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Zusammenfassung

In der vorliegenden Arbeit wird ein System aus zwei Coulomb-Kristallen in einem Dop-

peltopfpotential untersucht. Coulomb Kristalle sind stabile Gleichgewichtskonfiguratio-

nen von Ionen in einem externen Potential. Abhängig von den Potentialparametern, der

Anzahl und der Art der Ionen ergeben sich unterschiedliche Kristallstrukturen. Im häufig

verwendeten harmonischen Potential sind dies vorallem die lineare Kette (eindimensio-

nal), die zig-zag-Kette (zweidimensional), die Ringkonfiguration (zweidimensional) und

die Anordnung der Ionen in Schalen (dreidimensional). Durch Änderung der Potential-

parameter können die Strukturen ineinander übergehen.

Der Fokus in dieser Arbeit liegt auf der zig-zag Konfiguration im Doppeltopfpotential.

In der Forschung wird die zig-zag Kette häufig verwendet um grundlegende Prinzipien

wie z.B. die Landau Theorie [1] oder den Kibble-Zurek Mechanismus [2] zu untersuchen.

Durch eine Änderung der Position eines endständigen Ions werden Wellen in einem der

Coulombkristalle erzeugt. Die entstehende Dynamik im System beider Kristalle wird am

Beispiel der zig-zag Konfiguration diskutiert. Die erzeugten Wellen propagieren durch

den ersten Kristall, werden an der Potentalbarriere teilweise reflektiert, aber auch durch

die langreichweitige Coulomb Wechselwirkung auf den zweiten Kristall übertragen.

In der zig-zag-Konfiguration im Doppeltopf mit gleicher Anzahl von Ionen in beiden

Töpfen kann durch die Senkung der Barriere eine komplexe Umordnungsdynamik beob-

achtet werden. In der Richtung mit hoher Fallenfrequenz erfolgt eine komplette Umord-

nung der Ionen, die Ordnung der Ionen in Richtung entlang der Doppeltopfanordnung

bleibt jedoch in dem gewählten Parameterbereich erhalten. Die beobachtete Dynamik

in den Kristallen ist nicht ausschließlich irregular. Geordnete Ionenkonfigurationen, wie

Bögen, Linien oder Kreuze, wechseln mit ungeordneten Strukturen ab.

Eine ungleiche Verteilung der Ionen verursacht durch das Absenken der Barriere eine

Umordnung der Ionen in den Kristallen und ermöglicht den Transfer von Ionen. Für

vier verschiedene Kristallstrukturen, die lineare und die zig-zag Kette, die Ring- und

die Schalenkonfiguration, wird die Abhängigkeit der Transferdynamik von der Barrie-

renhöhe diskutiert.





Abstract

In the present work a system of two Coulomb crystals confined in a double well potential,

with a crystal in each well, is investigated. Coulomb crystals are stable equilibrium

configurations of ions in an external potential. The configurations differ, depending

on the potential parameters, the number and the species of ions. In the often used

anisotropic harmonic potential one can observe e.g. linear chains (one dimensional),

zig-zag chains (two dimensional) circle configuration (two dimensional) or ions arranged

in shells (three dimensional). By changing the potential parameters the configurations

merge into each other.

The main example for the discussion in this work will be the zig-zag configuration

This system is often used to study basic principles such as the Landau theory [1] or

Kibble-Zurek mechanism [2].

By displacing an ion at the outer end of one of the zig-zag chains, one can observe

different kind of waves propagating through the crystal, which are partially reflected at

the potential barrier between the wells, but are transmitted into the second crystal via

the long-range Coulomb interaction as well.

In the system of two equal-sized zig-zag chains of trapped ions in a double well po-

tential, a quench in the barrier height induces a complex pattern of non-equilibrium

dynamics. For the chosen parameter regime a complete loss of spatial order in the

radial direction can be observed, although the axial arrangement of the ions remains

unchanged. The dynamics in the crystals, however, are not exclusively irregular. In the

course of the dynamics some ions arrange in ordered structures such as bows, lines or

crosses. This ordered structures alternate with disordered phases.

A quench of the barrier height in a system of Coulomb crystals with different sizes

can induce additional transfers of ions over the barrier. Depending on the amplitude

of the quench ions travel over the barrier. For four different crystal structures, linear

chain, zig-zag chain, ring and shell configuration, the ion dynamics and the ion transfer

is investigated as a function of the amplitude of the quench.
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CHAPTER 1

Introduction

Since their development many decades ago [3–5], ion traps have established themselves

as a powerful tool in physics with applications ranging from mass spectroscopy [6, 7]

to high precision tests for quantum electrodynamics [8–10] and quantum information

processing [11–13].

The development of new trapping techniques, such as optical trapping [14] and the

miniaturization of ion traps by exploiting on chip technologies (micro fabrication) [15,

16] open new possibilities for controlling the ions and accessing physically interesting

and yet unexplored trapping conditions. Consequently, the experimental and theoretical

understanding of the behavior of ions (both single species and mixtures) in different traps

have become the focus of many recent studies [17–20].

A particular example is the study of Coulomb crystals. Using several cooling tech-

niques such as Doppler cooling [21, 22], electromagnetically induced-transparency (EIT)

[23, 24] or sympathetic cooling [23] it is possible to reduce the kinetic energy of the

trapped particles to the regime of micro-Kelvin where the ions self-organize to the so-

called Coulomb crystals (CCs) [25]. The structures of such crystals depend on the trap

parameters and range from linear chain (1D), concentric rings (2D), shells (3D) [26–28]

and string-of-disks configurations [29] to two-component Coulomb bi-crystals [30]. By

tuning the parameters of the trap potential, such as the amplitude of the DC and the

amplitude and frequency of the AC potential (in the case of a Paul trap) or the number

of ions, Coulomb crystals can undergo various transitions from one structure to another

[27, 31].

Special attention has been given in the literature to the case of the second order phase

transition from the linear to the zigzag chain of ions [32–34] which results in structures

with [2, 35, 36] or without [37, 38] topological defects (so-called kinks). In such a way the

structural transitions of trapped ions serve among others as a playground for studying

fundamental processes in physics, an example being here the Kibble-Zurek mechanism
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introduced originally in the field of cosmology [2].

Given the wealth of effects resulting from a trapping of ions in an ordinary Paul trap

[3] it is natural to ask for the effects stemming from a more involved trapping potential.

Such a potential can be provided for ions through micro-fabrication [15, 39], where for

example segmentation can be added to the standard Paul trap [40, 41]. This techniques

give rise to a plethora of new possibilities for trapping potentials [13] like a double well

with tunable positions of minimums used for studying ion transport [42] or for splitting

small ion crystals [43–46] .

In the case of the double well trapping potential, the long-range inter- and intra-well

interactions among the Coulomb crystals occupying each potential well give rise to a

very complex non-equilibrium dynamics.

In this work the initial states are Coulomb crystals in the double well potential.

Emanating from the equilibrium state of the ions, the ion dynamics introduced by a

displacement of an ion or a quench in the potential is analyzed by numerically solving

the classical equation of motion. The quantum effects are neglected.

In the quantum mechanical system two mechanism could influence the dynamics of the

ions. First, in the quantum regime the frequencies of the center of mass oscillation could

be changed and an ion could tunnel through the barrier. In [47] the breathing mode of an

ion crystal in a harmonic potential (in one and two dimensions) both in the quantum and

in the classical regime was investigated. It was found, that the quantum mode amplitude

decreased with the number of particles and in all considered two dimensional systems

the frequency converged to its classical asymptotic interaction. The quantum effects in

the one dimensional system are stronger than in the two dimensional system. This work

focuses on the three dimensional dynamics, so the expected influence should be less for

the system and the chosen number of particle on all frequencies. The second mechanism

is the tunneling. The tunneling strength of one ion in the double well potential (one

dimension) is six order of magnitudes smaller than the mean kinetic energy of an ion

for the investigated perturbation regime. Hence, the probability of tunneling in the

investigated perturbation regime is negligible. A further argument for the classical

treatment is the melting of the crystals which is caused by the energy introduced by

the quench and the large number of ions, which would destroy the quantum effects by

interference.

Mainly (chaps. 5 and 6) the chosen initial configuration is a zig-zag chain in each

well. The large experimental and theoretical interest in the configuration caused the

deeper investigation of the zig-zag structure in this work.

The thesis starts with an introduction of the physical and technical basics in the con-

text of the presented investigations. The crystalization of ions in an external potential
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in general and the technical realizations including the trapping and cooling of the ions

are discussed.

In the second chapter, the setup is introduced and the basic principles are translated

to the current setup with explicit discussion about parameters and the equations of

motion. The equations of motion are not analytically solvable and therefore the out of

equilibrium dynamics is numerically simulated.

The preparation of the initial ion configurations and the numerical results as well as

the comparison with the well known harmonic potential are treated in chapter 4. In

addition a short overview over the numerical algorithm solving the equation of motion

are presented.

In chapter 5, the initial configuration are two zig-zag chains trapped in the double

well potential. The aim is to characterize the Coulomb coupling of the crystals by

introducing a perturbation in the form of a displacement of an edge ion. The energy

transfer between the two crystals is analyzed and depending on the direction of the

displacement, the oscillation of the ions in the crystals is visualized. One can observe

shock waves traveling through the crystals as well as collective oscillations with phase

shifts and bifurcations.

The following chapter 6 treats the case of symmetric populated wells, each having the

same number of ions in an initial zig-zag configuration. Lowering the barrier height by

a sudden quench changes the potential energy of the crystals and results in nonlinear

dynamics. The symmetry of the initial crystal configurations, the two energetically-

lowest equilibrium states of the zig-zag chains, induced interesting nonlinear dynamics

with alternate disordered and transient structures. In order to characterize the order of

the system, the Voronoi measure, based on Voronoi diagrams [48] is introduced and it

is shown that it reflected the creation and the annihilation of the structures quite well.

Furthermore, the dynamics of the ions is analyzed in the basis of the eigenvectores.

In chapter 7 the study is extended to the case of an asymmetric population of the

wells. This asymmetric population paves the way for an even richer dynamics inducing

transfer processes of ions above the barrier. The transfer dynamics is analyzed not only

for the zig-zag chains, but also for linear chains, the two dimensional circle configuration

and the three dimensional spherical (shell-like) configuration. A non-smooth (step-like)

dependence of the ion passage time on the height of the barrier can be observed. The

transport process is analyzed for crystalline structures of different dimensionality. The

Voronoi measure is used to discuss the effects of the transport on the order of the two

crystals.

The possibility of realizing the setup experimentally is briefly discusses in the conclu-

sion (chap. 8) and the main results of the work is summarized.





CHAPTER 2

Basics

In this chapter, the physical principles which underlie this work are discussed. Sec-

tion 2.1 elucidates the importance in science and technology as well as explains the

crystallization process and the structure of Coulomb crystals (CCs). Afterwards the

mechanisms required for the investigation of the CC in the laboratory including their

trapping (sec. 2.2) and their cooling (sec. 2.3) are discussed. Special emphasis is put on

the RF Paul trap due to its particular importance for this work. The presentation of

the basics follows the discussion in [49–51].

2.1 Coulomb crystals

Coulomb crystals (Ccs), also named Wigner crystals, are spatially ordered structures of

ions. Their formation is solely based on classical electromagnetic interactions between

confined charged particles of the same type of charge. Particles in an external potential

build a Coulomb crystal, if they are in a stable equilibrium state. The number of

particles which build a CCs varies from two particles [52] to, in principle, an infinite

number of ions [53, 54]. In contrast to crystals in solid state physics, CCs need the

external field to compensate for the Coulomb repulsion between the ions.

First interest in Coulomb crystals arouse in astronomy. When a star dies it can

turn into a white dwarf or neutron star, which are assumed to incorporate Coulomb

crystallized matter [55]. Nowadays, the applications of CCs are broad. With the help of

CCs, many theories in various physical and chemical research fields such as non-linear

dynamics [52, 56], cavity quantum-electro dynamics related experiments [9, 10, 57] or

statistical physics [2, 36] can be evaluated. Modern technical applications of CCs are

extremely precise clocks defining new time standards [58], molecular investigations of

chemical interest [59], quantum simulations [60, 61] and implementations for quantum-

information processors [62, 63].
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CCs form up when a hot trapped plasma of charged particles is frozen out in a way

that the charged particles can arrange themselves in an equilibrium configuration defined

by the Coulomb interaction between them and by an external field. In order to reach

the equilibrium state, the particles have to lose kinetic energy, hence, they have to cool

down. This process can be characterized by the plasma coupling parameter

Γ =
Q2

4πε0akbT
, (2.1)

where ε0 is the electric constant, kB is the Boltzmann constant, Q is the charge of the

particle, a the Wigner-Seitz radius corresponding to the radius of a sphere whose volume

is equal to the mean volume per particle and T is the temperature of the particles. Γ

can be interpreted as a measure for the ratio of the inter-particle Coulomb energy and

their kinetic energy:

Γ ∼ ECoul
Ekin

. (2.2)

It has been proven [53, 64], that the criterion for the crystallization is given by

Γ ≥ 175. (2.3)

In order to reach such high values for Γ, one needs to control the charge, the number of

the particles and the kinetic energy of the particles in the crystallization process. For a

given particle number and particle species, the temperature T and thereby the kinetic

energy is the only adjustable parameter. In common ion traps, the highest particle

density of single charged ions which can be experementally achieved is < 1× 1015 m−3

[50] corresponding to a Wigner-size radius of a ∼ 10 µm. This results in a temperature

of

T ∼ 10 mK (2.4)

which is necessary to achieve Coulomb crystallization. Such low temperatures for the

formation of CCs were first realized with the development of laser cooling techniques

(sec. 2.3) in the late 1970s and early 1980s [65, 66].

The CCs show a rich variety of structures. The structural properties strongly depend

on the number of ions, the involved species, as well as on the trapping potential Φ.

Being the simplest trapping potential, the harmonic confinement with

Φ(x, y, z) = ωxx
2 + ωyy

2 + ωzz
2 (2.5)

plays a dominant role in the investigation of CCs. Therefore, here only the structures of

CCs in an harmonic potential are introduced. Moreover, the discussion is restricted to
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the single-species case. For differently designed potentials as well as mixed ion species

the ions can organize in more complex equilibrium states [30, 31]. The total number

of equilibrium states depends exponentially on the number of particles in the CCs.

However, the most stable and most investigated structures are the lowest-energy states.

The simplest case for a CC is the one dimensional linear chain, having non-equidistant

spacings which are largest near the ends of the chain and smallest in the center (fig. 2.1).

This structure can be found in strongly anisotropic three dimensional trapping potentials

with a much stronger confinement in radial than in axial direction (ωz � ωx = ωy).

ra
d
ia
l

−1

0

1

x10−5

axial
−5 -2.5 0 2.5 5

1

Figure 2.1: Example for a linear ion chain with 22 ions in an harmonic potential with a ratio of α = 1
8

from the axial to the radial confinement.

Changing the aspect ratio of the trapping frequencies in such anisotropic potentials,

the charged particles can undergo a transition [36, 38, 67] from a linear to a zigzag

chain without or with defects (so-called kinks). This transition is a second order phase

transition, which is characterized by an abrupt change in the system when varying a

parameter by a small amount. This process can be understand in terms of the Landau

theory [1].

Other possible structures of CCs in two-dimensional anisotropic harmonic potentials

are elliptic and concentric rings with magical numbers, and hexagonal lattices for infinite

planar crystals. Furthermore, helix structures can be found in the transition from two

to three dimensional traps. Finally, concentric shells arise in the isotropic harmonic

potential with finite number of ions.

In this work, in particular the zigzag structure is investigated. Additionally, in chap-

ter 7 the linear chain in one dimension, the concentric rings in two dimensions and

the concentric spheres in three dimensions are chosen as initial configurations for the

investigation of the ion dynamics.
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2.2 Trapping of ions

The formation of Coulomb crystals (CCs) in an equilibrium state is realized in exper-

iments by confining the charged particles within the fields of ion traps, thereby com-

pensating for the repulsive Coulomb force between the ions. The basic concepts and

techniques to construct trapping potentials are introduced in this section. Special at-

tention is payed to the Paul trap, because it is the most suitable trap to reproduce the

findings in this work.

2.2.1 Earnshaw theorem

In 1842, S. Earnshaw proved, that there does not exist a solely static magnetic or electric

field which can trap a charged particle in a stable stationary equilibrium position [68].

To achieve stable trapping, a minimum at some point r0 has to exist. Such a minimum is

characterized by a vanishing first derivative of the electric potential itself: ∇Φ(r)|r0 = 0.

A further necessary condition for a stable minimum in r0 is given by the fact, that for

the eigenvalues Ei of the Hesse-matrix (the second derivative in Φ(r)|r0)

H(Φ(r))|r0 =

 ∂
2
xΦ(r) ∂xyΦ(r) ∂xzΦ(r)

∂yxΦ(r) ∂2
yΦ(r) ∂yzΦ(r)

∂zxΦ(r) ∂zyΦ(r) ∂2
zΦ(r)


r=r0

, (2.6)

the condition Ei ≥ 0 for all i has to hold. In the case of all eigenvalues Ei being zero,

the point r0 is a saddle point. Assuming in the next step a charge free space also the

Maxwell equation

∆Φ(r) = ∇ ·E = 0 (2.7)

holds. Exploiting ∆Φ = Spur(H|r0) =
∑

iEi, the latter can only be fulfilled with all

Ei = 0 or by an indefinite Hesse-matrix (the matrix has positive and negative eigenval-

ues). Hence, there can be no minimum in r0 for a static electric field.

To resolve this issue, time-dependent fields, such as in optical traps (sec. 2.2.2) or any

other additional field can be applied. In the case of the Penning trap (sec. 2.2.3) an

additional magnetic field is used while for the Paul trap (sec. 2.2.4) a radio frequency

electric (RF) field is added.
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Figure 2.2: Qualitative scheme of the radiation pressure on a particle in the focus of a laser beam based
on the ray-optics approximation [71]. The direction of the ray is depicted as red arrows. The forces
(black arrows) on a transparent particle (blue) in a focused laser beam is shown (a) if the particle is
transversal displaced to the focus (b) and if the particle is longitudinal displaced to the focus of the
laser. The net forces trap the particle in the focus.

2.2.2 Optical traps

The concept of an optical dipole trap bases upon the time-dependent electromagnetic

field of light. In 1970, Arthur Ashkin demonstrated theoretically and experimentally

that one can trap and accelerate a micron-sized particle in a focused laser beam [69,

70] leading to the development of the first optical dipole trap for an ion in 2010 [14].

Through the strong focusing of the laser beam the particle is trapped by the dipole force

and the radiation pressure of the beam [71, 72].

The optical force in the trap has two components, the scattering force, in the direction

of light propagation, and the gradient force, in the direction of the spatial field gradient.

The theoretical treatment separates two regimes depending on the particle size. The

principle of optical trapping of particles with sizes much larger than the wavelength

of the trapping laser, i.e., the radius a � λ, can be understood by the ray optics

approximation: First the surface reflection is neglected. Second if a particle moves out

to one side out of the laser beam focus, it deflects the laser beam and, hence, increases

the momentum of the photons to the same side. Due to the conservation of momentum,

the particle will be pushed back to the laser beam focus (compare fig. 2.2). Thus, the

laser forms a stable three dimensional optical trap. Finally, considering a particle with

a reflecting surface, the reflected photons push the particle away from the focus. In

summary, there are two competing processes. To maximize the restoring force, it is

necessary to strongly focus the laser beam and to choose a suitable medium.

A particle which is much smaller than the wavelength of the laser, (radius a � λ)
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can be approximated as a dipole and the optical force can be calculated with the help

of the Rayleigh approximation. For the scattering force one obtains for a particle with

radius a [71]:

|Fscatt| =
I0σnm
c

(2.8)

with σ =
128π5a6

3λ4

(
m2 − 1

m2 + 1

)2

(2.9)

and m =
np
nm

.

In this formula, the scattering cross section σ is a function of the radius a, the refraction

np of the particle and the refraction nm of the medium as well as of the wavelength λ of

the laser. I0 is the intensity of the laser beam and c the speed of light. This scattering

force pushes the particle out of the focus. The gradient force arises from the interaction

of the inhomogeneous electric field E(r, t) of the laser and the induced dipole p(r) [71]:

Fgrad = [p(r, t) · ∇]E(r, t) =
2πn2

ma
3

c

(
m2 − 1

m2 + 1

)
∇I0. (2.10)

Fgrad tends to push the particle towards the laser beam and moves it to the focus

where the light intensity is highest. It is proportional to the laser intensity and forms a

trapping potential of the form:

V (r) = −2πnma
3

c

(
m2 − 1

m2 + 1

)
I(r). (2.11)

In practice, optical traps have a relatively weak optical potential depth (≈ 1× 10−3 K)

[14].

2.2.3 Penning traps

The working principle of the Penning trap bases on combining a static electric and

a magnetic field to confine the charged particles. Typically, a Penning trap is build

out of three electrodes, a ring electrode and two end caps. The trapping potential is

a superposition of a homogeneous magnetic field B = (0, 0, B0) and an electric field

E = −∇Φ with

Φ =
U0

2d2
(2z2 − x2 − y2). (2.12)

Here, d is a geometrical factor of the trap and U0 is the applied voltage between the end

caps and ring electrode.
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(a) (b)

1

Figure 2.3: (a) Scale drawing of an experimental Penning trap [73] and (b) electric and magnetic field
configuration of a penning trap [74].

Caused by the Lorentz force

FL = −qE + q(v ×B) (2.13)

a particle with charge Q, mass M and the velocity v in a Penning trap obeys the

following equations of motion:

d2x

dt2
=

1

2
ω2
zx+ ω0

dy

dt

d2y

dt2
=

1

2
ω2
zy − ω0

dx

dt
(2.14)

d2z

dt2
= −ω2

zz.

In radial direction, the charged particle follows a circular path with the cyclotron fre-

quency ω0 = |QB0|
M caused by the magnetic field, while in axial direction the particle is

confined in a simple harmonic oscillation with the axial frequency ωz =
√

2QU0

Md2 (fig. 2.3).

One observes that the radial and the axial motion are decoupled. Hence, the radial

equation of motion can be rewritten as

d2u

dt2
=

1

2
ω2
zu− iω0

du

dt
, (2.15)

with the substitution u = x + iy. Using the general ansatz u = exp (−iωt) this results

in

ω − ω0ω +
1

2
ω2
z = 0. (2.16)
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(a) (b)

(c) (d)

y /
y 0

1

−1

0
y /
y 0

1

−1

0

x/x0
1−1 0

x/x0
1−1 0

1

Figure 2.4: Examples for the radial trajectories in an ideal Penning trap with R− = 2.5R+ for periodic
orbits (a) ω+ = 2ω− (b) ω+ = 8ω− (c) ω+ = 9

2
ω− and for a quasi-periodic orbit (d) ω+ = 2

√
17ω−

with the initial coordinates (x0, y0) [49].

A stable confinement of the charged particle will therefore be achieved when the condi-

tions
|Q|
M

B2
0 >

4|U0|
d2

and QU2
0 > 0 (2.17)

are fulfilled. In this case, the trajectories for the particle are given by

x =R+ cos (ω+t+ φ+) +R− cos (ω−t+ φ−)

y =
Q

|Q| [R+ sin (ω+t+ φ+) +R− sin (ω−t+ φ−)]

z =Rz cos (ωzt+ φz), (2.18)

with the modified cyclotron frequency ω+ = 1
2(ωc +

√
ω2
c − 2ω2

z) and the magnetron

frequency ω− = 1
2(ωc−

√
ω2
c − 2ω2

z). The cyclotron radius R+, the magnetron radius R−,

the axial amplitude Rz and phases φ+, φ−, φz are defined by the initial conditions. In

the radial (x,y)- plane, the motion of a charged particle can described as an epitrochoid.

Some examples for this motion are shown in figure 2.4.
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2.2.4 Radio-frequency traps

The solution of the Laplace equation of a static electric field allows no stable trapping but

can result in a saddle point in the potential (sec. 2.2.1). In order to trap charged particles

an additional radio frequency field (RF) to such a saddle point can be added, thereby

rotating it. The Paul trap consists of an electrostatic field Φstat and an additional

time-dependent electric field Φrf that varies sinusoidally with the frequency ωrf. For

simplification, the potentials are here assumed to be harmonic:

Φ(x, y, z, t) = Φstat(x, y, z) + Φrf(x, y, z, t)

=
1

2
U0(cxx

2 + cyy
2 + czz

2) +
1

2
Urf cos (ωrft)(dxx

2 + dyy
2 + dzz

2), (2.19)

where U0 is the voltage of the static potential and Urf is the voltage of the RF potential.

The ci and di are geometrical parameters which depend on the design of the trap. As

discussed in section 2.2.1 the Maxwell equation (eq. 2.2.1) has to be fulfilled, which

restricts the geometrical parameters to

cx + cy + cz = 0 (2.20)

dx + dy + dz = 0.

There are different possibilities to fulfill these conditions. For a three dimensional con-

finement, the geometrical parameters can be chosen as:

cx = cy = cz, dx + dy = −dz. (2.21)

For a dynamical confinement in the (x,y)-plane with an axial static restriction, the

so-called linear trap [75], the parameters have to be chosen as:

− (cx + cy) = cz, dx = −dy. (2.22)
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Equations of motion and Mathieu equation

The classical equations of motion for a particle with charge Q and the mass M in a RF

Paul trap defined by the potential Φ(x, y, z, t) (see eq. 2.2.4) are given by

ẍ = − Q
M

(
U0cx + Urfdx cos (ωrft)

)
x,

ÿ = − Q
M

(
U0cy + Urfdy cos (ωrft)

)
y,

z̈ = − Q
M

(
U0cz + Urfdz cos (ωrft)

)
z. (2.23)

These non-coupled equations can be transformed to the Mathieu differential equations

[76] by introducing the following variables:

τ =
ωrft

2
, au =

4QU0cu
Mω2

rf

, qu = −2QUrfdu
Mω2

rf

, (2.24)

where u represent either x, y or z. This leads to the standard form of the Mathieu

equation:
d2u

dτ2
+ (au − 2qu cos (2τ))u = 0. (2.25)

From the Floquet theorem [76, 77] the solution of this equation can be obtained as

u(τ) = Aue
µuτ

∞∑
n=−∞

C2n,ue
i2nτ +Bue

−µuτ
∞∑

n=−∞
C2n,ue

−i2nτ (2.26)

The characteristic exponent µu, and C2n are functions of au while and Au and Bu

depend on the initial conditions. The stability of the solution is determined solely

by the exponent µu. If the real part of the characteristic exponent µu is non-zero,

the amplitude grows exponentially in time, such that the solution is not stable and

the particle trajectory is not bound. The condition for stable trapping is µu = iβu.

Inserting the general solution (eq. 2.26) into the Matthieu equation (eq. 2.25) one ends

up with the relation between the parameters βu, au and qu:

β2
u = au − qu

( 1

D2 − 1
D4− 1

...

+
1

D−2 − 1
D−4− 1

...

)
(2.27)

with D2n =

[
au−(2n+βu)2

]
qu

. Moreover, for the coefficients C2n one obtains the recursive

formula:
C2n,u

C2n±,u
= − qu

(2n+ βu)2 − au − q2

(2n±2+βu)2−au−...

(2.28)
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The pairs of au and qu which satisfy the condition 0 ≤ βu ≤ 1 [3] result in stable

solutions. The parameters for stable and instable solutions can be depicted in a stability

diagram in the (au, qu)-plane (fig. 2.5). The boundaries of the stability regions fulfill

the conditions βu = 1 or βu = 0 .

�

Figure 2.5: Stability diagram in the (au, qu)-plane [77]. In the orange regions the pair of parameters
(au, qu) allows the stable trapping of ions.

Effective potential and potential depth

In order to trap a charged particle in the RF Paul trap the trapping frequency has to be

of the order of MHz. Typically, experimental parameters for the rf potential are ωrf
2π ∼(4

to 50) MHz and Urf ∼(8 to 350) V. This fast rotating voltage results in a time-averaged

an effective potential Φav with a potential depth D(r). The calculation of the effective

potential follows [49]. The first assumption is, that the motion of the particle in the trap

potential (eq. 2.2.4) is influenced by an electric field E = −∇Φ with a static E0(r) and

a high frequency component Eω(r, t) while r = (x, y, z). Under the assumption that the

oscillation of the particle by the action of Eω(r, t) is small, the trajectory of the particle

can be written as

r(t) = R(t) + χ(t). (2.29)

Here, χ(t) is a fast oscillatory motion of the particle evoked by the frequency ω, while

R(t) represents the average of r(t) over a period of the field Eω(r, t). The amplitude

of χ(t) is assumed to be small and, hence, the equation of motion can be expanded in

powers of χ(t), taking only the first order terms are taken into account. This results in

d2R(t)

dt2
+
d2χ(t)

dt2
=

Q

M

[
E0(r) +χ(t)

dE0(r)

dr(t)
+Eω(R, t) cos (ωt) +χ(t)

dEω(R)

dR(t)
cos (ωt)

]
(2.30)
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and leads for χ(t) to the differential equation

d2χ(t)

dt2
=

Q

M
Eω(R, t) cos (ωt) (2.31)

and the solution

χ(t) = − Q
M

Eω(R, t)

ω2
cos (ωt). (2.32)

Inserting this result into the equation of motion (eq. 2.30) and averaging over the

oscillation period of the field Eω(r, t), one gets:

d2R(t)

dt2
=

Q

M
E0(r)− Q2

M2ω2

〈
Eω(r, t)

dEω(r, t)

dR
cos2 (ωt)

〉
. (2.33)

With the identity (Eω · ∇)Eω = 1
2∇E2

ω and calculation of the average, the effective

potential reads

Φav(x, y, z, t) =Φstat(x, y, z) +
Q

4Mω2
E2
ω(x, y, z, t)

=
1

2
U0(cxx

2 + cyy
2 + c2

z) +
Q

4Mω2
U2

rf(dxx
2 + dyy

2 + dzz
2). (2.34)

Considering the total energy in the effective potential Φav:

W =Wkin(R) +QΦav

=
1

2
MṘ2 +QΦstat +

Q2

4Mω2
E2
ω (2.35)

and the time average over the kinetic energy of the fast oscillatory motion, called

micro-motion: 〈
1

2
Mχ̇2

〉
=

Q2

4Mω2
E2
ω(R, t) (2.36)

one might assume to the intuition, that the effective potential energy of the RF field is

stored as kinetic energy in the fast oscillatory motion. Therefore, motion through an

inhomogeneous field leads to a permanent exchange between the kinetic energies of the

secular and the oscillatory motion and the electrostatic potential energy.

The depth of the effective potential without a static electric field (Udc = 0) is [49]:

D(r) =
qU2

rf

4Md2
iω

2
, (i = x, y, z). (2.37)
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Micro-motion

In the last subsection it was shown, that the dynamics in the Paul trap is given by

a superposition of the secular motion following the effective potential (eq. 2.34) and a

micro-motion induced by the RF voltage. Following [78] the equation of motion can be

approximated to the lowest order in q and a (eq. 2.24) for |a| � 1 and |q| � 1 yielding

u(t) = (u0 cos (ωsect))(1 +
q

2
cosωrft), (2.38)

with ωsec = ωrf
2

√
a+ q2

2 . The ion oscillates with ωsec in the harmonic potential (eq. 2.34)

superposed by the micro-motion.
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Figure 2.6: Dynamics for a trapped ion for the parameters (a) q = 0.055 and a = 8 ·10−7 (b) q = 0.0049
and a = 7.8127 · 10−5. The oscillation with the large amplitude is the secular motion and the small
amplitude corresponds to the micro-motion.

In figure 2.6 the dynamics of a trapped ion in an harmonic potential for different

parameters a and q are shown. Obviously, the secular motion dominates the dynamics

and the micro-motion is just a small beating on the larger amplitude.

In contrast, in a CC the ions oscillate with a small amplitude around their equilibrium

positions because of the finite temperature. In this regime the micro-motion is able

to influence the system and with this the equilibrium position of the ions and the

eigenvalues and the eigenfrequencies are affected by the micro-motion. This effects are

subject of experimental and theoretical studies.

In [79] the results of the standard pseudo (effective) potential theory are compared

with the experimental investigations for an planar CC. Their results show that the

positions of the ions and the location of structural transitions between different crystal

configurations are accurately by the use of the effective potential used in this setup (see

fig. 2.7). The determination of the eigenfrequencies of the two dimensional ion crystals

with the pseudo potential theory is insufficient showing significant deviations from the

experimental data obtained from resolved sideband spectroscopy [79]. The accuracy

depends on the value qu (eq. 2.24).
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(1) (2)

1

Figure 2.7: (1) Determination of ion positions in planar crystals: (a) The ion fluorescence near 397
nm is imaged on a CCD chip. (b) The ion positions (black dots) are determined by averaging over
100 exposures and compared with the result of a numerical simulation assuming Coulomb repulsion
in a harmonic trap pseudo potential (red crosses). The experimental data allow for a precision of
50 nm as indicated by the circle for a 1σ standard deviation. (2) Phase transitions for a three-ion
(black) and a four-ion (red) crystal. Theoretical (PPT) critical α’s are indicated by vertical dashed lines
with the corresponding crystal configurations. Experimental data are plotted at those α where a certain
configuration is observed, with an error of 0.05 in α. For an ion crystal with an even number of ions (here,
N = 4), αsym is the relevant parameter, where the structure symmetry changes. The measurements are
taken in a linear micro trap with Ω = 2π·22.7 MHz , Urf ≈ 300 Vpp yielding frequencies ωy = 0.421 MHz,
ωz = 0.626 MHz, and a much larger ωx. Inset: Table of calculated critical α [79]

Furthermore, the micro-motion influences atomic transition line shapes, second order

Doppler shifts, induces Stark shifts [80] and chaos in the dynamics [81]. The most

imported fact is the heating of the crystal via the micro-motion [82, 83] and its influence

on the laser cooling [84]. The heating is produced by the interaction of the fast oscillating

ions and electromagnetic stray fields in the trap. There are some techniques presented

in [78] to minimize the micro-motion. The influence of the micro-motion scales with the

distance of the ions from the minimum of the trap potential. In a linear trap, ions in

the linear chain configuration are slightly affected by the micro-motion.

2.2.5 Comparison of available trap designs

In order to decide which trap design is suited to realize the topics discussed in this

work, here, the advantages and disadvantages of the different trapping techniques are

presented.

The main advantage of an optical trap (sec. 2.2.2) is the idealized harmonic motion

of an ion in the trapping potential. However, it has a weak potential depth such that

the Coulomb force between ions can lead to the escape of ions. In [14] the trapping of

a single ion with the help of an optical trap was presented.

The potentials in the Penning trap (sec. 2.2.3) are time independent. Therefore, there

is no micro-motion and hence, no heating occurs. The motion of the ions consists of
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a cyclotron and a magnetron oscillation, which results in a complex trajectory of the

ions (fig. 2.4). Moreover, a Penning trap can be larger, thereby for fixed trap depth

compared to alternative trap designs. So the distance of the charged particles to the

electrodes is larger reducing the interaction with the electrode surfaces and with this

the heating.

The Paul trap potential (sec. 2.2.4) is time dependent. The particle trajectories are

more complex than in the optical trap. Additionally the micro-motion can result in a

heating process in the presence of stray fields in the electrodes of the trap [83]. The

micro-motion is a fast and small oscillation such that in a first approximation the micro-

motion is negligible leading to an approximately harmonic motion.

In the Penning as well in the Paul trap, CCs can be trapped [65, 66, 85]. In the last

decades, the Paul trap has experienced a lot progress in the development of its design.

The traps were miniaturized and the electrodes became segmented. This miniaturization

and segmentation allowed an enrichment in the trapping potential forms. Multiple

wells were created and the transport of ions [42] as well as splitting of CCs [43–46] was

demonstrated. These developments in the design, the possible large potential depth

and the minor role of the micro-motion qualifies the RF Paul trap for the experimental

confirmation of the results in this work.

2.3 Cooling techniques

For many applications and experiments, it is necessary that the kinetic energy and

with this the temperature of the trapped ions is small, especially for the crystallization

processes (temperatures below 10 mK). Unfortunately, the production of the ions, the

loading of the trap and the interaction with electric fields, in the case of the Paul trap

with the RF field, can result in heating. Hence, cooling procedures have to be employed

to reach low temperatures. In the following, schemes of the different cooling techniques

are presented in a short overview.

One of the first cooling procedures for trapped ions has been the buffer gas cooling [49].

Here, a lighter inert gas, mostly helium, at room temperature or below is introduced

in the system. The ions collide with the gas atoms, which results in an energy and

momentum transfer thermalizing the ion temperature to that of the gas. However, this

simple method has its limitations: (i) it works well only for massive ions, (ii) it may

perturb the internal energy levels, causing frequency shifts and (iii) it broadens the

spectral lines and the motional resonances.

Another way to reduce the kinetic energy of the ions is the resistive cooling [86]. Here,

the ion motion in the trap induces a current in the electrodes of the trap. The induced



20 Chapter 2 Basics

current reduces the kinetic energy of the ions. In Paul traps using this technique only

the secular motion can be cooled, but not the micro-motion, thus this kind of cooling

is not efficient.

The stochastic cooling [87] uses the fact, that there are stochastic fluctuations in

the ensemble average of the positions in a finite number of interacting particles. This

method is divided in three parts, (i) the measuring of the mean positions of the particles,

(ii) the generation of a field pulse, which kicks the particles along the beam direction

and (iii) the particles interact until they reach a new equilibrium state.

With all these different cooling techniques, it was not possible to reach the tempera-

ture regime where the crystallization process of ions takes place. Only with the advent

of lasers [88, 89] the investigations of CCs started [90, 91].

2.3.1 Laser cooling

The idea of laser cooling is to reduce the kinetic energy of a trapped ion by driving

one of its electronic transition by a near resonant laser. In the process of absorption

and emission of photons, the total energy and the momentum of the ion and the field

is conserved. The cooling of the ions is possible by choosing convenient excitation con-

ditions. Here, the main concepts of the different laser colling techniques are presented.

An explicit discussion of cooling techniques can be found in [92] and references therein.

For the cooling, two processes are used, (i) the recoil dynamic (fig. 2.8) and (ii) the

difference in the frequencies of the absorbed and the emitted photon. In the following,

the so-called Doppler cooling, based on the recoil dynamic and the Doppler effect, is dis-

cussed. This is followed by a short presentation of further cooling techniques exploiting

the energetic difference of the absorbed and emitted photon.

The Doppler cooling of ions is based on the reduction of the kinetic energy of the

particle by the interaction with photons. An ion can absorb a photon of a suitable

frequency and, obeying momentum conservation, it encounters a recoil in direction of

the initial photon momentum. This results in a change of the ion velocity. Subsequently,

the ion emits spontaneously a fluorescence photon in a random direction. Again, obeying

momentum conservation, the ion velocity in opposite direction of the photon emission

direction increases. For Doppler cooling this recoil dynamics are employed by a laser

system. To reduce the kinetic energy of an ion in one direction (pi) only photons counter

propagating to this direction are supposed to be absorbed. Hence, the laser frequency

(ωl) has to be chosen in the way, that only ions with a given momentum pi can absorb

a photon. The laser system is red detuned to the electronic transition of the ion (ωion)

ωl = ωion −∆ω (2.39)
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(a) (b) (c)

Figure 2.8: (a) The red-shifted laser photon (red waved line) can be absorbed only by an ion (red
sphere) with a suited impulse component (black arrow) in opposite direction to the beam defined by
the Doppler effect. (b) The absorption of a photon results in a recoil (black dashed arrow). (c) By
spontaneous emission of a photon (blue waved line) in a random direction the ion gets an additional
recoil. The average of recoil momentum over a large number of emissions is zero. This results in a net
decrease of the momentum in the opposite direction to the laser beam. The momentum average of the
ion is shown below the sketches as a green arrow.

with ∆ω being the detuning frequency of the laser beam. By the Doppler effect, the

photons can be absorbed only by ions moving in opposite direction to the laser beam

(fig. 2.8 (a)). The spontaneous emission of the photon happens in a random direction

and with this the ion momentum in the opposite direction increases (fig. 2.8 (c)). The

average of the recoil momentum over a large number of N spontaneous emissions is zero,

caused by the isotropic distribution of the momentum direction of the spontaneously

emitted photons. With the directed absorption and the undirected emission of photons,

the ions are decelerated in the opposite direction of the laser beam.

For the Doppler cooling, dipole transitions with a broad natural line width γ are

used, in order to to cool down ions with a broad velocity distribution. One finds that

the lower limit of the temperature of the ions after cooling is given by

TDoppler =
~γ

2kB
(2.40)

with kB the Boltzmann’s constant and ~ the reduced Planck’s constant [50]. For an

efficient cooling in all directions, a system of three orthogonal laser beams is needed.

Beyond the Doppler cooling other cooling techniques are established such as the re-

solved sideband cooling [21, 84, 93] or the electromagnetic-induced transparency (EIT)

[23, 24, 94]. These techniques are based on the energy difference between the absorbed

and the emitted photon related to the vibrational states of tightly bounded ions.





CHAPTER 3

Setup

3.1 The potential confining the Coulomb Crystals

The interest in Coulomb crystals (CCs) and their properties has grown in the last years

[56, 57, 62]. Their applications range from quantum simulators for solids [60, 61] to

technical utilization like extremely precise clocks [58]. So far, most of the studies have

only published on single CCs [17, 18, 52, 56], altough the Coulomb force generally

allows for long range interactions between different crystals as well. With the advent of

segmented traps [40, 41] it has become possible to construct potentials with more than

one well and to manipulate their parameters. Hence, multiple crystals can be trapped,

moved, combined or split [43–46].

The simplest case of such trapping potentials is the double well potential with two

identically wells, separated by a barrier, in axial direction combined with a potential of

a linear Paul trap in the radial direction. The position of the wells, the height of the

barrier, and the trap frequencies can be tuned.

In this work, the dynamics of two Coulomb crystals confined by a linear quadrupole

Paul trap in the radial direction (x, y) and by a double well potential1 (segmented trap)

along the axial direction z are studied.

The ions are treated as classical point particles with mass m and charge Q that follow

the radially confining potential V (x, y) in the (x, y)-plane:

V (x, y, t) =
Udc

2
(cxx

2 + cyy
2) +

Urf

2
cos (ωrft)(dxx

2 + dyy
2). (3.1)

1The combination of the linear quadrupole trap potential and a double well potential is not allowed
by the Laplace equation. Therefore, to fulfill the Laplace equation it is necessary to compensate the
DC potential part of the trap in the radial direction by a complex form. In recent experiments with
segmented Paul traps (e.g. [95, 96]) this combination was realized, giving rise to a potential similar
to the one, which is chosen here or to a Mexican hat like potential.
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Udc and Urf are the applied constant (DC) and radio frequency (RF) voltages, while ωrf

denotes the (radio) frequency. The parameters ci and di specify the geometry of the

trap. For the chosen linear trap geometry it follows d = dx = −dy (compare sec. 2.2.4).

For simplicity cx = cy = c is chosen.

The ion dynamics in such a potential is composed of a fast motion, so-called micro-

motion, and a comparatively slow average motion (the secular motion) governed by a

time averaged (thus effective) harmonic potential [51]

Vav(x, y) =
m

2
(ω2
xx

2 + ω2
yy

2). (3.2)

Here, ωx = ωrf
2

√
a− q2/2 and ωy = ωrf

2

√
a+ q2/2 are the effective trapping frequencies

with dimensionless parameters a = 4QUdc

mω2
rf
c and q = 2QUrf

mω2
rf
d (compare sec. 2.2.4).

The influence of the micro-motion on CCs is discussed in section 2.2.4. The micro-

motion depends strongly on the value of q (eq. 2.24) which can be optimized such

[78, 80], that the oscillations of the ion caused by the micro-motion are very small

compared with the secular motion (compare fig. 2.6). When investigating long time

dynamics of the ions, exact trajectories of single ions including the micro-motion can be

neglected for the averaged system dynamics. Furthermore, as mentioned in subsection

2.2.4, micro-motion heats the system which is compensated in experiments by laser

cooling. For the sake of simplicity the micro-motion and the damping by the laser

cooling process will be neglected in the following. Equation 3.2 is used for calculations

of the crystal configurations and the simulation of the dynamics. In order to take into

account the change by the RF field in the crystal configuration and the effect of finite

(low) temperature, a small random initial velocity to the ions is added, leading to small

oscillations around their equilibrium positions.

The double well potential in the axial direction should have a simple (differentiable)

analytic form and the profiles of each well should be as close as possible to the chosen well

potential W (z) 2. Furthermore, the barrier height should be easy to adjust. Following

[97] one can construct a superposition of the potential W (z) at the positions ±z0 such

that the original potentials are connected to each other:[
W (z + z0) C

C W (z − z0)

]
. (3.3)

2W (z) can be any differentiable trapping potential. In this work W (z) = 1/2mωzz
2 is chosen because

the structure and the dynamics of Coulomb crystals in experiments, as well as in theoretical works,
are investigated in an harmonic potential (compare chap. 2) mainly.
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The parameter C is responsible for the smoothness of this connection. The eigenvalues

for this matrix are:

λ± =
1

2
(W (z + z0) +W (z − z0)±

√
4C2 + (W (z + z0)−W (z − z0))2). (3.4)

The lowest eigenvalue of the matrix fulfills the requirements and is chosen as the double

well potential:

Vd(z) =
1

2
(W (z + z0) +W (z − z0)−

√
4C2 + (W (z + z0)−W (z − z0))2). (3.5)

The wells of the potential are connected to each other and C is the parameter which

controls the height of the barrier B (for harmonic wells W (z) = 1/2mωzz
2)

B =
m

2
(ω2
zz

2
0 +

C2

ω2
zz

2
0

)−mC with C ∈ (0 , ω2
zz

2
0 ], (3.6)

illustrated in figure 3.1 (a) and (b). The minimums of the wells are located approxi-

mately at ±z0.
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Figure 3.1: (a) The double well trapping potential in axial direction Vd(z) for different values of the
smoothness C (blue solid line C = 0.02, red dashed line C = 3, black dashed-dotted line C = 10) and
(b) the barrier height B as a function of C (with the scaling factor K equation 3.11).
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For the case of the double well potential with harmonic wells W (z) = 1
2mωzz

2, which

is investigated in this work, the Taylor expansion of Vd around z = z0 provides:

Vd(ξ)|z=z0 =mω2
z

[
z2

0 −
√
χ+

(
z0 −

z3
0

χ1/2

)
ξ +

1

2

(
1− z2

0

χ1/2
+

z6
0

χ3/2

)
ξ2

+
1

2

(
z5

0

χ3/2
− z9

0

χ5/2

)
ξ3 +

1

8

(
z4

0

χ3/2
− 6z8

0

χ5/2
+

5z12
0

χ7/2

)
ξ4 +O(ξ5)

]
(3.7)

with ξ = z − z0 and χ = C2 + z4
0 . For C → 0 it results in χ ≈ z4

0 and therefore

Vd(ξ)|z=z0 =mω2
z

[
z2

0 − z2
0 +

(
z0 −

z3
0

z2
0

)
ξ +

1

2

(
1− z2

0

z2
0

+
z6

0

z6
0

)
ξ2

+
1

2

(
z5

0

z6
0

− z9
0

z10
0

)
ξ3 +

1

8

(
z4

0

z6
0

− 6z8
0

z10
0

+
5z12

0

z14
0

)
ξ4 +O(ξ5)

]

=
1

2
ω2
zξ

2 +O(ξ5). (3.8)

s Thus such a potential leads to individual approximately harmonic wells of frequency

ωz centered at ≈ ±z0.

The combination of the double well potential (eq. 3.5) and the time averaged potential

(eq. 3.2) of a linear trap yields

V (x, y, z) =Vav(x, y) + Vd(z)

=
m

2

(
ω2
xx

2 + ω2
yy

2

)

+
1

2

[
m

2
ω2
z(z + z0)2 +

m

2
ω2
z(z − z0)2 +

√
4C2 +

(
1

2
mω2

z(z + z0)2 − 1

2
mω2

z(z − z0)2

)2
]

=
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
z(z

2 + z2
0)

)
−
√
C2 +m2ω4

zz
2z2

0 . (3.9)
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3.2 General Hamiltonian

Under the aforementioned assumptions, the total Hamiltonian of the system, includ-

ing the radial trapping potential Vav(x, y), the axial trapping potential Vd(z) and the

Coulomb interactions among the N ions reads as

H({ri,pi}) =
N∑
i=1

pi
2

2m
+

N∑
i=1

[Vd(zi) + Vav(xi, yi)]

+
1

2

N∑
i

N∑
j,j 6=i

Q2

4πε0rij
(3.10)

with the position ri = (xi, yi, zi), the impulse of the ith ion pi = (px, py, pz) and the

distance between ion i and j rij = |ri − rj |. By rescaling the time, introducing the

scaling factor

K ≡ [Q2/(4πε0mω
2
z)]

1/3 (3.11)

and defining

t∗ = ωzt; x
∗ =

x

K
; y∗ =

y

K
; z∗ =

z

K
; z∗0 =

z0

K
; r∗ij =

rij
K

;

C∗ =
C

K2ω2
z

; α =
ωx
ωz

; β =
ωy
ωz
. (3.12)

one arrives at the dimensionless Hamiltonian H∗. Note that the star is omitted for

simplicity and all results are represented in these dimensionless units from now on. The

resulting Hamiltonian for the linear trap with a double well potential in axial direction

(eq. 2.2.4) is given by

H({ri,pi}) =

N∑
i=1

p2
i +

N∑
i=1

[
1

2

(
α2x2 + β2y2 + z2 + z2

0

)
−
√
C2 + z2z2

0

]

+
1

2

N∑
i

N∑
j,j 6=i

1

rij
. (3.13)
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This Hamiltonian describes N ions trapped in a double well potential composed of

harmonic wells. The corresponding equations of motion read

ẍi = −α2xi +
N∑
i,j 6=i

xi − xj
r3
i,j

(3.14)

ÿi = −β2yi +
N∑
i,j 6=i

yi − yj
r3
i,j

(3.15)

z̈i = −2zi +
ziz

2
0√

C2 + z2
i z

2
0

+

N∑
i,j 6=i

zi − zj
r3
i,j

. (3.16)

These differential equations of motion are not solvable numerically. The preparation of

the initial state and an overview over the solving algorithm are presented in the next

chapter.



CHAPTER 4

Numerical Algorithms

The presented work deals with the numerical simulation of the classical dynamics of

ions arranged as Coulomb crystals (CCs) out of their equilibrium state. The lowest-

energy equilibrium configuration is used as initial state which is then excited either by

a displacement of an ion (chap. 5) or by a quench of the trapping potential (chaps. 6,

7). In this chapter, the initial state preparation and the numerical algorithms to solve

the equation of motion are discussed. The description of the algorithms follows [98, 99].

4.1 Initial state

To prepare the initial state for the simulations, equilibrium configurations have to be

found. Since the number of metastable configurations increases exponentially with the

number of ions, it becomes extremely difficult to find the minimum energy state. In

general Monte-Carlo [100] or Molecular Dynamics simulations [101, 102] are employed

to derive the energetically lowest equilibrium configuration.

Numerical algorithms, which use random sampling of variables to approximately solve

or simulate a process, are referred as Monte-Carlo methods (MC). In many cases such

a stochastic algorithm is the only simulation method, which is able to yield reliable

results at manageable computational costs. The basic MC strategy consists of four

ingredients: the random variables, the probability distribution function (PDF), moments

of the PDF and the variance. The random sampled variables build the foundation of the

MC strategy. Furthermore, the mathematical or physical system has to be described by

a PDF. Finally, one needs to perform a high number of such simulations since the result

has to be averaged over multiple realizations (moments of the PDF) with the variance

σ ≈ 1/
√
N (N number of samples).

The molecular dynamic algorithm (MD) solves the classical N -body problem starting

with a random initial particle distribution and employing the given boundary conditions.
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The Newtonian equations of motion of the chosen ensemble, including a cooling or

damping term, are solved iteratively with an integration algorithm (e.g. Runge-Kutta

[99]) until all particles come to a rest (in the classical description, their momenta become

zero) in a minimum of the energy surface.

Both above discussed algorithms are in principle applicable for all kinds of external

potentials, but are both computationally demanding. For a well investigated system

with a high degree of symmetry such as the harmonic potential, a third simpler strategy

can be used.

With a good initial guess for the CC structure the equilibrium position of the ions

can be calculated by minimizing the energy with the help of a root finding algorithm.

The wells of the trap potential in equation 3.9 are approximately harmonic and the CC

structures in the harmonic potential [38, 101, 103] are well investigated. Hence, in this

work, the strategy is to determine the CC structures by arranging the ions, using the

harmonic configurations from literature, one CC per well, and exploiting a root finding

algorithm.

4.1.1 Root finding algorithm

The algorithm used to determine the energetically minimal structure (root finding algo-

rithm) is a modified version of the Powell Hybrid method from the GNU scientific library

[99]). To find the equilibrium state of N ions in the double well potential (eq. 2.2.4, the

root of the derivative of the energy for ion i

gi(xi, yi, zi) =


α2xi −

∑N
j 6=i

xi−xj
r3
i,j

β2yi −
∑N

j 6=i
yi−yj
r3
i,j

2zi − ziz
2
0√

C2+z2
i z

2
0

)−∑N
j 6=i

zi−zj
r3
i,j

.

 (4.1)

has to be found for all ions.

Here, for simplicity, the general formalism is presented for f(s). Starting with an

initial guess s0, the value for the function f(s), will become closer to zero for every

iteration step n from sn to sn+1.

The Powell Hybrid method combines the Newton algorithm [99] with a gradient

direction. The algorithm uses a trust region to find the direction of the next step

in a multidimensional landscape. This trust region is characterized by the condition

|D(sn+1 − sn)| < δ. Where δ is the size of the trust region chosen by the algorithm

without knowing whether the root is within the region. D is a diagonal scaling matrix

whose components are computed internally, using the column norms of the Jacobian [99].
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Each new iteration step is determined using the Newton algorithm [99] to solve

Jds = −f (4.2)

The solution s∗ has to be in the trust region. Then s∗ is taken as the next step in the

iteration sn+1 = s∗. If this is not the case a linear combination of the outcome of the

Newton method and gradient direction

ds = −αJ−1f(s)− β∇|f(s)|2 (4.3)

is computed. This solution is again tested by evaluating, if s∗ is in the trust region and

f(s∗) is closer to zero than f(sn), than is sn+1 = s∗ and the trust region is increased

to improve the propability that the root is in this region. If this is not the case, the

trust region is decreased to guide the algorithm in another direction of the landscape.

The above procedure is repeated until an error occurs, the maximum iteration number

is reached or a user specified precision ε is achieved. The precision here is calculated by

|f | < |ε|. (4.4)

This is a fast method for finding an equilibrium configuration if the initial guess is close

to the equilibrium.

4.1.2 The double well configurations

One configuration of a Coulomb crystal (CC), introduced in section 2.1, is chosen as the

initial distribution of the ions in a well. Each well holds one CC which interacts with its

neighboring CC via the Coulomb interaction. Each CC is prepared in the lowest energy

equilibrium configuration for a chosen symmetry, which will be called ground state (GS)

throughout this work. The ansatz to treat the ion configurations as two separated but

interacting CCs limits the number of ions per well.

The chosen configuration does not necessarily have to be the global ground state

of all ions which would be the lowest energy of all ions of both wells. The global

ground state is a configuration in which the number of ions per well is as uniformly as

possible distributed (N1 = N2 or N1 = N2 ± 1). The wells of the double well potential

(eq. 3.9) are an approximation to the well investigated harmonic potential (compare

eq. 3.8). Hence, the ground state configurations of Ni (i = 1, 2) ions trapped in the

corresponding harmonic potential (same frequency ratios α and β and shifted in axial

direction by ±z0) are close to the GS configuration of Ni (i = 1, 2) ions trapped in one

of the wells (see fig. 4.1).
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Figure 4.1: Comparison of the GS structures for the harmonic potential (blue crosses) centered at z0 = 5
and the double well potential (orange circles) for the (a) the linear chain, (b) the zigzag chain, (c) circles
and (d) spheres

The interaction of the two CCs results in a compression in axial direction and a shift

of the center of mass compared to the harmonic system (see fig. 4.1). For the circular

(α = 8, β = 1) and the spherical (α = 1, β = 1) configurations with N = 20 + 20, this is

of the order of 1− 4%.

In the case of the linear chain the compression can result in a phase transition to the

zig-zag chain [36, 38, 67]. In an harmonic potential this transition follows the principle

of a critical value

αc = 3N/4
√

logN =
ωx
ωz

∣∣∣
transition

(4.5)

for large number of ions (N � 1) (fig. 4.2, blue line ). The critical value is the frequencies

ratio of the confinement of the trapping potential at which the transition from linear

to zig-zag chain takes place. For small N the critical frequency ratio in the harmonic

well is smaller than αc (fig. 4.2, red dots). For the symmetrically populated double well

potential (N1 = N2) αc is larger than in the harmonic well (fig. 4.2, black crosses). The

difference grows with the number of ions.

The Coulomb interaction of two crystals in the double well potential changes the
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Figure 4.2: Comparison of the critical value αc of the second order phase transition (linear to zig-zag
chain) for the harmonic potential (red dots) and the double well potential with the parameters z0 = 5,
C = 0.02 (black crosses) calculated with the root finding algorithm and the principle equation for αc

from equation 4.5 (blue line).

effective potential (Coulomb interaction of the neighbored crystal and the trap potential)

and causes a deformation of the CC in axial direction. This results in a change of the

critical value, which implies that the transition from the linear to the zigzag chain

happens at higher values for αc (compare fig. 4.2). With this knowledge the parameter

used in the simulations for the potential are chosen far from the critical ratios for this

transition.

In the simulations using the zig-zag configurations, the number of particles and the

parameters are chosen such that the shape of the structures is well defined zig-zag chains

with large radial dilation in the center of the chains and small radial dilation at the ends.

In all cases, the distance of the potential wells (z0) is chosen such that the wells

are close to harmonic potentials but the Coulomb interaction of the CCs should be

nevertheless strong enough for intra crystal effects.

For all simulations in this work, the number of particles should be small because the

computation time scales as O(N3).

4.2 Solving the equations of motion

The computed GS is disturbed by a displacement of one ion (chap. 5) or by a quench in

the barrier height (chaps. 6 and 7) which induces movement of the ions. The solution

for the out-of-equilibrium dynamics is obtained by solving the 3N coupled differential

equations (see eq. 3.16), in which N particles interact via the Coulomb force and are

confined in an external potential (see eq. 2.2.4) is given by 3N coupled differential

equations (eq. 3.16). Therefore, the equations are solved numerically with the help of

an implicit Gaussian 4th order Runge-Kutta algorithm [99].
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The Runge-Kutta algorithm is an iterative method used to approximate the solution

of ordinary differential equations with given initial conditions. The idea is to provide

an intermediate step in the computation of ξn+1 (ξ = xi, yi, zi) with the following

definitions:

dξ(t)

dt
=f(ξ, t), (4.6)

ξ(t) =

∫
f(t, ξ)dt. (4.7)

After discretizing time one gets

ξn+1 = ξn +

∫ tn+1

tn

f(t, ξ)dt. (4.8)

By employing an approximation for the integral (eq. 4.8), based on the order of the

Runge-Kutta method, the equation can be solved. In this work the Simpson rule [104]

is used to compute the integral (eq. 4.8) in an approximated way. Defining a finite step

size h¿0 and setting ξ(tn + h/2) = ξn+1 and tn+h/2 = tn+1/2 the integral becomes∫ tn+1

tn

f(t)dt ≈ h

6
[f(tn, ξn) + 4(f(tn+1/2, ξn+1/2) + f(tn+1, ξn+1))] +O(h5). (4.9)

This in turn means:

ξn+1 = ξn +
h

6
[f(tn, ξn) + 4(f(tn+1/2, ξn+1/2) + f(tn+1, ξn+1))] +O(h5). (4.10)

The algorithm works as follows:

1. The slope k1 = hf(tn, ξn) at tn is calculated.

2. The slope at the midpoint is computed: k2 = hf(tn + h/2, ξn + k1/2).

3. The improved slope at the midpoint results in: k3 = hf(tn + h/2, ξn + k2/2).

4. With this, the slope k4 = hf(tn + h, ξn + k3) can be computed.

5. The new iteration value is :

ξn+1 = ξn +
1

6
(k1 + 2k2 + 2k3 + k4) (4.11)

Computing the new value ξn+1 requires four function evaluations. The fourth order

Runge-Kutta method has a global truncation error of O(h5) [98]. Using this algorithm

one gets a data set of the form tn, xi(tn), yi(tn), zi(tn), ẋi(tn), ẏi(tn), żi(tn) for each sim-

ulation step tn. In the following chapters, these data sets are the basis for the investiga-

tion and analysis of the interaction of two coupled Coulomb crystals in the double well

potential (eq. 3.9).



CHAPTER 5

Characterization of the interaction of two Coulomb crystals

An exemplary system to investigate the interaction of separated Coulomb crystals (CCs)

is that of CCs in potentials with multiple wells. The chosen model consists of a double-

well potential (eq. 3.9) with a trapped CC in each of the two wells. As discussed in

the previous chapter, the coupling of the CCs depends on the parameters Ci and z0

of the potential. The dynamical behavior of these CCs is investigated in this chapter

for the initial values Ci = 0.02 and z0 = 5. The study focuses on the case of equally

populated potential wells corresponding to a trap with aspect ratios α = 5.6 and β = 8,

allowing for a ground state consisting of two identical zig-zag chains (N1 = N2 = 22

ions) confined in each well, which is assumed to be the initial configuration.

In a first approach to understand the basic behavior of the coupled CCs, the potential

parameters are kept constant and only one of the outermost ions (ion 1, see fig. 5.1)

is displaced either in the axial (z-coordinate) or in the radial direction (x coordinate).

Already this simple case of coupled CCs displays interesting dynamics initiated by the

displacement of the ions, including an energy transfer between the crystals and the onset

of ion transfer over the potential barrier.

As a first attempt to show the impact of interaction between the two CCs separated by

a potential barrier, the energy transfer between them is studied. A small displacement

of ion 1 (fig. 5.1) in the radial or in the axial direction introduces a small change of

the total energy (sum of the kinetic and the potential energy) in one of the crystals

(CC1). In a decoupled system the total energy of each crystal will remain constant

after the initial displacement. In contrast, if the two CCs are coupled, the excited CC1

can transfer energy to the neighboring crystal (CC2). In the next subsection 5.1 the

time evolution of the energy of both CCs is analyzed in order to examine the strength

of their coupling.
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Figure 5.1: Schematic representation of the initial zig-zag ground state configuration of the ions in a
double well potential with α = 5.6, β = 8, Ci = 0.02 and z0 = 5.

5.1 Energy transfer

Here, in a system of two zig-zag CCs the energy dynamics, introduced by the displace-

ment of ion 1 in the axial direction, e.g. ∆z = 0.2, is investigated. In figure 5.2 the

time evolution of the total energy (kinetic and potential energy) for both crystals is

shown for long times (approximately 90 periods of the oscillation of ion 1). Obviously,

the total energy of CC 2 is not constant, i.e. an amount of energy is transfered from

the excited crystal to crystal2 and back. The total energy of both crystals evolves in

anti-phase and the energy transfer occurs fast in less than half a period of oscillation of

ion 1 as depicted in figures 5.2(a) and (b).
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Figure 5.2: Time evolution of the total energy of the excited crystal1 (black) and crystal2 (blue) in the
course of the dynamic (up to final time (a) tf = 300 and (b) tf = 5.5 ) for a displacement of ion 1 in
the axial direction (∆z = 0.2).

For each of the two CCs the potential energy consists of two contributions, the

Coulomb energy between the ions and their potential energy due to the trap. The
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energy transfer affects both of these contributions as shown in figure 5.3 (a). For both

CCs the Coulomb energy and the trap potential energy oscillate in time with a phase

difference π between them (figs. 5.3 (a) and 5.4 (a)). The amplitudes of the oscillations

are roughly ∆E = 0.02 in CC 1 (fig. 5.3 (a)) and ∆E = 0.01 in CC 2 (fig. 5.4 (a))

indicating a considerable amount (approximately 50 %) of energy transfer as shown in

figure 5.5. The total potential energies of the two CCs oscillate also in time with a phase

difference of π indicating their correlation.

The sum of kinetic energies of all ions in both crystals is more than two orders of

magnitudes lower (see figs. 5.3 (a) and 5.3 (b)) compared to the contribution of the

total potential energy. The reason for this is, that even a small change in the position

of an ions results in a large change in the Coulomb energy as well as in the trapping

potential energy.
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Figure 5.3: For the perturbed crystal: Time

evolution of (a) trapping potential (black) and

Coulomb energy (green) (b) trapping potential

plus Coulomb energy (black) and kinetic en-

ergy.
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Figure 5.4: For the unperturbed crystal: Time

evolution of (a) trapping potential (blue) and

Coulomb energy (red) (b) trapping potential

plus Coulomb energy (blue) and kinetic energy

(red).

To summarize, the displacement of an outermost ion of one crystal influences consid-

erable of the time evolution of the energy in both crystals. While the kinetic energy

of all ions is almost unaffected, the change of the total potential energy of both CCs

dominates the energy transfer, indicating a strong Coulomb coupling between them.

Another possibility to show the effect of coupling between two CCs is to compare the

motion of ions in the crystals 1 and 2 initiated by a displacement of an outermost ion.

In subsection 5.2 these motions are characterized allowing to estimate the propagation

of excitation above the potential barrier.
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Figure 5.5: The counter propagating total potential energy of the perturbed (black) and unperturbed
(blue) crystal.

5.2 Excitation propagation

As discussed in the previous section 5.1, a considerable amount of energy is transfered

between the CCs trapped in the double well potential. Although the ratio of kinetic

energy compared to the potential energy of the particles is small, the energy transfer

affected by the dynamics of the ions provides significant insight to understanding of the

coupling. As in section 5.1 the initial configuration is the symmetric double zig-zag chain

with the potential parameters Ci = 0.02, z0 = 5, α = 8, β = 5.6, while a displacement

of ion 1 excites the system. The initial excitation of ion 1 will delocalized in the course

of time as a result of the coupling of ions via the Coulomb interaction. In particular,

this excitation will travel in the form of distortion waves through the whole CC. The

pattern of the waves is expected to be different depending on whether displacement is

radial or axial, discussed separately in subsections 5.2.1 and 5.2.2, respectively.

In order to help the reader to identify different characteristic wave patterns in the dy-

namics of individual ions, some toy examples 3 of possible wave dynamics are presented

in figures 5.6 and 5.7. In figure 5.6(a) the simplest possible case is plotted when all ions

in the CC oscillate in phase with the same amplitude. With the index number of the

ion on the x-axis and the time on the y-axis, the amplitude of each ion is encoded by

color, leading to the stripes. Introducing a small phase shift between the ions, causes

waves travel through the crystal and the formerly horizontal stripes will become tilted

(fig. 5.6(b)). The checkerboard pattern in figure 5.6(c) is caused by a phase shift of

π and can be interpreted as an opposite motion of neighboring oscillators. A shock

wave resulting from an excitation propagating through the crystal (fig. 5.7(a)) can be

reflected at the end of the crystal flipping its amplitude (fig. 5.7(b)). A distortion wave

can be scattered either in the medium of the crystal itself or hitting another wave prop-

3The shown examples assume a cosine motion for the distortion waves and a Gaussian pulse for the
shock wave.
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Figure 5.6: Schematic toy examples of ion motions: (a) in phase oscillations of ions, (b) oscillations of
ions with a small constant phase difference and (c) oscillations with a phase difference of π between
neighboring ions.

agating through the crystal. In both cases bifurcations as in figure 5.7(c) will appear.

The different waves (distortion and shock waves) do not appear isolated but in complex

combinations. An example for such a combination of a shock wave (fig. 5.7(c)) propa-

gating in the background of ions oscillating in phase (fig. 5.6(a)) is shown in (fig. 5.7(d)).
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Figure 5.7: Schematic toy examples of a shock wave: (a) propagation through a crystal, (b) reflected
on the end of the crystal flipping its amplitude and (c) scattered in the medium, causing bifurcations.
(d) Combination of (c) and the case of figure 5.6(a).

There are two possible excitations of ion 1, a displacement in the radial (x) or in

the axial direction (z). The dynamics following the displacement of ion 1, heavily

depends on the magnitude of the displacement. A scan over the magnitudes of the

displacement in radial direction ∆x and, respectively, in axial direction ∆z, as well as

the characterization of the dynamics of the ions depending on their axial order are used

to categorize the regimes of excitations.

In particular, for values larger than ∆x > 0.33 or ∆z > 0.6 a reordering of the ions

in the excited crystal (figs. 5.8(b) and 5.9(b), respectively) can be observed, whereas
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Figure 5.8: The axial position for each ion in the Coulomb crystal to evaluate the order of ions for (a)
no reorder in both crystals (∆x = 0.32), (b) reorder only in the excited crystal (∆x = 0.37), (c) reorder
in both crystals (∆x = 1.64525) and (d) ion transfer (∆x = 1.745) by a radial displacement (∆x) of
ion 1 in the zig-zag chain configuration (z0 = 5, C = 0.02, α = 8, β = 5.6). Examples are marked with
a pink ellipse for reordering and with a black ellipse for transfer.
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Figure 5.9: The axial position for each ion in the Coulomb crystal to evaluate the order of ions for (a)
no reorder in both crystals (∆z = 0.5), (b) reorder only in the excited crystal (∆z = 0.9), (c) reorder
in both crystals (∆z = 5.11) and (d) ion transfer (∆z = 5.12) by an axial displacement (∆z) of ion
1 in the zig-zag chain configuration (z0 = 5, C = 0.02, α = 8, β = 5.6). Examples are marked with a
pink ellipse for reordering and with a black ellipse for transfer.
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for values larger then ∆x > 1.6445 or ∆z > 5.11 a reordering in the second crystal

(figs. 5.8(c) and 5.9(c), respectively) can also be observed. For values larger then

∆x > 1.646 or ∆z > 5.12 (fig. 5.8(d) and fig. 5.9(d), respectively) even a transfer of

an ion above the barrier occurs. Since the focus of the current section is on the study

of wave propagation through the CCs, small values for the initial displacement (radial

and axial) are chosen such that the ions do not reorder, but perform smooth non-linear

oscillations around their equilibrium position in the crystal.

In the subsections (subsecs. 5.2.1 and 5.2.2) the dynamics following a radial (∆x) and

an axial (∆z) displacement of the ion 1, respectively, is investigated.

5.2.1 Radial displacement of the outermost ion 1

Without loss of generality the ion 1 is displaced by ∆x = 0.01, a value, which is

much smaller than the radial expansion (maximal radial distance between two ions)

∆x = 0.4 of the initial zig-zag chain4. For such a displacement the axial order of the

ions is preserved. In order to develop an understanding of the ion dynamic, the analysis

concentrates on the time directly after the excitation of the ion 1, i.e., for a time period

t ≤ 30. Later time periods are dominated by the interference of ion oscillations, making

it particularly difficult to distinguish the different contributions.

The displacement of ion 1 alters the total potential energy of ion 1 as well as the total

energy of every other ion in the two crystals due to their Coulomb coupling. Therefore,

with this displacement the total potential energy of all other ions in the system is altered

too. The ions of both CCs start to oscillate in the radial and the axial directions as

shown in figures 5.10(b), (c) and 5.11(b), (c), respectively.

A clear view on the time evolution of the radial and axial displacements of ion 1 and

44 is provided by figures 5.10(a),(d) and 5.11(a),(d) allowing for an estimation of the

character and the period of their oscillations. Finally, figures 5.10 (e) and 5.11(e) depict

the initial configuration of the ions in the CCs, so that their axial position is indicated

by the values of the x-axis of figures 5.10(b), (c) and 5.11(b), (c).

In the radial component (figs. 5.10(b),(c)) the displacement shows a tilted stripe

structure as the one of figures 5.6(b), indicating the presence of a transversal wave

running through the CC. As shown by its distortion this is partly reflected in crystal1

and partly transmitted in crystal2. The amplitude of this wave is largest in the excited

crystal (compare fig 5.10(b) and (c)), as expected. Moreover, the dynamics of the

oscillation amplitudes exhibits bifurcations in crystal1 as shown in figure 5.10(b) and

(c), whereas the oscillation dynamics in CC 2 is more regular and the tilted stripe

4For an impression of the ion dynamics see movie [M.1].
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Figure 5.10: For a radial displacement (∆x = 0.01) of the ion 1 in the zig-zag chain configuration
(z0 = 5, C = 0.02, α = 8, β = 5.6) (a) the radial oscillation of ion 1 around its equilibrium position,
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Figure 5.11: For a radial displacement (∆x = 0.01) of the ion 1 in the zig-zag chain configuration
(z0 = 5, C = 0.02, α = 8, β = 5.6) (a) the axial oscillation of ion 1 around its equilibrium position, (b)
the axial oscillations of all ions in crystal1 and (c) crystal2 around their equilibrium position, (d) the
dynamic of ion 44 in axial direction around its equilibrium position, and (e) the crystal ground state
configuration. The colors stand for the displacement of each ion from its equilibrium position.
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structure is unperturbed by bifurcations for the shown time period. This is caused by

the much smaller oscillation amplitudes in crystal2 compared to the one in crystal1.

The displacement of ion 1 alters the effective potential of the ions resulting, apart from

their radial, also in their axial rearrangements, an effect that is stronger in crystal1.

The ions move collectively closer to the displaced ion and start to oscillate. This results

in adumbrating stripes, whose shape changes very fast in the perturbed crystal and leads

soon to a checker-board pattern of the amplitude, where neighboring ions oscillate out-

of-phase. Note that the amplitudes in the axial direction are half of the corresponding

ones in the radial direction.

5.2.2 Axial displacement of the outer most ion 1

In this subsection an outer most ion is displaced in the axial direction away from the

barrier5. The magnitude of the excitation is in the regime where the order of the ions

in the axial direction is preserved. The dynamics for this displacement will be analyzed

similarly to the case of radial displacement.

In figure 5.12 and figure 5.13 the dynamics of the ions following the displacement

∆z = 0.05 of ion 1 is shown up to time t = 30. For longer times the dynamics is

dominated by interference, making it complex to analyze it. The dynamics of ion 1 is

depicted in figure 5.12(a) (radial direction) and figure 5.13(a) (axial direction) whereas

the dynamics for ion 44 in figures 5.12(d) and 5.13(d). The collective dynamics of the

ions is shown for crystal1 in figures 5.12(b) (radial) and 5.13(b) (axial) respectively

and for crystal2 in figures 5.12(c) (radial) and 5.13(c) (axial) respectively, whereas the

ground state configuration is presented in (e).

As shown in subsection 5.2.1 the axial and radial components are coupled and an

excitation in one direction generates ion dynamics in both spatial directions. For the

axial displacement in the zig-zag chain, the radial component of the dynamics (fig. 5.12)

reaches the aforementioned checkerboard-like patterns very fast. The ions come closer

in the axial direction during their oscillations, a fact compensated by their spreading

in radial direction. This is indicated of the ions moving oppositely to their neighboring

ions in order to minimize their Coulomb interaction. It turns out that the subsequent

radial oscillations of the ions are two times smaller than the axial one.

In the axial direction the change of the total potential energy, caused by the displace-

ment, results in a longitudinal wave visible in figure 5.13 as a green stripe propagating

through crystal1. At time t ≈ 2.8 (fig. 5.18(b) and (c)) the wave reaches ion 22 and

then it partly overcomes the barrier and induces ion dynamics in crystal2. There, due

5For an impression of the ion dynamic see movie [M.2].
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Figure 5.12: For an axial displacement (∆z = 0.05) of the ion 1 in the zig-zag chain configuration
(z0 = 5, C = 0.02, α = 8, β = 5.6) (a) the radial oscillation of ion1 around its equilibrium position, (b)
the radial oscillations of all ions in crystal1 and (c) crystal2 around their equilibrium position, (d) the
dynamic of ion 44 in radial direction around its equilibrium position, and (e) the crystal ground state
configuration. The colors stands for the distance of the ion from its equilibrium position.
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Figure 5.13: For an axial displacement (∆z = 0.05) of the ion 1 in the zig-zag chain configuration
(z0 = 5, C = 0.02, α = 8, β = 5.6) (a) the axial oscillation of ion 1 around its equilibrium position, (b)
the axial oscillations of all ions in crystal1 and (c) crystal2 around their equilibrium position, (d) the
dynamic of ion 44 in axial direction around its equilibrium position, and (e) the crystal ground state
configuration. The colors stands for the distance of the ion from its equilibrium position.
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to the small amplitude, the propagation of the longitudinal wave is less influenced by

interference, the stripe structure is robust and, in the shown time period, it exhibits

only three bifurcations. Due to its larger excitation amplitude, the wave propagation in

the excited crystal is more structured (compared to the ion dynamics in crystal2) with

many bifurcations and an exhibition of the checker-board pattern before the longitudinal

wave reaches for the first time the end of crystal2. An enlarged picture (fig. 5.18) of (a)

the axial dynamics of ion 1, (b) of all ions in the excited crystal, (c) of ion 22 and (d)

the equilibrium configuration of the excited crystal are shown in order to analyze the

dynamics in more detail. The longitudinal wave (the first green stripe in figure 5.18(b)),

created by the displacement, runs unperturbed through the crystal.

Directly after the longitudinal wave passes ion 2 a second axial distortion influences

the subsequent wave dynamics. The second axial distortion is created by the motion of

ion 1 from its initial position (displaced by ∆z = 0.05) back to its equilibrium position

and runs as a shock wave trough the crystal1 (fig. 5.18). The shock wave reaches the end

of crystal1 at time t = 3.49. The propagation of the shock wave through the crystal is

visible in figure 5.18 as the stripe structure superimposed with the longitudinal waves.

The shock wave is mainly reflected at the barrier and thus affects less the crystal2

(fig. 5.13(c)). Due to the crystalline zig-zag structure (fig. 5.14) the waves are scattered

at the boundaries of the different parts (outer and inner part) of the crystal. The
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Figure 5.14: Schematic representation of a zig-zag chain configuration divided in the inner part (blue
circles) and outer parts (red circles).

scattering of the shock waves produces bifurcations and the interference of the waves

results immediately in a checker-board pattern starting on the boundaries of the inner

and outer parts of the crystal (compare fig. 5.18), dominating finally the wave dynamics.

In order to visualize better this shock wave the crystal should not exhibit boundary

effects and therefore the shock wave dynamic is investigated in the paradigmatic case of a

linear chain configuration6. In the linear chain configuration the outer ion 1 is displaced

6For an impression of the ion dynamic see movie [M.3].
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Figure 5.16: Ion dynamics in crystal1 in the linear chain configuration (z0 = 5, C = 0.02, α = 100,
β = 100) introduced by the axial displacement ∆z = 0.2 of ion 1 (a) the axial oscillation of ion 1,
(b) the axial oscillations of all ions in crystal1 and (c) crystal2 around their equilibrium position, the
dynamic of ion 22 in axial direction, and (d) the crystal ground state configuration.
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exemplary in axial direction by ∆z = 0.2 away from the crystal. The axial amplitude

dynamics of the excited linear chain for crystal1 is depicted in fig. 5.15 as a three

dimensional plot presenting the time evolution of the amplitudes and in figure 5.16(b)

as a color plot accompanied by the axial trajectories of ion 1 (a) and 22 (c). In both

figures one can clearly observe the propagation of the shock wave. The displacement

of ion 1 creates a longitudinal wave (the first yellow/orange stripe) followed directly by

the shock wave (the blue/green stripe). The shock wave dominates the wave dynamics

visible also in the trajectories of ions 1 and 22 in figures 5.16 (a) and (c). It is reflected

at each edge of the crystal and thus propagates through the crystal several times. Note

that the scattering at the boundaries is reduced compared to the wave propagation

in the zig-zag chain (see fig. 5.18). As in the zig-zag chain the shock wave interferes

apart with itself also with the longitudinal waves introduced by the change of the total

potential energy following the motion of the ions 1 and 22. These longitudinal waves

affect the shock wave propagation and cause bifurcations when they collide. Once again,

one observes that the interference effects are much smaller for the linear chain than for

the zig-zag chain. The shock wave is mainly reflected at the barrier (fig. 5.17). After

its first propagation through the excited crystal nearly 10% of the shock wave reaches

crystal2.
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Figure 5.17: Shock wave propagation in the linear chain configuration (z0 = 5, C = 0.02, α = 100,
β = 100) introduced by the axial displacement ∆z = 0.2 through (a) the excited crystal and (b)
crystal2.
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Figure 5.18: Ion dynamics in crystal1 (axial displacement ∆z = 0.05) in the zig-zag chain configuration
(z0 = 5, C = 0.02, α = 8, β = 5.6), (a) axial dynamic of ion 1, (b) the axial oscillations of all ions in
crystal1 around their equilibrium, (c) axial dynamic of ion 22, and (d) the ground state configuration
for crystal1. The propagation of the shock wave through the crystal is marked by straight black dashed
lines.

From the understanding of the wave dynamics of the linear chain configuration one

can identify also for the zig-zag chain configuration the shock wave and its propagation

through the excited crystal marked with the black dashed line in figure 5.18. The axial

displacement in the zig-zag chain configuration induces a longitudinal wave and a shock

wave. The specific structure of the crystals with inner and outer parts induces scattering

phenomena in the excited crystal. The interference of the waves results in checker-board

patterns directly after the start of the wave propagation.

5.2.3 Conclusions

In this chapter the ion dynamics and the energy propagation in a double zig-zag chain,

induced by a displacement of a single ion, is investigated. It turns out, that the main

energy transfer takes place between the external potential energy of the double well

trapping potential and the Coulomb energy. Furthermore, it was shown by investigating

the energy propagation that the two CCs are always strongly coupled by the Coulomb

interaction despite the presence of the potential barrier.

The ionic motions depend among others on the direction of the initial displacement.

For a radial displacement a stripe-like structure in the radial direction is found, identified

as transversal waves propagating through the two crystals. A displacement in the axial
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direction induces longitudinal waves as well as a shock wave. The waves generated by

the displacement are partly reflected at the barrier and partly overcome the barrier

initiating also a motion in the second crystal. The propagation of the shock wave, in

contrast to the longitudinal wave, is reflected on the barrier up to 90%. The zig-zag chain

configuration consists of an inner and two outer parts. The boundaries between these

parts induce scattering effects which influence strongly the propagation of the shock

wave. As a result of the interaction of the two existing waves including their reflections

in the crystal structure, bifurcations can be also found. Each directed displacement of

a single ion, either in the radial or in the axial direction, induces oscillations of all ions

even in the initially unexcited direction (axial or radial, respectively). For both kinds of

initial displacements a checker-board pattern for the ion dynamics can be found in all

directions of motion. This pattern results from the interference of different waves which

dominates the long time (t� 500) crystal dynamics.





CHAPTER 6

Quench dynamics of coupled zig-zag ion chains of equal size

The planar double zig-zag configuration is one of the main objectives for the present

thesis, because it is one of the most popular Coulomb crystals (CCs) realized in experi-

mental setups [34, 105] and used in theoretical works [32, 33]. Some of the characteristics

have been introduced already in chapter 5. Here, the dynamics for two zig-zag chains

of equal size after the quench of the double well barrier will be discussed. Two initial

zig-zag chain configurations can be prepared in the wells by applying a rotational sym-

metry in the coordinate origin (ground state: GS) (fig. 6.1(b)- right) or by applying a

mirror operation on the radial axis through the barrier (mirror state: MS) (fig . 6.1(b)-

left). These configurations are nearly degenerate with their potential energy differing

only by 10−10. Both configurations (GS and MS) are investigated here. The results

of this chapter are published in [106] and the discussion follows the line of arguments

there.

The initial configurations for the GS and the MS consist of 22 ions per well of the

double well potential (fig. 6.1) and are characterized by the parameters Ci = 1.26 ·10−2,

z0 = 3.97 α = ωx/ωz = 8.3 and β = ωy/ωz > 10.

The strong confinement in the y-direction prevents strong dynamics out of the x-z

plane. The intra-plane oscillations are quadratically suppressed for increasing distance

of the ions from the x-z plane.

The dynamics of the ions is started by a sudden quench of the barrier height between

the wells, here exemplary from Ci = 1.26 · 10−2 to Cf = 6.3 (For an impression of

the dynamic see movie [M.4]). The quench increases the coupling between the zig-

zag chains7 resulting in movement of the CCs closer to each other. The post-quench

configurations are still two zig-zag chains separated by a now lower barrier and the

energy excess of the quench is less than 2% in comparison with the initial system. In

7Before the quench (pre-quench) and after the quench (post-quench) the ion crystals in both wells are
coupled by Coulomb forces (compare chap. 5)
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Figure 6.1: (a) The double zig-zag equilibrium configuration in the double well potential, calculated for
α = 8.3, β > 10, z0 = 3.97 and C = 1.26 · 10−2. (b, c) Magnifications of the link between the two ion
chains for (b) the GS and (c) the MS. (d) The red/blue line shows the double well potential before/after
the quench. A lowered barrier enhances the coupling between the two ion chains [106].

the section 6.1 the post-quench dynamics of the ions is described and snapshots of the

arrangement of the ions in the course of the dynamics are presented and discussed.

To characterize these arrangements, the Voronoi measure is introduced in section 6.2

and the dynamics of the ions is compared to the time evolution of this measure. The

transition of the dynamics in the basis of eigenvectors in section 6.3 is used to analyze

the nonlinear dynamics.

6.1 Results

Before the quench the system is in the GS or the MS, respectively, and the ions oscillate

slightly around their equilibrium position. By changing the potential barrier height,

the new equilibrium state of the ions is no more congruent with the initial state, which

induces dynamics as depicted in figure 6.2 and movie [M.4]. Up to t ∼ 1.5 the dynam-

ics of the CCs is dominated by the center-of-mass motion of both zig-zag structures

towards each other (compare movie [M.4]). This collective motion is accompanied by
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Figure 6.2: Snapshots of the time evolution of N = 44 ions in the double well for the ground state
configuration (left column) and the mirror configuration (right column) as initial states. Parameters (in
scaled units): α = 8.25; z0 = 5/21/3; C is changed from 0.0126 to 6.26 [106].
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small oscillations of the individual ions. At t ∼ 1.5 the two chains begin to rearrange at

their boundaries close to the barrier, until the initial zig-zag order in radial direction is

completely destroyed. The axial order of the ions is still conserved for the whole sim-

ulation. In radial direction, a reordering process is observed, which is characterized by

phases having irregular ion oscillations alternating with phases featuring an unexpected

degree of order. As depicted in the sequence of figures in 6.2 (a) -(h), the ions can form

ordered structures such as lines, arcs and cross-like structures. Also partial revivals of

configurations in the dynamics can be observed. The symmetries of the chosen initial

configuration (rotational symmetry for the GS and mirror symmetry for the MS) is

conserved in the course of the dynamics. The set of ordered structures for the different

initial configurations can look similar (fig. 6.2(c)) or disparate (fig. 6.2(g)). For small

times t < 10 the visual impression of structural order seems to be in a good agreement

for both initial structures (fig. 6.2(a)-(e)). With increasing time the similarity in the

order decreases.

To classify the degree of order for the structures shown in figure 6.2, they have to

be quantified with a measure. In the next section such a measure based on Voronoi

diagrams [48] is introduced to characterize the structure dynamics.

6.2 Voronoi measure

In crystallography, the lattice unit cell is an important tool to characterizes the periodic

structure of a solid. For micro-structures with heterogeneous volume fractions, including

concentrations and patterns such as clusters, the unit cell is not a proper tool to describe

the arrangement of particles. Therefore, one often resorts to a method using Voronoi

cells or Voronoi diagrams (eg. [48]). A Voronoi diagram partitions a given region into

subsets based on the distance of each point in the region from the so called seeds (see

fig. 6.3). Each subset assigned to a specific seed (Voronoi cell) constitutes a region

consisting of all points closer to that seed than to any other. The Voronoi cells in the d-

dimensional Euclidean space possess in general an arbitrary polyedric shape. Here, the

minimum distance of the ions is of particular importance, hence a simple version of the

Voronoi diagrams is employed. Around each ion a d-dimensional sphere is constructed,

whose diameter is given by the distance to its nearest neighbor and the sum over all the

spheres yields the Voronoi measure:

A(t) = γ
∑
i

(
rij(t)

2

)d
(6.1)

where rij is the distance of particle i from its nearest neighbor j. The dimensionality
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Figure 6.3: Schematic representation of a Voronoi cell (gray area) of a seed/particle (red circles).

of the configuration is given by the variables d and γ. For the zig-zag chain it yields

d = 2 and γ = π, appropriate for a circular surface. For one dimensional configurations

like the linear chain, d = 1, and γ = 1 and for a three dimensional problem like spherical

configurations, d = 3 and γ = 4π/3. The Voronoi measure A(t) (eq. 6.1) is a measure

for the clustering of ions. Straight lines, arcs or crosses lead to low values, caused by

the small distances between the ions in these structures. A(t) would be also small for

a macro-cluster of ions. In this work ion clustering is prevented by the chosen trap

parameters. Larger values can be identified with a rather homogeneous distribution of

the ions.

For the initial configuration of the double zig-zag chain, in both cases (GS and MS)

the displacement in radial direction is much smaller than in axial direction. With

the Voronoi measure (eq. 6.1) the axial extension dominates and the dynamics in the

structure formation is lost. The average radial distance of adjacent ions is equated to

their average distance in axial direction by rescaling the z-coordinates of all ions to

z∗ = z · k with k = 0.04.

In figures 6.4(a) and 6.4(b), A(t) for the GS and the MS is shown, respectively. The

labeled points correspond to the snapshots presented in figure 6.2. All structures which

appear to be ordered from a visual impression and show ions arranged in arcs, lines or

crosses (fig. 6.2), lead to distinct minima in A(t). Irregular structures (fig. 6.2 (d) left

and right, (f) left, and (g) right) generate larger values for A(t).

The dynamics of A(t) for the GS (fig. 6.4(a)) and for the MS (fig. 6.4(b)) as initial

configuration are similar for small times t < 10. Hence, the alternating process gener-

ating ordered and disordered structures follows the same sequence. For larger times the

difference in the Voronoi measure increases. The very small difference in the distances

between the ions in the initial state change the complete course of the structure dynam-
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Figure 6.4: Time evolution of the Voronoi measure A(t) as defined in equation 6.1 for (1) GS and (3)
MS as initial configuration. Red squares show times at which snapshots in fig. 2 were taken for the
ground configuration (left column) and blue diamonds for the mirror configuration (right column). (2)
Insets illustrate the definition of A(t) as the sum of the areas of all shown circles. Upper and lower
insets illustrate how A(t) accounts for typical irregular and regular configurations respectively [106].

ics. This is visible in the time evolution of A(t) (see fig. 6.4) as well as in the sequence

of structures (fig. 6.2). The Voronoi measure is a suited tool to classify the emergence

of ordered ion structures originating from the double zig-zag structures. To visualize

the ensemble motion of the ions a normal mode analysis is used.

6.3 Normal mode analysis

For a small quench of the barrier, the dynamics can be approximated by linearized equa-

tions of motion. The dynamics is then governed a superposition of harmonic oscillations

in terms of normal modes [107] with constant oscillation amplitudes. The perturbation

induced by the chosen quench is beyond the linear dynamics. The crystal structure is

destroyed, but revivals and the oscillation between order and disorder imply a nonlinear
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regime which is not so far away from the linear one. It is possible to chose an arbitrary

basis to interpret the dynamics and it turns out that the linear modes are still useful. In

the nonlinear regime generally different normal modes are generally coupled and energy

transfer between them results in variation of normal mode amplitudes.

The eigenvectors Ei of the post-quench equilibrium configuration are numerically

calculated by diagonalizing the Hesse matrix of the system. These eigenvectors form a

basis of the N -dimensional configuration space (sorted by their eigenfrequencies). The

position of each ion at a fixed time t in this basis is:

(r1, .., rN ) (t) =
(
r eq

1 , .., r eq
N

)
+
∑
i

pi(t)Ei; (6.2)

Here, r eq
m is the position of the m-th ion in the post-quench GS/MS configuration and

pi(t) describe the population of the linear eigenvectors Ei. In the linear regime the

population coefficients reduce to pi(t) = Pi cos(ωi · t) with Pi being constant amplitude.
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Figure 6.5: Time evolution of the eigenvectors contributions p2
i (t) = (di(t) cos(ωit))

2 (color) for (a) the
ground state [106] and (b) the mirror state.

The population dynamics of the eigenvectors Ei as induced by nonlinear effects is

shown for the GS and MS in figures 6.5 (a) and (b). The population dynamics of both
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Figure 6.6: Time-dependent population of linear eigenvectors defined as p2
i (t) = (di(t) cos(ωit))

2 (color)
for different initial populations of the eigenvectors: (a) for the ground state configuration as initial
configuration with setting all but the population p2 to zero. (b) as in (a) but after setting all but the three
largest initial populations (p2, p4, p6) to zero. (c) Population of only one mode with p26(t = 0) = 0.11524.
Parameters as for figure 6.2 [106].
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configurations are similar and therefore the analysis is done for the GS exemplarily.

The population dynamics of the MS shows a similar behavior with respect to the mirror

symmetry of the system. The initial quench mainly populates the vectors E2,E4,E6

(fig. 6.5 (a) at t = 0). These belong to the slowest modes whose population is allowed by

symmetry parity. Figure (6.5 (a) shows that at t ∼ 1.5 a first significant energy transfer

to higher modes takes place, which is the time where the zig-zag configurations start to

rearrange, and then spreads more and more to other modes. Notably, the energy does

not spread in an arbitrary manner over a whole band of modes as expected for a purely

irregular or strongly chaotic system, but rather many of the eigenvectors either keep their

population for longer time periods or exchange them only pairwise (fig. 6.7) (compare

[108] for mode coupling within kinked crystal). This indicates that the dynamics of the

d
i(
t)
co
s
(ω

it
)

0

0.2

0.4

-0.2

-0.4

t (units of 1/ωz)

0 15 30

1

Figure 6.7: Magnification of the population dynamics of d40(t) cos(ω40t) and d41(t) cos(ω41t) as defined
in equation 6.2 for the GS as intial state.

ions is not irregular but possesses a high degree of order. The population transfer, which

takes place between individual linear normal modes, will be studied in the following.

To study the effects induced by the population of specific eigenvectors, one excludes the

remaining modes from the dynamics and only one (or several) of the linear eigenvectors

is populated and the resulting dynamics is explored. Thus, the contribution of E2 (see

fig. 6.6 (a)) which has the largest population after the quench, leads to a permanent

‘breathing’ oscillation of all ions in the left well and an opposite motion of the ions

in the right well. Accordingly, almost no transfer of population to other eigenvectors
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can be observed and the considered single mode excitation leads to persistent small and

periodic oscillations rather than inducing a reordering of the double zig-zag. Populating,

e.g., the three eigenvectors (E2, E4 and E6), which attract the strongest population,

leads to similar results: Only a small amount of energy is transferred to other modes

(fig. 6.6 (b)). There are, however, eigenvectors belonging to higher modes, whose initial

population, even if it is small, induces a hierarchical spreading of population between

different eigenvectors. In particular, a weakly populated vector E26 above p26(t = 0)

results in population dynamics which reproduces large parts of the occupation dynamics

as induced by the full problem (fig. 6.6(c)). Already a weak population of this vector does

therefore lead to significant nonlinear effects strongly mixing the linear eigenvectors. As

a result, it depends on the population of the eigenvectors whether the system responds

with small oscillations or with a complete loss of order in radial direction and the

dynamical reconfiguration of the ions into ordered (transient) structures.

6.4 Conclusions

Depending on the details of the excitation, the symmetric Coulomb crystal configura-

tions show a rich variation of dynamics. Regular oscillations around the equilibrium

configuration or a complete loss of order in radial direction followed by a sequence of

structures with ions arranged in lines, arcs and cross-like formations can be obtained.

The Voronoi measure (eq. 6.1) proves to be a suitable measure to characterize the

structure/formation dynamics. With the aid of eigenvector analysis, the linearity of

the dynamics can be evaluated. The presented case is in the nonlinear regime. The

breathing mode (eigenvalue E2) dominates the dynamics, but the emergence of the ob-

tained complex formation bases on the coupling of some of the eigenvectors due to the

non-linearity of the dynamics.



CHAPTER 7

Ion transfer among Coulomb crystals in a double-well potential

In the last chapter the rotational and mirror symmetric zig-zag chain configurations

of the double well potential have been analyzed. When the wells are symmetrically

populated, a quench in the barrier height results in symmetric dynamics of the ions

in the wells prohibiting mass and energy transport. In order to observe mass and

energy transfer, the symmetry of the initial configuration needs to be broken. Such an

asymmetric initial configuration can be achieved by displacing an ion far away from its

equilibrium position or by an imbalance of the number of ions per well. The dynamics

will be triggered by a quench of the barrier height8. The results from this studies have

been published in [109] and the discussion in this chapter follows from this publication.

7.1 Transfer dynamics

From the vast number of asymmetric distributions of ions in both wells, four prominent

ordered structures have been chosen (fig. 7.1): (a) the linear chain, (b) the already known

zig-zag configuration from chapters 5 and 6, (c) a ring structure in two dimension and

(d) a three dimensional shell structure. As stated above, the dynamics of the system

is initiated by a sudden quench of the barrier height between the two wells which is

characterized by the parameter C, i.e. a quench of the axial potential Vd from C = Ci

to C = Cf . The following non-equilibrium dynamics of the CCs including mass and

energy transfer between the Coulomb crystals (CCs) is therefore studied as a function

of Cf . Due to the excess of energy resulting from the quench of the barrier height, the

ions constituting the Coulomb crystals are set in motion.

Their dynamics is complex, involving among others a rather regular center of mass

(CM) motion of the crystals, shock waves, multiple scattering processes and transfer of

ions over the barrier caused by the asymmetric population of the two potential wells.

8For an impression of the ion dynamics see movies [M.5–M.7]
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Figure 7.1: Initial ion ground state configurations for different potential parameters: (a) linear chains for
α = 100, β = 100, (b) zig-zag chains for α = 5.6, β = 8, (c) circles for α = 1, β = 8, and (d) spheres for
α = 1, β = 1. The background of the figures encodes the values of the corresponding trapping potential.
All configurations and their dynamics are calculated in three dimensions with their dimensionality being
restricted only by the frequency ratios α and β [109].

Especially rotations and reordering of the crystals can be observed for the cases of the

circular and spherical GS configurations.

The ion transfer process between the two potential wells is analyzed first and then its

effects on the structure of the two Coulomb crystals is discussed.

7.1.1 Ion transfer

Among the features characterizing the ion transfer following a quench of the barrier

height, two aspects are particularly of interest: the time instant at which an arbitrary

ion passes above the barrier for the first time (tfirst) and how often each ion in the

Coulomb crystal travels back and forth between the two wells.

The results for the time tfirst of an arbitrary ion leaving the large crystal as a function

of the final quench value Cf are presented in figure 7.2 for the different trapping geome-

tries depicted in figure 7.1. For simplicity only the first four traveling ions are shown.

For all cases two qualitatively different regions can be distinguished. The first one – oc-

cupying the upper part of the plots in figures 7.2 (a)-(d) (large times tfirst > 10)- shows

a step-like behavior (with varying Cf ) consisting of several smooth regions separated

by gaps, whereas the lower part (small times tfirst < 10) exhibits a continuous behavior.
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Figure 7.2: Time instant of the first transfer (tfirst) of the first four traveling ions (order: first- blue
triangle, second- yellow squares, third- black dots, fourth- red diamonds) as a function of Cf for (a)
linear chains, (b) zig-zag chains, (c) circles, and (d) spheres. For smaller Cf values than the ones
depicted in the figures there is no ion transfer as explicitly shown in (a).

The value of Cf governs the number of ions that can be transferred. Each individual ion

transfer follow the same qualitative behavior with respect to its time scale. For small

quench amplitudes and subsequently large times tfirst the time instant of the first trans-

fer of each ion has a step-like character, whereas beyond a certain quench amplitude it

continuously decreases as a function of the final value Cf .

Without loss of generality, the focus is on the zig-zag configuration (fig. 7.2(b)) as a

characteristic example of this behavior, and only the transfer of the first ion (fig. 7.3)

is considered in the remaining part of this subsection. A necessary condition for the

transfer of an ion above the barrier is obviously that this ion is close to the barrier. Of

all the ions of the CCs, the ion closest to the barrier of the CC will be the most probable

candidate for an initial ion transfer. This is referred to as the innermost ion and its

transfer dynamics is analyzed. Such an analysis can be facilitated by examining a case

in which ion transfer, although energetically possible does not occur. This corresponds

to a quench value inside a gap in the graph of figure 7.3. which can be fulfilled by

choosing, for e.g. a value of Cf = 3.3403, thereby allowing an analysis of the long-time

dynamics of the innermost ion without interruptions by the ion transfer processes. The

time evolution of the axial position of the innermost ion of the large crystal, as well as
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Figure 7.3: Time instant of the first transfer of the first traveling ion as a function of Cf for the case of
the zig-zag chain (zoom of fig. 7.2(b))

its Fourier spectrum for Cf = 3.3403 are shown in figure 7.4. The motion appears to be

oscillatory and quite regular with a single dominant frequency. This is supported also

by the Fourier spectrum which essentially shows the contribution of three frequencies

with one frequency (largest amplitude) being dominant. In order to find out whether

this frequency is generic for this system, the Fourier spectra of the innermost ion motion

for four different values of Cf , which do not lead to transfer (fig. 7.5), are investigated.

Obviously, in all cases there is one predominant frequency in the range of ω ≈ 0.84

to 0.88, corresponding to a period T ranging approximately between 7.1 and 7.4. A

comparison of this period with the time tfirst in figure 7.3 leads to the conclusion that

the latter is equal to one or two times the period T (fig. 7.6) within a range of 3.5%. This

explains the existence of the steps in the ion transfer process as a direct consequence of

a preferred oscillation phase (closest to the barrier) of the innermost ion. What remains

to be answered is why not every time separation equal to the period T leads to transfer

and why some time separations between the steps are twice the period T , i.e. why

some steps are absent. To provide an answer to this question, it is essential to take into

account also the dynamics of the other ions in the Coulomb crystals.
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Figure 7.4: (a) The axial motion of the innermost ion of the zig zag configuration and (b) its Fourier
spectrum for Cf = 3.3403
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Figure 7.5: Comparison of the Fourier spectra of the innermost ion motion for 4 different values of Cf .
The color depicts their amplitude.
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Figure 7.6: The time instant for the first transfer of the innermost ion as a function of Cf for the
zig-zag configuration (zoom of fig. 7.3 with smaller stepsize of the scan). The horizontal lines mark the
multiples of the period T of the innermost ion.

Following the quench, all ions constituting the two Coulomb crystals move collectively

towards the barrier, as can be seen by inspecting their CM motion (fig. 7.7 (a)). Since

the two crystals interact via repulsive Coulomb forces, the repulsion exerted by the

small crystal hinders the transfer of the innermost ion of the large crystal. If the energy

introduced by the quench is high enough to overcome the Coulomb interaction and the

barrier, the innermost ion travels to the other well. Otherwise the two crystals start

to oscillate without any ion transfer, as depicted in their CM dynamics (fig. 7.7 (a)).

The Fourier analysis of this CM motion shows that the frequencies of the left and right

crystal differ (fig. 7.7 (b)) due to their different sizes. Therefore, there is a variety of

possibilities for the position of the CM of the both crystals during the time evolution

(see fig. 7.7(a)): (i) they can both be close to the barrier (line A in fig. 7.7(a)), (ii) both

can be far away from the barrier (line B in fig. 7.7(a)), (iii) the large crystal can be

close to the barrier and the small far away (line C in fig. 7.7(a)) or (iv) vice-versa of

(iii) (line D in fig. 7.7(a)). Obviously, case C is optimal for the transfer. The two CM

frequencies depend on the value of the barrier height, thus the time instant when the

optimal conditions are fulfilled changes slightly with Cf . This leads to different time

scales for ion transfer which appears as different steps in figure 7.6. Depending on Cf
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line) for the zig-zag configuration with Cf = 3.3403. The vertical lines A,B,C,D mark the time instants
during the dynamics corresponding to qualitatively different positions of the two Coulomb crystals.
The horizontal line E denote the initial amplitudes of the CM motion of the large crystal. (b) The
corresponding Fourier spectra for the large (black- ωp = 0.868 and ωb = 1.0264) and the small crystal
(dashed red with squares- ωp ≈ 1.0323 and ωb ≈ 0.868).

it is possible, that the innermost ion is close to the barrier when the CM of the larger

crystal is not and thus due to the lack of energy the ion transfer is prohibited. This

leads to some steps being suppressed. The subsequent steps appear after a time 2T

(fig. 7.6). Apart from the main frequencies ωp for the two crystals, additional beating

frequencies ωb (fig. 7.7(b)) can be observed as well. As a consequence, the amplitude is

modulated (see fig. 7.7 (a)) which also influences the transfer dynamics. The pairs of

ωp, ωb frequencies for the small and the large crystal are approximately degenerate, a

fact that can be attributed to their Coulomb coupling.

Another feature of the CM dynamics is the damping of the oscillations of the big

crystal within time (fig. 7.7(a) line E), thereby limiting the time available for ion transfer

and giving rise to the observed gaps of figures 7.2 and 7.3. The origins of this damping are

the repulsive interactions between the two crystals, the transfer of energy in the radial

directions, especially along the least confinement, and the mode coupling between the

CM modes and other modes due to the inherent nonlinearity of the system.
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On the other hand, if the energy introduced by the quench is large enough, the

dynamics of the CM motion cease to rule the transfer process of an ion, resulting in a

smooth behavior of the time tfirst as a function of Cf (fig. 7.2 the lowest stairs in the

transfer dynamics).

So far the focus of the discussion has been on the first time instant at which an ion

is transferred from one well to the other. But an ion can travel back and forth thereby

crossing the potential barrier several times. To extract information on the number of

transfers per ion, the ions are sorted in their initial configuration according to their

positions in the axial direction in increasing order and for each state the number of

transfers occurring during the course of the dynamical evolution was counted . Accord-

ingly, the first 13 ions are in the small and the next 20 in the big crystal at t = 0. In

figure 7.8 the results for the different initial configurations (fig. 7.1) are shown. For the
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Figure 7.8: Number of transfers per ion as a function of Cf for (a) linear chains (b) zig-zag chains (c)
circles (d) spheres. The (pink) dashed line separates the ions of the small from the ions of the large
crystal.

linear and the zig-zag configurations (the considered region of Cf in figure 7.2) only five

ions travel (compare figs. 7.8(a) and (b) for Cf < 6) . These are the ions which are

located in the big crystal closest to the barrier (ion numbers 14 to 19). These 5 ions
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travel forth and back over the barrier several times during the simulation time, whereas

none of the other ions in the two crystals ever crosses the barrier (fig. 7.8 (a), (b)). The

reason for this is the strict confinement in the radial direction for these two cases which

is especially true for the linear chains. For the zig-zag chain, as long as the order of the

ions in the axial direction is preserved, the exclusive transfer of only 5 ions is observed.

But for larger values of Cf > 6.5, (where the strict axial order is destroyed) other ions

cross the barrier. (compare fig. 7.8 (b)).

In contrast to the above to cases, for the cases of the circle and sphere configurations

(fig. 7.8 (c), (d)) all ions can be transferred. Because of the low frequency aspect ratios

(α = 1) of the radial confining potentials, these configurations enable rotations of the

whole crystal as well as rearrangements with respect to the order of the ions. Thus,

in the course of the dynamics, the order of the ions in the axial direction changes for

larger Cf as a nearly uniform distribution of the number of transfers among the ions

of the two crystals. The ion transfer processes affect the order and the structure of the

involved CCs. This is analyzed in the next subsection.

7.1.2 Crystalline order

The ion transfer processes discussed above yield complex non-equilibrium dynamics

of the two resulting Coulomb crystals involving alternating disordered and re-ordered

phases. In order to characterize and analyze the ordering of the resulting crystals, the

Voronoi measure introduced in chapter 6 is used. The time evolution of this measure

has been proven to capture well the change in the crystalline order of Coulomb crystals

during dynamics [106]. In contrast to chapter 6 the two Coulomb crystals have different

sizes causing them to behave differently. Therefore, for each crystal located in a certain

well, its Voronoi measure is determined, taking as well into account that the number of

ions per well (crystal) changes in time due to the ion transfer processes. The Voronoi

measure is redefined as:

Ω(t) = γ
1

N

∑
i

(
rij(t)

2

)d
(7.1)

where N is the number of ions in the well and rij is the distance of each ion i from its

nearest neighbor j.

In the course of the dynamics, the system of ions alternates between clustered and

dispersed phases resulting in an alternating Voronoi measure. The clustered structures,

which at first glance give the impression of an ordered phase, lead to low values of the

Voronoi measure, whereas a scattered distribution of the ions leads to larger values of

Ω(t) [106].
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Figure 7.9: Snapshot of the two Coulomb crystals (small blue dots, large red dots) and the respective
Voronoi spheres (gray circles) used to calculate the Voronoi measure. Here the trapping parameters are
chosen so that the two crystals self-organize in circular shells (see fig. 7.1 (c)). The snapshots correspond
to a value Ω = 2.85 for the small and Ω = 3.35 for the larger crystal.

An example of the time evolution of the Voronoi measure Ω(t) after the quench of the

barrier height is shown in figure 7.10 (a) for the zig-zag Coulomb crystals (fig. 7.1 (b)) for

the final quench value Cf = 3.34, for which a single ion is transfered at t ≈ 59 (figs. 7.2

(b) and 7.3). For comparison, the time evolution of the axial coordinate of the traveling

ion is presented in figure 7.10 (b). Initially (i.e. before the ion transfer) one can observe

that the Voronoi measure exhibits regular oscillations with a much larger amplitude for

the large crystal compared to the smaller one. This can be attributed to the larger

shell diameter of the former which allows for larger deformations (i.e. compressions and

expansions).

At the time instant when the ion crosses the barrier (fig. 7.10 (b)), the Voronoi

values of both the large and the small crystal exhibit a prominent peak (fig. 7.10 (a)).

This results from the change in the number of ions per crystal and the fact that the

distance of the traveling ion from its nearest neighbors is maximum when it crosses

the barrier. After the ion transfer, the Voronoi measure of the small crystal performs

highly irregular oscillations with an increased amplitude, relating to the irregular and

disordered dynamics of the ions constituting the crystal (crystal melting). In contrast,

the oscillation amplitude of the Voronoi measure for the large crystal decreases slightly

after the ion transfer due to the increase in the available space for the ion dynamics and
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Figure 7.10: The time evolution of (a) the Voronoi measure (Ω) of the two ion crystals (large ion crystal-
black and small ion crystal- light blue) and (b) the axial position of the innermost ion for the zig-zag
configuration and Cf = 3.34

the substantial loss of energy caused by the loss of the highly energetic traveling ion.

Similar to the case of the smaller crystal the oscillations after the transfer become more

irregular involving multiple frequencies.

These results suggest that the Voronoi measure Ω(t) and especially its oscillation

amplitude encapsulates substantial information on the out-of-equilibrium many-body

ion dynamics following the quench of the barrier height. Nevertheless, in order to

analyze the crystalline order as a function of the final quench parameter Cf , it would

be useful to characterize each time series by a single value. A measure related closely

to the average oscillation amplitude of Ω(t) (i.e. capturing well the average dynamics of

the crystals) is its standard deviation ∆Ω in time. An increase of ∆Ω is accompanied

by an increase of the fluctuations in the Voronoi measure Ω(t), i.e. the ion structures

alternate strongly between the clustered and dispersed orientations.

The resulting values for the standard deviations ∆Ω as a function of Cf are shown

in figure 7.11 for the different trapping potentials examined (fig. 7.1). The standard

deviation ∆Ω for the one (fig. 7.11 (a)) and two-dimensional (figs. 7.11 (b),(c)) ion con-

figurations are highly irregular but for the three-dimensional configuration (fig. 7.11 (d))
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it is rather well structured, giving immediate access to relevant information.

Focusing on the noisy character encountered for example in the case of the linear

chain (fig. 7.11(a)), it turns out that this is due to multiple ion transfer processes.

This can be inferred from an inspection of figure 7.12, where the behavior of ∆Ω is

compared to that of the number of transfers per ion as a function of Cf in the interval

Cf ∈ [2.6, 2.85]. Obviously, every small change in the transfer dynamics results in a

substantial change in the standard deviation of the Voronoi measure ∆Ω, yielding the

highly irregular pattern of the latter (fig. 7.12). Although there are intervals of ∆Ω

exhibiting a relatively smooth behavior as a function of Cf (especially for lower values

of Cf ), the overall pattern for the zig-zag and the circle configurations (figs. 7.11 (b),

(c)) is quite noisy and resembles the case of the linear chain (figs. 7.11 (a), 7.12).

In contrast, for the case of the spherical configuration (fig. 7.11 (d)) a rather regular

behavior of ∆Ω as a function Cf can be observed.
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Note here that among others the Voronoi measure and its standard deviation depend

also on the dimensionality of the configurations (eq. 6) and the space available for

motion. Therefore, the values of ∆Ω for the three-dimensional configuration (fig. 7.11

(d)), where the available volume for the corresponding motion is greatly enhanced, are

orders of magnitude larger than those of lower dimensionality (fig. 7.11 (a)-(c)). This

results in the former being less sensitive to small deviations, yielding the overall regular

pattern of ∆Ω for the case of spheres.

In particular, it is observed that ∆Ω exhibits a quite smooth step-like behavior inter-

rupted by pronounced peaks as Cf increases. In order to understand this behavior, the

Cf - dependence of the two quantities characterizing the ion transfer, i.e. the number of

times each ion in the Coulomb crystal travels back and forth between the two potential

wells (fig. 7.13 (a)) and the time instant at which an arbitrary ion passes above the

barrier for the first time (fig. 7.13 (b)), are compared. For a large range of Cf , in which

an additional ion transfer occurs, the standard deviation of the Voronoi measure ∆Ω

possesses a peak, followed thereafter by the step-like behavior of the other quantities

(figs. 7.13 (a) and (b)). This can be interpreted as an increase of the structural disorder

in the two crystals induced by the increasing number of ion transfer processes. This is

maximized each time a new ion gets transferred.

7.2 Conclusions

A quench of the potential barrier height in the double well potential occupied by CCs

of different sizes introduces complex dynamics governed by ion transfer processes from

one well to the other, depending on the quench amplitude. The time instant at which

an arbitrary ion passes the barrier for the first time shows a step-like behavior as a

function of the quench amplitude. Analyzing the crystal dynamics, it turns out that the

quantities determining whether ion transfer finally occurs are the center of mass motions

of both crystals and the oscillation frequencies of the innermost ion. Following the ion

transfer, the dynamics of the two crystals becomes rather irregular and is characterized

by structural disorder as well as reordering of the particles. A good quantity to char-

acterize the crystalline order is the so-called Voronoi measure. Its standard deviation

in time reflects well the degree of the structural disorder resulting from the quench and

serves as a good indicator for the ion transfer processes.



CHAPTER 8

Conclusions and future directions

Coulomb crystals are fascinating objects which can be used to study linear [31, 110]

and non-linear dynamics of ions [52, 56]. In recent years, the development of segmented

Paul traps [40, 41] opened new research fields with a manifold of physical questions,

concerning transport [42], splitting of Coulomb crystals (CCs) [43–46] or the coupling

of individual ionic structures [106, 109].

The presented work investigates the equilibrium states of coupled CCs in a double

well potential which is disturbed by either a displacement of an outer ion or a quench

of the barrier height.

In chapter 5, the symmetric double zig-zag chain configuration is disturbed by the

displacement of an edge ion. The perturbation of the system results in an energy transfer

between the crystals. This transfer can be observed as longitudinal and transversal

waves as well as shock waves which run through the crystal and are reflected at or

transmitted through the barrier due to the Coulomb coupling. Multiple reflections and

transmissions, phase shifts and the coupling of the radial and the axial directions result

in rich wave dynamics.

In chapter 6 the initial symmetric double zig-zag chain configuration is excited by a

quench of the barrier height. Oscillations around the equilibrium configuration alternate

between a complete loss of order in radial direction and regular patterns. Order can

be observed as ions arrange in lines, arcs and cross like formations [106]. The struc-

tural dynamic is analyzed by a measure based on Voronoi diagrams [48]. Structures

with a higher degree of order, e.g. arcs and lines, correspond to small values in the

Voronoi measure. Furthermore, the dynamics of the crystals is analyzed in the basis of

eigenvectors of the post-quench system. Population transfers from one eigenvector to

the others can be observed. Some eigenvectors are coupled, their population dynamic

proceed counter propagating. It is found that the analysis of the dynamics in the basis

of eigenvectors is a suitable tool, as well for the investigated non-equilibrium dynamic.
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The non-equilibrium dynamics of two Coulomb crystals of different sizes occupying

the individual wells of a double-well potential, subject to a quench of the potential bar-

rier height, has been explored in chapter 7. Depending on the quench amplitude, the

complex dynamics is governed by ion transfers between the wells due to the asymmetric

population of the wells [109]. For all investigated initial configurations the point in time

at which an arbitrary ion passes the barrier for the first time exhibit a step-like depen-

dence on the quench amplitude. By analyzing the double zig-zag chain configuration,

without loss of generality, it turns out, that the main features of this dependence are

determined by the center of mass motions of both crystals and the oscillation frequencies

of the innermost ion, i.e. the ion closest to the barrier. Following the ion transfer, the

dynamics of the two crystals become rather irregular and are characterized by struc-

tural disorder as well as reordering of the particles. As before the Voronoi measure has

been used to characterize the crystalline order. Its temporal standard deviation reflects

the degree of the structural disorder resulting from the quench and serves as a good

indicator for the ion transfer processes well.

Possible future directions in the study of coupled Coulomb crystals include the in-

vestigation of two Coulomb crystals (with or without defects), separated by a potential

barrier, which might allow a transport of medium-sized crystals (i.e., 10 − 100 ions)

as well as combining crystals. Another promising direction for future research is the

non-equilibrium dynamics of Coulomb crystals in multiple-well potentials resembling

the optical lattices as used in studies of ultra cold atoms [111]. Finally, an investi-

gation of the parameter regime allowing the system to exhibit its quantum character

would also be of interest. It is expected that in such a case quantum tunneling would

add to the classical over-the-barrier ion transfer shown here, giving rise to even richer

non-equilibrium dynamics.

8.1 Possible experimental realization

Finally, the possible parameters for the experimental realization of the presented setup,

employing state of the art ion technology, is addressed. Typical experimental parameters

for segmented Paul traps are ωrf/2π=(4.2 to 50) MHz and Urf=(8 to 350) V with applied

DC voltages in the axial direction up to 10 V [44, 112]. Depending on the ion species

and trap design this result in a radial confinement frequency ω/2π=(1 to 5) MHz and

in an axial confinement frequency ωz/2π=(0 to 5) MHz. For the ion dynamics only

the frequency ratio α = ω
ωz

matters and given the aforementioned frequency ranges the

scenario studied in this work of α = 8.25 could be realized choosing e.g ω/2π = 4.5 MHz

and ωz/2π = 0.545 MHz. The parameters z0 and C determining the well positions and
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the barrier height, respectively, depend on the axial DC voltage and the trap geometry.

Thus realistic values for the former are of the order of 30 µm and for the latter up to

300 µm2 · MHz2. The ion configurations can be imaged during their non-equilibrium

dynamics by using fluorescence light [35, 44].
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Christian Fey, Kevin Keiler, Maxim Pyzh, Aritra Mukhopadhyay, Jie Chen, Christian

Morfonios, Frederic Hummel and Till Jahnke.

Vielen Dank an alle in der Arbeitsgruppe für die schöne Zeit und die aufmunternden
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