λ2 ⊆ Λ∨W we de�ne the sublattice

CentΛ1
(Λ2) := { ν ∈ Λ1 | (ν, µ) ∈ ` · Z ∀µ ∈ Λ2}.

Informally, this is the centralizer with respect to the braiding q−(ν,µ).

Contrary to [LN15] we do not �x Λ′ but we prove later 3.1.6 that there is a necessary choice for Λ′.

In this way, we get more solutions than in [LN15]. The only condition necessary to ensure that the

Hopf algebra uq(g,Λ,Λ
′) is well-de�ned is Λ′ ⊆ CentΛR(ΛR).
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Theorem 3.1.3. (c.f. [LN15] Thm. 3.4) The R0-matrix is necessarily of the form

f(µ, ν) =
1

d|ΛR/Λ′|
· q−(µ,ν)g(µ̄, ν̄)δµ̄∈H1

δν̄∈H2
(3.1)

where H1, H2 are subgroups of H := Λ/ΛR ⊆ π1 with equal cardinality |H1| = |H2| =: d (not

necessarily isomorphic!) and g : H1 ×H2 → C× is a pairing of groups.

The necessity of this form (in particular that the support of f is indeed a subgroup!) amounts to a

combinatorial problem of its own interest, which we solved for π1 cyclic in [LN15] and for Z2 × Z2

by hand; a closed proof for all abelian groups would be interesting.

De�nition 3.1.4. Let g : G×H → C× be a �nite group pairing, then the left radical is de�ned as

RadL(g) := {λ ∈ G | g(λ, η) = 1 ∀ η ∈ H}.

Similarly, the right radical is de�ned as

RadR(g) := {η ∈ H | g(λ, η) = 1∀λ ∈ G}.

The pairing g is called non-degenerate if RadL(g) = 0. If in addition RadR(g) = 0, g is called

perfect.

For an R0-matrix of this form, a su�cient condition is that they ful�ll the so-called diamond-

equations (see [LN15] Def. 2.7) for each element 0 6= ζ ∈ (Cent(ΛR) ∩ Λ)/Λ′.

However, we will now go into a di�erent, more systematic direction that makes use of the following

observation:

Lemma 3.1.5. An R0-matrix of the form given in Theorem 3.1.3 is a solution to the equations in

Theorem 2.2.2, and hence produces an R-matrix R0Θ̄ i� the restriction to the support

f̂ := d|ΛR/Λ′| · f : G1 ×G2 → C×

is a perfect group pairing, where Gi := Λi/Λ
′ ⊆ Λ/Λ′ =: G.

Proof. We �rst show that a solution with restriction to the support a nondegenerate pairing solves

the equation:

The �rst equations are obviousely ful�lled for the form assumed.

f(µ+ α, ν) = q−(ν,α)f(µ, ν), f(µ, ν + α) = q−(µ,α)f(µ, ν),

For the other equations the sums get only contributions in the support Λ1/Λ
′ × Λ2/Λ

′. The quan-

tities f(µ, ν) · d|ΛR/Λ′| for �xed ν (or µ) are characters on the respective support, and by the

assumed non-degeneracy all ν 6= 0 give rise to di�erent nontrivial characters. Then the second and
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third relations follows from orthogonality of characters. Note that since d|ΛR/Λ′| = |G1| = |G2|
(equality of the latter was an assumption!) we were able to chose the right normalization.

For the other direction assume a solution of the given form to the equations. Then already the third

equation shows that no f(−, ν) may be the trivial character and hence the form on the support is

nondegenerate and hence perfect by |G1| = |G2|.

Corollary 3.1.6. A �rst consequence of the perfectness of f̂ (i.e. a necessary condition for quasi-

triangularity) is:

CentΛR(Λ1) = CentΛR(Λ2) = Λ′.

This �xes Λ′ uniquely. Morover in cases Λ1 6= Λ2, which can only happen for g = D2n where π1 is

noncyclic, we get an additional constraint relating Λ1,Λ2.

In our case, the only possibility for Λ1 6= Λ2, s.t. G1
∼= G2 is g = D2n. In this case, we have

CentΛR(ΛW ) = CentΛR(ΛR) and thus the above condition is always ful�lled.

Our main goal for the new approach on quasitriangularity as well as the later modularity is to

reduce this non-degeneracy condition for f̂ to a non-degeneracy condition for g on H1, H2 ⊂ π1

that can be checked explicitly.

3.2 A natural form on the fundamental group

We now de�ne for each triple (Λ,Λ1,Λ2) and each `th root of unity q a natural pairing a` on

the subgroups Hi := Λi/ΛR of the fundamental group π1 := ΛW /ΛR. The simplest example is

a` = e−2πi(µ,ν). In general it is a transportation of the natural form q−(µ,ν) (which does not factorize

over ΛR) to Hi by a suitable isomorphism A`.

This isomorphism A` will encapsulate the crucial dependence on the common divisors of `, |H| and
the root lengths di; moreover, for di�erent H these forms are not simply restrictions of one another.

Then, we can moreover transport any given pairing g together with q−(µ,ν) along the isomorphism

A` to the Hi and thus de�ne forms ag` on H. The main result of this section is in Theorem 3.2.7

that the non-degeneracy condition in Lemma 3.1.5 for R0(f) depending on Hi, g is equivalent to a
g
`

being non-degenerate.

De�nition 3.2.1. Let Λ ⊆ Λ∨W be a sublattice, s.t. ΛR ⊆ Λ. By Λ̂ ⊂ Λ∨W we denote the unique

sublattice, s.t. the symmetric bilinear form ( . , . ) : Λ∨W × Λ∨W → Q induces a commuting diagram

ΛR Λ̂ Λ∨W

Λ∨W
∗

Λ∗ Λ∗R ,

∼= ∼= ∼= (3.2)
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where Λ∗ := HomZ(Λ,Z). In particular, we have Λ̂R = Λ∨W and Λ̂∨W = ΛR.

De�nition 3.2.2. A centralizer transfer map is an group endomorphism A` ∈ EndZ(Λ), s.t.

1. A`(Λ)
!
= Λ ∩ ` · Λ̂R = Cent`Λ(ΛR)

2. A`(ΛR)
!
= ΛR ∩ ` · Λ̂ = Cent`ΛR(Λ).

Such a A` induces a group isomorphism

Λ/ΛR
∼−→ Cent`Λ(ΛR)/Cent`ΛR(Λ).

Of course A` is not unique.

Question 3.2.3. Are there abstract arguments for the existence of these isomorphism and for its

explicit form?

We will calculate explicit expressions for A` depending on the cases in the next section. At this

point we give the generic answers:

Example 3.2.4. For Λ = Λ∨W we have A` = ` · id.
For Λ = ΛR the two conditions are equivalent, so existence is trivial (resp. obviously the two trivial

groups are isomorphic) and we may simply take for A` any base change between left and right side.

The expression may however be nontrivial.

Lemma 3.2.5. Assume gcd(`, |Λ∨W /Λ|) = 1, then A` = ` · id. In particular this is the case if ` is

prime to all root lengths and all divisors of the Cartan matrix.

Moreover if ` = `1`2 with gcd(`1, |Λ∨W /Λ|) = 1, then A` = `1 ·A`2 .

This means we only have to calculate A` for all divisors ` of |Λ∨W /Λ|, which is a subset of all divisors
of root lengths times divisors of the Cartan matrix.

Proof. For the �rst condition we need to show for any λ ∈ Λ∨W that `λ ∈ Λ already implies λ ∈ Λ.

But if by assumption the order of the quotient group Λ∨W /Λ is prime to `, then `· is an isomor-

phism on this abelian group, hence follows the assertion. For the second condition applies the same

argument noting that |Λ̂/ΛR| = |Λ∨W /Λ|.

For the second claim we simply consider the inclusion chains

A`(Λ) ⊂ Λ ∩ `2 · Λ̂R ⊂ Λ ∩ ` · Λ̂R

A`(ΛR) ⊂ Λ ∩ `2 · Λ̂ ⊂ ΛR ∩ ` · Λ̂,

where a �rst isomorphism is given by A`2 and again `1· is a second isomorphism because it is prime

to the index.
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Our main result of this chapter is the following:

Theorem 3.2.6. Let ΛR ⊆ Λ1,Λ2 ⊆ ΛW be intermediate lattices, s.t. the condition in Corollary

3.1.6 is ful�lled, i.e. CentΛR(Λ1) = CentΛR(Λ2) = Λ′. Assume we have a centralizer transfer map

A`.

1. The following form is well de�ned on the quotients:

a`g : Λ1/ΛR × Λ2/ΛR −→ C×

(λ̄, µ̄) 7−→ q−(λ,A`(µ)) · g(λ,A`(µ)).

2. Let

CentgΛ1
(Λ2) := {λ ∈ Λ1 | q(λ,µ) = g(λ, µ) ∀µ ∈ Λ2}.

Then the inclusion CentgΛ1
(Λ2) ↪→ Λ1 induces an isomorphism

CentgΛ1
(Λ2)/Λ′ ∼= Rad(a`g). (3.3)

Corollary 3.2.7. The quasi-triangularity conditions for a choice R0 are by Lemma 3.1.5 equivalent

to the non-degeneracy of the group pairing on Λ1/Λ
′ × Λ2/Λ

′:

f̂(λ, µ) = q−(λ,µ)g(λ, µ).

By the previous theorem this condition is now equivalent to the nondegeneracy of a`g.

This condition on the fundamental group, which is a �nite abelian group and mostly cyclic, can be

checked explicitly once a`g has been calculated.

Proof of Thm. 3.2.6. The �rst part of the theorem is a direct consequence of the de�nition of the

centralizer transfer matrix A`. For the second part, we �rst notice that by assumption we have a

commutative diagram of �nite abelian groups

ΛR/Λ
′ Λ1/Λ

′ Λ1/ΛR

(Λ2/CentΛ2(ΛR))
∧

(Λ2/Λ
′)∧ (CentΛ2(ΛR)/Λ′)

∧
,

q−(.,.)
f̂ f̂ ′

where G∧ denotes the dual group of a group G.

Now, by the �ve lemma we know that f̂ is an isomorphism if and only if the induced map f̂ ′

is an isomorphism. Post-composing this map with the dualized centralizer transfer matrix A∧` :

(CentΛ2(ΛR)/Λ′)
∧ ∼= (Λ2/ΛR)∧ gives a`g.
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Chapter 4. Explicit calculation for every simple Lie

algebra

In the following, we want to compute the endomorphism A` ∈ EndZ(Λ) and the pairing a` on the

fundamental group explicitly in terms of the Cartan matrices and the common divisors of ` with

root lengths and divisors of the Cartan matrix. We will �nally give a list for all g.

4.1 Technical Tools

We choose the basis of simple roots αi for ΛR and the dual basis of fundamental coweights λ∨i for

the dual lattice Λ∨W with (αi, λ
∨
j ) = δi,j .

For any choice Λ ⊂ ΛW ⊂ Λ∨W , let AΛ be a basis matrix i.e. any Z-linear isomorphism Λ∨W → Λ

sending the basis λ∨i of Λ∨W to some basis µi of Λ. It is unique up to pre-composition of a unimodular

matrix U ∈ SLn(Z).

The dual basis AΛ̂ of Λ̂ is de�ned by

(AΛ̂(λ∨i ), AΛ(λ∨j )) = δij .

Explicitly, AΛ̂ is given by AΛ̂ = (A−1
Λ AR)T , where (AR)ij = (αi, αj). Now, let AΛ = PΛSΛQΛ be

the unique Smith decomposition of AΛ, which means: PΛ, QΛ are unimodular and SΛ is diagonal

with diagonal entries (SΛ)ii =: dΛ
i , such that dΛ

i | dΛ
j for i < j.

Example 4.1.1. For the root lattice the dΛR
i are the divisors of scalar product matrix (αi, αj).

Their product is ∏
i

dΛR
i = |Λ∨W /ΛR| =

(∏
i

di

)
· |π1|, di =

(αi, αi)

2
.

For the coweight lattice all d
Λ∨W
i = 1. For the weight lattice we recover the familiar dΛW

i = di.

Without loss of generality, we will assume the basis matrices AΛ to be symmetric, i.e. QΛ = PTΛ .

We then have the following Lemma:
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Lemma 4.1.2. Let ΛR ⊆ Λ ⊆ Λ∨W be a lattice. We de�ne lattices

ACent := (PTΛ )−1D`P
−1
Λ D` := Diag

(
`

gcd(`, dΛ
i )

)
.

Then,

CentΛR(Λ) = ARACentΛ
∨
W CentΛ(ΛR) = AΛACentΛ

∨
W .

Proof. We compute explicitly,

CentΛR(Λ) = ΛR ∩ ` · Λ̂

= ARΛ∨W ∩ (A−1
Λ AR)T `Λ∨W

= (A−1
Λ AR)T (((A−1

Λ AR)T )−1ARΛ∨W ∩ `Λ∨W )

= ARA
−1
Λ (AΛ ∩ `Λ∨W )

= AR(PΛSΛP
T
Λ )−1(PΛSΛP

T
Λ Λ∨W ∩ `Λ∨W )

= AR(PTΛ )−1S−1
Λ (SΛΛ∨W ∩ `Λ∨W )

= AR(PTΛ )−1S−1
Λ Diag(lcm(SΛii , `))Λ

∨
W

= AR(PTΛ )−1D`Λ
∨
W = ARACentΛ

∨
W .

On the other hand,

CentΛ(ΛR) = Λ ∪ `Λ̂R
= Λ ∪ `Λ∨W
= AΛΛ∨W ∪ `Λ∨W
= PΛSΛP

T
Λ Λ∨W ∪ `Λ∨W

= PΛ(SΛΛ∨W ∪ `Λ∨W )

= PΛSΛD`Λ
∨
W

= AΛ(PTΛ )−1D`Λ
∨
W = AΛACentΛ

∨
W .

In particular, this means AΛ̂CentΛ(ΛR) = CentΛR(Λ).

4.2 Case Λ = ΛW

In order to exhaust all cases that appear in our setting, we continue with Λ = ΛW :

Lemma 4.2.1. In the case Λ = ΛW , the centralizer transfer matrix A` is of the following form:

A` =

AΛWACentQ
T
CP
−1
C A−1

ΛW
, gcd(`, |π1|) 6= 1

` · id, else.

Here, C = PCSCQC denotes the Smith decomposition of the Cartan matrix of g.
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Proof. As we noted in Example 4.1.1, we have AΛW = Diag(di), for di being the ith root length.

Since di ∈ {1, p} for some prime number p, up to a permutation AΛW is already in Smith normal

form: this means that PΛW is a permutation matrix of the form (PΛW )ij = δj,σ(i) for some σ ∈ Sn,
s.t. dσ(1) ≤ · · · ≤ dσ(n). It follows that ACent = Diag

(
`

gcd(`,di)

)
.

Using the de�nition Cij =
(αi,αj)
di

, in the case gcd(`, |π1|) 6= 1 we obtain

ACentC
T = CACent.

Thus,

A`AR = AΛWACentQ
T
CP
−1
C A−1

ΛW
AR

= ARC
−1ACentQ

T
CP
−1
C C

= ARACent(C
T )−1QTCP

−1
C C

= ARACent.

By the previous Lemma, this proves the �rst condition for A`. The second condition follows imme-

diately from the previous Lemma.

The case gcd(`, |π1|) = 1 follows from Lemma 3.2.5 and the fact that |π1| = |Λ∨W /Λ∨R|.

4.3 Case An

In the following example, we treat the case g = An with fundamental group ΛW /ΛR = Zn+1 for

general intermediate lattices ΛR ⊆ Λ ⊆ ΛW .

Example 4.3.1. In order to compute the centralizer transfer map A`, we �rst compute the Smith

decomposition of AR:

AR =



2 −1 0 . . . 0

−1 2 −1 0 0

0 −1 2
. . .

. . .
...

0 0
. . .

. . . −1 0
...

. . . −1 2 −1

0 . . . 0 −1 2



=



−1 0 0 . . . 0
2 −1 0 0

0 2 −1
. . .

...

0 0
. . .

. . . 0
...

. . . 2 −1 0
0 . . . 0 2 1





1 0 0 . . . 0
0 1 0 0

0 0 1
. . .

...
...

. . .
. . .

. . . 1 0
0 . . . 0 n+ 1





−2 1 0 . . . 0

−3 0 1
. . . 0

−4 0 0
. . .

...
...

...
. . . 1 0

−n 0 1
1 0 . . . 0 0


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A sublattice ΛR ( Λ ( ΛW is uniquely determined by a divisor d | n + 1, so that Λ/ΛR ∼= Zd and

is generated by the multiple d̂λn, where d̂ := n+1
d . Then

dΛ
i =

1, i < n

d, i = n
.

Since An is simply laced with cyclic fundamental group, the formula AΛ = PRSΛP
T
R gives us

symmetric basis matrices of sublattices ΛR ⊆ Λ ⊆ ΛW . We also substitute the above basis matrix of

the root lattice AR by AR(QR)−1PTR . It is then easy to see that the de�nition A` := PRD`P
T
R gives

a centralizer transfer matrix. We calculate it explicitly:

(A`)ij = (PRD`P
−1
R )ij =


δij , i < n

(n+ 1− j)
(

`
gcd(`,d) − 1

)
, i = n and j < n

`
gcd(`,d) , i = j = n.

Now a form g is uniquely determined by a dth root of unity g(χ, χ) = exp( 2πi·k
d ) = ζkd with some k.

Then we calculate the form a`g on the generator:

a`g(χ, χ) = q−(χ,A`(χ))g(χ,A`(χ))

= q
− (n+1)2·`
d2gcd(`,d̂)

(λ∨n ,λ
∨
n) · g(χ, χ)

`
gcd(`,d̂)

= exp

(
2πi · (k`− d̂n)

d · gcd(`, d̂)

)
.

For example the trivial g (i.e. k = 0) gives an R-matrix for all lattices Λ (de�ned by d̂d = n + 1)

i� d̂
gcd(`,d̂)

is coprime to d. For ` coprime to the divisor n+ 1 this amounts to all lattices associated

to decompositions of n+ 1 into two coprime factors.

4.4 Case Dn

Finally, we consider the root lattice Dn. Since we have π1(D2n≥4) ∼= Z2×Z2 and π1(D2n+1≥5) ∼= Z4,

it is appropriate to split this investigation in two steps. We start with D2n≥4. In order to compute

the respective Smith decompositions, we used the software Wolfram Mathematica.

Example 4.4.1. In the case D2n≥4, we have three di�erent possibilities for the lattices ΛR ⊆
Λ1,Λ2 ⊆ ΛW :

1. Λ1 6= Λ2, H1
∼= H2

∼= Z2: In this case, the subgroups Λi/ΛR ⊆ ΛR are spanned by the

fundamental weights λ2(n−1)+i. As in the case An, we de�ne the centralizer transfer map

A` := PRD`P
−1
R on H2. This is possible since the symmetric basis matrix AΛ2

= PRSΛ2
PTR
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of Λ2 is already in Smith normal form. Using the software Wolfram Mathematica in order to

compute PR, we obtain A`(λ2n) = `
gcd(2,`) . Combining this with (λ2n−1, λ2n) = n−1

2 , we get

a`g(λ2n−1, λ2n) = exp

(
2πi · (kl − 2(n− 1))

2 · gcd(2, `)

)
for g(λ2n−1, λ2n) = exp

(
2πik

2

)
.

2. Λ1 = Λ2, Hi
∼= Z2: Without restrictions and in order to use the same de�nition for A` as

above, we choose Λi, s.t. the group Λi/ΛR is spanned by λ2n. Combining the above result

A`(λ2n) = `
gcd(2,`) with (λ2n, λ2n) = n

2 , we obtain

a`g(λ2n, λ2n) = exp

(
2πi · (kl − 2n)

2 · gcd(2, `)

)
for g(λ2n, λ2n) = exp

(
2πik

2

)
.

3. Λ1 = Λ2 = ΛW , H ∼= Z2 × Z2: A group pairing g : (Z2 × Z2) × (Z2 × Z2) → C× is uniquely

de�ned by a matrix K ∈ gl(2,F2), so that

g(λ2(n−1)+i, λ2(n−1)+j) = exp

(
2πiKij

2

)
.

Since Dn is simply-laced, we have A` = ` · Id. Using (λ2(n−1)+i, λ2(n−1)+j) mod 2 = δi+jodd,

we obtain

ag` (λ2(n−1)+i, λ2(n−1)+j) = exp

(
2πi ·Kij`

2

)
(−1)i+j .

The last step is the case D2n+1≥5:

Example 4.4.2. Since it it is simply-laced and its fundamental group is cyclic, the case D2n+1≥5

can be treated very similar to An. We distinguish two cases:

1. Λ1 = Λ2, Hi = 〈2λ2n+1〉 ∼= Z2. As in the case An, we de�ne the centralizer transfer map

A` := PRD`P
−1
R on H2. Using (λ2n+1, λ2n+1) = 2n+1

4 , we obtain

a`g(2λ2n+1, 2λ2n+1) = exp

(
2πi · (k`− 2(2n+ 1))

2 · gcd(2, `)

)
.

for g(2λ2n+1, 2λ2n+1) = exp
(

2πik
2

)
.

2. Λ1 = Λ2 = ΛW , H = 〈λ2n+1〉 ∼= Z4. By an analagous argument as above, we obtain

a`g(λ2n+1, λ2n+1) = exp

(
2πi · (k`− (2n+ 1))

4

)
.

for g(λ2n+1, λ2n+1) = exp
(

2πik
4

)
.
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4.5 Table of all quasitriangular quantum groups

In the following table, we list all simple Lie algebras and check for which non-trivial choices of

Λ,Λi, ` and g the element R0Θ̄ is an R-matrix. As before, we de�ne Hi := Λi/ΛR and H := Λ/ΛR.

In the cyclic case, if xi are generators of the Hi, then the pairing is uniquely de�ned by an element

1 ≤ k ≤ |Hi|, s.t. g(x1, x2) = exp
(

2πik
|Hi|

)
. In the case D2n, Λ = ΛW , g is uniquely de�ned by a

2× 2-matrix K ∈ gl(2,F2), s.t. g(λ2(n−1)+i, λ2(n−1)+j) = exp
(

2πiKg
ij

2

)
for i, j ∈ {1, 2}.

The columns of the following table are labeled by

1. the �nite dimensional simple complex Lie algebra g

2. the natural number `, determining the root of unity q = exp
(

2πi
`

)
3. the number of possible R-matrices for the Lusztig ansatz

4. the subgroups Hi ⊆ H = Λ/ΛR introduced in Theorem 3.1.3

5. the subgroups Hi in terms of generators given by multiples of

fundamental dominant weights λi ∈ ΛW

6. the group pairing g : H1 ×H2 → C× determined by its values on generators

7. the group pairing a`g ⊆ Λ/Λ′ introduced in Theorem 3.2.6 determined by its values on gener-

ators.

16



g ` # Hi
∼= Hi (i=1,2) g a`g

all 1 Z1 〈0〉 g = 1 1

∞
Zd 〈d̂λn〉 g(d̂λn, d̂λn) = exp

(
2πik
d

)
exp

(
2πi·(k`−d̂n)

d·gcd(`,d̂)

)An≥1

π1 = Zn+1
d | n+ 1 d̂ = n+1

d gcd
(
n+ 1, d`, k`− n+1

d n
)

= 1

` even 2

Z2 〈λn〉
g(λn, λn) = ±1 −1

Bn≥2

π1 = Z2
` odd 1 g(λn, λn) = (−1)n+1 exp

(
2πi·(k`−n)

2

)
` ≡ 2 mod 4 1

Z2 〈λn〉

g(λn, λn) = 1 exp
(

2πi·(k `2 +1)

2

)
Cn≥3

` ≡ 0 mod 4 2 g(λn, λn) = ±1 −1
π1 = Z2

` odd 1 g(λn, λn) = −1 exp
(

2πi·(k`−2n)
2

)
` ≡ 2 mod 4 1

Z2

H1
∼= 〈λ2n−1〉

g(λ2n−1, λ2n) = (−1)n

exp
(

2πi·(k `2−n+1))

2

)
` ≡ 0 mod 4 2δ2|n g(λ2n−1, λ2n) = ±1, n even

H2
∼= 〈λ2n〉

` odd 1 g(λ2n−1, λ2n) = −1 exp
(

2πi·(k`−2(n−1))
2

)
D2n≥4

π1 = Z2 × Z2
` ≡ 2 mod 4 1

Z2 〈λ2n〉

g(λ2n, λ2n) = (−1)n+1

exp
(

2πi(k `2−n)

2

)
` ≡ 0 mod 4 2δ2-n g(λ2n, λ2n) = ±1, n odd

` odd 1 g(λ2n, λ2n) = −1 exp
(

2πi(k`−2n)
2

)
` even 2

Z2 × Z2 〈λ2n, λ2n+1〉
g(λ2(n−1)+i, λ2(n−1)+j) = ±1

exp
(

2πi·Kij`
2

)
(−1)i+j

` odd det(K) = K12 +K12 mod 2

` ≡ 2 mod 4 1

Z2 〈2λ2n+1〉

g(2λ2n+1, 2λ2n+1) = 1

exp
(

2πi·(k `2−2n−1)

2

)
` ≡ 0 mod 4 2 g(2λ2n+1, 2λ2n+1) = ±1

D2n+1≥5
` odd 1 g(2λ2n+1, 2λ2n+1) = −1 exp

(
2πi·(k`−2(2n+1))

2

)
17



π1 = Z4

` even 4

Z4 〈λ2n+1〉
g(λ2n+1, λ2n+1) = c, c4 = 1

exp
(

2πi·(k`−(2n+1))
4

)
` odd 2 g(λ2n+1, λ2n+1) = ±1

` ≡ 0 mod 3 3

Z3 〈λn〉

g(λn, λn) = c, c3 = 1

exp
(

2πi·(k`−1)
3

)E6
` ≡ 1 mod 3 2 g(λn, λn) = 1, exp

(
2πi2

3

)
π1 = Z3

` ≡ 2 mod 3 2 g(λn, λn) = 1, exp
(

2πi
3

)
` even 2

Z2 〈λn〉
g(λn, λn) = ±1

exp
(

2πi·(k`−1)
2

)E7

π1 = Z2
` odd 1 g(λn, λn) = 1

Table 4.1: Solutions for R0-matrices

The Lie algebras E8, F4 and G2 have trivial fundamental groups and thus have no non-trivial

solution. We want to emphasize once more that the choice Λi = ΛR always leads to a quasitriangular

quantum group.

The following Lemma connects our results with Lusztig's original result:

Lemma 4.5.1. In Lusztig's de�nition of a quantum group he uses the quotient Λ′Lusz = 2CentΛR(2ΛW ).

This coincide with our choice Λ′ = CentΛR(Λ1 + Λ2), if and only if

2 gcd(`, dΛ
i ) = gcd(`, 2dWi ), (4.1)

where the dΛ
i denote the invariant factors of Λ∨W /Λ and the dWi denote the invariant factors of

Λ∨W /ΛW (i.e. ordered root lengths).

In particular, for ` odd these choices never coincide. For Λ = ΛW , Λ′ = Λ′Lusz holds if and only

if 2di | `. This is the most extreme case of divisibility and it is precisely the case appearing in

logarithmic conformal �eld theories.

Proof. We �rst note that in our cases, Λ′ = CentΛR(Λ1 + Λ2) = CentΛR(Λ). We have,

2CentΛR(2ΛW ) = 2(ΛR ∩ 2̂ΛW )

= AR2(Λ∨W ∩A−1
W

`

2
Λ∨W )

= ARDiag

(
2`

gcd(`, 2dWi )

)
Λ∨W .

By Lemma 4.1.2, this coincides with Λ′ if and only if equation (4.1) holds.
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Chapter 5. Factorizability of Quantum GroupR-matrices

We �rst recall the de�nition of factorizable braided tensor categories and factorizable Hopf algebras,

respectively.

De�nition 5.0.1. [EGNO15] A braided tensor category C is factorizable if the canonical braided

tensor functor G : C � Cop → Z(C) is an equivalence of categories.

In [Sch01], Schneider gave a di�erent characterization of factorizable Hopf algebras in terms of its

Drinfeld double, leading to the following theorem:

De�nition 5.0.2. A �nite-dimensional quasitriangular Hopf algebra (H,R) is called factorizable

if its monodromy matrix M := R21 ·R ∈ H ⊗H is non-degenerate, i.e. the following linear map is

bijective

H∗ → H φ 7→ (id⊗ φ)(M).

Equivalenty, this means we can write M =
∑
iR

i
1 ⊗Ri2 for two basis' Ri1, R

j
2 ∈ H.

Theorem 5.0.3. Let (H,R) be a �nite-dimensional quasitriangular Hopf algebra. Then the category

of �nite-dimensional H-modules H − modfd is factorizable if and only if (H,R) is a factorizable

Hopf algebra.

Shimizu [Shi16] has recently proven a number of equivalent characterizations of factorizability for

arbitrary (in particular non-semisimple) braided tensor categories. Besides the two previous char-

acterizations (equivalence to Drinfeld center and nondegeneracy of the monodromy matrix), factor-

izability is equivalent to the fact that the so-called transparent objects are all trivial, see Theorem

5.4.2 below, which will become visible during our analysis later.

5.1 Monodromy matrix in terms of R0

In order to obtain conditions for the factorizability of the quasitriangular small quantum groups

(uq(g,Λ,Λ
′), R0(f)Θ̄) as in Theorem 2.2.2 in terms of g, q,Λ and f , we start by calculating the

monodromy matrix M := R21 ·R ∈ uq(g,Λ,Λ′)⊗ uq(g,Λ,Λ′) in general as far as possible:
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Lemma 5.1.1. For R = R0(f)Θ̄ as in Theorem 2.2.2, the factorizability of R is equivalent to the

invertibility of the following complex-valued matrix m with entries indexed by elements in µ, ν ∈
Λ/Λ′:

mµ,ν :=
∑

µ′,ν′∈Λ/Λ′

f(µ− µ′, ν − ν′)f(ν′, µ′).

Proof. We �rst plug in the expressions for R0 from Theorem 3.1.3 and Θ̄ from Theorem 2.2.2 and

simplify:

M := R21 ·R

= (R0)21 · Θ̄21 ·R0 · Θ̄

=

 ∑
µ1,ν1∈Λ

f(µ1, ν1)Kν1 ⊗Kµ1

 ·
 ∑
β1∈Λ+

R

(−1)trβ1qβ1

∑
b1∈Bβ2

b∗+1 ⊗ b
−
1


·

 ∑
µ2,ν2∈Λ

f(µ2, ν2)Kµ2 ⊗Kν2

 ·
 ∑
β2∈Λ+

R

(−1)trβ2qβ2

∑
b2∈Bβ2

b−2 ⊗ b
∗+
2


=

∑
β1,β2∈Λ+

R

(−1)trβ1+β2qβ1
qβ2

 ∑
µ1,µ2,ν1,ν2∈Λ

f(µ1, ν1)f(µ2, ν2)qβ1(ν2−µ2)Kν1+µ2
⊗Kµ1+ν2


·

 ∑
b1∈Bβ1

,b2∈Bβ2

b∗+1 b−2 ⊗ b
−
1 b
∗+
2

 ,

where Λ+
R = N0[∆]. The last equation holds since b−1 ∈ u

−
β1

and hence ful�lls Kν2
b−1 = q−β1ν2b−1 Kν2

and similarly for b∗+1 . We have two triangular decompositions

uq = u0
qu
−
q u

+
q uq = u0

qu
+
q u
−
q ,

and the Λ+
R-gradation on u±q induces a gradation

uq ⊗ uq ∼=
⊕
β1,β2

(u0 ⊗ u0)(u+
q β1

u−q β2
⊗ u−q β1

u+
q β2

).

The factorizability of R is equivalent to the invertibility of M interpreted as a metrix indexed by

the PBW basis. The grading implies a block matrix form of M , so the invertibility M is equivalent

to the invertibility of Mβ1,β2 ∈ (uq ⊗ uq)(β1,β2) for every β1, β2 ∈ Λ+
R as follows

Mβ1,β2 :=

 ∑
µ1,µ2,ν1,ν2∈Λ

f(µ1, ν1)f(µ2, ν2)qβ1(ν2−µ2)Kν1+µ2
⊗Kµ1+ν2

 ∑
b1∈Bβ1

,b2∈Bβ2

b∗+1 b−2 ⊗ b
−
1 b
∗+
2

 .
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Since the second sum in Mβ1,β2 runs over a basis in u+
q β1

u−q β2
⊗ u−q β1

u+
q β2

, the invertibility of M

is equivalent to the invertibility for all β1 ∈ Λ+
R the following element:

Mβ1

0 :=
∑

µ1,µ2,ν1,ν2∈Λ/Λ′

qβ1(ν2−µ2)f(µ1, ν1)f(µ2, ν2)Kν1+µ2
⊗Kµ1+ν2

=
∑

µ,ν∈Λ/Λ′

Kν ⊗Kµ ·

 ∑
µ′,ν′∈Λ/Λ′

qβ1(µ′−ν′)f(µ− µ′, ν − ν′)f(ν′, µ′)

 .

Since Kν ⊗Kµ is a vector space basis of u0
q ⊗ u0

q = C[Λ/Λ′]⊗C[Λ/Λ′], this in turn is equivalent to

the invertibility of the following family of matrices mβ1 for all β1 ∈ Λ+
R with rows/columns indexed

by elements in µ, ν ∈ Λ/Λ′:

mβ1
µ,ν :=

∑
µ′,ν′∈Λ/Λ′

f(µ− µ′, ν − ν′)f(ν′, µ′)qβ1(µ′−ν′).

We now use the fact that R was indeed an R-matrix: By property (2.1) in Theorem 2.2.2 we have

mβ1
µ,ν =

∑
µ′,ν′∈Λ/Λ′

f(µ− µ′, ν − ν′)f(ν′ + β1, µ
′)q−β1ν

′
.

Since the invertibility of a matrix mµ,ν is equivalent to the invertibility of any matrix mµ,ν+β1 , we

may substitute ν′ 7→ ν′ + β1, ν 7→ ν + β1, pull the constant factor q
−β2

1 in front (which also does

not a�ect invertibility) and hence eliminate the �rst β1 from the condition. Hence the invertibility

of R is equivalent to the invertibility of the following family of matrices m̃β1 for all β1 ∈ Λ+
R:

m̃β1
µ,ν :=

∑
µ′,ν′∈Λ/Λ′

f(µ− µ′, ν − ν′)f(ν′, µ′)q−β1ν
′
.

We may now use the same procedure to eliminate the second β1, hence the invertibility of R is

equivalent to the invertibility of the following matrix with rows/columns indiced by elements in

µ, ν ∈ Λ/Λ′:

mµ,ν :=
∑

µ′,ν′∈Λ/Λ′

f(µ− µ′, ν − ν′)f(ν′, µ′).

This was the assertion we wanted to prove.

De�nition 5.1.2. Let g : G1 ×G2 → C× be a group pairing. It induces a symmetric form on the

product G1 ×G2 we denote by Sym(g):

Sym(g) : (G1 ×G2)×2 −→ C×

((µ1, µ2), (ν1, ν2)) 7−→ g(µ1, ν2)g(ν1, µ2).

Lemma 5.1.3. If g : G1 × G2 → C× is a perfect pairing of abelian groups, then the symmetric

form Sym(g) is perfect.
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Proof. By assumption, g× g de�nes an isomorphism between G1 ×G2 to Ĝ2 × Ĝ1. The symmetric

form Sym(g) is given by the composition of this isomorphism with the canonical isomorphism

Ĝ2 × Ĝ1
∼= ̂G1 ×G2. This proves the claim.

Consider for a �nite abelian group G and subgroups G1, G2 ≤ G the canonical exact sequence

0→ G1 ∩G2 → G1 ×G2 → G1 +G2 → 0 (5.1)

For µ ∈ G1 +G2, we denote its �ber by

(G1 ×G2)µ := {(µ1, µ2) ∈ G1 ×G2 | µ1 + µ2 = µ}.

Moreover, we de�ne

Rad : = { (µ1, µ2) ∈ G1 ×G2 | Sym(f̂)((µ1, µ2), x) = 1 ∀x ∈ (G1 ×G2)0 }

Radµ : = Rad ∩ (G1 ×G2)µ

Rad⊥0 : = { µ1 + µ2 ∈ G | (µ1, µ2) ∈ Rad }

Lemma 5.1.4. We have two split exact sequences:

0→ Rad0 → Rad→ Rad⊥0 → 0

0→ Rad⊥0 → G→ Rad0 → 0.

Proof. The �rst sequence is exact by de�nition of the three groups. Moreover, we know

Rad = ker(ι̂ ◦ Sym(f̂)) ∼= ker(ι̂) = im(π̂) ∼= Ĝ ∼= G,

where ι̂, π̂ denote the duals of the inclusion and projection in (5.1). In example 5.1.8 we will see

that in the case G1 = G2 = G, f̂ symmetric, Rad0 is the 2-torsion subgroup of G, and the second

map in the second exact sequence is just the projection, hence both diagrams split in this case. If

f̂ is asymmetric, we will see in section 5.3 that Rad0 is isomorphic to Zk2 for some k ≥ 2, thus

Rad⊥0 −→ Rad

x 7−→
∑

x̃∈Radx

x̃

is a section of the �rst exact sequence. Here we used that the sum over all elements in Zk2 vanishes.

Again, it follows that both diagrams split. Finally, if G1 6= G2 (i.e. in the case D2n), then f̂ = q−(.,.)

on G1 ∩G2. By the same argument as in example 5.1.8, Rad0 is the 2-torsion subgroup of G1 ∩G2.

But we have G ∼= G1 ∩G2 × π1 in this case, hence both sequences split.

Corollary 5.1.5. Using the projection α : G→ Rad⊥0 and the inclusion β : Rad⊥0 → Rad from the

above lemma, we can de�ne a symmetric form on G:

SymG(f̂) : G×G −→ C× (5.2)

(µ, ν) 7−→ Sym(f̂)(β ◦ α(µ), β ◦ α(ν)). (5.3)

Moreover, we have Rad(SymG(f̂)) ∼= Rad0.
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Theorem 5.1.6. We have shown in Theorem 2.2.2 and Lemma 3.1.5 that the assumption that

R = R0(f)Θ̄ is an R-matrix is equivalent to the existence of subgroups G1, G2 ⊂ Λ/Λ′ of same

order some d|ΛR/Λ′| and f restricting up to a scalar to a non-degenerate pairing f̂ : G1×G2 → C×

and f vanishes otherwise.

In this notation the matrix m as de�ned in the previous lemma can be rewritten as:

mµ,ν =
1

d2|ΛR/Λ′|2
∑

µ̃∈(G1×G2)µ
ν̃∈(G1×G2)ν

Sym(f̂)(µ̃, ν̃).

It is invertible if and only if Rad0 = 0. In this case,

mµ,ν =
|G1 ∩G2|
d2|ΛR/Λ′|2

SymG(f̂).

We �rst note that Rad0 = 0 implies Rad⊥0 = G and thus G = G1 + G2. Together with Corollary

3.1.6 this implies

Corollary 5.1.7.

Λ′ = CentΛR(Λ).

Before we proof the theorem, we �rst give a simple example:

Example 5.1.8. Let G1 = G2 = G (correspondingly Λ1 = Λ2 = Λ) and assume f̂ is symmetric

non-degenerate, then the radical measures 2-torsion:

Rad(SymG(f̂)) ∼= Rad0 = {µ ∈ G | 2µ = 0}.

Again, this is the only case appearing for cyclic fundamental groups. Hence in all cases except

g = D2n factorizability is equivalent to |Λ/Λ′| being odd.

Proof of Thm. 5.1.6. The �rst part of the theorem follows by applying lemma 3.1.5 to the matrix

m as given in the previous lemma. Now, assume that m is invertible. We must have G = G1 +G2,

otherwise the matrix has zero-columns and -rows, di�erently formulated: the �bers (G1 ×G2)µ in

the short exact sequence must be non-empty for all µ ∈ G. If on the other hand, Rad0 = 0, then

Rad⊥0 = G and thus G1 +G2 = G must also hold, thus we assume this from now on. By the short

exact sequence the �ber (G1×G2)0
∼= G1 ∩G2, other �bers are of the explicit form µ̃+ (G1×G2)0

23



for some choice of representative µ̃. Therefore,

mµ,ν =
1

d2|ΛR/Λ′|2
∑

µ̃∈(G1×G2)µ
ν̃∈(G1×G2)ν

Sym(f̂)(µ̃, ν̃)

=
1

d2|ΛR/Λ′|2
∑

ν̃∈(G1×G2)ν

Sym(f̂)(µ̃, ν̃)
∑

η̃∈(G1×G2)0

Sym(f̂)(η̃, ν̃)

=
|G1 ∩G2|
d2|ΛR/Λ′|2

∑
ν̃∈(G1×G2)ν

Sym(f̂)(µ̃, ν̃) · δSym(f)(ν̃,_)|G1∩G2
=1 = (∗).

Fix as above a representative ν̃ of the �ber of ν, i.e. ν̃ ∈ (G1×G2)ν such that Sym(f)(ν̃,_)|G1∩G2
=

1 holds. Two elements ful�lling this property di�er by an element in the subgroup Rad0 ≤ G1∩G2,

thus

(∗) =
|G1 ∩G2|
d2|ΛR/Λ′|2

Sym(f̂)(µ̃, ν̃)
∑

ξ̃∈Rad0

Sym(f̂)(ξ̃, ν̃) · δSym(f)(ν̃,_)|G1∩G2
=1

=
|G1 ∩G2||Rad0|
d2|ΛR/Λ′|2

Sym(f̂)(µ̃, ν̃) · δSym(f̂)(ν̃,_)|G1∩G2
=1 δSym(f̂)(µ̃,_)|Rad0

=1.

Since m is symmetric, we have

mµ,ν =
|G1 ∩G2||Rad0|
d2|ΛR/Λ′|2

Sym(f̂)(µ̃, ν̃) · δSym(f̂)(ν̃,_)|G1∩G2
=1 δSym(f̂)(µ̃,_)|G1∩G2

=1

=
|G1 ∩G2||Rad0|
d2|ΛR/Λ′|2

SymG(f̂)(µ, ν)δRadµ 6=∅δRadν 6=∅.

and this is invertible if an only if Rad0
∼= Rad(SymG(f̂)) = 0.

5.2 Factorizability for symmetric R0(f)

For R0 =
∑
µ,ν f(µ, ν)Kµ ⊗Kν being the Cartan part of an R-matrix, assume that f̂ = |G|f on G

is symmetric. We have shown in Example 5.1.8 that factorizability is equivalent to |G| being odd.

We now want to give a necessary and su�cient condition for this:

Lemma 5.2.1. Let ΛR ⊆ Λ ⊆ ΛW be an arbitrary intermediate lattice for a certain irreducible root

system. Then the order of the group G = Λ/CentΛR(Λ) is odd if and only if both of the following

conditions are satis�ed:

1. |Λ/ΛR| is odd

2. ` is either odd or (` ≡ 2 mod 4, g = Bn, Λ = ΛR) including A1.
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Proof. We saw that in all our cases, there exists an isomorphism Λ/ΛR ∼= CentΛ(ΛR)/CentΛR(Λ).

Moreover, from Lemma 4.1.2 we know that |Λ/CentΛ(ΛR)| = det(D`), where D` was the diagonal

matrix Diag
(

`
gcd(`,dΛ

i )

)
) with dΛ

i being the invariant factors of the lattice Λ (i.e. the diagonal entries

of the Smith normal form of a basis matrix of Λ). Thus,

|G| = |Λ/CentΛR(Λ)|

= |Λ/CentΛ(ΛR)||CentΛ(ΛR)/CentΛR(Λ)|

= |Λ/CentΛ(ΛR)||Λ/ΛR|

= det(D`)|Λ/ΛR|

=

n∏
i=1

`

gcd(`, dΛ
i )
|Λ/ΛR|.

Clearly, this term is odd if ` and |Λ/ΛR| are odd. In the case (` ≡ 2 mod 4, g = Bn, Λ = ΛR), the

Smith normal form SR of the basis matrix AR is given by 2 · id. Thus, |G| is odd in this case. On

the other hand, let |G| be odd:
We �rst consider the case ` even. A necessary condition for |Λ/Λ′| odd is that the multiplicity m`

of the prime 2 in
∏n
i=1

`
gcd(`,dΛ

i )
is at most the multiplicity mπ1

of the prime 2 in |π1|. We check

this condition for rank n > 1:

• For g simply-laced (or triply-laced g = G2) we have all di = 1, hence n | m` (equality

for ` = 2 mod 4). The cases Dn with mπ1
= 2 have rank n ≥ 4, all others except An

have mπ1
= 0, 1, so the necessary condition m` ≤ mπ1

is never ful�lled. The cases An have

2mπ1 |(n+ 1) ≤ (m` + 1)
!
≤ (mπ1

+ 1) which can only be true in rank n = 1 treated above.

• For g doubly-laced of rank n > 1, we always have alwaysmπ1 = 0, 1 butm` can be considerably

smaller than above, namely for ` = 2 mod 4 equal to the number of short simple roots dαi = 1

(otherwise m` again increases by n for every factor 2 in `), hence the necessary condition

m` ≤ mπ1
can be ful�lled only for Bn (which would also include A1 above for n = 1). More

precisely, since m` = mπ1
and the decomposition for Λ/Λ′ has an additional factor |Λ/ΛR|,

it can only be odd for Λ = ΛR.

On the other hand, if ` is odd, then the whole product term is odd. But since |G| was assumed to

be odd, also |Λ/Λ′| must be odd.

Corollary 5.2.2. Let Λ = ΛR. In the previous section we have seen that f̂ = q−(.,.) gives always

an R-matrix in this case. By the proof of the previous Lemma, we have

Rad0
∼=

n∏
i=1

Z
gcd

(
2, `

gcd(`,dR
i

)

),

where the dRi denote the inveriant factors of Λ∨W /ΛR.
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5.3 Factorizability for D2n, R0 antisymmetric

The split case g = D2n, G = G1×G2 is clearly factorizable, so the only remaining case for which we

have to check factorizabilty is g = D2n,Λ = ΛW for f̂ being not symmetric. We know that in this

case, the corresponding form g on Λ/ΛR is uniquely de�ned by a 2 × 2-matrix K ∈ gl(2,F2), s.t.

g(λ2(n−1)+i, λ2(n−1)+j) = exp
(

2πiKij
2

)
for i, j ∈ {1, 2}. From this we see that if g is not symmetric,

it must be antisymmetric, i.e. g(µ, ν) = g(ν, µ)−1. Thus, the following lemma applies in this case,

and hence there are no factorizable R-matrices for D2n, Λ = ΛW .

Lemma 5.3.1. For g simply-laced and Λ = ΛW , let f̂ = q−(.,.)g : G×G→ C× be a non-degenerate

form as in Thm. 3.1.3 and Lemma 3.1.5, s.t. the form g : π1 × π1 → C× is asymmetric. Then,

Rad0
∼=

n⊕
i=1

Zgcd(2,`dRi ),

where the dRi denote the invariant factors of π1. In particular, Rad0 = 0 holds if and only if

gcd(2, `|π1|) = 1.

Proof. We recall the de�nition of Rad0(SymG(f̂)) in this case:

Rad0(SymG(f̂)) = {µ ∈ G | f(ν, µ)−1 = f(µ, ν) ∀ ν ∈ G }

= {µ ∈ G | q(ν,µ)g(ν, µ)−1 = q−(µ,ν)g(µ, ν) ∀ ν ∈ G }

= {µ ∈ G | q(ν,µ) = q−(µ,ν) ∀ ν ∈ G }

= {µ ∈ G | q(2µ,ν) = 1 ∀ ν ∈ G }

= {µ ∈ G | 2µ ∈ Cent2ΛW (ΛW )/2CentΛR(ΛW ) } = (∗)

For g is simply-laced, we have ΛW = Λ∨W , thus

(∗) ∼= Cent2ΛW (ΛW )/2CentΛR(ΛW )

= (2ΛW ∩ `ARΛW )/2`ARΛW

= PRDiag(lcm(2, `dRi ))ΛW /PR2`SRΛW

= ΛW /Diag(gcd(2, `dRi ))ΛW .

This proves the claim.

5.4 Transparent objects in non-factorizable cases

In this section, we determine the transparent objects in the representation category of uq(g,Λ) with

our R-matrix given by R0Θ̄ and R0 = 1
|Λ/Λ′|

∑
µ,ν∈Λ/Λ′ f̂ with f̂ a group pairing Λ1/Λ

′ ×Λ2/Λ
′ →

C×.
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De�nition 5.4.1. Let C be a braided monoidal category with braiding c. An object V ∈ C is called

transparent if the double braiding cW,V ◦ cV,W is the identity on V ⊗W for all W ∈ C.

The following theorem by Shimizu gives a very important characterization of factorizable categories:

Theorem 5.4.2 ([Shi16], Thm. 1.1). A braided �nite tensor category is factorizable if and only if

the transparent objects are direct sums of �nitely many copies of the unit object.

Corollary 5.4.3. In particular, for a Hopf algebra H the representation category H − modfd is

factorizable if and only if the transparent objects are multiples of the trivial representation and vice

versa.

Since in our cases Λ1 6= Λ2 can only appear in D2n, and we know those are factorizable, we shall in

the following restrict ourselves to the case Λ1 = Λ2 = Λ. The proof below works also in the more

general case, but requires more notation. As usual we �rst reduce the Hopf algebra question to the

group ring and then solve the group theoretical problem.

Lemma 5.4.4. If a uq(g)-module V , with a highest-weight vector v and Kµv = χ(Kµ)v, is a

transparent object, then necessarily the 1-dimensional Λ/Λ′-module Cχ is a transparent object over

the Hopf algebra C[Λ/Λ′] with R-matrix R0. If V is 1-dimensional, then V is transparent if and

only if Cχ is.

Proof. Let V be transparent. For every ψ : Λ/Λ′ → C× we have another �nite-dimensional module

W := uq(g) ⊗uq(g)+ Cψ with highest weight vector w = 1 ⊗ 1ψ which we can test this assumption

against

c2 : V ⊗W →W ⊗ V → V ⊗W.

We calculate the e�ect of c2 on the highest-weight vectors v ⊗ w:

c2(v ⊗ w) = τW⊗VR0Θ̄τV⊗WR0Θ̄(v ⊗ w)

Because v, w were assumed highest-weight vectors, the Θ̄ act trivially. Hence follows that Cχ,Cψ
have a trivial double braiding over the Hopf algebra C[Λ/Λ′] with R-matrix R0. Because we could

achieve this result for any ψ this means that Cχ is transparent as asserted.

Now, let V = Cχ be 1-dimensional over uq(g) and transparent over C[Λ/Λ′], and let w be any

element in any module W , then again the two Θ act trivially, one time because v = 1χ is a highest

weight vector, and one time because it is also a lowest weight vector. But if the double-braiding of

v = 1χ with any element w is trivial, then V = Cχ is already tranparent over uq(g).

Lemma 5.4.5. Cχ is a transparent object over the Hopf algebra C[Λ/Λ′] with R-matrix R0 i� it is

an f -transformed of the radical of SymG(f̂), i.e.

χ(µ) = f(µ, ξ) ξ ∈ Rad0.
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Proof. Since f is nondegenerate, we can assume χ(µ) = f(µ, ξ) and wish to prove Cχ is transparent

i� ξ ∈ Rad0. We test transparency against any module Cψ and also write ψ(µ) = f(λ, µ) (note the

order of the argument). We evaluate the double-braiding on 1χ ⊗ 1ψ and get the following scalar

factor, which needs to be = 1 for all ψ in order to make Cχ transparent:

1

|G|2
∑
µ,ν

χ(µ)ψ(ν)
∑

µ1+µ2=µ
ν1+ν2=µ

Sym(f̂)((µ1, µ2), (ν1, ν2))

=
1

|G|2
∑
µ,ν

f(µ, ξ)f(λ, ν)
∑

µ1+µ2=µ
ν1+ν2=µ

f(µ1, ν1)f(ν2, µ2)

=
1

|G|2
∑
µ,ν

f(µ, ξ)f(λ, ν)
∑
ν1,µ1

f(µ1, ν1) f(ν, µ)f−1(ν1, µ)f−1(ν, µ1)f(ν1, µ1)

=
1

|G|
∑
ν

f(λ, ν)
∑
ν1,µ1

f(µ1, ν1) δξ=−ν+ν1f
−1(ν, µ1)f(ν1, µ1)

=
1

|G|
∑
ν

f(λ, ν)
∑
µ1

f(µ1, ξ + ν) f(ξ, µ1)

= f−1(λ, ξ) f−1(ξ, λ) = SymG(f̂)(λ, ξ)

This scalar factor of the double braiding is equal +1 for all λ (and hence all Cψ) i� ξ ∈ Rad0 as

asserted.

The previous two lemmas combined imply that any irreducible transparent uq(g)-module has neces-

sarily the characters χ(µ) = f(µ, ξ), ξ ∈ Rad0 as highest-weights, and conversely if such a character

χ gives rise to 1-dimensional uq(g)-modules (i.e. χ|2ΛR = 1), then these are guaranteed transparent

objects. Hence the �nal step is to give more closed expressions for the f -transformed characters χ

of the radical depending on the case and check the 1-dimensionality condition.

In all cases where f is symmetric we have seen in 5.1.8 that Rad0(SymG(f̂)) is the 2-torsion subgroup

of Λ/Λ′, so in these cases χ gives rise to a 1-dimensional object.

Corollary 5.4.6. If f is symmetric (true for all cases except D2n) then the irreducible transparent

objects are all 1-dimensional Cχ where the characters χ are the f -transformed of the elements in the

radical of the bimultiplicative form Sym(f̂)|G on G = Λ/Λ′. In particular, the group of transparent

objects is isomorphic to this radical as an abelian group.

Corollary 5.4.7. In the case of symmetric f (all cases except D2n) the fact that Rad0 is the 2-

torsion of Λ/Λ′ and f -transformation is a group isomorphism shows:
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The group T of transparent objects consists of Cχ where χ|2Λ = 1 i.e. the two-torsion of the character

group.

The remaining case in D2n with f nonsymmetric and has been done by hand in Lemma 5.3.1.

In Table 1, we gave a list of all quasi-triangular small quantum groups as in Table 4.1, where we

replaced the entries in the last column by the respective subgroups of transparent objects T ⊆ Λ/Λ′.

If the quantum group is factorizable, this is indicated by a bold 0. Since (Λ = ΛR, ` odd) is always

a solution, we omitted this from the table.
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Chapter 6. Quantum groups with a ribbon struc-

ture

In Thm. 8.23 in [Mül98], the existence of ribbon structures for uq(g,Λ) is proven. In this section

we construct a ribbon structure for all cases. In the proof, we use several auxiliary results from

[Mül98].

Theorem 6.0.1. Let uq(g,Λ) be quasitriangular Hopf algebra, with an R-matrix satisfying the

conditions in Theorem 2.2.2 and let u := S(R(2))R(1). Then v := K−1
ν0
u is a ribbon element in

uq(g,Λ).

Proof. We consider the natural N0[αi | i ∈ I]-grading on the Borel parts u± := uq(g,Λ)± [Lus93].

Since u± is �nite-dimensional, there exists a maximal ν0 ∈ N0[αi | i ∈ I], s.t. the homogeneous

component u±ν0
is non-trivial. More explicitly ν0 is of the form:

ν0 =
∑
α∈Φ+

(`α − 1)α,

where `α := `
gcd(`,2dα) .

Using the formulas u = (
∑

f(µ, ν)Kµ+ν)−1ϑ and S(u) = (
∑

f(µ, ν)Kµ+ν)−1S(ϑ), where ϑ =∑
Θ̄(2)S−1(Θ̄(2)), Mueller proves the formula K2

−ν0
= u−1S(u). Using the fact that u commutes

with all grouplike elements, this implies v2 = uS(u). In order to show that v is central, we �rst

show that K−1
ν0+2ρ is a central element. By the K,E-relations, this is equivalent to

ν0 + 2ρ ∈ CentΛ(ΛR), (6.1)

where ρ = 1
2

∑
α∈Φ+ α is the Weyl vector.

We calculate directly that this is always the case:

(ν0 + 2ρ, β) = q
∑
α∈Φ+ (`α−1+1)(α,β)

= q`
∑
α∈Φ+

1
gcd(`,2dα)

·2dα(α∨,β) = 1.
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Since K2ρux = xK2ρu holds for all x ∈ uq(g,Λ) (see [Mül98], Lemma 8.22 and 8.19), we have

vx = K−1
ν0
ux = K−1

ν0+2ρK2ρux

= K−1
ν0+2ρxK2ρu = xK−1

ν0+2ρK2ρu = xv,

hence v is central.
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Part III

Small quasi-quantum groups and

modularization
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Chapter 1. Introduction

In this part of the thesis, we modularize the representation categories of those small quantum

groups, which turned out to be quasi-triangular but not factorizable in the �rst part. To this end,

we construct a whole class of �nite-dimensional quasi-Hopf algebras, generalizing extended small

quantum groups. Part of this construction is based on the approach in [AS02], where the Borel part

of a small quantum group is chararcterized as a Radford biproduct B(V )#kG of the �nite dimen-

sional Nichols algebra B(V ) of some diagonally braided vector space V with the group algebra kG of

a �nite abelian group G together with a bihomomorphism on G. Using the notation of the �rst part

of this thesis, G is simply the quotient Λ/Λ′. Moreover, we have V = ⊕i FiC with brading matrix qij

induced by a bihomomorphism σ on the dual group Ĝ, which is simply the Fourier transform of the

R-matrix R0 on C[G]. Since Nichols algebras live in general abelian braided monoidal categories and

the Radford biproduct is de�ned also for quasi-Hopf algebras [BN02], we can perform the analogue

construction for a group algebra C[G]ω, now considered as quasi-Hopf algebra, whith non-trivial

coassociator induced by a 3-cocycle ω on the dual group Ĝ. The bihomomorphism σ is then replaced

by a 2-cochain σ on Ĝ, satisfying a so-called abelian 3-cocycle condition together with ω. Given an

abelian 3-cocycle (ω, σ), we construct in Sec. 5 a quasi-triangular quasi-Hopf algebra u(σ, ω). We are

interested in (σ, ω) such that the associated Nichols algebra B(V ) is �nite-dimensional; the corre-

sponding braiding matrices qij = σ(χi, χj) are classi�ed in [Hec09] and include those corresponding

to the Borel parts of small quantum groups. After �nding relations for the Nichols algebra, we

build the Drinfeld double of the Radford biproduct u(ω, σ)≤0 := B(V )#C[G]ω, which has also been

de�ned in the quasi-Hopf setting [HN99b]. After modding out a certain biideal, we end up with a

�nite-dimensional quasi-Hopf algebra u(ω, σ), which has a canonical quasi-triangular structure by

construction. In Chapter 5, we describe generators, relations, grouplikes, etc. for this quasi-Hopf

algebra.

In Chapter 6 we turn to our previous (extended) small quantum groups uq(g,Λ) = u(1, σ) with

σ(χi, χj) = q(αi,αj). In the �rst part of this thesis we have calculated the transparent objects of the

braided tensor category of representations Repuq(g,Λ). In Thm. 6.0.6 we now give for any suitable

datum (g, q,Λ, R0) an abelian 3-cocycle (σ̄, ω̄) on the dual of a certain subgroup Ḡ ⊆ Λ/Λ′, such

that the corresponding quasi-Hopf algebra u(σ̄, ω̄) constructed in the last chapter is a subalgebra
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of uq(g,Λ) and restriction along this algebra inclusion de�nes a modularization of Repuq(g,Λ). A

key ingredient here is Cor. 5.4.6, which guarantees that the transparent objects in Repuq(g,Λ) are

1-dimensional. This allows us to trace back the modularization of Repuq(g,Λ) to the modularization

of RepC[Λ/Λ′].
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Chapter 2. Preliminaries

2.1 Quasi-Hopf algebras

We start with the de�nition of a quasi-Hopf algebra as introduced in [Dri89].

De�nition 2.1.1. A quasi-bialgebra is an algebra H with algebra homomorphisms ∆ : H → H⊗H
and ε : H → k, together with an invertible coassociator φ ∈ H ⊗ H ⊗ H, such that the following

conditions hold:

(id⊗∆)(∆(a)) · φ = φ · (∆⊗ id)(∆(a))

(id⊗ id⊗∆)(φ) · (∆⊗ id⊗ id)(φ) = (1⊗ φ) · (id⊗∆⊗ id)(φ) · (φ⊗ id)

(ε⊗ id)∆(h) = h = (id⊗ ε)∆(h)

(id⊗ ε⊗ id)(φ) = 1

A quasi-antipode (S, α, β) for H consists of algebra anti-automorphism S : H → H, together with

elements α, β ∈ H, s.t.

S(h(1))αh(2) = ε(h)α, h(1)βS(h(2)) = ε(h)β,

X1βS(X2)αX3 = 1, S(x1)αx2βx3 = 1.

Similar to Sweedlers' notation, we used the short-hand notation φ = X1⊗X2⊗X3. For the inverse,

we use small letters φ−1 = x1⊗x2⊗x3. If more than one associator appears in an equation we use

letters X,Y, Z and x, y, z, respectively.

In the �rst condition, φ can be understood as a coassociativity constraint for the coproduct ∆. In

particular, φ = 1 ⊗ 1 ⊗ 1 implies coassociativity and H becomes an ordinary Hopf algebra. The

second condition guarantees that the representation category RepH of H has a canonical monoidal

structure by left-action of φ ∈ H ⊗H ⊗H:

Theorem 2.1.2. The category of representations of a quasi-Hopf algebra is a monoidal category if

endowed with a tensor product V ⊗W given by ∆, unit object given by kε and a nontrivial associator

(U ⊗ V )⊗W → U ⊗ (V ⊗W ) given by:

ωU,V,W : u⊗ v ⊗ w 7→ X1u⊗X2v ⊗X3w. (2.1)
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In fact, every �nite tensor category with quasi-�ber functor is equivalent to the representation

category of a quasi-Hopf algebra (see [EGNO15], Thm. 5.13.7). A canonical source of equivalences

between representation categories of quasi-Hopf algebras are twists:

De�nition 2.1.3. [HN99a] Let H be a quasi-bialgebra, and J ∈ H ⊗H an invertible element, s.t.

(ε⊗ id)(J) = (id⊗ ε)(J) = 1. Given a twist, we can de�ne a new quasi-bialgebra HJ which is H as

an algebra, with the same counit, the coproduct is given by

∆J(x) = J∆(x)J−1,

and the associator given by

φJ = URφU
−1
L ,

where UL := (J ⊗ 1)(∆⊗ id)(J) and UR := (1⊗ J)(id⊗∆)(J). Moreover, we have

αJ = S(J (−1))αJ (−2) βJ = J1βS(J2).

The quasi-bialgebra HJ is called twist equivalent to H, by the twist J = J1 ⊗ J2. If a twist appears

more then once in an equation, we use letters J,K,L,. . . for them.

Example 2.1.4. Let G be a �nite group, ω ∈ Z3(G,C×) be a group 3-cocycle. The dual algebra kG

equipped with the coassociator

φ =
∑

g1,g2,g3∈G
ω(g1, g2, g3) δg1 ⊗ δg2 ⊗ δg3 (where δg(h) := δg,h)

is a quasi-Hopf algebra which we denote by kGω .

The category of representations of kGω is identi�ed with the category VectωG of G-graded vector spaces

with associator ωg1,g2,g3
: (Cg1

⊗ Cg2
)⊗ Cg3

→ Cg1
⊗ (Cg2

⊗ Cg3
) for simple objects Cgi given by

ωg1,g2,g3
: 1g1

⊗ 1g2
⊗ 1g3

7→ ω(g1, g2, g3) · 1g1
⊗ 1g2

⊗ 1g3
.

The following example is due to [DPR92]:

Example 2.1.5. Again, let G be a �nite group, ω ∈ Z3(G,C×) be a group 3-cocycle. Then there

is a quasi-Hopf algebra Dω(G) with a basis g ⊗ δh. The coassociator of this quasi-Hopf algebra is

given by

φ =
∑

g1,g2,g3∈G
ω(g1, g2, g3) (e⊗ δg1

)⊗ (e⊗ δg2
)⊗ (e⊗ δg3

).

Product and coproduct are given by

(h1 ⊗ δg1
) · (h2 ⊗ δg2

) = δh1g1h
−1
1 ,g2

ω(h2, h1, h
−1
1 h−1

2 g2h1h2)ω(g2, h2, h1)

ω(h2, h
−1
2 g2h2, h1)

(h2h1 ⊗ δg2
)

∆(h⊗ δg) =
∑

g1g2=g

ω(h, h−1g1h, h
−1g2h)ω(g1, g2, h)

ω(g1, h, h−1g2h)
(h⊗ δg1

)⊗ (h⊗ δg2
)
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Moreover, there is a compatible R-matrix

R =
∑
g∈G

(e⊗ δg)⊗ (g ⊗ 1kG),

such that the category of representations is a braided monoidal category.

Modules over Dω(G) can be seen as Yetter-Drinfeld modules with a projective coaction instead

of an ordinary coaction (see [Maj98], Prop. 2.2 or [Voc10], Def. 6.1). More generally the following

universal construction has been estabilshed in [Sch02]:

Example 2.1.6. Let H be a quasi-Hopf algebra, then there is a Drinfeld double DH which is again

a quasi-Hopf algebra with R-matrix. For example in our �rst case DkGω = Dω(G).

It has the universal property that the braided category of DH-representation is equivalent to the

Drinfeld center of the monoidal category RepH of H-representations. Similarly, one can introduce

Yetter-Drinfeld modules over a quasi-Hopf algebra, and this braided monoidal category is equivalent

to the previous categories.

For later use, we introduce several important elements which were �rst de�ned in [Dri89]: He showed

that for an arbitrary quasi-Hopf algebra there is an invertible element f = f1⊗ f2 ∈ H ⊗H, which

we refer to as Drinfeld twist, satisfying

f∆(S(h))f−1 = (S ⊗ S)(∆cop(h)). (2.2)

Before we give f and f−1 explicitly, we follow [BN02] by de�ning elements

pR = p1 ⊗ p2 = x1 ⊗ x2βS(x3) pL = p̃1 ⊗ p̃2 : = X2S−1(X1β)⊗X3

qR = q1 ⊗ q2 = X1 ⊗ S−1(αX3)X2 qL = q̃1 ⊗ q̃2 : = S(x1)αx2 ⊗ x3,

satisfying the following useful equalities:

∆(h(1))pR(1⊗ S(h(2))) = pR(h⊗ 1) ∆(h(2))pL(S−1(h(1))⊗ 1) = pL(1⊗ h) (2.3)

(1⊗ S−1(h(2)))qR∆(h(1)) = (h⊗ 1)qR (S(h(1))⊗ 1)qL∆(h(2)) = (1⊗ h)qL. (2.4)

Furthermore, we de�ne elements

δ = δ1 ⊗ δ2 = x1βS(x3
(2)p̃

2)⊗ x2S(x3
(1)p̃

1) (2.5)

γ = γ1 ⊗ γ2 = S(q2x1
(2))x

2 ⊗ S(q1x1
(1))αx

3 (2.6)

The Drinfeld twist f and its inverse f−1 are then explicitly given by:

f = (S ⊗ S)(∆cop(p1))γ∆(p2)

f−1 = ∆(q̃1)δ(S ⊗ S)(∆cop(q̃2)).
(2.7)
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In addition to Eq. 2.2, the Drinfeld twist satis�es

f∆(α) = γ ∆(β)f−1 = δ.

Let J ∈ H ⊗ H be a twist. The respective elements on the twisted quasi-Hopf algebra HJ are

denoted by pJ , qJ , δJ , . . . . Using the above identities, one can show:

pRJ = U1
Lp

1 ⊗ U2
Lp

2
RS(U3

L) pLJ = U2
Rp̃

1S−1(U1
R)⊗ U3

Rp̃
2

qRJ = q1U
(−1)
L ⊗ S−1(U

(−3)
L )q2U

(−2)
L qLJ = S(U−1

R )q̃1U
(−2)
R ⊗ q̃2U

(−3)
R

fJ = S(J (−2))f1K(−1) ⊗ S(J (−1))f2K(−2) f−1
J = J1f (−1)S(K2)⊗ J2f (−2)S(K1).

Finally, we introduce the notion of a quasitriangular ribbon quasi-Hopf algebra. We start with the

notion of quasi-triangularity:

De�nition 2.1.7. A quasi-triangular quasi-Hopf algebra is a quasi-Hopf algebra H together with

an invertible element R ∈ H ⊗H, the so-called R-matrix, s.t. the following conditions are ful�lled:

R∆(h) = ∆op(h)R ∀h ∈ H

(∆⊗ id) = φ321R13φ
−1
132R23φ

(id⊗∆) = φ−1
231R13φ213R12φ

−1

The de�nition of a quasi-triangular quasi-Hopf algebra has an important symmetry: If R = R1 ⊗
R2 ∈ H ⊗H is an R-matrix for H, then so is R−1

21 ∈ H ⊗H.

The following lemma is proven in [BN03]:

Lemma 2.1.8. Let (H,R) be a quasi-triangular quasi-Hopf algebra. We de�ne the Drinfeld element

u ∈ H as follows:

u := S(R2p2)αR1p1.

This element is invertible and satis�es S2(h) = uhu−1.

We will need the following Lemma in Section 5.6:

Lemma 2.1.9. Let H be a quasi-Hopf algebra. Assume that δ(S⊗S)(γ21) = βS(α)⊗βS(α). Then

we have

∆(βS(α)) = (βS(α)⊗ βS(α)) (S ⊗ S)(f−1
21 )f.

Proof. We have

∆(βS(α)) = ∆(β)∆(S(α)) = δf∆(S(α)) = δ(S ⊗ S)(∆cop(α))f

= δ(S ⊗ S)(f−1
21 γ21)f = δ(S ⊗ S)(γ21)(S ⊗ S)(f−1

21 )f

= (βS(α)⊗ βS(α)) (S ⊗ S)(f−1
21 )f.
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We now recall the de�nition of a ribbon quasi-Hopf algebra. It has been shown in [BN03] that the

following de�nition of a quasi-triangular ribbon quasi-Hopf algebra is equivalent to the original one

given in [AC92].

De�nition 2.1.10. A quasi-triangular quasi-Hopf algebra (H,R) is called ribbon if there exists a

central element ν ∈ H, s.t.

ν2 = uS(u), S(ν) = ν,

ε(ν) = 1, ∆(ν) = (ν ⊗ ν)(R21R)−1.

We will need the following Lemma in Section 5.6:

Lemma 2.1.11. Let (H,R) be a quasi-triangular quasi-Hopf algebra with Drinfeld element u ∈ H.

As in Lemma 2.1.9, we assume that δ(S ⊗ S)(γ21) = βS(α) ⊗ βS(α) holds. Then ν := βS(α)u

satis�es the condition ∆(ν) = (ν ⊗ ν)(R21R)−1.

Proof. In [BN03], the authors prove the following identity:

∆(u) = f−1(S ⊗ S)(f21)(u⊗ u)(R21R)−1.

Using this and Lemma 2.1.9, we obtain

∆(ν) = ∆(βS(α)u) = ∆(βS(α))∆(u)

= (βS(α)⊗ βS(α)) (S ⊗ S)(f−1
21 )ff−1(S ⊗ S)(f21)(u⊗ u)(R21R)−1 = (ν ⊗ ν)(R21R)−1.

2.2 Abelian 3-cocycles on G

From now on, let G be a �nite abelian group.

De�nition 2.2.1. [Mac52][JS93]1 An abelian 3-cocycle (σ, ω) ∈ Z3
ab(G) is a pair consisting of a

ordinary 3-cocycle ω ∈ Z3(G,C×) and an ordinary 2-cochain σ ∈ C2(G,C×), s.t. the following two

equations hold:

ω(y, x, z)

ω(x, y, z)ω(y, z, x)
=

σ(x, y + z)

σ(x, y)σ(x, z)
(2.8)

ω(z, x, y)ω(x, y, z)

ω(x, z, y)
=

σ(x+ y, z)

σ(x, z)σ(y, z)
(2.9)

An abelian 3-coboundary is of the form dabκ := (κ/κT , dκ−1) for any ordinary 2-cochain κ ∈
C2
ab(G) := C2(G,C×). Here, κT (x, y) := κ(y, x). The quotient group of abelian cohomology classes

is the abelian cohomology group H3
ab(G).

1Note that we follow [JS93] and thus have a di�erent convention than [Mac52], this amounts to having ω−1

everywhere.
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Theorem 2.2.2. [Mac52] To any abelian 3-cocycle (ω, σ) there is an associated quadratic form

Q(g) := σ(g, g) on the group G and the associated symmetric bihomomorphism B(g, h) := σ(g, h)σ(h, g).

We have an identity

B(g, h) =
Q(x+ y)

Q(x)Q(y)
. (2.10)

This implies, that the symmetric bihomomorphism B characterizes the quadratic form up to a ho-

momorphism η ∈ Hom(G, {±1}).
The assignment Φ : (ω, σ) 7→ Q yields a group isomorphism between abelian 3-cohomology classes

H3
ab(G) and quadratic forms QF (G) on G.

As we shall see in the next section, abelian cohomology classes classify di�erent braiding/tensor

structures on the category of G-graded vector spaces.

Example 2.2.3. For G = Zn we have two cases

• For odd n we have H3
ab(Zn) = Zn with representatives (ω, σ) for k = 0, . . . n − 1 given by

σ(gi, gj) = ζkijn , ω = 1 and the respective quadratic form is given by

Q(gi) = ζki
2

n , B(gi, gj) = ζ2kij
n

• For even n we have H3
ab(Zn) = Z2n with quadratic forms for k = 0, . . . 2n− 1

Q(gi) = ζki
2

2n , B(gi, gj) = ζ2kij
2n

For even k we have again representatives given by σ(gi, gj) = ζ
(k/2)ij
n , ω = 1, but for odd k

we have only representatives with ω in the nontrivial cohomology class of H3(Zn,Z2).

In particular G = Z4 has four abelian cohomology classes, two of which have trivial ω, and two of

which have nontrivial ω and nondegenerate B.

Proposition 2.2.4. Let G =
⊕n

i=1 Zmi be a �nite abelian group with generators gi, i = 1, . . . n.

1. A quadratic form Q ∈ QF (G) is uniquely determined by elements 0 ≤ ri ≤ gcd(2,mi)mi − 1

and 0 ≤ rkl ≤ gcd(mk,ml)− 1 (for k < l), so that

Q(gi) = exp

(
2πi · ri

gcd(2,mi)mi

)
B(gk, gl) = exp

(
2πi · rkl

gcd(mk,ml)

)
(k < l).

2. For a quadratic form Q ∈ QF (G), the abelian 3-cocycle (ω, σ) ∈ Z3
ab(G) given by

σ(a, b) : =

n∏
i=1

Q(gi)
aibi

∏
1≤k<l≤n

B(gk, gl)
akbl

ω(a, b, c) : =

n∏
i=1

Q(gi)
miδai+bi≥mici

satis�es Q(g) = σ(g, g).
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Proof. From Theorem 2.2.2 it is easy to see that for an element g = gx1
1 . . . gxnn ∈ G, Q(g) decom-

poses as follows:

Q(g) =

n∏
i=1

Q(gi)
x2
i ·
∏
i<j

B(gk, gl)
xkxl .

As B is a bihomomorphism on the �nite abelian group G, we have

B(gk, gl) = exp

(
2πi · rkl

gcd(mk,ml)

)
for some 0 ≤ rkl ≤ gcd(mk,ml)− 1. From this formula also follows

Q(gi) = exp

(
2πi · r̃i
m2
i

)
for some 0 ≤ r̃i ≤ m2

i − 1. Combining this with the axiom Q(gi) = Q(−gi) leads to

Q(gi) = exp

(
2πi · ri

gcd(2,mi)mi

)
for some 0 ≤ ri ≤ gcd(2,mi)mi−1. It is a straightforward computation to check that the pair (ω, σ)

de�ned in the second part of the proposition satis�es the axioms of an abelian 3-cocycle. Finally,

using the above decomposition of Q(g), it is easy to see that σ(g, g) = Q(g).

2.3 Modular structures on VectG

Theorem 2.3.1. Let (σ, ω) ∈ Z3
ab(G) be an abelian 3-cocycle on the �nite abelian group G. This

induces a canonical braided monoidal structure on the category VectG of G-graded vector spaces.

On simple objects Cgi , associator, unitors and braiding are given by:

ωg1,g2,g3 : (Cg1 ⊗ Cg2)⊗ Cg3 → Cg1 ⊗ (Cg2 ⊗ Cg3), 1g1 ⊗ 1g2 ⊗ 1g3 7→ ω(g1, g2, g3) · 1g1 ⊗ 1g2 ⊗ 1g3

lg : C0 ⊗ Cg → Cg, 10 ⊗ 1g 7→ ω(0, 0, g)−1 · 1g
rg : Cg ⊗ C0 → Cg, 1g ⊗ 10 7→ ω(g, 0, 0) · 1g

σg1,g2 : Cg1 ⊗ Cg2 → Cg2 ⊗ Cg1 , 1g1 ⊗ 1g2 7→ σ(g1, g2) · 1g1 ⊗ 1g2 .

The resulting braided monoidal category is denoted by Vect
(σ,ω)
G . All braided monoidal structures

on VectG are classi�ed up to braided monoidal equivalence by the third abelian cohomology group

H3
ab(G) modulo automorphisms on G.

Proof. This is Exercise 8.4.8 in [EGNO15].

Remark 2.3.2. Since every 3-cocycle is equivalent to a normalized one, we can choose the unitors

to be trivial.
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We recall the de�nition of a pre-modular category and modularization in the semisimple case:

De�nition 2.3.3. A fusion category is a rigid semisimple k-linear monoidal category C with only

�nitely many isomorphism classes of simple objects, such that End(I) ∼= k. A braided fusion category

is called pre-modular if it has a ribbon structure, i.e. an element θ ∈ Aut(idC), s.t.

θX⊗Y = (θX ⊗ θY ) ◦ cY,X ◦ cX,Y
(θX)∗ = θX∗ ,

where c denotes the braiding in C.

De�nition 2.3.4. In a pre-modular category, we have categorical traces and categorical dimensions:

tr(f) : = dX ◦ cX,X∗ ◦ ((θX ◦ f)⊗ idX∗) ◦ bX : I→ I f ∈ End(X)

dim(X) : = tr(idX) X ∈ C,

where d and b denote evaluation and coevaluation in the rigid category C.

De�nition 2.3.5. Let C be a pre-modular category. The so-called S-matrix of C, S = (SXY )X,Y ∈O(C),

is indexed by the set O(C) of isomorphism classes of simple objects in C with entries de�ned by

SXY := tr(cY,XcX,Y ).

A pre-modular category is said to be modular if its S-matrix is non-degenerate. A linear ribbon

functor F : C → D between pre-modular categories is said to be a modularization if

1. it is dominant, i.e. for every object D ∈ D we have idD = p ◦ i for some i : D → F (C),

p : F (C)→ D, C ∈ C.

2. D is modular.

If such a functor exist, then C is called modularizable.

Lemma 2.3.6. For an abelian 3-cocycle (σ, ω) ∈ Z3
ab(G), let Vect

(σ,ω)
G be the corresponding braided

monoidal category from Thm. 2.3.1. For a character η : G → {±1}, the twist Θg : Cg → Cg given

by multiplication with Q(g) · η(g) de�nes a ribbon structure on Vect
(σ,ω)
G . We denote the resulting

ribbon catgegory by Vect
(σ,ω,η)
G . All ribbon structures on VectG up to ribbon category equivalence are

classi�ed by elements (Q, η) ∈ QF (G)⊕Hom(G, {±1}) modulo autmorphisms on G.

Proof. We have already seen that braided monoidal structures on VectG are classi�ed by H3
ab(G)

modulo automorphisms on G. By Theorem 2.2.2 for every such class there is a unique quadratic

form Q, which satis�es equation 2.10. This means that the quadratic form de�nes a ribbon structure.

On the other hand, the theorem says that two quadratic forms have the same associated symmetric

bihomomorphism Q(x+y)
Q(x)Q(y) if and only if they di�er by a homomorphism η : G → {±1}. From
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exercise 8.4.6 in [EGNO15] we know that a braided monoidal equivalence between Vect
(σ1,ω1)
G and

Vect
(σ2,ω2)
G is uniquely determined by an automorphism f : G → G s.t. Q1 = Q2 ◦ f together

with some choice of κ : G × G → C, s.t. dabκ = (ω1, σ2)−1f∗(ω2, σ2). Given a ribbon structure

η1 ∈ Hom(G, {±1}) on Vect
(σ1,ω1)
G and η2 = η1 ◦f−1 on Vect

(σ2,ω2)
G it is easy to see that this functor

is a ribbon equivalence.

Remark 2.3.7. By de�nition of the associated symmetric bilinear form B of (σ, ω) ∈ Z3
ab(G), the

pre-modular category Vect
(σ,ω,η)
G is modular if and only if B is non-degenerate.
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Chapter 3. Modularization of Vect
(ω,σ)
G

Proposition 3.0.1. For a given ribbon structure (σ, ω, η) on VectG, the pre-modular category

Vect
(σ,ω,η)
G is modularizable if and only if both Q and η are trivial on the radical T := Rad(B)

of the associated symmetric bilinear form B : G × G → C× of (σ, ω) ∈ Z3
ab(G). Explicitly, we

construct a functor

F : Vect
(σ,ω,η)
G → Vect

(σ̄,ω̄,η̄)
G/T

to a modular category Vect
(σ̄,ω̄,η̄)
G/T , where the triple (σ, ω, η) on G factors to a triple (σ̄, ω̄, η̄) on G/T .

Proof. By Paragraph 2.11.6 in [DGNO10] we have dim(Cg) = η(g). Then, the �rst part of the

proposition is an easy application of theorem 3.1 in [Bru00]. We now construct the modularization

functor explicitly:

Let Vect
(σ,ω,η)
G be a pre-modular category satisfying the conditions in proposition 3.0.1.

We �rst want to �nd the modular target category of the modularization functor:

The condition Q|T = 1 implies that Q factors to a well-de�ned quadratic form Q̄ : G/T → C×. Let
(σ̄, ω̄) ∈ Z3

ab(G/T ) denote a representative of Φ−1(Q̄), where the isomorphism Φ : H3
ab(G/T ) →

QF (G/T ) was introduced in theorem 2.2.2. Furthermore, since η : G → C× was a character,

η|T = 1 implies that it factors through a character η̄ : G/T → C×. Hence, we obtain a pre-modular

category Vect
(σ̄,ω̄,η̄)
G/T . Since T was de�ned as the radical of B, the new associated symmetric form

B̄ : G/T ×G/T → C× is non-degenerate and by remark 2.3.7, Vect
(σ̄,ω̄,η̄)
G/T is even modular.

Now, we need to construct a linear ribbon functor F : Vect
(σ,ω,η)
G → Vect

(σ̄,ω̄,η̄)
G/T :

Clearly, the projection π : G → G/T induces a functor VectG → VectG/T . We want to endow this

functor with a monoidal structure that is compatible with braiding and twist. This amounts to

�nding a 2-cochain κ : G×G→ C, s.t.

π∗(σ̄, ω̄) = dabκ · (σ, ω).

Since the associated quadratic form of the abelian 3-cocycle (σ̃, ω̃) = (σ, ω)−1π∗(σ̄, ω̄) vanishes by

assumption and since Φ is an isomorphism, (σ̃, ω̃) must be an abelian coboundary, hence κ exists.
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Compatibility with the twist is due to η̄ ◦ π = η and Q̄ ◦ π = Q. This functor is clearly dominant,

since it sends simple objects to simple objects and all simple are in the image.

Remark 3.0.2. In [Bru00], the modularised category is constructed as the category of modules of a

commutative algebra T inside the non-modular category C. As an object, T is the direct sum of all

transparent objects. We remark that in our case C = Vect
(σ,ω,η)
G our explicit modularization functor

and our modularised category is equivalent to Brugieres' construction for T := ⊕t∈T Ct.
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Chapter 4. Quantum groups uq(g,Λ) and R-matrices

In this section, we recall the some results from the �rst part. To begin with, we collect some data

in order to de�ne the small quantum group uq(g,Λ):

In the following, let

• g be a simple complex �nite-dimensional Lie algebra with simple roots α1, . . . , αn and Killing

form (αi, αj),

• q be a primitive `th root of unity, where ` ∈ N,

• ΛR ⊆ Λ ⊆ ΛW be an intermediate lattice between the root lattice ΛR and weight lattice ΛW

of g, equivalently a subgroup of the fundamental group H ⊆ π1 := ΛW /ΛR,

• Λ′ be the centralizer of the root lattice with respect to Λ,

Λ′ = CentΛR(Λ) := {α ∈ ΛR | q(α,ν) = 1 ∀ν ∈ Λ}

and the quotient group G := Λ/Λ′,

• ΛR ⊆ Λ1,Λ2 ⊆ Λ sublattices, equivalently subgroups Gi := Λi/Λ
′ ⊆ G of common index

d := |Gi|, s.t. G1 + G2 = G. Note that in all cases except g = D2n, we have a cyclic

fundamental group and thus Λ1 = Λ2 = Λ and G1 = G2 = G,

• f : G1 ×G2 → C× be a non-degenerate bilinear form,

• Hi := Λi/Λ ⊆ H.

Theorem 4.0.1. [LO17] For the above data, let uq(g,Λ) be the so-called small quantum group with

coradical u0
q(g,Λ) ∼= C[G], as de�ned for example in [Len16], Def. 5.3. In most cases, this will be

isomorphic to the Frobenius-Lusztig kernel.

Then, an R-matrix for this quantum group is given by

R = R0(f)Θ̄,
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where Θ ∈ u−q (g,Λ)⊗ u+
q (g,Λ) is the universal quasi-R-matrix constructed by Lusztig (see [Lus93],

Thm. 4.1.2.) and R0(f) is given by

R0(f) :=
1

d

∑
µ∈G1ν∈G2

f(µ, ν)Kµ ⊗Kν ∈ u0
q(g,Λ)⊗ u0

q(g,Λ).

The non-degenerate bilinear form f : G1 ×G2 → C× is of the explicit form

f(µ, ν) = q−(µ,ν) · g(µ̄, ν̄), (4.1)

where g : H1 ×H2 → C× is another bilinear form.

Moreover, every small quantum group uq(g,Λ) with R-matrix of the form R0(f)Θ̄ admits a ribbon

element of the form ν = γ−1u, where u denotes the Drinfeld element in uq(g,Λ) and γ is a spherical

pivotal element in uq(g,Λ).

In [LO17], we listed all possible bilinear forms g, s.t. the corresponding bilinear form f is non-

degenerate. Furthermore, we gave necessary and su�cient conditions on f for the corresponding

R-matrix R = R0(f)Θ̄ to be factorizable and checked again explicitly when this will be the case.

Remark 4.0.2. The element R0(f) ∈ C[G]⊗C[G] itself is an R-matrix of the group algebra C[G],

leading to a braiding σ in the category RepC[G]
∼= RepG ∼= VectĜ which is de�ned on simple objects

(i.e. characters) Cχ,Cψ ∈ VectĜ by

σχ,ψ(1χ ⊗ 1ψ) =

1

d

∑
µ∈G1ν∈G2

f(µ, ν)χ(µ)ψ(ν)

 · 1ψ ⊗ 1χ

= χ
(
f−1(ψ̄|G2

)
)
· 1ψ ⊗ 1χ

= σ(χ, ψ) · 1ψ ⊗ 1χ,

where in the second line the bicharacter f : G1 × G2 → C× is interpreted as a homomorphism

G1 → Ĝ2. From this, it is clear that σ is a bilinear form on Ĝ.

So far, we introduced the small quantum group uq(g,Λ) associated to a simple Lie algebra g, an

intermediate lattice ΛR ⊆ Λ ⊆ ΛW and an `th root of unity q with R-matrix induced by a bilinear

form f . We now look at the explicit case g = sl2, Λ1 = Λ2 = ΛW .

Example 4.0.3. • The Cartan part uq(sl2,ΛW )0 of this quantum group is given by C[G] =

C[ΛW /CentΛR(ΛW )]. Since ΛR = 2ΛW = Z · α, we have G ∼= Z2`.

• For the de�ning bilinear form f : G × G → C× of the R0-matrix we have two possibilities,

namely f± (λ, λ) = ±q−(λ,λ) = ± exp(−πi` ), where λ = [α2 ] is a generator of G. From table

1 in [LO17], we see that in the case 2 - ` only f+ is non-degenerate. In the even case, both

choices are allowed.
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• The radical Rad(f ·fT ) ⊆ G is given by `ΛW /`ΛR ∼= Z2. Dualizing the representation category

of C[G] with braiding induced by f± leads to the braided monoidal category Vect
(σ±,1)

Ĝ
, where

σ±(χ, χ) := f±(λ, λ)−1, where χ := f(λ,_) is a generator of Ĝ. We always use the non-

degenerate form f to identify G and Ĝ. In particular, the radical T := Rad(B) ⊆ Ĝ is

isomorphic to, but not equal to the dual of Rad(f · fT ). It is generated by τ := χ`.

• We now want to check, when the conditions for modularizability given in proposition 3.0.1 are

satis�ed. It is easy to see that the corresponding quadratic form Q±(χ) = σ±(χ, χ) is trivial

on T if and only if Q± = Q(−1)` . Combined with the non-degeneracy condition from above,

this excludes the case 2 - `. From now on, we restrict to the case 2 | ` and f = f+. Here,

both possibilities η±(χ) = ±1 are allowed. We are now looking for an explicit abelian 3-cocycle

(σ̄, ω̄) ∈ Z3
ab(Ĝ/T ) corresponding to the pushed down quadratic form Q̄+(χ̄) = Q+(χ) on

Ĝ/T . It turns out that the following de�nition does the job:

ω̄(χ̄i, χ̄j , χ̄k) : = q
i(j+k−[j+k])

2 0 ≤ i, j, k ≤ `− 1

σ̄(χ̄i, χ̄j) : = q
ij
2 0 ≤ i, j ≤ `− 1.

It is immediately clear, that σ̄ won't be bilinear anymore. For further use, we introduce a

2-cochain

ζt(χ̄
i, χ̄j) :=

q
−tj

2 if i odd

1 else
0 ≤ i, j ≤ `− 1, 2 - t,

leading to an equivalent abelian 3-cocycle (ω̄t, σ̄t) = (dζtω̄,
ζt
ζTt
σ̄):

ω̄t(χ̄
i, χ̄j , χ̄k) : =

q−tk if i, j odd

1 else
0 ≤ i, j, k ≤ `− 1

σ̄t(χ̄
i, χ̄j) : = q

(i−δ2-it)(j+δ2-jt)+t
2

2 0 ≤ i, j ≤ `− 1.

• Summarizing: For Λ = ΛW , we have for ` odd a single R-matrix, which is not modularizable

and for ` even, we have two R-matrices, one of which is not modularizable and one of which

modularizes to a modular tensor category with |Z`| = ` many simple objects. We have two

choices for the ribbon structure in this category.
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Chapter 5. De�nition of a quasi-Hopf algebra u(ω, σ)

Let k be an algebraically closed �eld of characteristic zero. In this section we construct a quasi-Hopf

algebra u(ω, σ) from the following data:

• a �nite abelian group G

• an abelian 3-cocycle (ω, σ) ∈ Z3
ab(Ĝ) on its dual

• a subset {χi ∈ Ĝ }1≤i≤n ⊆ Ĝ

The following theorem summarizes the results of this chapter:

Theorem 5.0.1. Given the above data, there is a quasi-Hopf algebra u(ω, σ) with the following

properties:

1. The quasi-Hopf algebra u(ω, σ) contains kĜω (see Ex. 2.1.4) as a quasi-Hopf subalgebra. We

introduce the elements

Kχ : =
∑
ψ∈Ĝ

σ(χ, ψ) δψ ∈ kĜ

K̄χ : =
∑
ψ∈Ĝ

σ(ψ, χ) δψ ∈ kĜ

They are grouplike if and only if the 2-cocycle θ(χ) ∈ Z2(Ĝ) de�ned in 5.1.5 is trivial.

2. Let V be the k-vector space spanned by basis elements {Fi}1≤i≤n and endowed with the Yetter-

Drinfeld module structure over kĜω from Cor. 5.1.4. In particular, action, coaction and braiding

are given by:

L.Fi : = χ̄i(L) L ∈ G ∼= ̂̂
G ⊆ kĜ,

δ(Fi) : = Li ⊗ Fi, Li := Kχ̄i

cV,V (Fi ⊗ Fj) : = qijFj ⊗ Fi, qij := σ(χ̄i, χ̄j).

Let B(V ) denote the corresponding Nichols algebra (see Section 5.2). We assume B(V ) to be

�nite-dimensional. The quasi-Hopf algebra u(ω, σ) contains the Radford biproduct u(ω, σ)≤ :=
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B(V )#kĜω (see Section 5.3) as a quasi-Hopf subalgebra. Explicit relations are given in Cor.

5.2.4 and Prop. 5.3.1. Under the assumption from Def. 5.0.3, they simplify considerably (see

Ex. 5.0.5).

3. The quasi-Hopf algebra u(ω, σ) is a quotient of the Drinfeld double D(u(ω, σ)≤) (see Section

5.4.2) of the Radford biproduct u≤0 1. After de�ning certain elements Ei ∈
(
u≤0

)∗
the quasi-

quantum group u(ω, σ) is generated by Ei's, Fj's and δχ's. Note that the elements Kχ do not

necessarily form a basis of kĜ. A full list of relations is given at the end of Section 5.5.

4. The �nite-dimensional quasi-Hopf algebra u(ω, σ) has a canonical quasi-triangular structure

de�ned in Section 5.6.

5. As a vector space, we have u(ω, σ) ∼= B(V )⊗ kG⊗B(V ∗).

Example 5.0.2. The reader familiar with ordinary quantum groups at roots of unity would certainly

expect such a construction of a "quasi-quantum group", since up to the up to the technicalities of

quasi-Hopf algebras it is based on the construction of quantum groups as Drinfeld doubles of Nichols

algebras [AS02].

De�nition 5.0.3. For a given datum (ω, σ, χi ∈ Ĝ) as above, the abelian 3-cocycle (ω, σ) ∈ Z3
ab(Ĝ)

is called nice if the following two conditions are ful�lled:

ω(χi, χj , ψ) = ω(χj , χi, ψ) ∀ψ ∈ Ĝ

ω(χ̄i, χi, ψ) = 1 ∀ψ ∈ Ĝ.

Lemma 5.0.4. Let G =
⊕n

i=1 Zmi be a �nite abelian group with generators gi, i = 1, . . . n.

Every abelian 3-cocycle (ω, σ) ∈ Z3
ab(G) is cohomologous to a nice abelian 3-cocycle. An explicit

representative is given by:

ω(a, b, c) : =

n∏
i=1

Q(gi)
miδai+bi≥mici .

Proof. This is the second part of Prop. 2.2.4.

Example 5.0.5. Let (ω, σ) ∈ Z3
ab(Ĝ) be a nice abelian 3-cocycle in the sense of Def. 5.0.3. Then,

the quasi-Hopf algebra u(ω, σ) is generated by elements Ei, Fi and δχ for 1 ≤ i ≤ n and χ ∈ Ĝ.
We have the same quasi-Hopf algebra relations as for an arbitrary abelian 3-cocycle, except that the

braided commutator simpli�es to:

[EiKχi , Fj ]σ = δijσ(χi, χ̄i)
(
1− K̄χiKχi

)
.

1In contrast to the (ω = 1)-case, D(u(ω, σ)≤) contains uu(ω, σ)≤ as a quasi-Hopf subalgebra, but not (u(ω, σ)≤)∗,

which is a coquasi-Hopf algebra
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Example 5.0.6. We now �x a datum (g, q,Λ,Λ1,Λ2,Λ
′, f) as in Section 4. On Ĝ := Λ̂/Λ′, we

de�ne a bihomomorphism σ as in Remark 4.0.2 and set ω = 1. Moreover, we de�ne χi := q(αi,_)

for a choice of simple roots αi ∈ ΛR. From Ex. 5.0.5 it is easy to see that in this case, u(ω, σ) turns

out to be the ordinary extended small quantum group uq(g,Λ) as introduced in Section 4.

We now construct the quasi-Hopf algebra from the previous Theorem step-by-step, starting with

the Yetter-Drinfeld module V over the quasi-Hopf algebra kĜω .

5.1 A Yetter-Drinfeld module

We start with the de�nition of a Yetter-Drinfeld module over a quasi-Hopf algebra H.

De�nition 5.1.1. [Maj98][Sch02] Let H be a quasi-Hopf algebra. Let ρ : H ⊗ V → V be a left

H-module and let δ : V → H ⊗ V , v 7→ v[−1] ⊗ v[0] be a linear map, s.t.

1. (ε⊗ id) ◦ δ = id

2. X1(Y 1.v)[−1](1)Y
2 ⊗X2(Y 1.v)[−1](2)Y

3 ⊗X3.(Y 1.v)[0]

= X1v[−1] ⊗ (X2.v[0])[−1]X
3 ⊗ (X2.v[0])[0]

3. h(1)v[−1] ⊗ h(2)v[0] = (h(1).v)[−1]h(2) ⊗ (h(1).v)[0],

where φ = X1 ⊗X2 ⊗X3 = Y 1 ⊗ Y 2 ⊗ Y 3 denotes the associator of H. Then, the triple (V, ρ, δ) is

called a Yetter-Drinfeld module over H.

Obviously, for φ = 1 ⊗ 1 ⊗ 1 this matches the usual de�nition of a Yetter-Drinfeld module. As in

this case, we have the following:

Proposition 5.1.2. [Maj98] [BN02] Let H be a quasi-Hopf algebra. The category H
HYD of Yetter-

Drinfeld modules over H is a braided monoidal category, with usual tensor product V ⊗ W of

H-modules V,W ∈ H
HYD. The comodule structure on V ⊗W is given by

δV⊗W (v ⊗ w) =X1(x1Y 1 · v)[−1]x
2(Y 2 · v)[−1]X

3

⊗X2 · (x1Y 1 · v)[0] ⊗X3x3(Y 2 · v)[0].

The associator in H
HYD is the same as in RepH and the braiding given by

cV,W (v ⊗ w) = v[−1].w ⊗ v[0].

If we plug in the data of the twisted dual group algebra kGω from example 2.1.4, the above de�nition

simpli�es signi�cantly [Maj98]:

Lemma 5.1.3. For A a �nite abelian group, a Yetter-Drinfeld module over kGω consists of the

following data:
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• a A-graded vector space V =
⊕

a∈A Va with basis {Fi}i∈I in degrees ai := |Fi|

• a map ρ : kA⊗ V → V , a⊗ Fi 7→ a.Fi, s.t.

a1.(a2.Fi) =
ω(ai, a1, a2)ω(a1, a2, ai)

ω(a1, ai, a2)
(a1 + a2).Fi, Fi = 0.Fi, |a.Fi| = |Fi|. (5.1)

The �rst condition in the previous lemma is very similar to the de�ning relations of an abelian

3-cocycle (see 2.2.1). This implies

Corollary 5.1.4. Let (σ, ω) ∈ Z3
ab(Ĝ) be an abelian 3-cocycle and {χi}i∈I ⊆ Ĝ a subset. Then,

setting V :=
⊕

i∈I k · Fi, with homogeneous degrees |Fi| = χ̄i and action

ρ : kĜ⊗ V −→ V

χ⊗ Fi 7−→ σ(χ̄i, χ)Fi,

indeed de�nes a Yetter-Drinfeld module over kĜω . Note that substituting σ by (σT )−1 would also

work.

Remark 5.1.5. Note that a dual of V is given by V ∨ = V ∗ =
⊕

i∈I k · F ∗i , with homogeneous

degrees |Fi| = χi and action

ρ∨ : χ⊗ F ∗i 7→ θ(χ̄)(χχi, χ̄i)dσ(χi, χ, χ̄)−1σ(χ̄i, χ̄)F ∗i = σ(χi, χ)F ∗i ,

where θ(χ)(ψ1, ψ2) ∈ Z2(G, kG) is the 2-cocycle de�ned by

θ(χ)(ψ1, ψ2) :=
ω(χ, ψ1, ψ2)ω(ψ1, ψ2, χ)

ω(ψ1, χ, ψ2)
.

The evaluation V ∨ ⊗ V → k is given by F∨i ⊗ Fj 7→ δi,j.

5.2 A Nichols algebra

We now give relations for the corresponding Nichols algebra B(V ) ∈ kGω
kGω
YD of the Yetter-Drinfeld

module V constructed in Corollary 5.1.4.

As in the Hopf-case (see [Hec08]), the Nichols algebra B(V ) =
⊕

n≥0 B
nV := T (V )/I of V is a

quotient of the tensor (Hopf-)algebra T (V ) :=
⊕

n≥0 T
nV in

kGω
kGω
YD by the maximal Hopf ideal I,

s.t. B1V := V are exactly the primitive elements in B(V ). A brief introduction to Nichols algebras

in arbitrary abelian braided monoidal categories is given in App. B. Details can be found in [BB13].

Since we are dealing with a non-trivial associator, we have to �x a bracketing TnV := Tn−1V ⊗ V
and T 0V := k. Accordingly, we de�ne Fni := Fn−1

i Fi for primitive generators Fi ∈ V ⊆ B(V ).

In order to compare our results with [Ros98], we use the short-hand notation qij := σ(χ̄i, χ̄j). In

particular, we will see that the resulting relation for the adjoint representation on B(V ) depends

only on qij and not on the 3-cocycle ω.
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Lemma 5.2.1. For k, l ∈ Z≥0, let a
i
k,l ∈ k× denote the elements de�ned by F ki F

l
i = aik,lF

k+l
i . They

are given explicitly by aik,l :=
∏l−1
r=0 ω(χ̄ki , χ̄

r
i , χ̄i)

−1 and satisfy the following identities:

1.
aik,l+ma

i
l,m

aik+l,ma
i
k,l

= ω(χ̄ki , χ̄
l
i, χ̄

m
i )−1

2. aik,l =
σ(χ̄ki ,χ̄

l
i)

qklii
ail,k.

Proof. We prove the �rst part by induction in m. The case m = 0 is trivial. For

aik,l+m+1a
i
l,m+1

aik+l,m+1a
i
k,l

=
aik,l+ma

i
l,m

aik+l,ma
i
k,l

ω(χ̄l+ki , χ̄mi , χ̄i)

ω(χ̄ki , χ̄
l+m
i , χ̄i)ω(χ̄li, χ̄

m
i , χ̄i)

=
ω(χ̄k+l

i , χ̄mi , χ̄i)

ω(χ̄ki , χ̄
l
i, χ̄

m
i )ω(χ̄ki , χ̄

l+m
i , χ̄i)ω(χ̄li, χ̄

m
i , χ̄i)

= ω(χ̄ki , χ̄
l
i, χ̄

m+1
i )−1.

For the second part, we compute:

ak+1,l =

l−1∏
r=0

ω(χ̄k+1
i , χ̄ri , χ̄i)

−1

=

l−1∏
r=0

ω(χ̄i, χ̄
k
i , χ̄

r+1
i )

ω(χ̄i, χ̄ki , χ̄
r
i )ω(χ̄ki , χ̄

r
i , χ̄i)ω(χ̄i, χ̄

k+r
i , χ̄i)

= ω(χ̄i, χ̄
k
i , χ̄

l
i)ak,l

l−1∏
r=0

ω(χ̄i, χ̄
k+r
i , χ̄i)

−1

= ω(χ̄i, χ̄
k
i , χ̄

l
i)ak,l

l−1∏
r=0

σ(χ̄k+r
i , χ̄i)σ(χ̄i, χ̄i)

σ(χ̄k+r+1
i , χ̄i)

= ω(χ̄i, χ̄
k
i , χ̄

l
i)ak,l

σ(χ̄ki , χ̄i)q
l
ii

σ(χ̄k+l
i , χ̄i)

.

We want to prove the second part by induction in l. For l = 1, we obtain

ai1,k =

k−1∏
r=0

ω(χ̄i, χ̄
r
i , χ̄i)

−1 =

k−1∏
r=0

σ(χ̄ri , χ̄i)σ(χ̄i, χ̄i)

σ(χ̄r+1
i , χ̄i)

=
qkii

σ(χ̄ki , χ̄i)
· 1 =

qkii
σ(χ̄ki , χ̄i)

aik,1.

For l + 1 we obtain

aik,l+1 = aik,lω(χ̄ki , χ̄
l
i, χ̄i)

−1

=
σ(χ̄ki , χ̄

l
i)

qklii
ω(χ̄ki , χ̄

l
i, χ̄i)

−1ail,k

=
σ(χ̄ki , χ̄

l
i)

qklii
ω(χ̄ki , χ̄

l
i, χ̄i)

−1ω(χ̄i, χ̄
l
i, χ̄

k
i )−1 σ(χ̄k+l

i , χ̄i)

σ(χ̄li, χ̄i)q
k
ii

=
σ(χ̄l+1

i , χ̄ki )

q
k(l+1)
ii

.

53



In the last line, we used the identity ω · ωT = dσ−1.

Lemma 5.2.2. Let adc(X)(Y ) = µ◦(id−c)(X⊗Y ) be the adjoint representation of the associative

algebra B(V ) ∈ kGω
kGω
YD. We have

adnc (Fi)(Fj) =

n∑
k=0

µn(k)
(
F ki Fj

)
Fni − k , where

µn(k) = (−1)n−kσ(χ̄n−ki , χ̄j)
ω(χ̄ki , χ̄

n−k
i , χ̄j)

ω(χ̄ki , χ̄j , χ̄
n−k
i )

qii
(n−k2 )−(n2)

n∏
r=0

σ(χ̄i, χ̄
r
i )

ω(χ̄i, χ̄ri , χ̄j)
a−1
k,n−k

(
n

k

)
qii

Proof. For the sake of readability, we use the short-hand notation i for χ̄i during this proof. For

n = 1, we obtain adc(Fi)(Fj) = FiFj − qijFjFi. For larger n, we �rst want to �nd an inductive

expression for the coe�cients in the following expansion:

adnc (Fi)(Fj) =

n∑
k=0

µn(k) (F ki Fj)F
(n−k)
i .

To this end, we compute

adnc (Fi)(Fj) = adc(Fi)(ad
n−1
c (Fi)(Fj))

= adc(Fi)

(
n−1∑
k=0

µn−1(k) (F ki Fj)F
(n−k−1)
i

)

=

n−1∑
k=0

µn−1(k)
(
qkii(σ(ki, i)ω(i, ki, j)ω(i, ki+ j, (n− k − 1)i))−1 (F k+1

i Fj)F
n−k−1
i

− σ(i, (n− 1)i+ j)ω(ki+ j, (n− k − 1)i, i) (F ki Fj)F
n−k
i

)
.

From this, we obtain

µn(n) =

n−1∏
r=0

σ(i, ri)

qrω(i, ri, j)
=: cn

µn(0) = (−1)nσ(ni, j)q
(n−1)n

2
ii cn

µn(k) = µn−1(k − 1)q
(k−1)
ii σ((k − 1)i, i)ω(i, (k − 1)i, j)−1ω(i, (k − 1)i+ j, (n− k)i)−1

− µn−1(k)σ(i, (n− 1)i+ j)ω(ki+ j, (n− k − 1)i, 1).

This allows us to prove the following formula by induction, even though we are going to omit the

proof here, since it is long and tedious without any interesting inputs except an exhaustive use of

the abelian 3-cocycle conditions and q-binomial coe�cients. The hard part was rather to �nd the

formula by tracing down the inductive formula to n = 1, than to prove it.

µn(k) = (−1)n−kcna
−1
k,n−kσ((n− k)i, j)

ω(ki, (n− k)i, j)

ω((n− k)i, ki, j)
q
(n−k2 )
ii

(
n

k

)
qii

.
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Proposition 5.2.3. The coproducts of Fni and adnc (Fi)(Fj) are given by

∆(Fni ) =

n∑
k=0

(aik,n−k)−1

(
n

k

)
qii

F ki ⊗ Fn−ki

∆(adnc (Fi)(Fj)) = (adnc (Fi)(Fj))⊗ 1 + 1⊗ (adnc (Fi)(Fj))

+

n∑
k=0

µn(k)

(
q2k
ii qijqji

)n−k
σ(χ̄n−ki , χ̄ki χ̄j)

n−k−1∑
m=0

ω(χ̄n−k−mi , χ̄mi , χ̄
k
i χ̄j)

σ(χ̄ki χ̄j , χ̄
m
i )

(ain−k−m,m)−1

(
n− k
m

)
qii

×
n−k−m−1∏

r=0

(
1− qk+m

qriiqijqji

)
Fn−k−mi ⊗

(
F ki Fj

)
Fmi

Proof. During this proof, we use the abbreviation i for χ̄i. We �rst proof the equation for ∆(Fni ).

We set ∆(Fni ) :=
∑n
k=0 fn(k)F ki ⊗F

n−k
i . First, we want to �nd an inductive relation between the

coe�cients fn(k). We have

∆(Fni ) = ∆(Fn−1
i )∆(Fi)

= ∆(Fn−1
i )(Fi ⊗ 1 + 1⊗ Fi)

=

n−1∑
k=0

fn−1(k) (F ki ⊗ Fn−ki )(Fi ⊗ 1 + 1⊗ Fi)

After computing the product, we obtain

fn(k) = fn−1(k)ω(ki, (n− 1− k)i, i)

+ fn−1(k − 1)
ω((k − 1)i, (n− k)i, i)

ω((k − 1)i, i, (n− k)i)
σ((n− k)i, i).

Moreover, we have fn(0) = fn−1(0) = 1 and fn(n) = fn−1(n − 1) = 1. Now, we want to show the

following formula by induction:

fn(k) =

(n−k)−1∏
r=0

ω(ki, ri, i)

(
n

k

)
qii

.

For n = 1, we obtain
(

1
0

)
qii

= 1 = f1(0) and
(

1
1

)
qii

= 1 = f1(1). Now, we assume that the formula

holds for n− 1. Then,

fn(k) = fn−1(k)ω(ki, (n− 1− k)i, i)

+ fn−1(k − 1)
ω((k − 1)i, (n− k)i, i)

ω((k − 1)i, i, (n− k)i)
σ((n− k)i, i)

=

(n−1−k)−1∏
r=0

ω(ki, ri, i)

(
n− 1

k

)
qii

ω(ki, (n− 1− k)i, i)

+

(n−k)−1∏
r=0

ω((k − 1)i, ri, i)

(
n− 1

k − 1

)
qii

ω((k − 1)i, (n− k)i, i)

ω((k − 1)i, i)
σ((n− k)i, (n− k)i, i)
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=

(n−k)−1∏
r=0

ω(ki, ri, i)

(
n− 1

k

)
qii

+

(n−k)∏
r=0

ω(ki, ri, i)ω(i, (k − 1)i, (r + 1)i)

ω(i, (k − 1)i, ri)ω(i, (k + r − 1)i, i)

σ((n− k)i, i)

ω((k − 1)i, i, (n− k)i)

(
n− 1

k − 1

)
qii

=

(n−k)−1∏
r=0

ω(ki, ri, i)

(
n− 1

k

)
qii

+

(n−k)−1∏
r=0

ω(ki, ri, i)
ω(ki, (n− k)i, i)ω(i, (k − 1)i, (n− k + 1)i)

ω(i, (k − 1)i, i)

q
(n−k)
ii σ(ki, i)

σ(ni, i)

× σ((n− k)i, i)

ω((k − 1)i, i, (n− k)i)

(
n− 1

k − 1

)
qii

=

(n−k)−1∏
r=0

ω(ki, ri, i)

((
n− 1

k

)
qii

−

+
ω(ki, (n− k)i, i)ω(i, ki, (n− k)i)

ω(ki, i, (n− k)i)

σ(ki, i)σ((n− k)i, i)

σ(ni, i)
q

(n−k)
ii

(
n− 1

k − 1

)
qii

)

=

(n−k)−1∏
r=0

ω(ki, ri, i)

((
n− 1

k

)
qii

− q(n−k)
ii

(
n− 1

k − 1

)
qii

)

=

(n−k)−1∏
r=0

ω(ki, ri, i)

(
n

k

)
qii

,

where we used the abelian 3-cocycle conditions exhaustively.

Instead of giving a rigorous proof for the second part, which would take a few pages, we describe

instead what we did. First, we computed the coe�cients A, B of the following expression:

∆
(

(F ki Fj)F
(n−k)
i

)
=
(
∆
(
F ki
)

∆(Fj)
)

∆
(
F

(n−k)
i

)
=

k∑
l=0

n−k∑
m=0

fk(l)fn−k(m)
(
A
(
F liFj

)
Fmi ⊗ Fn−m−li

+ B Fm+l
i ⊗

(
F

(k−l)
i Fj

)
Fn−k−mi

)
.

Then we plugged this in ∆(adnc (Fi)(Fj)), using the expansion for adnc (Fi)(Fj) from the previous

proposition:

∆(adnc (Fi)(Fj)) =

n∑
k=0

k∑
l=0

n−k∑
m=0

µn(k)

(
k

l

)
qii

(
n− k
m

)
qii

(ail,k−la
i
m,n−k−m)−1

×
(
A
(
F liFj

)
Fmi ⊗ Fn−m−li +B Fm+l

i ⊗
(
F

(k−l)
i Fj

)
Fn−k−mi

)
After changing the order of summation and plugging in our expression for the coe�cients µn(k) from

the previous propsition, we see that the B-summand cancels completely, whereas the A-summand
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can be brought in to a form, where we can apply the q-binomial coe�cient theorem. This gives the

above result.

From the above coproducts we can read o� the following relations:

Corollary 5.2.4. For any n ∈ N,

1. Fni 6= 0 if and only if (n)qii ! 6= 0.

2. adnc (Fi)(Fj) 6= 0 if and only if (n)qii !
∏n−1
r=0 (1− qriiqijqji).

Remark 5.2.5. Note that the above relations do not depend on the 3-cocycle ω and are identical

with the ones given in [Ros98], Lemma 14.

5.3 A Radford biproduct

For a general quasi-Hopf algebra H and a braided Hopf algebra B ∈ H
HYD in the category of

Yetter-Drinfeld modules over H, the Radford biproduct B#H was de�ned in [BN02]. It is again a

quasi-Hopf algebra.

The Nichols algebra B(V ) constructed in the previous section is a Hopf algebra in the category
kĜω
kĜω
YD of Yetter-Drinfeld modules over kĜω and thus the de�nition in [BN02] applies. We collect the

relevant relations in the following proposition:

Proposition 5.3.1. As a vector space, the quasi-Hopf algebra B(V )#kĜω is given by B(V ) ⊗ kĜω .
A general product of generators is given by

(Fi#δψ1)(Fj#δψ2) = δψ1χj ,ψ2ω(χ̄i, χ̄j , ψ2)−1(FiFj)#δψ2 .

The inclusion kĜω ↪→ B(V )#kĜω , δψ 7→ 1#δψ is a homomorphism of quasi-Hopf algebras. This

legitimises the short-hand notation δχ = 1#δχ ∈ B(V )#kĜω . Moreover, we set Fi = Fi#1kĜω
. Then,

the following algebra relations hold:

• δχ · (Fi#δψ) = δχχi,ψ(Fi#δψ), in particular δχ · Fi = Fi#δχχi

• (Fi#δχ) · δψ = δχ,ψ(Fi#δψ), in particular Fi · δχ = Fi#δχ

• FiFj = (FiFj)#
(∑

χ∈Ĝ ω(χ̄i, χ̄j , χ)−1 δχ

)
The comultiplication is given by

∆(Fi#δψ) =
∑
ψ′∈G

ω(ψ′, χ̄i, ψψ̄
′)

ω(χ̄i, ψ′, ψψ̄′)
σ(χ̄i, ψ

′)δψ′ ⊗ (Fi#δψψ̄′) +
∑
ψ′∈Ĝ

ω(χ̄i, ψ
′, ψψ̄′)−1(Fi#δψ′)⊗ δψψ̄′ ,
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in particular

∆(Fi) =
∑
χ,ψ∈Ĝ

ω(χ, χ̄i, ψ)

ω(χ̄i, χ, ψ)
σ(χ̄i, χ)δχ ⊗ (Fi#δψ) +

∑
χ,ψ∈Ĝ

ω(χ̄i, χ, ψ)−1(Fi#δχ)⊗ δψ.

The antipode is given by

S(Fi#δψ) = −ω(ψ, χ̄i, χiψ̄)σ(χ̄i, ψ)(Fi#δχiψ̄).

In the later chapters we will also need the following formula:

(∆⊗ id) ◦∆(Fi) =
∑

ψ1,ψ2,ψ3∈G

αi1(ψ1, ψ2, ψ3)(Fi#δψ1
)⊗ δψ2

⊗ δψ3

+ αi2(ψ1, ψ2, ψ3)δψ1 ⊗ (Fi#δψ2)⊗ δψ3

+ αi3(ψ1, ψ2, ψ3)δψ1 ⊗ δψ2 ⊗ (Fi#δψ3),

where

αi1(ψ1, ψ2, ψ3) = ω(χ̄i, ψ1ψ2, ψ3)−1ω(χ̄i, ψ1, ψ2)−1

αi2(ψ1, ψ2, ψ3) =
ω(ψ1, χ̄i, ψ2)

ω(χ̄i, ψ1ψ2, ψ3)ω(χ̄i, ψ1, ψ2)
σ(χ̄i, ψ1)

αi3(ψ1, ψ2, ψ3) =
ω(ψ1ψ2, χ̄i, ψ3)

ω(χ̄i, ψ1ψ2, ψ3)
σ(χ̄i, ψ1ψ2).

We now want to consider twists of the Radford biproduct as de�ned in Def. 2.1.3. We are mainly

interested in twists coming from elements J =
∑
χ,ψ∈Ĝ ζ(χ, ψ) δχ⊗ δψ ∈ kĜω ⊗kĜω in the group part

of (B(V )#kĜω )⊗2. The corresponding coproduct ∆J(Fi) is then given by:

∆J(Fi) =
∑
χ,ψ∈Ĝ

ω(χ, χ̄i, ψ)

ω(χ̄i, χ, ψ)
σ(χ̄i, χ)

ζ(χ, ψχ̄i)

ζ(χ, ψ)
δχ ⊗ (Fi#δψ)

+
∑
χ,ψ∈Ĝ

ω(χ̄i, χ, ψ)−1 ζ(χχ̄i, ψ)

ζ(χ, ψ)
(Fi#δχ)⊗ δψ.

Not surprisingly, the corresponding associator is given by

φJ =
∑

ψ1,ψ2,ψ3

ω(ψ1, ψ2, ψ3)dζ(ψ1, ψ2, ψ3) δψ1 ⊗ δψ2 ⊗ δψ3 .

Lemma 5.3.2. The identity on kĜωdζ extends to an isomorphism of quasi-Hopf algebras de�ned by:

fζ :
(
B(V )#kĜω

)J
−→ B(V )#kĜωdζ

Fi 7−→
∑
χ∈Ĝ

ζ(χ̄i, χ)Fi#δχ
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Proof. This is a special case of Thm. 5.1. in [BN02].

Example 5.3.3. We continue with the example from section 4. The corresponding Yetter-Drinfeld

module for the group Ĝ/T is given by V := k · F , where |F | = χ̄−2. Using the abelian 3-cocycle

(ω̄, σ̄) on Ĝ/T as de�ned in Example 4.0.3, we obtain for the twisted coproduct on B(V )#k
Ĝ/T
ω̄ :

∆J(F ) =

`−1∑
i,j=0

q
i(j−2−[j−2])

2 q−i
ζ(χ̄i, χ̄[j−2])

ζ(χ̄i, χ̄j)
δχ̄i ⊗ F#δχ̄j +

`−1∑
i,j=0

ζ(χ̄[i−2], χ̄j)

ζ(χ̄i, χ̄j)
F#δχ̄i ⊗ δχ̄j

= K−1 ⊗ F ·
`−1∑
i,j=0

q
i(j−2−[j−2])

2
ζ(χ̄i, χ̄[j−2])

ζ(χ̄i, χ̄j)
δχ̄i ⊗ δχ̄j

+ F ⊗ 1 ·
`−1∑
i,j=0

ζ(χ̄[i−2], χ̄j)

ζ(χ̄i, χ̄j)
δχ̄i ⊗ δχ̄j ,

where K−1 :=
∑
i=0 q

−iδχ̄i . If we now set ζ = ζt from Example 4.0.3, we obtain

∆J(F ) = K−1

qt∑
2-i

δχ̄i +
∑
2|i

δχ̄i

⊗ F + F ⊗ 1

φJ =

`−1∑
i,j,k=0

ω̄t(χ̄
i, χ̄j , χ̄k)δχ̄i ⊗ δχ̄j ⊗ δχ̄k .

5.3.1 Dualization of B(V )#kĜω

Since B(V )#kĜω is a �nite-dimensional quasi-Hopf algebra, the dual space
(
B(V )#kĜω

)∗
carries

the structure of a coquasi-Hopf algebra, which is the dual analogue of a quasi-Hopf algebra. In

particular, a coquasi-Hopf algebra is a coassociative coalgebra and has an algebra structure which

is only associative up to an element Ψ ∈ (H ⊗H ⊗H)∗.

We de�ne dual elements Ẽi := (Fi#δ1)∗ and K̃ψ := δ∗ψ in (B(V )#kĜω )∗. We �nd the following

relations for these elements:

• ∆(Ẽi) = K̃−1
i ⊗ Ẽi + Ẽi ⊗ 1

• ∆(K̃ψ) = K̃ψ ⊗ K̃ψ

• K̃ψẼi = σ(χ̄i, ψ)(Fi#δψ)∗ = σ(χ̄i, ψ)ẼiK̃ψ.

From the last relation we see immediately that the product cannot be associative, since σ is not a

bihomomorphism on Ĝ.
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5.4 A Drinfeld double

From now on, we assume the Nichols algebra B(V ) and hence B(V )#kĜω to be �nite dimensional.

5.4.1 The general case

In the following, we recall the de�nition of the Drinfeld double D(H) of a �nite-dimensional quasi-

Hopf algebra as introduced in [HN99a, HN99b]. As an algebra, Hausser and Nill de�ned the Drinfeld

double as a special case of a diagonal crossed product H∗ ./δ M (see [HN99a], Def. 10.1) with a so-

called two-sided coaction (δ,Ψ) (see [HN99a], Def. 8.1) of the quasi-Hopf algebra H on the algebra

M = H as input data. In this case, we have

δ = (∆⊗ id) ◦∆ : H → H⊗3

Ψ = ((id⊗∆⊗ id)(φ)⊗ 1) (φ⊗ 1⊗ 1)
(
(δ ⊗ id⊗ id)(φ−1)

)
.

The multiplication on D(H) is given by

(ϕ ./ m)(ψ ./ n) :=
(
(Ω1 ⇀ ϕ ↼ Ω5)(Ω2m(1)(1) ⇀ ψ ↼ S−1(m(2))Ω

4)
)
./ Ω3m(1)(2)n, (5.2)

where

Ω = (id⊗ id⊗ S−1 ⊗ S−1)((1⊗ 1⊗ 1⊗ f)Ψ−1) ∈ H⊗5.

The Drinfeld twist f ∈ H ⊗ H is de�ned in Eq. 2.7. We summarize some of the main results in

[HN99a, HN99b] in the following theorem, even though we state them in a more explicit way:

Theorem 5.4.1 (Hausser, Nill). We have an algebra inclusion ι : H → D(H) and a linear map

Γ : H∗ −→ D(H) given by

ι : H −→ D(H) Γ : H∗ −→ D(H)

h 7−→ (1 ./ h) ϕ 7−→
(
p1

(1) ⇀ ϕ ↼ S−1(p2)
)
./ p1

(2),

s.t. the algebra D(H) is generated by the images ι(H) and Γ(H∗). In particular, we have

ϕ ./ h = ι(q1)Γ(ϕ ↼ q2)ι(h).

The elements pR = p1 ⊗ p2, qR = q1 ⊗ q2 ∈ H ⊗H were de�ned in Eq. 2.3.

Without going into detail here, in [HN99a], Ch. 11, Hausser and Nill showed that it is possible

to de�ne coproduct and antipode on the diagonal crossed product D(H), such that it becomes a

quasi-Hopf algebra. The above theorem implies that it is su�cient to de�ne the coproduct on D(H)

on elements ι(h) and Γ(ϕ). It is given by

∆(ι(h)) : = (ι⊗ ι)(∆(h))

∆(Γ(ϕ)) : =
(
ϕ⊗ idD(H)⊗D(H)

) (
φ−1

312Γ13φ213Γ12φ
−1
)
,
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where the inclusions in Eq. 5.3 are understood. The element Γ ∈ H ⊗ D(H) is de�ned by Γ :=

ei ⊗ Γ(ei), where ei and e
i are a dual pair of bases on H and H∗.

Remark 5.4.2. Note, that the de�nition of ∆(Γ(ϕ)) in Eq. 5.3 is di�erent from the one in [HN99b],

Thm. 3.9. Using their terminology, we checked both coherency and normality for the resulting λρ-

intertwiner

T := φ−1
312Γ13φ213Γ12φ

−1,

but we don't know if the de�nition in Eq. (11.4) in [HN99a] is false or just another possibility. We

needed the one in Eq. 5.3 in order to make the next Proposition work.

The antipode on D(H) is de�ned by

S(ι(h)) : = ι(S(h)) (5.3)

S(Γ(ϕ)) : = (1 ./ f1)
(
p1

(1)g
(−1) ⇀ ϕ ◦ S−1 ↼ f2S−1(p2)

)
./ p1

(2)g
(−2). (5.4)

As in Eq. 5.3, we gave the action of S on Γ(ϕ) explicitly instead of de�ning it in terms of generating

matrices as in [HN99b], Thm. 3.9.

The associator on D(H) as well as the elements α and β are simply inherited from H by the

inclusion ι : H → D(H), which becomes then an inclusion of quasi-Hopf algebras.

Unit and counit are given by:

1D(H) := 1H∗ ./ 1H , εD(H)(ι(h)) := εH(h), εD(H) (Γ(ϕ)) := ϕ(1H).

Finally, we recall that a two-sided coaction (δ,Ψ) of H on an algebra M can be twisted by an

element U ∈ H ⊗M ⊗ H, giving rise to a twist-equivalent two-sided coaction (δ′,Ψ′) on M (see

[HN99a], Dfn. 8.3):

δ′(h) : = Uδ(h)U−1

Ψ′ : = (1⊗ U ⊗ 1)(id⊗ δ ⊗ id)(U)Ψ(∆⊗ idM ⊗∆)(U−1)
(5.5)

In [HN99a] Prop. 10.6.1., Hausser and Nill show that twist equivalent two-sided coactions give rise

to equivalent diagonal crossed products H∗ ./δ M and H∗ ./δ′ M .

On the other hand, for any twist J ∈ H ⊗ H, the pair (δ,ΨJ) is a two-sided coaction of the

twisted quasi-Hopf algebra HJ (see Def. 2.1.3) on M , where

ΨJ := Ψ(J−1 ⊗ J−1). (5.6)

Again, in [HN99a] Prop. 10.6.2., Hausser and Nill show that for two-sided coactions (δ,Ψ) of H and

(δ,ΨJ) of HJ , we get H∗ ./ M = (HJ)∗ ./ M with trivial identi�cation.
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Proposition 5.4.3. Let J ∈ H ⊗ H be a twist on H and J̃ := (ι ⊗ ι)(J) ∈ D(H) ⊗ D(H) the

corresponding twist on D(H). For UL = (J ⊗ 1)(∆⊗ id)(J) ∈ H ⊗H ⊗H, the following map is an

isomorphism of quasi-Hopf algebras:

FJ : D(H)J̃ −→ D(HJ)

ϕ ./ a 7−→
(
U1
L ⇀ ϕ ↼ S−1

(
U3
L

))
./ U2

La

Proof. As in Eq. 5.5, the element UL ∈ H⊗3 de�nes a twisted two-sided coaction (δ′,Ψ′) of H on

H. On the other hand, we can twist (δ′,Ψ′) in the sense of Eq. 5.6 via the twist J ∈ H ⊗H, giving

rise to a two-sided coaction (δ′,Ψ′) of HJ on the algebra H. This de�nes a diagonal crossed product

(HJ) ./δ′ H, serving as the underlying algebra of D(HJ). The fact that the map FJ is an algebra

isomorphism follows then simply from [HN99a] Prop. 10.6. Note that Hausser and Nill showed this

for crossed products of the form M ./ H∗, but this is no problem due to Thm. 10.2 in [HN99a]

relating M ./ H∗ and H∗ ./ M . Using their terminology, we simply choose the left δ-implementer

L̃ = L′ ≺ UL instead of the right δ-implementer R̃ = U−1
L � R′ in [HN99a], Eq. (10.46).

Next, we want to show (FJ ⊗FJ)◦∆ = ∆◦FJ . By Thm. 5.4.1 it remains to prove this for elements

of the form ι(h) and Γ(ϕ). It is easy to see that FJ is the identity on H, thus

(FJ ⊗ FJ) ◦∆D(H)J̃ (ι(h)) = (FJ ⊗ FJ)(J̃∆(ι(h))J̃−1)

= (FJ ⊗ FJ)(J̃(ι(h(1))⊗ ι(h(2))J̃
−1)

= (FJ ⊗ FJ)(ι(J1h(1)K
(−1))⊗ ι(J2h(2)K

(−2)))

= ι(J1h(1)K
(−1))⊗ ι(J2h(2)K

(−2)) = ∆D(HJ ) ◦ FJ(ι(h)).

In order to show (FJ ⊗ FJ) ◦∆(Γ(ϕ)) = ∆ ◦ FJ(Γ(ϕ)), we use the identities

ΓJ := ΓD(HJ )(ϕ) = (1 ./ J1)FJ(Γ(K(−1) ⇀ ϕ ↼ J2))(1 ./ K(−2))

FJ ◦ Γ(ϕ) = (1 ./ K(−1))ΓJ(J1 ⇀ ϕ ↼ K(−2))(1 ./ J2).

Then,

∆D(HJ ) ◦ FJ(Γ(ϕ)) = ∆D(HJ )((1 ./ K
(−1))ΓJ(J1 ⇀ ϕ ↼ K(−2))(1 ./ J2))

= (ι⊗ ι)(∆(K(−1)))∆D(H)J (ΓJ(J1 ⇀ ϕ ↼ K(−2)))(ι⊗ ι)(∆(J2)) = (?)

Using the de�nition in Eq. 5.3 we can show

∆D(H)(Γ(ϕ)) = (1 ./ x1X1)Γ(y1 ⇀ ϕ(2))(1 ./ y
2)

⊗ (1 ./ x2)Γ(X2 ⇀ ϕ(1) ↼ x3)(1 ./ X3y3).

Hence,

(FJ ⊗ FJ) ◦∆D(H)J̃ (Γ(ϕ)) = (1 ./ J1x1X1)FJΓ(y1 ⇀ ϕ(2))(1 ./ y
2K(−1))

⊗ (1 ./ J2x2)FJΓ(X2 ⇀ ϕ(1) ↼ x3)(1 ./ X3y3K(−2))
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Using the identity

a(1)FJΓ(b(1) ⇀ ϕa(2))b(2) = FJΓ((ab)(1) ⇀ ϕ)(ab)(2),

a simple but tedious calculation shows that this equals (?).

For the antipode, it is again su�cient to show S ◦ FJ = FJ ◦ S on generators ι(h) and Γ(ϕ), where

the former is trivial by the same argument as above. Using the de�nition in Eq. 5.4, we obtain

FJ ◦ S(Γ(ϕ)) = (1 ./ f1)
(

(U1p1
(1)g

(−1) ⇀ ϕ ◦ S−1 ↼ f2S−1(U3p2)) ./ U2p1
(2)g

(−2)
)

(5.7)

and

S ◦ FJ(Γ(ϕ)) = (1 ./ S(J2)f1
J)

×
((
p1
J (1)(1)g

(−1)
J S(K(−2)) ⇀ ϕ ◦ S−1 ↼ S(J1)f2

JS
−1(p2

J)
)
./ p1

J (1)(2)g
(−2)
J S(K(−1))

)
.

The Drinfeld twist f = g ∈ H⊗H is de�ned in 2.7. Using the identities in 2.8, a simple but tedious

calculation shows that both terms are equal.

Finally, since FJ is the identity on H ⊆ D(H) it is easy to see that FJ preserves the associator and

the elements α and β, which are inherited from H. This proves the proposition.

The following proposition shows that retractions of quasi-Hopf algebras induce monomorphisms

between the Drinfeld doubles:

Proposition 5.4.4. Let i : K → H be a split monomorphism of quasi-Hopf algebras, i.e. there

exists a homomorphism of quasi-Hopf algebras p : H → K, s.t. p ◦ i = idK . Then the map Φi :

D(K)→ D(H) de�ned by

Φi(ιK(h)) := ιH(i(h))

Φi(ΓK(ϕ)) := ΓH(ϕ ◦ p)

is a monomorphism of quasi-Hopf algebras with left inverse Φp : D(H) → D(K) being a coalgebra

homomorphism de�ned by

Φp(ιH(h)) := ιK(p(h))

Φp(ΓH(ϕ)) := ΓK(ϕ ◦ i).

Proof. The fact that Φi is an algebra isomorphism follows from the universal property of the map

Γ (see Thm. II in [HN99a]). In their terminology, we choose a normal element T := ei⊗ΓH(ei ◦p) ∈
K ⊗D(H). Using the identities given in Eq. 2.4 and p ◦ i = id, it is a straight-forward calculation

to check that this element sati�es both conditions (6.2) and (6.3) in the �rst part of the theorem.

Since i is a homomorphism of quasi-Hopf algebras, Φi preserves coproduct and antipode on elements
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of the form ιK(h) as well as the associator φ and the elements α and β. For the image of ΓK we

have

(Φi ⊗ Φi) ◦∆D(K)(ΓK(ϕ)) = (Φi ⊗ Φi)((ϕ⊗ id)(TK))

= (Φi ⊗ Φi)(x
1X1ΓK(y1 ⇀ ϕ(2))y

2 ⊗ x2ΓK(X2 ⇀ ϕ(1) ↼ x3)X3y3)

= i(x1X1)ΓH((y1 ⇀ ϕ(2)) ◦ p)i(y2)

⊗ i(x2)ΓH((X2 ⇀ ϕ(1) ↼ x3) ◦ p)i(X3y3))

= x̃1X̃1ΓH(ỹ1 ⇀ (ϕ ◦ p)(2))ỹ
2 ⊗ x̃2ΓH(X̃2 ⇀ (ϕ ◦ p)(1) ↼ x̃3)X̃3ỹ3

= (ϕ ◦ p⊗ id)(TH)

= ∆D(H)(ΓH(ϕ ◦ p)) = ∆D(H)(Φi(ΓK(ϕ))),

where T is the element de�ned in Remark 5.4.2 and φH = X̃1⊗X̃2⊗X̃3 = Ỹ1⊗Ỹ2⊗Ỹ3 = i⊗i⊗i(φK)

and Φ−1
H = x̃1⊗ x̃2⊗ x̃3. We omit the proof that Φi preserves the antipode on the image of Γ, since

it is completely analogous.

Using p ◦ i = idK , it is easy to see that Φp is a left inverse of Φi. By analogous arguments as above,

Φp is a coalgebra homomorphism.

5.4.2 The Drinfeld double of B(V )#kGω

In order to state the de�ning relations for the Drinfeld double of B(V )#kĜω , we compute the element

Ω ∈ (B(V )#kĜω )⊗5 from the previous subsection for this case:

Lemma 5.4.5. In the case H = B(V )#kĜω , the element Ω ∈ (B(V )#kĜω )⊗5 is given by

Ω =
∑
χi

f(χ1, χ2, χ3, χ4, χ5) (1#δχ1
)⊗ (1#δχ2

)⊗ (1#δχ3
)⊗ (1#δχ4

)⊗ (1#δχ5
), where

f(χ1, χ2, χ3, χ4, χ5) =
ω(χ1χ2χ3, χ̄4, χ̄5)ω(χ5, χ4, χ̄4)

ω(χ1, χ2χ3, χ̄4)ω(χ1, χ2, χ3)ω(χ4χ5, χ̄4, χ̄5)
.

In particular, we obtain f(ψ1, ψ2, χ, ψ2, ψ1)−1 = θ(χ)(ψ1, ψ2)dν(ψ1, ψ2)(χ), where θ ∈ Z2(Ĝ, kĜ) is

the 2-cocycle from Remark 5.1.5 and ν(ψ)(χ) := ω(ψ, χ̄, χ). From this, it can be seen that D(kĜω )

is indeed isomorphic to the double Dω(Ĝ) in the sense of [DPR92].

Before we are going to derive the braided commutator relations, we de�ne:

Ei : = Γ ((Fi#δ1)∗) , Fj := ι(Fj),

L̄χ := ι(Lχ), Lχ := ι(L̄χ), K̄χ := Γ((1#δχ̄)∗) ./

∑
ψ

θ(ψ|χ, χ̄) ι(δψ)

 .

64



Lemma 5.4.6. Let ai, bj : Ĝ→ k× be solutions to the equation

ai(ψχ̄j)bj(ψ)

ai(ψ)bj(ψχi)
=
ω(χi, χ̄j , ψ)

ω(χ̄j , χi, ψ)
. (5.8)

For χ, ψ ∈ Ĝ, we set

Eχi := cχEiLχ̄iι

∑
ξ

ai(ξ) (1#δξ)

 Fψj := cψFjι

∑
ξ

bj(ξ) (1#δξ)

 .

Here, the elements cχ ∈
(
kĜ
)∗
⊗ kĜ are de�ned by

cχ := K̄χ̄L̄
−1
χ = (1#δχ)∗ ./

∑
ψ∈Ĝ

σ(ψ, χ)

ω(ψ, χ, χ̄)
(1#δψ)

 .

Let [Eχi , F
ψ
j ]σ := Eχi F

ψ
j − σ(χi, χ̄j)F

ψ
j E

χ
i denote the braided commutator in D

(
B(V )#kĜω

)
. Then

we have

[Eχi , F
ψ
j ]σ = δijσ(χi, χ̄i)cχψ

(
1− K̄χiLχ̄i

)
ι

∑
ξ

ai(ξ)bi(ξχi)

ω(χ̄i, χi, ξ)
(1#δξ)

 (5.9)

Proof. For λi, µj : Ĝ× Ĝ→ k arbitrary non-zero maps, we de�ne elements

Eλi : =
∑
χ,ψ

λi(χ, ψ)(Fi#δχ)∗ ./ (1#δψ)

Fµj : =
∑
χ,ψ

µj(χ, ψ)(1#δχ)∗ ./ (Fj#δψ).

Using the general multiplication formula 5.2 for the Drinfeld double, we obtain

Eλi F
µ
j =

∑
χ,ψ

∑
ξ

rχ,ψ(ξ)µj(χξ̄, ψ)λi(ξ, ψχ̄j)

 (Fi#δχ)∗ ./ (Fj#δψ), where

rχ,ψ(ξ) =
f(ξ, χξ̄, ψχ̄j , χξ̄, ξχ̄i)

ω(χ̄i, ξ, χξ̄)
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For Fµj E
λ
i , we obtain

Fµj E
λ
i = δij

∑
χ,ψ

λi(χ, ψ)

∑
ξ

αi1(χ, ψ, χiχ̄)f(ξ, χχ̄i, ψ, χχ̄i, ξ)µj(ξ, ψχi) (1#δχξχ̄i)
∗

 ./ (1#δψ)

−
∑
χ,ψ

λi(χ, ψ)

∑
ξ

αi3(χ, ψ, χiχ̄)f(ξ, χ, ψ, χ, ξ)

ω(χ, χ̄i, χiχ̄)σ(χ̄i, χ)
µj(ξ, ψχi) (1#δχξ)

∗

 ./ (1#δψ)


+
∑
χ,ψ

∑
ξ

sχ,ψ(ξ)µj(χξ̄, ψχi)λi(ξ, ψ)

 (Fi#δχ)∗ ./ (Fj#δψ), where

sχ,ψ(ξ) = rχ,ψ(ξ)αj2(ξ, ψ, χiξ̄)
σ(χi, ξχ̄)ω(χψξ̄χ̄j , χi, ξχ̄)

ω(χψξ̄χ̄j , ξχ̄, χi)ω(χξ̄, ψχ̄j , χi)
.

The functions αik were de�ned after Prop. 5.3.1. For the following choices of µj and λi, the above

formulas simply signi�cantly:

λi(χ, ψ) = δχ,ξa
ξ
i (ψ) µj(χ, ψ) = δχ,ξb

ξ
j(ψ),

where aξi , b
ξ
j : Ĝ → k×. Or goal is to �nd functions λi, µj : Ĝ × Ĝ → k, s.t. that the braided

commutator [Eλi , F
µ
j ]σ takes values in

(
kĜ
)∗

./ kĜ. The necessary and su�cient condition for this

is

0 =
∑
ξ

rχ,ψ(ξ)

×

(
µj(χξ̄, ψ)λi(ξ, ψχ̄j)− σ(χi, χ̄j)µj(χξ̄, ψχi)λi(ξ, ψ)

αj2(ξ, ψ, χiξ̄)σ(χi, ξχ̄)ω(χψξ̄χ̄j , χi, ξχ̄)

ω(χψξ̄χ̄j , ξχ̄, χi)ω(χξ̄, ψχ̄j , χi)

)
,

At least for the above choices of λi and µj , this is equivalent to the existence of solutions ai, bj :

Ĝ→ k× to the equation:

ai(ψχ̄j)bj(ψ)

ai(ψ)bj(ψχi)
=
ω(χi, χ̄j , ψ)

ω(χ̄j , χi, ψ)
.

This can be seen by setting

aξi (ψ) =
σ(ψ, ξ)σ(χi, ψ)

ω(ψ, ξ, χiξ̄)
ai(ψ) bξj(ψ) =

ω(ξ̄, ξ, ψχ̄j)

σ(ψχ̄jξ, ξ̄)
bj(ψ)

and using the abelian 3-cocycle conditions. Plugging in these solutions for λi and µj in the braided

commutator and using that cχψ = cχcψ yields the claimed result.

Corollary 5.4.7. Let ω ∈ Z3(Ĝ) be a nice 3-cocycle. Then, the braided commutator in D
(
B(V )#kĜωdζ

)
is given by:

[Eχi , F
ψ
j ]σ = δijσ(χi, χ̄i)cχψ

(
1− K̄χiLχ̄i

)
. (5.10)
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Proof. In case of a nice 3-cocycle, we can set ai, bj = 1. Together with the second niceness condition

this implies

ι

∑
ξ

ai(ξ)bi(ξχi)

ω(χ̄i, χi, ξ)
(1#δξ)

 = 1.

The remaining relations simplify drastically after taking the quotient in the next chapter, so we

wait until then before we state them.

5.5 A quotient of the Drinfeld double

In this subsection we de�ne the small quasi-quantum group as a quotient of the Drinfeld double

D := D
(
B(V )#kĜω

)
(see Section 5.4.2) by the biideal I ⊆ D induced by the following map:

Proposition 5.5.1. Let D := D
(
B(V )#kĜω

)
be the Drinfeld double from Section 5.4.2. Moreover,

let kĜ be the group algebra of Ĝ.

1. The following map is an algebra inclusion into the center of D:

j : kĜ −→ Z(D)

χ 7−→ cχ := (1#δχ)∗ ./

∑
ψ∈Ĝ

σ(ψ, χ)

ω(ψ, χ, χ̄)
(1#δψ)

 .

Moreover, we have ∆ ◦ j = j ⊗ j ◦∆ and ε = ε ◦ j.

2. Set N+ := ker
(
ε|j(kĜ)

)
and I := N+D. Then, I ⊆ D is a biideal.

3. The quotient D/I is a quasi-Hopf algebra with quasi-Hopf structure induced by the quotient

map D � D/I.
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Proof. We �rst show that j is an algebra homomorphism. We have

cχψ = (1#δχψ)∗ ./

∑
ξ∈Ĝ

σ(ξ, ψχ)

ω(ξ, χψ, χ̄ψ̄)
(1#δξ)


= (1#δχ)∗(1#δψ)∗ ./

∑
ξ∈Ĝ

θ(ξ|χ, ψ)−1σ(ξ, ψ)σ(ξ, χ)

ω(ξ, χψ, χ̄ψ̄)
(1#δξ)


=
∑
ξ∈Ĝ

θ(ξ|χ, ψ)−1σ(ξ, ψ)σ(ξ, χ)

ω(ξ, χψ, χ̄ψ̄)
(1#δχ)∗(1#δψ)∗ ./ (1#δξ)

=
∑
ξ,ν∈Ĝ

σ(ξ, ψ)σ(ξ, χ)

ω(ξ, χ, χ̄)ω(ξ, ψ, ψ̄)
((1#δχ)∗ ./ (1#δξ))((1#δψ)∗ ./ (1#δν))

= cχcχ.

Obviously, j preserves the unit. We continue with the coproduct:

∆(cχ) = ∆(Γ(1#δχ)∗))

∑
ψ∈Ĝ

σ(ψ, χ) ∆(1#δψ)


= Γ((1#δχ)∗)⊗ Γ((1#δχ)∗)

∑
ψ∈Ĝ

θ(χ|ψ, χ)−1σ(ψξ, χ) (1#δψ)⊗ (1#δξ)


= Γ((1#δχ)∗)⊗ Γ((1#δχ)∗)

∑
ψ∈Ĝ

σ(ψ, χ)σ(ξ, χ) (1#δψ)⊗ (1#δξ)


= cχ ⊗ cχ.

The counit is again trivial. Next, we check that j takes values in the center. It su�ces to show that

cχ commutes with elements of the form Γ((Fi#δχ)∗) and ι(Fj#δψ):

cχΓ((Fi#δξ)
∗) = Γ((1#δχ)∗) ./

∑
ψ∈Ĝ

σ(ψ, χ) (1#δψ)Γ((Fi#δξ)
∗)


= Γ((1#δχ)∗) ./

∑
ψ∈Ĝ

σ(ψ, χ) Γ((Fi#δξ)
∗)(1#δχ̄iψ)


= Γ((1#δχ)∗)Γ((Fi#δξ)

∗) ./

∑
ψ∈Ĝ

σ(ψχi, χ) (1#δψ)


= σ(χi, χ)−1Γ((Fi#δξ)

∗)Γ((1#δχ)∗) ./

∑
ψ∈Ĝ

θ(χ|ψ, χi)σ(ψχi, χ) (1#δψ)


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= Γ((Fi#δξ)
∗)Γ((1#δχ)∗) ./

∑
ψ∈Ĝ

σ(ψ, χ) (1#δψ)


= Γ((Fi#δξ)

∗)cχ.

On the other hand,

cχ(Fi#δξ) = Γ((1#δχ)∗) ./

∑
ψ∈Ĝ

σ(ψ, χ) (1#δψ)(Fi#δξ)


= Γ((1#δχ)∗) ./

∑
ψ∈Ĝ

σ(ψ, χ) (Fi#δξ)(1#δψχi)


= Γ((1#δχ)∗) ./ (Fi#δξ)

∑
ψ∈Ĝ

σ(ψχ̄i, χ) (1#δψ)


= σ(χ̄i, χ)−1(Fi#δξ)Γ((1#δχ)∗)

∑
ψ∈Ĝ

θ(χ|ψ, χ̄i)−1σ(ψχ̄i, χ) (1#δψ)


= (Fi#δξ)Γ((1#δχ)∗)

∑
ψ∈Ĝ

σ(ψ, χ) (1#δψ)


= (Fi#δξ)cχ.

This proves the �rst part of the proposition. We now come to the second part. Since j(kĜ) ⊆
Z(D), we have DN+ = N+D, hence I ⊆ D is an both-sided ideal. As a kernel of a coalgebra

homomorphism, N+ ⊆ D is a coideal and so is I = HN+. The fact that we are dealing with

non-coassociative coalgebras plays no role so far. We have shown that I is a biideal

As it is stated in [Sch05], Section 2, this is equivalent to D/I being a quotient quasi-bialgebra. Since

D is a �nite dimensional quasi-Hopf algebra, we can apply Thm. 2.1 in [Sch05] in order to prove

that D/I is a quasi-Hopf algebra.

De�nition 5.5.2. Let G be a �nite abelian group, (ω, σ) ∈ Z3
ab(Ĝ) an abelian 3-cocycle on the dual

group Ĝ and {χi ∈ Ĝ }1≤i≤n ⊆ Ĝ a subset of Ĝ, s.t. the corresponding Nichols algebra B(V ) is

�nite dimensional. Then we de�ne the small quasi-quantum group corresponding to that data to be

the quotient

u(ω, σ) := D
(
B(V )#kĜω

)
/I.

It is clear that in the quotient u(ω, σ), we have L̄χ = K̄χ̄. In order to get rid of L's, we also de�ne

Kχ := Lχ̄.
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Proposition 5.5.3. The following map is a monomorphism of quasi-Hopf algebras, which is split

as a coalgebra homomorphism:

ξ : kĜω −→ u(ω, σ)

δχ 7−→ [ι(1#δχ)] .

Proof. It is clear that the inclusion i : kĜω → B(V )#kĜω , δχ 7→ 1#δχ is a split monomorphism,

with left inverse denoted by p. We saw in Prop. 5.4.4 that it must therefore induce a quasi-Hopf

algebra monomorphism Φi : D
(
kĜω

)
→ D

(
B(V )#kĜω

)
with left inverse Φp being a coalgebra

homomorphism. Since the inclusion j : kĜ→ D
(
B(V )#kĜω

)
factors through D

(
kĜω

)
, the following

diagram commutes:

D
(
kĜω

)
D
(
B(V )#kĜω

)
D
(
kĜω

)

D
(
kĜω

)
/Ĩ D

(
B(V )#kĜω

)
/I D

(
kĜω

)
/Ĩ,

Φi Φp

[Φi] [Φp]

where Ĩ := N+D
(
kĜω

)
. If we show, that the map f : kĜω → D

(
kĜω

)
/Ĩ given by δχ 7→ [ι(δχ)] is an

isomorphism, we can de�ne a left inverse of ξ by f−1 ◦ [Φp].

It is clear that f is surjective, since for an arbitrary element
∑
χ,ψ a(χ, ψ)Γ((1#δχ)∗)ι(δψ) ∈

D
(
kĜω

)
, we obtain∑
χ,ψ

a(χ, ψ)Γ((1#δχ)∗)ι(δψ)

 =

∑
χ,ψ

a(χ, ψ)cχK̄
−1
χ ι(δψ)

 =

∑
χ,ψ

a(χ, ψ)

σ(ψ, χ)
cχι(δψ)


=

∑
χ,ψ

a(χ, ψ)

σ(ψ, χ)
ι(δψ)

 = f

∑
χ,ψ

a(χ, ψ)

σ(ψ, χ)
δψ

 ,

where we used that [cχ] = [1] holds in the quotient. Moreover, we have

dim
(
D
(
kĜω

)
/Ĩ
)

= dim
(
D
(
kĜω

))
/dim

(
kĜ
)

= |G|

by the quasi-Hopf algebra version of the Nichols-Zoeller theorem (see [Sch04]). Since dim
(
kĜω

)
=

|G|, f must be an isomorphism.

In the following, we will usually omit the map ξ.

Remark 5.5.4. 1. We can identify the group part
(
kĜ
)∗
⊗kĜ ⊆ D with Dω(Ĝ) from Exp. 2.1.5

via

Dω(Ĝ) −→
(
kĜ
)∗
⊗ kĜ ⊆ D

χ⊗ δψ 7−→ Γ ((1#δχ)∗) ι(δψ).
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2. Note that the elements Kχ and K̄ψ do not necessarily generate the group part kĜ ⊆ u(ω, σ)

and are not grouplike in general.

In the quotient u(ω, σ), we have the following relations:

∆(Fi) = Kχ̄i ⊗ Fi

∑
χ,ψ

θ(χ|χ̄i, ψ)ω(χ̄i, ψ, χ)−1 δχ ⊗ δψ

+ Fi ⊗ 1

∑
χ,ψ

ω(χ̄i, χ, ψ)−1 δχ ⊗ δψ


∆(Ei) =

∑
χ,ψ

θ(ψ|χχ̄i, χi)−1ω(ψ, χ, χ̄i)
−1 δχ ⊗ δψ

Ei ⊗ K̄χi +

∑
χ,ψ

ω(χ, ψ, χ̄i)
−1 δχ ⊗ δψ

 1⊗ Ei

∆(Kχ) = (Kχ ⊗Kχ)P−1
χ ∆(K̄χ) = (K̄χ ⊗ K̄χ)Pχ, Pχ :=

∑
ψ,ξ

θ(χ|ψ, ξ) δψ ⊗ δξ

[Eai Kχi , F
b
j ]σ = δijσ(χi, χ̄i)

(
1−KχiK̄χi

)∑
ξ

ai(ξ)bi(ξχi)

ω(χ̄i, χi, ξ)
δξ

 , where

Eai := Ei

∑
ξ

ai(ξ) δξ

 F bj := Fj

∑
ξ

bj(ξ) δξ

 , with ai, bj solutions to Eq. 5.8.

KχEi = σ(χ, χi)EiKχQ
−1
χ,χi , K̄χEi = σ(χi, χ)EiK̄χQχ,χi , Qχ,ψ :=

∑
ξ

θ(χ|ξ, ψ) δξ

KχFi = σ(χ, χ̄i)FiKχQ
−1
χ,χ̄i , K̄χFi = σ(χ̄i, χ)FiK̄χQχ,χ̄i

S(Fi) = −

∑
ψ

ω(ψ̄, χ̄i, χiψ)dσ(χi, ψ, ψ̄)θ(ψ̄|ψχi, χ̄i)−1δψ

KχiFi

S(Ei) = −EiK̄−1
χi

∑
ψ

ω(χ̄iξ̄, χi, ξ)

ω(ξ̄, χ̄i, χi)
δξ


ε(Kχ) = ε(K̄χ) = 1, ε(Ei) = ε(Fi) = 0, 1u(ω,σ) = K1

Here, we have omitted the inclusion ι : B(V )#kĜ → u(ω, σ) and the quotient map [_] : D
(
B(V )#kĜω

)
→

u(ω, σ).

Remark 5.5.5. Another interesting form of Ei, Fj-commutator is the following: If we set

Mij :=
∑
χ∈Ĝ

ω(χ̄j , ξχj , χ̄i)
−1 δχ,

then we obtain

EiFj −MijFjEi = δij(Kχ̄i − K̄−1
χ̄i ).
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5.6 The R-matrix of u(ω, σ)

By Theorem 3.9 in [HN99b], the Drinfeld double D(H) of a quasi-Hopf algebra H has the structure

of a quasi-triangular quasi-Hopf algebra. Using their formula, we compute the R-matrix for the case

H = B(V )#kĜω :

R̃ =
∑
b∈B

∑
χ∈Ĝ

ι(b#δχ)⊗ Γ ((b#δχ)∗) .

Here, B is a basis of the Nichols algebra B(V ). In order to match our results with the Hopf case

described in [Lus93], we will work with the reverse R-matrix

R :=
(
R̃T
)−1

.

The following Lemma is an easy exercise:

Lemma 5.6.1. Let H and H ′ be quasi-Hopf algebras and ϕ : H → H ′ a surjective homomorphism

of quasi-Hopf algebras. If R ∈ H ⊗H is an R-matrix in H, then R′ := (ϕ⊗ ϕ)(R) is an R-matrix

in H ′. Moreover, if ν ∈ H is a ribbon in (H,R), then ν′ := ϕ(ν) is a ribbon element in (H ′, R′).

By the previous Lemma, we can transport the R-matrix from D(H) to an R-matrix of u(ω, σ). By

abuse of notation, we will denote this R-matrix also by R.

Remark 5.6.2. We saw in Section 5.1 that instead of σ, we could have taken (σT )−1 in order

to de�ne our Yetter-Drinfeld module. If we would have de�ned u(ω, σ) as an algebra over kσ :=

k
(
σ(χ, ψ)|χ, ψ ∈ Ĝ

)
, then the (well-de�ned) involution kσ → kσ given by σ(χ, ψ) 7→ σ(ψ, χ)−1

would induce an involution i : u(ω, σ) → u(ω, (σT )−1) with i(Fi) = Fi, i(Ei) = Ei and i(Kχ) =

K̄−1
χ .

From now on, we will omit the quotient map [_] : D
(
B(V )#kĜω

)
→ u(ω, σ).

Proposition 5.6.3. We de�ne elements in u(ω, σ)⊗2:

Θ : =
∑
b∈B

(Γ((b#δ1)∗)⊗ ι(b)) γ|b|, where γ|b| :=
∑
χ,ψ∈Ĝ

ω(χ|b̄|, |b|, ψ)δχ ⊗ δψ

R0 : =
∑
χ,ψ∈Ĝ

σ(χ, ψ) δχ ⊗ δψ.

They have the following properties:

1. R̃ decomposes as R̃ = ΘT (RT0 )−1, in particular R = R0Θ−1.

2. Let ∆̄ denote the coproduct in u(ω, (σT )−1). Then

∆op(h)R0 = R0∆̄(h).
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3. The element Θ is a quasi-R-matrix in the sense of [Lus93], i.e.

∆(h)Θ = Θ∆̄(h).

Moreover, we have

Θ∆(h) = ∆̄(h)Θ and Θ2 = 1.

4. The Drinfeld element u ∈ u(ω, σ) (see Lemma 2.1.8) is given by

u = u0

(∑
b∈B

ι(S2
B(V )(b))K̄|b|Γ((b#δ1)∗)

)
= u0

(∑
b∈B

λb ι(b)K̄|b|Γ((b#δ1)∗)

)
,

where u0 :=
∑
χ σ(χ, χ̄) δχ and

λb =
∏
k<l

B(χ̄ik , χ̄il) for b = (. . . (Fi1Fi2) . . . )Fin .

Proof. We start with (1): We have a general product formula

Γ((b#δχ)∗)Γ((b′#δψ)∗) =
∑
π∈Ĝ

ω(π|b̄′||b̄|, |b|, χ)ω(π|b̄′|, |b′|, ψ)

ω(π|b̄′||b̄|, |b|, |b′|)ω(π|b̄′||b̄|, |b||b′|, χψ)

σ(π, χψ)

σ(π, ψ)σ(π|b′|, χ)

× Γ ((b ∗ b′#δχψ)∗) ι(δπ),

where b ∗ b′ is the quantum shu�e product in B(V ) as introduced Appendix B. In particular, we

have

Γ((b#δχ)∗) = Γ((b#δ1)∗)Γ((1#δχ)∗)

∑
ψ∈Ĝ

ω(ψ|b̄|, |b|, χ) ι(δψ)


= Γ((b#δ1)∗)K̄−1

χ

∑
ψ∈Ĝ

ω(ψ|b̄|, |b|, χ) ι(δψ)

 ,

where we used in the second line that cχ = 1 holds in the quotient u(ω, σ). Thus,

R̃ =
∑
b∈B

∑
χ∈Ĝ

ι(b#δχ)⊗ Γ ((b#δχ)∗)

=
∑
b∈B

∑
χ∈Ĝ

ι(b#δχ)⊗ Γ((b#δ1)∗)K̄−1
χ

∑
ψ∈Ĝ

ω(ψ|b̄|, |b|, χ) ι(δψ)


=
∑
b∈B

(ι(b)⊗ Γ((b#δ1)∗))γ|b|

 ∑
χ,ψ∈Ĝ

σ(ψ, χ)−1ι(δχ)⊗ ι(δψ)


= ΘT (RT0 )−1.
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We now prove (2): It is su�cient to prove the formula for h = Ei, Fj , ι(δχ), since these elements

generate u(ω, σ). We will only show the computation for Ei, since for δχ it is trivial and for Fj it

is very similar.

∆op(Ei)R0 =

∑
χ,ψ

θ(ψ|χχ̄i, χi)−1ω(ψ, χ, χ̄i)
−1 δψ ⊗ δχ

 (K̄χi ⊗ Ei)R0

+

∑
χ,ψ

ω(χ, ψ, χ̄i)
−1 δψ ⊗ δχ

 (Ei ⊗ 1)R0

=

∑
χ,ψ

θ(ψ|χχ̄i, χi)−1σ(ψ, χi)σ(ψ, χχ̄i)ω(ψ, χ, χ̄i)
−1 δψ ⊗ δχ

 (1⊗ Ei)

+

∑
χ,ψ

σ(ψ, χ̄i)ω(χ, ψ, χ̄i)
−1 δψ ⊗ δχ

 (Ei ⊗ 1)

=

∑
χ,ψ

σ(ψ, χ)ω(ψ, χ, χ̄i)
−1 δψ ⊗ δχ

 (1⊗ Ei)

+

∑
χ,ψ

θ(χ|ψχ̄i, χi)−1 σ(ψ, χ)

σ(χi, χ)
ω(χ, ψ, χ̄i)

−1 δψ ⊗ δχ

 (Ei ⊗ 1)

= R0

∑
χ,ψ

ω(χ, ψ, χ̄i)
−1 δχ ⊗ δψ

 (1⊗ Ei)

+

∑
χ,ψ

θ(ψ|χχ̄i, χi)−1ω(ψ, χ, χ̄i)
−1 δχ ⊗ δψ

 (Ei ⊗K−1
χi )

 = R0∆̄(Ei).

We continue with (3): Since R = R0Θ−1 is an R-matrix, we have

R0Θ−1∆(h) = ∆op(h)R0Θ−1 = R0∆̄(h)Θ−1,

where we used (2) in the second equation. This proves the �rst claim of (2). If we would have

used (σT )−1 instead of σ in our construction of u(ω, σ), the element Θ would be exactly the same,

whereas R0 would change to R−1
0 . Since ΘTR0 is then an R-matrix in u(ω, (σT )−1), we have

∆̄op(h)ΘTR0 = ΘTR0∆̄(h) = ΘT∆op(h)R0,

which implies ∆̄(h)Θ = Θ∆(h). In particular, Θ−1 is a quasi-R-matrix as well. By an analogous

argument as given in [Lus93] for the quasi-Hopf case, a quasi-R-matrix is unique, hence Θ−1 = Θ.

Finally, we prove (4): We want to compute the Drinfeld element for the R-matrix R, but it is easier

to compute it in terms of the R-matrix R̃ = R̃1⊗ R̃2. Using graphical calculus it is not hard to �nd
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the following formula for u:

u = S2(q̃2R̃1p̃1)q̃1R̃2p̃2.

After simplifying, we obtain

u =
∑
b∈B

S2(ι(b))u0K
−1
|b| Γ((b#δ1)∗).

The square of the antipode is given by

S2(ι(b)) = S

∑
χ∈Ĝ

ω(ψ̄|b̄|, |b|, ψ)σ(|b|, ψ̄|b̄|) (SB(V )(b)#δψ)


= u0ι

(
S2
B(V )(b)

)
K|b|K̄|b|u

−1
0 .

Hence,

u0

(∑
b∈B

ι(S2
B(V )(b))K̄|b|Γ((b#δ1)∗)

)
.

The antipode in the Nichols algebra SB(V )(b) is given by

SB(V )(b) = (−1)tr|b|µb b
T ,

where

µb =

n−1∏
j=1

σ

(
j∏

k=1

χ̄ik , χ̄ij+1

)
n−1∏
j=2

ω

 n∏
k=j+1

χ̄ik , χ̄ij ,

j−11∏
l=1

χ̄il

 for b = (. . . (Fi1Fi2) . . . )Fin .

A tedious calculation shows that µbµbT = λb, hence S
2
B(V )(b) = λb b. This proves the claim.

Remark 5.6.4. Since (ω, σ) ∈ Z3
ab(Ĝ) is an abelian 3-cocycle, it is clear that R0 =

∑
χ,ψ∈Ĝ σ(χ, ψ) δχ⊗

δψ is an R-matrix for the quasi-Hopf algebra kĜω , so that the monomorphism ξ : kĜω → u(ω, σ) from

Prop. 5.5.3 becomes a homomorphism of quasitriangular quasi-Hopf algebras.
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Chapter 6. Modularization

In the following de�nition due to [Shi16], we specify the class of categories we want to consider in

this chapter.

De�nition 6.0.1. By a (braided) �nite tensor category C, we mean a k-linear category that is

equivalent to RepA for some �nite dimensional k-algebra A. Here, we assume k to be algebraically

closed. Moreover, C should be rigid, monoidal (and braided). A functor F : C → D is called a

(braided) tensor functor if it preserves this structure.

We suggest a de�nition for a modularization of a non-semisimple premodular tensor category:

De�nition 6.0.2. Let C be a �nite braided tensor category. In this case, the coend FC =
∫X∈C

X∨⊗
X exists and has the canonical structure of a Hopf algebra in C. Moreover, there is a symmetric

Hopf pairing ωC : FC ⊗ FC → I on FC. In [Shi16], Shimizu showed that the following conditions are

equivalent.

1. The Hopf pairing ωC : FC ⊗ FC → I on the coend FC =
∫X∈C

X∨ ⊗X is non-degenerate.

2. Every transparent object is isomorphic to the direct sum of �nitely many copies of the unit

object I ∈ C. Equivalently, the Müger center C′ of C, which is de�ned as the full subcategory

of transparent objects, is braided equivalent to Vectk.

If these conditions are satis�ed, the category C is called modular. In general, we refer to a braided

�nite tensor category C as a premodular category.

Remark 6.0.3. The reader might be surprised that we didn't include a ribbon structure in our

de�nition of a premodular category. This is due to the fact that it is still possible to de�ne a Hopf

structure on the coend F, where the ribbon structure is usually used to de�ne the antipode. For the

case of C = RepH , where H is a quasi-triangular quasi-Hopf algebra, the antipode on F = H∗ is

induced by the Drinfeld element u ∈ H (see App. C).

We suggest a de�nition for a modularization in the non-semisimple case:

De�nition 6.0.4. A braided tensor functor between premodular categories F : C → D is a modu-

larization of C, if D is modular and

F (FC/Rad(ωC)) ∼= FD.
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as braided Hopf algebras.

Remark 6.0.5. We should point out here, that there are other approaches in order to de�ne a

non-semisimple modularization. For example, the notion of a dominant functor still makes sense in

this case. It is therefore tempting to de�ne a modularization of C as an exact sequence C′ → C F−→ D
of tensor categories in the sense of [BN11], where C′ is the Müger center of C and D is modular. At

least in the setting of Thm. 6.0.6, both de�nitions coincide. It would also be interesting to generalize

the actual construction of a modularization in [Bru00] to the non-semisimple case. A step in this

direction has been made in [BN11], where the authors show that a dominant functor F : C → D with

exact right adjoint is equivalent to the free module functor C → modC(A) for some commutative

algebra A in the center of C. One of the reasons for choosing the given de�nition is its closeness to

one of the equivalent de�nitions of a modular tensor category. We conjecture that it reduces to the

de�nition of Bruguierès in the semisimple case.

Let u := (uq(g,Λ), R0Θ̄) be the quasi-triangular Hopf algebra as described in Section 4 with Cartan

part u0 = C[G], where G = Λ/Λ′. In particular, the category Repu is a non-semisimple premodular

category. As we have seen before, we have an equivalence

Rep(u0,R0) −→ Vect
(1,σ)

Ĝ
,

where σ : Ĝ× Ĝ→ C× is given as in Remark 4.0.2.

Assumption: From now on, we assume that Vect
(1,σ)

Ĝ
is modularizable, i.e. the quadratic form

Q associated to σ is trivial on T := Rad(σσT ). Let Vect
(σ̄,ω̄)

Ĝ/T
be the modularized category from

Prop. 3.0.1.

The aim of this chapter is to modularize the category Repu. To this end, we �rst de�ne a quasi-

Hopf algebra ū and an algebra monomorphism M : ū → u. Then we show that restriction along

this algebra inclusion de�nes a modularization of Repu.

Let ū := (u(ω̄, σ̄), R̄) denote the quasi-Hopf algebra from Thm. 5.0.1, associated to the data

( ̂̄G, σ̄, ω̄, χi := q(αi,_)|Ḡ). Here, Ḡ := Ann(T ) ⊆ G is the subgroup introduced in Section A and

(ω̄, σ̄) is the abelian 3-cocycle on Ĝ/T associated to a set-theoretic section s : Ĝ/T → Ĝ as de�ned

in Section A.2.1. Note that ̂̄G ∼= Ĝ/T . In particular, ū has all the necessary structure to endow

Repū with a premodular structure.

We now state the main result of this chapter:

Theorem 6.0.6. 1. The category Repū is a modular tensor category.

2. The restriction along the algebra monomorphism M from Prop. 6.0.10 de�nes a modulariza-

tion F : Repu → Repū in the sense of Def. 6.0.2. The monoidal structure of this functor is
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given by

τV,W : F(V )⊗F(W ) −→ F(V ⊗W )

v ⊗ w 7−→
∑
χ,ψ∈Ĝ

κ(χ, ψ) δχ.v ⊗ δψ.w,

where the 2-cochain κ ∈ C2(Ĝ) is de�ned in Lemma A.2.1. It satis�es π∗(ω̄, σ̄) = (1, σ). The

natural duality isomorphism is given by

ξV : F(V ∨) −→ F(V )∨

f 7−→ (f ↼ S(κ1)κ2),

where κ = κ1 ⊗ κ2 by abuse of notation.

The rest of this chapter is devoted to the proof of this theorem. We will need the following propo-

sition.

Proposition 6.0.7. Let F : C → D be a cocontinuous left exact braided tensor functor between

�nite braided tensor categories. Let µ : (_)∨ ⊗ (_) ⇒ FC and ν : (_)∨ ⊗ (_) → FD denote the

coends in C and D. Then there is a braided Hopf algebra epimorphism p : F (FC) → FD in D, s.t.
the Hopf pairings on the coends are related as follows:

ωD ◦ (p⊗ p) = F (ωC) ◦ τFC,FC .

If C is a modular tensor category, then F is a modularization in the sense of Def. 6.0.2, with

isomorphism F (FC/Rad(ωC)) ∼= FD induced by p.

Proof. We �rst note that since F is cocontinuous, it preserves the coend and hence F (FC) is the

coend over the functor F ((_)∨ ⊗ (_)) with dinatural transformation F (µ). We also have a Hopf

pairing on F (FC) given by ωF (FC) = F (ωC) ◦ τFC,FC , where τ denotes the monoidal structure on F .

Let m : F ((_)∨ ⊗ (_)) ⇒ F (_)∨ ⊗ F (_) denote the natural isomorphism constructed from the

structure isomorphisms of the monoidal dual preserving functor F . Then,

ζV := νF (V ) ◦mV : F (V ∨ ⊗ V )→ FD

de�nes a dinatural transformation F ((_)∨ ⊗ (_)) → FD. Hence, due to the universal property of

F (FC), there is a unique morphism p : F (FC)→ FD, s.t.

νF (V ) ◦mV = p ◦ F (µV ).

Again by the universal property, p must be an epimorphism. If we can show that

ωD ◦ (p⊗ p) ◦ (F (µV )⊗ F (µW )) = ωF (FC) ◦ (F (µV )⊗ F (µW )),
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for all V,W ∈ C, then ωD ◦ (p ⊗ p) = ωF (FC) holds again by the universal property of F (FC). We

have

ωD ◦ (p⊗ p) ◦ (F (µV )⊗ F (µW )) = ωD ◦ (νF (V ) ◦mV ⊗ νF (W ) ◦mW )

= ωDF (V ),F (W ) ◦ (mV ⊗mW )

=
(
F (ωCV,W ) ◦ τV ∨⊗V,W∨⊗W ◦ (mV ⊗mW )−1

)
◦ (mV ⊗mW )

= F (ωCV,W ) ◦ τV ∨⊗V,W∨⊗W
= ωF (FC) ◦ (F (µV )⊗ F (µW )),

where ωDX,Y and ωCV,W denote the bi-dinatural transformations given, morally speaking, by (ev⊗
ev) ◦ (id⊗ c2 ⊗ id). We used the equality

ωDF (V ),F (W ) = F (ωCV,W ) ◦ τV ∨⊗V,W∨⊗W ◦ (mV ⊗mW )−1,

which holds since F is a braided tensor functor. The fact that p is a morphism of braided Hopf

algebras follows from the very same arguments. We now prove the second part of the statement.

By Lemma 5.2.1 in [KL01], we can identify Rad(ωC) with the kernel of the adjunct ω!
C : FC → F∨C .

Since F is left exact, we have F (ker(ωF!
C
)) = ker(ω!

F (FC)). As we have seen, ω!
F (FC) is given by

p∨ ◦ωF!
D
◦p. If D is modular, then p∨ ◦ωF!

D
is a monomorphism and hence ker(ω!

F (FC)) = ker(p). As

a cocontinuous functor, F preserves quotients and hence F (FC/ker(ω!
C))
∼= F (FC)/ker(p)

p∼= FD.

We recall that the braided monoidal category Vect
(ω,σ)

Ĝ
embeds into the braided monoidal category

of Yetter-Drinfeld modules over kĜω with kĜω -coaction on simple objects Cχ given by 1χ 7→ Lχ̄⊗ 1χ.

From now on, we will treat Vect
(ω,σ)

Ĝ
as a braided monoidal subcategory of Yetter-Drinfeld modules

over kĜω .

Let F : Vect
(σ,1)

Ĝ
→ Vect

(σ̄,ω̄)

Ĝ/T
be the braided monoidal modularization functor from Section 3.0.1 and

τV,W : F (V )⊗F (W )→ F (V ⊗W ) the corresponding monoidal structure. For the moment, we forget

about the ribbon structure. Moreover, let V = ⊕i FiC ∈ Vect
(σ,ω)

Ĝ
be the Yetter-Drinfeld module

with |Fi| = χ̄i = q−(αi,_). If B(V ) is the Nichols algebra of V , then we clearly have a braided algebra

structure on F (B(V )) with multiplication given by mF (B(V )) = F (mB(V )) ◦ τB(V ),B(V ). Also, we

have a braided algebra isomorphism T : B(F (V )) −→ F (B(V )) induced by the map T := ⊕n≥0 T
n,

where Tn : F (V )⊗n → F (V ⊗n) is inductively de�ned by

Tn := τV ⊗n−1,V ◦ (Tn−1 ⊗ idF (V )), T 0 := idC.

From now on, we assume that the set-theoretic section s : Ĝ/T → Ĝ of the projection π : Ĝ→ Ĝ/T

has the property s([|b|]) = |b| for homogeneous vectors b ∈ B(V ).
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Lemma 6.0.8. Let κ : Ĝ × Ĝ → C× be such that π∗ω̄ = dκ−1 and π∗σ̄ = κ/κT . The following

map is an algebra inclusion:

U : B(F (V ))#k
Ĝ/T
ω̄ −→ B(V )#kĜ

b#δχ 7−→
∑
τ∈T

κ(|b|, s(χ)τ)T (b)#δs(χ)τ .

Here, b = (. . . (Fi1Fi2) . . . )Fin is a PBW-basis element of the Nichols algebra B(F (V )). Moreover,

we used the assumption s([|b|]) = |b| implicitly.

Proof. We know that κ(1, χ) = 1, T (1) = 1 and∑
χ∈Ĝ/T

∑
τ∈T

δs(χ)τ =
∑
ψ∈Ĝ

δψ = 1kĜ .

Hence, U preserves the unit. Moreover, we have

U((b#δχ)(b′#δψ)) = δχ,[|b′|]ψ ω̄([|b|], [|b′|], ψ)−1U(bb′#δψ)

= δχ,[|b′|]ψ
∑
τ∈T

ω̄([|b|], [|b′|], ψ)−1κ(|b||b′|, s(ψ)τ)T (bb′)#δs(ψ)τ

= δχ,[|b′|]ψ
∑
τ∈T

ω̄([|b|], [|b′|], ψ)−1κ(|b||b′|, s(ψ)τ)κ(|b|, |b′|)T (b)T (b′)#δs(ψ)τ ,

where we used T (bb′) = κ(|b|, |b′|)T (b)T (b′) in the last line. On the other hand, we have

U(b#δχ)U(b′#δψ) =
∑
τ,τ ′∈T

κ(|b|, s(χ)τ ′)κ(|b′|, s(ψ)τ) (T (b)#δs(χ)τ ′)(T (b′)#δs(ψ)τ )

=
∑
τ,τ ′∈T

δs(χ)τ ′,|b′|s(ψ)τ κ(|b|, s(χ)τ ′)κ(|b′|, s(ψ)τ)T (b)T (b′)#δs(ψ)τ

= δχ,[|b′|]ψ
∑
τ∈T

κ(|b|, |b′|s(ψ)τ)κ(|b′|, s(ψ)τ)T (b)T (b′)#δs(ψ)τ .

Since ψ = [s(ψ)τ ] and π∗ω̄ = (dκ)−1, we have an equality.

Remark 6.0.9. Note that the above algebra homomorphism U has a linear left inverse, given by

Q : B(V )#kĜ −→ B(F (V ))#k
Ĝ/T
ω̄

b#δψ 7−→ κ(|b|, ψ)−1 T−1(b)#s∗δψ.

It is easy to see that this map preserves the unit. Moreover we have

Q((b#δχ)(b′#δψ)) = Q(b#δχ)Q(b′#δψ)

if and only if s([|b′|ψ]) = |b′|ψ.
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We now show that there is an algebra homomorphism between the corresponding small quantum

groups of ū≤0 := B(F (V ))#k
Ĝ/T
ω̄ and u≤0 := B(V )#kĜ extending U :

Proposition 6.0.10. The following map de�nes an algebra inclusion:

M : ū −→ u

Γū((b#δ1)∗) 7−→ Γu((T (b)#δ1)∗)

∑
χ∈Ĝ

κ(χ|b̄|, |b|)−1 δχ


ιū(b#δχ) 7−→ ιu(U(b#δχ)).

Proof. It is not hard to see that elements of the form Γū((b#δ1)∗) and ιū(b#δχ) generate the algebra

ū, since we have for a general small quasi-quantum group u(ω, σ)

Γ((b#δχ)∗) = Γ((b#δ1)∗)

∑
ψ

ω(ψ|b̄|, |b|, χ)

σ(ψ, χ)
δψ

 cχ = Γ((b#δ1)∗)

∑
ψ

ω(ψ|b̄|, |b|, χ)

σ(ψ, χ)
δψ

 ,

where we used that cχ = 1 holds in the quotient. Moreover, the elements Γ((b#δ1)∗)ι(b̃#δχ) ∈
u(ω, σ) form a basis. Hence, we need to show that M preserves products of the form(

Γ((b#δ1)∗)ι(b̃#δχ)
)
·
(

Γ((b′#δ1)∗)ι(b̃′#δψ)
)

Since we know that M |ū≤0 = U is a quasi-Hopf inclusion, for this it is su�cient to prove the

following relations:

• M (Γ((b#δ1)∗)Γ((b′#δ1)∗)) = M (Γ((b#δ1)∗))M (Γ((b′#δ1)∗)),

• M
(
ι(b̃#δχ)Γ((b#δ1)∗)

)
= M

(
ι(b̃#δχ)

)
M (Γ((b#δ1)∗)).

We start with the �rst relation. We have a general formula for the product Γ((b#δ1)∗)Γ((b′#δ1)∗)

given by

Γ((b#δ1)∗)Γ((b′#δ1)∗) =
∑

ξ∈Ĝ/T

ω̄(ξ[|b̄′||b̄|], [|b|], [|b′|])−1 Γ((b ∗ b′#δ1)∗)δξ,
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where b ∗ b′ ∈ B(F (V )) denotes the quantum shu�e product as introduced in Appendix B. Hence,

M (Γ((b#δ1)∗)Γ((b′#δ1)∗)) = M

 ∑
ξ∈Ĝ/T

ω̄(ξ[|b̄′||b̄|], [|b|], [|b′|])−1 Γ((b ∗ b′#δ1)∗)ι(δξ)


=

∑
ξ∈Ĝ/T

ω̄(ξ[|b̄′||b̄|], [|b|], [|b′|])−1M (Γ((b ∗ b′#δ1)∗))M (δξ)

=
∑
χ∈Ĝ

ω̄([χ|b̄′||b̄|], [|b|], [|b′|])−1κ(χ|b̄||b̄′|, |b||b′|)−1 Γ((T (b ∗ b′)#δ1)∗)ι (δχ)

=
∑
χ∈Ĝ

ω̄([χ|b̄′||b̄|], [|b|], [|b′|])−1κ(χ|b̄||b̄′|, |b||b′|)−1κ(|b|, |b′|)−1

× Γ((T (b) ∗ T (b′)#δ1)∗)ι (δχ) ,

where we used T (b ∗ b′) = κ(|b|, |b′|)−1T (b) ∗ T (b′) in the last equality. On the other hand, we have

M (Γ((b#δ1)∗))M (Γ((b′#δ1)∗)) =
∑
ξ,ψ∈Ĝ

κ(ξ|b̄|, |b|)−1κ(ψ|b̄′|, |b′|)−1

× Γ((T (b)#δ1)∗)δξΓ((T (b′)#δ1)∗)δψ

=
∑
ψ∈Ĝ

κ(ψ|b̄′||b̄|, |b|)−1κ(ψ|b̄′|, |b′|)−1 Γ((T (b) ∗ T (b′)#δ1)∗)δψ.

Since π∗ω̄ = dκ−1, we have an equality. For the second relation, it su�ces to prove M(F̄jĒi) =

M(F̄j)M(Ēi), where the bars indicate that the generators live in ū. By Remark 5.5.5, we have

M
(
F̄jĒi

)
= M

(ĒiF̄j − δij (K[χ̄i] − K̄
−1
[χ̄i]

))
ι

 ∑
ξ∈Ĝ/T

ω̄([χ̄j ], ξ[χi], [χ̄i])δξ


=
(
M(Ēi)M(F̄j)− δij

(
M
(
K[χ̄i]

)
−M

(
K̄−1

[χ̄i]

)))
ι

∑
ξ∈Ĝ

ω̄([χ̄j ], [ξχi], [χ̄i]) δξ


=
(
EiFj − δij

(
Kχ̄i − K̄−1

χ̄i

))
ι

∑
ξ∈Ĝ

κ(χ̄j , ξ)

κ(ξχ̄jχi, χ̄i)
ω̄([χ̄j ], [ξχi], [χ̄i]) δξ


=
(
EiFj − δij

(
Kχ̄i − K̄−1

χ̄i

))
ι

∑
ξ∈Ĝ

κ(χ̄j , ξχi)

κ(ξχi, χ̄i)
δξ


= FjEi ι

∑
ξ∈Ĝ

κ(χ̄j , ξχi)

κ(ξχi, χ̄i)
δξ

 = M(F̄j)M(Ēi).

Finally, it is easy to see that M preserves the unit. This proves the claim.
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Remark 6.0.11. Without proof, we simply remark that M is a homomorphism of quasitrian-

gular quasi-Hopf algebras if we replace u by its twisted version uJ (see Def. 2.1.3), where J =∑
χ∈Ĝ κ(χ, ψ) δχ ⊗ δψ.

Lemma 6.0.12. Let C denote the representation category of u(1, σ). Then the Müger center C′ is
equivalent to VectT , where T = Rad(B) is the radical of the associated bihomomorphism B = σσT .

Proof. In the case u(1, σ) = (uq(g), R0) with simple Lie algebra g and R0 coming from a symmetric

bihomomorphism f , this follows from Cor. 5.4.6. The general case follows from Thm. 6.2. in [Shi16].

The theorem says that the Müger center C′ of a �nite braided category C is equivalent to the Müger

center YD(C)BB
′
of the category YD(C)BB of Yetter-Drinfeld modules over a braided Hopf algebra

B in C. In our case, we can set C = Vect
(1,σ)

Ĝ
, B = B(V ). As it is pointed out in Chapter 6.5 in

[Shi16], we have YD(C)BB ∼= Repu in this case. Moreover, by Prop. 3.0.1 we have C′ ∼= VectT , which

proves the claim.

We now proof the main theorem:

Proof of Thm. 6.0.6. We �rst prove the second part of the theorem. Since the restriction functor is

the identity on morphisms, it is additive, linear and even exact. In order to show that τ is a monoidal

structure, we choose u ⊗ v ⊗ w ∈ (F(U) ⊗ F(V )) ⊗ F(W ). For ᾱX,Y,Z and αU,V,W denoting the

associators in Repū and Repu, respectively, we obtain

τU,V⊗W ◦ (idF(U) ⊗ τV,W ) ◦ ᾱF(U),F(V ),F(W )(u⊗ v ⊗ w)

=
∑

ξk∈Ĝ/T

∑
ψl∈Ĝ

κ(ψ1, ψ2ψ3)κ(ψ2, ψ3)ω̄(ξ1, ξ2, ξ3) δψ1
M(δξ1).u⊗ δψ2

M(δξ2).v ⊗ δψ3
M(δξ3).w

=
∑
ψl∈Ĝ

κ(ψ1, ψ2ψ3)κ(ψ2, ψ3)ω̄([ψ1], [ψ2], [ψ3]) δψ1
.u⊗ δψ2

.v ⊗ δψ3
.w

=
∑
ψl∈Ĝ

κ(ψ1ψ2, ψ3)κ(ψ1, ψ2) δψ1
.u⊗ δψ2

.v ⊗ δψ3
.w

= F(αU,V,W ) ◦ τU⊗V,W ◦ (τU,V ⊗ idF(W )).

This proves the associativity axiom. The unitality axiom follows from the fact that κ is a normalized

2-cochain. Hence, τ is a monoidal structure. We now show that (F , τ) preserves the braiding. For

83



this, we �rst notice that

(M ⊗M)(Θ̄)

=
∑
b∈B

(M (Γ((b#δ1)∗))⊗M (ι(b))) ·

 ∑
χ,ψ∈Ĝ/T

ω̄(χ[|b̄|], [|b|], ψ)M(δχ)⊗M(δψ)


=
∑
b∈B

(Γ((T (b)#δ1)∗)⊗ ι(T (b)))

 ∑
π,ν∈Ĝ

κ(|b|, ν)

κ(π|b̄|, |b|)
ω̄([π|b̄|], [|b|], [ψ]) δπ ⊗ δν


=
∑
b∈B

(Γ((T (b)#δ1)∗)⊗ ι(T (b)))

 ∑
π,ν∈Ĝ

κ(π, ν)

κ(π|b̄|, ν|b|)
δπ ⊗ δν


=

 ∑
χ,ψ∈Ĝ

κ(χ, ψ)−1 δχ ⊗ δψ

(∑
b∈B

(Γ((T (b)#δ1)∗)⊗ ι(T (b)))

) ∑
π,ν∈Ĝ

κ(π, ν) δπ ⊗ δν


=

 ∑
χ,ψ∈Ĝ

κ(χ, ψ)−1 δχ ⊗ δψ

Θ

 ∑
π,ν∈Ĝ

κ(π, ν) δπ ⊗ δν

 .

where Θ̄ and Θ denote the quasi-R-matrices in ū and u, as de�ned in Prop. 5.6.3. Now, let c̄X,Y and

cV,W denote the braiding in Repū and Repu, respectively. We set κ := κ1⊗κ2 =
∑
χ,ψ κ(χ, ψ) δχ⊗δψ.

By R̄ = R̄1 ⊗ R̄2 = R̄1
0Θ̄(−1) ⊗ R̄2

0Θ̄(−2) and R = R1 ⊗ R2 = R1
0Θ(−1) ⊗ R2

0Θ(−2), we denote the

R-matrices of ū and u as de�ned in Section 5.6. Again, we choose an arbitrary element v ⊗ w ∈
F(V )⊗F(W ). We have

τW,V ◦ c̄F(V ),F(W )(v ⊗ w) = κ1M(R̄2).w ⊗ κ2M(R̄1).v

= κ1M(R̄2
0)M(Θ̄(−2)).w ⊗ κ2M(R̄1

0)M(Θ̄(−1)).v

= κ1M(R̄2
0)κ̃(−2)Θ(−2) ˜̃κ2.w ⊗ κ2M(R̄1

0)κ̃(−1)Θ(−1) ˜̃κ1.v

= R2
0Θ(−2) ˜̃κ2.w ⊗R1

0Θ(−1) ˜̃κ1.v

= R2 ˜̃κ2.w ⊗R1 ˜̃κ1.v

= F(cV,W ) ◦ τV,W (v ⊗ w).

Here, we used the notation κ1 ⊗ κ2 = κ̃1 ⊗ κ̃2 = ˜̃κ1 ⊗ ˜̃κ2 = κ. The equality κ1M(R̄2
0)κ̃(−2) ⊗

κ2M(R̄1
0)κ̃(−1) = R1

0 ⊗R2
0 follows from π∗σ̄ = σ · κ/κT .

The fact that ξV : F(V ∨) → F(V )∨ is a natural ū-module isomorphism follows from the Remark

6.0.11 thatM is a homomorphism of quasi-Hopf algebras, if we replace u by the twisted quasi-Hopf

algebra uJ for J =
∑

κ(χ, ψ) δχ ⊗ δψ. So far, we showed that F is a ribbon functor.

By Lemma 6.0.12, we know that the radical of the pairing ωRepu is k
T . Since F preserves the radical

and F(kT ) is trivial, Repū must be modular. As our functor F is a restriction functor it satis�es

the conditions in Prop. 6.0.7 and hence it is a modularization in the sense of Def. 6.0.2.
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Appendix A. Some tools in �nite abelian groups

We start with a small quantum group u := uq(g,Λ) with R-matrix R = R0(f)Θ̄ as in Section 4. The

Cartan part is given by u0 = C[Λ/Λ′], where Λ′ = CentΛR(Λ). The non-degenerate bihomomorphism

f : G1 ×G2 → C× de�nes a braiding on VectĜ given by:

σ(χ, ψ) := χ|G1

(
f−1

(
ψ̄|G2

))
.

From now on, we assume G = G1 +G2. We set Rad0 := Rad
(
f · fT |G1∩G2

)
⊆ G1 ∩G2 =: G12 and

T := Rad (B) ⊆ Ĝ.

Lemma A.0.1. The following map is an isomorphism:

Φ : Rad0 −→ T

µ 7−→
(
ν = ν1 + ν2 7→

f(ν1, µ)

f(µ, ν2)

)
.

Proof. By de�nition of T the map Φ is well-de�ned. It is injective, since Φ(µ) = 1 implies f(ν1, µ) =

1 for all ν1 ∈ G1 and f(µ, ν2) = 1 for all ν2 ∈ G2. By the non-degeneracy of f , we have µ = 0.

Finally, we show that Φ is surjective. For χ ∈ T , we have elements µ1 ∈ G1, µ2 ∈ G2, s.t. χ|G2
=

f(µ1, _ ) and χ|G1
= f(_ , µ2) by non-degeneracy of f . Since χ is in the radical of σ · σT , we have

σ(χ, ψ)σ(ψ, χ) = f(f−1(ψ|G2
), µ2)ψ|G1

(µ1) = ψ|G2
(µ2)ψ|G1

(µ1) = 1.

Thus, ψ(µ1) = ψ(−µ2) for all ψ ∈ Ĝ and hence µ1 = −µ2 =: µ. This implies

χ = χ|G1χ|G2 = f(_ ,−µ)(µ, _ ) = Φ(µ).

We de�ne two more important groups:

G := Ann(T ) ⊆ G G1 ×G2 := { (µ1, µ2) ∈ G1 ×G2 | f(µ1, ν) = f(ν, µ2) ∀ν ∈ G12 }.
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Corollary A.0.2. The isomorphism Φ : Rad0 → T induces an isomorphism of exact sequences:

Rad0 G1 ×G2 G

T Ĝ Ĝ/T

ι

Φ

π

Ψ

Here ι(µ) = (µ,−µ) and π(µ1, µ2) = µ1 + µ2.

Proof. The map F : G1 ×G2 → Ĝ is given by (µ1, µ2) 7→ (ν = ν1 + ν2 7→ f(ν1, µ2)f(µ1, ν2)) and

does not depend on the splitting ν = ν1 + ν2.

We show that the map π is surjective. Let µ = µ1 + µ2 ∈ G. We choose a set-theoretic section

s̃ : G12/Rad0 → G12. We can push f · fT down to a non-degenerate symmetric bihomomorphism

f · fT on G12/Rad0. Hence, there must be an element x ∈ G12/Rad0, s.t.

f(µ1, _ )

f(_ , µ2)
= f · fT (x, _ ) = f · fT (s̃(x), _ )

as characters on G12/Rad0. For s(µ) = (s(µ)1, s(µ)2) := (µ1−s(x), µ2 +s(x)) ∈ G1 ×G2 we obtain

π(s(µ)) = µ. The map Ψ is the well-de�ned isomorphism given by Ψ(µ) = [F (s(µ))].

Example A.0.3. Let G12 = G and f symmetric and µ ∈ G. We have

f(s(µ)1, _ ) = f(_ , s(µ)2) = f(s(µ)2, _ )

on G and since f is non-degenerate this implies s(µ)2 = s(µ)1 =: µ̃. Since s : G → G1 ×G2 is a

section, this implies µ = 2m̃u. On the other hand, for ν = 2ν̃ ∈ 2G, by Lemma A.0.1 we have

χ(ν) =
f(ν̃, µ)

f(µ, ν̃)
=
f(ν̃, µ)

f(ν̃, µ)
= 1 ∀χ ∈ T.

Hence, G = 2G in this case.

A.1 Grouplike elements

Let (ω̄, σ̄) ∈ Z3
ab

(
Ĝ/T

)
be an abelian 3- cocycle on Ĝ/T . The following elements replace the

grouplike elements of the Radford biproduct B(V )#kĜ/T for the case of a non-trivial 3-cocycle ω̄.

For every χ ∈ Ĝ/T , we set

Lχ : =
∑

ψ∈Ĝ/T

σ̄(χ̄, ψ) δψ ∈ kĜ/T

L̄χ : =
∑

ψ∈Ĝ/T

σ̄(ψ, χ̄) δψ ∈ kĜ/T

It is easy to see that the element LχL̄χ ∈ kĜ/T is grouplike, since B = σ̄σ̄T is a bihomomorphism.
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Lemma A.1.1. The element Lχ is grouplike if and only if the 2-cocycle θ(χ) ∈ Z2(Ĝ/T ) from

5.1.5 is trivial.

Proof. We have

∆(Lχ) =
∑

ψ∈Ĝ/T

σ̄(χ̄, ψ) ∆(δψ)

=
∑

ψ1,ψ2∈Ĝ/T

σ̄(χ̄, ψ1ψ2) δψ1
⊗ δψ1

=
∑

ψ1,ψ2∈Ĝ/T

θ(χ̄)(ψ1, ψ2)σ̄(χ̄, ψ1)σ̄(χ̄, ψ2) δψ1
⊗ δψ1

.

This proves the claim.

A.2 A particular representative (ω̄, σ̄) ∈ Z3(Ĝ/T )

Let σ be a bihomomorphism on the dual of a �nite abelian group Ĝ, such that the associated

quadratic form Q(χ) = σ(χ, χ) vanishes on the radical T = Rad(B). Starting with an arbitrary

set-theoretic section s : Ĝ/T → Ĝ for the quotient map π : Ĝ→ Ĝ/T , we want to de�ne an abelian

3-cocycle (ω̄, σ̄), such that

π∗ω̄ = dκ−1, π∗σ̄ = κ/κT .

Before we de�ne this abelian 3-cocycle, we notice that σ|T is an alternating bihomomorphism and

thus we have σ|T := η/ηT for some 2-cocycle η : T × T → C×.

Lemma A.2.1. Let r(χ, ψ) := s(χ)s(ψ)s(χψ)−1 denote the corresponding 2-cocycle to the set-

theoretic section s : Ĝ/T → Ĝ. Moreover, for χ ∈ Ĝ, we de�ne τχ := χs(π(χ))−1 ∈ T . We set

σ̄ := s∗σ. Together with

ω̄(χ, ψ, ξ) := σ(s(ξ), r(χ, ψ))df(s(χ), s(ψ), s(ξ)), f(χ, ψ) := η(r(π(χ), π(ψ)), τχτψ),

this de�nes an abelian 3-cocycle. Explicitly, we have

df(s(χ), s(ψ), s(ξ)) =
η(r(χ, ψξ), r(ψ, ξ))

η(r(χψ, ξ), r(χ, ψ))
.

The 2-cocochain κ ∈ C2(Ĝ) satisfying π∗(ω̄, σ̄) = dabk · (1, σ) is given by

κ(χ, ψ) = (σ(τχ, ψ)η(τψ, τχ)f(χ, ψ))
−1
.

Proof. Before we check that (ω̄, σ̄) is an abelian 3-cocycle, we show that π∗(ω̄, σ̄) = dabk · (1, σ)

holds. We have

κ(χ, ψ)

κ(ψ, χ)
σ(χ, ψ) =

η(τχ, τψ)

σ(τχ, ψ)

σ(τψ, χ)

η(τψ, τχ)
σ(χ, ψ) =

σ(τχ, τψ)σ(χ, ψ)

σ(τχ, ψ)σ(χ, τψ)
= σ(χτ̄χ, ψτ̄ψ) = σ̄(π(χ), π(ψ)).
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Here, we used that σ is a bihomomorphism satisfying σ|T = η/ηT and σ(τ, χ) = σ(χ, τ)−1 for

τ ∈ T . For π∗ω̄, the following relations are not very hard to check:

df(χ, ψ, ξ) = s∗df(π(χ), π(ψ), π(ξ))σ(r(χ, ψ), τξ)dg(χ, ψ, ξ)−1

σ(ξ, r(π(χ), π(ψ))) = σ(s([ξ]), r(π(χ), π(ψ)))σ(τξ, r(π(χ), π(ψ))),

where g(χ, ψ) = η(τψ, τχ). Thus, we have

π∗ω̄(χ, ψ, ξ) = df(χ, ψ, ξ)σ(ξ, r(π(χ), π(ψ)))dg(χ, ψ, ξ).

Hence, π∗ω̄ = dκ−1.

We now want to show that ω̄ as de�ned above is a 3-cocycle. For this, we compute d(s∗df) and dm,

where m(a, b, c) := σ(s(c), r(a, b)). We start with d(s∗df):

d(s∗df)(a, b, c, d) =
s∗df(a, b, c)s∗df(a, bc, d)s∗df(b, c, d)

s∗df(ab, c, d)s∗df(a, b, cd)

=
η(r(a, bc), r(b, c))

η(r(ab, c), r(a, b))

η(r(a, bcd), r(bc, d))

η(r(abc, d), r(a, bc))

η(r(b, cd), r(c, d))

η(r(bc, d), r(b, c))

× η(r(abc, d), r(ab, c))

η(r(ab, cd), r(c, d))

η(r(ab, cd), r(a, b))

η(r(a, bcd), r(b, cd))

=
η(r(ab, cd), r(a, b))

η(r(ab, cd), r(c, d))

η(r(ab, cd)r(a, b), r(c, d))

η(r(ab, cd)r(c, d), r(a, b))

=
η(r(a, b), r(c, d))

η(r(c, d), r(a, b))

= σ(r(a, b), r(c, d)).

Here, we only used the fact that η is a 2-cocycle and that σ|T = η/ηT . On the other hand,

dm(a, b, c, d) =
σ(s(c), r(a, b))σ(s(d), r(a, bc))σ(s(d), r(b, c))

σ(s(d), r(ab, c))σ(s(cd), r(a, b))

=
σ(s(c), r(a, b))σ(s(d), r(a, bc))σ(s(d), r(b, c))

σ(s(d), r(ab, c))σ(s(cd), r(a, b))

σ(s(d), r(a, b))

σ(s(d), r(a, b))

= σ(s(d), dr(a, b, c))
σ(s(c), r(a, b)σ(s(d), r(a, b)

σ(s(cd), r(a, b)

= σ(r(c, d), r(a, b))

= σ(r(a, b), r(c, d))−1,

where we used that σ is a bihomomorphism and η is a 2-cocycle. Combining both results, we see
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that ω̄ is a 3-cocycle. We now want to show that (ω̄, σ̄) sati�es the hexagon equations. We have

ω̄(a, b, c)ω̄(c, a, b)

ω̄(a, c, b)
=
σ(s(c), r(a, b))σ(s(b), r(c, a))

σ(s(b), r(a, c))

× η(r(a, bc), r(b, c))η(r(c, ab), r(a, b))η(r(ac, b), r(a, c))

η(r(ab, c), r(a, b))η(r(ca, b), r(c, a))η(r(a, cb), r(c, b))

= σ(s(c), r(a, b)) = σ(r(a, b), s(c))−1 =
σ̄(ab, c)

σ̄(a, c)σ̄(b, c)
.

The second hexagon equation follows from the fact that σ̄σ̄T is a bihomomorphism.
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Appendix B. Nichols algebras in braided monoidal

categories

In this section, we brie�y recall the notion of a Nichols algebra in an abelian rigid braided monoidal

category (see [BB13] for details). Moreover, we give a categorical de�nition of the quantum shu�e

product.

Let V ∈ C be an object in an abelian braided monoidal category C with associator α and braiding

c. We de�ne V n := V n−1⊗V with V 0 = I. The tensor algebra T (V ) :=
⊕

i≥0 V
i has a free algebra

structure in C induced by the multiplications mi,n−i : V i ⊗ V n−i → V n, given by

mi,n−i := (α−1
V i,V,V ⊗ idV ⊗(n−(i+2))) ◦ · · · ◦ α−1

V i,V (n−(i+1)),V
.

Let d1, d2 : V → T (V )⊗T (V ) be the canonical inclusions and set ∆1 := d1 +d2 : V → T (V )⊗T (V ).

Then there is a unique extension ∆ : T (V ) → T (V ) ⊗ T (V ) of ∆1, s.t. ∆ is an algebra homomor-

phism in C. Moreover, we de�ne a counit on T (V ) by ε|I = idI and εV n = 0 for n ≥ 1. Similarly to

the coproduct, we can uniquely extend the map S1 := −idV : V → V ⊆ T (V ) to an anti-algebra

homomorphism S : T (V )→ T (V ), which turns T (V ) into a Hopf algebra in C.

It is clear that the braid group Bn with generators σi acts as automorphisms of V n via

σi.(v1 ⊗ · · · ⊗ vn) =
(
Ai,nV

)−1

◦ ((idV ⊗(i−1) ⊗ cV,V )⊗ idV ⊗(n−(i+1))) ◦Ai,nV (v1 ⊗ · · · ⊗ vn), where

Ai,nV : = (AiV ⊗ idV ⊗(n−(i+2))) ◦ · · · ◦ (A1
V ⊗ idV ⊗(n−3))

AiV : = (idV ⊗Ai−1) ◦ αV,V ⊗n,V , A1
V := αV,V,V .

Here, the paranthesis of the tensor powers V ⊗n in the indices is understood. Let ρ : Sn → Bn be the

Matsumoto section of the canonical epimorphism Bn � Sn. We de�ne the so-called Woronowicz

symmetrizer:

Wor(c)n :=
∑
σ∈Sn

ρ(σ) ∈ End(V n) Wor(c) :=

∞⊕
n=1

Wor(c)n ∈ End(T (V )).

De�nition B.0.1. The Nichols algebra B(V ) of V in C is de�ned as the quotient Hopf algebra

T (V )/ker(Wor(c)).
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Remark B.0.2. The Nichols algebra B(V ) has two important equivalent characterizations:

• We can extend the evaluation map evV : V ∨⊗V → I to a unique Hopf pairing T (V ∨)⊗T (V )→
I. This Hopf pairing factors through a non-degenerate Hopf pairing B(V ∨)⊗B(V )→ I.

• It can be shown that B(V ) is the unique quotient Hopf algebra of T (V ), s.t. V ⊆ B(V ) and

ker(∆n − (1⊗ idV n + idV n ⊗ 1)) = 0 for n > 1.

In order to de�ne the quantum shu�e-algebra, we de�ne a di�erent Hopf structure on T (V ). Similar

to the free algebra structure from above, we can endow T (V ) with the cofree coalgebra structure.

Moreover, we de�ne a multiplication on T (V ) as follows:

De�nition B.0.3 (Quasi-quantum shu�e product). A permutation σ ∈ Sn is called an i-shu�e if

σ(1) < · · · < σ(i), σ(i+ 1) < · · · < σ(n).

We de�ne a multiplication µi,n−i : V i ⊗ V n−i → V n by

µi,n−i :=
∑

σ: i−shu�e

ρ(σ).mi,n−i. (B.1)

The induced product on T (V ) is denoted by ∗ : T (V )⊗T (V )→ T (V ). We call this the braided shu�e

product. In the case C = H
HYD, where H is a quasi-Hopf algebra, we call this the quasi-quantum

shu�e product.

Again, we can de�ne a corresponding unit and antipode uniquely in order to turn T (V ) into a Hopf

algebra in C, which we now denote by t(V ). The Hopf algebras B(V ) and t(V ) are related as follows:

Proposition B.0.4. The Woronowicz symmetrizer Wor(c) : B(V )→ t(V ) is a monomorphism of

Hopf algebras in C. The image of Wor(c) is simply the Hopf subalgebra of t(V ) generated by V as

an algebra.
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Appendix C. Factorizable quasi-Hopf algebras

In [BT04], the authors de�ne the notion of factorizability for quasi-Hopf algebras:

De�nition C.0.1. Let (H,R) be a quasi-triangular quasi-Hopf algebra and H∗ the corresponding

coquasi-Hopf algebra. We will say that H is factorizable if the following linear map is bijective:

Q : H∗ −→ H

f 7−→ f
(
S(X2

(2)p̃
2)f1R2r1g1S(q2)X3

)
X1S(X2

(1)p̃
1)f2R1r2g2S(q1).

Here R = R1 ⊗R2 = r1 ⊗ r2, f = f1 ⊗ f2 and f−1 = g1 ⊗ g2 (see Sec. 2.1).

They also de�ned braided Hopf structures on H and H∗ in the braided monoidal category ModH

(see [BT04], Sec.4). To avoid confusion, they denoted these braided Hopf algebras by H and H∗.

They furthermore showed that Q is a braided Hopf algebra homomorphism.

In [FGR17], the authors gave an alternative interpretation forH,H∗ and Q by proving the following

statements:

Proposition C.0.2. Let H be a �nite dimensional quasi-triangular quasi-Hopf algebra. Further-

more, let H,H∗ ∈ ModH be the braided Hopf algebras as de�ned in [BT04], Sec.4. Then we have

1. H is the end over the functor (_) ⊗ (_)∨ with dinatural transformation given by πX(h) =

h.ei ⊗ ei.

2. H∗ is the coend over the functor (_)∨⊗(_) with dinatural transformation given by ιX(f⊗x) :=

f(_.x).

3. The morphism Q : H∗ → H is uniquely determined by

πY ◦Q ◦ ιX = (evX ⊗ idY⊗Y ∨) ◦ (id⊗ c2X,Y ⊗ id) ◦ (idX∨⊗X ⊗ coevY ),

where we omitted the associators in ModH .

Remark C.0.3. Note that in [BT04] the authors did not assume a ribbon structure on H in order

to de�ne the braided Hopf structure on the coend H∗. However, up to the antipode it is exactly the
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same Hopf structure as for example de�ned in [KL01]. One can show that the antipode in [BT04]

is uniquely determined by

S ◦ ιX = (ιX∨ ⊗ evX) ◦ (c−1
X∨,X∨∨⊗X∨ ⊗ idX) ◦ (coevX∨ ⊗ idX∨⊗X),

where we again omitted the associators.

In [BPVO00], the authors give a more general interpretation for the underline ( ):

Proposition C.0.4. Let H be a quasi-Hopf algebra, A an associative algebra and f : H → A an

algebra homomorphism. Then we can de�ne a new multiplication on A via

a·b := f(X1)af(S(x1X2)αx2X3
1 )bf(S(x3X3

2 )).

With this multiplication, unit given by β and left H-action given by h.a := f(h1)af(S(h2)), A

becomes a left H-module algebra, i.e. an algebra in RepH , which we denote by A.

It is easy to see that f : H → A then becomes a left H-module algebra homomorphism. Note that

this is exactly our situation in Section 6, where we have an algebra homomorphism M : ū→ u.

Similarly, if H and A are quasitriangular quasi-Hopf algebras and f : H → A is a homomorphism

of such, we can endow A with a braided Hopf algebra structure in RepH with H-module algebra

structure as above and comultiplication, counit and antipode given by

∆(a) : = f(x1X1)a1f(g1S(x2R2y3X3
2 ))⊗ x3R1.(f(y1F 2)a2f(g2S(y2X3

1 )))

ε(a) : = ε(a)

S(a) : = f(X1R2p2)S(f(q1)(X2R1p1.a)S(f(q2))f(X3)).

Conversely, if f : A → H∗ is a homomorphism of coquasi-Hopf algebras, we can endow A with

the structure of a braided Hopf algebra, denoted by A, in the category of right H∗-comodules (see

Thm. 3.5 in [BT04]) which can be identi�ed with the category of left H-modules RepH .
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Summary of results

1. In the �rst part, we reinterpret the conditions in [Mül98] on the Lusztig ansatz R = R0Θ̄ to

give an R-matrix on a small quantum group u (see Section 0.4) in terms of the non-degeneracy

of a certain bihomomorphism f̂ : G1×G2 → C×, respectively a`g : H1×H2 → C×, leading to
an extension of the results in [LN15] (see Cor. 3.2.7).

We show that irreducible transparent objects in Repu are 1-dimensional and classify them (see

Cor. 5.4.6). In particular, we show that factorizability of the above R-matrix is equivalent to

the non-degeneracy of the symmetrization Sym(f) (see Def. 5.1.2) of the non-degenerate bi-

homomorphism f (see Thm. 5.1.6).

We compute all possible R-matrices of the above form and the corresponding groups of trans-

parent objects for all small quantum groups and collect them in Table 1.

Finally, we construct a ribbon structure on every quasi-triangular small quantum group of

the above form (see Thm. 6.0.1).

2. In the second part, we explicitly construct a modularization of Vect
(ω,σ,η)
G using a di�erent

approach than [Bru00] (see Prop. 3.0.1).

We construct a family of �nite-dimensional quasi-triangular quasi-Hopf algebras, generalizing

extended small quantum groups. Moreover, we compute the relevant relations for them (see

Thm. 5.0.1).

We give su�cient conditions for the modularizability of representation categories of small

quantum groups. If they are ful�lled, we de�ne an explicit modularization functor (see Thm.

6.0.6).

The �rst part of this thesis is based on the publication [LO17].
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Zusammenfassung der Resultate

1. Im ersten Teil interpretieren wir die Bedingungen in [Mül98] für den Lusztig-Ansatz R = R0Θ̄

einer R-Matrix auf einer kleinen Quantengruppe neu (siehe Kap. 0.4). Eine wesentliche Rolle

spielt dabei die Nicht-Degeneriertheit eines Bihomomorphismus f̂ : G1 × G2 → C×, bzw.
a`g : H1 × H2 → C×. Dies führt zu einer Erweiterung der Ergebnisse in [LN15] (siehe Kor.

3.2.7).

Wir zeigen, dass die transparenten Objekte in Repu 1-dimensional sind und klassi�zieren

sie (siehe Kor. 5.4.6). Insbesondere zeigen wir, dass die Nicht-Degeneriertheit der obigen R-

Matrix äquivalent zur Nicht-Degeneriertheit der Symmetrisierung Sym(f) (siehe Def. 5.1.2)

des nicht-degenerierten Bihomomorphismus f ist (siehe Thm. 5.1.6).

Wir berechnen alle möglichen R-Matrizen der obigen Form und die jeweilige Gruppe der

transparenten Objekte für alle kleinen Quantengruppen und sammeln diese in Tabelle 1.

Schliesslich konstruieren wir ein Band-Element auf jeder quasi-triangulären kleinen Quanten-

gruppe der obigen Form (siehe Thm. 6.0.1).

2. Im zweiten Teil konstruieren wir eine explizite Modularisierung von Vect
(ω,σ,η)
G unter Verwen-

dung eines anderen Ansatzes als in [Bru00] (siehe Prop. 3.0.1).

Wir konstruieren eine Familie endlich-dimensionaler quasi-triangulärer Quasi-Hopf Algebren,

welche erweiterte kleine Quantengruppen verallgemeinern. Weiterhin berechnen wir die rele-

vanten Relationen dieser Quasi-Hopf Algebren (siehe Thm. 5.0.1).

Wir geben notwendige Bedingungen für die Modularisierbarkeit der Darstellungskategorien

kleiner Quantengruppen. Falls diese erfüllt sind, de�nieren wir einen expliziten Modular-

isierungsfunktor (siehe Thm. 6.0.6).

Der erste Teil dieser Thesis basiert auf der Publikation [LO17].
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