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Abstract

Extended objects such as line or surface operators, interfaces or boundaries play an
important role in conformal field theory. Here we propose a systematic approach to
the relevant conformal blocks which are argued to coincide with the wave functions of
an integrable multi-particle Calogero-Sutherland problem. This generalizes a recent
observation for four-point blocks and makes extensive mathematical results from the
modern theory of multi-variable hypergeometric functions available for studies of
conformal defects. Applications range from several new relations with scalar four-point
blocks to a Lorentzian inversion formula for defect correlators.

Zusammenfassung

Ausgedehnte Objekte wie Linien- oder Flächenoperatoren, Schnittstellen oder Be-
grenzungen spielen eine wichtige Rolle in konformen Feldtheorien. Hier schlagen
wir einen systematischen Zugang zu den relevanten konformen Blöcken vor, die mit
den Wellenfunktionen eines integrablen Mehrteilchen-Calogero-Sutherland-Problems
übereinstimmen. Dies verallgemeinert eine kürzliche Beobachtung für Vierpunkt-
blöcke und macht umfassende mathematische Befunde der modernen Theorie über
hypergeometrische Funktionen für das Studium von konformen Blöcken verfügbar.
Anwendungen reichen von neuen Zusammenhängen mit skalaren Vierpunktblöcken
zu einer lorentzischen Inversionsformel für Defektkorrelatoren.
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Chapter 1

Introduction

Quantum field theory is an extremely successful framework to describe various phe-
nomena in modern physics. Its applications include the description of the fundamental
interactions at high energies and small scales which has resulted in the Standard
Model of particle physics. It has been completed with discovery of the Higgs boson
in 2012. At low energies, quantum field theory has been found to be very useful in
effectively describing condensed matter systems.

In thesis we focus on an important class of quantum field theories, the so-called
conformal field theories which are theories that are invariant under scalings and
special conformal transformations. They have been first studied by Dirac [1] but did
not receive much attention before the 70s [2–6]. Especially, the seminal paper by
Belavin, Polyakov and Zamolodchikov [7] led to a break-through in understanding
two-dimensional conformal field theories. Even though conformal invariance may
look like a strange symmetry to begin with - certainly, our universe is not conformal
invariant - conformal field theories have many interesting applications. First of all,
many physical systems become scale-invariant when they undergo second order phase
transitions [8]. The critical exponents describing the power-law behavior of certain
observables at the critical point can be predicted by conformal field theory calculations.
In general, conformal field theories lie at the fixed points of the renormalization group
(RG) flow [9], serving as lampposts to understand any quantum field theory. The
world-sheet dynamics in string theory is also described by a two-dimensional conformal
field theory [10]. Further applications include turbulences [11–13], chemistry [14] and
even finance [15].

The reason why conformal field theories are interesting from a theoretical point of
view stems from the fact that the enhanced symmetry provides a non-perturbative
handle to understand these theories. Besides a few examples, generic quantum
field theories can only be understood perturbatively. Conformal symmetry, however,
tightly constrains the allowed space of theories, making an attempt to solve these
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2 CHAPTER 1. INTRODUCTION

theories feasible without even relying to a Lagrangian description. This is even
more fascinating since many quantum field theories without a Lagrangian description
were discovered (for instance [16,17]). Studying a theory by its symmetries only is
called the conformal bootstrap. It was used successfully to analytically solve certain
models in two dimensions [4–6]. In general it is quite hard to solve the associated
bootstrap equations analytically because they compromise a non-linear system of
infinitely many equations. However, in the last years it was possible to use these
equations to put constraints on allowed conformal field theories numerically, initiated
by [18]. A striking example is the Ising model in three dimensions whose most accurate
theoretical predictions come from the numerical bootstrap analysis [19–24].

Despite the notoriously difficult bootstrap equations there has been progress in
obtaining analytic results. The so-called lightcone limit allows to extract the spectrum
and operator product coefficients of large spin operators [25, 26]. Using the numerical
data of the three-dimensional Ising model as input it was possible to derive bounds
in the large spin limit [24, 27]. Surprisingly, it turned out that large spin includes
spins as low as spin two. This was explained in [28] where it was shown that there is
a delicate balance between operators of spin larger than one. The reason is that these
operators organize themselves in families analytic in spin.

Extended objects such as line or surface operators, defects, interfaces, and bound-
aries are important probes of the dynamics in quantum field theory. They give rise to
observables that can detect a wide range of phenomena including phase transitions
and non-perturbative dualities. In two-dimensional conformal field theories they also
turned out to play a vital role for modern formulations of the bootstrap program. In
fact, in the presence of extended objects the usual crossing symmetry becomes part of
a much larger system of sewing constraints [29]. While initially the two-dimensional
bootstrap started from the crossing symmetry of bulk four-point functions to gradually
bootstrap correlators involving extended objects, better strategies were adopted later
which depart from some of the sewing constraints involving extended objects. The
usual crossing symmetry constraint is then solved at a later stage to find the bulk
spectrum and operator product expansion, see e.g. [30].

The bootstrap program, whether in its original formulation, or in the presence of
extended objects, relies on conformal block expansions [31,32] that decompose physical
correlation functions into kinematically determined blocks and dynamically determined
coefficients. These conformal blocks for a four-point correlator are functions of two
cross-ratios and the coefficients are those that appear in the operator product expansion
of local fields. Such conformal partial wave expansions thereby separate very neatly
the dynamical meat of a conformal field theory from its kinematical bones.

In order to perform a conformal block expansion one needs a good understanding
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of the relevant conformal blocks. While they are in principle determined by conformal
symmetry alone, it is still a highly non-trivial challenge to identify them in the
zoo of special functions. In the case of scalar four-point functions much progress
has been made in the conformal field theory literature starting with [33–35]. If the
dimension d is even, one can actually construct the conformal blocks from products
of two hypergeometric functions each of which depends on one of the cross-ratios.
For more generic dimensions many important properties of the scalar blocks have
been understood, these include their detailed analytical structure and various series
expansions [36–39].

Extended objects give rise to new families of blocks. Previous work on this subject
has focused mostly on local operators in the presence of a defect. This includes
correlators and blocks for boundary or defect conformal field theory [40–44], and also
bootstrap studies using a combination of numerical and analytical techniques [45–50].1

Even in this relatively simple context that involves no more than two cross-ratios, the
relevant conformal blocks were only identified in some special cases. More general
situations, such as e.g. the correlation function of two (Wilson- or ’t Hooft) line
operators in a d-dimensional conformal field theory, often possess more than two
conformal invariant cross-ratios. Two conformal line operators in a four-dimensional
theory, for example, give rise to three cross-ratios. For a configuration of a p- and a
q-dimensional object in a d-dimensional theory, the number of cross-ratios is given by
N = min(d− p, q + 2) if p ≥ q [54]. So clearly, the study of such defect correlation
functions involves new types of special functions which depend on more than two
variables.

In order to explore the features of these new functions, understand their analytical
properties or find useful expansions one could try to follow the same route that was
used for four-point blocks, see e.g. [55, 56] for some recent work in this direction.
It is the central message of this thesis, however, that there is another route that
gives a much more direct access to defect blocks. It relies on a generalization of an
observation in [57] that four-point blocks are wave functions of certain integrable
two-particle Hamiltonians of Calogero-Sutherland type [58,59]. The solution theory
for this quantum mechanics problem is an important subject of modern mathematics,
starting with the seminal work of Heckman-Opdam [60], see [39] for a recent review
in the context of conformal blocks. Much of the development in mathematics is not
restricted to the two-particle case and it has given rise to an extensive branch of the
modern theory of multi-variable hypergeometric functions.

In order to put all this mathematical knowledge to use in the context of defect
blocks, all that is missing is the link between the corresponding conformal blocks, which

1Related work includes studies using Mellin space [51,52], and “alpha space” [53].
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depend on N variables, to the wave functions of an N -particle Calogero-Sutherland
model. Establishing this link is the main goal of this thesis. Following a general
route through harmonic analysis on the conformal group that was proposed in [61],
we construct the relevant Calogero-Sutherland Hamiltonian, i.e. we determine the
parameters of the potential in terms of the dimensions p, q of the defects and the
dimension d. In the special case of correlations of bulk fields in the presence of a
defect, the parameters also depend on the conformal weights of the external fields.
Eventually, the Lorentzian inversion formula is derived. All these results will be stated
in chapter 4.

Calogero-Sutherland models possess a number of fundamental symmetries that
can be composed to produce an exhaustive list of relations between defect blocks. We
will present these as a first application of our approach. Special attention will be paid
to relations involving scalar four-point blocks for which we produce a complete list
that significantly extends previously known constructions of defect blocks.

As interesting as such relations are, they provide only limited access to defect
blocks. We develop the complete solution theory for defect blocks with N = 2 and
N > 2 cross-ratios in chapter 5 by exploiting known mathematical results on the
solutions of Calogero-Sutherland eigenvalue equations. In particular, we shall review
the concept of Harish-Chandra scattering states, discuss the issue of series expansions,
poles and their residues, as well as global analytical properties such as cuts and their
monodromies. The thesis concludes with an outlook and a list of important open
problems.



Chapter 2

Conformal symmetry

This chapter gives an introduction to conformal symmetries in d-dimensions and
its implications. It has been an active field of research for the last decades and
consequently, there is a huge amount of literature. Gentle introductions can be found
in [62,63].

2.1 Conformal group in d-dimensions

Consider Rd with the Euclidean metric gµν = δµν . A conformal transformation is
defined to be a change of coordinates that leaves the metric invariant up to a scale
factor

gµν(x)→ g′µν(x′) = Ω(x)gµν(x) , Ω(x) > 0 . (2.1.1)

Under an infinitesimal transformation xµ 7→ xµ+εµ, this corresponds to the conformal
Killing equation

∂µεν + ∂νεµ = 2
d

(∂ · ε)ηµν , (2.1.2)

where the constant of proportionality can be found by contracting both sides with
δµν . This equation has the following vector fields as solutions:

• translations pµ = ∂µ ,

• rotations mµν = xν∂µ − xµ∂ν ,

• scale transformations d = x · ∂ and

• special conformal transformations kµ = 2xµ(x · ∂)− x2∂µ .

As we will see shortly, these transformations form the conformal algebra so(1, d+ 1)
and are present in any space-time dimension. In d = 2, there exist an infinite
number of solutions leading to the powerful Virasoro symmetry (see [64] for reference).

5



6 CHAPTER 2. CONFORMAL SYMMETRY

However, we will leave the dimension d arbitrary and therefore will not make use of
this.

Exponentiated to finite transformations, we find

• translations x 7→ x+ a ,

• rotations x 7→ Λx , where Λ ∈ SO(d),

• scale transformations x 7→ λx and

• special conformal transformations x 7→ x+bx2

1+2b·x+b2x2 .

A conformal field theory is defined to be a quantum field theory invariant under
conformal transformations. By Noether’s theorem, each solution to the Killing equa-
tion (2.1.2) has a corresponding charge, denoted by P µ, Mµν , D and Kµ, respectively.
They obey the following non-vanishing commutation relations, inherited from the
commutator of vector fields:

[Mµν , Pρ] = δνρPµ − δµρPν ,

[Mµν , Kρ] = δνρKµ − δµρKν ,

[Mµν ,Mρσ] = δνρMµσ − δµρMνσ + δνσMρµ − δµσMρν ,

[D,Pµ] = Pµ ,

[D,Kµ] = −Kµ ,

[Pµ, Kν ] = 2δµνD − 2Mµν .

(2.1.3)

The last three lines say that Pµ and Kµ define raising and lowering operators for D.
A fact that we will use in the next section to construct representations.

To show that the charges indeed form the algebra so(1, d+ 1), define the generators

Lµν = Mµν ,

L−1,0 = −L0,−1 = D ,

L0,µ = −Lµ,0 = 1
2(Pµ +Kµ) ,

L−1,µ = −Lµ,−1 = 1
2(Pµ −Kµ) .

(2.1.4)

A straightforward calculation shows that they obey the commutation relations of
so(1, d+ 1). This suggests that there is a linear realization of the conformal action on
R1,d+1. We will make use of this idea, dubbed embedding space formalism [1, 65–69],
to define cross-ratios in correlation functions for defects.
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2.2 Conformal representations

In order to build representations of the conformal group, it is enough to consider
operators at the origin because we can always use a translation,

O(x) = ex·PO(0)e−x·P . (2.2.1)

In any QFT we assume that local operators at the origin transform as finite irreducible
representations of the rotation group, that is

MµνOa(0) = (Rµν)abOb(0) , (2.2.2)

where a, b are indices of some representation r of so(d) and Rµν are its generators.
We might suppress the spin indices whenever it is clear from the context.

Furthermore, it is convenient to diagonalize the action of the dilatation operator
in a scale invariant theory,

DO(0) = ∆O(0) , (2.2.3)

where ∆ is the conformal dimension of O. The representation r and the dimension ∆
are the main quantum numbers of any operator O.

We are left with the generator of special conformal transformations Kµ. As
anticipated, it acts as a lowering operator for the conformal weight,

DKµO(0) = (KµD + [D,Kµ])O(0) = (∆− 1)KµO(0) . (2.2.4)

In physical theories we demand that the spectrum is bounded from below (in unitary
theories, this follows from unitarity bounds). Repetitively acting with Kµ annihilates
any operator eventually, i. e. there exits an operator such that

KµO(0) = 0 . (2.2.5)

Such operators are called primary operators. Acting with the corresponding raising
operator, Pµ, we can build a tower of descendants,

O(0) 7→ Pµ1 . . . PµnO(0) ,

∆ 7→ ∆ + n .
(2.2.6)

The collection of the dimensions of the primary operators is called the spectrum of a
CFT. It is typically discrete in d ≥ 3 dimensions which follows from demanding a
finite thermal partition function [63].

The above construction is called a parabolic Verma module for the primary O,
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which plays the role as the highest weight vector. More formally, let g = so(1, d+ 1)
be the full conformal algebra. We can decompose it as g = k⊕ a⊕ n, where k is the
Lie algebra of a maximal compact subgroup K, a are scale transformations and n are
special conformal transformations. This is known as Iwasawa decomposition. Now let
m = Ca(k) = so(d) be the centralizer of a in k and gx = m⊕ a⊕ n, i. e. the subalgebra
generated by Mµν , D and Kµ. Note that its Lie group,

Gx = SO(1, 1)× SO(d) , (2.2.7)

is the stabilizer of a point x in coordinate space, i. e. the support of a local operator.
Then, G/Gx is the space of all inequivalent operator insertions, i. e. the compactifi-
cation Sd of the coordinate space. The stabilizer Gx, also known as the little group,
labels the representations. Indeed, given a finite dimensional representation (π, V ) of
its Lie algebra gx, where the action of elements in n is trivial, the parabolic Verma
module Mgx(V ) is defined as the induced representation

Mgx(V ) := Indg
gx(π) = U(g)⊗gx V , (2.2.8)

where U(g) is the universal enveloping algebra of g. Highest weights of Mgx(V )
are the highest weights of V and we will use both interpretations interchangeably.
These Verma modules are irreducible in general but sometimes they are reducible.
This happens if certain linear combinations of descendants vanish, e. g. for conserved
currents.

Let us briefly outline the fairly standard representation theory of the rotation
group so(d). Consider first the case of odd dimensions d = 2k+ 1, where k ∈ N is the
rank of so(d). Pick a Cartan subalgebra h ⊂ so(d) with basis Hi, i = 1, . . . , k. Denote
the set of roots by Φ ⊂ h∗ and the set of positive and negative roots by Φ± (fig. 2.1a).
The elements Eα, α ∈ Φ, of the corresponding root spaces and the generators Hi

fulfill the following algebra,

[Hi, Eα] = α(H)Eα , [Eα, E−α] = 2
〈α, α〉

Hα , (2.2.9)

where Hα is the dual vector to α w. r. t. the Killing form. A (bosonic) highest weight
vector |` = (l1, . . . , lk)〉 is characterized by

Hi|`〉 = li|`〉 , Eα|`〉 = 0 , ∀α ∈ Φ+ . (2.2.10)

The representation itself is the Verma module for the heighest weight |`〉, i. e. it is
constructed by applying the negative roots Eα, α ∈ Φ−. Irreducible, finite-dimensional
representations are labeled by Young tableaux:
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µk1 . . . µklk

...

µ1
1

. . . . . . . . . . . . µ1
l1

It is an ordered set of integers ` = (l1, . . . , lk), l1 ≥ · · · ≥ lk ≥ 0. The corresponding
weight diagram is depicted in fig. 2.1b. Each li counts the number of boxes in the
i-th row. The boxes are filled with a tensor index, which are symmetric in each row
and antisymmetric in each column.

The analysis is similar for even dimensions d = 2k, where again k ∈ N is the rank
of so(d). However, there are two highest weight representations associated to a given
Young tableaux with lk > 0: one representation with eigenvalue lk of Hk and one with
eigenvalue −lk. Consequently, we can label the representations by ` = (l1, . . . , lk),
l1 ≥ · · · ≥ |lk| ≥ 0.

To summarize, a highest weight vector of the full conformal group is labeled by
[∆, `],

H0|∆, `〉 ≡ D|∆, `〉 = ∆|∆, `〉 ,

Hi|∆, `〉 = li|∆, `〉 .
(2.2.11)

For later convenience, we note that the quadratic Casimir element is given by

C = −1
2L

2 =
k∑
i=0

HiHi + 1
2
∑
α∈Φ
〈α, α〉EαE−α , (2.2.12)

where α runs over the roots Φ of so(1, d+ 1). Its action on a primary state can be
evaluated to

C|∆, `〉 = C∆,`|∆, `〉 , C∆,` =
[
∆(∆− d) +

k∑
i=1

li(li + d− 2i)
]
. (2.2.13)

(a) Root system of so(5). The set of positive
roots Φ+ is depicted by black arrows. The Weyl
chamber is shown in gray.

l1

l2

(b) Weight diagram of so(5). The highest weights
are depicted by dots.

Figure 2.1
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To complete the discussion, let us remark that there exists a natural invariant
pairing between representations [∆, `] and [d−∆, `],

〈f1|f2〉 =
�

G/Gx

ddx f1(x) · f2(x) , (2.2.14)

where · is the inner product in the representation of so(d). This defines an inner
product because the combination [∆, `] × [d −∆, `] transforms as a d-dimensional
scalar, compensating for the Jacobian. Thus, [d − ∆, `] can be seen as the dual
representation to [∆, `] and is called the shadow representation. For ∆ = d

2 + ic, c ∈ R,
the shadow representation becomes the complex conjugate and eq. (2.2.14) becomes
the L2-norm on G. These unitary representations compromise the principal series
representations. Note that this differs from unitarity of the Lorentzian conformal
group analytically continued to Euclidean signature, which requires ∆ ∈ R≥0.

2.3 Defects in conformal field theories

Extended operators or defects in conformal field theories do not preserve the G =
SO(1, d+ 1) symmetry of the conformal group. However, if we consider a p-dimensional
flat defect it is clear that its support is left invariant by the subgroup

Gp = SO(1, p+ 1)× SO(d− p) ⊂ G . (2.3.1)

Here, the first factor describes conformal transformations of the world-volume of the
defect and the second factor accounts for rotations of the transverse space. This is
the maximal amount of conformal symmetry a defect can preserve. A spherical defect
is obtained from a flat defect by special conformal transformations in the orthogonal
directions.

Elements of the d-dimensional conformal group G that are not contained in the
subgroup Gp act as transformations on the defect. The number of such non-trivial
transformations is given by the dimension of the space of defect configurations, i. e.
the quotient G/Gp,

dimG/Gp = (p+ 2)(d− p) . (2.3.2)

For p = 0, the defect D(p=0) consists of a pair of points and the 2d-dimensional
quotient G/G0 describes their configuration space. When we set p = d − 1, i. e.
consider a boundary of codimension d − p = 1, the quotient G/Gp has dimension
dimG/Gd−1 = d + 1. A (d − 1)-dimensional conformal defect is localized along a
sphere in the d-dimensional background and the d+ 1 parameters provided by the
surface G/Gd−1 represent the position of its center and the radius.
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The defect supports a CFT on its world-volume. In addition to bulk operators
there are operators with support on the defect only, so-called defect-local operators.
This defect-local theory almost behaves like any (bulk) CFT, in particular they have a
convergent product expansion. However, the defect system is coupled to the bulk, i. e.
defect-local operators can have non-vanishing two-point functions with bulk operators.
This has an important consequence: as energy is freely exchanged with the bulk, there
is no stress-energy tensor on the defect. Furthermore, Ward identities for bulk currents
get modified in presence of defects, e. g. for the stress-energy tensor in presence of a
p-dimensional flat defect D:

∂µT
µA(x) = DA(x)δD(x) , µ = 1, . . . , d , A = 1, . . . , d− p , (2.3.3)

where A labels the orthogonal directions and δD is the delta-function with support on
the defect.

The orthogonal rotations SO(d− p) preserve the defect point-wise and label the
spin of the defect. On the other hand, we require the defect to transform as a scalar
under the parallel rotations SO(1, p+ 1), i. e. in a one-dimensional representation.
For p 6= 0, the only one-dimensional representation is the trivial one. If p vanish,
one can have a non-trivial one-dimensional representation for which the generator of
dilations is represented by a complex number. Along the lines of the previous section,
the defect is represented as the parabolic Verma module Mgp(V ), where (π, V ) is a
finite dimensional representation of the Lie algebra gp = Lie(Gp). However, in this
thesis we will analyze scalar defects only.

2.4 Embedding space formalism

We briefly review the embedding formalism, which is a standard approach frequently
used to study correlators in conformal field theory. While some aspects become easier
in embedding space (especially defect configurations, see next subsection), some are
more convenient in physical space and we will use both point of views interchangeably.
For details on the embedding space formalism see for example [70].

Because the Euclidean conformal group in d dimensions is SO(1, d+ 1) it is natural
to represent its action linearly on an embedding space R1,d+1. In order to retrieve
the usual non-linear action of the conformal group on the d-dimensional Euclidean
space we must get rid of the two extra dimensions. This is done by restricting the
coordinates to the projective null cone, i.e. we demand X2 = 0 for X ∈ R1,d+1 and
identify X ∼ gX for g ∈ R. It is useful to work in lightcone coordinates with dot



12 CHAPTER 2. CONFORMAL SYMMETRY

product given by

X · Y = (X+, X−, X i) · (Y +, Y −, Y i) = −1
2(X+Y − +X−Y +) +X iY i . (2.4.1)

In other words, points on the physical space x ∈ Rd are represented by elements of
the projective lightcone of the embedding space. It is common to use the projective
identification X ∼ gX in order to fix a particular section of the cone given by

X = (1, x2, xµ) . (2.4.2)

This is called the Poincaré section. Note that this section is invariant under
SO(1, d+ 1) only up to projective identifications. The point at infinity is lifted
to Ω = (0, 1, 0µ). The Poincaré section has the useful property that the distance
between two points in physical space is then given by |x− y|2 = −2X · Y , where X
and Y are the Poincaré lifts of x and y, respectively.

2.4.1 Defects in embedding space

The adaptation of the embedding space to the defect setup can be found in [41,54].
A p+ 2-dimensional hyperplane in embedding space R1,d+1 with a time-like direction
preserves the subgroup SO(1, p+ 1)× SO(d− p) of the conformal group, see fig. 2.2.
Furthermore, it can be shown that the intersection of such a hyperplane with the
Poincaré section projects down to a p-sphere (or p-hyperplane) in Rd [54], the locus of
the defect in Euclidean space. Hence, one can parametrize the position of the defect
through (d − p) orthonormal vectors Pα, α = 1, . . . , d − p, one for each transverse
direction. In order to do so, we first pick any p+ 2 points xk, k = 1, . . . , p+ 2, on the
defect D(p) ⊂ Rd and consider their lift Xk = (1, x2

k, xk) to the Poincaré section. This
uniquely defines the (p + 2)-dimensional hyperplane. To select a set of vectors Pα,
which are of course not unique, we demand that

Xk · Pα = 0 , Pα · Pβ = δαβ . (2.4.3)

Besides conformal transformations, there also exists an O(d − p)-gauge symmetry
which acts on the index α, i. e. it transforms the vectors Pα into each other. This
becomes important later when we discuss cross-ratios.

Let us conclude this section with two examples. Consider a p-dimensional flat
defect D(p) spanning the directions e1, . . . , ep, where ei is the unit vector in the i-th
direction. Its lift to the null-cone can be described by the points

X1 = (1, 1, e1) , . . . , Xp = (1, 1, ep) , (2.4.4)
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X1

X0

X2

Pα

Figure 2.2: Point-like defect in embedding space. Two points are lifted from physical space
to the Poincaré-section defining a two-dimensional hyperplane going through the origin. The
hyperplane is characterized by the orthonormal vectors Pα.

in addition to the origin (1, 0,~0) and the point at infinity Ω. A convenient set of
orthogonal vectors Pα, i.e. satisfy the conditions X · P = 0, is given by

P1 = (0, 0, ep+1) , . . . , Pd−p = (0, 0, ed) . (2.4.5)

We see that any vector Y ∈ R1,d+1 (and hence y ∈ Rd) nicely splits in to a parallel
part and an orthogonal part, Y = (Y ‖, Y ⊥).

Now, consider a p-dimensional spherical defect of radius R centered at the origin,
immersed in the directions e1, . . . , ep+1. In embedding space, it runs through the
points

X1 = (1, R2, Re1) , . . . , Xp+1 = (1, R2, Rep+1) , Xp+2 = (1, R2,−Re1) .
(2.4.6)

We choose the orthogonal vectors

P1 =
( 1
R
,−R,~0

)
, P2 = (0, 0, ed) , . . . , Pd−p = (0, 0, ep+2) . (2.4.7)

In general the orthogonal projection of a vector Y ∈ R1,d+1 is defined as

Y ⊥α = Pα · Y .

Note that it is conformal invariant but not O(d− p)-gauge invariant.
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2.5 Correlators and cross-ratios

2.5.1 n-point functions without defects

Conformal invariance put severe constraints on correlation functions in CFTs with and
without defects. While the functional form of lower point functions of local operators
are fixed completely, the situation changes when we consider four-point functions of
local operators or defect correlators.

The standard one-point function is fixed by dimensional analysis,

〈O(x)〉 =

1 if O is the unit operator,

0 otherwise.
(2.5.1)

The two-point function is fixed completely up to a constant. For two primaries
O∆1,`1 and O∆2,`2 , it is only non-vanishing iff ∆1 = ∆2 and `1 = `2. For example, for
scalar primaries ` = (0, . . . , 0) of dimension ∆ it is given by

〈φ(x1)φ(x2)〉 = cφ
x2∆

12
, (2.5.2)

where cφ is a constant and normally normalized to one. In general, primaries in
traceless symmetric representations ` = (l, 0, . . . , 0) have the two-point function

〈Oµ1,...,µl(x1)Oν1,...,νl(x2)〉 = cO
x2∆

12

(
I(µ1
ν1 (x12) . . . Iµl)νl

(x12)− traces
)
, (2.5.3)

where the terms in the brackets are called tensor structures consisting of Iµν (x),

Iµν (x) = δµν − 2x
µxν
x2 . (2.5.4)

Sometimes traceless symmetric operators come with their canonical normalization,
i. e. demanding that certain Ward identities are satisfied as it is the case for the stress
tensor T µν . In this case the normalization is physical meaningful.

For later convenience, consider a scalar operator φ(x) of dimension ∆ with its lift
Φ(X) = φ(x) to the Poincaré section. Its two-point function is given by eq. (2.5.2),

〈Φ(X)Φ(Y )〉 = 1
(−2X · Y )∆ . (2.5.5)

In order to respect the action of SO(1, d+ 1), Φ(X) should be a function of X/X+

only. It is convenient to demand the scaling property Φ(X) = (X+)∆Φ(X/X+) such
that the two-point function (2.5.5) holds on the complete projective null cone.

As with two-point functions, three-point functions are fixed completely up to a
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constant, too. This time however the constant is physical meaningful. Together
with the spectrum it comprises the local CFT data because they determine all higher
correlation functions in flat space (see chapter 3).

The three-point function of scalar primaries is [2]

〈φ1(x1)φ2(x2)φ3(x3)〉 = c123

x∆1+∆2−∆3
12 x∆1+∆3−∆2

13 x∆2+∆3−∆1
23

, (2.5.6)

where ∆i denotes the dimension of φi.

Generalizing to two scalars and one traceless symmetric operator [71],

〈φ1(x1)φ2(x2)Oµ1...µl
∆3

(x3)〉 = c123 (Zµ1 . . . Zµl − traces)
x∆1+∆2−∆3+l

12 x∆1+∆3−∆2−l
13 x∆2+∆3−∆1−l

23
, (2.5.7)

where
Zµ(x) = xµ13

x2
13
− xµ23
x2

23
. (2.5.8)

Note that only traceless symmetric operators can have non-vanishing three-point
functions with two scalars. Given three points in Rd, d ≥ 2, we can use conformal
invariance to move them on a line, say

x1 = (0, . . . , 0) , x2 = (1, 0, . . . , 0) , x3 =∞ . (2.5.9)

The correlation function is non-zero iff the configuration is invariant under the residual
symmetry SO(d− 1), i. e. if the operators appearing in the correlator transform in
representations R1, R2 and R3 of SO(d), then R1 ⊗R2 ⊗R3 must contain a singlet
of SO(d− 1). For R1 = R2 being the trivial representation, this is only the case if
R3 is a traceless symmetric representation (see, for example, [72]). It follows that
for operators in general representations of SO(d), there can be more than one tensor
structure appearing. Its number is given by

N(R1, R2, R3) = dim(V1 ⊗ V2 ⊗ V3)SO(d−1) , (2.5.10)

where Vi denotes the vector space carrying the representation Ri.

Conformal invariance is not powerful enough to restrict the four-point function
completely. For scalar primaries, it takes the general form

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = 1
x∆1+∆2

12 x∆3+∆4
34

(
x2

14
x2

24

)a (
x2

14
x2

13

)b
︸ ︷︷ ︸

=:K4

G(u, v) , (2.5.11)

where 2a = ∆2−∆1 and 2b = ∆3−∆4. The factor K4 is chosen such that the stripped
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amplitude G(u, v) only depends on the conformally invariant cross-ratios,

u = x2
12x

2
34

x2
13x

2
24
, v = x2

14x
2
23

x2
13x

2
24
. (2.5.12)

This can be understood geometrically. As we saw in eq. (2.5.9), we can move three
points on a line. This is why the two- and three-point functions are so restricted.
Four points however can only be moved in a plane, say,

x4 = (τ, σ, 0, . . . , 0) . (2.5.13)

It is useful to define
z = σ + iτ , z̄ = σ + iτ . (2.5.14)

In Euclidean space, z and z̄ are complex conjugates. If we analytically continue to
Lorentzian signature, τ → it, they become real and independent.

Plugging eqs. (2.5.9) and (2.5.13) into eq. eq. (2.5.12), we see the connection to
the conformal cross-ratios,

u = zz̄ , v = (1− z)(1− z̄) . (2.5.15)

A choice of coordinates like in eqs. (2.5.9) and (2.5.13) is called conformal frame.
It is enough to know a correlator in a conformal frame since the whole correlator
can be recovered from conformal invariance [73]. This explains why the four-point
function depends only on two parameters.

The four-point function for identical scalars is manifestly invariant under permuta-
tions of the points xi, leading to the following conditions on the stripped amplitude
G(u, v),

G(u, v) = G
(
u

v
,

1
v

)
(from swapping 1↔ 2 or 3↔ 4), (2.5.16)

G(u, v) =
(
u

v

)∆φ

G(v, u) (from swapping 1↔ 3 or 2↔ 4). (2.5.17)

Let us remark that even though G(u, v) is not fixed by symmetries alone, it can be
derived from the three-point function by using the operator product expansion, see
chapter 3.

Higher point functions are even less constraint by conformal symmetry. As men-
tioned before, we will see in chapter 3 that they are given by the CFT data, i. e. the
spectrum and three-point functions.
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2.5.2 n-point functions with defect

In presence of defects, operators can acquire a one-point value. We assume the defects
to be normalized, i. e.

〈D(p)(Pα)〉 = 1 . (2.5.18)

Local operators in the bulk acquire a one-point function which form is fixed by con-
formal invariance. Consider a scalar operator Φ(X) with dimension ∆Φ in embedding
space and a defect D(p)(Pα)1. Note that correlator must be independent of a particular
O(d− p)-gauge of the Pα. The only combination invariant under conformal and gauge
transformations is

〈D(p)(Pα)Φ(X)〉 = CDΦ
(
X⊥ ·X⊥

)−∆Φ
2 . (2.5.19)

Since the defect and the local operator are normalized, the constant CDΦ is physically
meaningful.2

In this thesis we will look at scalar external operators only. However, since
exchanged operators in intermediate channels can have arbitrary spin, it is convenient
to keep in mind the following observations. A defect breaks the conformal symmetry
down to Gp = SO(1, p+ 1)× SO(d− p) which is further broken down to SO(p+ 1)×
SO(d− p− 1) by a bulk operator O [54]. Let the defect and the operator transform
in representations RD and RO of SO(d− p) and SO(d), respectively. Then the
one-point function can only be non-vanishing if RD ⊗ RO contains a singlet under
SO(p+ 1) × SO(d− p− 1). As mentioned before, we are only interested in scalar
defects.

For example, an operator in presence of a boundary must be a singlet under the
whole SO(d) rotation group, i. e. only scalars couple to boundaries. For point-like
defects (p = 0) or codimension-2 defects (p = d− 2), we need the operator to be a
singlet under SO(d− 1). Hence, it can only be a traceless symmetric tensor.

In general, more complicated representations can appear. Consider the case of
a line operator (p = 1) in four dimensions (d = 4). We are looking for singlets of
SO(2)×SO(2) in representations of SO(4). The corresponding Lie algebra so(2)×so(2)
can be chosen as the Cartan subalgebra of so(4). Since the action of the Cartan
subalgebra on the weight-space 0 is trivial, highest-weight representations which
include the weight 0 contain a singlet of SO(2) × SO(2). This happens for Young
tableaux ` = (l1, l2) with an even number of boxes.

Next consider the correlation function of the bulk scalar Φ(X) with a defect-local
scalar Ô(Ŷ ) of dimension ∆̂Ô. Defect-local quantities will always carry a hat except if
stated otherwise. Since the operator Ô lives on the defect, the coordinates’ orthogonal

1The discussion can be generalized to bulk operators with spin, see [41].
2The notation aΦ for CDΦ is also common in the literature.
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b

b

⊗
x, x̄ = 0
defect

x̄
=

0 x =
1

x̄
=

1
x =

0

O1(1, 1)
O2(x, x̄)

Figure 2.3: Two-point function configuration in a plane orthogonal to the defect. The defect
is at the origin while the operators O1 and O2 are at points (1, 1) and (x, x̄), respectively.

projection Ŷ ⊥ is zero. Again, invariance under conformal and gauge transformations
dictates

〈D(p)(Pα)Ô(Ŷ )Φ(X)〉 = CDΦ,Ô
(
X⊥ ·X⊥

) ∆̂Ô−∆Φ
2 (−2X · Ŷ )−∆Ô . (2.5.20)

In particular, CDΦ = CDΦ,Î, where Î denotes the defect identity.3

Again, representation theory tells us which representations RÔ of SO(p)×SO(d− p)
⊂ SO(d) can appear for Ô. Since the defect D and the bulk scalar Φ(X) transform
in the trivial representation, RÔ must contain a singlet of SO(p+ 1)× SO(d− p− 1).
This means that Ô is a scalar under the SO(p) parallel rotation and a traceless
symmetric tensor with spin s under the SO(d− p) transverse rotation [41].

Let us turn our attention to the case of two scalar operators in presence of a defect.
Cconformal invariance is not powerful enough to fix the entire correlator. There are
again two cross-ratios (see [41,54] or the discussion in section 2.5.3), which we choose
according to fig. 2.3. Its precise relation to the insertion points X1,2 has been worked
out [49],

(1− x)(1− x̄)
(xx̄) 1

2
= − 2X1 ·X2

(X⊥1 ·X⊥1 ) 1
2 (X⊥2 ·X⊥2 ) 1

2
,

x+ x̄

2(xx̄) 1
2

= X⊥1 ·X⊥2
(X⊥1 ·X⊥1 ) 1

2 (X⊥2 ·X⊥2 ) 1
2
.

(2.5.21)
The correlator of two scalars Φ1,2(X1,2) of dimensions ∆1,2 with a p-dimensional defect
D(p)(Pα) takes the general form

〈D(p)(Pα)Φ1(X1)Φ2(X2)〉 = F(x, x̄)
(X⊥1 ·X⊥1 )

∆1
2 (X⊥2 ·X⊥2 )

∆2
2
, (2.5.22)

where F(x, x̄) is the stripped amplitude with dependence on the cross-ratios only.

3The notation bΦ,Ô for CD
Φ,Ô

is also common in the literature.
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2.5.3 Defect-defect correlators

While some of our new results do concern the configurations considered in the previous
section, our approach covers a more general setup involving two defects of dimension
p and q, respectively. The first systematic discussion of such defect correlators can
be found in [54]. That paper determined the number N of cross-ratios and also
introduced a particular set of coordinates on the space of these cross-ratios. Here we
shall review the latter before we discuss an alternative, and more geometric choice of
coordinates in the next chapter.

In order to study the two-point function of two defect operators D(p)(Pα) and
D(q)(Qβ) that are inserted along surfaces associated with Pα and Qβ, respectively,
we need to single out the invariant cross-ratios. Consider the matrix with elements
Mαβ = Pα · Qβ of conformal invariants. The residual gauge symmetries SO(d− p)
and SO(d− q) which act on the matrix M through left- and right multiplication,
respectively, can be used to diagonalize M . The non-trivial eigenvalues provide a
complete set of independent cross-ratios.

To determine their number we need a bit more detail. First, let us consider the
case in which the hyperplanes that are spanned by Pα and Qβ have no directions in
common. This requires that 2d− p− q ≤ d+ 2 or equivalently d− p ≤ q + 2. If we
assume p ≥ q from now on, the number of cross-ratios is given by N = d− p,

M =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

︸ ︷︷ ︸
d− q

∗ ∗ ∗ ∗ ∗


 d− p

SO(d−p)
−−−−−−−−→

SO(d−q)


∗ 0 0 0 0
0 ∗ 0 0 0

︸ ︷︷ ︸
d− p

0 0 ∗ 0 0

 . (2.5.23)

If d− p > q + 2, on the other hand, the two hyperplanes spanned by Pα and Qβ must
intersect in d− 2− (p+ q) directions. Hence d− 2− (p+ q) of the scalar products are
invariant and there are only d− p− (d− 2− (p+ q)) = q + 2 nontrivial eigenvalues,

M =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

︸ ︷︷ ︸
d− q

∗ ∗ ∗ ∗ ∗


 d− p

SO(d−p)
−−−−−−−−→

SO(d−q)


∗ 0 0 0 0
0 ∗ 0 0 0

︸ ︷︷ ︸
q + 2

0 0 1 0 0

 . (2.5.24)

In total, the number of invariant cross-ratios is therefore N = min(d− p, q+ 2). To be
precise, we point out that the full gauge group is actually given by O(d−p)×O(d− q)
and hence the values on the diagonal are only meaningful up to a sign. One way to
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construct fully invariant cross-ratios is to consider

ηa = tr(MMT )a (2.5.25)

where a = 1, . . . , N . This is the set of cross-ratios introduced in [54].
After having identified the variables, we can write down the two-point function of

defects D(p)(Pα) and D(q)(Qβ),

〈D(p)(Pα)D(q)(Qβ)〉 = F(ηa) . (2.5.26)

2.6 Defect cross-ratios

Before we discuss a few examples in free field theory, we want to consider a second,
alternative set of coordinates, that is more geometric and also will turn out to possess
a very simple relation with the coordinates of the Calogero-Sutherland Hamiltonian.

Roughly, our new parameters consist of the ratio R/r of radii of the spherical
defects along with N − 1 tilting angles θi of the lower (q−)dimensional defect in the
space that is transverse to the higher (p−)dimensional defect. To be more precise,
we place our two spherical defects of dimensions p and q, respectively, such that
they are both centered at the origin Rd. Without restriction we can assume that
the p−dimensional defect of radius R is immersed in the subspace spanned by the
first p+ 1 basis vectors e1, . . . , ep+1 of the d-dimensional Euclidean space. The radius
of the second, q−dimensional defect, we denote by r. To begin with, we insert this
defect in the subspace spanned by the first q + 1 basis vectors e1, . . . , eq+1. Then
we tilt the second defect by angles θ1, . . . , θN−1 in the e1 − ed, . . . , eN−1 − ed+2−N

planes, respectively. In other words we act on the locus of the second sphere with
2-dimensional rotation matrices R(i−1,d+2−i)(θi) in the plane spanned by the basis
vectors ei−1 and ed+2−i for i = 1, . . . , N − 1. This gives a well-defined configuration
of defects, because we have N − 1 ≤ q + 1 ≤ p + 1 < d + 2−N for p ≥ q. With a
little bit of work it is possible to compute the matrix M of scalar products explicitly,
see appendix A for a derivation,

M =



coshϑ
cos θ1

. . . 0
cos θN−1

I


where coshϑ = 1

2

(
r

R
+ R

r

)
.

(2.6.1)
We shall pick ϑ to be a positive real number. Using the general prescription in
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eq. (2.5.25) the cross-ratios ηa that were introduced in [54] take the form

ηa = cosh2a ϑ+ cos2a θ1 + · · ·+ cos2a θN−1 , a = 1, . . . , N . (2.6.2)

From now on we shall adopt the parameters ϑ and θi, i = 1, . . . , N − 1 as the
fundamental conformal invariants for N ≥ 3. While ϑ can be any non-negative real
number, the variables θi take values in the interval θi ∈ [0, π[.

Let us stress once again, that our geometric parameters R/r and θi represent just
one convenient choice. In the special case with p = q = d− 2, the variables η1 and η2

possess a direct geometric interpretation that is based on a slightly different setup in
which one defect is assumed to be flat while the second is kept at finite radius but
displaced and tilted with respect to the first, see [54]. Another important special
case appears for q = 0, i. e. when two bulk fields are placed in the background of a
defect, which we discussed at length in the previous chapter. In particular, we have
introduced a geometric parametrization of the two cross-ratios, namely through the
parameters x and x̄, see eq. (2.5.21). It is not too difficult to work out, see appendix A,
that these are related to the parameters ϑ and θ ≡ θ1 through

x = tanh−2 ϑ+ iθ

2 , x̄ = tanh−2 ϑ− iθ
2 . (2.6.3)

We will use the coordinates x, x̄ as the fundamental conformal invariants for N = 2.
Equation (2.6.3) also shows that the variables ϑ and θi generalize the radial coordinates
that were introduced for N = 2 in [42].

2.7 A free field example

Strongly coupled CFTs can normally be described by the conformal data only, since
explicit expressions in terms of renormalized elementary fields are not available. On
the other hand, free field theory can serve as a starting point in perturbatively
accessible theories, see for example [45]. In free field theories, conformal invariance is
completely determined by dimensional analysis since there are no running coupling
constants.

Consider a free scalar field in d dimensions with two-point function

〈φ(x1)φ(x2)〉 = 1
|x1 − x2|2∆φ

, ∆φ = d

2 − 1 . (2.7.1)
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The following two defects exist in any (not necessarily free) theory,

I(p) = I (trivial defect), (2.7.2)

D(0) = |x1 − x2|2∆φφ(x1)φ(x2) (point-like defect). (2.7.3)

More interesting is the following defect,

D(∆φ) = exp

λ
�

SpR

dpσ φ(σ)

 , p = ∆φ = d

2 − 1 , (2.7.4)

where R is the radius of D(∆φ). For example, this is the scalar Wilson line in four
dimensions [74]. The one-point functions can be calculated by expanding the free
exponential,

〈D(∆φ)φ(0)〉 = λ

�

SpR

dσ 〈φ(σ)φ(0)〉 = λ
Ωp

R∆φ
≡ Cφ

(2R)∆φ
with Cφ = λ

Ω∆φ

2∆φ
, (2.7.5)

where Ωn−1 = 2πn/2/Γ(n/2) is the volume of Sn−1. Likewise, the two-point function
is

〈D(∆φ)φ(x1)φ(x2)〉 = 〈φ(x1)φ(x2)〉+ 〈D(∆φ)φ(x1)〉〈D(∆φ)φ(x2)〉

= 1
|x12|2∆φ

+
C2
φ

(x⊥1 )∆φ(x⊥2 )∆φ
= 1

(x⊥1 )∆φ(x⊥2 )∆φ
F(x, x̄)

(2.7.6)

with the stripped amplitude

F(x, x̄) =
(

(1− x)(1− x̄)
(xx̄) 1

2

)−∆1+∆2
2

+ C2
φ . (2.7.7)

We notice that the two-point function of φ is only mildly deformed by the defect.
Defect-defect correlators are harder to compute due to the integrals involved, but

in four dimensions the line-line correlator can be evaluated to

〈D(∆φ)D(∆φ)〉 = FD(ϑ, θ1, θ2) = exp
[
λ2

�
dσ1dσ2

|σ1 − σ2|2

]
(2.7.8)

= exp
 4πλ2√

sinh2 ϑ+ sin2 θ1

K
(

sin2 θ1 − sin2 θ2

sinh2 ϑ+ sin2 θ1

) , (2.7.9)

where K(m) = π
2 2F1(1

2 ,
1
2 ; 1;m) is the elliptic integral of the first kind. As promised,

the correlator depends on three cross-ratios.



Chapter 3

Conformal blocks

Conformal blocks in presence of defects are the central objects in this thesis. This
chapter is devoted to introduce them in case of four local operators and presents the
various ways to calculate them. In particular, we will show how a Calogero-Sutherland
model arises which paves the way to derive the blocks for defects.

3.1 Operator product expansion

The operator product expansion is one of the main tools to analyze any CFT. In this
section we will see why and how it works.

In any QFT, a quantization consists of foliating the space into codimension one
slices, each endowed with its own Hilbert space. There is a unitary operator between
those Hilbert spaces, the time evolution operator, U(∆t) = eiH∆t, where H is the
Hamiltonian. In an Euclidean CFT, it is convenient to choose quantization slices that
respects the symmetry, i. e. (d − 1)-dimensional spheres Sd−1 located at the origin.
This is called radial quantization. The role of the Hamiltonian is now played by the
dilation operator, U(∆t) = eiD∆t, with the origin corresponding to past infinity.

Consider an operator O∆,`(0) at the origin with dimension ∆ and in some repre-
sentation ` of SO(d). Enclose the operator by some quantization sphere and perform
the path integral over its interior, which results in a state on the boundary. Using
conformal symmetry, we can shrink the quantization sphere, resulting in a state |O∆,`〉.
We can write

O∆,`(0)|0〉 = |O∆,`〉 . (3.1.1)

This is called the state-operator correspondence. The operator corresponding to the
vacuum is the identity operator 1. Of course, we are not restricted to operators at
the origin. Equation (2.2.1) tells us that an operator O∆,`(x) creates an infinite linear
combination of descendant states.

23
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O = |O〉

(a)

O1

O2 =
∑
k

c̃12k Ok

(b)

Figure 3.1: (a) State-operator correspondence: surrounding the operator O by a sphere
and performing the path integral gives the state |O〉. (b) Operator product expansion: A
state created by two operators can be expanded in terms of local operators.

Φ(X)

D(Pα)

=
∑̂
O
CDΦ,Ô

Ô(Ŷ )

D(Pα)

Figure 3.2: Bulk-to-defect expansion: The quantization surface cuts through the defect.
The state induced on the defect is expanded in terms of defect-local operators O.

Now, repeat the discussion with two operators O1(x) and O2(y) inside some
quantization sphere. The state-operator correspondence allows us to expand the state
on the boundary in terms of local operators,

Oa1(x)Ob2(y) =
∑
k

c̃abc12kOck(z) , (3.1.2)

where we made the dependence on the spin indices a, b, c explicit. Grouping together
descendants gives the conformal operator product expansion (OPE),

O1(x)O2(y) =
∑
k

c12kCa(x, y, z, ∂z)Oak(z) , (3.1.3)

where c12k are the constants appearing in the three-point function and the functions
Ca(x, y, z, ∂z) are fixed by conformal symmetry. This can be seen from demanding
that the OPE reproduces the three-point function.

What happens if we introduce defects? Consider a bulk operator Φ(X) near a
defect D. Surround the operator with a quantization sphere that cuts through the
defect, see fig. 3.2. The resulting state on the boundary is not part of the bulk
Hilbert space but rather a Hilbert space decorated with the defect. Using scale
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Ô(X)

D(Pα)

=
∑
O
CDO,Ô

O(X)

Figure 3.3: Defect-expansion: The quantization surface encloses the defect. The state
induced in the bulk is expanded in terms of bulk operators O.

transformations, the quantization sphere can be scaled down to a point on the defect.
Hence, we can expand a bulk operator in terms of defect-local operators.

The other possibility is to expand the defect itself in terms of bulk fields. Consider
a defect (where we allow for a defect-local excitation) and surround it completely with
quantization sphere, see fig. 3.3. The corresponding state on the boundary can be
expanded in terms of bulk data in the usual way. This is called the defect expansion.
We are mostly interested in the case with no defect-local excitation. The expansion
then takes the form

D(Pα) =
∑
O
CDOD∆O(Pα, X, ∂X)O(X) . (3.1.4)

Similar to the bulk OPE, the functions D∆Φ(Pα, X, ∂X) are fixed by conformal
invariance and encode the contributions of the descendants.

3.2 Conformal blocks

The magic happens when we use the OPE inside an n-point function. The conformal
OPE converges whenever we find a sphere separating the two operators from any
other. This allows use to write an n-point function as a sum over (n − 1)-point
functions,

〈O1(x1)O2(x2)O3(x3) . . .On(xn)〉

=
∑
k

c12kC(x1, x2, ∂2)〈Ok(x2)O3(x3) . . .On(xn)〉 . (3.2.1)

This way any correlation function can be calculated in principle once we know the
CFT data and one-point functions. In practice, this can be quite hard.

For concreteness, let us look at the four-point function of four scalar primaries,
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∑
k

c12kc34k

O1

Ok

O4

O2 O3

=
∑
k

c14kc23k

O1

Ok

O2

O4

O3

Figure 3.4: Crossing symmetry of the four-point function.

eq. (2.5.11). Using the OPE we get

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = K4
∑
k

c12kc34kg∆,`(u, v) (3.2.2)

i. e.
G(u, v) =

∑
k

c12kc34kg∆,`(u, v) , (3.2.3)

where the sum runs over primaries and

g∆,`(u, v) = K−1
4 Ca(x1, x2, ∂2)Cb(x3, x4, ∂4)I

ab(x24)
x2∆

24
. (3.2.4)

are called conformal blocks. They encode all the kinematical information of the
exchanged primary operator in representation [∆, `] and its descendants and are fixed
by conformal symmetry (up to a normalization). In other words, the decomposition
in eq. (3.2.4) separates these dynamical data from the kinematical skeleton of the
correlation function. Note that only operators in traceless symmetric representations of
SO(d) can be exchanged (see the discussion of the three-point function in section 2.5).
Equation (3.2.4) fixes the asymptotic behavior of the blocks. In this work, we will
use the normalization of [28],

g∆,`(z, z̄) z,z̄→0→ (zz̄)
∆−`

2 (z + z̄)` + . . . . (3.2.5)

where z, z̄ are defined in eq. (2.5.15). The quantity τ = ∆ − ` is called twist of
the given operator. It will play an important role in the light-cone bootstrap in
section 3.6.

The two possible ways to apply the OPE inside the correlation function are depicted
in fig. 3.4. Since they describe the same four-point function, the two expressions
must agree whenever their region of convergence overlaps. This is called crossing
symmetry and is the key idea of the conformal bootstrap. Decomposing eq. (2.5.17)
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∑
k

c12kCDk

O1 O2

Ok

bulk channel

=
∑
k

CD1,kCD2,k

O1 O2

Ôk

defect channel

Figure 3.5: Crossing symmetry of two bulk fields in presence of a defect.

into conformal blocks yields the famous crossing symmetry equation for a four-point
function of scalar operators φ,

(zz̄)−∆φ
∑
O
c2
φφOg∆,`(z, z̄) = [(1− z)(1− z̄)]−∆φ

∑
O
c2
φφOg∆,`(1− z, 1− z̄) . (3.2.6)

This is the starting point for the numerical and the light-cone bootstrap program which
require a good understanding of the conformal blocks numerically and analytically.
This thesis is devoted to provide a better understanding of the blocks in cases which
involve defects, hopefully to pave the way for bootstrapping.

Even though we could evaluate eq. (3.2.4) directly, this can be quite hard. There
are more elegant ways to determine the conformal blocks, making the physical and
group theoretical structure more accessible.

Turning our attention to the case with defects, we recall the two-point function,

〈D(p)(Pα)Φ1(X1)Φ2(X2)〉 = F(x, x̄)
(X⊥1 ·X⊥1 )

∆1
2 (X⊥2 ·X⊥2 )

∆2
2
. (3.2.7)

It has two conformal block expansions: the bulk channel and the defect channel,
depicted in fig. 3.5 and to be described below.

The bulk channel expansion is obtained by using the standard operator product
expansion for two local bulk fields (only traceless symmetric tensors can appear)
before evaluating the one-point functions of the resulting bulk fields in the background
of the defect,

F(x, x̄) =
(

(1− x)(1− x̄)
(xx̄) 1

2

)−∆1+∆2
2 ∑

k

c12kC
D
k f

p, a, d
∆k, `k

;x, x̄
 , (3.2.8)

where we made the dependence on the defect dimension p, the relevant information
about the external scalars a = (∆2 − ∆1)/2, and the dimension d explicit. We
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normalize the blocks such that1

f

p, a, d
∆, `

;x, x̄
 x,x̄→1−→ [(1− x)(1− x̄)]∆−`

2 (2− x− x̄)` . (3.2.9)

The conformal field theory data in this channel corresponds to the bulk three-point
coupling c12k multiplied with the coefficients CDk of the one-point function of scalar
operators. The general form of the bulk channel blocks cannot be found in closed-form
in the existing literature, see however [42] for efficient power series expansions. For
some selected cases the defect block can be mapped to the conformal blocks for
four scalars in standard bulk conformal field theory, see sections 2.5.3, 4.4 and 4.5
and appendix B. Our results in chapter 5 generalize these isolated results and thereby
fill an important gap.

Local operators in the bulk of a defect conformal field theory may be expanded in
terms of operators that are inserted along the defect. Applying the bulk-to-defect
expansion to the external operators (only transverse traceless symmetric tensors can
appear) results in the following conformal block expansion

F(x, x̄) =
∑
k

CD1,kCD2,k f̂

p, a, d
∆̂k, sk

;x, x̄
 , (3.2.10)

where k runs through the set of all intermediate fields Ôk of weight ∆̂k and transverse
spin sk. The blocks f̂(x, x̄) factorize in terms of the SO(d− 1, 1)×SO(d− p) symmetry
group. This simplifies the analysis significantly and it is possible to write f̂(x, x̄) as a
product of hypergeometric functions [41],

f̂

p, a, d
∆̂k, sk

;x, x̄
 = x

∆̂−s
2 x̄

∆̂+s
2 2F1

(
−s, d− p2 − 1, 2− d− p

2 − s, x
x̄

)

× 2F1

(
∆̂, p2 , ∆̂ + 1− p

2 , xx̄
)
.

(3.2.11)

In the following we shall mostly focus on the bulk channel and its generalizations.
As an aside let us comment on the boundary case which is special, since the

transverse space is one-dimensional (p = d− 1). In this case the two-point function
depends only on the first invariant in eq. (2.5.21),

〈D(d−1)(Pα)Φ1(X1)Φ2(X2)〉 = 1

(X⊥1 ·X⊥1 )
∆1
2 (X⊥2 ·X⊥2 )

∆2
2
F
(

(1− x)(1− x̄)
(xx̄) 1

2

)
.

(3.2.12)
The conformal block expansion of this correlator was originally studied in [40], and

1Note that the normalization differs from [41], i.e. f there = 2−`fhere. For the scalar four-point blocks, we adopt a
normalization of [28]. To switch to conventions of [35,39], one should multiply our scalar blocks by (d/2−1)`′/(d−2)`′ .
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the boundary bootstrap was implemented in [46–48].
Finally, let us generalize eq. (2.5.22) and the bulk channel blocks in eq. (3.2.8) to

an arbitrary pair of defects. Using the defect expansion in eq. (3.1.4) we can relate
the correlator to one-point data,

〈D(p)(Pα)D(q)(Qβ)〉 = F(ϑ, θi) =
∑
k

CD
(p)

k CD
(q)

k fD

p, q, d
∆k, `k

;ϑ, θi

 , (3.2.13)

where the spin ` is labeled by a set of even integers ` = (l1, . . . , lN−1) with l1 ≥
· · · ≥ lN−1 ≥ 0. Using the defect expansion it is also possible to infer the asymptotic
behavior of the defect blocks fD. In the coordinates we introduced in section 2.6, we
normalize the blocks such that

fD

p, q, d
∆, `

;ϑ, θi

 ϑ→∞→ 4∆e−∆ϑ
N−1∏
i=1

(−2 cos θi)li . (3.2.14)

The kinematical information that enters through the defect blocks fD(ϑ, θi) which
are the main objects of interests for the present work. Although they share a similar
name, they should not be confused with the defect channel blocks introduced in the
last section. It is not known yet how defect channel blocks generalize to defect-defect
correlators.

3.3 Computation of four-point conformal blocks

In this section we will describe the various ways that have been found to compute
four-point conformal blocks.

3.3.1 Shadow formalism

Historically, the first technique to access the conformal blocks was introduced in the
70s [32]. They used the shadow operator Õd−∆,` (see section 2.2),

Õd−∆,` =
�
ddY

1
(−2X · Y )d−∆+`Od−∆,`(Y ) , (3.3.1)

to define the following projection operator

P̃∆,` = 1
NO

�
ddX |O∆,`(X)〉〈Õd−∆,`(X)| ,

NO = πd
(∆− 1)`Γ

(
∆− d

2

)
Γ(∆ + `)

(d−∆− 1)`Γ
(
d
2 −∆

)
Γ(d−∆ + `) .

(3.3.2)
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Inserting this operator in into the four-point function eq. (3.2.2),

〈φ1(x1)φ2(x2)|P̃∆,l|φ3(x3)φ4(x4)〉 = K4c12Oc34OF∆,`(u, v) , (3.3.3)

and using the OPE, we can see that F∆,`(u, v) can almost be identified with the
conformal block in eq. (3.2.4). Actually, the symmetry ∆↔ d−∆ of P̃∆,` implies that
F∆,`(u, v) is a linear combination of the block g∆,`(u, v) and its shadow gd−∆,`(u, v) [35].
The latter contribution can be removed by noting that they transform differently
under a monodromy transformation (c. f. eq. (3.2.5)) [75],

g∆,l(z, z̄)→ e2iπ∆g∆,l(z, z̄) , for z → e4πiz , z̄ fixed. (3.3.4)

The linear combination of blocks appearing in F∆,`(u, v),

F∆,`(u, v) = g∆,` + K∆,`

Kd−∆,`
gd−∆,` ,

K∆,` = Γ(∆− 1)
Γ
(
∆− d

2

)κ∆+` , κβ =
Γ
(
β
2 + a

)
Γ
(
β
2 − a

)
Γ
(
β
2 + b

)
Γ
(
β
2 − b

)
2π2Γ(β − 1)Γ(β) ,

(3.3.5)
is called conformal partial wave2 and is a useful quantity on its own (see section 5.3 for
an alternative derivation of the constant K∆,`). Unlike the individual block g∆,`(z, z̄),
the partial wave F∆,`(u, v) is single-valued on the Euclidean domain z̄ = z∗ [76] and
is therefore used to invert the expansion eq. (3.2.2) on the principal series [28].

In [55] this approach was generalized to certain defect configurations. However,
the projection operator in eq. (3.3.2) is quite easy to write down, though the resulting
integral can be hard to evaluate.

3.3.2 Casimir equation

This approach is due to Dolan and Osborn [33]. Consider another projection operator
on the conformal multiplet,

P∆,l =
∑

α,β=O,PO,P 2O,...
|α〉N−1

αβ 〈β| , (3.3.6)

where Nαβ is the Gram matrix of the multiplet. Inserting P∆,l in the four-point
function and performing the OPE, we see that the result is the conformal block,

〈φ1(x1)φ2(x2)|P∆,l|φ3(x3)φ4(x4)〉 = K4c12Oc34Og∆,l(u, v) . (3.3.7)

2There different meanings of conformal partial wave in the literature. Here the nomenclature of [28] is adopted.
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Recall from eq. (2.2.13) that the quadratic Casimir acts on a traceless symmetric
primary states as

C|∆, l〉 = C∆,l|∆, l〉 , C∆,l = ∆(∆− d) + l(l + d− 2) . (3.3.8)

and therefore
CP∆,l = P∆,lC = C∆,lP∆,l . (3.3.9)

Finally, we need the action of the Casimir on φ3(x3)φ4(x4),

C|φ3(x3)φ4(x4)〉 = D34|φ3(x3)φ4(x4)〉 , D34 = −1
2(Lab3 + Lab4 )(L3,ab + L4,ab)

(3.3.10)
where Labi is the differential operator giving the action of Lab on φi(xi).

Now, acting with D34 on eq. (3.3.7) yields the Casimir equation, a differential
equation for the conformal blocks,

Dg∆,l(z, z̄) = 1
2C∆,lg∆,l(z, z̄) , (3.3.11)

where

D = z2(1− z)∂2
z + z̄2(1− z̄)∂2

z̄ − (a+ b+ 1)(z2∂z + z̄∂z̄)− ab(z + z̄)

+ (d− 2) zz̄

z − z̄
((1− z)∂z − (1− z̄)∂z̄) .

(3.3.12)

The asymptotic behavior of the blocks in eq. (3.2.5) severs as a boundary condition
for the solutions of eq. (3.3.11).

In two dimensions, the Casimir equations factorizes and the solution is [33, 34]

g
(2d)
∆,l = k∆+l(z)k∆−l(z̄) + k∆−l(z)k∆+l(z̄) ,

kβ(x) = x
β
2 2F1

(
β
2 + a, β

2 + b

β
;x
)
,

(3.3.13)

where 2a = ∆2 − ∆1 and 2b = ∆3 − ∆4. Using shift operators for the dimension,
d→ d+2, one arrives at closed form expressions in even dimensions [34]. For example,
in 4d,

g
(4d)
∆,l = zz̄

z − z̄
(k∆+l(z)k∆−l−2(z̄)− k∆−l−2(z)k∆+l(z̄)) . (3.3.14)

In odd dimensions, no closed form for the solutions is known. However, one can write
down series expansions, which we will introduce next.
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x4 = −1 1 = x3

x2 = ρ

x1 = −ρ

Figure 3.6: Radial coordinates

3.3.3 Radial expansion

In order to write down a series expansion for the conformal blocks, we need a suitable
basis of functions to expand in. One physically motivated basis is given by the radial
quantization [37]. Consider the conformal frame depicted in fig. 3.6, where each two
operators live on a quantization slice. Let n and n′ be the unit vectors pointing to x2

and x3, respectively. We can introduce the radial coordinates [36],

ρ = reiθ , cos θ = n · n′ , (3.3.15)

which are related to z, z̄ via

z = 4ρ
(1 + ρ)2 , z̄ = 4ρ̄

(1 + ρ̄)2 . (3.3.16)

The l. h. s. of eq. (3.3.7) now becomes

〈φ3(1,n′)φ4(1,−n′)|P∆,l|φ1(r,−n)φ2(r,n)〉

= 〈φ3(1,n′)φ4(1,−n′)|P∆,lr
D|φ1(1,−n)φ2(1,n)〉 ,

(3.3.17)

where we used that dilation operator plays the of the Hamiltonian in radial quantiza-
tion.

The conformal multiplet [∆, l] consists of descendants |∆ + m, j〉 of dimension
∆+m, m ≥ 0, and in traceless symmetric representations j = max(l−m, 0), . . . , l+m.
The latter implies that the dependence of a descendant on the vector n must be
(nµ1 . . .nµj − traces). Contracting two such tensor structures in eq. (3.3.17) results in
a Gegenbauer polynomial C

d−2
2

j (n · n′ = cos θ).
Now we are a ready to write down an ansatz,

g∆,l(ρ, ρ̄) =
∞∑
m=0

r∆+m
l+m∑

j=max(l−m,0)
w(m, j)C

d−2
2

j (cos θ) , (3.3.18)

with coefficients w(m, j). The OPE limit eq. (3.2.5) implies w(0, l) = l!
(d/2−1)! .
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Higher w(m, l) can be calculated recursively by plugging this ansatz into the Casimir
eq. (3.3.11) [37,77].

In [42] a similar radial expansion for defects blocks was derived. However, in
this thesis we will focus on the Calogero-Sutherland approach described in the next
section.

3.3.4 Calogero-Sutherland model

Actually, the Casimir eq. (3.3.11) has a surprising connection to a well-known problem
in quantum mechanics. Applying a change of coordinates [57],

z = − sinh−2 u1

2 , z̄ = − sinh−2 u2

2 , (3.3.19)

yields− ∂2

∂u2
1
− ∂2

∂u2
1

+
(

(a+ b)2 − 1
4

)( 1
sinh2 u1

+ 1
sinh2 u2

)
− ab

(
1

sinh2 u1
2

+ 1
sinh2 u2

2

)

+ (d− 2)(d− 4)
(

1
sinh2 u1−u2

2
+ 1

sinh2 u1+u2
2

)ψε(u1, u2) = εψε(u1, u2) ,

(3.3.20)
where

ψε(u1, u2) = 2d−2∆ [(1− z)(1− z̄)]a+b
2 + 1

4

(zz̄) d−1
2

|z − z̄|
d−2

2 g∆,l(z, z̄) , (3.3.21)

2a = ∆2 −∆1 , 2b = ∆3 −∆4 , ε = −1
2C∆,l −

d2 − 2d+ 2
4 . (3.3.22)

This differential equation is the Hamiltonian of the two-variable Calogero-Sutherland
model. It is an integrable model that has been extensively analyzed in the literature
[58, 59, 78]. Especially, its solution theory provides us with conformal blocks that are
analytical in spin, which comes in handy when using the Lorenztian inversion formula
in [28].

In general the Calogero-Sutherland Hamiltonian we will consider in this thesis is
of the form

HCS = −
N∑
i=1

∂2

∂τ 2
i

+ k3(k3 − 1)
2

N∑
i<j

[
sinh−2

(
τi + τj

2

)
+ sinh−2

(
τi − τj

2

)]

+
N∑
i=1

[
k2(k2 − 1) sinh−2 (τi) + k1(k1 + 2k2 − 1)

4 sinh−2
(
τi
2

)]
. (3.3.23)

The coupling constants ki, i = 1, 2, 3 that appear in the potential are referred to as
multiplicities in the mathematical literature. In principle, these can assume complex
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values though we will mostly be interested in cases in which they are real. The
coordinates τi may also be complex in general. Later we will describe their values for
defect configurations in more detail. The case N = 1 is a bit special since it involves
only two coupling constants.

The Calogero-Sutherland Hamiltonian possesses two different interpretations. We
can think of it as describing a system of N interacting particles that move on a
one-dimensional half-line with external potential. The external potential is given by
the terms in the second line of eq. (3.3.23). These terms contains two of the three
coupling constants, namely k1 and k2. The interaction terms, on the other hand,
involve the third coupling constant k3. Alternatively, we can also think of a scattering
problem for a single particle in an N−dimensional space. We will mostly adopt the
second view.

Is is not by accident that we recovered the Calogero-Sutherland model. By a
procedure described in [79,80], we are guaranteed to get it from Hamiltonian reduction
of the conformal group under certain assumptions. We will redo this analysis in
presence of defects in chapter 4, and we will describe the solution theory in detail in
chapter 5.

3.4 Known blocks for defects

As we mentioned before, these blocks are known in a few examples where they can be
related to the blocks of four scalar bulk fields. Furthermore, in [42] a radial expansion
similar to section 3.3.3 is described. The task of computing conformal blocks for
defects will be the main point of this thesis and will be handled in the next chapters.

The first example we want to discuss here is taken from [43]. It applies to the case
in which two bulk fields in d = 4 dimensions are inserted into the background of a
line defect, i. e. p = 1 and q = 0. In order to relate the defect block f(x, x̄) to the
blocks g(γ, γ̄) of four scalar fields, let us consider the following change of coordinates

γ =
(1− x

1 + x

)2
, γ̄ =

(1− x̄
1 + x̄

)2
. (3.4.1)

which maps the Euclidean region of the defect coordinates x, x̄ to the Euclidean region
of the four-point cross-ratios γ, γ̄. Given this change the following identity holds [43]

f

1, 0, 4
∆, `

;x, x̄
 ∝ (γγ̄)− 1

4 g

1
4 ,−

1
4 , 3

∆+1
2 , `2

; γ, γ̄
 . (3.4.2)

The lower indices on the block g refer to the conformal weight and spin of the
intermediate field. The upper indices (a, b, d) = (1/4,−1/4, 3) contain the relevant
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information about the external i. e. the parameters a = (∆2−∆1)/2, b = (∆3−∆4)/2
and the dimension d. Note that the four-point block on the right hand side is the
one with ∆1 −∆2 = ∆3 −∆4 = −1/2 and dimension d = 3 even though the original
defect setup is in d = 4 dimensions and involves two bulk fields of the same weight.

A second example for a relation between defects and scalar four-point was pointed
out in [54]. Conformal blocks for the two-point function of defects of dimension
p = q = d− 2 can be mapped to the four-point function of scalars with the following
relation between the different variables

η1 = 2(1 + v)
u

, η2 = 2(1 + 6v + v2)
u2 (3.4.3)

where u and v are related to the usual cross-ratios z and z̄ as u = zz̄ and v =
(1− z)(1− z̄).

With this change of variables the relation of [54] reads

fD

d− 2, d− 2, d
∆, `

; ηa

 = g

0, 0, d
∆, `

; z, z̄
 . (3.4.4)

As in the previous example, the Euclidean region of the defect block is mapped to
a pair of complex conjugate variables z, z̄ and hence to the Euclidean region of the
four-point blocks. The scalar block on the right hand side is the one with a = b = 0
and the same dimension d as on the left hand side.

Another relation between blocks was suggested in [41]. These authors considered
two bulk fields, i. e. q = 0, in the presence of a defect of dimension p = d − 2 and
proposed the following relation between the corresponding defect blocks in the bulk
channel with four-point blocks

f

d− 2, 0, d
∆, `

;x, x̄
 ∼ g

0, 0, d
∆, `

; 1− x, 1− 1
x̄

 . (3.4.5)

Let us point out, however, that the relation (3.4.5) does not map the Euclidean region
of the defect block to the Euclidean region of the scalar four-point block. In fact,
it maps to a Lorentzian region where the bulk fields become light-like separated.
Hence, any relation of the form (3.4.5) involves an analytic continuation. Since the
blocks possess branch cuts, this continuation requires additional choices. As it stands,
eq. (3.4.5) only describes a relation between the parameters of the relevant Casimir
equations. This is why we put a ∼ in between the left- and the right- hand side.

As we will see, the technology presented in the next chapter will explain all these
relations and vastly generalize them, through a (re-)interpretation as symmetries of
Calogero-Sutherland models.
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3.5 Inversion formulas for scalar four-point blocks

The idea behind the Euclidean inversion formula in [81] is to extract the operator
product coefficients from the correlator. While the Euclidean inversion formula is
not analytical in spin, it can be transformed into a Lorentzian formula that is [28].
Analyticity in spin provides control over individual OPE coefficients in the contexts
of large spin expansions [24–27,82,83]. Here, we outline the results of [28].

First we need to turn the sum over the conformal dimensions ∆ in eq. (3.2.3) into
an integral such that the single-valued conformal partial waves F∆,` of section 3.3.1
appear [76],

G(z, z̄) = 112134 +
∞∑
`=0

d/2+i∞�

d/2−i∞

d∆
2πi c(∆, `)F∆,`(z, z̄) . (3.5.1)

The shadow coefficients c(∆, `) are defined such that3

c12Oc34O = − Res
∆′=∆

c(∆′, `) (∆ generic) , (3.5.2)

where the operator O in the intermediate channel has conformal weight ∆ and spin `.
Assuming orthogonality of the partial waves F∆,`, we can integrate against them and
obtain the Euclidean inversion formula,

c(∆, `) = N(∆, `)
�

C

d2z µ(z, z̄)F∆,`(z, z̄)G(z, z̄) ,

N(∆, `) = K∆,`

Kd−∆,`

Γ
(
`+ d−2

2

)
Γ
(
`+ d

2

)
2πΓ (`+ 1) Γ (`+ d− 2) ,

µ(z, z̄) =
∣∣∣∣z − z̄zz̄

∣∣∣∣d−2 [(1− z)(1− z̄)]a+b

(zz̄)2 ,

(3.5.3)

where K∆,` is defined in eq. (3.3.5). There are some subtleties regarding convergence
and contours which one has to take of [28]. However, they are of no concern to us in
what follows.

In this thesis we describe the necessary steps to derive the blocks and partial waves
for defect configurations which can be eventually used to write down the Euclidean
inversion formula in this case [84].

In order to derive the Lorentzian inversion formula, we need to look at the
Lorentzian kinematics, where z, z̄ become real and independent. This region is most
conveniently understood in terms of the radial coordinates of eq. (3.3.15). In the
region 0 < ρ, ρ̄ < 1 all points are space-like separated and the physics is essential
Euclidean, depicted in fig. 3.7a. The region 0 < ρ < 1 < ρ̄, depicted in fig. 3.7b, is

3This formula has to be corrected for non-generic ∆, see [28] for details.
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x2 x1

ρ̄

ρ

x4 = (ρ, ρ̄)x3 = −x4

(a) Euclidean-like domain 0 < ρ, ρ̄ < 1.

ρ̄

. . .

. . .

ρ

(ρ, ρ̄)

(b) Lorentzian domain 0 < ρ < 1 < ρ̄.

Figure 3.7: Domains in Lorentzian kinematics. In order to pass from the Euclidean-like
region (a) to the Lorentzian region (b), we need to cross two light-cones, once of x1 and
once of x2.

more interesting: the distances x4 − x1 and x2 − x3 become time-like separated. Now
we wish to analytic continue the inversion formula (in terms of the cross-ratios ρ, ρ̄) in
eq. (3.5.3) to the Lorentzian region. This is a quite involved task carried out in [28],
see also [85] for a derivation in terms of space-time positions. Either way, the result is

c(∆, `) = ct(∆, `) + (−1)`cu(∆, `) , (3.5.4)

ct(∆, `) = κ∆+`

4

1�

0

d2z µ(z, z̄)g`+d−1,∆−d+1(z, z̄) dDiscG(z, z̄) . (3.5.5)

where κβ is defined in eq. (3.3.5). A few comments are in order. First of all, the
double discontinuity of the stripped amplitude appears,

dDiscG(ρ, ρ̄) = cos(π(a+ b))G(ρ, 1/ρ̄)

− 1
2e

+iπ(a+b)G(ρ, ρ̄− i0)− 1
2e
−iπ(a+b)G(ρ, ρ̄+ i0) .

(3.5.6)

This comes from the fact that the amplitude posses a branch-point on the light-cone
along the path of analytic continuation. Because we simultaneously move x3,4 across
the light-cones of x2,1, respectively, we collect the double discontinuity of the amplitude.
Physically, this can be understood as the double commutator,

dDiscG(ρ, ρ̄) = −1
2〈[O2(−1),O3(−ρ)][O1(1),O4(ρ)]〉 ≥ 0 . (3.5.7)

Positivity follows either from the so-called Rindler positivity (valid in any QFT) [86–88]
or positivity of OPE coefficients in unitary CFTs [28,89,90].

The u-channel contribution in eq. (3.5.4) comes from exchanging operators O1 ↔
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O2. Equivalently, we can change the integration region to (−∞, 0) in eq. (3.5.5) and
taking the double discontinuity around ∞.

Finally, eq. (3.5.5) is manifestly analytic in spin.4 The integral converges if Re ` is
large enough, in unitary theories convergence is guaranteed for ` > 1 [28]. In the next
section we will discuss its application to the light-cone bootstrap.

3.6 Light-cone bootstrap

The light-cone bootstrap allows to extract data analytically from the crossing-symmetry
equations at large spin, showing the existence of double-twist operators [25,26]. In
this section we want to outline the basic results for bulk fields in order to apply the
techniques to defects in section 4.7.

The light-cone limit is given by z, 1− z̄ � 1.5 Consider the crossing-equation for
four identical scalars, eq. (3.2.6), in the light-cone limit,

z−∆φ + · · · =
∑
O
c2
φφO(1− z̄)

∆−`
2 −∆φk∆+`(1− z) + . . . . (3.6.1)

We are assuming a twist gap above the identity which always the case for unitary
theories in d > 2. Then the left-hand side is dominated by the unit operator
z−∆φ(1 +O(1− z̄)) because the small z limit singles out lowest twist operators, see
eq. (3.2.5). On the right-hand side no single term dominates in the small z limit.
Instead, we have expanded the blocks in the small 1− z̄ limit [33, 34],

g∆,`(1− z, 1− z̄) = (1− z̄)
∆−`

2 (k∆+`(1− z) +O(1− z̄)) ,

kβ(x) = x
β
2 2F1

(
β
2 ,

β
2

β
;x
)
.

(3.6.2)

We see that each block on the right-hand side has a logarithmic singularity in the
small z limit, whereas the unit operator has a power-law behavior. We see that we
need an infinite number of blocks in the limit ∆+ `→∞ while ∆− `→ 2∆φ (because
the left-hand side is independent of z̄). This is the family of double-twist operators
[φφ]0. The OPE coefficients are given by [25]

c2
φφ[φφ]0

`→∞≈ 23−2∆φ−2`√π
Γ(∆φ)2 `2∆φ− 3

2 . (3.6.3)

Precisely speaking, this is only true for asymptotic density of the coefficients. The
density could be distributed in many ways. The analyticity in spin of the Lorentzian

4In [39] an explicit expression for the conformal blocks analytic in spin is derived.
5Sometimes, this is called the double light-cone limit, whereas the light-cone limit is z � 1− z̄ � 1. We will not

make this distinction here.
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inversion formula on the other hand shows that the OPE coefficients are distributed
in the simplest way. For instance, this is required in the context of conformal Regge
theory [76, 91].

One may consider subleading contributions in twist beyond the unit operator on
the left-hand side of eq. (3.6.1). This results in asymptotic corrections in 1/` to
the conformal dimension and OPE coefficients of the double-twist operators. Again,
using the inversion formula one may compute the corrections at finite spin `, at least
numerically. Furthermore, the convergence of the integral for Re ` > 1 explains why
the light-cone bootstrap matches the numerical bootstrap results for spins down to
` = 2.

Let us analyze the light-cone limit z, 1 − z̄ � 1 using the Lorentzian inversion
formula in detail. The spectrum arises from singularities in ∆ in eq. (3.5.2) which
originate from the z → 0 limit of the Lorentzian inversion formula in eq. (3.5.5).
Expanding the integrand in z suggests the definition of a generating function6 [28],

Ct(z, β) ≡
1�
z

dz̄(1− z̄)a+b

z̄2 κβkβ(z̄) dDiscG(z, z̄) , (3.6.4)

where the poles of the shadows coefficients can be expressed in terms of the generating
function as

ct(∆, `)
∣∣∣
poles

=
1�

0

dz

2z z
`−∆

2

 ∞∑
m=0

zm
m∑

k=−m
B

(m,k)
∆,` Ct(z,∆ + `+ 2k)

 . (3.6.5)

The coefficients B(m,k)
∆,` are fixed by conformal invariance with B(0,0)

∆,` = 1. They can be
either calculated recursively using the quadratic Casimir equation or from the known
solution of the N = 2 CS-Hamiltonian that is analytic in spin [39].

As before we are interested in the contribution of the identity operator in the
t-channel,

G(u, v) =
(
u

v

)∆φ

. (3.6.6)

Plugging the identity into eq. (3.6.4) yields in the limit z → 0

Ct(z, β) = z∆φ

1�

0

dz̄(1− z̄)a+b

z̄2 κβkβ(z̄) dDisc
(1− z̄

z̄

)∆φ

= z∆φ

Γ2 (∆φ)
Γ2
(
β
2

)
Γ (β − 1)

Γ
(
β
2 + ∆φ − 1

)
Γ
(
β
2 −∆φ + 1

) .
(3.6.7)

6The integration range is restricted to z̄ > z in order to avoid over-counting.
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Note that the integral is dominated by z̄ → 1 at large spin `. This justifies the
consideration of the unit operator only, as we did in light-cone limit in eq. (3.6.1).
Furthermore, the contribution of the unit operator cannot be canceled by any other
operator at large spin `.

We see that eq. (3.6.5) has poles in z whenever ∆ − ` = 2∆φ. Including the
identical u-channel contribution, eq. (3.5.2) yields for the OPE coefficients

c2
φφ[φφ]0 = [1 + (−1)`] (∆φ)2

`

l! (2∆φ + `− 1)`
, `→∞ . (3.6.8)

We conclude that the OPE coefficients of the double-twist operators at large spin are
given by their values in mean field theory [92].



Chapter 4

Calogero-Sutherland approach to
conformal blocks

In this chapter we want to describe a fully systematic framework for the Casimir
equations of conformal blocks for correlation functions of two defects. Rather than
working with the popular embedding space, we shall realize all blocks as functions
on the conformal group itself. If the latter is equipped with an appropriate set of
coordinates, the Casimir equations assume a universal form. In fact, they can be
phrased as an eigenvalue problem for an N -particle Calogero-Sutherland system.
This follows the ideas of [93–95] who showed how to obtain a Calogero-Sutherland
Hamiltonian from the harmonic analysis on Lie groups. See also [79,80] and [39,57,
61, 96] for applications to four-point blocks. We will review the derivation in the first
section, relate the abstract coordinates to physical setup in the second and discuss
some immediate consequences of the equations and their symmetries afterwards.
Finally, we will derive the Lorentzian inversion formula for the defect blocks.

4.1 Harmonic approach to defect blocks

In order to understand the connection between conformal blocks and the Calogero-
Sutherland model, we will employ a more group theoretic approach to the blocks. We
will follow the discussion in [61] but adjust it to the case involving defects.

As we have stated before, a p-dimensional conformal defect breaks the conformal
group G = SO(1, d+ 1) down to the subgroup

Gp = SO(1, p+ 1)× SO(d− p) ⊂ G . (4.1.1)

In order to define the space of blocks for two defects D(p) and D(q) we must first
choose two finite dimensional irreducible (unitary) representations πL and πR of the

41
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groups Gp and Gq. Here we shall restrict to scalar blocks from the very beginning
which means that πL and πR are assumed to be one-dimensional. For p, q 6= 0, the
only one-dimensional representation is the trivial one. Only if either q or even p and
q vanish, one can have a non-trivial one-dimensional representation for which the
generator of dilations is represented by a complex number. We shall denote these
parameters by b and a, respectively. If p, q 6= 0 the space of conformal blocks is given
by

Γpq = { f : G→ C | f(hLghR) = f(g) ; hL ∈ Gp, hR ∈ Gq } , (4.1.2)

i.e. it consists of all complex valued functions on the conformal group that are invariant
with respect to left translations by elements hL ∈ Gp and to right right translations
by elements hR ∈ Gq. When q = 0 but p 6= 0, translations with elements

d(λ) =
 cosh λ sinh λ

sinh λ cosh λ

 (4.1.3)

of the subgroup D = SO(1, 1) ∈ G0 are accompanied by a non-trivial phase shift

Γap = { f : G→ C | f(hLgdh′R) = e−2aλf(g) ; hL ∈ Gp, h
′
R ∈ SO(d) } . (4.1.4)

In case both p and q vanish, finally, the resulting space of scalar four-point blocks is
given by [61]

Γba = { f : G→ C | f(hLgdh′R) = e2(b−a)λf(g) ; h′L, h′R ∈ SO(d) } . (4.1.5)

In all three cases, the elements of the space Γ are uniquely determined by the values
they take on the double quotient Gp\G/Gq. This two-sided coset parametrizes the
space of cross-ratios. The precise relation between cross-ratios and coordinates on
the conformal groups will be discussed below. For the moment let us only check that
the double quotient is N -dimensional. In order to see that, we anticipate from our
discussion of coordinates below that a point on the double quotient is stabilized by
the subgroup

Bpq = SO(p− q)× SO(|d− p− q − 2|) ⊂ Gp, Gq ⊂ G . (4.1.6)

Once this is taken into account, it is is straightforward to compute the dimension of
the double coset space,

dimGp\G/Gq = dimG− dimGp − dimGq + dimBpq = N .

All this is valid for any choice of p, q including p = q = 0. In the latter case, the double
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coset coincides with the one that was introduced in the context of scalar four-point
blocks [61].

The space Γ of conformal blocks comes equipped with an action of several differential
operators. In fact, the Casimir elements of the conformal group G give rise to
differential operators for functions on the conformal group with the usual Laplacian
associated to the quadratic Casimir element. Higher order differential operators come
with the higher order Casimir elements. These differential operators on the group
commute with both left and right translation and hence they descend to a set of
commuting differential operators on the space Γ. By definition conformal blocks are
eigenfunctions of these differential operators, i. e. we obtain a decomposition in to
intermediate channels

Γ =
⊕
∆,`

Γ(∆,`) . (4.1.7)

In deriving the results of this thesis our main task is to evaluate the quadratic Casimir
element on the quotient Gp\G/Gq. This is facilitated by a choice of coordinates on
the conformal group that is adapted to the geometrical setup. More precisely, via the
Cartan decomposition we can parametrize elements g ∈ G of the conformal group as

g = h′La(τ)hR hR ∈ Gq , h
′
L ∈ Gp/Bpq . (4.1.8)

The choice of coordinates for elements hR ∈ Gq of the subgroup Gq is not important.
In order to parametrize the subgroup Gp one should first choose coordinates on
the subgroup Bpq and then extend these to coordinates of Gp. Elements h′L of the
(dimGp − dimBpq)-dimensional quotient Gp/Bpq do not depend on the coordinates
on Bpq. In order to factorise elements g of the conformal group as in eq. (4.1.8), we
need N additional coordinates which parametrize the factor a = a(τ) in the middle.
This takes the form

a(τ) = eτiMi−1,p+1+i ∈ Apq where Mi−1,p+1+i , i = 1, . . . , N

are the usual generators of SO(1, d+ 1). In particular, the generators Mi−1,p+1+i with
i ≥ 3 are generators of rotations in the (i− 2, p+ i)-plane while

M0,p+2 = 1
2 (Pp+2 −Kp+2) , M1,p+3 = 1

2 (Pp+3 +Kp+3)

are linear combinations of infinitesimal translations and special conformal transfor-
mations. The various subgroups and the generators Mi−1,p+1+i of the torus A are
illustrated in figure 4.1. Let us note that the generators Mi−1,p+1−i commute with
elements in the subgroup Bpq, a result we anticipated above.
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Figure 4.1: The figure illustrates our choice of coordinates on the conformal group. The
blocks in red/green correspond to the left/right group Gp/Gq while the additional generators
Mi−1,p+1+i are represented by block dots. The subgroup Bpq of elements that commute
with Mi−1,p+1+i, i = 1, . . . , N is shown as the shaded area. Obviously, it is contained in the
intersection of Gp and Gq (brown area).

Once we have fixed our coordinates on G it is straightforward to compute first the
metric and then the Laplace-Beltrami operator ∆LB on G. The metric on the group
manifold G is given in terms of the Killing form. In local coordinates,

gαβ(x) = −2 trh−1∂αhh
−1∂βh , h ∈ G . (4.1.9)

The formula of the Laplace-Beltrami operator on any Riemannian manifold is in local
coordinates

∆LB = | det g|− 1
2∂αg

αβ| det g| 12∂β . (4.1.10)

The Laplace-Beltrami operator commutes with left and right actions of G and can be
written in terms of a quadratic expression of invariant vector fields on G contracted
with the Killing form. Hence, it coincides with the quadratic Casimir element.

The resulting expression is a second order differential operator that contains
derivatives with respect to all the coordinates xi on the conformal group, including
the coordinates τi on the torus Apq and the parameters λR and λL on the subgroups
D = SO(1, 1) of dilations in case q = 0 or p = q = 0. In order to descend to the space
of conformal blocks, i. e. functions on the Cartan subgroup Apq, we need to introduce
a scalar product and thus the invariant Haar measure on G,

dµG =
√

det g
∏
i

dxi . (4.1.11)

The Laplace-Beltrami operator is densely defined on the associated space of square
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integrable functions L2
G and is Hermitian with respect to the scalar product.

The measure on Apq is given by

dµA(τi) = m(τi)
∏
i

dτi = 1
Z

 

Gp/Bpq×Gq

dµG . (4.1.12)

where Z is the (infinite) volume of Gp/Bpq ×Gq: The integration domain contains
the non-compact factor D associated to dilations and has to be regularized, e. g.

1
vol(R)

 

R

dλ = lim
L→∞

1
2L

L�

−L

dλ . (4.1.13)

Equipped with the measures on G and Apq and a regularization procedure, we can
define the Laplacian on Apq. Functions fA on Apq uniquely extend to covariantly
constant functions f on G,

f(h′LahR) := e2bλl+2aλrfA(a) , hR ∈ Gq , h′L ∈ Gp/Bpq . (4.1.14)

In case p 6= 0 or p, q 6= 0 we set b = 0 or a = b = 0, respectively. The Laplacian ∆A
LB

on A is then defined by
�

A

dµA f1A(a) ∆A
LBf2A(a) = 1

Z

 

G

dµG f1(g) ∆LBf2(g) . (4.1.15)

Effectively, we have set all other derivatives to zero so that we end up with a second
order differential operator ∆A

LB in τi. In case q = 0 or p = q = 0 the derivatives with
respect to λR and λL are replaced by −2a and 2b, respectively. The operator ∆A

LB still
turns out to contain some first order terms which come from the non-trivial measure
m(τi)dτi on the Cartan subgroup. The latter can be removed by an appropriate
“gauge transformation”

ω = m(τi)−
1
2 . (4.1.16)

The Casimir operator L2 is given by

L2 = ω−1 ∆A
LB ω , (4.1.17)

and indeed takes the form of a Calogero-Sutherland type Hamiltonian. The above
procedure can be effectively implemented in Mathematica [97]. Before we state the
results, we will give a geometric explanation of the coordinates τi.
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4.2 Defect cross-ratios revisited

It remains to relate the group theoretic variables τi we introduced through our
parametrization of the conformal group G to the cross-ratios. As we explained
in section 2.4.1, the location of the defect operators D(p)(Pα) and D(q)(Qβ) can
be characterized by a set of orthonormal vectors Pα, α = p + 2, . . . , d + 1, and
Qβ, β = q + 2, . . . , d + 1, which are transverse to the defect in embedding space,
respectively. We can complete these two sets to an orthonormal basis P , Q of the full
embedding space by adding vectors P̃α, α = 0, 1, . . . , p+ 1, and Q̃β, β = 0, 1, . . . , q+ 1.
Let us now combine these systems of orthonormal vectors into two matrices

P = (P̃ , P ) ∈ G = SO(1, d+ 1) , Q = (Q̃, Q) ∈ G . (4.2.1)

By construction, both P and Q carry a left action of the conformal group (since
the columns are vectors in embedding space) and a right with respect to Gp and Gq,
respectively. The latter respects the split of the columns into vectors tangential and
transverse to the defect. For the two SO(1, d+ 1) matrices P and Q we can now
form the matrix PTQ ∈ SO(1, d+ 1). Obviously, PTQ is invariant under conformal
transformations, but it transforms non-trivially under the action of Gp and Gq. In
this way, any configuration of two defects of dimension p and q gives rise to an orbit
GpPTQGq in the double quotient Gp\G/Gq.

In section 2.5.3 we considered the matrix M = P TQ in order to construct the
cross-ratios ηi of the defect configurations. Now we see that M appears as the lower
right matrix block of the matrix a(τ) we introduced in eq. (4.1.8). From the explicit
construction in terms of the generators Mi−1,p+1+i we can see that the lower right
corner of a(τ) takes the form



cosh τ1
2

cosh τ2
2

. . . 0
cosh τN

2

I


. (4.2.2)

Comparison with our discussion of the cross-ratios allows us to read off the relation
(4.3.9) between the group theoretic variables and cross-ratios.

The last task is to relate the Calogero-Sutherland eigenfunctions to the conformal
blocks. In case of p, q > 0, the Casimir equation for the correlator is the same as for
the block (see eq. (3.2.13)). Hence we just need to undo the gauge transformation
(4.1.16). In case the defect configuration includes local fields, i.e. when q = 0 or
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p, q = 0, there are non-trivial prefactors, c. f. eqs. (2.5.11) and (2.5.22). However, the
Casimir equations have already been worked out in [34, 41] and we can just compare.
This concludes the derivation of the Calogero-Sutherland model for defect blocks. In
the next section we will state the results of this analysis.

4.3 Calogero-Sutherland models for defects

We have argued that the Casimir equations for conformal blocks of two defects can
be restated as an eigenvalue problem for the Calogero-Sutherland Hamiltonian of the
form

HCS = −
N∑
i=1

∂2

∂τ 2
i

+ k3(k3 − 1)
2

N∑
i<j

[
sinh−2

(
τi + τj

2

)
+ sinh−2

(
τi − τj

2

)]

+
N∑
i=1

[
k2(k2 − 1) sinh−2 (τi) + k1(k1 + 2k2 − 1)

4 sinh−2
(
τi
2

)]
. (4.3.1)

Let us note that the multiplicities are not defined uniquely, i.e. different choices
of the multiplicities ki can give rise to identical Casimir equations. This is partly
due to the fact that the multiplicities appear quadratically in the potential. In
addition, one may show that a simultaneous shift of all coordinates τi → τi + iπ for
i = 1, . . . , N leads to a Calogero-Sutherland Hamiltonian of the form (4.3.1) with
different multiplicities. The complete list of symmetries is given in table 4.1. Later we
see that these innocent looking replacements have remarkable consequences, since they
produce non-trivial relations between the blocks of various (defect) configurations.

Table 4.1: Symmetries of the Calogero-Sutherland model for generic values of the multi-
plicities. The last symmetry also involves a shift τ ′i = τi ± iπ of the coordinates.

k′1 k′2 k′3

%1 1− k1 − 2k2 k2 k3

%2 −k1 1− k2 k3

%3 k1 k2 1− k3

%̃ k1 1− k1 − k2 k3

Let us now describe the main new results of this work. The first case to look at is
the case of two defects of dimension p ≥ q with q 6= 0. The corresponding Casimir
equation for conformal blocks is an eigenvalue equation for the operator

L2 = HCS + ε0 , ε0 = N

8

(
d(d+ 2)

2 −N(d+ 1) + 2N2 + 1
3

)
(4.3.2)
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with the following choice of parameters

N = min(d− p, q + 2) , k1 = d

2 − (p− q)−N + 1 , k2 = p− q
2 , k3 = 1

2 .

(4.3.3)

Recall from eq. (2.2.13) that in a representation of spin ` and weight ∆, the operator
L2 assumes the value

C∆,J = ∆(∆− d) +
N−1∑
i=1

li(li + d− 2i) , (4.3.4)

where the spin ` is labeled by a set of even integers ` = (l1, . . . , lN−1) with l1 ≥ · · · ≥
lN−1 ≥ 0. The wave function ψ(τ) is given by the Schrödinger-like equation

HCSψε(τ) = εψε(τ) (4.3.5)

and is related to the conformal block by1

fD

p, q, d
∆, `

; τ
 = 22∆− 1

2N(d−N+1)ω(τ)ψε(τ) , ε = −1
4C∆,` − ε0 , (4.3.6)

where the “gauge transformation” ω(τ) (c. f. eq. (4.1.16)) is given by

ω(τ) =
N∏
i=1

sinhN−
d
2 + p−q

2 −1
(
τi
2

)
cosh−

p−q
2

(
τi
2

)∏
i<j

sinh−
1
2

(
τi ± τj

2

)
. (4.3.7)

Here and throughout the entire text below we use the shorthand

sinh
(
x± y

2

)
= sinh

(
x+ y

2

)
sinh

(
x− y

2

)
. (4.3.8)

Equation (4.3.5) is to be considered on a subspace of the semi-infinite hypercuboid
AEN that is parametrized by the coordinates

τ1 = 2ϑ = 2 log R
r
∈ [0,∞) , τj+1 = 2iθj ∈ i[0, 2π] , (4.3.9)

for j = 1, . . . , N − 1. We shall discuss the domain in much more detail in section 5.1.
Of course, the choice of multiplicities ki is not unique since we can apply any of the
transformations listed in table 4.1. We will discuss the consequences in the next
section.

If q = 0 while 0 < p ≤ d − 2, the setup describes two scalar bulk fields in the
presence of a p-dimensional defect of co-dimension greater or equal to two. In this

1We postpone the normalization of ψε(τ) to section 5.2.
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case, the conformal Casimir operator takes the form

L2 = HCS + ε0 , ε0 = d2 − 2d+ 2
8 (4.3.10)

with parameters

N = 2 , k1 = d

2 − p− 1 , k2 = p

2 , k3 = 1
2 + a . (4.3.11)

Here, the parameter a is related to the conformal weights ∆1 and ∆2 of the two bulk
fields through 2a = ∆2−∆1. The range of the variables xi is the same as in eq. (4.3.9)
for N = 2. If we set the parameter a to zero, we recover the Casimir operator (4.3.2)
with parameters (4.3.3) for q = 0 and p ≤ d − 2. Hence, the parameter a may be
regarded as a deformation that exists for q = 0.

If p = d − 1, while q = 0 as in the previous paragraph, we are dealing with a
correlator of two bulk fields in the presence of a boundary or conformal interface. In
this case N = min(d− p, q + 2) = min(1, 2) = 1 so that there is a single cross-ratio
only, as is well known from [40]. The Casimir operator takes the simple form

L2 = HCS + ε0 , ε0 = d2

16 (4.3.12)

with parameters

N = 1 , k1 = 1− 2a− d

2 , k2 = d− 1
2 . (4.3.13)

Note that the Calogero-Sutherland model from N = 1 contains only two multiplici-
ties. The corresponding eigenvalue equation can be mapped to the hypergeometric
differential equation. Once again, for a = 0 we recover the Casimir problem (4.3.2)
for two defects of dimension p = d− 1 and q = 0.

For reference, we conclude this list of results with the case p = q = 0 which is
associated with correlations of four scalar bulk fields and was studied within the
context of Calogero-Sutherland models in [57,61]. In this case the Casimir operator
is known to take the form

L2 = 1
2H

′
CS + ε0 , ε0 = d2 − 2d+ 2

8 (4.3.14)

with

N = 2 , k1 = −2b , k2 = a+ b+ 1
2 , k3 = d− 2

2 , (4.3.15)

where the parameters 2a = ∆2 − ∆1 and 2b = ∆3 − ∆4 are determined by the
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conformal weights of four external scalar fields. We put a prime ′ on the Hamiltonian
to indicate that it actually depends on two variables u1 and u2 that are complex
conjugates of each other and belong to the range

<ui ∈ [0,∞[ =u1 = −=u2 ∈ [0, π[ . (4.3.16)

In contrast to the previous cases, the gauge transformation is now given by

ω′(u1, u2) =
2∏
i=1

sinha+b− 1
2

(
ui
2

)
cosh−(a+b)− 1

2

(
ui
2

)
sinh−

d−2
2

(
u1 ± u2

2

)
, (4.3.17)

and the eigenvalues ε′ of the Calogero-Sutherland Hamiltonian H ′ are related to the
conformal weight ∆ and the spin ` of the intermediate field by ε′ = −1

2C∆,` − 2ε0.
Of course, when we send the two parameters a and b to a = b = 0 we expect

to recover the Casimir problem (4.3.2) for p = q = 0. This is indeed true but it
requires to perform a non-trivial linear transformation on the coordinates and the
multiplicities. We shall denote this transformation by σ2. It maps the coordinates τ1

and τ2 to u1 and u2 as

σ2 : u1 = τ1 + τ2

2 , u2 = τ1 − τ2

2 (4.3.18)

and the multiplicities k1, k2 = 0 and k3 to

σ2 : k′1 = 0 , k′2 = k3 , k′3 = k1 . (4.3.19)

We note that σ2 maps the range (4.3.9) of the variables τi to the range (4.3.16).
Let us stress that we defined the transformation σ2 only on Calogero-Sutherland
Hamiltonians (4.3.1) with multiplicity k2 = 0. It is not difficult to verify that upon
acting with σ2 on the Hamiltonian (4.3.1) we obtain a Hamiltonian H ′CS of the same
form iff2 k2 = 0 (up to an overall factor of 2) but with multiplicities k′i instead of
ki. For the case of interest here, i.e. when p = q = 0, the condition k2 = 0 is indeed
satisfied as one can infer from eq. (4.3.3). After applying the transformation (4.3.19)
to the multiplicities we find (k′1, k′2, k′3) = (0, 1/2, d/2− 1). As we have claimed, we
end up with the set of parameters (4.3.15) for a = b = 0. This is what we wanted to
show.

As a small corollary of the previous discussion let us briefly mention that the
transformation (4.3.19) can be inverted in case N = 2 and k1 = 0. On the coordinates,
the inverse reads

σ1 : v1 = τ1 + τ2 , v2 = τ1 − τ2 , (4.3.20)

2Or, equivalently, k2 − 1 = 0, but this is already captured by symmetry ρ2 in table 4.1.
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while it acts on the multiplicities as

σ1 : k′1 = k3 , k′2 = 0 , k′3 = k2 . (4.3.21)

The maps σ1 and σ2 describe two symmetries of Calogero-Sutherland model with
k1 = 0 and k2 = 0, respectively, that exist for N = 2 only and act on multiplicities
as well as coordinates. These symmetries are not included in table 4.1 but will
play some role in our discussion below. Unlike the dualities displayed in table
4.1 which generalize Euler-Pfaff symmetries of Gauss hypergeometric function, the
transformations (4.3.18,4.3.20) represent special cases of quadratic transformations of
Calogero-Sutherland wave functions, generalizing classical quadratic transformations
of Gauss hypergeometric functions.3

4.4 Relations between defect blocks with q 6= 0

As we stressed before, the Calogero-Sutherland Hamiltonian (4.3.1), i.e. the quadratic
Casimir operator for the block, possesses some obvious symmetries which we listed in
table 4.1. In the previous section we have explained how the coupling constants ki of
the Calogero-Sutherland model are determined by the dimension p and q of the two
defects and the dimension d. Putting this together, we can rephrase the symmetries
from table 4.1 in terms of the parameters (p, q; d). The result is stated in table 4.2.
The first two symmetry transformations %1 and %2 give rise to non-trivial relations
between the parameters while the third one acts trivially on the coupling constants
of our Calogero-Sutherland model since k3 = 1/2 = 1 − k3 = k′3. Let us also note
that the reconstruction of p, q and d from the multiplicities is not unique since they
depend on p and q only through N and p − q. The ambiguity is described by the
following duality

p′ = d− q − 2 , q′ = d− p− 2 , (4.4.1)

which we included as the final row of the table. It makes up for the trivial third
row. As in table, 4.1, the forth row describes a symmetry for which the action on
parameters is accompanied by a shift of coordinates τi → τi ± iπ. These innocent
looking relations have remarkable consequences of which we have seen a very special
case before when we reviewed the results from [54]. Namely, in section 3.4 we discussed
the blocks for a two point function for defects of dimension p = q = d− 2. If we plug
these values into the relation (4.4.1) we find p′ = 0 = q′, i. e. the blocks for two point
functions of defects of dimension p = d − 2 = q are related to four-point blocks of

3See also [98] for further results and a state-of-art discussion of quadratic transformations among wave functions in
the trigonometric case and e.g. [99] for elliptically-deformed analogues.
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Table 4.2: The action of symmetries in table 4.1 on the parameters (p, q; d) that characterize
a configuration of two defects. As in table 4.1 the symmetry transformation %̃ is accompanied
by a shift of coordinates. The last row is new and results from the fact it is not possible to
reconstruct the parameters (p, q; d) uniquely from the coupling constants ki.

p′ q′ d′

%1 N + (p− q)− 2 N − 2 4N − d+ 2(p− q)− 2

%2 N − (p− q) N − 2 4N − d

%3 p q d

%̃ 3N − d+ (p− q)− 2 N − 2 4N − d

%0 d− q − 2 d− p− 2 d

scalar bulk fields. As we explained in the previous section, the relation between the
two Calogero-Sutherland problems involves the coordinate transformations (4.3.18)
and

z = − sinh−2
(
u1

2

)
, z̄ = − sinh−2

(
u2

2

)
. (4.4.2)

Using the relations (4.3.9) and (2.6.2), we recover the relation (3.4.3) observed in [54].
More generally, any relation between Calogero-Sutherland models that can be obtained
by applying one or several of the symmetries in table 4.2 leads to a relation between
solutions. In case one does not need to apply the symmetry ρ̃, the Euclidean region
of one system is mapped to the Euclidean of the other and hence one can also match
boundary conditions so that all symmetries other than ρ̃ actually map blocks to
blocks. Thereby, our table 4.2 provides a vast generalization of eq. (3.4.4).

4.5 Defect configurations with q = 0 and four-point blocks

The other two relations between defect blocks and those for scalar four-point functions
that we discussed in section 3.4 involve configurations with q = 0. We have determined
the coupling constants of the associated Calogero-Sutherland model in eqs. (4.3.11).
Once again we can apply the symmetries from table 4.1 to find the symmetry relations
listed in table 4.3.

Table 4.3: The action of symmetries in table 4.1 on the parameters (p, a; d) that characterize
a configuration of two scalar bulk fields in the presence of a single defect. As in table 4.1
the symmetry transformation %̃ is accompanied by a shift of coordinates.

p′ a′ d′

%1 p a 2p− d+ 6

%2 2− p a 8− d

%3 p −a d

%̃ 4− d+ p a 8− d
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Let us re-derive and generalize the relation (3.4.2) between two identical scalars
in the presence of a line defect in d = 4 dimensions and scalar four-point blocks
from [43]. We actually want to consider two scalar fields whose weights differ by
a = (∆2 −∆1)/2 in the presence of a (d/2− 1)-dimensional defect in d dimensions.
According to the general results, the corresponding Calogero-Sutherland model has
N = 2 coordinates τ1, τ2 and its coupling constants are determined by the parameters
(p, a; d) = (d2 − 1, a; d) of the configuration through eq. (4.3.11), i.e. k′1 = 0. This
means that we can apply the symmetry σ1 that we introduced at the end of the
previous section. The resulting triple of multiplicities can be interpreted as a set of
multiplicities (4.3.15) in the Calogero-Sutherland model for scalar four-point block
with weights

a′ = 1
2(∆′2 −∆′1) = −1

4 + a

2 , b′ = 1
2(∆′3 −∆′4) = −1

4 −
a

2

in a (d/2 + 1)-dimensional Euclidean space. In order to compare with the duality
(3.4.2) found in [43] we need to flip the sign of a′ by applying %̃. So, in order to match
the parameters we have applied the symmetry transformations σ1 and %̃.

Let us now see how these transformations act on the coordinates. Since both σ1

and %̃ act on them non-trivially, the map between the parameters x, x̄ of the original
configuration and the cross-ratios γ, γ̄ of the four-point blocks will be non-trivial as
well. Recall the relations (2.6.3) and (4.3.9) between the coordinates x, x̄ and our
coordinates τ1, τ2. After applying σ1 we pass to the cross-ratios y, ȳ using eq. (4.4.2)
to obtain

y = −(1− x)2

4x , ȳ = −(1− x̄)2

4x̄ . (4.5.1)

Next we need to apply %̃, i.e. shift the coordinates v1, v2 by iπ to obtain4

γ = y

y − 1 =
(1− x

1 + x

)2
, γ̄ = ȳ

ȳ − 1 =
(1− x̄

1 + x̄

)2
, (4.5.2)

which is precisely the relation between the relevant cross-ratios that was found in [43].

It remains to identify the weight and spin of the exchanged field in the scalar
four-point blocks. In order to do so we only need to impose the correct asymptotics
of the blocks on both sides. This is done in two steps. First, we obtain the gauge
transformation between the defect block f and the corresponding four-point block g

4We need to exploit the 2πi-periodicity of the potential and shift v2 by −2πi in order to ensure that v1, v2 stay
complex conjugates.
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by using (4.3.7) and (4.3.17). Then we impose the limits in eqs. (3.2.5) and (3.2.9)

f

p, a, d
∆, `

;x, x̄
 x,x̄→1−→ [(1− x)(1− x̄)]

∆−`
2 (2− x− x̄)` , (4.5.3)

g

a′, b′, d′
∆′, `′

; z, z̄
 z,z̄→0−→ (zz̄)∆′−`′

2 (z + z̄)`′ , (4.5.4)

which fixes ∆′, `′. The final result that we obtain from our symmetries and the
comparison of asymptotics is

f

d
2 − 1, a, d

∆, `
;x, x̄

 = (−1)− `2 2∆(yȳ)− 1
4 g

−1
4 + a

2 ,−
1
4 −

a
2 ,

d
2 + 1

∆+1
2 , `2

; y, ȳ
 (4.5.5)

= 2∆(γγ̄)− 1
4 [(1− γ)(1− γ̄)]−

a
2 g

1
4 −

a
2 ,−

1
4 −

a
2 ,

d
2 + 1

∆+1
2 , `2

; γ, γ̄
 .

(4.5.6)

The first line corresponds to the application of σ1 only. To pass to the second line we
used that the scalar four-point blocks transform under %̃ as

g

a′, b′, d′
∆′, `′

; z, z̄
 = (−1)`′ [(1− z)(1− z̄)]−b

′
g

−a′, b′, d′
∆′, `′

; z

z − 1 ,
z̄

z̄ − 1

 (4.5.7)

for integer `′. The resulting formula indeed reduces to eq. (3.4.2) when we choose
d = 4 and a = 0 and hence provides a rather non-trivial extension. There are three
other dualities between defect and four-point blocks that can be derived along the
same route, one more involving the symmetry σ1,

f

p, a, d = 4
∆, `

;x, x̄
 = (−1)−

`−p+1
2 2∆(yȳ)− 1

4

∣∣∣∣∣
√
y − 1
y
−
√
ȳ − 1
ȳ

∣∣∣∣∣
p−1

× g
−1

4 + a
2 ,−

1
4 −

a
2 , p+ 2

∆+p
2 , `−p+1

2

; y, ȳ
 , (4.5.8)

and two involving σ2,

f

p = 0, a, d
∆, `

;x, x̄
 = (xx̄)a2 g

a, 0, d
∆, `

; 1− x, 1− x̄
 , (4.5.9)

f

p = 2, a, d
∆, `

;x, x̄
 = (1− x)(1− x̄)

1− xx̄ (xx̄)a2 g
 a, 0, d− 2

∆− 1, `+ 1
; 1− x, 1− x̄

 .

(4.5.10)
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Note that eq. (4.5.9) applies to p = 0 and hence it maps four-point blocks to four-point
blocks, as was already discussed for a = 0 in section 4.3. The prefactor (xx̄)a2 on the
right hand side stems from different gauge choices used in the literature.

Finally, let us comment on the duality (3.4.5) from [41] that relates two-point
functions in presence of a d− 2-dimensional defect to four-point blocks in the same
dimension. It is not difficult to identify the symmetries that are needed to relate the
parameters on the left and the right hand side. In fact, one simply needs to apply the
symmetry %̃ in table 4.3 before passing to the four-point case using σ2. Allowing once
again for non-vanishing a one obtains

f(p = d− 2, a, d) ∼ g(a, 0, d) and f(p = d− 4, a, d) ∼ g(a, 0, d+ 2) . (4.5.11)

Here, we have only displayed the parameters in the first row of the defect blocks f
and the four-point blocks g, i.e. we suppressed the dependence on conformal weights
and cross-ratios. As in our discussion above, one can apply the symmetries to the
cross ratios only to find that the resulting transformation does not map the Euclidean
domain of the defect cross-ratios to the Euclidean domain of the four-point block,
but instead to a Lorentzian domain. Hence, eq. (4.5.11) does not provide a relation
between blocks. Nevertheless, we will be able to construct the relevant defect blocks
directly in chapter 5, without passing through four-point blocks. Let us stress again
that in this section we did not only recover all previously known relations between
blocks form the symmetries of the Calogero-Sutherland model, but we also extended
them vastly, see in particular the relations (4.5.5)-(4.5.10).

4.6 Lorentzian inversion formula for defects

In this section we want to state some of the results of our upcoming paper [100]. In
section 3.5 we described inversion formulas for Euclidean and Lorentzian four-point
correlators. It is interesting to extend such a formula to defects, and in particular
to correlation functions of two bulk fields in the presence of a defect. In [49], a
Lorentzian inversion formula was derived for the defect channel of a single defect
with two bulk fields, i.e. for q = 0. This defect channel inversion formula allowed
to extract information on defect operators from the bulk. Through a Lorentzian
inversion formula for the bulk channel of the kind described above it is possible to
go in the other direction, i.e. to infer properties of the bulk from information of
the defect fields. One way to obtain the missing Lorentzian inversion formula for
(the bulk channel of) defects is to closely follow the steps in [28]. One should also
be able to determine the kernel of the Lorentzian inversion formula algebraically, as
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explained in [39], starting from the characterization of the Euclidean kernel in [84].
However, here we want to present a shortcut by exploiting the dualities described in
the previous section.

Recall that the two-point function with a point-like defect is essentially a four-point
function with 2b = ∆3 −∆4 = 0. Concretely, using the setup defined in section 2.6,
we can interpret the correlator as a defect or a four-point amplitude,

〈D(0)(Pα)φ1(Y1)φ2(Y2)〉 = (2r)−(∆1+∆2)
(

(1− x)(1− x̄)√
xx̄

)∆1+∆2
2

F(x, x̄)

= (2R)2∆0〈φ0(X1)φ0(X2)φ1(Y1)φ2(Y2)〉

= (2r)−(∆1+∆2)[(1− z)(1− z̄)]a2G(z, z̄) ,

(4.6.1)

where the factor (2R)2∆0 appears because we have normalized the defect to 〈D(0)〉 = 1.
Solving for G(z, z̄) and using the Lorentzian inversion formula eq. (3.5.5) results in

ct(∆, `) = κ∆+`

4

� 1

0
d2xµ(x, x̄) f

 p, a, d

`+ d− 1,∆− d+ 1
;x, x̄

 dDiscF(ρ, ρ̄) ,

(4.6.2)
where

dDiscF(x, x̄) = cos(πa)F(ρ, 1/ρ̄)

− 1
2e

+iπ∆1+∆2
2 F(ρ, ρ̄+ i0)− 1

2e
−iπ∆1+∆2

2 F(ρ, ρ̄− i0) ,
(4.6.3)

and the measure µ(x, x̄) is given by

µ(x, x̄)|p=0 =
(

(1− x)(1− x̄)√
xx̄

)∆1+∆2
2 |x− x̄|d−2

[(1− x)(1− x̄)]d
. (4.6.4)

For the analytic continuation to the Lorentzian domain it did not matter that G is
an actual four-point amplitude, as long as there is a decomposition into four-point
conformal blocks. Using the dualities derived in the previous subsection, eqs. (4.5.5)
to (4.5.10), we can write down an effective four-point amplitude G ′ for the defect
amplitude F whose coefficients can then be determined by the inversion formula. In
detail, the dualities have the form

f

p, a, d
∆, `

;x, x̄
 = d′∆,`ω(z′, z̄′) g

a′, b′, d′
∆′, `′

; z′, z̄′
 , (4.6.5)

where the prefactor factorizes into a coordinate dependent part ω(z′, z̄′) and a constant
part that may dependent on the quantum numbers of exchanged operator O∆,`.
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Plugging this into the conformal block decomposition,

〈D(p)(Pα)φ1(Y1)φ2(Y2)〉 = (2r)−(∆1+∆2)
(

(1− x)(1− x̄)√
xx̄

)∆1+∆2
2

F(x, x̄)

= (2r)−(∆1+∆2)∑
k

c12kCDk f

p, a, d
∆k, `k

;x, x̄
 (4.6.6)

we can define the effective amplitude G ′ by

〈D(p)(Pα)φ1(Y1)φ2(Y2)〉 = (2r)−(∆1+∆2)∑
k

c12kCDk d′kω(z′, z̄′) g
a′, b′, d′

∆′k, `′k
; z′, z̄′


= (2r)−(∆1+∆2)ω(z′, z̄′)

∑
k

c12kc
′
34k g

a′, b′, d′
∆′k, `′k

; z′, z̄′


= (2r)−(∆1+∆2)ω(z′, z̄′)G ′(z′, z̄′) ,
(4.6.7)

where c′34k ≡ CDk d′k. Using the Lorentzian inversion formula, we can solve for c12kc
′
34k

and hence c12kCDk . Doing so yields the same formula (4.6.2), except that the residue
now calculates

c12OCDO = − Res
∆′=∆

c(∆′, `) (∆ generic) , (4.6.8)

and the measures are given by

µ(x, x̄)|p=2 =
(

(1− x)(1− x̄)√
xx̄

)∆1+∆2
2 |x− x̄|d−4(1− xx̄)2

[(1− x)(1− x̄)]d
, (4.6.9)

µ(x, x̄)|p= d
2−1 =

(
(1− x)(1− x̄)√

xx̄

)∆1+∆2
2 |x− x̄| d2−1(1− xx̄) d2−1

[(1− x)(1− x̄)]d
. (4.6.10)

We notice that the measures are the measures of the Euclidean inversion formula
[84],

µ(x, x̄) =
(

(1− x)(1− x̄)√
xx̄

)∆1+∆2
2 |x− x̄|d−p−2(1− xx̄)p

[(1− x)(1− x̄)]d
, (4.6.11)

as it happens in the four-point inversion formula. Furthermore, the analytic structure
of the conformal blocks does not depend on the defect dimension p, see chapter 5
and [84]. Hence, we are confident that eq. (4.6.2) generalizes to any p beyond the
cases p = 0, 2 and d

2 − 1.

Let us conclude with an interpretation of the integration range 0 < x, x̄ < 1 of the
Lorentzian inversion formula. In terms of the physical coordinates (2.5.21) it reads
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θ = π − iθ̃, θ̃ ∈ R. Plugging it into the coordinates of the scalars φ yields

y1 = (−r cos(θ1)e1 + r sin(θ1)ed) = (r cosh(θ̃)e1 + ir sinh(θ̃)ed) ,

y2 = (r cos(θ1)e1 − r sin(θ1)ed) = (−r cosh(θ̃)e1 − ir sinh(θ̃)ed) .
(4.6.12)

We see that the points y1 = (re1) and y2 = (−re1) are boosted by θ̃ after interpreting
ied as the time coordinate. As expected we are in the setting of fig. 3.7. The Euclidean-
like region is 0 ≤ |θ̃| < ϑ. Crossing the light-cones of the defects corresponds to
θ̃ > ϑ > 0.

4.7 Light-cone bootstrap for defects

In this section we want to argue along the lines of the four-point light-cone bootstrap
and infer the properties of bulk operators from assumptions on the defect spectrum.
We consider two identical scalars φ of conformal dimension ∆φ in presence of a p-
dimensional defect D(p). For simplicity, we assume that there is the identity exchanged
on the defect. To justify the light-cone bootstrap, we further assume that it is the
lowest twist operator and that there is a twist gap above it.

The light-cone limit is given by 1−x, x̄� 1. Again, we may consider the generating
function,

Ct(x, β) = (1− x)∆φκβ

� x

0
dx̄ x̄−

∆φ
2 (1− x̄)∆φ−2kβ(1− x̄) dDiscF(x, x̄) . (4.7.1)

Remarkably, it is independent of p. The dependence on p will reenter through the
coefficients B(m,k)

∆,` in the expansion

ct(∆, `)
∣∣∣
poles
'
� 1

0

dx

2(1− x)(1− x)
`−∆

2

∞∑
m=0

(1− x)m
m∑

k=−m
B

(m,k)
∆,` Ct(x,∆ + `+ 2k) .

(4.7.2)
The coefficients B(m,k)

∆,` are fixed by conformal invariance with B(0,0)
∆,` = 1. They can

be either calculated recursively using the quadratic Casimir equation or from the
known solution of the N = 2 Calogero-Sutherland Hamiltonian that is analytic in
spin, see [39] and chapter 5.

Now, consider the defect identity,

F(x, x̄) = 1 . (4.7.3)
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Using the generating function in eq. (4.7.1) results in

Ct(x, β) = (1− x)∆φκβ

� x

0
dx̄ x̄−

∆φ
2 (1− x̄)∆φ−2kβ(1− x̄) dDisc 1

= (1− x)∆φ
sin2

(
π

∆φ

2

)
π2

Γ4
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β
2

)
Γ (β − 1) Γ (β)

Γ
(
1− ∆φ

2

)
Γ
(
β
2 + ∆φ − 1

)
Γ
(
β
2 + ∆φ

2

)
× 3F2

( β
2 ,

β
2 ,

β
2 + ∆φ − 1

β, β
2 + ∆φ

2
; 1
)

= (1− x)∆φ

2β
2−∆φ+1Γ2

(∆φ

2

) Γ2
(
β
4

)
Γ
(
β
2 −

1
2

) Γ
(
β
4 + ∆φ

2 −
1
2

)
Γ
(
β
4 −

∆φ

2 + 1
) ,

(4.7.4)

where we used Watson’s theorem to write the generalized hypergeometric function 3F2

in terms of gamma functions [101]. We see that eq. (4.7.4) has poles in 1−x whenever
∆− ` = 2∆φ. Like in the four-point case, the family of double-twist operators emerge
in the bulk spectrum at large spin. Including the identical u-channel contribution,
eq. (4.6.8) yields for the combined OPE coefficients

CD[φφ]0cφφ[φφ]0 = (1 + (−1)`)
2`+1

(
`
2

)
!

(∆φ

2

)2
`
2(

∆φ + `
2 −

1
2

)
`
2

, `→∞ , (4.7.5)

where cφφ[φφ]0 is given by the mean field coefficients, see eq. (3.6.8). Since the latter
are only determined up to a sign, so are the one-point coefficients CD[φφ]0 . The final
result is

(
CD[φφ]0

)2
= (1 + (−1)`)

8
`![(
`
2

)
!
]2
(∆φ

2

)4
`
2

(∆φ)2
`
2

1
(2∆φ + `− 1)l

, `→∞ . (4.7.6)

Let us stress again that obtained coefficients are completely universal at large spin.
They do not depend on the details of the defect theory, thus are valid in theories like
3D Ising model or N = 4 SYM. Furthermore, the analyticity in spin shows that every
operator in the double-twist family [φφ]0 couples to the defect.





Chapter 5

Calogero-Sutherland scattering
states

Here we present a review of the solution theory. We introduce the fundamental domain
of the Calogero-Sutherland problem and its fundamental (monodromy) group, Harish-
Chandra scattering states, the monodromy representations and physical (monodromy
free) wave functions.

5.1 Symmetries and fundamental domain

It is useful to consider the Calogero-Sutherland potential (4.3.1) as a function of N
complex variables first and to impose reality conditions a bit later. As a function
of complex coordinates τi ∈ C, the potential possesses a few important symmetries.
These include independent shifts of the coordinates τi by 2πi in the imaginary direction
as well as two types of reflections, namely the inversion symmetries τi ↔ −τi and the
particle exchange symmetry τi ↔ τj. Together these form a non-abelian group that
mathematicians refer to as affine Weyl group WN . The reflections actually generate a
usual Weyl group and the shifts make this affine. The affine Weyl group is known to
possess a so-called Coxeter representation through N + 1 generators wi, i = 0, . . . , N
with relations

wiwj = wjwi for |i− j| ≥ 2 , (5.1.1)

wiwi+1wi = wi+1wiwi+1 for i = 1, . . . N − 2 , (5.1.2)

w0w1w0w1 = w1w0w1w0 , wN−1wNwN−1wN = wNwN−1wNwN−1 . (5.1.3)

and
w2
i = 1 for all i = 0, . . . , N . (5.1.4)

61
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In this presentation of the affine Weyl group, the generators of the shifts in the
imaginary direction are a bit hidden, but they can be reconstructed from the wi,
see [102,103].

The fundamental domain for the Calogero-Sutherland model is given by the quotient
of the configuration space CN with respect to the symmetries, i.e.

DN = CN/WN . (5.1.5)

We have depicted a 3-dimensional projection of the fundamental domain for N = 2
in figure 5.1. Inside the wedge-shaped domain, the Calogero-Sutherland potential is
finite but it diverges along the edges. We will refer to the hyperplanes of singularities
as “walls” of the Calogero-Sutherland model. It turns out that the model possesses
N + 1 different walls ωi, i = 0, . . . , N , one for each generator wi of the affine Weyl
group. For N = 2 there are three such walls which are shown in figure 5.1. The
possible real domains AαN of the model are given by the various faces of the domain
DN . Mathematicians usually study the Schroedinger problem in the real wedge A+

N

which is given by τi ∈ R with τi > τj > 0 for all i < j.

Figure 5.1: A 3-dimensional slice of the fundamental domain D2 for the BC2 Calogero-
Sutherland model in τ -space with =τ1 = 0. Front and back side of the wedge should be
identified. The fixed points (walls) under the action of w2 and w1 are shown as bold dashed
lines. Fixed points of w2 fall into two disconnected components which carry the labels 0 and
2. The shaded area in front is the Weyl chamber A+

2 . It is bounded by the walls ω1 and
ω2. The subset AE2 is the 2-dimensional semi-infinite strip of width 2π on the bottom of the
wedge. It is bounded by the wall ω2, whereas wall ω0 cuts through its middle.
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The fundamental group π1(DN) of the fundamental domain plays an important
role in Calogero-Sutherland theory. It is generated by N + 1 generators gi subject to
the relations (5.1.1)-(5.1.3) with wi replaced by gi. On the other hand, the generators
gi of the fundamental group do not satisfy relation (5.1.4). The fundamental group of
the domain DN is also referred to as affine braid group. Its relation to the affine Weyl
group is like the relation between the braid group and the permutation group. Let us
note that the generators wa, a = 1, . . . , N − 1 generate a subgroup SN ⊂ WN of the
affine Weyl group that is isomorphic to the symmetric group SN . The corresponding
generators ga, a = 1, . . . , N − 1, within the monodromy group generate Artin’s braid
group. In addition, the full monodromy contains two more generators, g0 and gN which
satisfy some fourth order ‘reflection type’ equations with g1 and gN−1, respectively.

5.2 Harish-Chandra scattering states

Before we enter our discussion of wave functions, it is advantageous to introduce a
bit of notation. We shall denote by ei, i = 1, . . . , N, the ith unit vector in CN , i.e.
the vector that is zero everywhere except in the ith entry which is one instead. From
these unit vectors we build the following set Σ+ of vectors in CN ,

Σ+ = {ei, 2ei, ei ± ej|1 ≤ i, j ≤ N ; i < j} . (5.2.1)

As one can easily count, the set contains N(N + 1) elements. Looking back at our
Calogero-Sutherland potentials we observe that they contain one summand for each
element in Σ+. In fact, we can also write the potential as

V CS(τi) =
∑
α∈Σ+

kα(kα + 2k2α − 1)〈α, α〉
4 sinh2 〈α,τ〉

2

. (5.2.2)

where the scalar product 〈·, ·〉 is normalized such that 〈ei, ej〉 = δi,j and we assembled
all the coordinates τi ∈ C into a vector τ = ∑

i τiei with

kei = k1 , k2ei = k2 , kei±ej = k3 .

Let us agree to extend the definition of kα to arbitrary elements α ∈ RN such that is
vanishes whenever α 6∈ Σ+. Just as in the case of the potential, many formulas below
will turn out to become much simpler when written as sums or products over the set
Σ+.

With these notations set up let us come to our main subject, namely the study
of wave functions. Since the Calogero-Sutherland potential falls off at τi →∞, any
wave function becomes a superposition of plane waves in this asymptotic regime.
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In mathematics is it customary to factor off the ground state wave function of the
trigonometric Calogero-Sutherland model, i.e. of the Hamiltonian that is obtained
when all the τi are purely imaginary. This ground state wave function Θ is explicitly
known,

Θ(τi) =
∏
α∈Σ+

(
2 sinh 〈α, τ〉2

)kα
. (5.2.3)

For the wave function of the the Calogero-Sutherland model on the domain A+
N we

make the Ansatz
Ψ(λ, k; τ) = Θ(k; τ)Φ(λ, k; τ) . (5.2.4)

Let us note in passing that the function Θ(k, τ) possesses the following asymptotics
for large τ ,

Θ(k; τ) ∼ e〈ρk,τ〉 + . . . where (5.2.5)

ρk :=
(
k1

2 + k2 + (N − 1)k3,
k1

2 + k2 + (N − 2)k3, . . . ,
k1

2 + k2

)
.

So-called Harish-Chandra wave functions Φ(λ, k; τ) are WN symmetric solutions of
the Calogero-Sutherland Hamiltonian for which Φ possesses the following simple
asymptotic behavior

Φ(λ, k; τ) ∼ e〈λ−ρk,τ〉 + . . . for τ →∞ in A+
N = WCN (5.2.6)

where λ = ∑
i λiei and τ →∞ in A+

N means that all components become large while
preserving the order τN < τN−1 < · · · < τ1. Imposing WN symmetry implies that
as a function of τi, Φ is reflection symmetric and invariant under any permutation
of the τi. The condition (5.2.6) selects a unique solution of the scattering problem
describing a single plane wave. It is analytic in the wedge A+

N . The corresponding
eigenvalue of the Calogero-Sutherland Hamiltonian is given by

ε = ε(λ) = −
∑

λ2
i .

When we required the Harish-Chandra functions to be symmetric, we used the action
of the Weyl group WN on the coordinate space. On the other hand, the Weyl group
also acts in a natural way on the asymptotic data λ of the Harish-Chandra functions
by sending any choice of λ through a sequence of Weyl reflections to wλ,w ∈ WN . In
particular, the generators wj, j = 1, . . . , N act as

waλi = δa+1,iλi−1 +(1− δa,i) (1− δa+1,i)λi+δa,iλi+1 , wNλi = (−1)δN,iλi (5.2.7)
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for a = 1, . . . , N − 1 and i = 1, . . . , N . Since the eigenvalue ε is invariant under
exchange and reflection of the momenta λi, our Harish-Chandra functions come in
families. For generic choices of λ, one obtains |WN | = N !2N solutions Φ(wλ, k; τ)
which all possess the same eigenvalue of the Hamiltonian.

At least for sufficiently generic values of the momenta,1 Harish-Chandra functions
possess a series expansion in the variables xi = exp τi

Φ(λ, k; τ) =
∑
µ∈Q+

Γµ(λ, k)e〈λ−ρk−µ,τ〉, Γ0(λ, k) = 1, (5.2.8)

where we adopt |=τi| < π for i = 1, . . . , N on the principal branch of BCN Harish-
Chandra functions and we sum over elements µ of the integer cone

Q+ = {µ =
N−1∑
a=1

na(ea − ea+1) + neN |na, n ≥ 0 for a = 1, . . . , N − 1 } .

By inserting this formal expansion into the Calogero-Sutherland eigenvalue equations
one can easily derive equations for the expansion coefficients Γµ that may be solved
recursively, at least for generic eigenvalues λi. In a few cases, explicit formulas for
Γµ are also known. For N = 2, for example, the series expansion of Harish-Chandra
functions with generic eigenvalues λi was recently worked out in [39], generalizing
earlier expressions by Dolan and Osborn that were only valid for cases in which
λ1 − λ2 − k3 is non-negative integer. The procedure that was employed in [39] can
in principle be extended to N > 2. This remains an interesting challenge for future
work.

In Heckman-Opdam theory many properties of the Harish-Chandra functions
have been obtained without knowing the explicit series expansions. In particular let
us mention that the functions exp(〈−λ+ ρ(k), τ〉)Φ(λ; k; τ) are known to be entire
functions of the multiplicities ki and meromorphic functions of asymptotic data λi,
for any fixed choice of τ in the fundamental domain. They are known to possess
simple poles whenever the set of λi satisfies one of the following conditions

〈λ∗, α〉 = s

2〈α, α〉 for s = 1, 2, . . . , α ∈ Σ+ . (5.2.9)

For the poles at λ∗ = λα,n, the residues are given by (see e.g. [104])

Res(α,s)Φ(λ, k; τ) ∼ Φ(w(α)λα,s, k; τ) . (5.2.10)

where ∼ indicates that the relation with the Harish-Chandra function on the right
hand side holds only up to a constant factor. The latter is not known in general, but

1A precise formulation of the condition is stated in [103].
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it can be found from the series expansion as in [39] for N = 2. The Harish-Chandra
function on the right hand side is related to the one on the left by acting with an
element w(α) ∈ WN of the Weyl group on the set of momenta λi, defined in (5.2.7). A
complete discussion of poles and residues for N = 2, including non-generic momenta
λi can be found in [39].

5.3 Monodromy representation and wave functions

The scattering states we have discussed in the previous section fail to be good wave
functions for the various real slices one may consider. In fact, at infinity Harish-
Chandra function contains a single plain wave. On the other hand, the latter are not
regular at the walls of the scattering problem. Finding true wave functions requires
to impose regularity conditions at the walls and hence forces us to consider certain
linear combinations of the 2NN ! Harish-Chandra functions with given energy ε.

The behavior of all wave functions at the walls is encoded in the monodromy
representation of the fundamental group. As we saw above, the fundamental group,
which in our case has been identified as the affine braid group, contains one generator
gi, i = 0, . . . , N for each of the walls. The representation of this generator encodes how
wave functions behave as we continue along a curve that surrounds the wall. Note that
all walls possess real co-dimension two since they are defined by one complex linear
equation. The 2NN !-dimensional space of Harish-Chandra functions Φ(wλ, τ), w ∈
WN carries a representation of the monodromy group. The representation matrices
Mi = M(gi) are explicitly known from the work of Heckman and Opdam, see [39]
for explicit formulas. In the special case of N = 2, expressions for two of the three
monodromy matrices were also worked out in the conformal field theory literature [28].
Let us stress that these matrices satisfy the relations (5.1.1)-(5.1.3) that are the
defining relation of the affine braid group. In addition they turn out to obey the
following set of Hecke relations

(Mr − 1)(Mr − γr) = 0 , where (5.3.1)

γ0 = eπi(2k2−1) , γi = eπi(2k3−1) , γN = eπi(2k1+2k2−1)

for r = 0, . . . , N and i = 1, . . . , N − 1. These may be considered as a deformation of
the relations (5.1.4). In this sense, this monodromy representation of the affine braid
group is rather close to being a representation of the affine Weyl group. For generic
values of the multiplicities k and momenta λ, the monodromy representation of the
affine braid group on Harish-Chandra functions is irreducible. The precise condition
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is
2 〈λ, α〉
〈α, α〉

6∈ Z and 2 〈λ, α〉
〈α, α〉

+ kα/2
2 + kα 6∈ Z (5.3.2)

for all elements α ∈ Σ+. When one of these conditions is violated, the monodromy
representation may contain non-trivial subrepresentations.

In terms of these monodromy matrices, regularity of the wave function Φ at a wall
ωi is equivalent to Φ being an eigenfunction of the corresponding monodromy matrix
Mi = M(gi) with unit eigenvalue, i.e. Φ is regular along ωi if and only if MiΦ = Φ.
There exists a very simple prescription how to build a function Φ that is analytic at
some subset ωi1 , . . . , ωir consisting of r ≤ N of the N walls that bound A+

N , i.e iν 6= 0.
For each of these walls there is a generator wiν of the Weyl group and so our set of
r walls is associated with a subgroup V ⊂ WN of the Weyl group that is generated
by wi1 , . . . , wir . Given this subgroup we now define the following superposition of
Harish-Chandra functions

ΦV (λ, k; τ) =
∑
w∈V

c(wλ, k)Φ(wλ, k; τ) (5.3.3)

where the so-called Harish-Chandra c-function reads

c(λ, k) = γ(λ, k)
γ(ρ(k), k) , γ(λ, k) =

∏
α∈Σ+

γα(λ, k) , (5.3.4)

γα(λ, k) =
Γ
(

1
2kα/2 + 〈λ, α∨〉

)
Γ
(

1
2kα/2 + kα + 〈λ, α∨〉

) . (5.3.5)

For future convenience, let us also introduce

γ∗α(λ, k) =
Γ
(
1− 1

2kα/2 − kα − 〈λ, α
∨〉
)

Γ
(
1− 1

2kα/2 − 〈λ, α∨〉
) . (5.3.6)

Any wave function of the form (5.3.3) turns out be be regular at the walls ωi1 , . . . , ωir .
Physical wave functions on the Weyl chamber A+

N are obtained when V = WN is the
entire Weyl group, the most well studied case in the mathematical literature. For this
choice of V we end up with one unique linear combination of Harish-Chandra functions
for each Weyl-orbit of λ. The functions F+

N = ΦWN are known as Heckman-Opdam
hypergeometric function. They are close cousins of the Lorentzian hypergeometric
functions that were introduced in [39]. The set of true wave functions F+

N (λ, τ) of
the Calogero-Sutherland model gives rise to an orthonormal basis of functions on
the wedge A+

N . Let us note, however, that, while the functions F+
N are analytic in a

neighborhood of A+
N , they fail to be analytic at the wall ω0. Other real domains whose

boundary contains the wall ω0, are associated with different subgroups of the affine
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Weyl group. Which subgroup one has to sum over in order to obtain an orthonormal
basis of wave functions and the precise form of coefficients in this sum depend on the
chosen domain for the Calogero-Sutherland scattering problem.

5.4 Defect blocks

The Heckman-Opdam hypergeometric functions we described briefly in the final
paragraph of the previous section, provide physical wave functions for the domain
A+
N . Their construction is well known in the mathematical literature. We are mostly

interested in the physical wave functions for the Euclidean domain AEN that was
introduced in eq. (4.3.9). As far as we know, there exists no general theory for
these functions, but for the specific example of N = 2 that is associated to scalar
four-point blocks, such wave functions have been known in the context of conformal
field theory for a long time, see e.g. [28,76] for explicit formulas in the recent literature.
In [84] these functions were generalized to N ≥ 2 using the characterization that was
proposed in [39].

Before we can characterize the physical wave functions we need to introduce a bit
of notation. In eq. (4.3.9) we have introduced the domain AEN . Of course, there are
quite a few walls within AEN . When we consider the Calogero-Sutherland problem
it is natural to first formulate it in a smaller domain that is bounded by walls but
does not have walls in the interior. Here we shall describe such a small domain DE

N

and then explain how to glue AEN from the small domain DE
N and some of its images

under the action of the affine Weyl group. In order to do so we first define the simplex
4N−1 that is parametrized by an ordered set of N − 1 angles θi

4N−1 := {(θi, . . . , θN−1) | θi ∈ [0, π/2[; θi ≥ θj for i < j} . (5.4.1)

We can then introduce the domain DE
N as a semi-infinite cylinder over 4N−1, i.e.

DE
N = {(ϑ, θi) |ϑ ∈ R+

0 ; (θi) ∈ 4N−1 } . (5.4.2)

The hypercubic base of our the Euclidean domain AEN that was introduced in eq.
(4.3.9) can be triangulated into a disjoint union of the simplex 4N−1 an its reflections
under the following subgroup WB

N of the Weyl group WN ,

WB
N := {w2, . . . , wN−1, wN | relations of WN} ⊂ WN . (5.4.3)
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More precisely, our Euclidean domain AEN can be decomposed as

AEN =
⊔

w∈κ·WB
N

wDE
N , (5.4.4)

where κ is an element of affine Weyl group which simultaneously shifts all the angular
variables. Explicitly, κ acts on the coordinates as κ : θj 7→ θj+π/2 for j = 1, . . . , N−1
or, equivalently, in terms of the variables τj, it is given by κ : τj+1 7→ τj+1 + iπ,
j = 1, . . . , N − 1, while leaving τ1 invariant. Let us stress that in the decomposition
formula (5.4.4) the Weyl group elements w act on coordinates, not on momenta as in
most other formulas.

The boundary of DE
N ⊂ RN runs along various walls of our Calogero-Sutherland

problem. In fact, the simplex 4N−1 which appears at τ1 = 0, runs along the wall ωN
acted upon with the Weyl reflection w1w2 · · ·wN−1. There are also two semi-infinite
cells of the boundary defined by τN = 0 and τ2 = iπ which are part of the wall ωN ,
and of its image under the Weyl reflection w2 · · ·wN−1, respectively. Finally, the
boundary components at τA = τA+1, A = 2, . . . , N − 1 run along the walls ωA for
A = 2, . . . , N − 1.

Our goal is to construct the blocks that we introduced through the expansion
(3.2.13) in terms of Harish-Chandra functions. As in the case of four-point blocks, all
we need to do is to decompose the monodromy-free conformal partial waves into a
sum of a block and its shadow, see [84] for the explicit construction. Here we just
state the result. We denote

Σ+
? := {e1 − ej | j = 2, . . . , N}, (5.4.5)

and

γE (λ, k) :=
∏
α∈Σ+

?

γ∗α (λ, k)
∏

α∈Σ+\Σ+
?

γα (λ, k) . (5.4.6)

The desired blocks FB are then obtained by summing Harish-Chandra functions over
the subgroup WB

N ,

FB(λi; ka; τi) =
∑

w∈WB
N

γE(wλ, k)Φ(wλ; ka; τ1, . . . , τN) . (5.4.7)

If we take care of all prefactors and gauge transformations, we arrive at the following
expressions for the blocks we introduced through the decomposition (3.2.13),

fD

p, q, d
∆k, `k

;ϑ, θi

 = 4 d
2−2λ1

γE(λ, k) · F
B(λi; ka; τi) (5.4.8)
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where the multiplicities ka on the right hand side are related to the parameters
p, q, d on the left through eq. (4.3.3). Moreover, the Calogero-Sutherland momenta
λi on the right hand side are determined by the conformal weight ∆ and the spin
` = (l1, . . . , lN−1) of the intermediate channel of the defect block as

λ1 = d

4 −
∆
2 λj+1 = d

4 + lj − j
2 , j = 1, . . . N − 1 . (5.4.9)

Formulas (5.4.7) and (5.4.8) describe conformal blocks for configurations of two defects
as a linear combination of 2N−1(N − 1)! Harish-Chandra functions. All coefficients
are given explicitly in eq. (5.4.6). This extends the construction of four-point blocks
from pure functions that was spelled out in [28] to an arbitrary number N of cross
ratios.

In the case q = 0, the blocks can contain an additional parameter a that also enters
the normalization. Here we will adopt the following normalization

f

p, a, d
∆, `

;x, x̄
 = 4 d

2 +a−2λ1

γE(λ, k) · sinha τ1 ± τ2

2 FB
N=2(λi; ka; τi) (5.4.10)

which reduces to eq. (5.4.8) with q = 0 when a = 0, and behaves as

f

p, a, d
∆, `

;x, x̄
 x→1,x̄→1−→ [(1− x)(1− x̄)]

∆−`
2 (2− x− x̄)l . (5.4.11)

Hence, our conventions match those in the literature. Note, however, that our
normalization differs from those in [41]. In order to obtain their blocks one has to
multiply our blocks by a factor 2−`. Formulas (5.4.7) and (5.4.10) provide an explicit
construction of blocks for the bulk channel of configurations with q = 0, i.e. when
we deal with two local fields in the presence of a defect of dimension p < d− 1. In
chapter 4 we described a few cases in which such blocks can be obtained through the
relation with scalar four-point blocks. The results of this chapter, derived through
the solution theory of Calogero-Sutherland models, do not use this connection to
four-point blocks. See, however, our discussion of another class of such formulas in
appendix B.



Chapter 6

Outlook

In this work we developed a systematic theory of conformal blocks for a pair of defects
in a d-dimensional Euclidean space. By extending the harmonic analysis approach
that was initiated in [61, 96] we were able to derive the associated Casimir equations
systematically. These were shown to take the form of an eigenvalue problem for an
N -particle Calogero-Sutherland Hamiltonian, generalizing the observation of [57] for
four-point blocks. We exploited known symmetries of the Calogero-Sutherland models
to obtain a large set of relations between blocks, of which only a few special cases were
known before. Using these dualities we obtained the Lorentzian inversion formula for
the bulk channel. The latter generalizes the inversion formula for scalar four-point
blocks in [28]. Finally, we gave a lightning review of Heckman-Opdam theory for the
Calogero-Sutherland scattering problem and applied it to the constructions of defect
blocks.

It would be interesting to combine the Lorentzian inversion formula for the bulk
channel with the one for the defect channel found in [49]. The former allows to infer
properties of the bulk from information on the defect fields, whereas the latter allows
to extract information on defect operators from the bulk. This process could then be
iterated [24].

Another interesting direction concerns the extension to spinning blocks, i.e. to
non-trivial representations of the rotation groups SO(d− p) and SO(d− q). When
q = 0, these can be used to expand correlation functions of two fields with spin,
such as e.g. the stress tensor, in the presence of the defect. The harmonic analysis
approach that we used in chapter 4 to derive our results on the relation with Calogero-
Sutherland Hamiltonians was recently extended to the case of four bulk fields with
arbitrary spin [61, 96], i.e. of p = 0 = q, see also [79]. It is rather straightforward
to include defects into such an analysis. Going through the relevant group theory,
one can see that the stabilizer subgroup of any given point on the double coset is
given by B = SO(p− q) × SO(|d− p− q − 2|) which is non-trivial unless the two
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defects possess the same dimension p = q and d = 2p+ 2. Consequently, the analysis
of spinning defect blocks is similar to the cases studied in [96]. In any case, the
corresponding Casimir equations will take the form of Calogero-Sutherland eigenvalue
equations with a matrix valued potential. It should be rewarding to work these out,
at least in a few examples.

As we mentioned in the introduction, extensions of the conformal bootstrap
programme including correlation functions of two bulk fields in the presence of a
defect, have played some role already both for d = 2 and higher dimensions. Constraint
equations on dynamical data of the theory arise from the comparison of the two
different channels that exist for q = 0, the bulk and the defect channel. While
the defect channel is entirely determined by the expansion of bulk fields near the
defect, the bulk channel also contains information about the bulk operator product
expansions. It is a relevant challenge to compute dynamical data for defect two-point
functions and to formulate appropriate consistency conditions these quantities need to
satisfy. In this context it might also be interesting to include correlators in non-trivial
geometries [105] and at finite temperature [106–108].

Let us finally stress, that the Heckman-Opdam theory we needed in chapter 5 is only
a very small part of what is known about Calogero-Sutherland models. In fact, the
most remarkable property of the Calogero-Sutherland model is its (super-)integrability.
It furnishes a wealth of additional and very powerful algebraic structure. So far,
the only algebra we have seen above was the Hecke algebra that appeared in the
context of the monodromy representation. It acts in the 2NN !-dimensional spaces of
Harish-Chandra functions Φ(wλ; z), w ∈ WN , i.e. in finite dimensional subspaces of
functions which all possess the same eigenvalue of the Hamiltonian. This is just the
tip of a true iceberg of algebraic structure that involves e.g. Ruijsenaars-Schneider
models and double affine Hecke algebras, see comments in the conclusions of [39].



Appendix A

Derivation of coordinates

A.1 τ -coordinates

Let us carry out the steps that we outlined in section 2.6 for a pair of defects of
dimension p and q. In embedding space, the location of the p-dimensional spherical
defect of radius R is described by the points

Xi = (1, R2, Rei) , Xp+2 = (1, R2,−Re1) , i = 1, . . . , p+ 1 . (A.1.1)

Similarly, the tilted q-dimensional spherical defect of radius r runs through the
following set of q + 2 points

Yi = (1, r2,−r cos(θi)ei + r sin(θi)ed−i+1) , i = 1, . . . , q + 1 ,

Yq+2 = (1, r2, r cos(θ1)e1 − r sin(θ1)ed) , (A.1.2)

where we set θi = 0 for i ≥ N = min(d− p, q + 2). A convenient set of orthonormal
vectors Pα and Qβ that are transverse to the two defects, i.e. satisfy the conditions
X · P = Y ·Q = 0, is given by

P1 =
( 1
R
,−R,~0

)
, Pi = (0, 0, ed−i+2) , i = 2, . . . , d− p , (A.1.3)

Q1 =
(1
r
,−r,~0

)
,

Qj = (0, 0, sin(θj−1)ej−1 + cos(θj−1)ed−j+2) , j = 2, . . . , d− q . (A.1.4)
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From these explicit expressions it is easy to compute the matrix M of conformal
invariants. It takes the form

M = P TQ =



coshϑ
cos θ1

. . . 0
cos θN−1

I


, (A.1.5)

where coshϑ = 1
2

(
r
R

+ R
r

)
. We recovered our formula (2.6.1).

A.2 x, x̄-coordinates

Next we want to determine how the coordinates x, x̄ in (2.5.21) that we used for
configurations with N = 2 cross-ratios relate to our variables ϑ, θ ≡ θ1. The former
are defined through two local bulk fields (q = 0) in presence of a p-dimensional defect.
In order to apply eq. (2.5.21), we need to project Y1 and Y2 onto the transverse space,
i.e. the space spanned by P1, . . . , Pd−p:

Y ⊥1 =
(

1
2

(
1− r2

R2

)
,
1
2(r2 −R2), r sin(θ)ed

)
, (A.2.1)

Y ⊥2 =
(

1
2

(
1− r2

R2

)
,
1
2(r2 −R2),−r sin(θ)ed

)
. (A.2.2)

Eq. (2.5.21) yields

(1− x)(1− x̄)
(xx̄) 1

2
= − 2Y1 · Y2

(Y ⊥1 · Y ⊥1 ) 1
2 (Y ⊥2 · Y ⊥2 ) 1

2
= 4

sinh2 ϑ+ sin2 θ
, (A.2.3)

x+ x̄

2(xx̄) 1
2

= Ỹ1 · Y ⊥2
(Y ⊥1 · Y ⊥1 ) 1

2 (Y ⊥2 · Y ⊥2 ) 1
2

= sinh2 ϑ− sin2 θ

sinh2 ϑ+ sin2 θ
. (A.2.4)

We can solve these two equations for x, x̄ to obtain the expressions we have anticipated
in eq. (2.6.3). In case of four local operators (p = q = 0) this construction corresponds
to the radial coordinates

ρ = r

R
ei(π−θ) = −e−(ϑ+iθ) , ρ̄ = r

R
e−i(π−θ) = −e−(ϑ−iθ) , (A.2.5)

and therefore we get

z = 4ρ
(1 + ρ)2 = − sinh−2 ϑ+ iθ

2 ≡ 1− x , z̄ = 4ρ̄
(1 + ρ̄)2 = − sinh−2 ϑ− iθ

2 ≡ 1− x̄ .

(A.2.6)



Appendix B

General relations with scalar
four-point blocks

In this appendix we want to discuss some formulas that can be used to relate any
defect block with N = 2 cross ratios to blocks for scalar four-point function. Let us
stress, however, that the two relations we are about to discuss involve a continuation
of the four-point block beyond the Euclidean domain, see discussion below. As we
have seen before, a situation with N = 2 cross ratios arises when the dimension p of
the first defect is p = d− 2 and the dimension q takes any value q ≤ d− 2. In this
case we can relate relevant defect blocks to scalar four-point blocks through

fD

d− 2, q, d
∆, `

;x, x̄
 ∼ (−4)

∆+`
2 [(1− x)(1− x̄)]

d
2−2 (x̄− x)2− d2

× g
 d−2q−2

4 , d−4
4 , 3

∆−`
2 −

d
2 + 2,−∆+`

2

;−(1− x)(1− x̄)
(
√
x−
√
x̄)2

,−(1− x)(1− x̄)
(
√
x+
√
x̄)2

 . (B.1.1)

Recall that the parameters in the upper row of the argument of g are the parameters
a, b and d of the scalar four-point block while the parameters in the lower row are the
weight ∆ and the spin l of the exchanged field. If the pair (x, x̄) describes a point
in the Euclidean domain, i.e. if x and x̄ are complex conjugate to each other, then
cross-ratios in the scalar four-point block g are real, but not inside the unit interval
[0, 1]:

z = sin−2 θ ∈ [1,∞) , z̄ = − sinh−2 ϑ ∈ (−∞, 0) . (B.1.2)

This means that the four-point block in the right hand side is neither in the Euclidean
nor in the Lorentzian domain, i.e. it is related to the usual four-point block only
through analytic continuation to negative real cross-ratios. Conformal blocks, however,
possess branch cuts along the wall ω1. Since the monodromy along this wall is non-
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trivial, the result of the analytic continuation on the path along which we continue
from positive to negative real cross-ratios is not unique. The ∼ between the left
and the right side is meant to remind us of this continuation. Formula (B.1.1) does
correctly encode the match of parameters in the Casimir equations, though, and the
identification of eigenvalues up to the action of the Weyl group. In other words, the
defect block on the left hand side can be written through a linear combination of
Harish-Chandra (or ‘pure’ functions in the terminology of [28]) with eigenvalues ∆, l
running through all the images of

∆g := ∆− `
2 − d

2 + 2 , `g := −∆ + `

2 (B.1.3)

under the replacements `g ↔ 2− dg− `g, ∆g ↔ dg−∆g and ∆g ↔ 1− `g with dg = 3.
A similar discussion applies to the second setup with two cross-ratios, namely

when we have two local operators whose weights differ by ∆12 = −2a in presence of a
p-dimensional defect. In this case one finds that

f

p, a, d
∆, `

;x, x̄
 ∼ (−4)

∆+`
2 +a(xx̄)a2 [(1− x)(1− x̄)]

d
2−a−2 (x̄− x)2− d2

× g
 −d−2p−2

4 , d−4
4 , 3 + 2a

∆−`
2 −

d
2 + a+ 2,−∆+`

2 − a
;−(1− x)(1− x̄)

(
√
x−
√
x̄)2

,−(1− x)(1− x̄)
(
√
x+
√
x̄)2

 .

(B.1.4)

The ∼ between the left and the right hand side has the same meaning as in eq.
(B.1.1). In some sense, our relations (B.1.1) and (B.1.4) extend the relation (3.4.5)
from [41]. While the latter applies to the very special case of p = d − 2 and a = 0
only, our relations cover any setup with two cross-ratios. While the relation between
the cross-ratios x, x̄ and the arguments of g is a little different in eq. (3.4.5), one
central feature is the same: it maps the Euclidean domain of the defect correlator
to a different domain and hence, the function g on the right hand side of eq. (3.4.5)
should also be interpreted as some linear combination of Harish-Chandra functions
with eigenvalues ∆g = ∆ and `g = ` running over the full orbit of the Weyl group.
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