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Introduction

The representation theory of finite groups plays an important role in many different areas not only
in mathematics but also in physics and even chemistry. Different aspects of this theory are relevant
for different fields. The classification of finite simple groups, for instance, wouldn’t have been ac-
complished without the character theory of their representations and the process led to completely
new branches of modern mathematics, such as the theory of vertex algebras. An application in
physics, more specifically quantum mechanics, is for example the study of the symmetry group of
the Hamiltonian or of the permutation group in many-body problems.

It is well known that the finite-dimensional representations over an algebraically closed field &
of a finite group G form a category Rep(G), which comes with several additional structures. First of
all, for any two G-representations V', W we can build the direct sum of k-vector spaces V@& W, which
carries again the structure of a G-representation. In characteristic zero, every G-representation V'
decomposes into a direct sum of irreducible G-representations, of which only finitely many equiva-
lence classes exist. In this case, Rep(G) is what is called a finite semisimple category. For chark # 0
this is in general not the case and the category Rep(G) is called non-semisimple. Moreover, we
can build the algebraic tensor product V ® W of two G-representations, which is endowed with the
diagonal G-action. Together with the trivial G-representation I, which plays the role of the so-called
tensor unit for this tensor product, this turns Rep(G) into what is called a monoidal category. In
the semisimple case, character theory is used in order to determine the fusion rules of Rep(G), i.e.
the decomposition of the tensor product U; ® U; of two irreducible G-representations into a finite

direct sum of powers of irreducible representations:

mk.
Ui®Uj = @Usa I
kel

The number mfj € Z>o is called the multiplicity of Uy in U; ® U;. Furthermore, for every G-
representation V' we can endow the dual space V* with a G-action given by precomposition with
the inverse. The canonical evaluation and coevaluation maps on V and V* are G-intertwiners satis-
fying certain compatibility conditions. This duality together with the above tensor structure turns
Rep(G) into a so-called fusion category. An additional structure inherited from the category of

finite-dimensional vector space is the action of the symmetric group S,, on n-fold tensor products



V®&- - ®V of a G-representation V. This action appears for example in Schur-Weyl duality and
gives rise to what is called a braiding on Rep(G), i.e. a natural isomorphism oy : VW — WV
satisfying certain coherence conditions. In addition, this braiding is symmetric, i.e. it satisfies the
symmetry condition ow,voy,w = idygw, which is due to the fact that we have an action of S,
instead of the braid group B,, — S,,. The category Rep(G) can be seen as the prototypical example
of a symmetric braided fusion category. In fact, it is an important result by Deligne [Del90] that
for chark = 0 every positive ribbon symmetric braided fusion category C is equivalent to Rep(G)
for some group G. Without going into detail here, we simply recall that ribbon categories allow for
the notion of dimension of an object and positivity requires these dimensions to take non-negative
integral values. In this thesis, we construct braided categories which are exactly of the opposite
type, in the sense that the braiding is maximally non-degenerate, i.e. cy,w o cy,y = id for all W' if
and only if V is isomorphic to direct sum of finitely many copies of the tensor unit I. Braided fusion
categories with non-degenerate braiding are called modular, and they are fairly well-understood
in the finite semisimple case [EGNO15|, with important examples coming for instance from the
previously mentioned vertex algebra theory. Much less is known about non-semisimple modular
tensor categories, although they play an important role in logarithmic conformal field theory and
low-dimensional topology (for a motivation, see Section . In particular one is interested in a
good stock of examples. In the semisimple case, given a braided fusion category that is not mod-
ular, under some conditions it is possible to turn this into a modular category and the idea is to
"mod out" the largest subcategory of the form Rep(G) [Bru00]. This procedure goes under the name

modularization and we are interested in a non-semisimple analogue.

One of the main goals of this thesis is to produce examples of non-semisimple modular tensor
categories as representation categories of factorizable quasi-Hopf algebras (see Section . Before
we give a motivation (see Section , we are going to introduce the relevant objects and concepts,
starting with the notion of a non-semisimple modular tensor category. We assume the reader to be

familiar with the material presented in [Kas93].

0.1 Non-semisimple modular tensor categories

To begin with, we fix the notion of a premodular category. Throughout this thesis, & denotes an
algebraically closed field of characteristic zero. A monoidal k-linear abelian category C is called
premodular if it has a braiding cxy : X ® Y — Y ® X, duals XV and a self-dual twist 0x :
X — X. Moreover, it should satisfy several finiteness conditions which can be summarized by the
requirement, that C is equivalent to the category Rep, of finite-dimensional representations of a
finite-dimensional k-algebra A as a k-linear abelian category. In particular, C possesses only finitely
many isomorphism classes of simple objects. In other words, a premodular category is a finite k-
linear abelian ribbon category. Note that in contrast to [EGNO15], we did not assume semisimplicity,
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meaning that objects in C do not have to be isomorphic to direct sums of simple objects. One of
the main features of ribbon categories is that they admit a consistent theory of traces of morphisms
Tr: End(X) — End(l) & k. We can thus define the so-called S-matrix

S = (sxv)x,yeo©)

with entries sxy := Tr(cy xcx,y). These can be interpreted as invariants of the Hopf link, i.e.
the link consisting of two circles passing through each other, with circles colored by elements X, Y
in the set O(C) of equivalence classes of simple objects. In the semisimple case, the premodular
category C is called modular, if this S-matrix is non-degenerate. As we will see in the motivational
part, it is desirable to have a notion of modularity in the non-semisimple setting. This has been

defined by Lyubashenko [KLO1]: in a premodular category, the coend

XeC
Ke ::/ XVeX

has a canonical structure of a Hopf algebra (see next section) in C. For example, if C = Repy is
the representation category of a finite-dimensional Hopf algebra H, then K¢ is isomorphic to the
dual Hopf algebra H* endowed with the coadjoint action. Moreover, the monodromies cyv xcx, yv
induce a symmetric Hopf pairing we : K¢ ® K¢ — I via the universal property of the coend. The
premodular category C is called modular if we is non-degenerate. In the finite semisimple case, the
coend is given by K¢ = @,.; U’ ® U;, where the U;’s are representatives of the finitely many
equivalence classes of simple objects. In general it is not easy to compute the coend and hence
to check whether a premodular category is modular. Fortunately, Shimizu [Shil6| gave several
equivalent conditions for C to be modular of which the following two turned out to be very useful
for us: An object X € C is called transparent, if cy, xcx,y = idxgy holds for every other object
Y € C. The transparent objects form a full subcategory C’ C C, which is called the Miiger center
of C. Shimizu showed that C is modular if and only if C’ = Vecty. On the other hand, Etingof,

Nykshych and Ostrik [ENOOQ4] introduced a braided tensor functor
F:CRC™ — Z(C) (1)

from the Deligne product CXIC"*" to the center Z(C) of C, which is defined in terms of the braiding
and the reverse braiding in C. The category C is called factorizable if this functor is an equivalence.
Again, Shimizu showed that for a premodular category factorizability is equivalent to modularity.
If C is a premodular category, it is very natural to ask the question whether we can associate to C a
modular category D, which should be minimal in some sense. In the semisimple setting, the relevant
notions have been introduced by Bruguierés [Bru00]: a linear ribbon functor F': C — D between a
semisimple premodular category C and a semisimple modular category D is called a modularization
if it is dominant, i.e. for every object D € D we have idp = poi for some i : D — F(C),
p: F(C) = D, C € C. It has been shown in [Bru00] and [Miig00] that a premodular category C
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admits a modularization if and only if the twist 0y is trivial for every transparent object X € C.
For the non-semisimple case, the following definition is used in the thesis:

Definition 0.1.1. A linear ribbon functor between premodular categories F' : C — D is a modular-
ization of C, if D is modular and

F (K¢/Rad(we)) =2 Kp,
where Rad(we) denotes the radical of the Hopf pairing we.

We should point out here, that there are other approaches in order to define a non-semisimple
modularization. For example, the notion of a dominant functor still makes sense in this case. It is
therefore tempting to define a modularization of C as an exact sequence C' — C L5 D of tensor
categories in the sense of [BN11], where C’ is the Miiger center of C and D is modular. At least in the
setting of Thm. [0.6] both definitions coincide. It would also be interesting to generalize the actual
construction of a modularization in [Bru00] to the non-semisimple case. A step in this direction has
been made in [BN11], where the authors show that a dominant functor F : C — D with exact right
adjoint is equivalent to the free module functor C — mod¢(A) for some commutative algebra A in
the center of C. One of the reasons for choosing the given definition is its closeness to one of the
equivalent definitions of a modular tensor category. We conjecture that it reduces to the definition

of Bruguierés in the semisimple case.

Before we describe the other important objects in this thesis in more detail, we give a motivation

for studying non-semisimple modular tensor categories.

0.2 Motivation

One of the main reasons to study modular tensor categories is the role they play in the description
of 2d conformal field theories obeying suitable finiteness conditions. More precisely, it is believed
that the chiral part of a 2d conformal field theory, more precisely the monodromies of chiral blocks,
is encoded in the underlying modular tensor category. This has been made precise in the finite
semisimple case [Zhu96|[Hua05]. For certain classes of two-dimensional conformal field theories, the
associated modular tensor categories arise as representation categories of certain vertex operator
algebras (VOA). For a detailed introduction to VOA’s, we refer to [FBZ04].

Recall that a VOA is an infinite-dimensional graded vector space V, together with a product
V@V — V((z21)) (state-field correspondence), where V((z,271)) denotes the space of formal
Laurent series with cofficients in V, a unit |0) € V (vacuum vector) and an operator 7' : V. — V
(translation operator) subject to several axioms. Moreover, a VOA is required to carry an action
of the Virasoro algebra, which should be compatible with the other structure. Without going too
much into detail, we just mention that a VOA allows for the definition of so-called chiral n-point
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functions (even though they are multivalued) on the sphere, which are also called conformal blocks.
Conformal blocks with three marked points define a tensor product on the representation category
V —Mod and the structure of conformal blocks with four marked points determines an associativity
constraint for this tensor product, turning V' — Mod into a monoidal category. Also, moving the
marked points around each other and considering the corresponding monodromy leads naturally to
a braiding on this category, which should be non-degenerate by construction. If a VOA moreover
allows for duals and a ribbon structure, its representation category is expected to form a modular

tensor category, even though this has not been made precise in the general case.

The physically interesting examples of chiral 2d conformal field theories are often neither finite
nor semisimple. It is therefore desirable to build a good stock of examples in both cases, with a
mathematically precise description in terms of modular tensor categories. As we have mentioned,
in this thesis we are interested in the finite but non-semisimple case, giving rise to so-called loga-
rithmic conformal field theories. One of the best understood examples of a logarithmic conformal
field comes from so-called W-algebras:

Without going into detail here, we just remark that there is a general approach (see [ET10]) to
construct a non-semisimple VOA from a simple complex simply-laced Lie algebra g and a 2pth root
of unity generalizing the so-called triplet VOA W(p) (see [FGST06] for a definition), which is the
case g = sly. The class of VOA’s coming from this approach is referred to as W-algebras. It is
believed that the representation categories of this class of VOA’s are ribbon equivalent to repre-
sentation categories of certain finite-dimensional quasi-Hopf algebras. In the case of the so-called
triplet VOA W(p), an equivalence of C-linear categories between W(p) — Mod and the representa-
tion category of the small quantum group u,(slz) at a primitive 2pth root of unity ¢ was proven in
[N'T09]. However, it was soon observed that this particular example of a small quantum group (see
Sec. does not allow for an R-matrix, meaning that the above equivalence can not be extended
to an equivalence of braided categories. Recently, it was shown that the coproduct of u,(slz) can
be modified in a way, such that one obtains a factorizable ribbon quasi-Hopf algebra ﬂg’ (sl2), coin-
ciding with wu,(sl2) as an algebra [CGR17]. At least in the case p = 2, this quasi-Hopf algebra was
known before and it has been shown that in this case we indeed obtain a ribbon equivalence [GR17].

Since the premodular and modular categories we are interested in are representation categories

of (quasi-)Hopf algebras with several additional structures, we will now describe these objects in
more detail.

0.3 Factorizable ribbon (quasi-)Hopf algebras

Before we discuss the case of quasi-Hopf algebras, we briefly recall the relevant notions for an
ordinary Hopf algebra. A bialgebra is an associative unital k-algebra (H,m,n) together with algebra
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maps A : H - H® H and ¢ : H — k turning H into a coassociative counital coalgebra. A
convolution inverse of the identity id : H — H is called an antipode and denoted by S. If it
exists, it is unique and H is then called a Hopf algebra. The coproduct A allows to define an H-
module structure on the tensor product V @ W of two H-modules V, W. This turns the category
Repy; of finite-dimensional left H-modules into a k-linear abelian monoidal category with trivial
associator, which is finite if H is finite-dimensional. Moreover, pre-composition with the antipode
(or its inverse) defines a left H-module structure on the dual space V* of an H-module V. Together
with the ordinary evaluation and coevaluation from finite-dimensional vector spaces, this turns
Repy; into a category with left and right duals, more precisely, into a rigid category. A braiding
on Repy can be achieved by an additional structure on the Hopf algebra H, namely a universal
R-matrix R € H ® H. In the following, we will often use the suggestive notation R = R' ® R>.
The axioms for an R-matrix are modelled in a way, s.t. the action v ® w — R%.w ® R'.v is an H-
intertwiner and satisfies the hexagon axioms of a braided category. A Hopf algebra with R-matrix is
called quasi-triangular. Finally, a ribbon element v € H is defined in a way, s.t. the action v — v.v
defines a ribbon twist in Rep. In sum, a finite-dimensional ribbon Hopf algebra has a premodular
representation category.

Inspired by the previous section it is now natural to ask, whether the premodular category Repy is
modular. To answer this, we first introduce the notion of factorizability for a Hopf algebra. A finite-
dimensional quasi-triangular Hopf algebra (H, R) is called factorizable if its monodromy matrix
M := Ry1R € H® H, where Ry = R? ® R! is non-degenerate, i.e. we can write M =Y, E' ® F'
for two bases E', F7 € H. In [Sch01], Schneider proves that factorizability of Rep, is equivalent
to H being factorizable. If H is a finite-dimensional ribbon Hopf algebra, this means that Repy; is
modular if and only if H is factorizable.

For the class of Hopf algebras we considered in this thesis, namely small quantum groups (see
section , our scan showed that only a few of them are factorizable. As ribbon Hopf algebras,
the remaining still define premodular categories, which one could ask to be modularizable. In the
cases when this is possible, the resulting category is very rarely again the representation category
of a Hopf algebra (see , but rather of a quasi-Hopf algebra, which we want to introduce now:
As we pointed out above, the representation category of a bialgebra H has a monoidal structure
with trivial associator in the sense that the forgetful functor Rep;; — Vecty is monoidal. This is due
to the fact that, as a coalgebra, H is a coassociative. In order to allow for non-trivial associators,
we have to weaken the coassociativity axiom by picking an invertible element ® € H @ H ® H, s.t.
(H® A)A(h)-® =P - (A® H)A(h). Moreover, ® should satisfy a 3-cycle condition, so that the
action u®vRw EURVOW — ¢lued?2ve®.w € U®V ®W satisfies the pentagon axioms of a
monoidal category. An algebra H together with a coassociator ® and a quasi-coassociative coproduct
satisfying all the other axioms of a bialgebra is called a quasi-bialgebra. A direct consequence of
this change of axioms is that the antipode S : H — H is not unique anymore. It comes with
two additional elements a, 5 € H, s.t. they define evaluation and coevaluation for the dual space



V*, endowed with the same module structure as before. Such a collection (H, ®, S, a, ) is called a
quasi-Hopf algebra. Again, an R-matrix R € H ® H for a quasi-Hopf algebra is defined in a way,
s.t. the action v@w € VoW — RZw® R'.v € W ®V satisfies the hexagon axioms, but now with
non-trivial associator coming from ®. The notions of ribbon quasi-Hopf algebras and factorizable
Hopf algebras are adjusted similarly (see [BN03] and [BT04]). Again, for a finite-dimensional ribbon
quasi-Hopf algebra, the representation category Rep; will be modular if H is factorizable.

In order to construct the above mentioned factorizable quasi-Hopf algebras, we furthermore need
quasi-analogues of several well-known constructions from the Hopf-case, such as Yetter-Drinfeld
modules, Nichols algebras, Radford biproducts and Drinfeld doubles. All these notions exist also in

the case of a quasi-Hopf algebra and are carefully introduced in the second part of this thesis.

0.4 Example: Small quantum groups and their representa-

tions

In this thesis, we provide modular tensor categories as representation categories of a particular
family of finite-dimensional Hopf algebras and quasi-Hopf algebras. The former we want to describe
now. We first note that for convenience, we set k = C in the first part of the thesis although we
only need k to be algebraically closed and of characteristic zero. even though we could have worked
with It is known that the universal enveloping algebra of a semisimple finite-dimensional complex
Lie algebra g can be naturally deformed to a Hopf algebra U, (g) over the field of rational functions
over Q. With some care, it is possible to specialize the indeterminate ¢ to any specific value in C*.
From now on, ¢ will be a primitive £th root of unity. This case is particularly interesting, since
in contrast to the generic case the representation theory of U,(g) is not semisimple. In [Lus90],
Lusztig constructs a surjetive homomorphism from U,(g) to the ordinary enveloping algebra U(g).
He realizes that the kernel of this homomorphism is a finite-dimensional Hopf algebra, which is
called the Lusztig kernel or small quantum group and denoted by u4(g). The small quantum group
is generated by skew-primitive elements E,,, Fy; and grouplikes K itw where the a;’s are choices of
simple roots in the root lattice of g. Amongst other, these generators satisfy the relations

Ko Bo, K3t = ¢l E,, Ko Fo, K =q (@) F, .

«

They can be interpreted as an action of the root lattice Ar on wug4(g). This action allows us to
extend the small quantum group by an arbitrary intermediate lattice Ag € A C Ay, which will
serve as an additional parameter for our search for factorizable Hopf algebras. In [Lus90], Lusztig
also constructs an "almost R-matrix" © € u,(g)” ® u,(g)" in the Borel part of u,(g), from which
we construct actual factorizable R-matrices in the first part of this thesis.

We should point out that part of our construction of the quasi-Hopf algebras arising as modu-
larizations of small quantum groups is based on [AS02], where the authors give a more abstract
characterization of the Borel part of small quantum groups in terms of Nichols algebras of Cartan
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type.

This thesis is divided into two parts: in the first part we determine those (extended) small quantum
groups, which have a (pre-)modular representation category. In the second part, we describe the
modularization of the premodular representation categories. To this end, we systematically con-
struct a whole class of finite-dimensional quasi-triangular quasi-Hopf algebras generalizing small
quantum groups and the above mentioned quasi-Hopf algebra a® (sl,).

We now describe the two parts of the thesis in more detail:

0.5 Factorizable R-matrices for small quantum groups

The central objects of the first part of the thesis are extensions of small quantum groups, as
introduced in section [0.4] They are parameterized by the following data:

e a finite-dimensional simple complex Lie algebra g

e a natural number ¢, determining a primitive root of unity ¢ = exp (27i//)

e an intermediate lattice Ar C A C Ay between the root lattice Ar and the weight lattice Ay
e a sublattice A’ C Centy, (Ag) of the centralizer Centp,(Ar) C Ag.

As we have mentioned, Lusztig showed that there is a so-called quasi-R-matrix © € ug (g) ® u;r (9)
for the small quantum group wu,(g), behaving similar to a proper R-matrix. In [Mil98|, Miiller
showed that the ansatz R = Ry© gives rise to an actual R-matrix of the extended small quantum
group u := uy(g, A, A’) if certain conditions are fulfilled. Here, Ry € u® @ u° entirely lives in the
coradical u® = C[A/A’] of u. In [LN15], it was checked explicitly, for which input parameters (with
fixed A’) and for which choices of R, these conditions are fulfilled. In |[LO17|, we reinterpreted
the conditions in [Miil98] as the non-degeneracy of a certain bihomomorphism f : Gy x Gy — C*
of finite abelian groups. From this, we were able to extend the result in [LN15] to an arbitrary
sublattice A’ C Centy ,,(Ar) and give a single closed condition for the existence of an R-matrix of
the above form, involving all relevant parameters.

In Theorem [5.1.6] we give a necessary and sufficient condition for an R-matrix of the form R = Ry©
to be factorizable, which corresponds to Rep, being factorizable. To this end, we show that the
invertibility of the monodromy matrix of R is equivalent to the invertibility of the monodromy
matrix of Ry. It turned out that it is invertible if and only if the radical Rady of the so-called
symmetrization Sym( f ) (see Def. b of the above mentioned bihomomorphism f is trivial. For
further use, we compute the radical of Sym(f) for all possible choices of Ry.

We prove that the simple transparent objects in Rep, are all 1-dimensional and that the corre-
sponding group of all transparent objects is in fact isomorphic to Rady. Finally, we show that for
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every R-matrix of the form R = RO there exists a ribbon element v € u, turning Rep,, into a pre-

modular category. We summarize our results in the following table, containing all quasi-triangular

extensions of small quantum groups together with their group of transparent objects. The columns
of the table are labeled by

1. the finite dimensional simple complex Lie algebra g

2.

3.

the natural number ¢, determining the primitive root of unity ¢ = exp (%)

the number of possible R-matrices for the Lusztig ansatz

fundamental dominant weights A; € Ay

. the subgroups H; C H = A/Ag introduced in Theorem

. the subgroups H; in terms of generators given by multiples of

6. the group pairing g : H; X Hy — C* determined by its values on generators
7. the group of transparent objects T'C A/A’ introduced in Lemma [5.4.5

g 14 ‘ # H H; >~ H; (i=1,2) ‘ g ‘ T CA/N

¢ odd 1 0

all Zy (0) g=1

¢ =0mod 4 1 Zy

Zit 2t
Za (dX\,) g(dn, dN,) = exp (22k)
Ap>1 N
7 00 Zy,2 | x
m = n A
Lo din4+1| d=ntt ged (n 4 1,d0, ke — »Hln) =1

xr = de =
ged(€,d)

¢=2mod 4 1 Zy (0) g=1 0

/=2 mod 4 2 Zo (An) g(An, An) = %1 Zy

Bp>2 _ n

£ =0mod 4 2 Zo (An) g A, An) = £1 VA

m™m = ZQ
¢ odd 1 Zo (An) g An, An) = (=1)7+t Zo
¢ =2 mod 4 1 7y (0) g=1 VA

xiii



¢ =2mod 4 1 9 A, An) =1 Zgil
Cn>3 _
f=0mod 4 2 Zo (An) g A, An) = £1 73
m™ = ZQ
¢ odd 1 g, An) = —1 Zo
f=2mod4 | 1 7 (0) g=1 z2m=D
{=2mod 4 1 ~ 9(A2n—1,A2n) = (=1)"
H1 = <)\2n71> ZZn
2
¢ =0 mod 4 262|n Zo g(A2n—1,A2p) = £1, n even
Hy = (),
¢ odd 1 2= (hon) 9(A2n_1,don) = —1 0
Dap>a
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7T1:ZQXZQ

¢ =2mod 4 1 9(Azn, Aon) = (—1)" 1 z3 !
¢ =0mod 4 2521[71 ZQ <>\2n> g(>\2n7 /\Qn) = :|:1, n odd Z%n
¢ odd 1 g(>‘2na )\2n) =-1 Lo
¢ even 2 I A2(n—1)1is Aa(n—1)4j) = 1 Z3"
Lo X Lo <)\2n, )\2n+1> det(K) = Ki5+ K31 = 0 mod 2 Zo
£ odd
det(K) = K12 + K21 = 1 mod 2 73
{=2mod 4 1 YA (0) g=1 z3"
¢=2mod 4 1 9(2A2n41, 2 2n41) =1
ZQTL-‘,—l
2
¢ =0mod 4 2 ZQ <2)\2n+1> g(2>\2n+17 2/\2n+1) ==+1
Dy,
n+l25 ¢ odd 1 9(2X2n+1, 2 op41) = —1 Zs
m™ = Z4
¢ even 4 9(Azn+1, Aong1) = ¢, ¢t =1 zy"
Ly (A2nt1)
¢ odd 2 9(A2nt1, Aony1) = £1 Lo
¢ =2mod 4 1 Zy (0) g=1 A
(=0mod3 | 3 9AnsAn) = ¢, @ =1 73,2t
Es _ 2mi2
¢=1mod 3 2 Z3 (An) 9(An, An) = 1 exp (252)
T = 73
. 0,21/
{=2mod 3 2 9(Ans An) = 1,exp (%) J(
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¢ =2mod 4 7y (0) g=1 Z$
B ¢ even g(An, A\n) = %1 7y
m :7Z Z2 n)

P ¢ odd 9 An) =1 Zs
Eg ¢ =2mod 4 Zy (0) g=1 z8
Fy ¢=2mod 4 Zy (0) g=1 73
Gs ¢=2mod 4 Zy (0) g=1 73

Table 1: Solutions for R-matrices

From the last column, one can already see that the premodular category Rep, is almost never
modular, which is equivalent to 7" being trivial, for an even root of unity ¢. The only exception is
when g = B,, and £ = 2 mod 4. The canonical next step is to use the method of modularization, as
described in Section [0.11

0.6 Modularization of small quantum groups

We now turn to the second part of this thesis, the modularization of the premodular category Rep,,
from the previous section. We start with the representation category Rep,o of the Cartan part
u’ = C[G], where G = A/A’, (see Sec. which we from now on identify with the category of
finite dimensional @—graded vector spaces Vects. The braiding on Rep,o induced by the element
Ry € C[G] ® C[G] is transported to a braiding on Vectg. It is induced by a bihomomorphism
c:GxG— C*, which is simply the Fourier transform of Ry. The non-modularity of this category
is in a precise sense measured by the radical T' := Rad(B) of the associated bihomomorphism

B := goT

, so the idea is to simply take the quotient G /T. The problem is that ¢ might not be
well-defined on G /T and so we wouldn’t have a braiding on Vect /7 The solution to this problem
is to allow for so-called abelian 3-cocycles (w,o) € Zgb(@/T) (see [Mach2]) instead of ordinary
bihomomorphisms o € Bihom(é/T). Categorically speaking, this corresponds to allowing for a
non-trivial associator on Vects /T induced by the 3-cocycle w € Z3(G/T). This 3-cocycle fulfills
two additional compatibility conditions with the 2-cochain o € C2(G/T), corresponing to the
hexagon equations of a braided monoidal category. In Section [5|in the second part of the thesis, we
start with an abelian group G, an abelian 3-cocycle (w, o) € Zgb(@ /T) and a finite set of elements
Xi € G. From this, we can define a Nichols algebra B(V) in the braided monoidal category Vect(g/’;).
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Surprisingly, this Nichols algebra satisfies the same relations as the Nichols algebra associated to
the braided vector space V' with diagonal braiding given by ¢;; = o (i, X;)- If this Nichols algebra
is finite-dimensional, we can build the Drinfeld double D(u(w,o)=%) of the Radford biproduct
u(w, )0 == B(V )#kG over the function algebra kG
coassociator induced by w. Both notions have been generalized to the quasi-Hopf case (see [BN02]
and [HN99b]). After this, we define an both algebra and coalgebra embedding j : kG — D(w,0),
which takes values in the center of D(w, ). After modding out a certain biideal associated to this

7, considered as a quasi-Hopf algebra with

embedding, we end up with a finite-dimensional quasi-Hopf algebra u(w, o), which we refer to as
small quasi-quantum group. We show that there exist a canonical choice of R-matrix for this quasi-
Hopf algebra, induced by the 2-cochain o. Moreover, we show that u(w,o) is factorizable if and

only if T'= 0. We give a list of important relations of the small quasi-quantum group u(w, o):

A(Fy) = Kg, @ Fi [ > 0(xIx6 ¥) " 'w(Xi ) 0y @0y | +F01 (> w(Xx,v) ' 6y @y
X, X9

A(E;) = Z O 1xXi xi) T w( W, x, %) T O @6y | Bi @ Ky, + Z wx, ¥, X:) 0y ® 0y | 10 E;

X X
A(Kx> = (Kx®Kx)PX_1 A(Rx) = (Rx®Rx)an Py ZZZ 0(x[¥, &) Oy @ O¢
$,€
_ = ai(§)bi(Exi)

EKy., Flo = 0i0(xa, Xi) (1 — Ky, Ky, —= 222 6. | , where

[ X ]] o ( )( X x,) - w(Xis X, €) 3

Ef = E; Z a;(§) 0¢ F}:=F; Z b;j(€)de |, with a;, b; solutions to Eq. [5.8]

§ 1

K E; = U(X XZ)E KX Xs Xz KXEi = U(Xi7X)EiKXQX,Xia Qx,w = Z 0(X|£ad}) 5-5

K\ F; = o(x, x:) FiK Q7 K\ Fi = (X ) Fi K Q.

XX

S(F) == | D 0@, xas xat)do (xi, ¥, D)0 |xas Xa) 0y | Ko F
P

S Ei _ —Ei[?__l w(){ig, leg) 5
(B) X %: W€ X xi)
6(I(X) = e(KX) =1, e(El) = €(F1) =0, lu(w,a) =K

In the next section we interpret the initial small quantum group u as a small quasi-quantum
group u(1,0) associated to the data G = A/A’ and x; = ¢(®-). If the associated quadratic form
Q(x) = o(x,x) of the abelian 3-cocycle (1,0) vanishes on T', then for every set-theoretic section

xvii



5 CA}’/T — G, we find an explicit abelian 3-cocycle (w,0) € Z{‘z’b(@), s.t. 7 (@, d) is cohomologous
o (1,0). We refer to the condition Q|7 = 1 as u(1,0) being modularizable. Moreover, we find an
algebra embedding M : w(w,o) — u(1l,0). Our modularization functor is going to be a restriction
functor along this algebra homomorphism. The main result of this part of the thesis is Thm. [6.0.6}

Theorem (Lentner-O-Gainutdinov, 2018). Let u be an extended small quantum group with R-
matriz R = Ry©. If u is modularizable in the above sense, then there exists a factorizable small
quasi-quantum group u(®, ) and a modularization in the sense of Def.

F : Rep,, — Repy g 5)-
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Part 11

Factorizability of small quantum

groups



Chapter 1. Introduction

The aim of the first part of this thesis is to provide modular tensor categories from extended small
quantum groups uq(g) at a primitive fth root of unity ¢ for a finite-dimensional simple complex Lie
algebra g. Lusztig [Lus90] has constructed these finite-dimensional Hopf algebras and provided an
ansatz for an R-matrix Ro©, where the fixed element © € uy(g)~ ® u,(g)™ is constructed from a
dual basis of PBW-generators, while Ry € u,(g)° ® u,(g)° is a free parameter subject to certain
constraints given in [Miil98]. Lusztig gives a canonical solution for Ry whenever ¢ has no common
divisors with root lengths, otherwise there are cases where no R-matrix exists [KS11]. Of particular
interest in conformal field theory [FGSTO06, [FT10, [GR17] is the most extreme case where all root
lengths (a, @) divide £. In particular, this thesis adresses the question which modular tensor cate-
gory appear in these cases. In Lemma we observe that these extremal cases give especially
nice R-matrices. However, in general they are not factorizable and will require modularization in
order to match the CFT side. This will be done in the second part of the thesis.

But even if there are no common divisors with the root length, the resulting braided tensor categories
may not fulfill the non-degeneracy condition and hence provides no modular tensor category. Both
obstacles for being factorizable, existence and non-degeneracy of an R-matrix, can be be resolved
by extending the Cartan part of the small quantum group by a choice of a lattice Ap € A C Ay
between root- and weight-lattice, respectively a choice of a subgroup of the fundamental group
71 = Aw /AR, corresponding to a choice of a Lie group between adjoint and simply-connected
form. These extensions are already present in [Lus90] as the choice of two lattices X, Y with pairing
X xY — C* (root datum). In this way the number of possible R-matrices increases and the purpose

of our paper is to study them all.

In [LN15|, the authors have already constructed some solutions Ry in this spirit (under some ad-
ditional assumptions). In this thesis, we conclude this effort: First we introduce more systematical
techniques that allow us to compute a list of all quasitriangular structures (without additional
assumptions, so we find more solutions). Then our new techniques allow us to determine, which
of these choices fulfill the non-degeneracy condition. We also determine which cases have a ribbon
structure. A main role in the first part is played by a natural pairing a, on the fundamental group



71 which depends only on the common divisors of ¢ with the fundamental group and encapsulates
the essential /-dependence. In the generic case, the non-degeneracy of the braiding turns out to
depend only on the 2-torsion of the abelian group in question.

Our result produces a list of modular tensor categories for representations of small quantum groups.
Moreover, we use our methods to explicitly describe the so-called group of transparent objects in
the non-factorizable cases. The main output of this part of the thesis is Table I, where we list
all solutions for quasi-triangular small quantum groups together with their group of transparent

objects.



Chapter 2. Preliminaries

2.1 Lie-Theory

Throughout this part of the thesis, g denotes a finite-dimensional simple complex Lie algebra. We
(eviyor)
(i)

fix a choice of simple roots A = {«; |i € I}, so that the Cartan matrix C' is given by C;; = 2
where (, ) denotes the normalized Killing form. For a root «, we define d,, := «"—2&) and set d; = d,,.
By Ag := Z[A] and A}, := Z[AY] we denote the (co)root lattice of g.

By Aw, we denote the weight lattice spanned by fundamental dominant weights \;, which are
defined by the equation (\;, «j) = d; jd;. Finally, we define the co-weight lattice Ayj, as the Z-span
of the elements \Y := 2—1 The quotient 71 := Ay /AR is called the fundamental group of g.

One can easily see that the Killing form restricts to a perfect pairing (, ) : A}}, X Ag — Z and that
we get a string of inclusions Ag C A}, € Aw C Ay,

2.2 Lusztig’s Ansatz for R-matrices

The starting point for the works [Miil98] and |[LN15]| was Lusztig’s ansatz in [Lus93|, Sec. 32.1, for
a universal R-matrix of Uy(g). Namely, for a specific element © € UZ° ® U=" from a dual basis
and a suitable (not further specified) element in the coradical Ry € U_ ® U we are looking for

R-matrices of the form

R = Ry0.

We remark that there is no claim that all possible R-matrices are of this form. However they are an
interesting source of examples, motivated by the interpretation of u,(g) as a quotient of a Drinfeld
double and thus well-behaved with respect to the triangular decomposition. This ansatz has been
successfully generalized to general diagonal Nichols algebras in [AY15]. In our more general setting
Uy(g, A, A'), we have

Ry € C[A/AN] @ C[A/A].

This ansatz has been worked out by Miiller in his Dissertation [Miil98] for small quantum groups
tg(g) which we will use in the following, leading to a system of quadratic equation on Ry that are

equivalent to R being an R-matrix:



Theorem 2.2.1 (cf. [Mil98|, Thm. 8.2). Let u:= uy(g). (a) There is a unique family of elements
Op € ug ®ug, B € AR, such that © =1® 1 and © = } ;05 € u® u satisfies A(z)© = OA(x)
for all x € u.

(b) Let B be a vector space-basis of u™, such that B = B Nug is a basis of ug for all 5. Here, ug
refers to the natural Ag-grading of u~. Let {b* | b € Bg} be the basis of u;_g dual to Bg under the

non-degenerate bilinear form (-, -): u~ @ ut — C. We have

Os = (-1)"qs > b @bt €uy @uf.
beBgs
Theorem 2.2.2 (cf. [Miil98], Theorem 8.11). Let A’ C {u € A | K,, central in uy(g,A)} a subgroup
of A, and G1,Gs subgroups of G := A/N’, containing Ar/N . In the following, u,p1,ps € G1 and
v,v1, s € Ga.
The element R = Ry© with an arbitrary Ry = > f V) Ky ® Ky, is a R-matriz for uq(g, A, A'),
if and only if for all o € Ag and p,v the following holds:

f(M+a7V) Zq_(y’a)f(/% V)7 f(u,u+a) = q_(lha)f(ﬂﬂy)v (2'1)
Z f(:ul,l/l)f(//'%V?) :5p1,p2f(H1,V), Z f(;u’layl)f(u%y2) :5111,1/2-}[(/1’71/1)7 (22)
vitra=v ptpe=p
Z f(M7 V) = 61/,0’ Z f(U7 V) = 6u,0- (23)
nw v



Chapter 3. Conditions for the Existence of R-Matrices

3.1 A first set of conditions on the group A/A’

The target of our efforts is a Hopf algebra called small quantum group u,(g, A, A’) with Cartan part
u) = C[A/A']. Tt is defined e.g. in [LNT5] and depends on lattices A, A" defined below. For A = Ag
the root lattice and this is the usual small quantum group; the choice of A’ differs in literature.

In the previous section we have discussed an R = Ry©-matrix for the quantum group wu,(g, A, )
can be obtained from an Ryp-matrix of the form

Ro= Y f(pv)K,®K, € C[A/N']®C[A/A].

Ve
In the following we collect necessary and sufficient conditions for R = Ry© to be an R-matrix.

Definition 3.1.1. We fix once-and-for-all a finite-dimensional simple complex Lie algebra g and a

lattice A between root- and weight-lattice
Ar CACAw.

These choices have a nice geometric interpretation as quantum groups associated to different Lie

groups associated to the Lie algebra g.

Another interesting choice is Ap € A C Ay, = A%, which would below pose no additional compli-

cations and may produce further interesting factorizable R-matrices.

Definition 3.1.2. We fix once-and-for-all a primitive {-th root of unity q.
For Ay, Ay C Ay, we define the sublattice

Centp, (Ao) :={ve M |(v,u) €L-Z Vue A}

Informally, this is the centralizer with respect to the braiding ¢~ ")

Contrary to [LN15] we do not fix A’ but we prove later that there is a necessary choice for A’.
In this way, we get more solutions than in [LN15]. The only condition necessary to ensure that the
Hopf algebra u,(g, A, A’) is well-defined is A’ C Centy , (AR).



Theorem 3.1.3. (c.f. [LN15] Thm. 3.4) The Ry-matriz is necessarily of the form

1

flp,v) = d[An/N] 'q_(”’y)g(ﬂap)(sﬂeHléDeHa (3.1)

where Hy, Hy are subgroups of H := A/Ar C m with equal cardinality |H,| = |Hz| =: d (not
necessarily isomorphic!) and g: Hy x Hy — C* is a pairing of groups.

The necessity of this form (in particular that the support of f is indeed a subgroup!) amounts to a
combinatorial problem of its own interest, which we solved for 71 cyclic in [LN15| and for Zs x Zo

by hand; a closed proof for all abelian groups would be interesting.

Definition 3.1.4. Let g : G x H — C* be a finite group pairing, then the left radical is defined as
Radr(g) == {A € Glg(\,n) =1Vne H}.

Similarly, the right radical is defined as
Radr(g) :=={n€ H|g(\,n) =1V € G}.

The pairing g is called non-degenerate if Rady(g) = 0. If in addition Radgr(g) = 0, g is called
perfect.

For an Rg-matrix of this form, a sufficient condition is that they fulfill the so-called diamond-
equations (see [LN15| Def. 2.7) for each element 0 # ¢ € (Cent(Ag) N A)/A.
However, we will now go into a different, more systematic direction that makes use of the following

observation:

Lemma 3.1.5. An Rg-matriz of the form given in Theorem|3.1.5 is a solution to the equations in
Theorem [2.2.8, and hence produces an R-matriz Ro© iff the restriction to the support

fi=d|Ag/N|-f: Gy x Gy — C*
is a perfect group pairing, where G; := A;/AN CA/N =: G.

Proof. We first show that a solution with restriction to the support a nondegenerate pairing solves
the equation:
The first equations are obviousely fulfilled for the form assumed.

flu+a,v) =g f(u,v), fluv+a)=q " f(u,v),

For the other equations the sums get only contributions in the support A; /A’ x Ay/A’. The quan-
tities f(u,v) - d|Ag/A’| for fixed v (or u) are characters on the respective support, and by the

assumed non-degeneracy all v # 0 give rise to different nontrivial characters. Then the second and



third relations follows from orthogonality of characters. Note that since d|Ar/A'| = |G1| = |G2|
(equality of the latter was an assumption!) we were able to chose the right normalization.

For the other direction assume a solution of the given form to the equations. Then already the third
equation shows that no f(—,r) may be the trivial character and hence the form on the support is
nondegenerate and hence perfect by |G1| = |Ga|. O

Corollary 3.1.6. A first consequence of the perfectness off (i.e. a necessary condition for quasi-
triangularity) is:
Centpa, (A1) = Centp,(As) = A

This fizes A’ uniquely. Morover in cases Ay # Ao, which can only happen for g = D»,, where m, is

noncyclic, we get an additional constraint relating A1, As.

In our case, the only possibility for A1 # As, s.t. G; = G2 is g = Ds,. In this case, we have
Centp, (Aw) = Centy ,,(Ar) and thus the above condition is always fulfilled.

Our main goal for the new approach on quasitriangularity as well as the later modularity is to
reduce this non-degeneracy condition for f to a non-degeneracy condition for g on Hy, Ho C m
that can be checked explicitly.

3.2 A natural form on the fundamental group

We now define for each triple (A, A1, As) and each ¢th root of unity ¢ a natural pairing ay on
the subgroups H; := A;/Ag of the fundamental group m := Ay /Ag. The simplest example is
ag = e~ 2™ 1Y) In general it is a transportation of the natural form ¢~ (**) (which does not factorize
over Ag) to H; by a suitable isomorphism A,.

This isomorphism A, will encapsulate the crucial dependence on the common divisors of ¢, |H| and
the root lengths d;; moreover, for different H these forms are not simply restrictions of one another.
Then, we can moreover transport any given pairing g together with ¢~(**) along the isomorphism
A, to the H; and thus define forms ag on H. The main result of this section is in Theorem
that the non-degeneracy condition in Lemma for Ry(f) depending on H;, g is equivalent to af

being non-degenerate.

Definition 3.2.1. Let A C A}, be a sublattice, s.t. Ag C A. By A c A}, we denote the unique

sublattice, s.t. the symmetric bilinear form (., .) : Ay, x Ay, — Q induces a commuting diagram

=
=
>

Ay

B F B (3.2)



where A* := Homy(A,Z). In particular, we have Ap = Ay, and AVW = Ap.
Definition 3.2.2. A centralizer transfer map is an group endomorphism A, € Endgz(A), s.t.
1. Ag(A) =ANE-Ag = Centi (AR)
2. Af(Ag) = Apnl- A = Centf, ().
Such a Ay induces a group isomorphism
A/AR =5 Centl(AR)/Centl (7).
Of course Ay is not unique.

Question 3.2.3. Are there abstract arguments for the existence of these isomorphism and for its
explicit form?
We will calculate explicit expressions for A; depending on the cases in the next section. At this

point we give the generic answers:

Example 3.2.4. For A = Ay}, we have Ay = (- id.
For A = AR the two conditions are equivalent, so existence is trivial (resp. obviously the two trivial
groups are isomorphic) and we may simply take for Ay any base change between left and right side.

The expression may however be nontrivial.

Lemma 3.2.5. Assume ged(¢, |Ay,/A|) =1, then Ay = (- id. In particular this is the case if { is

prime to all root lengths and all divisors of the Cartan matriz.
Moreover if £ = {10y with ged (41, |AY,/A|) =1, then Ay = €y - Ay,.

This means we only have to calculate Ay for all divisors £ of |Ay), /A|, which is a subset of all divisors

of root lengths times divisors of the Cartan matriz.

Proof. For the first condition we need to show for any A € Ay, that ¢\ € A already implies A € A.
But if by assumption the order of the quotient group Ay, /A is prime to ¢, then ¢- is an isomor-
phism on this abelian group, hence follows the assertion. For the second condition applies the same
argument noting that |A/Ag| = |A};, /Al

For the second claim we simply consider the inclusion chains
ANy C ANty -Ap c ANt Ag

Ag(AR) CANly-ACApni-A,

where a first isomorphism is given by A, and again /- is a second isomorphism because it is prime
to the index. O



Our main result of this chapter is the following:

Theorem 3.2.6. Let Ar C Ay, Ay C Aw be intermediate lattices, s.t. the condition in Corollary
is fulfilled, i.e. Centy, (A1) = Centp,(A2) = A'. Assume we have a centralizer transfer map
Ay

1. The following form is well defined on the quotients:

ag : AI/AR X AQ/AR — C*
(A, 1) = g~ AU g(X, Ag(p).

2. Let
Cent] (Az) == {XN € A1 | ¢ = g(\, 1) Y € As}.

Then the inclusion Cent} (A2) < Ay induces an isomorphism

Cent] (Ag)/A = Rad(al). (3.3)

Corollary 3.2.7. The quasi-triangularity conditions for a choice Ry are by Lemma equivalent
to the non-degeneracy of the group pairing on Ay /A x Ay/N':

FOup) =g Mg p).

By the previous theorem this condition is now equivalent to the nondegeneracy of aé.

This condition on the fundamental group, which is a finite abelian group and mostly cyclic, can be
checked explicitly once af? has been calculated.

Proof of Thm.[3.2.6, The first part of the theorem is a direct consequence of the definition of the
centralizer transfer matrix A,. For the second part, we first notice that by assumption we have a

commutative diagram of finite abelian groups

Ap/N —— Aq/N ———» Ay /Ag

[ I |

(Ag/Centy, (AR))" —— (Ay/A)N — (Centy, (Ar)/A)",

where G” denotes the dual group of a group G.

Now, by the five lemma we know that f is an isomorphism if and only if the induced map f’
is an isomorphism. Post-composing this map with the dualized centralizer transfer matrix A} :
(Centp, (Ag)/A)" = (Ay/AR)" gives a’ O

g-

10



Chapter 4. Explicit calculation for every simple Lie

algebra

In the following, we want to compute the endomorphism A, € Endz(A) and the pairing a; on the
fundamental group explicitly in terms of the Cartan matrices and the common divisors of ¢ with
root, lengths and divisors of the Cartan matrix. We will finally give a list for all g.

4.1 Technical Tools

We choose the basis of simple roots «; for Ar and the dual basis of fundamental coweights \) for
the dual lattice Ay, with (ag, AY) = 0, ;.

For any choice A C Aw C Ay, let Ay be a basis matriz i.e. any Z-linear isomorphism Ay, — A
sending the basis A of Ay}, to some basis p; of A. It is unique up to pre-composition of a unimodular
matrix U € SL,,(Z).
The dual basis Aj; of A is defined by

(AR (N), Ax(A))) = 635

Explicitly, A is given by A3 = (Ay'Ar)7T, where (Ag);; = (@i, ;). Now, let Ay = PySxQa be
the unique Smith decomposition of Aj, which means: Py, Qa are unimodular and Sy is diagonal
with diagonal entries (Sa); =: di', such that d;* | d3 for i < j.

Example 4.1.1. For the root lattice the dé\R are the divisors of scalar product matriz (o, a;).

Their product is
— (673N e7}
| Idi\R |AY /AR| = (l Idl> -, di:%.

\
For the coweight lattice all dé\w = 1. For the weight lattice we recover the familiar dé\W =d;.

Without loss of generality, we will assume the basis matrices Ax to be symmetric, i.e. Qy = P{.

We then have the following Lemma:

11



Lemma 4.1.2. Let A C A C AVW be a lattice. We define lattices
Y4
Acens = (P tD,P! Dy := Diag | ———— | .
Cent = (Py )" DePy ¢ iag ged(t, M)
Then,
CentAR (A) = ARACQMAXV Centy (AR) = AAAOentAvW.
Proof. We compute explicitly,

Centp,(A) =Arnt-A
= AgAY, N (A AR)TEAY,
= (A AR) T (AR AR)T) T ARAY, NEAYY)
= ARAL N (Ax NIAY)
= AR(PASAPAT)—l(PASA PIAY, NEAY)

R(PA) (SAAV NeAY)
= AR(PE) 1SA1D1ag(1cm(SA“, ))A‘YV
= AR(PI)T'DAYy, = ARAcens Ay

On the other hand,

Centp(Ag) = AUlAR
= AU/AY,
= AANY, U LAY,
= PASpAP{ A}, U LAY,
= PrA(SAAY, ULAY,)
= PASADAY,
= AN(PY) T DeAyy = AxAceni Ay

In particular, this means A;Centp(Ag) = Centa,(A).

4.2 Case A = Ay

In order to exhaust all cases that appear in our setting, we continue with A = Ayy:

Lemma 4.2.1. In the case A = Ay, the centralizer transfer matriz A, is of the following form:

Ay =

AAWAC’entQC 1AA3V3 ng(Ea |771|) 7& 1
£ - id, else.

Here, C' = PoScQc denotes the Smith decomposition of the Cartan matriz of g.

12



Proof. As we noted in Example 4.1.1) we have Ay, = Diag(d;), for d; being the ith root length.
Since d; € {1,p} for some prime number p, up to a permutation Au,, is already in Smith normal

form: this means that Py, is a permutation matrix of the form (P, )ij = d;,,(;) for some o € Sy,

8., do(1) <+ < dy(py. It follows that Aceny = Diag (m).

Using the definition C;; = (aicfj), in the case ged(4, |m1]) # 1 we obtain
ACentCT = CACent~

Thus,
AiAp = Ap,, ACenthp(;lAXVIV Ar
= ArC™ M Acem QP C
= ApAcens(CT)'QEP;'C
= ArAcent-
By the previous Lemma, this proves the first condition for A,. The second condition follows imme-

diately from the previous Lemma.
The case ged (¢, |m1|) = 1 follows from Lemma and the fact that |m| = [A}, /ALl O

4.3 Case A4,

In the following example, we treat the case g = A,, with fundamental group Aw /Ag = Z, 41 for
general intermediate lattices Ap C A C Aw.

Example 4.3.1. In order to compute the centralizer transfer map Ay, we first compute the Smith

decomposition of Ar:

2 -1 0 0
-1 2 -1 0 0
0o -1 2
Ap =
0 0 -1 0
-1 2 -1
0 0 -1 2
1 0 0 0\ /1 0 0 0 21 0 0
2 -1 0 ol (o 1 o 0
30 1 0
0 2 -1 00 1
- 40 0
0 0 0
10
2 —1 0 10 —n 0 1
0 0 2 1/ \0 0 n+1) \ 1 0 00

13



A sublattice AR C A C Aw is uniquely determined by a divisor d | n+ 1, so that A/Ar = Zgq and
is generated by the multiple dAn, where d := ”TH. Then

A l,i<n

3 .
d,i=n

Since A, is simply laced with cyclic fundamental group, the formula An = PrSA\PE gives us
symmetric basis matrices of sublattices Ar C A C Ay . We also substitute the above basis matriz of
the root lattice Ar by Ar(Qr) ™' PL. It is then easy to see that the definition A, := PrD,PL gives

a centralizer transfer matriz. We calculate it explicitly:

(Sij, 1<n
(Az)ij:(PRDgpgl)ij: (n+1—j) (m—l), T=n andj<n
4

ged(l,d)? t=J=n.

Now a form g is uniquely determined by a dth root of unity g(x, x) = emp(%) = ¢¥ with some k.

L
g9

al(x,x) = ¢~ MO g(x, Ay(x))

_ (1%t v vy
=q d2ged(L,d) N\

Then we calculate the form af on the generator:

g, x) 7D
omi - (k€ — dn)
=ep| ——m— | .
d-ged(l,d)
For example the trivial g (i.e. k = 0) gives an R-matriz for all lattices A (defined by dd =n+ 1)

iff gcdé ) is coprime to d. For £ coprime to the divisor n+ 1 this amounts to all lattices associated

to decompositions of n + 1 into two coprime factors.

4.4 Case D,

Finally, we consider the root lattice D,,. Since we have m1(Day,>4) = Zo X Zg and w1 (Dapt1>5) = Za,
it is appropriate to split this investigation in two steps. We start with Dg,>4. In order to compute

the respective Smith decompositions, we used the software Wolfram Mathematica.

Example 4.4.1. In the case Dap>4, we have three different possibilities for the lattices Ap C
A1, Mg C Aw:

1. Ay # Ao, Hy &2 Hy = Zy: In this case, the subgroups N;/Ar C AR are spanned by the
fundamental weights Ao(n—1)4;- As in the case A,, we define the centralizer transfer map

Ap = PRDgPIEI on Hy. This is possible since the symmetric basis matriz Ax, = PRSAQPE

14



of Ay is already in Smith normal form Using the software Wolfram Mathematica in order to

1

compute Pr, we obtain Ag(Aa,) = Combining this with (Xan_1, Aan) = "5, we get

gchZ

B 2mi - (kl —2(n — 1))
af;()\anh )‘2”) = exp ( 2- QCd(2v E) )

fOT g(>\2n 13)‘271) = €exp (27”16)'

. AN = Ao, H; =2 Zo: Without restrictions and in order to use the same definition for Ay as
above, we choose A;, s.t. the group A;/AR is spanned by Mo,. Combining the above result
Ai(Aap) = m with (Ao, Aon) = 5, we obtain

omi - (kl — 2n)
, B 2me - (Kl —2n)
ag(A2n, A2n) = exp ( 2. ged(2,0) )
for g(Aan, Aan) = exp (¥5%).

. A1 = Ao = Aw, H=XZy X Zy: A group pairing g : (Zo X Za) X (Zo X Zg) — C* is uniquely
defined by a matriz K € gl(2,Fs), so that

27‘(7,,[(—z
g()‘Q(n—l)+iv>\2(n—1)+j) = erp (2j> .

Since Dy, is simply-laced, we have Ay = £ - Id. Using (Ao(n—1)4i> A2(n—1)+5) Mod 2 = 0i 1 jodd;

i - Kl "
af (Ao(n—1)+4i> A2(n—1)+5) = €Tp (2j> (=1)"*.

we obtain

The last step is the case Dapy1>5:

Example 4.4.2. Since it it is simply-laced and its fundamental group is cyclic, the case Dapi1>5

can be treated very similar to A,,. We distinguish two cases:

1. Ay = Ay, H; = (2X\ap41) = Zo. As in the case A, we define the centralizer transfer map

Ay = PRDZP}g1 on Hs. Using (Aa2n41, Aant1) = 2”:’1, we obtain

2mi - (k€ —2(2n + 1
a§(2>\2n+17 2Xon41) = exp ( ( ( )))

2 ged(2,0)

for g(2Xap4+1,2X 9,41) = exp (QT”k)

2. A=Ay =Aw, H=(Mapt1) = Zy. By an analagous argument as above, we obtain

2mi - (k0 — (2n+ 1
al(Aant1, Aany1) = ezp ( ( 4( ))> :

27rzk)

Jor g(Aznt1, A2ns1) = exp (

15



4.5 Table of all quasitriangular quantum groups

In the following table, we list all simple Lie algebras and check for which non-trivial choices of
A, A;,¢ and g the element RyO is an R-matrix. As before, we define H,; := A;/Ar and H := A/Ag.
In the cyclic case, if x; are generators of the H;, then the pairing is uniquely defined by an element
1 <k < |Hj|, s.t. g(x1,22) = exp (2”’“). In the case Ds,, A = Aw, g is uniquely defined by a

[H;|
2 x 2-matrix K € gl(2,F2), s.t- g(Ao(n—1)4i» A2(n—1)+;) = €xp (QMQKU) for 4,5 € {1,2}.

The columns of the following table are labeled by

1. the finite dimensional simple complex Lie algebra g

2. the natural number ¢, determining the root of unity ¢ = exp (%)
3. the number of possible R-matrices for the Lusztig ansatz

4. the subgroups H; C H = A/Ap introduced in Theorem

5. the subgroups H; in terms of generators given by multiples of
fundamental dominant weights A\; € Ay

6. the group pairing g : H; x Hy — C* determined by its values on generators

7. the group pairing ag C A/A introduced in Theorem determined by its values on gener-
ators.

16



g H, (=12 g a!
all 1 7, (0) g=1 1
Zq (ci)\n> g(cZ)\n, CZ)\n) = exp (%) 4 X
An>1 27i-(k€—dn)
- o0 exp -ged(£,d
T = Z ~ d-g ( ’ )
Lo din+1| d=1 | ged (n+1,d0 k0 — 2n) =1
B { even 2 g(An, A\p) = %1 -1
= Z )
= 2mi-(kf—mn
e ¢ odd 1 9ns An) = (=1)mH! exp (2l
2mi- (k{41
¢/ =2mod 4 1 g()‘na)\n) =1 exp <%)
Cnzs (=0mod4 | 2 Zs (An) 9(Ans An) = %1 ~1
T = Zo
2mi-(kf—2n)
¢ odd 1 g(An, A\n) = -1 exp (f)
¢ =2mod 4 1 9(A2n—1,A2n) = (=1)"
m Hy = (Man_1) exp (27”"(’“%2*7#1)))
¢=0mod 4 | 26y, Zo g(Aan—1,A2,) = £1, n even
Hy =2 ()Xo, 27i-(k€—2(n—1
¢ odd 1 2= (Aan) 9(A2n—1,A2n) = —1 exp (w)
Dop>4
= 7 n
m=Le XL ||y _9poda| 1 9oy Aap) = (—1)7F1 i
exp( T 22 n )
¢ =0mod 4 262)(" ZQ <)\2n> g()\gn, )\2n) = il, n odd
wi(kl—2
¢ odd 1 9(\an, Azn) = —1 exp (%)
¢ even 2 I A2(n—1)4i> Ao(n-1)+j) = £1 N -
Zoy x Ly | {Aon, Aony1) exp (%) (=1)*
¢ odd det(K) = Klg + Klg mod 2
¢ =2mod 4 1 9(2)\2n+1, 2)\2n+1) =1 )
(27r7.-(k§72n71)>
exp{— 37—
/=0 mod 4 2 ZQ <2A2n+1> 9(2)\2n+17 2)\2”4_1) =41
Dansrzs ¢ 0dd 1 9@Nn1 D) = —1 | exp (ZELLZEE)
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m™m = Z4
¢ even 4 9 A2ng1, dang1) = ¢, ¢t =1
Zy (A2nt1) exp (42#1'(ké;(2n+1))>
¢ odd 2 g()\2n+1, )\2n+1) =+1
(=0mod3 | 3 g AnsAn) =¢, & =
E 1 i (kf—
_6 f=1mod3 | 2 73 (An) 9(An, An) = 1,exp (252) exp (%)
m™m = Zg
£ =2mod 3 2 9(Ans An) = 1,exp (254)
B ¢ even 2 g(An, A\n) = %1
_7 7o () exp (271'@(12@@71))
T = ZQ
£ odd 1 g A, An) =1

Table 4.1: Solutions for Ry-matrices

The Lie algebras Eg, Fy and Gy have trivial fundamental groups and thus have no non-trivial
solution. We want to emphasize once more that the choice A; = Ar always leads to a quasitriangular

quantum group.
The following Lemma connects our results with Lusztig’s original result:

Lemma 4.5.1. In Lusztig’s definition of a quantum group he uses the quotient A’ ., = 2Cents, (2Aw ).
This coincide with our choice A = Centp (A1 + A2), if and only if

2ged(¢,d}) = ged(¢,2d}"), (4.1)

where the d* denote the invariant factors of AYy,/A and the d}V denote the invariant factors of
AV /Aw (i-e. ordered root lengths).
In particular, for ¢ odd these choices never coincide. For A = Ay, A = A ... holds if and only
if 2d; | €. This is the most extreme case of divisibility and it is precisely the case appearing in
logarithmic conformal field theories.
Proof. We first note that in our cases, A’ = Centp, (A1 + Az) = Centp, (A). We have,
2Centn,, (2Aw) = 2(Ag N 2ZAw)
= AR2(Ayy N A;Vlg
20
= AgDiag (| ———— | A}
e (gcdw,ad%) v

By Lemma [4.1.2] this coincides with A’ if and only if equation (4.1) holds. O

Ayy)
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Chapter 5. Factorizability of Quantum Group R-matrices

We first recall the definition of factorizable braided tensor categories and factorizable Hopf algebras,

respectively.

Definition 5.0.1. [EGNOI15] A braided tensor category C is factorizable if the canonical braided

tensor functor G : CXC°? — Z(C) is an equivalence of categories.

In [SchO1], Schneider gave a different characterization of factorizable Hopf algebras in terms of its

Drinfeld double, leading to the following theorem:

Definition 5.0.2. A finite-dimensional quasitriangular Hopf algebra (H, R) is called factorizable
if its monodromy matrix M := Ro1 - R € H ® H is non-degenerate, i.e. the following linear map is
bijective

H* 5 H ¢ (id® ¢)(M).
Equivalenty, this means we can write M =), R ® RS for two basis’ R}, R% € H.

Theorem 5.0.3. Let (H, R) be a finite-dimensional quasitriangular Hopf algebra. Then the category
of finite-dimensional H-modules H — mod¢q is factorizable if and only if (H,R) is a factorizable
Hopf algebra.

Shimizu [Shil6|] has recently proven a number of equivalent characterizations of factorizability for
arbitrary (in particular non-semisimple) braided tensor categories. Besides the two previous char-
acterizations (equivalence to Drinfeld center and nondegeneracy of the monodromy matrix), factor-
izability is equivalent to the fact that the so-called transparent objects are all trivial, see Theorem
below, which will become visible during our analysis later.

5.1 Monodromy matrix in terms of R

In order to obtain conditions for the factorizability of the quasitriangular small quantum groups
(uq(g, A, '), Ro(f)©) as in Theorem in terms of g,q, A and f, we start by calculating the
monodromy matrix M := Ra1 - R € ug(g, A, A') ® uq(g, A, A’) in general as far as possible:
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Lemma 5.1.1. For R = Ry(f)O as in Theoremm the factorizability of R is equivalent to the
invertibility of the following complez-valued matrix m with entries indexed by elements in p,v €
AN :

M = S flu— v — V) ).

' v eN/N
Proof. We first plug in the expressions for Ry from Theorem and © from Theorem and
simplify:
M :=Ry; - R
= (Ro)21 - O21 - Ry - ©
> S K © K || 3 ()P 30 bt eb

p1,v1 €A BreEAL b1€Bg,

Z f(:uQaVZ)Klm ®KV2 : Z (*1)trﬂ2q52 Z b;@b;-‘r

pa2,v2 €A 5261\; b2€Bg,
= Z (_1)trﬁl+52q51 52 Z f(Mh Vl)f(:u’% VQ)qﬁl(Vz_Hz)KV1+M2 ® Kll1+V2
B1,B26AF, H1,p2,v1,V2EA

S bty @bybst ],

by EBBI 7ngBﬁ2

where A}, = No[A]. The last equation holds since b; € ug, and hence fulfills K,,b; = g T K,

and similarly for bfr. We have two triangular decompositions

_ 0 —
Ug = Ugly Uy

and the Aj-gradation on uF induces a gradation

~ 0 0 + — — +
Ug @ Uqg :BG% (u” @u’)(u, 5, Uq g, @ Uq 5 Ug 62)'
1,2

The factorizability of R is equivalent to the invertibility of M interpreted as a metrix indexed by

the PBW basis. The grading implies a block matrix form of M, so the invertibility M is equivalent
to the invertibility of M”15 € (u, ® Uq)(p,,8,) for every 81,32 € AE as follows

Mﬂl,ﬁz = Z f(:u’l,Vl)f(//'%VQ)qBI(W_Mz)KVﬁer ®KH1+V2 Z b*ldrb; ®b;b;+
H1,H2,V1,V2EN bi€Bg, ,b2€Bg,
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. . ﬂ17ﬂ2 . . + — — + . ST N
Since the second sum in M runs over a basis in u, 5, %4 g, ® u, 5, % gy the invertibility of M

is equivalent to the invertibility for all 8; € A% the following element:

Méal = Z qﬁl(l’27#2)f(,u1a Vl)f(,uQa VQ)KW-HQ 0y KM1+V2
p1,p2,v1,v2 €A /N

= > KoK, | Y PV fa—d =)L)
w,veEN/N wveN/N
Since K, ® K, is a vector space basis of u) ® u) = C[A/A’] ® C[A/A’], this in turn is equivalent to
the invertibility of the following family of matrices m® for all 8; € AE with rows/columns indexed

by elements in u,v € A/A":

m, = Y f— iy =)0 g,
w v eN/N

We now use the fact that R was indeed an R-matrix: By property (2.1) in Theorem we have

mp, = Y [l =)W B
w v eN/N
Since the invertibility of a matrix m, , is equivalent to the invertibility of any matrix m, ,1s,, we
. 2, .
may substitute v/ — v/ + B1,v + v + B, pull the constant factor ¢~ in front (which also does
not affect invertibility) and hence eliminate the first 8; from the condition. Hence the invertibility
of R is equivalent to the invertibility of the following family of matrices M/ for all 8 € Af:

= > flu—p v =) g
w v eN/N

We may now use the same procedure to eliminate the second 1, hence the invertibility of R is
equivalent to the invertibility of the following matrix with rows/columns indiced by elements in
w,v € AJA":

My,p = Z f(M—M/yV—V/)f(V/ylf)-

w v eN/N

This was the assertion we wanted to prove. O

Definition 5.1.2. Let g : G1 X Go — C* be a group pairing. It induces a symmetric form on the
product G1 x G2 we denote by Sym(g):

Sym(g) : (G1 x Gg)*? — C*
((1, p2), (v1,v2)) — g(p1, v2)g(v1, p2).-

Lemma 5.1.3. If g : G x Go — C* is a perfect pairing of abelian groups, then the symmetric
form Sym(g) is perfect.
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Proof. By assumption, g X g defines an isomorphism between G, X G5 to (/?\2 X é\l The symmetric
form Sym(g) is given by the composition of this isomorphism with the canonical isomorphism
G5 X G1 = G1 x G5. This proves the claim. O

Consider for a finite abelian group G and subgroups G, G2 < G the canonical exact sequence
O—>G1QG2—>G1XG2—>G1+G2—>O (51)
For u € G1 4+ G2, we denote its fiber by

(G1 x G2)y = {(p1, p2) € G1 X Ga | pi1 + pi2 = i}

Moreover, we define

Rad : = { (11, 2) € G1 x G | Sym(f)((pu1, p2), ¥) = 1 Var € (G X Ga)o }
Rad, : =Rad N (Gy x G2),
Rady : = { pu + p2 € G | (1, p2) € Rad }
Lemma 5.1.4. We have two split exact sequences:

0 — Rady — Rad — Rady — 0

0 — Rady — G — Rady — 0.
Proof. The first sequence is exact by definition of the three groups. Moreover, we know
Rad = ker(i o Sym(f)) = ker(i) = im(#) = G = G,

where 7,7 denote the duals of the inclusion and projection in . In example we will see
that in the case G1 = G2 = G, f symmetric, Radg is the 2-torsion subgroup of GG, and the second
map in the second exact sequence is just the projection, hence both diagrams split in this case. If
f is asymmetric, we will see in section 5.3 that Radg is isomorphic to Z5 for some k > 2, thus

Rad; — Rad
T —> Z T
TERad,

is a section of the first exact sequence. Here we used that the sum over all elements in Z§ vanishes.
Again, it follows that both diagrams split. Finally, if G; # G2 (i.e. in the case Ds,,), then f =q )
on GG NGs. By the same argument as in example [5.1.8] Radg is the 2-torsion subgroup of G; N Gs.

But we have G =2 G; NG5 x w1 in this case, hence both sequences split. O

Corollary 5.1.5. Using the projection o : G — Radé‘ and the inclusion [ : Radé‘ — Rad from the

above lemma, we can define a symmetric form on G:
Syme(f) : G x G — C* (5.2)
(11, v) — Sym(f)(B o a(p), B o a(v)). (5.3)

Moreover, we have Rad(Symg(f)) = Rad,.
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O

Theorem 5.1.6. We have shown in Theorem [2.2.9 and Lemma that the assumption that
R = Ry(f)© is an R-matriz is equivalent to the existence of subgroups G1,Go C A/A' of same
order some d|Ar/N'| and f restricting up to a scalar to a non-degenerate pairing f : Gy x Gg — C*
and f vanishes otherwise.

In this notation the matriz m as defined in the previous lemma can be rewritten as:

1 R
= Sym(f) (i, ).
" dAR/AP ﬁe(clgx:cm
§€(G1 XGQ)V

It is invertible if and only if Rady = 0. In this case,

. |G1 N GQ|

My, = WSZ/mG(f)~

We first note that Radg = 0 implies Rzaudol = G and thus G = G; + G4. Together with Corollary
this implies

Corollary 5.1.7.
A = Centy,, (A).

Before we proof the theorem, we first give a simple example:

Example 5.1.8. Let G; = G2 = G (correspondingly Ay = Ay = A) and assume f is symmetric

non-degenerate, then the radical measures 2-torsion:
Rad(Syme(f)) = Rady = {p € G | 2 = 0}.

Again, this is the only case appearing for cyclic fundamental groups. Hence in all cases except

g = Da, factorizability is equivalent to |A/A'| being odd.

Proof of Thm.[5.1.6, The first part of the theorem follows by applying lemma [3.1.5] to the matrix
m as given in the previous lemma. Now, assume that m is invertible. We must have G = G1 + Ga,
otherwise the matrix has zero-columns and -rows, differently formulated: the fibers (G1 x G2), in
the short exact sequence must be non-empty for all ;4 € G. If on the other hand, Rady = 0, then
Rady = G and thus G; + G5 = G must also hold, thus we assume this from now on. By the short
exact sequence the fiber (G1 x G2)p & G1 N Gy, other fibers are of the explicit form g+ (G x Ga)o
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for some choice of representative fi. Therefore,

1 AN~
My, = W ) Z Sym(f)(f, 7)

RE(G1xG2)pu
I;G(GleQ)V
1 PP ANy~
=snor O SmlH@Ee) Y Sym(f)(#,7)
|Ar/A? i
re(G1xG2)y n€(G1xG2)o

‘Gl ﬂGQI A
T PIAg/N Y Sym(f)(i ) - Ssym(n) 5, laynay=1 = (*)-
I/G(Gl XGQ),,

Fix as above a representative ¥ of the fiber of v, i.e. 7 € (G1 x G3),, such that Sym(f)(?, )|g,nc, =
1 holds. Two elements fulfilling this property differ by an element in the subgroup Radg < G1 NGo,
thus

GiNG A o
(*) = M Sym(f)(ﬁ, ’;) Z Sym(f)(gv I;) ' 6Sym(f)(l7,7)|G1mG2:1

£cRadg

o |G10G2||Rad0| I
= g DT sy (55, )los00,=1 Ssym(F) . lasy=1"

Since m is symmetric, we have

- \G10G2||Rad0| Ny~ ~
My,v = d2|Ar /N2 Sym(f)(f,7) - 5Sym(f)(57_)lc1mc2=1 5Sym(f)(ﬁ7_)\c1nc2=1

‘Gl N G2||Rado| P
:WsymG(f)(MvV)aRad“;éQ)(sRad,,;éw

and this is invertible if an only if Rady 2 Rad(Sym(f)) = 0.

5.2 Factorizability for symmetric Ry(f)

For Ry =3, , f(u,v)K, ® K, being the Cartan part of an R-matrix, assume that f=1G|f on G
is symmetric. We have shown in Example that factorizability is equivalent to |G| being odd.
We now want to give a necessary and sufficient condition for this:

Lemma 5.2.1. Let Ag C A C Ay be an arbitrary intermediate lattice for a certain irreducible root
system. Then the order of the group G = A/Centy,, (A) is odd if and only if both of the following
conditions are satisfied:

1. |A/AR| is odd

2. 0 is either odd or ({ =2 mod 4, g = B,,, A = Ag) including A,.
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Proof. We saw that in all our cases, there exists an isomorphism A/Agr = Centa(Ag)/Centy, (A).
Moreover, from Lemma we know that |A/Centy(Ag)| = det(Dy), where D, was the diagonal
matrix Diag (m)) with d being the invariant factors of the lattice A (i.e. the diagonal entries

of the Smith normal form of a basis matrix of A). Thus,

|G| = [A/Centy, (A)]
= |A/Centa (AR)||Centa(Ar)/Centy, (A)]
= |A/Centp (AR)||A/AR|
= det(D4)|A/AR|

n

=11

——— [A/Ag|.
P ged( Z d)

Clearly, this term is odd if £ and |A/Ag| are odd. In the case (¢ =2 mod 4, g = B,, A = Ag), the
Smith normal form Sk of the basis matrix Ag is given by 2 -id. Thus, |G| is odd in this case. On
the other hand, let |G| be odd:

We first consider the case ¢ even. A necessary condition for |A/A’| odd is that the multiplicity m,
of the prime 2 in []}_, W
this condition for rank n > 1:

is at most the multiplicity m,, of the prime 2 in |m|. We check

e For g simply-laced (or triply-laced g = G2) we have all d; = 1, hence n | m; (equality
for £ = 2 mod 4). The cases D,, with m,, = 2 have rank n > 4, all others except A,
have m,, = 0,1, so the necessary condition my; < m,, is never fulfilled. The cases A, have

2Mm=1|(n+1) < (my+ 1) < (my, + 1) which can only be true in rank n = 1 treated above.

e For g doubly-laced of rank n > 1, we always have always m,, = 0,1 but my can be considerably
smaller than above, namely for ¢ = 2 mod 4 equal to the number of short simple roots d,, = 1
(otherwise m, again increases by n for every factor 2 in ¢), hence the necessary condition
my < my, can be fulfilled only for B,, (which would also include A; above for n = 1). More
precisely, since my = m,, and the decomposition for A/A’ has an additional factor |A/Ag|,
it can only be odd for A = Ap.

Ou the other hand, if ¢ is odd, then the whole product term is odd. But since |G| was assumed to
be odd, also |A/A’| must be odd. O

Corollary 5.2.2. Let A = Ag. In the previous section we have seen that f = ¢~ ) gives always

an R-matriz in this case. By the proof of the previous Lemma, we have

n
Rad() = H 5
1 ng( ged(l, dR)>
where the d¥ denote the inveriant factors of Ay, /AR.
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5.3 Factorizability for D,,, R, antisymmetric

The split case g = Da,, G = G1 X G4 is clearly factorizable, so the only remaining case for which we
have to check factorizabilty is g = Ds,, A = Ay for f being not symmetric. We know that in this
case, the corresponding form g on A/Ag is uniquely defined by a 2 x 2-matrix K € gl(2,F3), s.t.
I(A2(n—1)4i> A2(n—1)+j) = exp (%) for 4,5 € {1,2}. From this we see that if ¢ is not symmetric,
it must be antisymmetric, i.e. g(u,v) = g(v, u)~'. Thus, the following lemma applies in this case,

and hence there are no factorizable R-matrices for Doy, A = Ay.

Lemma 5.3.1. For g simply-laced and A = Ay, let f= g g GxG — C* be a non-degenerate
form as in Thm. and Lemma s.t. the form g : m x m — C* is asymmetric. Then,

Rad() = @ chd(?,fd?)’

i=1

where the df denote the invariant factors of mi. In particular, Rady = 0 holds if and only if
ged(2,4)m|) = 1.

Proof. We recall the definition of Rado(Sym¢(f)) in this case:

Rado(Syme(f)) ={n € G| fv,n) ™" = f(n,v) YveG}
={neGlq"Mgv,n) "t =g “g(u,v) Yved}
={ped| gV =g ) vy e@ }
={pueG|¢* =1 YveG}
={p € G| 2u € Centap,, (Aw)/2Cent , (Aw) } = (%)

For g is simply-laced, we have Ay = Ay, thus

(x) = Centap,, (Aw)/2Centp , (Aw)
= (20w NLARAW)/20ARAW
= PgpDiag(lem(2, £d?))Aw / Pr20SpAw
= Aw /Diag(ged(2, £d®)) Ay .

This proves the claim. O

5.4 'Transparent objects in non-factorizable cases

In this section, we determine the transparent objects in the representation category of u4(g, A) with
our R-matrix given by Ry© and Ry = W EWIGA/A, f with f a group pairing Ay /A’ x Ay/A —
Cx.
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Definition 5.4.1. Let C be a braided monoidal category with braiding c. An object V € C is called
transparent if the double braiding cy,y o cy,w is the identity on V@ W for all W € C.

The following theorem by Shimizu gives a very important characterization of factorizable categories:

Theorem 5.4.2 ([Shil6], Thm. 1.1). A braided finite tensor category is factorizable if and only if

the transparent objects are direct sums of finitely many copies of the unit object.

Corollary 5.4.3. In particular, for a Hopf algebra H the representation category H — modyy is
factorizable if and only if the transparent objects are multiples of the trivial representation and vice

versa.

Since in our cases A; # As can only appear in Ds,,, and we know those are factorizable, we shall in
the following restrict ourselves to the case Ay = As = A. The proof below works also in the more
general case, but requires more notation. As usual we first reduce the Hopf algebra question to the
group ring and then solve the group theoretical problem.

Lemma 5.4.4. If a ug(g)-module V, with a highest-weight vector v and K, v = x(K,)v, is a
transparent object, then necessarily the 1-dimensional A/A'-module C, is a transparent object over
the Hopf algebra C[A/A'] with R-matriz Ry. If V is 1-dimensional, then V is transparent if and
only if C, is.

Proof. Let V be transparent. For every ¢ : A/A’ — C* we have another finite-dimensional module
W = uy(g) @y, (g)+ Cy with highest weight vector w = 1 ® 1,, which we can test this assumption
against

VAW -sWeV - VeW.

We calculate the effect of ¢? on the highest-weight vectors v ® w:
(v @ w) = Twev RoOTVew ReO (v @ w)

Because v, w were assumed highest-weight vectors, the © act trivially. Hence follows that C,,Cy
have a trivial double braiding over the Hopf algebra C[A/A’] with R-matrix Ry. Because we could

achieve this result for any v this means that C, is transparent as asserted.

Now, let V = C, be 1-dimensional over u,(g) and transparent over C[A/A’], and let w be any
element in any module W, then again the two © act trivially, one time because v = 1,, is a highest
weight vector, and one time because it is also a lowest weight vector. But if the double-braiding of

v =1, with any element w is trivial, then V' = C, is already tranparent over u,(g). O

Lemma 5.4.5. C, is a transparent object over the Hopf algebra C[A/A'] with R-matriz Ry iff it is
an f-transformed of the radical of SymG(f), i.e.

x(p) = f(u,€) & € Rady.
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Proof. Since f is nondegenerate, we can assume x(p) = f(u, &) and wish to prove C,, is transparent
iff £ € Rady. We test transparency against any module C, and also write 1(u) = f(A, 1) (note the
order of the argument). We evaluate the double-braiding on 1, ® 1, and get the following scalar
factor, which needs to be =1 for all ¥ in order to make C,, transparent:

G o) S Sym(f) () (1.00)

H1tp2=p
vit+rva=p

= @Zf(%f)f()\,u) Z f(/‘l»”l)f(l/z,,ug)

iz
= @ ST OFNv) Y ) Fo ) v, ) v ) (o )
HsV V1,1

- é Zf(/\a v) Z J(pa, 1) 55:7V+V1f_1(y, w1) f(ve, pa)

VisH1

- é ST S &+ v) f(Em)

= fHNE) FHEN) = Syma(f)(N,©)

This scalar factor of the double braiding is equal +1 for all A (and hence all Cy) iff £ € Rady as

asserted. O

The previous two lemmas combined imply that any irreducible transparent u4(g)-module has neces-
sarily the characters x (1) = f(1,€), € € Radg as highest-weights, and conversely if such a character
X gives rise to 1-dimensional u,(g)-modules (i.e. x|2a, = 1), then these are guaranteed transparent
objects. Hence the final step is to give more closed expressions for the f-transformed characters y

of the radical depending on the case and check the 1-dimensionality condition.

In all cases where f is symmetric we have seen in that Rado(Symg(f)) is the 2-torsion subgroup
of A/A’, so in these cases x gives rise to a 1-dimensional object.

Corollary 5.4.6. If f is symmetric (true for all cases except Da, ) then the irreducible transparent
objects are all 1-dimensional C,, where the characters x are the f-transformed of the elements in the
radical of the bimultiplicative form Sym(f)\g on G = A/N. In particular, the group of transparent

objects is isomorphic to this radical as an abelian group.

Corollary 5.4.7. In the case of symmetric [ (all cases except Doy, ) the fact that Rady is the 2-

torsion of A/N' and f-transformation is a group isomorphism shows:
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The group T' of transparent objects consists of C, where x|an = 1 i.e. the two-torsion of the character
group.

The remaining case in Dy, with f nonsymmetric and has been done by hand in Lemma [5.3.1

In Table [T we gave a list of all quasi-triangular small quantum groups as in Table where we

replaced the entries in the last column by the respective subgroups of transparent objects T C A/A’.
If the quantum group is factorizable, this is indicated by a bold 0. Since (A = Ag, ¢ odd) is always

a solution, we omitted this from the table.
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Chapter 6. Quantum groups with a ribbon struc-

ture

In Thm. 8.23 in [Miil98], the existence of ribbon structures for u,(g, A) is proven. In this section
we construct a ribbon structure for all cases. In the proof, we use several auxiliary results from
[MII98].

Theorem 6.0.1. Let u,(g,A) be quasitriangular Hopf algebra, with an R-matriz satisfying the
conditions in Theorem M and let u := S(R(9))R). Then v := Kljolu is a ribbon element in

UQ(gv A)

Proof. We consider the natural Ny[o; |i € I]-grading on the Borel parts u® := u,(g, A)* [Lus93].
Since uT is finite-dimensional, there exists a maximal vy € No[a;|i € I], s.t. the homogeneous
component ui is non-trivial. More explicitly vy is of the form:

Vg = Z (ga — 1)0(,

acdt

where ¢, := m.

Using the formulas v = (3 f(p, V) Kp4r) ' and S(u) = (3 f(p,v)Kutr) 1S(9), where 9 =
> 63 85-1(6®), Mueller proves the formula K2, = u~'S(u). Using the fact that u commutes
with all grouplike elements, this implies v?> = uS(u). In order to show that v is central, we first

show that Kv_olJer is a central element. By the K, F-relations, this is equivalent to
vo+2p € CthA(AR), (61)
where p= 13" o1 o is the Weyl vector.

We calculate directly that this is always the case:

(VO + 2p, ﬂ) = qzae¢+(€a—1+1)(a,ﬁ)

= qezae(b"' gcd(tzl,zda)'2da(av=5) =1.
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Since Ky ux = xKo,u holds for all x € ug(g, A) (see [Miil98], Lemma 8.22 and 8.19), we have

e B
ve =K, jur = K, L, Kopux

_ g1 _ -1 —
=K, Go,0Kopu= 2K, ", Kopu = zv,

hence v is central.
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Part 111

Small quasi-quantum groups and

modularization
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Chapter 1. Introduction

In this part of the thesis, we modularize the representation categories of those small quantum
groups, which turned out to be quasi-triangular but not factorizable in the first part. To this end,
we construct a whole class of finite-dimensional quasi-Hopf algebras, generalizing extended small
quantum groups. Part of this construction is based on the approach in [AS02|, where the Borel part
of a small quantum group is chararcterized as a Radford biproduct B(V)#kG of the finite dimen-
sional Nichols algebra B(V') of some diagonally braided vector space V' with the group algebra kG of
a finite abelian group G together with a bihomomorphism on G. Using the notation of the first part
of this thesis, G is simply the quotient A/A’. Moreover, we have V = &, F;C with brading matrix ¢;;
induced by a bihomomorphism ¢ on the dual group 6’, which is simply the Fourier transform of the
R-matrix Ry on C[G]. Since Nichols algebras live in general abelian braided monoidal categories and
the Radford biproduct is defined also for quasi-Hopf algebras [BN02|, we can perform the analogue
construction for a group algebra C[G],, now considered as quasi-Hopf algebra, whith non-trivial
coassociator induced by a 3-cocycle w on the dual group G. The bihomomorphism o is then replaced
by a 2-cochain ¢ on @, satisfying a so-called abelian 3-cocycle condition together with w. Given an
abelian 3-cocycle (w, o), we construct in Sec. [5|a quasi-triangular quasi-Hopf algebra u(o,w). We are
interested in (o,w) such that the associated Nichols algebra B(V) is finite-dimensional; the corre-
sponding braiding matrices ¢;; = o(x;, x;) are classified in [Hec09] and include those corresponding
to the Borel parts of small quantum groups. After finding relations for the Nichols algebra, we
build the Drinfeld double of the Radford biproduct u(w, o)<? := B(V)#C[G].,, which has also been
defined in the quasi-Hopf setting [HN99b]. After modding out a certain biideal, we end up with a
finite-dimensional quasi-Hopf algebra w(w, o), which has a canonical quasi-triangular structure by
construction. In Chapter [5] we describe generators, relations, grouplikes, etc. for this quasi-Hopf
algebra.

In Chapter |§| we turn to our previous (extended) small quantum groups wu,(g,A) = u(1,0) with
o(xi, x5) = ¢(@»®3) In the first part of this thesis we have calculated the transparent objects of the
braided tensor category of representations Rep, (4 5)- In Thm. we now give f_or any suitable
datum (g, g, A, Ry) an abelian 3-cocycle (7,@) on the dual of a certain subgroup G C A/A’, such
that the corresponding quasi-Hopf algebra w(d,@) constructed in the last chapter is a subalgebra
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of u4(g,A) and restriction along this algebra inclusion defines a modularization of Rep, (4 4). A
key ingredient here is Cor. which guarantees that the transparent objects in Rep, 5 Ay are
1-dimensional. This allows us to trace back the modularization of Rep, (4 ) to the modularization

of RepC[A/A,] .
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Chapter 2. Preliminaries

2.1 Quasi-Hopf algebras

We start with the definition of a quasi-Hopf algebra as introduced in [Dri89).

Definition 2.1.1. A quasi-bialgebra is an algebra H with algebra homomorphisms A : H - HQ H
and € : H — k, together with an invertible coassociator ¢ € H @ H ® H, such that the following

conditions hold:

(id® A)(A(a)) - 6
(iIdRid® A)(¢) - (AR idQid)(¢) =
(e ® id)A(h)

(id®e®id)(¢) =

¢ (A®id)(A(a))

(1®¢) (ido A® id)(¢) - (¢ @ id)
h=(id® e)A(h)

1

A quasi-antipode (S, a, B) for H consists of algebra anti-automorphism S : H — H, together with
elements o, B € H, s.t.

S(h(l))ah(g) = e(h)a, h(l)ﬁS(h(Q)) = E(h)ﬁ,
X'BS(XHaX? =1, S(xh)ax?Bard = 1.

Similar to Sweedlers’ notation, we used the short-hand notation ¢ = X'® X?2® X3. For the inverse,
we use small letters ¢~ = ' @ 22 @ 23, If more than one associator appears in an equation we use

letters X, Y, Z and x,y, z, respectively.

In the first condition, ¢ can be understood as a coassociativity constraint for the coproduct A. In
particular, ¢ = 1 ® 1 ® 1 implies coassociativity and H becomes an ordinary Hopf algebra. The
second condition guarantees that the representation category Repy of H has a canonical monoidal
structure by left-action of ¢ € H ® H @ H:

Theorem 2.1.2. The category of representations of a quasi-Hopf algebra is a monoidal category if
endowed with a tensor product VW given by A, unit object given by k. and a nontrivial associator
UV)eW U (VW) given by:

wa,W:u®v®wl—>X1u®X21)®X3w. (2.1)
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In fact, every finite tensor category with quasi-fiber functor is equivalent to the representation
category of a quasi-Hopf algebra (see [EGNO15], Thm. 5.13.7). A canonical source of equivalences
between representation categories of quasi-Hopf algebras are twists:

Definition 2.1.3. [HN99d| Let H be a quasi-bialgebra, and J € H ® H an invertible element, s.t.
(e®id)(J) = (id®€)(J) = 1. Given a twist, we can define a new quasi-bialgebra H”' which is H as

an algebra, with the same counit, the coproduct is given by
Al (z) = JA(z)J L,
and the associator given by
¢7 = UroUp ",
where Ur, :== (J @ 1)(A®id)(J) and Ug := (1® J)(id® A)(J). Moreover, we have
ol =8Iyt gl = JBS(J?).

The quasi-bialgebra H” is called twist equivalent to H, by the twist J = J' @ J2. If a twist appears

more then once in an equation, we use letters J,K,L,. .. for them.

Example 2.1.4. Let G be a finite group, w € Z3(G,C*) be a group 3-cocycle. The dual algebra k€

equipped with the coassociator
b= Y w(g1,92.93) 0y © 00, @04, (where 55(h) := 5g1)
91,92,93€G

is a quasi-Hopf algebra which we denote by kS .
The category of representations of kG is identified with the category Vecty: of G-graded vector spaces
with associator wg, g, g, : (Cg, ® Cy,) @ Cyy = Cy, @ (Cy, @ Cy,) for simple objects Cy, given by

Wy1,92,95 * 191 ® 192 ® 193 = W(gl’92»93) ’ 191 ® 192 ® 193'
The following example is due to [DPR92]:

Example 2.1.5. Again, let G be a finite group, w € Z3(G,C*) be a group 3-cocycle. Then there
is a quasi-Hopf algebra D*(G) with a basis g ® 6. The coassociator of this quasi-Hopf algebra is
given by
=Y w(91,92,93) (e 6,,) ® (€@ 3y,) @ (€ ® dyy).
91,92,93€G

Product and coproduct are given by

B w(ha, h1, hi " hy ' gahiha)w(g2, ha, h1)
Pagihi 92 w(ha, hy ' gaha, hy)

W(h, h_lglha h_192h)w(917 g2, h)
Ah®d,) =
( @ 9) ggZQ:g w(gl7h7h7192h)

(h ©84,) - (ha ©6,,) = 8 (hahy @ b,,)

(h®691) ® (h‘®692)
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Moreover, there is a compatible R-matrix

R:Z(e@ég)@)(g@lkG),

geaG

such that the category of representations is a braided monoidal category.

Modules over D“(G) can be seen as Yetter-Drinfeld modules with a projective coaction instead
of an ordinary coaction (see [Maj98], Prop. 2.2 or [Vocl0], Def. 6.1). More generally the following

universal construction has been estabilshed in [Sch02]:

Example 2.1.6. Let H be a quasi-Hopf algebra, then there is a Drinfeld double DH which is again
a quasi-Hopf algebra with R-matriz. For example in our first case DkSG = D“(G).

It has the universal property that the braided category of DH -representation is equivalent to the
Drinfeld center of the monoidal category Repy of H-representations. Similarly, one can introduce
Yetter-Drinfeld modules over a quasi-Hopf algebra, and this braided monoidal category is equivalent

to the previous categories.

For later use, we introduce several important elements which were first defined in [Dri89]: He showed
that for an arbitrary quasi-Hopf algebra there is an invertible element f = f'® f? € H® H, which
we refer to as Drinfeld twist, satisfying

FA(S(R)f~1 = (S @ S)(AP(h)). (2.2)
Before we give f and f~! explicitly, we follow [BN02] by defining elements
pr=p' ©p° =z' @ 2*BS(2%) pr=p @p =X X'p) 0 X°
r=0¢"®¢ =X'®5 HaXx?)X? =3¢ ®¢:=S"ar® @23,

satisfying the following useful equalities:

A(h))pr(1® S(h2))) = pr(h ® 1) A(h@)pe(S™Hhay) ®1) =pr(1@h)  (2.3)
(1® 87 (h@)arA(hw) = (h© 1)gr (S(h1y) ® DgrA(h2)) = (1@ h)qr.  (2.4)

Furthermore, we define elements
§=6®6 = a:l,BS(a:“E’Q)ﬁ2) ® $2S($?1)ﬁ1) (2.5)
=7 ®7" = S(¢Pry))r? ® S(gtag))ax’ (2.6)
The Drinfeld twist f and its inverse f~! are then explicitly given by:

f=(S®8)(A“P(p")7A(P?)

(2.7)
71 =AGH3(S ® S)(A“P(3%)).
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In addition to Eq. the Drinfeld twist satisfies

FA@ =7 A =4

Let J € H ® H be a twist. The respective elements on the twisted quasi-Hopf algebra H”’ are

denoted by pj,qs,07,.... Using the above identities, one can show:
pry = Ulp' @ UiphS(U}) pry = URp' S~ (Uk) ® UEp®
gry =q'Uy Vo s U)o q; = SWUz"T'ULE P © U

fJ — S(J(—E))flK(—l) ® S(J(—l))fZK(—Q) f;l — Jlf(—l)S(KQ) ® J2f(_2)S(K1)

Finally, we introduce the notion of a quasitriangular ribbon quasi-Hopf algebra. We start with the

notion of quasi-triangularity:

Definition 2.1.7. A quasi-triangular quasi-Hopf algebra is a quasi-Hopf algebra H together with
an invertible element R € H ® H, the so-called R-matriz, s.t. the following conditions are fulfilled:

RA(R) = A®(WR  YheH
(A ® id) = 301 R13¢135 Ro3
(id® A) = ozt Rizo13Riogp "

The definition of a quasi-triangular quasi-Hopf algebra has an important symmetry: If R = R' ®
R? € H® H is an R-matrix for H, then sois Ry' € H® H.
The following lemma is proven in [BNO3]:

Lemma 2.1.8. Let (H, R) be a quasi-triangular quasi-Hopf algebra. We define the Drinfeld element
u € H as follows:

u:= S(R?*p*)aR'p'.
This element is invertible and satisfies S*(h) = uhu™!.

We will need the following Lemma in Section [5.6

Lemma 2.1.9. Let H be a quasi-Hopf algebra. Assume that 6(S®.5)(y21) = BS(a) ® 8S(«). Then
we have

A(BS(e) = (BS(a) ® BS(a)) (S @ S)(far')f-
Proof. We have
A(BS(@) = AB)A(S(a)) = 0 fA(S(e)) = 8(S ® S)(A“P(a)) f
=6(S®8)(far'121)f = 0(S ® 8)(721)(S ® S)(far') f
= (BS(a) ® BS(a)) (S @ S)(fz1")f-
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We now recall the definition of a ribbon quasi-Hopf algebra. It has been shown in [BNO3] that the
following definition of a quasi-triangular ribbon quasi-Hopf algebra is equivalent to the original one
given in [AC92].

Definition 2.1.10. A quasi-triangular quasi-Hopf algebra (H, R) is called ribbon if there exists a

central element v € H, s.t.
v? = uS(u), S(v) =v,
e(v) =1, A(v) = (v @v)(Ra R) ™.
We will need the following Lemma in Section [5.6

Lemma 2.1.11. Let (H, R) be a quasi-triangular quasi-Hopf algebra with Drinfeld element v € H.
As in Lemma we assume that 6(S ® S)(v21) = BS(a) ® BS(a) holds. Then v := SS(a)u
satisfies the condition A(v) = (v @ v)(Ra1 R) 1.

Proof. Tn [BNO3], the authors prove the following identity:
Aw) = f71(S @ 9)(for)(u @ u)(Ro R) .
Using this and Lemma [2.1.9] we obtain
A(v) = A(BS(a)u) = A(BS(a)A(u)
= (8S(a) ® BS(@)) (S @ S)(fr ) [ (S @ S)(far)(u @ u) (R R) ™' = (v @ v)(Ran R) ™.

2.2 Abelian 3-cocycles on G

From now on, let G be a finite abelian group.

Definition 2.2.1. [Mac52][J593E| An abelian 3-cocycle (o,w) € Z3,(G) is a pair consisting of a
ordinary 3-cocycle w € Z3(G,C*) and an ordinary 2-cochain o € C%(G,C*), s.t. the following two

equations hold:

w(y, z, 2) o(z,y+2)
= (2.8)
w(z,y, 2)w(y,z,2) oz, y)o(z,2)
wizz,yw(r,y,z) _ olr+y,z) (2.9)
w(z, 2,y) o(x,2)o(y, z) '
An abelian 3-coboundary is of the form dur = (k/k%,dk™1) for any ordinary 2-cochain r €

C?% (G) :== C*(G,C*). Here, k' (z,y) := r(y,x). The quotient group of abelian cohomology classes
is the abelian cohomology group H32, (G).

INote that we follow [JS93] and thus have a different convention than [Mac52], this amounts to having w™!

everywhere.
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Theorem 2.2.2. [Mac52] To any abelian 3-cocycle (w, o) there is an associated quadratic form
Q(g) :=o(g,9) on the group G and the associated symmetric bihomomorphism B(g, h) := o(g, h)o(h, g).
We have an identity

Qlz+y)
Q(z)Q(y)
This implies, that the symmetric bihomomorphism B characterizes the quadratic form up to a ho-
momorphism n € Hom(G, {£1}).

The assignment ® : (w,0) — Q yields a group isomorphism between abelian 3-cohomology classes
H3,(G) and quadratic forms QF(G) on G.

B(g,h) = (2.10)

As we shall see in the next section, abelian cohomology classes classify different braiding/tensor

structures on the category of G-graded vector spaces.
Example 2.2.3. For G = Z,, we have two cases

e For odd n we have H3 (Z,) = Z,, with representatives (w,o) for k = 0,...n — 1 given by

o(g',¢7) = C¥9 w = 1 and the respective quadratic form is given by
Q) =a",  Blghg) =M
e For even n we have Hg’b(Zn) = Zo, with quadratic forms for k=0,...2n—1
Q) =i, Blghg) =G

For even k we have again representatives given by o(g',¢7) = Q(Lk/Q)ij,w =1, but for odd k

we have only representatives with w in the nontrivial cohomology class of H3(Zy,,Z2).

In particular G = Z4 has four abelian cohomology classes, two of which have trivial w, and two of

which have nontrivial w and nondegenerate B.
Proposition 2.2.4. Let G = @, Zm, be a finite abelian group with generators g;, i = 1,...n.

1. A quadratic form Q € QF(G) is uniquely determined by elements 0 < r; < ged(2,m;)m; — 1
and 0 < 1 < ged(myg,my) — 1 (for k <1), so that

Q(gi) = exp (M) B(gk, g1) = exp (M> (k<)

ged(my, my)

2. For a quadratic form Q € QF(G), the abelian 3-cocycle (w,0) € Z3,(G) given by

a(ab): =[] Q)™ [ Blorg)™"
i=1 1<k<i<n
W(a, b, C) L= H Q(gi)mi‘sﬂri'*-bizmici

S
Il
-

satisfies Q(g) = o(g,9).
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Proof. From Theorem it is easy to see that for an element g = gi* ... g% € G, Q(g) decom-
poses as follows:

Qo) = [ Qo™ - 11 Bl g™,
i=1 i<j

As B is a bihomomorphism on the finite abelian group G, we have

27 - Tkl
B = _—
(9, 91) = exp (gcd(mk, ml))

for some 0 < 7 < ged(myg, m;) — 1. From this formula also follows

Q) = e (775"

i

for some 0 < 7; < m? — 1. Combining this with the axiom Q(g;) = Q(—g;) leads to
271 - T
Qo) = exp (ng(27mi)mi>

for some 0 < r; < ged(2,m;)m; — 1. It is a straightforward computation to check that the pair (w, o)
defined in the second part of the proposition satisfies the axioms of an abelian 3-cocycle. Finally,

using the above decomposition of Q(g), it is easy to see that o(g, g) = Q(g). O

2.3 Modular structures on Vectg

Theorem 2.3.1. Let (o,w) € Z3,(G) be an abelian 3-cocycle on the finite abelian group G. This
induces a canonical braided monoidal structure on the category Vectg of G-graded vector spaces.

On simple objects C,,, associator, unitors and braiding are given by:

Wy1,g2,95 * (Cg1 ® Cgy) ® Cgy = Cy, @ (Cy, ® Cy,), lg, ®1g, ®@ 1gy > w(91,92,93) - 15, ® 14, ® 1y,
ly: Co®Cy = C,, lo® 1, (009>1- g
rg : Cq ® Cy — Cy, 1g ®10»—>w(g, 1g
Ogr,92 : Cg, ®Cy, = Cy, ® Cy,, 1y, ® 14, — J(gl,gg) L ®1g,.

The resulting braided monoidal category is denoted by Vect(g “) . All braided monoidal structures
on Vectg are classified up to braided monoidal equivalence by the third abelian cohomology group

H3,(G) modulo automorphisms on G.
Proof. This is Exercise 8.4.8 in [EGNO13]. O

Remark 2.3.2. Since every 3-cocycle is equivalent to a normalized one, we can choose the unitors

to be trivial.
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We recall the definition of a pre-modular category and modularization in the semisimple case:

Definition 2.3.3. A fusion category is a rigid semisimple k-linear monoidal category C with only
finitely many isomorphism classes of simple objects, such that End(l) = k. A braided fusion category

is called pre-modular if it has a ribbon structure, i.e. an element 6 € Aut(ide), s.t.

9X®y = (QX ® ey) OCy,x OCX\Yy
(0x)" = Ox-,

where ¢ denotes the braiding in C.

Definition 2.3.4. In a pre-modular category, we have categorical traces and categorical dimensions:

tr(f):=dxocx x-o((Oxof)®idx«)obx : I =1 f € End(X)
dim(X) : = tr(idx) X e,

where d and b denote evaluation and coevaluation in the rigid category C.

Definition 2.3.5. Let C be a pre-modular category. The so-called S-matriz of C, S = (Sxv)x,yco(c)
is indexed by the set O(C) of isomorphism classes of simple objects in C with entries defined by

SXY = t’I“(Cy,XCX,y).

A pre-modular category is said to be modular if its S-matriz is non-degenerate. A linear ribbon
functor F' : C — D between pre-modular categories is said to be a modularization if

1. it is dominant, i.e. for every object D € D we have idp = poi for some i : D — F(C),
p: F(C)— D, CecC.

2. D is modular.

If such a functor exist, then C is called modularizable.

(o,

Lemma 2.3.6. For an abelian 3-cocycle (o,w) € Z3,(G), let Vect; “) be the corresponding braided
monoidal category from Thm. . For a character n : G — {£1}, the twist O, : C; — C, given
by multiplication with Q(g) - n(g) defines a ribbon structure on Vectg’w). We denote the resulting
ribbon catgegory by Vectg’w’"). All ribbon structures on Vectg up to ribbon category equivalence are

classified by elements (Q,n) € QF(G) & Hom(G, {£1}) modulo autmorphisms on G.

Proof. We have already seen that braided monoidal structures on Vectg are classified by H3, (G)
modulo automorphisms on G. By Theorem [2.2.2] for every such class there is a unique quadratic
form @, which satisfies equation [2.10] This means that the quadratic form defines a ribbon structure.
On the other hand, the theorem says that two quadratic forms have the same associated symmetric

bihomomorphism % if and only if they differ by a homomorphism 1 : G — {£1}. From
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exercise 8.4.6 in [EGNO15| we know that a braided monoidal equivalence between Vectgl’wl) and
Vect(gz’WZ) is uniquely determined by an automorphism f : G — G s.t. Q1 = Qs o f together
with some choice of k : G x G — C, s.t. dapk = (w1,02) L f*(wa,02). Given a ribbon structure
nm € Hom(G, {£1}) on Vectgl’wl) and n2 =m0 f ! on Vecth’M) it is easy to see that this functor
is a ribbon equivalence. O

Remark 2.3.7. By definition of the associated symmetric bilinear form B of (o,w) € Z3,(G), the

pre-modular category Vectg’w’n) is modular if and only if B is non-degenerate.
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(w,0)

Chapter 3. Modularization of Vect,

Proposition 3.0.1. For a given ribbon structure (o,w,n) on Vectg, the pre-modular category
Vectg’w’") is modularizable if and only if both QQ and n are trivial on the radical T := Rad(B)
of the associated symmetric bilinear form B : G x G — C* of (o,w) € Z3,(G). Explicitly, we
construct a functor

F: Vect(g’w’") — Vectg/";’ﬁ)

to a modular category Vect(g/";’ﬁ), where the triple (o,w,n) on G factors to a triple (7,,7) on G/T.
Proof. By Paragraph 2.11.6 in [DGNO10] we have dim(C;) = n(g). Then, the first part of the
proposition is an easy application of theorem 3.1 in [Bru00]. We now construct the modularization
functor explicitly:

Let Vectg “1) he a pre-modular category satisfying the conditions in proposition m

We first want to find the modular target category of the modularization functor:

The condition Q|7 = 1 implies that Q factors to a well-defined quadratic form Q : G/T — C*. Let
(7,w0) € Z3,(G/T) denote a representative of ®~1(Q), where the isomorphism ® : H3, (G/T) —
QF(G/T) was introduced in theorem Furthermore, since n : G — C* was a character,
1] = 1 implies that it factors through a character 77 : G/T — C*. Hence, we obtain a pre-modular

category Vectg/’?’ﬁ). Since T' was defined as the radical of B, the new associated symmetric form

B:G/T x G/T — C* is non-degenerate and by remark , Vect(g/’;’ﬁ) is even modular.

Now, we need to construct a linear ribbon functor F : Vect T ™ — Vectg/’?ﬁ):

Clearly, the projection 7 : G — G/T induces a functor Vectg — Vectg,r. We want to endow this
functor with a monoidal structure that is compatible with braiding and twist. This amounts to
finding a 2-cochain k : G x G — C, s.t.

(G, 0) = dapk - (0,Ww).

Since the associated quadratic form of the abelian 3-cocycle (5,©) = (o,w) 'n*(5,@) vanishes by

assumption and since ¢ is an isomorphism, (&,@) must be an abelian coboundary, hence x exists.
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Compatibility with the twist is due to 7o m =7 and Q o = Q. This functor is clearly dominant,
since it sends simple objects to simple objects and all simple are in the image. O

Remark 3.0.2. In [Bru00], the modularised category is constructed as the category of modules of a
commutative algebra T inside the non-modular category C. As an object, T is the direct sum of all
transparent objects. We remark that in our case C = Vectg’w’") our explicit modularization functor

and our modularised category is equivalent to Brugieres’ construction for T := @1 Cy.

45



Chapter 4. Quantum groups u,(g,\) and R-matrices

In this section, we recall the some results from the first part. To begin with, we collect some data

in order to define the small quantum group u,(g, A):

In the following, let

g be a simple complex finite-dimensional Lie algebra with simple roots a1, ..., «, and Killing

form (o, o),
q be a primitive ¢th root of unity, where ¢ € N,

Ar C A C Ay be an intermediate lattice between the root lattice A and weight lattice Ay
of g, equivalently a subgroup of the fundamental group H C 71 := Ay /AR,

A’ be the centralizer of the root lattice with respect to A,
A =Centp,(A):={a€Ar | ¢* =1 YveA}
and the quotient group G := A/A’,

Ar C A1, Ay C A sublattices, equivalently subgroups G; := A;/A’ C G of common index
d = |G|, st. G1 + Go = G. Note that in all cases except g = Ds,, we have a cyclic
fundamental group and thus A1 = Ay = A and G; = G5 = G,

f: Gy X G3 — C* be a non-degenerate bilinear form,

Hi = AZ/AQH

Theorem 4.0.1. [LOI7] For the above data, let u,(g, A) be the so-called small quantum group with
coradical ug(g,A) >~ C[G], as defined for example in [Lenl6], Def. 5.3. In most cases, this will be
isomorphic to the Frobenius-Lusztig kernel.

Then, an R-matriz for this quantum group is given by

R = Ro([)O,
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where © € ug (g, A) @ uf (g,A) is the universal quasi-R-matriz constructed by Lusztig (see [Lus93),
Thm. 4.1.2.) and Ry(f) is given by

Rolf)i=g S0 Jlnw)Ku® K, € (e, 4) © (o, A)

REGIVEG?

The non-degenerate bilinear form f: Gy X Go — C* is of the explicit form

f(:u’vy) = q_(%y) 'g(ﬂ717)7 (41)

where g : Hy x Hy — C* is another bilinear form.
Moreover, every small quantum group u,(g, A) with R-matriz of the form Ro(f)© admits a ribbon

1

element of the form v = v~ 'u, where u denotes the Drinfeld element in uy(g,A) and ~y is a spherical

pivotal element in uq(g, A).

In [LO17], we listed all possible bilinear forms g, s.t. the corresponding bilinear form f is non-
degenerate. Furthermore, we gave necessary and sufficient conditions on f for the corresponding
R-matrix R = Ry(f)®© to be factorizable and checked again explicitly when this will be the case.

Remark 4.0.2. The element Ro(f) € C[G] ® C[G] itself is an R-matriz of the group algebra C[G],
leading to a braiding o in the category Repc(q) = RepG = Vectyz which is defined on simple objects
(i.e. characters) Cy,Cy, € Vectg by

1
oxu(ly ®1y) = P Z flusv)x(p)p(v) | -1y @ 1y
pEGLVEG?
=x ([T (Wle)) - 1y ® 1y
=o(x,¥) 1y ® 1y,

where in the second line the bicharacter f : Gy x G — C* s interpreted as a homomorphism

Gy — C/?\g From this, it is clear that o is a bilinear form on G.

So far, we introduced the small quantum group u,(g, A) associated to a simple Lie algebra g, an
intermediate lattice Ag C A C Ay and an fth root of unity ¢ with R-matrix induced by a bilinear
form f. We now look at the explicit case g = slo, A; = Ay = Ay

Example 4.0.3. e The Cartan part uy(sly, Aw)o of this quantum group is given by C[G] =
Cl[Aw /Centp, (Aw)]. Since Agr = 2Aw =Z - «, we have G = Zyy.

e For the defining bilinear form f : G x G — C* of the Ry-matriz we have two possibilities,

namely fi (M) = ¢ MV = +exp(=), where X = [$] is a generator of G. From table

1 in [LOT17)], we see that in the case 2 1 £ only fi is non-degenerate. In the even case, both

choices are allowed.
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o The radical Rad(f- f1) C G is given by (Aw /AR = Zo. Dualizing the representation category
of C[G] with braiding induced by fy leads to the braided monoidal category Vectgi’l), where
o1(x,X) == f+(A\ AL, where x == f(\, ) is a generator of G. We always use the non-
degenerate form f to identify G and G. In particular, the radical T := Rad(B) C G is
isomorphic to, but not equal to the dual of Rad(f - 7). It is generated by T := x*.

o We now want to check, when the conditions for modularizability given in proposition are
satisfied. It is easy to see that the corresponding quadratic form Q+(x) = o+(x,Xx) is trivial
on T if and only if Q+ = Q_1)c. Combined with the non-degeneracy condition from above,
this excludes the case 2 1 £. From now on, we restrict to the case 2 | £ and f = f,. Here,
both possibilities ny (x) = £1 are allowed. We are now looking for an explicit abelian 3-cocycle
(7,) € Zg’b(é/T) corresponding to the pushed down quadratic form Q. (x) = Q4 (x) on
@/T. It turns out that the following definition does the job:

i(it+k—[i+k]

M :=gq 2 0<i,jk<t-1

iy

w(x', X,

>

ij
Pl

0<i,j<l—1.

>

a(x', q

It is immediately clear, that & won’t be bilinear anymore. For further use, we introduce a

2-cochain

o g ifi odd o
Ct()_(laij):: OSZ,]SX*L 2th,
1 else

leading to an equivalent abelian 3-cocycle (¢, 7:) = (d:@, g—;&):
t

_tk - . .
C if i,7 odd
@ (XX, X0 - = (11 ]; / 0<ijk<l-1
else

(i=394;t) (G+804; t)+¢2
2

(X' x7)  =q 0<i,j<l-—1
o Summarizing: For A = Ay, we have for ¢ odd a single R-matriz, which is not modularizable
and for { even, we have two R-matrices, one of which is not modularizable and one of which
modularizes to a modular tensor category with |Zy| = £ many simple objects. We have two

choices for the ribbon structure in this category.
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Chapter 5. Definition of a quasi-Hopf algebra u(w, o)

Let k be an algebraically closed field of characteristic zero. In this section we construct a quasi-Hopf

algebra u(w, o) from the following data:

e a finite abelian group G

e an abelian 3-cocycle (w,0) € Z3,(G) on its dual

e a subset {x; € @}1§ign caG
The following theorem summarizes the results of this chapter:

Theorem 5.0.1. Given the above data, there is a quasi-Hopf algebra uw(w, o) with the following

properties:
1. The quasi-Hopf algebra u(w,o) contains kf (see Ex. as a quasi-Hopf subalgebra. We

introduce the elements
K=Y o(x,v)dy € k¢
ped
K, := Z o, x) 0y € kY
pel

They are grouplike if and only if the 2-cocycle 6(x) € ZQ(CA;) defined in is trivial.

2. Let V be the k-vector space spanned by basis elements {F;}1<i<n and endowed with the Yetter-
Drinfeld module structure over kf from Cor. . In particular, action, coaction and braiding

are given by:

€
J(FZ) L= L,’ ®Fi, Lz' . i
qij = o(Xi» X5)-

I
= Q»

cvy (F; ® Fj) 1 = qij F; @ Fj,

Let B(V) denote the corresponding Nichols algebra (see Section[5.4). We assume B(V') to be

finite-dimensional. The quasi-Hopf algebra u(w, o) contains the Radford biproduct u(w,o)= :=
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B(V)#k§ (see Sectz’on as a quasi-Hopf subalgebra. Explicit relations are given in Cor.

and Prop.|5.8.1 Under the assumption from Def. they simplify considerably (see
Ez. [5.0.5).

3. The quasi-Hopf algebra u(w, o) is a quotient of the Drinfeld double D(u(w,o)<) (see Section
of the Radford biproduct u=° . After defining certain elements E; € (ugo)* the quasi-
quantum group u(w, o) is generated by E;’s, F;’s and 0, ’s. Note that the elements Kdo not

necessarily form a basis of k¢. A full list of relations is given at the end of Section |5.5,

4. The finite-dimensional quasi-Hopf algebra uw(w, o) has a canonical quasi-triangular structure

defined in Section [5.6
5. As a vector space, we have u(w,0) = B(V) ® kG @ B(V*).

Example 5.0.2. The reader familiar with ordinary quantum groups at roots of unity would certainly
expect such a construction of a "quasi-quantum group”, since up to the up to the technicalities of
quasi-Hopf algebras it is based on the construction of quantum groups as Drinfeld doubles of Nichols
algebras [AS02).

Definition 5.0.3. For a given datum (w,0,x; € G) as above, the abelian 3-cocycle (w,0) € Zgb(@)
is called nice if the following two conditions are fulfilled:

wXinxin¥) =1 VYyed.

Lemma 5.0.4. Let G = @?:1 Loy, be a finite abelian group with generators g;, i = 1,...n.
Every abelian 3-cocycle (w,0) € Z3,(G) is cohomologous to a nice abelian 3-cocycle. An explicit

representative is given by:

n

w(a,bye) s = [T QUgoymedoserzmes,

i=1
Proof. This is the second part of Prop. O

Example 5.0.5. Let (w,0) € Zg’b(@) be a nice abelian 3-cocycle in the sense of Def. . Then,
the quasi-Hopf algebra u(w,o) is generated by elements E;, F; and 6, for 1 <i < n and x € G.
We have the same quasi-Hopf algebra relations as for an arbitrary abelian 3-cocycle, except that the

braided commutator simplifies to:

[EiKy,, Fjlo = 6i0(xi, Xi) (1 — Ky, Ky,) -

'In contrast to the (w = 1)-case, D(u(w,o)<) contains uu(w, o)< as a quasi-Hopf subalgebra, but not (u(w,o)<)*,

which is a coquasi-Hopf algebra
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Example 5.0.6. We now fiz a datum (g,q, A, A1, As, A, ) as in Section . On G = AN, we
define a bihomomorphism o as in Remark and set w = 1. Moreover, we define x; = ¢(®)
for a choice of simple roots a; € Ag. From Ez. m it is easy to see that in this case, u(w, o) turns

out to be the ordinary extended small quantum group uy(g, A) as introduced in Section .

We now construct the quasi-Hopf algebra from the previous Theorem step-by-step, starting with
the Yetter-Drinfeld module V over the quasi-Hopf algebra kG.

5.1 A Yetter-Drinfeld module

We start with the definition of a Yetter-Drinfeld module over a quasi-Hopf algebra H.

Definition 5.1.1. [Maj98][Sch02] Let H be a quasi-Hopf algebra. Let p : HQV — V be a left
H-module and let 6 : V — H®V, v — v_1] @[] be a linear map, s.t.

1. (e®id)od =id

2. Xl(Yl.U)[,l](l)YQ ® XQ(Yl.U)[,l](Q)Y?’ (39 Xs.(Yl.U)[O]
= Xlop @ (X20p0)) (- X7 @ (X0p0))o)

3. hayvi—1) ® hyv) = (h(1)-v)[—11h(2) © (h(1)-v)(0]5

where ¢ = X' @ X2 @ X2 =Y ®@Y?2®Y? denotes the associator of H. Then, the triple (V, p,6) is
called a Yetter-Drinfeld module over H.

Obviously, for ¢ = 1 ® 1 ® 1 this matches the usual definition of a Yetter-Drinfeld module. As in

this case, we have the following;:

Proposition 5.1.2. [Maj98] [BN02] Let H be a quasi-Hopf algebra. The category 2YD of Yetter-
Drinfeld modules over H is a braided monoidal category, with usual tensor product V @ W of
H-modules V,W € £YD. The comodule structure on V@ W is given by

Svew(@@w) =X ('Yt v)[_l]zz(Yz . v)[_l]Xg
® X2. (Ilyl 'U)[O] ®X3.1‘3(Y2 'U)[O]-

The associator in HYD is the same as in Repy and the braiding given by
cy,w (v ® w) = v_1j.w @ v

If we plug in the data of the twisted dual group algebra kS from example [2.1.4] the above definition
simplifies significantly [Maj98§]:

Lemma 5.1.3. For A a finite abelian group, a Yetter-Drinfeld module over kS consists of the

following data:
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o a A-graded vector space V = @, 4 Va with basis {F;}icr in degrees a; := |Fj|

e amap p: kARQV =V, a® F; — a.F;, s.t.

W(aia ai, a2)w(a1; az, ai)

al.(aQ.Fi) = (a1 + ag).Fi, Fl == OF,“ ‘CLFl| = |Fz| (51)

W(ahaia az)

The first condition in the previous lemma is very similar to the defining relations of an abelian
3-cocycle (see [2.2.1). This implies

Corollary 5.1.4. Let (o,w) € Zg’b(@) be an abelian 8-cocycle and {x;}icr C G a subset. Then,
setting V := @

ser k- Fi, with homogeneous degrees |F;| = x; and action

p: KGoV —V
X ® Fy — o(Xi, x) Fi

indeed defines a Yetter-Drinfeld module over k‘f Note that substituting o by (o7)~1 would also
work.

Remark 5.1.5. Note that a dual of V is given by VV = V* = P

degrees |F;| = x; and action

ser k- FY, with homogeneous
p" 1 X @ F = 0(3) (xxi Xa)do (xis X, X) ™o (Xiy X F = o (xis X) 7
where 0(x) (Y1, V) € Z%(G, k%) is the 2-cocycle defined by

W(X’ wla ¢2)W(1/)171/J27X)
W(%,Xﬂ/b) .

The evaluation V¥ @V — k is given by F,) @ Fj — 0, ;.

0(x) (Y1, 2) ==

5.2 A Nichols algebra

We now give relations for the corresponding Nichols algebra B(V') € ﬁgyp of the Yetter-Drinfeld
module V' constructed in Corollary )

As in the Hopf-case (see [Hec08]), the Nichols algebra B(V) = @,,», B"V :=T(V)/I of V is a
quotient of the tensor (Hopf-)algebra T'(V) := @,,~, 7"V in Zg YD by the maximal Hopf ideal I,
s.t. BV := V are exactly the primitive elements in_B(V). A brief introduction to Nichols algebras
in arbitrary abelian braided monoidal categories is given in App.[B| Details can be found in [BB13].
Since we are dealing with a non-trivial associator, we have to fix a bracketing 7"V := T" "'V @ V
and T°V := k. Accordingly, we define F* := Finlei for primitive generators F; € V. C B(V).
In order to compare our results with [Ros98|, we use the short-hand notation ¢;; := o (X, X;). In
particular, we will see that the resulting relation for the adjoint representation on B(V') depends
only on ¢;; and not on the 3-cocycle w.
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Lemma 5.2.1. Fork,l € Z>q, let a}%l € kX denote the elements defined by FFF! = a};7lFik+l. They

l 1

are given explicitly by a}'cwl = HT_:}) w(X¥, X5, X:) 7 and satisfy the following identities:

ak l+m,al m -k =l -m\—1
Dt m Pl (Xl  Xis Xi )
o(XF XY i
2. akl = T gF az,k

Proof. We prove the first part by induction in m. The case m = 0 is trivial. For

ai,l+m+1a§,m+1 _ a;a l+ma§m (XiJrkvX;n»X’L)
a‘}c—i-l,m-&-la}ﬁ,l CLk+l mak l W(Xl 7Xi+m7 )_(Z)W()_(i, X;ma XZ)
— (XfHJ@mvii)
(9_(57 Xﬁa )_(z ) (Xz 7)—<é+m’ )Zl)w(ib )_(;na >_<7.)
= w(x, XX
For the second part, we compute:
Ak41,0 = H wOo X ) !
_ H w( Xi» X 7 T+1)
XzanXl)w( fa : _') (XﬂX; 75(1)
-1
I o \—1
= w(Xis Xi » Xi) k.1 W(XiaXi " Xi)
r=0
(X X X ak}l ﬁ (7' T7>Zi) ()ZMX’L)
19 ) —
R r=0 (Xf+r+17X1)

_k —

- <k -l (XzaXi)Qii
= w(Xi» X; X~)ak,177-
DA I (%)

We want to prove the second part by induction in /. For [ = 1, we obtain

T T e x)e () db @&
ai = w(Xi, Xi»Xi) = oAt AY = = —— ).
’ EO noe EO o(xi ™ xi) o(xX¥, xi) o(xkxi) "
For [ + 1 we obtain
a;c,lﬂ = afc,lw(f(?a )t
O(XE XD kot ot
:$M<Xi7Xi7Xi) 1a’;,k
d;;
OO XD ok oy o ey 00T )
Zii o (X5, Xi) g
1 _
_ o)
k(l+1)

i
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In the last line, we used the identity w - w” = do—!. O

Lemma 5.2.2. Let ad.(X)(Y) = po(id—c)(X QYY) be the adjoint representation of the associative
algebra B(V) € kG yD We have

ad} (F)(Fy) =Y pn(k) (FFF;) ' — k , where
k=0

_ _n— — (Xf;ini]a)zj) " k = XZ?X; 71 n
pin (k) = (=1)" kU(Xn "X )—f - Don—k
" ! T (X,L,X],X:Ln k) ” U XlaX»”XJ) " k @i

Proof. For the sake of readability, we use the short-hand notation i for y; during this proof. For
n = 1, we obtain ad.(F;)(F;) = F;F; — ¢;;F;F;. For larger n, we first want to find an inductive

expression for the coefficients in the following expansion:

adn Z ,Un (n—k)'

To this end, we compute

ady (F;)(Fy) = ado(F;)(ady ™ (F;)(Fy))
= (Z o — 1 )F(n " D)

= Z pin—1(k) (g (o (ki,i)w(i, ki, j)w(i, ki + j,(n — k — 1)i)) " (FFH E) FP—Ft
— o(i,(n = 1)i+ j)w(ki+ 4, (n — k — 1)i, i) (FFF;)FPF).
From this, we obtain

— o(i,7%)
] rerd e,

ZTZ])

(n—1)n

pn(0) = (—1)"0(m’,j)qii ooy
fin (k) = pin—1(k — )¢ Vo ((k — 1), d)w(i, (k — 1)i, j) " w(i, (k — 1)i + 4, (n — k)i) ™"
— tn—1(k)o(i,(n —1)i + jw(ki + j,(n — k — 1)3,1).

This allows us to prove the following formula by induction, even though we are going to omit the
proof here, since it is long and tedious without any interesting inputs except an exhaustive use of
the abelian 3-cocycle conditions and g-binomial coefficients. The hard part was rather to find the
formula by tracing down the inductive formula to n = 1, than to prove it.

— n— - - w(k"i’ (n_k)zvj) (ngk) n
pn (k) = (=1)"Fenay o ((n = R0 3) S n = Ry ke, ) % (k)q
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Proposition 5.2.3. The coproducts of F]' and ady, (F;)(F;) are given by

n

=Y (f) Frem
qii

k=0
Alad: (F;)(Fy)) = (ad; (F)(F})) @ 1+ 1® (adg (F;)(F}))

n—k n—k—1 L _ o
3 (B n) NS T ) (o h
Hn 0_(>—<n—k >—<k>—<) O.(ka Xm) n—k—m,m m
k=0 4 YAT AT m=0 i AJr Ag qii
n—k—m—1 qk+m
X H (1_ T o ) Finikim®(Fiij)Fzm
4954951

r=0
Proof. During this proof, we use the abbreviation ¢ for x;. We first proof the equation for A(F").

We set A(E") :=S"p_, fu(k) FF @ F'~F. First, we want to find an inductive relation between the
coefficients f, (k). We have

A(F]) = AFHA(F)

7

AFMY)FEe1+11 F)

n—

1
=N far ) (FF @ FP M) (Fio1+ 10 F)
k=0

After computing the product, we obtain

fn(k) = frooa(k)w(ki, (n — )Z i)

Moreover, we have f,(0) = f,—1(0) = 1 and fn(n) = fn_l(n —1) = 1. Now, we want to show the
following formula by induction:

(n—k)—1

faky= J[  wki,rii) (Z)q

r=0

it

For n = 1, we obtain (;)
holds for n — 1. Then,

(k) = fruo1(kB)w(ki,(n — 1 — k)i, i)
w((k—1)i,(n— k)i, 1)

is =1= fl(O) and (1)

it

o = L= f1(1). Now, we assume that the formula

+ fa1(k = Uw((k )i, (= k’)i)a((n — k)i, i)

q . o (n—1 ) o
= rl;[O w(ki,ri, i) ( I )qhw(k:z, (n—1—k)i,i)

(n b=t - ..
T O e
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(n—k)—1

- 11 w(ki,ri,i)(ngl)qii

r=0
(n k) kz ri, D)w(i, (k — 1), (r + 1)3) o((n — k)i, i) n—1
+ H )i, i), (k + 7 — 194, 8) o((k — 1)i 0, (n — k)3) <k; - 1>q“
(n—k)—l n—1
= w(ki,ri,1)
n H w(ki, i, q) wki, (n = k)i, i) (i, (k = 1)i, (n — k + 1)i) g~ o(ki, i)

w(i, (k — 1)i,4) o(ni, q)

o((n—k)i,i) n—1
ok = 1,4, (n— k)1) (k - 1>q
(n—k)—1

_ Tl;[O w(ki,m,z‘)«"kl)m

i1

w(ki, (n — k)i, i)w(i, ki, (n — k)i) o(ki, D)o ((n — k)i, i) <n_k>(n—1> )

w(ki,i, (n — k)i) o(ni,i) Gis k—-1/,
(n—k)—1 n— n—1
= [I wkirii (( ) g > >
r=0 k ke~ qii
(n—k)—1 n
= ]I w(k:i,m',i)( > ,
r=0 k Gii

where we used the abelian 3-cocycle conditions exhaustively.
Instead of giving a rigorous proof for the second part, which would take a few pages, we describe
instead what we did. First, we computed the coefficients A, B of the following expression:

A ((FER)F) = (a (FF) AGF) A (F9)

K3
k n—k

= Z Z fk(l)fn—k(m) (A (Flle) Fzm ®Fin_m_l

=0 m=0
m k-1 n—k—m
+ BE e (R E) priem).

Then we plugged this in A(ad} (F;)(F})), using the expansion for ad (F;)(F;) from the previous
proposition:

A(ad?(F, iinzk i (k ( >q (”mk>q (@ 1@ ) "

k=0 1=0 m=0 .
X (A (FZZF7) Fl‘m (9 Fin—m—l + BFim+l ® (Fi(kfl)Fj) F;z—k—m)

After changing the order of summation and plugging in our expression for the coefficients p, (k) from
the previous propsition, we see that the B-summand cancels completely, whereas the A-summand
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can be brought in to a form, where we can apply the ¢g-binomial coefficient theorem. This gives the
above result. O

From the above coproducts we can read off the following relations:
Corollary 5.2.4. For anyn € N,

1. Fl* #0 if and only if (n)g,,! # 0.

2. ad?(F)(Fy) # 0 if and only if (), T2 (1~ dhaijaje).

Remark 5.2.5. Note that the above relations do not depend on the 3-cocycle w and are identical
with the ones given in [Ros98], Lemma 14.

5.3 A Radford biproduct

For a general quasi-Hopf algebra H and a braided Hopf algebra B € LYD in the category of
Yetter-Drinfeld modules over H, the Radford biproduct B#H was defined in [BN02]. It is again a
quasi-Hopf algebra.

The Nichols algebra B(V') constructed in the previous section is a Hopf algebra in the category

a ~
IZM@ VD of Yetter-Drinfeld modules over kS and thus the definition in [BN02| applies. We collect the
relevant relations in the following proposition:

Proposition 5.3.1. As a vector space, the quasi-Hopf algebra B(V)#kf is given by B(V) ® k‘f

A general product of generators is given by
(Eitt 0, ) (Fj#00,) = 0y a0 (X X ¥2) ™ (FLE) #0 .

The inclusion k‘§ — B(V)#kf, 0y +— 146y is a homomorphism of quasi-Hopf algebras. This
legitimises the short-hand notation 6, = 146, € B(V)#kKS . Moreover, we set F; = Fi#1,c. Then,
the following algebra relations hold:

o Oy - (Fi#tdy) = Oy, p(Fi#dy), in particular by - Fy = Fi#tdyy,
o (E;#06y) - 6y = Oy 4 (Fi#6y), in particular F; - 6, = Fi#6,
o FE = (BE)# (T, cq @ %) 7 6 )

The comultiplication is given by

(w’,imﬂ/) — / — / T\—1
A(Fisy) = 3 X0 B8] o s @ (Fi#tsyg) + Y w(Xad,vd)  (Fi#td,) © 8450,

P'eG
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in particular

AE)= Y dei,x)@@m#@w S W 0)  Fi#d,) @ 8y
e Xiyr X5 o

The antipode is given by
In the later chapters we will also need the following formula:

(Aid) o A(F) = > aj(th, e, vs)(Fi#tdy,) @ by, @ dy,
Y1,92,Y3€G
+ (1,2, 13)0p, @ (Fidtdy,) @ Oy,

+ a?’)(wla ¢27 ¢3)5w1 oY 6’1112 ® (F’L#(S’lpS))

where

a4 (Y1, 92, P3) = w(Xi, Y1ib2, ¥3) " w(Xi, Y1, ¥2) !

i w (1, Xi, P2) _
«Q ’ ) = - _ 0\ Xi»

2 Ve s) = R U s s )
w192, Xis¥3)
——— 2 2 o (N .
w(Xis Y1102, 3) Ocsr 9192)
We now want to consider twists of the Radford biproduct as defined in Def. 2.1.3] We are mainly
interested in twists coming from elements J = 3> & ((x,¥) oy ®dy € kS ® kS in the group part

of (B(V)#k§)®2. The corresponding coproduct A7 (F;) is then given by:

ok (11,2, 3) =

X,d)eé W(X“X,QZJ) C(Xadj)
- 71C(X>_(27’(/}) .
+ > wlt ) o) B @y,
x,veG

Not surprisingly, the corresponding associator is given by

gb‘] = Z w(¢17¢2a¢3)dﬁ(¢17¢2a¢3)51!}1 ®6w2 ®6w3
P1,%2,%3

Lemma 5.3.2. The identity on kfdg extends to an isomorphism of quasi-Hopf algebras defined by:

~\ J ~
fo: (BO#KS) " — BV)#kSs
Fi— Y (X x) Pty

xeé
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Proof. This is a special case of Thm. 5.1. in [BN02]. O

Example 5.3.3. We continue with the example from section[f} The corresponding Yetter-Drinfeld
module for the group CA?/T is given by V := k- F, where |F| = x~2. Using the abelian 3-cocycle
(w,5) on G/T as defined in Example 4.0.% we obtain for the twisted coproduct on B(V)#kg/T:

1 i(j—?—[j—2]) C(X X 2] ) C )
Y g ) s S S ps o
mz;o (X% x7) b zJZO (s x7)
i(G—2—[i—2]) [J 2]) C(X XJ 2)
—K'®F. o) v ® v
;0 C(x*, x9)

[i-2] i
+F®1- Z Wa ® 6,

4,7=0

where K~1 =3, q 0. If we now set ¢ = {; from Example|4.0.5, we obtain

A F)=K ') 0u+) oy |@F+Fe1

2t 2l
-1
6" = 3 @, )0y @ Gy @ S
i,5,k=0

5.3.1 Dualization of B(V)#kS

Since B(V)#kf is a finite-dimensional quasi-Hopf algebra, the dual space (B(V)#kf)* carries
the structure of a coquasi-Hopf algebra, which is the dual analogue of a quasi-Hopf algebra. In
particular, a coquasi-Hopf algebra is a coassociative coalgebra and has an algebra structure which
is only associative up to an element ¥ € (H ® H ® H)*.

We define dual elements F; := (F;#06;)* and Ky, := gy, in (B(V)#kg)*. We find the following
relations for these elements:

e A(B)=K '@E +E o1

« ARy = Ry o Ry

o KyEi=0(Xi,¥)(Fi#oy)* = o(Xi, V) EiKy.

From the last relation we see immediately that the product cannot be associative, since ¢ is not a

bihomomorphism on G.
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5.4 A Drinfeld double

From now on, we assume the Nichols algebra B(V') and hence B(V)#k;f to be finite dimensional.

5.4.1 The general case

In the following, we recall the definition of the Drinfeld double D(H) of a finite-dimensional quasi-
Hopf algebra as introduced in [HN99a), [HN99b|. As an algebra, Hausser and Nill defined the Drinfeld
double as a special case of a diagonal crossed product H* x5 M (see [HN99a], Def. 10.1) with a so-
called two-sided coaction (9, ¥) (see [HN99a], Def. 8.1) of the quasi-Hopf algebra H on the algebra
M = H as input data. In this case, we have
= (A®id)oA: H —» H®?
U= ([de®A®id)(¢)®1)(¢®1e1)(®ideid)(¢")).
The multiplication on D(H ) is given by
(QD > m) ’L/J D> n ( — QS)(sz(l)(l) —_ w — Sil(m(g))Qél)) D> ng(l)(g)n, (52)

where
Q=(deideS'esS H(1elele U ) e H®®,

The Drinfeld twist f € H ® H is defined in Eq. We summarize some of the main results in
[HN99al, [HN99D] in the following theorem, even though we state them in a more explicit way:

Theorem 5.4.1 (Hausser, Nill). We have an algebra inclusion  : H — D(H) and a linear map
I': H* — D(H) given by

v: H— D(H) I': H* — D(H)
hi— (1> h) @»—)(()430’—5 (p ))Np%2)7
s.t. the algebra D(H) is generated by the images t(H) and T'(H*). In particular, we have
oo h =T (e = ¢*)u(h).
The elements pr = p' @ p?,qr = ¢* ® g2 € H ® H were defined in Eq. .

Without going into detail here, in [HN99a], Ch. 11, Hausser and Nill showed that it is possible
to define coproduct and antipode on the diagonal crossed product D(H), such that it becomes a
quasi-Hopf algebra. The above theorem implies that it is sufficient to define the coproduct on D(H)
on elements ¢(h) and T'(p). It is given by

A(u(h)) = = (L@ )(A(h))
AT(9) : = (¢ ®idpmepin) (¢35 13021301207 ")
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where the inclusions in Eq. are understood. The element I' € H ® D(H) is defined by I" :=
e; @ ['(e?), where e; and e’ are a dual pair of bases on H and H*.

Remark 5.4.2. Note, that the definition of A(T'(y)) in Eq. is different from the one in [HN99Y],
Thm. 3.9. Using their terminology, we checked both coherency and normality for the resulting \p-
intertwiner

T:= ¢3_112F13¢213F12¢715

but we don’t know if the definition in Eq. (11.4) in [HN99d)] is false or just another possibility. We
needed the one in Eq. in order to make the next Proposition work.

The antipode on D(H) is defined by
S(h)) : = u(S(h)) (5.3)
SI)) i = (1o 1Y) (plyg ™) = o571 1257 (%)) b plyyg 2. (5.4)

As in Eq. we gave the action of S on I'(¢) explicitly instead of defining it in terms of generating
matrices as in [HN99D], Thm. 3.9.

The associator on D(H) as well as the elements « and 3 are simply inherited from H by the
inclusion ¢ : H — D(H ), which becomes then an inclusion of quasi-Hopf algebras.

Unit and counit are given by:

1D(H) = 1H* > 1H; €D(H)<L(h)) = EH(h)7 €D(H) (F((p)) = (,0(1}1).

Finally, we recall that a two-sided coaction (0, ¥) of H on an algebra M can be twisted by an
element U € H ® M ® H, giving rise to a twist-equivalent two-sided coaction (§',¥’) on M (see

[AN99a], Dfn. 8.3):

§'(h):=UsWU!

Vi=(10U®1)(id®d®id)(U)¥(A®idy @ A)(U ) (5:5)

In [HN994] Prop. 10.6.1., Hausser and Nill show that twist equivalent two-sided coactions give rise
to equivalent diagonal crossed products H* > M and H* <50 M.

On the other hand, for any twist J € H ® H, the pair (§,¥”) is a two-sided coaction of the
twisted quasi-Hopf algebra H” (see Def.[2.1.3) on M, where

v =w(J o). (5.6)
Again, in [HN99a| Prop. 10.6.2., Hausser and Nill show that for two-sided coactions (4, ¥) of H and

(6,97 of H’, we get H* >« M = (H”)* b M with trivial identification.
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Proposition 5.4.3. Let J € H® H be a twist on H and J := (1 ® ¢)(J) € D(H) @ D(H) the
corresponding twist on D(H). For U, = (J®1)(A® id)(J) € H® H® H, the following map is an
isomorphism of quasi-Hopf algebras:
Fy:D(H)” — D(H')
p>la— (ULécp;S (U ))MULa
Proof. As in Eq. the element U, € H®? defines a twisted two-sided coaction (&', ¥’) of H on
H. On the other hand, we can twist (6, U') in the sense of Eq. [5.6] via the twist J € H ® H, giving
rise to a two-sided coaction (6’, U') of H” on the algebra H. This defines a diagonal crossed product
(H”) 5 H, serving as the underlying algebra of D(H”). The fact that the map F; is an algebra
isomorphism follows then simply from [HN99a] Prop. 10.6. Note that Hausser and Nill showed this
for crossed products of the form M >t H*, but this is no problem due to Thm. 10.2 in [HN99a]
relating M <t H* and H* > M. Using their terminology, we simply choose the left j-implementer
L = I < Uy, instead of the right d-implementer R = U; ! = R’ in [AN99a], Eq. (10.46).
Next, we want to show (F; ® F;) o A = Ao F;. By Thm. [5.4.1it remains to prove this for elements
of the form «(h) and T'(p). It is easy to see that F is the identity on H, thus
(Fy ® Fy) o Ap i (u(h) = (Fs @ Fy)(JA((h)J )
= (Fy @ F1)(J (e(hw)) ® u(hz) ™)
= (Fy @ Fy)(u(J hy KTD) @ o(J?hip) K72))
= ((J hay K1) @ (J2hoy KT2) = Apgay o Fr(u(h)).
In order to show (F; ® Fjy) o A(T'(p)) = Ao F;(I'(¢)), we use the identities
Py o= D () = (1 ) ES (KD o J2))(1 50 K-2)
Frol(p) = (1xa KENT,(JY = o = KED) (10 J?).
Then,
Aprry o Fi(T(9) = Apgoy (1 KENE (I = o — KT (1 J2))
= (L@ YAEK ) Apuys Ty (I = o = KT2) (@ ) (AJ?) = (%)

Using the definition in Eq. [5.3] we can show

Apy(L(p)) = (L XDy — 9 (1 y?)
® (1 a®)D(X? = ) — 2%)(1 0 X%y%).

Hence,
(Fy @ Fy)o Ap i (D(9) = (1o J'a' X FT(y" = o) (100 y* KY)
® (Lo J2a?)FyT (X2 — gy — 2%)(1 s X33 K ()
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Using the identity

a@)FsL(bay = pa@))be) = FyT((ab)1y) = ¢)(ab)(),

a simple but tedious calculation shows that this equals (x).
For the antipode, it is again sufficient to show S o F;; = F; 0.5 on generators ¢(h) and I'(¢), where
the former is trivial by the same argument as above. Using the definition in Eq. we obtain

FyoS(I(9)) = (10 1) (U'plyg ™) = po 871 = f2571U%) s UPplyg?)  (5.7)
and
So Fy(L(p) = (1 S(J*)f))
% ((Praywes VST = 9o 87 SUNASTRY)) saphymel TSED)).
The Drinfeld twist f = g € H® H is defined in Using the identities in a simple but tedious
calculation shows that both terms are equal.

Finally, since F); is the identity on H C D(H) it is easy to see that F; preserves the associator and
the elements o and (3, which are inherited from H. This proves the proposition. O

The following proposition shows that retractions of quasi-Hopf algebras induce monomorphisms
between the Drinfeld doubles:

Proposition 5.4.4. Let i : K — H be a split monomorphism of quasi-Hopf algebras, i.e. there
exists a homomorphism of quasi-Hopf algebras p : H — K, s.t. poi = idg. Then the map ®; :
D(K) — D(H) defined by

(e (h)) == e (i(h))
®;(I'k(p)) :==Tru(pop)

is a monomorphism of quasi-Hopf algebras with left inverse ®, : D(H) — D(K) being a coalgebra
homomorphism defined by

@y (i (h)) ==t (p(h))
@, (Tu(p)) =Tr(poi).

Proof. The fact that ®; is an algebra isomorphism follows from the universal property of the map
I" (see Thm. IT in [HN99a]). In their terminology, we choose a normal element T := e; @ 'y (e’ op) €
K ® D(H). Using the identities given in Eq. and poi =id, it is a straight-forward calculation
to check that this element satifies both conditions (6.2) and (6.3) in the first part of the theorem.
Since ¢ is a homomorphism of quasi-Hopf algebras, ®; preserves coproduct and antipode on elements
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of the form tx(h) as well as the associator ¢ and the elements o and S. For the image of I'x we
have

(@ @ ®;) o Apx) (T () = (P: ® ;)((¢p ®id)(Tk))
= (P @ @) (¢' X'Tr(y" = p2))y* @ 2°Tr(X? = pqy — 2°) X y%)
=i X)Tu((y' = ¢@) o p)i(y?)
® (@) Ta((X? = gy — 2%) o p)i(X*y?))
=FX'Tu (i — (pop)2)i’ @ FTu(X? = (pop)ay — &)X
(pop®id)(Ty)
= Apw)Ta(Pop)) = Apm) (P:i(Tk(9))),

where T is the element defined in Remark and ¢y = X10Xo0X3 = V10Yo@Ys = 1QiQi(PK)
and <I>;Il = T1 T2 @ T3. We omit the proof that ®; preserves the antipode on the image of I, since
it is completely analogous.

Using pot¢ =idg, it is easy to see that @, is a left inverse of ®,. By analogous arguments as above,
®, is a coalgebra homomorphism. O

5.4.2 The Drinfeld double of B(V)#kC

In order to state the defining relations for the Drinfeld double of B (V)#kf , we compute the element
Q € (B(V)#kG)®5 from the previous subsection for this case:

Lemma 5.4.5. In the case H = B(V)#k;f, the element Q € (B(V)#k§)®5 is given by

Q= Z f(Xh X2, X35 X4, XS) (1#6X1) ® (1#5X2) ® (1#6X3) ® (1#6X4) ® (1#6X5)7 where

Xi
w(X1X2X35 X45 X5)w (X5, X4, X4)
w(X1, X2X35 X4)w (X1, X25 X3)w(X4X55 X4, X5)

f(X17X27X37 X4, X5) =

In particu}ar; we obtain f(d’lﬂ/)% X?¢%¢1)71 = G(X)(wl,wZ)dV(’lpla 1;[}2)( ) where § € Zz(G k ) 18
the 2-cocycle from Remark and v()(x) := w(1, X, X). From this, it can be seen that D(k$)
is indeed isomorphic to the double D“(G) in the sense of [DPR92).

Before we are going to derive the braided commutator relations, we define:

E;: =T (F#0)"),  Fj:=uFy),

Ly:=uLy), Ly:=uLy), K,:=T(1#dy) Z O] x, X) ¢(6y)
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Lemma 5.4.6. Let a;,b; : G — k> be solutions to the equation

ai(x;)bi () wxis X5, ¥)
ai(w)bj('l/}Xi) N w()_(j, Xi q/;) (5.8)

For x,v € @, we set

EX = ¢, EiLy. (Z ai(€) (1#5g)> F! = cyFjL (Z b; (€) (1#55)) .
3 ¢
Here, the elements c, € (ké)* ® kG are defined by

Cy 1= _iigl = (1#5X)* > (Z M (1#611))) :

- w(®, x, X)

Let [EiX,F;b]U = E}F;p — J(Xi,)’(j)F;pEzX denote the braided commutator in D (B(V)#kf). Then
we have

X _ = a;(§)bi(Exi
(X, FY o = 810 (0 K)o (1= By L) o (; MO#@) (5.9

Proof. For A, i : GxG—k arbitrary non-zero maps, we define elements
B} =7 Nl w) (Fiftoy)” o (1#6)
X9

FI =" (06 0) (1446, 53 (Fj#6y,).
X9

Using the general multiplication formula [5.2] for the Drinfeld double, we obtain

E}FS = (Z P (€)1 (XE, z/J)Az-(awzj)) (Figtdy)" > (Fj#dy), where
X 3
_ f(fvxga ¢Xj7xga 5)21)
e A )
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For FJ'E}, we obtain

X9 3

B wea (Z “3“& - X”;(f L ) (6 ) <1#6xg>*) . (1#5w))
5 ) 3] 1 19

+Z (Z Sx, 0 (E)Hj Xf PYXi)A z(fﬂﬁ)) (Fi#0,)" v (Fj#9y), where

O—(X_i, EX)W(X’IZJEX] 7_Xi7 é.)_()
w(qungja E)_(a Xl)w(X§7 ’IZ)XJ', Xz) '

The functions o} were defined after Prop. For the following choices of u; and \;, the above

S, (€) = Ty, (©)a (€, 9, x:€)

formulas simply significantly:

XX, ) = 8y eat () 15(X, 1) = Gy b5 (1),

where al,bg .G — kX. Or goal is to find functions A;, p1; : GxG — k, s.t. that the braided
commutator [E2, F'], takes values in (kza) b1 kC. The necessary and sufficient condition for this

is

0= Z Ty (€)
3

3(& ¥, Xi€)o (i, £ (XWEY, X, EX)
w(XVEXH, EX, Xi)w(XE, X5, Xi) ’

At least for the above choices of A; and p;, this is equivalent to the existence of solutions a;, b; :

X <,U’] (X€7 w))‘l (57 7@2]) - U(Xia X])IU’J (Xév le)Az (fa ¢)

G — k* to the equation:

ai(¥x;)bj(¥) _ wlxi, X5, ¥)
ai(V)bj(Yxi) WXy xir¥)

This can be seen by setting

U(Tﬁ,f)U(Xz,w) w(gaf7w)_<j) )
(0.6 D) olox,6.6) 1Y)

and using the abelian 3-cocycle conditions. Plugging in these solutions for A; and 1, in the braided

af(¢) = ai(y) () =

commutator and using that ¢,y = c¢,cy yields the claimed result. O

Corollary 5.4.7. Letw € Z3(G) be a nice 3-cocycle. Then, the braided commutator in D ( \% )#kwdc)
is given by:

[E%F;’b]a = 6150 (Xis Xi)exy (1 — Ky, Ly,) - (5.10)
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Proof. In case of a nice 3-cocycle, we can set a;,b; = 1. Together with the second niceness condition

this implies

a;(€)bi(Exi) _
25: w(Xi, Xi> §) (1#00) | =1

O

The remaining relations simplify drastically after taking the quotient in the next chapter, so we

wait until then before we state them.

5.5 A quotient of the Drinfeld double

In this subsection we define the small quasi-quantum group as a quotient of the Drinfeld double
D:=D (B(V)#k‘f) (see Section [5.4.2) by the biideal I C D induced by the following map:

Proposition 5.5.1. Let D := D (B(V)#kf) be the Drinfeld double from Section|5.4.2. Moreover,
let kG be the group algebra of G.

1. The following map is an algebra inclusion into the center of D:
j: kG — Z(D)

_ . o)
X 0y 1= (14£0,)* wze:@ R (14£dy)

Moreover, we have Aoj=j®joA and e =€oj.

2. Set Nt := ker <e| (k@)) and I :== NTD. Then, I C D is a biideal.

J
3. The quotient D/I is a quasi-Hopf algebra with quasi-Hopf structure induced by the quotient
map D — D/I.
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Proof. We first show that j is an algebra homomorphism. We have

Cxp = (1#05p)™ > (Z (5(;/)% (1#9¢ ))

£eG
- o)1 9EEX)
= (146, ) (1#0,)* (52 0(¢ RO (1#55))
= Z & lm (1#5X)*(1#6¢)* o (1#55)
§€G » X
o(&4)a(,x) . *
) EZG Eox Dole w3 (#0750 (1#0))(18)" b2 (14#4.)

Obviously, j preserves the unit. We continue with the coproduct:

Aley) = AT (1#6x)7)) (Z 0(¢,X)A(1#5w)>

ve@

= D((1#6x)") © T((1#6y) (Z O(xlv, x)™ o (¥8, x) (1#5y) @ (1#55))

YeG

= L((1#6x)") @ T((1#6x)") (Z o (P, x)o (&, x) (1#dy) @ (1#55))

vel

= Cy @ Cy.

The counit is again trivial. Next, we check that j takes values in the center. It suffices to show that
¢y, commutes with elements of the form I'((F;#0,)*) and ¢(F;#0y):

KD ((Fidtde)™) = T((17£05)") pa (Z o (4, x) (1#5w)F((Fi#5g)*))

pel

= D((190,)7) > (Z 0(#)7X)F((Fz'#%)*)(l#%m))

ped

= T((1#£0,) )T ((Fi#tde)") pa (Z o (Pxi X) (1#5w))

el

= o(xi, X) ' T((Fi#de) )T ((1#6y)") b (Z 0(x[¥, xi)o(¥xi, x) (1#%))

vel
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= D((F#0e) I ((1#0,)") b | D o, x) (1#6y)

YeG
= T((Fi#tde))ey.

On the other hand,

ex(Figtde) = T((1##6,)7) b | D o, x) (184 (Fide)

ped

=T((1#6,)") b | Y o1, x) (Fi#tde) (1#0yy,)

pe@

= T((1#6,)") b (Fitde) | D o(wxi, x) (1#6y)

ped

= o (X X) T (E#SOT((1#6)7) | D 00w, Xa) " o (xis x) (1)

pel

= (FE#de)D((1#5,)") | Y o(w,x) (1#0y)

vel
= (Fi#ég)cx.

This proves the first part of the proposition. We now come to the second part. Since j(ké) -
Z(D), we have DNt = NTD, hence I C D is an both-sided ideal. As a kernel of a coalgebra
homomorphism, N+ C D is a coideal and so is I = HNT. The fact that we are dealing with
non-coassociative coalgebras plays no role so far. We have shown that [ is a biideal

As it is stated in [Sch05], Section 2, this is equivalent to D/I being a quotient quasi-bialgebra. Since
D is a finite dimensional quasi-Hopf algebra, we can apply Thm. 2.1 in [Sch05] in order to prove
that D/I is a quasi-Hopf algebra. O

Definition 5.5.2. Let G be a finite abelian group, (w,o) € Zs’b(@) an abelian 3-cocycle on the dual
group G and {xi € @}1§i§n - G a subset of CA}, s.t. the corresponding Nichols algebra B(V) is
finite dimensional. Then we define the small quasi-quantum group corresponding to that data to be
the quotient

w(w,0) =D (B(V)#kf) /1.
It is clear that in the quotient u(w, o), we have L, = Ky. In order to get rid of L’s, we also define

KX = Lx
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Proposition 5.5.3. The following map is a monomorphism of quasi-Hopf algebras, which is split

as a coalgebra homomorphism:
¢: kf — u(w, o)
0y — [L(1#£64)] -

Proof. Tt is clear that the inclusion i : kf — B(V)#kf, 0y — 140, is a split monomorphism,
with left inverse denoted by p. We saw in Prop. that it must therefore induce a quasi-Hopf
algebra monomorphism ®; : D (kff ) — D (B(V)#k;g ) with left inverse ®, being a coalgebra
homomorphism. Since the inclusion j : kG — D (B(V)#kf ) factors through D (kf ), the following
diagram commutes:

D (kf) <% ,p (B(V)#kf) —* .p (kf)

| | |

D (k$) /1 L0, p (BO#kG) /1 L p (kS) /1,
where [ := NTD (kf) If we show, that the map f : kg — D <k§> /I given by &, > [1(6,)] is an
isomorphism, we can define a left inverse of & by f=1 o [®,)].
It is clear that f is surjective, since for an arbitrary element >° . a(x,¥)L((1#dy)")e(dy) €
D (kf), we obtain

3 a8 60 | = | 3 alo ek 60| = |30 240 s,
P L% Py o(®:X)
a(x, ¥) alx. ¥)
% o0 | =1 XE; o) "]
where we used that [c,] = [1] holds in the quotient. Moreover, we have

dim (D (kf) /f) = dim (D (kf)) Jdim (ké) -G

by the quasi-Hopf algebra version of the Nichols-Zoeller theorem (see [Sch04]). Since dim (kf )

|G|, f must be an isomorphism. O

In the following, we will usually omit the map &.

Remark 5.5.4. 1. We can identify the group part (kza> ®kza C D with D“’(@) from Exp.|2.1.5)
via

D*(G) — (ls@) 2k C D
X ® by — T ((1#05)") t(0y).
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2. Note that the elements K, and Ky do mot necessarily generate the group part kG C u(w, o)

and are not grouplike in general.

In the quotient u(w, o), we have the following relations:

A(Fl> :K)ZL ®F7, Z 9(X|5{w¢)“(>€za¢a>€)_l 6X®6¢ +FZ®1 w XzaXa 6X®6’L/J
X X%

A(El) = Z 0(¢|XXiaXi)_lw(w7Xa>Zi)_l (SX ® 611’ E (29 K + Z w X?l/]?Xl -t 6 ® 61[} 1 ® Ei

X% X5
A(Kx) = (KX®KX)P):1 A(Kx) = (KX(X)KX)PXa Z 0(x[¥, &) Oy ® O¢
¥.€
[EGKXHFJ] = 61]U(XZ,)21) (1 — KXLRX'I,) Z ( ) (§XZ) (55 s where
& (Xl?X’L?g)
Ef=E; [ > ai()0e FPi=TF; [ > bj(&)0 |, with a;,b; solutions to Eq.
3
K E - U(X? Xl)E KX X5 Xz KXEI = U(Xivx)EiKXQX,Xiﬂ QX,’(/) = Z 9(X|£3 11[}) 5§

3

K\ F; = o(x, xi) Fi K, Qy, K\ F; = o(Xi, X)Fi K\ Qy %,

Xz

S(F) = — (Z w(i/_’,)Zz',Xﬂ/’)dU(Xiﬂl)ﬂ/_))e(l/_’|¢Xi,)_(i)15w) Ky Fi

¥

S(E:) = ~EiRy! (Z w (X i €) 55)

b w(£7 Xis Xz)
6(‘K'X) = 6(‘RVX) =1, E(El) = E(Fl) =0, 1u(w,a‘) =K,
Here, we have omitted the inclusion ¢ : B(V)#ké — u(w, o) and the quotient map [_] : D (B(V)#kf) —
u(w, o).
Remark 5.5.5. Another interesting form of E;, Fj-commutator is the following: If we set
Mlj = Z w(i]a&X]a )_Ci)71 5)(7
xe@

then we obtain

E;F; — M;;F;E; = 6;;( Ky, — K_1).

Xi
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5.6 The R-matrix of u(w, o)

By Theorem 3.9 in [HN99b], the Drinfeld double D(H) of a quasi-Hopf algebra H has the structure
of a quasi-triangular quasi-Hopf algebra. Using their formula, we compute the R-matrix for the case
H = B(V)#kS:

R=>">" 1(b#dy) @T ((b#y)") .

beB Xeé

Here, B is a basis of the Nichols algebra B(V'). In order to match our results with the Hopf case
described in [Lus93|, we will work with the reverse R-matrix

o1
R:= (RT) .
The following Lemma is an easy exercise:

Lemma 5.6.1. Let H and H' be quasi-Hopf algebras and ¢ : H — H' a surjective homomorphism
of quasi-Hopf algebras. If R € H ® H is an R-matriz in H, then R := (p ® ¢)(R) is an R-matriz
in H'. Moreover, if v € H is a ribbon in (H, R), then v := ¢(v) is a ribbon element in (H',R').

By the previous Lemma, we can transport the R-matrix from D(H) to an R-matrix of u(w, o). By

abuse of notation, we will denote this R-matrix also by R.

Remark 5.6.2. We saw in Section that instead of o, we could have taken (c7)~1 in order
to define our Yetter-Drinfeld module. If we would have defined u(w,c) as an algebra over k, :
k (U(X,w)|x,1/} € é), then the (well-defined) involution k, — k. given by o(x,v) — o, x)~
would induce an involution i : u(w, o) = u(w, (6T)™1) with i(F;) = Fi, i(E;) = E; and i(K,)
Kt

=

From now on, we will omit the quotient map [ _]: D (B(V)#kf) — u(w, o).

Proposition 5.6.3. We define elements in u(w,o)®?:

O =" (D((b#01)") ® (b)) Yo, where Y=Y w(x[B], [b],1)dy @y

beB X WeG

Ry:= Z a(x, ) 0y ® dy.

x,beG

They have the following properties:
1. R decomposes as R = ©T(RY)~', in particular R = Ry©~'.

2. Let A denote the coproduct in u(w, (c7)~1'). Then

A% (h)Ry = RoA(h).
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3. The element O is a quasi-R-matriz in the sense of [Lus93], i.e.

Moreover, we have

OA(h) =A(R)O  and ©%=1.

4. The Drinfeld element u € u(w, o) (see Lemma is given by
u=up (Z L(SJQB(V)(b))K|b|F((b#51)*)> = uo (Z Ab L(b)f_ﬂbr((b#(ﬁ)*)) ;
beB beB

where ug 1=, o(x, X) 0y and

Ap = H B(Xix, Xa)  for b= (..(Fi,F3,)...)F,.
k<l

Proof. We start with (1): We have a general product formula

(|18, o1, X)eo (¥, 19, ) o(m, x10)
D1, 161 67w el 11, 9116, ) o o, &) (b, )

D((b#5) T ((0#6,)") = Y —
TrECA;'

X T ((bx b'#0xp)") 1(6r),

where b b’ is the quantum shuffle product in B(V) as introduced Appendix [B| In particular, we

have

T((b#6y)") = T((b#61)")L((1#x)") (Z w([bl, [bl, x) L(%))

pedG
= T((b#01)*) K" (Z w(¥[bl, [], x) b(%)) ;
el
where we used in the second line that ¢, = 1 holds in the quotient u(w, o). Thus,

R="5" ub#o,) @ T (0#0,)%)

beB e

DD ub#sy) @ T((b#61) ) K (
P

beB Xeé

w(t[Bl, [b], x) L(%))

Q)

€

D () @ T((b#61)")) ) ( a (¥, x) " u(dy) ® L(fsw))
beB el

= o7(r)
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We now prove (2): It is sufficient to prove the formula for h = E;, Fj, (0, ), since these elements
generate u(w, o). We will only show the computation for FE;, since for d, it is trivial and for F} it
is very similar.

AP(E;)Ro = Z 01X X xi) " w(th, X, Xi) 0y @ 0y | (Ky, @ Ei)Ro

X

<

w(X7 1/)7 )?1')71 51/; ® 59( (El [ 1)R0

=
<

9(¢|X>_<17 Xi)ilg(wv Xz)U(d% XXZ)W(Qpa X )_Ci)71 5@2’ ® 6X (1 @ El)

=
<

U(’l,[}, Xl)w(Xa 77[}’ )_(i)71 6’(/1 b2 5)( (EZ ® 1)

o, ) w®,x,X:) 1oy @6y | (1® E))

=
<

O e d can)

wix, ¥, Xi 16, @0 E,®1
O-(X“X) (X¢X) K X ( )

+
- \/\/X D ~
<

=
<

=Ro | | D wlvv.x) @0 | (10 E)
X%
+ O xXi> Xi) T w(W X, Xi) T Oy ® 6y | (B @ K1) | = RoA(E;).
X9

We continue with (3): Since R = Ry©~! is an R-matrix, we have
Re® ' A(h) = A% (W) Ro® " = ReA(h)O,

where we used (2) in the second equation. This proves the first claim of (2). If we would have
used (07)~1 instead of o in our construction of u(w, o), the element © would be exactly the same,
whereas Ry would change to Ry '. Since ©T Ry is then an R-matrix in u(w, (67)~!), we have

A°P(R)OT Ry = ©T RyA(h) = ©T A°P(h) Ry,

which implies A(h)® = OA(h). In particular, ©~! is a quasi-R-matrix as well. By an analogous
argument as given in [Lus93] for the quasi-Hopf case, a quasi-R-matrix is unique, hence ©~! = ©.
Finally, we prove (4): We want to compute the Drinfeld element for the R-matrix R, but it is easier
to compute it in terms of the R-matrix R = R' ® R?. Using graphical calculus it is not hard to find
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the following formula for u:
u = SQ(qZRlﬁl)quQﬁQ.
After simplifying, we obtain

w="Y" S*(u(b))uo K, T((b#61)").

beB

The square of the antipode is given by

S(u(b)) =S | D w(@lbl, [bl, ) (bl b [b]) (S (B)#0y)

xe@
= Ugt (S%(V)(b)> K|b‘f(‘b|ual.
Hence,

ug (Z L(S%(V)(b))KlbF((b#(sl)*)> :

beB

The antipode in the Nichols algebra Sp(y)(b) is given by

Spy(b) = (1)l b7

where
n—1 7 j—11
mw= ] e <H k,xzm> Hw H Xins Xy H X | for b=(..(F,F,)...)F,.
j=1 k=1 k=j+1
A tedious calculation shows that pyu,r = Ap, hence S?B(V)(b) = Ay b. This proves the claim. O

Remark 5.6.4. Since (w,0) € Z3,(G) is an abelian 3-cocycle, it is clear that Ry = ;x,weé (X, 1) 0y®

0y 15 an R-matriz for the quasi-Hopf algebra kG, so that the monomorphism & : kS — u(w, o) from

w?

Prop. [5.5.3 becomes a homomorphism of quasitriangular quasi-Hopf algebras.
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Chapter 6. Modularization

In the following definition due to [Shil6], we specify the class of categories we want to consider in
this chapter.

Definition 6.0.1. By a (braided) finite tensor category C, we mean a k-linear category that is
equivalent to Rep 4 for some finite dimensional k-algebra A. Here, we assume k to be algebraically
closed. Moreover, C should be rigid, monoidal (and braided). A functor F : C — D is called a

(braided) tensor functor if it preserves this structure.
We suggest a definition for a modularization of a non-semisimple premodular tensor category:

Definition 6.0.2. Let C be a finite braided tensor category. In this case, the coend Fe = fXGC XV®
X exists and has the canonical structure of a Hopf algebra in C. Moreover, there is a symmetric
Hopf pairing we : Fe @ Fe — I on Fe. In [Shil6)], Shimizu showed that the following conditions are
equivalent.

XeC

1. The Hopf pairing we : Fe @ Fe — 1 on the coend Fe = [ XY ® X is non-degenerate.

2. Every transparent object is isomorphic to the direct sum of finitely many copies of the unit
object 1 € C. Equivalently, the Miiger center C' of C, which is defined as the full subcategory

of transparent objects, is braided equivalent to Vecty.

If these conditions are satisfied, the category C is called modular. In general, we refer to a braided

finite tensor category C as a premodular category.

Remark 6.0.3. The reader might be surprised that we didn’t include a ribbon structure in our
definition of a premodular category. This is due to the fact that it is still possible to define a Hopf
structure on the coend F, where the ribbon structure is usually used to define the antipode. For the
case of C = Repy, where H is a quasi-triangular quasi-Hopf algebra, the antipode on F = H* is
induced by the Drinfeld element u € H (see App. @

We suggest a definition for a modularization in the non-semisimple case:

Definition 6.0.4. A braided tensor functor between premodular categories F : C — D is a modu-

larization of C, if D is modular and

F (Fc/Rad(wc)) = FD.
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as braided Hopf algebras.

Remark 6.0.5. We should point out here, that there are other approaches in order to define a
non-semisimple modularization. For example, the notion of a dominant functor still makes sense in
this case. It is therefore tempting to define a modularization of C as an exact sequence C' — C D
of tensor categories in the sense of [BN11], where C' is the Miger center of C and D is modular. At
least in the setting of Thm.[6.0.6, both definitions coincide. It would also be interesting to generalize
the actual construction of a modularization in [Bru0Q] to the non-semisimple case. A step in this
direction has been made in [BN11l], where the authors show that a dominant functor F : C — D with
exact right adjoint is equivalent to the free module functor C — mode(A) for some commutative
algebra A in the center of C. One of the reasons for choosing the given definition is its closeness to
one of the equivalent definitions of a modular tensor category. We conjecture that it reduces to the

definition of Bruguierés in the semisimple case.

Let u := (uy(g, A), Ro©) be the quasi-triangular Hopf algebra as described in Section with Cartan
part u’ = C[G], where G = A/A’. In particular, the category Rep,, is a non-semisimple premodular

category. As we have seen before, we have an equivalence

,o)

Rep(yo,r,) — Vect(
where o : G x G — CX is given as in Remark

Assumption: From now on, we assume that Vect(ALU)

is modularizable i.e. the quadratic form
Q associated to o is trivial on T' := Rad(ooT). Let Vect? / ) be the modularized category from

Prop. [3.0.1

The aim of this chapter is to modularize the category Rep,. To this end, we first define a quasi-
Hopf algebra @ and an algebra monomorphism M : 4 — u. Then we show that restriction along
this algebra inclusion defines a modularization of Rep,,.

Let @ := (u(w,5), R) denote the quasi-Hopf algebra from Thm. associated to the data
(6’ 7,0, xi = q%)|g). Here, G := Ann(T) C G is the subgroup introduced in Section |A| and
(w,0) is the abelian 3-cocycle on G/T associated to a set-theoretic section s : G/T — G as defined
in Section Note that G & G/T In particular, @ has all the necessary structure to endow
Rep, with a premodular structure.

We now state the main result of this chapter:
Theorem 6.0.6. 1. The category Rep; is a modular tensor category.

2. The restriction along the algebra monomorphism M from Prop.|[6.0.10 defines a modulariza-
tion F : Rep, — Rep, in the sense of Def.[6.0.2, The monoidal structure of this functor is
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given by

VR w— Z (X, 1Y) 0y v @ by w,
x,eG

where the 2-cochain k € C%(G) is defined in Lemma|A.2.1, It satisfies 7*(w,5) = (1,0). The
natural duality isomorphism is given by

Ey : F(VY) — F(V)Y
fr= (f = S(x"r?),
where k = k' ® k2 by abuse of notation.

The rest of this chapter is devoted to the proof of this theorem. We will need the following propo-
sition.

Proposition 6.0.7. Let F' : C — D be a cocontinuous left exact braided tensor functor between
finite braided tensor categories. Let yi : (_)Y @ (_) = Fe and v : (_)Y ® (_) — Fp denote the
coends in C and D. Then there is a braided Hopf algebra epimorphism p : F(F¢) — Fp in D, s.t.

the Hopf pairings on the coends are related as follows:
Wp © (p®p) = F(WC) O TFc Fc-

If C is a modular tensor category, then F is a modularization in the sense of Def. with
isomorphism F(F¢/Rad(we)) = Fp induced by p.

Proof. We first note that since F' is cocontinuous, it preserves the coend and hence F(F¢) is the
coend over the functor F((_)Y ® (_)) with dinatural transformation F(u). We also have a Hopf
pairing on F'(F¢) given by wpw,) = F(we) o Tr. F., Where 7 denotes the monoidal structure on F.
Let m: F((_)V®(_)) = F(_)Y ® F(_) denote the natural isomorphism constructed from the
structure isomorphisms of the monoidal dual preserving functor F'. Then,

Cy = Vp(v)Oomy : F(VV ®V) — Fp

defines a dinatural transformation F((_ )V ® (_)) — Fp. Hence, due to the universal property of
F(F¢), there is a unique morphism p : F(F¢) — Fp, s.t.

vpvyomy =po F(uy).

Again by the universal property, p must be an epimorphism. If we can show that

wpo (p@p)o (Fuy)® F(uw)) = wrre) o (F(pyv) @ F(uw)),
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for all V,W € C, then wp o (p ® p) = wpr,) holds again by the universal property of F(IF¢). We
have

wpo (p@p)o (F(uy)® F(uw)) =wp o (Vrv) o my @ Vpw) © mw )
= Wppw),Fw) ° (Mmy @ my)
= (Flwev,w) o Tvvavwvew o (my @ my)~t) o (my @ mw)
= F(chw) OTYVRV,WYW
= wr @) © (F(pv) @ Fuw)),

where wp y y and wey, - denote the bi-dinatural transformations given, morally speaking, by (ev ®
ev) o (id ® ¢? ® id). We used the equality

wp pvy,rw) = Flweyw) o Tvvevwvew o (my @ my) ™!,

which holds since F' is a braided tensor functor. The fact that p is a morphism of braided Hopf
algebras follows from the very same arguments. We now prove the second part of the statement.
By Lemma 5.2.1 in [KLOI], we can identify Rad(we) with the kernel of the adjunct w( : Fe — FY.
Since F is left exact, we have F(ker(wgt)) = ker(wpg,)- As we have seen, wy, ) is given by
pY owgy op. If D is modular, then pV owgy is a monomorphism and hence ker(w%(Fc)) = ker(p). As
p

a cocontinuous functor, F' preserves quotients and hence F(Fc/ker(wp)) = F(Fe)/ker(p) £ Fp. O
(@,
- N a

of Yetter-Drinfeld modules over k& with kS-coaction on simple objects C, given by 1, — Ly ®1,.

We recall that the braided monoidal category Vect ?) embeds into the braided monoidal category

From now on, we will treat Vect(g’g) as a braided monoidal subcategory of Yetter-Drinfeld modules

over k5.

Let F': Vect(éf’l) — Vect(g’“;) be the braided monoidal modularization functor from Section[3.0.1{and
vw : F(V)@F(W) — F(V®W) the corresponding monoidal structure. For the moment, we forget
about the ribbon structure. Moreover, let V = @; F;C € Vectg’w) be the Yetter-Drinfeld module
with |Fj| = x; = ¢~ (@»-). If B(V) is the Nichols algebra of V, then we clearly have a braided algebra
structure on F(B(V')) with multiplication given by mpp(v)) = F(mpw)) o Ta(v),B(v)- Also, we
have a braided algebra isomorphism T : B(F(V)) — F(B(V)) induced by the map T := &,,>0T",
where T : F(V)®™ — F(V®™) is inductively defined by

" .= Ty®n—1y O (Tn71 ® iClF(V))7 70 .= idc.

From now on, we assume that the set-theoretic section s : é/T — G of the projection 7 : G — é/T
has the property s([|b]]) = |b| for homogeneous vectors b € B(V).
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Lemma 6.0.8. Let r : G x G — C* be such that 7°@ = dr~! and 7*G = w/kT. The following
map is an algebra inclusion:

U B(F(V))#k-a/T — B(V)#kG

TeT

Here, b= (... (F;,F;,)...)F;, is a PBW-basis element of the Nichols algebra B(F(V')). Moreover,

we used the assumption s([|b]]) = |b| implicitly.

Proof. We know that x(1,x) =1, T(1) = 1 and
Z Z ds(x)r = Z 0y = lya-
x€G/T TET ved

Hence, U preserves the unit. Moreover, we have

U((b##0,) (b'#0y)) = 8 1oy @([1BI], [11]], ) U (b0 )
= Sy > @Bl V1], 4) 7 R (BIV], () 7) T(BY ) #,(p)r

TeT

=Syttt Y bl 161, 9) 7 w((blIb', s(4)7) (b, [6']) T(B)T (V) # (0

TeT

where we used T'(bb') = s(|b|, |b'|) T(b)T (V') in the last line. On the other hand, we have

Ub#s)U O #6y) = Y w(lbl,sCOT )R], 5()7) (T(0)#0s00)7 ) (T (H)#05(y)7)

7,7 €T

D Sscoririswyr KB sOOT )R |, s (0)T) TO)T (V) #05(4)r

7,7 €T

= 0w D BB 6 s()T) k(Y] s(1)7) T(D)T(H)#05(y,)

TET

Since ¢ = [s(¢))7] and 7*© = (dk) ™!, we have an equality. O
Remark 6.0.9. Note that the above algebra homomorphism U has a linear left inverse, given by

Q: BV)#KE — B(F(V))#kS/"
b8, — (], )L T L(b) 45" 0.

It is easy to see that this map preserves the unit. Moreover we have
QUb#,) (V' #6p)) = Qb )Q(V'#0y)
if and only if s(V'|]) = V|1
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We now show that there is an algebra homomorphism between the corresponding small quantum
groups of @< := B(F(V))#k5/" and u=0 := B(V)#kC extending U:

Proposition 6.0.10. The following map defines an algebra inclusion:

M:u—u

La((0#61)") — Lu((T(b)#61)") (Z K(x[ol, b))~ 5><)

xeG
La(b#0y) > 1, (U (b#6y)).

Proof. It is not hard to see that elements of the form I'; ((b#4d1)*) and ¢z (b#J,) generate the algebra

@, since we have for a general small quasi-quantum group u(w, o)
((#0") = T(#01)) (% ot e | e =T | ST |

where we used that ¢, = 1 holds in the quotient. Moreover, the elements T'((b#61)*)c(b#4,) €
u(w, o) form a basis. Hence, we need to show that M preserves products of the form

(D(e#0) B#6,) ) - (DO #0) b #,) )

Since we know that M|z<o = U is a quasi-Hopf inclusion, for this it is sufficient to prove the

following relations:
o M (T((b#01)")T((b'#61)%)) = M (L((b#61)")) M (D((b'#01)")),
o M (b#)T((0#61)7)) = M (u(b#6,)) M (T((b#61)°)).

We start with the first relation. We have a general formula for the product T'((b#4d1)*)T((b'#61)*)
given by

D((b#60) )D(0'#61)7) = D @€l 1Bl [B[], [61) ™ D((b * b'#61)")e,

¢eG/T
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where bx b € B(F(V)) denotes the quantum shuffle product as introduced in Appendix [Bl Hence,

M (T ((b##61)")T((0'#01)7)) =M( > w(é[IE’IIEI],[IbIL[Ib’l])_lf((b*b'#51)*)b(5s))

¢eG/T

= > @IV IBIL (b1, 11617 M (T((b* b'#81)")) M (b¢)

¢eG/T

= @(Dlv'1100, (811, [6'1) £ OeBIIY [, [BI16'[) ™ T((T (b b )#61)*)e (8)
xEG

= @((XIBI[Bl, (1611, [16'[) s xelbl[B] [Bl16 )~ we( o], 6])

xEG

x T((T(b)  T(b')#61)" ) (Jx)
where we used T'(b* ') = x(|b], |0'|) 1T (b) * T(V') in the last equality. On the other hand, we have

M (D((b#61)") M (D((W'#60)7) = D w(Efbl, o)~ w(wle’], )~

¢wed
x D((T'(b)#61)")d¢ (( (0")#61)")dy
= k(BB [B]) " (1], []) TP T((T(b) * T(H)#61)* )5y

vel

Since 7*@ = dr~!, we have an equality. For the second relation, it suffices to prove M(F;E;) =
(

M (F;)M(E;), where the bars indicate that the generators live in 4. By Remark [5.5.5, we have
M (FyE) = M ((Eiﬁj — 55 (K - K1) ¢ ( > allu)€bl, [xinég))
EeGT

= (M(E)M(E;) - 6 (M (Kig) = M (K))) e (Z & (%), [Exa), i) 55)

ced

= (EiFj —0;j (K*i - ‘;jl)) L (Z (H(_Xj’g)_)w(b(j]) [€xils [Xi])(sf)

< K(EX5 X4, Xi
ceq

= (EiFj — 045 (K*i — 7;})) . (Z H(XJ'"@?') 55)

K(EX3, Xi)

— F,E;. (Z o, Exi) 55) — M(F;)M(E,).

pl H(sz'a Xi)
¢eG

Finally, it is easy to see that M preserves the unit. This proves the claim. O
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Remark 6.0.11. Without proof, we simply remark that M is a homomorphism of quasitrian-

gular quasi-Hopf algebras if we replace u by its twisted version u’ (see Def. , where J =
ZXE@ H(Xv w) 6X ® 6¢

Lemma 6.0.12. Let C denote the representation category of u(1,0). Then the Miger center C' is

equivalent to Vecty, where T = Rad(B) is the radical of the associated bihomomorphism B = go™ .

Proof. In the case u(1,0) = (u4(g), Ro) with simple Lie algebra g and Ry coming from a symmetric
bihomomorphism f, this follows from Cor. The general case follows from Thm. 6.2. in [Shil6].
The theorem says that the Miiger center C’ of a finite braided category C is equivalent to the Muger
center yD(C)gI of the category YD(C)E of Yetter-Drinfeld modules over a braided Hopf algebra
B in C. In our case, we can set C = Vect(l’g) B = B(V). As it is pointed out in Chapter 6.5 in
[Shil6], we have YD(C)5 = Rep,, in this case. Moreover, by Prop. [3.0.1| we have C’ = Vectr, which
proves the claim. O

We now proof the main theorem:

Proof of Thm.[6.0.6. We first prove the second part of the theorem. Since the restriction functor is
the identity on morphisms, it is additive, linear and even exact. In order to show that 7 is a monoidal
structure, we choose u @ v @ w € (F(U) @ F(V)) @ F(W). For ax v,z and ay,y,w denoting the

associators in Rep; and Rep,,, respectively, we obtain

T, vew © (Idrw) ® Tv,w) 0 arw),Fv),Frw)(u® v e w)

Z Z ¢17¢2¢3 (1/)271?3)@(51,52753) 6¢1M(5§1)'u®51Z12M(6§2)'U®51/)3M(6§3)'w

£,€G/T 4 €G

= > K, Vars)k(va, ¥3)@([1], [thal, [V3]) Gy -t @ G0 ® By
le

= Z K(P192,¥3) K (Y1, Y2) Oy U @ Gypy U @ Gy W
te

= Flav,v,w) o Tugv,w © (To,v @ idrmw)).

This proves the associativity axiom. The unitality axiom follows from the fact that x is a normalized
2-cochain. Hence, 7 is a monoidal structure. We now show that (F,7) preserves the braiding. For
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this, we first notice that

(M @ M)(®)

=3 () ) @ M) | 3D @Bl 100, 6) M(5,) @ M(5)
beB X,wE@/T

=3 e o ure) | X T sl (. ) 6. @ .
beB mveG ’

k(m,v)

_ Bas) eure)) | 3 205 g,

-2 (@ 2 Gl ol

= D slev) o @y (Z (F((T(b)#51)*)®L(T(b)))> Y w(mp) 6. ®4,

X”lﬁeé beB w,ueé

= Z K(x,¥) 1oy @3y | © Z K(m,v) 6 ® 0,
XYEG mvEG
where © and O denote the quasi- R-matrices in % and u, as defined in Prop. Now, let €x y and
cy,w denote the braiding in Rep, and Rep,,, respectively. We set 1= k! ®@r? = Do BOGY) 6 @3y.
By R=R'®R? = R}OY @ RZ6(-? and R = R' ® R? = R}OY ® R20(~2?) we denote the
R-matrices of @ and u as defined in Section [5.6] Again, we choose an arbitrary element v ® w €
F(V)® F(W). We have

Twv © Crv)Fw) (v @ w) = &' M(R*).w @ k*M(R").v
= k! M(RHM O w e k2M(RYM(OY) .0
= k! M(RHRPOIE2 w0 k2M(R)RTYOVE v
= ROV w e ROCVE W

= R’RPwe R'E v
=Fleyw)omyw(v @ w).

Here, we used the notation ' @ k2 = &' ® k? = k' ® k? = k. The equality x'M(R2)Z~? ®
K2M(R})ETY = R} @ R2 follows from 7% = o - /K7

The fact that & : F(VV) — F(V)V is a natural g-module isomorphism follows from the Remark
[6.0-11) that M is a homomorphism of quasi-Hopf algebras, if we replace u by the twisted quasi-Hopf
algebra u” for J =Y k(x,9)d, ® dy. So far, we showed that F is a ribbon functor.

By Lemma we know that the radical of the pairing wrep,, is k™. Since F preserves the radical
and F(kT) is trivial, Rep, must be modular. As our functor F is a restriction functor it satisfies
the conditions in Prop. and hence it is a modularization in the sense of Def. O
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Appendix A. Some tools in finite abelian groups

We start with a small quantum group u := u,(g, A) with R-matrix R = Ro(f)© as in Section 4. The
Cartan part is given by ug = C[A/A'], where A’ = Centp , (A). The non-degenerate bihomomorphism
[ 1 G1 x G — C* defines a braiding on Vects given by:

o(6¥) =Xl (F7 (Yle,)) -

From now on, we assume G = G1 + G5. We set Rady := Rad (f . fT|G1mG2) C Gi1NGy =: G and
T := Rad (B) C G.

Lemma A.0.1. The following map is an isomorphism:

®: Rady — T

p)

Proof. By definition of T' the map ® is well-defined. It is injective, since ®(u) = 1 implies f(v1, )

u'—><V:V1+V2|—>

1 for all v; € Gy and f(p,vs) =1 for all v, € G5. By the non-degeneracy of f, we have p = 0.
Finally, we show that & is surjective. For y € T, we have elements p; € G1, pu2 € Ga, s.t. x|g, =

f(ur, ) and x|g, = f(_, u2) by non-degeneracy of f. Since y is in the radical of o - o7, we have
o, )o (W, x) = [(F 7 Wlas) m2)¥la: (1) = Yla, (p2)dla, (u1) = 1.
Thus, ¥(u1) = ¥(—pe) for all ¢ € G and hence p1; = —pp =: p. This implies
X =Xlexla, = F(_ =) (p, ) = ().
O

We define two more important groups:

G:=Ann(T) C G G1 X Gy :={(u1,p2) € Gy x Go| f(u1,v) = f(v,u2) Vv € Gia}.

85



Corollary A.0.2. The isomorphism ® : Rady — T induces an isomorphism of exact sequences:

Rado‘%GHXGQ*ﬂ»é

}p | [

T G G/T

Here () = (p, —p) and w(py, p2) = p1 + o

Proof. The map F : G1 x Gy — G is given by (p1, p2) — (v = v1 +va — f(v1, pe) f(u1,v2)) and
does not depend on the splitting v = v1 + vs.

We show that the map 7 is surjective. Let & = py + o € G. We choose a set-theoretic section
5: Gy12/Rady — Gya. We can push f - fT down to a non-degenerate symmetric bihomomorphism
f - fT on Gy2/Rady. Hence, there must be an element x € G12/Rad), s.t.

f(/”'h _) _ £ . fT _ . Tz
as characters on G12/Rady. For s(p) = (s(u)1,s(p)2) := (p1 — s(x), p2 +s(x)) € G1 x G we obtain
m(s(n)) = p. The map ¥ is the well-defined isomorphism given by W(u) = [F(s(u))]. O

Example A.0.3. Let G2 = G and f symmetric and i € G. We have

on G and since f is non-degenerate this implies s(j)o = s(p)1 =: fi. Since s : G — G1 x G is a
section, this implies u = 2mu. On the other hand, for v = 20 € 2G, by Lemma we have

() = f o _ fow) vy eT.

flu, o) f(7, )

Hence, G = 2G in this case.

A.1 Grouplike elements

Let (w,0) € Z3, (@/T) be an abelian 3- cocycle on @/T The following elements replace the

grouplike elements of the Radford biproduct B(V)#k;é/ T for the case of a non-trivial 3-cocycle @.
For every x € G/T, we set

L= Y ()6, € kT
veG/T

Ly:i= > 6t x)6y € kC/T
ve@/T

T

It is easy to see that the element LXEX € kG/T is grouplike, since B = 5" is a bihomomorphism.
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Lemma A.1.1. The element L, is grouplike if and only if the 2-cocycle 6(x) € Zz(@/T) from
is trivial.

Proof. We have

This proves the claim. O

A.2 A particular representative (w,5) € Z3(G/T)

Let o be a bihomomorphism on the dual of a finite abelian group @, such that the associated
quadratic form Q(x) = o(x,x) vanishes on the radical T = Rad(B). Starting with an arbitrary
set-theoretic section s : (A}'/T — @ for the quotient map 7 : G— @/T, we want to define an abelian
3-cocycle (@, d), such that

0 =dr7!, 6 = k)KL,

Before we define this abelian 3-cocycle, we notice that o|r is an alternating bihomomorphism and
thus we have o|7 := n/nT for some 2-cocycle n: T x T — C*.

Lemma A.2.1. Let r(x,v) = s(x)s(¥)s(x®)~! denote the corresponding 2-cocycle to the set-
theoretic section s : @/T — G. Moreover, for x € G, we define T = xs(m(x))"t € T. We set
o := s*o. Together with

O(x, ¥, &) =0 (s(8),7(x, ¥))df (s(x), s(¥),5(8)),  Fx;¥) == n(r(w(x), (), 7x7y),
this defines an abelian 3-cocycle. Explicitly, we have

_ nlr(x, 98), (%, 6))
n(r(xy,€),r(x.¥))

The 2-cocochain k € CQ(G) satisfying 7 (0, 7) = dopk - (1, 0) is given by

K6 9) = (0 (re )Ty, 1) F (6 ¥) -
Proof. Before we check that (0,) is an abelian 3-cocycle, we show that 7*(@,5) = depk - (1,0)
holds. We have

KO0Y) M) o) olrem)oloy)
T A T BT Ce o M GO ey

df (s(x), s(¥), s(€))

= o(xTy, 7)) = G(m(x), 7(¥)).
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Here, we used that o is a bihomomorphism satisfying o|7 = n/n? and o(7,x) = o(x,7)"! for
7 € T. For w*w, the following relations are not very hard to check:

df (x, ¥, €) = s*df (v (x), 7(), 7(£))o (r(x, ), 7e)dg(x, ¥, £)
o (& r(m(x), w(¥))) = o (s([€]), r(m(x), 7))o (7e, (7w (x), 7 (1)),

where g(x, ) = n(Ty, 7y). Thus, we have

T o, ¥, &) = df (x, ¥, §)a (&, r(m(x), 7(¥)))dg(x; ¥, ).

Hence, 7@ = dx ™!
We now want to show that @ as defined above is a 3-cocycle. For this, we compute d(s*df) and dm,
where m(a, b, ¢) := o(s(c),r(a,b)). We start with d(s*df):

s*df (a,b,c)s*df (a,be, d)s*df (b, c,d)

d(s"df)a,b,e.d) = —— e d)s df (a.b, cd)

_ n(r(a,be),r(b, c) n(r(a, bed), r(be, d)) n(r(d, cd), r(c, d))
~ n(r(ab, ¢),r(a, b)) n(r(abe, d),r(a, be)) n(r(be, d),r(b, )
n(r(abc d),r(ab,c)) ( (ab, cd),r(a,b))

n(r(ab ed),r(c,d)) n(r(a,bed), r(b, cd))

_ n(r(ab,cd), r(a, b)) n(r(ab, cd)r(a,b),r(c,d))

~ n(r(ab,cd), r(c,d)) n(r(ab, cd)r(c,d), r(a, b))

_ n(r(a,b),r(c,d))

— n(r(e,d), r(a,b))

= o(r(a,b),r(c,d)).

Here, we only used the fact that 7 is a 2-cocycle and that o|r = 1/nT. On the other hand,

dm(a,b, ¢, d) = 28 r(@b)o(s(d), rla, be))o(s(d), (b, c))

= o(s(d),dr(a,b,c))

= J(?"(C, d)’ r(a, b))
- U(T(aa b)a T(Cv d))ila

where we used that o is a bihomomorphism and 7 is a 2-cocycle. Combining both results, we see
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Qi

that @ is a 3-cocycle. We now want to show that (

b

w(a,b,c)w(c,a,b)  o(s(c),r(a

w(a,c,b) N o(s’(

) satifies the hexagon equations. We have

The second hexagon equation follows from the fact that 667 is a bihomomorphism.
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Appendix B. Nichols algebras in braided monoidal

categories

In this section, we briefly recall the notion of a Nichols algebra in an abelian rigid braided monoidal
category (see [BB13| for details). Moreover, we give a categorical definition of the quantum shuffle
product.

Let V € C be an object in an abelian braided monoidal category C with associator o and braiding
c. We define V" := V" 1@V with V? = I. The tensor algebra T'(V) := @,5, V" has a free algebra
structure in C induced by the multiplications m; ,_; : Vi@ V"=t — V7" gi;en by

N -1 : ) -1
Min—i ‘= (avi7V,V & ldv®<n—<1+2>)) ©0--+0 thV(nqu)),V

Let dy,ds : V — T(V)®T(V) be the canonical inclusions and set Ay :=dy+dy : V = T(V)QT (V).
Then there is a unique extension A : T(V) — T(V) @ T(V) of Ay, s.t. A is an algebra homomor-
phism in C. Moreover, we define a counit on T (V') by €|y = idj and ey» = 0 for n > 1. Similarly to
the coproduct, we can uniquely extend the map Sy := —idy : V — V C T(V) to an anti-algebra
homomorphism S : T(V) — T(V), which turns T'(V') into a Hopf algebra in C.

It is clear that the braid group B, with generators o; acts as automorphisms of V" via

0. (11 ®- - Qu,) = (Ai}")i1 o (([dyei-1n @ecyy) @idyem—(i1) o Ai}"(vl ® - ®vy), where
AP = (AL @idyam-aian) 0o (Ay ®idyem-s)
AZ‘I/ = (idy ® Aifl) oayyen v, A%/ =ayyy.
Here, the paranthesis of the tensor powers V€™ in the indices is understood. Let p : S,, — B,, be the

Matsumoto section of the canonical epimorphism B, — S,. We define the so-called Woronowicz

symmetrizer:

Wor(c), := Y plo) € End(V")  Wor(c) := @ Wor(c), € End(T(V)).
oES, n=1

Definition B.0.1. The Nichols algebra B(V) of V in C is defined as the quotient Hopf algebra
T(V)/ker(Wor(c)).
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Remark B.0.2. The Nichols algebra B(V') has two important equivalent characterizations:

e We can extend the evaluation map evy : VYRV — 1 to a unique Hopf pairing T(VV)Q@T(V) —
I. This Hopf pairing factors through a non-degenerate Hopf pairing B(VY) ® B(V) — L

e It can be shown that B(V') is the unique quotient Hopf algebra of T(V), s.t. V. C B(V) and
ker(A, — (1 ® idyn + idyn ® 1)) =0 forn > 1.

In order to define the quantum shuffle-algebra, we define a different Hopf structure on T'(V'). Similar
to the free algebra structure from above, we can endow T'(V') with the cofree coalgebra structure.

Moreover, we define a multiplication on 7'(V') as follows:

Definition B.0.3 (Quasi-quantum shuffle product). A permutation o € S,, is called an i-shuffle if
o(l) < <o(i), o(i+1) <--- <oa(n).
We define a multiplication fi; n—; : VigoVr=t 5 V™ by

Pim—i= > plo)min_;. (B.1)

o:i—shuffle

The induced product on T'(V') is denoted by x : T(V)QT (V) — T'(V'). We call this the braided shuffle
product. In the case C = 2£YD, where H is a quasi-Hopf algebra, we call this the quasi-quantum
shuffle product.

Again, we can define a corresponding unit and antipode uniquely in order to turn 7(V') into a Hopf
algebra in C, which we now denote by ¢(V'). The Hopf algebras B(V') and ¢(V') are related as follows:

Proposition B.0.4. The Woronowicz symmetrizer Wor(c) : B(V) — t(V) is a monomorphism of
Hopf algebras in C. The image of Wor(c) is simply the Hopf subalgebra of t(V') generated by V as
an algebra.
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Appendix C. Factorizable quasi-Hopf algebras

In [BT04], the authors define the notion of factorizability for quasi-Hopf algebras:

Definition C.0.1. Let (H, R) be a quasi-triangular quasi-Hopf algebra and H* the corresponding
coquasi-Hopf algebra. We will say that H is factorizable if the following linear map is bijective:

Q:H —H
f £ (SO f1 R ' S(6%)X7) XTS(XE)5') 2R 2625 (q).
Here R=R'@R?=7r'®712, f=f'® % and [~} = g' ® g° (see Sec. [2.1]).

They also defined braided Hopf structures on H and H* in the braided monoidal category Modpy
(see [BT04], Sec.4). To avoid confusion, they denoted these braided Hopf algebras by H and H*.
They furthermore showed that @ is a braided Hopf algebra homomorphism.

In [FGRI7], the authors gave an alternative interpretation for H, H* and @ by proving the following

statements:

Proposition C.0.2. Let H be a finite dimensional quasi-triangular quasi-Hopf algebra. Further-
more, let H, H* € Mody be the braided Hopf algebras as defined in [BT0J), Sec.4. Then we have

1. H is the end over the functor (_) @ (_)Y with dinatural transformation given by wx(h) =
h.e; ® el.

2. H" is the coend over the functor (_ )V ®(_) with dinatural transformation given by vx (f®x) :=

f(.x).

3. The morphism Q : H* — H is uniquely determined by
Ty o Qoix = (evx ® idygyv) o (id® C?qu ® id) o (idxvgx ® coevy),
where we omitted the associators in Modg .

Remark C.0.3. Note that in [BT0J|] the authors did not assume a ribbon structure on H in order
to define the braided Hopf structure on the coend H*. However, up to the antipode it is exactly the
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same Hopf structure as for example defined in [KLO01J. One can show that the antipode in [BT0J)]

is uniquely determined by

Soux = (1xv ®evx)o (cxy xwgxv @ idx) o (coevxv @ idxvex),
where we again omitted the associators.
In [BPVOOQQ], the authors give a more general interpretation for the underline (_ ):

Proposition C.0.4. Let H be a quasi-Hopf algebra, A an associative algebra and f : H — A an

algebra homomorphism. Then we can define a new multiplication on A via
ab = f(XHaf(S(x' X?)aa? X3)bf(S(x3X3)).

With this multiplication, unit given by 8 and left H-action given by h.a := f(h1)af(S(he)), A
becomes a left H-module algebra, i.e. an algebra in Repy, which we denote by A.

It is easy to see that f: H — A then becomes a left H-module algebra homomorphism. Note that
this is exactly our situation in Section [6], where we have an algebra homomorphism M : @ — w.
Similarly, if H and A are quasitriangular quasi-Hopf algebras and f : H — A is a homomorphism
of such, we can endow A with a braided Hopf algebra structure in Rep; with H-module algebra
structure as above and comultiplication, counit and antipode given by

>
=

)i = fa' XN)a1 f(g' S(®R*Y*X3)) @ ® RY.(f (y' F?)az f(9°S(¥* X7)))

S(a) : = f(XTR**)S(f(a" ) (X*R'p"a)S(f(q*) F(X?)).

Conversely, if f : A — H* is a homomorphism of coquasi-Hopf algebras, we can endow A with
the structure of a braided Hopf algebra, denoted by A, in the category of right H*-comodules (see
Thm. 3.5 in [BT04]) which can be identified with the category of left H-modules Repy;.
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Summary of results

1. In the first part, we reinterpret the conditions in [Miil98] on the Lusztig ansatz R = RO to
give an R-matrix on a small quantum group u (see Section in terms of the non-degeneracy
of a certain bihomomorphism f : G1 X Gg — C*, respectively ag : Hy x Hy — C*, leading to
an extension of the results in (see Cor. [3.2.7).

We show that irreducible transparent objects in Rep,, are 1-dimensional and classify them (see
Cor. . In particular, we show that factorizability of the above R-matrix is equivalent to
the non-degeneracy of the symmetrization Sym(f) (see Def. of the non-degenerate bi-
homomorphism f (see Thm. [5.1.6).

We compute all possible R-matrices of the above form and the corresponding groups of trans-
parent objects for all small quantum groups and collect them in Table [T}

Finally, we construct a ribbon structure on every quasi-triangular small quantum group of

the above form (see Thm. [6.0.1)).

2. In the second part, we explicitly construct a modularization of Vectg ) using a different

approach than [Bru00] (see Prop.[3.0.1)).
We construct a family of finite-dimensional quasi-triangular quasi-Hopf algebras, generalizing

extended small quantum groups. Moreover, we compute the relevant relations for them (see

Thm. F0).

We give sufficient conditions for the modularizability of representation categories of small

quantum groups. If they are fulfilled, we define an explicit modularization functor (see Thm.

[6.06).

The first part of this thesis is based on the publication [LO17].
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Zusammenfassung der Resultate

1. Im ersten Teil interpretieren wir die Bedingungen in [Miil9§] fiir den Lusztig-Ansatz R = R0
einer R-Matrix auf einer kleinen Quantengruppe neu (siche Kap. . Eine wesentliche Rolle
spielt dabei die Nicht-Degeneriertheit eines Bihomomorphismus f : G1 X Gy — C*, bzw.
af; : Hy x Hy — C*. Dies fiihrt zu einer Erweiterung der Ergebnisse in [LN15| (siehe Kor.
3.2.7).

Wir zeigen, dass die transparenten Objekte in Rep, 1-dimensional sind und klassifizieren
sie (siehe Kor. . Insbesondere zeigen wir, dass die Nicht-Degeneriertheit der obigen R-
Matrix dquivalent zur Nicht-Degeneriertheit der Symmetrisierung Sym(f) (siehe Def.
des nicht-degenerierten Bihomomorphismus f ist (siehe Thm. .

Wir berechnen alle moglichen R-Matrizen der obigen Form und die jeweilige Gruppe der
transparenten Objekte fiir alle kleinen Quantengruppen und sammeln diese in Tabelle
Schliesslich konstruieren wir ein Band-Element auf jeder quasi-triangulédren kleinen Quanten-
gruppe der obigen Form (siehe Thm. [6.0.1)).

t7 unter Verwen-

2. Im zweiten Teil konstruieren wir eine explizite Modularisierung von Vec
dung eines anderen Ansatzes als in [Bru00] (siehe Prop. [3.0.1)).
Wir konstruieren eine Familie endlich-dimensionaler quasi-triangulidrer Quasi-Hopf Algebren,
welche erweiterte kleine Quantengruppen verallgemeinern. Weiterhin berechnen wir die rele-
vanten Relationen dieser Quasi-Hopf Algebren (siehe Thm. [5.0.1)).
Wir geben notwendige Bedingungen fiir die Modularisierbarkeit der Darstellungskategorien

kleiner Quantengruppen. Falls diese erfiillt sind, definieren wir einen expliziten Modular-

isierungsfunktor (siche Thm. .

Der erste Teil dieser Thesis basiert auf der Publikation [LO17].
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