
 

Effects of land use and vegetation changes on soil 

erosion of alpine grazing lands 

- 

 Fergana Range, Southern Kyrgyzstan 

 

 

 

Kumulative Dissertation   

zur Erlangung des Doktorgrades der Naturwissenschaften 

an der Fakultät für Mathematik, Informatik und Naturwissenschaften 

Fachbereich Geowissenschaften 

der Universität Hamburg 

 

 

vorgelegt von 

Maksim Kulikov 

aus Zarafshon, Usbekistan 

 

 

Hamburg, 2018 

  



  



 

 

 

 

 

 

 

 

 

Als Dissertation angenommen am Fachbereich Geowissenschaften 

 

Tag des Vollzugs der Promotion:  30.10.2018 

  

Gutachter/Gutachterinnen: Prof. Dr. Udo Schickhoff 

 Dr. Alexander Gröngröft 

  

Vorsitzender des Fachpromotionsausschusses 

Geowissenschaften:  

 

Prof. Dr. Dirk Gajewski 

Dekan der Fakultät MIN: Prof. Dr. Heinrich Graener 

 

  



  



 

 

 

 

 

"Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation mit dem 

Titel: „Effects of land use and vegetation changes on soil erosion of alpine grazing lands - 

Fergana Range, Southern Kyrgyzstan“ selbstständig verfasst und keine anderen als die 

angegebenen Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten 

Internet-Quellen – benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus 

Veröffentlichungen entnommen wurden, sind als solche kenntlich gemacht. Ich 

versichere weiterhin, dass ich die Dissertation oder Teile davon vorher weder im In- noch 

im Ausland in einem anderen Prüfungsverfahren eingereicht habe und die eingereichte 

schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.“ 

 

Hamburg, August 2018 

  



  



Acknowledgements 

 

First, I would like to thank my supervisors Prof. Dr. Udo Schickhoff and Dr. 

Alexander Gröngröft, for their guidance and assistance through all these years of 

seemingly everlasting Ph.D. project. Their expertise, advices and motivation kept 

me working in the right direction. 

I am also very grateful to Dr. Elke Fischer, Dr. Olaf Conrad, Prof. Dr. Jürgen 

Böhner, Dr. Stefan Kern and Dr. Georgy Lazkov for their constant and tireless 

support, advices and expertise in the field, in the laboratory and with GIS, this 

entire endeavor would not be possible without them. 

I am also very appreciated to Niels Schwab, Peter Borchardt and Bolot Tagaev, 

the friends who granted me so much of their time and invaluable advices that their 

input into this work and my wellbeing cannot be overestimated. 

The big thanks and hugs go to my numerous office and mountain friends: Li, 

Jelena, Alina, Birgit, Anna, Julia, Janne, Sabrina, Lena, Eli, Franzi, Maria, Benni, 

Martin, Björn, Jan, Lars, Alex and many others for their small talks and large 

chats, offers here and there, their company at lunches and in bars, and for just 

being such wonderful people. 

Volkswagen Foundation, Hannover, Germany and Deutscher Akademischer 

Austauschdienst, Bonn, Germany are greatly appreciated for their financial 

support. Thank you very much to the entire SAGA team, Q GIS team, R team, 

Python team, NASA, USGS, SRTM, ASTER, DWD and ICDC, these wonderful 

software and data was the key stone of this work. 

I am very thankful to my parents, my brother, my wife and friends for their 

patience, constant support and not yawning at times, when I was carried away by 

talking what my work actually is and when it would be finished. 



 



List of figures 

1 
 

Contents 

List of figures ....................................................................................................................... 2 

List of tables ......................................................................................................................... 3 

List of acronyms .................................................................................................................. 4 

Zusammenfassung ................................................................................................................ 5 

Abstract ................................................................................................................................ 8 

1. Introduction ................................................................................................................ 10 

2. Study area ................................................................................................................... 13 

2.1 Climate ..................................................................................................................... 13 

2.2 Vegetation ................................................................................................................ 19 

2.3 Soils .......................................................................................................................... 26 

2.4 Human impact .......................................................................................................... 29 

3. Soil erosion modelling ................................................................................................ 33 

3.1 USLE and its derivatives .......................................................................................... 33 

3.2 GIS and soil loss modelling ..................................................................................... 37 

3.3 Digital soil mapping ................................................................................................. 40 

3.4 Soil sampling design and validation ......................................................................... 43 

4. Modelling of climate and vegetation interactions ...................................................... 46 

4.1 Review of climate and vegetation studies ................................................................ 49 

4.2 Vegetation mapping and sampling design ............................................................... 53 

5. Overview of original publications .............................................................................. 56 

5.1 Article I .................................................................................................................... 56 

5.2 Article II ................................................................................................................... 57 

5.3 Article III .................................................................................................................. 58 

5.4 Article IV .................................................................................................................. 59 

6. Results ........................................................................................................................ 61 

7. Conclusions and outlook ............................................................................................ 65 

List of publications ............................................................................................................ 69 

Oral presentations .............................................................................................................. 69 

References .......................................................................................................................... 70 

Attachment: Original publications ..................................................................................... 83 

Article I .......................................................................................................................... 83 

Article II ......................................................................................................................... 95 

Article III ...................................................................................................................... 110 

Article IV ...................................................................................................................... 130 

 



List of figures 

2 
 

List of figures 
 

Figure 1. Study area. .......................................................................................................... 14 

Figure 2. Climatic zones (for details see Table 1). ............................................................ 16 

Figure 3. Geobotanical regions of the first and second order, adopted from Vykhodtsev 

(1966) and Adyshev et al. (1987). The geobotanical regions of the first order are 

differentiated by colors, and those of the second order – by boundaries and their 

respective titles................................................................................................................... 22 

Figure 4. Soil provinces and soil districts, adopted from Mamytov (1974) and Adyshev et 

al. (1987). The soil provinces are differentiated by colors, and soil districts – by 

boundaries and their respective titles. ................................................................................ 27 

Figure 5. Spatial clusters of vegetation-climate interactions. ............................................ 63 

 

  



List of tables 

3 
 

List of tables 
 

Table 1. Characteristics of climatic zones (Iliasov et al. 2003). ........................................ 17 

 

  



List of acronyms 

4 
 

List of acronyms 
 
ARIMA - Autoregressive Integrated Moving Average 
ARMA - Autoregressive Moving Average 
ASTER - Advanced Spaceborne Thermal Emission and Reflection Radiometer 
CAIAG - Central-Asian Institute for Applied Geosciences 
DEM – Digital Elevation Model 
DWD – Deutscher Wetterdienst 
EOF - Empirical Orthogonal Function 
FAO – Food and Agriculture Organization 
GDEM – Global Digital Elevation Map 
GDP - Gross Domestic Product 
GIS – Geographic Information System 
GPS – Global Positioning System 
ICDC - Integrated Climate Data Center 
KRSU – Kyrgyz Russian Slavic University 
LOESS - LOcally wEighted regreSsion Smoother 
MODIS - Moderate Resolution Imaging Spectroradiometer 
MUSLE – Modified Soil Loss Equation 
NASA - National Aeronautics and Space Administration 
NDVI – Normalized Difference Vegetation Index 
PCA - Principal Component Analysis 
RUSLE – Revised Universal Soil Loss Equation 
SAGA – System for Automated Geoscientific Analysis 
SER – Soil Enhancement Ratio 
SLR – Soil Loss Ratio 
SRTM - Shuttle Radar Topography Mission 
STL - Seasonal and Trend decomposition using LOESS 
USGS - United States Geological Survey 
USLE – Universal Soil Loss Equation  



Zusammenfassung 

5 
 

Zusammenfassung 
Das Gedeihen der menschlichen Zivilisation hängt stark von den Ökosystemen und den 

von ihnen erbrachten Dienstleistungen ab. Dazu zählen Bodenbildung und 

Stoffkreisläufe, Primärproduktion auf Weideland, Niederschlag und Temperaturregime 

und viele weitere. Viele der bestimmenden Faktoren stehen in ständiger Wechselwirkung 

und die zunehmende intensive anthropogene Nutzung vieler Ökosysteme verschiebt die 

Gleichgewichte in empfindlichem Masse. Daher ist es wichtig zu verstehen, wie und in 

welchem Umfang die Ökosysteme nachhaltig genutzt werden können und was dies 

konkret für das Nutzungsmanagement natürlicher Ressourcen bedeutet. Daher bestand 

das Hauptziel der vorliegenden Promotionsarbeit darin, die Wechselwirkungen zwischen 

Vegetation, Boden und Klima zu modellieren unter Berücksichtigung der Auswirkungen 

menschlicher Nutzung der natürlichen Ressourcen. Das Hauptziel der Arbeit ist die 

Untersuchung der Auswirkungen bestehender Weidepraktiken auf das Weideland, die 

Bodenbeschaffenheit und Vegetationsressourcen, sowie die Abhängigkeit der 

Weidevegetation von klimatischen Faktoren und damit verbundener Bodenerosion. 

Das Forschungsgebiet dieser Dissertation liegt in der Fergana Range im Süden von 

Kirgisistan. Die Forschung konzentrierte sich auf Berggebiete, die von der lokalen 

Bevölkerung als Sommerweiden genutzt werden. Das Arbeitsgebiet erstreckt sich über 

subhumid-semiaride Berghänge mit beweideter subalpin-alpiner Mattenvegetation. Der 

maximale Niederschlag fällt im Frühling. Die Topographie des Untersuchungsgebietes 

weist unterschiedliche Hangneigungen und Höhen zwischen 2000 und 3000 M.ü.M. auf. 

Die Komplexität des Forschungsgegenstandes bedingt eine umfassende 

Betrachtungsweise und die Berücksichtigung verschiedenster Aspekte. Während der 

Feldkampagnen wurden Bodenproben und Vegetationsinformationen zusammen mit 

Daten zum Beweidungseinfluss gesammelt. Die Bodenproben wurden im Labor des 

Instituts für physische Geographie der Universität Hamburg analysiert. Die 

Fernerkundungsdaten stammen von frei verfügbaren Quellen (Landsat, SRTM, ASTER 

und MODIS). Die Arbeit umfasste die eingehende Analyse aller erhobenen Daten, die 

Modellierung der Wechselwirkungen zwischen den bestimmenden Umweltfaktoren und 

die Visualisierung in Form von digitalen Karten, um diese Interaktionen zu 

veranschaulichen. 
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Die Risiken der Bodenerosion wurden mit dem RUSLE-Ansatz (Revised Universal Soil 

Loss Equation) durch die Berechnung der Bodenerodierbarkeit und des 

Vegetationsschutzfaktors (K-Faktor und C-Faktor) und ihrer Beziehung zu Klimafaktoren 

bewertet. Für die K-Faktor-Schätzung wurden Bodenproben gesammelt, welche die 

verschiedenen Geländeeigenschaften repräsentieren. Diese wurden im Labor zur 

Bestimmung der Korngrößenverteilung und dem Gehalt an organischer Substanz 

analysiert, welche für die Berechnung des K-Faktors verwendet wurden. Dann wurde eine 

K-Faktor-Karte mit universellem Kriging erstellt, wobei räumlich explizite 

Geländefaktoren als Hilfsdaten verwendet wurden. Die Abhängigkeit bestimmender 

Bodenmerkmale von der Topographie ermöglichte schließlich die Entwicklung eines 

Schemas für die Modellierung der Bodenerodierbarkeit im Fergana-Gebirge. 

Der Vegetationsbedeckungsschutz oder das Bodenverlustverhältnis (C-Faktor) wurde aus 

Vegetationszustandsdaten berechnet, die im Feld gesammelt wurden. Dann wurde die 

Karte des C-Faktors mit universellem Kriging für verschiedene Monate entwickelt, die 

auf monatlichen NDVI (Normalized Difference Vegetation Index) Bildern und jährlichen 

Phänologiedaten basierte. Klimadaten wie Temperatur und Niederschlag wurden von 

einer lokalen Wetterstation gesammelt. Der Weidedruck wurde mit Interviews von Hirten 

im Feld bewertet. Der C-Faktor indiziert zeitliche Korrelationen mit klimatischen 

Faktoren mit zeitlicher Verzögerung und räumliche Korrelationen mit Beweidungsdruck 

und Geländeeigenschaften. 

Die Modellierung von Vegetations- und Klimazusammenhängen erfolgte in größerem 

Maßstab - für das gesamte Land. Der NDVI wurde räumlich und zeitlich mit klimatischen 

Faktoren wie Temperatur und Niederschlag korreliert. Das Korrelationsmuster und die 

Stärke der NDVI-Vorhersagbarkeit mit dem Klima variierten zwischen verschiedenen 

Teilen des Landes. Basierend auf dieser Variation wurden fünf Cluster entwickelt, die das 

Gebiet ähnlicher Vegetations-Klima-Wechselbeziehungen charakterisieren. 

Das Resultat zeigt, dass die Artenzusammensetzung der Vegetationsgemeinschaften stark 

von Beweidungs- und Geländemerkmalen beeinflusst wird. Die Analyse der 

Bodenstruktur deutet darauf hin, dass eine zu hohe Anzahl von Nutztieren die 

Bodenaggregatsstruktur durch Trampeln zerstört und die Verwitterung feiner Partikel 

erleichtert. Die mittlere Erosionsanfälligkeit des Bodens im Untersuchungsgebiet beträgt 

0,0374 t ha h ha-1 MJ-1 mm-1 (Standardabweichung 0,0048), was im europäischen 
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Vergleich mittleren bis feinen Böden entspricht. Weiter zeigt sich, dass die Erodierbarkeit 

an steilen Hängen und Graten höher und an Tallagen niedriger ausfällt, was auf den 

Transport feiner Partikel nach unten hinweist. Es wurde festgestellt, dass die Vegetation, 

die Schutz gegen Bodenerosion bietet, stark von klimatischen Faktoren beeinflusst wird. 

Die Reaktion auf Niederschlagsänderungen erfolgt mit bis zu drei Monaten Verzögerung, 

während die Reaktion auf Temperaturänderungen eher unmittelbar erfolgt. Hangneigung 

und Sonneneinstrahlung waren ebenfalls bestimmende Faktoren für die 

Vegetationsentwicklung. Im Frühling scheint die Temperatur der bestimmende Faktor für 

die Vegetation zu sein, wenn höhere Temperaturen das rasche Einsetzen der Begrünung 

erleichtern, während im Sommer hohe Temperaturen die Vegetationsentwicklung eher 

unterdrücken. Diese Ergebnisse deuten darauf hin, dass die Beweidung im Frühjahr 

begrenzt werden sollte, damit die Vegetation an Biomasse gewinnt und sich auch 

reproduzieren kann. 

Das gesamte Gebiet von Kirgisistan schien fünf verschiedene Muster (Cluster) von 

Vegetation und Klimawechselwirkungen aufzuweisen, wobei die Vegetation 

unterschiedliche Verzögerungen und Anzeichen von Reaktion auf Temperatur- und 

Niederschlagsveränderungen aufwies. Die verschiedenen Cluster hatten eine 0-4-

monatige Verzögerung der Vegetationsreaktion auf Temperaturänderungen und 1-5 

Monate verzögerte Reaktion auf Niederschlagswechsel. In Höhenlagen von 3000-4000 

M.ü.M. waren sowohl die Temperatur als auch der Niederschlag förderliche Faktoren für 

die Vegetationsentwicklung, während in niedrigeren Lagen von 200-1300 M.ü.M. die 

Temperatur ein begrenzender Faktor im Sommer war. Spärliche und dichte Vegetation 

schien weniger anfällig für klimatische Schwankungen aufgrund von Abwesenheit der 

Vegetation (R2 = 0,1-0,3) oder großer Robustheit aufgrund der akkumulierten Biomasse. 

Die Gebiete mit durchschnittlicher Vegetationsdichte scheinen stark durch klimatische 

Faktoren (R2 = 0,7-0,9) kontrolliert zu werden. 

Die durchgeführten Forschungsarbeiten quantifizieren die Wechselwirkungen zwischen 

Vegetation, Boden und Klimafaktoren, wodurch es möglich wird, die Systemreaktion 

unter veränderten klimatischen Einwirkungen und intensivierter menschlicher Nutzung zu 

modellieren. Damit wird ein besseres Verständnis der zukünftigen Prozesse ermöglicht, 

was als Basis für die notwendigen Entscheidungsprozesse für eine nachhaltige 

Landnutzung dienen kann.  
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Abstract 
Human civilization depends greatly on ecosystems and the services they provide. These 

include soil, rangelands, precipitation and temperature regimes and many others. All these 

factors are in constant interaction and human impact can affect the balance in ecosystems. 

Thus, it is important to understand how and to what extent the natural resources can be 

sustainably used without severe consequences. The aim of this research is to assess the 

interactions between soil, vegetation and climatic factors and quantify them for better 

prediction in different utilization and climate change scenarios. We attempt to investigate 

the impact of existing grazing practices on rangelands, its soil and vegetation resources, 

as well as vegetation dependence of climatic factors and its capacity to prevent soil 

erosion. 

The study area of this Ph.D. thesis included the Fergana range in the south of Kyrgyzstan. 

The research focused on mountain rangelands, used as summer pastures by local 

population. The study area represents subhumid-semiarid mountain slopes with grazed 

subalpine-alpine mat vegetation. The spring season has maximum precipitation. The 

terrain is rugged with different slope gradients and altitudes between 2000 and 3000 m 

a.s.l. 

It was necessary to cover human, soil, vegetation and climatic factors, so the research 

included several aspects. Soil samples and vegetation information were collected during 

field trips, together with human impact data. The soil samples were analyzed in the 

laboratory of the Department of Physical Geography of University of Hamburg. The 

remotely sensed data, representing vegetation, soil and climatic factors were collected 

from open sources, including Landsat, SRTM, ASTER, DWD and MODIS. To 

understand the interactions, we applied statistical analysis of field data and remotely 

sensed data, modelling and development of digital maps, illustrating them. 

The risks of soil erosion were assessed using RUSLE (Revised Universal Soil Loss 

Equation) approach by calculating and assessing soil erodibility and vegetation protection 

factor (K-factor and C-factor) and their relations with climatic factors. For K-factor 

estimation soil samples were collected, representing different terrain features, they were 

analyzed in the laboratory for the grain size distribution and organic content, which were 

used for calculation of K-factor. Then K-factor map was created with universal kriging 

using spatially explicit terrain factors as auxiliary data. Soil features indicated their 
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relations with terrain, which allowed to develop a scheme for prediction of soil erodibility 

in Fergana mountains. 

Vegetation cover protection or soil loss ratio (C-factor) was calculated from vegetation 

physical condition data, collected in the field. Then the map of C-factor was developed 

with universal kriging using NDVI (Normalized Difference Vegetation Index) for 

different months, based on annual phenology and monthly NDVI images. Climatic data, 

such as temperature and precipitation were collected from local weather station. Grazing 

pressure was assessed with interviews of shepherds in the field. C-factor indicated 

temporal correlation with climatic factors with time lag and spatial correlation with 

grazing pressure and terrain features. 

Modelling of vegetation and climate interrelations were done on a larger scale – for the 

entire country. NDVI was correlated spatially and temporarily with climatic factors as 

temperature and precipitation. The correlation pattern and strength of NDVI predictability 

with climate varied between different parts of the country. Based on this variation five 

clusters were developed, indicating the areas of different vegetation-climate 

interrelations. 

The species composition of plant communities was found to be greatly affected by 

grazing and terrain features. Large numbers of livestock appeared to promote soil 

coarseness by destroying soil structure by trampling and facilitating weathering of fine 

particles. Mean soil erodibility in the study site was 0.0374 t ha h ha-1 MJ-1 mm-1 

(standard deviation 0.0048), which complied with European medium to fine soils. 

Erodibility was found to be higher on steep slopes and ridges, and lower at mountain 

bottoms and valleys, which indicates transportation of fine particles down slope. 

Vegetation, which provides protection against soil erosion, was found to be greatly 

controlled by climatic factors, indicating 0-3 months lag in reaction to precipitation 

change and 0 lag in reaction to temperature change. Slope and exposure to solar radiation 

were also found to be the controlling factors for vegetation. The temperature appeared to 

be a promoting factor for vegetation in spring, when higher temperatures facilitate rapid 

onset of greenness, whereas in summer high temperatures oppress vegetation. These 

findings suggest that grazing in early spring should be limited to let vegetation gain 

biomass and produce seeds. 



Abstract 

10 
 

The entire area of Kyrgyzstan appeared to have five distinct patterns (clusters) of 

vegetation and climate interactions, where vegetation had different lags and signs of 

reaction to temperature and precipitation change. The different clusters had 0-4-months 

lag of vegetation reaction to temperature change and 1-5-months lag reaction to 

precipitation change. At high elevations of 3000-4000 m a.s.l. both temperature and 

precipitation were promoting factors for vegetation development, whereas at lower 

elevations of 200-1300 m a.s.l. it was a limiting factor in summer. Sparse and dense 

vegetation appeared to be less susceptible to climatic variations due to vegetation absence 

(R2 = 0.1-0.3) or great robustness due to accumulated biomass respectively. The areas 

with average vegetation density appeared to be greatly controlled by climatic factors (R2 

= 0.7-0.9). 

The undertaken research quantifies interactions between vegetation, soil and climatic 

factors, which allows modeling the system reaction in circumstances of changing climate 

and human impact. These findings allow for greater understanding of possible outcomes 

in circumstances of changing climate and human impact, which will facilitate decision-

making process. 

1. Introduction 
Since ancient ages, humankind has been developing maps of the surrounding world, 

representing features of physical geography, but also natural resources. The development 

of botanical and soil science and their taxonomy has boosted the thematic mapping of 

these resources in early 20th century. Technological development of aviation and 

photography in the middle 20th century led to airborne photography and production of 

more accurate and sophisticated maps of natural resources (Jelaska 2009). The further 

development occurred in late 20th century with the advancement of digital technology. 

Launch of Global Positioning System (GPS), availability of regular spaceborne remotely 

sensed images of vast areas, accurate Digital Elevation Models (DEM), algorithms of 

spatial statistical analysis and modelling and great computational power led to a 

revolution in mapping. Modern mapping technologies represent an infrastructure of 

spaceborne sensors and positioning systems, ground positioning and smart devices, 

computing machines and databases together with software and specialists operating and 

maintaining the system. However, mapping per se does not respond to modern demands, 

being able to predict natural processes in space and time has more value. This is possible 
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through understanding the underlying patterns of systematic interactions and modelling of 

natural systems. 

Even though the natural resources of the modern world are still not entirely mapped, the 

level of mapping, growing potential and demand makes the task of understanding 

interrelations between different natural components and quantifying them for prediction 

of possible scenarios, i.e. modelling, more and more interesting and important. However, 

human impact on ecosystem is another rather unpredictable component, which makes the 

modelling so demanded, and which should be accounted for. 

For decades, Kyrgyzstan and Central Asia have been remaining a white spot on the map 

of international science. First, because most of earlier scientific studies were done in 

Soviet times, published in Russian, and, as the Soviet Union was a closed country, the 

publications barely reached the English-speaking world. Second, because modern 

independent Kyrgyzstan does not have enough resources to conduct large-scale 

systematic baseline environmental surveys. Sporadic international scholars or institutions 

coming to the region pursue short-term research interests without much connectivity to 

the scientific context, and barely contribute to the full knowledge picture. Rarely do they 

grow into long-term research programs. The baseline information available is based on 

researches undertaken in 1930th – 1970th, which still can be considered either current or 

totally outdated, depending on the topic. For example, geological and soil information can 

be considered accurate, as they do not change so quickly, they just need to be 

synchronized with international taxonomy. Whereas, vegetation information might need 

an update. 

Kyrgyzstan is a mountain country encompassing Central, Inner and West Tian-Shan as 

well as the Alai range and part of Pamir. The great terrain variability with different 

altitudes, slopes and exposures as well as the variable geology causes great diversity in 

local microclimates, soils and vegetation. The geobotanical diversity is remarkable for 

such a small territory, which creates unique conditions for scientific research and 

modelling. Mountains are one of the most fascinating and complex natural ecosystems. 

The complex terrain and consequently intricate microclimatic patterns generate variable 

complexes of vegetation and wildlife. For ages, mountains have been attracting attention 

of travelers and scientists. Humans were settling in mountains, as they provided 

protection, natural resources and beautiful views. The fruit and nut forests and highland 



Abstract 

12 
 

grasslands in the south of Kyrgyzstan are of utmost importance to local population. 

However, there is no proper system of natural resource use that will ensure their 

sustainability and availability to future generations. The fruit and nut forests are a 

biodiversity hotspot, which is rich in species and is a very important site for conservation 

of wild ancestors of cultivated fruit varieties.  

Western Tian-Shan and Fergana valley are one of the most populated areas in the region 

(NatStatCom 2018). Soil and vegetation are the main resource providing food, one of the 

primary needs for humankind. Difficult economic situation and lack of livelihoods makes 

local population rely on natural resources. The predominant model of economic activity is 

animal husbandry based on seasonal transhumance between summer pastures and 

settlements, as well as agriculture and collection of wild fruits and nuts. Agriculture and 

animal husbandry contribute the largest portion to national GDP (NatStatCom 2018). 

However, unregulated grazing can change the mountain ecosystems in many ways: 

change of plant communities, soil physical properties, desertification and many others 

(Schlesinger et al. 1990; Borchardt et al. 2010, 2013) which will result in loss of income 

and livelihoods for local people. 

Fergana range in Kyrgyzstan is the area with the highest precipitation level (Gidromet 

SSSR et al. 1967; Adyshev et al. 1987; Kuzmichenok 2008). This, together with high 

grazing pressure (Dörre and Borchardt 2012; Borchardt et al. 2013; Hoppe et al. 2016a) 

and thin soils (Mikhailov 1949; Mamytov and Ashirakhmanov 1988) create an increasing 

risk of natural disasters with losses to economy and population (Teshebaeva and 

Moldobekov 2010; CAIAG 2018; PreventionWeb 2018). The poor economic situation 

and lack of proper grazing regulation (Crewett 2012; Steimann 2012) lead to the situation 

where people have to balance between livelihoods and natural disasters. This makes 

understanding of interactions of soil vegetation and climate an important task in the 

region. 

It is widely accepted that vegetation, soil and climate are in constant interaction and thus, 

are components of a more complex system. Soil provides substrate for plants’ growth, 

plants protect soil from erosion and contribute to its structure, mineral and organic 

content. Vegetation phenology is greatly controlled by annual climatic patterns. Air and 

solar radiation provide energy and material for photosynthesis, and thus, participate in 

building organics. Precipitation provide water for chemical processes, and snow provides 
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frost protection in winter (Wieder and Shoop 2018). Despite the importance and demand 

for soil, vegetation and climate studies, the poor economic situation in the country does 

not allow for regular assessments of their condition. However, modern developments in 

GIS, remote sensing and availability of spatial data together with the growth of 

computational power make this task less expensive. Field work and ground data 

collection, together with the laboratory work become the most cost and time demanding 

parts of the research, whereas the auxiliary information and analytical tools do not cost 

anything nowadays owing to generosity of their kind providers. This allows poor 

countries to undertake thorough assessment and regular monitoring of natural resources 

and hazards. 

We attempt to combine field work, laboratory analysis and statistical modelling to assess 

the natural resources and processes. This work is a part of joint German-Kyrgyz research 

project “The Impact of the Transformation Process on Human-Environment Interactions 

in Southern Kyrgyzstan”, funded by the Volkswagen Foundation, Hannover, Germany. 

The main aim of this Ph.D. thesis is to demonstrate and quantify the interactions of 

climate, vegetation, soil and natural resource usage, discuss the modelling approaches and 

outcomes and identify potential threats to future land use options in different climate 

change scenarios in Southern Kyrgyzstan. 

2. Study area 
The study area of this Ph.D. thesis encompasses Fergana range pastures near Arslanbob 

village in Jalal-Abad region of Kyrgyzstan (Figure 1). The field data collection for 

assessment of soil, vegetation and grazing pressure was conducted in four pastures: Otuz-

Art, Uch-Choku, Jaz-Jarym and Kara-Bulak. The study site comprises an area of 50 km2 

located between 2000 and 3000 m a.s.l. Soil and vegetation research were done in this 

study site, whereas modelling of vegetation and climate interactions were conducted for 

the whole country. More details about the study area are provided in the following 

subchapters. 

2.1 Climate 
Kyrgyzstan is in the center of Eurasian continent, far away from oceans, so seasonality is 

very prominent in this region. Considerable roughness of terrain of Kyrgyzstan and 

different exposures of slopes to sun radiation and winds create a unique diversity of 
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climatic features and determine an apparent vertical climatic gradient. Traditionally four 

climatic belts are distinguished (Adyshev et al. 1987; Kyrgyzgidromet 1989, 2015; 

Kuzmichenok 2008). 

The Foothill belt (from 500-600 till 900-1200 m a.s.l.) is characterized by hot summers 

(till 28°C), moderately cool and snowless winters with lack of precipitation. This belt, 

especially in Fergana valley, has features of subtropical climate. The climate is warm and 

even hot at the top part of the foothill belt, winters are also warm. The summer 

temperatures in July reach 20-25°C and in January -4-7°C below zero (Adyshev et al. 

1987; Kyrgyzgidromet 1989, 2015).  

 

Figure 1. Study area. 

The highest temperatures in summer reach 44°C, with elevation they decrease to 27-30°C 

and the absolute minimums in winter are recorded within the limits of -22-30°C and only 

in some areas they go down to below -40°C (Toktogul and Chui region) (Adyshev et al. 

1987; Kyrgyzgidromet 1989, 2015). 

The middle (montane/subalpine) belt (from 900-1200 till 2000-2200 m a.s.l.) has 

typical moderate climate with warm summers and moderately cold and steadily snowy 

winters. The temperatures are considerably lower here, summers are warm, 18-19°C in 
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July and winters are cold – 7-8°C below zero in January, and -3-5°C in December and 

February (Adyshev et al. 1987; Kyrgyzgidromet 1989, 2015). Frostless period lasts for 

more than 7 months on 1000-1500 m a.s.l. and at the top part of the belt the period lasts 

for 6 months. 

The alpine belt (from 2000-2200 till 3000-3500 m a.s.l.) has cool summers and cold very 

snowy winters. The temperature in July reaches only 11-16°C. Winters are long 

(November-March) with January temperatures of -8-10°C below zero, and -3-7°C in 

other cold months. Frostless period comprises 3-4 months in the highest part of the belt, 

and it can be absent above this elevation (Adyshev et al. 1987; Kyrgyzgidromet 1989, 

2015). 

The nival belt (above 3500 m) is characterized by harsh and very cold climate. This is a 

belt of glaciers, rocks, and moisture accumulation. July temperatures do not exceed 4-7°C 

even in the lowest parts of this belt, and January temperatures drop below -19-22°C 

(Adyshev et al. 1987; Kyrgyzgidromet 1989, 2015). 

Despite general altitudinal gradient, it is difficult to speak about simple linear relation of 

climatic factors and elevation, because they can differ considerably between different 

climatic zones even on the same elevation (Adyshev et al. 1987; Iliasov et al. 2003). The 

climatic zoning according to Iliasov et al. (2003) and Kyrgyzgidromet (2015) is provided 

in Figure 2. 

Climatically, Kyrgyzstan is characterized by a great diversity. The warmest area is the 

foothill belt of Osh region in the south, where mean annual temperature is 11-13°C, 

whereas in alpine belt the mean temperature goes down to -8°C. Terrain impact is the 

most prominent in cold seasons, which is related to congestion of cold air in depressions. 

Complex orographic conditions, which determine great variety of climatic features, make 

climate mapping a complicated task.  

Winds have very different directions and little speeds because of diversity of forms and 

complexity of terrain. They are determined by the structure of intermontane depressions 

and direction of gorges, ridges and river valleys. Gradient winds, i.e. the winds 

determined by pressure field exist only on high elevations, near the land they are mostly 

determined by directions of the main surface features. Winds with very diverse directions 
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are registered in areas with open terrain, but still they have a prevalent direction 

corresponding to the main axis of a valley. 

 

Figure 2. Climatic zones (for details see Table 1). 

The warmest months in Kyrgyzstan are July and August. Temperature variations between 

different areas on same elevations are not very high, despite them being separated by 

considerable distance and ridges. In general, the southwestern part of the country is 

warmer in summer than the northern part. The highest temperatures reach 43-44°C. Mean 

daily temperature in the middle belt in summer does not exceed 20°C, in highlands the 

temperature is close to 0°C and below 0 at nights. Thus, mean July temperature varies for 

more than 20°C from -4°C (Tian-Shan weather station, 3600 m a.s.l.) till 27°C (Lenin Jol 

weather station, 720 m a.s.l.). 

In winter, the variation of mean monthly temperature between different areas on the same 

elevation is considerable, it is conditioned by local air flows, which are determined by 

terrain and exceeds 15°C (Tamyngen weather station, 3030 m a.s.l. -8.5°C; Arpa weather 

station, 3000 m a.s.l. -23.3°C in January). The duration of positive air temperature varies 

from 185 days in lower part of highland belt till 250-300 days in foothill zone (Adyshev 

et al. 1987; Kyrgyzgidromet 1989, 2015; Iliasov et al. 2003). 
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Table 1. Characteristics of climatic zones (Iliasov et al. 2003). 

Elevation m a.s.l. Days in a year with temperatures above 
0° 5° 10° 

North-West Kyrgyzstan 
800-1000 258 216 176 
1000-1600 250 206 162 
1600-2800 213 160 101 

North-East Kyrgyzstan (Issyk-Kul) 
Western part 

1600-1800 263 207 156 
Eastern part 

1600-1800 237 192 144 
1800-2000 228 182 129 
2000-2600 207 158 79 

Inner Tian-Shan 
South-Eastern part 

2800-3000 185 129 34 
North-Western part 

1400-1600 223 191 145 
1600-2200 213 179 127 
2200-2400 206 167 101 
2400-2800 192 145 64 

South-West Kyrgyzstan 
600-800 302 250 210 
800-1000 296 245 204 
1000-2400 247 199 151 
2400-2800 211 155 94 

 

Air humidity in Kyrgyzstan, as everywhere, has annual and daily cycles, which is the 

opposite to that of temperature. The lowest air humidity corresponds to summer period 

(July, August), and the greatest – to winter (December, January). The relative air 

humidity changes greatly throughout the year (40-80%), as in other regions with 

temperate climate. It is the least in summer (40-50%) and the greatest in winter (60-80%). 

Thus, in any month there is a considerable lack of moisture in the air, which reaches 50-

60% and more in summer. Vegetation is greatly oppressed in these periods, even in 

irrigated areas (Adyshev et al. 1987). 

Precipitation is distributed very uneven. Some areas get large amounts of moisture (about 

1500 mm), the highest in the country, which is comparable to western Caucasus. And in 

some areas precipitation level is at 150-200 mm annually, which makes the area look like 

a desert. Large amount of precipitation comes to the middle belt of south-western slopes 

of Fergana ridge, where it exceeds 1000 mm (Ak-Terek-Gava weather station – 1090 
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mm, Demidovka – 1084 mm, Chaar-Tash – 1057 mm). Considerable precipitation sums 

(Teo-Ashu – 1003 mm) are observed in highland and nival belts of the northern slopes of 

Kyrgyz ridge. The precipitation level is also high on slopes of Chatkal ridge (more than 

1000 mm), in Kemin valley and in eastern part of Issyk-Kul valley (900 mm). 

Considerably less precipitation is observed in Talas and in Chui valleys (from 250 till 500 

mm). Air masses, overtaking the mountain ridges to Inner Tian-Shan lose moisture. 

Therefore, the most of Inner and Central Tian-Shan receive on average 200 – 300 mm of 

precipitation annually. The least supplied with precipitation is the eastern part of Issyk-

Kul valley (Balykchy – 144 mm), some parts of Fergana valley (Batken – 156 mm) and 

some highland areas of Osh area (Altyn-Mazar – 184 mm). The annual level of 

precipitation for the entire country is generally sufficient; however, it is not evenly 

distributed, which leads to artificial irrigation of considerable part of arable land 

(Adyshev et al. 1987; Kyrgyzgidromet 1989, 2015). 

The level of precipitation varies greatly interannually depending on frequency and 

intensity of different atmospheric processes. With the mean annual precipitation of 400 

mm in some years this level can vary from 100 mm till 650 mm. For example, in the 

eastern part of Issyk-Kul valley the fluctuations of annual precipitation level can reach 

250% (from 370 till 930 mm with the mean of 729 mm on San-Tash weather station); in 

south-western Kyrgyzstan – 530% (from 110 till 580 mm with the mean of 342 mm, Osh 

weather station). Considerable precipitation variations are observed in the Inner Tian-

Shan, which reaches 400% (from 124 till 476 mm with the mean of 281 mm at Naryn 

weather station); in northern Kyrgyzstan – 260% (from 217 till 579 mm with the mean of 

246 mm at Chuiskaya weather station) (Adyshev et al. 1987; Kyrgyzgidromet 1989, 

2015). 

Vertical precipitation gradient is conditioned by terrain and is particularly prominent in 

warm season. Precipitation increases with altitude considerably more below 2000 m than 

above. Vertical gradient for every 100 m of elevation differs greatly among regions; they 

comprise the values from 83 mm till negative values. Thus, despite of indisputable fact 

that precipitation level increases with elevation, it is difficult to speak about simple 

relation, because precipitation level is different at similar elevation among different 

nature-climatic regions. Thus, in northwestern, northern and northeastern Kyrgyzstan 

precipitation increases till 3000-3500 m a.s.l. and stays constant (northeastern 

Kyrgyzstan), or decreases (some areas of northern Kyrgyzstan) above that elevation. In 
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southwestern Kyrgyzstan precipitation increase is recorded till 3500-4000 m a.s.l., and in 

Inner Tian-Shan this tendency remains even above 4500 m (Adyshev et al. 1987; 

Kyrgyzgidromet 1989, 2015). 

The average duration of rainstorms and snowfalls increases from summer to winter from 

2-4 till 10-12 hours. The intensity of precipitation decreases as their duration increases. In 

the case of intensive rainstorms about 10-15% of annual precipitation can fall in one day. 

The greatest daily precipitation level was registered on Fergana ridge slopes – 90 mm, in 

other regions 70-75 mm and less. The intensive precipitation events can trigger 

mudflows, which can be very strong and destructive (Adyshev et al. 1987).  

Snow cover in mountains is determined by the distribution of precipitation, duration of 

cold season, solar radiation and wind redistribution. The variability of orography 

determines uneven distribution of snow on different elevations, and different melting 

terms. Snow cover is thinner in Talas valley than on the same elevation in Chui valley, 

where it is thinner than in the eastern part of Issyk-Kul valley. The distribution of snow 

cover is uneven, but in general the thickness of snow increases from west to east, which is 

about 15-20 cm on average on foothills of north Kyrgyzstan and increases to 20 cm 

further to the east. Very thick snow cover forms on mid- and highlands of Fergana ridge, 

where it reaches 150 cm (Adyshev et al. 1987; Kyrgyzgidromet 1989, 2015). This, 

together with the great terrain and climate diversity provide conditions for great 

vegetation and habitat diversity. 

2.2 Vegetation 
Most of Kyrgyzstan is covered with mountains creating complex hydrological, 

meteorological, rock and soil conditions. This diversity has an impact on vegetation 

cover, which is also diverse. Vegetation in Kyrgyzstan is prominent for its original 

coenotic structure, floristic richness, phenology and great number of endemics. The 

country has deserts, thorn cushion plant formations, steppes, meadows, forests, bushes, 

marshes, cryophile cushion plant formations and highland tundras. Considerable areas are 

occupied with sparse vegetation, which can be attributed to plant formations of rocks and 

talus (Vykhodtsev 1956a, 1966). 

The distribution of vegetation in mountains is greatly determined by the vertical climate 

gradient as well as slope exposure, though plant communities do not match the climatic 

belts and other plant communities on similar elevations exactly due to other local 
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conditions. Different vegetation is attributed to respective elevational zones, each of 

which has certain features depending on local geographical conditions, thus plant 

communities may vary between different parts of the country, however the vertical 

gradient persists (Vykhodtsev 1956a, 1966). Based on many years of research 

Vykhodtsev (1956a) outlined the following elevation belts of vegetation considering local 

variability: 

1. The belt of hot foothills (adyrs) of Fergana valley with semidesert and south-

steppe climatic conditions, occupying the elevations of 700-1800 m a.s.l. 

2. The belt of warm foothills of Chui and Talas valleys, Issyk-Kul basin and Toguz-

Toroo gorge with south steppes, dry steppes, steppe and meadow-steppe climatic 

conditions at the elevations of 700-1800 m a.s.l. 

3. The belt of warm high foothills (adyrs) of Alai, Fergana, Turkestan and Chatkal 

ridges with distinctive steppe climatic conditions at elevations of 1500-2000 m 

a.s.l. 

4. The belt of middle mountains with climatic conditions close to those of steppe, 

forest-steppe and forest at elevations of 1500-3000 m a.s.l. 

5. The belt of cold foothills of mountain valleys and depressions with cold steppe 

climate at elevations of 1800-2500 m a.s.l. 

6. Subalpine belt with distinctive highland complexes of steppe, meadow-steppe and 

meadow conditions at elevations of 3000-3500 m a.s.l. 

7. The belt of alpine mountains with distinctive complexes of steppe, meadow-

steppe, meadow and desert conditions approaching arctic natural conditions at 

elevations of 3200-4000 m a.s.l. 

8. The belt of modern glaciation (glacial-nival belt) includes rocky ridges and 

ranges, talus, moraines, glaciers and snowfields at elevations of 3600-7000 m 

a.s.l. 

Kyrgyzstan encompasses West, Central and Inner Tian-Shan mountains. These areas are 

different in terms of climatic conditions, orography and consequently – vegetation. The 

species composition is different among these areas as well, and elevation belts are not 

directly comparable between different areas. With this regard it is more convenient to 

split the area of the country into different geobotanical zones and describe them 

separately. Scientific practice of geobotanical zoning uses a special taxonomy of 

territorial units, like: zone, province, sub-province, district and region. This taxonomy is 
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satisfactory for planetary and continental scales, as well as for general educative 

purposes. However, for practical purposes and on finer scales it is reasonable to develop a 

different approach. It is necessary to consider an area as an independent object, not 

separating it between different zones and provinces. Based on many years of geobotanical 

and botanical-geographical researches of the entire area of the country Vykhodtsev 

(1956a, 1966) developed a geobotanical division of the country into geobotanical regions 

of the first order, which are divided into several geobotanical regions of the second order, 

each with distinctive features and in close relation with agricultural potential. 

Geobotanically the study area incorporates to Alai-Fergana-Chatkal region of the first 

order, according to Vykhodtsev (1966) or South-West Tian-Shan according to Adyshev 

et al. (1987). The region embraces eastern Alai, southwestern slope of Fergana and 

Chatkal ridges (Figure 3). 

Geobotanical features of the area are (Vykhodtsev 1956a, 1956b, 1966; Korovin 1961; 

Kamelin 1973; Adyshev et al. 1987; Shishkova et al. 1989; Ionov and Lebedeva 2005; 

Shukurov et al. 2005): 

• Regional presence and distribution of walnut-fruit forests of Juglans regia, Malus 

sieversii, Prunus sogdiana, Fraxinus sogdiana, Acer turkestanica, Crataegus 

altaica, C. turkestanica, C. songorica, Picea shrenkiana, Abies semenovii, 

Juniperus turkestanica, J. semiglobosa.  

• Regional presence and distribution of pistachio thickets of Pistacia vera, almond 

thickets of Amygdalus spinosissima, and shrubs of Exochorda tianschanica, 

Louiseania ulmifolia (Aflatunia ulmifolia), Rosa kokanica and others; as well as 

groves of Abelia corymbosa and Ziziphus jujuba. 

• Regional presence and distribution of southern steppes and meadow-steppes with 

dominance or abundance of Hordeum bulbosum, Inula macrophylla (Inula 

grandis), Bothriochloa ischaemum (Andropogon ischaemum), or Agropyron 

trichophorum, or Ferula kuhistanica (Ferula jaeschkiana) and Ferula spp., or 

Prangos pabularia, Vinca erecta, Phlomis salicifolia, Perovskia scrophulariifolia, 

P. angustifolia. 

• Almost entire absence of Kobresia spp. wastelands, which are typical for 

highlands in other parts of the country. 
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• Wide distribution of speckled sandstone and their typical accompanying 

vegetation. 

More specifically, the study area is on a junction of Fergana and Fergana-Chatkal regions 

of the second order (Figure 3). 

 

Figure 3. Geobotanical regions of the first and second order, adopted from Vykhodtsev (1966) and Adyshev et al. 
(1987). The geobotanical regions of the first order are differentiated by colors, and those of the second order – by 
boundaries and their respective titles. 

The Fergana region of the second order includes foothills and mountains of eastern 

Fergana from Kara-Kulja river till Kara-Unkur-Sai river (Tentek-Sai). It is characterized 

by rugged terrain but with soft contours and high precipitation humidification. 

Geobotanically, the region is characterized by wide distribution of walnut-fruit forests 

with Juglans regia, Malus sieversii, Crataegus altaica, C. turkestanica, C. songorica, 

Prunus sogdiana, Fraxinus sogdiana; Hordeum spp. and Inula spp., southern steppes 

with abundance and even dominance of Hordeum bulbosum and Inula macrophylla (Inula 

grandis), shrubs of mainly Rosa kokanica, Exochorda tianschanica, Louiseania ulmifolia 

(Aflatunia ulmifolia) and Pistacia vera; as well as typical foothill (adyr) semi-deserts and 

southern high-grass cereal-forb meadows. This is an area of walnut-fruit forests and 

rainfed agriculture (Vykhodtsev 1966; Lazkov and Sultanova 2011). 
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The Fergana-Chatkal region of the second order includes the area of southern slopes 

of Fergana and Chatkal ranges from Sumsar river on the west till watersheds of Naryn 

and Kara-Ungur-Sai rivers in the east and is characterized by a great terrain ruggedness, 

with vast and isolated areas as with more flat terrain (along Ak-Sai and Kara-Suu rivers), 

so, with very eroded forms like canyons, gorges and defiles (along Sumsar river). In 

geobotanical sense, the region is characterized by extremely wide distribution of southern 

Bothriochloa spp. steppes with domination of Bothriochloa ischaemum (Andropogon 

ischaemum) and foothill semi-deserts with Artemisia spp., Salsola spp. and ephemeral 

vegetation. Forests of Juglans regia, Abies semenovii, Picea schrenkiana; shrubs with 

Exochorda tianschanica, Louiseania ulmifolia (Aflatunia ulmifolia), and Rosa kokanica, 

groves of Abelia corymbosa are represented in the northern part of the region. Formations 

of Prangos pabularia, sometimes consisting of only Prangos spp. are widely distributed 

in the belt of forests and shrubs. Vegetation of different types of rock outcrops is also 

well represented. Meadows, dominated by Phlomoides spp., Phlomis spp., Geraniaceae 

and Iridaceae (Iris ruthenica) are distributed above the tree line and shrubs. Southern part 

of the region basically represents arable lands and pastures, whereas the northern part is 

mainly forestry area (Vykhodtsev 1966; Ionov and Lebedeva 2005; Lazkov and 

Sultanova 2011). 

These regions of the second order can be further broken down into vegetation types, 

typical for the study area. The following nomenclature of vegetation types is locally used 

and accepted (Vykhodtsev 1956a, 1966; Rachkovskaya and Bragina 2012). 

Savannoids are the typical vegetation type, providing the remarkable features to the 

landscapes on Fergana range, as well as on Chatkal and Talas ranges on elevations from 

1000 till 2500 m a.s.l., they are also widely represented in mountains of Kazakhstan, 

Uzbekistan and Turkmenistan (Vykhodtsev 1966; Ionov and Lebedeva 2005; Lazkov and 

Sultanova 2011). This is the vegetation type including sparse forests with Acer spp., 

Crataegus spp., Pistacia vera and Juniperus spp., shrubs with Rosa spp., Amygdalus spp., 

Cerasus spp. and semi-shrub species with Artemisia spp., communities with ephemeral 

vegetation with Poa bulbosa, Carex pachystylis, Agropyron trichophorum, Hordeum 

bulbosum (Vykhodtsev 1966; Ionov and Lebedeva 2005; Lazkov and Sultanova 2011). 

Midland savannoids (communities of Bothriochloa ischaemum, Agropyron 

trichophorum, Hordeum bulbosum, Inula macrophylla, Ferula spp., Prangos spp.). This 
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is a dominating ecosystem in the region and it is widely represented in all its parts on 

elevations 1300-3000 m a.s.l. It mostly occupies 2000-2500 m a.s.l. The total area within 

West Tian-Shan is 19 224 km2 (Shukurov et al. 2005). Ecosystem engineers of these 

communities belong to ancient Mediterranean habitat. The grass savannoids relate to 

shrub communities – “sibljak”. New communities occur because of centuries-old human 

pressure (cutting of trees and shrubs, grazing) (Kamelin 1973). The vegetation of these 

formations has developed in conditions of subtropical climate with soft winter, very dry 

and hot summer with precipitation maximum in winter and spring. The flora of midland 

savannoids is dominated by large ephemeral Gramineae including Hordeum bulbosum, 

Agropyron trichophorum, Bothriochloa ischaemum, as well as Prangos spp., Ferula spp., 

Polygonum coriarium (Aconogonon coriarium), Inula macrophylla. Depending on the 

dominating species there are Bothriochloa spp., Agropyron spp., and forbs dominating 

savannoids (Vykhodtsev 1966; Ionov and Lebedeva 2005; Lazkov and Sultanova 2011). 

Deciduous shrubs are found in a wide range of elevations – from 1300 till 2800 m a.s.l., 

mainly on north-exposed slopes and along rivers. In some areas they replaced cut forests 

and overgrazed pastures. The total area of deciduous shrubs in West Tian-Shan is 1829 

km2. Total area in Kyrgyzstan – 2223 km2 (Ionov and Lebedeva 2005; Shukurov et al. 

2005). The shrubs protect soil from erosion on steep slopes (more than 30°-40°), along 

rivers and on watersheds. They provide berries, medicinal raw material, firewood and 

construction material for local population. Deciduous shrubs are a geterogenic type of 

vegetation. The typical species are: Exochorda tianschanica, Prunus Sogdiana, Abelia 

corymbosa, Louiseania ulmifolia (Aflatunia ulmifolia), Berberis integerrima, B. oblonga, 

B. sphaerocarpa, Tamarix spp., Lonicera spp., Cotoneaster spp., Atraphaxis spp., 

Hippophae turkestanica (Hippophae rhamnoides), Ribes heterotrichum, R. janczewskii, 

Spiraea hypericifolia, S. lasiocarpa, S. pilosa, Caragana acantophylla, C. alaica, C. 

aurantiaca, C. laetevirens, C. turkestanica, Rubus caesius, R. idaeus, R. saxatilis, 

Amygdalus petunnikowii, A. bucharica, A. communis, A. spinosissima, A. susakensis, 

Rosa kokanica, R. laxa, R. beggeriana, R. fedtschenkoana, R. platyacantha, Salix iliensis 

(Salix capra), S. niedzwieckii (S. coerulea), S. linearifolia (S. blakii), S. rosmarinifolia 

(Vykhodtsev 1966; Ionov and Lebedeva 2005; Lazkov and Sultanova 2011). 

Floristic composition of grasses is poor: Brachypodium pinnatum, B. sylvaticum, Dactylis 

glomerata, Poa spp., Agrostis gigantea, A. hissarica, A. stolonifera, A. turkestanica, 

Prangos fedtschenkoi, P. lipskyi, P. ornata, P. pabularia, Paeonia hybrid (Paeonia 



Study area 

25 
 

intermedia), Ligularia alpigena, L. heterophylla, L. karataviensis, L. macrophylla, L. 

thomsonii, Centaurea adpressa, C. alaica, C. depressa, C. iberica, C. lasiopoda, C. 

modesti, C. ruthenica, C. squarrosa, Inula Britannica, I. caspica, I. helenium, I. 

macrophylla, I. salicina, Eremurus aitchisonii, E. alaicus, E. alberti, E. comosus, E. 

fuscus, E. kaufmannii, E. lactiflorus, E. olgae, E. regelii, E. robustus, E. sogdianus, E. 

stenophyllus, E. tianschanicus, E. turkestanicus, E. zenaidae (Vykhodtsev 1966; Ionov 

and Lebedeva 2005; Lazkov and Sultanova 2011). 

Midland meadows with tall grasses are represented in forest-meadow-steppe belt, they 

grow here because of higher precipitation level than in other parts of Tian-Shan. They are 

used as summer pastures and hay cutting areas. Flora of the meadows is very diverse and 

includes about 222 species of vascular plants, which belong to 128 genera and 34 families 

(Ionov and Lebedeva 2005). The flora is dominated by Elaeosticta allioides, E. 

tschimganica, Prangos pabularia, Turgenia latifolia, Eremurus regelii, Centaurea 

squarrosa, Cousinia microcarpa, Inula macrophylla, Alyssum turkestanicum, Lonicera 

nummulariifolia, Allochrusa paniculata, Dianthus ugamicus, Convolvulus arvensis, C. 

pseudocantabrica, Carex turkestanica, Dipsacus dipsacoides, Scabiosa songarica, 

Astragalus sewertzowii, A. sieversianus, Medicago tianschanica, Hypericum elongatum, 

H. scabrum, Origanum tyttanthum, Phlomis salicifolia, Ziziphora clinopodioides, Alcea 

nudiflora, Morina kokanica, Bromus inermis, B. tyttholepis, B. danthoniae, B. oxydon, 

Agropyron trichophorum, Festuca valesiaca, Hordeum bulbosum, Poa bulbosa, 

Taeniatherum crinitum, Delphinium semibarbatum, Potentilla orientalis, P. pedata, 

Spiraea hypericifolia, Galium verum, Veronica campylopoda (Ionov and Lebedeva 2005; 

Lazkov and Sultanova 2011). 

Subalpine (cryophyte) meadows with mid-tall grasses are usually situated below 2300-

3300 m a.s.l. on northern slopes and humid habitats. Their total area is 5307 km2 

(Shukurov et al. 2005). The flora of the meadows is dominated by perennial herbaceous 

plants, which consist of 197 species, which is 90.4% from the total amount of species 

(Ionov and Lebedeva 2005). These plant communities are usually represented by 

Geranium collinum, Geranium ferganense, Geranium spp., Aconogonon coriarium, A. 

bucharicum, Polygonum coriarium, Polygonum spp., Trollius altaicus, T. dschungaricus, 

T. komarovii, T. lilacinus, Allium atrosanguineum, Allium spp., Iris ruthenica, Iris spp., 

Ligularia alpigena, Ligularia spp., Festuca valesiaca. Original communities with 

dominance of Polygonum coriarium provide peculiar landscapes and occupy about 80-
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85% of surface. Co-dominants are Bistorta elliptica, Polygonum nitens, Geranium 

saxatile, Phlomoides oreophila, Anemone protracta, Alchemilla retropilosa, Rhodiola 

litwinowii. The vegetation cover percentage varies from 30% till 100% (Vykhodtsev 

1966; Ionov and Lebedeva 2005; Lazkov and Sultanova 2011; Rachkovskaya and 

Bragina 2012). The different vegetation types and diverse climatic, rocks and terrain 

features condition great variability of soils classes. 

2.3 Soils 
The principles of soil geographical zoning used in Kyrgyzstan are based on 

geomorphological and bioclimatic factors, as well as on pattern of altitudinal distribution 

of soils and its agricultural use. The following geographical taxonomic units are used: soil 

province, soil sub-province, soil district and soil area. Kyrgyzstan is encompassed by two 

great Asian mountain systems – Tian-Shan and Pamir-Alai. As a result of a complex 

geographical position, three major soil-climatic provinces are discriminated: South 

Kyrgyzstan (mountains of West Tian-Shan), North Kyrgyzstan (mountains of North Tian-

Shan), mountain depression (Alai, Central Tian-Shan) (Mikhailov 1949, 1959, Mamytov 

1971, 1974; Pomazkov et al. 1972). 

Complex geographical conditions, surface ruggedness, geological and climatic 

conditions, diversity of bedrock, different weathering processes as well as diversity of 

plants and animals contribute to the development of original and peculiar soils in 

Kyrgyzstan (Mamytov 1971). The pattern of soil distribution is dominantly linked to 

topographic elevation, forming altitudinal soil belts or zones. Two forms of this zoning 

occur in Kyrgyzstan. One of them is slope zoning – from foot to top of a mountain range, 

and another – that of flat parts on intermountain depressions. The later reveals while 

moving along a valley bottom from its lower part to the higher, where soil units change 

within the flat part of the valley. This pattern is specific in different soil-climate 

conditions. Thus, Phaeozems and Cambisols (IUSS Working Group WRB 2014) are 

distributed in intermountain depressions in South Kyrgyzatan, low-carbonate Phaeozems 

and Kastanozems in Northern Kyrgyzstan, and Cambisols, Kastanozems and Chernozems 

in Central Tian-Shan (Mamytov 1971; Mamytov and Ashirakhmanov 1988). According 

to this taxonomy the study area is situated in the South Kyrgyzstan soil province, in the 

Fergana and Fergana-Chatkal soil districts (Figure 4). 
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The South Kyrgyzstan soil province is a continuation of the Turanian soil-climatic 

province. This province reaches the elevation of 2000 m a.s.l., where Cambisols and 

Phaeozems have developed. Several soil districts are clearly discriminated within the 

province, these are: Turkestan-Alai, Aravan-Kurshab, Kichi-Alai, Fergana, Fergana-

Chatkal and Chatkal. This province occupies the biggest part of West Tian-Shan and 

Pamir-Alai, comprising a mountain edging of Fergana depression, which is surrounded by 

Talas and Susamyr ranges in the north, by Fergana range in the northwest, and by 

Turkestan and Alai ranges in the south (Mamytov 1974; Mamytov and Ashirakhmanov 

1988). 

The Fergana soil district includes most areas of the south slope of the Fergana range. 

The area is very rich in precipitation, which is why soils are generally well supplied with 

moisture. Abundance of moisture and heat makes this district rich regarding vegetation 

cover, including the wild walnut-fruit forests. The main features of the district are the 

walnut-fruit forests and dry shrub steppes, where Cambisols and Greyic Phaeozems have 

developed. Mollic and Umbric Leptosols occur above this area in subalpine zone 

(Mamytov 1971, 1974; Mamytov and Ashirakhmanov 1988). 

 

Figure 4. Soil provinces and soil districts, adopted from Mamytov (1974) and Adyshev et al. (1987). The soil provinces 
are differentiated by colors, and soil districts – by boundaries and their respective titles. 



Study area 

28 
 

The Fergana-Chatkal soil district embraces southern slopes of Chatkal range and 

occupies northern mountain frame of Fergana valley from Baubash-Ata mountain. The 

district is featured with a considerable terrain ruggedness, great erosivity of soil cover, 

presence of as xerophytic so mesophyte vegetation forms. Walnut-fruit forests also grow 

in Sary-Chelek area together with spruce and elaeagnus. The area is also featured by 

Cambisols and Greyic Phaeozems (Mamytov 1971, 1974; Mamytov and Ashirakhmanov 

1988). 

The Chatkal soil district includes midland Chatkal valley, which is quite cold. Cold air 

masses come down to the valley from the adjacent high snowy mountains. Poplar, birch 

and willow grow along the Chatkal river, which makes the valley look like forest-steppe 

belt. Two flattened terraces are apparent in the valley. The soils on the lower terrace are 

represented by Cambisols under Umbelliferae plants and Kastanozems in Festuca spp. 

steppes. The soils on the higher terrace, in subalpine belt, are represented by Mollic 

Leptosols. The soils are peculiar for being leached from carbonates (Mamytov 1971, 

1974; Mamytov and Ashirakhmanov 1988). 

The bedrock in highland areas and in midlands of South Kyrgyzstan are the weathering 

products of Paleozoic and Mesozoic deposits, which are represented by sandstone, shale 

and limestone. Quaternary sediments are the bedrock in intermountain depressions, river 

valleys and foothills. The layer of quaternary deposits in a form of eluvial, deluvial and 

proluvial sediments of bedrock also covers slopes in highland areas. However, due to 

active weathering processes and relocation of bedrock material, which is conditioned by 

steep slopes and climate, this layer is thin and broken by outcrops of more ancient rocks 

(Mamytov and Ashirakhmanov 1988).  

Carbonate rocks or calcrete are the main bedrock among the quaternary deposits in 

southern Kyrgyzstan. They occupy the areas of intermountain depressions, foothills and 

partly midlands. Noncarbonate rocks are of secondary importance and are sparsely 

distributed only in midlands and high mountains, with high precipitation level. Deep 

chemical decomposition of rocks with translocation of chlorides, sulfates, and carbonates 

to deep layers of loose deposits and down the slopes to plains and water bodies takes 

place in modern times in midlands and high mountains with cool and moist climate. Even 

deeper weathering down to aluminosilicates, removal of silicic acid and accumulation of 

sesquioxides happen on southwestern slopes of Fergana range, the most precipitation-rich 
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areas. That is why more clayey soils develop here – Cambisols and Kastanozems 

(Mamytov 1974; Mamytov and Ashirakhmanov 1988; IUSS Working Group WRB 

2014). 

South Kyrgyzstan is the northernmost part of the subtropical belt. That is why the features 

of subtropical soil formation are weakly expressed. Greyic Phaeozems in the area are 

peculiar for their weakly differentiated profile layers and claying. The peculiarity of 

South Kyrgyzstan soil is a wide distribution of Phaeozems and Cambisols (Adyshev et al. 

1987; Mamytov and Ashirakhmanov 1988). 

A typical feature of Cambisols of walnut-fruit forests of South Kyrgyzstan is the high 

humus content, thick humus horizons (0.5-1 m), little clay content and saturation of the 

absorbing complex with calcium and good structure, which makes them closer to 

Chernozems. It should be admitted that the entire vertical gradient of West Tian-Shan 

soils – Phaeozems, Cambisols, Mollic and Umbric Leptosols are prominent for a higher 

humus content in contrast to similar soils of Pamir-Alai and other mountain regions of 

south Central Asia. Cambisols, rich in organic content, occur under fir and spruce forests 

of West Tian-Shan. Their typical feature is presence of Umbric horizon under the forest 

litter, which is the consequence of development in continental climate, where the lack of 

heat and moisture limits activity of microorganisms and promotes conservation of new 

humus. Mollic Leptosols and rarely Umbric Leptosols develop in alpine and subalpine 

belts. These Leptosols are usually weakly leached and have neutral pH reaction. They 

have slightly thicker and considerably more differentiated soil profile (Adyshev et al. 

1987; Mamytov and Ashirakhmanov 1988). Vegetation, soils and climatic factors provide 

the main ecosystem services rural population in Kyrgyzstan relies on. 

2.4 Human impact 
Kyrgyzstan is a developing country with poor economic situation and a rural population 

largely relying on natural resources. Animal husbandry and agriculture comprise the main 

livelihoods for the population outside of the capital. Agriculture contributes the most to 

the country’s GDP (NatStatCom 2018), which makes natural resources the keystone for 

national economy and food security. 

With independence in 1991, subsequent destruction of economic linkages, collective 

farms and industry, followed by population growth in rural areas livelihood strategies 

became very limited. Rural people have mainly two sources of income: household-based 
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small-scale farming and labor migration (Farrington 2005; Atamanov and Van den Berg 

2012). There is more livelihood diversity in the historically more developed north of the 

country (Chui valley), where the capital and central government are, that allows people to 

retreat from traditional farming. In contrast, in the south agriculture and labor migration 

are more common (Schmidt and Sagynbekova 2008). 

There were several studies devoted to pastoral management systems (Steimann 2011, 

2012; Kerven et al. 2011; Crewett 2012), but only few of them looked into the 

environmental consequences and implications for decision makers (Coughenour et al. 

2008; Borchardt et al. 2010, 2011, 2013; Dörre and Borchardt 2012; Hoppe et al. 2016a, 

2016b, 2017). The several pasture use reforms made the rules complicated and ruined the 

former management system, consequently making animal husbandry unregulated, as in 

terms of livestock number, so in terms of their seasonal movement and overall 

management (Crewett 2012). 

The main achievement of different reforms is decentralization of pasture management. 

This has led to the situation where the pasture leaser, livestock owner and shepherd can 

be three different persons, and not necessarily the local ones. Disintegration of collective 

farms, which consistently followed common scientifically-based policies into small 

private household farms without solid business strategy let to the loss of pasture 

infrastructure and central management resulting in unregulated grazing practices (Schoch 

et al. 2010). Current number of livestock has reached the peak values of Soviet times 

(Farrington 2005; Shigaeva et al. 2016) according to official data (NatStatCom 2018), 

which, however, is considered inaccurate, because livestock owners tend to report lower 

numbers to avoid additional taxes and not to reveal exceeding of the grazing limits 

(Shigaeva et al. 2016). Productivity of livestock remains low due to unprofessionalism of 

shepherds, who prefer to increase the amount of livestock instead of improvement of their 

breed and grazing system. The unregulated grazing and complicated pasture distribution 

system, insufficient law enforcement with destroyed infrastructure led to unsustainable 

use of natural resources, which resulted in overgrazing of close pastures, underuse of 

remote pastures and economic losses due to livestock travelling on foot for long distances 

(Crewett 2012; Dörre and Borchardt 2012; Shigaeva et al. 2016; Isaeva and Shigaeva 

2017).  
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The recent pasture reform of 2009 has delegated pasture management rights to local 

authorities (pasture committee), which are elected from local people, mainly natural 

resource use and animal husbandry experts. Pasture committees develop pasture 

management plans and annual usage plans, decide on pasture carrying capacity, monitor 

pasture condition, establish grazing quotas, sell pasture usage rights (pasture tickets) and 

use the revenues to implement the management plans. However, about 30-50% of the 

pasture committee’s budget covers salaries of its chairman and accountant, which are still 

low, resulting in high staff turnover (Shigaeva et al. 2016). Furthermore, the budget is not 

enough to conduct regular assessments of pasture capacity and shepherds usually take 

more livestock to pastures than they are allowed. Shadow economy is still strong and 

pasture use is often regulated by informal agreements between shepherds, who do not 

always have pasture use rights. Because of this, there are no reliable data on the numbers 

of livestock, their composition and transhumance. Pasture committees do not have 

enough resources and rights to enforce their decisions. Pasture tickets are perceived by 

local communities as pasture use tax and pasture committees as a government body, not a 

local participatory body, which serves for their direct benefits. Participation of different 

stakeholders in pasture committees is sometimes nominal, some of them do not 

understand their rights and responsibilities, which leads to misunderstanding of pasture 

committee’s role and blurs benefits of the reform. So, many communities continue the 

grazing practices as they have used to, or as convenient for them (Shigaeva et al. 2016; 

Isaeva and Shigaeva 2017). 

Livestock is considered by rural people as a good mean for investment, allowing for 

money saving and fast capital mobilization. It can also provide fast financial growth, if 

cheap pastures are used (de la Martinière 2012). Culturally livestock plays a great role in 

different traditional events (weddings, funerals), it is an indication of well-being and 

promotes social linkages. However, people in villages try to diversify their income by 

having livestock, crop fields and collecting fruit and firewood from forest or working as 

shepherds for other people (Shigaeva et al. 2007; Kerven et al. 2011; de la Martinière 

2012), even if they have stable income by being officially employed in local agencies 

funded from the national budget. Some families have their relatives working abroad and 

sending remittances back home, which are invested in construction of houses or livestock 

(Schoch et al. 2010), which again contributes to increasing grazing pressure (Hangartner 

2002; Kerven et al. 2011). The richer farmers invest some of their income into further 
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diversification of their livelihoods by opening small village shops, purchasing machinery 

and providing services for payment or to livestock infrastructure, such as new barns 

(Hangartner 2002; Steimann 2011; Kerven et al. 2011). 

Unregulated animal husbandry is widely spread in the region. It is based on seasonal 

transhumance, where livestock stays in villages in winter and taken to highland pastures 

in summer (Kerven et al. 2011). The most popular animals are cattle, sheep and horses, 

donkeys are also kept, however they are not considered as valuable and most of the time 

are not taken care of. In early spring local people start taking animals to the low plain 

pastures near the villages, because of lack of stored forage, which used to be supplied 

from outside of the republic in Soviet times. In late spring, when grass appears in the 

forest the animals are taken there, where they eat grass and damage tree seedlings. 

Starting from early summer people move to the mountain rangelands, which are above the 

tree line, and stay there till early autumn. In autumn the animals are taken again to the 

forest and then back to the village for winter. In summer people cut hay in the forest to 

store it for the winter, but after the animals have eaten the early grass in spring, the 

meadows do not produce enough hay for the entire winter period, so the vicious circle 

repeats next year. 

Despite of importance of this issue there is no common understanding on the level of 

rangeland degradation in Kyrgyzstan. The values vary from 11.7% of the territory (Bai et 

al. 2008) till ~24% (Le et al. 2016) depending on the methods used. There have been 

several studies on pasture degradation and desertification (Kerven et al. 2012) and 

degradation costs (Mirzabaev et al. 2016), however the full picture is unclear due to lack 

of systematic ground observations and unknown spatio-temporal distribution of grazing 

pressure. The general growth of livestock numbers allows to make a conclusion, that the 

general pressure on pasture resources is growing, which may lead to rangeland 

degradation. 

Degradation of pastures represents a complex concept, encompassing soil, vegetation, 

biodiversity and productivity change in comparison to natural condition. Early grazing, 

unregulated transhumance and large amounts of animals are some of the main impact 

factors on soil and vegetation in the region. Overgrazing prevents grass on rangelands to 

achieve significant biomass and produce seeds, which leads to domination of unpalatable 

species on the pastures and change of plant communities. Livestock trampling leads to 
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destruction of vegetation and soil structure, which results in soil loss. This leads to 

pasture degradation, expressed in a change of species composition, soil erosion, loss of 

grassland productivity and animal diseases. 

Climate change scenarios for Kyrgyzstan propose considerable changes (Hijioka et al. 

2014), which will increase the pressure on natural ecosystems, leading to even more 

difficult situation. The unsustainable use of vegetation and soil resources leads to their 

degradation and loss of productivity, which will result in severe economic consequences 

in future. Different ecosystems have different response to climate change, which can have 

significant spatial variability across the country. Thus, modelling of interaction within the 

pastoral ecosystems, identification of risks and potential solutions for decision makers are 

of utmost importance for the region. 

3. Soil erosion modelling 
Many methods have been developed for representation of interactions between soil, 

vegetation and climate (Tiwari et al. 2000; Nearing 2000; Kinnell 2017). One of the most 

important and widely used equations is the Universal Soil Loss Equation (USLE), which 

calculates long-term soil loss from the features of soil, terrain, utilization, climate and 

conservation practices. Both, USLE and RUSLE (as well as many other variations) have 

been used for a long time in assessment of soil loss worldwide, so this equation is 

considered as a standard in modern soil science. This equation is based on long-term 

observation data and can yield mean soil loss values over a long period and is not 

applicable for estimation of event-driven erosion. However, there are many other 

alternatives, based on different approaches as empirical, so deterministic, which deserve 

further development (Karydas et al. 2014). 

3.1 USLE and its derivatives 
USLE was developed by Wischmeier and Smith (1978), based on soil loss measurements 

conducted in the USA. The equation was revised by Renard et al. (1996), based on 

measurements of different soil types from around the world, the revised version of the 

equation is titled RUSLE (Revised USLE). Both equations are based on multiplication of 

different factors, affecting soil loss:  
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A = K × C × R × LS × P (1) 

 

where A – annual soil loss, K – soil erodibility factor, C – cover management factor, R – 

rainfall erosivity factor, LS – terrain factors and P – support practices factor. These 

factors include the so-called K-factor, which is soil erodibility indicating how much the 

soil is perceptible to surface runoff and is calculated based on physical parameters, such 

as grain size, aggregation and organic content. C-factor is the surface management, based 

on the soil utilization practices, vegetation and residues, protecting soil from erosion. R-

factor is the climate factor, based on peak rainfall intensity, which accounts for the 

precipitation contribution to the soil loss. LS-factor (usually denoted together) are the 

slope length and steepness factors, which account for the terrain impact on soil loss. And 

P-factor is the conservation practices factor, indicating soil loss prevention practices and 

usually is taken equal to 1 on rangelands, as no soil conservation occur. 

There were many studies utilizing USLE and its derivatives, primarily RUSLE (Revised 

USLE) and MUSLE (Modified USLE) to assess soil loss and the areas with high risk of 

soil erosion worldwide. The relative simplicity of implementation of soil loss research or 

rather estimation based on USLE made this equation very popular for rapid assessment. 

However, the equation has its constrains, the main of which is its limited applicability to 

different conditions it was not based on, which can lead to substantial misjudgment about 

the scale of soil loss. The estimations still need to be corrected by observations of real soil 

loss amounts. Despite its relative simplicity, USLE still requires a substantial dataset 

about terrain, precipitation, vegetation and cover management, and, of course, soil itself. 

Though, many researches covered the gaps in data availability by using different proxies 

and regression approaches (Brown and Foster 1987; Renard and Freimund 1994; Zhang et 

al. 2004; Karaburun 2010; Schönbrodt et al. 2010; Baskan et al. 2010; Lee and Heo 2011; 

Wang et al. 2016). 

Initially, USLE was developed for application on agricultural land, and so the 

corresponding factors were used. However, estimation of soil erosion was demanded on 

other types of land use, thus the Revised USLE (RUSLE) has expanded its application to 

other land uses and soil types. USLE is designed to estimate long-term soil loss, so long-

term data should be available. And it is not applicable for short-term soil loss 

assessments. It is also not applicable for estimation of deposition. The R-factor considers 
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only detachment by rainfall and does not account for snowmelt or other types of surface 

flow like irrigation, however, this is accounted for in MUSLE. Despite of its many 

limitations the USLE-based researches became very popular in estimation of soil loss due 

to its relative simplicity and reasonable data requirements. 

The soil erodibility factor or K-factor, as denoted in USLE, is estimated based on soil 

data. It requires substantial set of topsoil samples from the study site, which can be 

collected during field trips recording soil structural characteristics at the point of 

sampling. Then the soil samples need to be analyzed in soil laboratory, basically for 

organic content and grainsize distribution. The K-factor can be calculated by different 

available equations from soil structure information, organic content and grainsize 

distribution. Or directly estimated using the nomograph, provided by Wischmeier and 

Smith (1978). Apart from rather classical ways of K-factor estimation, many other 

equations were developed for different parts of the world, when some data are not 

available (Knijff et al. 2000; Fu et al. 2005; Vemu and Pinnamaneni 2011; Shabani et al. 

2014; Geng et al. 2015; Guerra et al. 2017; Ostovari et al. 2017; Rabot et al. 2018). These 

equations are mainly based on regression analysis of different soil and terrain properties 

as predictors and measured or estimated K-factor values as the predicted variable. The 

limitations of soil erodibility estimations using classical equations or nomograph 

sometimes are neglected e.g. Addis and Klik (2015). Even though the K-factor equation 

was developed based on a limited variety of American soils the nomograph is applied to 

different parts of the world without proper adjustment or validation. This approach can 

still be used for relative estimation of soil loss; however, the absolute rates need 

verification with soil experiments or comparison with other verified data. 

The slope length and steepness factors are usually denoted together as LS-factor, 

represent the terrain information. With current availability of digital elevation models for 

most of the world, estimation of LS-factor becomes a matter of a proper equation 

selection. There are several equations and even algorithms available which differ 

algebraically and conceptually. However, the initial equation by (Wischmeier and Smith 

1978) was developed based on slopes under 25%, which suggests it should be used with 

caution on steeper slopes. It also establishes quadratic relation between slope steepness 

and S-factor, making S-factor growing faster with slope increase. In RUSLE by Renard et 

al. (1996), this was changed as the authors had demonstrated that S-factor would not grow 
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exponentially with slope increase. So, a different LS-factor equation is used in RUSLE, 

which should be accounted for when doing calculations. 

Rainfall erosivity factor is the factor describing how much the rainfall contributes to soil 

loss. The initial USLE equation calculates the R-factor from total kinetic energy of a 

rainfall event and a maximum rainfall intensity over a continuous 30-minute period of 

rainfall. This requires long-term continuous meteorological observations with recordings 

of precipitation amount and intensity. Such observations are usually done at weather 

stations equipped with pluviographs, from which precipitation intensity can be derived. 

Modern automatic weather loggers or rainfall gauges represent a good and affordable tool 

for collection of such data. They can collect many meteorological parameters and send 

them in real time if the area is covered with cellular network, otherwise data can be 

downloaded from the automatic stations manually. However, some regions are not 

covered with pluviographs, so, many studies dealt with prediction of R-factor from other 

weather parameters, mainly precipitation level or duration of rainfall (Renard and 

Freimund 1994; de Santos Loureiro and de Azevedo Coutinho 2001; Zhang et al. 2009). 

It should also be highlighted that R-factor is naturally prone to seasonal variations 

together with C-factor. 

Surface management factor (C-factor) describes the cropping and management of soil, 

which has a serious impact on soil loss. In USLE, it is defined as a ratio of soil loss at a 

given surface management system to the soil loss from continuously tilled fallow area. 

This factor was limiting the application of USLE to only arable land. In RUSLE, 

application of this factor was expanded to different management systems as rangelands, 

forests, construction sites, which provided a great variability and applicability of the 

equation. In RUSLE, C-factor is a multiplication of other subfactors, accounting for 

canopy cover, surface cover, surface roughness, soil moisture, and prior land use. In case 

of rangelands, the prior land use subfactor value can be taken for 1 as they normally 

managed equally (i.e. not plowed etc.). So, for rangeland conditions C-factor is a function 

of vegetation and their residue properties, and if the land is constantly overgrazed then 

even residue can be neglected. Vegetation properties can be easily measured in the field 

and related to remotely-sensed vegetation indices, facilitating estimation of C-factor, 

which has been done many times in recent studies (Zhang et al. 2008, 2015; Karaburun 

2010; Schönbrodt et al. 2010; Schmidt et al. 2018). As with R-factor, C-factor is also 

prone to seasonal variations, so their reciprocal oscillation should be accounted for when 
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estimating mean annual soil loss. This is covered in RUSLE by seasonal weighting of C-

factor with corresponding R-factor.  

Support practice factor, or so-called P-factor, is a ratio of soil loss from the applied 

support practice to soil loss from up-and-down hill culture. It is empirically established 

for different supporting practices and can be calculated based on physical parameters of 

slope and support practice. It does not consider the protecting features of vegetation or 

residues, which is accounted for in C-factor. This factor equals to 1 in areas without any 

support practice, which is the case of rangelands. 

Even though the application of USLE requires lots of data and research, its requirements 

are reasonable and feasible for many parts of the world, which explains its popularity. 

Though the results require calibration with direct soil loss measurements, the relative risk 

of soil loss is also important for soil management. However, modern GIS technologies 

together with remotely sensed data provide a substantial dataset to cover the data gaps 

and produce soil maps, which are very helpful for decisionmakers. 

3.2 GIS and soil loss modelling 
With advancement of remote sensing, development of spatial interpolation algorithms and 

growth of computational power, GIS has become an essential part of soil science. The 

new technologies and remotely sensed datasets allow for better analysis and accurate 

results, rapid assessment of soil features, as well as spatial interpolation excluding human 

factor. USLE factors, as designed, require intensive and long-term measurements on 

standardized plots, which are laborious, expensive and presume serious long-term 

commitment. However, there are many researches providing alternatives to the original 

calculation of the factors, using different statistical techniques to approximate factors of 

concern. In many cases, prediction of the measured variables with spatially explicit 

covariates is undertaken to produce maps of ULSE factors and soil loss. This has brought 

a new dimension to soil modelling allowing for development of maps of soil features and 

soil loss, as well as modelling of different situations. 

Soil erodibility is a function of soil properties, such as soil texture, organic content, 

permeability and structure. The soil properties, in their turn, are the result of pedogenesis 

processes, which are controlled by bedrock, terrain, vegetation and other factors (Jenny 

1941). Martz (1992) indicated connection of soil erodibility with relative slope position in 

Canadian prairie landscape, higher erodibility was associated with higher position on 
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slope where soil was leached, lower erodibility was associated with lower slope position. 

Panagos et al. (2012) used inverse distance weighting for interpolation of soil erodibility 

factor in Europe, no environmental covariates were used, but the mapping was based on 

extensive soil sampling. Panagos et al. (2014b) used remotely sensed data in a form of 

vegetation indices and raw band data or soil enhancement ratios (Boettinger et al. 2008, 

2010), terrain features, derived from SRTM DEM and geographic coordinates as 

predictors for soil erodibility mapping, which increased resolution and accuracy of the 

result. These surveys indicate that spatial prediction of soil erodibility based on point soil 

sampling, regression analysis together with spatially explicit predictors comprising 

remotely sensed data and terrain indices has become a standard approach. However, 

depending on the used interpolation method, serious considerations should be put into the 

sampling design, as different methods have different limitations and requirements to 

distribution of samples. In case of ordinary kriging, samples should be evenly distributed 

in the area covering the entire space in grid, alternatively random sampling could be used 

to avoid any bias. Regression kriging will require even coverage of not only geographical 

space, but rather the feature space, which means that the samples should be distributed so, 

that they would cover the entire variability of anticipated predictors. In case of mapping 

of soil features, this would mean sampling of different terrain and geological features as 

well as evenly sampling the geographical space, ensuring the actual spot is chosen 

randomly. Different sampling strategies will be further discussed in section “3.4 Soil 

sampling design and validation”. 

Similar approach is used for mapping of surface management factor (soil loss ratio). 

Vegetation indices, such as NDVI (Normalized Difference Vegetation Index), EVI 

(Enhanced Vegetation Index) and others are widely used for spatial prediction of C-

factor (Karaburun 2010; Schönbrodt et al. 2010; Zhang et al. 2015; Panagos et al. 2015; 

Schmidt et al. 2018). Remotely sensed vegetation indices are good predictors for C-factor 

on rangelands, as soil loss ratio there is basically a function of vegetation. Similarly to K-

factor, soil loss ratio can be measured at certain points, related to spatially explicit 

predictors using regression analysis and interpolated with a form of regression kriging 

(Schmidt et al. 2018). The sampling strategy should also be designed according to the 

interpolation method chosen, which is discussed in section “4.2 Vegetation mapping and 

sampling design”. On mountain rangelands, vegetation types are also controlled by terrain 

conditions, such as altitude and slope exposure (Ionov and Lebedeva 2005; Borchardt et 
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al. 2010, 2011), which means that spatially explicit terrain indices can also be used as 

predictors. Terrain features and remotely sensed vegetation indices combined can provide 

good prediction power covering variability caused by terrain and species variations. This 

approach is straight forward for rangelands, as surface management there does not use 

any mechanical interventions, such as plowing, abruptly changing C-factor value. So, 

surface management factor changes gradually between seasons, which still requires 

different assessments for each season. Thus, freely available remotely sensed data, such 

as Landsat images and SRTM could be used as covariates. In case of arable lands such 

assessments should occur after every agricultural intervention changing C-factor. Landsat 

images, taken every 16 days may not be the best choice, however modern development of 

aviation and availability of drones with various sensors is a good option for collection of 

remotely sensed data when needed. 

Soil support practice factor or P-factor is the one rarely used on rangelands, since there 

are no soil conservation activities undertaken there. It represents an overall effect of all 

the soil conservation practices, which are difficult to assess deterministically. There are 

values known for most common conservation practices, however they require adaptation 

for local conditions and long-term and costly validation experiments. It is also difficult to 

develop a raster image of P-factor based on regression modelling or any kind of 

prediction. Soil conservation is a very local activity and a raster should represent discrete 

areas and values, so, ground-truth data should be available to develop such a raster. 

However, it is possible to conduct classification of remotely-sensed images of high 

resolution (Karydas et al. 2009), if ground-truth data is present or soil conservation 

measures can be identified visually, given P-factor for each class is known. A different 

approach is to use sophisticated filtering techniques and high resolution elevation models 

to identify terrain features, preventing soil loss (Panagos et al. 2014a). USLE/RUSLE 

proposes estimated P-factor values for variety of different practices and conditions 

(Wischmeier and Smith 1978; Renard et al. 1996; Foster et al. 2002), these values are 

based on experimental estimations and should be applied with caution in conditions other 

than they were developed in. 

Calculation of LS-factor for USLE is now a matter of finding an appropriate DEM 

(digital elevation model) and equation. The most popular free DEMs include SRTM and 

ASTER GDEM and provide, in most cases, satisfactory precision and accuracy and can 

be used for assessment and modelling of soil loss. Modern GIS software as ArcGIS and 
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many others can be used to calculate LS-factor by using appropriate tools and raster 

calculator with respective equations. Free GRAS GIS and SAGA GIS provide even more 

comfortable way of using just one tool to calculate LS-factor straight from DEM with 

different methods. Soil loss models usually specify which method should be used for LS-

factor calculation. 

Spatial interpolation of rainfall erosivity factor requires several respective techniques 

since weather stations spatially represent a point. However, for some areas it is difficult to 

obtain rainfall intensity data, as pluviographs are not always installed, or installed not 

long ago so the sufficient dataset has not been collected. Hence, many studies occurred 

identifying relations between different predictors and R-factor based on regression 

analysis (Renard and Freimund 1994; de Santos Loureiro and de Azevedo Coutinho 2001; 

Zhang et al. 2009; Lee and Heo 2011). The R-factor values can be interpolated with either 

ordinary kriging or related to spatially explicit predictors and inferred accordingly. When 

DEMs and their derivatives are used as auxiliary data for downscaling of climatic 

parameters, the result will have variability connected with that of the terrain, which may 

cause collinearity problems if used together with other terrain factors. Climate parameters 

were often predicted with terrain indices or other climate covariates (Böhner and Antonić 

2009; Gerlitz et al. 2014, 2015; Gultepe 2015; Gerlitz 2015; Böhner and Bechtel 2018). 

These regressions are very much connected to the area they are developed for, as rainfall 

energy, intensity and their relation to precipitation level varies greatly across the world. 

R-factor, just like C-factor is prone to seasonal variations, so this fact should be 

considered for accurate annual assessments of these factors and soil loss. Separate C-

factor and R-factor raster images should be developed for every month, or better for every 

15 days. The C-factor annual value is a mean of C-factor seasonal images, weighted with 

corresponding R-factor as outlined in (Renard et al. 1996). And the R-factor annual image 

is a sum of all seasonal images (Renard and Freimund 1994; Renard et al. 1996). 

After development of raster images of all the factors, the resulting soil loss rate is a result 

of multiplication of all the raster images as suggested by USLE/RUSLE equation 

(Wischmeier and Smith 1978; Renard et al. 1996). 

3.3 Digital soil mapping 
Almost every country has undertaken soil mapping efforts, although it is a laborious, 

expensive and time-consuming task. Despite a long history of nature resource mapping, 
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the conventional paper maps are not considered of good quality and resolution anymore 

(McBratney et al. 2003). Digital soil maps have become a standard with the development 

of new calculating power, algorithms, modelling approaches and big sets of spatial data, 

including digital elevation models, remotely and proximally sensed data. Digital 

technologies have made soil mapping much easier than ever before and provided a new 

field for research and experiments. Now the relatively expensive field work and 

laboratory analysis become the hardest part of high resolution mapping of soil classes and 

properties. Legacy soil data can cover this gap to some extent, however, they are limited 

to certain institutions, collected with different protocols and can be incompatible for 

creation of the world soil map. 

Digital soil mapping is largely based on relation of measured soil features at certain 

sampling points to spatially explicit covariates, which represent terrain features, remotely 

sensed indices or other factors. This paradigm is rooted in principles of soil forming 

discovered and further developed, inter alia, by Dokuchaev (1883), Jenny (1941) and 

McBratney et al. (2003). This approach postulates that soil is a product of different 

pedogenic factors at the place of origin, which include: parent material, terrain, climate 

impact, organism activity and time, and that similar soils should develop under similar 

conditions and different soils should develop under different conditions. Soil forming 

factors are the main covariates of soil types and features, thus, certain soil types can be 

related to certain combinations of the covariates. Most of the covariates like climatic 

factors, parent material and terrain have their direct spatially explicit implementations, or 

proxies, developed from digital elevation models or remotely sensed data. These 

covariates make it possible to extrapolate soil features measured at certain points over an 

area of interest by relating the point data to their spatially explicit forming factors. 

Mapping of soil features in mountains is very different from that in flat areas. Soil 

properties in mountains can change either gradually, e.g. along a slope, or abruptly, e.g. 

going over a ridge. Parent material can change as well as exposure, insolation, exposure 

to wind and rain, vegetation and many other factors, impacting soil development. 

Therefore, soil mapping, especially in mountains, relies on the use of auxiliary data and 

environmental covariates. Also, creation of digital maps with discrete soil classes and 

continuous soil properties differ in modelling approaches, however, the approximation 

datasets used are mainly the same. Continuous soil parameters are usually mapped with 

universal kriging or regression approaches, and discrete soil classes are usually mapped 
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with classification approaches. However, more sophisticated models including machine 

learning are being applied nowadays and provide better results (Heung et al. 2016). 

The most widely used predictors are terrain factors, including elevation, slope gradient, 

slope position and curvature. These factors can be easily derived from digital elevation 

models with the means of modern GIS software, e.g. SAGA GIS (Conrad et al. 2015) 

“Terrain analysis” modules. As terrain represents one of the main covariates, terrain 

factors usually contribute the most to the model accuracy. Climatic factors, commonly 

collected at weather stations and spatially extrapolated, are also often used as predictors 

for digital soil mapping. However, these factors have little spatial variation, which can be 

helpful for prediction on flat terrains and lead to loss of actual variability predicting soil 

features in mountains. But, climatic factors, downscaled with terrain indices as auxiliary 

data should be used with caution, as they will represent mostly terrain variability, which 

can cause collinearity and overfitting problems if used with other terrain factors for soil 

prediction. Modern remotely sensed products also provide valuable information as 

spatially explicit covariates of soil factors. Such products as soil surface moisture, land 

surface temperature and evapotranspiration can be used as auxiliary data representing soil 

spatial variability. 

The ratios of different spectral bands of remotely sensed images also represent a widely 

used set of auxiliary data. Soil enhancement ratios (SER) (Boettinger et al. 2008, 2010) 

were proposed as covariates of soil properties, representing information about parent 

rock. This can be a good asset for digital soil mapping, especially on overgrazed 

mountain pastures as SER are efficient in areas with sparse vegetation, as more of soil 

information will be captured with remote sensing and they will still contain terrain 

variability. 

The classical approach to spatial interpolation of soil properties is simple or ordinary 

kriging; however, this method presumes the persistence of the property’s spatial 

variance. This is a good approach for soil mapping on flat terrains, where spatial variance 

is most likely to stay constant. However, variance of soil properties is not always uniform 

on rugged terrain. Therefore, simple or ordinary kriging are not suitable for prediction of 

soil properties in mountains, because they can vary gradually or abruptly, depending on 

terrain. Thus, regression or universal kriging with spatially explicit predictors based on 

terrain properties or remotely sensed data are preferable. 
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One of the most widely used approaches in creation of digital soil maps is prediction of 

continuous soil properties from terrain features, remotely sensed indices and other known 

soil properties with the means of regression analysis and kriging. The results can be 

spatially explicit if spatially explicit predictors are used. Most often the desired soil 

feature is measured at certain sampling points, which can be chosen as randomly, so 

arbitrary. Then the spatially explicit predictors for the soil feature should be found, which 

can be different terrain indices, as elevation, slope or slope position, as they can have an 

impact on soil formation, and/or indices calculated from remotely sensed multispectral 

images, which reflect the spatial variability of soil properties. Regression kriging 

approach is better to apply in mountain areas, as this approach reveals the relations 

between the dependent variable and predictors, which should capture the spatial variance 

of the dependent variable, and add the extrapolated residuals to the regression model, 

which ensures more local variability. However, in contrast to ordinary kriging, regression 

kriging may not work on flat terrains, where terrain features may not significantly 

correlate with soil properties due to their little variation. 

Geographically weighted regression (Fotheringham et al. 2002) can be even more 

accurate in mountain areas. This method fits a series of local regressions, which is 

especially appropriate when regression coefficients vary in space. More sophisticated 

approaches as tree models, fuzzy statistics, MAXENT and neural networks (Schmidhuber 

2015) become more and more popular as computational power grows and software tools 

become available. These algorithms can be used as for mapping of continuous soil 

properties, so for prediction of discrete soil classes. 

3.4 Soil sampling design and validation 
Soil variability is mapped in different ways discussed above and by many other 

researchers (Heuvelink and Webster 2001; McBratney et al. 2003; Scull et al. 2003; 

Hengl et al. 2004; Bishop and Minasny 2006). The sampling design itself is a very 

important part of soil study projects, as this allows or prevents from doing certain 

statistical inferences, which are the results of most soil researches. There are several 

approaches to sampling. Depending on the task the sampling points can be distributed in 

geographical space according to a certain strategy. They can also be distributed in feature 

space, aiming to cover the variance of the mapped features or their covariates, or be 

spread in both spaces (Minasny and McBratney 2006; Brus and Heuvelink 2007; Vašát et 

al. 2010; Clifford et al. 2014; Ließ 2015; Brus 2015; Chang et al. 2016). 
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Soil sampling, in the framework of this Ph.D. project, means collection of top soil 

samples, which represent 300 cm3 of soil, collected from the top 20 cm of soil and 

analyzed according to “Procedures of soil analysis” (Reeuwijk 2006). A good sampling 

design should ensure covering the full range of a variable variation, i.e. be representative 

for the data population (Domenech et al. 2017). In spatial studies, a systematic and 

monotonous coverage of geographical space was considered to be a practical approach. 

This approach can be representative if the measured feature’s variation stays constant in 

geographical space and does not have any spatial trends, which can be the case on flat 

terrains, where ordinary or simple kriging is applied for spatial interpolation. However, in 

the case of rugged terrain, where the measured variables can change gradually or abruptly 

in geographical space this method will not produce correct results. For this purpose, 

regression modelling using spatially explicit predictors and feature space sampling will 

produce better results. However, regression kriging or geographically weighted regression 

will be even better. Regression kriging utilizes regression analysis between dependent 

variables represented by survey points and spatially explicit predictors, and then 

interpolates the residuals with the means of ordinary kriging, adding them to the 

regression model, thus, a combination of geographic and feature space sampling will be 

the most adequate. 

Development of a robust sampling strategy in house prior to the field trip, especially 

when the covariates and the study area itself are barely known, is not a trivial task. 

However, this is better than going to the field without any sampling strategy. A researcher 

should be flexible and have several sampling strategies, as some of them may appear 

totally inapplicable due to different constrains, related to terrain, infrastructure or 

legislation. 

The most popular approach in recent years was Latin hypercube (Minasny and 

McBratney 2016) which is good for sampling when spatial covariates are known. This 

approach minimizes the number of samples while maximizing the feature space coverage, 

taking one sample within each feature space band for multiple predictors. Since the 

sampling itself should occur in the field, the practical side of Latin hypercube sampling 

can be more complicated. In real world sampling within different feature distribution 

bands would mean splitting the study site in patches, representing combinations of 

different feature bands and choosing a random sampling point within each patch, all done 

with GIS tools. Another approach is to use not a random point within each patch, but 
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rather its centroid to increase the sample’s representativeness and adherence to the patch. 

Whereas in the field, the indoors chosen points may be inaccessible due to constrains 

discussed above. So, it is better to generate several points within one band patch or try to 

come as close as possible to the chosen point. Another option is to take the map with 

patches to the field and sample within each patch where possible. 

The more classical approach is stratified random sampling, which is a broader case of 

Latin hypercube. Here the feature space is divided into strata (clusters), which should be 

randomly sampled with a certain number of samples per cluster, so that all clusters (or 

data strata) are equally represented, keeping the randomness for unbiasedness. For this, 

spatial clusters should be developed based on known or anticipated spatial predictors. The 

clusters will also represent patches within study site, and randomly placed sampling 

points should be generated within each patch. The practical limitations of this approach 

are same as those for Latin hypercube sampling. 

Conventional sampling based on expert knowledge is another eligible sampling 

approach. It basically aims at sampling of representative places or landscape features, 

identified by an expert in the field. The decision on which spatial interpolation techniques 

should be used will be based on the results of statistical analysis of collected samples and 

patterns identified, or expert knowledge again, as each case will be very special. There 

were many other sampling schemes developed for application in specific cases (Zhang et 

al. 2016a; Domenech et al. 2017; Yang et al. 2017; Stumpf et al. 2017). 

Validation of results of spatial interpolation of soil features is also an important part of 

digital soil mapping and should be considered at the stage of sampling design. As some 

complicated models do not allow for direct unbiased assessment of goodness of fit, 

additional samples should be collected in the field to serve as validation dataset. If Latin 

hypercube or stratified random sampling approaches are used, then validation points will 

automatically fall within one of the patches (strata), so in some patches more than 1 

sample should be collected. The exact size of the model training dataset as well as 

validation dataset depends on the study design and aims and should be decided based on 

expert opinion and statistical implications. Considering this, the number of samples 

collected should be greater than the minimum needed for representation of features. 

Cross-validation is one of the popular methods for estimation of goodness of fit of 

modelling results. K-fold cross-validation is one of the options for cross-validation. It 
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basically generates K number of datasets of training and validation subsets, each time 

randomly splitting the entire database in two subsets. Then each time the model is trained 

based on the training subset and tested against the validation subset. The training and 

validation happens K times as we have K number of splits. After that the goodness of fit 

statistics are averaged for all the K simulations. This will require some programming 

skills and many computations, as the model will be trained and validated K times. 

However, the modern statistical libraries in R or Python allow for automation of this 

routine and modern computational power does allow for repetitive calculations of many 

modelling schemes even on desktop computers. 

Leave-p-out cross-validation provides for more unbiasedness as it does several random 

permutations of training dataset and a validation dataset of a chosen size p. Each time the 

training and validation observations are randomly chosen, the model trained on the 

training dataset and validated against the validation dataset several times. After all the 

simulations the goodness of fit statistics are averaged.  

The sampling design and validation of the results are integral parts of digital soil mapping 

and should be considered carefully before the research start. Careful planning and 

thoughtful sampling strategy will allow to achieve a greater accuracy and representation 

with the given resources. Inconsiderate sampling design can ruin the entire research effort 

and make statistical analysis and inferences impossible. 

4. Modelling of climate and vegetation interactions 
Response of vegetation and live systems to climatic factors and human impact is an 

important issue, especially when climate stability becomes more and more uncertain and 

human demand for natural resources grow. A large database of spatially explicit 

information was collected for a relatively short history of remote sensing by different 

Earth observation programs. These data include digital elevation models, vegetation 

indices, land surface and air temperature, precipitation, evapotranspiration and many 

others. The data were collected over some period and represent a 3D dataset where 

features change as on surface, so over time. The data dimensionality represents the main 

constrain for analysis and modelling of spatio-temporal systems, such as climate and 

vegetation. 
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Vegetation is widely accepted and proved to provide mechanical support to soils on 

slopes and prevent erosion (Schmidt et al. 2001; Wieder and Shoop 2018). However, 

humanity has been using soil and vegetation resources during its entire history, and any 

overuse leads to degradation (Dotterweich 2013). Many studies emerged discriminating 

human impact on vegetation from that of natural origin. The common discrimination 

method used is regression analysis based on climatic factors as predictors and NDVI as a 

response variable (Propastin et al. 2008a; Xin et al. 2008; Omuto et al. 2010; Zhang et al. 

2016b; Liu et al. 2018), where residual trends will represent the human impact. However, 

this approach is limited by implying that all the natural factors, influencing vegetation are 

covered by climatic factors only, so all the other impacts, be it random variation or e.g. 

soil impact are attributed to human. But for rapid assessment this method has proven its 

applicability. The different datasets discussed earlier are prone to seasonality and 

interannual trends, and have causal interrelationships, which can be immediate or delayed 

in time. The effects of climate on vegetation can also be displaced, e.g. downstream 

effects (Apel et al. 2018), or can vary depending on slope exposition. All these effects add 

complexity to statistical analysis and modelling. 

Many surveys in the region dealt with identification of NDVI trends on pixel basis using 

linear regression, where the value of each pixel would be regressed with time as an 

independent variable, and the slope of the regression line would represent the trend 

(Lioubimtseva et al. 2005; Piao et al. 2011; Yin et al. 2016; Dubovyk et al. 2016). The 

more sophisticated trend analysis methods include the autoregressive moving average 

(ARMA) (Liu et al. 2015), the more advanced autoregressive integrated moving average 

(ARIMA) (Qiu et al. 2016), approximation by a sum of trigonometric functions using 

Fourier harmonics (de Jong et al. 2011), application of empirical orthogonal functions 

(EOF), which is basically a principal component analysis (PCA) for raster images (Gurgel 

and Ferreira 2003; Chen et al. 2011; Yin et al. 2016), or using STL (Cleveland et al. 

1990), which stands for “Seasonal and trend decomposition with LOESS (LOcally 

wEighted regreSsion Smoother)” (Maynard and Levi 2017). All these methods have their 

advantages and disadvantages. The linear regression is the simplest method, it requires 

data stationarity and cannot handle seasonality or trend change properly, it produces a 

general trend for the entire period, leaving the explorer making an arbitrary choice for the 

breaks between the periods. ARMA and ARIMA are more advanced methods with simple 

concepts, however they can identify changes in trend in the research period and ARIMA 
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can handle nonstationary data. Fourier harmonics will divide the surveyed signal into a 

sum of simple trigonometric functions, which already accounts for seasonality and trend, 

and can identify the different components in the signal, which should be interpreted by 

the researcher. STL is a more sophisticated approach, designed to decompose the signal 

into seasonal, trend and noise components with great control, accounting for changing 

seasonality and trend. EOF decomposes the signal into orthogonal functions (like Fourier 

analysis), yielding several functions, which capture both temporal and spatial patterns, 

requiring intensive interpretation from the researcher. 

The methods described above can be used for analysis of series of spatial data with 

seasonality and for identification of their trend and seasonal components, which is 

applicable as to vegetation indices, so to climatic factors. The seasonal component of 

vegetation indices like NDVI reflects phenology, which can be assessed in terms of 

response to climatic factors’ seasonal component. The trend components of the vegetation 

indices and climatic factors demonstrate interannual changes which can also be assessed 

in terms of relation and long-term changes. The interrelations of vegetation and climate 

seasonal and trend components show how vegetation will respond to changes of annual 

means or seasonal distribution of climatic factors. 

The prediction of climate change and understanding how vegetation will respond to that 

change is one of the main uncertainties and concerns of modern climate and vegetation 

science. Many models were developed to predict changing climatic features and 

vegetation response to that. Also, many conventional statistics tools were used to model 

relations between climatic factors and NDVI (representing vegetation) (Propastin et al. 

2007, 2008b; Klein et al. 2012; Gessner et al. 2013; Lu et al. 2014; Formica et al. 2017). 

Some of these researches considered time-lag for NDVI response to climatic variables, 

but some of them did not. Obviously, vegetation needs time to respond to climate 

fluctuations, especially on seasonal scale (Klein et al. 2012; Gessner et al. 2013), so any 

regression or correlation analysis should consider the delayed effect of climatic factors on 

vegetation. The response lag and strength also have considerable spatial inhomogeneity, 

especially in mountains. So spatial variation should also be considered in the analysis. All 

these peculiarities lead to a simple conclusion – the spatio-temporal analysis of vegetation 

and climate interactions should use the methods that would avoid spatial and temporal 

generalization of data available, i.e. analyze the data in all its spatio-temporal complexity, 
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would account for discretization between seasonal and trend components of the signal and 

consider time lags in vegetation response. 

This means that the least squares in identification of trends is not applicable as it violates 

the assumption of signal stability. ARMA and ARIMA models are applicable only for 

analysis of interannual trends, as they do not account for seasonality in signal. The 

researches should not use any spatial or seasonal means for the analysis, as it leads to 

generalization and data loss. It could be advised that the seasonal and trend 

decomposition methods are applied on per pixel basis and vegetation and climatic indices 

compared and tested for relation on a per pixel basis as well, considering temporal lags. 

In case of multi-seasonal time series Fourier decomposition or Multiple STL could be 

used. 

4.1 Review of climate and vegetation studies 
The climate change scenarios for Central Asia predict severe changes (Hijioka et al. 

2014), which is why many researches were conducted in the region to investigate the 

vegetation response to climate change (Lioubimtseva et al. 2005; Lioubimtseva and Cole 

2006; Propastin et al. 2008b; Lioubimtseva and Henebry 2009; Klein et al. 2012; Gessner 

et al. 2013; Zhou et al. 2015; Yin et al. 2016). The researches mostly modelled vegetation 

behavior approximated by NDVI time series in response to climatic factors, also 

represented by spatially explicit data, and applied regression analysis to identify 

polynomial trend of different areas, loosing information about seasonal variations. Others 

average spatial data of each raster to a numeric string representation, thus creating a one-

variable time series suitable for conventional time series decomposition techniques but 

loosing spatial data. Spatial averaging is good for smoothing local outliers and 

identification of vegetation trends of the entire area, whereas temporal averaging captures 

spatial variations avoiding temporal anomalies. So, for a comprehensive study of 

vegetation dynamics from the remotely sensed data both should be avoided, and temporal 

and spatial data should be assessed simultaneously in all their spatio-temporal 

dimensionality. 

Normalized Difference Vegetation Index (NDVI) representing a difference of near 

infrared and red reflection divided by their sum and indicating the density of vital 

vegetation has become the most popular remotely sensed index for spatial vegetation 

researches. Global Inventory Modelling and Mapping Studies (GIMMS) and Moderate 
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Resolution Imaging Spectroradiometer (MODIS) programs provide global databases of 

NDVI images for almost entire Earth surface with good temporal and spatial resolution 

for considerable period and free of charge. These data together with different spectral 

bands provided by Landsat mission represent a combination of vegetation covariates, 

which are widely used for different vegetation mapping studies as in the region, so 

globally (Propastin et al. 2007, 2008b, 2008a; Mulder et al. 2011; Klein et al. 2012; Lu et 

al. 2014; Qiu et al. 2014; Schmidt et al. 2018). However, in mountain areas the different 

mountain slopes are lit differently depending on their aspect and time of the day, so 

different slopes may have generally different reflection power, which can result in 

reflectance difference, attributed solely to the terrain factor. So, the images should be 

topographically corrected, if it was not done by the image providing service. Topographic 

correction can easily be done with SAGA GIS (Conrad et al. 2015). 

Gessner et al. (2013) conducted one of the most comprehensive climate-vegetation 

studies for the region. The authors analyzed Central Asian region for spatio-temporal 

correlation between NDVI and precipitation monthly anomalies. They used AVHRR 

NDVI time series and GPCC precipitation spatial data. They were looking for correlation 

between NDVI and precipitation monthly anomalies and precipitation cumulated 

anomalies, where the respective rasters were shifted in time against NDVI anomalies 

rasters for 0-3 months. This is a very straight forward approach saving spatial and 

temporal variations and allowing for easy interpretation of results. The study indicated 

time-lagged correlations between NDVI and precipitation anomalies, for most of the 

lowland Kyrgyzstan the lag was 1 month, rarely – 2 months with very few spots of lag 3, 

which can be neglected. With regards to correlation of NDVI with cumulated 

precipitation, for most of the lowland Kyrgyzstan the highest correlation rates were found 

with precipitation anomalies, cumulated over a period of 3 and more months, rarely 2 

months. For most of the mountainous areas correlations were insignificant, presumably 

due to low capacity of NDVI to capture changes in sparse and low vegetation, which is 

typical for these areas. Authors discovered different correlation rates in different 

ecosystems and management types. 

Klein et al. (2012) conducted land cover classification of Central Asia according to that of 

FAO-UNEP using MODIS time series and C5.0 algorithm; they compared land cover and 

land use classes between the years 2001 and 2009. This method of comparing just 

between two points in time has a negative side – the vegetation phenology, as it is 
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captured by remote sensing, might be a subject of a temporal nonsystematic variation 

under influence of abiotic factors as precipitation, temperature or human impact. And 

thus, lead to misjudgment and misclassification of land classes. As it was the case in 

identification of temporal transition of desert area in Turkmenistan to semi-desert class. 

Authors have also identified a significant change in Aral Sea and Shardara Water 

Reservoir levels and transition from rain-fed agriculture to grassland class in northern 

Kazakhstan.  

Nezlin et al., (2005) used Empirical orthogonal functions (like principal component 

analysis) to decompose raster data time series of NDVI and precipitation in the area 

around Aral Sea. The data were decomposed to modes for evaluation of spatial and 

temporal variability. The set of spatial information was four modes represented by four 

rasters of NDVI and precipitation. And the set of temporal information was four one-

variable time series for NDVI and precipitation, which were checked for lagged 

correlations. The results show that the pattern of precipitation changes and NDVI 

development throughout the year is like the pattern in our study area and this study 

discovered a similar time lagged correlation between the first mode of NDVI and first 

mode of precipitation on the annual scale. The authors discovered different lagged 

correlations between precipitation and NDVI time series of EOF modes. The most 

meaningful was the correlation between the fist EOF mode of NDVI and precipitation, it 

was a positive four-month lagged correlation. 

Propastin et al. (2008b) conducted a study on correlation between NDVI and precipitation 

and temperature for the countries of Central Asia. They considered general spatial 

averaging for the entire area, averaging for different plant communities and per pixel 

calculations. They also used several averaged periods for time series data: the entire 

growing season, spring, summer, and autumn. The authors conducted regression analysis 

of NDVI images with time as a predictor to identify polynomial trends. A general NDVI 

increasing trend was discovered for the entire study area. The trend correlated 

significantly with summer precipitation, whereas summer temperature limited vegetation 

development. Positive correlation was found between spring temperature and spring 

NDVI. Forests demonstrated less correlation with temperature and precipitation due to 

developed root system which can reach ground water and conserve it for a long period. 

Significant upward trend of spring and summer NDVI was discovered. Significant 

positive correlation was identified between summer NDVI and summer precipitation, it 
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defined a weaker generally positive correlation. Strong positive correlation was identified 

between spring NDVI and temperature, whereas for summer the correlation was weaker 

but negative. In spring, higher temperatures make the growing season start earlier and 

assist rapid development of green vegetation, whereas in summer higher temperatures are 

a limiting factor for vegetation development. The authors discovered that positive trends 

of NDVI are mostly explained by climate factors, whereas the negative ones are not and 

most likely attributed to human impact. 

In another research, Propastin et al. (2008a) studied precipitation impact on NDVI, its 

trends and segregated NDVI variations caused by climate factors. The authors conducted 

a regression analysis on a pixel level of NDVI time series for 1981-2000 and precipitation 

with the later as predictor and used the residuals as indicators of human-induced changes. 

Furthermore, they took the areas with high significant correlations of NDVI and 

precipitation and overlapped them with the areas of high NDVI variation explanation by 

precipitation; the overlapping pixels indicated the areas with trends, caused by 

precipitation. The authors successfully identified areas with human-induced degradation, 

the findings were verified by field trips and high-resolution satellite images.  

Yin et al. (2016) conducted a study on correlation of NDVI, precipitation and temperature 

in Central Asia. The authors used temporally averaged remotely sensed time series of the 

variables with time-lagged correlation analysis and EOF analysis. The study encompasses 

a period of 1982-2012. NDVI trend showed significant growth from 1982 till 1994 and 

decrease afterwards. Both, monthly temperature and precipitation were found to affect 

monthly NDVI. In mountain areas the vegetation was found to be controlled mainly by 

temperature, whereas on flat areas the vegetation was mainly controlled by precipitation. 

Temperature and precipitation had different correlation signs with NDVI in different 

areas. NDVI response lag to temperature was 1 month whereas there was no response lag 

to precipitation. 

Zhou et al. (2015) conducted another research on identification of NDVI interactions with 

climatic factors before and after collapse of Soviet Union. The authors also used as 

spatial, so seasonal and annual temporal averaging of NDVI, temperature and 

precipitation raster time series to identify trends and seasonal variations. Further, the 

authors conducted linear regression analysis to identify trends from annual values, 

represented by the slope of least absolute deviation regression line, and lagged correlation 



Modelling of climate and vegetation interactions 

53 
 

analysis to assess the response delay. The research found generally negative precipitation 

trend and positive temperature trend in most of Central Asia. NDVI trends were 

increasing in 1982-1991 and decreasing during 1992-2011. The areas with negative trend 

were mainly in the north of Kazakhstan and Aral See basin. NDVI indicated a positive 

correlation with precipitation in vegetation period and a negative one in cold season with 

time lag of 0-3 months. Temperature was a promoting factor for greenness in 1982-1991, 

and a limiting factor in 1992-2011. 

The conducted researches and ours indicate common patterns for vegetation and climate 

interactions in Central Asia. Precipitation and temperature can be limiting, as well as 

promoting factors. In cold seasons or on high elevations where temperature is a valuable 

resource, it has positive impact on vegetation, acting as a promoting factor. Whereas, in 

flat drylands and in hot summers, it acts as vegetation suppressor. Precipitation is an even 

more valuable resource in this largely arid region. It is considered as the main controller 

of vegetation development. The highlands of Central Asia play a role of water towers for 

the region, accumulating snow in winter and providing water in summer. The researches 

considering temporal lags, identify in general 1-3 months delay in NDVI reaction to 

climate variations. However, the studies described above do not consider water from 

streams in modelling. This is one of the main limitations, which should be considered in 

future researches. Despite of major methodological shortcomings such as spatial and 

temporal averaging and ignoring of temporal correlation lags, the researches described 

above are consistent in their findings and provide a decent overview and analysis of 

vegetation and climate interactions in the region. 

4.2 Vegetation mapping and sampling design 
Mapping of vegetation and corresponding sampling design has its similarities and 

differences to that of soils. The main similarity comes from the fact that in mountains 

vegetation, just like soils, is very dependent on terrain and slope exposure. This means 

that all the different terrain features should be covered with samples. However, 

vegetation, unlike soils, is prone to seasonal variations due to its natural phenology. The 

choice of mapping and field methods depends on the planned result. If the anticipated 

map should contain discrete vegetation classes, then classification schemes should be 

applied. If the resulting map should contain continuous values, like vegetation density or 

crown density, then the interpolation techniques should be employed. 
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Vegetation research and the term “sampling” in the context of vegetation mapping can 

mean different things. Within the framework of this study vegetation sampling means plot 

surveys of plant communities, physical condition of plants together with cover density 

according to relevé plots method (Braun-Blanquet 1964). Mapping of different vegetation 

classes from remotely sensed data should be based on phenological patterns, as they will 

be main features different between different plant communities. For this, time series of at 

least monthly remotely sensed images should be utilized, or preferably of even finer 

temporal resolution. The regular remotely sensed images capture phenological patterns of 

vegetation, so they can be applied for discrimination of different vegetation classes and 

they will have different phenological phases. To increase the difference between different 

temporal phenological patterns seasonal and trend decomposition should be applied on a 

pixel basis and the images with seasonal component should be used for the training of 

classification algorithm. 

Vegetation in mountains is expected to vary in geographical space with terrain, soil, 

parent rock and many other factors of physical nature. So, different terrain indices are 

good covariates to serve as auxiliary data for spatial interpolation of vegetation features. 

These covariates include elevation, slope steepness, northness (cosine of aspect), eastness 

(sine of aspect), and different terrain-based wetness indices. The remotely sensed time 

series, capturing phenology together with terrain factors represent the main features 

controlling plant communities (apart from human impact), and provide data for 

discrimination of different vegetation classes. They can be used for production of very 

accurate vegetation maps (Klein et al. 2012). However, the interpolation or classification 

algorithms represent another important part of vegetation mapping routine. 

As in digital soil mapping, the algorithms are different depending on the task. The 

interpolation algorithms include simple kriging as well as regression kriging and many 

others. Simple kriging, just like with soil mapping, in conditions of availability of 

auxiliary data, is not advised to be applied in mountains. Regression kriging provides 

much better results, given the covariates are chosen properly. The covariates should 

predict the variability of the mapped feature with the greatest similarity possible, however 

they should not cross-corelate, which will lead to model overfitting and prediction of data 

noise. Application of stepwise multiple regression analysis is a standard approach for 

selection of the best combination of predictors, which can be applied, however, after 

collection of field data. 
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The classification approaches, used for mapping of discrete vegetation classes vary from 

cluster analysis to neural networks. The simple k-means cluster analysis or unsupervised 

classification can split the research site into k number of patches, representing similar 

areas. The borders of classes can vary greatly depending on the classified rasters selected, 

and this method (as any other cluster analysis) is good for identification of structure in 

data if no other knowledge is available. The result does not necessarily represent the real 

classes and the researcher will have to interpret the results, which are not always 

meaningful. However, in the case of vegetation mapping the vegetation classes are 

usually known before the mapping. In most cases supervised classification will be used, 

where the researcher trains the classification algorithm with the known classes and 

statistics describing them, which will be used to classify the rest of the study area. 

The mapping of continuous values representing different vegetation features, like surface 

cover percentage, density of tree stand, or probability of certain species occurrence need 

different modelling methods. Here kriging with auxiliary data (e.g. regression kriging) is 

the most common approach. Different combinations of remotely sensed vegetation 

indices or terrain features are used as predictors, depending on the task. Every time the 

best combination of predictors, describing the modelled feature should be used. If 

probability of certain species’ occurrence is mapped, then terrain features, capturing the 

main ecological niche of the species is expected to be the main predictors. And in case of 

vegetation cover density, the remotely sensed vegetation indices like NDVI or EVI 

(Enhanced Vegetation Index) should be the main covariates.  

Sampling design is another important part of vegetation mapping research. It should be 

well thought through depending on the mapping task, covariates and methods used for 

development of the map. As said above, vegetation in mountain is very prone to high 

heterogeneity and shifts from gradual to abrupt changes in geographical space. This 

requires mapping with auxiliary data, and thus a proper sampling design should be 

applied. An ideal sampling should cover geographical and feature space, which is a 

practical approach for regression kriging and other predictor-based models. Stratified 

random sampling should be applied and the study area should be divided into strata based 

on variability of predictors if they are known prior to sampling. If not, then the researcher 

should make an arbitrary choice of predictors to the best of knowledge, which are most 

likely to control vegetation patterns in study area. The predictor images can be split into 

different strata with k-mean cluster analysis and random points chosen within each 
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cluster, which can be done in most GIS applications. However, in the field it can be 

difficult to reach the randomly chosen points, in this case the samples should be taken as 

close as possible to the planned point. 

A mapping study is an integrative activity and all the different stages should be carefully 

planned before field surveys, to minimize expenses for field trips and laboratory analysis, 

meet the methods assumptions and produce plausible results. 

5. Overview of original publications 
The main aim of this thesis is to model the interactions of vegetation, climate and soil 

considering human impact and soil loss. With this regard a combination of approaches 

was used, which included assessment of vegetation change due to grazing pressure, 

assessment of soil features and their relation to overgrazing, as well as assessment of soil 

protection features of vegetation and its dependence on climatic factors. On a broader 

scale, identification of vegetation and climate interactions were assessed with 

identification of different patterns of such interactions for the entire country area. The 

details of the research are provided in the following peer-reviewed publications. 

5.1 Article I 
The species composition of vegetation was assessed on plots together with possible 

vegetation change driving factors including terrain and grazing pressure and analyzed 

using detrended correspondence analysis (DCA). 

BORCHARDT, P.; SCHICKHOFF, U.; SCHEITWEILER, S. and KULIKOV, M. (2011): Mountain 
pastures and grasslands in the SW Tien Shan, Kyrgyzstan - Floristic patterns, 
environmental gradients, phytogeography, and grazing impact. In: Journal of 
Mountain Science 8, 363–373 https://doi.org/10.1007/s11629-011-2121-8. 

Abstract: Vast grasslands are found in the walnut- fruit forest region of southern 

Kyrgyzstan, Middle Asia. Located above the worldwide unique walnut-fruit forests and 

used for grazing, they play a pivotal role in the mixed mountain agriculture of local 

farmers. Accordingly, these pastures are subject to an increasing utilization pressure 

reflecting the changing political and social conditions in the transformation process from 

a Soviet republic to an independent state. A first detailed analysis of mountain pasture 

vegetation in the Fergana Range answers the following questions: What are the main 

plant community types among Kyrgyzstan’s mountain pastures? What are the main 



Overview of original publications 

57 
 

environmental gradients that shape their species composition? Which phytogeographical 

distribution types are predominant? How does grazing affect community composition and 

species richness in these grasslands? Species composition was classified by cluster 

analysis; underlying environmental gradients were explored using DCA. A dataset of 395 

relevés was used for classification, and a subset of 79 relevés was used in a DCA to 

analyze the correlation between vegetation, environment, and grazing impact. The 

investigated pastures were classified into four distinctive plant communities. The site 

factors altitude, heat load, inclination and grazing impact were found to be the major 

determinants of the vegetation pattern. A significant overlap between floristic 

composition and structural and spatial properties was shown. The majority of the species 

pool consisted of Middle Asian endemics and Eurosiberian species. However, 

disturbance-tolerant species played a significant role with respect to species composition 

and coverage of the herbaceous layer in vast areas of southern Kyrgyzstan’s mountain 

pastures. In general, an intense grazing impact is clearly reflected by both species 

composition and structural variables of plant communities. The highly diverse and unique 

ecosystem is modified by an increasing utilization pressure. In order to maintain vital 

processes and functioning of this valuable ecosystem - in both economic and ecological 

terms, it is indispensable to adopt appropriate pasture management strategies. 

BORCHARDT, P.: Study design, field data collection, data analysis, writing and editing. 
SCHICKHOFF, U.: Contribution to study design, field data collection and editing. 
SCHEITWEILER, S.: Assistance in field data collection, discussion of study and editing. 
KULIKOV, M.: Assistance in field data collection and editing. 

5.2 Article II 
The elements of RUSLE factors were used to model soil erodibility and vegetation cover 

protection, based on vegetation information and soil samples collected in the field. They 

were assessed together with estimation of human impact from grazing, which was 

evaluated based on cattle densities and interviews of shepherds in the field. 

KULIKOV, M.; SCHICKHOFF, U. and BORCHARDT, P. (2016): Spatial and seasonal dynamics 
of soil loss ratio in mountain rangelands of south-western Kyrgyzstan. In: Journal of 
Mountain Science 13, 1–14 https://doi.org/10.1007/s11629-1. 

Abstract: Vegetation cover is the main factor of soil loss prevention. The C-factor of the 

RUSLE (Revised Universal Soil Loss Equation) was predicted with NDVI, ground data 

and exponential regression equation for mountain rangelands of Kyrgyzstan. Time series 
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of C-factor, precipitation and temperature were decomposed into seasonal and trend 

components with STL (seasonal decomposition by loess) to assess their interrelations. C-

factor, precipitation and temperature trend components indicated significant lagged 

correlation, whereas seasonal components indicated more complex relations with climate 

factors which can be promoting as well as limiting factors for vegetation development, 

depending on the season. Rainy springs and hot summers may increase soil loss 

dramatically, whereas warm and dry springs with rainy summers can decrease it. Steep 

slopes indicated higher soil loss ratio, whereas flat areas were better protected by 

vegetation. 

KULIKOV, M.: Study design, field data collection, laboratory analysis, statistical analysis, 
modelling, writing and editing. 

SCHICKHOFF, U.: Contribution to study design, discussion and interpretation of the results and 
editing. 

BORCHARDT, P.: Assistance in field data collection and editing. 

5.3 Article III 
Soil erodibility on rangelands and its influencing factors were assessed using K-factor of 

RUSLE. The spatial variation and its dependence on pasture utilization were analyzed 

and related to grazing pressure. 

KULIKOV, M.; SCHICKHOFF, U.; GRÖNGRÖFT, A. and BORCHARDT, P. (2017): Modelling 
Soil Erodibility in Mountain Rangelands of South-Western Kyrgyzstan. In: 
Pedosphere https://doi.org/10.1016/S1002-0160(17)60402-8. 

Abstract: The main objective of this study was to map soil erodibility in the mountainous 

rangelands of Kyrgyzstan. The results of this effort are expected to contribute to the 

development of soil erodibility modelling approaches for mountain areas. In this case 

study we map soil erodibility at two sites, both representing grazing rangelands in the 

mountains of Kyrgyzstan and having potentially different levels of grazing pressure. We 

collected a total of 232 soil samples evenly distributed in geographical and feature space. 

Then we analyzed the samples in a laboratory for grain size distribution and calculated 

soil erodibility values from these data using the Revised Universal Soil Loss Equation 

(RUSLE) K-factor formula. After that we derived different terrain indices and ratios of 

frequency bands from ASTER DEM and Landsat images to use as auxiliary data because 

they are among the main soil forming factors and widely used for prediction of various 

soil properties. Soil erodibility meaningfully correlated with channel network base level 

(geographically extrapolated altitude of water channels), remotely sensed indices of short-
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wave infrared spectral bands, exposition and slope. We applied multiple regression 

analysis to predict soil erodibility from spatially explicit terrain and remotely sensed 

indices. The final soil erodibility model was developed using the spatially explicit 

predictors and the regression equation and then improved by adding the residuals. The 

spatial resolution of the model was 30 meters and the estimated mean adjusted coefficient 

of determination was R2 = 0.47. The two sites indicated different estimated and predicted 

means of soil erodibility values (0.035 and 0.039) with 0.95 significance level, which is 

attributed mainly to the considerable difference in elevation. 

KULIKOV, M.: Study design, field data collection, laboratory analysis, statistical analysis, 
modelling, writing and editing. 

SCHICKHOFF, U.: Contribution to study design, discussion and interpretation of the results and 
editing. 

GRÖNGRÖFT, A.: Contribution to study design, discussion and interpretation of the results and 
editing. 

BORCHARDT, P.: Assistance in field data collection and editing. 

5.4 Article IV 
The vegetation variation and its relations with climatic factors were assessed based on 

spatio-temporal analysis of remotely sensed time series, representing NDVI and climatic 

factors, such as land surface temperature and precipitation. 

KULIKOV, M. and SCHICKHOFF, U. (2017): Vegetation and climate interaction patterns in 
Kyrgyzstan: spatial discretization based on time series analysis. In: Erdkunde 71, 
143–165 https://doi.org/10.3112/erdkunde.2017.02.04. 

Abstract: Spatio-temporal variations of climate-vegetation interactions in Central Asia 

have been given a lot of attention recently. However, some serious methodological 

drawbacks of previous studies prevented thorough assessment of such interactions. In 

order to avoid the limitations and improve the analysis we used spatially explicit time 

series of NDVI (normalized difference vegetation index), temperature and precipitation 

which were decomposed to seasonal and trend components on per-pixel basis using STL 

(seasonal decomposition of time series by loess). Trend and seasonal components of 

NDVI, precipitation and temperature were assessed pixelwise for temporal correlations 

with different lags to understand the patterns of their interaction in Kyrgyzstan and 

adjoining regions. Based on these results a coefficient of determination was calculated to 

understand the extent to which NDVI is conditioned by precipitation and temperature 

variations. The images with the lags of time series correlation minima and maxima for 
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each pixel and coefficients of NDVI determination by temperature and precipitation were 

subjected to cluster analysis to identify interaction patterns over the study area. The 

approach used in this research differs from previous regional studies by implementation 

of seasonal decomposition and analyzing the full data without spatial or seasonal 

averaging within predetermined limits prior to the analysis. NDVI response to 

temperature and precipitation was assumed to be spatially variable in its sign, strength 

and lag, thus a separate model was developed for each pixel. The results were assessed 

with cluster analysis to identify spatial patterns of temporal interactions, decrease 

dimensionality and facilitate their comprehensiveness. The research resulted in 5 spatial 

clusters with different patterns of NDVI interaction with temperature and precipitation on 

intra- and interannual scales. The highest correlation scores between NDVI and 

temperature at the seasonal scale were found at 0-4 months lag and between NDVI and 

precipitation at 1-5 months lag. At high elevations of 3000-4000 m above sea level, both 

precipitation and temperature occurred to be facilitating factors for vegetation 

development, whereas temperature was rather a limiting factor at lower elevations of 200-

1300 m a.s.l. We developed maps of the NDVI coefficient of determination by both 

temperature and precipitation. Only deserts and glaciers had low coefficients of 

determination (adjusted R2) on the seasonal scale (0.1-0.3), whereas areas with vegetation 

were greatly conditioned by temperature and precipitation (0.7-0.95). On the trend scale, 

dense vegetation and bare areas had low coefficient of determination (0.1-0.3), whereas 

areas with average vegetation cover were greatly controlled by the climatic factors (0.7-

0.9). 

KULIKOV, M.: Study design, data collection, statistical analysis, modelling, writing and 
editing. 

SCHICKHOFF, U.: Contribution to study design, discussion and interpretation of the results 
and editing.  
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6. Results 
A total of 174 species of vascular plants were observed in the study site. The species were 

identified to form four major plant communities, which explained 12.5% of feature 

variation. The first community was the richest in species number, occurred on the steepest 

slopes and was characterized by several alpine species, which included Aconogonon 

coriarium, Prangos pabularia and Ligularia thomsonii as the most frequent. The second 

community occurred at high elevations – above 2800 m a.s.l. and typically had 

Aulacospermum simplex, Heracleum dissectum, Aster alpinus, Phlomoides oreophila and 

Phlomoides speciosa. The third community was the highly degraded one with sparse 

vegetation and included Medicago lupulina and Arenaria serpyllifolia, together with 

Carex turkestanica, Eremurus fuscus and Ziziphora clinopodioides. And the fourth 

community occurred on flat areas with high grazing and trampling impact and was 

characterized by Plantago major, Polygonum aviculare, Taraxacum officinale, Urtica 

dioica, Malva neglecta and Capsella bursapastoris.  

Grazing was indicated to have great impact on floristic gradients on the rangelands of 

Fergana ridge (grazing impact, r = -0.6). The grazing impact on the first community was 

lower than on the other three, this can be attributed to the steepness of slopes, generally 

occupied by this community. In the third and the fourth plant community ruderal species 

occupied relatively high proportion of cover (29% and 59% respectively). Whereas in the 

first and second plant communities the percentage of ruderal vegetation was relatively 

low. 

Vegetation features for soil protection (C-factor) was identified to follow the following 

equation (Residual standard error: 0.08677 on 172 degrees of freedom): 

SLR = exp(-0.7842 – 2.9298 × NDVI) (2) 

 

where SLR – soil loss ratio (C-factor) and NDVI – Normalized Difference Vegetation 

Index. This equation indicates nonlinear nature of NDVI-SLR relation. The nonlinear 

equation also helps do deal with extreme values of NDVI or SLR, as its graph tails never 

cross the axes. This equation corresponded very closely to similar equation, developed by 

de Jong et al. (1998) for Europe, which, however, cannot properly handle the extreme 

values due to its linearity. The slopes steeper than 35° are generally the least protected 



Results 

62 
 

against soil erosion, mainly because these are the areas of landslides and sparse 

vegetation. C-factor and slope steepness correlated significantly with a coefficient of 

+0.38. After modeling, the pasture closer to human settlement indicated a higher soil loss 

ratio (Uch-Choku, C-factor = 0.27) then the remote one (Otuz-Art, C-factor = 0.20), 

suggesting a higher grazing pressure on the close pastures then on the remote ones and a 

greater soil loss consequently. 

Temporarily, C-factor is the highest in spring, indicating the lowest soil protection by 

vegetation due to little vegetation cover after the winter. At the same time spring and 

early summer are the months with the highest precipitation level, which makes this season 

contributing the most to the annual soil loss. The lowest C-factor values are observed in 

May-June when the vegetation is fully developed and not yet oppressed by summer heat 

or grazed by animals. In summer the C-factor increases gradually due to grazing and solar 

radiation. Generally, C-factor had immediate positive correlation with temperature (+0.6) 

and a negative one with 6 months lag with precipitation (-0.6), which follows the 

common pattern of vegetation development in the study site, where precipitation is 

generally a promoting factor for vegetation and temperature is an oppressing factor. 

The analysis of soil samples has also demonstrated a greater soil erodibility (K-factor) on 

steeper slopes and higher elevations, and lower erodibility at valley bottoms and flat 

areas. About 21% of collected soil samples had fine texture, 31% - medium-fine and 48% 

- medium texture, according to European Soil Bureau Working Group (2015) The mean 

soil erodibility was 0.0374 t ha h ha-1 MJ-1 mm-1 (standard deviation 0.0048), which, like 

C-factor, was also comparable with the values of European fine, medium-fine and 

medium soils reported by Knijff et al. (2000). The K-factor had significant correlation 

with Channel Network Base Level (Conrad et al. 2015) (+0.55), eastness (sine of aspect 

in radians) (+0.19), slope degree (+0.21) and Soil Enhancement Ratio (Boettinger et al. 

2008) (-0.54). The regression analysis of K-factor and abovementioned covariates gave 

the following equation (adj. R2 = 0.3611): 

𝐾𝐾-factor = 2.684E-02 + 9.658E-06 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 2.46E-02 × 𝑆𝑆𝑆𝑆𝑆𝑆 + 8.8E-04 × 𝑠𝑠𝑠𝑠𝑠𝑠 (𝐴𝐴) (3) 

 

where CNBL – Channel Network Base Level (Conrad et al. 2015), SER – Soil 

Enhancement Ratio (Boettinger et al. 2008), A – aspect in radians (sin(A) - eastness). 

After modeling, the pasture closer to human settlement indicated a higher soil erodibility 
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(Uch-Choku, K-factor = 0.039 t ha h ha-1 MJ-1 mm-1) then the remote pasture (Otuz-Art, 

K-factor = 0.035 t ha h ha-1 MJ-1 mm-1), again, suggesting a higher grazing pressure on 

the close pastures then on the remote ones. The model accuracy assessment indicated R2 

= 0.47. 

The assessment of vegetation and climate interactions for the whole country revealed that 

vegetation (approximated by NDVI) in general has a positive correlation with 

precipitation and a negative one with temperature on flat areas. The cluster analysis of the 

interaction patterns resulted in five spatial clusters, representing five distinctive patterns 

of such interactions (Figure 5).  

 

Figure 5. Spatial clusters of vegetation-climate interactions. 

The first cluster represents deserts or desert-steppes with strong positive vegetation-

precipitation correlation with 1-month lag and strong negative vegetation-temperature 

correlation with 4 months lag. Precipitation here is clearly a promoting factor for 

vegetation, but temperature is a promoting factor in spring at the beginning of vegetation 

period and is a limiting factor in summer when high temperatures and low precipitation 

oppress vegetation. This is the hottest area among other clusters. About 62% (mean of 
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seasonal and trend variations) of vegetation variation was explained by temperature and 

precipitation. 

The second cluster is mainly foothills of Fergana, Chatkal and Kyrgyz Ala-Too ridges. 

This area is mainly used for agriculture and pastoralism and is well watered with rivers 

and irrigation channels. NDVI has positive correlation with precipitation with the lag of 4 

months and immediate positive correlation with temperature, but high temperatures do 

slightly oppress vegetation in late summer. However, interannually vegetation generally 

develops better in moist years and worse in hot years. This area receives the most 

precipitation and is the most vegetated among other clusters, including most of the forests 

in the area. About 74.5% (mean of seasonal and trend variations) of vegetation variation 

was explained by the climatic factors. 

The third cluster is mainly highland tundra in Pamir, Alai and Central Tian-Shan, which 

are used as winter pastures. Here NDVI has immediate positive correlation with 

temperature and precipitation – with 1-2 months lag. However, interannually vegetation 

develops better in warm years and worst in years with lots of precipitation. This is 

because on this elevation the limiting factor for vegetation is rather low temperature, 

whereas moistening is largely available due to low evapotranspiration. This is the coldest 

and the least vegetated area among other clusters. About 73% (mean of seasonal and 

trend variations) of vegetation variation is explained by temperature and precipitation. 

The fourth cluster is mainly intermontane depressions of Inner Tian-Shan and flat plains 

in Xinjiang region of China. NDVI has positive correlation with temperature and 

precipitation with 0-1-month lag. Interannually, vegetation tends to develop better next 

year after a cool year with high precipitation level. About 73.5% (mean of seasonal and 

trend variations) of vegetation variation is explained by the climatic factors. It is the area 

with the least precipitation level among other clusters, because they occur in the 

precipitation shadows of Fergana and Kokshal-Too ranges, at the same time the 

temperatures here are high with poor vegetation development. 

The fifth cluster covers Fergana valley and slopes of Fergana, Chatkal and Alai ridges. 

This is the area of intensively irrigated agriculture. Seasonally, vegetation (approximated 

by NDVI) indicates positive correlation with temperature with no lag and positive 

correlation with precipitation with 5 months lag. This is explained by the system of 

artificial irrigation, which collects and holds spring precipitation to redistribute the water 
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to crop fields in summer. Otherwise, the vegetation would develop in late spring and be 

heavily oppressed by summer heat. This is supported by the interannual correlations – 

vegetation develops better in the years with sufficient precipitation and worse in dry and 

hot years. About 70.5% (mean of seasonal and trend variations) of NDVI variations are 

explained by the climatic factors. This area receives slightly below the maximum 

precipitation (the second cluster) and has about the average level of temperature and 

vegetation, which explains its agricultural suitability. 

The research undertaken quantifies the relations between soil, vegetation and climatic 

factors, allowing for modelling of potential outcomes in case of changes of the 

components. The results indicate that grazing has an impact on species richness of plant 

communities in rangelands. Intensive grazing and trampling leads to vegetation cover 

decrease and increases soil loss, especially on slopes. A sustainable grazing system 

considering plant communities and their phenology, annual precipitation cycle and terrain 

could decrease the grazing impact, while still providing the appropriate level of forage. 

Terrain is among main factors, influencing plant communities and soil patterns. Mountain 

areas indicate great heterogeneity with regards to soil, vegetation and climatic factors, 

which are mainly controlled by terrain features. Climatic factors greatly influence 

vegetation development. In lowlands, temperature is a promoting factor in spring and a 

limiting factor in summer for vegetation development, precipitation is a rare and valuable 

resource. Whereas, in highlands heat is a valuable resource and is always a promoting 

factor for vegetation, water is always available due to lower evapotranspiration. However, 

a clever irrigation system can level the water scarcity and extract profit from fertile soils, 

high temperatures and longer vegetation periods in lowlands. 

7. Conclusions and outlook 
Mountain ecosystems represent a complex of interacting agents including terrain, soils, 

vegetation, wildlife, climate, human activities and many others. A good research with 

practical implications should consider all of them, however it is almost unrealistic to do 

such a thorough assessment. The project “The Impact of the Transformation Process on 

Human-Environment Interactions in Southern Kyrgyzstan”, funded by the Volkswagen 

Foundation, Hannover, Germany, which this Ph.D. work is a part of, is a good example of 

such systematic approach. 
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The main aim of this Ph.D. thesis is to quantify the interactions between soil, vegetation 

and climate, considering the human impact on natural resources. For this field data on soil 

and vegetation were collected during three field seasons. Local shepherds were 

interviewed about amount of livestock, pasturing strategies and livelihoods. The soil 

samples collected in the field were analyzed in soil laboratory for pH, grain size 

distribution and organic content. The raw data were analyzed with statistical instruments 

and used in modelling together with spatial remotely sensed auxiliary data. 

Soil modelling demonstrated grazing impact on soil erodibility and mapped the risks of 

soil loss with their relation to topography and grazing pressure. It also revealed soil 

patterns and suggested possible management solution for decreasing soil loss on 

mountain rangelands. Modelling and statistical inference allow to decrease research costs, 

however, this is not enough for thorough assessment and understanding of actual soil loss, 

as every modelling needs validation by ground experiments. The ground experiments 

should include long-term regular runoff plots and rainfall registration in all the different 

soil provinces of Kyrgyzstan, and since there are many of them due to mountainous soil 

variability, the costs are anticipated to be great. Unfortunately, soil studies are very scarce 

in modern Kyrgyzstan due to economic situation. There is only one known experiment on 

runoff plots, which took place in Issyk-Kul region in 1950th and lasted for just several 

years. 

In Soviet times a thorough soil mapping was done for the entire country, it also included 

soil loss assessment, but the soil classes do not correspond to modern FAO World 

Reference Base and need translation. However, the soil erosion risk assessments were 

mostly based on terrain and vegetation features. Kyrgyzgiprozem Institute holds an 

extensive database on soil and vegetation resources of Kyrgyzstan and conducts regular 

field trips to update the data, however these field trips are not sufficient, and the data are 

restricted to governmental use and are not open to wider scientific community. 

Development of RUSLE model for the entire country is an important task. And it will not 

require much investment, the costliest would be the construction of runoff plots for model 

validation. R-factor could be calculated from the meteorological data collected by 

Kyrgyzgidromet (Hydro-Meteorological service of Kyrgyzstan). The entire country is 

covered with a network of metheorological stations conducting regular observations since 

early 20th century and this agency has large database on weather parameters including 
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rainfall intensity. These data could be used for development of R-factor map of the 

country, however the data are not digitized, as the old pluviographs record rainfall 

intensity on paper. Furthermore, Kyrgyzgidromet also does not provide the data openly, 

but sells them at a restricting price.  

K-factor and C-factor can be derived from the data collected by Kyrgyzgiprozem 

Institute, several field trips and laboratory analysis will be needed to update the existing 

data on soils and vegetation and some work will be needed to harmonize the collected 

data to RUSLE standards and measuring units, which is a matter of recalculation. 

Thorough geobotanical mapping was done also during Soviet times. However, the heavily 

grazed areas may need updating as plant communities might have changed there. The 

collected soil and vegetation information can be extrapolated to create K-factor and C-

factor maps with the techniques of soil and vegetation mapping outlined above. 

Likewise, the LS-factor can easily be calculated for the entire country using SRTM or 

ASTER GDEM elevation models, openly available for the entire country. P-factor can be 

generally ignored and accepted being equal to 1 as no soil conservation practices are 

applied throughout the country on a systematic basis. 

Considering the above said, the development of soil loss model for Kyrgyzstan based on 

RUSLE does not look like a difficult project. However, the disaggregation of state 

agencies, lack of expertise and motivation, together with mismanagement of valuable data 

makes this task hardly achievable. 

Climate change adaptation is another issue which should be seriously considered in 

natural resource management. Few studies concentrate on Kyrgyzstan, but rather on 

broader scale. Economic impact of climate change is also poorly assessed. The 

assessment should consider impact on separate species as well as ecosystems, modelling 

of the consequences and possible coping strategies. 

The main stressing source for pasture ecosystems is human impact. Many studies were 

conducted to investigate the social dimension. They covered labor migration, livelihoods 

strategies, transhumance and grazing pressure together with different economical 

strategies and reasons influencing natural resource use. However, this did not result in 

any policies from the government apart from another pasture reform, which is not being 

successful. Several international development agencies pursue their agendas with 
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different projects, but they do not follow common line, which leads to even more 

obscurity in regulations. 

It is obvious, that there should be programs and policies incentivizing local population to 

diverse livelihoods to more environmentally-friendly activities like bee-keeping etc., or 

applying better practices, like pasture infrastructure, transporting or keeping animals in 

corals at high elevation pastures and using less animals of more productive breeds. 

Instead of small household farms there should be bigger agricultural enterprises to 

increase production efficiency and economic capacity. The processing facilities of 

agricultural products should also be developed to increase the added value to the final 

product. The vegetation resources and pasture carrying capacity should be assessed and 

transhumance must be strictly managed accordingly. This will increase the total income 

of local communities, make resource use more sustainable and create funds for research 

and nature conservation. However, such programs will require serious investments and 

proper management.  

Given current economic situation in the country, the work outlined above can be only 

carried out with funding support of international development and research agencies. 

Despite of the availability of spatial data, the new technologies and the advanced 

modelling approaches, there is still a lot of work for scientific community on exploration 

of mountains of Central Asia. With this, there is a hope that the region will no longer be a 

white spot on the international scientific map. 
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Abstract: Vast grasslands are found in the walnut-
fruit forest region of southern Kyrgyzstan, Middle 
Asia. Located above the worldwide unique walnut-
fruit forests and used for grazing, they play a pivotal 
role in the mixed mountain agriculture of local 
farmers. Accordingly, these pastures are subject to an 
increasing utilization pressure reflecting the changing 
political and social conditions in the transformation 
process from a Soviet republic to an independent state. 
A first detailed analysis of mountain pasture 
vegetation in the Ferghana Range answers the 
following questions: What are the main plant 
community types among Kyrgyzstan’s mountain 
pastures? What are the main environmental gradients 
that shape their species composition? Which 
phytogeographical distribution types are predominant? 
How does grazing affect community composition and 
species richness in these grasslands? Species 
composition was classified by cluster analysis; 
underlying environmental gradients were explored 
using DCA. A dataset of 395 relevés was used for 
classification, and a subset of 79 relevés was used in a 
DCA to analyze the correlation between vegetation, 
environment, and grazing impact. The investigated 
pastures were classified into four distinctive plant 
communities. The site factors altitude, heat load, 
inclination and grazing impact were found to be the 
major determinants of the vegetation pattern. A 
significant overlap between floristic composition and 

structural and spatial properties was shown. The 
majority of the species pool consisted of Middle Asian 
endemics and Eurosiberian species. However, 
disturbance-tolerant species played a significant role 
with respect to species composition and coverage of 
the herbaceous layer in vast areas of southern 
Kyrgyzstan’s mountain pastures. In general, an 
intense grazing impact is clearly reflected by both 
species composition and structural variables of plant 
communities. The highly diverse and unique 
ecosystem is modified by an increasing utilization 
pressure. In order to maintain vital processes and 
functioning of this valuable ecosystem - in both 
economical and ecological terms -, it is indispensable 
to adopt appropriate pasture management strategies. 

Keywords: Central Asia; Classification; Endemics; 
Gradient Analysis; Grazing impact; Middle Asia; 
Pasture Management; Ruderals; Transformation 
Process; Walnut-fruit forest. 

Nomenclature: We follow Czerepanov (1995) for all 
vascular plants except for Amoria, which was 
considered here as Trifolium. In accordance with 
Cowan (2007), we use the term ’Middle Asia’ for the 
region of the former Soviet Central Asian Republics 
Kazakhstan, Turkmenistan, Uzbekistan, Tajikistan and 
Kyrgyzstan. 

Abbreviations: DCA = Detrended Correspondence 
Analysis, IV = Indicator Value, ISA = Indicator Species 
Analysis, NPMR = Non-parametric Multiplicative 
Regression, CV = Coefficient of Variation, SD = 
Standard Deviation. 
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Introduction 

The collapse of the Soviet Union and the 
independence of the Middle Asian republics in 1991 
were followed by far-reaching transformation 
processes that fundamentally reshaped political, 
socio-economic and ecological conditions in 
Kyrgyzstan. During the last century, the 
relationship between humans and the environment 
has substantially changed for the second time 
(Schmidt 2001; Schmidt 2005). Kyrgyzstan is well 
known for the ridges and isolated valleys of the 
Tien Shan Mountains. Before the 1930s, nomadism 
was predominant in the region and characterized 
the type of land use (Ludi 2003). In summer, 
nomads used to graze their herds on mountain 
pastures. In winter, low temperatures and snow 
forced them to descend to lower altitudes. The 
sedentary lifestyle was imposed upon the Kyrgyz 
people during Soviet times, when the economic 
system was defined by strict plans, which were 
practically implemented by state farms (sovkhozes 
and kolkhozes). After 1991, state farms have been 
dismantled; land and livestock were privatized. For 
the majority of the population, returning to 
subsistence economy was the only opportunity to 
sustain their livelihood (Schmidt 2007), and 
specialized employees suddenly became farmers. 
Today, large collective farms and herds no longer 
exist in Kyrgyzstan, but animal husbandry is again 
an important source of income at household level. 
After 70 years of Soviet rule, these new 
independent farmers are often lacking 
comprehensive agricultural knowledge. Used to a 
sedentary lifestyle, they now strongly depend on 
natural resources and social services available close 
to their villages. Therefore, farmers today tend to 
over-utilize pastures close to settlements, whereas 
less accessible pastures are frequently abandoned 
(Ludi 2003). 

In recent years, several studies focused on the 
interdependent use of forests and grazing lands 
within the changing local land use system (e.g. 
Schmidt 2005; Schmidt 2008). Other studies dealt 
with aspects of plant communities and vegetation 
ecology of the walnut-fruit forests (e.g. Epple 2001; 
Gottschling et al. 2005; Borchardt et al. 2010). By 
contrast, there is no information on plant 
communities of mountain pastures and their 
relationships with the environment so far. In 

general, research on mountain grassland 
vegetation is still in its infancy in the Tien Shan, 
even though phytosociology has a long tradition in 
the former Soviet Union (e.g. Shennikov 1964; 
Mirkin & Shelyagsosonko 1984; Mirkin 1987; 
Korotkov et al. 1991).  

Presenting a first detailed analysis of 
mountain pasture vegetation in the Ferghana 
Range, SW Tien Shan, this paper is based on a 
compilation of data that were collected over four 
years (2005–2009). The baseline study aims at 
(1) analyzing the floristic-sociological
differentiation of (sub-) alpine pastures and 
providing a classification of the plant communities; 
(2) examining interrelations between vegetation
differentiation, underlying environmental
gradients, grazing impact, and α-diversity (species
richness); and (3) analyzing composition of
phytogeographical patterns of plant communities
and interpreting chorological spectra of species
assemblages.

1     Study Area 

The study was conducted in rayon Bazar 
Korgon, Arslanbob region, north of Jalalabad in 
the Ferghana Range of southern Kyrgyzstan (41° N, 
73° E) (Figure 1), where mountain pastures extend 
over a vast area of approx. 25,000 ha. They form an 
extensive altitudinal vegetation zone above the 
walnut-fruit forests ranging from an altitude of 
1,800 to 3,200 m.  

New palynological results show that the 
walnut-fruit forests originated only 1,000-2,000 
years BP in their present appearance, and that they 
had very likely been established as a consequence 
of human land use (Beer et al. 2008, own 
unpublished data). The potential natural 
vegetation of the examined mountain pastures is 
maple-apple-walnut forests at lower altitudes, 
followed by open juniper forests above 1,900 m 
(see Grisa et al. 2008). 

According to the engineer-geological map (Osh 
K-43-B, 1:500,000, 1976–1979) and to Franz
(1973), bedrock of the surveyed area is dominated
by limestone, whereas sandstone and other
siliceous rocks cover a small surface area only.
Corresponding to the Kyrgyz soil classification
system, which follows classification schemes of the
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Soviet Union (cf. Gottschling et al. 2005), the soils 
of the study area (soil map: Osh, 1976–1979, K-43-
B 1:500,000) are mainly composed of meadow 
soils and alpine meadow soils (similar to Cambisols 
and Leptosols) while meadow steppe soils (roughly 
corresponding to Kastanozems) cover a small area 
only. 

At the climate station of Ak Terek (1,748 m, 
N 41° 17`20,0; E 072° 49`41,8, Figure 2), mean 
annual precipitation amounts to 1,090 mm with a 
maximum in spring (approx. 160 mm month-1) and 
a dry period in summer (approx. 40 mm month-1). 
The mean annual temperature is 9°C, with 
relatively mild winters (average 1°C) and warm 
summers (average 20°C).  

Around Arslanbob, pastures in the treeline 
ecotone are still governed by state owned forest 

enterprises (leskhozes) of the main villages. During 
Soviet times, the leskhozes of these villages kept 
much smaller numbers of livestock (such as sheep, 
cows, or horses) than people do today 
(Borchardt et al. 2010). The increase in livestock 
numbers and the corresponding higher utilization 
pressure on mountain pastures must be attributed 
to the severe economic hardship that people are 
facing after independence leading to a general shift 
to subsistence agriculture. The situation is 
aggravated by the influx of peasants and their 
herds from settlements outside the forest area, 
which were allocated to other summer pastures 
during Soviet times. Furthermore, the number of 
goats has steadily increased over recent years 
(Borchardt et al. 2010). Goats pose a major threat 
to the sensitive ecosystem due to their 
characteristic feeding habits (Goetsch et al. 2010). 
However, as goats are officially banned from the 
investigated pastures (State Forest Agency of the 
Kyrgyz Republic 1996), it is difficult to obtain 
reliable information on their amount. 

2     Methods 

2.1 Data collection 

We collected data from a total of 419 relevés, 
which are located in a relatively homogeneous area 
in the Arslanbob region. Vegetation sampling 

Figure 1  Location of the study area in the Ferghana Range, southern Kyrgyzstan.

Figure 2 Climate diagram of Ak Terek (1,748 m) based
on meteorological data recorded from 1983 to 2007. 
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followed the Braun-Blanquet approach (Braun-
Blanquet 1964). We used a standard relevé size of 
5 m x 5 m, which exceeds the minimal area as 
determined according to Mueller-Dombois & 
Ellenberg (1974). Relevé analyses included the 
listing of all vascular plant species as well as the 
assessment of species cover according to the 
traditional Braun-Blanquet cover-abundance scale 
(7 classes). A voucher specimen of each species was 
collected for final identification in the herbarium of 
the Kyrgyz Academy of Sciences, Bishkek. The 
samples were taken randomly along an altitudinal 
gradient (1,800–3,200 m). In each relevé, stand 
structure was assessed by estimating percentage 
cover of herbs and - if present - shrubs and trees. 
Bryophytes and lichens played a minor role in the 
recorded samples and were not considered for the 
analyses. 

Field sampling was complemented by a 
detailed characterization of habitat conditions 
including an assessment of human impact. We 
estimated grazing intensity by direct observation of 
different parameters and by qualitative 
information from local shepherds. It was 
categorized as low (1), moderate (2), or high (3) 
“grazing impact”. Soil samples (3 samples of 
100 cm³ per site) were taken from the uppermost 
mineral soil horizon (10–20 cm depth). Laboratory 
soil analyses comprised grain size distribution, soil 
pH (in CaCl), electroconductivity, water and carbon 
content. Fresh field samples were oven-dried until 
weight constancy was reached. Soil analyses were 
carried out at the Soil Laboratory of the Institute of 
Geography, University of Hamburg. 

2.2 Data preparation 

Code replacement was done in order to 
transform the ordinal species abundance estimates 
to their metric average values prior to data analysis 
(r: 0.01%, +: 0.5%, 1: 2.5%, 2: 15%, 3: 37.5%, 
4: 62.5%, 5: 87.5%). To reduce the impact of large 
cover values, species relevé data were √-
transformed (McCune & Grace 2002). We 
calculated dissimilarity between relevés using the 
relative Sørensen Index (Faith et al. 1987). Relevés 
very dissimilar to others (standard 
deviation SD > 2 from the mean calculated distance 
of all relevés) were detected by outlier analysis in 
PC-ORD (version 5.19., MjM Software Design, 

Gleneden Beach, OR, US). Since outliers can 
distort clustering and ordination, such relevés were 
excluded from the later analyses. Continuous 
variables with a coefficient of variation (CV%= 
100*SD/Mean) > 400% were omitted; and cover 
values (herb, shrub, tree, total cover) were 
equalized by (2/π)*arcsine √(x) transformation, as 
recommended by Sokal & Rohlf (1987). All 
recorded species occurring in less than eight 
relevés were excluded to avoid scarce overvaluation.  

Improved estimates of heat load (McCune 
2007) - based on aspect, slope and latitude - were 
obtained by Non-parametric Multiplicative 
Regression (NPMR) using the program 
HyperNiche (version 1.12., MjM Software Design, 
Gleneden Beach, OR, US). 

2.3 Classification 

Relevés were classified according to their 
species composition using hierarchical β-flexible 
cluster algorithm (Lance & Williams 1967) in PC-
ORD, with β = -0.25. Subsequently, relevés were 
ordered according to these classification results in 
JUICE (version 7.0.37, Tichý 2002). In order to 
detect and describe values of different species for 
indication of environmental conditions and to 
describe their fidelity for the classified 
communities, we used Indicator Species 
Analysis (ISA, Dufrene & Legendre 1997) in PC-
ORD. Based on ISA, characteristic species for the 
classified communities were assessed. A threshold 
level of 25% (P < 0.01) was set as indicator value. 
ISA was also used to revise the chosen stopping 
point in cluster analysis (Dufrene & Legendre 1997). 
Additionally, species were defined as diagnostic by 
their φ coefficient (> 0.35 / 35%) (Tichý & Chytrý 
2006), and as typical through their 
constancy (≥ 40%). 

The classified communities were named by 
one alphabetic character and by two diagnostic or 
typical species that could be easily identified in the 
field. 

2.4 Indirect gradient analysis 

Detrended Correspondence Analysis (DCA, 
Hill & Gauch 1980) was conducted on a subset of 
√-transformed vegetation data. Axes were rescaled 
to consistent units of β-diversity expressed in 
Standard Deviations (SD) using 26 segments, as 
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recommended in PC-ORD. This rescaling allows a 
quantitative interpretation of distances in the 
ordination space with respect to β-diversity (Lepš 
& Šmilauer 2003). Moreover, species turnover was 
estimated and compositional responses to the 
explanatory variables were quantified by DCA. 
Pearson’s Correlations between DCA ordination 
axes and measured environmental parameters as 
well as estimates of grazing impact were calculated. 
The objective of the DCA was to reveal 
relationships among floristic composition, α-
diversity, continuous environmental variables 
(altitude, inclination, heat load, bulk density, water 
content, carbon content, electro-conductivity, soil 
pH (in CaCl), and grain size distribution), 
structural variables (vegetation cover, herb cover, 
shrub cover, and tree cover), and grazing impact. 
The significance of each fitted gradient (vector) was 
tested by a Monte Carlo test (999 permutations). 

We decided to use DCA in our study since 
ordination results were supposed to be unimodal 
related to environmental predictors (gradient 
length: 3.614 SD; see Lepš & Šmilauer 2003). 
Moreover, DCA was successfully applied in several 
studies with similar objectives, and DCA is one of 
the most accessible and widely applied indirect 
ordination methods in vegetation science (Lepš & 
Šmilauer 2003). 

2.5 Phytogeographical analysis 

Phytogeographical characteristics of the 
classified communities were assessed using species 
distribution data obtained from standard literature 
(Czerepanov 1995; Komarov 1934-1969; Meusel et 
al. 1965-1992). We assigned the most dominant 
(mean coverage > 2%) and the most frequent 
(> 40%) vascular species to one of the following six 
distribution types: (1) Widespread and/or Ruderal; 
(2) Eurosiberian; (3) Middle-Asian, (4) Middle-
Asian-Caucasian, (5) Pontic-Siberian, (6) Irano-
Turanian. 

3    Results 

3.1 Species composition and classification 

A total of 395 relevés and 195 species were 
included in the classification after identifying 

24 relevés as outliers. 
On average, one relevé contained 

22 ±6 (SD) vascular plant species (min.: 11, 
max.: 49). Examples for species occurring in ≥ 50% 
of all relevés were (in decreasing order of constancy) 
Trifolium repens, Poa pratensis, Taraxacum 
officinale, Dactylis glomerata and Eremurus 
fuscus. 

Cluster analysis resulted in four communities, 
explaining about 12.5% of the variation (Figure 3). 
The main branching demerged the dataset into two 
major communities. It coincided with the presence 
of Ligularia thomsonii, Lamium album, Bistorta 
elliptica and Phlomoides-complex (Phlomoides 
oreophila and Phlomoides speciosa) in the first 
branch (communities A and B), and their absence 
or rare occurrence in the second branch 
(communities C and D) (Figure 3, Table 1). 

Each classified community could be 
distinguished by significant diagnostic species. In 
community A, various non-graminoid perennial 
species and many tall perennial herbs like 
Aconogonon coriarium, Prangos pabularia and 
Ligularia thomsonii occurred frequently. 
Community A displayed the highest species 
richness values. Several (sub-) alpine species (such 
as Aulacospermum simplex, Heracleum dissectum, 
Aster alpinus, Phlomoides oreophila and 
Phlomoides speciosa) were diagnostic for 
Community B. In community C, main diagnostic 
and typical species included Medicago lupulina 
and Arenaria serpyllifolia, together with Carex 
turkestanica, Eremurus fuscus and Ziziphora 
clinopodioides. Small ruderal and/or widespread 
graminoid- and forb-species, such as Plantago 
major, Polygonum aviculare and Taraxacum 
officinale s.l., characterized community D with 
Urtica dioica, Malva neglecta and Capsella bursa-
pastoris being frequent companions. This 

Figure 3 Dendrogram showing clustering results: A
Aconogonon-Prangos-; B Phlomoides-Geranium; C
Eremurus-Arenaria-; D Plantago-Polygonum-
community. 
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community reached the lowest species richness 
values.  

3.2 Analysis of underlying gradients 

The variable “tree layer%” was excluded from 
DCA as this parameter displayed a high coefficient 
of variation (CV% > 400). The first two DCA axes 
explained 0.25% and 0.23% of the total inertia 
(Figure 4) (R², coefficient of determination). All 
three DCA axes together explained 0.54% of the 
variation in the data-subset.  

The DCA joint plot showed that axis 1 
separated pasture communities along an altitudinal 
gradient (r = 0.8, Figure 4). Correlations among 
different parameters and axis 2 revealed that the 
major floristic gradients were strongly correlated to 
the prevailing intensity of grazing (grazing 
impact, r = -0.6). Among the different structural 
parameters, species richness and the cover of the 
shrub layer were correlated contrarily in 
comparison with the factor ‘grazing impact’. In 
order to clarify the role of soil texture (clay %, 
r = 0.56), further investigations are necessary. The 
DCA joint plot shows all four communities with 
their underlying gradients (such as spatial 
distribution, vegetation structure, and α-diversity): 
Community A occurred on the steepest slopes. The 
“alpine” community B occurred at higher altitudes 
above 2,800 m. Community C represented highly 
degraded and less densely covered slopes with high 

Community
No. of relev閟
Average richness / relev? (SD)

Aconogonon coriarium 62 56.9 16 - - - 8 -

Prangos pabularia 41 48.5 - - 9 - 1 -

Galium aparine 47 39.2 5 - 19 - 8 -

Tanacetum pseudoachillea 43 29.6 23 - 4 - 17 -

Stachyopsis oblongata 41 24 23 - 9 - 20 -

Pyrethrum parthenifolium 63 27.6 2 - 60 24 34 -

Asyneuma argutum 26 35.8 6 - - - 2 -

Vicia tenuifolia 29 35.2 - - 11 - 2 -

Carex polyphylla 35 39.1 - - 6 - 9 -

Dactylis glomerata 92 41.4 58 - 13 - 64 -

Ligularia thomsonii 81 40 74 32.6 12 - 18 -

Campanula glomerata 55 28.4 44 - 13 - 18 -

Lamium album 67 29.1 71 33.7 3 - 27 -

Phlomoides-complex 5 - 66 58.6 22 - - -

Geranium collinum 25 - 53 33.5 2 - 29 -

Rumex paulsenianus 35 - 47 - 5 - 39 -

Myosotis spp. 7 - 37 45.7 2 - 1 -

Bistorta elliptica 13 - 34 36.4 1 - 4 -

Heracleum dissectum 2 - 27 40.2 - - 4 -

Aulacospermum simplex - - 23 41.3 - - 1 -

Gentiana olgae - - 19 36.8 - - 1 -

Aster alpinus 2 - 19 36.1 - - - -

Allium hymenorhizum - - 16 35.5 - - - -

Allium atrosanguineum - - 16 35.5 - - - -

Allium platyspathum - - 16 35.5 - - - -

Arenaria serpyllifolia 9 - 15 - 82 58.1 32 -

Medicago lupulina 11 - - - 79 59.3 36 -

Carex turkestanica 9 - 5 - 57 50.5 14 -

Ziziphora clinopodioides 14 - 5 - 51 48.5 4 -

Poterium polygamum 6 - 2 - 48 55 3 -

Plantago lanceolata 6 - 2 - 64 42.9 49 23.6

Hypericum perforatum 43 - 5 - 75 51.9 8 -

Rosa kokanica 35 16.8 2 - 52 39.7 3 -

Origanum thytthantum 54 - 10 - 78 38.7 36 -

Achillea millefolium 14 - 13 - 68 37.7 53 18.8

Eremurus fuscus 63 - 24 - 89 43.3 31 -

Euphorbia jaxartica 13 - 11 - 40 36.9 1 -

Polygonum polycnemoides - - - - 20 35.4 3 -

Viola isopetala 60 22.4 11 - 66 29.6 27 -

Ferula kuhistanica 37 - 2 - 45 22.8 27 -

Capsella bursa-pastoris 4 - 16 - 44 - 59 34.8

Cerastium holosteoides 12 - 21 - 45 - 50 22

Trifolium repens 65 - 26 - 81 - 92 31.6

Poa pratensis 57 - 50 - 81 18.8 74 -

Plantago major 25 - 8 - 21 - 81 57.9

Polygonum aviculare 17 - 18 - 52 - 82 46.7

Malva neglecta 17 - - - 41 - 73 50

Taraxacum officinale s.l. 35 - 60 - 55 - 81 27.8

Barbarea vulgaris 41 - 44 - 42 - 64 18.7

Synoptic table
with percentage frequency and modified fidelity index (φ -coefficient)

A B C D
103 62 95 135

25 (? ) 20 (? ) 23 (? ) 19 (? )

Table 1  Synoptic table with percentage constancy and
modified fidelity index (φ coefficient, superscript).
Values indicating typical species and diagnostic species
are highlighted with grey shading. Both typical and
diagnostic species are printed in bold.  

Figure 4 DCA (79 relevés, 171 species, 17 parameters,
cutoff r² value = 0.150): Position of classified relevés in
DCA-space. Overlaid vectors symbolize the dominance
of the underlying gradients by their length. 

relevé 
relevé 
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heat load. Community D was mostly found on even 
sites, which were under high impact of trampling 
and grazing. 

The communities A, C and D occured at lower 
and medium altitudes, whereas community B was 
distributed at higher altitudes (see Figure 4, axis 1). 
On axis 2, the communities A, C and D were 
distributed along an underlying gradient of grazing 
impact and soil texture. We did not consider the 
influence of soil water content (%) because of high 
heterogenety in daily weather conditions during 
the soil sampling period. Community A showed an 
intermediate grazing impact combined with the 
highest species richness and the highest shrub 
cover of all communities. By contrast, 
communities C and D showed a lower α-diversity. 
All three axes exhibited high differences in species 
composition with almost one total species-turnover 
indicated by a gradient length of approx. 3.5 SD 
(Hill & Gauch 1980) showing that the main DCA 
axes reflected a high ß-diversity (Table 2). The 
fitted gradients (vectors) of the DCA were 
significant at p = 0.05 level (type I error, Monte 
Carlo test). 

3.3 Phytogeographical composition 

A total of 174 vascular plants, identified at 
species level, were subjected to a 
phytogeographical analysis (Figure 5). The Middle 
Asian range type was the dominant distribution 
type within the species pool (Figure 5a). On the 
other hand, the distribution type ‘Widespread 
and/or Ruderal’ showed the highest average cover 
of all phytogeographical range types (Figure 5b). 
Regarding the number of species associated with 
each distribution type, the proportion of types 
differed little among communities (Figure 5a). 
However, considerable differences among 
communities were visible when regarding the 
average cover of the respective distribution types 
(Figure 5b). In communities C and D, ‘Widespread 
and/or Ruderal’ species occupied a relatively high 
proportion of the vegetation cover (29% resp. 59%). 
In both communities A and B, Middle Asian 
species covered approx. 20%, whereas the 
‘Widespread and/or Ruderal’ species cover was 
relatively low. Middle Asian endemics played a 
major role in communities A and B (cf. Figure 5).  

Table 2 DCA: Total inertia, eigenvalue, gradient lengths 
and Pearson’s correlations between the environmental 
variables and DCA ordination axes 1, 2 and 3. 

 DCA 
relevés: 
79 

taxa: 171 

Total inertia 6.5998   

Axis 1 2 3 

Gradient length 
(SD) 

3.61 3.27 3.6 

Eigenvalue 0.47 0.39 0.27 

Pearson's r r r 

Cover 0.02 0.2 0.1 

Shrub layer -0.2 0.4 -0.1 

Herb layer 0.1 0.1 0.1 

Species richness 0.2 0.5 0.03 

Inclination 0.3 0.4 -0.3 

Altitude 0.8 -0.2 -0.1 

Heat load -0.5 0.1 0.2 

Grazing impact -0.2 -0.6 -0.1 

Soil pH 0.2 0.1 -0.5 

Electroconductivity 0.1 0.0 -0.3 

Bulk density 0.1 0.1 -0.1 

Skeleton 0.3 -0.2 -0.2 

Soil water -0.1 0.6 0.1 

Carbon 0.1 -0.1 -0.5 

Sand 0.2 0.02 0.02 

Silt -0.1 -0.2 -0.2 

Clay -0.2 0.6 0.2 

Figure 5 Spectra of distribution types for classified 
communities and in the total dataset. (a) Proportion of 
species number per distribution type. (b) Proportion of 
average cover per distribution type. 

90



J. Mt. Sci. (2011) 8: 363-373 

 

 370

3.4 Grazing impact 

As community B represents the vegetation 
type of high altitudes, whereas all three 
communities A, C and D were found at medium 
elevations, only the latter were considered to 
analyze the impact of grazing and environmental 
factors. Community D was subject to the highest 
grazing impact, followed by community C. In 
community A, disturbance through grazing was 
relatively low (cf. Figure 4, cf. Table 2) and 
although it showed marks of grazing, the 
vegetation formation appeared less degraded than 
those of communities C and D. 

4    Discussion 

4.1 Actual situation of the Kyrgyz 
montane pastures 

In the SW Tien Shan, not only the rare walnut-
fruit forests can be considered to be unique. The 
grasslands above the treeline are also exceptional 
with respect to their richness in endemics and to 
the disjunctive presence of Eurosiberian species 
(Wagner 2009). 

Presently, the grasslands of the Ferghana 
Range are subject to heavy grazing impact and 
almost entirely utilized as grazing land since 
livestock is of increasing importance in sustaining 
the livelihood of local people. The rising land use 
pressure is reflected by a gradual expansion of 
pastures into the adjacent walnut-fruit forest 
(Borchardt et al. 2010). Small groups of trees 
remaining on grazing grounds are witnesses of a 
previously much larger forest area (pers. 
observations). On dry slopes, occupied by 
community C, soil erosion and degradation marks 
on shrubs are obvious consequences of 
unsustainable grazing and trampling that point to 
the vulnerability of these habitats. The last UNDP 
(2007) report on natural resources in Kyrgyzstan 
assessed the condition of Kyrgyz pastures as poor, 
and the pressure on pastures close to settlements 
was identified as main problem of agricultural land 
use in Kyrgyzstan causing degradation and 
desertification. 

Reinforced degradation must be attributed to 
the continuous increase in livestock numbers 

accompanying the process of privatization (cf. 
Schmidt, M. 2005, Schmidt, K. 2007). In particular, 
the rising numbers of goats, which strongly harm 
the shrub and tree layer, and prevent natural 
regeneration (Fernandez-Lugo et al. 2009, Goetsch 
et al. 2010), is an object of great concern. 

4.2 Regional comparisons 

Published information on the classification 
and ecology of Tien Shan alpine pastures is very 
scanty. The mountain pastures, in particular those 
at higher altitudes, have been largely neglected by 
modern international vegetation ecological 
research. 

Only one comparable study of mountain 
meadows in the Tien Shan is available, which is 
based on vegetation sampling in the NW Tien Shan 
(Wagner 2009). 

In general, low floristic-sociological 
accordance was detected when comparing our 
results to those of Wagner (2009). Because 
Wagner´s study was conducted at lower altitudes, 
no comparison was possible for the alpine 
community B described in our study. Further, 
major differences between our study and Wagner’s 
(2009) findings reflect contrasting land use 
pressure. Wagner took her samples in a preserved 
area in the NW Tien Shan (Aksu-
Jabagly Nature Reserve), whereas we collected data 
in an area located close to settlements and subject 
to massive human impact. Accordingly, densities of 
the herb layer (Borchardt et al.: 58% vs. 
Wagner: 87%, on average) as well as α-diversity 
(Borchardt et al.: 22 species vs. Wagner: 26 species, 
on average) were higher on the preserved meadows. 
Several ‘Widespread and/or Ruderal’ species 
occurring in or even dominating the examined 
pastures do not occur or play a minor role in 
Wagner’s samples. The clear separation of 
communities according to the ratio of the 
distribution types ‘Middle Asian’ and ‘Widespread 
and/or Ruderal’ as it was detected in our study was 
not present in Wagner´s communities (2009). 
Consequently, community D occurring at intensely 
utilized sites in our study area was not found in the 
area investigated by Wagner. The relatively 
undisturbed and remote spots of community A 
showed the highest conformity with the floristic 
composition of Wagner’s communities. 
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Aconogonon coriarium was the characteristic and 
eponymous species for community A in the present 
study and also for one community in Wagner’s 
classification. A strong presence of Eurosiberian 
species in the vegetation (around 30% in all 
communities, Figure 5), as shown in both 
Wagner´s and our phytosociological analyses, is in 
accordance with previous observations of Rubtsov 
(1955) and Vykhodtsev (1956). 

So far, no studies have been conducted on the 
relationship between post-Soviet transformation 
processes and ecological alterations of alpine 
grazing lands. However, some basic references for 
ecological analyses of alpine pastures can be found, 
although most of these sources refer to the 
extensive steppes and grazing lands of N 
Kyrgyzstan (Issyk-Kul, Naryn, Chuy, and Talas 
Oblasts) and rarely deal explicitly with high 
pastures. Several Russian authors (such as Korovin 
(1961/62), Ryazantsev (1965), Stanyukovich (1973), 
Stepanov (1975), Vykhodtsev (1976), Mamytov 
(1987), Atlas Kirgizskoy SSR (1987), Golovkova 
(1990) and Mamytov (1996)) provide essential 
information on climate, soils and vegetation. 
Further, Russian scientists include assessments of 
productivity, biomass and grazing value of several 
pasture types (such as Vykhodtsev et al. (1970), 
Popova et al. (1972, 1975), Zlotin (1978), Lebedeva 
(1984), and Golovkova & Chubarova (1987)). 

4.3 Global comparison 

4.3.1 Impact of grazing 

The trend of changing species composition 
under the impact of grazing is a global 
phenomenon (Díaz et al. 2007). Various studies 
investigating the influence of grazing on species 
richness and on plant community composition 
showed that disturbance has profound effects on 
the vegetation (Asner et al. 2004, Steinfeld et al. 
2006, Vallentine 2001). However, only very few 
recent publications describe – in rather superficial 
country-wide overviews – the influence of grazing 
on mountain pasture vegetation (e.g. Wilson 1997; 
Shikhotov et al. 2002). 

In the present study, Eurosiberian and Middle 
Asian species were found to decrease under the 
influence increasing of grazing pressure. Several 
rare and endemic plant species (see Davletkeldiev, 

A.A. 2007, Umralina, A.R. & Lazkov, G.A. 2008, 
Eastwood, A. et al. 2009) occur in the study area. 
Many of the rare Middle Asian endemic species are 
considered to be highly endangered as result of 
rising human impact. 

These observations comply with results from 
other mountain areas. For example in the 
Carpathian Mountains, increased grazing pressure 
on alpine grasslands had detrimental effects on 
relic and endemic species (Baur et al. 2007), but - 
due to the presence of competitive ruderals - lead 
to increased diversity at an intermediate level 
(Pierce et al. 2007). In this respect it has to be 
taken into consideration that the high species 
richness of disturbed areas in our study resulted 
from the occurrence of ‘Widespread and/or 
Ruderal’ species. This observation supports the 
hypothesis that diversity increases with increasing 
disturbance provided that disturbance occurs at 
intermediate scales of frequency and intensity 
(“intermediate disturbance hypothesis”, Connell 
1978). 

4.3.2 Upper treeline 

Depression of the upper treeline is a common 
phenomenon associated with land use changes in 
transformation and transition countries 
(Schickhoff 2005; 2009). In the observed pastures, 
a close connection to the adjacent walnut-fruit 
forest is reflected by the occurrence of forbs that 
dominate the herb layer of the forest understorey 
(such as Asyneuma argutum or Carex polyphylla). 
The presence of trees (e.g. Acer turkestanicum) 
and the relative high coverage of shrubs clearly 
indicate that the upper treeline has been depressed 
under the impact of increasing livestock numbers 
and intense exploitation of forest products in 
recent years (Schmidt, M. 2005; Grisa et al. 2008; 
Borchardt et al. 2010). However, further 
investigations are needed to better describe the 
relation between both human and environmental 
impact and the position of the upper treeline. 

5     Conclusions & Implications for the 
Future 

The presented results point to a strong grazing 
impact on the pastures of southern Kyrgyzstan’s 
Ferghana Range regarding vegetation distribution, 
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species composition, and species richness. Human 
impact favors widespread and/or ruderal species 
and causes degradation of pastures (Asner et al. 
2004) including a reduced availability of ecosystem 
services (e.g. primary production, and prevention 
of soil erosion). 

In order to ensure the viability and the 
integrity of these ecosystems in future, an effective 
implementation of a sustainable pasture 
management and a rigorous enforcement of 
existing regulations are urgently needed. 
Respective strategies include the implementation 
of rotation systems, a general limitation of 
livestock numbers and grazing periods, and a ban 
on goat grazing - at least on potential shrub and 
forest land. Alternative sources of income (such as 
tourism or beekeeping) should be promoted in 
order to reduce the dependency of local people 
from livestock. According to Schmidt and 
Sagynbekova (2008), a great majority of 
households rely on agricultural and forestry 
activities to sustain their livelihoods. Rents for 
grazing land are already not only used to support 
the village administration, but also include a social 
payment that returns to the local budget and is 
used for maintenance of high passes that lead to 

more distant summer pastures. However, a more 
transparent use could markedly increase the 
efficiency of such rents. Regarding their efficient 
utilization, a more transparent and uncorrupt 
financial system is indispensable. Furthermore, 
inventory and monitoring should be implemented 
as grazing land management tools in order to 
facilitate decision making in future. 
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2013). 
The first known soil observations in South 

Kyrgyzstan were conducted in the Fergana Range 
at the end of the 19th century and published by 
Middendorff (1882). This report included results of 
chemical analyses of soils and waters. Regular soil 
studies started in the beginning of the 20th century. 
Though there were already much legacy data and 
reports available, one of the first papers outlining 
soil erosion on Alai and Chatkal ranges in South 
Kyrgyzstan was written by Zemlyanitzkiy (1937). In 
1940, Mikhailov conducted route surveys of soil 
erosion in South Kyrgyzstan which resulted in a 
series of books on soil types, types of erosion and 
erosion prevention measures (Mikhailov 1959), he 
outlined the importance of vegetation and surface 
management for soil loss control. One of the main 
soil publications was written by Mamytov (1974) 
who outlined and integrated previous surveys and 
provided thorough information on soil types and 
features, zonation, pedogenesis, economic value 
and erosion. One of the first structured vegetation 
descriptions of pastures of Kyrgyzstan was 
conducted by Vykhodcev (1956). The author 
provides descriptions of main geobotanical regions 
and vertical zones (with detailed maps), with the 
main emphasis on agricultural use and pasture 
resources. Korovin (1961) provides a thorough 
description of the major vegetation communities 
for the whole region, which remains until now one 
of the standard works in Russian language. 
Nowadays, due to the difficult economic situation 
in Kyrgyzstan, intensive soil surveys are not 
conducted. Kyrgyzgiprozem Institute is working on 
keeping the existing database as up-to-date as it is 

possible. Thus a cost-effective instrument of soil 
monitoring is needed. 

Dotterweich (2013) gives a comprehensive 
review of soil erosion history worldwide with a 
main focus on China in the Asian region. Zhou et al. 
(2010) investigated topsoil deterioration due to 
livestock trampling and grazing for similar soil 
conditions of China’s Loess Plateau. Effects of land 
use type on soil properties was clearly 
demonstrated by Li et al. (2015) where the same 
soil types indicated different soil detachment 
capacity by overland flow depending on cover 
management. However, human activity with 
effective soil loss control and sustainable cover 
management can considerably increase soil 
retention (Fu et al. 2011) in spite of rugged terrain, 
which is one of the main factors contributing to soil 
loss (Sun et al. 2014). Dense grass cover and mixed 
forests have been proven to be among the best 
protectors of top soil from surface runoff (Sun et al. 
2014; Wang et al. 2014). 

The RUSLE (Revised Universal Soil Loss 
Equation) (Renard et al. 1996) and its components 
have been extensively used for soil erosion 
modelling. The cover management factor, or so 
called C-factor, of RUSLE is a soil loss ratio 
indicating a level of soil cover management impact 
on soil loss.  

In RUSLE, the implementation framework of 
original USLE (Wischmeier and Smith 1978) was 
expanded so that it could be applied to rangeland 
conditions. As the C-factor calculation procedure 
(Renard et al. 1996) suggests, vegetation and its 
residues are of utmost importance for soil 
conservation. On rangeland pastures, where no 
tillage occurs and residues are not left due to 
overgrazing, live vegetation is virtually the only 
factor to be considered for C-factor estimation. 

Satellite imagery and their time series are a 
complex data source that has been used for surveys 
of land surface behavior in space and time. They 
have also been commonly used as predictors of 
vegetation features and soil loss rate (de Jong 
1994). In recent years, many surveys have been 
implemented on NDVI time series with either 
spatial or temporal averaging (Bradley et al. 2007; 
Nezlin et al. 2005; Rigina and Rasmussen 2003), 
dealing with combination of spatial and temporal 
analysis methods in different ways to tackle data 
limitations and identify dynamics patterns and 

Figure 1 Soil erosion due to trampling and 
overgrazing. 
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regional center – Bazar-Korgon. It is a rather 
remote pasture with more difficult access and 
altitudes of 2000-2400 m a.s.l.. This study area is 
considered separately from the above-mentioned 
three pastures (Uch-Choku).  

The areas surrounded by black line in Figures 
3 and 4 are the study areas; they roughly represent 
the area used for grazing by respective herders. 
Herd composition is dominated by cows and sheep 
with mean density in cattle units of: Uch-Choku – 
120, Kara-Bulak – 175, Jaz-Jarym – 40 and Otuz-
Art – 280 per square kilometer. In Figures 3 and 4 
herders tents are marked with triangles, and their 
size is related to the size of the owner’s herd. The 
values for Uch-Choku, Kara-Bulak and Jaz-Jarym 
are considered to be underestimated, because of 
settlement proximity some livestock is temporarily 
brought by herders to these pastures directly from 
the village without staying on pasture in tents, 
whereas only the livestock of herders residing on 
the pasture site could be estimated during field 
interviews. 

2    Materials and Methods 

2.1 Field data collection 

Field trips were undertaken in July – 
September of 2010 and 2011. Each time new 
samples were taken, i.e. the sampling was not 
repeating. The research areas were approached 
with a network of point surveys covering altitudes 
between 2000 and 2800 m, eight different 
bearings and various slope gradients where 
possible (Figures 3 and 4). At each point, 
vegetation cover fraction was assessed visually on a 
5×5 m plot, and the average vegetation height was 
measured with a ruler, and surface roughness was 
assessed using the random roughness charts 
(Figure C-1 – C-9 in Renard et al. (1996). In Otuz-
Art 80 plots were surveyed, in Uch-Choku – 94. 
Slope steepness, position on the slope, aspect, 
altitude and GPS coordinates of each survey point 
were also recorded. Precipitation and temperature 
data were collected from a local climate station 
(Ak-Terek Gava). The climate diagram of the 
station is indicated in Figure 5. Only rainstorms 
were considered in this study, precipitation data 
were available for the years 2000 – 2011 and 

temperature data for the years 2000 - 2009. 
Herders were interviewed for the amount of 
livestock and grazing strategies.  

2.2 Remotely sensed data and DEM 

LANDSAT-5, LANDSAT-7 and LANDSAT-8 
(here and afterwards just LANDSAT) images, paths 
151 and 152, raw 31 of the years 2000 – 2013, 
months April – November (as rainstorms occur 
only in these months) were used as remotely 
sensed data. The LANDSAT images were 
topographically corrected with SAGA GIS 
topographic correction module “Minnaert 
Correction with Slope” (Law and Nichol 2004) to 
eliminate illumination difference on different 
slopes. In most cases, the satellite images with 
more than 60% of the area covered with clouds 
were omitted from the research. The areas covered 
with snow were masked and evaluated as such (i.e. 
conventionally assigned C-factor value of 0.01). 
Clouds and snow were masked using supervised 
classification with learning in “Supervised 
classification” module (Mahalanobis distance 
method) of SAGA GIS. The processing of the 
remotely-sensed images is discussed in more 
details in 3.3.3. 

ASTER GDEMs were used for elevation data. 
Remotely sensed data and the ASTER GDEMs were 
resampled to 10 m × 10 m pixel size with b-spline 
interpolation method in SAGA GIS to bring all the 
raster images to the same resolution and size. The 
resolution was increased to refine the spatial 
continuity as sampling was done on a finer scale 
than the initial resolution of the data and pixel 
central values could be unrepresentative for 
sampling points situated closer to a pixel edge. All 
the subsequent manipulations were done with this 

Figure 5 Climate diagram of Ak-Terek station 
(monthly mean precipitation and temperature for the 
years 2000 – 2011). 
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grid system. The coordinate system used 
throughout the study was WGS84 UTM 43N. 
Statistical analyses were made in R 3.1.2 / Rcmdr 
2.1-4, the GIS and satellite images processing were 
conducted in SAGA GIS 2.1.3. 

2.3 Cover management factor 

2.3.1 C-factor calculation 

C-factor (also denoted as soil loss ratio) is a 
dimensionless factor that indicates the impact of 
soil surface management on erosion. The factor 
values were calculated for each survey point, using 
the field data. For the calculation a shortened 
version of the original RUSLE formula [5-3] 
(Renard et al. 1996) was used: 

                           SLR CC SC SR= × ×                          (1) 

where: SLR – soil loss ratio for the given conditions 
(C-factor), CC – canopy-cover subfactor, calculated 
with formula [5-11] (Renard et al. 1996), SC – 
surface-cover subfactor, calculated with formula 
[5-12] (Renard et al. 1996), SR – surface-roughness 
subfactor, calculated with formula [5-23] (Renard 
et al. 1996). 

As the study area is a rangeland, the C-factor is 
a function of soil surface roughness and vegetation 
properties. Tillage effect, prior land use and soil 
moisture subfactors are not considered as the area 
has always been used as a pasture and no tillage or 
irrigation has ever taken place. No significant 
residues were observed in the field as it is steadily 
overgrazed. The empirical coefficient used in 
surface cover subfactor calculation was 0.025 as 
suggested for the fields with interrill erosion as a 
dominant one (Renard et al. 1996). Surface 
roughness and random roughness are considered 
to be equal and were estimated in the field. On 
Figures 3 and 4, colour of points denote respective 
C-factor values. 

2.3.2 Regression estimation 

Normalized Difference Vegetation Index 
(NDVI) has been proven to be a good predictor for 
C-factor and other vegetation characteristics (de 
Jong 1994; van der Knijff et al. 1999). NDVI is 
calculated according to the following formula: 

                 NIR REDNDVI
NIR RED

−=
+

                             (2) 

where: NDVI – normalized difference vegetation 

index, NIR – spectral reflectance measurement in 
near-infrared region, RED – spectral reflectance 
measurement in visible red region. 

In case of LANDSAT 5 and 7 images the near-
infrared and red regions are bands 4 and 3 
respectively, for LANDSAT 8 these are the bands 5 
and 4. 

Correlation analysis and analysis of residuals 
indicated a significant nonlinear relation between 
NDVI and C-factor. A nonlinear least squares 
approximation of exponential function was 
undertaken with “nls” package of R using a default 
Gauss-Newton algorithm, which resulted in a 
regression equation, which was used for calculation 
of C-factor raster data out of NDVI rasters. 

2.3.3 C-factor maps creation 

NDVI rasters were calculated from all 
available satellite images of April – November of 
2000 – 2013. The areas covered with clouds or 
cloud shadows were masked and cut out. In cases 
of several images being acquired in one month 
(mostly), the images were merged together to 
produce mean NDVI raster for the respective 
month. The gaps in images were closed with B-
spline interpolation in “Close gaps with stepwise 
resampling” of SAGA GIS. Table 1 illustrates the 
percentage of area in gaps, which was closed with 
b-spline interpolation. If no appropriate images 
were available for a month, then NDVI images were 
produced by averaging the images of the next and 
the previous year of the considered month. These 
were October 2001, June 2003, May 2005, April 
2008 and October 2008. Then the regression 
equation was applied to NDVI rasters to produce 
C-factor layers. The resulting images were merged 
monthwise to produce 13-year mean C-factor maps 
for each month. Areas, which were covered with 
snow on most images, were assigned C-factor value 
of 0.01 as no surface runoff or raindrop splashes 
were assumed under the snow.  

Annual C-factor maps were developed as EI-
weighted mean of monthly C-factor rasters, as 
suggested by formula [5-24] (Renard et al. 1996): 
     1 1 2 2( ... ) /n n tC SLR EI SRL EI SLR EI EI= × + × + + ×     (3) 

where: C – average annual C-factor, EI – total 
rainfall energy times intensity, SLRi – SLR value 
for the time period I, EIi – percentage of the annual 
EI, occurring in that time period, n – number of 
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periods used in the summation, EIt – sum of the EI 
percentages for the entire time period. 

 The EI values for each month were calculated 
from rainfall intensity measurements, available 
from local climate station (Ak-Terek Gava) 
according to the original RUSLE formula [B-2] 
(Renard et al. 1996). 
2.4 Time series analysis 

Time series of spatially averaged C-factor 
(2000 – 2013), precipitation (2000 – 2011) and 
temperature (2000 – 2009) indicated strong 
seasonal autocorrelation. These time series were 
decomposed with Seasonal-Trend Decomposition 
Procedure Based on Loess (Cleveland et al. 1990) 
with robust fitting as it is implemented in STL 
package of R. This approach decomposes a time 
series into trend, seasonal and random 
components, the sum of which is the original time 
series. STL utilizes a series of moving average and 
local polynomial regression smoothings (Cleveland 

et al. 1992) with weighting, being flexible in 
adjustments, robust to outliers and allowing for 
broad variability in curve fitting. 

3    Results 

3.1 C-factor regression analysis 

NDVI and C-factor regression analysis for both 
research areas yielded the following, Table 2 
indicates summary statistics of the equation: 

      exp( 0.7842 2.9298 )SLR NDVI= − − ×         (4) 

where SLR – soil loss ratio (C-factor), NDVI – 
normalized difference vegetation index value. 

The nonlinear regression equation curve is 
indicated in Figure 6 together with observation 
points and additional regression curves from other 
studies. The equation (4) is the red bold line on the 
graph; equations of other researchers are dashed or 

Table 1 The percentage of no data cells missing in averaged images, these gaps were covered with b-spline 

Otuz-Art Uch-Choku 

Name Data cells Nodata 
cells Percent Name Data cells Nodata 

cells Percent 

2000 JUL 209411 9447 4.317 2000 MAY 259503 183 0.0705
2001 JUL 209021 9837 4.495 2000 JUL 226521 33165 12.771
2002 JUN 214265 4593 2.099 2001 JUL 217230 42456 16.349
2002 JUL 218759 99 0.045 2002 JUN 167682 92004 35.429
2002 AUG 209468 9390 4.29 2002 JUL 256878 2808 1.081
2003 MAY 213371 5487 2.507 2002 AUG 185481 74205 28.575
2003 JUL 208455 10403 4.753 2003 MAY 195396 64290 24.757
2004 AUG 210335 8523 3.894 2003 JUL 73683 186003 71.626
2005 JUN 217316 1542 0.705 2004 JUL 251190 8496 3.272
2005 AUG 157556 61302 28.01 2004 AUG 198858 60828 23.424
2005 OCT 198200 20658 9.439 2005 JUN 198777 60909 23.455
2006 JUN 187622 31236 14.272 2005 AUG 228993 30693 11.819
2006 AUG 218831 27 0.012 2005 OCT 177594 82092 31.612
2006 OCT 67141 151717 69.322 2006 MAY 241965 17721 6.824
2007 JUL 218636 222 0.101 2006 JUN 173337 86349 33.251
2009 JUL 218723 135 0.062 2006 OCT 111477 148209 57.072
2010 MAY 218822 36 0.017 2007 JUN 254799 4887 1.881
2010 JUN 213548 5310 2.426 2007 JUL 251868 7818 3.011
2011 JUN 209201 9657 4.413 2008 JUN 255084 4602 1.772
2012 JUN 216563 2295 1.049 2009 MAY 243477 16209 6.242
    2009 JUN 249582 10104 3.891
    2009 JUL 255960 3726 1.435
    2010 MAY 247539 12147 4.678
    2010 JUN 153615 106071 40.846
    2010 JUL 228735 30951 11.919
    2011 JUN 219801 39885 15.359
    2012 JUN 181725 77961 30.021
    2012 JUL 253899 5787 2.229
    2012 AUG 255561 4125 1.589
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dotted lines. The line of the equation by (de Jong et 
al. 1998) goes right through the point cloud and 
can be used to describe the relation, but the main 
drawback is that it is unable to handle the NDVI 
values over 0.535 properly. The equation above 
was used for the prediction of C-factor values on 
areas not sampled and for creation of continuous 
C-factor raster images from NDVI. The 
approximation curves from different studies in 
Figure 6 differ a lot from each other, which may be 
due to different study approaches. The graphs 
indicate that other existing equations could not be 
applied to our situation and a new equation 
suitable for the study area was needed. 

EI-weighted annual C-factor maps are 
represented in Figures 7 and 8. These maps show 
areas with greatest soil loss ratio in brown. The 
darkest areas are in most cases slopes steeper than 
35°. In case of Otuz-Art (Figure 8) these are the 
areas of landslides with bare soil and extremely 

sparse vegetation. In case of Uch-Choku (Figure 7) 
these areas represent sparsely vegetated rocks or 
talus cones in the North, or areas with little 
vegetation cover mostly due to overgrazing and 
trampling in the center of the image. C-factor and 
slope steepness indicated significant correlation of 
+0.38. Obviously, vegetation cover on steeper 
slopes is less dense and more exposed to trampling 
and cattle track erosion. 

Mean C-factor raster values of each month, EI-
weighted annual average and their standard 
deviations are represented in Table 3. The mean 
soil loss ratio is lower in Otuz-Art than in Uch-
Choku despite the fact that livestock pressure is 
lower in Uch-Choku. This can be attributed to the 
fact that Uch-Choku pasture is situated closer to 
the village with livestock being taken there on a 
daily basis, so it was not included in the estimation 
as only herders residing on pastures during 
summer season were interviewed. This means that 
real livestock pressure in Uch-Choku was 
underestimated. Otuz-Art is situated further away 
from the village and daily trips to the pasture are 
very unlikely indicating that all the livestock in 
Otuz-Art was counted. Also Uch-Choku is generally 
higher and its slopes are steeper than Otuz-Art. 
Steeper slopes can increase vegetation degradation 
from trampling and generally less vegetation is 
expected on higher altitudes. 

 

3.2 C-factor correlation with temperature 
and precipitation 

In April right after the snowmelt, C-factor 
shows highest values indicating the weakest cover 
protection, as vegetation cover is still very sparse in 
this month. A clear abrupt decrease of soil loss 
ratio in the beginning of the growing season 
(Figure 9f, 9l) is visible from April to May, which is 
caused by rapid vegetation development (onset of 
greenness). In April – May precipitation levels are 
quite high, whereas C-factor values decrease 
abruptly in May and reach their minima in June, 
i.e. two months after the precipitation maximum. 
This makes April and May the months with 
potentially highest soil loss, when the soil is freshly 
open after snow and still not protected well by 
vegetation, and subjected to peak precipitation 
rates. From June, soil loss ratio increases gradually 

 
Figure 6 NDVI and C-factor curve fitting. 

Table 2 Regression equation (4) summary statistics

Variables Intercept NDVI 
Estimate -0.7842 2.9298 
Std. Error 0.1513 0.5065 
t value -5.183 -5.784 
Pr(>|t|) 6.07e-07 3.36e-08

Note: Residual standard error: 0.08677 on 172 degrees of 
freedom. 
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well as natural vegetation decline. In August and 
September, C-factor values are high and rising, but 
because precipitation level is at its lowest point soil 
loss by runoff does not occur in great volumes. In 
November it decreases slightly because snow is 
already covering part of the research area 
providing conventionally high soil protection rate. 

Correlation rates of trend and season 
components of C-factor, temperature and 
precipitation are indicated on Figure 9. Time series 
components for all the study areas indicated 
significant positive cross-correlation between C-
factor and temperature trends (Figure 9a, 9g) 
almost without any lag difference. It also indicates 
a negative cross-correlation between C-factor and 

precipitation (Figure 9b, 9h) on trend level with 
0.5-1 year lag difference. The trend components 
themselves are indicated on Figure 9c and 9i. This 
is mainly attributed to vegetation reaction on 
temperature increase, in warmer years vegetation 
development is more intensive primarily due to 
rapid development in spring. The lagged negative 
correlation with precipitation is mainly attributed 
to spring precipitation, which constrains vegetation 
development. 

Cross-correlation analysis of seasonal 
components indicates an inverse picture – a 
significant negative correlation between C-factor 
and temperature (Figure 9d, 9j) and a slight 
positive correlation between C-factor and 

 
Figure 9 C-factor and precipitation time series decomposition and cross-correlations. (*- Otuz-Art research area; 
**- Uch-Choku research area). 
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precipitation (Figure 9e, 9k). Standard scores of 
seasonal components throughout a year are 
indicated on Figure 9f and 9l. On the seasonal level, 
the relations between the three components 
become more complex and here not only the 
climate factors, but also phenology and seasonality 
play a greater role in the system. Temperature 
makes a positive impact on vegetation in spring, 
whereas in summer it is a limiting factor for 
vegetation development, which defined the 
negative correlation at the seasonal scale. On the 
contrary, precipitation slows vegetation 
development in the beginning of the growing 
season due to limited sunlight, while in hot 
summers it provides moisture to sustain vegetation. 
Thus, at a seasonal scale the system has more 
complex interrelations. 

We analyzed NDVI time series with BFAST 
package in R (Verbesselt et al. 2010b), but no 
abrupt changes were identified. This indicates that 
no significant harsh changes of general vegetation 
cover due to pasture management or natural 
disasters, for example, have taken place in the 
years 2000–2013. 

4    Discussion 

Different regression approaches and different 
assumptions of soil loss rate and NDVI relations 
were used, from linear (de Jong 1994; de Jong et al. 
1998; Karaburun 2010) to exponential 
(Suriyaprasit and Shrestha 2008; van der Knijff  
et al. 1999; van der Knijff et al. 2000) or 
logarithmic (Zhou et al. 2008) producing very site-
specific regression equations. The modelling was 
done on different scales with different data 
available from field estimates of C-factor with 
spatial reference, related to respective values of 
remotely sensed vegetation indices (de Jong 1994; 
de Jong et al. 1998; Suriyaprasit and Shrestha 
2008) at a local scale, to discriminations between 
different vegetation types and assigning specific 
values at a country scale (van der Knijff et al. 1999; 
van der Knijff et al. 2000). 

After examining q-q plots, linear regression 
did not seem to represent the NDVI and C-factor 
relation correctly; furthermore, the resulting 
equation does not cover the entire possible value 
range. After several trials an exponential equation 

outperformed as it provided the most plausible 
curve and lowest residual standard error. As it is 
indicated in Figure 6, the approximation curve 
represents the point cloud better than any other 
equation and covers the entire value range, though 
the equation of De Jong et al. (1998) came very 
close. This example demonstrates the difference of 
C-factor and NDVI relation depending on local 
conditions and in most cases it will require a 
specific regression analysis and equation. However 
this approach would not be applicable for the case 
of agricultural lands, where assignment of C-factor 
values based on the crop type and annual rotation 
can show better results (Bühlmann et al. 2010; Lee 
2004). 

The average annual soil loss factor is lower in 
Otuz-Art than in Uch-Choku, which indicates a 
better soil protection. Even though the estimated 
cattle density is higher in Otuz-Art, the C-factor is 
much lower there, which is attributed to more flat 
terrain, lower position and remoteness. In Uch-
Choku, the grazing pressure seems to be 
considerably higher than estimated, due to 
proximity to the village, it also has more fragile 
vegetation cover on slopes due to their greater 
steepness and altitude compared to Otuz-Art. It 
indicates that different grazing plans and surface 
management must be applied to these pastures. 

C-factor time series indicate a clear correlation 
with climate factors on seasonal and trend levels, 
which is attributed mainly to growing season 
vegetation dynamics. The general slightly negative 
trend of the soil loss ratio seen on Figure 9c and 9i 
should be interpreted with care, as the time span is 
somewhat short for representativeness and general 
spatial averaging does not allow for discretization of 
areas with different response patterns. However, at 
a bigger regional scale positive NDVI trends, 
corresponding to negative C-factor trends, were also 
reported by other researchers (de Jong et al. 2011; 
Propastin et al. 2008a; Propastin et al. 2008b). 

Covariation of precipitation, temperature and 
C-factor seasonal components is expected to have a 
cause-and-effect relationship and is also explained 
by phenological reasons. This indicates that a great 
portion of C-factor fluctuations is caused by 
climate parameters. At the same time it is difficult 
to say which portion of the decline is conditioned 
by grazing, as data from not grazed areas are not 
available for comparative analysis. Similar 
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vegetation and precipitation behavior was observed 
in Central Asia and Mongolia (Iwasaki 2006b; 
Kariyeva and van Leeuwen 2012; Nezlin et al. 2005; 
Propastin et al. 2008a; Yu et al. 2003). Using time-
lagged or accumulation approaches for correlation 
or regression analysis provides better and more 
plausible results, as in most cases vegetation does 
not react to the change of climatic factors 
immediately (Gessner et al. 2013; Propastin et al. 
2008a). However, in spring, temperature tends to 
assist rapid onset of greenness, whereas in summer 
it is a limiting factor, preventing further vegetation 
densification (Propastin et al. 2008a). Similar 
correlations were reported by other authors in the 
region and across the world (Bradley et al. 2007; 
Bradley and Mustard 2005; Gessner et al. 2013; 
Nezlin et al. 2005; Omuto et al. 2010; Paudel and 
Andersen 2010; Propastin et al. 2008a). 

Many studies of vegetation time series use the 
sequences of NDVI raster and apply geostatistical 
analysis to identify polynomial trends of different 
areas (Propastin et al. 2008a; Propastin et al. 
2008b), thus receiving spatial information and 
loosing information about seasonal variations. In 
this case discretization between different 
vegetation communities or using mixed-effect 
modelling for identification of relationship between 
NDVI and climate factors can give better results 
than general spatial averaging (Omuto et al. 2010; 
Propastin et al. 2008a). In this study we applied 
spatial averaging of remotely sensed data which 
allows for avoiding local outliers and capturing the 
general vegetation dynamics in its relation to 
precipitation and temperature. 

Many statistical frameworks have been 
developed to extract phenological and interannual 
data from remotely sensed vegetation indices (de 
Beurs and Henebry 2010). Empirical orthogonal 
functions and principal component analysis are 
some of the frequently used approaches (Nezlin et 
al. 2005). The drawback of these approaches is that 
EOF modes as well as PCA components are very 
difficult to comprehend and interpret, especially in 
natural sciences, as they would represent abstract 
multicomponent variables of the data with the 
main idea of representing the data structure in 
fewer dimensions and with highest contrast 
between observations. Even though these methods 
are well suited for decreasing dimensionality, they 
do not provide means of seasonal and trend 

decomposition of remotely sensed data time series 
on their own. 

Gessner et al. (2013) analyzed the spatio-
temporal correlation between NDVI and 
precipitation monthly anomalies in the Central 
Asian region with temporal shifts up to three 
months. The study indicated time-lagged 
correlations between NDVI and precipitation 
anomalies, with the lag being one month, rarely 
two months, for most of the lowland Kyrgyzstan 
and for the present study area as well. This result is 
confirmed by our study. For most of the 
mountainous areas correlations were insignificant, 
presumably due to low capacity of AVHRR NDVI 
coarse resolution to capture changes in sparse and 
low vegetation, which is typical for these areas.  

Another common way to fit phenology is to use 
Fourier harmonics, the results are then 
represented as sinusoid functions of different 
frequency and phase. The drawback of this method 
is that these harmonics do not necessarily 
represent objectively meaningful oscillations. De 
Beurs and Henebry (2010) provide a thorough 
analysis of different frameworks. 

The approach we used in this study, 
application of conventional linear time-series 
decomposition tools to spatially averaged soil loss 
ratio values predicted by NDVI, is quite 
straightforward and produces seasonal and trend 
components, which are easy to interpret and give a 
clear view of vegetation annual phenology and 
interannual change. The method was used at a 
small local scale and applied to one vegetation 
community, thus general spatial averaging of data 
was adopted to eliminate local outliers. In case of 
applying the method at a broader regional scale, 
spatial differentiation between different vegetation 
communities will be necessary. 

5    Conclusions 

C-factor and NDVI indicated not linear 
relation. NDVI time series has proven to be a 
reliable spatial and temporal predictor of 
vegetation features, which can be attributed to the 
C-factor. C-factor on a trend level is significantly 
related to precipitation and temperature trends 
with a temporal lag. At the same time their 
seasonal components are parts of a more complex 

107



J. Mt. Sci. (2016) 13(2): 316-329 
 

 328

system where vegetation phenology is also a 
considerable compound. Climate factors can 
promote or decrease vegetation development 
depending on its phonological phase. As expected, 
steep slopes have higher ratios of soil loss both due 
to terrain and less vegetation cover compared to 

flatter areas. 
Remotely sensed data combined with field data 

and freely available analytical instruments, as well 
as computational capacity of modern computers 
can become a valuable asset for cost effective soil 
loss monitoring. 
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ABSTRACT 

The main objective of this study was to map soil erodibility in the mountainous rangelands of Kyrgyzstan. The 

results of this effort are expected to contribute to the development of soil erodibility modelling approaches for 

mountain areas. In this case study we map soil erodibility at two sites, both representing grazing rangelands in the 

mountains of Kyrgyzstan and having potentially different levels of grazing pressure. 

We collected a total of 232 soil samples evenly distributed in geographical and feature space. Then we analyzed 

the samples in a laboratory for grain size distribution and calculated soil erodibility values from these data using the 

Revised Universal Soil Loss Equation (RUSLE) K-factor formula. After that we derived different terrain indices and 

ratios of frequency bands from ASTER DEM and LANDSAT images to use as auxiliary data because they are among 

the main soil forming factors and widely used for prediction of various soil properties. Soil erodibility meaningfully 

correlated with channel network base level (geographically extrapolated altitude of water channels), remotely sensed 

indices of short-wave infrared spectral bands, exposition and slope. We applied multiple regression analysis to predict 

soil erodibility from spatially explicit terrain and remotely sensed indices. The final soil erodibility model was 

developed using the spatially explicit predictors and the regression equation and then improved by adding the 

residuals. 

The spatial resolution of the model was 30 meters and the estimated mean adjusted coefficient of determination 

was R
2
 = 0.47. The two sites indicated different estimated and predicted means of soil erodibility values (0.035 and 

0.039) with 0.95 significance level, which is attributed mainly to the considerable difference in elevation. 

Key Words: Kyrgyzstan; predictive soil mapping; RUSLE; spatial models; validation 

INTRODUCTION 

Soil loss through erosion has been widely recognized as one of the main problems of modern human-

environmental interactions (Pimentel et al., 1995; den Biggelaar et al., 2003; Biggelaar et al., 2004; Blanco and Lal, 

2008) with its roots going deep into history (Dotterweich, 2013). Soil erosion is a common problem and has an impact 

on many aspects of human life and environment. It leads to pollution and sedimentation of water streams and bodies 

(Walling et al., 2002; Rickson, 2014), can cause and be driven by severe vegetation loss (Ludwig et al., 2005; Zhou et 

al., 2010, 2016; Hou et al., 2016; Wang et al., 2016b), as well as soil productivity loss. Global food security 

challenges created new tasks for soil science, which provides more and more problem solving as remote sensing and 

geospatial techniques further develop (Hartemink and McBratney, 2008). 

The Universal Soil Loss Equation (USLE) was developed by Wischmeier and Smith (1978) and provides a 

convenient tool for soil loss estimation for agricultural lands. The Revised Universal Soil Loss Equation (RUSLE) 
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(Renard et al., 1996) was developed using a larger dataset and is applicable for soil loss estimation in a broader range 

of conditions including grasslands. RUSLE calculates soil erosion multiplying six main factors: (R) - rainfall and 

runoff erosivity, (L) - slope length, (S) - slope steepness, (C) - cover management practices, (P) - supporting 

conservation practices and (K) - soil erodibility. Thus, soil properties are among the main factors controlling soil loss. 

The K-factor of RUSLE (Renard et al., 1996) has been widely used for estimation of soils’ susceptibility to splash 

detachment and transport by surface flow (Romkins et al., 1986; Knijff et al., 1999a, 1999b; Wang et al., 2013).  

Soil erodibility is the factor indicating the susceptibility of the soil to raindrop splash and surface water flow 

impact. It is an essential parameter for prediction of soil erosion. The most accurate method of soil erodibility 

estimation is long-term direct measurements of soil loss on runoff plots with controlled conditions. Alternatively it can 

be measured in the laboratory under simulated rainfall conditions. Both methods require significant time and resource 

investment which is not feasible where resources are limited. Wischmeier and Smith (1978) provided a soil erodibility 

nomograph (and its approximation formula) for convenient estimation of the K-factor based on texture, organic 

content, structure and permeability of the soil. Zhang et al. (2016) found the approximation formula to be 

inappropriate for soil erodibility estimation in China. Singh and Khera (2009) found the nomograph to produce 

considerably lower soil erodibility values in India. Wang et al., (2016a) indicated the RUSLE equation, based on the 

grain size data to be a good approximation of K-factor values for soils in China in contrast to the other equations. The 

nomograph was a result of erosion studies conducted in the United States. The RUSLE equation [3-5] (Renard et al., 

1996) considers the K-factor to be the function of solely soil texture. Likewise, Römkens et al. (1986) suggest texture 

to be the main factor of soil erodibility. The K-factor approximation formula [3-5] in RUSLE is a result of regression 

analysis based on long-term runoff plot observations of 225 different soil types from all over the world (Romkins et 

al., 1986; Renard et al., 1996), and thus preferable for conditions where direct soil erosion measurements are not 

available. Zhang et al. (2008) found the two formulas overestimating but being appropriate for K-factor estimation in 

east China. Wang et al. (2013) provide a deep analysis of different soil erodibility concepts and their history indicating 

a common need for validation and calibration methods as well as consideration of its spatial and seasonal variations. 

Zhang et al. (2004) demonstrated K-factor to be a good measure for evaluation of soil erodibility in the Loess 

Plateau region of China. They indicated that erodibility of loess soils is mainly conditioned by the size of particles, 

rather than organic matter content, which is usually low. Panagos et al. (2012) developed a soil erodibility map for 

members of the European Union using a grid of soil samples across Europe and inverse distance weighting 

interpolation of their values. The authors suggest using the dataset as input for interpolation of the values on a finer 

local scale with auxiliary data. Extrapolation method is a different approach in contrast to mapping with spatially 

explicit auxiliary data as used by Tesfa et al. (2010) who mapped soil profile depth with terrain indices and 

generalized additive model. 

Modelling spatial continuity and variations of soil properties in general is not a trivial task and different local 

conditions including soil type, data availability, terrain, climate, etc. influence the choice of method. Terrain features 

such as slope degree, slope curvature, altitude, etc. and ratios of satellite images’ frequency bands have been 

extensively used as predictors for production of continuous maps of numerous soil properties (De Jong, 1994; 

McBratney et al., 2003; Bishop and Minasny, 2006; Madeira Netto et al., 2006a, 2006b, Boettinger et al., 2008a, 

2008b, 2010; Florinsky, 2012). Processes of soil formation and development depend greatly on the terrain and terrain-

driven conditions (Simonson, 1995; Florinsky, 2012), and are often directly or indirectly represented by surface 

reflectance (Boettinger et al., 2008a, 2010).  

Slope and exposition are among mountain-specific terrain factors influencing soil formation (Martz, 1992). 

Slopes facing different directions get different amounts of solar radiation, wind and precipitation, and snow melts on 

northern slopes much later than on the southern ones. McBratney et al. (2003) and Lagacherie (2008) provide a 

thorough analysis of different prediction methods of soil properties with auxiliary data including remote sensing and 

terrain models. Satellite images provide a database of ground reflectance carrying integrated information about the 

land surface. They represent continuous sets of surface data from large areas collected on a regular basis. Digital 

elevation models are available for most of the world providing valuable data for modelling soil properties. All these 

sources provide a solid foundation for development of different modelling approaches. 

Ordinary kriging and extensive geographical space sampling to predict soil erodibility in mountain areas of 

Ethiopia with “one out” cross-validation (Addis and Klik, 2015). However, regression kriging has been demonstrated 

to be a top performer amongst different soil prediction modeling tools and often outperforms ordinary kriging in 

mountainous areas and has greater flexibility (Bishop and McBratney, 2001; Zhu and Lin, 2010; Li and Heap, 2014). 

One of the main reasons for choosing the regression kriging approach over the others is flexibility of different relation 

models in its regression component. Hengl et al. (2004) noted a combination of kriging and regression to be more 

accurate than co-kriging, plain kriging or regression alone. Sanchez-Moreno et al. (2014) also reported kriging with 

external drift to produce more accurate results for soil loss simulation. 

McBratney et al. (2003) proposed a new “scorpan” model, a revision of the “corpt” model by Jenny (1941). The 

new “scorpan” approach views predicted soil properties and classes as a function of prior knowledge of soils, which 

includes data from legacy maps, proximal sensing or expert knowledge, climate factors, organisms’ activities, 
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topography, parent material, time factor, and spatial position. The general approach applied in this study follows this 

model, as it covers soil development process from many important aspects.  

Water erosion is the dominant source of soil erosion in Kyrgyzstan (Thomasson, 1992). Soil loss rates are 

expected to be high in the south of the country because of the mountain terrain, fine soil texture, high precipitation 

level, and vegetation loss due to overgrazing. Unfortunately, there is lack of soil erodibility maps for the region. Soil 

type maps (Mamytov and Ashirakhmanov, 1988) are available for the entire area of the country, however several 

studies have indicated poor performance of soil erodibility predictions based on soil types (Veihe, 2002; Pérez-

Rodríguez et al., 2007; Bonilla and Johnson, 2012). At the same time “scorpan”-based models predicting soil 

properties from spatially explicit auxiliary data have become a widely used approach (McBratney et al., 2003; Shaw et 

al., 2004; Boettinger et al., 2010; Florinsky, 2012; Mcbratney et al., 2012) performing well for soil erodibility 

prediction.  

Kyrgyzstan, a developing country with a natural resource based economy, requires a low-cost tool for soil erosion 

risk assessment derived from existing auxiliary data so that effective management actions can be taken at relatively 

low economic cost to managers (Mcbratney et al., 2012). There is lack of a common cost-effective soil erodibility 

mapping approach, which would include the sampling strategy, mapping with field and auxiliary data, and subsequent 

model quality validation. We attempt to develop an approach for soil erodibility modelling of complex landscapes. 

More specifically, we identify the appropriate soil sampling strategy. Then we create a continuous K-factor map based 

on sampling of soil in geographic and feature space, regression analysis with remotely sensed data and terrain indices 

used as predictors. Then we assess the goodness of fit with permutation approach. For this purpose we will identify 

the optimal sampling strategy, set of predictors and predicting techniques and cross-validate the model. The approach 

was developed and tested on pastures in the Fergana Range, in conditions of various human impacts. It can be further 

used for spatial modelling of soil erodibility in complicated mountainous terrain with limited baseline data. 

 

STUDY AREA AND METHODS 

 

Study area 

 

The study area is situated in Fergana Range in the south of Kyrgyzstan (Fig. 1). Pastures make up 40% of the 

study area and has some of the highest official average livestock densities in the country – 1.6--2.2 sheep per hectare 

(Atadjanov et al., 2012). Most of the livestock is concentrated around villages on easily accessible pastures (Borchardt 

et al., 2010, 2011; Crewett, 2012) leading to uneven distribution of grazing pressure. Around 60% of the population 

living in rural areas depend directly on natural resources (Atadjanov et al., 2012), with agriculture and animal 

husbandry being the main components of the rural economy. 

This part of the Fergana valley receives the largest amount of precipitation in Kyrgyzstan – as much as 1000 mm 

annually (Kuzmichenok, 2008; Atadjanov et al., 2012), with most of it falling in spring, resulting in this season 

contributing the most to the bulk soil loss. Soils are represented by Cambisols, Gypsisols, and Lithosols on rocky 

slopes (IUSS Working Group WRB, 2006) with medium to fine soil texture. The vegetation is primarily that 

associated with mountain grasslands with ephemeral species dominated by Trifolium repens, Poa pratensis, 

Taraxacum officinale, Dactylis glomerata and Eremurus fuscus (Borchardt et al., 2011). The region is heavily grazed 

in summer. Overgrazing and trampling are the main degradation factors resulting in heavily grazed grasses and cattle 

tracks. Aforementioned features were the main reasons to choose the area for the model development and test. 

Field data collection occurred at two study sites representing mountainous rangelands known to have been 

intensively grazed for decades and possibly longer. One site (Uch-Choku) is situated close to the villages of Arslanbob 

and Kyzyl-Unkur and thus likely more intensively used than the other (Otuz-Art), which is a rather remote pasture 

(Fig. 2). The area used for simulation in Uch-Choku is about 22 km
2
, and it has a more rugged terrain and greater 

variations in altitude (2000--2800 m a.s.l.) than Otuz-Art (2000--2400 m a.s.l.), which has an area of about 26 km
2
. 

 

Modelling 

 

The modelling consisted of several steps (Fig. 3). The first step included collection of soil samples in the field 

and analysis of the mechanical composition in the laboratory. Then the K-factor was calculated from the laboratory 

data for each sampling point. These steps are detailed in “Field data collection” and “Soil erodibility” sections. We 

will call these K-factor values the “estimated”. 

Then we used the regression kriging approach to create the spatially explicit model. For that we identified 

spatially explicit predictors (terrain and remotely sensed) for linear regression analysis, using the K-factor as an 

independent variable. These steps are detailed in “Remotely sensed data and DEM” and “Predictors used in regression 

analysis” sections. Then we calculated a K-factor raster using predictors and the regression equation, derived earlier. 

The residuals from the regression equation were extrapolated over the entire study area with ordinary kriging, which is 
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described in “Kriging of residuals” section. Then we summed up the K-factor raster and the residuals raster to 

produce the final K-factor map. These spatially explicit K-factor values will be called the “predicted”. 

The model was assessed for accuracy with 1000-fold cross-validation approach. The pool of K-factor samples 

was randomly split into the training and testing sets, training the model with the training set and then checking it 

against the test set (Fig. 3). This routine was repeated 1000 times and a coefficient of determination was calculated 

each time. This procedure is described in “Model validation” section. 

 

Field data collection 

 

To assess soil erodibility, soil samples were collected over a 4 year period during July - August in 2008, 2010 and 

2011. The study sites were covered with a network of point surveys (Fig. 2; red dots) designed to cover the altitudes 

from 2000 m up to the top with 100 m intervals on 8 expositions (N, NE, E, SE, S, SW, S, NW) and different slope 

gradients (steep 30°--45°, middle 15°--30°, gentle 0°--15°) where possible. The aim of the sampling design was to 

cover the study areas with a grid of sampling points ensuring representation of the whole range of values of terrain 

variables, which were anticipated to correlate with soil erodibility.  

At each point a soil sample of 300 cm
3
 was taken from the top 20 cm soil layer with a 100 cm

3
 hammer-driven 

sampling cylinder. The coordinates of each soil sample were recorded with GPS. In total 232 soil samples were 

collected: 142 in Uch-Choku and 90 in Otuz-Art. Vegetation and stone cover percentage was visually assessed at each 

sampling point on a 5×5 m plot. To estimate grazing pressure cattle tracks were counted on 15 m vertical transects and 

divided into 4 classes according to their width where the 1
st
 class was the most narrow and the 4

th
 class was the widest 

track. Cattle track counts were repeated at both sites. A cattle track rate was calculated for each survey point using the 

following equation: 

 

𝐶𝑇𝑅 = 𝐶𝐿1 + 2 × 𝐶𝐿2 + 3 × 𝐶𝐿3 + 4 × 𝐶𝐿4 (1) 

 

where: 

 

CTR – cattle track rate; 

CL1 – number of class 1 tracks; 

CL2 – number of class 2 tracks; 

CL3 – number of class 3 tracks; 

CL4 – number of class 4 tracks. 

 

 

Soil erodibility 

 

Soil samples were stored and transported to the laboratory of Institute of Geography, Hamburg University, in 

plastic bags, dried in ovens at the temperature of 40°C and analyzed for grain size distribution following “Procedures 

for soil analysis” (Reeuwijk, 2006). 

Soil erodibility or K-factor in RUSLE (Renard et al., 1996) is an indicator of how susceptible the soil is to the 

erosive action of precipitation – drop splash and surface runoff, and is dependent on the physical characteristics of 

soils (Romkins et al., 1986). We used the equation recommended by Renard et al. (1996) for the conditions with 

limited data. The equation was derived by Römkens et al. (1986) and based on a world-wide dataset of directly 

measured K-factor values. 

The K-factor was calculated for each surveyed point using grain size data from the laboratory analysis as an input 

to the following equations, which are the equations [3-5] and [3-6] in RUSLE (Renard et al., 1996), originally derived 

by Römkens et al. (1986): 

 

𝐾 = 0.0034 + 0.0405 exp [−0.5 (
log(𝐷𝑔) + 1.659

0.7101
)

2

] 
(2) 

where: 

𝐷𝑔(𝑚𝑚) = exp (0.01 ∑ 𝑓𝑖 ln 𝑚𝑖) 
(3) 

where: 

K – K-factor; 

fi – percent of the primary soil particle size fraction; 
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mi – arithmetic mean of the size limits (mm) of the particle fraction; 

Dg – geometric mean of soil particles diameter.  

 

Remotely sensed data and DEM 

 

Satellite derived data was obtained via LANDSAT (7) from 2011 (paths 151 and 152, row 31). These images 

were cloud and snow free and lacked significant shadowing. The spatially explicit elevation model we used was 

ASTER GDEM. The coordinate system used throughout the research was the projected coordinate system WGS UTM 

43N. All the raster images were brought to the same spatial extent and resolution of 30 m with b-spline interpolation 

for consistency and compliance of auxiliary data. Statistical computations and graph figures were made in R 3.1.2 x64, 

all the GIS manipulations and satellite images processing were done in SAGA GIS 2.1.4 x64. The map figures were 

produced with QGIS 2.12.3 x64. 

 

Predictors used in regression analysis 

 

We assume the population of K-factor values from soil samples to be normally distributed. Terrain derivatives 

and LANDSAT bands ratios were indicated to be good predictors of soil features (McBratney et al., 2003; Scull et al., 

2003; Boettinger et al., 2008a, 2010; Florinsky, 2012). Field observations also indicated variations of soil texture 

depending on exposition and slope. Short-wave infrared spectral bands of LANDSAT images can be used as 

covariates for soil parent material and soil properties (Boettinger et al., 2008a). Soil Enhancement Ratios (SER) of 

LANDSAT bands were identified to be good predictors of soil features, which can be used for modelling, especially in 

areas with low vegetation cover (Boettinger et al., 2008a, 2010), which is the case in our study area.  

LANDSAT image of May 2011 without snow, clouds and shadows was used to produce the soil enhancement 

ratio images (Boettinger et al., 2008a, 2010) with raster calculator in SAGA GIS. The gaps in LANDSAT images 

were closed with SAGA GIS “Close gaps with stepwise resampling” module (Conrad, 2012). We calculated different 

combinations of LANDSAT bands as described by Boettinger et al. (2008). The ratio of LANDSAT bands (5-7)(5+7)
-

1
 indicated the highest correlation with K-factor, so it was chosen as a predictor and is referred to as SER further on. 

 

𝑆𝐸𝑅 =  
(𝑏5 − 𝑏7)

(𝑏5 + 𝑏7)
 

(4) 

 

Where: 

SER – Soil Enhancement Ratio; 

b5 – LANDSAT7 band5; 

b7 – LANDSAT7 band7. 

 

Channel Network Base Level (CNBL) was derived from ASTER GDEM using SAGA GIS “Basic terrain 

analysis” module. This raster represents an interpolation of altitude of water streams on the surrounding area. Streams 

play an important role in soil formation processes and CNBL provides information about distance to streams, relative 

slope position and altitude, which are also considered important predictors of soil properties (McBratney et al., 2003; 

Boettinger et al., 2008b).  

The slope steepness raster was derived from ASTER GDEM with SAGA GIS “Basic terrain analysis” module 

(Zevenbergen and Thorne, 1987). Slope is a basic terrain feature and has a high degree of influence on soil 

development (McBratney et al., 2003; Florinsky, 2012) and erodibility. Water runoff on steeper slopes is greater and 

soils tend to be coarser due to loss of fine particles, in contrast to soils on gently sloping or even terrain.  

The slope bearing (azimuth) raster was derived from ASTER GDEM with SAGA GIS “Basic terrain analysis” 

module (Zevenbergen and Thorne, 1987). Since bearing is a radial value it was transformed into “eastness” and 

“northness” rasters using sine and cosine functions respectively. All these variables were tested for appropriateness as 

K-factor predictors in regression analysis. 

The soil samples from the two study sites were comparable with regards to aspect and slope degree, because 

these had been controlled during collection, and different in SER and CNBL (Fig. 4). The predictors chosen for 

regression analysis were: SER, CNBL, sine of slope aspect in radians (eastness), and slope inclination in degrees, 

because they indicated high correlations with K-factor (Fig. 5). 

With the intention to avoid collinearity in predictors we conducted a backward/forward stepwise model selection 

with Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), which are generally used to 

compare efficiency of models. 
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Kriging of residuals 

 

The residuals of the regression equation were interpolated over the study sites with ordinary kriging (global) 

module in SAGA GIS. The following function was used to describe the variogram: 

 

𝑓(𝑥) = {
10.4044E-06 + 11.8675E-09 × 𝑥 − 60.3399E-13 × 𝑥2, 𝑥 ≤ 1000

1.63E-05, 𝑥 > 1000
 

(5) 

 

where: 

f(x) – variance; 

x – distance in meters. 

 

The choice of the variogram function was driven by expert opinion and by the fact that it produced lesser 

residuals in the final model. We did not find any directional trends or anisotropy. As the equation (5) suggests the 

variance stayed constant after 1000 m distance. 

 

Model validation 

 

As the complexity of the model did not allow for direct unbiased estimation of goodness of fit, cross-validation 

was employed. The set of 232 measurements was randomly split without replacement in 160 samples training set and 

72 samples test set. In total 1000 random permutations were used with separate regression equation estimation for 

each combination (Fig. 3). The training set based regression equations were used to predict the values for the test sets 

and residuals were extrapolated with the same routine as described in “Kriging of residuals”. The K-factor values 

predicted using the training set of samples were compared against the test set and a coefficient of determination was 

calculated for each of the 1000 random permutations (1000-fold cross-validation). Then we calculated a mean of all 

the 1000 coefficient of determination values, which indicates how good the model is in predicting the K-factor. 

 

RESULTS 

 

Properties of soil samples 

The laboratory analysis of soil samples demonstrated that soil had greater erodibility properties on the steepest 

slopes at higher elevation (Fig. 5). The mean soil erodibility (K-factor) calculated from grain size distribution data of 

the collected soil samples for both areas was 0.0374 t ha h ha
-1

 MJ
-1

 mm
-1

 (standard deviation 0.0048) (Fig. 6) which 

complies with the values reported by van der Knijff et al. (2000) for European medium, medium-fine and fine soils 

(Fig. 7a). Fig. 7b represents the texture distribution of the collected soil samples by texture classes used in the soil 

erodibility nomograph (Wischmeier and Smith, 1978) with textural limits of clay – 0--0.002 mm, silt + very fine sand 

– 0.002--0.1 mm, and sand – 0.1--2 mm. The results of the grain size distribution analysis with HYPRES textural 

limits were as follows: in Uch-Choku: 9 soil samples had fine texture, 89 – medium and 44 – medium-fine; in Otuz-

Art: 39 samples had fine texture, 23 – medium, 28 – medium-fine (European Soil Bureau Working Group, 2015). 

Uch-Choku appeared to be more degraded than Otuz-Art as vegetation was sparser, had greater stone cover and higher 

cattle tracks density (Table I). 

 

Regression of estimated soil erodibility with auxiliary data 

Soil erodibility values (K-factor) correlated significantly (Fig. 5) with slope exposition eastness raster, Channel 

Network Base Level (CNBL), slope degree and SER for May 2011, which represents hydroxyls of clays (Boettinger et 

al., 2010). SER and CNBL also indicated significant correlation with each other (Fig. 5). This is presumably due to 

strong altitudinal variation of soil features which was captured by remote sensing in SER and inherited by CNBL from 

the DEM. 

AIC excluded slope and BIC excluded both slope and eastness from the optimal list of predictors. These are the 

variables with the lowest correlation rates; however they are important spatial predictors of soil features. In this regard 

it was decided to omit only slope from the list of predictors. Many combinations of predictors were tested and the 

combination of CNBL, SER and slope exposition eastness provided the highest adjusted R
2
 values (R

2
 = 0.3611). 

Based on AIC suggestion we used CNBL, SER and aspect sine. The resulted regression equation was as follows: 

 

𝐾 = 2.684E-02 + 9.658E-06 × 𝐶𝑁𝐵𝐿 − 2.46E-02 × 𝑆𝐸𝑅 + 8.8E-04 × 𝑠𝑖𝑛 (𝐴) (6) 
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where: 

K – Soil Erodibility (K-factor); 

CNBL – Channel Network Base Level; 

SER – Soil Enhancement Ratio; 

A – Slope Aspect (radians). 

 

Analysis of residuals indicated the linear regression to be sufficient in prediction of K-factor, details of the 

regression equation are provided in Table II. 

 

Mapping 

 

Soil erodibility map was calculated with equation (6). The K-factor residuals were interpolated over the research 

areas with ordinary kriging using the variogram (5). Then the regression raster and residuals raster were summed up, 

which created a K-factor raster with globally consistent values and specific local variations, which were represented 

by the residuals (Fig. 3).  

The resulting soil erodibility maps for Otuz-Art and Uch-Choku study sites indicate higher K-factor on slopes 

and mountain tops, whereas valley bottoms and flat areas indicate lower K-factor (Figs. 8 and 9). The mean of the 

resulting K-factor map of Otuz-Art was 0.0351 with standard deviation = 0.0025. The mean of the resulting K-factor 

map of Uch-Choku was 0.039 with standard deviation = 0.0037. In general Otuz-Art indicates lower soil erodibility 

(Fig. 6). At both sites the erodibility is higher on steeper slopes, ridges and higher parts; and is lower on flat areas and 

valley bottoms (Figs. 8 and 9). 

Predicted K-factor fell within expected limits for this soil type (Figs. 6 and 7). A considerably higher upper limit 

of Uch-Choku predicted values is explained by relatively high K-factor values on rocky slopes in the top-left corner 

(Fig. 9) which were not sampled in the field and were not present in Otuz-Art. Medians of the predicted K-factor 

values have got shifted towards the common mean because the common regression equation was used for both study 

areas (Fig. 6). Overall, the overlapping quartiles indicate consistency of the value ranges across the datasets. 

The model validation procedure resulted in mean adjusted coefficient of determination
 
of all the permutation sets 

being R
2
 = 0.4701, which indicates an improved goodness of fit compared to adjusted R

2
 = 0.3611 of the regression 

equation (6) (Table II). 

 

DISCUSSION 

 

Sampling strategy 

 

The sampling strategy applied in this study appeared to be sufficient but not the best possible, because predictors 

were not known prior to sampling. Covering different slopes, altitudes and expositions turned out satisfactory as those 

were expected to be the main soil erodibility covariates (Fig. 5). Terrain features were anticipated to be the main 

predictors of soil erodibility (McBratney et al., 2003; Boettinger et al., 2010), thus it was decided to employ a terrain 

based sampling strategy with regular distribution in geographical space, which would automatically ensure sampling 

the feature space and even an geographical coverage of the study area. 

The aim of the sampling strategy was to cover the study area with a grid of samples ensuring representation of the 

whole range of the measured values in the population. Covering different terrain features seems a good practical 

approach as it follows main soil development factors, and is a good combination of sampling geographical and feature 

space. However, terrain features do not necessarily reflect distribution patterns of parent material and different soil 

textural classes. In this regard it can be generally recommended for soil mapping in mountain areas to classify the 

research area into a number of k-mean classes (Brus et al., 2006; Heuvelink et al., 2006; Brus and Heuvelink, 2007) 

with SER (Boettinger et al., 2010) and terrain features when predictors are not known. Taking samples within each 

class would ensure even spatial distribution, which is crucial for the areas with rugged terrain. 

Even though exhaustive auxiliary data were available prior to conducting field surveys, it was not known which 

would be used as predictors in the regression analysis due to an absence of soil erodibility correlation studies for the 

area. A combination of geographical and feature spaces were sampled to avoid spatial clustering and increase spatial 

flexibility as suggested by Brus and Heuvelink (2007). In the case of Latin hypercube sampling strategies (Minasny 

and McBratney, 2006; Mulder et al., 2012; Clifford et al., 2014) some sampling spots may occur inaccessible or 

unrepresentative due to rugged terrain. Similar challenges were reported by Kidd et al. (2015) and Thomas et al. 

(2012). Viloria et al. (2016) used neural networks and fuzzy clustering of geomorphological and remotely sensed data 

to discriminate between different soil classes. 
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Modelling approach 

 

RUSLE authors (Renard et al., 1996) suggest equation (2) for estimation of K-factor for soils with limited data 

and other textural limits than the ones, on which the soil erodibility nomograph (Wischmeier and Smith, 1978) was 

based. This is mainly because it is based on multiple studies of soil erodibility of different soil types from different 

parts of the world. This formula takes textural limits of soil as an input ignoring the organic matter content, which can 

potentially limit the estimation accuracy, however Zhang et al., (2016) and Wang et al., (2016b) report the opposite. 

As is discussed by Römkens et al. (1986), soil erodibility is a complex factor accounting for intrinsic and 

constant characteristics of soils, as well as for dynamics, both seasonal and external. The K-factor equation (2) applied 

in this study uses only soil texture for prediction of soil erodibility. Even though the equation is based on a 

considerable dataset of runoff plot measurements and simulations, and textural properties are the main factor 

controlling soil erodibility, ignoring other soil characteristics and seasonal variations implies uncertainty in prediction 

accuracy. However, Römkens et al. (1986) indicate that in the case of long-term observations and broad dataset the 

dynamic factor will be averaged out and soil erodibility can be reduced to a function of its texture. Zhang et al., (2016) 

and Wang et al., (2016b) demonstrated the grain size based equation to produce better results for soils in China. 

Remotely sensed and terrain data have been a well-used combination of data sources for soil mapping. This is a 

logical and straightforward approach. Since Dokuchaev’s ideas (Florinsky, 2012), formulated by Jenny (1995) and 

revised by McBratney et al. (2003), pedologists have been using terrain, parent material, vegetation, climate etc. as 

covariates for prediction of soil features. Recent developments in remote sensing and data processing technologies, 

and availability of vast geographical datasets have resulted in a sharp increase of the number of soil mapping studies. 

Predictive soil mapping can be divided in two main categories depending on the goal: prediction of continuous soil 

characteristics or prediction of discrete soil classes. These two categories employ different processing techniques and 

statistical approaches, but both use spatial predictors, which are in most cases terrain derivatives, indices of remotely 

sensed data or legacy maps.  

Since the available maps of soil classes were assessed as poor predictors of soil erodibility (Veihe, 2002; Pérez-

Rodríguez et al., 2007), remotely sensed data and terrain indices were used as auxiliary data. The mapping approach 

of using regression analysis with subsequent kriging of residuals mimics regression kriging. It was decided to separate 

the steps to take full control of the regression analysis and residual kriging to produce plausible results and make the 

approach reproducible in other similar conditions (e.g. Hengl et al. 2004).  

In general, SER calculated from May LANDSAT images indicated higher correlation rates because vegetation 

cover is still not well developed in this month and remotely sensed data contain a greater portion of soil information 

than in other months. The topographical information was provided by ASTER GDEM as it showed a greater 

compliance with field data than SRTM or manually digitized isolines of topographic maps. This contradicts the 

findings of de Vente et al. (2009) who showed SRTM DEM to be more accurate in south-east of Spain. The chosen 

predicting variables cover soil formation factors from many important aspects of the “scorpan” model (McBratney et 

al., 2003). Any plain kriging approach without continuous auxiliary data would fail on a rugged terrain as soil 

characteristics can change gradually or abruptly depending on different terrain features, which cannot be predicted 

otherwise. 

 

Model validation 

 

Many studies use two static sets of samples, one for training of the model and another one for unbiased validation 

(Bishop et al., 2015; Odgers et al., 2015). This is a potentially inefficient use of the validation sample set, which could 

contribute to a higher accuracy and representativeness of the final model. Furthermore, there is still the chance of bias 

in one static division into training and test sets. In this study we used 1000 random splits without replacement into 

training and test subsets of samples. Each time the model was based on the training subset only and validated against 

the test subset, whereas the final model was based on the entire set of samples (Fig. 3). This approach provides 

unbiased and conservatively assessed model accuracy. 

 

Model outcome 

 

Estimated K-factor values from the different study areas have different distribution of values (Fig. 6). The 

sampling strategy applied in both study areas was the same, so it makes the two sets of samples directly comparable 

with each other. Since the natural conditions of the study sitesare very close, we assumed the estimated K-factor 

sample sets to come from the same data population. The difference in means of estimated K-factor between the two 

study areas is basically conditioned by the difference in altitude of sites and soil texture, which is reflected by different 

CNBL and SER (Fig. 4). 

The derived regression equation (6) can be used to a limited extent for creation of K-factor maps in other areas. 

The resulting values must be used with caution, as they will indicate only a basic tendency of K-factor values spatial 
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distribution, typical for the area in general, without consideration of local variations, as residuals will not be available. 

The absolute values of predictors and especially CNBL can vary greatly going beyond the scope of the values, on 

which the regression equation was based. In this case the results are expected to be misleading. 

The Uch-Choku study area contains higher elevations than Otuz-Art, which is why CNBL is different. SER is 

also different between the study areas. CNBL and SER indicate significant negative correlation with each other (Fig. 

5), and since the SER used here represents hydroxyls of clays (Boettinger, 2010), we can conclude that hydroxyls of 

clays are being washed down the slope, which is also supported by distribution of soil texture classes (Fig. 7a). Uch-

Choku study area is higher and has coarser soils than Otuz-Art. This is indicated by fine particles of soils 

accumulating at lower altitudes.  

The median of predicted values of K-factor are shifted closer to the common average than the median of 

estimated values (Fig. 6), which is also due to usage of common regression equation. The overall distribution span of 

the boxes is very close to each other and overlaps. The outlying maximum of Uch-Choku predicted values is due to 

high values in the north-western corner of the study area (Fig. 9). This part is mostly steep bare rocks without any soil. 

Comparison of the distribution of predicting variables between the two study sitesis indicated in Fig. 4. Slope degree 

and aspect sine distributions and means are very similar, which verifies consistency of sampling strategies. However, 

CNBL and SER indicate obvious difference between the sites, which complies with different measured mean K-factor 

values between the study areas. 

The predicted K-factor values for the two areas also have significantly different means. This is also partly due to 

considerably different predictors as well as extrapolated residuals, since common regression equation was used for 

both study sites. The approach of developing a common regression equation for both study areas ensures regional 

consistency of the results and broader representativeness of the equation. The addition of extrapolated residuals 

ensures local variability of predicted values.  

Several authors (Wischmeier and Smith, 1978; Romkins et al., 1986; Renard et al., 1996) stress the fact that the 

factors used in USLE/RUSLE and results of the equations should be considered as a long-term average. So, the 

resulting maps (Figs. 8 and 9) and their means (Fig. 6) should be considered as long-term average as well. 

Nevertheless, direct measurements of soil erodibility on runoff plots are needed for validation of the results and 

applicability of the equation (6), which is time and resource intensive. Furthermore, wider applicability of the 

regression equation can be restricted by different climate conditions, having an impact on soil erodibility, as 

discovered by Sanchis et al. (2008). 

 

Human pressure 

 

Soil erodibility in Uch-Choku is noticeably higher than in Otuz-Art. This is also supported by vegetation and 

stone cover, as well as cattle track rates (Table I). Percentage of vegetation cover is lower in Uch-Choku, whereas 

percentage of stone cover is higher. This means that Uch-Choku pasture has less grass cover, coarser soil and is 

relatively skeletal, which is an indicator of a higher soil loss than in Otuz-Art. Uch-Choku also has a higher cattle 

tracks rate (Table I), which can be caused by higher grazing pressure and/or greater susceptibility of soils and 

vegetation to cattle trampling. We assume that both are the case, as Uch-Choku is closer to the village and has coarser 

soils than Otuz-Art. This means that grazing pressure in Uch-Choku needs to be lower than in Otuz-Art to decrease 

the soil loss. Generalizing this idea we can say that pastures located at higher altitudes should have lower grazing 

pressure than those at lower elevations. Yan et al. (2015) discovered vegetation decreasing the runoff on loess 

hillslopes; however the vegetation management practices did not have a considerable effect. At the same time it is 

difficult to judge if the absolute values of grazing pressure are too high or too low in both areas with regard to land 

degradation, as the values of soil loss and the tolerance level are unknown. 

 

CONCLUSIONS 

 

We attempted to identify important factors correlated with soil erodibility, and develop an approach for its 

prediction using a cost-effective combination of field sampling and free remotely sensed data. Soil erodibility 

demonstrated a strong relationship between remotely sensed data and terrain indices, which can be used as auxiliary 

data in mapping. The two study sites showed considerably different soil erodibility, which is attributed to the 

difference in elevation. The higher study site had higher soil erodibility values. 

The mapping approach used in this study uses robust and cost-effective methods for soil erodibility mapping in 

mountain regions. It was achieved by integrating different field, laboratory, and modelling techniques. When 

resources are limited, it might be relevant to consider a combination of ground-truth data with open remotely sensed 

data and GIS modelling using open software to get a good balance between cost and accuracy for mountain 

conditions. 
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Table I. Vegetation and stone cover percentage and cattle tracks rate. 

 Otuz-Art Uch-Choku 

Vegetation cover (mean) 72 % 63.9 % 

Stone cover (mean) 7.4 % 11.5 % 

Cattle tracks rate (mean) 8.5 11.8 

 

 

 

  

Table II. Descriptive statistics of regression equation (5). 

 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.684E-02 5.727E-03 4.686 4.79E-06 

CNBL 9.658E-06 1.983E-06 4.870 2.09E-06 

SER -2.460E-02 5.960E-03 -4.127 5.16E-05 

sin (aspect) 8.800E-04 3.838E-04 2.293 0.0228 
Residual standard error: 0.003856 on 228 degrees of freedom 

Multiple R-squared: 0.3694, Adjusted R-squared: 0.3611  

F-statistic: 44.52 on 3 and 228 DF, p-value: < 2.2e-16 
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Figure 1. Study area 

 

Figure 2. Study sites: Otuz-Art and Uch-Choku. Red dots indicate sampling points. 
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Figure 3. Development and validation of the model. 

 

Figure 4. Distribution of predicting variables, red dots represent mean values.  
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Figure 5. K-factor and predictors’ Pearson correlation matrix 
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Figure 6. Distribution of estimated and predicted K-factor values, red dots represent mean values. 

 

 

Figure 7. Texture classes of soil samples, according to HYPRES and nomograph division  (Wischmeier and Smith, 
1978). 
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Figure 8. K-factor map for Otuz-Art study area with sampling points. 

Figure 9. K-factor map for Uch-Choku study area with sampling points 
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Kyrgyzstan: spatial discretization based on time series analysis. In: Erdkunde 71, 

143–165 https://doi.org/10.3112/erdkunde.2017.02.04. 

 



Vol. 71 · No. 2 · 143–1652016

https://doi.org/10.3112/erdkunde.2017.02.04  http://www.erdkunde.uni-bonn.deISSN 0014-0015

VEGETATION AND CLIMATE INTERACTION PATTERNS IN KYRGYZSTAN: 
SPATIAL DISCRETIZATION BASED ON TIME SERIES ANALYSIS

Maksim Kulikov and Udo Schickhoff

With 12 figures and 2 tables
Received 16 February 2017 · Accepted 1 June 2017

Summary: Spatio-temporal variations of  climate-vegetation interactions in Central Asia have been given a lot of  attention 
recently. However some serious methodological drawbacks of  previous studies prevented thorough assessment of  such inter-
actions. In order to avoid the limitations and improve the analysis we used spatially explicit time series of  NDVI (normalized 
difference vegetation index), temperature and precipitation which were decomposed to seasonal and trend components on per-
pixel basis using STL (seasonal decomposition of  time series by loess). Trend and seasonal components of  NDVI, precipitation 
and temperature were assessed pixelwise for temporal correlations with different lags to understand the patterns of  their inter-
action in Kyrgyzstan and adjoining regions. Based on these results a coefficient of  determination was calculated to understand 
the extent to which NDVI is conditioned by precipitation and temperature variations. The images with the lags of  time series 
correlation minima and maxima for each pixel and coefficients of  NDVI determination by temperature and precipitation were 
subjected to cluster analysis to identify interaction patterns over the study area. The approach used in this research differs from 
previous regional studies by implementation of  seasonal decomposition and analyzing the full data without spatial or seasonal 
averaging within predetermined limits prior to the analysis. NDVI response to temperature and precipitation was assumed to be 
spatially variable in its sign, strength and lag, thus a separate model was developed for each pixel. The results were assessed with 
cluster analysis to identify spatial patterns of  temporal interactions, decrease dimensionality and facilitate their comprehensive-
ness. The research resulted in 5 spatial clusters with different patterns of  NDVI interaction with temperature and precipitation 
on intra- and interannual scales. The highest correlation scores between NDVI and temperature at the seasonal scale were found 
at 0-4 months lag and between NDVI and precipitation at 1-5 months lag. At high elevations of  3000-4000 m above sea level, 
both precipitation and temperature occurred to be facilitating factors for vegetation development, whereas temperature was 
rather a limiting factor at lower elevations of  200-1300 m a.s.l. We developed maps of  the NDVI coefficient of  determination 
by both temperature and precipitation. Only deserts and glaciers had low coefficients of  determination (adjusted R2) on the 
seasonal scale (0.1-0.3), whereas areas with vegetation were greatly conditioned by temperature and precipitation (0.7-0.95). 
On the trend scale, dense vegetation and bare areas had low coefficient of  determination (0.1-0.3), whereas areas with average 
vegetation cover were greatly controlled by the climatic factors (0.7-0.9).

Zusammenfassung: Raumzeitliche Veränderungen von Klima-Vegetation-Interaktionen in Zentralasien stehen seit geraumer 
Zeit im Fokus wissenschaftlichen Interesses. Gewisse Unzulänglichkeiten methodischer Herangehensweisen früherer Studien 
verhinderten bislang eine gründliche Abschätzung solcher Interaktionen. Um methodische Limitierungen zu vermeiden und 
entsprechende Analysen zu optimieren, liegen dieser Studie räumlich explizite Zeitreihen von NDVI (normalisierter differen-
zierter Vegetationsindex), Temperatur und Niederschlag zugrunde, die mittels STL (saisonale Auflösung von Zeitreihen mit 
Loess) in saisonale und Trend-Komponenten auf  Pixelbasis aufgelöst wurden. Die entsprechenden Komponenten von NDVI, 
Temperatur und Niederschlag wurden pixelweise im Hinblick auf  zeitliche Korrelationen unter Berücksichtigung unterschied-
licher Latenzzeiten analysiert, um die Interaktionsmuster von Klima und Vegetation in Kirgistan und angrenzenden Regionen 
nachvollziehen zu können. Auf  der Grundlage der Ergebnisse wurde ein Bestimmtheitsmaß ermittelt, das zur Abschätzung 
der Abhängigkeit des NDVI von Niederschlag und Temperatur verwendet wurde. Die graphischen Darstellungen mit den 
Latenzzeiten der Korrelationsmaxima und -minima der Zeitreihen für jedes Pixel und die Bestimmtheitsmaße zur NDVI-Be-
einflussung durch Temperatur und Niederschlag wurden Clusteranalysen unterzogen, um die Interaktionsmuster im gesamten 
Arbeitsgebiet zu identifizieren. Der methodische Ansatz dieser Studie weicht von früheren Regionalstudien insofern ab, als 
dass die Zeitreihenanalyse mit saisonaler Auflösung umgesetzt und der gesamte Datensatz ohne vorhergehende räumliche oder 
saisonale Mittelwertbildung analysiert wurde. Die NDVI-Reaktion auf  Temperatur und Niederschlag wurde im Hinblick auf  
Signal, Stärke und Verzögerungszeit als räumlich variabel angenommen, und somit ein separates Modell für jedes Pixel entwi-
ckelt. Die Ergebnisse wurden mit Clusteranalysen untersucht, um räumliche Muster und zeitliche Interaktionen zu erkennen, 
die Dimensionalität zu reduzieren, und deren Vollständigkeit zu optimieren. Als Ergebnis lassen sich 5 räumliche Cluster diffe-
renzieren mit unterschiedlichen Mustern der NDVI-Interaktion mit Temperatur und Niederschlag auf  intra- und interannueller 
Ebene. Die höchsten Korrelationen zwischen NDVI und Temperatur auf  saisonaler Ebene wurden bei einer Verzögerungszeit 
von 0-4 Monaten und zwischen NDVI und Niederschlag bei 1-5 Monaten ermittelt. In Höhenlagen zwischen 3000 und 4000 m 
NN erwiesen sich sowohl Niederschlag als auch Temperatur als die Vegetationsentwicklung begünstigende Faktoren, während 
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in Höhen zwischen 200 und 1300 m NN die Temperatur eher limitierend wirkt. Die entwickelten Kartendarstellungen zeigen 
die NDVI-Beeinflussung sowohl durch Temperatur als auch durch Niederschlag. Lediglich Wüsten- und Gletscher-Bereiche 
weisen geringe Bestimmtheitsmaße (korrigiertes R2) auf  saisonaler Ebene auf  (0,1-0,3), während vegetationsbedeckte Flächen 
einen sehr deutlichen Zusammenhang mit Temperatur und Niederschlag zeigen (0,7-0,95). Auf  der Trendebene sind Bestimmt-
heitsmaße bei dichter Vegetation und vegetationslosen Flächen gering (0,1-0,3), Flächen mit gewöhnlicher Vegetationsbede-
ckung zeigen dagegen eine starke Abhängigkeit von den klimatischen Faktoren (0,7-0,9).

Keywords: climatic change, GIS, Kyrgyzstan, remote sensing, vegetation geography, biogeography

2016; Dubovyk et al. 2016). Covering many import-
ant patterns of climate and vegetation interactions, 
especially in mountain areas with diverse terrain and 
elevation, these studies have their strengths in sever-
al aspects, but some disadvantages in others, name-
ly: considering either temperature or precipitation as 
the main impact factor, spatial averaging of spatially 
explicit data time-series within predetermined limits, 
temporal averaging of temporarily explicit data within 
predetermined limits, not considering temporal lags 
between climate impact and vegetation response, or 
considering them at coarse scale, not considering the 
seasonal and trend components separately, and using 
analysis that produce abstract components, which are 
difficult to interpret.

Methods like PCA (principal component analy-
sis) or EOF (empirical orthogonal functions) do not 
allow for seasonal and trend decomposition, model-
ling and forecasting. These methods are good in de-
creasing data dimensionality; however, the results are 
difficult to interpret as they represent abstract vari-
ables which do not necessarily have real equivalents. 
Quite often temporal or spatial averaging of the data, 
which are temporarily and spatially explicit, is used 
within predetermined spans even before the analysis 
(Kariyeva and Van Leeuwen 2011; Kariyeva et al. 
2012; Dubovyk et al. 2016), which leads to loss of 
data and simplifies the patterns within those limits. 
Decrease of spatial data resolution by systematic av-
eraging can lead to signal quality improvement, how-
ever averaging within vast geographic areas means 
certainly the loss of valuable data. The very identifi-
cation of the limits is biased by human aspects (state 
borders, seasons) which may have no reflection in na-
ture. Another main assumption, which is not always 
correct, is that climate and vegetation have similar 
relations within one generalization unit, or that cor-
relation between vegetation and climatic factors have 
the same sign throughout the study area. For exam-
ple, Ichii et al. (2002) looked for correlation between 
NDVI and climate variables globally. They identified 
positive and negative correlations between the same 
variables in different areas. 

1	 Introduction

Climate change has become an important issue in 
recent decades. It has been drawing lots of attention 
from researchers and many studies have been con-
ducted on climate change scenarios. Among many 
regions Central Asia was reported to undergo severe 
climatic changes (Hijioka et al. 2014). Kyrgyzstan 
is a mountainous country with prominent altitudi-
nal variation in ecosystems. High geodiversity, i.e. a 
small-scale variety of abiotic habitat conditions, in 
particular the climatic ones, induce a conspicuous 
small-scale variety of vegetation types. According to 
climate scenarios, Kyrgyzstan will face severe annual 
and seasonal variations of temperature and precipi-
tation (Lioubimtseva and Cole 2006; Hijioka et al. 
2014; Huang et al. 2014). Climate change models for 
Kyrgyzstan indicate future temperature and precipi-
tation increase above the global mean (Christensen 
et al. 2007; GoKR 2009; Hijioka et al. 2014). 
Unsustainable use of natural resources aggravated by 
the effects of climate change may lead to the loss of 
valuable ecosystems (Kerven et al. 2011; Crewett 
2012; Dörre and Borchardt 2012; Borchardt et al. 
2013). Thus, considerable impacts of temperature and 
precipitation changes on vegetation in both spatial 
and temporal domains are to be expected, the study 
of which is crucial for land use economy and climate 
change adaptation planning.

Many numerical studies have been published 
aiming at assessing the impact of climatic variables 
on vegetation in Central Asia. Remotely sensed data 
and their time series have been intensively used for 
vegetation cover change analysis as well as forecasting 
based on different regression models (De Jong 1994; 
Martinez and Gilabert 2009; Verbesselt et al. 2010; 
de Jong et al. 2011; Eckert et al. 2015). Recently, a 
few studies have been conducted in the region look-
ing for vegetation change in spatio-temporal domain 
and its relation to climatic factors (Nezlin et al. 2005; 
Propastin et al. 2007, 2008a, 2008b; Kariyeva and 
Van Leeuwen 2011; Kariyeva et al. 2012; Klein et al. 
2012; Gessner et al. 2013; Zhou et al. 2015; Yin et al. 
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Considering delayed vegetation response to cli-
matic factors was given a lot of attention (Kariyeva 
and Van Leeuwen 2011; Kariyeva et al. 2012; 
Gessner et al. 2013; Dubovyk et al. 2016). But doing 
it on a coarse temporal scale, as in case of seasonal 
averaging, may lead to failure to identify strong re-
lationships and exact temporal lags (Kariyeva and 
Van Leeuwen 2011; Kariyeva et al. 2012; Dubovyk 
et al. 2016), whereas not considering the temporal 
lags between climate impact and vegetation re-
sponse may lead to failure to identify any relation-
ship (Zhang et al. 2016a). Several studies use least 
squares regression for identification of linear trends 
in NDVI and climatic factors (Zhou et al. 2016; Yin 
et al. 2016), some of them consider lagged relation-
ships (Nezlin et al. 2005; Propastin et al. 2007; 
Gessner et al. 2013; Zhang et al. 2016b). Others 
employ linear regression with time or climatic fac-
tors as predictors and spatially averaged NDVI as a 
response variable (Propastin et al. 2008b; Eckert et 
al. 2015). Least squares linear regression is not de-
signed for approximation of trends in natural time 
series, as they are not stationary and have strong sea-
sonal and trend components, and outliers can have 
considerable impact. Furthermore, it simplifies the 
interannual and seasonal interactions of climate and 
vegetation, does not account for trend cyclic behav-
ior, and leads to failure identifying temporal correla-
tions between them. Sometimes the approaches are 
not flexible in predictors across pixels, and regression 
models are stuck using a fixed lag of a predictor for 
the entire area (Kariyeva and Van Leeuwen 2011; 
Kariyeva and van Leeuwen 2012; Dubovyk et al. 
2016). Rarely have authors used the plethora of time 
series analysis methods for seasonal decomposition 
and cross-correlation.

The fact that both temperature and precipitation 
can have a combined impact on vegetation each with 
its own time lag, which can vary depending on many 
factors is often left unconsidered. Using the seasonal 
and trend decomposition of vegetation and climate 
raster time series on a per-pixel basis and lagged cor-
relation analysis can improve understanding of inter-
actions between the variables. Many studies consid-
er interactions of NDVI either with temperature or 
precipitation (Propastin et al. 2008a; de Beurs et al. 
2009; Gessner et al. 2013). Whereas Cao et al. (2013) 
used both precipitation and temperature to identi-
fy their impact on NDVI and found them to be the 
main driving factors, but they did not consider cor-
relation with lags. Potter and Brooks (1998) used 
NDVI and different climate indices as predictors to 
demonstrate that about 70-80 % of NDVI variations 

globally could be explained by climate variables only. 
Propastin et al. (2008b) found that 75 % of NDVI 
upward trend during growing season in Central Asia 
is explained by a combination of temperature and 
precipitation. Qiu et al. (2014) used wavelet transfor-
mation for seasonal decomposition, and also discov-
ered NDVI to be conditioned by both temperature 
and precipitation on seasonal and interannual scales.

The spatio-temporal dimensionality of the imag-
ery time series remains one of the main constraints 
for a thorough analysis of the existing remotely 
sensed vegetation and climate data. Many different 
sophisticated approaches were developed to deal 
with this issue (Mennis et al. 2005; Mennis 2010; 
Petitjean et al. 2012; Small 2012; Lai et al. 2016; 
Qiu et al. 2016; Militino et al. 2017), however, it is 
obvious that there is no common framework for spa-
tio-temporal studies dealing with climate and veg-
etation interaction. Quite often spatial or temporal 
discretization of a study dataset into geographical 
subareas or seasons is used. This approach addresses 
data dimensionality and nonstationarity and provides 
plausible results (Zhao et al. 2011; Mohammat et al. 
2013; Zhang et al. 2013; Du et al. 2015; Song et al. 
2016). However, averaging of spatially and temporal-
ly explicit data within predetermined areas leads to 
information loss and bias. Spatially explicit analyses 
are also often limited to temporal averaging or linear 
regression for identification of trend magnitude and 
sign. However, vegetation and climate data are non-
stationary having seasonal and trend components, 
which makes the linear least squares method not ap-
plicable for its approximation. Considering different 
seasons separately (Propastin et al. 2008b; Yin et 
al. 2016) partly solves the issue of non-stationarity, 
but excludes the intra-annual assessment. Spatial and 
temporal averaging is often used in one study simul-
taneously, representing spatio-temporal interactions 
separately from different perspectives.

The approaches described above solve the issue 
at the cost of decreasing the resolution in either spa-
tial or temporal domains, which leads to the loss of 
data and results. The method we use in this study is 
different from others used in the spatio-temporal do-
main due to its flexibility, broad applicability and the 
comprehensiveness of its results. Seasonal decompo-
sition for each pixel and cross correlation with cli-
matic factors does not produce any abstract objects 
like principal components or orthogonal functions, 
which are difficult to interpret. At the same time it 
provides flexibility in using different lags for dif-
ferent predictors on the pixel level and on seasonal 
and trend scales separately. Considering the draw-
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backs of previous research it is necessary to conduct 
a study, which consequently deals with the detailed 
shortcomings and provides a reproducible example 
for better climate change adaptation planning.

We hypothesize that estimating vegetation and 
climatic seasonal components at each pixel will au-
tomatically discriminate vegetation types on the fin-
est scale available, and reveal their intra-annual pat-
terns for the entire country. We further assume that 
trend components will indicate vegetation trends for 
the whole study area and spatially explicit climatic 
factors can be used to explain the interannual vari-
ations. We also assume that temperature and precip-
itation can have either positive or negative impact 
on vegetation in different regions and at different 
temporal scales. With cluster analysis of trend and 
seasonal components we seek to identify different 
patterns of vegetation and climate interactions and 
different vegetation formations. The combination of 
methods we use deals with spatio-temporal dimen-
sionality of data in a straightforward and intuitive 
way, identifying seasonal and interannual patterns of 
vegetation, precipitation and temperature in a spatial 
manner.

2	 Study area

2.1	 Geographical extent

The study area covered the territory of the 
Kyrgyz Republic including close parts of China, 
Kazakhstan, Tajikistan and Uzbekistan, limited by 
a rectangle between 38°N - 44°N and 68°E - 81°E 
(Fig. 1). The study encompasses different ecological 
zones and topographies including deserts, steppes, 
forestry areas, highland tundras, hills, mountains, 
rocks, and valleys, as well as different management 
systems including agricultural lands, forestry, pasture 
rangelands and nature reserves. The elevations vary 
from 200 m to 6000 m above sea level, providing a 
great variation in vegetation and climate conditions. 

2.2	 Climate

The distribution of annual precipitation is very 
uneven and varies from 144 mm in some parts of 
Issyk-Kul region to 1090 mm in the Fergana val-
ley (Adyshev et al. 1987). The midlands and south-
western slopes of the Fergana range receive the high-
est amount of precipitation in the country – around 
1000 mm per year. Highlands on the northern slope 

of Kyrgyz ridge, Chatkal ridge and Kemin valley as 
well as the eastern part of Issyk-Kul region also re-
ceive a considerable amount of precipitation – about 
1000 mm per year. Talas and Chui valleys, as well 
as the Osh lowland regions receive considerably less 
precipitation – 300-700 mm annually. Precipitation 
decreases to about 200-300 mm annually in the 
Inner Tian-Shan as air masses lose their humid-
ity crossing the ridges. The driest areas are eastern 
Issyk-Kul, Batken and the Osh highland region, 
which receive only 150-200 mm annually (Adyshev 
et al. 1987). In general, annual precipitation amount 
in Kyrgyzstan is sufficient for crop cultivation and 
pastoralism, however, most of the precipitation falls 
in late winter and spring. Summers are very dry, 
which necessitates the artificial irrigation of agricul-
tural lands. The amount of precipitation in the same 
region varies greatly interannually. The variations 
can reach 250 % in eastern Issyk-Kul region, 530 % 
in SW Kyrgyzstan, 400 % in Inner Tian-Shan and 
260 % in the northern part of the country (Adyshev 
et al. 1987). Precipitation has an altitudinal gradient, 
its amount increases up to 3500-4000 m above sea 
level, higher up the increase decelerates.

The hottest months are July and August. In sum-
mer, the temperatures across identical elevations are 
equal across the country, whereas in winter the dif-
ference is conditioned by terrain and can reach 15°C. 
In general, the south-western part of the country is 
warmer in summer than the northern part; the tem-
perature may reach more than 40°C in valleys. A 
strong vertical temperature gradient is exemplified 
by the average monthly temperature in July which 
differs by more than 20°C from 4°C at 3600 m up to 
27°C at 720 m above sea level (Adyshev et al. 1987). 
In winter, the lowest temperatures are recorded in 
mountain valleys and depressions.

2.3	 Vegetation

Vegetation types are distributed along distinct 
altitudinal zones, conditioned by vertical gradients 
of climatic variables. Latitudinal zonation is less ob-
vious, but also evident as exemplified by the differ-
ence between zonal (lowland) vegetation mosaics 
of North and South Kyrgyzstan. In some cases a 
longitudinal zoning can be observed, which is con-
nected with local features of small-scale air cir-
culation, e.g. seasonal valley winds, which is the 
case for the Issyk-Kul valley. The inland position 
of Kyrgyzstan and its proximity to the deserts of 
Central Asia defines the general aridity of land-
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and grow in the south and south-west of the coun-
try. The forests are very sparse and dominated by 
Juniperus spp., Berberis oblonga, Rosa fedtschenkoana, 
Lonicera microphylla, Cotoneaster melanocarpus, and 
Spiraea hypericifolia. The forests on the slopes of 
Fergana and Chatkal ridges are dominated by Juglans 
regia with other fruit tree species such as Malus 
siversii and Malus niedzwetzkyana, Pyrus korshinskyi, 
Pyrus regelii, Prunus sogdiana, Ribes janczewskii, Prunus 
mahaleb, and Acer turkestanicum. Riverine forests are 
developed along river valleys. They are composed 
of Populus laurifolia, Betula spp., Salix spp., Myricaria 
elegans, Clematis orientalis and Hippophae rhamnoides 
(Adyshev et al. 1987).

Low grass alpine meadows predominate the al-
pine zone from 3000 m upwards; these are areas 
of low temperature and a short growing season. 
The alpine meadows are dominated by Kobresia spp., 
Phlomis spp., Geranium spp., Poa alpina, Allium semeno-
vii, Alchemilla retopilosa, Ligularia alpigena, Carex spp., 
Leontopodium spp., and Taraxacum spp. The meadows 
interchange with rocky ridges, talus, and snow 
fields. They mostly occupy valleys and slope bot-
toms, i.e. the areas where fine particles are depos-
ited and soils have developed.

scapes and their harsh, exposure-induced contrasts. 
Arid steppe or desert landscapes occupy about 35 % 
of the country, while humid landscapes cover only 
27 % (Adyshev et al. 1987). Due to arid and semi-
arid climatic conditions over vast areas, forest and 
meadow landscapes are often restricted to favorable 
north-facing slopes.

Midland meadow and steppe landscapes with 
tall grass on dark soils are prevalent at elevations 
of 1000-2200 m above sea level. The grassland veg-
etation interchanges with trees: Sorbus tianschanica, 
Juniperus spp., Picea schrenkiana, Acer spp., and Betula 
spp. The trees are the remains of forests, the origi-
nal ecosystem, which was cleared and replaced by 
grassland vegetation types. Steppes, dominated 
by Festuca spp., Stipa spp., and Avena spp. occupy 
south-facing slopes interchanged with outcrops of 
rocks. In the south of the country, Prangos spp. are 
major constituents of these steppe communities 
(Borchardt et al. 2011).

Forests cover only 5.7 % of the country; they 
are distributed at elevations between 1500-3100 m 
above sea level. Spruce forests of Picea schrenkiana 
occur in the north and east of the country. Juniper 
forests occupy almost half of the entire forest area 

Fig. 1: Study area
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The upper alpine zone is highland cold de-
sert or tundra, which is distributed at elevations 
of 3600-3900 m above sea level. Strong insola-
tion results in high evapotranspiration, leaving 
the soil dry. Highland tundras are very much like 
zonal tundras, 201 species typical of zonal tundras 
grow here, including many lichens, mosses, grasses, 
and sedges. The vegetation is dominated by xe-
rophyte cushion plants, dwarf semishrubs (e.g., 
Dryadanthe spp.), and Calamagrostis tianschanica grow-
ing in patches. The vegetation cover is very sparse 
near mountain tops and is dominated by Smelowskia 
calycina, Richteria spp., and Cerastium lithospermifolium 
(Adyshev et al. 1987).

Landscapes of intermontane depressions 
have arid features. Half-closed depressions such 
as Chui, Fergana, and Talas valleys have desert-
steppe landscapes in their lowest parts giving way 
to steppes with increasing elevation. These lowland 
depressions are almost entirely used for irrigated 
agriculture. The midland depressions of the Inner 
Tian-Shan have desert-steppe and steppe land-
scapes. The highland depressions at elevations of 
3000-3600 m above sea level are characterized by 
dry climate, low temperatures and sparse vegeta-
tion, which are dominated by Artemisia spp., Festuca 
spp., and Ptilagrostis spp. (Adyshev et al. 1987).

3	 Materials

3.1	 Data

We used remotely sensed monthly MODIS 
NDVI, day LST (land surface temperature) and 
GPCC PRC (precipitation) raster time series of 
years 2000-2013. MODIS Terra (v5 of MOD13C2 
product) monthly NDVI data were used as a general 
proxy of vegetation conditions, as their relation is 
well established (Li et al. 2010), and MODIS Terra 
(v5 of MOD11C3 product) monthly LST (land sur-
face temperature) data for temperature approxima-
tion. The quality assessment of the MODIS prod-
ucts did not indicate any serious inaccuracy and 
missed values. GPCC full data reanalysis version 7.0 
(Schneider et al. 2015) monthly precipitation rates 
with initial spatial resolution of 0.5° were used for 
approximation of precipitation level.

MODIS land surface temperature and vegeta-
tion index data are originally distributed by the 
Land Processes Distributed Arctive Archive Center 
(LP DAAC), located at the U.S. Geological Survey 
(USGS) Earth Resources Observation and Science 

(EROS) Center (lpdaac.usgs.gov), distributed in 
netCDF format by the Integrated Climate Data 
Center (ICDC, http://icdc.zmaw.de) University of 
Hamburg, Germany. MODIS NDVI is produced 
regularly every 16 days based on daily recordings, 
NDVI is derived from atmospherically-corrected 
reflectance in red and near-infrared spectral bands. 
MODIS LST is distributed in 0.05° grids, produced 
by the day/night algorithm from pairs of day and 
night MODIS observations in seven TIR bands 
(thermal infrared).

The monthly precipitation data we used were 
those of GPCC (Global Precipitation Climatology 
Centre) Full Data Reanalysis Version 7.0 with spatial 
resolution of 0.5° (Schneider et al. 2015). The data 
represent a centennial reanalysis of monthly global 
land-surface precipitation based on the measure-
ments of 75 000 stations world-wide. They contain 
the monthly totals on a regular grid with a spatial 
resolution of 0.5°. The temporal coverage of the data-
set ranges from January 1901 till December 2013.

We used SRTM (Shuttle Radar Topography 
Mission) for the digital elevation model. The data 
were acquired by radar on board of Endeavour shut-
tle in February 2000, which was a joint project of 
the National Aeronautics and Space Administration 
(NASA) and the National Geospatial-Intelligence 
Agency (NGA). The data resolution is approximate-
ly 1 arc-second, which is about 30 m and is provided 
in 1x1 degree tiles.

The study area was limited by a rectangle be-
tween 38°N - 44°N and 68°E - 81°E (Fig. 1). The 
precipitation, NDVI, LST and SRTM images were 
all resampled to the same resolution, extent and 
coordinate system with b-spline resampling. We 
have chosen the resolution of the MODIS dataset to 
avoid data loss. As a result, we have got raster imag-
es with 184 x 115 pixels, with a pixel size of 5700 m. 
in WGS84 UTM43N projected coordinate system.

3.2	Tools

Free open source software packages were used 
for the data analysis. The GIS manipulations and 
analysis were done in SAGA GIS 2.3.1 (Conrad 
et al. 2015), time series decomposition and analy-
sis were done in R 3.3.1 (R CORE TEAM 2016), 
data management and routine automatization were 
done with Python 3.5 (PYTHON SOFTWARE 
FOUNDATION 2016). The maps for the pub-
lication were prepared with QGIS 2.18.3 (QGIS 
DEVELOPMENT TEAM 2017).
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4	 Methods

4.1	 General approach

In order to analyze each pixel separately we disas-
sembled the time series of NDVI, PRC and LST images 
into a number of time series for each pixel. So we had 
184 x 115 = 21160 (by the number of pixels) sequences 
of numeric values (time series vectors) for each of the 
three variables (Fig. 2 – Input). Each time series vec-
tor had 168 values (14 years of monthly observations). 
Then we decomposed each pixel’s time series vector 
of each variable (NDVI, PRC and LST) into trend and 
seasonal components, omitting the remainder compo-
nent. This is described in “4.2 Time series decomposi-
tion” section. Thus for each pixel of each variable we 
got trend and seasonal temporal components (Fig. 2 
– Step 1). The trend components were used for the 
interannual assessment, and the seasonal components 
were used for the intra-annual assessment.

Then we conducted correlation analysis of trend 
and seasonal components respectively between 
NDVI and LST, and between NDVI and PRC at dif-
ferent lags (Fig.2 – Step 2). We identified the lags 
of maximum, minimum, maximum of absolute 
value and minimum of absolute value (Max, Min, 
AbsMax, AbsMin) correlation coefficients for each 
pixel (Fig.  2 – Step 4). This is detailed in the “4.3 
Correlation analysis” section.

To understand how much of NDVI variation is 
explained by PRC and LST we conducted least squares 

regression analysis. We used NDVI trend and sea-
sonal components as dependent variables and PRC 
and LST trend and seasonal components respectively 
as predictors. The predictors were shifted against 
NDVI time series for the lags of their AbsMax cor-
relation to account for the delayed reaction (Fig.  2 
– Step 3). Thus, for each pixel we have got the coeffi-
cient of determination (adjusted R2) (Miles 2014) by 
climatic factors. This is described in more details in 
the “4.4 Coefficient of determination” section.

Then the trend and seasonal Max, Min, AbsMax, 
AbsMin images together with R2 image and digital 
elevation model (DEM) were exposed to k-mean 
cluster analysis (Fig. 2 – Step 5). Thus we have got 5 
spatial clusters with similar NDVI and climate tem-
poral patterns considering elevation. Then we spa-
tially averaged the trend and seasonal components 
of all the pixels within each cluster for each variable 
to see the general behavior of NDVI, precipitation 
and temperature in each cluster. These steps are de-
scribed in the “4.5 Cluster analysis” section.

4.2	 Time series decomposition

We approached the raster time series of NDVI, 
LST and PRC as a number of cross-correlated time 
series vectors (for each pixel) considering each vec-
tor independently from the others. We split the ras-
ter time series of NDVI, LST and PRC into a number 
of series of consecutive numeric values (vectors) – 

Parameter Value Description

s.window „periodic“ The loess window for seasonal extraction.

s.degree 1 Degree of  locally-fitted polynomial in seasonal extraction.

t.window 36 The span (in lags) of  the loess window for trend extraction.

t.degree 1 Degree of  locally-fitted polynomial in trend extraction.

l.window NULL The span (in lags) of  the loess window of  the low-pass filter used for each 
subseries. Defaults to the smallest odd integer greater than or equal to the 
frequency of  time series (i.e. 13).

l.degree 1 Degree of  locally-fitted polynomial for the subseries low-pass filter.

robust TRUE Logical indicating if  robust fitting be used in the loess procedure.

inner 2 Integer; the number of  ‘inner’ (backfitting) iterations.

outer 1 Integer; the number of  ‘outer’ robustness iterations.

na.action na.omit Action on missing values.

Tab. 1: STL settings used for time series decomposition
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one for each pixel, thus we got 21160 vectors (by 
the number of pixels) of monthly values of NDVI, 
LST and PRC for the period of 14 years (2000-2013) 
(Fig. 2 – Input).

Then each time series vector was decomposed 
to seasonal (intra-annual), trend (interannual) and 
remainder (error) components (also vectors) us-
ing stl function (Cleveland et al. 1990) (Tab. 1) of 
stats package of R (R CORE TEAM 2016) (Fig.  2 
– Step 1). STL decomposes time series into trend, 
seasonal and remainder components, which are the 
summands of the initial time series. The method is 
easy to implement, provides flexibility in choosing 
the amount of trend and seasonal variations, han-
dles missing data and is robust against the outliers 
(Cleveland et al. 1990). STL is based on a sequence 
of smoothing operations mainly based on locally-
weighted regression or loess (Cleveland and Devlin 
1988; Cleveland et al. 1988). 

This resulted in production of trend, seasonal 
and remainder components (vectors) for each pixel 
of each variable (Fig.  2 – Step 1). The remainder 
vectors were omitted from further analysis, thus we 
have got 21160 (by the number of pixels) trend and 
seasonal vectors for NDVI, LST and PRC.

4.3	 Correlation analysis

We conducted cross-correlation analysis of the 
trend component vectors of NDVI with those of 
PRC and LST with different lags. The seasonal com-
ponent vectors of NDVI were also correlated with 
respective vectors of PRC and LST (Fig. 2 – Step 2). 
In case of seasonal components correlation analysis, 
we looked at lags of up to 6 months, in case of the 
trend components we used up to 24 months lags. As 
a result we have got vectors of trend and seasonal 
components’ correlation coefficients at different 
lags between NDVI and PRC and between NDVI 
and LST for each pixel. This way we could see how 
strongly NDVI correlates with PRC and LST on 
trend and seasonal scales with different lags in each 
pixel.

Then we identified at which lags NDVI had the 
Max, Min, AbsMax and AbsMin correlations with 
PRC and LST on trend and seasonal scales. These val-
ues we assembled into raster images of lags of Max, 
Min, AbsMax and AbsMin correlations of trend and 
seasonal components (Fig. 2 – Step 4). This provides 
information of speed and sign of NDVI reaction to 
precipitation and temperature on seasonal (intra-an-
nual) and trend (interannual) scales.

4.4	Coefficient of  determination

To estimate the coefficient of NDVI determi-
nation by the climatic factors on the interannual 
scale we conducted a regression analysis with NDVI 
trend components being the dependent variable 
and PRC and LST trend components as predictors. 
For the intra-annual scale we did the same with the 
seasonal components of the variables. The predic-
tors were taken at the lags of their AbsMax correla-
tion with NDVI (Fig.  2 – Step 3). The regression 
analysis was conducted on the pixel basis, i.e. each 
pixel’s NDVI was predicted with its PRC and LST 
values taken at their respective AbsMax correlation 
lag. The following equation was used for the regres-
sion analysis in Fig. 2 – Step 3:

NDVIt = a * PRCt-i + b * LSTt-j + c  (1)

Where:
NDVIt – normalized difference vegetation in-

dex at lag t = 0 (current observation), PRCt-i – pre-
cipitation i lags earlier, LSTt-j – land surface tem-
perature j lags earlier, a, b, c – first, second and third 
polynomial coefficients of the regression equation, 
i – lag of AbsMax correlation of NDVI and PRC, 
j – lag of AbsMax correlation of NDVI and LST.

Based on the regression analysis we calculated 
the coefficient of determination, which was the 
adjusted R2 (Miles 2014). This was done both for 
trend and seasonal components of each pixel sepa-
rately (i.e. each pixel had individual lag shifts for 
each predictor), thus we could see to which extent 
the NDVI variations were conditioned by precipi-
tation and temperature variations, considering the 
predictor- and pixel-specific reaction time, which 
was the lag of AbsMax correlation with predictors 
(Fig. 2 – Step 4).

4.5	Cluster analysis

The images of lags of Max, Min, AbsMax and 
AbsMin correlation coefficients, together with the 
images of R2 on both trend and seasonal scales 
and digital elevation model (DEM) were exposed 
to k-mean (Rubin 1967) grid cluster analysis 
(Fig. 2 – Step 5). As a result we have got 5 spatial 
clusters with different temporal patterns of NDVI, 
LST and PRC. We have spatially averaged all the 
pixels within each cluster to see the temporal pat-
tern of vegetation and climate interaction in each 
of them.
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5	 Results

The correlation analysis resulted in 32 images, 
which represent Max, Min, AbsMax and AbsMin 
correlation coefficients of NDVI correlation with 
PRC and LST, together with their lags and on trend 
and seasonal scales (Fig. 2 – Step 4). The represen-
tation and discussion of all the images would be 
too overwhelming, so we present the AbsMax im-
ages and their respective lags (Fig. 3). These images 

(Fig. 3) indicate the different signs of NDVI correla-
tion with PRC and LST and different lags, at which 
they occur. In general NDVI on low flat areas indi-
cate positive correlation with PRC and negative with 
LST, whereas highlands indicate the opposite (Fig. 3). 
Since the maximum of absolute value function was 
looking for correlation coefficients with lags of up to 
6 months on the seasonal scale and 24 months on the 
trend scale, the weaker correlations with other signs 
could be covered with the stronger correlations with 

Fig. 3: The maps of  AbsMax correlation coefficients (left column) and their respective 
lags in months (right column)
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the opposite sign. These interactions were captured 
with other extrema functions and the cluster analysis 
(Fig. 2 – Step 5) is to decrease the dimensionality of 
results and present them more comprehensively.

The resulting 5 clusters followed the pattern of 
horizontal temperature and precipitation flow as well 
as altitudinal gradients (Fig. 4). They indicate the spa-
tial pattern of inter- and intra-annual variations of 
vegetation and climatic factors. None of the clusters 
repeat any other with regards to annual mean of pre-
cipitation, temperature and NDVI (Fig. 5). 

The cluster 1 is basically the flat lands in 
Kazakhstan and China representing dry deserts or 
desert-steppes (Fig.  4). In absolute values the mean 
monthly precipitation level in this cluster is about 25 
mm, mean monthly NDVI is 0.23 and mean month-
ly LST is 24°C (Fig. 5). The seasonal component of 
NDVI indicates a strong positive correlation with 
precipitation (Tab. 2) and the seasonal flow of NDVI 
closely complies with the seasonal flow of PRC with 
a month lag (Fig. 6c), meaning a delayed reaction of 
NDVI to precipitation (Fig. 6a). NDVI also indicates 
a week positive immediate correlation with LST and 
a negative correlation with 4 months lag (Fig.  6b). 
This indicates that temperature is a promoting as well 

as a limiting factor for vegetation development. The 
summer, which is the seasonal maximum of tem-
perature, coincides with seasonal minimum of NDVI 
and precipitation, which results in an arid landscape. 
Vegetation booms in spring and is depressed by high 
temperatures and low precipitation levels in summer. 
This cluster has the highest monthly temperature 
among the other clusters (Fig. 5). On the trend scale, 
positive correlation with precipitation and negative 
correlation with temperature is obvious (Fig.  6d, e). 
The trend component curves of NDVI and precipita-
tion almost entirely match with each other, opposed by 
the temperature curve (Fig. 6f). About 61 % of NDVI 
seasonal variation and about 64 % of its interannual 
variation are explained by PRC and LST (Tab. 2).

The cluster 2 is mainly low mountains in Toktogul, 
Fergana and Chui valleys, which are foothills of 
Fergana, Chatkal and Kyrgyz Ala-Too ranges (Fig. 4). 
The area has dense networks of rivers and irrigation 
channels, it is mainly used as crop fields or lowland pas-
tures. On the seasonal scale, NDVI indicates positive 
correlations with precipitation with a lag of 4 months 
(Fig. 7a) and immediate positive correlation with tem-
perature (Fig. 7b). NDVI curve follows the tempera-
ture curve and is also conditioned by the precipitation 

Fig. 4: Spatial clusters of  vegetation-climate interactions
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curve (Fig. 7c). NDVI does not drop immediately with 
the precipitation in summer; however, high tempera-
tures do depress vegetation. On the trend scale, NDVI 
indicates a strong positive correlation with precipita-
tion and strong negative correlation with temperature 
(Tab.  2). NDVI trend curve follows very closely the 
precipitation curve and is opposed by the temperature 
curve (Fig. 7f). This cluster has the highest monthly 
mean precipitation level (36 mm per month) and high-
est mean NDVI (0.28) with a monthly mean tempera-
ture of about 18°C (Fig. 5). About 81 % of the seasonal 
variation and 68 % of the trend variation of NDVI are 
explained by the climatic factors (Tab. 2).

The cluster 3 represents the areas of highland tun-
dra which are used as winter pastures (Fig. 4). These 
areas comprise highland plains or tops of ridges with 
very sparse and low vegetation. Here, NDVI on the 
seasonal scale shows strong positive no lag correla-

tion with temperature, and strong positive correla-
tion with precipitation with 1-2 months lag (Fig. 8a, 
b). The NDVI curve basically follows the tempera-
ture curve (Fig. 8c), the peak of precipitation curve 
in May supports NDVI development, which peaks 
later in July. On the trend scale, NDVI shows a strong 
negative correlation with precipitation and positive 
correlation with temperature (Tab. 2), which is differ-
ent to the other clusters. NDVI trend curve follows 
closely the temperature curve (Fig.  8f) and precipi-
tation curve lags after NDVI, which is illustrated by 
the cross correlation function (Fig. 8d). In absolute 
terms, this cluster has the lowest temperature and 
NDVI. The mean monthly temperature is about 4°C, 
NDVI averages at 0.1 and precipitation at 26 mm per 
month (Fig. 5). About 88 % of the seasonal and about 
58 % of the trend NDVI variations are determined by 
the climatic factors (Tab. 2).

Tab. 2: Cluster characteristics – AbsMax correlation coefficients (CC) and their lags (Lag), mean adjusted R2 of  seasonal 
and trend components for each cluster

Cluster
NDVI, PRC s NDVI, LST s NDVI, PRC t NDVI, LST t R2

CC Lag CC Lag CC Lag CC Lag s t

Cluster 1 0.61 1 -0.82 4 0.94 0 -0.76 0 0.61 0.64

Cluster 2 0.59 4 0.85 0 0.94 0 -0.79 0 0.81 0.68

Cluster 3 0.92 1 0.93 0 -0.62 0 0.75 0 0.88 0.58

Cluster 4 0.96 1 0.94 0 0.67 10 -0.70 13 0.87 0.60

Cluster 5 0.85 5 0.98 0 0.72 6 -0.55 9 0.89 0.52

s – seasonal, t – trend

2 3 4 2 3 41 5

0

20

40

60

1 5
Clusters

m
m

a) PRC

0.0

0.1

0.2

0.3

0.4

0.5

Clusters

N
D

VI
 s

co
re

b) NDVI

0

20

40

Clusters

°C

c) LST

2 3 41 5

Fig. 5: Cluster spatially averaged values (boxplots) red dots represent mean values
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The cluster 4 is mainly dry plains or intermon-
tane depressions (Fig. 4). These areas have the least 
precipitation amount among the clusters (Fig.  5), 
because they occur in the precipitation shadows of 

Fergana and Kokshal-Too ranges. Here NDVI, PRC 
and LST seasonal curves almost coincide with each 
other (Fig. 9c) and have strong positive correlation 
with 0 to 1 lag difference (Fig. 8a, b). On the inter-
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Fig. 6: Cluster 1 seasonal and trend components lagged cross-correlation (for time=t and lag=f the correlation 
coefficient is calculated between NDVIt+f and PRCt or LSTt), and their standard scores: solid green – NDVI, 
dot-dashed red – LST, dashed blue – PRC

Fig. 7: Cluster 2 seasonal and trend components lagged cross-correlation (for time=t and lag=f the correla-
tion coefficient is calculated between NDVIt+f and PRCt or LSTt), and their standard scores: solid green – 
NDVI, dot-dashed red – LST, dashed blue – PRC
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annual scale, NDVI indicates a strong positive cor-
relation with PRC and a strong negative correlation 
with LST with about one year lag (Fig. 9d, e). This is 
also caused by the rain shadow effect of the ridges, 

surrounding the cluster areas. Mean monthly pre-
cipitation level is about 18 mm, temperature is 18°C 
and NDVI score is 0.17 (Fig. 5). This cluster has the 
greatest lag of the trend components correlation with 
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Fig. 8: Cluster 3 seasonal and trend components lagged cross-correlation (for time=t and lag=f the correla-
tion coefficient is calculated between NDVIt+f and PRCt or LSTt), and their standard scores: solid green – 
NDVI, dot-dashed red – LST, dashed blue – PRC

Fig. 9: Cluster 4 seasonal and trend components lagged cross-correlation (for time=t and lag=f the correla-
tion coefficient is calculated between NDVIt+f and PRCt or LSTt), and their standard scores: solid green – 
NDVI, dot-dashed red – LST, dashed blue – PRC
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about 87 % and 60 % of NDVI seasonal and trend 
variations, respectively, being determined by the cli-
matic factors (Tab. 2).

The cluster 5 occupies Fergana valley and some 
slopes of Fergana, Chatkal and Alai ranges (Fig.  4). 
These are the areas with one of the highest precipita-
tion levels (Fig. 5). This is a very active agricultural 
region with developed irrigation network. On the sea-
sonal scale, the NDVI curve follows the temperature 
curve very closely, indicating a strong positive corre-
lation without a lag (Fig. 10b), whereas precipitation 
indicates positive correlation with a lag of 5 months 
(Fig. 10a). On Fig. 10a we can see an artificial negative 
correlation between NDVI and PRC at lag 0 and a real 
positive at 6 months lag; this is caused by the system of 
artificial irrigation, which stocks rain water in spring 
and provides it in summer. This makes the NDVI 
peak to shift to summer (Fig. 10c), when vegetation 
is provided with solar heat and irrigation water, col-
lected from spring rains. The interannual NDVI and 
precipitation indicate a strong positive correlation and 
their curves follow each other, whereas temperature 
has negative correlation with NDVI (Fig. 10d, e). The 
monthly mean precipitation level here is about 33 mm, 
mean NDVI is 0.21 and the mean monthly tempera-
ture is 13°C (Fig. 5). About 89 % of NDVI seasonal 
and 52 % of the interannual variations are determined 
by the climatic factors (Tab. 2).

The coefficient of determination (adjusted R2) 
derived from the regression analysis of the season-
al components indicates vast areas to be strongly 
conditioned by precipitation and temperature. The 
mean coefficient of determination of all the pix-
els is 0.82 and standard deviation equals to 0.17. 
Only the areas in the north-west and south-east, 
which are Muyun-Kum and Taklamakan deserts 
in Kazakhstan and China respectively, and Khan-
Tengri glaciers, indicate low coefficients of deter-
mination (Fig. 11). The Fergana valley with devel-
oped agriculture and irrigation system is also less 
controlled by the climatic factors. 

The trend component of NDVI indicates less 
determination by precipitation and temperature. 
The mean is 0.60 and standard deviation equals 
to 0.20. The areas with the least R2 are the tops 
of Fergana, Chatkal and Alai ridges, Khan-Tengri, 
Suusamyr valley as well as At-Bashy, Kemin and 
Son-Kul valleys (Fig. 12). The plains in Kazakhstan 
and China, highlands in Inner Tian-Shan and parts 
of Fergana valley in Tajikistan show high coeffi-
cients of determination. These areas are expected 
to be affected the most in case of temperature and 
precipitation trend change.
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Fig.  10: Cluster 5 seasonal and trend components lagged cross-correlation (for time=t and lag=f the cor-
relation coefficient is calculated between NDVIt+f and PRCt or LSTt), and their standard scores: solid green 
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6	 Discussion

The 5 clusters identified in this study indicate 5 
zones with different patterns of vegetation and cli-
mate interaction. The zones have different seasonal 
flow of NDVI, temperature and precipitation as well 
as different trends of the variables. On the seasonal 
scale, all the clusters have positive NDVI correla-
tions with precipitation and temperature, except for 
cluster 1, which has negative correlation with tem-
perature (Tab. 2). On the trend scale, NDVI in all the 
clusters has positive correlation with precipitation 
and a negative with temperature, except for cluster 3, 
where it is opposite. 

In general, both PRC and LST are the promoting 
factors for vegetation development on the seasonal 
scale (Tab. 2). Only in clusters 1 and 2 vegetation is 
boosted by temperature in spring and depressed by 
it in summer (Figs. 6c, 7c). These clusters are deserts 
and plains in Kazakhstan and China, and piedmonts 
of Fergana and Chatkal ridges. Similar results were 
reported by Propastin et al. (2008a) and Yin et al. 
(2016), who identified positive correlation between 
NDVI and temperature in spring and negative cor-

relation in summer for different vegetation types in 
Central Asia. Both temperature and precipitation 
can be promoting as well as limiting factors of plant 
growth if they deviate considerably from their opti-
mal values and timing, which varies with elevation, 
terrain and other natural conditions.

Temperature seasonal distribution stays constant 
across the clusters, because generally summers are 
warm and winters are cold. However, the seasonal 
distribution of precipitation and its absolute values 
varies drastically; which conditions vegetation tem-
poral behavior and makes the clusters different. The 
seasonal maxima of NDVI, temperature and pre-
cipitation move in geographical space as the seasons 
change. Precipitation maximum flows from north-
west to south-east over the year cycle. The tempera-
ture maximum moves from low valleys to the ridge 
tops from spring to winter. NDVI maximum basically 
follows behind the precipitation maximum, suggest-
ing that vegetation development in the region is con-
ditioned more by precipitation than by temperature.

On the trend scale, precipitation appears to 
be the promoting factor, whereas temperature is 
always the limiting factor for vegetation develop-

Fig. 11: Coefficient of  determination (adjusted R2) of  NDVI seasonal component (indicates to which extent NDVI seasonal 
variation is determined by precipitation and temperature seasonal variations)
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ment (Tab.  2). Thus, an increase in precipitation 
will promote vegetation, and increasing tempera-
tures will limit it. This indicates the general aridity 
of the region, similar findings are reported by Yin 
et al. (2016). Cluster 3 is the only exception indicat-
ing the opposite. This cluster occupies the areas of 
highland plains and ridge tops. These areas usually 
have low temperatures and significant water depos-
its, so precipitation in the form of snow retards the 
vegetation development, but higher temperatures 
promote its growth. This cluster has the lowest 
mean annual NDVI and temperature and about 
the average precipitation (Fig.  5), so not the lack 
of moisture and high temperature, but lots of snow 
and low temperature are the main limiting factors 
for vegetation development on the trend scale. The 
cluster 3 is the only case where NDVI variations 
precede those of precipitation and temperature on 
the trend scale (Figs. 8d, e). This suggests that veg-
etation has an impact on local microclimate. We 
can suppose that developing vegetation cover de-
creases evapotranspiration and albedo in the area, 
which in turn limits precipitation and increases 
temperature. 

Clusters 2 and 5 show close mean monthly values 
(Fig. 5); they are close geographically as well (Fig. 4). 
However, seasonal distribution of NDVI and correla-
tion of trend components are different (Figs. 7, 10). 
Similar seasonal distribution of precipitation and tem-
perature for cluster 5 was reported by Lioubimtseva 
et al. (2005) and by Gessner et al. (2013). At the same 
time the clusters with similar seasonal flow indicate 
different absolute values, like clusters 3 and 4. This 
clearly shows a great regional variability of the cli-
mate-vegetation system and importance of their dis-
crimination. It is also important to consider not only 
the absolute values or seasonal flows of NDVI, LST 
and PRC, but both these factors together with the re-
action lag.

The major climate analysis of Kyrgyzstan was 
conducted by Adyshev et al. (1987). This climate 
classification was developed from annual sums of 
temperature and precipitation as well as their sea-
sonal distribution and elevation, based on meteoro-
logical observations since 1881 (GIDROMET SSSR et 
al. 1967) and is broadly applied in the country. Our 
clusters 1, 2 and 5 correspond to “valley and foot-
hill” climatic belt according to the classification by 

Fig. 12: Coefficient of  determination (adjusted R2) of  NDVI trend component (indicates to which extent NDVI trend varia-
tion is determined by precipitation and temperature trend variations)
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Adyshev et al. (1987). Cluster 4 corresponds to the 
“midland” climatic belt, and cluster 3 corresponds 
to “highland” and “nival” climatic belts of the same 
classification (Adyshev et al. 1987). Thus our study 
discriminated 3 additional classes within the “val-
ley and foothill” class and combined the “highland” 
and “nival” classes into one. The classification by 
Adyshev et al. (1987) was based on climatic and ter-
rain variables, whereas our study uses the vegetation 
component, which makes it more useful with regards 
to management of natural resources and climate 
change adaptation.

Lioubimtseva and Henebry (2009) and Hijioka 
et al. (2014) predicted aridity increase in Central Asia 
in the coming decades. The summers will be hotter 
and dryer, and winters will have more precipitation. 
These will shift the temperature and precipitation 
seasonal curve and change the trend, which will have 
corresponding impacts on vegetation. The fact that 
almost the entire research area has high coefficient of 
determination scores on the seasonal scale (Fig.  11) 
indicates that seasonally the vegetation is greatly de-
pendent on climatic factors. Only the arid lands and 
permanent glaciers indicate little to no NDVI sea-
sonal variation determination by the climatic factors 
(Fig. 11). These are the areas without much vegetation, 
which would not normally respond to temperature 
and moisture variations. In general, on the seasonal 
scale pastures and forests indicate the highest coeffi-
cient of determination, the agricultural areas show the 
medium, and the areas without vegetation have the 
lowest coefficient of determination. Propastin et al. 
(2007) also indicate decrease of correlation between 
NDVI and climatic factors in different ecosystems as 
the proportion of grass species shrinks.

On the trend scale, the pattern of determination 
is more complex and reflects both the areas without 
vegetation and with dense and stable vegetation cov-
er (Fig. 12). The areas with average vegetation cover 
indicate the highest coefficient of determination, 
whereas the areas with either no vegetation or dense 
vegetation cover indicate very low coefficient of de-
termination. This is because bare areas have nothing 
to react to climatic factors, and dense vegetation is 
robust against interannual climate fluctuations. These 
areas are expected to be more resistant against cli-
mate change, whereas the areas with average vegeta-
tion cover will be mostly affected by climate change. 
For example vegetation on some elevated areas like 
Fergana, Alai and Kyrgyz ridges as well as Pamir 
mountains are not conditioned by the climatic fac-
tors (Fig. 12), which is in agreement with Hu et al. 
(2014), who found negative correlation between tem-

perature increase and elevation. Chui, Talas, Ili and 
Fergana valleys are the regions with intensive agricul-
ture; however the trend coefficient of determination 
in Fergana valley is considerably lower (Fig. 12), sug-
gesting it has more efficient irrigation system. The ar-
eas with high coefficient of determination, like east-
ern part of Inner Tian-Shan, Chui and Talas valleys, 
Karatau ridge and Ili depression as well as Turkestan 
ridge foothills, Syr-Daria river valley, and Kyzyl-Suu 
region in China are expected to suffer most under the 
conditions of changing climate. 

The vegetation response to precipitation change 
comprises 1-5 months lag, whereas that of tempera-
ture is 0 for most of clusters (Tab. 2). Many global-
scale studies indicate an average lag of 1-2 month 
of vegetation reaction to precipitation (Potter and 
Brooks 1998; Schultz and Halpert 2007). Gurgel 
and Ferreira (2003) conducted lagged correlation 
analysis of 3 NDVI time series principal components 
and precipitation principal components for the entire 
area of Brazil. They identified that different vegeta-
tion types had 0-3 months response time to precipita-
tion. Gessner et al. (2013) found 1-3 months lag be-
tween precipitation change and vegetation reaction in 
Central Asia. Propastin et al. (2007) identified a lag 
of 0-60 days between precipitation and NDVI and no 
lag between temperature and NDVI with temperature 
contributing the most to NDVI variations in central 
Kazakhstan. All these findings are in agreement with 
the results of our research (Tab. 2).

Several studies (Propastin et al. 2008a; Zhao et al. 
2011; Kariyeva and Van Leeuwen 2011; Mohammat 
et al. 2013; Zhang et al. 2013; Du et al. 2015; Eckert 
et al. 2015; Yin et al. 2016) used spatial and tempo-
ral averaging of NDVI and climatic factors to identify 
their inter-annual relations and least squares to find 
the temporal trend. The spatial averaging was con-
ducted within different vegetation classes and tempo-
ral averaging was conducted within spring, summer, 
autumn and these three seasons together. However 
these approaches do not consider seasonality, some of 
them – delayed reactions and do not distinguish be-
tween seasonal and trend components. They assume 
a positive correlation between NDVI and precipita-
tion, which prevents complex assessments of time se-
ries data (e.g. Fig. 3). Spatial averaging prevents from 
identification of fine scale patterns and introduces 
bias by dividing the study area into predetermined 
sectors. Instead, Gessner et al. (2013) used lagged 
correlation analysis between NDVI and precipitation 
time series on a pixel basis, considering accumulation 
periods, which allowed for identification of complex 
interactions.
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Our research was based on decomposition of 
time series of raster data into trend and seasonal 
components on per-pixel basis and analysis of the 
components separately. This approach allows for 
separation of inter-annual and intra-annual behavior 
of the variables and solves the data stationarity is-
sue. At the same time the pixel-level discretization of 
the time-series helps to reduce the impact of spatial 
variability of other unconsidered factors like soil, el-
evation, exposure etc. Identification of pixel-specific 
NDVI reaction to temperature and precipitation 
(Fig. 3) and then grouping them into k-mean clusters 
with similar behavior (Fig.  4) reduces the bias and 
helps to identify the natural patterns.

The uncertainties of the methods used in this 
study include the phenological autocorrelation of 
NDVI, which can be falsely attributed to precipita-
tion or temperature variations. Temperature and 
precipitation as predictors can have significant cor-
relation, which can affect the model accuracy. And 
the fact that predictors have positive effect within a 
certain value window and otherwise outside of that 
is not considered in the model. However these issues 
are addressed by taking the predictors at the lags of 
their AbsMax correlation with NDVI, not with each 
other. Snow and rain are also mixed in the precipita-
tion variable which also can potentially lead to errors 
as snow cover can artificially decrease NDVI score. 
Also, snow precipitation makes moisture available to 
vegetation at the time of melting, not at the time of 
falling, which is not considered in the seasonal analy-
sis, but luckily in our case winter is rarely the season 
of maximum precipitation. Snow accumulation pro-
vides more water in summer with meltwater provid-
ing higher discharge in streams, which can induce a 
delayed effect in the areas downstream. Rivers and 
accumulated moisture are also not considered here. 
Different soil types can have an effect. However, us-
ing the standard scores of the variables and per-pixel 
approach can decrease this limitation.

7	 Conclusion

We applied time series decomposition with loess 
to raster time series of vegetation, precipitation and 
temperature on pixel basis, followed by correlation 
analyses of the seasonal and trend components of 
the variables in each pixel. We did not assume any 
patterns prior to the analysis, neither with regard to 
spatial variations, nor with regard to temporal re-
sponse to avoid any bias. Thus the data were ana-
lyzed at the finest scale possible and the results were 

subjected to k-means cluster analysis to identify the 
areas of climate-vegetation interaction similarity. 

The results indicate that vegetation can be both 
positively or negatively affected by the climatic fac-
tors, which can result in a complicated pattern of 
climate-vegetation interactions. Thus vegetation re-
sponse sign and lag should not be assumed by the 
methods used. Spatial variability of climate-vegeta-
tion interaction can be great so any kind of spatial 
averaging prior to the analysis should be avoided and 
all the pixels should be treated independently from 
each other unless a more sophisticated method, ac-
counting for such interactions is applied. The sea-
sonal averaging of temporarily explicit data should 
also be avoided, as it can prevent the identification 
of temporal patterns. Instead, seasonal decompo-
sition of signal and correlation analysis with lags 
should be applied to assess seasonal and interannual 
interactions.

The resulting climate-vegetation patterns indi-
cate great variability over the relatively small study 
area. This is presumably conditioned by complex ter-
rain and mixed influence of neighboring arid areas 
and humid air masses, coming from the west. The 
vegetation communities in the region indicate vul-
nerability to temperature and precipitation trend 
change as they are conditioned by these factors. 
In the case of seasonality change of climatic fac-
tors most of the study area will be greatly affected, 
however, further modelling is needed to understand 
these interactions. The methodical approach, used 
in this study, can easily be transferred to other re-
gions for assessment of climate change impacts on 
vegetation.
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