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Notations and conventions

• N denotes the set of all natural numbers and N0 := N ∪ {0}

• Z denotes the set of all integers and R denotes the set of all real numbers

• x ∈ Rd for some d ∈ N has the representation x = (x1, . . . , xd)
T

• X1, . . . ,Xn for some n ∈ N denotes a d-variate random sample with Xi =
(Xi1, . . . , Xid)

T for i ∈ {1, . . . , n}

• x ≤ y for x,y ∈ Rd is short for xj ≤ yj for all j = 1, . . . , d

• x∧ y for x,y ∈ Rd is short for (x1 ∧ y1, . . . , xd ∧ yd), where x∧ y := min(x, y)
for x, y ∈ R

• bxc := max{j ∈ Z : j ≤ x} for x ∈ R

• for k, i ∈ Nd
0 and x ∈ Rd let

• |k| :=
d∑
j=1

kj and k! := k1 · · · kd

• xk := xk1
1 · · ·x

kd
d

•
(
k
i

)
:= k!

(k−i)!i! for i ≤ k

• for g : Rd → R, 0 := (0, . . . , 0) ∈ Nd
0, k ∈ Nd

0\{0} and x ∈ Rd let

• D0g(x) := g(x)

• Dkg(x) := ∂|k|g

∂x
k1
1 ...∂x

kd
d

(x)

•
∫

(−∞,x]
g(u)du :=

∫ xd
−∞· · ·

∫ x1

−∞ g(u1, . . . , ud)du1 . . . dud

•
∫
g(u)du :=

∫
Rd g(u)du

• for g : R→ R let
∫
g(u)du :=

∫∞
−∞ g(u)du

• i.i.d. is short for independent and identically distributed

• a.s. is short for almost surely

• σ(Z) denotes the σ-algebra generated by the random variable Z

• N (µ, σ2) is a normal distribution with mean µ ∈ R and variance σ2 ∈ R with
σ2 > 0

• NK(µ,Σ) is a K-dimensional normal distribution with mean vector µ ∈ RK

and positive definite covariance matrix Σ ∈ RK×K

• D= denotes equality in distribution

• D→ denotes convergence in distribution

• P→ denotes convergence in probability

•  denotes weak convergence

iii





Introduction

When looking at time ordered statistical data - arising in such diverse fields as epi-
demiology, geology or econometrics - changepoint analysis can help to detect if and
when changes have occurred. In the context of regression analysis, detecting and
estimating changes of the relationship between regressor Xt and response variable
Yt for a given data set {(Yt, Xt) : t = 1, . . . , n} of size n ∈ N may be a matter of
particular interest. If a change exists, a single regression model will fit the data
rather poorly. Figure 1 shows the scatter plot of simulated data points that follow
a linear regression with different coefficients for the first and second half.1 Clearly,
fitting a linear regression model to the full data set will lead to misspecification.
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Figure 1: Scatter plots of simulated data with changepoint

These problems first arose in the 1950s in the context of quality control where
changepoint analysis was used to analyze a machine’s output in production for struc-
tural instability over time. Classical changepoint analysis is further used in the fields
of epidemiology, biology and medicine to just mention a few (see [12] for more precise
examples). Despite the fact that changepoint analysis has received much attention
for decades, it is still the subject of current research. Classical methods and models
have been extended in several directions. It was only a matter of time until the
problem naturally moved in the time series context, such as autoregressive models
that cover various more application fields. For instance economic and financial time
series data is frequently affected by political and social events and therefore liable

1A sample of 300 data points was simulated according to the autoregression model from Sub-
section 6.1.3 on page 88 with break size ∆0 = 1.4.
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Introduction

to structural breaks. Furthermore, in the field of climate control, climate data is
monitored and studied with regard to structural instability over time.

Figure 2 shows two data sets that have been extensively investigated in the
changepoint framework. The left one shows the weekly differences of log-returns of
the Dow Jones Industrial Average (DJIA) index between July 1st 1971 and August
2nd 1974. The right plot shows the annually flow of the river Nile in the city of
Aswan, recorded between 1871 and 1970. Regarding the DJIA time series, there
are several results that indicate a change in variance in the beginning of 1973. One
possible explanation is the discovery of the Watergate scandal that took place at
that time. Concerning the Nile data set results indicate that there is a structural
change in the mean in 1898. In fact, in this year the first damn was built in Aswan.
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Figure 2: DJIA (left) and Nile (right) data with potential changepoints

This thesis makes a contribution to the field of changepoint analysis in nonpara-
metric time series regression models that allow for heteroscedasticity. It focuses on
the detection of possible changes rather than on their estimation. It is structured as
follows. Chapter 1 gives a brief overview on relevant literature concerning change-
point analysis in regression models. The model under consideration is introduced
and some basic definitions are given. In Chapter 2, the kernel estimators are pre-
sented and uniform rates of convergence are proven. Chapter 3 is the main part of
this thesis. It contains the construction of a test to detect changes in the condi-
tional mean function, which is based on the sequential marked empirical process of
residuals. The limiting distribution under the null hypothesis of no changepoint and
a stationarity assumption is proven, as well as a consistency result under a simple
fixed alternative is given. Finally, to emphasize the advantage of the proposed pro-
cedure, related literature is discussed. The assumption of stationarity under the null
plays an important role in the proof of the limiting distribution. However, a testing
procedure that allows for occurring breaks in the variance may be of interest as well.
In Chapter 4, a bootstrap version of the test is proposed as valid procedure in the
case of non-stationary variances. Additionally, by extending already acquired meth-
ods, a test for change in the conditional variance function is obtained in Chapter
5. It contains a heuristic discussion of the limiting distribution under the null and

2



consistency properties against changepoint alternatives. Finally, in Chapter 6, the
finite sample performance of the tests, presented in this thesis, is investigated. Both
level and power simulations in various time series models are conducted. Addition-
ally, the tests are applied to the Nile and DJIA data sets that are given in Figure
2. Technical and auxiliary lemmata for all proofs can be found in Appendix A. A
weak convergence result for sequential empirical processes with weakly dependent
data is given in Appendix B. It is needed for the main result of this thesis, but may
also be of interest on its own.
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1 Fundamentals

In this introductory chapter, a literature review on changepoint detection in re-
gression analysis will be given. Furthermore, the statistical model and the null
hypothesis under consideration will be presented. Finally, some basic definitions
concerning mixing conditions and weak convergence of empirical processes will be
made, as well as the stochastic o and O notations will be introduced.

1.1 Literature review

Since the pioneering work of Page [58, 59] in the field of quality control, changepoint
analysis has received much attention in the literature. Especially in the parametric
framework, a lot of research has been done. In the most simple situation a possible
mean change in otherwise independent and identically distributed (i.i.d.) random
variables is considered. Later on this was extended to stability tests for the parame-
ter in linear regression models. A popular procedure for changepoint detection in this
context is the so called CUSUM1 test, first proposed by Brown, Durbin and Evans
[5], which is based on the fluctuation in the partial sum of residuals. It has been used
quite extensively in the case of independent observations, see for example Csörgő and
Horváth [12] and references mentioned therein. The problem naturally moved from
i.i.d. into the time series context. Krämer, Ploberger and Alt [38] considered linear
regression models with lagged dependent variables, Horváth [32] investigated linear
autoregressive models and Bai [3] more generally studied ARMA2 models, to name
just a few. In contrast, relatively little work has been devoted to the nonparametric
case. Most of the existing literature deals with the construction of estimates for
both size and location of a possible changepoint (cf. Delgado and Hidalgo [16] for an
overview) rather than testing for its existence. Kirch and Kamgaing [35] extented a
CUSUM type test to non-linear autoregressive models, using neural networks. Both
Hidalgo [29] and Honda [31] used nonparametric methods to test for changepoints in
the regression function in nonparametric time series regression models with strictly
stationary and absolutely regular data. Su and Xiao [71] extended these tests to not
necessarily stationary and strongly mixing processes, allowing for heteroscedasticity
and changes in the conditional variance function. However, their procedure does
only seem to work for fixed changes in the variance. Su and White [70] proposed
changepoint tests in partially linear time series models and Vogt [76] constructed a
kernel-based L2-test for structural change in the regression function in time-varying
nonparametric regression models with locally stationary regressors. Hidalgo and

1CUSUM: cumulative sum
2ARMA: autoregressive moving-average
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1. Fundamentals

Dalla [30] proposed a test for smoothness in a nonparametric regression model with
dependent data, based on the supremum of the difference between one-sided kernel
regression estimates.

A related strand of the literature deals with changepoint detection in the error
distribution of a regression model. In the parametric framework Koul [37] considered
non-linear regression models and Ling [48] non-stationary AR models, to just men-
tion a few. Neumeyer and Van Keilegom [54] constructed a test for change in the er-
ror distribution in nonparametric regression models with independent observations,
while Selk and Neumeyer [66] obtained a procedure that allows for heteroscedastic
autoregression models.

Instead of considering the whole error distribution, more specifically tests for
changepoints in the unconditional error variance can be of interest as well. Lee,
Na and Na [45] considered parametric autoregression models, as well as fixed design
nonparametric regression models with strongly mixing errors using a CUSUM testing
procedure. Chen and Tian [10] constructed a ratio test for changepoint detection
in the variance in random design nonparametric regression models. Though, it does
not allow for autoregressive effects, as a compact support of regressors is assumed.

Another interesting issue is the investigation of structural stability of the con-
ditional variance function in heteroscedastic models. While again a lot of research
has been devoted to the parametric case, notably for ARCH and GARCH3 models
(cf. Chen, Choi and Zhou [8] for an overview), just a few authors have considered
nonparametric models. Chen, Choi and Zhou [8] for instance studied a nonpara-
metric heteroscedastic time series model with a scale change in volatility. However,
they assume a compact support of regressors, which is problematic when considering
autoregression models.

1.2 The model

The aim of this thesis is to draw conclusions from an observed data set {(Yt,Xt) :
1 ≤ t ≤ n} of size n ∈ N about the structural behavior of the whole process. The
model under consideration is a regression model, that also allows for autoregressive
effects and heteroscedasticity.

To this end let (Yt,Xt)t∈Z be a weakly dependent stochastic process, following
the regression model

Yt = mt(Xt) + Ut, t ∈ Z, (1.1)

whereXt is a d-dimensional covariate, Yt is a one-dimensional response variable4 and
with unobservable innovations (Ut)t∈Z. Let E[Ut|F t] = 0 almost surely (a.s.), where
F t = σ(Uj−1,Xj : j ≤ t) and σ(Z) denotes the σ-algebra generated by the random
variable Z. For the unknown regression function mt : Rd → R, it therefore holds
that

E[Yt|Xt = x] = mt(x), t ∈ Z,

for all x ∈ Rd. Thus, mt is the conditional mean function of Yt conditioned on Xt.

3(G)ARCH: (generalized) autoregressive conditional heteroscedasticity
4Sometimes the notation {(Yt,Xt) ∈ R× Rd : t ∈ Z} will be used as well.
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1.3. Mixing conditions

Assuming (Y1,X1), . . . , (Yn,Xn) have been observed, the aim is to test the fol-
lowing null hypothesis

H0 : mt(·) = m(·), t = 1, . . . , n, (1.2)

for some function m : Rd → R not depending on the time of observation t against
the alternative hypothesis

H1 : ∃s0 ∈ (0, 1) : mt(·) =

{
m(1)(·), t = 1, . . . , bns0c
m(2)(·), t = bns0c+ 1, . . . , n

, (1.3)

for some functions m(1),m(2) : Rd → R with m(1) 6≡ m(2).

Note that Xt may include finitely many lagged values of Yt, for instance Xt =
(Yt−1, . . . , Yt−d)

T . Hence, the model allows for autoregressive effects. By allowing
the second moments of the innovations Ut conditioned on Xt to depend on Xt,
heteroscedastic models will also be covered.

1.3 Mixing conditions

Regarding the dependence of the process, some kind of weak dependence structure
is needed. In what follows, the notion of strongly mixing triangular arrays and se-
quences will be introduced. In the mixing framework a so called mixing coefficient
is defined, that in some sense measures the dependency of two segments of the se-
quence that are apart from each other in time t. The sequence is called mixing if
this coefficient tends to zero, as t tends to infinity, i.e. heuristically speaking if the
two segments behave asymptotically independent.

More precisely, let the following definition be introduced which can be found in
[69].

Definition 1.1 (Strongly mixing triangular array). For some triangular array of
random variables {Xn,t : 1 ≤ t ≤ n, n ∈ N} define

αn(t) :=


sup

1≤k≤n−t
sup

A∈σ(Xn,j :1≤j≤k)
B∈σ(Xn,j :k+t≤j≤n)

|P (A ∩B)− P (A)P (B)|, t ≤ n− 1

0, t ≥ n

(1.4)

and

α(t) :=

sup
n∈N

αn(t), t ∈ N

1, t = 0
.

Then {Xn,t : 1 ≤ t ≤ n, n ∈ N} is called strongly mixing or α-mixing, if α(t)→ 0
as t → ∞. Furthermore, α(·) is referred to as the mixing coefficient of {Xn,t : 1 ≤
t ≤ n, n ∈ N}.
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1. Fundamentals

Remark. Note that within some proofs in this thesis, where results only for a fixed
sample size n ∈ N are needed, properties of αn(·) as defined in (1.4), rather than
those of α(·), are used. In these cases αn(·) will also be referred to as the mixing
coefficient of {Xn,t : 1 ≤ t ≤ n, n ∈ N}.

For a sequence of random variables the strongly mixing notion simplifies in the
following matter. This version can for example be found in [4].

Definition 1.2 (Strongly mixing sequence). A sequence of random variables {Xt :
t ∈ Z} is called strongly mixing or α-mixing, if

α(t) := sup
k∈Z

sup
A∈σ(Xj :j≤k)
B∈σ(Xj :k+t≤j)

|P (A ∩B)− P (A)P (B)| → 0, t→∞.

If the sequence is strictly stationary5, then the mixing coefficient simplifies to

α(t) = sup
A∈σ(Xj :j≤0)
B∈σ(Xj :t≤j)

|P (A ∩B)− P (A)P (B)|.

In Chapter 3, a test statistic will be constructed to test H0 of no change in the
regression function against changepoint alternatives as H1. In Section 3.2, which
concerns the asymptotic behavior of the test statistic under the null, the process
{(Yt,Xt) ∈ R× Rd : t ∈ Z} will be assumed to be strictly stationary. The strongly
mixing assumption used therein is therefore meant in the sense of Definition 1.2.
Section 3.3 deals with the behavior under some fixed alternatives. As the possible
changepoint is assumed to depend on the sample size n ∈ N, the process will then
be viewed as a triangular array {(Yn,t,Xn,t) ∈ R × Rd : 1 ≤ t ≤ n, n ∈ N}. The
strongly mixing assumption is then meant in the sense of Definition 1.1.
Remark. Two different kinds of conditions on the mixing coefficient will be used in
this thesis, namely

• polynomial mixing rates, i.e. α(t) ≤ Bt−β for all t > 0 and for some β > 0,
0 < B <∞ and

• geometric (exponential) mixing rates, i.e. α(t) ≤ Aa−t for all t > 0 and for
some a ∈ (1,∞), 0 < A <∞.

In the following, examples will be given, that are strongly mixing with exponen-
tial mixing rates.
Example. (i) Let (Yt)t∈Z be strictly stationary following the AR(1) model

Yt = aYt−1 + εt, t ∈ Z

with (εt)t∈Z
i.i.d.∼ N (0, 1) and |a| < 1. Then (Yt)t∈Z is a linear process of the

form Yt =
∑∞

j=0 a
jεt−j (see for instance example 2.7 in [41]). As the coefficients

in above series converge exponentially fast, (Yt)t∈Z is strongly mixing and
possesses exponential mixing rates (see for instance [21] Subsection 2.6.1 (iii),
p. 69). Note that this does not hold if for instance the innovations (εt)t∈Z
follow a binomial distribution as stated in [21] as well.

5A sequence {Xt : t ∈ Z} is called strictly stationary if (Xt1 , . . . , Xtk)
D
= (Xt1+h, . . . , Xtk+h) for

all k ∈ N and t1, . . . , tk, h ∈ Z, where D= denotes equality in distribution.
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1.4. Weak convergence and empirical processes

(ii) Causal and stationary ARMA processes have an MA(∞) representation with
coefficients that decay exponentially fast (see for instance Remark 7.8 in [41]).
Hence, they are also strongly mixing with exponential mixing rates, provided
that the innovations are absolutely continuous.

(iii) Doukhan [18] considers the non-linear AR-ARCH process (Yt)t∈Z of the form

Yt = m(Yt−1) + σ(Yt−1)εt, t ∈ Z

for an i.i.d. sequence (εt)t∈Z with mean zero and variance one. Proposition
6 in Subsection 2.4.2.3 in [18] gives conditions on m, σ and the innovations
that imply geometric ergodicity of (Yt)t∈Z (see [18], p. 89 for the definition).
This implies the strong mixing property with exponential mixing rates (see
[21] Subsection 2.6.1 (vi), p. 70).

(iv) Both Lu [50] and Liebscher [47] consider (Yt)t∈Z following the more general
non-linear AR-ARCH equation

Yt = m(Yt−1, . . . , Yt−d) + σ(Yt−1, . . . , Yt−d)εt, t ∈ Z

for an i.i.d. sequence (εt)t∈Z with mean zero and variance one. They both
give sufficient conditions on m, σ and the innovations under which (Yt)t∈Z is
geometric ergodic (see Theorem 1 in [50] and Theorem 4 in [47]). In the linear
model

Yt = a1Yt−1 + · · ·+ adYt−d +
√
b0 + b1Y 2

t−1 + · · ·+ bdY 2
t−dεt, t ∈ Z,

where (εt)t∈Z
i.i.d.∼ N (0, 1) such that εt is independent of Yj for all j ≤ t − 1,

the condition in [50] simplifies to(
d∑
i=1

|ai|

)2

+
d∑
i=1

bi < 1.

Note that this however is not the weakest possible condition as can for instance
easily be seen in the homoscedastic case, i.e. for b1 = · · · = bd = 0.

1.4 Weak convergence and empirical processes

The concept of weak convergence of a sequence of stochastic processes is a gener-
alization of convergence in distribution of a sequence of random variables. Instead
of random variables with values in Euclidean spaces, it concerns random elements
that take values in more abstract metric spaces. The space that will be of interest
in this thesis is the function space of all uniformly bounded real-valued functions.
More precisely let T be an arbitrary set and let

l∞(T ) :=

{
z : T → R : ‖z‖∞ := sup

t∈T
|z(t)| <∞

}
.

9



1. Fundamentals

This is a metric space with respect to the sup norm ‖·‖∞. Following the modern
empirical process theory, well summarized in [75], this space will be equipped with
the Borel σ-algebra, the smallest σ-algebra that contains all open sets.

A stochastic process Z = {Z(t) : t ∈ T}, defined on some underlying probability
space, can be viewed as a random element in l∞(T ) if all sample paths are bounded.
Let in the following all random objects (measurable or not measurable) be defined
on the same underlying probability space (Ω,A, P ). The following definition can for
example be found as Definition 1.3.3 in [75] in a more abstract version for random
elements in general metric spaces.

Definition 1.3 (Weak convergence). Let Z be measurable with values in l∞(T ). A
sequence Zn with values in l∞(T ) is said to converge weakly to Z if

E∗[H(Zn)] →
n→∞

E[H(Z)]

for all bounded and continuous functions H : l∞(T )→ R, where E∗[X] denotes the
outer expectation of a possibly non-measurable real valued mapping X. It will be
denoted by Zn  

n→∞
Z.

Remark. As it can be seen for example by applying Theorem 1.5.7 and Theorem
1.5.4 in [75], it holds that Zn converges weakly to Z in l∞(T ) if and only if the
following two conditions hold

• fidi convergence: for all K ∈ N and all t1, . . . , tK ∈ T

(Zn(tk))k=1,...,K
D→

n→∞
(Z(tk))k=1,...,K ,

where D→ denotes convergence in distribution.

• there exists a semi metric d on T , such that (T, d) is totally bounded and Zn
is asymptotic equicontinuous, i.e.

lim
δ↘0

lim sup
n→∞

P ∗

(
sup

{t1,t2∈T :d(t1,t2)<δ}
|Zn(t1)− Zn(t2)| > ε

)
= 0

for all ε > 0, where P ∗(A) denotes the outer probability of a possibly non-
measurable set A.

These two conditions are in many situations easier to verify.

Definition 1.4 (Empirical process). Let {Xn,t : 1 ≤ t ≤ n, n ∈ N} be a trian-
gular array of random variables with values in some measure space X . For some
measurable function ϕ : X → R and some s ∈ [0, 1] let

Gn(s, ϕ) :=
1√
n

bnsc∑
i=1

(ϕ(Xn,i)− E[ϕ(Xn,i)]) , n ∈ N.

For some function class F of measurable functions X → R the (non-sequential)
empirical process indexed by F is defined as {Gn(1, ϕ) : ϕ ∈ F} , n ∈ N, and can be
viewed as a sequence of random elements in l∞(F). The sequential empirical process
indexed by [0, 1]× F is defined as {Gn(s, ϕ) : s ∈ [0, 1], ϕ ∈ F} , n ∈ N, and can be
viewed as a sequence of random elements in l∞([0, 1]×F).
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1.4. Weak convergence and empirical processes

For the empirical processes to converge, assumptions concerning the underlying
process and the function class are needed. Assumptions on the underlying process
concern dependency and distribution. Assumptions on the function class are often
given in terms of the so called covering and bracketing numbers, which in some
sense measure the size of the function class. The following definition introduces the
bracketing notion and can be found for example as Definition 2.1.6 in [75].

Definition 1.5 (Bracketing number - first version). Let X be a measure space, F
some class of functions X → R and ρ some semi norm on F . Given two functions
l, u : X → R with ρ(l) < ∞ and ρ(u) < ∞, the set of all functions ϕ such that
l ≤ ϕ ≤ u is called bracket and denoted by [l, u]. For ε > 0 the ε-bracket is a bracket
[l, u] with ρ(u − l) < ε. The smallest number of ε-brackets needed to cover F is
called the bracketing number and denoted by N[ ](ε,F , ρ).

In Appendix B, a different definition for bracketing number will be used to show
a weak convergence result for empirical processes with weakly dependent random
variables. It is based on Definition 2.1 in [2], but uses a slightly different notation.

Definition 1.6 (Bracketing number - second version). Let X be a measure space,
F some class of functions X → R and ρ some semi norm on F . For all ε > 0,
let N = N(ε), be the smallest integer, for which there exist a class of functions
X → R, denoted by B and called bounding class and a function class A ⊂ F called
approximating class such that

|B| = |A| = N,

ρ(b) < ε, ∀ b ∈ B

and for all ϕ ∈ F there exist an a∗ ∈ A and a b∗ ∈ B such that

|ϕ− a∗| ≤ b∗.

Then N(ε) is called the bracketing number and denoted by Ñ[ ](ε,F , ρ). The func-
tion a∗ is referred to as the (to ϕ) corresponding approximating function and the
function b∗ as the (to ϕ) corresponding bounding function.

Remark. Note that N[ ](2ε,F , ρ) ≤ Ñ[ ](ε,F , ρ) for all ε > 0. To see this, for ε > 0
and ϕ ∈ F let a∗ and b∗ as in Definition 1.6 be considered. Then [l, u] with l := a∗−b∗
and u := a∗ + b∗ is a 2ε-bracket containing ϕ as l ≤ ϕ ≤ u and

ρ(u− l) = ρ(2b∗) = 2ρ(b∗) < 2ε.

On the other hand for an ε-bracket [l, u] containing ϕ ∈ F , by the choice of
a∗ := u+l

2
and b∗ := u−l

2
, it can be obtained that |ϕ− a∗| ≤ b∗ and

ρ(b∗) = ρ

(
u− l

2

)
=

1

2
ρ(b∗) <

ε

2
.

However, as a∗ is not necessarily element in F , this does not necessarily lead to a
valid approximating function as in Definition 1.6. Hence, the other inequality does
not hold.
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1. Fundamentals

1.5 Stochastic o and O symbols

In analysis the o and O symbols are used to describe the limiting behavior of a
function. It particularly simplifies notations when expressing rates of convergence.
When talking about its stochastic versions, rates of convergence in probability are
of interest.

For real valued sequences (xn)n∈N and (yn)n∈N let the following notations be
introduced

xn = o(yn) :⇔ xn
yn
→
n→∞

0

and
xn = O(yn) :⇔ ∃C <∞, N <∞ :

∣∣∣∣xnyn
∣∣∣∣ < C, ∀n ≥ N.

For sequences of real valued random variables (Xn)n∈N and (Yn)n∈N defined on
some common probability space (Ω,A, P ) let the following notations be introduced

Xn = oP (Yn) :⇔ Xn

Yn

P→
n→∞

0,

where P→ denotes convergence in probability. Furthermore, let

Xn = OP (Yn) :⇔ ∀t > 0 ∃C <∞, N <∞ : P

(∣∣∣∣Xn

Yn

∣∣∣∣ > C

)
< t, ∀n ≥ N.

For further information and some useful properties see Section 2.2 in [74].
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2 Kernel estimation

To avoid additional model misspecification, nonparametric methods are used for
the estimation of unknown functions. In contrast to parametric procedures, no
specific assumptions on the form of the unknown functions are presumed. The only
kind of conditions concern smoothness and uniform bounds on expanding compact
sets. One of the most popular approaches in nonparametric statistics is the kernel
estimation. Kernel density and regression estimators, that are used in this thesis,
will be defined and uniform rates of convergence for strongly mixing and strictly
stationary processes will be proven under regularity assumptions. The results will
be compared with existing literature. Additionally, a uniform consistency result will
be given for strongly mixing triangular array processes.

2.1 Definition

The nonparametric estimators, that will be used, are the kernel density estimator,
its introduction can be traced back to Rosenblatt [65] in 1956 and Parzen [60] in
1962, and the Nadaraya-Watson estimator, independently proposed by Nadaraya
[53] and Watson [79] in 1964.

Definition 2.1. Let {(Yt,Xt) ∈ R × Rd : t = 1, . . . , n} be a sample of size n ∈ N,
K : Rd → R a function with

∫
Rd K(x)dx = 1, called a kernel, and h a positive

real valued number, called a bandwidth. Let Kh(·) := 1
hd
K
( ·
h

)
. The kernel density

estimator is defined by

f̂n(x) :=
1

n

n∑
i=1

Kh(Xi − x), for x ∈ Rd. (2.1)

The Nadaraya-Watson estimator is defined by

m̂n(x) :=


1
n

n∑
i=1

Kh(Xi − x)Yi

f̂n(x)
, if f̂n(x) 6= 0

0, otherwise

, (2.2)

for x ∈ Rd, following standard literature (see for instance [73], p. 32). Furthermore,
for x ∈ Rd define

σ̂2
n(x) :=


1
n

n∑
i=1

Kh(Xi − x)(Yi − m̂n(x))2

f̂n(x)
, if f̂n(x) 6= 0

0, otherwise

. (2.3)
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2. Kernel estimation

Remark. • Rosenblatt [65] first introduced the kernel density estimator for d = 1
and K(x) := 1

2
I(|x| ≤ 1), the so called rectangular kernel, motivated by a

discrete derivative version of the empirical distribution function.

• For i.i.d. or strictly stationary data, the density function f of Xi does not
depend on i and f̂n is a nonparametric estimator for f . Furthermore, m(x) :=
E[Yi|Xi = x] does not depend on i and m̂n is a nonparametric estimator for
m. Additionally, σ2(x) := V ar(Yi|Xi = x) then does not depend on i either
and σ̂2

n is an estimator for σ2.

• Note that, if K is non-negative and therefore a probability density itself, then
for fixed X1, . . . ,Xn, the function x 7→ f̂n(x) is a probability density. In this
case the function x 7→ σ̂2

n(x) is also non-negative and therefore

σ̂n(x) :=
√
σ̂2
n(x) for x ∈ Rd

is well defined. Nevertheless, for technical reasons it is useful to allow the
kernel to take negative values, as will be seen later on. Thus, both f̂n and σ̂2

n

can take negative values for a finite sample size.

• The kernel density estimator f̂n can be interpreted as a smooth version of the
histogram of a sample. Additionally, m̂n(x) is an average of such Yi that the
corresponding Xi lies in a neighborhood of x and σ̂2

n(x) is an average of such
(Yi − m̂n(x))2 that the corresponding Xi lies in a neighborhood of x. The
bandwidth h determines the size of the neighborhood and should be chosen
dependent on n ∈ N. For a larger sample size, the bandwidth should be chosen
smaller. Thus, in an asymptotic framework the bandwidth will always be a
sequence of positive real valued numbers (hn)n∈N with limn→∞ hn = 0.

2.2 Uniform rates of convergence

In this section, the performance of the estimators will be studied given a strictly
stationary and α-mixing sequence {(Yt,Xt) ∈ R × Rd : t ∈ Z}. In particular, it
will be shown that the difference between the estimators and the unknown functions
converges in probability to zero as n → ∞ uniformly over some compact subset of
Rd and with certain rates. A direct consequence will be the property of consistency
for the estimators. Furthermore, uniform rates of convergence will be shown for the
partial derivatives of the difference. Therefore, a multi-index notation for higher
order partial derivatives is needed. For an index k = (k1, . . . , kd) ∈ Nd

0 and x =
(x1, . . . , xd) ∈ Rd let

|k| := k1 + · · ·+ kd,

k! := k1! · · · kd!,
xk := xk1

1 · · ·x
kd
d .

For a function h : Rd → R, x ∈ Rd and k ∈ Nd
0\{0}, where 0 := (0, . . . , 0) ∈ Nd

0,
let

Dkh(x) :=
∂|k|h

∂xk1
1 . . . ∂xkdd

(x),
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2.2. Uniform rates of convergence

if all the |k|-th partial derivatives of h exist in x and D0h(x) := h(x). A useful tool
is Taylor’s expansion. It will be used with Lagrange form of the remainder, which
can be found for example in [36], p. 65. Let r ∈ N. For an r times continuously
differentiable function h : Rd → R and some x,a in some open subset U ⊂ Rd for
which the line segment lies in U as well, there exists a ξ on the line segment between
x and a, such that

h(x) =
∑
i∈Nd0

0≤|i|≤r−1

Dih(a)(x− a)i

i!
+
∑
i∈Nd0
|i|=r

Dih(ξ)(x− a)i

i!
. (2.4)

For brevity reasons, the condition i ∈ Nd
0 in the bound of summation will be

omitted most of the times. The first sum of (2.4) is the Taylor polynomial of
order r − 1 of h in a. The second sum is the remainder term in Lagrange form.
Another result, that will be used, is the so called Leibniz’s formula for higher partial
derivatives of the product of two functions. It can be found in [20], p. 13. For
functions u, v : Rd → R and k ∈ Nd

0, it states that

Dk(uv)(x) =
∑
i≤k

(
k

i

)
Diu(x)Dk−iv(x), (2.5)

where
(
k
i

)
:= k!

(k−i)!i! for all i ≤ k which in turn is short for ij ≤ kj for all j = 1, . . . , d.
As already mentioned, rates of convergence will be shown uniformly in x. As the

kernel estimators only perform well in regions where there are many observations
and rather poorly on the edges and outside of the sample space, nice asymptotic
properties can not be expected on the whole domain Rd. This issue can be solved
by a truncation of the domain to the following compact set Jn ⊂ Rd

Jn := [−cn, cn]d :=
d
×
i=1

[−cn, cn],

where (cn)n∈N is a positive sequence of real valued numbers converging to infinity
as n tends to infinity. Dependent on the rate of convergence of cn, uniform rates of
convergence of the estimators on the set Jn can be established.

In what follows, regularity assumptions will be presented under which the uni-
form rates of convergence stated in Lemma 2.2 hold.

(P) Let (Yt,Xt)t∈Z be a strictly stationary and strongly mixing process with mixing
coefficient α(·). For some b > 2 let

α(t) = O
(
t−β
)
, (t→∞) and β >

1 + (b− 1) (1 + d)

b− 2
. (2.6)

(M) For b from assumption (P) let

• E[|Y1|b] <∞,

• X1 be absolutely continuous with density function f : Rd → R that
satisfies sup

x∈Rd
E[|Y1|b|X0 = x]f(x) <∞ and sup

x∈Rd
f(x) <∞, and
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2. Kernel estimation

• ∃j∗ <∞ such that ∀ j ≥ j∗: sup
x1,xj

E[|Y1Yj||X1 = x1,Xj = xj]f1j(x1,xj) <

∞, where f1j is the density function of (X1,Xj).

Additionally, let m : Rd → R be the conditional mean function defined by

m(x) := E[Y1|X1 = x] for all x ∈ Rd.

(J) Let (cn)n∈N be a positive sequence of real valued numbers satisfying cn =

O
(

log (n)
1
d

)
and Jn := [−cn, cn]d.

(F1) For some C <∞ and cn from assumption (J) let In := [−cn−Chn, cn+Chn]d

and for some r, l ∈ N let

• f and m : Rd → R be l + 1 + r times continuously differentiable,

• δ−1
n := inf

x∈Jn
f(x) > 0 for all n ∈ N,

• pn := max
1≤|k|≤l+1+r

sup
x∈In
|Dkf(x)| <∞ for all n ∈ N and

• qn := max
0≤|k|≤l+1+r

sup
x∈In
|Dkm(x)| <∞ and qn > 0 for all n ∈ N.

(K) Let K : Rd → R be symmetric in each component with
∫
Rd K(z)dz = 1.

Additionally, for r, l ∈ N and C from assumption (F1) let r ≥ 2 and

•
∫
Rd K(z)zkdz = 0 for all k ∈ Nd

0 with 1 ≤ |k| ≤ r − 1,

• K have compact support [−C,C]d,

• K be l + 1 times differentiable.

For all L ∈ {K} ∪ {DkK : k ∈ Nd
0 with 1 ≤ |k| ≤ l + 1} let

• |L(u)| <∞ for all u ∈ Rd,

• |L(u)− L(u′)| ≤ Λ‖u− u′‖ for some Λ <∞ and for all u,u′ ∈ Rd.

(B1) With b and β from assumption (P) let

log (n)

nθhdn
= o(1) for θ =

β − 1− d− 1+β
b−1

β + 3− d− 1+β
b−1

. (2.7)

(B2) For δn, pn, qn and r, l from assumption (F1) let(√
log(n)

nh
d+2(l+1)
n

+ hrnpn

)
pl+1
n δl+2

n = O(1), (2.8)

and for some η ∈ (0, 1) let(√
log(n)

nh
d+2(l+1)
n

+ hrnpn

)
pl+ηn qnδ

l+1+η
n = o(1). (2.9)
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2.2. Uniform rates of convergence

Remark. • Assumptions (P), (M), parts of (K) and (B1) are reproduced from
Hansen [26]. In particular, Theorem 2 in [26], which is a result on uniform
rates of convergence for general kernel estimators, will be applied in the proof
several times.

• The second bullet point in (M) controls the tail behavior of the conditional
expectation E[|Y1|b|X0 = x] which can only increase to infinity at a slower
rate than f(x)−1. The last bullet point in (M) is a similar assumption for the
joint density and conditional expectation.

• Kernel functions that satisfy the first bullet point in (K) are often referred to
as kernels of order r. Together with the existence of r-th partial derivatives
of f and m in (F1) it causes the bias to be of order O(hrn). These are typical
assumptions in the nonparametric framework.

• The condition qn > 0 for all n ∈ N excludes the case of m ≡ 0. However,
in this particular case uniform rates of convergence can be obtained as well,
which will be pointed out within the proof.

• Assumption (P) specifies the dependence structure of the process (Yt,Xt)t∈Z
expressed in terms of the mixing notion. In particular, mixing coefficients with
polynomial rates of convergence are allowed for.

Lemma 2.2. Under the assumptions (P), (M), (J), (F1), (K), (B1) and (B2)
the following rates of convergence can be obtained.

(i) For f̂n(x) from (2.1) in Definition 2.1, it holds that

(a) sup
x∈Jn

∣∣∣f̂n(x)− f(x)
∣∣∣ = OP

(√
log (n)
nhdn

+ hrnpn

)
,

(b) sup
x∈Jn

∣∣∣Dk
(
f̂n(x)− f(x)

)∣∣∣ = OP

(√
log (n)

nh
d+2|k|
n

+ hrnpn

)
for all k ∈ Nd

0 with

1 ≤ |k| ≤ l + 1.

(ii) For ĝn(x) := 1
n

n∑
i=1

Khn(Xi − x)Yi as an estimator for g(x) := m(x)f(x), it

holds that

(a) sup
x∈Jn
|ĝn(x)− g(x)| = OP

(√
log (n)
nhdn

+ hrnpnqn

)
,

(b) sup
x∈Jn

∣∣Dk (ĝn(x)− g(x))
∣∣ = OP

(√
log (n)

nh
d+2|k|
n

+ hrnpnqn

)
for all k ∈ Nd

0 with

1 ≤ |k| ≤ l + 1.

(iii) For m̂n(x) from (2.2) in Definition 2.1, it holds that

(a) sup
x∈Jn
|m̂n(x)−m(x)| = OP

((√
log (n)
nhdn

+ hrnpn

)
qnδn

)
,

(b) sup
x∈Jn

∣∣Dk (m̂n(x)−m(x))
∣∣ = OP

((√
log (n)

nh
d+2|k|
n

+ hrnpn

)
p
|k|
n qnδ

|k|+1
n

)
for all

k ∈ Nd
0 with 1 ≤ |k| ≤ l + 1,
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2. Kernel estimation

(c) sup
x,y∈Jn
x6=y

|Dk(m̂n(x)−m(x))−Dk(m̂n(y)−m(y))|
‖x−y‖η = oP (1) for all k ∈ Nd

0 with |k| = l.

Remark. Note that this result implies that f̂n and m̂n are consistent estimators for
f and m respectively. For the Nadaraya-Watson estimator it particularly implies
that

sup
x∈Jn
|m̂n(x)−m(x)| = oP (1),

sup
k∈Nd0

1≤|k|≤l

sup
x∈Jn

∣∣Dk (m̂n(x)−m(x))
∣∣ = oP (1)

and

max
k∈Nd0
|k|=l

sup
x,y∈Jn
x6=y

∣∣Dk (m̂n(x)−m(x))−Dk (m̂n(y)−m(y))
∣∣

‖x− y‖η
= oP (1),

as the assumptions of Lemma 2.2 concerning the bandwidth imply(√
log (n)

nhd+2j
n

+ hrnpn

)
pjnqnδ

j+1
n = o(1), ∀ j ∈ {0, . . . , l}.

Thus, the difference m̂n − m can be embedded in a function class, containing
smooth, uniformly bounded functions, that posses uniformly bounded partial deriva-
tives up to order l with highest partial derivatives being Lipschitz of order η. This
technique will be used in the proof of Lemma A.1 in Appendix A.

Proof. The key tool in proving Lemma 2.2 is an application of Hansen’s Theorem 2
in [26]. With

sup
x∈Jn

∣∣∣f̂n(x)− f(x)
∣∣∣ ≤ sup

x∈Jn

∣∣∣f̂n(x)− E
[
f̂n(x)

]∣∣∣+ sup
x∈Jn

∣∣∣E [f̂n(x)
]
− f(x)

∣∣∣
the proof of (i) (a) splits into two parts, which will be treated separately, beginning
with the left term. A direct application of Theorem 2 in [26] results in

sup
x∈Jn

∣∣∣f̂n(x)− E
[
f̂n(x)

]∣∣∣ = OP

(√
log (n)

nhdn

)
.

Concerning the right term, inserting the definition of f̂n, using integration by
substitution and

∫
Rd K(u)du = 1 yields

sup
x∈Jn

∣∣∣E [f̂n(x)
]
− f(x)

∣∣∣ = sup
x∈Jn

∣∣∣∣∣E
[

1

nhdn

n∑
i=1

K

(
Xi − x
hn

)]
− f(x)

∣∣∣∣∣
= sup
x∈Jn

∣∣∣∣∫
Rd

1

hdn
K

(
u− x
hn

)
f(u)du− f(x)

∣∣∣∣
18



2.2. Uniform rates of convergence

= sup
x∈Jn

∣∣∣∣∫
Rd
K(z)f(zhn + x)dz − f(x)

∣∣∣∣
= sup
x∈Jn

∣∣∣∣∫
Rd
K(z) (f(zhn + x)− f(x)) dz

∣∣∣∣ .
Taylor’s expansion of f in x up to order r − 1 with Lagrange remainder term

results in

f(zhn + x)− f(x) =
r−1∑
|i|=1

Dif(x)(zhn)i

i!
+
∑
|i|=r

Dif(ξx,z)(zhn)i

i!

for some ξx,z on the line segment between x and x+zhn. This and the assumptions
(K) and (F1) furthermore lead to

sup
x∈Jn

∣∣∣E [f̂n(x)
]
− f(x)

∣∣∣
= sup
x∈Jn

∣∣∣∣∫
Rd
K(z) (f(zhn + x)− f(x)) dz

∣∣∣∣
= sup
x∈Jn

∣∣∣∣∣∣
∫
Rd
K(z)

 r−1∑
|i|=1

Dif(x)(zhn)i

i!
+
∑
|i|=r

Dif(ξx,z)(zhn)i

i!

 dz

∣∣∣∣∣∣
≤ sup
x∈Jn

∣∣∣∣∣∣
∫
Rd
K(z)

r−1∑
|i|=1

Dif(x)(zhn)i

i!
dz

∣∣∣∣∣∣+ sup
x∈Jn

∣∣∣∣∣∣
∫
Rd
K(z)

∑
|i|=r

Dif(ξx,z)(zhn)i

i!
dz

∣∣∣∣∣∣
≤ sup
x∈Jn

∣∣∣∣∣
r−1∑
|i|=1

Dif(x)h
|i|
n

i!

∫
Rd
ziK(z)dz︸ ︷︷ ︸

=0
∀ 1≤|i|≤r−1

∣∣∣∣∣+ hrn sup
x∈Jn

∫
Rd

∑
|i|=r

∣∣∣∣Dif(ξx,z)

i!

∣∣∣∣ ∣∣ziK(z)
∣∣ dz

= hrn
∑
|i|=r

1

i!
sup
x∈Jn

∫
Rd

∣∣Dif(ξx,z)
∣∣ ∣∣ziK(z)

∣∣ dz
= hrn

∑
|i|=r

1

i!
sup
x∈Jn

∫
Rd

∣∣Dif(ξx,z)
∣∣ I{z ∈ [−C,C]d}︸ ︷︷ ︸

≤ sup
y∈[−C,C]d

|Dif(ξx,y)|

∣∣ziK(z)
∣∣ dz

≤ hrn
∑
|i|=r

1

i!
sup
x∈Jn

y∈[−C,C]d

∣∣Dif(ξx,y)
∣∣ ∫

Rd

∣∣ziK(z)
∣∣ dz

≤ hrn
∑
|i|=r

1

i!
sup
x∈In

∣∣Dif(x)
∣∣︸ ︷︷ ︸

=O(pn)
∀|i|=r

∫
Rd

∣∣ziK(z)
∣∣ dz︸ ︷︷ ︸

<∞
∀|i|=r

= O(hrnpn),

which concludes the proof of the assertion in (i) (a).

For (i) (b) let k ∈ Nd
0 with 1 ≤ |k| ≤ l + 1. Notice that by chain rule

Dkf̂n(x) = Dk

(
1

nhdn

n∑
i=1

K

(
Xi − x
hn

))
=

(−1)|k|

nh
d+|k|
n

n∑
i=1

DkK

(
Xi − x
hn

)
. (2.10)
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2. Kernel estimation

With

sup
x∈Jn

∣∣∣Dkf̂n(x)−Dkf(x)
∣∣∣

≤ sup
x∈Jn

∣∣∣Dkf̂n(x)− E
[
Dkf̂n(x)

]∣∣∣+ sup
x∈Jn

∣∣∣E [Dkf̂n(x)
]
−Dkf(x)

∣∣∣
the proof of (i) (b) splits into two parts again, which will be treated separately
beginning with the left term. Denoting Ψ̂(x) := 1

nhdn

∑n
i=1D

kK
(
Xi−x
hn

)
, it follows

that

sup
x∈Jn

∣∣∣Dkf̂n(x)− E
[
Dkf̂n(x)

]∣∣∣ =
1

h
|k|
n

sup
x∈Jn

∣∣∣Ψ̂(x)− E
[
Ψ̂(x)

]∣∣∣
= OP

(√
log (n)

nh
d+2|k|
n

)
,

where the last step is again an application of Theorem 2 in [26]. Note that the
assumptions for the used Theorem are satisfied by the assumptions of the Lemma.
In particular, regularity assumptions on the partial derivatives DkK are needed
here. Concerning the right term, inserting the representation of Dkf̂n of (2.10) and
using integration by substitution yields

E
[
Dkf̂n(x)

]
= E

[
(−1)|k|

nh
d+|k|
n

n∑
i=1

DkK

(
Xi − x
hn

)]

= (−1)|k|
∫
Rd

1

h
d+|k|
n

DkK

(
u− x
hn

)
f(u)du

= (−1)|k|
∫
Rd

1

h
|k|
n

DkK(z)f(zhn + x)dz

= (−1)2|k|
∫
Rd
K(z)Dkf(zhn + x)dz.

For the last equality integration by parts was applied |k|-times, as well as the
assumptions on the kernel and its derivatives in (K) were used. More precisely, it is
needed that the kernel and its derivatives vanish on the edge of their support. Note
that this follows as K is l+1 times differentiable and has compact support. Taylor’s
expansion of Dkf in x up to order r−1 with Lagrange form of the remainder implies

Dkf(zhn + x)−Dkf(x) =
r−1∑
|i|=1

DiDkf(x)(zhn)i

i!
+
∑
|i|=r

DiDkf(ξx,z)(zhn)i

i!

=
r−1∑
|i|=1

Di+kf(x)(zhn)i

i!
+
∑
|i|=r

Di+kf(ξx,z)(zhn)i

i!

for some ξx,z on the line segment between x and x + zhn. Assumptions (K) and
(F1) then imply

sup
x∈Jn

∣∣∣E [Dkf̂n(x)
]
−Dkf(x)

∣∣∣
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= sup
x∈Jn

∣∣∣∣∫
Rd
K(z)Dkf(zhn + x)dz −Dkf(x)

∣∣∣∣
= sup
x∈Jn

∣∣∣∣∫
Rd
K(z)

(
Dkf(zhn + x)−Dkf(x)

)
dz

∣∣∣∣
= sup
x∈Jn

∣∣∣∣∣∣
∫
Rd
K(z)

 r−1∑
|i|=1

Di+kf(x)(zhn)i

i!
+
∑
|i|=r

Di+kf(ξx,z)(zhn)i

i!

 dz

∣∣∣∣∣∣
≤ sup
x∈Jn

∣∣∣∣∣∣
∫
Rd
K(z)

r−1∑
|i|=1

Di+kf(x)(zhn)i

i!
dz

∣∣∣∣∣∣+ sup
x∈Jn

∣∣∣∣∣∣
∫
Rd
K(z)

∑
|i|=r

Di+kf(ξx,z)(zhn)i

i!
dz

∣∣∣∣∣∣
≤ sup
x∈Jn

∣∣∣∣∣
r−1∑
|i|=1

Di+kf(x)h
|i|
n

i!

∫
Rd
ziK(z)dz︸ ︷︷ ︸

=0
∀1≤|i|≤r−1

∣∣∣∣∣+ hrn sup
x∈Jn

∫
Rd

∑
|i|=r

∣∣∣∣Di+kf(ξx,z)

i!

∣∣∣∣ ∣∣ziK(z)
∣∣ dz

= hrn
∑
|i|=r

1

|i|
sup
x∈Jn

∫
Rd

∣∣Di+kf(ξx,z)
∣∣ ∣∣ziK(z)

∣∣ dz
= hrn

∑
|i|=r

1

|i|
sup
x∈Jn

∫
Rd

∣∣Di+kf(ξx,z)
∣∣ I{z ∈ [−C,C]d}︸ ︷︷ ︸

≤ sup
y∈[−C,C]d

|Di+kf(ξx,y)|

∣∣ziK(z)
∣∣ dz

≤ hrn
∑
|i|=r

1

|i|
sup
x∈Jn

y∈[−C,C]d

∣∣Di+kf(ξx,y)
∣∣ ∫

Rd

∣∣ziK(z)
∣∣ dz

≤ hrn
∑
|i|=r

1

|i|
sup
x∈In

∣∣Di+kf(x)
∣∣︸ ︷︷ ︸

=O(pn)
∀|i|=r,1≤|k|≤l+1

∫
Rd

∣∣ziK(z)
∣∣ dz︸ ︷︷ ︸

<∞

= O(hrnpn),

which completes the proof of (i) (b).

The outline of the proof of (ii) (a) is similar to the one before. Using

sup
x∈Jn
|ĝn(x)− g(x)| ≤ sup

x∈Jn
|ĝn(x)− E [ĝn(x)]|+ sup

x∈Jn
|E [ĝn(x)]− g(x)| ,

it again splits into two parts. Concerning the left term, an application of Theorem
2 in [26] yields

sup
x∈Jn
|ĝn(x)− E [ĝn(x)]| = OP

(√
log (n)

nhdn

)
.

For the right term, the law of total expectation and integration by substitution
is used. Moreover, Taylor’s expansion of g in x up to order r − 1 results in

g(zhn + x)− g(x) =
r−1∑
|i|=1

Dig(x)(zhn)i

i!
+
∑
|i|=r

Dig(ξx,z)(zhn)i

i!
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2. Kernel estimation

for some ξx,z on the line segment between x and x+zhn. Applying the assumptions
in (K) and (F1), it follows that

sup
x∈Jn
|E [ĝn(x)]− g(x)|

= sup
x∈Jn

∣∣∣∣∣E
[

1

nhdn

n∑
i=1

K

(
Xi − x
hn

)
Yi

]
− g(x)

∣∣∣∣∣
= sup
x∈Jn

∣∣∣∣∣∣∣E
 1

nhdn

n∑
i=1

K

(
Xi − x
hn

)
E[Yi|Xi]︸ ︷︷ ︸
=m(Xi) a.s.

− g(x)

∣∣∣∣∣∣∣
= sup
x∈Jn

∣∣∣∣∣∣∣
∫
Rd

1

hdn
K

(
u− x
hn

)
m(u)f(u)︸ ︷︷ ︸

=g(u)

du− g(x)

∣∣∣∣∣∣∣
= sup
x∈Jn

∣∣∣∣∫
Rd
K(z)g(zhn + x)dz − g(x)

∣∣∣∣
= sup
x∈Jn

∣∣∣∣∫
Rd
K(z) (g(zhn + x)− g(x)) dz

∣∣∣∣
= sup
x∈Jn

∣∣∣∣∣∣
∫
Rd
K(z)

 r−1∑
|i|=1

Dig(x)(zhn)i

i!
+
∑
|i|=r

Dig(ξx,z)(zhn)i

i!

 dz

∣∣∣∣∣∣
≤ sup
x∈Jn

∣∣∣∣∣∣
∫
Rd
K(z)

r−1∑
|i|=1

Dig(x)(zhn)i

i!
dz

∣∣∣∣∣∣+ sup
x∈Jn

∣∣∣∣∣∣
∫
Rd
K(z)

∑
|i|=r

Dig(ξx,z)(zhn)i

i!
dz

∣∣∣∣∣∣
≤ sup
x∈Jn

∣∣∣∣∣
r−1∑
|i|=1

Dig(x)h
|i|
n

i!

∫
Rd
ziK(z)dz︸ ︷︷ ︸

=0
∀ 1≤|i|≤r−1

∣∣∣∣∣+ hrn sup
x∈Jn

∫
Rd

∑
|i|=r

∣∣∣∣Dig(ξx,z)

i!

∣∣∣∣ ∣∣ziK(z)
∣∣ dz

= hrn
∑
|i|=r

1

i!
sup
x∈Jn

∫
Rd

∣∣Dig(ξx,z)
∣∣ ∣∣ziK(z)

∣∣ dz
= hrn

∑
|i|=r

1

i!
sup
x∈Jn

∫
Rd

∣∣Dig(ξx,z)
∣∣ I{z ∈ [−C,C]d}︸ ︷︷ ︸

≤ sup
y∈[−C,C]d

|Dig(ξx,y)|

∣∣ziK(z)
∣∣ dz

≤ hrn
∑
|i|=r

1

i!
sup
x∈Jn

y∈[−C,C]d

∣∣Dig(ξx,y)
∣∣ ∫

Rd

∣∣ziK(z)
∣∣ dz

≤ hrn
∑
|i|=r

1

i!
sup
x∈In

∣∣Dig(x)
∣∣︸ ︷︷ ︸

(∗)
=O(pnqn)
∀|i|=r

∫
Rd

∣∣ziK(z)
∣∣ dz︸ ︷︷ ︸

<∞
∀|i|=r

= O(hrnpnqn),

where supx∈In
∣∣Djm(x)

∣∣ = O(qn) and supx∈In
∣∣Djf(x)

∣∣ = O(pn) ∀j ≤ i together
imply (∗) for all |i| = r. Hence, the assertion in (ii) (a) is shown.
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2.2. Uniform rates of convergence

For (ii) (b) let k ∈ Nd
0 with 1 ≤ |k| ≤ l + 1. Again, by chain rule it holds that

Dkĝn(x) =
(−1)|k|

nh
d+|k|
n

n∑
i=1

DkK

(
Xi − x
hn

)
Yi. (2.11)

With

sup
x∈Jn

∣∣Dkĝn(x)−Dkg(x)
∣∣

≤ sup
x∈Jn

∣∣Dkĝn(x)− E
[
Dkĝn(x)

]∣∣+ sup
x∈Jn

∣∣E [Dkĝn(x)
]
−Dkg(x)

∣∣
the proof of (ii) (b) splits into two parts again, which will be treated separately,
beginning with the left term. Denoting Ψ̂(x) := 1

nhdn

∑n
i=1 D

kK
(
Xi−x
hn

)
Yi, it follows

that

sup
x∈Jn

∣∣Dkĝn(x)− E
[
Dkĝn(x)

]∣∣ =
1

h
|k|
n

sup
x∈Jn

∣∣∣Ψ̂(x)− E
[
Ψ̂(x)

]∣∣∣
= OP

(√
log (n)

nh
d+2|k|
n

)
,

where the last step is again an application of Theorem 2 in [26]. Note that the
assumptions for the used Theorem are satisfied by the assumptions of the Lemma.
Concerning the right term, inserting the presentation of Dkĝn of (2.11) and using
the law of total expectation and integration by substitution, it can be obtained that

E
[
Dkĝn(x)

]
= E

[
(−1)|k|

nh
d+|k|
n

n∑
i=1

DkK

(
Xi − x
hn

)
Yi

]

= E

 (−1)|k|

nh
d+|k|
n

n∑
i=1

DkK

(
Xi − x
hn

)
E[Yi|Xi]︸ ︷︷ ︸
=m(Xi) a.s.


= (−1)|k|

∫
Rd

1

h
d+|k|
n

DkK

(
u− x
hn

)
m(u)f(u)︸ ︷︷ ︸

=g(u)

du

= (−1)|k|
∫
Rd

1

h
|k|
n

DkK(z)g(x+ zhn)dz

= (−1)2|k|
∫
Rd
K(z)Dkg(zhn + x)dz.

The last equality follows again by integration by parts |k|-times and the assump-
tions on the kernel and its derivatives in (K). Taylor’s expansion of Dkg in x up to
order r − 1 with Lagrange form of the remainder yields

Dkg(zhn + x)−Dkg(x) =
r−1∑
|i|=1

DiDkg(x)(zhn)i

i!
+
∑
|i|=r

DiDkg(ξx,z)(zhn)i

i!
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2. Kernel estimation

=
r−1∑
|i|=1

Di+kg(x)(zhn)i

i!
+
∑
|i|=r

Di+kg(ξx,z)(zhn)i

i!

for some ξx,z on the line segment between x and x + zhn. Using additionally the
assumptions (K) and (F1), it follows that

sup
x∈Jn

∣∣E [Dkĝn(x)
]
−Dkg(x)

∣∣
= sup
x∈Jn

∣∣∣∣∫
Rd
K(z)Dkg(zhn + x)dz −Dkg(x)

∣∣∣∣
= sup
x∈Jn

∣∣∣∣∫
Rd
K(z)

(
Dkg(zhn + x)−Dkg(x)

)
dz

∣∣∣∣
= sup
x∈Jn

∣∣∣∣∣∣
∫
Rd
K(z)

 r−1∑
|i|=1

Di+kg(x)(zhn)i

i!
+
∑
|i|=r

Di+kg(ξx,z)(zhn)i

i!

 dz

∣∣∣∣∣∣
≤ sup
x∈Jn

∣∣∣∣∣∣
∫
Rd
K(z)

r−1∑
|i|=1

Di+kg(x)(zhn)i

i!
dz

∣∣∣∣∣∣+ sup
x∈Jn

∣∣∣∣∣∣
∫
Rd
K(z)

∑
|i|=r

Di+kg(ξx,z)(zhn)i

i!
dz

∣∣∣∣∣∣
≤ sup
x∈Jn

∣∣∣∣∣
r−1∑
|i|=1

Di+kg(x)h
|i|
n

i!

∫
Rd
ziK(z)dz︸ ︷︷ ︸

=0
∀1≤|i|≤r−1

∣∣∣∣∣+ hrn sup
x∈Jn

∫
Rd

∑
|i|=r

∣∣∣∣Di+kg(ξx,z)

i!

∣∣∣∣ ∣∣ziK(z)
∣∣ dz

= hrn
∑
|i|=r

1

|i|
sup
x∈Jn

∫
Rd

∣∣Di+kg(ξx,z)
∣∣ ∣∣ziK(z)

∣∣ dz
= hrn

∑
|i|=r

1

|i|
sup
x∈Jn

∫
Rd

∣∣Di+kg(ξx,z)
∣∣ I{z ∈ [−C,C]d}︸ ︷︷ ︸

≤ sup
y∈[−C,C]d

|Di+kf(ξx,y)|

∣∣ziK(z)
∣∣ dz

≤ hrn
∑
|i|=r

1

|i|
sup
x∈Jn

y∈[−C,C]d

∣∣Di+kg(ξx,y)
∣∣ ∫

Rd

∣∣ziK(z)
∣∣ dz

≤ hrn
∑
|i|=r

1

|i|
sup
x∈In

∣∣Di+kg(x)
∣∣︸ ︷︷ ︸

(∗)
=O(pnqn)

∀|i|=r,1≤|k|≤l+1

∫
Rd

∣∣ziK(z)
∣∣ dz︸ ︷︷ ︸

<∞

= O(hrnpnqn),

where supx∈In
∣∣Dj+km(x)

∣∣ = O(qn) and supx∈In
∣∣Dj+kf(x)

∣∣ = O(pn) for all j ≤
i, 1 ≤ |k| ≤ l + 1 together imply (∗) for all |i| = r and 1 ≤ |k| ≤ l + 1. Hence, the
assertion in (ii) (b) is shown.

For the proof of (iii), the results from (i) and (ii) will be used. Concerning (iii)
(a), it can be obtained that

sup
x∈Jn
|m̂n(x)−m(x)| = sup

x∈Jn

∣∣∣∣∣ ĝn(x)

f̂n(x)
−m(x)

∣∣∣∣∣ = sup
x∈Jn

∣∣∣∣∣∣
ĝn(x)
f(x)
− f̂n(x)

f(x)
m(x)

f̂n(x)
f(x)

∣∣∣∣∣∣
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2.2. Uniform rates of convergence

= sup
x∈Jn

∣∣∣∣∣∣
1

f(x)

(
ĝn(x)− f̂n(x)m(x)

)
f̂n(x)
f(x)

∣∣∣∣∣∣
≤

sup
x∈Jn

∣∣∣ 1
f(x)

(
ĝn(x)− f̂n(x)m(x)

)∣∣∣
inf
x∈Jn

∣∣∣ f̂n(x)
f(x)

∣∣∣ .

The numerator and denominator will be considered separately, beginning with
the numerator. By adding and subtracting g(x)

f(x)
and using g(x) = m(x)f(x), it can

be obtained that

sup
x∈Jn

∣∣∣∣ 1

f(x)

(
ĝn(x)− f̂n(x)m(x)

)∣∣∣∣
≤ sup
x∈Jn

∣∣∣∣ 1

f(x)
(ĝn(x)− g(x))

∣∣∣∣+ sup
x∈Jn

∣∣∣∣ 1

f(x)
m(x)

(
f(x)− f̂n(x)

)∣∣∣∣
≤ 1

inf
x∈Jn

f(x)︸ ︷︷ ︸
=O(δn)

sup
x∈Jn
|ĝn(x)− g(x)|︸ ︷︷ ︸

(ii)(a)
= OP

(√
log(n)

nhdn
+hrnpnqn

)
+

1

inf
x∈Jn

f(x)︸ ︷︷ ︸
=O(δn)

sup
x∈Jn
|m(x)|︸ ︷︷ ︸

=O(qn)

sup
x∈Jn

∣∣∣f(x)− f̂n(x)
∣∣∣︸ ︷︷ ︸

(i)(a)
= OP

(√
log(n)

nhdn
+hrnpn

)

= OP

((√
log(n)

nhdn
+ hrnpn

)
qnδn

)
.

Note that the last equality does not hold if qn = 0 for all n ∈ N. Instead, in this
case it can be obtained that

sup
x∈Jn

∣∣∣∣ 1

f(x)

(
ĝn(x)− f̂n(x)m(x)

)∣∣∣∣ = OP

(√
log(n)

nhdn
δn

)
.

It is left to show that the denominator is bounded away from zero which can be
seen in the following way,

inf
x∈Jn

∣∣∣∣∣ f̂n(x)

f(x)

∣∣∣∣∣ = inf
x∈Jn

∣∣∣∣∣1− f(x)− f̂n(x)

f(x)

∣∣∣∣∣
≥ inf
x∈Jn

∣∣∣∣∣1−
∣∣∣∣∣f(x)− f̂n(x)

f(x)

∣∣∣∣∣
∣∣∣∣∣

≥ inf
x∈Jn

(
1−

∣∣∣∣∣f(x)− f̂n(x)

f(x)

∣∣∣∣∣
)

= 1− sup
x∈Jn

∣∣∣∣∣f(x)− f̂n(x)

f(x)

∣∣∣∣∣
≥ 1− sup

x∈Jn

∣∣∣f(x)− f̂n(x)
∣∣∣︸ ︷︷ ︸

(i)(a)
= OP

(√
log(n)

nhdn
+hrnpn

)
1

inf
x∈Jn

f(x)︸ ︷︷ ︸
=O(δn)
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2. Kernel estimation

= 1 +OP

((√
log(n)

nhdn
+ hrnpn

)
δn

)
= 1 + oP (1),

where the last equality is implied by condition (2.9) in (B2). Putting these results
together,

sup
x∈Jn
|m̂n(x)−m(x)| =

OP

((√
log(n)
nhdn

+ hrnpn

)
qnδn

)
1 + oP (1)

= OP

((√
log(n)

nhdn
+ hrnpn

)
qnδn

)
completes the proof of (iii) (a). Note that for qn = 0 for all n ∈ N (i.e. for m ≡ 0),
it can be obtained that

sup
x∈Jn
|m̂n(x)−m(x)| = OP

(√
log(n)

nhdn
δn

)
. (2.12)

For (iii) (b) let k ∈ Nd
0 with 1 ≤ |k| ≤ l + 1. As seen in the first part, it holds

that

m̂n(x)−m(x) =

(
1

f(x)
(ĝn(x)− g(x)) +

1

f(x)
m(x)

(
f(x)− f̂n(x)

))( f̂n(x)

f(x)

)−1

.

Applying Leibniz’s formula (2.5), it can be obtained that

Dk (m̂n(x)−m(x))

=
∑
i≤k

Di

(
1

f(x)
(ĝn(x)− g(x)) +

1

f(x)
m(x)

(
f(x)− f̂n(x)

))
Dk−i

(
f̂n(x)

f(x)

)−1

.

(2.13)

The two factors in the summands of (2.13) will be treated separately, beginning
with the left one. A repeated application of Leibniz’s formula yields

Di

(
1

f(x)
(ĝn(x)− g(x)) +

1

f(x)
m(x)

(
f(x)− f̂n(x)

))
= Di

(
1

f(x)
(ĝn(x)− g(x))

)
+Di

(
1

f(x)
m(x)

(
f(x)− f̂n(x)

))
=
∑
j≤i

Dj

(
1

f(x)

)
Di−j (ĝn(x)− g(x)) +

∑
j≤i

Dj

(
1

f(x)
m(x)

)
Di−j

(
f(x)− f̂n(x)

)
.

Additionally, for all j ≤ i ≤ k it holds that

sup
x∈Jn

∣∣∣∣Dj

(
1

f(x)

)∣∣∣∣ = O(p|j|n δ
|j|+1
n ). (2.14)
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To see this, using both product and chain rule, it can be obtained thatDj (f(x))−1

is a sum of products, each containing one factor of the form (f(x))−s for some s ∈ N
with 2 ≤ s ≤ |j| + 1 and at most |j| factors being of the form Dsf(x) for some
s ∈ Nd

0 with s ≤ j. Using

sup
x∈Jn

1

f(x)s
=

1

inf
x∈Jn

f(x)s
= O(δsn), ∀ s ∈ N, 2 ≤ s ≤ |j|+ 1

and
sup
x∈Jn
|Dsf(x)| ≤ sup

x∈In
|Dsf(x)| = O(pn), ∀ s ∈ Nd

0, s ≤ j

from assumption (F1) therefore results in (2.14). Furthermore,

sup
x∈Jn

∣∣∣∣Dj

(
1

f(x)
m(x)

)∣∣∣∣ ≤∑
s≤j

sup
x∈Jn

∣∣∣∣Ds

(
1

f(x)

)∣∣∣∣︸ ︷︷ ︸
(2.14)

= O(p
|s|
n δ
|s|+1
n )

sup
x∈Jn

∣∣Dj−sm(x)
∣∣︸ ︷︷ ︸

(F1)
= O(qn)

= O(p|j|n qnδ
|j|+1
n )

holds. Together with (i) (b) and (ii) (b), it can be concluded that for all i ≤ k

sup
x∈Jn

∣∣∣∣Di

(
1

f(x)
(ĝn(x)− g(x)) +

1

f(x)
m(x)

(
f(x)− f̂n(x)

))∣∣∣∣
≤
∑
j≤i

sup
x∈Jn

∣∣∣∣Dj

(
1

f(x)

)∣∣∣∣ sup
x∈Jn

∣∣Di−j (ĝn(x)− g(x))
∣∣

+
∑
j≤i

sup
x∈Jn

∣∣∣∣Dj

(
1

f(x)
m(x)

)∣∣∣∣ sup
x∈Jn

∣∣∣Di−j
(
f(x)− f̂n(x)

)∣∣∣
=
∑
j≤i

O(p|j|n δ
|j|+1
n )OP

(√
log(n)

nh
d+2|i−j|
n

+ hrnpnqn

)

+
∑
j≤i

O(p|j|n qnδ
|j|+1
n )OP

(√
log(n)

nh
d+2|i−j|
n

+ hrnpn

)

= OP

((√
log(n)

nh
d+2|i|
n

+ hrnpn

)
p|i|n qnδ

|i|+1
n

)
.

Concerning the second factor in the summands of (2.13), it is left to show for all
i ≤ k

sup
x∈Jn

∣∣∣∣∣∣Di

(
f̂n(x)

f(x)

)−1
∣∣∣∣∣∣ = OP (1). (2.15)

Again, by product and chain rule it can be seen that Di
(
f̂n(x)
f(x)

)−1

is a sum of

products, each containing one factor of the form
(
f̂n(x)
f(x)

)−j
for some j ∈ N with
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2. Kernel estimation

2 ≤ j ≤ |i|+ 1 and at most |i| factors being of the form Dj
(
f̂n(x)
f(x)

)
for some j ∈ Nd

0

with j ≤ i. The assertion of (2.15) is therefore an immediate consequence of

sup
x∈Jn

∣∣∣∣∣∣
(
f̂n(x)

f(x)

)−j∣∣∣∣∣∣ = OP (1), ∀ j ∈ N, 2 ≤ j ≤ |i|+ 1 (2.16)

and

sup
x∈Jn

∣∣∣∣∣Dj

(
f̂n(x)

f(x)

)∣∣∣∣∣ = OP (1), ∀ j ∈ Nd
0, j ≤ i. (2.17)

Concerning (2.16), let j ∈ N with 2 ≤ j ≤ |i|+ 1. Because of

sup
x∈Jn

∣∣∣∣∣∣
(
f̂n(x)

f(x)

)−j∣∣∣∣∣∣ =
1

inf
x∈Jn

∣∣∣∣( f̂n(x)
f(x)

)j∣∣∣∣ ,
it is to show that the denominator of the term on the right hand side is bounded
away from zero. Applying the binomial theorem, it can be seen that

inf
x∈Jn

∣∣∣∣∣∣
(
f̂n(x)

f(x)

)j
∣∣∣∣∣∣ = inf

x∈Jn

∣∣∣∣∣∣
(

1 +
f̂n(x)− f(x)

f(x)

)j
∣∣∣∣∣∣

= inf
x∈Jn

∣∣∣∣∣
j∑
s=0

(
j

s

)
1j−s

(
f̂n(x)− f(x)

f(x)

)s∣∣∣∣∣
= inf
x∈Jn

∣∣∣∣∣1 +

j∑
s=1

(
j

s

)(
f̂n(x)− f(x)

f(x)

)s∣∣∣∣∣
≥ inf
x∈Jn

∣∣∣∣∣1−
j∑
s=1

(
j

s

) ∣∣∣∣∣ f̂n(x)− f(x)

f(x)

∣∣∣∣∣
s∣∣∣∣∣

≥ inf
x∈Jn

(
1−

j∑
s=1

(
j

s

) ∣∣∣∣∣ f̂n(x)− f(x)

f(x)

∣∣∣∣∣
s)

= 1−
j∑
s=1

(
j

s

)
sup
x∈Jn

∣∣∣∣∣ f̂n(x)− f(x)

f(x)

∣∣∣∣∣
s

≥ 1−
j∑
s=1

(
j

s

)
sup
x∈Jn

∣∣∣f̂n(x)− f(x)
∣∣∣s 1

inf
x∈Jn

f(x)s

= 1 +

j∑
s=1

(
j

s

)
OP

(√
log(n)

nhdn
+ hrnpn

)s

O(δsn)

= 1 +OP

(√
log(n)

nhdn
+ hrnpn

)
O(δjn)

= 1 + oP (1),
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where the last equality is implied by condition (2.9) in (B2). Therefore,

sup
x∈Jn

∣∣∣∣∣∣
(
f̂n(x)

f(x)

)−j∣∣∣∣∣∣ =
1

1 + oP (1)
= OP (1)

holds which is the assertion in (2.16). Finally, the statement in (2.17) will be proven.
Let j ∈ Nd

0 with j ≤ i. Then

sup
x∈Jn

∣∣∣∣∣Dj

(
f̂n(x)

f(x)

)∣∣∣∣∣ = sup
x∈Jn

∣∣∣∣∣Dj

(
1 +

f̂n(x)− f(x)

f(x)

)∣∣∣∣∣
= sup
x∈Jn

∣∣∣∣∣Dj

(
f̂n(x)− f(x)

f(x)

)∣∣∣∣∣
=
∑
s≤j

(
j

s

)
sup
x∈Jn

∣∣∣Ds
(
f̂n(x)− f(x)

)∣∣∣︸ ︷︷ ︸
(i),(b)

= OP

(√
log(n)

nh
d+2|s|
n

+hrnpn

)
sup
x∈Jn

∣∣∣∣Dj−s
(

1

f(x)

)∣∣∣∣︸ ︷︷ ︸
(2.14)

= O(p
|j−s|
n δ

|j−s|+1
n )

=
∑
s≤j

(
j

s

)
OP

(√
log(n)

nh
d+2|s|
n

+ hrnpn

)
O(p|j−s|n δ|j−s|+1

n )

= OP

((√
log(n)

nh
d+2|j|
n

+ hrnpn

)
p|j|n δ

|j|+1
n

)
= OP (1),

where the last equality holds for all 0 ≤ |j| ≤ l + 1 due to condition (2.8) in (B2).
Coming back to (2.13), it has been proven that

sup
x∈Jn

∣∣Dk (m̂n(x)−m(x))
∣∣ =

∑
i≤k

OP

((√
log(n)

nh
d+2|i|
n

+ hrnpn

)
p|i|n qnδ

|i|+1
n

)
OP (1)

= OP

((√
log(n)

nh
d+2|k|
n

+ hrnpn

)
p|k|n qnδ

|k|+1
n

)
,

for all 1 ≤ |k| ≤ l + 1 which is the statement of (iii) (b). Note that in the case of
qn = 0 for all n ∈ N, it can be obtained that

sup
x∈Jn

∣∣Dk (m̂n(x)−m(x))
∣∣ = OP

(√
log(n)

nh
d+2|k|
n

p|k|n δ
|k|+1
n

)
, ∀ 1 ≤ |k| ≤ l + 1.

For (iii) (c) let k ∈ Nd
0 with |k| = l. Then

sup
x,y∈Jn
x6=y

∣∣Dk (m̂n(x)−m(x))−Dk (m̂n(y)−m(y))
∣∣

‖x− y‖η
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= sup
x,y∈Jn,x6=y

‖x−y‖>(pnδn)−1

∣∣Dk (m̂n(x)−m(x))−Dk (m̂n(y)−m(y))
∣∣

‖x− y‖η
(2.18)

+ sup
x,y∈Jn,x6=y

‖x−y‖≤(pnδn)−1

∣∣Dk (m̂n(x)−m(x))−Dk (m̂n(y)−m(y))
∣∣

‖x− y‖η
. (2.19)

Both (2.18) and (2.19) will be investigated separately. Starting with (2.18), it
can be obtained that

sup
x,y∈Jn,x6=y

‖x−y‖>(pnδn)−1

∣∣Dk (m̂n(x)−m(x))−Dk (m̂n(y)−m(y))
∣∣

‖x− y‖η

≤ (pnδn)η sup
x,y∈Jn,x6=y

‖x−y‖>(pnδn)−1

∣∣Dk (m̂n(x)−m(x))−Dk (m̂n(y)−m(y))
∣∣

≤ 2(pnδn)η sup
x∈Jn

∣∣Dk (m̂n(x)−m(x))
∣∣

(iii)(b)
= 2(pnδn)ηOP

((√
log(n)

nhd+2l
n

+ hrnpn

)
plnqnδ

l+1
n

)

= OP

((√
log(n)

nhd+2l
n

+ hrnpn

)
pl+ηn qnδ

l+1+η
n

)
= oP (1),

where the last equality is implied by (2.9) in (B2). Concerning (2.19), the mean
value theorem (see for instance [36], p. 56) will be used to obtain

sup
x,y∈Jn,x6=y

‖x−y‖≤(pnδn)−1

∣∣Dk (m̂n(x)−m(x))−Dk (m̂n(y)−m(y))
∣∣

‖x− y‖η

= sup
x,y∈Jn,x6=y

‖x−y‖≤(pnδn)−1

∣∣Dk (m̂n(x)−m(x))−Dk (m̂n(y)−m(y))
∣∣

‖x− y‖η−1‖x− y‖

≤ (pnδn)η−1 sup
x,y∈Jn,x6=y

‖x−y‖≤(pnδn)−1

∣∣Dk (m̂n(x)−m(x))−Dk (m̂n(y)−m(y))
∣∣

‖x− y‖

≤ (pnδn)η−1 max
|i|=l+1

sup
x∈Jn

∣∣Di (m̂n(x)−m(x))
∣∣

(iii)(b)
= (pnδn)η−1OP

((√
log(n)

nh
d+2(l+1)
n

+ hrnpn

)
pl+1
n qnδ

l+2
n

)

= OP

((√
log(n)

nh
d+2(l+1)
n

+ hrnpn

)
pl+ηn qnδ

l+1+η
n

)
= oP (1),

where the last equality holds due to condition (2.9) in (B2). Note that in the

30



2.2. Uniform rates of convergence

particular case of qn = 0 for all n ∈ N it can be obtained that

sup
x,y∈Jn
x6=y

∣∣Dk (m̂n(x)−m(x))−Dk (m̂n(y)−m(y))
∣∣

‖x− y‖η
= OP

(√
log(n)

nh
d+2(l+1)
n

pl+ηn δl+1+η
n

)
= oP (1),

for all |k| = l.

Remark. Results for σ̂2
n can be obtained in a similar matter. To see this, let the

following notations be introduced. Let

g̃(x) := E[Y 2
i |Xi = x]f(x)

and
ˆ̃gn(x) :=

1

n

n∑
i=1

Khn(Xi − x)Y 2
i .

Then it holds that

σ2(x) = E[Y 2
i |Xi = x]− E[Yi|Xi = x]2 =

g̃(x)

f(x)
−m2(x)

and

σ̂2
n(x) =

1
n

n∑
i=1

Khn(Xi − x)Y 2
i

f̂n(x)
− m̂2

n(x) =
ˆ̃gn(x)

f̂n(x)
− m̂2

n(x),

for f̂n(x) 6= 0. Thus, it holds that

σ̂2
n(x)− σ2(x) =

(
ˆ̃gn(x)

f̂n(x)
− g̃(x)

f(x)

)
+
(
m2(x)− m̂2

n(x)
)
.

To obtain uniform rates of convergence for the first summand, additional as-
sumptions, that imply uniform convergence rates for the difference ˆ̃gn − g̃ and its
partial derivatives, need to be made. In particular, the moment assumptions in
(M) need to be extended to Y 2

1 and the smoothness assumptions in (F1) need to
be extended to σ2. Under suitable conditions, it then can be shown that

sup
x∈Jn

∣∣σ̂2
n(x)− σ2(x)

∣∣ = oP (1),

sup
k∈Nd0

1≤|k|≤l

sup
x∈Jn

∣∣Dk
(
σ̂2
n(x)− σ2(x)

)∣∣ = oP (1)

and

max
k∈Nd0
|k|=l

sup
x,y∈Jn
x6=y

∣∣Dk (σ̂2
n(x)− σ2(x))−Dk (σ̂2

n(y)− σ2(y))
∣∣

‖x− y‖η
= oP (1).

These properties are needed to construct a test for change in the conditional
variance function that is motivated in Chapter 5. The main part of this thesis,
however, is the construction of a changepoint test in the conditional mean function
in Chapter 3. Rates of convergence for σ̂2

n are not required for this part and a more
detailed discussion is therefore omitted.
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2. Kernel estimation

2.3 Related results

Related results to Lemma 2.2 can be found in several papers that use uniform rates
of convergence for kernel regression estimators and possibly its derivatives. To start
with the simplest case, the paper of Akritas and Van Keilegom [1] is to mention. For
d = 1 and a sequence of i.i.d. random variables, they showed uniform convergence
rates for the Nadaraya-Watson estimator and its first derivative, as well as a Lip-
schitz condition for the first derivative comparable to assertion (iii) (c) in Lemma
2.2 (see Proposition 3,4 and 5 in [1]). For d ≥ 1 Neumeyer and Van Keilegom [55]
proved similar results for the local polynomial kernel regression estimator and its
partial derivatives up to order d in an i.i.d. model (see Lemma A.1 in [55]). Concern-
ing the dependence structure of the underlying process, Dette, Pardo-Fernández and
Van Keilegom [17] extended existing results for d = 1 to β-mixing strictly station-
ary sequences. They showed uniform rates of convergence for the Nadaraya-Watson
estimator and its first derivative, as well as the Lipschitz condition for the first
derivative (see proof of Lemma 1 in [17]). Selk and Neumeyer [66] showed similar
results for d = 1 and an α-mixing, not necessarily stationary underlying process (see
Lemma 1 in [66]). Using local polynomial regression estimation, Neumeyer, Omelka
and Hudecova were able to show results for d ≥ 1 and β-mixing strictly stationary
data (see Lemma 1 in [56]).

The paper most related to Lemma 2.2 is possibly Hansen’s [26] and therefore
the results will be compared in more detail. Theorem 2 in [26] gives uniform rates
of convergence for general kernel estimators under a possibly multidimensional and
α-mixing underlying process. As an application, Hansen proves uniform rates of
convergence for the kernel density estimator and its partial derivatives comparable
to the results in Lemma 2.2 (i) (a) and (b) (see Theorem 6 in [26]). In comparison to
Hansen’s proof, the result in Lemma 2.2 holds without the assumption of uniform
bounded partial derivatives of f(·). Instead, the less restrictive condition on pn
in (F1) is imposed. Further, the proof is more clear in notations regarding the
partial derivatives using multi-index notations. Uniform rates for the Nadaraya-
Watson estimator as assertion (iii) (a) in Lemma 2.2 were also given in Theorem 8
in [26]. The new result is an improvement insofar as a faster rate can be obtained
by imposing the existence of more partial derivatives and by choosing a kernel of
higher order. Hansen assumed the existence of second order partial derivatives and
a kernel of order two and therefore obtains a bias of order O(h2

n). Furthermore, by
imposing assumptions on pn and qn in (F1) the assumption on uniformly bounded
partial derivatives of f(·) and f(·)m(·) made in his Theorem 8 are relaxed. The
uniform rates of convergence for the partial derivatives of m̂n(·) obtained in (iii) (b)
and (c) are new to the best of our knowledge.

2.4 Non-stationary observations

A main assumption in Lemma 2.2 is strict stationarity of the underlying stochastic
process. However, kernel estimators can be defined and asymptotic properties can
be obtained in more general situations. Let again K be some kernel function and
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2.4. Non-stationary observations

(hn)n∈N be a sequence of bandwidths. For a sample (Yn,1,Xn,1), . . . , (Yn,n,Xn,n) of
size n ∈ N observed from a triangular array process {(Yn,t,Xn,t) : t = 1, . . . , n, n ∈
N}, let then

f̂n(x) :=
1

nhdn

n∑
i=1

K

(
Xn,i − x

hn

)
and

m̂n(x) :=

1
nhdn

n∑
i=1

K

(
Xn,i − x

hn

)
Yn,i

f̂n(x)
, if f̂n(x) 6= 0,

and m̂n(x) := 0, otherwise. It can be shown that under suitable conditions,
m̂n(x) still consistently estimates some non-stochastic object that will be denoted
by m̄n(x). Moreover, this convergence in fact holds uniformly over some expanding
compact set Jn. This result is stated in Lemma 2.3 and holds under the following
assumptions.

(P)’ Let {(Yn,t,Xn,t) : t = 1, . . . , n, n ∈ N} be a strongly mixing triangular array
with mixing coefficient α(·). For some b > 2 let

α(t) = O(t−β), (t→∞) and β >
1 + (b− 1) (1 + d)

b− 2
.

(M)’ For b from assumption (P)’ let

• sup
n∈N

sup
1≤i≤n

E[|Yn,i|b] <∞,

• for all 1 ≤ i ≤ n and n ∈ N, Xn,i be absolutely continuous with density
function fn,i : Rd → R that satisfies

sup
n∈N

sup
1≤i≤n

sup
x∈Rd

E[|Yn,i|b|Xn,i = x]fn,i(x) <∞

and
sup
n∈N

sup
1≤i≤n

sup
x∈Rd

fn,i(x) <∞,

• there exist an N ≥ 0 such that

sup
n∈N

sup
|i−j|≥N

sup
x,y∈Rd

E[|Yn,iYn,j||Xn,i = x,Xn,j = y]fn,ij(x,y) <∞,

where fn,ij is the density function of (Xn,i,Xn,j).

Additionally, for all 1 ≤ i ≤ n and n ∈ N let mn,i : Rd → R be the conditional
mean function defined by

mn,i(x) := E[Yn,i|Xn,i = x] for all x ∈ Rd.

(J)’ Let (cn)n∈N be a positive sequence of real valued numbers satisfying cn =

O
(

log (n)
1
d

)
and Jn := [−cn, cn]d.
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(F1)’ For some C <∞ and cn from assumption (J)’ let In := [−cn−Chn, cn+Chn]d

and let for 1 ≤ i ≤ n and n ∈ N,

• fn,i and mn,i : Rd → R be continuously differentiable,

• δ−1
n := inf

x∈Jn
inf

1≤i≤n
fn,i(x) > 0 for all n ∈ N,

• pn := max
|k|=1

sup
x∈In

sup
1≤i≤n

|Dkfn,i(x)| <∞ for all n ∈ N and

• qn := max
0≤|k|≤1

sup
x∈In

sup
1≤i≤n

|Dkmn,i(x)| <∞ for all n ∈ N.

(K)’ Let K : Rd → R be symmetric in each component with
∫
Rd K(z)dz = 1 and

for C from assumption (F)’ let

• K have compact support [−C,C]d,

• |K(u)| <∞ for all u ∈ Rd,

• |K(u)−K(u′)| ≤ Λ‖u− u′‖ for some Λ <∞ and for all u,u′ ∈ Rd.

(B)’ With b and β from assumption (P)’ let

log (n)

nθhdn
= o(1) for θ =

β − 1− d− 1+β
b−1

β + 3− d− 1+β
b−1

.

For δn, pn, qn from assumption (F)’ let(√
log(n)

nhdn
+ hnpn

)
pnqnδn = o(1).

Lemma 2.3. Let the assumptions (P)’, (M)’, (J)’, (F1)’, (K)’ and (B)’ hold
and let for all n ∈ N, m̄n : Rd → R be defined by

m̄n(x) :=

1
n

n∑
i=1

fn,i(x)mn,i(x)

1
n

n∑
i=1

fn,i(x)
. (2.20)

Then it holds that

sup
x∈Jn
|m̂n(x)− m̄n(x)| = oP (1). (2.21)

The proof is similar to the proof of Lemma 2.2. As the underlying process is
not strictly stationary, Hansen’s uniform convergence rates in [26] can not be used.
Instead, Kristensen’s Theorem 1 in [42] can be applied. It is a generalization of
the aforementioned uniform convergence rates to possibly heterogeneous triangular
arrays. Concerning the bias term, the proof only requires minor modifications. The
details are omitted.
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Remark. A similar result for

σ̂2
n(x) :=

1
n

n∑
i=1

Kh(Xn,i − x)(Yn,i − m̂n(x))2

f̂n(x)
, if f̂n(x) 6= 0,

and σ̂2
n(x) := 0 otherwise, can be obtained. Under suitable conditions it can be

shown that

sup
x∈Jn

∣∣σ̂2
n(x)− σ̄2

n(x)
∣∣ = oP (1),

where

σ̄2
n(x) :=

1
n

n∑
i=1

fn,i(x)
(
σ2
n,i(x) +m2

n,i(x)
)

1
n

n∑
i=1

fn,i(x)
−


1
n

n∑
i=1

fn,i(x)mn,i(x)

1
n

n∑
i=1

fn,i(x)


2

and σ2
n,i(x) := Var(Yn,i|Xn,i = x). Note that for mn,i ≡ m, for all 1 ≤ i ≤ n, n ∈ N

and some m : Rd → R not depending on i and n, as it will be assumed in Chapter
5, this simplifies to

σ̄2
n(x) =

1
n

n∑
i=1

fn,i(x)σ2
n,i(x)

1
n

n∑
i=1

fn,i(x)
.
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3 Changepoint test in the conditional
mean function

In this chapter, a test for a change in the conditional mean function will be con-
structed. To do that, a suitable test statistic will be considered. Under the null
hypothesis of no change and some regularity assumptions, the limiting distribution
of the test statistic will lead to the necessary critical value to construct a test of some
asymptotic level. The consistency of the test against changepoint alternatives will
be studied. Furthermore, the case of one-dimensional covariates will be discussed in
more detail, as it will lead to a distribution free limiting distribution. Finally, some
remarks on related literature will be made.

3.1 Definition of the test statistic

Consider model (1.1) on page 6. To test the null hypothesis (1.2), the following
cumulative sum of residuals is used

T̂n(s, z) :=
1√
n

bnsc∑
i=1

(Yi − m̂n(Xi))ωn(Xi)I{Xi ≤ z},

for s ∈ [0, 1] and z ∈ Rd, where ωn(·) = I{· ∈ Jn} with Jn from assumption (J) on
page 16 and bxc := max{k ∈ Z : k ≤ x} for all x ∈ R. The process

T̂n :=
{
T̂n(s, z) : s ∈ [0, 1], z ∈ Rd

}
can be viewed as a random element in l∞([0, 1]×Rd) and is referred to as the sequen-
tial marked empirical process of residuals. Under H0 and regularity assumptions, it
will be shown that it converges weakly to a centered Gaussian process

{G0(s, z) : s ∈ [0, 1], z ∈ Rd}.
Using the continuous mapping theorem (see for instance Theorem 1.3.6 in [75])

it then can be concluded that

Tn1 := sup
z∈Rd

sup
s∈[0,1]

∣∣∣T̂n(s, z)
∣∣∣ D→
n→∞

sup
z∈Rd

sup
s∈[0,1]

|G0(s, z)| .

The test statistic Tn1 is called Kolmogorov-Smirnov test statistic. A test of
asymptotic level α ∈ (0, 1), based on Tn1 can be constructed by rejecting the null if
Tn1 exceeds the (1− α)-quantile of the limiting distribution. Thus, the asymptotic
behavior of the test statistic under the null is of great importance and will be studied
in the next section. Note that different test statistics, that are also based on T̂n,
will be constructed in Section 3.4. They will be denoted by Tn2, Tn3 and Tn4.
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3. Changepoint test in the conditional mean function

3.2 Asymptotic behavior under the null

This section contains the proof of the limiting distribution of the process T̂n under
H0 and regularity assumptions. It splits into two main parts. First, it will be shown
that T̂n decomposes into a dominating term and a remainder term that is negligi-
ble. Secondly, the weak convergence of the dominating term will be shown. Both
proofs require some sophisticated methods that need empirical processes and some
parts are rather technical. For reasons of clarity and comprehensibility, most of the
technical results and proofs are outsourced to Appendix A. A new weak convergence
result for sequential empirical processes with dependent data will also be applied.
It can be found in Appendix B.

In what follows, the regularity assumptions, under which the limiting distribution
can be obtained, are displayed.

(G) Let (Yt,Xt)t∈Z be a strictly stationary, strongly mixing process with mixing
coefficient α(·) such that

α(t) = O
(
a−t
)
, (t→∞) (3.1)

for some a ∈ (1,∞).

Remark. Note that this assumption means that the mixing coefficient decays at a
geometric rate. This is strictly stronger than the polynomial rate of decay assumed
in (P) in Chapter 2. More precisely, under condition (3.1) condition (2.6) in (P) on
page 15 holds for arbitrary large β. As Hansen pointed out in [26], then condition
(2.7) on the bandwidth in (B1) on page 16 simplifies to the less restrictive condition

log(n)

nhdn
= o(1). (3.2)

(U) For some γ > 0 and some even Q > (d + 1)(2 + γ), and F t := σ(Uj−1,Xj :
j ≤ t), let for (Ut)t∈Z the following hold

• E[Ut|F t] = 0 a.s. for all t ∈ Z,
• E[U2

t |Xt] = σ2(Xt) a.s. for all t ∈ Z and

• E
[
|Ut|Q

2+γ
2 |Xt

]
≤ c(Xt)

Q a.s. for all t ∈ Z, for some functions c, σ2 :

Rd → R with∫
c̄(u)dF (u) ≤M, c̄(u) := max

{
σ2(u), c(u)2, . . . , c(u)Q

}
,

for some M <∞.

(F2) For m from assumption (M), qn from assumption (F1), cn from assumption
(J) and C from assumption (K), let for all k ∈ Nd

0 with |k| = 2

sup
x∈[−cn−2hnC,cn+2hnC]d

∣∣Dkm(x)
∣∣ = O(qn).
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3.2. Asymptotic behavior under the null

Remark. Note that from assumption (F1) on page 16, it already holds for all |k| = 2
that

sup
x∈[−cn−hnC,cn+hnC]d

∣∣Dkm(x)
∣∣ = O(qn).

(B3) For l, pn, qn, δn from assumption (F1) and η from assumption (B2), let hn
satisfy the following conditions

log(n)3+ d
l+η√

n1− d
l+ηhdn

q2
nδ

2
n = o(1), (3.3)

log(hn)√
nhdn

= o(1), (3.4)

√
nhrnpnqn = o(1), (3.5)

log(n)3hnq
2
n = o(1). (3.6)

Remark. • Note that condition (3.3) implies condition (3.2) on page 38.

• In order to satisfy (3.3), a necessary condition on the smoothness of f and
m, then is l + η > d, meaning that for higher dimensional covariate Xt, the
existence of higher order partial derivatives of f and m is needed.

• If qn and δn only have a log(n) rate, namely if there exist r1, r2 ≥ 0, such that

qn = O (log(n)r1) and δn = O (log(n)r2) ,

then condition (3.3) simplifies to

log(n)3+ d
l+η

+2r1+2r2√
n1− d

l+ηhdn

= o(1).

For faster rates of qn and δn, namely if there exist r1, r2 ≥ 0 and s1, s2 ≥ 0
such that

qn = O (log(n)r1ns1) and δn = O (log(n)r2ns2) ,

then condition (3.3) is

log(n)3+ d
l+η

+2r1+2r2√
n1− d

l+η
−4(s1+s2)hdn

= o(1).

A necessary condition then is 1 > d
l+η

+ 4(s1 + s2), which only allows for small
s1, s2 and large l, depending on the dimension d.
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3. Changepoint test in the conditional mean function

• In order to satisfy both (3.3) and (3.5) at the same time, the order of the
kernel needs to be large depending on both the dimension and the smooth-
ness assumptions at the same time. In particular, r > d

2
l+η
l+η−d is a necessary

condition.

• Condition (3.4) is implied by (3.3), if the bandwidth hn has a polynomial
rate of decay in n (or slower), meaning if there exists a k ∈ (0,∞) such that
hn = O(n−k). Note that k < 1

d
− 1

l+η
is necessary then.

Theorem 3.1 (Decomposition). Suppose that (G), (U), (M), (J), (F1), (F2),
(K), (B1), (B2) and (B3) are satisfied. Then under H0

T̂n(s, z) = Tn(s, z)− sTn(1, z) + oP (1),

holds uniformly in s ∈ [0, 1] and z ∈ Rd, where Tn(s, z) := 1√
n

bnsc∑
i=1

UiI{Xi ≤ z}.

Proof. Inserting the definition of T̂n and Yi = m(Xi) + Ui for all i = 1, . . . , n under
the null, it can be obtained that

T̂n(s, z) =
1√
n

bnsc∑
i=1

(Yi − m̂n(Xi))ωn(Xi)I{Xi ≤ z}

=
1√
n

bnsc∑
i=1

Uiωn(Xi)I{Xi ≤ z}

+
1√
n

bnsc∑
i=1

(m(Xi)− m̂n(Xi))ωn(Xi)I{Xi ≤ z}

= Tn(s, z) +
1√
n

bnsc∑
i=1

(m(Xi)− m̂n(Xi))ωn(Xi)I{Xi ≤ z}+ oP (1),

uniformly in s ∈ [0, 1] and z ∈ Rd, where the last equality is an application of
Lemma A.4 on page 142. Applying Lemma A.1 on page 113, inserting the definition
of m̂n and using Yi = m(Xi) + Ui under the null, yields

1√
n

bnsc∑
i=1

(m(Xi)− m̂n(Xi))ωn(Xi)I{Xi ≤ z}

L.A.1
= s
√
n

∫
Rd

(m(x)− m̂n(x))ωn(x)I{x ≤ z}f(x)dx+ oP (1)

= s
√
n

∫
Rd

(
m(x)− 1

n

n∑
i=1

Khn(x−Xi)Yi
1

f̂n(x)

)
ωn(x)I{x ≤ z}f(x)dx+ oP (1)

= s
1√
n

n∑
i=1

∫
Rd

(m(x)−m(Xi))Khn(x−Xi)ωn(x)I{x ≤ z} f(x)

f̂n(x)
dx (3.7)

− s 1√
n

n∑
i=1

Ui

∫
Rd
Khn(x−Xi)ωn(x)I{x ≤ z} f(x)

f̂n(x)
dx+ oP (1), (3.8)
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3.2. Asymptotic behavior under the null

uniformly in s ∈ [0, 1] and z ∈ Rd. Concerning (3.7), Lemma A.2 on page 124 states
that

1√
n

n∑
i=1

∫
Rd

(m(x)−m(Xi))Khn(x−Xi)ωn(x)I{x ≤ z} f(x)

f̂n(x)
dx = oP (1),

uniformly in z ∈ Rd. Concerning (3.8), applying Lemma A.3 on page 131 and
Lemma A.4 on page 142, it can be obtained that

1√
n

n∑
i=1

Ui

∫
Rd
Khn(x−Xi)ωn(x)I{x ≤ z} f(x)

f̂n(x)
dx

L.A.3
=

1√
n

n∑
i=1

Uiωn(Xi)I{Xi ≤ z}+ oP (1)

L.A.4
=

1√
n

n∑
i=1

UiI{Xi ≤ z}+ oP (1),

uniformly in z ∈ Rd. Putting the results together, the assertion of Theorem 3.1 is
obtained.

Before stating the weak convergence result for {Tn(s, z) : s ∈ [0, 1], z ∈ Rd}, let
the following notations be introduced. For all x,y ∈ Rd let

x ∧ y := (x1 ∧ y1, . . . , xd ∧ yd),

where x ∧ y := min{x, y} for all x, y ∈ R. Let furthermore for g : Rd → R∫
(−∞,x]

g(u)du :=

∫ xd

−∞
· · ·
∫ x1

−∞
g(u1, . . . , ud)du1 . . . dud.

Theorem 3.2 (Weak convergence of Tn). Suppose that the assumptions (G) and
(U) are satisfied. Then under H0 it holds that

Tn :=
{
Tn(s, z) : s ∈ [0, 1], z ∈ Rd

}
 
n→∞

G :=
{
G(s, z) : s ∈ [0, 1], z ∈ Rd

}
in l∞([0, 1]× Rd), where G is a centered Gaussian process with

Cov
(
G(s1, z1), G(s2, z2)

)
= (s1 ∧ s2)Σ(z1 ∧ z2)

and Σ : Rd → R,x 7→
∫

(−∞,x]
σ2(u)f(u)du.

Remark. The proof of Theorem 3.2 is essentially an application of Corollary B.3.
Note that concerning the dependence structure of the underlying process, assump-
tion (A1) from Theorem B.1 needs to be verified. It is however less restrictive than
(G). In particular Theorem 3.2 can also be proven under

{
(Yt,Xt) ∈ R× Rd : t ∈ Z

}
being strictly stationary and strongly mixing with

∞∑
t=1

tQ−2α(t)
γ

2+γ <∞,

for some γ > 0 and some even Q > d(2 + γ) satisfying assumption (U) (cf. assump-
tion (A1) on page 160).
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3. Changepoint test in the conditional mean function

Proof. First notice that due to assumption (G) and under the null restriction
(Ut,Xt)t∈Z is a strictly stationary sequence of random variables with values in R×Rd.
Denote by P the common marginal distribution of (U1,X1). By defining

F := {(u,x) 7→ uI{x ≤ z} : z ∈ Rd},

the process Tn in l∞([0, 1]× Rd) can thus be identified with the process

Gn :=

{
Gn(s, ϕ) :=

1√
n

bnsc∑
i=1

(
ϕ(Ui,Xi)−

∫
ϕdP

)
: s ∈ [0, 1], ϕ ∈ F

}

in l∞([0, 1]×F). Notice that for all ϕ ∈ F , it holds that
∫
ϕdP = 0 as E[Ut|F t] = 0

for all t ∈ Z. It is therefore sufficient to prove the weak convergence of Gn. This
will be shown by an application of Corollary B.3 on page 161 in Appendix B. Hence,
assumptions (A1), (A2) of Theorem B.1 and assumption (A3) of Corollary B.3
will be verified for the process (Ut,Xt)t∈Z and the function class F , as well as the
convergence of all finite dimensional distributions of Gn will be shown.

Condition (A1) on the mixing coefficient of (Ut,Xt)t∈Z is implied by assumption
(G) on the mixing coefficient of (Yt,Xt)t∈Z and the null restriction as measurable
functions maintain mixing properties (see [21] Subsection 2.6.1 (ii), p. 69).

To show condition (A2) on the function class F , the choice of approximating
functions and bounding functions, as in Definition 1.6 on page 11, will be discussed
in more detail. Note that the semi norm ρ simplifies to the L2(P ) norm and the
semi metric d simplifies to the LQ 2+γ

2
(P ) metric as the underlying process is not a

triangular array but a strictly stationary sequence. Denote with c̄ from assumption
(U)

h : Rd → R, x 7→ c̄(x)f(x),

and for all i = 1, . . . , d

hi : R→ R

x 7→
∫
· · ·
∫
h(x1, . . . , xi−1, x, xi+1, . . . , xd)dx1 . . . dxi−1dxi+1 . . . dxd.

Let furthermore

H : Rd → R, x 7→
∫

(−∞,x]

h(t)dt,

and for all i = 1, . . . , d

Hi : R→ R, x 7→
∫ x

−∞
hi(t)dt.

Let ε > 0 and choose for all i = 1, . . . , d some Ni = Ni(ε) ∈ N and

−∞ = z0,i < · · · < zNi,i =∞,
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3.2. Asymptotic behavior under the null

namely a partition of R, such that

Hi (zji,i)−Hi (zji−1,i) ≤
ε2

d
, ∀ ji = 1, . . . , Ni, i = 1, . . . , d. (3.9)

Since Hi is continuous and Hi(−∞) = H(−∞) = 0 and Hi(∞) = H(∞) ≤ M
for M < ∞ from assumption (U), Ni can be chosen to be smaller than 2dMε−2

for all i = 1, . . . , d. By using cartesian products, a partition of Rd is obtained. For
simplicity reasons the following notation will be used. For j = (j1, . . . , jd) ∈ Nd let

zj := (zj1,1, . . . , zjd,d) ,

and j − 1 := (j1 − 1, . . . , jd − 1) ∈ Nd. For all j ∈ ×di=1{1, . . . , Ni} define approxi-
mating functions

aj(u,x) := uI {x ≤ zj}

and bounding functions

bj(u,x) := |u| (I {x ≤ zj} − I {x ≤ zj−1}) .

Notice that aj ∈ F while bj /∈ F for all j ∈ ×di=1{1, . . . , Ni}. For each z ∈ Rd

there exists a j ∈ ×di=1{1, . . . , Ni} such that z ∈ (zj−1, zj ]. Therefore for each
ϕ ∈ F there exists a j ∈ ×di=1{1, . . . , Ni} such that

|ϕ− aj| ≤ bj .

Furthermore, it holds that

‖bj‖L2(P ) ≤ ε and max
2≤i≤Q

(∫
|bj |i

2+γ
2 dP

) 1
2

≤ ε, ∀ j ∈
d
×
i=1
{1, . . . , Ni}. (3.10)

To see this let j ∈ ×di=1{1, . . . , Ni} and consider

‖bj‖2
L2(P ) = E

[
|Ut|2 (I {Xt ≤ zj} − I {Xt ≤ zj−1})

]
= E

[
E[|Ut|2|Xt]︸ ︷︷ ︸
=σ2(Xt) a.s.

(I {Xt ≤ zj} − I {Xt ≤ zj−1})
]

=

∫
(−∞,zj ]\(−∞,zj−1]

σ2(u)f(u)du

≤
∫

(−∞,zj ]\(−∞,zj−1]

c̄(u)f(u)du

=

∫
(−∞,zj ]

c̄(u)f(u)du−
∫

(−∞,zj−1]

c̄(u)f(u)du

= H(zj)−H(zj−1),

and for all i = 2, . . . , Q by Jensen’s inequality and (U), it holds that

E
[
|Ut|i

2+γ
2 |Xt

]
≤ E

[
|Ut|i

2+γ
2 |Xt

] i
Q ≤ (c(Xt)

Q)
i
Q = c(Xt)

i a.s.,
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3. Changepoint test in the conditional mean function

hence ∫
|bj |i

2+γ
2 dP = E

[
|Ut|i

2+γ
2 (I {Xt ≤ zj} − I {Xt ≤ zj−1})

]
= E

[
E
[
|Ut|i

2+γ
2 |Xt

]
︸ ︷︷ ︸
≤c(Xt)i a.s.

(I {Xt ≤ zj} − I {Xt ≤ zj−1})
]

≤
∫

(−∞,zj ]\(−∞,zj−1]

c(u)if(u)du

≤
∫

(−∞,zj ]\(−∞,zj−1]

c̄(u)f(u)du

= H(zj)−H(zj−1).

An investigation of the (same) upper bound in both cases leads to

H (zj)−H (zj−1) = H (zj1,1, . . . , zjd,d)−H (zj1−1,1, . . . , zjd−1,d)

= H (zj1,1, . . . , zjd,d)−H (zj1−1,1, zj2,2, . . . , zjd,d)

+H (zj1−1,1, zj2,2, . . . , zjd,d)− . . .
+

...
+ · · · −H

(
zj1−1,1, . . . , zjd−1−1,d−1, zjd,d

)
+H

(
zj1−1,1, . . . , zjd−1−1,d−1, zjd,d

)
−H (zj1−1,1, . . . , zjd−1,d)

(∗)
≤

d∑
i=1

(Hi (zji,i)−Hi (zji−1,i))

(3.9)
≤ d

ε2

d
= ε2.

To see the validity of (∗), only the first summand will be considered as the other
ones work completely similar. It holds that

H (zj1,1, . . . , zjd,d)−H (zj1−1,1, zj2,1, . . . , zjd,d)

=

zjd,d∫
−∞

· · ·

zj2,2∫
−∞

zj1,1∫
−∞

h(u1, . . . , ud)du1 . . . dud −

zjd,d∫
−∞

· · ·

zj2,2∫
−∞

zj1−1,1∫
−∞

h(u1, . . . , ud)du1 . . . dud

≤

zj1,1∫
zj1−1,1

 ∞∫
−∞

· · ·
∞∫

−∞

h(u1, . . . , ud)du2 . . . dud


︸ ︷︷ ︸

=h1(u1)

du1

=

zj1,1∫
zj1−1,1

h1(u1)du1

= H1 (zj1,1)−H1 (zj1−1,1) ,
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3.2. Asymptotic behavior under the null

which proves (∗). Therefore, the inequalities in (3.10) have been shown for all
j ∈ ×di=1{1, . . . , Ni}. Since Ni = O(ε−2) for all i = 1, . . . , d, it holds that

Ñ[ ]

(
ε,F , ‖ · ‖L2(P )

)
≤
∣∣∣∣ d×
i=1
{1, . . . , Ni}

∣∣∣∣ =
d∏
i=1

Ni = O
(
ε−2d

)
.

As Q > d(2+γ) holds, assumption (A2) is therefore satisfied. Assumption (A3)
is also satisfied as F̄ : R × Rd → R, (u,x) 7→ u is an envelope function of F that
fulfills ∫

|F̄ |QdP = E
[
|Ut|Q

]
≤ E

[
|Ut|Q

2+γ
2

] 2
2+γ

= E
[
E
[
|Ut|Q

2+γ
2 |Xt

]] 2
2+γ

≤ E
[
c(Xt)

Q
] 2

2+γ

=

(∫
c(u)Qf(u)du

) 2
2+γ

<∞,

and additionally, it holds that

sup
ϕ∈F

∫
|ϕ|Q

2+γ
2 dP = sup

z∈Rd
E
[
|Ut|Q

2+γ
2 I{Xt ≤ z}

]
= E

[
|Ut|Q

2+γ
2

]
≤
∫
c(u)Qf(u)du

<∞.

What is left to show, is the convergence of all finite dimensional distributions.
It is to show that  Tn(s1, z1)

...
Tn(sK , zK)

 D→
n→∞

NK (0,W ) (3.11)

for all K ∈ N and all collections s1, . . . , sK ∈ [0, 1] and z1, . . . ,zK ∈ Rd, where
W = (Wij)i,j=1,...,K is the covariance matrix with entries

Wij := (si ∧ sj)Σ(zi ∧ zj), ∀ i, j = 1, . . . , K.

Using the Cramér-Wold device, (3.11) is equivalent to

K∑
j=1

λjTn(sj, zj)
D→

n→∞
N (0, w2), ∀ (λ1, . . . , λK) ∈ RK , (3.12)
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3. Changepoint test in the conditional mean function

with variance w2 :=
∑K

j1=1

∑K
j2=1 λj1λj2(sj1 ∧ sj2)Σ(zj1 ∧ zj2). The random variable

of interest in (3.12) can be written as

K∑
j=1

λjTn(sj, zj) =
K∑
j=1

λj
1√
n

bnsjc∑
i=1

UiI{Xi ≤ zj} =
n∑
i=1

ξn,i,

where

ξn,i :=
1√
n
Ui

K∑
j=1

λjI{Xi ≤ zj}I
{
i
n
≤ sj

}
.

To show (3.12), Rio’s Corollary 1 in [64] will be used, which is a central limit
theorem for strongly mixing triangular arrays. Following the notations in [64] define
Vn,l := V ar(

∑l
i=1 ξn,i) for all l = 1, . . . , n, and n ∈ N. Let furthermore Qn,i be the

càdlàg1 inverse function of t 7→ P (|ξn,i| > t), i.e.

Qn,i(u) := sup{t > 0 : P (|ξn,i| > t) > u}, ∀ u > 0,

with the convention that sup ∅ := 0. Let {α̃n(t) : t ∈ N} be the sequence of
coefficients of {ξn,i : 1 ≤ i ≤ n, n ∈ N} defined as in (1.4) in Definition 1.1 on page
7. For t ∈ (0,∞) define α̃n(t) := α̃n(btc). Let its càdlàg inverse function be defined
by

α̃−1
n (u) := sup{t > 0 : α̃n(t) > u}, ∀ u > 0.

As for all l = 1, . . . , n

Vn,l =
K∑
j1=1

K∑
j2=1

λj1λj2
blsj1c ∧ blsj2c

n
Σ(zj1 ∧ zj2),

holds, it can be obtained that

lim sup
n→∞

max
1≤l≤n

Vn,l
Vn,n

= lim sup
n→∞

max
1≤l≤n

K∑
j1=1

K∑
j2=1

λj1λj2 blsj1c ∧ blsj2cΣ(zj1 ∧ zj2)

K∑
j1=1

K∑
j2=1

λj1λj2 bnsj1c ∧ bnsj2cΣ(zj1 ∧ zj2)

<∞,

which is condition (a) in Corollary 1 in [64]. Concerning condition (b) in aforemen-
tioned corollary, it needs to be shown that

V
− 3

2
n,n

n∑
i=1

1∫
0

α̃−1
n

(
x
2

)
Q2
n,i(x) inf

{
α̃−1
n

(
x
2

)
Qn,i(x),

√
Vn,n

}
dx→ 0. (3.13)

By Markov’s inequality, it holds that for all t > 0 and with q := Q2+γ
2

P (|ξn,i| > t) = P

(∣∣∣∣ 1√
n
Ui

K∑
j=1

λjI{Xi ≤ zj}I
{
i
n
≤ sj

} ∣∣∣∣ > t

)
1càdlàg: right continuous with existing left limits (French: continué à droite, limité à gauche)
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≤ t−qE

[∣∣∣∣ 1√
n
Ui

K∑
j=1

λjI{Xi ≤ zj}I
{
i
n
≤ sj

} ∣∣∣∣q
]

= t−qn−
q
2E

[
E[|Ui|q|Xi]︸ ︷︷ ︸
≤cQ(Xi) a.s.

∣∣∣∣ K∑
j=1

λjI{Xi ≤ zj}I
{
i
n
≤ sj

} ∣∣∣∣q
]

≤ t−qn−
q
2

( K∑
j=1

|λj|
)q ∫

cQ(u)f(u)du︸ ︷︷ ︸
≤M

≤ t−qn−
q
2M̃,

for M <∞ from assumption (U) and M̃ := (
∑K

j=1 |λj|)qM . Hence, for u > 0 fixed
and for all t > 0 with P (|ξn,i| > t) > u, it holds that u ≤ t−qn−

q
2M̃ . Solving the

inequality for t, results in

t ≤ u−
1
qn−

1
2M̃

1
q , ∀ t > 0 with P (|ξn,i| > t) > u.

It therefore also holds for sup{t > 0 : P (|ξn,i| > t) > u}, i.e.

Qn,i(u) ≤ u−
1
qn−

1
2M̃

1
q , ∀ u > 0.

For fixed n ∈ N, it holds that ξn,i = gi(Ui,Xi) with

gi(u,x) :=
1√
n
u

K∑
j=1

λjI{x ≤ zj}I
{
i
n
≤ sj

}
,

where gi is measurable for all i ∈ N. As Bradley [4] states, α̃n(·) can therefore
be bounded by the mixing coefficient of {(Ut,Xt) : t ∈ Z} which has the same
properties as the mixing coefficient α(·) of {(Yt,Xt) : t ∈ Z}. From assumption (G)
it holds for all t > 0 that α(t) ≤ Aa−t for some 0 < A < ∞ and some a ∈ (1,∞).
Analogous to before, it can be shown that

α̃−1
n (u) ≤ Ã− loga(u), ∀ u > 0,

where Ã := loga(A). Furthermore,

Vn,n =
K∑
j1=1

K∑
j2=1

λj1λj2
bnsj1c ∧ bnsj2c

n
Σ(zj1 ∧ zj2) →

n→∞
w2 <∞ (3.14)

holds. Putting the results together, it can be obtained that

V
− 3

2
n,n

n∑
i=1

1∫
0

α̃−1
n

(
x
2

)
Q2
i,n(x) inf

{
α̃−1
n

(
x
2

)
Qi,n(x),

√
Vn,n

}
dx

≤ M̃
2
qV
− 3

2
n,n

1

n

n∑
i=1

1∫
0

(
Ã− loga

(
x
2

))
x−

2
q inf

{(
Ã− loga

(
x
2

))
x−

1
qn−

1
2M̃

1
q ,
√
Vn,n

}
dx
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=
1√
n
M̃

2
qV
− 3

2
n,n

1∫
0

(
Ã− loga

(
x
2

))
x−

2
q inf

{(
Ã− loga

(
x
2

))
x−

1
q M̃

1
q ,
√
n
√
Vn,n

}
dx.

Now let the sequence (bn)n∈N be defined by

bn := sup
{
k ∈ (0, 1) :

(
Ã− loga

(
x
2

))
x−

1
q M̃

1
q >
√
n
√
Vn,n, ∀ x ≤ k

}
.

Note that bn → 0 as n→∞ by construction. Then

1√
n
M̃

2
qV
− 3

2
n,n

1∫
bn

(
Ã− loga

(
x
2

))
x−

2
q inf

{(
Ã− loga

(
x
2

))
x−

1
q M̃

1
q ,
√
n
√
Vn,n

}
dx

=
1√
n
M̃

3
qV
− 3

2
n,n

1∫
bn

(
Ã− loga

(
x
2

))2

x−
3
q dx →

n→∞
0,

where the integral exists as q = Q2+γ
γ
> 3. Furthermore,

1√
n
M̃

2
qV
− 3

2
n,n

bn∫
0

(
Ã− loga

(
x
2

))
x−

2
q inf

{(
Ã− loga

(
x
2

))
x−

1
q M̃

1
q ,
√
n
√
Vn,n

}
dx

= M̃
2
qV −1

n,n

bn∫
0

(
Ã− loga

(
x
2

))
x−

2
q dx→ 0,

as (bn)n∈N is a null sequence, which finally proves the validity of (3.13). Applying
Corollary 1 in [64], it holds that 1√

Vn,n

∑n
i=1 ξn,i

D→
n→∞

N (0, 1). With (3.14) the

assertion in (3.12) follows.

Corollary 3.3 (Weak convergence of T̂n). Suppose that the assumptions of Theorem
3.1 are satisfied. Then under H0 it holds that

T̂n(s, z)  
n→∞

G0 :=
{
G0(s, z) : s ∈ [0, 1], z ∈ Rd

}
in l∞([0, 1]× Rd), where G0 is a centered Gaussian process with

Cov
(
G0(s1, z1), G0(s2, z2)

)
= (s1 ∧ s2 − s1s2)Σ(z1 ∧ z2)

and Σ(x) :=
∫

(−∞,x]
σ2(u)f(u)du.

Proof. With Theorem 3.2 and an application of the continuous mapping theorem,
it can be obtained that{

Tn(s, z)− sTn(1, z) : s ∈ [0, 1], z ∈ Rd
}
 
n→∞

{
G0(s, z) : s ∈ [0, 1], z ∈ Rd

}
,
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3.3. Consistency analysis

where G0(s, z) := G(s, z) − sG(1, z) for all s ∈ [0, 1], z ∈ Rd and G is a centered
Gaussian process resulting from Theorem 3.2 possessing the following covariance
function

Cov
(
G(s1, z1), G(s2, z2)

)
= (s1 ∧ s2)Σ(z1 ∧ z2), (3.15)

for all s1, s2 ∈ [0, 1] and z1, z2 ∈ Rd. Hence, G0 is again a centered Gaussian process
and possesses the following covariance function

Cov (G0(s1, z1), G0(s2, z2)) = Cov(G(s1, z1)− s1G(1, z1), G(s2, z2)− s2G(1, z2))

(3.15)
= (s1 ∧ s2 − s1s2)Σ(z1 ∧ z2),

for all s1, s2 ∈ [0, 1] and z1, z2 ∈ Rd. Applying Theorem 3.1 and Slutsky’s theorem
(see Example 1.4.7 in [75]) yields the assertion of Corollary 3.3.

It will be seen in Section 3.4 that in the case of d = 1, the Kolmogorov-Smirnov
test statistic Tn1 can be standardized such that the resulting limiting distribution is
free of nuisance parameters.

For d > 1 this is not the case. As the covariance function contains the unknown
Σ, critical values for the changepoint test using the limiting distribution of Tn1 can
in general only be estimated. One possible choice to do that, is to use an analogue
to the empirical distribution function, namely

Σ̂n(x) :=
1

n

n∑
j=1

σ̂2
n(Xj)I{Xj ≤ x},

where σ̂2
n is the Nadaraya-Watson estimator for σ2 defined in (2.3) in Definition 2.1

on page 13.

A different option to construct a test without knowing the limiting distribution
of the test statistic, is to use a bootstrap version of it to estimate quantiles of the
test statistic itself under the null. A valid bootstrap procedure in the considered
setting will be motivated in Chapter 4. It is a motivation for the case of non-
stationary variances, i.e. where the assumption of strict stationarity under the null
is not satisfied, such that Corollary 3.3 is not applicable. This bootstrap procedure
can also be used in the case of d > 1, when the limiting distribution is not known,
due to the fact that Σ is unknown.

3.3 Consistency analysis

In this section, the behavior of Tn1 will be investigated under alternatives. In partic-
ular, it will be shown that the Kolmogorov-Smirnov type test is consistent against
a simple fixed alternative as in (1.3) on page 7, in the sense that the rejection
probability converges to one as the sample size converges to infinity, given that the
alternative holds.
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3. Changepoint test in the conditional mean function

As the changepoint is supposed to depend on the sample size, the process should
be viewed as a triangular array {(Yn,t,Xn,t) : t = 1, . . . , n, n ∈ N}. Rewriting model
(1.1) on page 6, the following is considered

Yn,t = mn,t(Xn,t) + Un,t, t = 1, . . . , n, n ∈ N (3.16)

with

H1 : ∃s0 ∈ (0, 1) : mn,t(·) =

{
m(1)(·), t = 1, . . . , bns0c
m(2)(·), t = bns0c+ 1, . . . , n

, ∀ n ∈ N,

for some functions m(1),m(2) : Rd → R with m(1) 6≡ m(2).

Theorem 3.4. Let the assumptions of Lemma 2.3 on page 34 in Chapter 2 hold.
Additionally,

(U)’ for some functions σ2
n,t : Rd → R and F tn := σ(Un,j−1,Xn,j : j ≤ t) let

E[Un,t|F tn] = 0 and E[U2
n,t|Xn,t] = σ2

n,t(Xn,t) a.s.

for all 1 ≤ t ≤ n and n ∈ N,

(F2)’ let inf
n∈N

inf
1≤i≤n

fn,i(u) > 0 for all u ∈ Rd,

(D)’ for all s ∈ (0, 1] let there exist a function f̄ (s) : Rd → R such that

lim
n→∞

1

n

bnsc∑
t=1

fn,t(x) = f̄ (s)(x), ∀ x ∈ Rd,

(I)’ for σ̄2 := sup
n∈N

sup
1≤i≤n

σ2
n,i and f̄ := sup

n∈N
sup

1≤i≤n
fn,i and b from assumption (P)’ on

page 33 let ∫
σ̄2(x)f̄(x)dx <∞, (3.17)∫ ∣∣m(1)(x)−m(2)(x)

∣∣b f̄(x)dx <∞. (3.18)

Then the test based on Tn1 is consistent against H1, meaning that

P (Tn1 > c0|H1) →
n→∞

1,

where c0 is the critical value of the limiting distribution of Tn1 under the null.

Remark. The estimated average m̄n defined in Lemma 2.3 simplifies under H1 to

m̄n(x) =

1
n

n∑
i=1

fn,i(x)mn,i(x)

1
n

n∑
i=1

fn,i(x)
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3.3. Consistency analysis

=

m(1)(x) 1
n

bns0c∑
i=1

fn,i(x) +m(2)(x) 1
n

n∑
i=bns0c+1

fn,i(x)

1
n

n∑
i=1

fn,i(x)

=
(
m(1)(x)−m(2)(x)

) 1
n

bns0c∑
i=1

fn,i(x)

1
n

n∑
i=1

fn,i(x)
+m(2)(x)

and under assumption (D)’ therefore converges for all fixed x ∈ Rd to

(
m(1)(x)−m(2)(x)

) f̄ (s0)(x)

f̄ (1)(x)
+m(2)(x).

Proof. First, it will be shown that for fixed z ∈ Rd and s ∈ (0, 1) with s ≤ s0, it
holds that

T̂n(s, z) =
√
n∆(s, z) + oP (

√
n), (3.19)

where

∆(s, z) :=

∫
(−∞,z]

(m(1)(u)−m(2)(u))

(
1− f̄ (s0)(u)

f̄ (1)(u)

)
f̄ (s)(u)du.

Let therefore z ∈ Rd and s ∈ (0, 1) with s ≤ s0 be fixed. It holds that

1√
n
T̂n(s, z) =

1

n

bnsc∑
i=1

(Yn,i − m̂n(Xn,i))ωn(Xn,i)I{Xn,i ≤ z}

=
1

n

bnsc∑
i=1

(m(1)(Xn,i) + Un,i − m̂n(Xn,i))ωn(Xn,i)I{Xn,i ≤ z}

=
1

n

bnsc∑
i=1

(m(1)(Xn,i)− m̄n(Xn,i))ωn(Xn,i)I{Xn,i ≤ z} (3.20)

+
1

n

bnsc∑
i=1

(m̄n(Xn,i)− m̂n(Xn,i))ωn(Xn,i)I{Xn,i ≤ z} (3.21)

+
1

n

bnsc∑
i=1

Un,iωn(Xn,i)I{Xn,i ≤ z}. (3.22)

First, (3.22) will be considered. Using assumption (U)’ and (3.17) in (I)’, it can
be obtained that

E

 1

n

bnsc∑
i=1

Un,iωn(Xn,i)I{Xn,i ≤ z}

 = 0, ∀ n ∈ N,
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3. Changepoint test in the conditional mean function

and

V ar

 1

n

bnsc∑
i=1

Un,iωn(Xn,i)I{Xn,i ≤ z}

 =
1

n2

bnsc∑
i=1

E
[
U2
n,iωn(Xn,i)I{Xn,i ≤ z}

]
=

1

n

∫
(−∞,z]

ωn(u)
1

n

bnsc∑
i=1

σ2
n,i(u)fn,i(u)du

≤ 1

n
s

∫
(−∞,z]

σ̄2(u)f̄(u)du, (∀ n ∈ N)

→
n→∞

0.

Considering (3.21), by an application of Lemma 2.3, it can be obtained that

∣∣∣∣∣∣ 1n
bnsc∑
i=1

(m̄n(Xn,i)− m̂n(Xn,i))ωn(Xn,i)I{Xn,i ≤ z}

∣∣∣∣∣∣
≤ 1

n

n∑
i=1

|m̄n(Xn,i)− m̂n(Xn,i)|ωn(Xn,i)

≤ sup
x∈Jn
|m̄n(x)− m̂n(x)|

= oP (1).

Hence, the dominating term is (3.20). Inserting m̄n, it holds that

1

n

bnsc∑
i=1

(m(1)(Xn,i)− m̄n(Xn,i))ωn(Xn,i)I{Xn,i ≤ z}

=
1

n

bnsc∑
i=1

(m(1)(Xn,i)−m(2)(Xn,i))

1−

1
n

bns0c∑
j=1

fn,j(Xn,i)

1
n

n∑
j=1

fn,j(Xn,i)

ωn(Xn,i)I{Xn,i ≤ z}

=: ∆̂n(s, z),

and the proof of (3.19) is therefore concluded if

∆̂n(s, z)
P→

n→∞
∆(s, z)

holds. As

E
[
∆̂n(s, z)

]
=

∫
(−∞,z]

(m(1)(u)−m(2)(u))

1−

1
n

bns0c∑
j=1

fn,j(u)

1
n

n∑
j=1

fn,j(u)

 1

n

bnsc∑
i=1

fn,i(u)ωn(u)du
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and for all n ∈ N∣∣∣∣∣∣∣∣∣(m(1)(u)−m(2)(u))

1−

1
n

bns0c∑
j=1

fn,j(u)

1
n

n∑
j=1

fn,j(u)

 1

n

bnsc∑
i=1

fn,i(u)ωn(u)I{u ≤ z}

∣∣∣∣∣∣∣∣∣
=
∣∣m(1)(u)−m(2)(u)

∣∣
n∑

j=bns0c+1

fn,j(u)

n∑
j=1

fn,j(u)

1

n

bnsc∑
i=1

fn,i(u)ωn(u)I{u ≤ z}

≤
∣∣m(1)(u)−m(2)(u)

∣∣ bnsc
n

f̄(u)

≤ s
∣∣m(1)(u)−m(2)(u)

∣∣ f̄(u),

holds, using the dominated convergence theorem and assumption (3.18), it can be
obtained that

E
[
∆̂n(s, z)

]
→
n→∞

∆(s, z).

Additionally, it will be shown that V ar(∆̂n(s, z))→ 0 as n→∞. For simplicity
reasons let the following notation be introduced

gn(Xn,i) :=
(
m(1)(Xn,i)−m(2)(Xn,i)

)
1−

1
n

bns0c∑
j=1

fn,j(Xn,i)

1
n

n∑
j=1

fn,j(Xn,i)

ωn(Xn,i)I{Xn,i ≤ z},

where the dependency on s and z is not reflected in the notation of gn. Then it
holds that

V ar
(

∆̂n(s, z)
)

= V ar

 1

n

bnsc∑
i=1

gn(Xn,i)


=

1

n2

bnsc∑
i=1

V ar (gn(Xn,i)) (3.23)

+
1

n2

bnsc∑
i=1

bnsc∑
j=1
j 6=i

(E[gn(Xn,i)gn(Xn,j)]− E[gn(Xn,i)]E[gn(Xn,j)]) .

(3.24)

Considering (3.23), condition (3.18) from (I)’ is used to obtain

1

n2

bnsc∑
i=1

V ar(gn(Xn,i))

≤ 1

n2

bnsc∑
i=1

E[gn(Xn,i)
2]
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=
1

n2

bnsc∑
i=1

∫
(−∞,z]

(
m(1)(u)−m(2)(u)

)2


n∑

j=bns0c+1

fn,j(u)

n∑
j=1

fn,j(u)


2

fn,i(u)ωn(u)du

≤ s
1

n

∫
(−∞,z]

(
m(1)(u)−m(2)(u)

)2
f̄(u)du

︸ ︷︷ ︸
(3.18)
< ∞

, (∀ n ∈ N)

→
n→∞

0.

Hence, the term in (3.23) is negligible. For (3.24) the covariance inequality for
strongly mixing triangular arrays, stated in Lemma B.5 on page 163, will be applied.
For b > 2 from assumption (I)’ and for all 1 ≤ i ≤ n and n ∈ N, it holds that

E
[
|gn(Xn,i)|b

]
≤
∫ ∣∣m(1)(u)−m(2)(u)

∣∣b f̄(u)du
(3.18)
< ∞,

It therefore holds for i 6= j that

E
[
|gn(Xn,i)gn(Xn,j)|

b
2

]
≤
(
E
[
|gn(Xn,i)|b

]
E
[
|gn(Xn,j)|b

]) 1
2 = O(1)

and similarly

E
[
|gn(Xn,i)gn(X̃n,j)|

b
2

]
= O(1)

for an independent copy {X̃n,t : 1 ≤ t ≤ n, n ∈ N} of {Xn,t : 1 ≤ t ≤ n, n ∈ N}.
Hence, Lemma B.5 can be applied with δ := b−2

2
> 0 and Mn = O(1) using the

notations from Lemma B.5. Let i > j (the case j > i works analogously). Then the
term in (3.24) can be bounded by

1

n2

bnsc∑
i=1

bnsc∑
j=1
j<i

|E[gn(Xn,i)gn(Xn,j)]− E[gn(Xn,i)]E[gn(Xn,j)]|

≤ 1

n2

bnsc∑
i=1

bnsc∑
j=1
j<i

α(i− j)
b−2
b

≤ 1

n

∞∑
t=1

α(t)
b−2
b︸ ︷︷ ︸

(∗)
<∞

= o(1).

The assertion in (∗) holds as for β from assumption (P)’, it holds that

∞∑
t=1

α(t)
b−2
b =

∞∑
t=1

O
(
t−β

b−2
b

)
= O(1),
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where the last equality is implied by

β >
1 + (b− 1)(1 + d)

b− 2

∀d≥1

≥ 2b− 1

b− 2
≥ b

b− 2
.

This finally completes the proof of (3.19). Note that analogously it can be shown
that

T̂n(s, z) =
√
n

∫
(−∞,z]

(m(1)(u)−m(2)(u))

(
1− f̄ (s)(u)

f̄ (1)(u)

)
f̄ (s0)(u)du+ oP (

√
n).

holds for all z ∈ Rd and s ∈ (0, 1) with s > s0. To show the consistency of the
test, choose z0 ∈ Rd such that

∆(s0, z0) 6= 0.

The existence of such a z0 ∈ Rd can be argued in the following way. It holds
that ∆(s0, z) vanishes for all z ∈ Rd if and only if

(m(1)(u)−m(2)(u))

(
1− f̄ (s0)(u)

f̄ (1)(u)

)
f̄ (s0)(u) = 0, ∀u ∈ Rd. (3.25)

By assumption (F2)’ it holds that f̄ (s0)(u) > 0 and f̄ (s0)(u) < f̄ (1)(u) for all
u ∈ Rd. Hence, (3.25) holds if and only if

m(1)(u)−m(2)(u) = 0,∀ u ∈ Rd.

However, as m(1) 6≡ m(2) by assumption, m(1)(u) −m(2)(u) 6= 0 holds for some
u ∈ Rd. Applying (3.19), it can finally be concluded that

Tn,1 = sup
s∈[0,1]

sup
z∈Rd

∣∣∣T̂n(s, z)
∣∣∣ ≥ ∣∣∣T̂n(s0, z0)

∣∣∣ =
√
n|∆(s0, z0)|︸ ︷︷ ︸
→

n→∞
∞

+oP (
√
n).

The test based on Tn,1 is therefore consistent against H1.

Remark (special cases). Sometimes strict stationarity is assumed even under the
alternative. Note that this particularly excludes the case of autoregressive models.
However this assumption implies that for all 1 ≤ t ≤ n and n ∈ N

fn,t ≡ f,

for some f : Rd → R not depending on t and n. Under the assumptions of Theorem
3.4 and H1, it then holds that

T̂n(s, z) =



√
ns(1− s0)

∫
(−∞,z]

(
m(1)(u)−m(2)(u)

)
f(u)du+ oP (

√
n), s ≤ s0

√
ns0(1− s)

∫
(−∞,z]

(
m(1)(u)−m(2)(u)

)
f(u)du+ oP (

√
n), s > s0

.
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3. Changepoint test in the conditional mean function

Here it can be seen that using the marked empirical process of residuals is es-
sential for the consistency of the test. To see this let m(1)−m(2) be an odd function
and let f be a symmetric density. Examples are considered in the simulations, see
for instance Subsection 6.1.1 for an i.i.d. model or Subsection 6.1.2 for a time series
(but not autoregressive) model. Now it holds that∫ (

m(1)(u)−m(2)(u)
)
f(u)du = 0,

althoughm(1) 6≡ m(2). The test based on T̂n(s,∞) is therefore not consistent against
H1. The test based on T̂n(s, z) however, is consistent as proven in Theorem 3.4.

A second simplification is the assumption of strict stationarity before and right
after the break, meaning that for all 1 ≤ t ≤ n and n ∈ N

fn,t ≡ f(1)I

{
t

n
≤ s0

}
+ f(2)I

{
t

n
> s0

}
,

for some functions f(1), f(2) : Rd → R with f(1) 6≡ f(2). Then for all z ∈ Rd and
s ≤ s0, it can be shown that

T̂n(s, z) =
√
ns(1− s0)

∫
(−∞,z]

(
m(1)(u)−m(2)(u)

) f(1)(u)f(2)(u)

s0f(1)(u) + (1− s0)f(2)(u)
du

+ oP (
√
n).

Remark (local alternatives). Often it is of interest to also consider local alternatives
such as

H1l : ∃s0 ∈ (0, 1) : mn,t(·) =

{
m(·), t = 1, . . . , bns0c
m(·) + 1√

n
m̃(·), t = bns0c+ 1, . . . , n

,

for some m, m̃ : Rd → R not depending on t and n with m̃ 6≡ 0. For an example see
Subsection 6.1.4. Then z0 ∈ Rd can be chosen such that

∆(s0, z0) :=

∫
(−∞,z0]

m̃(u)

(
1− f̄ (s0)(u)

f̄ (1)(u)

)
f̄ (s0)(u)du 6= 0.

It can furthermore be shown that under H1l

T̂n(s0, z0) = Γn(s0, 1, z0)− Γn(1, s0, z0) + ∆(s0, z0) + oP (1)

holds for all n ∈ N, where

Γn(s, t,z) :=
1√
n

bnsc∑
i=1

Un,i
f̄ (t)(Xn,i)

f̄ (1)(Xn,i)
I{Xn,i ≤ z},

for s, t ∈ [0, 1] and z ∈ Rd. The random variable Γn(s0, 1, z0)−Γn(1, s0, z0) converges
in distribution to a centered normal random variable. This suggests that the test
can also detect local alternatives such as H1l. Note that the process {Γn(s, t,z) :
s, t ∈ [0, 1], z ∈ Rd} is also of interest in Section 4.2, see (4.4) on page 65.
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3.4. Other tests and the one-dimensional case

3.4 Other tests and the one-dimensional case

In this section, other possible test statistics, that also use the process T̂n, will be
presented. Secondly, the special case of one-dimensional covariates will be investi-
gated. It will result in a distribution free limiting distribution.

The test for change in the regression function using Tn1 is based on the supremum
over all s ∈ [0, 1] and z ∈ Rd of T̂n(s, z). In principle, every continuous functional
of the process T̂n can be considered. The most common ones additional to the
Kolmogorov-Smirnov type are the so called Cramér-von Mises type functionals, like
the following ones

Tn2 := sup
z∈Rd

∫ 1

0

∣∣∣T̂n(s, z)
∣∣∣2 ds, (3.26)

Tn3 := sup
s∈[0,1]

∫
Rd

∣∣∣T̂n(s, z)
∣∣∣2w(z)dz, (3.27)

Tn4 :=

∫ 1

0

∫
Rd

∣∣∣T̂n(s, z)
∣∣∣2w(z)dzds, (3.28)

where w : Rd → R is some weighting function such that the integrals in (3.27) and
(3.28) exist. Using Corollary 3.3 and the continuous mapping theorem, it follows
that

Tn2
D→

n→∞
sup
z∈Rd

∫ 1

0

|G0(s, z)|2 ds,

Tn3
D→

n→∞
sup
s∈[0,1]

∫
Rd
|G0(s, z)|2w(z)dz,

Tn4
D→

n→∞

∫ 1

0

∫
Rd
|G0(s, z)|2w(z)dzds.

If d = 1 holds, a nice limiting distribution for the test statistics Tn1 to Tn4 can
be obtained. To see this, let

Σ : R→ R, x 7→
∫ x

−∞
σ2(u)f(u)du.

Furthermore, let

c := Σ(∞) =

∫
σ2(u)f(u)du <∞.

The first fundamental theorem of calculus states that if σ2f is continuous, then
Σ is differentiable and for all x ∈ R it holds that

dΣ(x)

dx
= σ2(x)f(x).

Let next {K0(s, t) : s ∈ [0, 1], t ∈ [0, c]} be a centered Gaussian process with
covariance function

Cov(K0(s1, t1), K0(s2, t2)) = (s1 ∧ s2 − s1s2)(t1 ∧ t2).
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3. Changepoint test in the conditional mean function

Such a process is a two parameter Gaussian process that is a Brownian bridge
in the first parameter and a Brownian motion in the second one. It is often referred
to as a Kiefer-Müller process (see for instance Example A.2.13 in [75]). Then under
continuity of σ2, it holds that

Tn1
D→

n→∞
sup
s∈[0,1]

sup
z∈R
|G0(s, z)|

D
= sup

s∈[0,1]

sup
z∈R
|K0(s,Σ(z))|

= sup
s∈[0,1]

sup
t∈[0,c]

|K0(s, t)|

D
= sup

s∈[0,1]

sup
t∈[0,c]

∣∣√cK0

(
s, t

c

)∣∣
=
√
c sup
s∈[0,1]

sup
t∈[0,1]

|K0(s, t)|,

where continuity of Σ and the scaling property of the Brownian motion were used.
Note that the first equality in distribution does not hold if d > 1. Let furthermore

ĉn :=
1

n

n∑
i=1

(Yi − m̂n(Xi))
2ωn(Xi). (3.29)

Then it holds that ĉn
P→

n→∞
c and therefore by Slutsky’s theorem

1√
ĉn
Tn1

D→
n→∞

sup
s∈[0,1]

sup
t∈[0,1]

|K0(s, t)|.

Note that any consistent estimator for the constant c can be used here. Similarly
it can be seen that

Tn2
D→

n→∞
sup
z∈R

∫ 1

0

|G0(s, z)|2ds

D
= sup

z∈R

∫ 1

0

|K0(s,Σ(z))|2ds

= sup
t∈[0,c]

∫ 1

0

|K0(s, t)|2ds

D
= sup

t∈[0,c]

∫ 1

0

∣∣√cK0

(
s, t

c

)∣∣2 ds
= c sup

t∈[0,1]

∫ 1

0

|K0(s, t)|2ds

and therefore
1

ĉn
Tn2

D→
n→∞

sup
t∈[0,1]

∫ 1

0

|K0(s, t)|2ds.

For Tn3 and Tn4 by choosing the weighting function w ≡ σ2f , which however
is unknown, and additionally using integration by substitution twice, it can be
obtained that

Tn3
D→

n→∞
sup
s∈[0,1]

∫
R
|G0(s, z)|2 σ2(z)f(z)dz
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3.4. Other tests and the one-dimensional case

D
= sup

s∈[0,1]

∫
R
|K0(s,Σ(z))|2 σ2(z)f(z)dz

= sup
s∈[0,1]

∫ c

0

|K0(s, t)|2 dt

D
= sup

s∈[0,1]

∫ c

0

∣∣√cK0

(
s, t

c

)∣∣2 dt
D
= c2 sup

s∈[0,1]

∫ 1

0

|K0 (s, t)|2 dt.

Consequently, it holds that

1

ĉ2
n

Tn3
D→

n→∞
sup
s∈[0,1]

∫ 1

0

|K0 (s, t)|2 dt.

Similarly, it can be shown that

Tn4
D→

n→∞

∫ 1

0

∫
R
|G0(s, z)|2dzds D= c2

∫ 1

0

∫ 1

0

|K0(s, t)|2dtds,

and therefore
1

ĉ2
n

Tn4
D→

n→∞

∫ 1

0

∫ 1

0

|K0(s, t)|2dtds.

Remark. With the above choice of weighting function, the test statistics Tn3 and Tn4

both contain the unknown quantity σ2f . Thus, to apply the tests they have to be
modified. It holds that∫

R

∣∣∣T̂n(s, z)
∣∣∣2 σ2(z)f(z)dz =

∫
R

∣∣∣T̂n(s, z)
∣∣∣2 σ2(z)dF (z),

where F is the distribution function of X1. Hence, the integral can be estimated by
the sample mean 1

n

∑n
k=1 |T̂n(s,Xk)|2σ2(Xk). Replacing σ2(Xk) by the Nadaraya-

Watson estimator σ̂2
n evaluated at Xk, an estimator for the above integral can be

obtained by
1

n

n∑
k=1

∣∣∣T̂n(s,Xk)
∣∣∣2 σ̂2

n(Xk).

Hence, suitable modifications for Tn3 and Tn4 are

sup
s∈[0,1]

1

n

n∑
k=1

∣∣∣T̂n(s,Xk)
∣∣∣2 σ̂2

n(Xk) (3.30)

and ∫ 1

0

1

n

n∑
k=1

∣∣∣T̂n(s,Xk)
∣∣∣2 σ̂2

n(Xk)ds (3.31)

respectively.
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3. Changepoint test in the conditional mean function

3.5 Related literature

The proposed test is a modification of Su and Xiao’s CUSUM test in [71]. They
consider a nonparametric time series regression model as in (1.1) and construct a
test for change in the regression function. The modification is an improvement in
two directions. First, Su and Xiao allow for heteroscedasticity and α-mixing data,
and claim that their procedure also works for possibly non-stationary sequences even
under the null of no change in the regression function. However, a result applicable
to triangular arrays is necessary in this setting as possible changes in both the
conditional mean and the variance function are assumed to depend on the sample
size. It is not clear that the limiting distribution given in Theorem 3.1 in [71] is still
valid in this case. For the proof of the limiting distribution of the new test statistic
Tn1 given in Corollary 3.3, strict stationarity under the null is needed. However,
the case of non-stationary variances will be investigated and a bootstrap procedure
will be proposed in Chapter 4. Secondly, as Su and Xiao’s test is based on the
cumulative sum of residuals, it is not consistent against simple alternatives in some
cases as has been motivated in Section 3.3. To overcome this problem they use the
following weighted version

1√
n

bnsc∑
i=1

(Yi − m̂n(Xi))f̂n(Xi)w(Xi),

where w : Rd → R is a weighting function. While the factor f̂n has technical reasons
as small random values in the denominator of m̂n can be avoided, the weighting
function w plays a crucial role for the consistency of their test as they point out
themselves (see remarks to Theorem 3.2 in [71]). Depending on the alternative, it
needs to be chosen appropriately in order to construct a consistent testing procedure.
By using the marked empirical process of residuals, consistency can be obtained in a
more generic way as it has been proven in Theorem 3.4. Possibly Stute [68] was one
of the first researches to introduce the marked empirical process of residuals. The
idea of using it in this setting however, stemmed from Burke and Bewa [6]. They
consider an i.i.d. setting under the model (1.1) and also allow for heteroscedasticity.
They construct a test for change in the regression function based on the following
test statistic

√
n

 1

bnsc

bnsc∑
i=1

YiI{Xi ≤ z} −
1

n− bnsc

n∑
i=bnsc+1

YiI{Xi ≤ z}

 .

It is the difference of two sample means marked with the indicator function. Their
limiting distribution looks more complicated than the resulting one in Corollary 3.3
as it particularly contains the unknown regression function m. They propose a
bootstrap version of the test as an approximation. Furthermore, the test does not
allow for time series data. Well established results on empirical processes with
i.i.d. random variables are used to proof the limiting distribution in their setting. In
the dependent setup more sophisticated methods needed to be established to show
the limiting distribution of T̂n.
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4 Non-stationary variances

A key assumption in proving the weak convergence of T̂n in Chapter 3 is the strict
stationarity of the underlying process under the null. This particularly requires the
conditional variance function σ2(·), that also appears in the limiting distribution, to
be stable in time. It would be of interest to construct a test that detects changes
in the conditional mean function, even when the conditional variance function is
also not stable. First, a brief literature review concerning this kind of settings
is presented. A corresponding version of model (1.1), that allows for instabilities
in the conditional variance function, will be introduced in this chapter. It will
also be referred to as the model with non-stationary variances. Furthermore, the
asymptotic behavior of the process T̂n under the null in this generalized model will
be discussed. Since the theory on weak convergence of sequential empirical processes
with dependent and possibly non-stationary data is not available, this section rather
serves as a motivation. However, similar techniques as used in the stationary setup
will be suggested and references to the corresponding lemmata in Appendix A will
be made. In contrast to the results under stationarity in Chapter 3, it turns out
that the expected limiting distribution is rather complicated. Finally, a bootstrap
version, that is a presumably valid testing procedure even under non-stationary
variances, will be presented.

4.1 Literature review

Most literature assumes stationary variances of the error terms (unconditional or
conditional) when testing for changes in regression, such as parameter instabilities
in parametric models or changes in the nonparametric regression function in non-
parametric models as considered in this thesis. However, as Wu [81] pointed out,
non-stationary variances can occur and will most likely result in misleading infer-
ences when not taken into account. Although this is a legitimate concern, not many
results are available that deal with non-stationary variances.

Pitarakis [62] considers estimation of and testing for a changepoint in the re-
gression coefficient in linear regression models when one single changepoint in the
error variance is present. The procedure does not allow for heteroscedasticity but
for autoregressive effects. Perron and Zhou [61] consider a partial structural change
linear regression model, meaning that some parameters of covariates are stable and
some are unstable in time. It is a test for change in the regression coefficients
allowing for a given number of changes in the error variance. They allow for het-
eroscedasticity but also assume stationary mixing regressors under the null, which
rules out autoregression models. Kristensen’s [43] semi-nonparametric approach to
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4. Non-stationary variances

test parameter stability in possibly (autoregressive) time series data allows for po-
tentially time-varying volatility but not for correlated errors and heteroscedasticity.
Cai [7] considers a linear regression model with weakly dependent and strictly sta-
tionary exogenous variables which again excludes autoregressive effects but covers
heteroscedasticity and instabilities in the conditional variance function. A different
approach to model time series with structural instabilities can be obtained by us-
ing locally stationary processes as Vogt does in [76]. He allows for nonparametric
hetereroscedastic models where both conditional mean and variance function vary
over time. However, a main assumption is that they change smoothly over time
satisfying some Lipschitz condition.

A few more recent results will be discussed a little more detailed. Xu [83] consid-
ers a linear regression model of the form Yt = XT

t βt+vtst with α-mixing, stationary
and possibly conditional heteroscedastic error terms vt, and with a mixing and sta-
tionary vector of regressors Xt. The model thus is not applicable in the case of
autoregression. The deterministic sequences βt and st model instabilities in regres-
sion coefficient and error variance respectively. The proposed procedure uses the
cumulative sum of OLS1-residuals. The limiting distribution includes the Brownian
motion and some integral over the unknown function st. Critical values need to be
estimated via Monte-Carlo simulations. Wu [81] considers a similar setting as in [83]
but allows Xt to include lagged dependent variables in order to include autoregres-
sive models. Instead of a CUSUM test, he uses an U-statistic for moment condition
stability first proposed by [34]. Similar to the result of Xu, heteroscedasticity is
allowed for, but the conditional variance function is assumed to be stable in time.

All these settings do not fit in the considered framework as they either do not
allow for autoregression models, by assuming stationarity of the regressor variables
under the null, or they do not cover heteroscedastic effects. More precisely if het-
eroscedasticity is considered, variance instabilities are not modeled in the conditional
variance function but as a time-varying constant. As discussed in Section 3.5, Su
and Xiao’s [71] test allows for breaks in the conditional variance function. But their
procedure does only seem to work for fixed breaks that do not depend on the sample
size.

4.2 The model with non-stationary variances

In this section, the model in (1.1) will be modified in order to allow for non-stationary
variances. As mentioned earlier, possible instabilities of the process should be mod-
eled depending on the sample size n. Therefore, again the underlying process should
be viewed as a triangular array process. Thus let {(Yn,t,Xn,t) : 1 ≤ t ≤ n, n ∈ N}
such that

Yn,t = mn,t(Xn,t) + Un,t, t = 1, . . . , n, n ∈ N,

with
E[Un,t|F tn] = 0 and E[U2

n,t|Xn,t] = σ2
n,t(Xn,t) a.s.,

for some functions σ2
n,t : Rd → R and F tn := σ(Un,j−1,Xn,j : j ≤ t). This model

therefore not only allows for heteroscedasticity but also for possible changes in σ2
n,t.

1OLS: ordinary least squares
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4.2. The model with non-stationary variances

Let Xn,t be absolutely continuous with density function fn,t. Given observations
(Yn,1,Xn,1), . . . , (Yn,n,Xn,n) consider the null hypothesis of no change in the condi-
tional mean function

H0 : mn,t(·) = m(·), t = 1, . . . , n,

for some m : Rd → R not depending on t and n against the changepoint alternative

H1 : ∃s0 ∈ (0, 1) : mn,t(·) =

{
m(1)(·), t = 1, . . . , bns0c
m(2)(·), t = bns0c+ 1, . . . , n

,

for functions m(1),m(2) : Rd → R with m(1) 6≡ m(2). In this context the stationary
case is always referring to the case where fn,t(·) = f(·) and σ2

n,t(·) = σ2(·) for all t =
1, . . . , n and for some f, σ2 : Rd → R not depending on t and n. The corresponding
test statistic, using the sequential marked empirical process of residuals, then is

T̂n(s, z) =
1√
n

bnsc∑
i=1

Ûn,iωn(Xn,i)I{Xn,i ≤ z},

with residuals Ûn,t := Yn,t − m̂n(Xn,t). The Kolmogorov-Smirnov type test rejects
the null, if

Tn1 := sup
s∈[0,1]

sup
z∈Rd

∣∣∣T̂n(s, z)
∣∣∣

is large. Under H0 it holds that

T̂n(s, z) =
1√
n

bnsc∑
i=1

(Yn,i − m̂n(Xn,i))ωn(Xn,i)I{Xn,i ≤ z}

=
1√
n

bnsc∑
i=1

Un,iωn(Xn,i)I{Xn,i ≤ z}

+
1√
n

bnsc∑
i=1

(m(Xn,i)− m̂n(Xn,i))ωn(Xn,i)I{Xn,i ≤ z}.

It is reasonable to proceed on the assumption that

1√
n

bnsc∑
i=1

Un,iωn(Xn,i)I{Xn,i ≤ z} =
1√
n

bnsc∑
i=1

Un,iI{Xn,i ≤ z}+ oP (1),

holds uniformly in s ∈ [0, 1] and z ∈ Rd under suitable conditions. Note however,
that the corresponding result for the stationary case is stated in Lemma A.4 on
page 142 and its proof particularly needs the strict stationarity assumption. It uses
a weak convergence result for sequential empirical processes, which is not available
for non-stationary data to the best of our knowledge.

Furthermore, it can be shown that

1√
n

bnsc∑
i=1

(m(Xn,i)− m̂n(Xn,i))ωn(Xn,i)I{Xn,i ≤ z}
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(∗)
=
√
n

∫
(−∞,z]

(m(x)− m̂n(x))ωn(x)
1

n

bnsc∑
i=1

fn,i(x)dx+ oP (1)

=
√
n

∫
(−∞,z]

(m(x)− m̂n(x))ωn(x)f̄ (s)(x)dx+ oP (1),

holds uniformly in s ∈ [0, 1] and z ∈ Rd under suitable conditions and where
f̄ (s)(·) := limn→∞

1
n

∑bnsc
i=1 fn,i(·) < ∞ for all fixed s ∈ (0, 1]. The assertion in (∗) is

similar to Lemma A.1 on page 113. For the proof, m − m̂n needs to be embedded
in a smooth function class by using uniform rates of convergence on Jn for m− m̂n

and its partial derivatives. Note that the results from Lemma 2.2 can not be applied
as they only hold for strictly stationary data. However, as suggested in Section 2.4
rates of convergence can be shown for non-stationary data under suitable conditions
as well. Under the null the kernel density estimator f̂n consistently estimates

f̄n(·) :=
1

n

n∑
i=1

fn,i(·)

and ĝn(·) := m̂n(·)f̂n(·) consistently estimates m(·)f̄n(·). Hence, m̂n(·) consistently
estimates m and similar results can be obtained for the partial derivatives. The
assertion in (∗) then follows by

1√
n

bnsc∑
i=1

(
ĥn(Xn,i)I{Xn,i ≤ z} − E

[
ĥn(Xn,i)I{Xn,i ≤ z}

])
= oP (1)

and

1√
n

bnsc∑
i=1

E
[
ĥn(Xn,i)I{Xn,i ≤ z}

]
=
√
n

∫
(−∞,z]

ĥn(x)
1

n

bnsc∑
i=1

fn,i(x)dx,

uniformly in s ∈ [0, 1] and z ∈ Rd, where ĥn(·) := (m(·)−m̂n(·))ωn(·). Note that the
corresponding assertion in the stationary case is Lemma A.1 on page 113. The key
tool in proving it, is an exponential inequality for strongly mixing data (Theorem
2.1 in [46]), which does not need the strict stationarity assumption.

Proceeding by inserting the definition of m̂n(·) yields

√
n

∫
(−∞,z]

(
m(x)− 1

n

n∑
j=1

Khn(x−Xn,j)Yn,j
1

f̂n(x)

)
ωn(x)f̄ (s)(x)dx

=
1√
n

n∑
j=1

∫
(−∞,z]

(m(x)−m(Xn,j))Khn(x−Xn,j)ωn(x)
f̄ (s)(x)

f̂n(x)
dx

− 1√
n

n∑
j=1

Un,j

∫
(−∞,z]

Khn(x−Xn,j)ωn(x)
f̄ (s)(x)

f̂n(x)
dx

=
1√
n

n∑
j=1

∫
(−∞,z]

(m(x)−m(Xn,j))Khn(x−Xn,j)ωn(x)
f̄ (s)(x)

f̄ (1)(x)
dx (4.1)

64



4.2. The model with non-stationary variances

− 1√
n

n∑
j=1

Un,j

∫
(−∞,z]

Khn(x−Xn,j)ωn(x)
f̄ (s)(x)

f̄ (1)(x)
dx+ oP (1), (4.2)

where in the last step f̂n was replaced by f̄ (1). Now it can be shown that the term
in (4.1) is negligible uniformly in s ∈ [0, 1] and z ∈ Rd. Note that the corresponding
result in the stationary case is Lemma A.2 on page 124. The main step of its proof
is again an application of the exponential inequality in [46].

Concerning the term in (4.2) under suitable conditions it can be shown that

1√
n

n∑
j=1

Un,j

∫
(−∞,z]

Khn(x−Xn,j)ωn(x)
f̄ (s)(x)

f̄ (1)(x)
dx

=
1√
n

n∑
j=1

Un,jωn(Xn,j)
f̄ (s)(Xn,j)

f̄ (1)(Xn,j)
I{Xn,j ≤ z}+ oP (1).

The corresponding assertion in the stationary case is stated in Lemma A.3 on
page 131. The proof uses again the exponential inequality in [46]. Finally it is
reasonable to assume that

1√
n

n∑
j=1

Un,jωn(Xn,j)
f̄ (s)(Xn,j)

f̄ (1)(Xn,j)
I{Xn,j ≤ z} =

1√
n

n∑
j=1

Un,j
f̄ (s)(Xn,j)

f̄ (1)(Xn,j)
I{Xn,j ≤ z}

+ oP (1)

holds uniformly in s ∈ [0, 1] and z ∈ Rd. However, the tools to proof this kind of
conjecture are not available, as it requires a weak convergence result for sequential
empirical processes with non-stationary data.

Putting the results together, this would lead to

T̂n(s, z) =
1√
n

bnsc∑
i=1

Un,iI{Xn,i ≤ z} −
1√
n

n∑
i=1

Un,iḡ
(s)(Xn,i)I{Xn,i ≤ z}+ oP (1),

(4.3)

where ḡ(s)(·) := f̄ (s)(·)
f̄ (1)(·) . Even if both summands in (4.3) converge weakly, this cer-

tainly does not imply the weak convergence of T̂n := {T̂n(s, z) : s ∈ [0, 1], z ∈ Rd}.
The idea is to show weak convergence of the richer processΓn(s, t,z) :=

1√
n

bnsc∑
i=1

Un,iḡ
(t)(Xn,i)I{Xn,i ≤ z} : s, t ∈ [0, 1], z ∈ Rd

 (4.4)

to a centered Gaussian process {Γ(s, t,z) : s, t ∈ [0, 1], z ∈ Rd}. This result again
requires a weak convergence result for sequential empirical processes indexed in
general function classes and with a weakly dependent and possibly non-stationary
underlying triangular array process. Such a result is not available so far to the
best of our knowledge and could not be obtained within this work. Note that the
corresponding result in the stationary setup is Theorem 3.2 on page 41.
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4. Non-stationary variances

However, continuing under the conjecture that the process in (4.4) does converge
weakly in l∞([0, 1]× [0, 1]× Rd), it follows from (4.3) that

T̂n(s, z) = Γn(s, 1, z)− Γn(1, s,z) + oP (1),

uniformly in s ∈ [0, 1] and z ∈ Rd, as ḡ(1)(·) = 1. By continuous mapping
theorem the weak convergence of T̂n to the centered Gaussian process {G0(s, z) : s ∈
[0, 1], z ∈ Rd} follows. The covariance function of {Γ(s, t,z) : s, t ∈ [0, 1], z ∈ Rd}
results in

Cov(Γn(s1, t1, z1),Γn(s2, t2, z2))

= E

 1

n

bns1c∧bns2c∑
i=1

U2
n,iḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}


=

∫
(−∞,z1∧z2]

1

n

bns1c∧bns2c∑
i=1

σ2
n,i(u)fn,i(u)ḡ(t1)(u)ḡ(t2)(u)du

→
n→∞

∫
(−∞,z1∧z2]

h̄(s1∧s2)(u)ḡ(t1)(u)ḡ(t2)(u)du,

under suitable conditions and with h̄(s)(·) := limn→∞
1
n

∑bnsc
i=1 σ

2
n,i(·)fn,i(·) < ∞ for

s ∈ (0, 1]. The covariance function of {G0(s, z) : s ∈ [0, 1], z ∈ Rd} thus results in

Cov(G0(s1, z1), G0(s2, z2))

= Cov(Γ(s1, 1, z1)− Γ(1, s1, z1),Γ(s2, 1, z2)− Γ(1, s2, z2))

=

∫
(−∞,z1∧z2]

h̄(s1∧s2)(u)− h̄(s1)(u)ḡ(s2)(u)− h̄(s2)(u)ḡ(s1)(u) + h̄(1)(u)ḡ(s1)(u)ḡ(s2)(u)du.

Note that this is consistent with the stationary case as then h̄(s)(·) = sσ2(·)f(·)
and ḡ(s)(·) = s and the same covariance function as in Corollary 3.3 on page 48 can
be obtained. The convergence of the Kolmogorov-Smirnov test statistic follows by
the continuous mapping theorem. Hence, under H0 it can be shown that

sup
s∈[0,1]

sup
z∈Rd

∣∣∣T̂n(s, z)
∣∣∣ D→
n→∞

sup
s∈[0,1]

sup
z∈Rd
|G0(s, z)| .

Note that under H1 the model applies to the setting of Section 3.3. Thus under
the assumptions of Theorem 3.4 on page 50, it holds that the test is consistent
against H1, i.e. under H1 it holds that

sup
s∈[0,1]

sup
z∈Rd

∣∣∣T̂n(s, z)
∣∣∣ P→
n→∞

∞.

4.3 Bootstrap test

As the potential limiting distribution of T̂n and therefore of Tn1 is rather complicated
and does not decompose in such a nice way as it does in the stationary case, the
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4.3. Bootstrap test

critical value using the asymptotic distribution can not be computed. An alternative
procedure is to estimate the critical value using bootstrap. The idea is to construct
a bootstrap version T ∗n1 based on the sample Yn := {(Yn,1,Xn,1), . . . , (Yn,n,Xn,n)}
that somehow mimics the distribution of the original test statistic Tn1 under the null
without knowing its limiting distribution.

Given Yn in each bootstrap replication b ∈ {1, . . . , B} a bootstrap version T ∗n1,b of
the test statistic Tn1 is constructed as follows. First, define the bootstrap innovations
by

U∗n,t := Ûn,tηt,

where {ηt} are i.i.d. random variables, independent of Yn with E[η0] = 0, E[η2
0] = 1

and E[η4
0] <∞. This so called Wild Bootstrap procedure was first introduced by Wu

[80] and Liu [49] for linear regression with heteroscedasticity. It was used in time
series context by Kreiß [39] and Hafner and Herwarzt [23] among others.2 Then the
bootstrap data is generated by

Y ∗n,t := m̂n(Xn,t) + U∗n,t.

Note that if the original data follows an autoregression model, say d = 1 and
Xt = Yt−1, by the above choice the resulting bootstrap data does not follow the same
structure. As was pointed out by Kreiß and Lahiri [40] this is still a reasonable choice
in particular if the dependence structure of the underlying process does not show
up in the asymptotic distribution. The bootstrap residuals are then defined by

Û∗n,t := Y ∗n,t − m̂∗n(Xn,t),

where m̂∗n(x) :=

∑n
j=1K

(
x−Xn,j

hn

)
Y ∗n,j∑n

j=1K
(
x−Xn,j

hn

) . Then the bootstrap test statistic is defined

by
T ∗n1,b := sup

s∈[0,1]

sup
z∈Rd

∣∣∣T̂ ∗n(s, z)
∣∣∣ ,

where T̂ ∗n(s, z) := 1√
n

∑bnsc
i=1 Û

∗
n,iωn(Xn,i)I{Xn,i ≤ z}. For a given level α ∈ (0, 1)

the bootstrap test then rejects the null, if

1

B

B∑
b=1

I
{
Tn1 ≤ T ∗n1,b

}
< α.

Note that given Yn the bootstrap variables (Xn,1, Y
∗
n,1), . . . , (Xn,n, Y

∗
n,n) fulfill the

null restriction even if the original ones do not. To motivate that this method leads to
a valid testing procedure, the asymptotic behavior of T̂ ∗n := {T̂ ∗n(s, z) : s ∈ [0, 1], z ∈
Rd} will be investigated in more detail. It will particularly be suggested that under
H0 the process T̂ ∗n converges weakly in probability (see [22] for the definition) to
G0, which is the expected limiting distribution of T̂n from Section 4.2. This ensures

2As an alternative to this, a triangular array {ηn,t : 1 ≤ t ≤ n} (rather than an i.i.d. sequence)
could be used to mimic the dependence structure of the innovations. This so called Dependent
Wild Bootstrap was introduced by Shao [67].
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4. Non-stationary variances

that the rejection probability of the bootstrap test does not exceed the given level
α under the null. Secondly, it will be conjectured that under H1 the process T̂ ∗n
converges weakly in probability to some centered Gaussian process G∗0. Note that
this process particularly differs from G0. Nevertheless, under H1 it then holds that

sup
s∈[0,1]

sup
z∈Rd
|T̂n(s, z)| P→

n→∞
∞ (4.5)

and
sup
s∈[0,1]

sup
z∈Rd
|T̂ ∗n(s, z)| D→

n→∞
sup
s∈[0,1]

sup
z∈Rd
|G∗0(s, z)| = OP (1),

where here D→ denotes convergence in distribution in probability. Thus, under H1

the rejection probability of the bootstrap test converges to one as n tends to infinity.
The bootstrap test therefore provides a consistent testing procedure for changes in
the regression function even under non-stationary variances.

To motivate above conjectures, the limiting behavior of T̂ ∗n under both H0 and
H1 will be investigated. Let therefore P ∗ denote the probability conditioned on Yn3

and let for any sequence of real valued random variables (Zn)n∈N, Zn = oP ∗(1) be
short for P ∗(|Zn| > ε) = oP (1) for all ε > 0. First, it can be obtained that

T̂ ∗n(s, z) =
1√
n

bnsc∑
i=1

(Y ∗n,i − m̂∗n(Xn,i))ωn(Xn,i)I{Xn,i ≤ z}

=
1√
n

bnsc∑
i=1

U∗n,iωn(Xn,i)I{Xn,i ≤ z}

+
1√
n

bnsc∑
i=1

(m̂n(Xn,i)− m̂∗n(Xn,i))ωn(Xn,i)I{Xn,i ≤ z}.

Furthermore, it can be shown that

1√
n

bnsc∑
i=1

(m̂n(Xn,i)− m̂∗n(Xn,i))ωn(Xn,i)I{Xn,i ≤ z}

=
√
n

∫
(−∞,z]

(m̂n(x)− m̂∗n(x))ωn(x)
1

n

bnsc∑
i=1

fn,i(x)dx+ oP ∗(1)

=
√
n

∫
(−∞,z]

(m̂n(x)− m̂∗n(x))ωn(x)f̄ (s)(x)dx+ oP ∗(1),

under suitable conditions. Inserting the definition of m̂∗n yields

√
n

∫
(−∞,z]

(
m̂n(x)− 1

n

n∑
j=1

Khn(x−Xn,j)Y
∗
n,j

1

f̂n(x)

)
ωn(x)f̄ (s)(x)dx

3Note that the notation P ∗ is also used for the different concept of outer probability, first noted
in Chapter 1. It should be clear within the context which definition is intended.
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4.3. Bootstrap test

=
1√
n

n∑
j=1

∫
(−∞,z]

(m̂n(x)− m̂n(Xn,j))Khn(x−Xn,j)ωn(x)
f̄ (s)(x)

f̂n(x)
dx

− 1√
n

n∑
j=1

U∗n,j

∫
(−∞,z]

Khn(x−Xn,j)ωn(x)
f̄ (s)(x)

f̂n(x)
dx

=
1√
n

n∑
j=1

∫
(−∞,z]

(m̂n(x)− m̂n(Xn,j))Khn(x−Xn,j)ωn(x)
f̄ (s)(x)

f̄ (1)(x)
dx (4.6)

− 1√
n

n∑
j=1

U∗n,j

∫
(−∞,z]

Khn(x−Xn,j)ωn(x)
f̄ (s)(x)

f̄ (1)(x)
dx+ oP ∗(1), (4.7)

where in the last step f̂n was replaced by f̄ (1). Concerning the term in (4.6), it can
be shown that under suitable conditions

1√
n

n∑
j=1

∫
(−∞,z]

(m̂n(x)− m̂n(Xn,j))Khn(x−Xn,j)ωn(x)
f̄ (s)(x)

f̄ (1)(x)
dx = oP ∗(1).

Concerning the term in (4.7), it can further be obtained that under suitable
conditions

1√
n

n∑
j=1

U∗n,j

∫
(−∞,z]

Khn(x−Xn,j)ωn(x)
f̄ (s)(x)

f̄ (1)(x)
dx

=
1√
n

n∑
j=1

U∗n,jωn(Xn,j)
f̄ (s)(Xn,j)

f̄ (1)(Xn,j)
I{Xn,j ≤ z}+ oP ∗(1).

Thus a similar expansion as for T̂n(s, z) in (4.3) on page 65 can be obtained in
the bootstrap world as

T̂ ∗n(s, z) =
1√
n

bnsc∑
i=1

U∗n,iωn(Xn,i)I{Xn,i ≤ z}

− 1√
n

n∑
i=1

U∗n,iωn(Xn,i)ḡ
(s)(Xn,i)I{Xn,i ≤ z}+ oP ∗(1)

= Γ∗n(s, 1, z)− Γ∗n(1, s,z) + oP ∗(1),

where

Γ∗n(s, t,z) :=
1√
n

bnsc∑
i=1

U∗n,iωn(Xn,i)ḡ
(t)(Xn,i)I{Xn,i ≤ z}, s, t ∈ [0, 1], z ∈ Rd.

Finally, the expected covariance functions of Γn and Γ∗n under both H0 and H1

need to be compared. First, note that

E[U∗n,iU
∗
n,j|Yn] =

{
0 i 6= j

Û2
n,i i = j,
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4. Non-stationary variances

almost surely. Under H0 it holds that Ûn,t = m(Xn,t)− m̂n(Xn,t) + Un,t and thus

E [Γ∗n(s1, t1, z1) · Γ∗n(s2, t2, z2)|Yn]

=
1

n

bns1c∧bns2c∑
i=1

Û2
n,iωn(Xn,i)ḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

=
1

n

bns1c∧bns2c∑
i=1

U2
n,iωn(Xn,i)ḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2} (4.8)

+
2

n

bns1c∧bns2c∑
i=1

Un,i(m(Xn,i)− m̂n(Xn,i))ωn(Xn,i)ḡ
(t1)(Xn,i)ḡ

(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

(4.9)

+
1

n

bns1c∧bns2c∑
i=1

(m(Xn,i)− m̂n(Xn,i))
2ωn(Xn,i)ḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2},

(4.10)

a.s. for fixed s1, s2, t1, t2 ∈ [0, 1] and z1, z2 ∈ Rd. Using the uniform rates of con-
vergence of m̂n, both (4.9) and (4.10) converge to zero in probability. Concerning
(4.8), it can be shown that

1

n

bns1c∧bns2c∑
i=1

U2
n,iωn(Xn,i)ḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

P→
n→∞

E [Γ(s1, t1, z1) · Γ(s2, t2, z2)] ,

where Γ is the expected limiting distribution of Γn in (4.4) on page 65. Thus T̂ ∗n
indeed converges weakly in probability to G0 under H0. If the null does not hold,
then with

Ûn,i = mn,i(Xn,i)− m̂n(Xn,i) + Un,i

it holds that

E [Γ∗n(s1, t1, z1) · Γ∗n(s2, t2, z2)|Yn]

=
1

n

bns1c∧bns2c∑
i=1

Û2
n,iωn(Xn,i)ḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

=
1

n

bns1c∧bns2c∑
i=1

U2
n,iωn(Xn,i)ḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2} (4.11)

+
2

n

bns1c∧bns2c∑
i=1

Un,i(mn,i(Xn,i)− m̂n(Xn,i))ωn(Xn,i)ḡ
(t1)(Xn,i)ḡ

(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

(4.12)

+
1

n

bns1c∧bns2c∑
i=1

(mn,i(Xn,i)− m̂n(Xn,i))
2ωn(Xn,i)ḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

(4.13)
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a.s. for fixed s1, s2, t1, t2 ∈ [0, 1] and z1, z2 ∈ Rd. The term in (4.11) again converges
in probability to E [Γ(s1, t1, z1) · Γ(s2, t2, z2)]. It can be shown that the term in
(4.12) is negligible in probability. Finally consider the term in (4.13). Under suitable
conditions it can be shown that

1

n

bns1c∧bns2c∑
i=1

(mn,i(Xn,i)− m̂n(Xn,i))
2ωn(Xn,i)ḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

=
1

n

bns1c∧bns2c∑
i=1

(mn,i(Xn,i)− m̄n(Xn,i))
2ωn(Xn,i)ḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

+ oP (1),

applying Lemma 2.3 on page 34 and with

m̄n(·) =

1
n

n∑
i=1

fn,i(x)mn,i(·)

1
n

n∑
i=1

fn,i(·)

from (2.20) on page 34. Under H1 it holds that

m̄n(x)→ (m(1)(x)−m(2)(x))ḡ(s0)(x) +m(2)(x)

for all x ∈ Rd, which was also discussed in the remark to Theorem 3.4 on page 50.
Thus, it can be shown that

1

n

bns1c∧bns2c∑
i=1

(mn,i(Xn,i)− m̄n(Xn,i))
2ωn(Xn,i)ḡ

(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

=
1

n

bns1c∧bns2c∧bns0c∑
i=1

(
m(1)(Xn,i)−m(2)(Xn,i)

)2
ωn(Xn,i)

(
1− ḡ(s0)(Xn,i)

)2

· ḡ(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

+
1

n

bns1c∧bns2c∑
i=bns1c∧bns2c∧bns0c+1

(
m(1)(Xn,i)−m(2)(Xn,i)

)2
ωn(Xn,i)ḡ

(s0)(Xn,i)
2

· ḡ(t1)(Xn,i)ḡ
(t2)(Xn,i)I{Xn,i ≤ z1 ∧ z2}

+ oP (1).

It can be seen that these terms do not vanish but converge to some limit in
probability. Thus the limiting distribution G∗0 then is not equal to G0 and in partic-
ular depends on the changepoint s0. Nevertheless the bootstrap test will still be a
consistent procedure as under H1 the original test statistic converges in probability
to infinity while the bootstrap test statistic converges in distribution in probability
to some non-degenerated limit.
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5 Changepoint test in the conditional
variance function

In this chapter, a test for change in the conditional variance function is suggested.
The construction uses the idea that it can be seen as a conditional mean function
in a new regression model. The test is therefore again based on the marked empiri-
cal process of new residuals. The asymptotic behavior under the null of no change
in the conditional variance function will be established heuristically. In particular,
methods of proof obtained earlier can be used. The ideas of a possible proof are
based on the proofs of the lemmata in Appendix A. It can therefore be helpful to
read the proofs first. Additionally, the behavior of the Kolmogorov-Smirnov type
test statistic will be studied under a simple alternative. Finally, other tests based on
Cramér-von Mises type test statistics will be presented and the special case of one-
dimensional covariates will be investigated in more detail, as under this assumption
a distribution free limiting distribution can be obtained.

5.1 Model and test statistic

Suppose that a changepoint test in the conditional mean function gave reason to
assume stability in this function in model (1.1). Hence, let

Yt = m(Xt) + Ut, t ∈ Z,

where E[Ut|F t] = 0 a.s. and m : Rd → R is not depending on t. The verification
of this assumption can be delicate. The test constructed in Chapter 3 only works
under stationary variances. However, as suggested in Chapter 4 the bootstrap ver-
sion of the changepoint test is a valid procedure to detect changes in the regression
function even in the presence of changes in the variance function.

Furthermore, let the following representation for the innovations Ut hold

Ut = σt(Xt)εt, t ∈ Z,

for some functions σt : Rd → R and an i.i.d. sequence (εt)t∈Z, such that εt is
independent of Xj for all j ≤ t and fulfills E[ε1] = 0, E[ε2

1] = 1 and E[ε4
1] < ∞.

With these restrictions, σ2
t is the conditional variance function of Yt conditioned on

Xt as
Var(Yt|Xt) = E[U2

t |Xt] = σ2
t (Xt)
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5. Changepoint test in the conditional variance function

holds almost surely. This also shows that σ2
t can be viewed as the regression function

or conditional mean function in the new regression model

U2
t = σ2

t (Xt) + ξt, t ∈ Z,

with covariate Xt, response variable U2
t and innovations

ξt := U2
t − σ2

t (Xt), t ∈ Z,

that satisfy
E[ξt|Xt] = 0 and E[ξ2

t |Xt] = σ4
t (Xt)E[(ε2

t − 1)2]

almost surely. It will be investigated, whether the function σ2
t (·) is stable in time t.

Given observations (Y1,X1), . . . , (Yn,Xn) the null hypotheses

H̃0 : σ2
t (·) = σ2(·), t = 1, . . . , n,

for some σ2 : Rd → R not depending on time t will therefore be considered.

The idea is again to base the test on the cumulative sum of residuals U2
t −σ̂2

n(Xt),
where σ̂2

n is the kernel estimator for the unknown σ2 defined in (2.3) on page 13. The
problem, that arises, is that U2

t is not observable either. It will therefore be replaced
by the estimator (Yt − m̂n(Xt))

2 where m̂n is the Nadaraya-Watson estimator for
the unknown m defined in (2.2) on page 13. The CUSUM type test statistic again
uses the marked empirical process of residuals, thus

ˆ̃Tn :=
{

ˆ̃Tn(s, z) : s ∈ [0, 1], z ∈ Rd
}
,

where

ˆ̃Tn(s, z) :=
1√
n

bnsc∑
i=1

(
(Yi − m̂n(Xi))

2 − σ̂2
n(Xi)

)
ωn(Xi)I{Xi ≤ z}

and the Kolmogorov-Smirnov type test statistic then is defined as

T̃n1 := sup
z∈Rd

sup
s∈[0,1]

∣∣∣ ˆ̃Tn(s, z)
∣∣∣ . (5.1)

Note that by using other functionals of ˆ̃Tn, other tests can be obtained simul-
taneously. In Section 5.4, Cramér-von Mises type test statistics will be presented,
which will be denoted by T̃n2, T̃n3 and T̃n4.

5.2 Asymptotic behavior under the null

To construct the test using T̃n1, the limiting distribution of ˆ̃Tn under the null is of in-
terest. This section will give a heuristic motivation under what kind of assumptions
and with what kind of methods the convergence of the test statistic can be obtained.
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5.2. Asymptotic behavior under the null

Under H̃0, strict stationary and α-mixing {(Yt,Xt) : t ∈ Z} and under suitable
conditions it can be shown that

ˆ̃Tn(s, z) = T̃n(s, z)− sT̃n(1, z) + oP (1), (5.2)

uniformly in s ∈ [0, 1] and z ∈ Rd where

T̃n(s, z) :=
1√
n

bnsc∑
i=1

ξiI{Xi ≤ z}

and that
T̃n :=

{
T̃n(s, z) : s ∈ [0, 1], z ∈ Rd

}
converges weakly in l∞([0, 1]× Rd) to a centered Gaussian process G̃ with

Cov
(
G̃(s1, z1), G̃(s2, z2)

)
= (s1 ∧ s2)Σ̃(z1 ∧ z2),

where Σ̃(z) := E[(ε2
1− 1)2]

∫
(−∞,z]

σ4(x)f(x)dx. Applying continuous mapping and

Slutzky’s theorem, it therefore follows that ˆ̃Tn converges weakly in l∞([0, 1] × Rd)
to a centered Gaussian process G̃0 with

Cov
(
G̃0(s1, z1), G̃0(s2, z2)

)
= (s1 ∧ s2 − s1s2)Σ̃(z1 ∧ z2).

The continuous mapping theorem then implies that

T̃n1
D→

n→∞
sup
z∈Rd

sup
s∈[0,1]

∣∣∣G̃0(s, z)
∣∣∣ .

The weak convergence of T̃n can be shown by using Corollary B.3. In what
follows, it will be sketched how the proof of the decomposition, namely assertion
(5.2), could work mentioning the kind of assumptions need to be made. Consider

ˆ̃Tn(s, z) =
1√
n

bnsc∑
i=1

(
(Yi − m̂n(Xi))

2 − σ̂2
n(Xi)

)
ωn(Xi)I{Xi ≤ z}

=
1√
n

bnsc∑
i=1

(
(m(Xi)− m̂n(Xi) + Ui)

2 − σ̂2
n(Xi)

)
ωn(Xi)I{Xi ≤ z}

=
1√
n

bnsc∑
i=1

(m(Xi)− m̂n(Xi))
2ωn(Xi)I{Xi ≤ z} (5.3)

+
2√
n

bnsc∑
i=1

Ui(m(Xi)− m̂n(Xi))ωn(Xi)I{Xi ≤ z} (5.4)

+
1√
n

bnsc∑
i=1

(
U2
i − σ̂2

n(Xi)
)
ωn(Xi)I{Xi ≤ z}. (5.5)

Using the uniform rates of convergence of m − m̂n obtained in Lemma 2.2 on
page 17, the term in (5.3) is negligible uniformly in s ∈ [0, 1] and z ∈ Rd. It can be
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5. Changepoint test in the conditional variance function

shown that the term in (5.4) is as well negligible uniformly in s ∈ [0, 1] and z ∈ Rd.
To see this, define the function classes

F := {(u,x) 7→ uI{x ≤ z} : z ∈ Rd}

and
H := Cl+η1,n (Jn),

from the proof of Lemma A.1 on page 113. There it is shown that for ĥn(x) :=
(m(x)− m̂n(x))ωn(x) it holds that

P
(
ĥn ∈ H

)
→
n→∞

1.

Then the assertion is implied by

sup
s∈[0,1]

sup
ϕ∈F

sup
h∈H

∣∣∣∣∣∣ 1√
n

bnsc∑
i=1

(h(Xi)ϕ(Ui,Xi)− E[h(Xi)ϕ(Ui,Xi)])

∣∣∣∣∣∣ = oP (1),

where E[h(Xi)ϕ(Ui,Xi)] = 0 holds for all i = 1, . . . , n, h ∈ H and ϕ ∈ F . Sim-
ilarly to the proof of Lemma A.1, the interval [0, 1] can be covered with finitely
many intervals and the function classes F and H can be covered with finitely many
brackets. The suprema over [0, 1],F and H can then be replaced by the maxima
over finitely many objects, namely centers of intervals and lower and upper bounds
of the brackets respectively. The maxima can then be bounded in probability using
Liebscher’s exponential inequality for α-mixing sequences stated in Theorem 2.1 in
[46]. The resulting upper bound converges to zero as n tends to infinity. Up to this
step the assumptions already made in Chapter 3 are sufficient.

Finally, concerning (5.5) using ξt = U2
t − σ2(Xt) under H̃0, it holds that

1√
n

bnsc∑
i=1

(
U2
i − σ̂2

n(Xi)
)
ωn(Xi)I{Xi ≤ z}

=
1√
n

bnsc∑
i=1

ξiωn(Xi)I{Xi ≤ z}+
1√
n

bnsc∑
i=1

(
σ2(Xi)− σ̂2

n(Xi)
)
ωn(Xi)I{Xi ≤ z}.

Similarly to the proof of A.4 on page 142, under suitable conditions, it can be
shown that uniformly in s ∈ [0, 1] and z ∈ Rd

1√
n

bnsc∑
i=1

ξiωn(Xi)I{Xi ≤ z} = T̃n(s, z) + oP (1).

In particular, strict stationarity of {(ξt,Xt) : t ∈ Z} and moment constraints
on ξ1 are needed here. Hence, moment constraints on both U2

1 and σ2(X1) are
necessary. Furthermore, similar to the proof of A.1 on page 113 and under suitable
conditions it can be shown that uniformly in s ∈ [0, 1] and z ∈ Rd

1√
n

bnsc∑
i=1

(
σ2(Xi)− σ̂2

n(Xi)
)
ωn(Xi)I{Xi ≤ z}
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5.2. Asymptotic behavior under the null

= s
√
n

∫ (
σ2(x)− σ̂2

n(x)
)
ωn(x)I{x ≤ z}f(x)dx+ oP (1).

For this step, uniform rates of convergence for σ2− σ̂2
n and its partial derivatives

need to be shown on Jn to embed this difference in some function class H̃ of smooth
functions. In Chapter 2, the remark on page 31 already suggested such properties
for σ̂2

n. For the proof, analogues assumptions to the ones in Lemma 2.2 on page
17 need to be made. In particular, analogues conditions to (F1) on σ2 are needed.
Furthermore, moment constraints as in (M) are necessary for Y 2

1 .

Continuing by inserting the definition of σ̂2
n, using Yi = m(Xi) + Ui and finally

ξi = U2
i − σ2(Xi) under H̃0, it holds that

√
n

∫ (
σ2(x)− σ̂2

n(x)
)
ωn(x)I{x ≤ z}f(x)dx

=
√
n

∫ (
σ2(x)− 1

n

n∑
i=1

Khn(x−Xi)(Yi − m̂n(x))2 1

f̂n(x)

)
ωn(x)I{x ≤ z}f(x)dx

=
1√
n

n∑
i=1

∫ (
σ2(x)− (Yi − m̂n(x))2

)
Khn(x−Xi)ωn(x)I{x ≤ z} f(x)

f̂n(x)
dx

= − 1√
n

n∑
i=1

ξi

∫
Khn(x−Xi)ωn(x)I{x ≤ z} f(x)

f̂n(x)
dx (5.6)

+
1√
n

n∑
i=1

∫ (
σ2(x)− σ2(Xi)

)
Khn(x−Xi)ωn(x)I{x ≤ z} f(x)

f̂n(x)
dx (5.7)

+
1√
n

n∑
i=1

∫
(m(Xi)− m̂n(x))2Khn(x−Xi)ωn(x)I{x ≤ z} f(x)

f̂n(x)
dx (5.8)

+
2√
n

n∑
i=1

Ui

∫
(m(Xi)− m̂n(x))Khn(x−Xi)ωn(x)I{x ≤ z} f(x)

f̂n(x)
dx. (5.9)

Concerning (5.6), similarly to Lemma A.3 on page 131 under suitable conditions,
it can be shown that

1√
n

n∑
i=1

ξi

∫
(−∞,z]

Khn(x−Xi)ωn(x)
f(x)

f̂n(x)
dx =

1√
n

n∑
i=1

ξiωn(Xi)I{Xi ≤ z}+ oP (1),

= T̃n(1, z) + oP (1),

uniformly in z ∈ Rd where the last equality can be shown by similar arguments as
in Lemma A.4 on page 142. Additional assumptions, that need to be made for this
step, need to ensure the existence of moments of ξ1. Moment constraints on both U2

1

and σ2(X1) are therefore necessary here. Concerning (5.7), similarly to the proof of
Lemma A.2 on page 124 under certain conditions it can be shown that

1√
n

n∑
i=1

∫
(−∞,z]

(
σ2(x)− σ2(Xi)

)
Khn(x−Xi)ωn(x)

f(x)

f̂n(x)
dx = oP (1),
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5. Changepoint test in the conditional variance function

uniformly in z ∈ Rd. An analogues assumption to (F2) has to be made for σ2 in
this step. Using the uniform convergence rates of m − m̂n, which also hold on the
slightly larger set In = [−cn−Chn, cn+Chn]d, it can be shown that the term in (5.8)
is negligible uniformly in z ∈ Rd. Finally, using similar methods as for the assertion
in (5.4), it can be shown that the term in (5.9) is as well negligible uniformly in
z ∈ Rd under suitable conditions.

Putting the results together under suitable conditions, it can be shown that

1√
n

bnsc∑
i=1

(
σ2(Xi)− σ̂2

n(Xi)
)
ωn(Xi)I{Xi ≤ z} = −sT̃n(1, z) + oP (1),

uniformly in s ∈ [0, 1] and z ∈ Rd. Hence, the assertion in (5.2) holds.

5.3 Consistency analysis

In this section, the asymptotic behavior of T̃n1 defined in (5.1) under a simple fixed
alternative will be investigated. It will be suggested that a similar behavior to the
test in the conditional mean function can be obtained, which leads to a consistency
result. Finally, it is indicated that the corresponding CUSUM tests are not consis-
tent under some simple alternatives.

Let {(Yn,t,Xn,t) : t = 1, . . . , n, n ∈ N} be a triangular array process satifying

Yn,t = m(Xn,t) + Un,t, t = 1, . . . , n, n ∈ N,

with regression function m : Rd → R and innovations such that E[Un,t|F tn] = 0 and
E[U2

n,t|Xn,t] = σ2
n,t(Xn,t) almost surely. Given observation (Yn,1Xn,1), . . . (Yn,n,Xn,n)

consider the following alternative hypothesis

H̃1 : ∃s0 ∈ (0, 1) : σ2
n,t(·) =

{
σ2

(1)(·), t = 1, . . . , bns0c
σ2

(2)(·), t = bns0c+ 1, . . . , n
, ∀ n ∈ N,

for some functions σ2
(1), σ

2
(2) : Rd → R with σ2

(1) 6≡ σ2
(2). Let furthermore Xn,t be

absolutely continuous with density function fn,t. Note that again to verify that m
does not depend on the time of observation t, the bootstrap test as valid testing
procedure for change in the conditional mean function under non-stationary vari-
ances can be used.

As mentioned in the remark on page 35, it can be shown that σ̂2
n is under H̃1

and uniformly on Jn a consistent estimator for

σ̄2
n(x) =

1
n

n∑
i=1

fn,i(x)σ2
n,i(x)

1
n

n∑
i=1

fn,i(x)
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5.4. Other tests and the one-dimensional case

=
(
σ2

(1)(x)− σ2
(2)(x)

) 1
n

bns0c∑
i=1

fn,i(x)

1
n

n∑
i=1

fn,i(x)
+ σ2

(2)(x).

Then under similar assumptions as in Theorem 3.4 and using the notations, used
therein, it can be shown that for all z ∈ Rd and s ≤ s0

ˆ̃Tn(s, z) =
√
n

∫
(−∞,z]

(
σ2

(1)(u)− σ2
(2)(u)

)
f̄ (s)(u)

(
1− f̄ (s0)(u)

f̄ (1)(u)

)
du+ oP (

√
n)

and for all z ∈ Rd and s > s0

ˆ̃Tn(s, z) =
√
n

∫
(−∞,z]

(
σ2

(1)(u)− σ2
(2)(u)

)
f̄ (s0)(u)

(
1− f̄ (s)(u)

f̄ (1)(u)

)
du+ oP (

√
n).

By a similar argumentation as in the proof of Theorem 3.4 it holds for some
z0 ∈ Rd that ∫

(−∞,z0]

(
σ2

(1)(u)− σ2
(2)(u)

)
f̄ (s0)(u)

(
1− f̄ (s0)(u)

f̄ (1)(u)

)
du 6= 0

and therefore

T̃n1 ≥
∣∣∣ ˆ̃Tn(s0, z0)

∣∣∣ P→
n→∞

∞.

Note that using the marked empirical process of residuals is again essential for
the consistency of the test. To see this, consider ˆ̃Tn(s,∞) under H̃1 and under the
assumption that fn,t ≡ f for all 1 ≤ t ≤ n, n ∈ N for some symmetric density
function f and let σ2

(1) − σ2
(2) be an odd function. For an example see Subsection

6.2.1 in the simulations. Then it can be shown that

ˆ̃T (s,∞) =


√
ns(1− s0)

∫ (
σ2

(1)(u)− σ2
(2)(u)

)
f(u)du+ oP (

√
n), s ≤ s0

√
ns0(1− s)

∫ (
σ2

(1)(u)− σ2
(2)(u)

)
f(u)du+ oP (

√
n), s > s0

.

Now the integral vanishes although σ2
(1) 6≡ σ2

(2). Consequently, the test based on
ˆ̃Tn(s,∞) will not be consistent against H̃1.

5.4 Other tests and the one-dimensional case

By using other continuous functionals of ˆ̃Tn, different tests can be constructed in-
stantly. Again Cramér-von Mises type tests are considered. Let therefore

T̃n2 := sup
z∈Rd

∫ 1

0

∣∣∣ ˆ̃Tn(s, z)
∣∣∣2 ds,
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5. Changepoint test in the conditional variance function

T̃n3 := sup
s∈[0,1]

∫
Rd

∣∣∣ ˆ̃Tn(s, z)
∣∣∣2w(z)dz,

T̃n4 :=

∫ 1

0

∫
Rd

∣∣∣ ˆ̃Tn(s, z)
∣∣∣2w(z)dzds,

for some weighting function w : Rd → R such that the integrals used in T̃n3 and T̃n4

exist. Applying the continuous mapping theorem, it holds that

T̃n2
D→

n→∞
sup
z∈Rd

∫ 1

0

∣∣∣G̃0(s, z)
∣∣∣2 ds,

T̃n3
D→

n→∞
sup
s∈[0,1]

∫
Rd

∣∣∣G̃0(s, z)
∣∣∣2w(z)dz,

T̃n4
D→

n→∞

∫ 1

0

∫
Rd

∣∣∣G̃0(s, z)
∣∣∣2w(z)dzds.

Similar to before in the case of d = 1 a nice limiting distribution can be obtained.
To see this let τ 2(x) := E[(ε2

1 − 1)2]σ4(x) and

Σ̃ : R→ R, x 7→
∫

(−∞,x]

τ 2(u)f(u)du.

Furthermore, let

c̃ := Σ̃(∞) =

∫
τ 2(u)f(u)du <∞.

Let τ 2 be continuous. Then Σ̃ is differentiable and for all x ∈ R it holds that

dΣ̃(x)

dx
= τ 2(x)f(x).

Similar to before using continuity of Σ̃ and the scaling property of the Brownian
motion, it holds that

T̃n1
D→

n→∞

√
c̃ sup
s∈[0,1]

sup
t∈[0,1]

|K0(s, t)|,

where K0 is again a Kiefer-Müller process. The constant c̃ can be written as

c̃ = E[τ 2(X1)]

= E[(ε2
1 − 1)2σ4(X1)]

= E[(ε2
1σ

2(X1)− σ2(X1))2]

= E[((Y1 −m(X1))2 − σ2(X1))2].

Choosing

ˆ̃cn :=
1

n

n∑
i=1

(
Yi − m̂n(Xi))

2 − σ̂2
n(Xi)

)2
ωn(Xi),
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5.4. Other tests and the one-dimensional case

where m̂n and σ̂2
n are the kernel estimators for m and σ2 respectively, it can be

shown that ˆ̃cn
P→

n→∞
c̃ holds and thus

1√
ˆ̃cn
T̃n1

D→
n→∞

sup
s∈[0,1]

sup
t∈[0,1]

|K0(s, t)|.

Note that in principle any consistent estimator for c̃ can be used here. Similarly,
it can be seen that

1

ˆ̃cn
T̃n2

D→
n→∞

sup
t∈[0,1]

∫ 1

0

|K0(s, t)|2ds.

For T̃n3 and T̃n4 by choosing the weighting function w ≡ τ 2f , which however
is unknown, and additionally using integration by substitution twice, it can be
obtained that

1

ˆ̃c2
n

T̃n3
D→

n→∞
sup
s∈[0,1]

∫ 1

0

|K0 (s, t)|2 dt

and
1

ˆ̃c2
n

T̃n4
D→

n→∞

∫ 1

0

∫ 1

0

|K0(s, t)|2dtds.

Remark. As the test statistics T̃n3 and T̃n4 both contain the unknown quantity τ 2f ,
to apply the tests they have to be modified. It holds that∫

R

∣∣∣ ˆ̃Tn(s, z)
∣∣∣2 τ 2(z)f(z)dz =

∫
R

∣∣∣ ˆ̃Tn(s, z)
∣∣∣2 τ 2(z)dF (z),

where F is the distribution function of Xt for all t. Hence, the integral can be
estimated by the sample mean

1

n

n∑
k=1

| ˆ̃Tn(s,Xk)|2τ 2(Xk).

Using

τ 2(x) = E[(ε2
1 − 1)2]σ4(x)

= E[(ε2
1 − 1)2σ4(X1)|X1 = x]

= E[((Y1 −m(X1))2 − σ2(X1))2|X1 = x],

the quantity τ 2(x) can be estimated by

τ̂ 2
n(x) :=

1
n

n∑
j=1

Khn(Xj − x)((Yj − m̂n(x))2 − σ̂2
n(x))2

f̂n(x)
,

An estimator for the above integral can then be obtained by

1

n

n∑
k=1

∣∣∣ ˆ̃Tn(s,Xk)
∣∣∣2 τ̂ 2

n(Xk).
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5. Changepoint test in the conditional variance function

Hence, suitable modifications for Tn3 and Tn4 are

sup
s∈[0,1]

1

n

n∑
k=1

∣∣∣ ˆ̃Tn(s,Xk)
∣∣∣2 τ̂ 2

n(Xk)

and ∫ 1

0

1

n

n∑
k=1

∣∣∣ ˆ̃Tn(s,Xk)
∣∣∣2 τ̂ 2

n(Xk)ds

respectively.
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6 Simulation study and application

To investigate the performance of the obtained tests, a simulation study is con-
ducted, as well as applications to two real data sets are given in this chapter.

In the Monte-Carlo simulations both level and power simulations will be per-
formed. Models under consideration include i.i.d. regression models, homoscedastic
and heteroscedastic autoregression models, as well as other time series regression
models. The performance of both tests in the conditional mean and variance func-
tion are investigated. For models, that satisfy the stationarity assumption under
the null and have one-dimensional covariates, the critical values of the limiting dis-
tribution will be used. In the case of non-stationary variances or multidimensional
covariates, the bootstrap test is applied with B = 200 bootstrap replications. All
simulations are carried out for sample sizes n ∈ {100, 200, 300, 500}, a level of 5%
and a break ratio of s0 := 0.5 resulting in a changepoint of k0 := n

2
. Often s0 is

referred to as the changepoint as well. All tables show the rejection frequencies
using 500 replications.

The real data sets under consideration are the annual flow of the river Nile in
Aswan between 1871 and 1970 and the weekly closing values of the Dow Jones
Industrial Average index between July 1st 1971 and August 2nd 1974. Both data
sets have been extensively investigated in the changepoint framework and results
can therefore be compared quite well with existing literature.

6.1 Tests in the conditional mean function

Starting with a simple i.i.d. setting, the focus will then be set on time series mod-
els, such as regression models with autoregressive exogenous variables, as well as
homoscedastic and heteroscedastic autoregression models, namely models following
AR(1), AR(1)-ARCH(1), AR(2), AR(2)-ARCH(1) and AR(2)-ARCH(2) processes.
All testing procedures, where d = 1 and where the variance is stationary under the
null, use the critical values of the limiting distributions of Tn1, Tn2, Tn3 and Tn4,
which is known, as obtained in Section 3.4. They will be compared with the tests
based on T̂n(s,∞), namely with

sup
s∈[0,1]

|T̂n(s,∞)| and
1∫

0

|T̂n(s,∞)|2ds,

which will be referred to as the KS and CM test, or tests based on KS and CM ,
respectively. For the AR(1)-ARCH(1) model with non-stationary variances, as well
as the time series models with d = 2, the bootstrap version of the tests, introduced
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6. Simulation study and application

in Section 4.3 will be used. They will be referred to as T ∗n1, T ∗n2, T ∗n3 and T ∗n4. They
will also be compared with the bootstrap versions of the KS and CM tests.

6.1.1 A simple regression model

First, a simple i.i.d. regression model will be investigated. Let therefore

Yt = mt(Xt) + εt, t = 1, . . . , n

with covariates (Xt)t∈Z
i.i.d.∼ N (0, 1) and innovations (εt)t∈Z

i.i.d.∼ N (0, 1) that are
mutually independent. Consider two different choices for the regression function,
namely

mt(x) = x2, t = 1, . . . , n (6.1)

and

mt(x) =

{
x2, t = 1, . . . , bns0c
x2 + x, t = bns0c+ 1, . . . , n

. (6.2)

Note that model (6.1) satisfies the null hypothesis of no change in the regression
function, while model (6.2) satisfies the alternative hypothesis of one change. Also
note that in this case it holds for all fixed s ∈ [0, 1] and z ∈ R that

T̂n(s, z) =


−
√
ns(1− s0)

z∫
−∞

uϕ(u)du+ oP (
√
n), s ≤ s0

−
√
ns0(1− s)

z∫
−∞

uϕ(u)du+ oP (
√
n), s > s0

,

where ϕ is the standard normal density function. As∫
uϕ(u)du = 0,

the tests based on T̂n(s,∞), namely theKS and CM tests are not consistent against
H1 in theory. Table 6.1 and 6.2 show the rejection frequencies of all tests and both
models under H0 and under H1 respectively. Figure 6.1 is a visualization of the per-
formance of the tests based on Tn1 and Tn2, as well as the KS and CM tests under
the alternative. It can be seen that under the null the rejection frequencies for all
tests are near the level of 5%, however, for n = 500 the level is overestimated a little.
Under H1 even for the small sample size of n = 100 the tests based on Tn1 to Tn4

reject far more often than in 5% of all cases. Furthermore, it can be noted that for
growing sample sizes the power of these tests increases rapidly, while the rejection
frequency of the KS and CM tests remain near the level, which is consistent with
the theoretical findings. To compare amongst the new tests, it is to say that Tn2 and
Tn4 perform for smaller sample sizes a little better than Tn1 and Tn3. For n = 500
they all reject the null in approximately 99% of the cases. In summary the tests
obtained on this thesis work very well in this model and particularly outperform the
CUSUM tests that are not consistent against H1.
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6.1. Tests in the conditional mean function

T̂n(s, z) T̂n(s,∞)

n Tn1 Tn2 Tn3 Tn4 KS CM

100 0.052 0.066 0.042 0.062 0.058 0.056
200 0.046 0.064 0.052 0.054 0.042 0.032
300 0.066 0.062 0.052 0.052 0.068 0.040
500 0.090 0.080 0.070 0.070 0.074 0.050

Table 6.1: i.i.d. model under H0

T̂n(s, z) T̂n(s,∞)

n Tn1 Tn2 Tn3 Tn4 KS CM

100 0.180 0.264 0.232 0.254 0.070 0.064
200 0.580 0.692 0.616 0.686 0.086 0.066
300 0.786 0.860 0.808 0.860 0.086 0.066
500 0.990 0.990 0.990 0.988 0.056 0.048

Table 6.2: i.i.d. model under H1
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Figure 6.1: i.i.d. model under H1

6.1.2 Heteroscedastic regression models with autoregressive
exogenous variables

Consider the following heteroscedastic regression model

Yt = mt(Xt) + σ(Xt)εt, t = 1, . . . , n

with innovations (εt)t∈Z
i.i.d.∼ N (0, 1) and covariates (Xt)t∈Z following the autoregres-

sion model
Xt = 0.4Xt−1 + ξt, t ∈ Z
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6. Simulation study and application

with (ξt)t∈Z
i.i.d.∼ N (0, 1) such that ξt is independent of Xj for all j ≤ t − 1. Let

furthermore (Xt)t∈Z and (εt)t∈Z be mutually independent. The time series (Xt)t∈Z
is then a linear process of the form

Xt =
∞∑
j=0

0.4jξt−j ∼ N
(

0,
1

1− 0.42

)
, ∀t ∈ Z

and therefore in particular strictly stationary and strongly mixing with exponential
mixing rates, see Example (i) on page 8. Let

σ2(x) = 1 + 0.5x2

be the conditional variance function and consider the conditional mean function

mt(x) =

{
0.5x, t = 1, . . . , bns0c(

0.5 + ∆0e
−0.8x2

)
x, t = bns0c+ 1, . . . , n

,

with different break sizes ∆0 ∈ {0, 0.5, 1, 1.5, 1.5, 2, 2.5, 3, 3.5, 4}. For ∆0 = 0 the
model satisfies the null hypothesis of no change in the regression function. The
stationarity and mixing properties are inherited to (Yt)t∈Z. For ∆0 6= 0 the model
satisfies the alternative hypothesis and the change occurs in k0. Figure 6.2 shows
the regression function under the null, as well as after the break for ∆0 ∈ {1, 2}.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

∆0 =0 
∆0 =1  
∆0 =2  

Figure 6.2: Regression function

Note that for all fixed s ∈ [0, 1] and z ∈ R, it holds that

T̂n(s, z) =


−
√
ns(1− s0)∆0

z∫
−∞

e−0.8u2

uϕ̃(u)du+ oP (
√
n), s ≤ s0

−
√
ns0(1− s)∆0

z∫
−∞

e−0.8u2

uϕ̃(u)du+ oP (
√
n), s > s0

,
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6.1. Tests in the conditional mean function

where ϕ̃ is the density function of Xt for all t, which is a centered normal random
variable. Hence, the integral over the whole real line vanishes as ϕ̃ is an even and

x 7→ e−0.8x2

x

is an odd function. Consequently, the KS and CM tests are not consistent in
theory. Table 6.3 shows the rejection frequencies in the models with break ratios
∆0 ∈ {0, 1, 2, 3} for the tests based on Tn1 to Tn4, as well as the KS and CM tests
statistics. Additionally, Figure 6.3 is a visualization of the performance of Tn1 and
Tn2, as well as KS and CM for n = 100 and n = 300. Under the null (∆0 = 0)
the rejection frequencies for all tests are near the given level. Furthermore, it can
be seen that with growing sample sizes and growing break ratios, the number of
rejection generally increases. However, to just refer to Figure 6.3, it is clear that
Tn1 and Tn2 perform much better than KS and CM . Even for the larger sample
size of n = 300 and the large break ratio of ∆0 = 4, the rejection frequencies of KS
and CM stay under 10%, while the tests based on Tn1 and Tn2 reject the null in
80% of all cases. The general behavior for n = 100 is comparable, though rejection
frequencies grow less rapidly. Note that Tn3 and Tn4 also perform reasonably well.
In summary, as the visualizations show most convincingly, the new tests again out-
perform the CUSUM tests by far under the alternative and also perform fairly well
under the null hypothesis.

T̂n(s, z) T̂n(s,∞)

n ∆0 Tn1 Tn2 Tn3 Tn4 KS CM

100 0 0.038 0.086 0.068 0.074 0.050 0.064
1 0.048 0.098 0.066 0.088 0.054 0.058
2 0.096 0.158 0.128 0.146 0.080 0.066
3 0.182 0.296 0.186 0.248 0.074 0.068

200 0 0.084 0.074 0.078 0.080 0.092 0.064
1 0.086 0.116 0.106 0.104 0.064 0.050
2 0.206 0.296 0.186 0.204 0.088 0.062
3 0.500 0.628 0.362 0.448 0.058 0.042

300 0 0.054 0.072 0.076 0.074 0.054 0.038
1 0.092 0.140 0.106 0.114 0.064 0.050
2 0.334 0.446 0.258 0.296 0.086 0.060
3 0.798 0.830 0.558 0.662 0.090 0.062

500 0 0.050 0.062 0.056 0.052 0.076 0.052
1 0.182 0.230 0.170 0.158 0.088 0.068
2 0.694 0.752 0.490 0.524 0.092 0.066
3 0.978 0.990 0.850 0.932 0.104 0.086

Table 6.3: Regression with AR exogenous variables
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Figure 6.3: Regression with AR exogenous variables

6.1.3 Homoscedastic autogression models

Consider the following AR(1) model

Yt = mt(Yt−1) + εt, t = 1, . . . , n

with innovations (εt)t∈Z
i.i.d.∼ N (0, 1) and conditional mean function

mt(x) =

{
−0.9x, t = 1, . . . , bns0c
(−0.9 + ∆0)x, t = bns0c+ 1, . . . , n

,

with different break sizes ∆0 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8}. For ∆0 = 0
the model satisfies the null hypothesis of no change in the regression function. The
time series (Yt)t∈Z is then a linear process of the form

Yt =
∞∑
j=0

(−0.9)jεt−j, ∀t ∈ Z

and is therefore strictly stationary and strongly mixing as seen in Example (i) on
page 8. For ∆0 6= 0 the model fulfills the alternative hypothesis of one changepoint.
Table 6.4 shows the rejection frequencies of the tests based on Tn1, Tn2, Tn3 and Tn4,
as well as the KS and the CM test statistics for ∆0 ∈ {0, 0.6, 1, 1.6}. Figure 6.4 vi-
sualizes the performance of Tn1 and Tn2, as well as KS and CM for the sample sizes
n = 100 and n = 300. It can be seen that the rejection frequencies for all tests are
near the level of 5% under the null, i.e. for ∆0 = 0. To just refer to the visualization
for n = 100, for ∆0 ≤ 0.8 the rejection frequency is still relatively low for all the
tests, though the tests based on Tn1 and Tn2 perform a little better. For ∆0 > 0.8
it increases with a steeper gradient for Tn1 and Tn2. Note that in these cases the
AR-coefficients before and after the break have a different sign. This explains the
relatively large jump at this point. For n = 300 already for small breaks, namely
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6.1. Tests in the conditional mean function

for ∆0 > 0.2 the rejection frequency of Tn1 and Tn2 increases much faster then for
KS and CM . Note that Tn3 and Tn4 also behave fairly well. In conclusion, the tests
based on the marked empirical process perform as well as the CUSUM tests under
the null and significantly better under the alternative.

T̂n(s, z) T̂n(s,∞)

n ∆0 Tn1 Tn2 Tn3 Tn4 KS CM

100 0 0.032 0.054 0.040 0.050 0.034 0.028
0.6 0.116 0.148 0.146 0.166 0.078 0.068

1 0.282 0.374 0.330 0.366 0.202 0.146
1.6 0.776 0.812 0.728 0.810 0.504 0.414

200 0 0.046 0.066 0.044 0.060 0.050 0.050
0.6 0.240 0.312 0.304 0.332 0.090 0.066

1 0.594 0.668 0.606 0.656 0.180 0.102
1.6 0.978 0.988 0.822 0.984 0.592 0.466

300 0 0.066 0.080 0.064 0.058 0.082 0.066
0.6 0.368 0.460 0.434 0.478 0.090 0.060

1 0.858 0.908 0.822 0.886 0.162 0.110
1.6 0.996 0.998 0.996 0.994 0.714 0.538

500 0 0.060 0.080 0.060 0.058 0.062 0.056
0.6 0.742 0.812 0.754 0.804 0.102 0.058

1 0.988 0.990 0.988 0.994 0.232 0.122
1.6 1 1 0.988 0.998 0.718 0.512

Table 6.4: AR(1) model
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Figure 6.4: AR(1) model
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6.1.4 A local alternative model

In Section 3.3, it has been motivated that the test using Tn1 can still be a valid
procedure in detecting local alternatives. To investigate this conjecture consider

Yt = mt(Yt−1) + εt, t = 1, . . . , n,

where

mt(x) =

{
−0.9x, t = 1, . . . , bns0c(
−0.9 + 5n−

1
2

)
x, t = bns0c+ 1, . . . , n

.

Note that as n tends to infinity, the conditional mean function converges to a
function stable in time t. The model thus satisfies the local alternative H1l as in
the remark on page 56. Table 6.5 shows the rejection frequencies of Tn1 to Tn4, as
well as KS and CM under H1l. Figure 6.5 is a visualization of the performance
of the tests based on Tn1, Tn2, KS and CM . For small sample sizes the rejection
frequencies are relatively low for all tests. They increase with increasing n for Tn1 to
Tn4. For n = 500 these tests reject in 20−30% of all cases, where Tn2−Tn4 are more
powerful than Tn1. The tests based on KS and CM do not recognize the alternative
well, rejecting in less than 10% of all cases for all sample sizes under consideration.

T̂n(s, z) T̂n(s,∞)

n Tn1 Tn2 Tn3 Tn4 KS CM

100 0.074 0.104 0.094 0.122 0.064 0.064
200 0.106 0.154 0.120 0.166 0.056 0.040
300 0.168 0.212 0.206 0.230 0.092 0.066
500 0.198 0.236 0.266 0.272 0.078 0.048

Table 6.5: AR(1) model under H1l
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Figure 6.5: AR(1) model under H1l
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6.1. Tests in the conditional mean function

6.1.5 Heteroscedastic autoregression models

Consider the following AR(1)-ARCH(1) model

Yt = mt(Yt−1) + σ(Yt−1)εt, t = 1, . . . , n

with innovations (εt)t∈Z
i.i.d.∼ N (0, 1) such that εt is independent of Yj for all j ≤ t−1.

Consider the conditional mean function

mt(x) =

{
−0.9x, t = 1, . . . , bns0c
(−0.9 + ∆0)x, t = bns0c+ 1, . . . , n

,

with different break sizes ∆0 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8} and two dif-
ferent conditional variance functions, namely

σ2(x) = 1 + 0.1x2, (6.3)

for a small influence of the variance and

σ2(x) = 1 + 0.7x2 (6.4)

for a large influence of the variance. For ∆0 = 0 the model satisfies the null hypoth-
esis of no changepoint. Note that for model (6.3) (Yt)t∈Z is strongly mixing with
exponential mixing rates as (−0.9)2+0.1 < 1 (see Example (iv) on page 9). However,
the corresponding condition is not satisfied for model (6.4) as (−0.9)2 + 0.7 > 1,
and it is not clear if the process then possesses the required mixing properties. For
∆0 6= 0 the model satisfies the alternative hypothesis of one changepoint in k0. Table
6.6 and 6.7 show the rejection frequencies of Tn1, Tn2, Tn3 and Tn4, as well as KS and
the CM for ∆0 ∈ {0, 0.6, 1, 1.6} in both models (6.3) and (6.4) respectively. Addi-
tionally, Figure 6.6 and 6.7 are visualizations of the performance of Tn1 and Tn2, and
compare them with the CUSUM tests based on the KS and CM test statistics for
the sample sizes n = 100 and n = 300. A similar behavior as in the homoscedastic
model can be observed. All tests approximately hold the level of 5% under the null
hypothesis, i.e. for ∆0 = 0. In model (6.3) and for n = 100, the rejection frequency
shows a steep increase for ∆0 > 1. Note that for these break ratios the sign of
autoregression coefficient changes after the break. For n = 300 a steep increase can
already be observed for ∆0 > 0.2. Note that all four tests, based on the modifi-
cation, perform reasonably well, while Tn2 is the most powerful. Comparing with
the CUSUM tests, it is clear that both KS and CM tests succumb their contender,
by showing a slower increase of rejections. In model (6.4) the general behavior is
similar, although the rejection frequencies for all tests increase slower than in the
first model. This is due to the fact that the variance is much larger causing more
likely outliers. In particular, for the small sample size of n = 100, the rejection
frequency does not exceed 50%. For larger sample sizes the rejection frequency in-
creases, undermining the consistency of the tests even in this heteroscedastic model
with a large influence of the variance. Here, the KS and CM tests also perform
not as good as the tests based on the marked empirical process. In conclusion, the
tests obtained in this thesis work fairly well in these heteroscedastic autoregression
models under both small and large influence of the variance and furthermore again
outperform the CUSUM tests, most evident from the visualizations.

91



6. Simulation study and application

T̂n(s, z) T̂n(s,∞)

n ∆0 Tn1 Tn2 Tn3 Tn4 KS CM

100 0 0.028 0.062 0.030 0.040 0.036 0.036
0.6 0.088 0.154 0.146 0.168 0.076 0.064

1 0.196 0.286 0.242 0.276 0.100 0.084
1.6 0.732 0.782 0.666 0.736 0.486 0.382

200 0 0.048 0.052 0.058 0.062 0.070 0.044
0.6 0.174 0.210 0.198 0.206 0.080 0.060

1 0.458 0.566 0.414 0.476 0.132 0.088
1.6 0.958 0.978 0.868 0.934 0.614 0.488

300 0 0.056 0.056 0.064 0.060 0.062 0.044
0.6 0.352 0.420 0.350 0.384 0.090 0.070

1 0.762 0.804 0.646 0.718 0.158 0.088
1.6 0.994 0.988 0.980 0.990 0.648 0.412

500 0 0.054 0.052 0.048 0.042 0.060 0.042
0.6 0.622 0.702 0.576 0.626 0.078 0.050

1 0.980 0.976 0.922 0.964 0.192 0.102
1.6 0.998 1 0.992 0.988 0.698 0.518

Table 6.6: AR(1)-ARCH(1) with σ2(x) = 1 + 0.1x2
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Figure 6.6: AR(1)-ARCH(1) with σ2(x) = 1 + 0.1x2

92



6.1. Tests in the conditional mean function

T̂n(s, z) T̂n(s,∞)

n ∆0 Tn1 Tn2 Tn3 Tn4 KS CM

100 0 0.030 0.054 0.046 0.088 0.048 0.044
0.6 0.058 0.104 0.086 0.108 0.060 0.066

1 0.134 0.198 0.174 0.200 0.090 0.090
1.6 0.380 0.462 0.320 0.398 0.210 0.182

200 0 0.052 0.076 0.066 0.080 0.054 0.050
0.6 0.102 0.138 0.108 0.106 0.064 0.052

1 0.222 0.280 0.194 0.224 0.088 0.092
1.6 0.624 0.678 0.438 0.490 0.270 0.190

300 0 0.048 0.056 0.064 0.068 0.050 0.044
0.6 0.106 0.178 0.100 0.112 0.042 0.038

1 0.328 0.398 0.182 0.252 0.082 0.074
1.6 0.780 0.800 0.530 0.571 0.308 0.202

500 0 0.028 0.050 0.056 0.070 0.036 0.028
0.6 0.134 0.194 0.090 0.110 0.060 0.034

1 0.430 0.494 0.196 0.236 0.096 0.064
1.6 0.902 0.910 0.664 0.746 0.352 0.254

Table 6.7: AR(1)-ARCH(1) with σ2(x) = 1 + 0.7x2
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Figure 6.7: AR(1)-ARCH(1) with σ2(x) = 1 + 0.7x2
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6.1.6 Heteroscedastic autoregression models with non-stationary
variances

Consider the following AR(1)-ARCH(1) model

Yt = mt(Yt−1) + σt(Yt−1)εt, t = 1, . . . , n

with innovations (εt)t∈Z
i.i.d.∼ N (0, 1) such that εt is independent of Yj for all j ≤ t−1.

Consider the conditional variance function

σ2
t (x) =

{
1 + 0.1x2, t = 1, . . . , bnt0c
1 + 0.8x2, t = bnt0c+ 1, . . . , n

for some t0 ∈ (0, 1). Consider two different choices for the conditional mean function,
namely

mt(x) = 0.9x, t = 1, . . . , n (6.5)

and

mt(x) =

{
0.9x, t = 1, . . . , bns0c
−0.2x, t = bns0c+ 1, . . . , n

. (6.6)

Note that model (6.5) satisfies the null hypothesis of no change in the regres-
sion function. However, even in this case the time series (Yt)t∈Z is not stationary,
as a changepoint in the conditional variance function occurs in bnt0c. Model (6.6)
satisfies the alternative hypothesis as an additional changepoint in the conditional
mean function occurs in k0. As suggested in Chapter 4, in these kind of models the
bootstrap method from Section 4.3 can still be a valid testing procedure to test for
changes in the regression function. Table 6.8 and 6.9 show the rejection frequencies
of the bootstrap procedure using T ∗n1, T ∗n2, T ∗n3 and T ∗n4, as well as the bootstrap
version of the CUSUM tests KS and CM for t0 ∈ {0.25, 0.5, 0.75} under both the
null and the alternative hypothesis respectively. Figure 6.8 shows a visualization of
the performance of T ∗n1, T ∗n2, KS and CM under H1. The level simulations show
that all tests perform reasonably well under H0, approximately holding the level
of 5%. Furthermore, it can be seen that for all models and all tests the rejection
frequency under H1 exceeds the level, indicating that the changepoint is detected.
With increasing sample size, the number of rejections increases rapidly for T ∗n1 to
T ∗n4, while it stays approximately constant for the bootstrap versions of KS and
CM . This is most likely again due to the fact that the test statistics based on
T̂n(s,∞) estimate some integral that might be small under H1. As was pointed
out in Section 4.3 on page 68, this is essential for the consistency property for the
bootstrap tests as well. Comparing the three different models, it is to say that for
t0 ∈ {0.5, 0.75} all tests perform better than for t0 = 0.25. A possible explanation
is that in t0 the influence of the variance jumps from a small influence to a large
influence, resulting in the fact that the tests can not detect the alternative as good
for s0 > t0. As s0 = 0.5 this is only the case for t0 = 0.25. This is consistent
with the results obtained for the AR(1)-ARCH(1) model in Subsection 6.1.5, where
the tests detected occurring changepoints in the regression function less often, when
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the influence of the variance was larger. In conclusion, the bootstrap tests perform
fairly well in these heteroscedastic autoregressive models with occurring change in
the variance, as both level and power simulations indicate. Furthermore, they again
outperform the bootstrap version of the CUSUM tests.

T̂ ∗n(s, z) T̂ ∗n(s,∞)

t0 n T ∗n1 T ∗n2 T ∗n3 T ∗n4 KS CM

0.25 100 0.030 0.046 0.032 0.038 0.030 0.054
200 0.044 0.044 0.054 0.044 0.056 0.040
300 0.068 0.064 0.066 0.066 0.080 0.052
500 0.060 0.052 0.064 0.050 0.058 0.046

0.50 100 0.068 0.048 0.074 0.060 0.068 0.056
200 0.048 0.048 0.052 0.052 0.040 0.044
300 0.066 0.050 0.056 0.056 0.056 0.046
500 0.046 0.040 0.050 0.058 0.058 0.040

0.75 100 0.060 0.056 0.066 0.048 0.072 0.070
200 0.052 0.050 0.054 0.048 0.048 0.054
300 0.048 0.048 0.056 0.056 0.050 0.056
500 0.034 0.040 0.060 0.048 0.046 0.056

Table 6.8: AR(1)-ARCH(1) with non-stationary variances under H0

T̂ ∗n(s, z) T̂ ∗n(s,∞)

t0 n T ∗n1 T ∗n2 T ∗n3 T ∗n4 KS CM

0.25 100 0.286 0.270 0.262 0.224 0.192 0.168
200 0.472 0.492 0.390 0.406 0.210 0.146
300 0.652 0.644 0.450 0.484 0.248 0.172
500 0.878 0.868 0.590 0.694 0.264 0.194

0.50 100 0.420 0.438 0.410 0.402 0.316 0.256
200 0.688 0.722 0.580 0.662 0.386 0.308
300 0.868 0.894 0.734 0.838 0.378 0.292
500 0.994 0.996 0.934 0.972 0.434 0.324

0.75 100 0.404 0.388 0.404 0.382 0.332 0.266
200 0.638 0.636 0.596 0.626 0.290 0.212
300 0.830 0.848 0.712 0.800 0.382 0.250
500 0.986 0.988 0.926 0.972 0.350 0.202

Table 6.9: AR(1)-ARCH(1) with non-stationary variances under H1
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Figure 6.8: AR(1)-ARCH(1) with non-stationary variances under H1

6.1.7 Heteroscedastic autoregression models of higher order

Let

Yt = mt(Yt−1, Yt−2) + σ(Yt−1, Yt−2)εt, t = 1, . . . , n

with innovations (εt)t∈Z
i.i.d.∼ N (0, 1), such that εt is independent of Yj for all j ≤ t−1.

Consider two different choices for the conditional mean function, namely

mt(x1, x2) = 0.9x1 − 0.4x2, t = 1, . . . , n (6.7)

and

mt(x1, x2) =

{
0.9x1 − 0.4x2, t = 1, . . . , bns0c
−0.2x1 − 0.4x2, t = bns0c+ 1, . . . , n

. (6.8)

Note that model (6.7) satisfies the null hypothesis, while model (6.8) satisfies the
alternative hypothesis. Consider three different choices for the conditional variance
function, namely

σ2(x1, x2) = 1, (6.9)

σ2(x1, x2) = 1 + 0.4x2
1 (6.10)

and
σ2(x1, x2) = 1 + 0.2x2

1 + 0.2x2
2. (6.11)

For (6.9), an AR(2) model can be obtained. Under the null, the stationary so-
lution is a causal linear process and hence strongly mixing with exponential mixing
rates, see Example (ii) on page 9. Both (6.10) and (6.11) result in a heteroscedastic
autoregression model, namely an AR(2)-ARCH(1) and AR(2)-ARCH(2) model re-
spectively. Note that under the null, it is not clear if the required mixing properties
are satisfied, as the result in [50] can not be applied (see Example (iv) on page 9).
Furthermore, as mentioned in Section 3.4, the limiting distribution in these models
is not known, as d = 2. Instead, the bootstrap procedure from Section 4.3 will be
used. Table 6.10 and 6.11 show the rejection frequencies for all three models, when
using the tests based on T ∗n1 to T ∗n4, as well as the bootstrap versions of KS and
CM under both H0 and H1 respectively. Figure 6.9 is a visualization of the perfor-
mance of T ∗n1, T ∗n2, KS and CM under H1. It can be seen that under H0 the tests
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6.1. Tests in the conditional mean function

reject a little more often than in all other models so far, overestimating the level of
5% sometimes. Under the alternative the number of rejections increases rapidly for
T ∗n1 to T ∗n4 with increasing n, while it stays relatively low for KS and CM . Also
note that in all models the tests based T ∗n3 and T ∗n4 have most power. In summary,
the bootstrap tests perform reasonably well and are therefore an acceptable alter-
native to the tests using critical values of the limiting distribution. Furthermore,
in these specific models they outperform the bootstrap versions of the CUSUM tests.

T̂ ∗n(s, z) T̂ ∗n(s,∞)

Model n T ∗n1 T ∗n2 T ∗n3 T ∗n4 KS CM

AR(2) 100 0.082 0.068 0.052 0.046 0.082 0.074
200 0.074 0.072 0.046 0.036 0.064 0.072
300 0.064 0.070 0.044 0.040 0.054 0.048
500 0.076 0.058 0.064 0.056 0.068 0.060

AR(2)- 100 0.076 0.060 0.070 0.062 0.094 0.068
ARCH(1) 200 0.068 0.066 0.062 0.050 0.064 0.056

300 0.084 0.098 0.064 0.060 0.086 0.096
500 0.098 0.078 0.084 0.080 0.080 0.074

AR(2)- 100 0.076 0.064 0.058 0.048 0.064 0.044
ARCH(2) 200 0.086 0.078 0.056 0.064 0.074 0.074

300 0.100 0.082 0.054 0.058 0.092 0.076
500 0.082 0.068 0.056 0.064 0.076 0.056

Table 6.10: Heteroscedastic AR models of higher order under H0

T̂ ∗n(s, z) T̂ ∗n(s,∞)

Model n T ∗n1 T ∗n2 T ∗n3 T ∗n4 KS CM

AR(2) 100 0.124 0.110 0.134 0.110 0.080 0.070
200 0.174 0.164 0.262 0.268 0.056 0.052
300 0.284 0.308 0.440 0.454 0.096 0.070
500 0.480 0.532 0.602 0.592 0.098 0.070

AR(2)- 100 0.098 0.106 0.128 0.134 0.070 0.058
ARCH(1) 200 0.184 0.194 0.220 0.220 0.106 0.072

300 0.252 0.282 0.312 0.308 0.088 0.074
500 0.476 0.484 0.504 0.520 0.120 0.078

AR(2)- 100 0.096 0.104 0.102 0.102 0.072 0.050
ARCH(2) 200 0.156 0.178 0.194 0.190 0.076 0.068

300 0.226 0.236 0.302 0.298 0.108 0.074
500 0.392 0.420 0.492 0.504 0.094 0.068

Table 6.11: Heteroscedastic AR models of higher order under H1
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Figure 6.9: Heteroscedastic AR models of higher order under H1

6.2 Tests in the conditional variance function

In this section, heteroscedastic models with and without change in the conditional
variance function will be considered. Here, only models with stable conditional
mean function are considered. To assure this assumption, the bootstrap test could
be applied first to these kind of data sets. Tests in the conditional variance function
use T̃n1, T̃n2, T̃n3 and T̃n4. They will be compared with the corresponding KS and
CM tests as well, meaning the Kolmogorov-Smirnov and Cramér-von Mises tests
based on ˆ̃T (s,∞) respectively.

6.2.1 Heteroscedastic regression models with autoregressive
exogenous variables

Consider the following model

Yt = m(Xt) + σt(Xt)εt, t = 1, . . . , n (6.12)

with innovations (εt)t∈Z
i.i.d.∼ N (0, 1) and regressors (Xt)t∈Z following the autoregres-

sion model
Xt = 0.4Xt−1 + ξt, t = 1, . . . , n,

with (ξt)t∈Z
i.i.d.∼ N (0, 1) such that ξt is independent of Xj for all j ≤ t − 1. Let

furthermore (Xt)t∈Z and (εt)t∈Z be mutually independent. Note that (Xt)t∈Z is a
linear process of the form

Xt =
∞∑
j=0

0.4jξt−j ∼ N
(

0,
1

1− 0.42

)
, ∀t ∈ Z

and therefore strictly stationary and strongly mixing with exponential mixing rates
(see Example (i) on page 8). Let

m(x) = 0.5x

be the conditional mean function and consider first the following conditional variance
function

σ2
t (x) =

{
e0.2x, t = 1, . . . , bns0c
e2∆0+0.2x, t = bns0c+ 1, . . . , n
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6.2. Tests in the conditional variance function

with different break sizes ∆0 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. For ∆0 = 0
the model satisfies the null hypothesis of no change in the variance function. The
stationarity and mixing properties are inherited to (Yt)t∈Z. For ∆0 6= 0 the model
satisfies the alternative hypothesis of one changepoint in k0. Table 6.12 shows the
rejection frequencies for break ratios ∆0 ∈ {0, 0.2, 0.4, 0.6} for the tests based on T̃n1

to T̃n4, as well as the tests based on the KS and CM test statistics. Additionally,
Figure 6.10 shows visualizations of the performances of T̃n1, T̃n2, KS and CM for
n = 100 and n = 300. It can be seen that the rejection frequencies for all tests are
near the level under the null, where T̃n2, T̃n3 and T̃n4 overestimate the level more
often than T̃n1, KS and CM . Furthermore, under the alternative with increasing
break sizes, the rejection frequencies increase for all tests. For n = 100 the KS
and CM tests perform a bit better than their modifications. For n = 500 all tests
perform comparably well and the rejection frequencies increase much steeper than
for smaller sample sizes. Hence, for larger sample sizes the tests can already detect
small break sizes reasonably well. In conclusion, in this model the new tests perform
in both level and power simulations fairly well. Note that the CUSUM tests are also
consistent procedures in detecting these kind of alternatives.

ˆ̃Tn(s, z) ˆ̃Tn(s,∞)

n ∆0 T̃n1 T̃n2 T̃n3 T̃n4 KS CM

100 0 0.034 0.078 0.068 0.072 0.042 0.058
0.2 0.164 0.206 0.162 0.202 0.178 0.188
0.4 0.474 0.542 0.484 0.520 0.540 0.516
0.6 0.752 0.774 0.732 0.772 0.780 0.780
0.8 0.858 0.878 0.868 0.888 0.896 0.890

200 0 0.048 0.088 0.080 0.086 0.064 0.068
0.2 0.352 0.392 0.358 0.340 0.386 0.358
0.4 0.874 0.890 0.888 0.878 0.900 0.886
0.6 0.950 0.962 0.980 0.976 0.952 0.962
0.8 0.948 0.968 0.970 0.970 0.950 0.962

300 0 0.066 0.108 0.088 0.088 0.068 0.072
0.2 0.566 0.576 0.540 0.528 0.586 0.544
0.4 0.954 0.966 0.970 0.964 0.964 0.962
0.6 0.974 0.984 0.988 0.986 0.974 0.982
0.8 0.964 0.984 0.976 0.974 0.968 0.980

500 0 0.060 0.078 0.072 0.072 0.060 0.052
0.2 0.778 0.782 0.738 0.744 0.780 0.732
0.4 0.986 0.992 0.998 0.998 0.988 0.992
0.6 0.982 0.986 0.990 0.992 0.984 0.986
0.8 0.972 0.984 0.984 0.984 0.980 0.984

Table 6.12: Regression with AR exogenous variables
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Figure 6.10: Regression with AR exogenous variables

Additionally, consider model (6.12) with m(x) = 0.5x and the follwoing two
choices for the conditional variance function

σ2
t (x) = 0.25e−0.4x, t = 1, . . . , n, (6.13)

and

σ2
t (x) =

{
0.25e−0.4x, t = 1, . . . , bns0c
0.25e0.4x, t = bns0c+ 1, . . . , n

. (6.14)

Note that model (6.13) satisfies the null hypothesis. Furthermore, model (6.14)
satisfies the alternative hypothesis and in this case it holds for all s ∈ [0, 1] and
z ∈ R

ˆ̃Tn(s, z) =



√
ns(1− s0)0.25

z∫
−∞

(
e−0.4u − e0.4u

)
ϕ̃(u)du+ oP (

√
n), s ≤ s0

√
ns0(1− s)0.25

z∫
−∞

(
e−0.4u − e0.4u

)
ϕ̃(u)du+ oP (

√
n), s > s0

where ϕ̃ is the density function of Xt, which is a centered normal random variable.
The integral over the whole real line again vanishes, as ϕ̃ is an even and

x 7→ e−0.4x − e0.4x

an odd function. The KS and CM tests are thus not consistent in theory. Tables
6.13 and 6.14 show the rejection frequencies of the T̃n1 to T̃n4, as well as the KS
and CM tests under both the H̃0 and H̃1 respectively. Additionally, Figure 6.11
is a visualization of the performance of T̃n1, T̃n2, KS and CM under H̃1. All level
simulations show reasonably good results. Furthermore, the CUSUM type tests do
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6.2. Tests in the conditional variance function

not recognize the alternative even under large sample sizes. The tests based on T̃n1

to T̃n4, however, show nice consistency properties, as they reject the null more fre-
quently with increasing sample size. Also note that Tn2 and Tn4 are more powerful
than Tn1 and Tn3. In conclusion, in this model the new tests perform as good as the
CUSUM tests under the null and much better under the alternative, as the CUSUM
tests are not consistent.

ˆ̃Tn(s, z) ˆ̃Tn(s,∞)

n T̃n1 T̃n2 T̃n3 T̃n4 KS CM

100 0.056 0.076 0.058 0.084 0.062 0.046
200 0.058 0.080 0.066 0.066 0.076 0.066
300 0.070 0.092 0.064 0.076 0.070 0.068
500 0.070 0.082 0.056 0.066 0.072 0.062

Table 6.13: Regression with AR exogenous variables under H̃0

ˆ̃Tn(s, z) ˆ̃Tn(s,∞)

n T̃n1 T̃n2 T̃n3 T̃n4 KS CM

100 0.078 0.138 0.154 0.166 0.062 0.074
200 0.144 0.268 0.216 0.268 0.076 0.074
300 0.222 0.338 0.290 0.348 0.072 0.068
500 0.476 0.618 0.536 0.574 0.056 0.066

Table 6.14: Regression with AR exogenous variables under H̃1
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Figure 6.11: Regression with AR exogenous variables under H̃1
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6. Simulation study and application

6.2.2 Heteroscedastic autoregression models

Finally, consider the following AR(1)-ARCH(1) model

Yt = m(Yt−1) + σt(Yt−1)εt, t = 1, . . . , n

with innovations (εt)t∈Z
i.i.d.∼ N (0, 1) such that εt is independent of Yj for all j ≤ t−1.

Consider the conditional variance function

σ2
t (x) =

{
1 + 0.1x2, t = 1, . . . , bns0c
1 + (0.1 + ∆0)x2, t = bns0c+ 1, . . . , n

with different break sizes ∆0 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} and two different
conditional mean functions, namely

m(x) = −0.5x (6.15)

for a negative influence of the mean and

m(x) = 0.5x (6.16)

for a positive influence of the mean. For ∆0 = 0 the model satisfies the null hy-
pothesis of no changepoint. Notice that (Yt)t∈Z is strongly mixing with exponential
mixing rates as (0.5)2 +0.1 < 1 (see Example (iv) on page 9). For ∆0 6= 0 the model
satisfies the alternative hypothesis of one changepoint in k0. Tables 6.15 and 6.16
show the rejection frequencies for break ratios ∆0 ∈ {0, 0.2, 0.4, 0.6} using the tests
based on T̃n1 to T̃n4, KS and CM for both models (6.15) and (6.16) respectively.
Figures 6.12 and 6.13 show visualizations of the performance of the T̃n1, T̃n2, KS
and CM in both models. First, let model (6.15) be considered. Under the null all
tests perform reasonably well, where T̃n1 as well as KS and CM tend to approxi-
mately hold the level of 5%, while T̃n2, T̃n3 and T̃n4 rather overestimate it a little.
In general, it can be noted that for all sample sizes the tests based on KS and
CM are more powerful than the new testing procedures. For the small sample size
of n = 100, the rejections slightly increase with increasing break size, but do not
exceed 25% for all tests. For n = 200 and 0.3 ≤ ∆0 ≤ 0.7 the rejection frequency
increases strictly for all tests, reaching a value of 25% for T̃n1, but rather stays con-
stant for 0.7 ≤ ∆0 ≤ 0.8. This effect is even more extreme for larger sample sizes.
For n = 500 and T̃n1 for instance, the rejections increase rapidly for 0.1 ≤ ∆0 ≤ 0.6
reaching values of 70%, but for an even larger break size ∆0 ∈ {0.7, 0.8} it decreases
again fairly dramatically down to a value of 52%. This effect can be observed for
all tests, including the CUSUM tests. To find a possible explanation, the behavior
of ˆ̃Tn(s, z) under different alternatives, meaning for different break sizes ∆0 needs
to be investigated a bit more detailed. As was suggested in Section 5.3, it can be
shown that for all fixed z ∈ R

∣∣∣ ˆ̃Tn(s0, z)
∣∣∣ =
√
n∆0

z∫
−∞

u2 1

n

bns0c∑
i=1

fn,i(u)

(
1−

bns0c∑
i=1

fn,i(u)

n∑
i=1

fn,i(u)︸ ︷︷ ︸
(∗)

)
du+ oP (

√
n),
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6.2. Tests in the conditional variance function

holds, where fn,t is the density function of Yt−1, that depends on n although this is
not reflected in the notation used here. For more extreme alternatives, meaning for
increasing break sizes, not only ∆0 changes, but also the density functions after the
break, i.e. fn,i for i ∈ {bns0c + 2, . . . , n} do. Hence, the fraction (∗) in the integral
needs to be investigated. It holds, that

0 ≤

bns0c∑
i=1

fn,i(u)

n∑
i=1

fn,i(u)
≤ 1, ∀ u ∈ R.

Now for very large ∆0 the variance of Yi−1 is extremely high and the density
function fn,i is rather flat for all i ∈ {bns0c+ 2, . . . , n}. As a result, the fraction in
(∗) can be larger and the integral therefore smaller for more extreme alternatives.
To be more precise for a break size of ∆0 = 0.8 the test statistic can be smaller,
causing the test to reject the null less often, than in the case of ∆0 = 0.6. This
explains the non-monotonically behavior of the rejection frequency with increasing
break sizes. Finally, it can be seen that all tests in model (6.16) show similar re-
sults, indicating that the shape of the conditional mean function does hardly have
any influence on the performance of the tests. In conclusion, both level and power
simulations show fairly good results for the new tests based on the marked empirical
process of residuals. However in these models they are not an improvement as the
CUSUM tests show slightly better results.
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6. Simulation study and application

ˆ̃Tn(s, z) ˆ̃Tn(s,∞)

n ∆0 T̃n1 T̃n2 T̃n3 T̃n4 KS CM

100 0 0.046 0.080 0.086 0.098 0.040 0.046
0.2 0.048 0.092 0.074 0.098 0.064 0.080
0.4 0.086 0.152 0.134 0.156 0.124 0.148
0.6 0.098 0.174 0.188 0.204 0.136 0.170
0.8 0.122 0.160 0.220 0.214 0.160 0.160

200 0 0.044 0.088 0.060 0.072 0.058 0.066
0.2 0.056 0.112 0.106 0.124 0.092 0.104
0.4 0.166 0.248 0.210 0.240 0.230 0.242
0.6 0.228 0.310 0.302 0.314 0.318 0.324
0.8 0.254 0.296 0.350 0.380 0.330 0.344

300 0 0.058 0.068 0.076 0.082 0.060 0.042
0.2 0.128 0.172 0.118 0.134 0.190 0.176
0.4 0.288 0.346 0.302 0.340 0.368 0.372
0.6 0.436 0.436 0.428 0.444 0.474 0.466
0.8 0.428 0.428 0.464 0.450 0.460 0.438

500 0 0.060 0.074 0.072 0.060 0.058 0.050
0.2 0.256 0.258 0.232 0.214 0.302 0.268
0.4 0.554 0.570 0.546 0.550 0.648 0.606
0.6 0.706 0.718 0.684 0.696 0.766 0.730
0.8 0.522 0.570 0.578 0.602 0.616 0.584

Table 6.15: AR(1)-ARCH(1) with m(x) = −0.5x
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Figure 6.12: AR(1)-ARCH(1) with m(x) = −0.5x
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ˆ̃Tn(s, z) ˆ̃Tn(s,∞)

n ∆0 T̃n1 T̃n2 T̃n3 T̃n4 KS CM

100 0 0.050 0.090 0.078 0.089 0.060 0.050
0.2 0.040 0.078 0.078 0.110 0.052 0.066
0.4 0.058 0.112 0.112 0.136 0.092 0.108
0.6 0.068 0.128 0.160 0.188 0.102 0.130
0.8 0.094 0.118 0.182 0.200 0.144 0.138

200 0 0.064 0.087 0.060 0.056 0.058 0.058
0.2 0.098 0.136 0.140 0.138 0.124 0.124
0.4 0.188 0.252 0.230 0.252 0.262 0.250
0.6 0.202 0.258 0.274 0.292 0.286 0.280
0.8 0.270 0.288 0.360 0.358 0.366 0.328

300 0 0.074 0.084 0.078 0.074 0.080 0.072
0.2 0.136 0.154 0.148 0.158 0.172 0.146
0.4 0.276 0.346 0.320 0.336 0.390 0.388
0.6 0.376 0.436 0.420 0.462 0.486 0.474
0.8 0.368 0.434 0.474 0.470 0.458 0.442

500 0 0.066 0.084 0.080 0.072 0.064 0.052
0.2 0.246 0.256 0.216 0.216 0.292 0.266
0.4 0.542 0.542 0.510 0.516 0.638 0.598
0.6 0.632 0.632 0.650 0.672 0.720 0.684
0.8 0.522 0.522 0.592 0.596 0.582 0.562

Table 6.16: AR(1)-ARCH(1) with m(x) = 0.5x
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Figure 6.13: AR(1)-ARCH(1) with m(x) = 0.5x
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6. Simulation study and application

6.3 Simulation techniques

In this section, it will be discussed shortly, how the simulations were conduced. In
particular, the generation of the time series data, the construction of the test statis-
tics, as well as the simulated critical values of their limiting distributions under the
null will be presented. Furthermore, the choice of bandwidth and the bootstrap
procedure will be explained. All simulations have been conduced with the statistics
software R.

To generate a time series data set of n observations, in each case 1000+n random
variables were generated according to the model under consideration, starting with
a standard normal distributed one. To ensure the stationarity up to some possible
changepoint, only the last n observations were used to construct the test statistic.

In the case of d = 1, for the construction of the test statistics, the so called
Epanechnikov kernel of order r = 4 was used. The definition of the following version
can for example be found in [71]

k : R→ R, x 7→ 3

4
√

5

(
15

8
− 7

8
x2

)(
1− 1

5
x2

)
I
{
|x| ≤

√
5
}
. (6.17)

In the models where d = 2 the following product kernel is used

K : R2 → R, (x1, x2) 7→ k(x1)k(x2),

with k : R → R from equation (6.17). Furthermore, the weighting function ωn
was chosen to be one, meaning that Jn = Rd for all n ∈ N. Note that this does
not satisfy the condition in assumption (J) on page 16. In particular, in theory
uniform rates of convergence for the kernel estimators can not be obtained on the
whole Rd. However, as the simulations show good results, it can be assumed that
the performance of the tests is not particularly sensitive to this choice. For the
standardization of all tests, ĉn from (3.29) on page 58 was used. Furthermore, for
the tests based on Tn3 and Tn4 the modified versions from (3.30) and (3.31) on page
59 were used respectively.

The choice of the bandwidth is often a difficult but also very important task as it
has a large influence on the performance of the kernel estimators. In the simulations
the R-function regCVBwSelC was used, which is included in the R-package locpol.
It uses a cross-validation procedure to obtain an in some sense optimal bandwidth,
for more information see Chapter 3 in [78].

In the case of d = 1 and strict stationarity, the critical values of the limiting
distributions are used. Table 6.17 gives the simulated critical values of the limiting
distributions of the standardized tests using Tn1, Tn2, Tn3 and Tn4, namely

K1 := sup
s∈[0,1]

sup
t∈[0,1]

|K0(s, t)|,

K2 := sup
t∈[0,1]

∫ 1

0

|K0(s, t)|2ds,

K3 := sup
s∈[0,1]

∫ 1

0

|K0 (s, t)|2 dt,

108



6.4. Real data application

K4 :=

∫ 1

0

∫ 1

0

|K0(s, t)|2dtds,

where K0 = {K0(s, t) : s, t ∈ [0, 1]} is the Kiefer-Müller process. Furthermore,
the critical values of the standardized KS and CM tests are the corresponding
functionals of a Brownian bridge process and can for instance be found in [71].

Kiefer-Müller Brownian bridge

level K1 K2 K3 K4 KS CM

0.05 1.3866 0.5445 0.7058 0.2033 1.2620 0.4614

Table 6.17: Critical values for Tn1,Tn2, Tn3, Tn4, KS and CM

Finally, some notes will be made concerning the implementation of the bootstrap
test. As suggested in Section 4.3, a Wild bootstrap procedure is used in the case
of d = 2 or if non-stationary variances occur. As for instance was done in [71], the
sequence of i.i.d. random variables {ηt : 1 ≤ t ≤ n} was generated according to a
two-point distribution with masses 1+

√
5

2
√

5
and 1− 1+

√
5

2
√

5
in the points 1−

√
5

2
and 1+

√
5

2

respectively. The construction of the bootstrap data was already described briefly in
Section 4.3. However, the choice of bandwidth plays a special role and will therefore
be discussed a bit more detailed. As was also done by Su and Xiao [71] and many
other authors, two different bandwidths were used in the procedure. To emphasis
the role of the bandwidth, the Nadaraya-Watson estimator will be equipped with a
second subscript hn, if hn is the used bandwidth. The bootstrap data is produced
by

U∗t := Ûtηt with Ût := (Yt − m̂n,hn(Xt))

Y ∗t := m̂n,h̃n
(Xt) + U∗t ,

Û∗n := Y ∗t − m̂∗n,hn(Xt).

Now, h̃n needs to converge to zero at a slower rate than hn, see Härdle and
Marron [27] for an heuristic explanation. The bandwidth h̃n is chosen via a cross-
validation method, using the R-function regCVBwSelC and then hn is chosen by a
rule of thumb (see for instance [71] and [44]), namely hn := h̃nn

1
9n−

1
5 . The residuals

Ût are used to construct Tn1 and the bootstrap version Û∗t are used to construct in
each bootstrap replication b ∈ {1, . . . , B} a bootstrap version T ∗n1,b. Note that for the
bootstrap test, Tn1 was standardized with ĉn, while T ∗n1,b was standardized using the
bootstrap version of it, namely ĉ∗n := 1

n

∑n
i=1 Û

∗2
i ωn(Xi). Analogous constructions

lead to the bootstrap versions of Tn2, Tn3 and Tn4.

6.4 Real data application

In this section, the tests obtained in this thesis will be applied to two real data sets,
that have been used frequently in the context of changepoint analysis. The first one
is the flow of the river Nile in Aswan, recorded annually between 1871 and 1970.
The second data set is the DJIA index, which was collected weekly between July 1st
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6. Simulation study and application

1971 and August 2nd 1974. Both tests in the conditional mean function and in the
conditional variance function will be applied. The results will be compared briefly
with existing literature.

The first example to consider is the Nile data set, obtained by the R-package
datasets. It is the set of 100 measurements of the annual flow of the river Nile at
Aswan in the time interval of 1871-1970 scaled by 108 and measured in m3. Let Yt
be the measurement at time t for all t ∈ {1, . . . , 100}. Figure 6.14 shows the raw
data Yt plotted against the time.
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Figure 6.14: Annual flow of the Nile in Aswan

Set Xt = Yt−1 and consider the sample {(Yt, Xt) : t = 2, . . . , 100} of size n =
99. The bootstrap test with level 5% applied to this sample rejects the null of no
changepoint in the conditional mean function. The possible changepoint can be
estimated by

ŝ := arg max
s∈[0,1]

sup
z∈R
|T̂n(s, z)|. (6.18)

Figure 6.15 shows the corresponding cumulative sum, namely supz∈R |T̂n(s, z)| for
s = t

n
and data points t = 1, . . . , n. Also the critical value (red dashed horizontal

line), estimated by the bootstrap procedure, as well as the changepoint, estimated
by (6.18) at ŝ = 27 (green dashed vertical line), can be seen. The corresponding
year of estimated changepoint is 1898. An additional application of the test to the
sub data sets before and after the estimated break did not indicate the existence of
a second changepoint in the mean.

The result is consistent with existing studies of this data set. Possibly the first
investigation and publication of the data was done by Cobb [11]. Several other au-
thors have analyzed this data set, including Wu [82] and Kirch and Kamgaing [35]
just to mention a few. All of the results indicate a changepoint in 1989. In fact, as
pointed out by all mentioned authors, that was the year, when the first damn was
built in Aswan.
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Figure 6.15: CUSUM for Nile data

Secondly, the DJIA data set obtained from the R-package strucchange will be
investigated. It contains 162 return values of the DJIA index, recorded weekly
between July 1st 1971 and August 2nd 1974. The differences of log-returns will be
considered, namely

Yt := log(Pt)− log(Pt−1), t = 1 . . . , 161,

where Pt−1 is the return at time t. This is a common approach when dealing with
returns, as pointed out for instance by Kreiß and Neuhaus in [41]. Figure 6.16 shows
the transformed raw data Yt plotted against the time.

1972 1973 1974

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06

Figure 6.16: Differences of log-returns of the DJIA

Set Xt = Yt−1 and consider the sample {(Yt, Xt) : t = 2, . . . , 161} of size n = 160.
An application of the bootstrap test for change in the conditional mean function
does not reject the null of no change in mean. An additional application of the test
in change in conditional variance function, using the critical value of the limiting
distribution with a level of 5%, rejects the null of no change in variance. Figure
6.17 shows the cumulative sum for the test in mean (left) and in variance (right),
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namely supz∈Rd |T̂n(s, z)| and supz∈Rd |
ˆ̃Tn(s, z)| respectively for s = t

n
and data points

t = 1, . . . , n. Furthermore, the critical values (red dashed horizontal line) and the
estimated changepoint in case of existence (green dashed vertical line, right figure)
can be seen as well. The estimated changepoint in the conditional variance function
is ŝ = 88, which corresponds to the date of March 3rd of 1973. An additional
application of the test to the sub data sets before and after the estimated break did
not indicate an additional changepoint in the variance.
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Figure 6.17: CUSUM for DJIA data - test in mean (left) and variance (right)

The results are consistent with existing studies of this data set. Possibly the first
researcher that investigated this data set is Hsu [33], who detected a changepoint for
the third week of March in 1973. Several other authors have suggested the existence
of a changepoint in the variance in March 1973 using different kind of tests, for
instance Chen and Gupta [9] and Zeileis and Honik [84], just to mention a few. As
also mentioned by Hsu [33] possible reasons for a changepoint are the Watergate
affair and steadily increasing prime interest rates in the U.S. during the first part of
1973.
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A Proofs

In this chapter, technical and auxiliary lemmata are proven. They are needed for the
decomposition of T̂n, stated in Theorem 3.1. Together with Theorem 3.2 it implies
the weak convergence of T̂n under the null and regularity assumptions.

A.1 Technical lemmata

The first section includes the proofs of Lemmata A.1, A.2, A.3 and A.4. They are
all needed to proof the decomposition of T̂n stated in Theorem 3.1.

Lemma A.1. Under the assumptions of Theorem 3.1 and under H0

1√
n

bnsc∑
i=1

(m(Xi)− m̂n(Xi))ωn(Xi)I{Xi ≤ z}

= s
√
n

∫
Rd

(m(x)− m̂n(x))ωn(x)I{x ≤ z}f(x)dx+ oP (1)

holds uniformly in s ∈ [0, 1] and z ∈ Rd.

Remark. For the proof of Lemma A.1 the difference m − m̂n will be embedded in
some smooth function class, using the uniform rates of convergence from Lemma 2.2.
This class then will be partitioned using the bracketing notion from Definition 1.5.
A second function class will be partitioned using L2(P )-brackets (where Xt ∼ P )
and bounds for the corresponding bracketing number will be obtained in Lemma
A.5. Eventually the main step will be an application of Theorem 2.1 in [46], which
is an exponential inequality for the sum of strongly mixing random variables.

Proof. To begin with, some notation will be introduced. Let

ĥn : Rd → R
x 7→ (m(x)− m̂n(x))ωn(x),

for all n ∈ N and F := {x 7→ I{x ≤ z} : z ∈ Rd}. Note that ĥn(x) = 0 for all
x /∈ Jn. Then

sup
s∈[0,1]

sup
ϕ∈F

∣∣∣∣∣∣ 1√
n

bnsc∑
i=1

(
ĥn(Xi)ϕ(Xi)−

∫
ĥnϕdP

)∣∣∣∣∣∣ = oP (1), (A.1)
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where Xt ∼ P , will be shown. Together with

√
n sup
s∈[0,1]

∣∣∣∣bnscn − s
∣∣∣∣︸ ︷︷ ︸

=O( 1
n)

sup
z∈Rd

∣∣∣∣∫
Rd

(m(x)− m̂n(x))ωn(x)I{x ≤ z}f(x)dx

∣∣∣∣︸ ︷︷ ︸
=OP (1)

= oP (1),

it implies the assertion of Lemma A.1.

The proof of (A.1) consists of three main steps. In the first step, it will be shown
that the function ĥn lies in some function class H with probability converging to
1. Considering the supremum over all possible functions h ∈ H instead of ĥn then
simplifies the problem as the functions h ∈ H do not depend on the observations
anymore (while ĥn does). Moreover H is well understood and controlled in the sense
of metric entropy properties. Secondly covering [0, 1] by finitely many intervals, and
F and H by finitely many brackets respectively, the suprema will be bounded by
the maxima over finitely many objects. Note that, while the centers of the inter-
valls used to cover [0, 1] are again elements of [0, 1], the lower and upper bounds of
the brackets do not need to lie in F and H respectively. However they do possess
some main properties of these function classes. The third and last step will be an
application of Liebscher’s Theorem 2.1 in [46] which gives an exponential inequality
for strongly mixing processes.

Step 1: First, note that by assumption (3.5) in (B3) on page 39, it holds that

hrnpn = o

(√
log(n)

nhdn

)

and therefore (√
log(n)

nhdn
+ hrnpn

)
qnδn = O

(√
log(n)

nhdn
qnδn

)
. (A.2)

Defining zn :=
√

log(n)
nhdn

qnδn, Lemma 2.2 (iii) thus implies that

sup
x∈Jn

∣∣∣ĥn(x)
∣∣∣ = OP (zn) = oP (zn

√
log(n)),

max
k∈Nd0

1≤|k|≤l

sup
x∈Jn

∣∣∣Dkĥn(x)
∣∣∣ = oP (1)

and

max
k∈Nd0
|k|=l

sup
x,y∈Jn
x6=y

∣∣∣Dkĥn(x)−Dkĥn(y)
∣∣∣

‖x− y‖η
= oP (1).

114



A.1. Technical lemmata

Therefore, defining for some l-times differentiable function h : Jn → R the norm

‖h‖l+η := max
k∈Nd0

1≤|k|≤l

sup
x∈Jn

∣∣Dkh(x)
∣∣+ max

k∈Nd0
|k|=l

sup
x,y∈Jn
x6=y

∣∣Dkh(x)−Dkh(y)
∣∣

‖x− y‖η
,

and the function classes

Cl+η1 (Jn) := {h : Jn → R : ‖h‖l+η ≤ 1} ,

and
Cl+η1,n (Jn) :=

{
h : Jn → R : ‖h‖l+η ≤ 1, sup

x∈Jn
|h(x)| ≤ zn

√
log(n)

}
,

it holds that

P
(
ĥn ∈ Cl+η1,n (Jn)

)
→
n→∞

1.

Note that the factor
√

log(n) in the bound on the functions in Cl+η1,n (Jn) is ar-
bitrary, in the sense that any positive sequence that diverges to infinity is possible.
However, it will have an influence on the bandwidth assumptions in (B3) which is
why a slow log-rate was chosen. For notational simplicity this functions class will
be denoted by H := Cl+η1,n (Jn). Then (A.1) is implied by

sup
s∈[0,1]

sup
ϕ∈F

sup
h∈H

∣∣∣∣∣∣ 1√
n

bnsc∑
i=1

(
h(Xi)ϕ(Xi)−

∫
hϕdP

)∣∣∣∣∣∣ = oP (1). (A.3)

Step 2: To bound the suprema over infinitely many objects by the maxima over
finitely many ones the notion of covering and bracketing numbers will be used. Let
first

εn1 :=
1√
n
, εn2 :=

1√
n
, εn3 :=

1√
n log n

, ∀ n ∈ N.

Note that for the choice of εn3 it is necessary that εn3 = o(n−
1
2 ) holds. Next,

for all n ∈ N let Kn ∈ N, such that 0 = s1 < · · · < sKn = 1 are the centers of Kn

intervals of length 2εn1 that cover the interval [0, 1]. Furthermore, for all n ∈ N let

Jn := N[ ]

(
εn2,F , ‖ · ‖L2(P )

)
and

Mn := N[ ] (εn3,H, ‖ · ‖∞) ,

where ‖ϕ‖L2(P ) := (
∫
ϕ2dP )

1
2 for all ϕ ∈ F and ‖h‖∞ := supx∈Jn |h(x)| for all

h ∈ H. The function class F will be covered with Jn-many brackets which are
denoted by [ϕl1, ϕ

u
1 ], . . . , [ϕlJn , ϕ

u
Jn

]. To cover H, Mn-many brackets will be used
which are denoted by [hl1, h

u
1 ], . . . , [hlMn

, huMn
]. Bounds on Kn, Jn and Mn can be

found in the following way. It is clear that

Kn = O
(
ε−1
n1

)
= O(

√
n).
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In Lemma A.5 on page 149 in Section A.2 it will be shown that

Jn = O
(
ε−2d
n2

)
= O

(
nd
)
.

For the bound on Mn Theorem 2.7.1 of Van der Vaart & Wellner ([75], p. 155)
can be used. It implies the following bound for the covering number (see Definition
2.1.5 in [75])

N
(
εn3, Cl+η1 (Jn), ‖ · ‖∞

)
= O

(
exp

(
cdnε
− d
l+η

n3

))
.

As
N
(
εn3, Cl+η1 (Jn), ‖ · ‖∞

)
= N[ ]

(
2εn3, Cl+η1 (Jn), ‖ · ‖∞

)
,

which can be seen for example in [75], p. 84, the bracketing number of Cl+η1 (Jn)
possesses the same bound. As H := Cl+η1,n (Jn) is a subset of Cl+η1 (Jn) the same
bound can be found for Mn, namely

Mn = O

(
exp

(
cdnε
− d
l+η

n3

))
= O

(
exp

(
cdn(
√
n log n)

d
l+η

))
.

Now it can be obtained that

sup
s∈[0,1]

sup
ϕ∈F

sup
h∈F

∣∣∣∣∣∣ 1√
n

bnsc∑
i=1

(
h(Xi)ϕ(Xi)−

∫
hϕdP

)∣∣∣∣∣∣
= max

1≤k≤Kn
1≤j≤Jn

1≤m≤Mn

sup
s∈[0,1]

|s−sk|≤εn1

sup
ϕ∈[ϕlj ,ϕ

u
j ]

sup
h∈[hlm,h

u
m]

∣∣∣∣∣∣ 1√
n

bnsc∑
i=1

(
h(Xi)ϕ(Xi)−

∫
hϕdP

)∣∣∣∣∣∣
≤ max

1≤k≤Kn
1≤j≤Jn

1≤m≤Mn

sup
s∈[0,1]

|s−sk|≤εn1

sup
ϕ∈[ϕlj ,ϕ

u
j ]

sup
h∈[hlm,h

u
m]

∣∣∣∣∣ 1√
n

n∑
i=1

(
h(Xi)ϕ(Xi)−

∫
hϕdP

)
·

·
(
I

{
i

n
≤ s

}
− I

{
i

n
≤ sk

})∣∣∣∣ (A.4)

+ max
1≤k≤Kn
1≤j≤Jn

1≤m≤Mn

sup
ϕ∈[ϕlj ,ϕ

u
j ]

sup
h∈[hlm,h

u
m]

∣∣∣∣∣∣ 1√
n

bnskc∑
i=1

(
h(Xi)ϕ(Xi)−

∫
hϕdP

)∣∣∣∣∣∣ . (A.5)

First, it will be shown that (A.4) tends to zero as n tends to infinity. Using∣∣∣∣h(Xi)ϕ(Xi)−
∫
hϕdP

∣∣∣∣ ≤ 2 sup
x∈Jn
|h(x)ϕ(x)| = 2 sup

x∈Jn
|h(x)| ≤ 2zn

√
log(n)

for all h ∈ H, ϕ ∈ F and for all i = 1, . . . , n and n ∈ N, it can be obtained that
(A.4) is bounded by

2zn
√

log(n) max
1≤k≤Kn

sup
s∈[0,1]

|s−sk|≤εn1

1√
n

n∑
i=1

∣∣∣∣I { in ≤ s

}
− I

{
i

n
≤ sk

}∣∣∣∣
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(∗)
≤ 2zn

√
log(n) max

1≤k≤Kn
sup
s∈[0,1]

|s−sk|≤εn1

(√
n|s− sk|+

1√
n

)

≤ 2zn
√

log(n)
√
nεn1 + 2zn

√
log(n)√
n

= 2zn
√

log(n) + 2zn

√
log(n)√
n

(∗∗)
= o(1),

where (∗) holds because

1

n

n∑
i=1

|I {i ≤ bnsc} − I {i ≤ bnskc}|

=
1

n

n∑
i=1

I {min (bnskc , bnsc) < i ≤ max (bnskc , bnsc)}

=
1

n
(max (bnskc , bnsc)−min (bnskc , bnsc))

≤ 1

n
(max (nsk, ns)−min (nsk, ns) + 1)

= max(sk, s)−min(sk, s) +
1

n

= |s− sk|+
1

n
.

Additionally, (∗∗) is implied by (2.9) in (B2) on page 16 and (3.6) in (B3) on
page 39 as

zn
√

log(n) =
log(n)√
nhdn

qnδn =

√
log(n)

nh
d+2(l+1)
n

qnδn︸ ︷︷ ︸
(2.9)
= o(1)

√
log(n)h

2(l+1)
n︸ ︷︷ ︸

(3.6)
= o(1)

= o(1).

Secondly, the term in (A.5) will be considered. Using the brackets of F and H,
a lower and an upper bound for

1√
n

bnskc∑
i=1

(
h(Xi)ϕ(Xi)−

∫
hϕdP

)
will be obtained leading to a bound for its absolute value. For a given m ∈
{1, . . . ,Mn} and j ∈ {1, . . . , Jn} let h ∈ [hlm, h

u
m] and ϕ ∈ [ϕlj, ϕ

u
j ] hold. Then

hlm ≤ h ≤ hum and ϕlj ≤ ϕ ≤ ϕuj , as well as ‖hum− hlm‖∞ ≤ εn3 and ‖ϕuj −ϕlj‖L2(P ) ≤
εn2 hold. Furthermore, ϕlj, ϕuj can be chosen to be indicator functions. In particular,
ϕlj, ϕ

u
j are then non-negative. Then it holds that

hϕ = hI{h ≥ 0}ϕ+ hI{h < 0}ϕ
≤ hI{h ≥ 0}ϕuj + hI{h < 0}ϕlj
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≤ humI{hum ≥ 0}ϕuj + humI{hum < 0}ϕlj
and

hϕ = hI{h ≥ 0}ϕ+ hI{h < 0}ϕ
≥ hI{h ≥ 0}ϕlj + hI{h < 0}ϕuj
≥ hlmI{hlm ≥ 0}ϕlj + hlmI{hlm < 0}ϕuj .

For an upper bound it therefore can be obtained that

h(Xi)ϕ(Xi)−
∫
hϕdP

≤ hum(Xi)I{hum(Xi) ≥ 0}ϕuj (Xi) + hum(Xi)I{hum(Xi) < 0}ϕlj(Xi)

−
∫
hlmI{hlm ≥ 0}ϕljdP −

∫
hlmI{hlm < 0}ϕuj dP

= hum(Xi)I{hum(Xi) ≥ 0}ϕuj (Xi) + hum(Xi)I{hum(Xi) < 0}ϕlj(Xi)

−
∫
hlmI{hlm ≥ 0}ϕljdP −

∫
hlmI{hlm < 0}ϕuj dP

±
∫
humI{hum ≥ 0}ϕuj dP ±

∫
humI{hum < 0}ϕljdP

±
∫
humI{hum < 0}ϕuj dP ±

∫
hlmI{hlm ≥ 0}ϕuj dP

= hum(Xi)I{hum(Xi) ≥ 0}ϕuj (Xi)−
∫
humI{hum ≥ 0}ϕuj dP

+ hum(Xi)I{hum(Xi) < 0}ϕlj(Xi)−
∫
humI{hum < 0}ϕljdP

+

∫
humI{hum ≥ 0}ϕuj dP +

∫
humI{hum < 0}ϕuj dP

−
∫
hlmI{hlm ≥ 0}ϕuj dP −

∫
hlmI{hlm < 0}ϕuj dP

+

∫
humI{hum < 0}ϕljdP −

∫
humI{hum < 0}ϕuj dP

+

∫
hlmI{hlm ≥ 0}ϕuj dP −

∫
hlmI{hlm ≥ 0}ϕljdP

= hum(Xi)I{hum(Xi) ≥ 0}ϕuj (Xi)−
∫
humI{hum ≥ 0}ϕuj dP

+ hum(Xi)I{hum(Xi) < 0}ϕlj(Xi)−
∫
humI{hum < 0}ϕljdP

+

∫
(hum − hlm)ϕuj dP (A.6)

+

∫
humI{hum < 0}(ϕlj − ϕuj )dP (A.7)

+

∫
hlmI{hlm ≥ 0}(ϕuj − ϕlj)dP. (A.8)

It holds that (A.6) is bounded by

‖hum − hlm‖∞‖ϕuj ‖∞ = ‖hum − hlm‖∞ ≤ εn3 = o

(
1√
n

)
.

118



A.1. Technical lemmata

As ‖hum‖∞ ≤ ‖hum − hlm‖∞ + ‖h‖∞ ≤ εn3 + zn
√

log(n), (A.7) is bounded by

‖humI{hum < 0}‖∞‖ϕlj − ϕuj ‖L2(P ) ≤ (εn3 + zn
√

log(n))εn2 = o

(
1√
n

)
.

Similarly, ‖hlm‖∞ ≤ εn3 + zn and therefore (A.8) is bounded by

‖hlmI{hlm ≥ 0}‖∞‖ϕuj − ϕlj‖L2(P ) ≤ (εn3 + zn
√

log(n))εn2 = o

(
1√
n

)
.

To calculate a lower bound it can be obtained that

h(Xi)ϕ(Xi)−
∫
hϕdP

≥ hlm(Xi)I{hlm(Xi) ≥ 0}ϕlj(Xi) + hlm(Xi)I{hlm(Xi) < 0}ϕuj (Xi)

−
∫
humI{hum ≥ 0}ϕuj dP −

∫
humI{hum < 0}ϕljdP

= hlm(Xi)I{hlm(Xi) ≥ 0}ϕlj(Xi) + hlm(Xi)I{hlm(Xi) < 0}ϕuj (Xi)

−
∫
humI{hum ≥ 0}ϕuj dP −

∫
humI{hum < 0}ϕljdP

±
∫
hlmI{hlm ≥ 0}ϕljdP ±

∫
hlmI{hlm < 0}ϕuj dP

±
∫
hlmI{hlm < 0}ϕljdP ±

∫
humI{hum ≥ 0}ϕljdP

= hlm(Xi)I{hlm(Xi) ≥ 0}ϕlj(Xi)−
∫
hlmI{hlm ≥ 0}ϕlj

+ hlm(Xi)I{hlm(Xi) < 0}ϕuj (Xi)−
∫
hlmI{hlm < 0}ϕuj

+

∫
hlmI{hlm ≥ 0}ϕljdP +

∫
hlmI{hlm < 0}ϕljdP

−
∫
humI{hum ≥ 0}ϕljdP −

∫
humI{hum < 0}ϕljdP

+

∫
hlmI{hlm < 0}ϕuj dP −

∫
hlmI{hlm < 0}ϕljdP

+

∫
humI{hum ≥ 0}ϕljdP −

∫
humI{hum ≥ 0}ϕuj dP

= hlm(Xi)I{hlm(Xi) ≥ 0}ϕlj(Xi)−
∫
hlmI{hlm ≥ 0}ϕlj

+ hlm(Xi)I{hlm(Xi) < 0}ϕuj (Xi)−
∫
hlmI{hlm < 0}ϕuj

−
∫

(hum − hlm)ϕljdP (A.9)

−
∫
hlmI{hlm < 0}(ϕlj − ϕuj )dP (A.10)

−
∫
humI{hum ≥ 0}(ϕuj − ϕlj)dP. (A.11)
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Similar to before, it holds that (A.9) is bounded from below by −εn3, while
(A.10) and (A.11) are each bounded from below by −(εn3 + zn

√
log(n))εn2. Both

these bounds converge again to zero at a rate of o
(

1√
n

)
. Coming back to bounding

(A.5), it therefore holds that

max
1≤k≤Kn
1≤j≤Jn

1≤m≤Mn

sup
ϕ∈[ϕlj ,ϕ

u
j ]

sup
h∈[hlm,h

u
m]

∣∣∣∣∣∣ 1√
n

bnskc∑
i=1

(
h(Xi)ϕ(Xi)−

∫
hϕdP

)∣∣∣∣∣∣
≤ max

1≤k≤Kn
1≤j≤Jn

1≤m≤Mn

max


∣∣∣∣∣∣ 1√
n

bnskc∑
i=1

(
hum(Xi)I{hum(Xi) ≥ 0}ϕuj (Xi)−

∫
humI{hum ≥ 0}ϕuj dP

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1√
n

bnskc∑
i=1

(
hum(Xi)I{hum(Xi) < 0}ϕlj(Xi)−

∫
humI{hum < 0}ϕljdP

)∣∣∣∣∣∣ ,∣∣∣∣∣∣ 1√
n

bnskc∑
i=1

(
hlm(Xi)I{hlm(Xi) ≥ 0}ϕlj(Xi)−

∫
hlmI{hlm ≥ 0}ϕljdP

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1√
n

bnskc∑
i=1

(
hlm(Xi)I{hlm(Xi) < 0}ϕuj (Xi)−

∫
hlmI{hlm < 0}ϕuj dP

)∣∣∣∣∣∣


+ o(1).

Step 3: Finally, the assertion of (A.3) follows by the following four assertions

max
1≤k≤Kn
1≤j≤Jn

1≤m≤Mn

∣∣∣∣∣∣ 1√
n

bnskc∑
i=1

(
hum(Xi)I{hum(Xi) ≥ 0}ϕuj (Xi)−

∫
humI{hum ≥ 0}ϕuj dP

)∣∣∣∣∣∣ = oP (1),

(A.12)

max
1≤k≤Kn
1≤j≤Jn

1≤m≤Mn

∣∣∣∣∣∣ 1√
n

bnskc∑
i=1

(
hum(Xi)I{hum(Xi) < 0}ϕlj(Xi)−

∫
humI{hum < 0}ϕljdP

)∣∣∣∣∣∣ = oP (1),

(A.13)

max
1≤k≤Kn
1≤j≤Jn

1≤m≤Mn

∣∣∣∣∣∣ 1√
n

bnskc∑
i=1

(
hlm(Xi)I{hlm(Xi) ≥ 0}ϕlj(Xi)−

∫
hlmI{hlm ≥ 0}ϕljdP

)∣∣∣∣∣∣ = oP (1),

(A.14)

max
1≤k≤Kn
1≤j≤Jn

1≤m≤Mn

∣∣∣∣∣∣ 1√
n

bnskc∑
i=1

(
hlm(Xi)I{hlm(Xi) < 0}ϕuj (Xi)−

∫
hlmI{hlm < 0}ϕuj dP

)∣∣∣∣∣∣ = oP (1).

(A.15)
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Within the proof it will become clear that it is sufficient to only show (A.12) as
the other ones work analogous. As mentioned before, Liebscher’s Theorem 2.1 in
[46] will be used. Following the notation in [46]

Zi :=

(
hum(Xi)I{hum(Xi) ≥ 0}ϕuj (Xi)−

∫
humI{hum ≥ 0}ϕuj dP

)
I

{
i

n
≤ sk

}
,

is defined for all 1 ≤ i ≤ n and n ∈ N. Note that Liebscher’s result is an inequality
for fixed n ∈ N and the dependency of Zi on n is not reflected in the notation. Then

P

∣∣∣∣∣∣ 1√
n

bnskc∑
i=1

(
hum(Xi)I{hum(Xi) ≥ 0}ϕuj (Xi)−

∫
humI{hum ≥ 0}ϕuj dP

)∣∣∣∣∣∣ > ε


= P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > √nε
)

holds. To bound the last probability, the conditions on Zi of Theorem 2.1 in [46]
need verification. First, note that Zi is centered and

|Zi| ≤
∣∣∣∣hum(Xi)I{hum(Xi) ≥ 0}ϕuj (Xi)−

∫
humI{hum ≥ 0}ϕuj dP

∣∣∣∣
≤ 2 sup

x∈Jn

∣∣hum(x)I{hum(x) ≥ 0}ϕuj (x)
∣∣

= 2 sup
x∈Jn
|hum(x)|

≤ 2(εn3 + zn
√

log(n)) =: S(n).

Furthermore, using

E
[
Z2
i

]
= E

[(
hum(Xi)I{hum(Xi) ≥ 0}ϕuj (Xi)−

∫
humI{hum ≥ 0}ϕuj dP

)2

I

{
i

n
≤ sk

}]
≤ 4 sup

x∈Jn

∣∣hum(x)I{hum(x) ≥ 0}ϕuj (x)
∣∣2

= 4 sup
x∈Jn
|hum(x)|2

≤ 4(εn3 + zn
√

log(n))2

results in

E

(T+N)∧n∑
i=T+1

Zi

2 =

(T+N)∧n∑
i1=T+1

(T+N)∧n∑
i2=T+1

E[Zi1Zi2 ]

≤ N2E[Zi1Zi2 ]

≤ N2E
[
Z2
i

]
≤ 4N2(εn3 + zn

√
log(n))2 =: D(n,N)
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for all T = 0, . . . , n − 1 and 1 ≤ N ≤ n, n ∈ N. As measurable functions maintain
mixing properties (see for instance [21] Subsection 2.6.1 (ii), p. 69), it holds that(

hum(Xt)I{hum(Xt) ≥ 0}ϕuj (Xt)−
∫
humI{hum ≥ 0}ϕuj dP

)
t∈Z

is strongly mixing with the same mixing coefficients α(·) as (Yt,Xt)t∈Z. Let {α̃n(t) :
t ∈ N} be the sequence of coefficients of {Zt : 1 ≤ t ≤ n, n ∈ N} defined as in (1.4)
in Definition 1.1 on page 7. For fixed n ∈ N they can be bounded by the mixing
coefficients {α(t) : t ∈ N} of {(Yt,Xt) : t ∈ N} (see for instance [4], Section 2,
remark (iv)). An application of Theorem 2.1 in [46] leads to

P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > √nε
)
≤ 4 exp

(
− nε2

64 n
N
D(n,N) + 8

3

√
nεNS(n)

)
+ 4

n

N
α(N),

for all ε > 0 with
√
nε > 4NS(n) and for all 1 ≤ N ≤ n, n ∈ N. Note here that for

(A.13), (A.14) and (A.15) the same terms for S(n) and D(n,N) will be obtained
and that the proofs for these assertions therefore work analogously. Next it is clear
that εn3 := 1√

n logn
= o(zn

√
log(n)) and therefore

S(n) = 2(εn3 + zn
√

log(n)) = O(zn
√

log(n)) = O

(
log(n)√
nhdn

qnδn

)
and

D(n,N) = 4N2(εn3 + zn
√

log(n))2 = N2O(z2
n log(n)) = N2O

(
log(n)2

nhdn
q2
nδ

2
n

)
hold. Now let N :=

⌊√
nhdn

⌋
n→∞→ ∞, then it holds that 1 ≤ N ≤ n and for all

ε > 0

4NS(n) = 8
⌊√

nhdn

⌋
(εn3 + zn

√
log(n))

= 8
⌊√

nhdn

⌋
O

(
log(n)√
nhdn

qnδn

)

= 8
⌊√

nhdn

⌋√
h−dn O

(
log(n)√

n
qnδn

)
︸ ︷︷ ︸

(3.3)
= o(1)

<
√
nε,

for n large enough. Therefore, it holds that for all ε > 0 and n ∈ N large enough

P

 max
1≤k≤Kn
1≤j≤Jn

1≤m≤Mn

∣∣∣∣∣∣ 1√
n

bnskc∑
i=1

(
hum(Xi)I{hum(Xi) ≥ 0}ϕuj (Xi)−

∫
humI{hum ≥ 0}ϕuj dP

)∣∣∣∣∣∣ > ε


≤
∑

1≤k≤Kn
1≤j≤Jn

1≤m≤Mn

P

∣∣∣∣∣∣ 1√
n

bnskc∑
i=1

(
hum(Xi)I{hum(Xi) ≥ 0}ϕuj (Xi)−

∫
humI{hum ≥ 0}ϕuj dP

)∣∣∣∣∣∣ > ε
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≤
∑

1≤k≤Kn
1≤j≤Jn

1≤m≤Mn

(
4 exp

(
− nε2

64 n
N
D(n,N) + 8

3

√
nεNS(n)

)
+ 4

n

N
α(N)

)

= 4KnJnMn

(
exp

(
− nε2

64 n
N
D(n,N) + 8

3

√
nεNS(n)

)
+
n

N
α(N)

)
= 4 exp

(
log(Kn) + log(Jn) + log(Mn)− nε2

64 n
N
D(n,N) + 8

3

√
nεNS(n)

)
(A.16)

+ 4 exp
(

log(Kn) + log(Jn) + log(Mn) + log
( n
N

)
+ log (α(N))

)
. (A.17)

It is left to show, that the exponents in (A.16) and (A.17) diverge to −∞ as
n→∞. Starting with (A.16), it is to show that

64 n
N
D(n,N) + 8

3

√
nNεS(n)

nε2
= o

(
1

log (Kn) + log(Jn) + log(Mn)

)
.

Replacing first Kn, Jn,Mn, N,D(n,N) and S(n) by their rates, and finally using
the rate of cn in (J) on page 16, it can be obtained that

64 n
N
D(n,N) + 8

3

√
nNεS(n)

nε2
(log (Kn) + log(Jn) + log(Mn))

=

(
64

ε2
1

N
D(n,N) +

1√
nε

8

3
NS(n)

)
(log (Kn) + log(Jn) + log(Mn))

= O

((√
nhdn

log(n)2

nhdn
q2
nδ

2
n +

1√
n

√
nhdn

log(n)√
nhdn

qnδn

)(
log(n) + cdn

(√
n log(n)

) d
l+η

))

= O

((
log (n)2√

nhdn
q2
nδ

2
n +

log (n)√
n

qnδn

)(
log(n) + cdn

(√
n log(n)

) d
l+η

))

= O

 log(n)3√
nhdn

q2
nδ

2
n + cdn

log(n)2+ d
l+η√

n1− d
l+ηhdn

q2
nδ

2
n +

log(n)2

√
n

qnδn + cdn
log(n)1+ d

l+η√
n1− d

l+η

qnδn


= O

 log(n)3√
nhdn

q2
nδ

2
n +

log(n)3+ d
l+η√

n1− d
l+ηhdn

q2
nδ

2
n +

log(n)2

√
n

qnδn +
log(n)2+ d

l+η√
n1− d

l+η

qnδn


= o(1),

by assumption (3.3) in (B3) on page 39. Concerning (A.17) it is to show that

1

| log (α(N))|
= o

(
1

log (Kn) + log(Jn) + log(Mn) + log
(
n
N

)) .
Using again all bounds and the exponential rates of convergence of the mixing

coefficient in (G), namely | log (α(t))|−1 = O(t−1), (t → ∞), it can be obtained,
that

1

| log (α(N))|

(
log (Kn) + log(Jn) + log(Mn) + log

( n
N

))
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= O

(
1√
nhdn

(
log(n) + cdn

(√
n log(n)

) d
l+η + log

(
n√
nhdn

)))

= O

 log(n)√
nhdn

+ cdn
log(n)

d
l+η√

n1− d
l+ηhdn

+

log

(√
n
hdn

)
√
nhdn


= O

 log(n)√
nhdn

+
log(n)1+ d

l+η√
n1− d

l+ηhdn

+
log
(
n
hdn

)
√
nhdn


= O

 log(n)√
nhdn

+
log(n)1+ d

l+η√
n1− d

l+ηhdn

+
| log (hn)|√

nhdn


= o(1),

by assumption (3.3) and (3.4) in (B3). This finally proves (A.3) and therefore the
assertion of Lemma A.1.

Lemma A.2. Under the assumptions of Theorem 3.1

1√
n

n∑
i=1

∫
(−∞,z]

(m(y)−m(Xi))Khn(y −Xi)ωn(y)
f(y)

f̂n(y)
dy = oP (1)

holds uniformly in z ∈ Rd.

Remark. The proof of Lemma A.2 uses a similar technique as before. An appropriate
function class will be defined and partitioned using L1(P )-brackets (where Xt ∼ P )
according to Definition 1.5. The bound for the corresponding bracketing number
will be proven in Lemma A.6. Finally, the exponential inequality for strongly mixing
processes in [46] will be applied again.

Proof. The proof of Lemma A.2 consists of three main steps. First, it will be shown
that f̂n can be replaced by f . Then defining the function class

Fn,1 :=

{
x 7→

∫
(−∞,z]

(m(y)−m(x))Khn(y − x)ωn(y)dy : z ∈ Rd

}
,

it will be shown in the second step that

sup
ϕ∈Fn,1

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕ(Xi)−

∫
ϕdP

)∣∣∣∣∣ = oP (1), (A.18)

where Xt ∼ P . In the third step it will be obtained that

sup
ϕ∈Fn,1

∣∣∣∣∫ ϕdP

∣∣∣∣ = o

(
1√
n

)
. (A.19)
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Step 1: Let Ỹt = m(Xt) and m̃n(·) be the Nadaraya-Watson estimator form(·) =
E[Ỹt|Xt = ·]. Note that (Ỹt,Xt)t∈Z is a strictly stationary process and the uniform
rates of convergence for kernel estimators obtained in Chapter 2 (see Lemma 2.2
(i)(a) and (iii)(a) on page 17) can be applied. Thus, it can be obtained that

sup
z∈Rd

∣∣∣∣∣ 1√
n

n∑
i=1

∫
Rd

(m(y)−m(Xi))Khn(y −Xi)ωn(y)I{y ≤ z}

(
f(y)

f̂n(y)
− 1

)
dy

∣∣∣∣∣
=
√
n sup
z∈Rd

∣∣∣∣∣
∫
Rd

1

n

n∑
i=1

(m(y)−m(Xi))Khn(y −Xi)ωn(y)I{y ≤ z}f(y)− f̂n(y)

f̂n(y)
dy

∣∣∣∣∣
≤
√
n

∫
Rd

(
m(y)− 1

n

n∑
i=1

m(Xi)Khn(y −Xi)
1

f̂n(y)

)2

ωn(y)dy

 1
2

·
(∫

Rd

(
f(y)− f̂n(y)

)2

ωn(y)dy

) 1
2

≤
√
n sup
x∈Jn
|m(x)− m̃n(x)| sup

x∈Jn
|f(x)− f̂n(x)|

=
√
nOP

((√
log(n)

nhdn
+ hrnpn

)
qnδn

)
OP

(√
log(n)

nhdn
+ hrnpn

)

= OP

(
log(n)√
nhdn

qnδn

)
,

where the last equality holds due to (A.2) on page 114 in the proof of Lemma A.1.
Finally, by using the bandwidth assumptions (3.3) (which implies that l + 1 > d)
and (3.6) in (B3) on page 39 as well as (2.9) in (B2) on page 16, it holds that

log(n)√
nhdn

qnδn =

√
log(n)

nh
d+2(l+1)
n

qnδn︸ ︷︷ ︸
(2.9)
= o(1)

√
hl+1−d
n︸ ︷︷ ︸

(3.3)
= o(1)

√
log(n)hl+1

n︸ ︷︷ ︸
(3.6)
= o(1)

= o(1). (A.20)

Step 2: The function class Fn,1 will be covered with finitely many brackets. Then
the supremum can by bounded by a maximum, which then can be bounded using the
exponential inequality in [46]. The partition of Fn,1, that is given in Lemma A.6, will
be used. Let therefore z0, . . . ,zJn be the partition of Rd and [ϕl1, ϕ

u
1 ], . . . , [ϕlJn , ϕ

u
Jn

]
be the corresponding brackets from Lemma A.6, where

Jn := N[ ]

(
εn,Fn,1, ‖ · ‖L1(P )

)
,

namely for j ∈ {1, . . . , Jn}

ϕuj (x) :=

∫
(−∞,zj ]

(m(y)−m(x))Khn (y − x) I{(m(y)−m(x))Khn (y − x) ≥ 0}ωn(y)dy

+

∫
(−∞,zj−1]

(m(y)−m(x))Khn (y − x) I{(m(y)−m(x))Khn (y − x) < 0}ωn(y)dy
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and

ϕlj(x) :=

∫
(−∞,zj−1]

(m(y)−m(x))Khn (y − x) I{(m(y)−m(x))Khn (y − x) ≥ 0}ωn(y)dy

+

∫
(−∞,zj ]

(m(y)−m(x))Khn (y − x) I{(m(y)−m(x))Khn (y − x) < 0}ωn(y)dy.

Then for all ϕ ∈ Fn,1 there exists a j ∈ {1, . . . , Jn} such that ϕlj ≤ ϕ ≤ ϕuj and
‖ϕuj − ϕlj‖L1(P ) ≤ εn. In Lemma A.6 it will been shown that

Jn = O
(
ε−dn
)
.

Let εn := 1√
n log(n)

. Note that the choice of εn needs to imply εn = o(n−
1
2 ). Then

for ϕ ∈ [ϕlj, ϕ
u
j ] for some j ∈ {1, . . . , Jn}, it holds that

ϕ(Xi)−
∫
ϕdP ≤ ϕuj (Xi)−

∫
ϕljdP ±

∫
ϕuj dP

= ϕuj (Xi)−
∫
ϕuj dP +

∫
(ϕuj − ϕlj)dP

and ∫
(ϕuj − ϕlj)dP = ‖ϕuj − ϕlj‖L1(P ) ≤ εn = o

(
1√
n

)
.

Similarly, it can be obtained that

ϕ(Xi)−
∫
ϕdP ≥ ϕlj(Xi)−

∫
ϕuj dP ±

∫
ϕljdP

= ϕlj(Xi)−
∫
ϕljdP −

∫
(ϕuj − ϕlj)dP

and
−
∫

(ϕuj − ϕlj)dP = −‖ϕuj − ϕlj‖L1(P ) ≥ −εn = o

(
1√
n

)
.

Therefore, it holds that

sup
ϕ∈Fn,1

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕ(Xi)−

∫
ϕdP

)∣∣∣∣∣
= max

1≤j≤Jn
sup

ϕ∈[ϕlj ,ϕ
u
j ]

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕ(Xi)−

∫
ϕdP

)∣∣∣∣∣
≤ max

1≤j≤Jn
max

{∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕuj (Xi)−

∫
ϕuj dP

)∣∣∣∣∣ ,
∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕlj(Xi)−

∫
ϕljdP

)∣∣∣∣∣
}

+ o(1).

The proof of (A.18) therefore reduces to the proofs of

max
1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕuj (Xi)−

∫
ϕuj dP

)∣∣∣∣∣ = oP (1) (A.21)
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and

max
1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕlj(Xi)−

∫
ϕljdP

)∣∣∣∣∣ = oP (1). (A.22)

By defining

ϕuj,1(x) :=

∫
(−∞,zj ]

(m(y)−m(x))Khn (y − x) I{(m(y)−m(x))Khn (y − x) ≥ 0}ωn(y)dy

and

ϕuj,2(x) :=

∫
(−∞,zj−1]

(m(y)−m(x))Khn (y − x) I{(m(y)−m(x))Khn (y − x) < 0}ωn(y)dy

it holds that
ϕuj (x) = ϕuj,1(x) + ϕuj,2(x).

Similarly, functions ϕlj,1 and ϕlj,2 can be defined such that ϕlj ≡ ϕlj,1 + ϕlj,2.
Therefore, the validity of (A.21) and (A.22) is implied by

max
1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕuj,1(Xi)−

∫
ϕuj,1dP

)∣∣∣∣∣ = oP (1), (A.23)

max
1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕuj,2(Xi)−

∫
ϕuj,2dP

)∣∣∣∣∣ = oP (1),

max
1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕlj,1(Xi)−

∫
ϕlj,1dP

)∣∣∣∣∣ = oP (1),

max
1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕlj,2(Xi)−

∫
ϕlj,2dP

)∣∣∣∣∣ = oP (1).

It is only necessary to show (A.23) as will become clear within the proof. Fol-
lowing the notation in [46]

Zi := ϕuj,1(Xi)−
∫
ϕuj,1dP

is defined for all 1 ≤ i ≤ n and n ∈ N. Note that again the dependency on n ∈ N
is not reflected in the notation. Let {α̃n(t) : t ∈ N} be the sequence of coefficients
of {Zt : 1 ≤ t ≤ n, n ∈ N} defined as in (1.4) in Definition 1.1 on page 7. For
fixed n ∈ N they can be bounded by the mixing coefficients {α(t) : t ∈ N} of
{(Yt,Xt) : t ∈ N} (see for instance [4], Section 2, remark (iv)). Also Zi is centered
and

|Zi| ≤ 2 sup
x∈Rd
|ϕuj,1(x)| =: S(n).

Furthermore, for all T = 0, . . . , n− 1 and 1 ≤ N ≤ n, n ∈ N

E

(T+N)∧n∑
i=T+1

Zi

2 ≤ N2E
[
Z2
i

]
≤ 4N2 sup

x∈Rd
|ϕuj,1(x)|2 =: D(n,N).
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To apply Theorem 2.1 in [46] bounds for S(n) and D(n,N) are required. Using
integration by substitution and Taylor’s expansion of m in x up to order 1, it can
be obtained that for all j ∈ {1, . . . , Jn}

sup
x∈Rd
|ϕuj,1(x)|

= sup
x∈Rd

∣∣∣∣∣
∫

(−∞,zj ]

(m(y)−m(x))Khn (y − x) I{(m(y)−m(x))Khn (y − x) ≥ 0}ωn(y)dy

∣∣∣∣∣
≤ sup
x∈Rd

∫
Rd
|m(y)−m(x)| |Khn (y − x)|ωn(y)dy

= sup
x∈Rd

∫
Rd
|m(x+ thn)−m(x)| |K (t)|ωn(x+ thn)dt

≤ sup
x∈Rd

∫
Rd

∣∣∣∣∣∣
∑
|i|=1

Dim(x)(thn)i

i!

∣∣∣∣∣∣ |K (t)|ωn(x+ thn)dt (A.24)

+ sup
x∈Rd

∫
Rd

∣∣∣∣∣∣
∑
|i|=2

Dim(ξx,t)(thn)i

i!

∣∣∣∣∣∣ |K (t)|ωn(x+ thn)dt, (A.25)

for some ξx,t on the line segment between x+ thn and x. Using

ωn(x+ thn)I{t ∈ [−C,C]d} = I{x ∈ In}I{t ∈ [−C,C]d},

the term in (A.24) can be bounded by

hn
∑
|i|=1

1

i!
sup
x∈In
|Dim(x)|︸ ︷︷ ︸
=O(qn)

∫
Rd
|t|i|K(t)|dt︸ ︷︷ ︸

<∞

= O(hnqn).

By similar calculation the term in (A.25) can be bounded by

h2
n

∑
|i|=2

1

i!
sup

x∈[−cn−2hnC,cn+2hnC]

|Dim(x)|︸ ︷︷ ︸
(F2)
= O(qn)

∫
Rd
|t|i|K(t)|dt︸ ︷︷ ︸

<∞

= O(h2
nqn) = O(hnqn).

Using these results it holds that

S(n) = O(hnqn)

and
D(n,N) = N2O(h2

nq
2
n).

Note here that the corresponding bounds for S(n) and D(n,N) for the other
three cases will be the same which is the reason to only look at the first case (A.23).
By choosing for all n ∈ N,

N :=
⌊
log(n)2

⌋
+ 1,

it holds that 1 ≤ N ≤ n and

4NS(n) = 4(
⌊
log(n)2

⌋
+ 1)S(n) = O

(
log(n)2hnqn

)︸ ︷︷ ︸
(3.6)
= o(1)

<
√
nε,

128



A.1. Technical lemmata

for all ε > 0 and for n large enough. Hence, applying Liebscher’s Theorem 2.1 in
[46] it holds for all ε > 0 and n ∈ N large enough that

P

(
max

1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕuj,1(Xi)−

∫
ϕuj,1dP

)∣∣∣∣∣ > ε

)

≤
Jn∑
j=1

P

(∣∣∣∣∣
n∑
i=1

(
ϕuj,1(Xi)−

∫
ϕuj,1dP

)∣∣∣∣∣ > √nε
)

≤ Jn

(
4 exp

(
− nε2

64 n
N
D(n,N) + 8

3

√
nεNS(n)

)
+ 4

n

N
α(N)

)
= 4 exp

(
log(Jn)− nε2

64 n
N
D(n,N) + 8

3

√
nεNS(n)

)
(A.26)

+ 4 exp
(

log(Jn) + log
( n
N

)
+ log (α(N))

)
. (A.27)

It is left to show that the exponents in (A.26) and (A.27) diverge to −∞ as
n→∞. Starting with (A.26), it is to show that

64 n
N
D(n,N) + 8

3

√
nεNS(n)

nε2
= o

(
1

log(Jn)

)
.

Using
Jn = O

(
ε−dn
)

= O
(
(
√
n log(n))d

)
= O

(
n
d
2 log(n)d

)
and therefore

log(Jn) = O(log(n)),

and replacing N , D(n,N) and S(n) by their bounds, it holds that

64 n
N
D(n,N) + 8

3

√
nεNS(n)

nε2
log(Jn) =

(
64

ε2
1

N
D(n,N) +

1√
nε

8

3
NS(n)

)
log(Jn)

= O

((
log(n)2h2

nq
2
n +

1√
n

log(n)2hnqn

)
log(n)

)
= O

(
log(n)3h2

nq
2
n +

1√
n

log(n)3hnqn

)
= o(1),

by assumption (3.6) in (B3). Concerning (A.27), it is to show that

1

| log (α(N)) |
= o

(
1

log(Jn) + log
(
n
N

)) .
Again inserting the bounds and the exponential rates of convergence of the mix-

ing coefficients in (G) yields

1

| log (α(N)) |

(
log(Jn) + log

( n
N

))
= O

(
1

N
log(n) +

1

N
(log(n) + log(N))

)
= O

(
1

log(n)

)
= o(1).
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Step 3: It holds that

sup
ϕ∈Fn,1

∣∣∣∣∫ ϕdP

∣∣∣∣
= sup
z∈Rd

∣∣∣∣∫
Rd

∫
Rd

(m(y)−m(x))
1

hdn
K

(
y − x
hn

)
ωn(y)I{y ≤ z}dyf(x)dx

∣∣∣∣
≤
∫
Rd

∣∣∣∣∫
Rd

(m(y)−m(x))
1

hdn
K

(
y − x
hn

)
ωn(y)f(x)dx

∣∣∣∣ dy
=

∫
Rd

∣∣∣∣∫
Rd

(m(y)−m(y − thn))K(t)ωn(y)f(y − thn)dt

∣∣∣∣ dy
≤
∫
Rd

∣∣∣∣∫
Rd

(m(y − thn)−m(y))K(t)ωn(y)f(y)dt

∣∣∣∣ dy (A.28)

+

∫
Rd

∣∣∣∣∫
Rd

(m(y − thn)−m(y))K(t)ωn(y) (f(y − thn)− f(y)) dt

∣∣∣∣ dy (A.29)

Concerning (A.28), Taylor’s expansion of m in y up to order r−1 with Lagrange
remainder term, namely

m(y − thn)−m(y) =
r−1∑
|i|=1

(−1)|i|Dim(y)(thn)i

i!
+
∑
|i|=r

(−1)|i|Dim(ξy,t)(thn)i

i!
,

for some ξy,t on the line segment between y and y − thn is used. Furthermore, the
conditions on the kernel function K in (K) and on the partial derivatives of m in
(F1) are used to obtain∫

Rd

∣∣∣∣∫
Rd

(m(y − thn)−m(y))K(t)ωn(y)f(y)dt

∣∣∣∣ dy
=

∫
Rd

∣∣∣∣∣∣
∫
Rd

r−1∑
|i|=1

(−1)|i|Dim(y)(thn)i

i!
K(t)ωn(y)f(y)dt

+

∫
Rd

∑
|i|=r

(−1)|i|Dim(ξy,t)(thn)i

i!
K(t)ωn(y)f(y)dt

∣∣∣∣∣∣ dy

=

∫
Rd

∣∣∣∣∣∣∣∣∣
r−1∑
|i|=1

h|i|n
(−1)|i|Dim(y)

i!
ωn(y)f(y)

∫
Rd
tiK(t)dt︸ ︷︷ ︸

=0 ∀|i|=1,...,r−1

+hrn
∑
|i|=r

(−1)|i|

i!

∫
Rd
Dim(ξy,t)t

iK(t)ωn(y)f(y)dt

∣∣∣∣∣∣ dy
≤ hrn

∫
Rd

∑
|i|=r

1

i!

∫
Rd

∣∣Dim(ξy,t)
∣∣︸ ︷︷ ︸

≤ sup
x∈In
|Dim(x)|

∣∣tiK(t)
∣∣ωn(y)dtf(y)dy
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≤ hrn
∑
|i|=r

sup
x∈In

∣∣Dim(x)
∣∣︸ ︷︷ ︸

=O(qn) ∀|i|=r

∫
Rd
|tiK(t)|dt︸ ︷︷ ︸
<∞

∫
Rd
f(y)dy

= O (hrnqn)

= o

(
1√
n

)
,

where the last equality holds by assumption (3.5) in (B3). Concerning (A.29),
Taylor’s expansion for both m and f is used. By analogues calculations as above it
can be obtained that∫

Rd

∣∣∣∣∫
Rd

(m(y − thn)−m(y))K(t)ωn(y) (f(y − thn)− f(y)) dt

∣∣∣∣ dy = O(hrnpnqn)

= o

(
1√
n

)
,

where the last equality again holds by assumption (3.5) in (B3). This completes
(A.19) in Step 3 and therefore finally the proof of Lemma A.2.

Lemma A.3. Under the same assumptions of Theorem 3.1

1√
n

n∑
i=1

Ui

(∫
(−∞,z]

Khn(y −Xi)ωn(y)
f(y)

f̂n(y)
dy − ωn(Xi)I{Xi ≤ z}

)
= oP (1),

holds uniformly in z ∈ Rd.

Remark. The idea for the proof of Lemma A.3 is the same as before, where the
bound for the corresponding bracketing number will be proven in Lemma A.7.

Proof. The proof of Lemma A.3 consists of three steps. First, it will be shown that
f̂n can be replaced by f . Then considering

1√
n

n∑
i=1

Ui

(∫
(−∞,z]

Khn(y −Xi)ωn(y)dy − ωn(Xi)I{Xi ≤ z}
)

=
1√
n

n∑
i=1

(
UiI

{
|Ui| > n

1
q

}(∫
(−∞,z]

Khn(y −Xi)ωn(y)dy − ωn(Xi)I{Xi ≤ z}
)

−E
[
UiI

{
|Ui| > n

1
q

}(∫
(−∞,z]

Khn(y −Xi)ωn(y)dy − ωn(Xi)I{Xi ≤ z}
)])

(A.30)

+
1√
n

n∑
i=1

(
UiI

{
|Ui| ≤ n

1
q

}(∫
(−∞,z]

Khn(y −Xi)ωn(y)dy − ωn(Xi)I{Xi ≤ z}
)

−E
[
UiI

{
|Ui| ≤ n

1
q

}(∫
(−∞,z]

Khn(y −Xi)ωn(y)dy − ωn(Xi)I{Xi ≤ z}
)])

,

(A.31)
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where q := Q2+γ
2
, in the second and third step it will be shown that the terms in

(A.30) and (A.31) converge to zero in probability uniformly in z ∈ Rd respectively.

Step 1: Let Ỹt = h(Xt) + Ut where h ≡ 0 and ĥn(·) be the Nadaraya-Watson
estimator for E[Ỹt|Xt = ·] = h(·). Note that (Ỹt,Xt)t∈Z is a strictly stationary pro-
cess and the uniform rates of convergence for kernel estimators obtained in Chapter
2 (see Lemma 2.2 (i)(a) on page 17 and (2.12) on page 26) can be applied. Thus it
holds that

sup
z∈Rd

∣∣∣∣∣ 1√
n

n∑
i=1

Ui

∫
Rd
Khn(y −Xi)ωn(y)I{y ≤ z}

(
f(y)

f̂n(y)
− 1

)
dy

∣∣∣∣∣
=
√
n sup
z∈Rd

∣∣∣∣∣
∫
Rd

1

n

n∑
i=1

UiKhn(y −Xi)ωn(y)I{y ≤ z}f(y)− f̂n(y)

f̂n(y)
dy

∣∣∣∣∣
≤
√
n

∫
Rd

(
1

n

n∑
i=1

UiKhn(y −Xi)
1

f̂n(y)

)2

ωn(y)dy

 1
2

·
(∫

Rd

(
f(y)− f̂n(y)

)2

ωn(y)dy

) 1
2

≤
√
n sup
x∈Jn
|h(x)− ĥn(x)| sup

x∈Jn
|f(x)− f̂n(x)|

=
√
nOP

(√
log(n)

nhdn
δn

)
OP

(√
log(n)

nhdn
+ hrnpn

)

= OP

(
log(n)√
nhdn

δn

)
,

where the last equality is due to (A.2) on page 114 in the proof of Lemma A.1.
Finally,

log(n)√
nhdn

δn = o(1)

follows directly by (A.20) on page 125 in the proof of Lemma A.2.

Step 2: To verify that (A.30) is negligible in probability uniformly in z ∈ Rd,
the following is considered

sup
z∈Rd

∣∣∣∣∣ 1√
n

n∑
i=1

UiI
{
|Ui| > n

1
q

}(∫
Khn(y −Xi)ωn(y)I{y ≤ z}dy − ωn(Xi)I{Xi ≤ z}

)∣∣∣∣∣
≤ 1√

n

n∑
i=1

|Ui|I
{
|Ui| > n

1
q

}
sup
z∈Rd

∣∣∣∣∫Khn(y −Xi)ωn(y)I{y ≤ z}dy − ωn(Xi)I{Xi ≤ z}
∣∣∣∣

≤ 1√
n

n∑
i=1

|Ui|I
{
|Ui| > n

1
q

}
sup
z∈Rd

∣∣∣∣∫ Khn(y −Xi)ωn(y)I{y ≤ z}dy
∣∣∣∣

+
1√
n

n∑
i=1

|Ui|I
{
|Ui| > n

1
q

}
sup
z∈Rd
|ωn(Xi)I{Xi ≤ z}|
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≤ 1√
n

n∑
i=1

|Ui|I
{
|Ui| > n

1
q

}∫
|Khn(y −Xi)|dy +

1√
n

n∑
i=1

|Ui|I
{
|Ui| > n

1
q

}
=

1√
n

n∑
i=1

|Ui|I
{
|Ui| > n

1
q

}(∫
|K(t)|dt+ 1

)
≤ C̄

1√
n

n∑
i=1

|Ui|I
{
|Ui| > n

1
q

}
,

for some C̄ <∞. With

E
[
|Ui|I

{
|Ui| > n

1
q

}]
= E

[
|Ui|q|Ui|−(q−1)I

{
|Ui| > n

1
q

}]
≤ n−

q−1
q E [|Ui|q]

= n−
q−1
q E

[
E [|Ui|q|Xi]︸ ︷︷ ︸
(U)
≤ c(Xi)Q a.s.

]

≤ n−
q−1
q E

[
c(Xi)

Q
]︸ ︷︷ ︸

<∞

= O
(
n−

q−1
q

)
it therefore holds, that

sup
z∈Rd

∣∣∣∣∣ 1√
n

n∑
i=1

(
UiI

{
|Ui| > n

1
q

}(∫
(−∞,z]

Khn(y −Xi)ωn(y)dy − ωn(Xi)I{Xi ≤ z}
)

−E
[
UiI

{
|Ui| > n

1
q

}(∫
(−∞,z]

Khn(y −Xi)ωn(y)dy − ωn(Xi)I{Xi ≤ z}
)])∣∣∣∣

= OP

(
n

1
2n−

q−1
q

)
= OP

(
n−

q−2
2q

)
= oP (1),

where the last equality holds because q = Q2+γ
2
> 2 (as Q ≥ 2, γ > 0).

Step 3: To show that the term in (A.31) is negligible in probability uniformly in
z ∈ Rd the function class

Fn,2 :=

{
(u,x) 7→ uI

{
|u| ≤ n

1
q

}(∫
(−∞,z]

Khn(y − x)ωn(y)dy − ωn(x)I{x ≤ z}
)

: z ∈ Rd

}
,

is defined. The assertion then follows by

sup
ϕ∈Fn,2

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕ(Ui,Xi)−

∫
ϕdP

)∣∣∣∣∣ = oP (1), (A.32)
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where (Ut,Xt) ∼ P . To do that the class Fn,2 will be covered with finitely many
brackets. Then the supremum will be bounded by a maximum which then will be
bounded using the exponential inequality in [46].

The partition of Fn,2, that is given in Lemma A.7, will be used. Let therefore
z0, . . . ,zJn be the partition of Rd and [ϕl1, ϕ

u
1 ], . . . , [ϕlJn , ϕ

u
Jn

] be the corresponding
brackets of Fn,2 from Lemma A.7 where

Jn := N[ ]

(
εn,Fn,2, ‖ · ‖L1(P )

)
.

Then for all ϕ ∈ Fn,2 there exists a j ∈ {1, . . . , Jn} such that ϕlj ≤ ϕ ≤ ϕuj and
‖ϕuj − ϕlj‖L1(P ) ≤ εn. In Lemma A.7 it will be shown that

Jn = O
(
ε−dn
)
.

It holds that

ϕ−
∫
ϕdP ≤ ϕuj −

∫
ϕuj dP +

∫ (
ϕuj − ϕlj

)
dP

and

ϕ−
∫
ϕdP ≥ ϕlj −

∫
ϕljdP −

∫ (
ϕuj − ϕlj

)
dP.

Let εn := 1√
n log(n)

. As
∫ (

ϕuj − ϕlj
)
dP = ‖ϕuj − ϕlj‖L1(P ) ≤ εn = o

(
1√
n

)
for all

j ∈ {1, . . . , Jn}, it holds that

sup
ϕ∈Fn,2

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕ(Ui,Xi)−

∫
ϕdP

)∣∣∣∣∣
= max

1≤j≤Jn
sup

ϕ∈[ϕlj ,ϕ
u
j ]

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕ(Ui,Xi)−

∫
ϕdP

)∣∣∣∣∣
≤ max

1≤j≤Jn
max

{∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕuj (Ui,Xi)−

∫
ϕuj dP

)∣∣∣∣∣ ,∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕlj(Ui,Xi)−

∫
ϕljdP

)∣∣∣∣∣
}

+ o(1).

Therefore, (A.32) is implied by

max
1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕuj (Ui,Xi)−

∫
ϕuj dP

)∣∣∣∣∣ = oP (1) (A.33)

and

max
1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕlj(Ui,Xi)−

∫
ϕljdP

)∣∣∣∣∣ = oP (1),

where only (A.33) will be shown in more detail as the second assertion works anal-
ogously. In Lemma A.7, ϕuj is defined as

ϕuj (u,x)
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= uI
{
|u| ≤ n

1
q

}
I{u ≥ 0}

∫
(−∞,zj ]

Khn(y − x)I{Khn(y − x) ≥ 0}ωn(y)dy

+ uI
{
|u| ≤ n

1
q

}
I{u < 0}

∫
(−∞,zj−1]

Khn(y − x)I{Khn(y − x) ≥ 0}ωn(y)dy

+ uI
{
|u| ≤ n

1
q

}
I{u ≥ 0}

∫
(−∞,zj−1]

Khn(y − x)I{Khn(y − x) < 0}ωn(y)dy

+ uI
{
|u| ≤ n

1
q

}
I{u < 0}

∫
(−∞,zj ]

Khn(y − x)I{Khn(y − x) < 0}ωn(y)dy

− uI
{
|u| ≤ n

1
q

}
I{u ≥ 0}ωn(x)I{x ≤ zj−1}

− uI
{
|u| ≤ n

1
q

}
I{u < 0}ωn(x)I{x ≤ zj}

= ϕuj,1(u,x) + ϕuj,2(u,x) + ϕuj,3(u,x),

where

ϕuj,1(u,x) := uI
{
|u| ≤ n

1
q

}
I{u < 0}

( ∫
(−∞,zj ]

Khn(y − x)ωn(y)dy − ωn(x)I{x ≤ zj}

)
,

ϕuj,2(u,x) := uI
{
|u| ≤ n

1
q

}
I{u ≥ 0}

( ∫
(−∞,zj−1]

Khn(y − x)ωn(y)dy − ωn(x)I{x ≤ zj−1}

)
,

ϕuj,3(u,x) := |u|I
{
|u| ≤ n

1
q

}(∫
(−∞,zj ]

Khn(y − x)I{Khn(y − x) ≥ 0}ωn(y)dy

−
∫

(−∞,zj−1]

Khn(y − x)I{Khn(y − x) ≥ 0}ωn(y)dy

)
.

for all j ∈ {1, . . . , Jn}. Then (A.33) is implied by

max
1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕuj,k(Ui,Xi)−

∫
ϕuj,kdP

)∣∣∣∣∣ = oP (1), ∀ k = 1, 2, 3. (A.34)

Equation (A.34) will be shown for k = 1 in detail. The case k = 2 is analogues
and for k = 3 only the parts that differ from the first case will be discussed. Following
the notation of Liebscher [46]

Zi := ϕuj,1(Ui,Xi)−
∫
ϕuj,1dP

is defined for all 1 ≤ i ≤ n and n ∈ N. Note that again the dependency on n ∈ N
is not reflected in the notation. Let {α̃n(t) : t ∈ N} be the sequence of coefficients
of {Zt : 1 ≤ t ≤ n, n ∈ N} defined as in (1.4) in Definition 1.1 on page 7. For fixed
n ∈ N they can be bounded by the mixing coefficients of {(Ut,Xt) : t ∈ N} (see for
instance [4], Section 2, remark (iv)). They in turn have the same properties as the
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mixing coefficients {α(t) : t ∈ N} of {(Yt,Xt) : t ∈ N}. Furthermore, Zi is centered
and because

|ϕuj,1(Ui,Xi)|

= |Ui|I
{
|Ui| ≤ n

1
q

}
I{Ui < 0}

∣∣∣∣∣
∫

(−∞,zj ]

Khn (y −Xi)ωn(y)dy − ωn(Xi)I{Xi ≤ zj}

∣∣∣∣∣
≤ n

1
q

∣∣∣∣∣
∫

(−∞,zj ]

1

hdn
K

(
y −Xi

hn

)
ωn(y)dy − ωn(Xi)I{Xi ≤ zj}

∣∣∣∣∣
≤ n

1
q

(∫
1

hdn

∣∣∣∣K (y −Xi

hn

)∣∣∣∣ dy + 1

)
= n

1
q

(∫
|K(t)|dt︸ ︷︷ ︸
<∞

+1

)

= O
(
n

1
q

)
,

it holds that |Zi| ≤ S(n) for some S(n) = O
(
n

1
q

)
. Next it will be shown that

E
[
ϕuj,1(Ui,Xi)

2
]

= O(hn) (A.35)

and therefore for all T = 0, . . . , n− 1 and 1 ≤ N ≤ n, n ∈ N

E

(T+N)∧n∑
i=T+1

Zi

2 ≤ N2E[Z2
i ] =: D(n,N)

with D(n,N) = N2O(hn). To show (A.35) consider

E
[
ϕuj,1(Ui,Xi)

2
]

= E

[
U2
i I
{
Ui ≤ n

1
q

}
I{Ui < 0}

·

(∫
(−∞,zj ]

1

hdn
K

(
y − x
hn

)
ωn(y)dy − ωn(Xi)I{Xi ≤ zj}

)2 ]

≤ E

σ2(Xi)

(∫
(−∞,zj ]

1

hdn
K

(
y − x
hn

)
ωn(y)dy − ωn(x)I{x ≤ zj}

)2


=

∫
σ2(x)f(x)

(∫
(−∞,zj ]

1

hdn
K

(
y − x
hn

)
ωn(y)dy − ωn(x)I{x ≤ zj}

)2

dx

=

∫
σ2(x)f(x)

(∫
K(t) (ωn(x+ thn)I{x+ thn ≤ zj} − ωn(x)I{x ≤ zj}) dt

)2

dx.

The later integral over Rd will be observed in more detail. For x = (x1, . . . , xd),
t = (t1, . . . , td) and zj = (zj,1, . . . , zj,d) and with ωn(·) = I{· ∈ [−cn, cn]d} it holds
that

ωn(x+ thn)I{x+ thn ≤ zj}
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=
d∏
i=1

I{−cn − tihn ≤ xi ≤ (cn ∧ zj,i)− tihn}

=

{
1, if xi ∈ [−cn − tihn, (cn ∧ zj,i)− tihn], ∀ i = 1, . . . , d

0, else

and

ωn(x)I{x ≤ zj} =
d∏
i=1

I{−cn ≤ xi ≤ cn ∧ zj,i}

=

{
1 if xi ∈ [−cn, cn ∧ zj,i] ∀ i = 1, . . . , d

0 else
.

The integral over Rd will now be partitioned in the following way

Rd =
d
×
i=1

5⋃
k=1

I
(i)
k ,

where for i = 1, . . . , d

I
(i)
1 := (−∞,−cn − Chn)

I
(i)
2 := [−cn − Chn,−cn + Chn]

I
(i)
3 := (−cn + Chn, (cn ∧ zj,i)− Chn)

I
(i)
4 := [(cn ∧ zj,i)− Chn, (cn ∧ zj,i) + Chn]

I
(i)
5 := ((cn ∧ zj,i) + Chn,∞).

Note that the kernel function K has compact support [−C,C]d. Because

ωn(x+ thn)I{x+ thn ≤ zj} = ωn(x)I{x ≤ zj} = 0

for all t ∈ [−C,C]d and x ∈ I(1)
1 × Rd−1 or x ∈ I(1)

5 × Rd−1, it holds that∫
I

(1)
1

∫
Rd−1

σ2(x)f(x)

(∫
K(t) (ωn(x+ thn)I{x+ thn ≤ zj}

− ωn(x)I{x ≤ zj}) dt
)2

dxd . . . dx2dx1

=

∫
I

(1)
5

∫
Rd−1

σ2(x)f(x)

(∫
K(t) (ωn(x+ thn)I{x+ thn ≤ zj}

− ωn(x)I{x ≤ zj}) dt
)2

dxd . . . dx2dx1

= 0.

On I(1)
2 × Rd−1 it holds that∫

I
(1)
2

∫
Rd−1

σ2(x)f(x)

(∫
K(t) (ωn(x+ thn)I{x+ thn ≤ zj}
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− ωn(x)I{x ≤ zj}) dt
)2

dxd . . . dx2dx1

≤
∫
I

(1)
2

∫
Rd−1

σ2(x)f(x)

(∫
|K(t)| |(ωn(x+ thn)I{x+ thn ≤ zj}

− ωn(x)I{x ≤ zj})| dt
)2

dxd . . . dx2dx1

≤
∫
I

(1)
2

∫
Rd−1

σ2(x)f(x)

(∫
|K(t)|dt

)
︸ ︷︷ ︸
≤C̄, for some C̄<∞

2

dxd . . . dx2dx1

≤ C̄2

∫
I

(1)
2

∫
Rd−1

σ2(x)f(x)dxd . . . dx2

︸ ︷︷ ︸
=:Σ1(x1)

dx1

= C̄2

∫
[−cn−Chn,−cn+Chn]

Σ1(x1)dx1

≤ C̄22Chn sup
x1∈R

Σ1(x1)︸ ︷︷ ︸
<∞

= O(hn).

Similar calculations conclude that∫
I

(1)
4

∫
Rd−1

σ2(x)f(x)

(∫
K(t) (ωn(x+ thn)I{x+ thn ≤ zj}

− ωn(x)I{x ≤ zj}) dt
)2

dxd . . . dx2dx1

= O(hn).

What is left to consider is the integral over I(1)
3 ×Rd−1 = I

(1)
3 ×

(⋃5
k=1 I

(2)
k

)
×Rd−2.

Then again∫
I

(1)
3

∫
I

(2)
1

∫
Rd−2

σ2(x)f(x)

(∫
K(t) (ωn(x+ thn)I{x+ thn ≤ zj}

− ωn(x)I{x ≤ zj}) dt
)2

dxd . . . dx3dx2dx1

=

∫
I

(1)
3

∫
I

(2)
5

∫
Rd−2

σ2(x)f(x)

(∫
K(t) (ωn(x+ thn)I{x+ thn ≤ zj}

− ωn(x)I{x ≤ zj}) dt
)2

dxd . . . dx3dx2dx1

= 0.
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Furthermore,∫
I

(1)
3

∫
I

(2)
2

∫
Rd−2

σ2(x)f(x)

(∫
K(t) (ωn(x+ thn)I{x+ thn ≤ zj}

− ωn(x)I{x ≤ zj}) dt
)2

dxd . . . dx3dx2dx1

= O(hn)

and∫
I

(1)
3

∫
I

(2)
4

∫
Rd−2

σ2(x)f(x)

(∫
K(t) (ωn(x+ thn)I{x+ thn ≤ zj}

− ωn(x)I{x ≤ zj}) dt
)2

dxd . . . dx3dx2dx1

= O(hn).

Continuing in this manner all subsets of Rd except for ×di=1 I
(i)
3 have been con-

sidered and the integrals either vanish or are of order O(hn). Finally, the integral
over ×di=1 I

(i)
3 , namely∫

I
(1)
3

∫
I

(2)
3

· · ·
∫
I

(d)
3

σ2(x)f(x)

(∫
K(t) (ωn(x+ thn)I{x+ thn ≤ zj}

− ωn(x)I{x ≤ zj}) dt
)2

dxd . . . dx2dx1

vanishes as well because

ωn(x+ thn)I{x+ thn ≤ zj} = ωn(x)I{x ≤ zj} = 1

for all t ∈ [−C,C]d and x ∈ ×di=1 I
(i)
3 . Finally (A.35) is proven.

Thus, Liebscher’s Theorem 2.1 in [46] can now be applied. By choosing

N :=
⌊
log(n)2

⌋
+ 1, ∀n ∈ N

it holds that 1 ≤ N ≤ n and

4NS(n) = O
(

log(n)2n
1
q

)
=
√
nO

(
log(n)2n−

q−2
2q

)
︸ ︷︷ ︸

q>2
= o(1)

<
√
nε,

for all ε > 0 and for n ∈ N large enough. Hence, applying Liebscher’s Theorem 2.1
in [46] it holds for all ε > 0 and n ∈ N large enough that

P

(
max

1≤j≤Jn

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕuj,1(Ui,Xi)−

∫
ϕuj,1dP

)∣∣∣∣∣ > ε

)
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≤
Jn∑
j=1

P

(∣∣∣∣∣
n∑
i=1

(
ϕuj,1(Ui,Xi)−

∫
ϕuj,1dP

)∣∣∣∣∣ > √nε
)

≤ Jn

(
4 exp

(
− nε2

64 n
N
D(n,N) + 8

3

√
nεNS(n)

)
+ 4

n

N
α(N)

)
= 4 exp

(
log(Jn)− nε2

64 n
N
D(n,N) + 8

3

√
nεNS(n)

)
(A.36)

+ 4 exp
(

log(Jn) + log
( n
N

)
+ log(α(N))

)
. (A.37)

It is left to show that the exponents in (A.36) and (A.37) diverge to −∞ as
n→∞. Starting with (A.37), it is to show that

64 n
N
D(n,N) + 8

3

√
nεNS(n)

nε2
= o

(
1

log(Jn)

)
.

Using log(Jn) = O (log(n)) and the bounds for S(n), D(n,N) and N it holds
that

64 n
N
D(n,N) + 8

3

√
nεNS(n)

nε2
log(Jn) =

(
64

ε2
1

N
D(n,N) +

1√
nε

8

3
NS(n)

)
log(Jn)

= O
((

log(n)2hn + log(n)2n−
1
2n

1
q

)
log(n)

)
= O

(
log(n)3hn +

log(n)3

n
q−2
2q

)
= o(1),

due to equation (3.6) in (B3) and because q > 2. Concerning (A.37), it is to show
that

1

| log(α(N))|
= o

(
1

log(Jn) + log
(
n
N

)) .
Again inserting the bounds and the exponential rates of convergence of the mix-

ing coefficients in (G) yields

1

| log(α(N))|

(
log(Jn) + log

( n
N

))
= O

(
1

N
log(n) +

1

N
(log(n) + log(N))

)
= O

(
1

log(n)

)
= o(1),

which finally proves (A.34) for k = 1. The proof of the case k = 3 works similar.
Only the parts that differ from the first case will be discussed in more detail. Again

Zi := ϕuj,3(Ui,Xi)−
∫
ϕuj,3dP

is defined for all 1 ≤ i ≤ n and n ∈ N. Then Zi is centered and |Zi| ≤ S(n) for
some S(n) = O

(
n

1
q

)
. It will be shown that

E[Z2
i ] = O

(
log(n)−1n−

q−2
2q

)
, (A.38)
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and therefore D(n,N) = N2O
(

log(n)−1n−
q−2
2q

)
. It holds that

E[Z2
i ] ≤ S(n)E[|Zi|] = O

(
n

1
q

)
E
[∣∣ϕuj,3(Ui,Xi)

∣∣] .
Furthermore, it can be obtained that

E
[∣∣ϕuj,3(Ui,Xi)

∣∣]
= E

[
|Ui|I

{
|Ui| ≤ n

1
q

}(∫
(−∞,zj ]

Khn(y −Xi)I{Khn(y −Xi) ≥ 0}ωn(y)dy

−
∫

(−∞,zj−1]

Khn(y −Xi)I{Khn(y −Xi) ≥ 0}ωn(y)dy

)]

≤ E

[
|Ui|

(∫
(−∞,zj ]

|Khn (y −Xi)|ωn(y)dy −
∫

(−∞,zj−1]

|Khn (y −Xi)|ωn(y)dy

)]

≤ E

[
σ(Xi)

(∫
(−∞,zj ]

|Khn (y −Xi)|ωn(y)dy −
∫

(−∞,zj−1]

|Khn (y −Xi)|ωn(y)dy

)]

=

∫
σ(x)

(∫
(−∞,zj ]

|Khn (y − x)|ωn(y)dy −
∫

(−∞,zj−1]

|Khn (y − x)|ωn(y)dy

)
f(x)dx

=

∫
(−∞,zj ]

∫
1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)σ(x)f(x)dxdy

−
∫

(−∞,zj−1]

∫
1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)σ(x)f(x)dxdy

= Qn(zj)−Qn(zj−1)

≤ εn
2
,

with Qn : Rd → R defined in (A.50) on page 154 and where the last inequality holds
because of (A.51) on page 155 (see proof of Lemma A.7). As εn = 1√

n log(n)
, it holds

that

E[Z2
i ] = O

(
n

1
qn−

1
2 log(n)−1

)
= O

(
log(n)−1n−

q−2
2q

)
,

and thus equation (A.38) is valid. After applying again Liebscher’s inequality with
N = blog(n)2c + 1, the upper bound converges to zero as n → ∞, because in this
case it holds that(

64

ε2
1

N
D(n,N) +

1√
nε

8

3
NS(n)

)
log(Jn) = O

((
log(n)n−

q−2
2q + log(n)2n−

1
2n

1
q

)
log(n)

)
= O

(
log(n)2

n
q−2
2q

+
log(n)3

n
q−2
2q

)
= o(1),

as q > 2.
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Lemma A.4. Under the same assumptions of Theorem 3.1

1√
n

bnsc∑
i=1

Uiωn(Xi)I{Xi ≤ z} = Tn(s, z) + oP (1),

holds uniformly in s ∈ [0, 1] and z ∈ Rd.

Remark. For the proof of Lemma A.4 a different technique will be used. A sequential
empirical process indexed in some function class will be defined and it will be shown
that it satisfies an asymptotic equicontinuity condition by an application of Corollary
B.3 from Appendix B. Note that here the different bracketing notion introduced in
Definition 1.6 is needed. The final argument uses the fact that all functions in that
class converge to zero with respect to the considered norm.

For the sake of understanding it is to mention that the method using Liebscher’s
inequality does not lead to a proof of Lemma A.4. The reason is that no rates
of convergence for the variance of the random variables, that are to define, can
be obtained (using the notations in [46] the problematic term is D(n,N)). The
alternative approach does not need rates of convergence, but only convergence to
zero.

Proof. It will be shown that uniformly in s ∈ [0, 1] and z ∈ Rd,

1√
n

bnsc∑
i=1

UiI{Xi ≤ z}I{Xi /∈ [−cn, cn]d} = oP (1). (A.39)

To do that, define the function class

F :=
{

(u,x) 7→ uI{x ≤ z}I{x /∈ [−a, a]d} : z ∈ Rd, a ∈ R+

}
and for s ∈ [0, 1] and ϕ ∈ F

Gn(s, ϕ) :=
1√
n

bnsc∑
i=1

(
ϕ(Ui,Xi)−

∫
ϕdP

)
,

where (Ut,Xt) ∼ P and
∫
ϕdP = 0. First it will be shown, by an applica-

tion of Corollary B.3 from Chapter B, that for all δn ↘ 0 and with d(ϕ, ψ) :=
‖ϕ− ψ‖L

Q
2+γ

2
(P ),

sup
{s,t∈[0,1],ϕ,ψ∈F :
|s−t|+d(ϕ,ψ)<δn}

|Gn(s, ϕ)−Gn(t, ψ)| = oP (1). (A.40)

Hence, conditions (A1), (A2) and (A3) from Theorem B.1 and Corollary B.3
from Chapter B will be shown. Condition (A1) is implied by the stronger assump-
tion in (G) with Q > (d+ 1)(2 + γ) from assumption (U). To show the validity of
(A2) the choice of approximating functions and bounding functions of the function
class F will be discussed in more detail.
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Let the notations of h, hi and H, Hi on page 42 in the proof of Theorem 3.2 be
used. Again note that for all i = 1, . . . , d, Hi is continuous, monotonically increasing
and Hi(−∞) = H(−∞) = 0, as well as Hi(∞) = H(∞) ≤ M , for M < ∞ from
assumption (U). Let additionally the following notations be introduced

H̃ : Rd → R, x 7→
∫

[x,∞)

h(t)dt,

and for all i = 1, . . . , d

H̃i : R→ R, x 7→
∫ ∞
x

hi(t)dt,

where for all i = 1, . . . , d, H̃i is continuous, monotonically decreasing and H̃i(∞) =
H̃(∞) = 0, as well as H̃i(−∞) = H̃(−∞) = H(∞) ≤M .

Now let for ε > 0, Ni ∈ N, i = 1, . . . , d and K ∈ N

−∞ = z0,i < · · · < zNi,i =∞

be a partition of R for all i = 1, . . . , d such that

Hi (zji,i)−Hi (zji−1,i) ≤
ε2

3d
∀ ji = 1, . . . , Ni, i = 1, . . . , d (A.41)

and
0 = a0 < · · · < aK =∞

be a partition of R+ such that

Hi (ak)−Hi (ak−1) ≤ ε2

3d
∀ k = 1, . . . , K, i = 1, . . . , d (A.42)

and

H̃i (−ak)− H̃i (−ak−1) ≤ ε2

3d
∀ k = 1, . . . , K, i = 1, . . . , d. (A.43)

Due to aforementioned properties of Hi and H̃i, K and Ni can be chosen to
be smaller than 6dMε−2 for all i = 1, . . . , d. For simplicity reasons the following
notation will be used. For j = (j1, . . . , jd) ∈ Nd let

zj := (zj1,1, . . . , zjd,d) ,

and j−1 := (j1−1, . . . , jd−1) ∈ Nd. For z := (z1, . . . , zd) and
¯
a := (a, . . . , a) ∈ Rd

it holds that

ϕ(u,x) := uI {x ≤ z} I{x /∈ [−
¯
a,

¯
a]}

= uI {x ≤ z} (1− I{x ∈ [−
¯
a,

¯
a]})

= u (I {x ≤ z} − I {−
¯
a ≤ x ≤ min(z,

¯
a)})

= uI

{
x ∈ (−∞, z] \ [−

¯
a,min(z,

¯
a)]︸ ︷︷ ︸

=:Az,a

}
.
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Note that I{a < x ≤ b} := 0 for a, b ∈ Rd with bi ≤ ai for some i ∈ {1, . . . , d}.
Define the following sets

Bj,k := (−∞, zj−1] \ [−
¯
ak,min(zj−1,

¯
ak)] ⊂ Rd,

Cj,k := (−∞, zj ] \ [−
¯
ak−1,min(zj ,

¯
ak−1)] ⊂ Rd.

Choose for z ∈ Rd, j ∈ ×di=1{1, . . . , Ni} such that z ∈ (zj−1, zj ] and for a ∈ R+,
k ∈ {1, . . . , K} such that a ∈ (ak−1, ak] ⊂ R and therefore

¯
a ∈ (

¯
ak−1,

¯
ak] ⊂ Rd.

Then it holds that
Bj,k ⊆ Az,a ⊆ Cj,k

and by defining
aj,k(u,x) := uI {x ∈ Bj,k}

and

bj,k(u,x) := |u|I {x ∈ Cj,k \Bj,k} .

it holds for all u ∈ R and x ∈ Rd that

|ϕ(u,x)− aj,k(u,x)| = |uI{x ∈ Az,a} − uI{x ∈ Bj,k}|
= |u|I{x ∈ Az,a \Bj,k}
≤ |u|I {x ∈ Cj,k \Bj,k}
= bj,k(u,x).

Furthermore, for all j ∈ ×di=1{1, . . . , Ni} and k ∈ {1, . . . , K} it holds that

‖bj,k‖L2(P ) ≤ ε and max
2≤i≤Q

(∫
|bj,k|i

2+γ
2 dP

) 1
2

≤ ε. (A.44)

To show (A.44), it can first be obtained that

‖bj,k‖2
L2(P ) = E

[
|Ut|2I {Xt ∈ Cj,k \Bj,k}

]
= E

[
σ2(Xt)I {Xt ∈ Cj,k \Bj,k}

]
=

∫
Cj,k\Bj,k

σ2(u)f(u)du

≤
∫
Cj,k\Bj,k

c̄(u)f(u)du

=

∫
Cj,k\Bj,k

h(u)du,

and for all i = 2, . . . , Q∫
|bj,k|i

2+γ
2 dP = E

[
|Ut|i

2+γ
2 I {Xt ∈ Cj,k \Bj,k}

]
≤ E

[
c(Xt)

iI {Xt ∈ Cj,k \Bj,k}
]

=

∫
Cj,k\Bj,k

c(u)if(u)du
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≤
∫
Cj,k\Bj,k

c̄(u)f(u)du

=

∫
Cj,k\Bj,k

h(u)du.

Furthermore,∫
Cj,k\Bj,k

h(u)du =

∫
Cj,k

h(u)du−
∫
Bj,k

h(u)du

=

(∫
(−∞,zj ]

h(u)du−
∫

[−
¯
ak−1,min(zj ,

¯
ak−1)]

h(u)

)

−

(∫
(−∞,zj−1]

h(u)du−
∫

[−
¯
ak,min(zj−1,

¯
ak)]

h(u)du

)
= H(zj)−H(zj−1)

+

∫
[−

¯
ak,min(zj−1,

¯
ak)]

h(u)du−
∫

[−
¯
ak−1,min(zj ,

¯
ak−1)]

h(u)du

holds. Now it can be shown that∫
[−

¯
ak,min(zj−1,

¯
ak)]

h(u)du−
∫

[−
¯
ak−1,min(zj ,

¯
ak−1)]

h(u)du

≤
(
H̃(−

¯
ak)− H̃(−

¯
ak−1)

)
+ (H(

¯
ak)−H(

¯
ak−1)) (A.45)

To argue the validity of (A.45), the following three cases will be considered.

Case 1: It holds that

min(zj−1,
¯
ak) > min(zj ,

¯
ak−1).

Case 2: It holds that

min(zj−1,
¯
ak) ≤ min(zj ,

¯
ak−1).

Case 3: There exists an I ⊂ {1, . . . , d} with |I| ∈ {1, . . . , d− 1} such that

min(zji−1, ak) > min(zji , ak−1), ∀i ∈ I

and the inequality does not hold for i 6∈ I.

Note that if min(zji−1, ak) > min(zji , ak−1) holds for all i ∈ {1, . . . , d}, this is
case 1. If it does not hold for any i ∈ {1, . . . , d}, this is case 2.

Case 1: If case 1 holds, then zj > zj−1 ≥ min(zj−1,
¯
ak) > min(zj,

¯
ak−1) and

therefore min(zj,
¯
ak−1) =

¯
ak−1. Hence, it holds that∫[

−
¯
ak,min(zj−1,

¯
ak)︸ ︷︷ ︸

≤
¯
ak

] h(u)du−
∫[
−

¯
ak−1,min(zj ,

¯
ak−1)︸ ︷︷ ︸

=
¯
ak−1

] h(u)du
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≤
∫

[−
¯
ak,

¯
ak]

h(u)du−
∫

[−
¯
ak−1,

¯
ak]

h(u)du︸ ︷︷ ︸
left hand side (l.h.s.)

≤
(
H̃(−

¯
ak)− H̃(−

¯
ak−1)

)
+ (H(

¯
ak)−H(

¯
ak−1))︸ ︷︷ ︸

right hand side (r.h.s.)

,

which proves the assertion in (A.45). Figure A.1 shows a visualization of the last
inequality for d = 2.

l.h.s.

r.h.s.

Figure A.1: Case 1 for d = 2

Case 2: If case 2 holds, then∫
[−

¯
ak,min(zj−1,

¯
ak)]

h(u)du−
∫

[−
¯
ak−1,min(zj ,

¯
ak−1)]

h(u)du︸ ︷︷ ︸
l.h.s.

≤
(
H̃(−

¯
ak)− H̃(−

¯
ak−1)

)
−
∫
S

h(u)du︸ ︷︷ ︸
r.h.s.

,

for some S ⊂ Rd. Figure A.2 shows a visualization of the inequality for d = 2. As∫
S

h(u)du ≥ 0,

the assertion in (A.45) follows.
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S

l.h.s. (blue: positive, red: negative)
r.h.s.

Figure A.2: Case 2 for d = 2

Case 3: If case 3 holds, then∫
[−

¯
ak,min(zj−1,

¯
ak)]

h(u)du−
∫

[−
¯
ak−1,min(zj ,

¯
ak−1)]

h(u)du︸ ︷︷ ︸
l.h.s.

≤
(
H̃(−

¯
ak)− H̃(−

¯
ak−1)

)
+ (H(

¯
ak)−H(

¯
ak−1))−

∫
S

h(u)du︸ ︷︷ ︸
r.h.s.

,

for some S ⊂ Rd. Figure A.3 shows a visualization of the inequality for d = 2. As
again

∫
S
h(u)du ≥ 0, the assertion in (A.45) follows.

S

l.h.s. (blue: positive, red: negative)

r.h.s.

Figure A.3: Case 3 for d = 2
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Hence, for all three cases, the assertion in (A.45) holds. Furthermore, as it has
been shown in the proof of Theorem 3.2, it holds that

H(zj)−H(zj−1) ≤
d∑
i=1

(Hi (zji,i)−Hi (zji−1,i))
(A.41)
≤ d

ε2

3d
=
ε2

3
.

Similarly, it holds that

H(
¯
ak)−H(

¯
ak−1) ≤

d∑
i=1

(Hi (ak)−Hi (ak−1))
(A.42)
≤ d

ε2

3d
=
ε2

3

and

H̃(−
¯
ak)− H̃(−

¯
ak−1) ≤

d∑
i=1

(
H̃i (−ak)− H̃i (−ak−1)

) (A.43)
≤ d

ε2

3d
=
ε2

3
,

which proves (A.44). As Ni = O (ε−2) for all i = 1, . . . , d and K = O (ε−2), it holds
that

Ñ[ ]

(
ε,F , ‖ · ‖L2(P )

)
≤
∣∣∣∣ d×
i=1
{1, . . . , Ni} × {1, . . . , K}

∣∣∣∣ =
d∏
i=1

Ni ·K = O
(
ε−2(d+1)

)
.

Hence, the assumptions on the bracketing number and bounding functions in
(A2) are satisfied as Q > (d+ 1)(2 + γ). Additionally, (A3) is also satisfied as

sup
ϕ∈F

∫
|ϕ|Q

2+γ
2 dP = sup

z∈Rd
sup
a∈R+

E
[
|Ut|Q

2+γ
2 I{Xt ≤ z}I{Xt /∈ (−

¯
a,

¯
a]}
]

= E
[
|Ut|Q

2+γ
2

]
≤
∫
c(u)QdF (u)

<∞.

and because F̄ : R× Rd → R, (u,x) 7→ u is an envelope function of F that fulfills∫
|F̄ |QdP = E

[
|Ut|Q

]
≤ E

[
|Ut|Q

2+γ
2

] 2
2+γ

= E
[
E
[
|Ut|Q

2+γ
2 |Xt

]] 2
2+γ

≤ E
[
c(Xt)

Q
] 2

2+γ

=

(∫
c(u)QdF (u)

) 2
2+γ

<∞.

An application of the first part of Corollary B.3 concludes the proof of (A.40).
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Next for some fixed z ∈ Rd defining

ϕn(u,x) := uI{x ≤ z}I{x /∈ [−cn, cn]d},

it holds that ϕn ∈ F for all n ∈ N and

d(ϕn, 0) = ‖ϕn‖L
Q

2+γ
2

(P )

= E
[
|Ui|Q

2+γ
2 I{Xi ≤ z}I{Xi /∈ [−cn, cn]d}

] 1
Q

2
2+γ

≤ E
[
c(Xi)

QI{Xi ≤ z}I{Xi /∈ [−cn, cn]d}
] 1
Q

2
2+γ

=

(∫
c(x)QI{x ≤ z}I{x /∈ [−cn, cn]d}f(x)dx

) 1
Q

2
2+γ

≤
(∫

c(x)QI{x /∈ [−cn, cn]d}f(x)dx

) 1
Q

2
2+γ

n→∞−→ 0,

where the convergence holds by the dominated convergence theorem as
∫
c(x)Qf(x)dx <

∞. With (∫
c(x)QI{x /∈ [−cn, cn]d}f(x)dx

) 1
Q

2
2+γ

=: δn ↘ 0

it can therefore be concluded that

sup
s∈[0,1]

sup
z∈Rd

∣∣∣∣∣∣ 1√
n

bnsc∑
i=1

UiI{Xi ≤ z}I{Xi /∈ [−cn, cn]d}

∣∣∣∣∣∣
≤ sup

s∈[0,1]

sup
{ϕ∈F :d(ϕ,0)<δn}

|Gn(s, ϕ)−Gn(s, 0)|

≤ sup
{s,t∈[0,1],ϕ,ψ∈F :
|s−t|+d(ϕ,ψ)<δn}

|Gn(s, ϕ)−Gn(t, ψ)| .

With (A.40) the last term is oP (1) which proves the assertion in (A.39) and
therefore the assertion of the lemma.

A.2 Auxiliary lemmata

In this section, bounds for the bracketing numbers used in Lemmata A.1, A.2 and
A.3 will be proven. They are stated in Lemmata A.5, A.6 and A.7 respectively.

Lemma A.5. For the bracketing number N[ ]

(
ε,F , ‖ · ‖L2(P )

)
where Xt ∼ P and

F :=
{
x 7→ I{x ≤ z} : z ∈ Rd

}
defined on page 115 in the proof of Lemma A.1, it holds that

N[ ]

(
ε,F , ‖ · ‖L2(P )

)
= O

(
ε−2d

)
.
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Proof. Let Fi denote the one-dimensional distribution function of the i-th component
of X1 = (X1,1, . . . , X1,d), for all i = 1, . . . , d, and F the d-dimensional distribution
function of X1. Let now for ε > 0 and some Ni ∈ N, i = 1, . . . , d

−∞ = z0,i < · · · < zNi,i =∞

be a partition of R for all i = 1, . . . , d such that

Fi (zji,i)− Fi (zji−1,i) ≤
ε2

d
∀ ji = 1, . . . , Ni, i = 1, . . . , d. (A.46)

Since Fi is continuous and Fi(−∞) = 0, Fi(∞) = 1 holds, Ni can be chosen to
be smaller than 2dε−2 for all i = 1, . . . , d. By using cartesian products a partition
of Rd is obtained. For simplicity reasons the following notation will be used. For
j = (j1, . . . , jd) ∈ Nd, let

zj := (zj1,1, . . . , zjd,d) ,

and j − 1 := (j1 − 1, . . . , jd − 1) ∈ Nd. For all j ∈ ×di=1{1, . . . , Ni}, define

ϕuj (x) := I {x ≤ zj}

and
ϕlj(x) := I {x ≤ zj−1} .

With these notations it holds that for all z ∈ Rd there exists a j ∈ ×di=1{1, . . . , Ni}
such that z ∈ (zj−1, zj ]. Therefore, for all ϕ ∈ F there exists a j ∈ ×di=1{1, . . . , Ni}
such that ϕ ∈ [ϕlj , ϕ

u
j ]. Furthermore, it holds that∥∥ϕu − ϕl∥∥2

L2(P )
= E

[
|I {Xt ≤ zj} − I {Xt ≤ zj−1}|2

]
= E [I {Xt ≤ zj} − I {Xt ≤ zj−1}]
= F (zj)− F (zj−1)

(∗)
≤

d∑
i=1

(
Fi(zji,i)− Fi(zji−1,i)

)
(A.46)
≤ d

ε2

d
= ε2,

where the inequality in (∗) holds by similar calculations as in the proof of Theorem
3.2 on page 44. Since Ni = O(ε−2) for all i = 1, . . . , d, it holds that

N[ ]

(
ε,F , ‖ · ‖L2(P )

)
≤
∣∣∣∣ d×
i=1
{1, . . . , Ni}

∣∣∣∣ =
d∏
i=1

Ni = O(ε−2d).

Lemma A.6. For the bracketing number N[ ]

(
ε,Fn,1, ‖ · ‖L1(P )

)
where Xt ∼ P and

Fn,1 :=

{
x 7→

∫
(−∞,z]

(m(y)−m(x))
1

hdn
K

(
y − x
hn

)
ωn(y)dy : z ∈ Rd

}
defined on page 125 in the proof of Lemma A.2, it holds that

N[ ]

(
ε,Fn,1, ‖ · ‖L1(P )

)
= O

(
ε−d
)
,

independent of n ∈ N.
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Proof. First some notations are necessary. Let for all n ∈ N

pn : Rd → R

x 7→
∫
|m(x)−m(y)| 1

hdn

∣∣∣∣K (x− yhn

)∣∣∣∣ωn(x)f(y)dy

and

Pn : Rd → R, x 7→
∫

(−∞,x]

pn(t)dt,

as well as for all n ∈ N and i = 1, . . . , d

pn,i : R→ R

x 7→
∫
· · ·
∫
pn(x1, . . . , xi−1, x, xi+1, . . . , xd)dx1 . . . dxi−1dxi+1 . . . dxd

and

Pn,i : R→ R, x 7→
∫ x

−∞
pn,i(t)dt.

Note that for all n ∈ N and i = 1, . . . , d, Pn,i and Pn are monotonically increasing
and it holds that

Pn,i(∞) = Pn(∞)

=

∫ ∫
|m(t)−m(y)| 1

hdn

∣∣∣∣K (t− yhn

)∣∣∣∣ωn(t)f(y)dydt

=

∫ ∫
|m(y + xhn)−m(y)||K(x)|ωn(y + xhn)f(y)dydx

≤
∫ ∫ ∣∣∣∣∣∣

∑
|i|=1

Dim(y)(xhn)i

i!

∣∣∣∣∣∣ |K(x)|ωn(y + xhn)f(y)dydx (A.47)

+

∫ ∫ ∣∣∣∣∣∣
∑
|i|=2

Dim(ξy,x)(xhn)i

i!

∣∣∣∣∣∣ |K(x)|ωn(y + xhn)f(y)dydx, (A.48)

for some ξy,x on the line segment between y + xhn and y. The term in (A.47) can
be bounded by

hn
∑
|i|=1

1

i!
sup
z∈In
|Dim(z)|︸ ︷︷ ︸
=O(qn)

∫
|x|i|K(x)|dx︸ ︷︷ ︸

<∞

∫
f(y)dy︸ ︷︷ ︸

=1

= O(hnqn)

and similarly the term in (A.48) can be bounded by

h2
n

∑
|i|=2

1

i!
sup

z∈[−cn−2hnC,cn+2hnC]

|Dim(z)|︸ ︷︷ ︸
(F2)
= O(qn)

∫
|x|i|K(x)|dx︸ ︷︷ ︸

<∞

∫
f(y)dy︸ ︷︷ ︸

=1

= O(h2
nqn).
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Both bounds converge to zero as n tends to infinity. Hence, all above integrals
are finite and pn, Pn, as well as pn,i and Pn,i are well defined for all i = 1, . . . , d and
for all fixed n ∈ N. Additionally, this implies that there exists a constant P̄ < ∞
(independent of n ∈ N), such that Pn,i(∞) < P̄ for all i = 1, . . . , d and n ∈ N.
Furthermore, Pn,i is continuous and it holds that Pn,i(−∞) = Pn(−∞) = 0 for all
i = 1, . . . , d and n ∈ N. Hence for all i = 1, . . . , d and ε > 0, some Ni ∈ N and a
partition

−∞ = z0,i < · · · < zNi,i =∞

of R can be chosen, such that for all n ∈ N

Pn,i(zji,i)− Pn,i(zji−1,i) ≤
ε

d
, ∀ ji = 1, . . . , Ni, i = 1, . . . , d, (A.49)

and where Ni can be chosen to be smaller than 2dP̄ ε−1 for all i = 1, . . . , d. By using
cartesian products a partition of Rd is obtained. For simplicity reasons the following
notation will be used. For j = (j1, . . . , jd) ∈ Nd let

zj = (zj1,1, . . . , zjd,d)

and j − 1 := (j1 − 1, . . . , jd − 1). Then for all z ∈ Rd a j ∈ ×di=1{1, . . . , Ni} can be
found such that z ∈ (zj−1, zj ]. Let for z ∈ (zj−1, zj ]

ϕ(x) :=

∫
(−∞,z]

(m(y)−m(x))Khn(y − x)ωn(y)dy

and define

ϕuj (x) :=

∫
(−∞,zj ]

(m(y)−m(x))Khn (y − x) I{(m(y)−m(x))Khn (y − x) ≥ 0}ωn(y)dy

+

∫
(−∞,zj−1]

(m(y)−m(x))Khn (y − x) I{(m(y)−m(x))Khn (y − x) < 0}ωn(y)dy

and

ϕlj(x) :=

∫
(−∞,zj−1]

(m(y)−m(x))Khn (y − x) I{(m(y)−m(x))Khn (y − x) ≥ 0}ωn(y)}dy

+

∫
(−∞,zj ]

(m(y)−m(x))Khn (y − x) I{(m(y)−m(x))Khn (y − x) < 0}ωn(y)dy.

Then it holds that ϕlj ≤ ϕ ≤ ϕuj . Furthermore, it holds that

∣∣ϕuj (x)− ϕlj(x)
∣∣ =

∣∣∣∣∣
∫

(−∞,zj ]

|m(y)−m(x)| 1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)dy

−
∫

(−∞,zj−1]

|m(y)−m(x)| 1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)dy

∣∣∣∣∣
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=

∫
(−∞,zj ]

|m(y)−m(x)| 1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)dy

−
∫

(−∞,zj−1]

|m(y)−m(x)| 1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)dy

and therefore

E
[∣∣ϕuj (Xi)− ϕlj(Xi)

∣∣] =

∫ ∫
(−∞,zj ]

|m(y)−m(x)| 1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)dyf(x)dx

−
∫ ∫

(−∞,zj−1]

|m(y)−m(x)| 1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)dyf(x)dx

=

∫
(−∞,zj ]

∫
|m(y)−m(x)| 1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)f(x)dxdy

−
∫

(−∞,zj−1]

∫
|m(y)−m(x)| 1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)f(x)dxdy

=

∫
(−∞,zj ]

pn(y)dy −
∫

(−∞,zj−1]

pn(y)dy

= Pn(zj)− Pn(zj−1)

(∗)
≤

d∑
i=1

(Pn,i(zji,i)− Pn,i(zji−1,i))

(A.49)
≤ d

ε

d
= ε,

where the inequality in (∗) holds by similar calculations as in the proof of Theorem
3.2 on page 44. As Ni = O(ε−1) for all i = 1, . . . , d, it holds that

N[ ]

(
ε,Fn,1, ‖ · ‖L1(P )

)
≤
∣∣∣∣ d×
i=1
{1, . . . , Ni}

∣∣∣∣ =
d∏
i=1

Ni = O(ε−d).

Lemma A.7. For the bracketing number N[ ]

(
ε,Fn,2, ‖ · ‖L1(P )

)
where (Ut,Xt) ∼ P

and

Fn,2 :=

{
(u,x) 7→ uI

{
|u| ≤ n

1
q

}(∫
(−∞,z]

Khn(y − x)ωn(y)dy − ωn(x)I{x ≤ z}
)

: z ∈ Rd

}
,

defined on page 134 in the proof of Lemma A.3, it holds that

N[ ]

(
ε,Fn,2, ‖ · ‖L1(P )

)
= O

(
ε−d
)
.
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Proof. First some notations are necessary. Let

qn : Rd → R, x 7→
∫

1

hdn

∣∣∣∣K (x− yhn

)∣∣∣∣ωn(x)σ(y)f(y)dy,

where σ(y) is the positive square root of σ2(y) for y ∈ Rd,

Qn : Rd → R, x 7→
∫

(−∞,x]

qn(t)dt (A.50)

and for all i = 1, . . . , d let

qn,i : R→ R

x 7→
∫
· · ·
∫
qn(x1, . . . , xi−1, x, xi+1, . . . , xd)dx1 . . . dxi−1dxi+1 . . . dxd,

Qn,i : R→ R, x 7→
∫ x

−∞
qn,i(t)dt.

Furthermore, let

rn : Rd → R, x 7→ σ2(x)f(x)ωn(x),

Rn : Rd → R, x 7→
∫

(−∞,x]

rn(t)dt,

and for all i = 1, . . . , d let

rn,i : R→ R

x 7→
∫
· · ·
∫
rn(x1, . . . , xi−1, x, xi+1, . . . , xd)dx1 . . . dxi−1dxi+1 . . . dxd,

Rn,i : R→ R, x 7→
∫ x

−∞
rn,i(t)dt.

Note that for all n ∈ N and i = 1, . . . , d, Qn,i and Rn,i are continuous. Addi-
tionally, it holds that Qn,i(−∞) = Qn(−∞) = 0 and Rn,i(−∞) = Rn(−∞) = 0, as
well as

Qn,i(∞) = Qn(∞)

=

∫ ∫
1

hdn

∣∣∣∣K (t− yhn

)∣∣∣∣ωn(t)σ(y)f(y)dydt

≤
∫ ∫

|K (x)|σ(y)f(y)dydx

=

∫
|K (x)| dx︸ ︷︷ ︸

<∞

∫
σ(y)f(y)dy︸ ︷︷ ︸

<∞

< Q̄,
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and

Rn,i(∞) = Rn(∞)

=

∫
σ(t)f(t)ωn(t)dt

≤
∫
σ(t)f(t)dt

< R̄,

for some Q̄, R̄ < ∞ that do not depend on n ∈ N. Hence, for all i = 1, . . . , d and
ε > 0, some Ni ∈ N and a partition

−∞ = z0,i < · · · < zNi,i =∞

of R can be chosen such that for all n ∈ N

Qn,i(zji,i)−Qn,i(zji−1,i) ≤
ε

2d
, ∀ ji = 1, . . . , Ni, i = 1, . . . , d, (A.51)

and

Rn,i(zji,i)−Rn,i(zji−1,i) ≤
ε

2d
, ∀ ji = 1, . . . , Ni, i = 1, . . . , d, (A.52)

and where Ni can be chosen to be smaller than 4dmax(Q̄, R̄)ε−1 for all i = 1, . . . , d.
By using cartesian products a partition of Rd is obtained. For simplicity reasons the
following notation will be used. For j = (j1, . . . , jd) ∈ Nd let

zj = (zj1,1, . . . , zjd,d)

and j−1 := (j1−1, . . . , jd−1). Then for all z ∈ Rd there exists a j ∈ ×di=1{1, . . . , Ni}
such that z ∈ (zj−1, zj ]. For z ∈ (zj−1, zj ] define

ϕ(u,x) := uI
{
|u| ≤ n

1
q

}∫
(−∞,z]

Khn(y−x)ωn(y)dy−uI
{
|u| ≤ n

1
q

}
ωn(x)I{x ≤ z}.

Then it holds that

ϕ(u,x) ≤ uI
{
|u| ≤ n

1
q

}
I{u ≥ 0}

∫
(−∞,zj ]

Khn(y − x)I{Khn(y − x) ≥ 0}ωn(y)dy

+ uI
{
|u| ≤ n

1
q

}
I{u < 0}

∫
(−∞,zj−1]

Khn(y − x)I{Khn(y − x) ≥ 0}ωn(y)dy

+ uI
{
|u| ≤ n

1
q

}
I{u ≥ 0}

∫
(−∞,zj−1]

Khn(y − x)I{Khn(y − x) < 0}ωn(y)dy

+ uI
{
|u| ≤ n

1
q

}
I{u < 0}

∫
(−∞,zj ]

Khn(y − x)I{Khn(y − x) < 0}ωn(y)dy

− uI
{
|u| ≤ n

1
q

}
I{u ≥ 0}ωn(x)I{x ≤ zj−1}

− uI
{
|u| ≤ n

1
q

}
I{u < 0}ωn(x)I{x ≤ zj}

=: ϕuj (u,x).
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And similarly,

ϕ(u,x) ≥ uI
{
|u| ≤ n

1
q

}
I{u ≥ 0}

∫
(−∞,zj−1]

Khn(y − x)I{Khn(y − x) ≥ 0}ωn(y)dy

+ uI
{
|u| ≤ n

1
q

}
I{u < 0}

∫
(−∞,zj ]

Khn(y − x)I{Khn(y − x) ≥ 0}ωn(y)dy

+ uI
{
|u| ≤ n

1
q

}
I{u ≥ 0}

∫
(−∞,zj ]

Khn(y − x)I{Khn(y − x) < 0}ωn(y)dy

+ uI
{
|u| ≤ n

1
q

}
I{u < 0}

∫
(−∞,zj−1]

Khn(y − x)I{Khn(y − x) < 0}ωn(y)dy

− uI
{
|u| ≤ n

1
q

}
I{u ≥ 0}ωn(x)I{x ≤ zj}

− uI
{
|u| ≤ n

1
q

}
I{u < 0}ωn(x)I{x ≤ zj−1}

=: ϕlj(u,x).

It holds that∣∣ϕuj (u,x)− ϕlj(u,x)
∣∣ = |u|I

{
|u| ≤ n

1
q

}(∫
(−∞,zj ]

1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)dy

−
∫

(−∞,zj−1]

1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)dy

+ I{x ≤ zj}ωn(x)− I{x ≤ zj−1}ωn(x)

)
and thus using E[|Ui||Xi] ≤ (E [U2

i |Xi])
1
2 = σ(Xi) a.s., it can be obtained that

E
[∣∣ϕuj (Ui,Xi)− ϕlj(Ui,Xi)

∣∣]
≤ E

[
σ(Xi)

(∫
(−∞,zj ]

1

hdn

∣∣∣∣K (y −Xi

hn

)∣∣∣∣ωn(y)dy

−
∫

(−∞,zj−1]

1

hdn

∣∣∣∣K (y −Xi

hn

)∣∣∣∣ωn(y)dy

+I{Xi ≤ zj}ωn(Xi)− I{Xi ≤ zj−1}ωn(Xi)

)]

=

∫
σ(x)

∫
(−∞,zj ]

1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)dyf(x)dx

−
∫
σ(x)

∫
(−∞,zj−1]

1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)dyf(x)dx

+

∫
(−∞,zj ]

σ(x)f(x)ωn(x)dx−
∫

(−∞,zj−1]

σ(x)f(x)ωn(x)dx

=

∫
(−∞,zj ]

∫
1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)σ(x)f(x)dxdy

−
∫

(−∞,zj−1]

∫
1

hdn

∣∣∣∣K (y − xhn

)∣∣∣∣ωn(y)σ(x)f(x)dxdy
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+

∫
(−∞,zj ]

σ(x)f(x)ωn(x)dx−
∫

(−∞,zj−1]

σ(x)f(x)ωn(x)dx

=

∫
(−∞,zj ]

qn(y)dy −
∫

(−∞,zj−1]

qn(y)dy

+

∫
(−∞,zj ]

rn(y)dy −
∫

(−∞,zj−1]

rn(y)dy

= Qn(zj)−Qn(zj−1) +Rn(zj)−Rn(zj−1)

(∗)
≤

d∑
i=1

(Qn,i(zji,i)−Qn,i(zji−1,i))︸ ︷︷ ︸
(A.51)
≤ ε

2d

+
d∑
i=1

(Rn,i(zji,i)−Rn,i(zji−1,i))︸ ︷︷ ︸
(A.52)
≤ ε

2d

≤ ε,

where (∗) holds due to similar calculations as in the proof of Theorem 3.2 on page
44. As Ni = O(ε−1) for all i = 1, . . . , d, it holds that

N[ ](ε,Fn,2, ‖ · ‖L1(P )) ≤
∣∣∣∣ d×
i=1
{1, . . . , Ni}

∣∣∣∣ =
d∏
i=1

Ni = O(ε−d).
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B A weak convergence result for se-
quential empirical processes under
weak dependence

The purpose of this Chapter is to prove a weak convergence result for empirical
processes indexed in general classes of functions and with an underlying α-mixing
triangular array process. In particular, the uniformly boundedness assumption on
the function class, which is required in most of the existing literature, is spared.
Furthermore, under strict stationarity a weak convergence result for the sequential
empirical process indexed in function classes is obtained, which is directly applicable
to the process Tn from Chapter 3. A short literature review on weak convergence of
empirical processes will be followed by the main results and their proofs.

B.1 Literature review

The asymptotic behavior of empirical processes has been studied for decades. In-
spired by the study of the empirical distribution function, more generally empirical
processes indexed in function classes gained a lot of attention. In particular, cen-
tral limit results, i.e. weak convergence of the sequence of the stochastic processes
to a Gaussian process, are of interest. Such results are sometimes referred to as a
uniform central limit theorem (CLT) for the empirical process indexed in function
classes and as a uniform functional central limit theorem (FCLT) for the partial
sum process indexed in function classes, also referred to as the sequential empirical
process indexed in function classes.

The most simple case is given if the underlying process is a family of i.i.d. ran-
dom variables. In this situation many results are available. Ossiander [57] showed a
uniform CLT under a metric entropy condition on the function class. The uniform
FCLT follows directly by the non-functional one. For example van der Vaart and
Wellner [75] state this result in Section 2.12 of their book and also give a great
overview on empirical processes for the i.i.d. case in general. For dependent data
much less is known. There are several results, concerning the non-sequential case.
Doukhan, Massart and Rio [19] showed a uniform CLT under a metric entropy con-
dition on the function class and β-mixing, strictly stationary data. Dedecker and
Louhichi [13] generalized this result, imposing a condition on suitable maximal in-
equalities for the empirical process indexed in finite sets of functions. Their result
is applicable to β-mixing and non-uniform φ-mixing sequences. Andrews and Pol-
lard [2] showed a uniform CLT for α-mixing arrays and uniformly bounded function
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classes, fulfilling a metric entropy condition. Massart [51] showed a uniform CLT
for uniformly bounded function classes and strictly stationary, α-mixing sequences,
when the mixing coefficient decays exponentially fast. Given uniformly bounded
function classes, Hariz [28] gave more general conditions in terms of bracketing
numbers with respect to a norm resulting from a moment inequality satisfied by the
underlying process. He particularly improves among others the results in [51] and
[2]. Hansen [25] proved a uniform CLT for mixingale arrays and classes of Lipschitz-
continuous functions. More recent results use alternative dependence conditions.
Hagemann [24] uses an alternative short-range dependence notion, applicable to
non-linear time series models, and uniformly bounded classes of functions. Dehling,
Durieu and Tusche [15] showed a uniform CLT for multiple mixing and strictly sta-
tionary data, and uniformly bounded function classes. In the dependent setup the
convergence of the sequential process does not follow directly by the convergence
of the non-sequential one, but requires additional conditions. Dehling, Durieu and
Tusche [14] extended their aforementioned uniform CLT to a functional version. Vol-
gushev and Shao [77] established more general assumptions, under which a uniform
FCLT holds for strictly stationary data. The result particularly requires a strong
version of asymptotic equicontinuity for the non-sequential process.

An intensive study of the literature led to two main findings. First, most uniform
central limit results for dependent data impose the condition of uniformly bounded
classes of functions or strong smoothness conditions. And secondly, very few results
are available regarding the uniform FCLT. The result in this chapter is a uniform
CLT for empirical processes with an α-mixing triangular array process indexed by
a function class, that fulfills a metric entropy condition. It is a generalization of the
result of Andrews and Pollard [2] to unbounded function classes. The result partic-
ularly implies the strong version of asymptotic equicontinuity, needed in [77]. In the
case of strict stationarity a uniform FCLT can therefore be obtained simultaneously.

B.2 Main results

Theorem B.1 gives conditions on the underlying triangular array process {Xn,t :
1 ≤ t ≤ n, n ∈ N} and on the function class F , under which the (non-sequential)
empirical process {Gn(1, ϕ) : ϕ ∈ F}, defined in Definition 1.4, on page 10 satisfies
a strong form of asymptotic equicontinuity.

Theorem B.1 (Equicontinuity). Let {Xn,t : 1 ≤ t ≤ n, n ∈ N} be a triangular
array of random variables with values in some measure space X . Let F be a class
of measurable functions X → R. Let furthermore the following assumptions hold.

(A1) Let {Xn,t : 1 ≤ t ≤ n, n ∈ N} be strongly mixing with mixing coefficient α(·),
such that

∞∑
t=1

tQ−2α(t)
γ

2+γ <∞,

for some γ > 0 and some even Q ≥ 2.
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(A2) For Q and γ from assumption (A1) and

ρ(ϕ) := sup
n∈N

sup
1≤t≤n

E[|ϕ(Xn,t)|2]
1
2 ,

for all measurable functions ϕ : X → R and Ñ[ ](·,F , ρ) from Definition 1.6
on page 11, let

1∫
0

x−
γ

2+γ

(
Ñ[ ](x,F , ρ)

) 1
Q
dx <∞.

Furthermore, assume that each ε > 0 allows a choice of bounding class B, such
that for all i = 2, . . . , Q

sup
n∈N

sup
1≤t≤n

E
[
|b(Xn,t)|i

2+γ
2

] 1
2 ≤ ε, ∀ b ∈ B. (B.1)

Then with d(ϕ, ψ) := sup
n∈N

sup
1≤t≤n

E
[
|ϕ(Xn,t)− ψ(Xn,t)|Q

2+γ
2

] 1
Q

2
2+γ , it holds that

lim
δ↘0

lim sup
n→∞

E∗

[
sup

{ϕ,ψ∈F :d(ϕ,ψ)<δ}
|Gn(1, ϕ)−Gn(1, ψ)|Q

] 1
Q

= 0.

The proof is given in Section B.3. A uniform CLT as direct consequence is
obtained and stated in Corollary B.2. In contrast to most results for strongly mixing
processes in the literature, it does not require uniformly bounded function classes.

Corollary B.2 (Uniform CLT). Let the assumptions of Theorem B.1 hold and let
additionally for all K ∈ N and all finite collections ϕk ∈ F , k = 1, . . . , K,

(Gn(1, ϕk))k=1,...,K

D−→
n→∞

(G(1, ϕk))k=1,...,K ,

where G := {G(1, ϕ) : ϕ ∈ F} is a centered Gaussian process. Then

{Gn(1, ϕ) : ϕ ∈ F}  
n→∞

G,

in l∞(F).

The proof is given in Section B.3. Note that Corollary B.2 is a result for trian-
gular arrays, which are more powerful than their analogues for a single sequence.
For strictly stationary sequences a uniform FCLT can be obtained, which is stated
in the following.

Corollary B.3 (Uniform FCLT). Let (Xt)t∈Z be a strictly stationary sequence of
random variables. Let the assumptions of Theorem B.1 be satisfied by Xn,t := Xt,
for all 1 ≤ t ≤ n, n ∈ N and by Q > 2. Additionally, let

(A3) F possess an envelope function (see [75], p. 84 for the definition) F , with
E[|F (X1)|Q] <∞ and let there exist a constant L <∞, such that

sup
ϕ∈F

E
[
|ϕ(X1)|Q

2+γ
2

]
≤ L.
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Then with d(ϕ, ψ) := E
[
|ϕ(X1)− ψ(X1)|Q 2+γ

2

] 1
Q

2
2+γ , it holds that

∀ ε > 0 : lim
δ↘0

lim sup
n→∞

P ∗

 sup
{s,t∈[0,1],ϕ,ψ∈F :
|s−t|+d(ϕ,ψ)<δ}

|Gn(s, ϕ)−Gn(t, ψ)| > ε

 = 0.

If additionally for all K ∈ N and all finite collections ϕk ∈ F , sk ∈ [0, 1], k =
1, . . . , K,

(Gn(sk, ϕk))k=1,...,K

D−→
n→∞

(G(sk, ϕk))k=1,...,K ,

where G := {G(s, ϕ) : s ∈ [0, 1], ϕ ∈ F} is a centered Gaussian process, then it can
be concluded that

{Gn(s, ϕ) : s ∈ [0, 1], ϕ ∈ F}  
n→∞

G,

in l∞([0, 1]×F).

The proof is given in Section B.3. Note that due to the strict stationarity as-
sumption, the semi norm ρ on F simplifies to the L2(P ) norm and the semi metric d
is the LQ 2+γ

2
(P ) distance, where X1 ∼ P . Furthermore, condition (B.1) in Theorem

B.1 simplifies to

E
[
|b(X1)|i

2+γ
2

] 1
2 ≤ ε, ∀ b ∈ B, ∀ i = 2, . . . , Q.

Remark. Corollary B.3 is applied to show the weak convergence of the process Tn
in Theorem 3.2 on page 41 in Chapter 3. Furthermore, it is used in the proof of
Lemma A.4 on page 142 in Appendix A. Certainly the uniform CLT and FCLT
are of independent interest as they can be a powerful tool for proofs of asymptotic
results in mathematical statistics in different situations.

B.3 Proofs

The key tool in proving Theorem B.1 is a moment inequality for Gn(1, ϕ) for fixed
n ∈ N, which is stated in the following lemma. It is a generalization of Lemma
3.1 of Andrews and Pollard [2], who proved a moment inequality for bounded and
strongly mixing random variables. Extending this result to unbounded random
variables makes it possible to extend the uniform CLT to unbounded function classes.
Nevertheless, it comes at the cost of moment constraints. Note that similar results
are available, for example Theorem 2 on page 26 in [18] or Corollary A.0.1 on page
319 in [63].

Lemma B.4. Let {Zn,t : 1 ≤ t ≤ n, n ∈ N} be a strongly mixing triangular array of
random variables with values in R and with mixing coefficient α(·). Let furthermore
for some even Q ≥ 2 and some γ > 0, τ > 0

(i)
∞∑
t=1

tQ−2α(t)
γ

2+γ <∞ and
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(ii) E[Zn,t] = 0, E
[
|Zn,t|i

2+γ
2

]
≤ τ 2+γ, for all i = 2, . . . , Q and 1 ≤ t ≤ n, n ∈ N.

Then

E

∣∣∣∣∣ 1√
n

n∑
i=1

Zn,i

∣∣∣∣∣
Q
 1
Q

≤ C max
(
n−

1
2 , τ
)
, ∀ n ∈ N, (B.2)

for some constant C only depending on Q, γ and the mixing coefficient.

For the proof of Lemma B.4 the following covariance inequality for strongly
mixing triangular arrays is used. It was stated by Sun and Chiang [72] (see Lemma
2.1) for α-mixing sequences of real valued random variables. Su and Xiao [71]
extended it to α-mixing sequences of multivariate random variables (see Lemma
D.1). As Su and Ullah [69] argued, the result is also valid for α-mixing triangular
arrays of random variables (see Lemma A.2 in the supplement material to [69]).

Lemma B.5. Let {ξn,t : 1 ≤ t ≤ n, n ∈ N} be a strongly mixing triangular array
of random variables with values in Rl and with mixing coefficient α(·). Let Fn,i1...im
denote the distribution function of (ξn,i1 , . . . , ξn,im). For some m > 1 and some
integers (i1, . . . , im) such that 1 ≤ i1 < · · · < im ≤ n, let g be a Borel measurable
function such that∫

|g(x1, . . . , xm)|1+δdFn,i1...im(x1, . . . , xm) ≤Mn

and ∫
|g(x1, . . . , xm)|1+δdFn,i1...ij(x1, . . . , xj)dFn,ij+1...im(xj+1, . . . , xm) ≤Mn,

for some δ > 0 and some 1 ≤ j < m. Then it holds that∣∣∣∣∫ g(x1, . . . , xm)dFn,i1...im(x1, . . . , xm)

−
∫
g(x1, . . . , xm)dFn,i1...ij(x1, . . . , xj)dFn,ij+1...im(xj+1, . . . , xm)

∣∣∣∣
≤ 4M

1
1+δ
n α(ij+1 − ij)

δ
1+δ .

Sun and Chiang gave a proof of their version Lemma 2.1 in [72]. The proof of
the generalized result Lemma B.5 works analogously and is therefore omitted.

Remark. Note that for the proof of Lemma B.4 the assertion in Lemma B.5 will only
be needed for one-dimensional triangular arrays as it will be applied to {Zn,t ∈ R :
1 ≤ t ≤ n, n ∈ N}. The more general version, however, is used for the proof of the
consistency result in Theorem 3.4 on page 50.

Proof of Lemma B.4. The proof is closely related to the proof of Lemma 3.1 by An-
drews and Pollard [2], but uses the covariance inequality for not necessarily bounded
and strongly mixing random variables in Lemma B.5.
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To begin with, it will be proven via induction that for all Q ≥ 2 (not necessarily
even) satisfying assumptions (i) and (ii), there exists a constant C ′ only depending
on Q, γ and the mixing coefficient, such that∑

i∈IQ

∣∣E [Zn,i1 · · ·Zn,iQ]∣∣ ≤ C ′
(
nτ 2 + · · ·+ (nτ 2)b

Q
2 c
)
, ∀ n ∈ N, (B.3)

where IQ := {i = (i1, . . . , iQ) ∈ {1, . . . , n}Q : i1 ≤ · · · ≤ iQ}.
Let for Q = 2 the assumptions of Lemma B.4 hold for some γ, τ > 0. Let

furthermore {Z̃n,t : 1 ≤ t ≤ n, n ∈ N} be an independent copy of {Zn,t : 1 ≤ t ≤
n, n ∈ N}. Then applying (ii)

E
[
|Zn,i1Z̃n,i2|

2+γ
2

]
≤ E

[
|Zn,i1|2

2+γ
2

] 1
2
E
[
|Z̃n,i2|2

2+γ
2

] 1
2

≤ τ 2+γ

and similarly
E
[
|Zn,i1Zn,i2 |

2+γ
2

]
≤ τ 2+γ

holds for all i1, i2 ∈ {1, . . . , n} with i1 6= i2 and n ∈ N. Lemma B.5 can therefore be
applied with g(x1, x2) := x1x2, δ := γ

2
and Mn := τ 2+γ for all n ∈ N. It implies that

n∑
i1=1

n∑
i2=1
i1<i2

|E [Zn,i1Zn,i2 ]| =
n∑

i1=1

n∑
i2=1
i1<i2

|E [Zn,i1Zn,i2 ]− E [Zi1 ]E [Zi2 ]|

≤
n∑

i1=1

n∑
i2=1
i1<i2

α(i2 − i1)
γ

2+γ 4
(
τ 2+γ

) 2
2+γ

≤ nτ 24
∞∑
t=1

α(t)
γ

2+γ

= C ′′nτ 2,

for C ′′ := 4
∑∞

t=1 α(t)
γ

2+γ <∞ by assumption (i), a constant therefore only depend-
ing on γ and the mixing coefficient. Furthermore, this and

E
[
|Zn,i1|2

]
≤ E

[
|Zn,i1|2

2+γ
2

] 2
2+γ ≤

(
τ 2+γ

) 2
2+γ = τ 2,

for all i1 ∈ {1, . . . , n} and n ∈ N by assumption (ii), leads to

n∑
i1=1

n∑
i2=1
i1≤i2

|E [Zn,i1Zn,i2 ]| =
n∑

i1=1

∣∣E [Z2
n,i1

]∣∣+
n∑

i1=1

n∑
i2=1
i1<i2

|E [Zn,i1Zn,i2 ]|

≤ nτ 2 + C ′′nτ 2

= C ′nτ 2,

with C ′ := (1 + C ′′), which is the assertion of (B.3) for Q = 2. For the inductive
step, let now Q > 2 be arbitrary, but fixed and let the assertion in (B.3) be true for
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all integers in {2, . . . , Q− 1}. Then it is to show, that (B.3) holds for Q as well. Let
therefore assumptions (i) and (ii) be satisfied for this arbitrary, but fixed Q > 2
and for some γ > 0 and τ > 0. Note that then the assumptions are satisfied for all
integers in {2, . . . , Q−1} as well, such that the inductive hypothesis can be applied.

The idea of the proof is the following. First, the smallest index where the gap
between two succeeding indices is largest and positive (to exclude the case, where all
indices are equal) is identified. The random variables after this time point will then
be replaced by independent copies of themselves. For the new term, the induction
hypothesis can be used as there will be less than Q indices left. The remainder term
can be bounded using Lemma B.5. Following the notation of Andrews and Pollard
[2], let for all i ∈ IQ

G(i) := max {(ij+1 − ij) : (ij+1 − ij) > 0, 1 ≤ j ≤ Q− 1}

and
m(i) := min {j ∈ {1, . . . , Q− 1} : (ij+1 − ij) = G(i)} .

Then it can be obtained that∑
i∈IQ

∣∣E [Zn,i1 · · ·Zn,iQ]∣∣
=

∑
i∈IQ

i1=···=iQ

|E[Zn,i1 · · ·Zn,iQ ]|+
Q−1∑
m=1

∑
i∈IQ

m(i)=m

∣∣E [Zn,i1 · · ·Zn,iQ]∣∣
≤

n∑
i1=1

∣∣∣E [ZQ
n,i1

]∣∣∣ (B.4)

+

Q−1∑
m=1

∑
i∈IQ

m(i)=m

∣∣E [Zn,i1 · · ·Zn,iQ]− E [Zn,i1 · · ·Zn,im ]E
[
Zn,im+1 · · ·Zn,iQ

]∣∣ (B.5)

+

Q−1∑
m=1

∑
i∈IQ

m(i)=m

∣∣E [Zn,i1 · · ·Zn,im ]E
[
Zn,im+1 · · ·Zn,iQ

]∣∣ . (B.6)

Let first (B.4) be considered. Using assumption (ii), it holds that
n∑

i1=1

∣∣∣E [ZQ
n,i1

]∣∣∣ ≤ n∑
i1=1

E
[
|Zn,i1 |

Q 2+γ
2

] 2
2+γ ≤

n∑
i1=1

(
τ 2+γ

) 2
2+γ = nτ 2.

Let next (B.5) be considered. Using Hölder’s inequality and assumption (ii),

E
[
|Zn,i1 · · ·Zn,ikZ̃n,ik+1

· · · Z̃n,iQ|
2+γ

2

]
≤ E

[
|Zn,i1|Q

2+γ
2

] 1
Q · · ·E

[
|Zn,ik |Q

2+γ
2

] 1
Q
E
[
|Z̃n,ik+1

|Q
2+γ

2

] 1
Q · · ·E

[
|Z̃n,iQ|Q

2+γ
2

] 1
Q

≤ τ 2+γ

and similarly
E
[
|Zn,i1 · · ·Zn,iQ|

2+γ
2

]
≤ τ 2+γ
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holds, for all k ∈ {1, . . . , Q− 1}. Hence, applying Lemma B.5 with g(x1, . . . , xQ) :=
x1 · · ·xQ, δ := γ

2
and Mn := τ 2+γ for all n ∈ N, implies for all k ∈ {1, . . . , Q− 1},∣∣E [Zn,i1 · · ·Zn,iQ]− E [Zn,i1 · · ·Zik ]E

[
Zn,ik+1

· · ·Zn,iQ
]∣∣ ≤ 4τ 2α(ik+1 − ik)

γ
2+γ .

Using this and distinguishing the indices furthermore by location of the gap
l ∈ {1, . . . , n} and size of the gap g ∈ {1, . . . , n}, (B.5) can be bounded by

4τ 2

Q−1∑
m=1

∑
i∈IQ

m(i)=m

α(im+1 − im)
γ

2+γ = 4τ 2

Q−1∑
m=1

n∑
l=1

n∑
g=1

∑
i∈IQm,g,l

α(g)
γ

2+γ , (B.7)

where IQm,g,l := {i ∈ IQ : m(i) = m,G(i) = g, im = l}. A more detailed study
of the set of indices IQm,g,l will lead to a suitable bound for (B.7). For fixed m, l, g,
it will be investigated, how many elements the set IQm,g,l contains at most. For all
i = (i1, . . . , iQ) ∈ IQm,g,l the first m− 1 indices i1, . . . , im−1 satisfy

• 1 ≤ i1 ≤ · · · ≤ im−1 ≤ im = l and

• ij+1 − ij < g for all j = 1, . . . ,m− 1.

With these restrictions, for fixed i2, . . . , im, the sum over i1 ranges over at most g
elements. For fixed i3, . . . , im the sum over i2, again ranges over at most g elements,
with the above restrictions. Continuing in this way, there are at most gm−1 choices
for the first m−1 indices i1, . . . , im−1. Because of m(i) = m, im = l and G(i) = g, it
holds that im+1 = l+ g and therefore the last Q−m− 1 indices im+2, . . . , iQ satisfy
the following restrictions

• l + g = im+1 ≤ im+2 ≤ · · · ≤ iQ ≤ n and

• ij+1 − ij < g + 1 for all j = m+ 1, . . . , Q.

Hence, following the same arguments as above, there are at most (g + 1)Q−m−1

choices for the last Q−m− 1 indices im+2, . . . , iQ. Therefore, (B.7) can further be
bounded by

4τ 2

Q−1∑
m=1

n∑
l=1

n∑
g=1

gm−1(g + 1)Q−m−1α(g)
γ

2+γ

≤ 4τ 2(Q− 1)n
∞∑
g=1

(g + 1)Q−2α(g)
γ

2+γ

= C ′′nτ 2,

for C ′′ := 4(Q− 1)
∑∞

t=1(t + 1)Q−2α(t)
γ

2+γ <∞ by assumption (i), a constant only
depending on Q, γ and the mixing coefficient.

It is left to consider (B.6). Introducing the following notation

Bn(i) := nτ 2 +
(
nτ 2
)2

+ · · ·+
(
nτ 2
)b i2c ∀ i = 1, . . . , Q− 1, ∀ n ∈ N
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and applying the induction hypothesis, it holds that

Q−1∑
m=1

∑
i∈IQ

m(i)=m

∣∣E [Zn,i1 · · ·Zn,im ]E
[
Zn,im+1 · · ·Zn,iQ

]∣∣
≤

Q−1∑
m=1

∑
i∈Im
|E [Zn,i1 · · ·Zn,im ]|

∑
i∈IQ−m

∣∣E [Zn,im+1 · · ·Zn,iQ
]∣∣

≤
Q−1∑
m=1

CmBn(m)CQ−mBn(Q−m),

for some constants Ci only depending on i, γ and the mixing coefficient for all
i = 1, . . . , Q− 1. As Bn(m)Bn(Q−m) is a polynomial in nτ 2 of degree⌊m

2

⌋
+

⌊
Q−m

2

⌋
≤
⌊
Q

2

⌋
,

there exists a constant Cm,Q, such that Bn(m)Bn(Q−m) ≤ Cm,QBn(Q). Hence, the
above sum can be bounded by

Q−1∑
m=1

CmCQ−mCm,QBn(Q) = C ′′′Bn(Q),

for C ′′′ :=
∑Q−1

m=1CmCQ−mCm,Q <∞. Putting the results for (B.4), (B.5) and (B.6)
together, it can be obtained that∑

i∈IQ

∣∣E [Zn,i1 · · ·Zn,iQ]∣∣ ≤ nτ 2 + C ′′nτ 2 + C ′′′Bn(Q)

≤ C ′
(
nτ 2 + · · ·+ (nτ 2)b

Q
2 c
)
,

for C ′ = 1 + C ′′ + C ′′′ only depending on Q, γ and the mixing coefficient, which
completes the induction and therefore the proof of (B.3) for all Q ≥ 2 satisfying the
assumptions.

Using

(nτ 2)i ≤ max
(

1, (nτ 2)b
Q
2 c
)
∀ 1 ≤ i ≤

⌊
Q

2

⌋
, (B.8)

it can be obtained that for Q being even

E

∣∣∣∣∣ 1√
n

n∑
i=1

Zn,i

∣∣∣∣∣
Q
 1
Q

= n−
1
2E

 n∑
i1=1

· · ·
n∑

iQ=1

Zn,i1 · · ·Zn,iQ

 1
Q

≤ n−
1
2 (Q!)

1
Q

(∑
i∈IQ

∣∣E [Zn,i1 · · ·Zn,iQ]∣∣
) 1

Q

(B.3)

≤ n−
1
2 (Q!)

1
QC ′

1
Q

(
(nτ 2) + · · ·+ (nτ 2)

Q
2

) 1
Q
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(B.8)

≤ n−
1
2 (Q!)

1
QC ′

1
Q

(
Q

2

) 1
Q (

max
(

1, (nτ 2)
Q
2

)) 1
Q

= C max
(
n−

1
2 , τ
)
,

for C ′ from inequality (B.3) and C :=
(
C ′Q!Q

2

) 1
Q only depending on Q, γ and the

mixing coefficient, which proves the assertion of Lemma B.4.

Within the proof of Theorem B.1, let the following simplifying notation hold.
Denote Gn(ϕ) := Gn(1, ϕ) for measurable functions ϕ : X → R and

{Gn(ϕ) : ϕ ∈ F} := {Gn(1, ϕ) : ϕ ∈ F}.

Proof of Theorem B.1. The proof is closely related to the proof of Theorem 2.2
of Andrews and Pollard [2]. It will be shown that for all ε > 0, there exists a
δ = δ(ε) > 0 and an n0 = n0(ε), such that for all n ≥ n0,

E∗

[
sup

{ϕ,ψ∈F :d(ϕ,ψ)<δ}
|Gn(ϕ)−Gn(ψ)|Q

] 1
Q

< ε. (B.9)

Let therefore be ε > 0. Let for k ∈ N, δk := 2−k, τk := δ
2

2+γ

k and Nk :=
Ñ[ ](δk,F , ρ) and let Ak be the approximating class and Bk the bounding class
from Definition 1.6, that are chosen such that assumption (B.1) in (A2) holds. In
particular, it holds that for all ϕ ∈ F , there exist an a∗k ∈ Ak and a b∗k ∈ Bk, such
that

|ϕ− a∗k| ≤ b∗k, (B.10)

and for all b ∈ Bk

sup
n∈N

sup
1≤t≤n

E
[
|b(Xn,t)|2

] 1
2 ≤ δk, sup

n∈N
sup

1≤t≤n
E
[
|b(Xn,t)|i

2+γ
2

] 1
2 ≤ δk, ∀ i = 2, . . . , Q.

(B.11)

The proof splits into two steps. First it will be shown that there exist an m =
m(ε) and for each ϕ ∈ F a function a(ϕ)

m ∈ Am and an n1 = n1(ε), such that for all
n ≥ n1,

E∗
[
sup
ϕ∈F

∣∣Gn(ϕ)−Gn

(
a(ϕ)
m

)∣∣Q] 1
Q

<
ε

8
. (B.12)

Note that a(ϕ)
m is not necessarily the corresponding approximating function, de-

noted by a∗m ∈ Am, from Definition 1.6 on page 11, but rather results from a
constructive argument such that (B.12) holds.

Secondly, for this fixed m ∈ N, F will be partitioned into Nm many classes, each
class containing all functions ϕ in F , that lead to the same a(ϕ)

m ∈ Am in step one.
Within each class inequality (B.12) will be applied. By a right choice of functions

168



B.3. Proofs

the gap between two different classes can also be bridged suitably.

Step 1: The proof of (B.12) is again divided into two parts. First, a sequence
k(n)→∞ and an n2 = n2(ε) are chosen, such that for all n ≥ n2,

E∗
[
sup
ϕ∈F

∣∣Gn(ϕ)−Gn

(
a∗k(n)

)∣∣Q] 1
Q

<
ε

16
, (B.13)

where for each ϕ ∈ F and k(n) ∈ N, a∗k(n) is the corresponding approximating
function in Ak(n), as in (B.10) for k = k(n).

Secondly, m = m(ε) and for each ϕ ∈ F , a(ϕ)
m ∈ Am and n3 = n3(ε) are chosen,

such that for all n ≥ n3 with k(n) > m,

E∗
[
sup
ϕ∈F

∣∣Gn

(
a∗k(n)

)
−Gn

(
a(ϕ)
m

)∣∣Q] 1
Q

<
ε

16
. (B.14)

Here, for each ϕ ∈ F , a∗k(n) is the corresponding approximating function in Ak(n)

from (B.10), while a(ϕ)
m ∈ Am not necessarily is. It rather results from an iterative

choice of functions ak ∈ Ak to ak−1 ∈ Ak−1 for k = k(n), . . . ,m + 1. The choice
of am := a

(ϕ)
m then depends on ϕ and n, as it is the last link in the chain, that

starts with ak(n) := a∗k(n) (which depends on ϕ by Definition 1.6, despite the fact,
that this is not reflected in the notation). Nevertheless, the choice of m does only
depend on ε eventually. Both (B.13) and (B.14) together imply (B.12) by choosing
n1 = max(n2, n3).

Proof of (B.13): Let k(n) be the largest value of k ∈ N, such that

2−k
2

2+γ = τk ≥ n−
1
2 . (B.15)

Note that then

√
nτ

2+γ
2

k(n)+1 ≤
√
n
(
n−

1
2

) 2+γ
2

= n−
γ
4
n→∞−→ 0

holds. It follows that

√
n sup
m∈N

sup
1≤t≤m

E
[
|b(Xm,t)|2

] 1
2

(B.11)

≤
√
nδk(n) =

√
n2δk(n)+1 =

√
n2τ

2+γ
2

k(n)+1 = o(1),

for all b ∈ Bk(n). Thus, there exists an n′2 = n′2(ε), such that

2
√
n sup
m∈N

sup
1≤t≤m

E
[
|b(Xm,t)|2

] 1
2 <

ε

32
, (B.16)

for all b ∈ Bk(n) and n ≥ n′2. Hence, for ϕ ∈ F and corresponding approximation
function a∗k(n) ∈ Ak(n), applying (B.10), it holds that

∣∣Gn(ϕ)−Gn

(
a∗k(n)

)∣∣ =

∣∣∣∣∣ 1√
n

n∑
i=1

(
ϕ(Xn,i)− a∗k(n)(Xn,i)− E

[
ϕ(Xn,i)− a∗k(n)(Xn,i)

])∣∣∣∣∣
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≤ 1√
n

n∑
i=1

(
|ϕ(Xn,i)− a∗k(n)(Xn,i)|+ E

[
|ϕ(Xn,i)− a∗k(n)(Xn,i)|

])
≤ 1√

n

n∑
i=1

b∗k(n)(Xn,i) +
1√
n

n∑
i=1

E
[
b∗k(n)(Xn,i)

]
= Gn

(
b∗k(n)

)
+ 2

1√
n

n∑
i=1

E
[
b∗k(n)(Xn,i)

]
≤ Gn

(
b∗k(n)

)
+ 2
√
n sup
m∈N

sup
1≤t≤m

E
[
|b∗k(n)(Xm,t)|2

] 1
2

(B.16)
< Gn

(
b∗k(n)

)
+

ε

32
, (B.17)

for all n ≥ n′2. Next, the moment inequality from Lemma B.4 will be applied to
Gn(b) for b ∈ Bk(n). To do that, set for fixed n ∈ N and b ∈ Bk(n),

Zm,t := b(Xm,t)− E[b(Xm,t)], ∀ 1 ≤ t ≤ m,m ∈ N.

Then assumption (ii) of Lemma B.4 is satisfied as for all 1 ≤ t ≤ m,m ∈ N and
i = 2, . . . , Q, it holds that E[Zm,t] = 0 and

E
[
|Zm,t|i

2+γ
2

]
= E

[
|b(Xm,t)− E [b(Xm,t)]|i

2+γ
2

]
(∗)
≤ 2i

2+γ
2 E

[
|b(Xm,t)|i

2+γ
2

]
≤ 2Q

2+γ
2 sup

m∈N
sup

1≤t≤m
E
[
|b(Xm,t)|i

2+γ
2

]
(B.11)

≤ 2Q
2+γ

2 δ2
k(n)

=
(

2
Q
2 τk(n)

)2+γ

,

where (∗) holds because

|x+ y|p = 2p
∣∣∣∣12x+

1

2
y

∣∣∣∣p ≤ 2p
(

1

2
|x|p +

1

2
|y|p
)

= 2p−1(|x|p + |y|p)

for all x, y ∈ R and for all p ∈ [1,∞), as x 7→ |x|p is a convex function.
Assumption (i) of Lemma B.4 is also satisfied by (A1) for {Xn,t : 1 ≤ t ≤ n, n ∈

N} and inherited to {Zn,t : 1 ≤ t ≤ n, n ∈ N}. Applying Lemma B.4 to Zn,t, it
follows that for all b ∈ Bk(n), there exists some constant C, only depending on Q, γ
and the mixing coefficient, such that

E
[
|Gn(b)|Q

] 1
Q ≤ C max

(
n−

1
2 , 2

Q
2 τk(n)

)
(B.15)

= C ′τk(n), (B.18)

with C ′ := C2
Q
2 . Finally, it can be concluded that for all n ≥ n′2

E∗
[
sup
ϕ∈F

∣∣Gn(ϕ)−Gn

(
a∗k(n)

)∣∣Q] 1
Q (B.17)

≤ E

[
max
b∈Bk(n)

|Gn(b)|Q
] 1
Q

+
ε

32
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≤ N
1
Q

k(n) max
b∈Bk(n)

E
[
|Gn(b)|Q

] 1
Q

+
ε

32
(B.18)

≤ C ′N
1
Q

k(n)τk(n) +
ε

32

= C ′
(
Ñ[ ]

(
δk(n),F , ρ

)) 1
Q
δ

2
2+γ

k(n) +
ε

32

= C ′δ
− γ

2+γ

k(n)

(
Ñ[ ]

(
δk(n),F , ρ

)) 1
Q
δk(n) +

ε

32

≤ C ′

δk(n)∫
0

x−
γ

2+γ

(
Ñ[ ] (x,F , ρ)

) 1
Q
dx+

ε

32
,

where the last inequality uses the fact that x 7→ x−
γ

2+γ
(
Ñ[ ] (x,F , ρ)

) 1
Q is decreasing

and that the integral exists by assumption (A2). As δk(n) ↘ 0, there exists a
n′′2 = n′′2(ε) such that

C ′

δk(n)∫
0

x−
γ

2+γ

(
Ñ[ ] (x,F , ρ)

) 1
Q
dx <

ε

32
,

for all n ≥ n′′2. By choosing n2 = max(n′2, n
′′
2), the assertion in (B.13) follows.

Proof of (B.14): The aim is to choose an m = m(ε) fixed (dependent only
on ε eventually) and for each ϕ ∈ F the corresponding approximating function
a∗k(n) ∈ Ak(n). Then a chain from ak(n) := a∗k(n) ∈ Ak(n) to am := a

(ϕ)
m ∈ Am for all

k(n) > m is built. In what follows, the iterative choice of functions from one chain
link ak to the next one ak−1 will be illustrated. For an already chosen ak ∈ Ak,
choose ak−1 ∈ Ak−1, such that

ak−1 ∈
{
a ∈ Ak−1 : max

2≤i≤Q
sup
n∈N

sup
1≤t≤n

E
[
|ak(Xn,t)− a(Xn,t)|i

2+γ
2

]
is minimal.

}
(B.19)

Such an object exists as the considered term is bounded from below by zero. If
there is more than one minimizer, then one of them is chosen randomly. By doing so,
while ϕ ranges over F , each difference (ak − ak−1) ranges over at most Nk functions
because ak ranges over at most |Ak| = Nk functions and for each ak, ak−1 is chosen
according to the procedure above. Then it holds that

E

[
sup
ϕ∈F
|Gn (ak)−Gn (ak−1)|Q

] 1
Q

≤ N
1
Q

k sup
ϕ∈F

E
[
|Gn (ak)−Gn (ak−1)|Q

] 1
Q

= N
1
Q

k sup
ϕ∈F

E
[
|Gn (ak − ak−1)|Q

] 1
Q
. (B.20)

Notice again that unlike the supremum suggests, the possible difference ranges
over finitely many functions and therefore the inequality used in (B.20) is valid and
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the outer expectation simplifies to the usual expectation. For the expected value of
the last term, the moment inequality from Lemma B.4 will be used again. Defining

Zn,t := ak(Xn,t)− ak−1(Xn,t)− E[ak(Xn,t)− ak−1(Xn,t)], ∀ 1 ≤ t ≤ n, n ∈ N,

it can be obtained that E[Zn,t] = 0 for all 1 ≤ t ≤ n, n ∈ N. Furthermore, by
assumption (A2), for ak ∈ Ak ⊂ F , there exist an ã∗k−1 ∈ Ak−1 and a b̃∗k−1 ∈ Bk−1,
such that∣∣ak − ã∗k−1

∣∣ ≤ b̃∗k−1 and sup
n∈N

sup
1≤t≤n

E
[
|b(Xn,t)|i

2+γ
2

] 1
2 ≤ δk−1, ∀ i = 2, . . . , Q, ∀ b ∈ Bk−1.

Using (B.19), it thus holds that

max
2≤i≤Q

E
[
|Zn,t|i

2+γ
2

]
= max

2≤i≤Q
E
[
|ak(Xn,t)− ak−1(Xn,t)− E[ak(Xn,t)− ak−1(Xn,t)]|i

2+γ
2

]
≤ 2Q

2+γ
2 max

2≤i≤Q
sup
n∈N

sup
1≤t≤n

E
[
|ak(Xn,t)− ak−1(Xn,t)|i

2+γ
2

]
(B.19)

≤ 2Q
2+γ

2 max
2≤i≤Q

sup
n∈N

sup
1≤t≤n

E
[∣∣ak(Xn,t)− ã∗k−1(Xn,t)

∣∣i 2+γ
2

]
≤ 2Q

2+γ
2 max

2≤i≤Q
sup
n∈N

sup
1≤t≤n

E

[∣∣∣b̃∗k−1(Xn,t)
∣∣∣i 2+γ

2

]
≤ 2Q

2+γ
2 δ2

k−1 =
(

2
Q
2 τk−1

)2+γ

,

and thus assumption (ii) of Lemma B.4 is satisfied. Condition (i) holds by (A1)
for {Xn,t : 1 ≤ t ≤ n, n ∈ N} and is inherited to {Zn,t : 1 ≤ t ≤ n, n ∈ N}. Then
applying Lemma B.4 and using τk ≥ n−

1
2 for all 1 ≤ k ≤ k(n) by (B.15), yields

E
[
|Gn (ak − ak−1)|Q

] 1
Q ≤ Cτk−1, (B.21)

for some constant C only depending on γ, Q and the mixing coefficient. Now all
tools to build the bridge between ak(n) := a∗k(n) and am := a

(ϕ)
m are obtained and it

holds that

E

[
sup
ϕ∈F

∣∣Gn

(
a∗k(n)

)
−Gn

(
a(ϕ)
m

)∣∣Q] 1
Q

= E

sup
ϕ∈F

∣∣∣∣∣∣
k(n)∑

k=m+1

(Gn (ak)−Gn (ak−1))

∣∣∣∣∣∣
Q

1
Q

≤
k(n)∑

k=m+1

E

[
sup
ϕ∈F
|Gn (ak)−Gn (ak−1)|Q

] 1
Q

(B.20)

≤
k(n)∑

k=m+1

N
1
Q

k sup
ϕ∈F

E
[
|Gn (ak − ak−1)|Q

] 1
Q

(B.21)

≤ C

k(n)∑
k=m+1

N
1
Q

k τk−1
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≤ 2
2

2+γC
∞∑

k=m+1

(
Ñ[ ] (δk,F , ρ)

) 1
Q
δ

2
2+γ

k

= 2
2

2+γC

∞∑
k=m+1

δ
− γ

2+γ

k

(
Ñ[ ] (δk,F , ρ)

) 1
Q
δk

= 2
2

2+γ
+1C

∞∑
k=m+1

δ
− γ

2+γ

k

(
Ñ[ ] (δk,F , ρ)

) 1
Q

(δk − δk−1)

≤ 2
2

2+γ
+1C

δm∫
0

x−
γ

2+γ

(
Ñ[ ] (x,F , ρ)

) 1
Q
dx,

for all k(n) > m. The last equality holds because δk − δk−1 = 2−1δk. The last
inequality again holds as x 7→ x−

γ
2+γ
(
Ñ[ ] (x,F , ρ)

) 1
Q is decreasing and the integral

exists due to assumption (A2). Furthermore, δm ↘ 0 for m → ∞. Hence, for a
given ε > 0, m = m(ε) and n3 = n3(ε) can be chosen large enough, such that

E

[
sup
ϕ∈F

∣∣Gn

(
a∗k(n)

)
−Gn

(
a(ϕ)
m

)∣∣Q] 1
Q

<
ε

16

for all n ≥ n3 with k(n) > m, which proves inequality (B.14).

Step 2: In the second and last step of the proof, the comparison of infinitely many
functions in F will be reduced to finitely many functions, making use of inequality
(B.12). To do that, let m ∈ N be the integer fixed in step one and refer with a(ϕ)

m to
the element in Am, that is chosen dependent on ϕ ∈ F , according to the procedure
in step one. Let the following relation on F (dependent on m) be introduced

ϕ ∼m ψ :⇔ a(ϕ)
m = a(ψ)

m .

This relation is obviously an equivalence relation and, as |Am| = Nm, partitions
F into Nm many equivalence classes, denoted by

E (m)[1], . . . , E (m)[Nm].

Each class thus contains all ϕ in F , that have the same a(ϕ)
m in Am, that has been

chosen in step one. Within one equivalence class, inequality (B.12) can be applied
twice, leading to

E∗

[
sup

{ϕ,ψ∈F|ϕ∼mψ}
|Gn(ϕ)−Gn(ψ)|Q

] 1
Q

= E∗

[
sup

{ϕ,ψ∈F|ϕ∼mψ}

∣∣(Gn(ϕ)−Gn(a(ϕ)
m )
)
−
(
Gn(ψ)−Gn(a(ψ)

m )
)∣∣Q] 1

Q

≤ 2E∗
[
sup
ϕ∈F

∣∣Gn(ϕ)−Gn(a(ϕ)
m )
∣∣Q] 1

Q

(B.12)
<

ε

4
, (B.22)
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for all n ≥ n1. To bridge the gap between the Nm classes, let

d(E (m)[k], E (m)[j]) := inf
{
d(ϕ, ψ) : ϕ ∈ E (m)[k], ψ ∈ E (m)[j]

}
define a distance between two classes E (m)[k] and E (m)[j] for k, j ∈ {1, . . . , Nm}.
For fixed δ > 0, that will be specified later, and fixed k, j ∈ {1, . . . , Nm}, choose
functions ϕ′kj ∈ E (m)[k] and ψ′jk ∈ E (m)[j], such that

d(ϕ′kj, ψ
′
jk) < d(E (m)[k], E (m)[j]) + δ.

Note that for ϕ ∈ E (m)[k] and ψ ∈ E (m)[j] with d(ϕ, ψ) < δ, it holds that
d(ϕ′kj, ψ

′
jk) < 2δ for all k, j ∈ {1, . . . , Nm}. Then applying (B.22) for all n ≥ n1, it

can be obtained that

E∗

[
sup

{ϕ,ψ∈F :d(ϕ,ψ)<δ}
|Gn(ϕ)−Gn(ψ)|Q

] 1
Q

= E∗

 max
1≤k≤Nm
1≤j≤Nm

sup
{ϕ∈E(m)[k],ψ∈E(m)[j]:

d(ϕ,ψ)<δ}

|Gn(ϕ)−Gn(ψ)|Q


1
Q

= E∗

 max
1≤k≤Nm
1≤j≤Nm

sup
{ϕ∈E(m)[k],ψ∈E(m)[j]:

d(ϕ,ψ)<δ}

|Gn(ϕ)−Gn(ψ)±Gn(ϕ′kj)±Gn(ψ′jk)|Q


1
Q

≤ 2E∗

[
max

1≤k≤Nm
sup

{ϕ,ϕ′∈E(m)[k]}
|Gn(ϕ)−Gn(ϕ′)|Q

] 1
Q

+ E

 max
1≤k≤Nm
1≤j≤Nm

|Gn(ϕ′kj)−Gn(ψ′jk)|Q
 1
Q

(B.22)
<

ε

2
+ E

 max
1≤k≤Nm
1≤j≤Nm

|Gn(ϕ′kj)−Gn(ψ′jk)|Q
 1
Q

≤ ε

2
+N

2
Q
m max

1≤k≤Nm
1≤j≤Nm

E
[
|Gn(ϕ′kj)−Gn(ψ′jk)|Q

] 1
Q ,

where d(ϕ′kj, ψ
′
jk) < 2δ holds for all k, j ∈ {1, . . . , Nm}. To find a bound on

E
[
|Gn(ϕ′kj)−Gn(ψ′jk)|Q

] 1
Q , the moment inequality of Lemma B.4 will be used. Let

therefore k, j ∈ {1, . . . , Nm} be fixed and let ϕ′kj ∈ E (m)[k] and ψ′jk ∈ E (m)[j] with

d(ϕ′kj, ψ
′
jk) = sup

n∈N
sup

1≤t≤n
E
[∣∣ϕ′kj(Xn,t)− ψ′jk(Xn,t)

∣∣Q 2+γ
2

] 1
Q

2
2+γ

< 2δ (B.23)

and set Zn,t := ϕ′kj(Xn,t)−ψ′jk(Xn,t)−E[ϕ′kj(Xn,t)−ψ′jk(Xn,t)] for all 1 ≤ t ≤ n and
n ∈ N. Then assumption (ii) of Lemma B.4 is satisfied as for all 1 ≤ t ≤ n, n ∈ N
and i = 2, . . . , Q it holds that E[Zn,t] = 0 and

E
[∣∣ϕ′kj(Xn,t)− ψ′jk(Xn,t)− E[ϕ′kj(Xn,t)− ψ′jk(Xn,t)]

∣∣i 2+γ
2

]
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≤ 2Q
2+γ

2 E
[
|ϕ′kj(Xn,t)− ψ′jk(Xn,t)|i

2+γ
2

]
≤ 2Q

2+γ
2 E

[
|ϕ′kj(Xn,t)− ψ′jk(Xn,t)|Q

2+γ
2

] i
Q

≤ 2Q
2+γ

2 d(ϕ′kj, ψ
′
jk)

i 2+γ
2

(B.23)

≤ 2Q
2+γ

2 (2δ)i
2+γ

2

≤ 2Q
2+γ

2 (2δ)2+γ, for δ ≤ 1

2

=
(

2
Q
2

+1δ
)2+γ

.

Condition (i) holds due to (A1) for {Xn,t : 1 ≤ t ≤ n, n ∈ N} and is inherited
to {Zn,t : 1 ≤ t ≤ n, n ∈ N}. Applying Lemma B.4 yields

E
[
|Gn(ϕ′kj − ψ′jk)|Q

] 1
Q ≤ C max

(
n−

1
2 , 2

Q
2

+1δ
)
,

for some constant C only depending on γ, Q and the mixing coefficient and for
δ ≤ 1

2
. Therefore, it holds that

E∗

[
sup

{ϕ,ψ∈F :d(ϕ,ψ)<δ}
|Gn(ϕ)−Gn(ψ)|Q

] 1
Q

<
ε

2
+N

2
Q
m max

1≤k≤Nm
1≤j≤Nm

E
[
|Gn(ϕ′kj)−Gn(ψ′jk)|Q

] 1
Q

<
ε

2
+N

2
Q
mC max

(
n−

1
2 , 2

Q
2

+1δ
)
,

for all n ≥ n1 and for δ ≤ 1
2
. Choose δ = δ(ε) small enough, such that

N
2
Q
mC2

Q
2

+1δ <
ε

2
and δ ≤ 1

2

and for this fixed δ, let n4 = n4(ε), such that

max
(
n−

1
2 , 2

Q
2

+1δ
)

= 2
Q
2

+1δ,

for all n ≥ n4. By finally choosing n0 := max(n1, n4), the assertion in (B.9) is
proven.

Proof of Corollary B.2. This is a direct consequence of Theorem B.1 and Markov’s
inequality.

Proof of Corollary B.3. To prove Corollary B.3, Theorem 4.10 by Volgushev and
Shao [77] will be used. Note that it particularly requires a strictly stationary se-
quence of random variables. Applying Theorem B.1, it follows that with

d(ϕ, ψ) := E
[
|ϕ(X1)− ψ(X1)|Q

2+γ
2

] 1
Q

2
2+γ
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there exists a semi metric d on F , such that (F , d) is totally bounded and there
exists a Q > 2, such that

lim
δ↘0

lim sup
n→∞

E∗

[
sup

{ϕ,ψ∈F :d(ϕ,ψ)<δ}
|Gn(1, ϕ− ψ)|Q

]
= 0,

which is condition (9) of Theorem 4.10 of Volgushev and Shao [77]. Furthermore,
condition (10) of Theorem 4.10 in [77], namely

sup
n∈N

sup
ϕ∈F

E
[
|Gn(1, ϕ)|Q

]
<∞

is also satisfied. To see this, define Zt := ϕ(Xt)− E[ϕ(Xt)] for all t ∈ Z. Applying
(A3), it then holds that E[Z1] = 0 and for all i = 2, . . . , Q

E
[
|Z1|i

2+γ
2

]
= E

[
|ϕ(X1)− E[ϕ(X1)]|i

2+γ
2

]
≤ 2Q

2+γ
2 E

[
|ϕ(X1)|i

2+γ
2

]
≤ 2Q

2+γ
2 E

[
|ϕ(X1)|Q

2+γ
2

] i
Q

≤ 2Q
2+γ

2 max
(
L

2
Q , L

)
=: τ 2+γ,

for the constant L <∞ from assumption (A3). Applying Lemma B.4, it holds that
for all n ∈ N and ϕ ∈ F

E
[
|Gn(1, ϕ)|Q

] 1
Q ≤ C max

(
n−

1
2 , τ
)
, (B.24)

for some constant C, only depending on Q, γ and the mixing coefficient. As the
inequality in (A3) holds uniformly in ϕ ∈ F , the constant τ <∞ does not depend on
ϕ. Therefore, (B.24) implies condition (10) of Theorem 4.10 in [77]. By assumption
(A3) the function class F possesses an envelope function with finite Q-th moment.
As can be seen within the proof of Theorem 4.10 of Volgushev and Shao [77], the
first assertion of Corollary B.3 follows by these assumptions.

If additionally all finite dimensional marginal distributions converge, as assumed
in the second part of Corollary B.3, the weak convergence assertion follows.
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Finally, some possible further research topics related to this thesis shall be presented
in the following.

As noted in Chapter 4, changepoint detection in the conditional mean function,
when also changes in the variance occur, is an important but also difficult task. To
the best of our knowledge, it has only been investigated in the literature for simple
cases, that do not allow for autoregression models, by assuming stationarity of the
covariates under the null, or that do not include heteroscedastic effects. The model
in Section 4.2 covers both autoregressive and heteroscedastic effect, where changes
may occur in the conditional variance function. It is suggested that in this case the
process T̂n still converges to some centered Gaussian process under the null of no
change in the conditional mean function. Such a result, however, requires a uniform
central limit theorem for sequential empirical processes indexed in general function
classes and with an underlying triangular array process of weakly dependent and
possibly non-stationary random variables. To be a bit more precise, for some given
weakly dependent triangular array process {Xn,t : 1 ≤ t ≤ n, n ∈ N} with values
in some measure space X and some class F of measurable functions X → R, the
following sequential empirical process is of interest 1√

n

bnsc∑
i=1

(ϕ(Xn,i)− E[ϕ(Xn,i)]) : s ∈ [0, 1], ϕ ∈ F

 .

Appendix B gives some literature review on results concerning sequential empir-
ical processes. Basically all existing results allowing for dependent data, including
the new Corollary B.3 on page 161, impose a strict stationarity assumption on the
underlying process. The extension to non-stationary data would not only be appli-
cable to the process T̂n under non-stationary variances as in Chapter 4, it would in
fact be a powerful tool for proving limiting results in all kind of models in mathe-
matical statistics.

Additionally, bootstrap procedures are important and very useful tools for testing
hypothesis in mathematical statistics. They are used to approximate the distribu-
tion of the test statistic under the null, without knowing its limiting distribution.
This is particularly useful if the limiting distribution is not known. For instance,
the test for change in the conditional mean function in Chapter 3 acquires for multi-
dimensional covariates, i.e. for d > 1, a limiting distribution that contains unknown
quantities. Hence, critical values using the asymptotic distribution can not be com-
puted. The potential limiting distribution of the process allowing for non-stationary
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variances look even more complicated. However, even if the limiting distribution is
known, it is still only an approximation, a possibly poor one for small sample sizes.
For these reasons bootstrap procedures are of undeniable interest. The conjecture
that the wild bootstrap test, proposed in Section 4.3, is a valid testing procedure,
should be proved. Note that apart from the weak convergence in probability of T̂ ∗n
under both the null and the alternative, this also requires the the weak convergence
of T̂n under the null.

Tests for change in the conditional variance function in heteroscedastic models
can be of particular interest as well. In financial time series and other econometric
data, they can be particularly useful, when models are for instance used for hedging
strategies and risk management. However, not that many results consider nonpara-
metric models. Thus, the test proposal from Chapter 5 should be formulated more
detailed and a formal proof for the limiting distribution should be given. As already
suggested in Chapter 5 the methods will be similar, however the proof can possibly
be even more technical.

Finally, it is to mention that apart from changepoint detection, which this thesis
focuses on, it is also of great interest to estimate both size and location of possi-
ble changes. Such estimators can possibly be constructed based on the sequential
marked empirical process of residuals, obtained in this thesis. Possible estimators
for a changepoint in the conditional mean function using T̂n from Chapter 3 are

arg max
s∈[0,1]

sup
z∈Rd
|T̂n(s, z)|,

and
arg max
s∈[0,1]

∫
Rd

|T̂n(s, z)|2w(z)dz,

where w : Rd → R is some weighting function such that the integral exists. These
estimators can be investigated with respect to properties, such as consistency and
asymptotic distribution.
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Abstract

When observing data over a given period of time, a typical assumption is structural
stability in some form or another. However, in all possible areas, as for instance
climate and weather data, finance and econometric time series, as well as data
collected in biology or medicine, instabilities do occur and most likely lead to false
inference if disregarded. Hence, change detection and estimation procedures are
of undeniable interest and have justifiably gained extensive attention in literature.
This thesis makes a contribution in the field of changepoint analysis in nonparametric
heteroscedastic time series regression models, focusing on the detection of possible
changes rather than their estimation.

More specifically, a weakly dependent stochastic process {(Yt,Xt) ∈ R×Rd : t ∈
Z} is considered such that

Yt = mt(Xt) + Ut, t ∈ Z

holds, where the innovations (Ut)t∈Z satisfy

E[Ut|F t] = 0, t ∈ Z

almost surely with F t := σ{Uj−1,Xj : j ≤ t}. Thus F t contains the whole past
information of Uj up to time t− 1 and of Xj up to time t. As a direct consequence,
the regression function mt(·) appears as the conditional mean function, meaning

mt(·) = E[Yt|Xt = ·], t ∈ Z.

The subscript t suggests that it may not be stable in t, but depend on the
time of observation. The main part of this thesis is the construction of a test
for change in the regression function in Chapter 3. Given n ∈ N observations
(Y1,X1), . . . , (Yn,Xn) the null hypothesis

H0 : mt(·) = m(·), t = 1, . . . , n,

for some m : Rd → R not depending on t, is tested against the changepoint alterna-
tive

H1 : ∃s0 ∈ (0, 1) : mt(·) =

{
m(1)(·), t = 1 . . . , bns0c
m(2)(·), t = bns0c+ 1, . . . , n

,

for some m(1),m(2) : Rd → R with m(1) 6≡ m(2). Note that the procedure allows in
particular for autoregressive models by allowing Xt to include finitely many lagged
values of Yt, for instance Xt = (Yt−1, . . . , Yt−d)

T . Furthermore, heteroscedastic
models are covered, as the second moments of the innovation Ut conditioned on Xt

may depend on Xt. The considered test statistic is based on the sequential marked
empirical process of residuals, namely

T̂n :=

{
T̂n(s, z) :=

1√
n

bnsc∑
i=1

(Yi − m̂n(Xi))ωn(Xi)I{Xi ≤ z} : s ∈ [0, 1], z ∈ Rd

}
,

where ωn : Rd → R is a weighting function that ensures uniform consistency prop-
erties of the Nadaraya-Watson estimator m̂n. The use of nonparametric estimators
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such as m̂n avoids additional model misspecification. New uniform rates of conver-
gence for the nonparametric kernel estimators are given in Chapter 2. Note that
T̂n is a modification of the test statistic of Su and Xiao [71], who constructed a
CUSUM test to detect changepoints in the regression function in a time series re-
gression model with nonparametric methods. A major drawback of their procedure
is the non-consistency against some alternatives. In other words, the test does not
detect structural breaks in some situations. The idea of the marked version steamed
from Burke and Bewa [6], who used a similar technique in a simple i.i.d. nonpara-
metric regression model to test for changepoints in the regression function. Using
this method, however, requires the powerful tool of empirical processes, which have
been studied quite intensively in the i.i.d. setting, but are much more difficult to
handle in the dependent case. The main result of this thesis is Corollary 3.3, which
gives the asymptotic behavior of T̂n under the null and a strict stationarity assump-
tion. In contrast to the result of Burke and Bewa [6], the limiting distribution of
the new testing procedure acquires a very simple structure and for one-dimensional
covariates even results in a distribution free limiting distribution. The proof requires
some sophisticated techniques, as well as a new weak convergence result for sequen-
tial empirical processes indexed by general function classes. This result is stated in
Corollary B.3 in Appendix B and might be of independent interest. Furthermore,
a bootstrap version of the test is constructed in Chapter 4, and it is suggested that
it is a valid testing procedure even without the validity of the strict stationarity as-
sumption under the null. This particularly allows for changes in the variance when
testing for changes in the regression function.

By imposing

E[U2
t |Xt] = σ2

t (Xt), t ∈ Z

almost surely, it holds that σ2
t is the conditional variance function, meaning

σ2
t (·) = Var(Yt|Xt = ·), t ∈ Z.

In Chapter 5, a test for change in σ2
t is suggested, under the assumption that

there is no change in the regression function. Note that the reasonableness of this
assumption can be investigated using the bootstrap test.

Finally, a simulation study is conducted and an application to real data sets
is given in Chapter 6. The Monte-Carlo simulations consider different kinds of
models, such as i.i.d. models, regression models with time series covariates, as well
as homoscedastic and heteroscedastic autoregressive models. Both performances of
the tests in conditional mean and variance function, as well as the bootstrap test are
investigated. It turns out that they perform reasonably well. In particular, under
some simple alternatives they behave significantly better than the CUSUM test in
[71] as the theory suggests. The real data sets under consideration are the annual
flow of the river Nile in Aswan between 1871 and 1970 and the weekly closing values
of the Dow Jones Industrial Average (DJIA) index between 1971 and 1974, which
are both popular choices in changepoint analysis. The tests indicate that there is a
change in mean in the Nile data set and a change in variance in the DJIA data set.
These results are consistent with existing literature.
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Zusammenfassung

Bei der Betrachtung zeitlich geordneter Daten gehört die Stabilität, in der einen
oder anderen Form, zu den typischen Annahmen. Strukturelle Veränderungen treten
allerdings in allen Anwendungsbereichen, wie beispielsweise in Klima- und Wetter-
daten, Finanz- und Ökonometriezeitreihen, aber auch in Datenerhebungen in der
Biologie oder Medizin, auf. Sie bei der Modellbildung unberücksichtigt zu lassen,
führt zu falschen Analysen und Schlussfolgerungen. Tests auf strukturelle Ver-
änderungen, sogenannte Changepoints, sind daher von großer Bedeutung und Gegen-
stand aktueller Forschung. Die vorliegende Arbeit leistet einen Beitrag im Bereich
der Changepointanalyse in nichtparametrischen heteroskedastischen Zeitreihen-
modellen, wobei die Herleitung von Hypothesentests auf mögliche Changepoints im
Mittelpunkt steht.

Betrachtet wird ein schwach abhängiger stochastischer Prozess {(Yt,Xt) ∈ R ×
Rd : t ∈ Z}, für den

Yt = mt(Xt) + Ut, t ∈ Z,

gilt. Die Innovationen (Ut)t∈Z erfüllen

E[Ut|F t] = 0, t ∈ Z

fast sicher. Hierbei ist F t := σ{Uj−1,Xj : j ≤ t}, also die σ-Algebra, die alle
vergangenen Informationen von Uj bis zum Zeitpunkt t − 1 und von Xj bis zum
Zeitpunkt t enthält. Damit ergibt sich für die unbekannte Regressionsfunktion mt(·)
gerade

mt(·) = E[Yt|Xt = ·], t ∈ Z.

Sie wird daher auch als bedingte Erwartungswertfunktion bezeichnet. Der In-
dex t legt nahe, dass diese strukturell vom Zeitpunkt der Beobachtung t abhängen
kann. Der Hauptteil dieser Arbeit ist die Konstruktion eines Hypothesentests auf
strukturelle Stabilität der Regressionsfunktion. Bei Beobachtung einer Stichprobe
(Y1,X1), . . . , (Yn,Xn) der Größe n ∈ N soll die Nullhypothese

H0 : mt(·) = m(·), t = 1, . . . , n,

für ein m : Rd → R, unabhängig von t, gegen die Alternative

H1 : ∃s0 ∈ (0, 1) : mt(·) =

{
m(1)(·), t = 1 . . . , bns0c
m(2)(·), t = bns0c+ 1, . . . , n

,

fürm(1),m(2) : Rd → Rmitm(1) 6≡ m(2), getestet werden. Die RegressorenXt dürfen
insbesondere endlich viele vergangene Werte von Yt enthalten, sodass beispielsweise
Xt = (Yt−1, . . . , Yt−d)

T möglich ist. Das Verfahren ist somit auf autoregressive Mo-
delle anwendbar. Heteroskedastische Effekte sind ebenfalls erlaubt, da die zweiten
Momente von Ut bedingt auf Xt von Xt abhängen dürfen. Die Teststatistik basiert
auf dem markierten sequentiellen empirischen Prozess der Residuen

T̂n :=

{
T̂n(s, z) :=

1√
n

bnsc∑
i=1

(Yi − m̂n(Xi))ωn(Xi)I{Xi ≤ z} : s ∈ [0, 1], z ∈ Rd

}
.
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Die Gewichtsfunktion ωn : Rd → R ermöglicht es hierbei, gleichmäßige Konsis-
tenzeigenschaften für den Nadaraya-Watson Schätzer m̂n zu benutzen. Durch Ver-
wendung nichtparametrischer Schätzmethoden werden zusätzliche fehlerhafte Mo-
dellspezifikationen vermieden. In Kapitel 2 werden neue gleichmäßige Konvergenz-
raten für die verwendeten nichtparametrischen Kernschätzer hergeleitet. Bei T̂n
handelt es sich um eine Modifikation der Teststatistik von Su und Xiao [71]. Sie kon-
struierten einen Changepointtest für die Regressionsfunktion in nichtparametrischen
Zeitreihenmodellen unter Verwendung eines CUSUM Tests. Dieser ist unter be-
stimmten Alternativen jedoch nicht konsistent. Der Ansatz der markierten Residuen
stammt von Burke und Bewa [6]. Sie benutzten ein ähnliches Verfahren in einem ein-
fachen nichtparametrischen i.i.d. Regressionsmodell, um auf Strukturbrüche in der
Regressionsfunktion zu testen. Diese Herangehensweise erfordert jedoch Methoden
empirischer Prozesstheorie, welche im Zusammenhang mit abhängigen Daten schwe-
rer zu handhaben sind. Das Hauptresultat dieser Arbeit ist Korollar 3.3. Es macht
eine Aussage über das Grenzverhalten von T̂n unter H0 und strikter Stationarität.
Im Gegensatz zum Resultat von Burke und Bewa [6] ergibt sich hier eine sehr ein-
fache Grenzverteilung. Im Falle eindimensionaler Regressoren resultiert dies sogar
in einer Grenzverteilung, die keinerlei unbekannte Parameter enthält. Für den Be-
weis werden einige technische Resultate, sowie eine schwache Konvergenzaussage für
sequentielle empirische Prozesse induziert in Funktionenklassen und mit abhängigen
Daten, benötigt. Letzteres ist in Anhang B als Korollar B.3 zu finden und ist in einer
Allgemeinheit formuliert, die anderweitige Anwendungen ermöglicht. Desweiteren
wird in Kapitel 4 ein Bootstraptest konstruiert, welcher auch bei fehlender Statio-
narität unter H0 anwendbar ist. Insbesondere erlaubt dies das Testen auf Struktur-
brüche in der Regressionsfunktion, auch bei auftretenden Varianzschwankungen.

Unter der Bedingung, dass es σ2
t : Rd → R gibt, sodass

E[U2
t |Xt] = σ2

t (Xt), t ∈ Z

fast sicher gilt, ist σ2
t die bedingte Varianzfunktion, das heißt

σ2
t (·) = Var(Yt|Xt = ·), t ∈ Z.

In Kapitel 5 wird ein Test auf Changepoints in σ2
t beschrieben, welcher under

der Annahme valide ist, dass es keine Strukturbrüche in der Regressionsfunktion
gibt. Wie angemessen solch eine Annahme ist, kann mit Hilfe des Bootstraptests
untersucht werden.

Kapitel 6 beinhaltet schließlich eine Simulationsstudie und die Anwendung der
Tests auf zwei Datensätze. In den Monte-Carlo Simualtionen werden i.i.d. Re-
gressionsmodelle, homoskedastische und heteroskedastische Autoregressionsmodelle,
sowie weitere Zeitreihen betrachtet. Es werden sowohl die Changepointtests für
die bedingte Erwartungswert- und Varianzfunktion, als auch der Bootstraptest,
durchgeführt. Es stellt sich heraus, dass sie akzeptable Ergebnisse liefern und
darüber hinaus einige einfache Alternativen deutlich besser erkennen als der CUSUM
Test von Su and Xiao [71]. Für die Anwendung der Tests auf echte Daten wurde
zum einen die jährliche Durchflussmenge des Nil in Aswan zwischen 1871 und 1970,
und zum anderen die wöchentlichen Schlusskurse des Dow Jones Industrial Aver-
age (DJIA) Indexes zwischen 1971 und 1974, betrachtet. Beide Datensätze wur-
den bereits oftmals in der wissenschaftlichen Literatur untersucht. Die neuen Tests
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zeigen einen Changepoint im bedinten Erwartungswert im Nildatensatz und einen
Changepoint in der bedingten Varianz im DJIA-Datensatz an. Diese Ergebnisse
sind konsistent mit existierenden Studien.

Publications derived from this dissertation

The weak convergence result stated in Appendix B can be found as a preprint on
arxiv (see [52]).
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