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Low-dose computational phase contrast transmission
electron microscopy via electron ptychography

Abstract

In the recent years, cryo-electron microscopy (cryo-EM) has evolved into a main-
stream technique to decipher the structure-function relationship of biological
specimens from single molecules to whole cells. Cryo-EM relies on the strong
interaction of high-energy electrons with matter, which causes a measurable
phase shift of the electron wave even for single small macromolecules. Experi-
mental methods to measure this phase shift effectively are therefore the key to
obtaining higher spatial resolution images or even movies before radiation dam-
age destroys the molecule, yet current phase contrast methods suffer several
limitations for biological electron microscopy. They are either impractical to im-
plement, do not allow to deconvolve the influence of microscope optics from the
image, or involve inelastic scattering events after the electron wave has passed
the sample, which scramble the acquired phase information.

Ptychography creates a high-dimensional phase spacemap of the imaging process
by scanning a spatially confined coherent wavefront over the sample and col-
lecting a two-dimensional far-field diffraction pattern at each position. Both the
complex-valued transmission function of the sample and the wave function of
the incoming beam can be recovered from this dataset through deconvolution
in phase space with a range of reconstruction methods.

Electron ptychography is easy to implement in a transmission electron micro-
scope TEM but has so far only been applied to phase contrast imaging of sam-
ples in the field of materials science because of the high dose required for the re-
construction of a ptychographic dataset and the resulting high requirements on
the sample for radiation damage tolerance. We propose the use of non-convex
Bayesian optimization to overcome this limitation, and show via numerical simu-
lations that one can reduce the dose required for successful ptychographic recon-
struction by two orders of magnitude compared to previous experiments. This
opens up the field of biological electron microscopy for computational phase
contrast imaging via electron ptychography.

Using multi-slice simulations and our Bayesian reconstruction algorithm, we
demonstrate imaging of single biological macromolecules and show 2D single-
particle reconstructions from simulated data with a resolution up to 5.4Å at a
dose of 20 e−/Å

2
. When averaging 30 low-dose datasets, a 2D resolution around



3.5Å is possible for macromolecular complexes with molecular weight even be-
low 100 kDa.

Further, we present the open-source framework scikit-pr, a GPU-accelerated
implementation of the proposed Bayesian algorithm based on the open-source
neural network library pytorch. Through the use of automatic differentiation,
scikit-pr allows the expression of the image formation process with a differen-
tiable computational graph and makes it easy to exchange experimental forward
models, loss functions, and optimization algorithms in a plug-and-play fashion.

We then discuss the practical aspects and technical requirements for implement-
ing low-dose electron ptychography in a TEM. We show two proof-of-principle
reconstructions from datasets collected on two different microscopes and detec-
tors: one of a benchmark carbon sample obtained on a Titan Krios with a K2
Summit camera at a dose of 50 e−/Å

2
, and one of horse-spleen apo-ferritin pro-

teins obtained on a Tecnai F20 with a Medipix3 camera at a dose of 30 e−/Å
2
.

Subsequently, we describe how the information contained in the ptychographic
data set can be optimized by tailoring the illumination wavefront and show first
results of creating a diffuse, speckled beam for electron ptychography by using
a nanostructured mask in the condenser plane of a TEM.

We highlight several avenues of further investigations based on the developed
methods in the conclusion: the possibility of measurement of additional inco-
herent signals, like energy-dispersive X-ray and annular dark field information,
during a ptychography scan, the application of quantum tomography schemes
to optimize the information content of the measurements and quantum state
reconstruction from inelastic scattering processes.
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Computergestützte Phasenkontrast-
Elektronenmikroskopie bei niedrigen Dosen via

Elektronen-Ptychographie

Kurzzusammenfassung

In den letzten Jahren hat sich Cryo-Elektronenmikroskopie (Cryo-EM) zu einer
etablierten Technik entwickelt, um die Struktur-Funktions-Beziehung von bio-
logischen Proben von einzelnen Molekülen zu ganzen Zellen zu entschlüsseln.
Cryo-EM beruht auf der starken Wechselwirkung von hochenergetischen Elek-
tronen mit Materie, die sogar für einzelne kleine Makromoleküle eine messba-
re Phasenverschiebung der Elektronenwelle bewirkt. Experimentelle Verfahren,
um diese Phasenverschiebung effektiv zu messen, sind daher der Schlüssel dazu,
um Bilder mit höherer räumlicher Auflösung oder sogar Filme zu erhalten, bevor
eine Strahlungsschädigung das Molekül zerstört. Gegenwärtige Phasenkontrast-
verfahren jedoch unterliegen einigen Beschränkungen für die biologische Elek-
tronenmikroskopie. Sie sind entweder unpraktisch zu implementieren, erlauben
nicht, die optische Übertragungsfunktion des Mikroskops von dem Bild zu entfal-
ten, oder involvieren inelastische Streuereignisse, nachdem die Elektronenwelle
die Probe passiert hat.

Die Ptychographie erzeugt eine hochdimensionale Phasenraumabbildung des
Bildgebungsprozesses durch Abrastern einer räumlich begrenzten kohärenten
Wellenfront über die Probe und Aufnahme eines zweidimensionalen Fernfeld-
beugungsmusters an jeder Position. Sowohl die komplexwertige Übertragungs-
funktion der Probe als auch die Wellenfunktion des ankommenden Strahls kön-
nen aus diesem Datensatz durch Entfaltung im Phasenraum mit einer Reihe von
Rekonstruktionsverfahren wiederhergestellt werden.

Die Elektronenptychographie ist in einem Transmissionselektronenmikroskop
(TEM) einfach zu implementieren, wurde aber bisher nur auf die Phasenkontrast-
Bildgebung von Proben im Bereich der Materialwissenschaften angewendet, da
die für die Rekonstruktion eines ptychographischen Datensatzes erforderliche
hohe Dosis hohe Anforderungen an die Probe hinsichtlich der Strahlenschädi-
gungstoleranz stellt. Wir schlagen die Verwendung von nicht-konvexer Bayes-
scher Optimierung vor, um diese Einschränkung zu überwinden, und zeigen
über numerische Simulationen, dass man die für eine erfolgreiche ptychogra-
phische Rekonstruktion erforderliche Dosis um zwei Größenordnungen im Ver-
gleich zu früheren Experimenten reduzieren kann. Dies erschließt das Feld der



biologischen Elektronenmikroskopie für die computergestützte Phasenkontrast-
Bildgebung mittels Elektronen-Ptychographie.

Mit Multi-Slice-Simulationen und unserem Bayesschen Rekonstruktionsalgorith-
mus demonstrieren wir die Abbildung einzelner biologischer Makromoleküle
und zeigen 2D-Einzelpartikel-Rekonstruktionen aus simulierten Daten mit ei-
ner Auflösung von bis zu 5.4Å bei einer Dosis von 20 e−/Å

2
. Durch Mittelung

von 30 niedrig dosierten Datensätzen ist eine 2D-Auflösung um 3.5Å für makro-
molekulare Komplexe mit einem Molekulargewicht sogar unter 100 kDa mög-
lich. Außerdem stellen wir das Open-Source-Framework scikit-pr vor, eine GPU-
beschleunigte Implementierung des Bayesschen Algorithmus basierend auf der
Open-Source-Bibliothek pytorch für neuronale Netzwerke. Durch die Verwen-
dung von automatische Differenzierung ermöglicht scikit-pr den Ausdruck des Bil-
derzeugungsprozesses mit einem differenzierbaren Rechengraphen und erleich-
tert den Austausch experimenteller Vorwärtsmodelle, Verlustfunktionen undOp-
timierungsalgorithmen in einem plug-and-play Modus.

Anschließend diskutieren wir die praktischen Aspekte und technischen Voraus-
setzungen für die Implementierung von Elektronen-Ptychographie mit geringer
Dosis in einem TEM. Wir zeigen zwei proof-of-principle Rekonstruktionen an
zwei verschiedenen Mikroskopen und Detektoren: eine Rekonstruktion einer
Benchmark-Kohlenstoffprobe, die auf einem Titan Krios Mikroskop mit einer
K2-Summit-Kamera bei einer Dosis von 50 e−/Å

2
erhalten wurde, und einer von

apo-Ferritin-Proteinen aus der Pferde-Milz, die auf einem Tecnai F20 Mikroskop
mit einer Medipix3-Kamera bei einer Dosis von 30 e−/Å

2
erhalten wurden An-

schließend beschreiben wir, wie die im ptychographischen Datensatz enthaltene
Information optimiert werden kann, indem die Beleuchtungswellenfront maßge-
schneidert wird. Wir zeigen erste Ergebnisse von der Erzeugung eines diffusen,
gesprenkelten Strahls für die Elektronenptychographie unter Verwendung einer
nanostrukturierten Maske in der Kondensorebene eines Elektronenmikroskops.

Wir heben mehrere Möglichkeiten weiterer Untersuchungen auf der Grundla-
ge der entwickelten Methoden in der Schlussfolgerung hervor: die Möglichkeit
der Messung von zusätzlichen inkohärenten Signalen, wie energiedispersiver
Röntgen- und ringförmiger Dunkelfeldinformation, während eines Ptychogra-
phiescans. Die Anwendung von Quantentomographie-Schemata zur Optimie-
rung des Informationsgehalts der Messungen. Und Quantenzustandsrekonstruk-
tion aus inelastischen Streuprozessen.
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Introduction

The loss of phase information of a wave function due to themeasurement process
has been identified as an important problem in the early days of quantum me-
chanics [1]. The question of how one can recover the lost phase most efficiently
and uniquely has since occupied many generations of scientists and has spurred
advances in many fields of physics.

In 1942 Frits Zernike discovered that the phases could be made to contribute
linearly to the measured amplitude by placing a phase-shifting plate in the back-
focal plane of a microscope which shifts the phase of the unscattered beam by
π/2 to the scattered beam [2, 3]. This rather simple principle to directly mea-
sure phase without any post-processing is used in nearly all fields of microscopy
today. Its implementation in the electron microscope however turned out to
be nontrivial, and a practical implementation was only achieved recently [4].
Therefore research was also directed to other interference techniques.

In 1948, Dennis Gabor’s original idea that the phase may be measured by inter-
fering an undisturbed reference wave and a diffracted wave created the field of
holography [5, 6].

While this first, inline holographic setup suffers the so-called twin-image prob-
lem, i.e., two conjugate terms forming the interference term need to be sepa-
rated, soon a large number of different setups emerged which alleviated the
problem, facilitating the separation of a unique wave function [7].

Leith & Upatnieks [8, 9] showed in their seminal contribution in 1962 that off-
axis holography, i.e., the interference of an off-axis reference-wave with a mod-
ulated object wave, resolves the twin-image problem, with the presumptions
that the object’s spatial frequency spectrum is bandwidth-limited and the exper-
imental requirement of superb coherence of the particle source. In the following
decades, off-axis holography evolved into a widely-used technique in the elec-
tronmicroscope. In some cases, however, it is experimentally difficult to provide
an undisturbed reference wave, and therefore, researchers developed variations
of the original inline scheme of Gabor, which recover the phase from multiple
measurements where the defocus is varied. These are usually referred to as focal
series inline holography or transport of intensity reconstruction [10].

Around the same time, Walther Hoppe, an X-ray crystallographer turned elec-
tron microscopist, was working on the structural analysis of biological macro-
molecules at the Max Planck Institute for Protein and Leather Research in Dres-
den. In 1969, he invented yet another method to solve the phase problem [11,
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12], which he dubbed ptychography. Initially looking at crystal diffraction, he
realized that interference measurements could also be performed by sending
a convergent electron beam through the crystal. He observed interference be-
tween the diffraction orders of a crystal if the half-convergence angle of the beam
was larger than half the scattering angle of the first diffraction peak. While this
interference alone is not enough to solve unambiguously for the phase, he re-
alized that one could resolve the ambiguities when the beam is shifted in real
space and a diffraction pattern at each shift position is recorded. Unfortunately,
the idea was well ahead of instrument development in electron microscopy at
that time, and neither the microscopes, nor the cameras, nor the computers were
suitable for an experimental demonstration. It slumbered some years without
much notice until John Rodenburg realized its potential in 1989 and, together
with Richard Bates, extended its applicability to non-periodic samples. They de-
veloped a general theory of ptychography, which describes a ptychographic data
set as the convolution of the Wigner function of the object and the Wigner func-
tion of the beam [13]. The process of phase retrieval is then the deconvolution
of these functions in phase space.

This deconvolution process implies the riddance of most instrument-related res-
olution limitations such as partial coherence and information limits imposed by
the lenses, such that the ultimate resolution is only limited by the maximum an-
gle under which diffraction is observed. This super-resolution feature of ptychog-
raphy was demonstrated soon after by Nellist and Rodenburg [14], and a year
later the method was also applied to X-ray microscopy by Chapman [15]. While
the first demonstrations of ptychography were very impressive, it was also clear
that the detectors were orders of magnitude too slow to record this amount of
data quickly enough, and the experimental stability in the electron microscope
did not allow stable acquisitions that took tens of minutes. The protagonists
moved to other fields, Rodenburg to X-ray and light microscopy, and Nellist to
incoherent imaging, waiting for the technology to catch up. Only recently, fast
detectors with frame rates in the kHz range have become available, and ptychog-
raphy is developing into a practical technique for electron microscopy.

As already hinted at by the example of Hoppe, the use of electrons for structural
investigations of biological specimens is attractive because of their strong interac-
tion with matter and a favorable ratio of elastic to inelastic scattering events. In
the last years, imaging of vitrified biological specimens from single macromol-
ecules to whole cells by cryo-EM has developed into a mainstream technique
[16, 17]. Single-particle cryo-EM allows us to reconstruct a three-dimensional
atomic potential map from an ensemble of identical particles with resolutions
up to 1.6Å [18]. Until recently, the phase contrast mechanism these reconstruc-
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tions relied on was provided by aberrations in the imaging system, and therefore
the contrast transfer and the information provided by each electron was far from
optimal.

It took over 60 years from the initial idea of a Zernike phase plate for electrons in
1947 [19] to a working implementation. Since 2014, the so-called Volta phase
plate [4] provides improved phase contrast, so that even particles withmolecular
weights as small as 64 kDa can be observed in the TEM [20]. While most of the
other above mentioned methods for phase recovery described above have been
tried and tested for the imaging of biological specimens, electron ptychography
has not been considered so far for imaging of biological macromolecules.

This thesis aims to establish electron ptychography as a practical method for low-
dose phase contrast imaging of biological macromolecules and therefore close
the circle that started with Hoppe. We show via simulations that ptychography
in combination with a Bayesian reconstruction algorithm is more dose-efficient
than both Zernike phase contrast and conventional defocus-based phase con-
trast in cryo-EM by achieving two orders of magnitude better signal to noise
ratio at high spatial frequencies. This tremendous improvement naturally raises
the question of whether there is an optimal phase retrieval technique that ex-
tracts the maximum amount of information of each electron.
This question is of particular interest when biological dynamics become the mat-
ter of interest, as the sample then needs to withstand enough dose to be able
to capture several exposures without significant damage. The application of
electron ptychography to liquid phase electron microscopy may, therefore, be
particularly promising if the overall thickness requirements for ptychography
can be achieved. The structure of this work is as follows:

Chapter 1 treats the physics necessary for the understanding of image formation
of biological specimens in cryo-EM. We discuss electron microscope layout (sec-
tion 1.1), scattering cross sections (section 1.2.1), radiation damage processes
(section 1.2.1) and electron propagation through the sample (sections 1.2.2 and
1.2.3). Then we extend the wave function formalism to a full description of ar-
bitrary quantum states (sections 1.2.8 and 1.2.9), show how arbitrary quantum
states can be recovered from a set of measurements (section 1.2.11), and relate
the original phase retrieval problem for wave functions to this description (sec-
tion 1.2.12).
We then discuss most of the above mentioned holographic techniques as quan-
tum state reconstruction techniques, describe experimental obstacles for low-
dose imaging of biological macromolecules, and the history of the application
of the different techniques to biological electron microscopy in section 1.3.
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Chapter 2 discusses the a general mathematical description of ptychography
in linear algebra terms and the limitations of existing algorithms for ptycho-
graphic phase retrieval regarding low-dose imaging (sections 2.1, 2.2). We then
introduce a non-convex Bayesian algorithm which recovers phases also at the
low doses needed when imaging biological macromolecules and extend it to so-
called blind ptychography, which simultaneously recovers the probe function
(sections 2.3, 2.4). Section 2.6 then discusses the application to single-particle
cryo-EM and compares the algorithm with bright-field TEM and Volta phase-
plate TEM. Section 2.7 describes an efficient GPU-accelerated implementation
of the algorithm and develops a computational framework for the generalized
phase-retrieval problem.

Chapter 3 discusses practical considerations for implementing low-dose elec-
tron ptychography in a scanning transmission electron microscope (STEM). We
discuss the necessary equipment (3.1.1), the sample thickness limits (3.1.2),
sampling considerations (3.1.3), reconstruction ambiguities (3.1.4), the choice
of detectors (3.1.5), data preprocessing strategies (3.1.6), and show two proof-
of-principle experiments. Section 3.3 discusses electron ptychography on a Titan
Krios microscope with a K2 camera and section 3.4 discusses electron ptychog-
raphy on a Tecnai F20 microscope with a Medipix3 camera.

Chapter 4makes the point that introducing a strongly varying local phase struc-
ture in the probe wave function leads to reconstruction with higher signal-to-
noise ratio (section 4.1), and discusses the design of phase masks that can be
placed in the condenser aperture of a microscope to create structured illumina-
tion in the STEM (section 4.2). We show a first attempt at performing low-dose
ptychography with such a diffuser and discuss experimental difficulties (section
4.3).

Chapter 5 summarizes the findings and discusses future avenues of research.

This thesis contains material which is published or in preparation to be pub-
lished in peer-reviewed journals as first author:

• Pelz, P. M., Qiu, W. X., Bücker, R., Kassier, G. & Miller, R. J. D. Low-dose
cryo electron ptychography via non-convex Bayesian optimization. Scientific
Reports 7, 9883 (2017)
Material appears in chapters 2 and 4

• Pelz, P. M., Bücker, R., Ramm, G., Kassier, G., Eggert, D., Lu, P. & Miller,
R. J. D. Single-particle electron ptychography. In preparation
Material appears in chapters 3 and 4
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1 Fundamentals for imaging weakly
scattering objects in transmission electron

microscopy

This thesis is dedicated to the development of phase contrast techniques in the
TEM. For a thorough understanding of the physical effects encountered when
working with high-energy electrons, the following chapter provides a mathemat-
ical description of the interaction of electrons with matterand propagation of
electrons. Furthermore, we give an introduction into the description of general
quantum states with different representations of phase space, and show how a
full phase space picture can be recovered from multiple measurements.

1.1 Layout of a conventional TEM

The transmission electron microscope is an indispensable tool in todays mate-
rials and life sciences. The short wavelength of electrons and the strong in-
teraction with matter are a unique combination that has lead to widespread
adoption across the sciences. Historically, the capability of a TEM to analyze
the scattered electrons was given by its optical components, and much effort
has been invested to improve and perfect them, resulting the development of
field emission sources [21, 22], hardware aberration correctors [23, 24], mono-
chromators and energy-filters [25] in the last decades. The optical layout of a
state-of-the-art TEM typically involves more then 15 electron optical elements,
whichmust be aligned and tuned according to the planned experiment. Here, we
confine us to the description of a conventional TEM with a field emission source
similar to the one that is installed at the Max Planck Institute for the Structure
and Dynamics of Matter in Hamburg and sketched in Fig. 1.1. After the elec-
trons leave the gun, the gun lenses and deflection coils are adjusted to center
the beam in the column and the first condenser lens creates a cross-over, whose
vertical position can be adjusted to regulate the current transmitted through the
2nd condenser aperture. This setting is usually called ’spot size’ and a large spot
size corresponds to a large beam on the aperture and a resulting small current
through the aperture and large coherence length. Below the aperture is a set
of beam deflection coils which can shift the beam over the sample. The sample
itself sits in between two objective lenses, and in the back focal plane of the sec-
ond lens its is possible to insert an aperture to block electrons scattered to high
angles when the microscope is operated in imaging mode.
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Figure 1.1: Layout and imaging-mode ray paths of a convenধonal TEM with two condenser lenses,
here a FEI Tecnai F20 with an energy filter. Adapted from Bayou [26].
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Depending on the imaging mode, a set of intermediate and projection lenses
then either magnifies the back focal plane of the objective lens on the detector,
creating a diffraction pattern, or it magnifies the image plane, creating a real-
space image on the detector. In STEMmode, which is the mode usually used for
ptychography, a set of annular detector can also be inserted, which incoherently
detect all electrons scattered to high angles. Depending on the range scatter-
ing angles they detect, they are either called annular dark field (annular dark
field (ADF), 10mrad to 50mrad) or high angle annular dark field (HAADF),
>50mrad) detectors. Additionally, it is possible to collect the X-rays generated
from inelastic scattering processes with an energy-dispersive X-ray (EDX) detec-
tor. The detector usually sits below the HAADF detectors, but it is also possible
to install an energy-filter before the detector. This is currently only possible with
Gatan cameras with the so-called Gatan Imaging Filter (GIF) or in microscopes
of the manufacturer Nion.

1.2 Image formation in the TEM

On the next pages we describe how the intensity is calculated that is recorded
on an electron detector, after the electrons have propagated through the sample
and the optics of the microscope.

1.2.1 Electron-specimen interactions

Elastic scattering, elastic cross section and scattering factors

The traditional quantum mechanical description of electron scattering starts
with a plane wave incident on an atom which, after scattering, gives rise to
an outgoing plane wave and an outgoing spherical wave with amplitude fe(q).

ψ(x) = exp(2πikzz) + fe(q)
exp(2πiq · r)

r
, (1.1)

where q is the difference between the incident and scattered wave vectors. 2,he
complex scattering amplitude fe(q) can also be referred to as the scattering factor.
The simplest method to calculate the scattering factor is the first Born approxi-
mation, in which it is the Fourier transform of the atomic potential [27].

fe(q) =
1

2πea0

∫
Va(r) exp(2πiq · r)d3r, (1.2)

7



where Va(r) is the 3D atomic potential of the atom , e is the electron charge,
h is Planck’s constant and ao = 0.5292Å is the Bohr radius. The first Born ap-
proximation is only valid for a weak phase object, and therefore inadequate
for directly calculating electron scattering in an image, but the simple relation
between scattering factors and potentials makes it useful for the calculation of
specimen potentials from scattering factors obtained with more exact methods.
Together with the Fourier projection theorem (Appendix 6.1), the projected po-
tential of a thin slice can easily be calculated by a 2D Fourier transform.

Effective wave vector in material and interaction parameter

The wavelength of a relativistic electron in vacuum is given by

λ =
hc√

2EE0 + E2
, (1.3)

where E0 is the rest energy of the electron E0 = mc2 =511 keV. If electrons are
subjected to a potential Es = eVs inside a material, they gain or lose energy with
respect to the vacuum. This effect can be described by defining an effective wave
vector km inside the material [28]. If Es is the additional potential energy of the
electron while inside the specimen, then the change in wave vector is

km =
1
λm

=

√
(E+ Es)(2E0 + E+ Es)

hc
≃ kz +

Vs(E0 + E)
λV(2E0 + E)

, (1.4)

where we Taylor expanded and kept only the lowest order terms in Vs/V. There-
fore, the electron wave function passing through the specimen is:

ψ(x) = exp(2πikmz) ≈ exp(2πikzz) exp(2πσvz(x)z), (1.5)

where we have introduced the interaction parameter

σ =
2πmeλ
h2 =

2π
λV

(
E0 + E
2E0 + E

)
, (1.6)

withm = γm0 the relativistic mass, and vz(x) the projected potential. This is sub-
ject to the assumption that the potential inside the specimen produces a phase
shift ϕ≪ 1 and the accumulated effect of the specimen can be described by an
integral of the scattering potential along z, i.e. if the first Born approximation is
fulfilled.
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Atomic potential

The atomic potential is usually obtained in a roundabout manner from the Mott-
Bethe formula:

fe(q) =
2m0e2

h2

(
Z− fx(q)

q2

)
, (1.7)

where fx(q) is the X-ray scattering factor usually obtained from Hartree-Fock
calculations. The Mott-Bethe formula can be derived from Eq. (1.2) by inserting
Va(r) = 2π/λ

∫
(n− 1)dz [29] and a Coulomb potential term given by

V(ri) = −
e2

4πϵ0

∫
ρ(rj)
|ri − rj|

d3rj, (1.8)

where ρ(rj) is the charge distribution in an atom. This means that an error is
introduced when the charge distribution is not spherically symmetric. This er-
ror may vary between 5% to 10% at low scattering angles in aspherical atoms.
Bonding in the solid should produce a similar error [28], and if bonding effects
are being studied explicitly [30], density functional theory calculations have to
be performed to include bonding effects in the potential calculations.
For the investigation of radiation sensitive materials at typical cryo-EM reso-
lutions larger than 2Å, these effects are negligible and we use here the in-
dependent atomic potentials, computed directly from the scattering factor via
the inverted Eq. (1.2). To gain an intuition for the range of validity of the
weak phase approximation, we show the interaction parameter and the pro-
jected atomic potential for a range of elements in Fig. 1.2. The interaction
parameter σ for 200 keV electrons is 0.7 rad(kVÅ)−1 and for 300 keV electrons
it is 0.65 rad(kVÅ)−1. This means that a carbon atom produces a phase shift of
0.15 rad at 200 keV and 0.17 rad at 300 keV, therefore still constitutes a weak
phase object. A gold atom produces a phase shift of 1 rad at 200 keV and 0.94 rad
at 300 keV, therefore the first Born approximation breaks down for heavy atoms.

Inelastic scattering

High-energy electrons lose a broad range of energies when scattering inelasti-
cally. The following excitations can be distinguished [29]:

1. vibrational excitations in molecules or solids are typically of the order of
20meV to 1 eV and can only be observed spectroscopically after mono-
chromatization of the electron beam
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a b

Figure 1.2: a) Plot of the interacধon parameter σ vs. electron energy. b) Plot of the projected
atomic potenধal for carbon, silicon, copper, gold, and uranium. Both plots are taken from Kirkland
[28].

2. intra- and inter-band excitations of the outer shell atomic electrons and
collective excitations (plasmons) of the valence and conduction electrons.
The plasmon losses show broad maxima in the energy-loss range of 3 eV
to 25 eV. Plasmon losses depend on the concentration of valence and
conduction electrons and are influenced by chemical bonds and the band-
structure.

3. ionization of core electrons. The energy losses depend on the ionization
shell and are typically on the order of several keV

The ratio of elastic to inelastic scattering cross sections can be derived as [29]

ν =
σel
σinel

=
Z
4
ln
(

h2

πm0JRλ

)−1

≃ Z
26
, (1.9)

where Z is the atomic number and J is the mean ionization energy of the atom.
Experimentally it was found [31] that

ν ≃ Z
20
. (1.10)

This means that for elements lighter than calcium, the inelastic scattering cross
section is larger than the elastic scattering cross section. For carbon, the factor
is roughly 3. Most of the inelastic processes scatter to very low angles smaller
than 0.1mrad [29]. In imaging mode, they hardly mix with the elastic signal
in the diffraction plane. It is also important to mention that this ratio is largely
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independent of energy up to electron energies of 1MeV, when atomic displace-
ment scattering effects become stronger [32]. Therefore, one is relatively free to
choose the electron energy to optimize experimental parameters, without hav-
ing to worry about a change in the ratio of useful scattering events per unit of
radiation damage.

A more intuitive quantity to estimate when inelastic scattering becomes impor-
tant is the inelastic mean free path Λin, which can be defined with the help of
the total inelastic scattering cross section, the molar mass MW, the mass density
ρ and Avogadro’s number NA:

Λin =
MW

ρNAσinel
=

MWβ
2 · 1010

9.03 ρZ 0.5 ln
(
β2(U0−mc2)

10

) [nm]. (1.11)

Inserting an average density of protein into Eq. (1.11) yields a mean free path
Λin ∼ 190nm for 300 keV electrons and Λin ∼ 110nm for 100 keV electrons. The
mean free path in water or ice can be calculated as Λin ∼ 340nm for 300 keV
electrons and Λin ∼ 210nm for 100 keV electrons [33]. This shows that inelastic
scattering plays a minor role for thin samples of water and proteins and can be
neglected in image simulations without major effect. [33] estimates that the
contribution of inelastic intensity is smaller than 1% for 100 keV electrons.

Radiation damage processes of organic specimens

Radiation damage in organic materials is caused by all kinds of ionizing irradi-
ation. Most radiation damage in electron microscopy occurs due to electron en-
ergy losses between ∼5 eV and ∼100 eV, which are due to ionization of valence
electrons which make up chemical bonds, producing free radicals and causing
emission of secondary electrons. The cross-section for ionization of K-shell elec-
trons and knock-on collisions are much lower so that they can be regarded as
an irrelevant damage source in biological EM with high-energy electrons.
The damage is quantified by the energy dissipated per unit volume, which is
proportional to the number of incident electrons n = jτ/e per unit area, where τ
is the irradiation time in seconds. The incident fluence q = jτ = en (Cm−2) can
therefore be used to quantify irradiation conditions. q is usally called electron
dose in the TEM community, although, in radiation chemistry, dose is defined
as energy dissipated per unit mass, and measured in grays: 1 gray (Gy) = 1j/kg.
This misnomer has gained a foothold in the electron microscopy community,
and the step of quantifying the radiation damage in units gray in cyo-EM of has
until recently usually been skipped, because the achievable resolutions did not
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allow conclusions about structural damage. We stick to the term dose through-
out this thesis to describe the time-integrated electron flux on the sample. Baker
& Rubinstein [34] assess comprehensively the radiation damage processes for
frozen biological specimens. They tabulate the dose for a given charge den-
sity and we give here a few exemplary values: a charge density of 1 e−/Å

2
cor-

responds to a dose of 6.6MGy for 100 keV electrons and 3.7MGy for 300 keV
electrons. A charge density of 25 e−/Å

2
corresponds to a dose of 160MGy for

100 keV electrons and 92MGy for 300 keV electrons. Recently, as the resolution
is in cryo-EM is getting closer to resolutions achieved in X-ray crystallography,
molecule-, residue- and amino-acid specific radiation damage are starting to be
studied in cryo-EM. As an example, G. McMullan, Vinothkumar & Henderson
show that exposure of 1 e−/Å

2
with 300 keV electrons causes water molecules

in pure amorphous ice to move by 1Å [35]. Matthies et al. [36] show that nega-
tively charged residues exhibit more pronounced effects of radiation damage in
structures solved by cryo-EM.

Tertiary damage to proteins during electron irradiation

Tertiary or global damage as an accumulation of the previously mentioned dam-
age effects leads to bubble formation and distortion due to the production of
gas within the sample. Bubbling of samples is due to buildup of hydrogen gas in
specimens in aqueous environment. It has been suggested that the free radicals
produced by radiolysis of water may recombine to H2O in bulk water [37], and
in our group it has been observed that in the liquid phase some biological func-
tion is still retained after high doses of irradiation, but for a detailed evaluation
the resolution of liquid-phase microscopy needs to be increased.

The cryo-freezing of the samples mitigates this tertiary radiation damage by me-
chanically restraining the molecular fragments by the ice matrix, preventing
their movement so that imaging can occur for a longer time. A detailed eval-
uation of the choice of freezing temperature and other experimental parameters
can be found in [34].
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1.2.2 The paraxial wave equation for high-energy elec-
trons

As mentioned in section 1.2.1, the Born approximation breaks down if the sam-
ple becomes too thick or the phase shift due to the atoms in the sample becomes
too strong. To properly account for these effects, a more general solution to the
Schrödinger equation has to be derived. We start with the Schrödinger equation
for free electrons, [

− ℏ2

2m
∇2 − eV(r)

]
ψf(r) = Eψf(r) (1.12)

where m = γm0 is the relativistic mass of the electron, e = |e| is the magnitude
of the charge of the electron, E is the kinetic energy of the electron and −eV
is the potential energy of the electron. The energy of the incident high-energy
electrons is much greater than the additional energy they gain or lose in the
specimen, it is therefore useful to write the wave function of the electrons as a
plane wave traveling in z direction and a factor that varies slowly with z:

ψf(x, y, z) = ψ(x, y, z) exp(2πiz/λ), (1.13)

where λ is the electron wavelength. For now, we consider only elastic processes,
so the total kinetic energy of the electron is:

E =
h2

2mλ2 , (1.14)

Because the electrons travel predominantly in the forward direction, and the
wavelength λ is very small, we can assume

∣∣∣∂2ψ∂z2 ∣∣∣ << ∣∣ 1λ ∂ψ∂z ∣∣. By putting Eq. (1.13)
in Eq. (1.12) and further simplifying with the above approximation, a short
calculation [28] yields the paraxial approximation to the Schrödinger equation:[

iλ
4πi
∇2

xy + iσV(x, y, z)
]
ψ(x, y, z) =

∂ψ(x, y, z)
∂z

, (1.15)

which ignores backscattered electrons and inelastic processes. Here, σ is the
interaction parameter (see Eq. 1.6).
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1.2.3 Multislice solution to the wave equation for fast
electrons

Eq. (1.15) has a formal operator solution of [28]

ψ(x, y, z+∆z) = exp
(
iλ∆z
4π
∇2

xy

)
T(x, y, z)ψ(x, y, z) +O

(
∆z2

)
, (1.16)

where T(x, y, z) is a complex transmission function for the portion of the speci-
men between z and z+∆z

T(x, y, z) = exp
(
iσ
∫ z+∆z

z
V(x, y, z′)dz′

)
. (1.17)

The slice thickness ∆z is chosen such that each slice is approximately a weak
phase object. The factor exp

(
iλ∆z
4π ∇

2
xy

)
can be evaluated in Fourier space [28] to

yield:
F [ψ(x, y, z+∆z)] = exp

(
−iπλ∆z(k2x + k2y)

)
F [T · ψ] . (1.18)

This leads to the solution

ψ(x, y, z+∆z) = p(x, y,∆z)⊗ (T(x, y, z)ψ(x, y, z)) +O
(
∆z2

)
, (1.19)

with p(x, y,∆z) = 1
iλ∆z exp

(
iπ
λ∆z(x

2 + y2)
)
being the Fresnel propagator, which is

the basis of the multi-slice simulations performed in this thesis. The convolution
operator ⊗ is usually evaluated in Fourier space.

1.2.4 Transmission function from atomic potentials

As discussed in section 1.2.1, the case of purely elastic axial scattering of elec-
trons the complex transmission function mentioned in Eq. (1.16) can be de-
scribed as:

T(x, y) = exp(iσvz(x, y)), (1.20)

where σ is the interaction constant and vz(x, y) is the total projected atomic po-
tential of the specimen. We discussed in 1.2.1 that the isolated atom superpo-
sition approximation (IASA) is a reasonably good approximation to compute
the atomic potential of proteins for high energy electrons. This means that the
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main contribution to the potential comes from the electrostatic potential of the
isolated atoms.

v(x, y) =
N∑
j=1

vZj(r− Rj), (1.21)

where vzj(r − Rj) is the electrostatic potential of an isolated neutral atom with
atomic number Zj centered at Rj, as calculated in section 1.2.1. The IASA ignores
the potential due to charge redistributions, which accounts for the interaction
with neighboring atoms, solvent and ions. Biological specimens are embedded
in an amorphous solvent and the potential distribution depends on the dielectric
and ionic properties of the solvent. This potential change can be accounted for
via a continuum electrostatics approach as done in [33]. Inelastic scattering is
usually modeled as the imaginary part of the interaction potential.

vtot = vph + ivab, (1.22)

where vph is the interaction potential as described before. vab contributes the
amplitude contrast as it would appear in a zero-loss filtered image. For an amor-
phous solvent and a certain incident electron energy, the inelastic contributions
can be described via the inelastic mean free path Λin (1.11).

vab(x, y, z) =
1

2σΛin
, (1.23)

where σ is the interaction constant defined above.

1.2.5 Optical transfer function of electron lenses

Aberrations are inherent to round lenses, and the electron wave function ex-
iting the specimen is therefore subject to a frequency dependent phase shift
introduced by the defocus δf and the aberrations such as spherical aberration
Cs and 2-fold astigmatism (A1, α1) of the objective lens. The contrast transfer
function (CTF) of the lens system in polar spatial frequency coordinates is [29]:

B = (∆z− A1 cos(2(α− α1)))

CTF(q, α) = KAp exp
(
−2πik

(
0.25Csq4λ4 + 0.5q2λ2B

))
,

(1.24)

with k = 2π/λ the reciprocal wavelength, Cs the coefficient of spherical aberra-
tion of the objective lens, �z the defocus of the objective lens, Ap the objective
aperture function. The prefactor K decribes spatial and chromatic envelopes
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[33]. The transmission through the optical system to the detector can then be
described by a transmission through the in the back focal plane of the sample:

I0(r) =
∣∣F † [F [ψexit(r)]CTF(q, α)]

∣∣2 . (1.25)

If the microscope is run in diffraction or STEM mode, the influence of the ob-
jective lens is negligible, because the beam in the back focal plane is very small
and is influenced very little by the phase shift. Therefore the diffraction pattern
intensity is just the Fourier transform of the exit wave

I0(q) = |F [ψexit(r)] |2. (1.26)

.

1.2.6 Detector response

Capturing the final image involves conversion of the intensity distribution into
a digital signal via an electron detector. Electron detectors are characterized
by parameters such as conversion factor CF in [ADU/e−], modulation transfer
function (MTF), and detective quantum efficiency (DQE). The measurement
process obeys Poisson statistics, unless complicated entanglement schemes are
implemented to reach Heisenberg statistics [38–41], none of which has been
demonstrated yet and all of which involve significant advances in current micro-
scope hardware. The detector adds readout noise Im and dark current Idc to the
final image, and blurs the image with a detector point spread function, whose
Fourier transform is the MTF.
The MTF describes the signal amplitude for different spatial frequencies. How-
ever, the signal and the noise in an electron detector are not tranferred in the
same way. Therefore, one defines noise transfer function (NTF)

NTF2(q) =
NPSout
CF2Φe

, (1.27)

where NPS is the noise power spectrum and Φe the incident electron flux in
e−/area. The intensity after detection is modeled as [33]:

I(q) = F †
[
F
[
Poisson

(
F †
[
F [I0(q)] ·

√
DQE(q)

])]
· NTF(q)

]
, (1.28)

where NTF and DQE are properties of the detector [42, 43] and Poisson(x) sam-
ples from a Poisson distribution with mean x.
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1.2.7 slice++ - an open-source GPU-accelerated imple-
mentation of the multislice algorithm

At the beginning of the work for this thesis, all available open-source multi-slice
implementations were CPU-based, and the necessity to be able to simulate an
electron ptychography experiment quickly became clear. Therefore, some effort
in creating a fast, GPU-accelerated version of the multi-slice algorithm was in-
vested.
The development was based on the stable and accurate open-source package
QSTEM [44], written in C++. The code was first modularized into classes, and
then all array computations were replaced with GPU operations based on the
open-source GPU acceleration library ArrayFire [45]. The summer student Wen
Qiu helped with the refactoring of the code to transition from CPU to GPU arrays.
We describe shortly the code structure of slice++. Fig. 1.3 shows a simplified
class diagram of the main classes in slice++.
The code is structured into class hierarchies, which implement several function-
alities needed for the simulation. First, a json configuration file is read which
contains all the simulation parameters. Based on the configuration, an incoming
wave class inherited from CBaseWave is created. Depending on the file ending
of the structure file, a file reader inherited from IStructureReader is created,
which then reads the structure input file with atomic coordinates. The structure
file reader is based on the open-source package OpenBabel [46], which supports
all major structure file formats, including cif and pdb formats. Then, a class in-
herited from IStructureBuilder is created which builds the atomic structure
from the structure file. This can either be a crystal (CrystalBuilder), or a
larger superstructure (SuperStructureBuilder), defined from multiple struc-
ture files. After this, a class inherited from CPotential is created, which creates
the potential slices from the atomic coordinates and the scattering factors, and
converts them into phase gratings.
In a last step, a class inherited from BaseExperiment is created, which contains
a wave function, the created potential, a PersistenceManager class which can
save the computed images to disk, and a class inherited from IDetector, which
computes the noise effects after the exit wave is propagated to the detector plane.
When the Run()method of the experiment is called, the wave function is propa-
gated through the the sample slices given by the CPotential class, through the
optical system after the sample, and then IDetector::RecordImage(wave) is
called on the resulting wave function at the detector. This structures enables an
easy implementation of new experimental schemes or detector configurations,
since the propagation, structure building, and detection are decoupled into dif-
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Figure 1.3: Simplified class diagram of slice++
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ferent classes, and only the interface of the respective base class needs to be
implemented.
slice++ is available as open source under https://github.com/PhilippPelz/
slicepp under a GPLv2 license.

1.2.8 Density operator

Above, we ignored the fact that the electrons produced by realistic electron
sources are generally not fully coherent, i.e. cannot be described by a single
wave function. Also if inelastic processes are studied, the wave function formal-
ism is not expressive enough and must be extended, because the beam electrons
become entangled with a multitude of object states due to the inelastic interac-
tion, leading to decoherence of its single-particle state.
One can model such systems with the help of the hermitian, positive semidef-
inite density operator ρ̂. The aforementioned properties mean that ρ̂ may be
diagonalized in some basis

ρ̂ =
∑
m

|cm|2 |ψm⟩ ⟨ψm| . (1.29)

We define the purity of a quantum state as

ζ = tr
(
ρ̂2
)
≤ 1. (1.30)

A pure quantum state obeys ζ = 1. The most important basis representation for
the density operator in the context of this work are be the spatial

ρ̂ =

∫∫ ∞

−∞
dxdx′ |x⟩ ⟨x|ρ̂|x′⟩ (1.31)

=

∫∫ ∞

−∞
dxdx′ |x⟩ ρ(x, x′) ⟨x′| (1.32)

and momentum

ρ̂ =

∫∫ ∞

−∞
dqdq′ |q⟩ ⟨q|ρ̂|q′⟩ (1.33)

=

∫∫ ∞

−∞
dqdq′ |x⟩ ρ(q, q′) ⟨q′| (1.34)
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representations. The matrix elements in position ρ(x, x′) and momentum ρ(q, q′)
representation are usually referred to as density matrix. As a consequence of the
definition of the density operator, they are symmetric in their arguments, e.g.

ρ(x, x′) = ⟨x|ρ̂|x′⟩

=
∑
m

|cm|2 ⟨x|ψm⟩ ⟨ψm|x′⟩

=
∑
m

|cm|2 ⟨x′|ψm⟩∗ ⟨ψm|x′⟩∗

= ρ∗(x′, x)

(1.35)

The computation of the outcome of a measurement with an observable Â in a
partially coherent system can then be performed by taking the following trace:

⟨A⟩ρ̂ = tr
(
ρ̂Â
)
. (1.36)

In particular, in the spatial representation of the density matrix, the detected
intensity in the image plane lies on the diagonal

I(r) = ρ(x = r, x′ = r). (1.37)

The paraxial dynamics of the density operator are governed by the paraxial von
Neumann equation in the Heisenberg picture [47]:

∂ρ̂

∂z
=
∑
m

|cm|2
(
∂ |ψm⟩
∂z

⟨ψm|+ |ψm⟩
∂ ⟨ψm|
∂z

)
=
∑
m

|cm|2
(
−iĤ |ψm⟩ ⟨ψm|+ i |ψm⟩ ⟨ψm| Ĥ

)
= −i

[
Ĥ, ρ̂

]
,

(1.38)

where [•, •] is the quantum mechanical commutator. To solve the complete dy-
namical scattering problem of a mixed quantum state, including inelastic scat-
tering, one typically resorts to perturbation schemes facilitating approximate so-
lutions [48–50]. The topics discussed in this thesis can be approximately treated
by single elastic axial scattering of a nearly pure, or low-rank state of free elec-
trons, and as discussed in section 1.2.1, also the inelastic contributions in the
sample are negligible. In this case, the Hamiltonian does not depend on m and
we can write

∂ρ(r, r′, z)
∂z

= −i(Hax(r, z)− Hax(r′, z))ρ(r, r′, z), (1.39)
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which has the solution

∂ρ(r, r′, z)
∂z

= Tel(r, r′, z)ρ(r, r′, z). (1.40)

The function Tel, depending on two spatial coordinates, is called mutual object
transparency [51]. In the case of purely elastic axial scattering, the transparency

Tel(r, r′) = exp
(
ie
v

∫ z

−∞
dz (Φ(r, z′)− Φ(r′, z′))

)
× exp

(
−i
∫ z

−∞
dz (Az(r, z′)− Az(r′, z′))

)
× exp

(
−1
2

∫ z

−∞
dz (µel(r, z′) + µel(r′, z′))

) (1.41)

contains the projected electrostatic (first term) and magnetostatic (second term)
potentials as phase and the projected elastic damping coefficient as amplitude
argument.

1.2.9 Wigner Function

We now introduce another, equally powerful representation of a quantum state
- the Wigner function representation of quantum mechanical phase space. The
Wigner function of a one-dimensional electron wave function, i.e. a pure quan-
tum state, is defined as

Wψ(r, k) :=
1
2π

∫ ∞

−∞
drψ∗

(
r− 1

2
r′
)
ψ

(
r+

1
2
r′
)
exp(−ikr′), (1.42)

where the normalization guarantees∫∫ ∞

−∞
drdqWψ(r, k) = 1 (1.43)

for normalized wave vectors ψ.
TheWigner function has the following properties: Because it is the Fourier trans-
form of the hermitian function ψ∗ (r− 1

2r
′)ψ (r+ 1

2r
′), it is always real.

It is not necessarily non-negative, and the existence of negative values is the
result of coherent effects.
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The integral over one set of variables gives the square modulus of the function
in the representation of the remaining variable∫

Wψ(r, k)dr = |ψ(k)|2 (1.44)∫
Wψ(r, k)dq = |ψ(r)|2, (1.45)

i.e. the marginal of the Wigner function along r yields the far-field intensity,
while the marginal along q yields the real-space image. This makes it especially
useful for discussing the optical transfer in the TEM.
The purity of a quantum state, already defined in Eq. (1.30) for the density
matrix, is the integral over the squared Wigner function:

ζ = 2π
∫∫

dr dkW2
ψ(r, k) ≤ 1 (1.46)

1.2.9.1 Linear mappings of the Wigner function

The Wigner function has the convenient property that the effects of propaga-
tion through free space and through optical systems can be expressed as linear
transformations in phase space.

Fractional Fourier transform

The fractional Fourier transform can be associated with a clockwise rotation of
phase space [52]

WFθ[ψ](r, k) = Wψ(r cos(θ)− k sin(θ), k cos(θ) + r sin(θ)). (1.47)

Free-space propagation and defocus

The free-space dynamics of of the Wigner function in the paraxial regime are
governed by the free-space Liouville-equation [53](

∂

∂z
+

1
k0
k · ∇

)
Wψ(r, k, z) = 0. (1.48)

Accordingly, the Wigner function of a propagated quantum state reads

Wψ(r, k, z) = Wψ(r−
z
q0
k, k,0). (1.49)
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This means, free-space propagation corresponds to a shear in phase space. Be-
cause the free-space Fresnel propagator, as well as the action of a defocusing
lens, modulate the wave function in Fourier space with a phase profile ∝ k2,
also the action of a defocus can be described by a shear in phase space.

Wigner function of mixed states

For mixed states, the Wigner function can be computed from the density matrix

Wρ(r, k) =
1
2π

∫ ∞

−∞
dr′
∑
m

|cm|2ψ∗
m

(
r− 1

2
r′
)
ψ∗
m

(
r+

1
2
r′
)
exp(−ikr′)

=
1
2π

∫ ∞

−∞
dr′ ρ

(
r+

1
2
r′, r− 1

2
r′
)
exp(−ikr′),

(1.50)

i.e. it can be synthesized from a set of pure-state Wigner functions of the coher-
ent modes of a quantum state.

1.2.10 Ambiguity function

The Fourier transform of the Wigner function along both phase space coordi-
nates

F(r,k),(q,p) [W] (q, p) =
∫∫ ∞

−∞
dkdrW(r, k) exp(−2πiqr) exp(−2πikp) (1.51)

is referred to as ambiguity function. It is defined as

χψ(q, p) ≡
∫
ψ∗(q′ − q

2
)ψ(q′ +

q
2
)e−2πiq′·p dq′ (1.52)

and can also be obtained by a Fourier transform of the density matrix along the
main diagonal

χψ(q, p) =
1
2π

∫
ρ(r− 1

2
p, r+

1
2
p)e−2πiqr dr . (1.53)

Instead of the marginal property, the ambiguity function of a pure state satisfies
cross-section relations

F
[
|ψ(q)|2

]
= χψ(q, p = 0) and (1.54)

F †
[
|ψ̃(p)|2

]
= χψ(q = 0, p). (1.55)
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This means, that the Fourier transform of the real-space intensity is a cross sec-
tion of the ambiguity function. Note that, unless the Wigner function is sym-
metric around two axes, the ambiguity function is complex. Ambiguity function,
Wigner function, and density matrix represent three equivalent representations
of a quantum state and may therefore be used interchangeably.

1.2.11 Quantum state reconstruction in the TEM - algo-
rithmic methods for phase contrast

We have discussed in the last sections that the measurement of an observable al-
ways involves a reduction in dimensionality, either by a projection along an axis,
a trace or a cross section. The field of quantum state reconstruction or quantum
state tomography deals with the recovery of the quantum state from a series of
measurements that completely describe the quantum state. The term tomogra-
phy can be visualized best with the Wigner representation of a quantum state.
If a quantum state is propagated in free-space from the near field to the far field

propagation distance/ defocus 1 propagation distance/ defocus 3propagation distance/ defocus 2

α= arctan(1/ F)

Figure 1.4: Quantum tomography explained with the example of free-space propagaধon and mea-
surement at different propagaধon distances. As a quantum state propagates, its phase space dis-
tribuধon is sheared along the horizontal axis. A measurement corresponds to projecধon along the
verধcal/momentum axis. A shear can be equivalently described by a rotaধon by an angle α, and
subsequent scaling. Tomography the involves measurements at rotaধon angles ] − π/2, π/2], i.e.
from the far-field to the real space to the far field again.

and measurements at different propagation distances are taken, a shear-series
of the Wigner function is collected as depicted in Fig. 1.4. It can be shown that
this shear series corresponds to a tilt-series of phase space, where each shear can
be described by a tilt by an angle α and an additional scaling of he coordinate
system [53]. The angle α = arctan(1/F) is equal to the arctan of the inverse
Fresnel number. The Fresnel number F = a2

zλ , with a the real-space extension of
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the state, serves to distinguish near-field (F≫ 1) and far-field (F≪ 1) propaga-
tion, and therefore gives an intuitive explanation of the phase space picture of
propagation.
Therefore one way to synthesize the phase space from its projections is by prop-
agating or defocusing a quantum state from its current z position to the far field
in both directions. Then, traditional methods of tomography can be used to
recover the state. This principle to recover quantum states from projections of
their phase space was pioneered in quantum optics [54, 55], and has since been
applied and generalized to many other areas of physics.

1.2.12 The phase retrieval problem: a special case of
quantum state reconstruction

The phase retrieval problem for wave functions mentioned in the introduction
can be shown to be a special case of the more general quantum state reconstruc-
tion problem. Describing a quantum state with a wave function implies a pure
quantum state, i.e. ρ̂ = |ψ⟩ ⟨ψ|. In the case of single elastic scattering, the trans-
mission through the sample can be described as a simple multiplication, and
can therefore be expressed by a rank 1 measurement operator Ik = |ik⟩ ⟨ik|. The
measurement process can then be written as

Ik = tr(|ψ⟩ ⟨ψ| |ik⟩ ⟨ik|), k = 1, ...,m. (1.56)

This is equivalent to writing

Ik = |⟨ik|ψ⟩|2 , k = 1, ...,m. (1.57)

Due to the nature of the measurement process, the wave function or quantum
state is usually reconstructed in a discrete Hilbert space. Then, the above equa-
tion can be conveniently written in matrix form.
We define the discretely sampled wave function ψ∨ ∈ Cn and the discretely sam-
pled measurement vectors ik ∈ Cm. Then Eq. (1.57) can be rewritten as

I = |Aψ∨|2, (1.58)

whereA : Cn → Ckm is a linear operator and the vectors ik are the row vectors of
A. We call the problem of finding the phases of ψ∨ the generalized phase retrieval
problem. We note that the multiplicative nature of the model allows to swap ψ∨

and ik, which means that the measurement vectors can also be the quantity that
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is reconstructed, instead of the wave function.
This means that, if the measurement vectors ak represent a quorum [56, 57], Eq.
(1.58) is formally equivalent to Eq. (1.36), which means that the generalized
phase retrieval problem is equivalent to quantum state tomography with a rank 1
density matrix and rank 1 measurements, i.e. applies only to the reconstruction
of pure states. Due to the experimental limitations in the electron microscope,
the choice of the measurement vectors ak is quite limited and we discuss possible
experimental realizations in the following sections.

1.3 Phase-contrast methods in transmission electronmi-
croscopy

This chapter treats most of the main phase contrast methods used in electron mi-
croscopy today, namely phase contrast from coherent aberrations, Zernike phase
contrast, and several methods for computational recovery of phase contrast. We
discuss focal series inline-holography, off-axis holography, STEM ptychography
and Fourier ptychography. We do not discuss differential phase contrast and
the various solutions of the transport-of-intensity equation (TIE), as they do not
allow to recover the full quantum state. A discussion of these techniques can be
found in Lubk [10]. In the last section we consider several possible experimental
implementations for single-shot phase-retrieval with electrons.

1.3.1 Phase contrast transfer in conventional transmis-
sion electron microscopy

The phases in the object transfer like the imaginary part of the [29], and there-
fore undergo a sinusoidal modulation in Fourier space, which define the CTF

B = (∆z− A1 cos(2(α− α1)))

PCTFzernike(q, α) = KAp sin
(
−2πik

(
0.25Csq4λ4 + 0.5q2λ2B

))
.

(1.59)

The sinusoidal form of the phase contrast transfer function means that low spa-
tial frequencies are transmitted poorly by the lenses in the electron microscope.
Because the low spatial frequencies are important to identify single particles in
the first place, this effect must be counteracted by applying a large amount of
defocus. Two exemplary phase contrast transfer function (PCTF) functions with
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Figure 1.5: Phase contrast transfer funcধon for two different defocus values. By using a range of
defoci for data collecধon, all spaধal frequencies are represented in a large data set.

typical defocus values used in cryo-EM are plotted in Fig. 1.5. The large defocus
introduces contrast reversals already at low spatial frequencies, and therefore a
large data set with a range of defoci needs to be collected to cover the whole
Fourier space with information.

1.3.2 Zernike-type phase contrast

Zernike discovered in 1942 [2, 3] that by applying a 90◦ phase shift to the un-
scattered beam in the back focal plane of the objective aperture, it is possible
to achieve linear phase contrast in the image for low spatial frequencies. This
can be easily seen by multiplying Eq. (1.24) by eiπ/2: the phase contrast transfer
now has a cosinusoidal form:

B = (∆z− A1 cos(2(α− α1)))

PCTFzernike(q, α) = KAp cos
(
−2πik

(
0.25Csq4λ4 + 0.5q2λ2B

))
.

(1.60)

The PCTF for bright-field TEMwith a Zernike phase plate is shown for two exam-
ples in Fig. 1.6. Judging from the PCTF plot it is clear that the optimum contrast

27



0.0 0.1 0.2 0.3 0.4 0.5

q [Å
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Figure 1.6: Phase contrast transfer funcধon with Zernike phase plate for two different defocus
values.

transfer happens at zero defocus. Practically, however, it is very hard to exactly
determine the zero defocus position at low electron doses, because usually the
radial intensity modulation in the Fourier transform of the image (Thon rings)
is used to fit the defocus value. At very low defocus, defocus determination with
this method becomes very imprecise, and therefore the Volta phase plate is al-
ways used at a few 100nm defocus [20]. In the following sections, we discuss
the possibilities and attempts to realize a Zernike phase plate for electrons.

Thin-film quarter-wave phase plates

Soon after Zernike’s idea, in 1947 Boersch proposed to use a thin carbon film as
a Zernike phase plate in an electron microscope [19]. In the following decades,
a number of unsuccessful attempts at creating such a thin-film phase plate were
made. Since most of the results were unsatisfactory, only few papers were pub-
lished about it [58, 59]. Only recently, Danev et al. have succeeded in creating
a practical and simple design [4], which is now used by the majority of the
cryo-EM community. It is based on a surface chemical effect which creates a
phase advance of the central beam relative to the scattered beam in the pres-
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ence of strong irradiation of an amorphous carbon film in the central diffraction
spot in the back focal plane. The effect is dependent on the total dose and on
residual gases in the vacuum, but the exact physics and chemistry leading to
the effect are unclear. Consequently, an optimal phase shift of 90◦ can not be
guaranteed.

In addition to the not precisely controllable phase shift, the insertion of material
in the path of the electrons behind the sample causes additional elastic and
inelastic scattering, which reduces the contrast slightly. Danev et al. report a
18% signal reduction compared to imaging without the Volta phase-plate at
200 keV.

While these inefficiencies point at areas where improvement is possible, the
cryo-EM community has adopted this device broadly for the lack of a better
alternative.
A series of other phase plate design have been proposed in the past with limited
success. We only mention them briefly here and point the interested reader to
the excellent review article [60].

Phase plates based on the electrostatic effect

An electrostatic field causes a phase shift to a passing free electron. Another op-
tion is therefore to create a local electric field in the center of the back-focal plane
of the objective lens that corresponds to a phase shift of π/2. A few promising de-
signs fabricate aminiaturized electrostatic einzel lens via focused ion beam (FIB)
milling [61] or by lithographic means [62, 63], to allow mass production and
reproducibility. The gained flexibility of tunable phase comes at the cost of
blocking parts of the beam completely, therefore resulting in loss of information
at low spatial frequencies, decoherence, inelastic losses and charging issues.

Phase plates based on magnetic fields

A magnetic vector potential Az in the path of a free electron exhibits a phase shift
of

ϕ(x, y) =
e
ℏ

∫ +∞

−∞
Az(x, y, z)dz, (1.61)

where e and ℏ are the absolute values of the electron charge and the reduced
Planck constant, respectively. Two designs were proposed to achieve an appro-
priate configuration of the magnetic vector field: The first[64] proposes the use
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of ferromagnetic rings of a radial thickness of 30 nm in the back focal plane of
the objective lens. If the magnetic fluence in such a ring forms a continuous loop,
the magnetic vector potential inside and outside the loop points in opposite di-
rections. In this way, an arbitrary phase shift is realizable which is independent
of the electron energy. The disadvantage of this design again is the obstruction
of parts of the beam by the ring holder and the ring itself.
The second design was proposed recently and makes use of Ampere’s law to
create the magnetic vector potential [65]. It creates a magnetic field circulat-
ing around a vertical segment of a current-carrying wire, which adds a position-
dependent phase shift to the electron wave. When placed in the back-focal plane
of the objective aperture, it provides a phase shift of

ϕ(q) =
e
ℏ
µ0

4π
log

(
(qx − qc)2 + q2y

q2c

)
. (1.62)

This comes very close to the ideal step-function phase shift of a Zernike phase
plate, while only obstructing a very thin section which holds the current-carrying
wire. Due to the tuneability of the phase shift via the current flowing through
the wire, this design has a clear advantage over the Volta phase plate and might
also be easier to handle.

1.3.3 Experimental implementations for quantum state
reconstruction in the TEM

In the language of quantum mechanics and phase space introduced in sections
1.2.8 and 1.2.9 it is immediately clear that the methods described above are
far from optimal to recover phase. We have discussed that measurement al-
ways implies taking a trace, cross-section or projection, depending on the state
representation, such that the optical transfer through the microscope cannot be
disentangled from a single measurement. This manifests itself in the contrast
transfer functions discussed above. Even worse, any use of material behind the
sample involves another scattering process, which means information loss into
inelastic channels.
The remedy for this problem is to collect a number of measurements with identi-
cal incoming quantum states and no obstruction to the beam behind the sample,
to then synthesize the quantum state from this set of measurements. This is the
quantum state reconstruction procedure described in section 1.2.11. We now
describe four possible and popular experimental implementations of quantum
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state reconstruction in the TEM, and describe the history of application and their
suitability for low-dose imaging of biological samples.

1.3.3.1 Focal series inline holography

Focal series inline holography intends to recover the quantum state from a set of
defocused images taken over a large focal range. In a TEM, typically the object
plane and the image plane remains fixed. Thus, focal series are usually acquired
by varying the lens excitation of a single lens above the sample. A sketch of the
experimental setup is show in Fig. 1.7. In its phase space formulation [53], as it
was described in section 1.2.11 it becomes evident that, if the focal series reaches
from the far-field to the near field to the far field, the full dataset represents a
tomography of the corresponding Wigner function of the free electrons in phase
space. It is however far from trivial to acquire a large range focal series in a TEM
that is free from variations other than defocus. Changing the electron optical
system induces additional image rotations, distortions, shifts and at high reso-
lution parasitic aberrations. Disentangling all these effects has thus far proved
too large of a hurdle for a full phase space tomography in the TEM. It has never-
theless been successfully employed for visible light [55] and X-rays [66]. Focal
series reconstructions of pure states are, however, widely-used to reconstruct
wave functions with atomic resolution [67–72] and at medium resolution [73].
In these experiments, the focus is typically varied only in the near field, such that
quantification is relatively straightforward. The reconstruction of a unique wave
function from such a set of images remains somewhat elusive. Questions regard-
ing the required focal range, coherence, noise or spurious aberrations are not
answered conclusively as of today. Indeed, non-unique reconstructions, e.g. de-
pending on the starting guess or other parameters in reconstruction algorithms
are reported in the literature [74–76].

1.3.3.2 Off-axis holography

Off-axis electron holography allows to reconstruct the phase of the sample by
interfering a reference planewavewith thewave scattered by the object. Usually,
the electron beam is split above the sample with an electron biprism and then
re-interfered in the image plane on the detector. Fig. 1.8 shows an optical setup
in the electron microscope. The resulting image intensity, if the plane waves are
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Figure 1.7: Simplified opধcal setup for inline electron holography. The defocus of the objecধve lens
is varied and at each defocus an image is taken.

mutually inclined under an angle β, is an interference pattern with the carrier
frequency qc = k0β

Ih(r) = I0 + A2(r) + 2µc A(r) cos(2πqcr+ ϕ(r)) (1.63)

where µc ≤ 1, the degree of coherence, dampens the fringe contrast of the sinu-
soidal interference term. The amplitude and phase terms in the hologram can
be easily separated by a Fourier transform of the hologram, yielding

F [Ih(r)] = I0δ(q) + F [A2(r)] + δ(q− qc)⊗F [A(r) exp(iϕ(r))]
+ δ(q+ qc)⊗F [A(r) exp(−iϕ(r))],

(1.64)

a center band and two sidebands. The sidebands contain the full phase informa-
tion of the sample, thus enabling simple phase recovery for a pure state. This
becomes clear when calculating the ambiguity function of the off-axis hologram
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Figure 1.8: Simplified opধcal setup for off-axis electron holography. The electron beam is split by a
biprism into a reference wave and the wave that traverses the sample. Behind the sample, the wave
are re-interfered in the image plane of the objecধve lens.

[53]. As mentioned in section 1.2.10, the hologram’s Fourier spectrum is the
cross section of the ambiguity function at p = 0:

χ(q,p) = χ++(q,p)e
i
2 (qd+pqc) + χ−−(q,p)e−

i
2 (qd+pqc)

+χ+−(q+ qc,p+ d) + χ−+(q− qc,p− d).
(1.65)

This is depicted in Fig. 1.9. The separation of the sidebands from the center
band is given by the incidence angle β on the detector, which determines the
carrier frequency. The holographic shear d is then used to perform the quantum
state reconstruction. The terms with subscript ++ and −− are the center band
terms, while the terms with subscript +− and −+ are the sideband terms. The
sideband terms are shifted by qc in Fourier space and d in real space, respec-
tively, therefore the a pure state can be recovered from a single cross-section of
the ambiguity function when the shift is larger than the bandwidth limit of the
object Fourier spectrum.
The reasons why off-axis electron holography is not used today for imaging of
biological specimens are rather of practical nature. The need for a vacuum area
for the reference wave to pass through close to the region of interest compli-
cates sample preparation, and in the worst case a thin area of specimen support
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Figure 1.9: Quantum state reconstrucধon by off-axis holography by measuring the cross-secধon
χ(q,p = 0) of the ambiguity funcধon and varying the holographic shear d. Covering the whole
space of d requires not only changing the biprism voltage but also its posiধon and orientaধon. Ad-
diধonally, for shears larger than the coherence length, the interference term strongly aħenuates.

must be used. This increases the phase error in the image because it breaks the
plane wave assumption. Additionally, at least two electron biprisms need to be
inserted into the column, which further increases the cost of already expensive
cryo-EM equipment. The first demonstration of off-axis electron holography of
a biological specimen was performed by Kawasaki et al. with ferritin proteins in
1986 [77]. The scarcity of successful experiments thereafter hints at the experi-
mental difficulty. The next successful experiments were performed by Aoyama,
Lai & Ru on bacterial flagellum [78] and tobacco mosaic virus. Since the intro-
duction of direct electron detectors there have been no additional experimental
attempts at applying the technique on biological samples.

1.3.3.3 STEM Ptychography

Ptychography, first proposed in 1969 [11, 12], solves the phase retrieval prob-
lem by collecting a set of far-field diffraction patterns at a multitude of overlap-
ping probe positions. A simplified optical setup is depicted in Fig. 1.10. If the
object is scanned with an evenly spaced lattice, this results an a 4-dimensional
data array, which can be mathematically expressed as:

M(q, x) =
∣∣∣∣∫ ψ(r)T(r− x)e2πirq dr

∣∣∣∣2 , (1.66)
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Figure 1.10: Simplified opধcal setup for ptychography. The beam is shiđed over the object in the
sample plane over the object or vice versa, depending on the experimental feasibility. In the STEM,
the beam can be scanned over the sample with dwell ধmes of a few µs

where q, r and x are the coordinates in the detector plane, the sample plane,
and of the probe scan position respectively. Expanding the above equations into
integral form yields

M(q, x) =
∫∫

ψ̃(r)ψ̃∗(r)T̃(r− x)T̃∗(r− x) exp(2πiq · (r1 − r2))dr1 dr2 (1.67)

Taking the Fourier transform with respect to q and the inverse Fourier transform
with respect to x yields

Fq [Fx [M]] (r, v) ≡ H(r, v) (1.68)

H(r, v) =
∫
ψ(b− r)ψ(b)e−2πibv db (1.69)

·
∫

T(c− r)T(c)e2πicv dc . (1.70)

This equation, in turn, can be written as a product of two ambiguity functions
(Eq. (1.52))

H(r, v) = χψ(r,−v)χT(r, v), (1.71)

or equivalently, as a convolution of the probe and transmission function Wigner
functions along all phase space dimensions,

H(r, v) = Wψ(r, v)⊗WT(r, v). (1.72)
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This means, if the Wigner function of the incoming electron wave is known, it
can be deconvolved from the 4-dimensional dataset and the Wigner function of
the transmission function T recovered. Thus this method of reconstruction was
termed Wigner Distribution Deconvolution (WDD) [13]. It was first described
in 1989 by Bates & Rodenburg [13, 79] and demonstrated with electrons for a
crystalline sample in 1995 [14] and with X-rays for a non-crystalline sample in
1996 [15]. Acquiring a ptychographic dataset for WDD requires the instrument
to be stable during the acquisition and for the scanning to be precise within the
sub-pixel range, because errors in the positions or sample drift can not be cor-
rected after the fact. It took until the arrival of fast pixelated electron detectors,
before the technique became practicable for electron microscopy.
Typically, WDD dataset is collected with a step size that equals the maximum
transferred resolution, which is twice the half-convergence angle of the con-
denser aperture. Because the 4-dimensional data set encodes only two 2 di-
mensional functions, it is highly redundant and the sampling may be reduced
without hampering the reconstruction as discussed in the following chapter.

1.3.3.4 Fourier Ptychography

The reciprocity principle [80] states that a STEM can be regarded as a conventional
TEM (CTEM) run in reverse, i.e. any particular point in the diffraction plane of
the specimen corresponds to an angular position of the source in CTEM, while
the source in STEM lies at the same position as one point int the image plane of
CTEM. This is of course only the case of the scattering within the sample obeys
time reversal symmetry, which is valid when the first Born approximation holds
[81].
Therefore, an equivalent experiment to STEM ptychography can be obtained if
the ray paths are inverted. This corresponds to an experiment where the sample
is illuminated with a tilted plane wave, and an aperture is placed in the back
focal plane of the objective lens to cut off electron that are scattered outside a
maximum angle. This was is pictured in Fig. 1.11. This type of experiment was
described by Rodenburg & Bates in 1992 [13], and has recently become very
popular in the field of light microscopy [82, 83]. In the TEM this type of exper-
iment has been pioneered by the group of Angus Kirkland in Oxford [84–86],
where it was mainly applied to atomic resolution imaging. A problem for the
implementation of Fourier ptychography in the TEM is that usually an objective
aperture cannot be used because it charges up asymmetrically when it is illu-
minated by a tilted beam, and therefore introduces asymmetric phase changes
which vary during the experiment and need to be accounted for. Also the de-
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dark field
illumination

specimen lens imageaperture

Figure 1.11: Simplified opধcal setup for Fourier ptychography. The object is illuminated with ধlted
plane waves and a set of dark field real-space images is recorded on the detector.

termination of aberration parameters of the imaging system is important in this
setup, and the determination of these parameters become difficult at low elec-
tron doses. The phase space description of Fourier Ptychography was analyzed
in [82] and it was shown that the Fourier ptychographic data set is rotated by
90◦ with respect to the conventional ptychography dataset. Therefore, the same
methods of deconvolution as discussed for conventional ptychography can be
applied for Fourier ptychography.

1.3.3.5 Possible single-shot experiments for low-dose quantum state
reconstruction

As mentioned in the introduction, a very impactful possible application of a low-
dose phase contrast method is to study dynamics of biological specimens in the
liquid environment. The completion of a pulsed cold field emission diffraction
setup in the Miller group in the near future will allow to perform time-resolved
experiments with computational phase contrast techniques. We therefore dis-
cuss the possibilities for single-shot phase retrieval that were considered as part
of this thesis regarding coherence requirements and difficulty of implementa-
tion.
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Single-shot off-axis holography

In principle, single-shot off-axis holography is possible with a pulsed electron
source and the same experimental configuration as discussed in section 1.3.3.2.
Due to too high coherence requirements, this experiment has so far only been
performed in the visible light regime [87, 88]. For an experiment with electrons,
the requirement of a fully coherent beam across the field of view would mean
to choose either a small field of view or to cut off most of the electrons directly
after the source to increase the coherence of the beam. Besides, the number of
electron optical elements needed increases the amount of experimental develop-
ment needed for the use in self-built electron microscopes or diffraction setups.
It is however pursued in some ultrafast TEMs with Schottky or cold field emitters
[89, 90].

Single-shot inline holography with a phase modulation

Single-shot coherent diffractive imaging with nearly plane-wave illumination is
popular in the X-ray community because of its simple experimental implemen-
tation. However, the high dynamic range requirements on detectors and the
relative susceptibility to noise compared to other techniques do not make it at-
tractive for low-dose imaging with electrons. Furthermore, electron optics allow
easy manipulation of the convergence angle, such that more traditional inline
holography schemes become feasible. Nevertheless, traditional inline hologra-
phy also suffers from uniqueness problems and relies on a fully coherent electron
beam.
A scheme that might be attractive for low-dose inline holographic phase retrieval
was demonstrated by Zhang et al.[91, 92], where a phase mask is inserted be-
hind the sample to impose additional phase profile on the diffracted wave and
distribute the intensity more evenly over the whole detector.
Introducing material behind the sample was already considered suboptimal for
low-dose imaging in section 1.3.2, therefore a dose-efficient way of performing
a similar experiment would be to insert a phase mask before the sample, i.e., in
the aperture plane of an electron microscope. An application of this scheme to
electron ptychography is discussed in chapter 4.
A downside of this scheme is that the phase mask must be characterized before
the single-shot experiment, either by ptychography or other methods. If the elec-
tron source is very stable, it could also be characterized beforehand, such that
the reconstruction amounts to a simple phase retrieval of the object transmission
function.
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Single-shot ptychography

Single-shot ptychography was first proposed and demonstrated in 2014 by Pan,
Liu & Zhu to overcome the scanning time limitation of ptychography [93]. In the
original proposal, a diffraction grating was used to split the beam intomany iden-
tical copies, differing only by a linear phase gradient. A second paper [94, 95]
introduced more variants, e.g. the combination of a pinhole array and a focus-
ing lens, depicted in Fig. 1.12. This implementation is particularly attractive for

Figure 1.12: Simplified opধcal setup for single-shot ptychography. Reproduced from Sidorenko &
Cohen [95]

electron diffraction experiments, as it only requires the beam to coherently fill a
single pinhole because no coherent interference is required between the beams
from different pinholes, as they constitute distinct measurements. By varying the
pinhole size, the experiment can be adjusted to the lateral coherence properties
of the electron source. The experiment does, however, require a detector with
a large number of pixels, as one records multiple, spatially separated diffraction
patterns at once. It is also for the promising properties for future single-shot
experiments at pulsed electron diffractometers that we selected ptychography
as the method of choice for further investigations.
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2 Low-dose electron ptychography via
non-convex Bayesian optimization

In this chapter we connect ptychographic reconstruction to the generalized phase
retrieval problem defined in the previous chapter. We discuss the shortcom-
ings of existing algorithms with respect to low-dose experiments and present
a Bayesian algorithm thats solves the ptychographic phase retrieval problem
efficiently at low doses. We then extend this algorithm to the case when the
probe wave function is unknown, and the case when the probe wave function is
unknown and partially coherent.

2.1 Mathematical formulation of ptychographic phase
retrieval

We now give a more general definition of ptychography in the formalism of
generalized phase retrieval, to allow for arbitrary scan patterns. We define the
two-dimensional grid with size n1×n2 ∈ N×N and length scale r > 0 asDn1×n2

r :=
(rα, rβ)n1,n2α,β=0 ⊂ R2. The two-dimensional complex transmission function of the
object is discretized as a n1 × n2 matrix and denoted as T : Dn1×n2

rd → C, where
rd > 0 is the diffraction-limited length scale as introduced above. The object
is illuminated by a small beam with known distribution, and discretized as a
m1 × m2 matrix, denoted as ψ : Dm1×m2

rd → C. For simplicity, in this thesis we
only consider the case n1 = n2 and m1 = m2, i.e. a uniform discretization in
both axes. The experiment is depicted in Fig. 2.1. In the experiment, the beam
is moved over the sample to positions ri, and illuminates K > 1 subregions to
obtain K diffraction images. The far-field intensity measured for position i is
then

Ii q = |F [ϕi r] |2 = |F [ψ(r+ ri) · T(r)] |2, i ∈ {0, ...,K}, (2.1)

where the real-space coordinates are discretized in steps of rd, and reciprocal-
space coordinates in steps of (m{1,2}rd)−1. Mathematically, ptychographic recon-
struction can be understood as a special case of the generalized phase retrieval
problem defined in 1.2.12. We follow the notations in [97] to write the ptycho-
graphic phase retrieval problem in this form. First, we vectorize the transmission
function and the incoming wave function as T∨ ∈ CN with N = n1 · n2 ∈ N and
ψ∨ ∈ CM with M = m1 ·m2 ∈ N by stacking the entries of the 2D arrays row by
row. We introduce the matrix R(i) ∈ RM×N, which extracts anM = m1×m2 sized
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Figure 2.1: Simplified opধcal setup for ptychography with arbitrary scan posiধons {ri}. The coher-
ent wave funcধon ψ(r) is shiđed over the sample, which in the previously described approxima-
ধons can be treated as as complex transmission funcধon T(r). At posiধons ri, a far-field diffracধon
paħern Iiq = |F [ψ(r+ ri) · T(r)] |2 is recorded by a detector placed a distance∆z away from the
sample. The sample thickness t must fulfill the thickness requirements discussed in secধon 3.1.2.
(from Pelz et al. [96])

area centered at position ri from T∨. With these notations in place, the relation
between the noise-free diffraction measurements collected in a ptychography
experiment and T∨ can be represented compactly as

I = |FΦ(T∨, ψ∨)|2. (2.2)

Φ(T∨, ψ∨) is a linear operator that generates K exit waves from the incoming
wave function and the complex transmission function and F is a block-diagonal
matrix with th 2D discrete Fourier transform (DFT) matrix as the block. It can
be expressed as

Φ(T∨, ψ∨) = diag (Sψ∨)RT∨ = diag (RT∨)Sψ∨ (2.3)

where R =
(
R(1)R(2) ...R(K)

)T ∈ RKM×M is the matrix that crops out all illuminated
regions from the transmission function. S ∈ RKM×M is a K× 1 block matrix with
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the M ×M identity matrix as the block that stacks K exit waves on top of each
other. The action of the different operators is depicted in Fig. 2.2. We further

1 2

1 2

Figure 2.2: Depicধon of the ptychographic operators. A transmission funcধon of a proteasome
parধcle T with 70× 70 pixels is cropped at two posiধons with 9× 9 pixels. The outcome of the op-
eraধon RT∨ is therefore a 162-dimensional vector. For the mulধplicaধon with the wave funcধon,
the vector is wriħen in the matrix diagonal, such that the mulধplicaধon with the wave funcধon ψ
is the matrix mulধplicaধon of the stacked wave funcধon Sψ∨ with this diagonal matrix. The opera-
tor F for the case of two posiধons is a 2M× 2M block diagonal matrix with the 2D DFT matrix as
the block. Because of the sparsity of the involved matrices, the operaধons are usually performed
directly on the non-zero entries to save memory and computaধon.
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define the matrices P := Fdiag (Sψ∨)R ∈ CKM×N and Q := Fdiag (RT∨)S ∈
CKM×N to abbreviate the gradient calculations in the next chapter.
Comparing P and Q with Eq. (1.58) makes clear that these are the quantum
mechanical measurement operators for probe and object respectively.

I = |PT∨|2 = |Qψ∨|2, (2.4)

In the last decades many algorithms to solve this problem have been devised,
only a few of which we review with regards to low-dose reconstruction in the
following section. For the subsequent analysis, we denote the KM row vectors
of P and Q as pk and qk respectively, so that for a single intensity measurement

Ik = |⟨qk|ψ∨⟩|2 = |⟨pk|T∨⟩|2 , k = 1, ...,KM. (2.5)

2.2 Discussion of existing algorithms

The most prominent iterative algorithms to solve the ptychographic phase re-
trieval problems are the difference map (DM) algorithm [98], and the extended
ptychographic iterative engine (ePIE) [99]. The difference map belongs to the
family of algorithms which use projections onto non-convex sets to reach a fix-
point, i.e., the solution lying at the intersection of the two sets. Both algorithms
use the following amplitude projection to constrain the model intensities to the
measurements:

Paϕ = F †
[
F [ϕ]

|F [ϕ] |
a
]
, (2.6)

where a =
√
I are the measured amplitudes and ϕ is the exit wave. This projec-

tion is only exact in the noiseless case, and in the presence of noise introduces
errors which usually average out over the high number of measurements at the
high counts at which diffraction patterns are recorded, or are explicitly averaged
by performing many reconstructions with different starting points and then aver-
aging the result of these reconstructions. The problem with the exact projection
at low counts becomes clear when looking at the measurements with zero inten-
sity. At the low doses needed for cryo-EM, the diffraction patterns contain many
pixels with zero intensity even in the bright field. The exact projection sets the
intensity of the wave function to zero at spatial frequencies where the probe
has the highest probability density although single measurements may contain
zero intensity, therefore phase retrieval fails with the DM and ePIE if the bright
field intensities become very low [100, 101], and statistical reconstruction meth-
ods have to be used. Thibault & Guizar-Sicairos [102] have analyzed maximum
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likelihood methods in conjunction with a conjugate gradient update rule as a
refinement step, after the DM algorithm has converged. They demonstrate an
improvement by two orders of magnitude of the signal-to-noise ratio (SNR) of
the reconstructions, compared to a reconstruction using the DM algorithm alone.
They note, however, that starting directly with maximum likelihood optimiza-
tion often poses convergence problems.
If noise needs to be accounted for in projection-based algorithms, the exact pro-
jection of DM and ePIE can be replaced by a proximal projection, as has been
done by more recent algorithms [103, 104].

2.3 Non-convex Bayesian optimization for ptychogra-
phy

Due to the lack of phase retrieval algorithms with convergence guarantees, the
mathematical community has recently picked up the problem, and a host of new
algorithms with provable convergence have been developed. While we do not
elaborate on them here we point the interested reader to the review articles [105,
106] and the article [107], which refers to the most recent developments. Here,
we focus on developments which specifically target low-dose applications. No-
table in this area is the work by Katkovnik & Astola [108], which in addition to
the maximum likelihood estimate introduces a transform-domain sparsity con-
straint on the object and optimizes two objective functions in an alternating
fashion: one for the maximizing the likelihood, and one for obtaining a sparse
representation of the transmission function. However, instead of including the
Poisson likelihood directly, an observation filtering step is performed with a
Gaussian likelihood. To obtain a sparse representation of the object, the popu-
lar BM3D denoising filter is used [109]. During the writing of this thesis, Yang
et al. suggested using the Wigner Distribution Deconvolution technique for low-
dose ptychography [110], however no statistical treatment of the measurement
process is included so far.
A detailed evaluation of all the different algorithms treating noisy phase retrieval
proposed so far, including noise suppression in Wigner deconvolution [111],
would be very interesting, however because iterative ptychography has been
patented and open-source implementations of ptychographic reconstruction al-
gorithms are aggressively prosecuted, reproducing the results of each publica-
tion is a major endeavor that we leave as future work.
In this work, we formulate ptychographic phase retrieval as a Bayesian inference
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problem, by rewriting the probability of the transmission function T∨ given a set
of measurements y = (y1, y2, ... , yKM)

T ∈ RKM
+ according to Bayes’ rule:

P(T∨|y) = P(y|T∨) P(T∨)

P(y)
. (2.7)

It relates the probability a value of the transmission function T before collect-
ing a measurement, P(T∨), to the probability after performing a measurement
y, P(T∨|y). P(T∨) is therefore called prior probability, while P(T∨|y) is called the
posterior probability. The factor that relates the two quantities, P(y|T∨)

P(y) is called
likelihood ratio. It is the quotient of the conditional probability P(y|T∨) of a mea-
surement given a certain transmission function, and themarginal probability P(y)
of a measurement. In the literature, P(y|T∨) is often called likelihood. Since the
measurements yi are independent and follow the Poisson distribution

yi ∼ Poisson(Ii(T∨)), (2.8)

the likelihood of the measurements y given a certain transmission function T∨

is given by

P(y|T∨) =
KM∏
i=0

Ii(T∨)yi

yi!
e−Ii(T∨). (2.9)

The prior distribution P(T∨) is usually chosen such that it favors realistic solu-
tions, so that noise is suppressed in the reconstructed image. Here we evaluate
two different models. A simple prior, suggested in [112], penalizes large gradi-
ents in the imagewith a Gaussian distribution on the gradient of the transmission
function, which is also known as Tikhonov regularization:

PTikhonov(T) = exp
{(
−µ0

κ
||∇T(r)||2

)}
= exp

{(
−µ0

κ

N∑
i=1

(DxT∨)2i + (DyT∨)2i

)}
(2.10)

with κ = 8
N2
pix

Nm||I||1
chosen as in [112]. Nm is the total number of valid measure-

ments, Npix ∗ K in the case when the detector has no hot pixels. This scales the
numerical value of the prior to be close to the likelihood, such that the weight µ0

can take values between 1× 10−1 and 1× 10−2. The effect of a strong Tikhonov
regularization is a damping of strong gradients in the transmission function,
therefore smoothing the image. Dx and Dy are the discrete forward difference
operators. The second prior we evaluate is based on the work by Katkovnik et
al. [108] and uses sparse modeling to denoise the transmission function:

Psparse(T∨) = exp
{(
−µ||T∨ − T∨

sparse||2
)}

(2.11)
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Here, T∨
sparse is built up by applying the BM3D collaborative filtering algorithm

[109, 113]. As the BM3D algorithm was initially designed for natural real-
valued images, we decompose the complex transmission function into real and
imaginary part for the best denoising results [114]. The prior Psparse(T) reduces
the difference between the denoised version of the current transmission function
and the transmission function itself. We note that an extensive comparison of
denoising phase retrieval algorithms was published in [113], which also evalu-
ates BM3D denoising using an algorithm similar to the one presented here, and
finds superior performance compared to other denoising strategies such as total
variation or nonlocal means. We do not take into account the marginal likeli-
hood P(y) because it involves integrating over all possible values of the trans-
mission function and would increase the computational load by a large amount.
Because we aim for real-time reconstruction, we set the marginal likelihood of
the measurements constant. Given the likelihood function P(y|T∨) and the prior
distribution P(T∨), we can now write the objective function for the maximum-a-
posteriori (MAP) estimate:

T∨
MAP := argmin

T∨
LMAP(T∨) = argmin

T∨

(
− log

(
P(y|T∨)P(T∨)

P(y)

))
. (2.12)

The log-likelihood is given as

L(T∨) =
KM∑
i=1

[
|pi T∨|2 − yi log(|pi T∨|2)

]
, (2.13)

with the row vectors pi of the design matrix P. The MAP objective functions are

LTikhonov−MAP(T∨) = L(T∨) +
µ0

κ
||∇T(r)||2 (2.14)

and
LBM3D−MAP(T∨) = L(T∨) + µ1||T∨ − T∨

sparse||2, (2.15)

for the two prior models, respectively. We calculate the gradients of both ex-
pressions:

∇LTikhonov−MAP(T) =
KM∑
i=1

pi T∨
(
1− yi
|pi T∨|2

)
p†
i + 2

µ0

κ

N∑
i=1

(DxT∨)i + (DyT∨)i,

(2.16)

∇LBM3D−MAP(T) =
KM∑
i=1

pi T∨
(
1− yi
|pi T∨|2

)
p†
i + µ1

(
T∨ − T∨

sparse

)
(2.17)
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Since equations 2.14 and 2.15 are non-convex functions, there is no guarantee
that standard gradient descent converges to a global minimum. Recently, a
non-convex algorithm for the generalized phase retrieval problem with Poisson
noise was presented [115], that provably converges to a global minimum with
suitable initialization. It introduces an iteration-dependent regularization on
the gradients of the likelihood to remove terms which have a negative effect on
the search direction. Therefore it introduces a truncation criterion

E i(T∨) =

{∣∣∣yi − |piT∨|2
∣∣∣ ≤ αh

KM
∥y− I∥1 |piT∨|

∥T∨∥2

}
, (2.18)

that acts on the gradient of the likelihood and suppresses the gradient of mea-
surements that are too incompatible with the reconstruction. The truncation
parameter αh ≥ 5 is described in [115]. The regularized likelihood gradient is
then

∇LE i(T∨) =
KM∑

i∈E i(T∨)

[
|pi T∨|2 − yi log(|pi T∨|2)

]
. (2.19)

We compute the next step using conjugate gradient descent [116, 117], since
this leads to much faster convergence compared to the update procedure de-
scribed in Chen & Candes [115].

2.3.1 Initialization

Truncated spectral initialization for ptychography was first proposed by March-
esini et al. [97], based on the notion that the highest intensities in the diffraction
pattern carry the strongest phase information. They compute the phase of the
largest eigenvector of the following hermitian operator:

1|yi|>ϵFP(P
†P)−1P†F†1|yi|>ϵ , (2.20)

where ϵ is chosen such that the largest 20 percent of the intensities are allowed to
contribute and F and P are defined as above. The largest eigenvalue of a sparse
hermitian matrix can be efficiently computed either with power iterations [118],
or with the Arnoldi method [119]. In [115], truncated spectral initialization

with a truncation rule with 1|yi|<α2
0 λ

2
0
is used, with λ0 =

√∑KM
i=1 yi and α0 a free

parameter. It is also important to note that the truncated spectral initialization
only produces visually correct initial phase to a dose of roughly 100 e−/Å

2
. Fig.

2.3 a) shows the convergence behavior of different gradient update rules as a
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Figure 2.3: a) Normalized root mean square error (NMSR) of different gradient update rules as a
funcধon of iteraধons. The is defined in the Supplementary material. MAP refers to a constant prior.
b) Example for the transmission funcধon iniধalizaধon T0 ađer 70 power iteraধons, for an electron
dose of 100 e−/Å

2
, intensiধes were truncated at the 80th percenধle. c) TV

sparse for human ribosome
ađer 60 iteraধons of BM3D-MAP. Scale bar is 10nm (from [96]).

function of the normalized root mean square error. The normalized root mean
square error is defined as

NMSR = min
ξ∈{ξ∈C:|ξ|=1}

||ξT− Tmodel||2
||T||2

(2.21)

Fig. 2.3 b) shows an example initialization for a dose of 100 e−/Å
2
. For doses be-

low this value, we initialized the transmission function with unity transmission
and normal-distributed phase with mean 0.1 and variance of 0.1. Even with ran-
dom initialization we found no problem of convergence for all algorithms tested
in this thesis. The full algorithm is described in Algorithm 1.
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Algorithm 1 Truncated conjugate gradient descent for ptychography (TCG-PR)

Require: Set T∨
0 by computing the largest eigenvector of Equ. 2.20, ψ, I, maxi-

mum iteration number IterMax, and parameters□ = {BM3D,Tikhonov}, s0 =
−∇L□−MAP(T∨

0 ) ∗ 10−2

Ensure: T∨
⋆ := T∨

IterMax

1: for k = 0 to IterMax − 1 do
2: Compute lk := ∇L□−MAP(T∨

k )
3: Truncate lk according to equ. 2.18

4: Compute βk =
l†k(lk−lk−1)

l†k−1lk−1

5: Compute new search direction sk = lk + βksk−1

6: Line search αk = argmin
α

(T∨
k + αsk)

7: T∨
k+1 = T∨

k + αksk
8: end for
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2.4 Bayesian optimization for blind ptychography - si-
multaneous probe reconstruction

The reconstruction and initialization routines discussed in the section above as-
sumed that the probe wave function is known a priori. This is rarely the case in
real experiments, unless one uses a probe aberration corrected STEM instrument
and determines the aberration coefficients of the probe by other means [120].
Fortunately, a ptychographic data set provides enough information to simulta-
neously reconstruct the probe wave function. This has first been demonstrated
in the X-ray community [121] and is since being used extensively in X-ray pty-
chography experiments. The derivation of the Bayesian reconstruction of the
probe has been given in [102]. To extend our previous algorithm to include
probe reconstruction, we include the wave function ψ∨ as a free parameter in
the MAP objective function (2.13):

LMAP(T∨, ψ∨) = − log
(
P(y|T∨, ψ∨)P(T∨)P(ψ∨)

P(y)

)
. (2.22)

Now, P(y|T∨, ψ∨) is given by

P(y|T∨, ψ∨) =
KM∏
i=0

Ii(T∨, ψ∨)yi

yi!
e−Ii(T∨,ψ∨). (2.23)

and the log-likelihood can be written as

L(T∨, ψ∨) =
KM∑
i=1

[
|pi T∨|2 − yi log(|pi T∨|2)

]
=

KM∑
i=1

[
|qi ψ

∨|2 − yi log(|qi ψ
∨|2)

]
.

(2.24)

Then the derivative of the log-likelihood with respect to the probe wave function
is

∂L
∂ψ∨ =

KM∑
i=1

qiψ
∨
(
1− yi

Ii

)
q†
i (2.25)

We found that doing a full gradient update for probe and object with all avail-
able data does not converge well, and therefore adapted batch-wise updates
and a momentum-based optimization scheme. We also found that truncated
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gradients do not help the convergence in a blind ptychography setting, and
therefore abandoned them for blind ptychography reconstructions. We define
batch-wise operators in the following way: we divide the K diffraction pat-
terns into nbatch batches, such that each batch has #batch = ⌈K/nbatch⌉ diffrac-
tion patterns with indices bj = {i0, i1, ..., i#batch}. We define the partial oper-
ator Rbj = (Ri0Ri1 ...Ri#batch

) ∈ RnbatchM×N, which crops the corresponding areas
of the transmission function; and the partial operator Sbj ∈ RnbatchM×N which
stacks nbatch wave functions on top of each other. This leads to partial operators
Pbj := Fdiag

(
Sbjψ

∨)Rbj ∈ CnbatchM×N and Qbj := Fdiag
(
RbjT

∨)Sbj ∈ CnbatchM×N. We
denote the row-vectors of these matrices p′

i and q
′
i. We can then define a partial

log-likelihood

Lbj(T
∨, ψ∨) =

nbatchM∑
i=1

[
|p′

i T
∨|2 − yi log(|p′

i T
∨|2)

]
=

nbatchM∑
i=1

[
|q′

i ψ
∨|2 − yi log(|q′

i ψ
∨|2)

]
.

(2.26)

With these definitions in place, the algorithm for blind ptychography is described
as:
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Algorithm 2 Stochastic accelerated gradient descent for blind ptychography
(SAGD-BPR)

Require: Set T∨
0 , ψ

∨
0 , I, maximum iteration number IterMax, and parameters

□ = {BM3D,Tikhonov}, nbatch, momenta ρψ∨ , ρT∨ , learning rates γψ∨ , γT∨,

initial directions bψ∨ =
∂Lbj

(T∨0 ,ψ
∨)

∂ψ∨ , bT∨ =
∂Lbj

(T∨,ψ∨
0 )

∂T∨

Ensure: T∨
⋆ := T∨

IterMax

1: for k = 0 to IterMax − 1 do
2: for j = 0 to nbatch do

3: Compute stochastic gradient gT∨ ←
∂Lbj

(T∨,ψ∨)

∂T∨ with Eq. (2.16) or Eq.
(2.17)

4: bT∨ ← ρT∨bT∨ + gT∨

5: T∨ ← T∨ − γT∨bT∨
6: Compute stochastic gradient gψ∨ ←

∂Lbj
(T∨,ψ∨)

∂ψ∨ with Eq. (2.25)
7: bψ∨ ← ρψ∨bψ∨ + gψ∨

8: ψ∨ ← ψ∨ − γψ∨bψ∨

9: end for
10: end for
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2.5 Decoherence in ptychography

As discussed in section 1.2.8, as soon as a source with finite size is used, or
instrumental instabilities introduce partial coherence in the measurement, the
wave-function formalism has to be abandoned in favor a mixed-state description
in terms of the density matrix ρ̂. Thibault & Menzel [112] introduced the recon-
struction of state mixtures into ptychography, so that a rank-L approximation
of the density matrix of the incoming electron state can be reconstructed. This
means that the measured intensity is now the incoherent sum of the coherent
states transmitted through the sample and propagated to the far field:

Ik = tr

(
L∑

l=1

|ψl⟩ ⟨ψl| |qk⟩ ⟨qk|

)
, k = 1, ...,KM. (2.27)

For the formulation where the transmission function is the measured quantity,
we define a new set of measurement matrices Pl as follows:

Pl := Fdiag (Sψ∨
l )R ∈ CKM×N, (2.28)

and we denote the KM row vectors of Pl as pk,l. We can then write the KM
measured intensities as

Ik =
L∑

l=1

|⟨qk|ψl
∨⟩|2 =

L∑
l=1

|⟨pk,l|T∨⟩|2 , k = 1, ...,KM, (2.29)

or in linear algebra formulation

I =
L∑

l=1

|PlT∨|2 =
L∑

l=1

|Qψ∨
l |2. (2.30)

We can then write the log-likelihood as

L(T∨, ψ∨) =
KM∑
k=1

L∑
l=1

[
|pk,l T

∨|2 − yi log(|pk,l ,T
∨|2)

]
=

KM∑
k=1

[
|qk ψ

∨
l |2 − yk log(|qk ψ

∨
l |2)

]
.

(2.31)
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The derivative with respect to the wave functions ψ∨
l and the transmission func-

tion T∨ are then
∂L
∂ψ∨

l

=
KM∑
k=1

qkψ
∨
l

(
1− yk

Ik

)
q†
k, (2.32)

and
∂L
∂T∨ =

KM∑
k=1

L∑
l=1

pk,l T
∨
(
1− yk
|pk,l T∨|2

)
p†
k, (2.33)

With the new gradients in place, we can define the mixed-state extension of Al-
gorithm 2 as follows in Algorithm 3. Reconstruction of the coherent modes of an

Algorithm 3 Stochastic accelerated gradient descent for blind multi-mode ptycho-
graphy (SAGD-BMMPR)

Require: Set T∨
0 , ψ

∨
l ∀l = 1, ..., L, I, maximum iteration number IterMax, and

parameters□ = {BM3D,Tikhonov}, nbatch, momenta ρψ∨ , ρT∨ , learning rates

γψ∨ , γT∨ , initial directions bψ∨
l
=

∂Lbj
(T∨0 ,{ψ

∨
l })

∂ψ∨
l

, bT∨ =
∂Lbj

(T∨,{ψ∨
l }

∂T∨

Ensure: T∨
⋆ := T∨

IterMax

1: for k = 0 to IterMax − 1 do
2: for j = 0 to nbatch do

3: Compute stochastic gradient gT∨ ←
∂Lbj

(T∨,{ψ∨
l })

∂T∨ with Eq. (2.33)
4: bT∨ ← ρT∨bT∨ + gT∨

5: T∨ ← T∨ − γT∨bT∨
6: Compute stochastic gradient gψ∨

l
←

∂Lbj
(T∨,{ψ∨

l })
∂ψ∨ ∀l = 1, ..., L with

Eq. (2.32)
7: bψ∨

l
← ρψ∨bψ∨

l
+ gψ∨

l
∀l = 1, ..., L

8: ψ∨
l ← ψ∨

l − γψ∨bψ∨
l

∀l = 1, ..., L
9: end for

10: end for

electron wave has been demonstrated by Cao et al. [122] on a JEOL R005 micro-
scope with cold field emission gun. To create a partially coherent beam, Cao et
al. used a low spot size setting such that a large current passed through the con-
denser, and then used the selected area aperture with diameter 130 nm behind
the sample to create a virtually confined, partially coherent beam. This setting
is very impractical for low-dose ptychography, because electrons are blocked
behind the sample and not all electrons collected.
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For low-dose ptychography, the gun lenses are usually tuned to a very coherent
setting, and the current is still too high for the current generation of detectors
to comfortably perform low-dose ptychography, as discussed in section 3.1.5.
We illustrate this with a reconstruction from a dataset from a JEOL GrandARM
microscope from the ePSIC facility in Harwell. The dataset was kindly shared by
Prof. Pete Nellist and Prof. Angus Kirkland. The reconstruction of a graphene
sample with Algorithm 3 at a dose of 1× 105 e−/Å

2
is shown in Fig. 2.4. The

reconstruction parameters were IterMax = 20, □ = BM3D, nbatch = 30, ρψ∨ =
0.7, ρT∨ = 0.5 and learning rates γψ∨ = 10−3, γT∨ = 10−3. The data set was

a b c d

e f g

1nm

Figure 2.4: 6-mode reconstrucধon of single layer graphene. a) Reconstructed phase of the
graphene sheet. b)-g) 6 reconstructed modes of the probe wave funcধon in the aperture plane.
The percentage displayed is the relaধve power of the mode |cm|2 (Eq. (1.29)). Nearly all the power
is in the first mode and the higher modes seem to model detector inconsistencies rather than actual
coherent modes of the beam.

collected with a Medipix3 detector with a frame rate of 1 kHz at 80 keV with a
focused beam of convergence half-angle α = 24.8mrad and with a step size of
20.5pm. We see that even at high doses one usually does not have to worry
about partial coherence, therefore we usually use only a single mode for the
reconstruction of the experimental data sets. When detectors become faster over
time and more of the available electron current can be used, the application of
multi-mode reconstructions in electron ptychography could become important.
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2.6 Low-dose electron ptychography for single-particle
cryo-EM

Having adapted and described the reconstruction algorithms for low-dose con-
ditions, we now turn to analyzing one of many interesting applications: the
application to structure determination of single particles. We perform multi-
slice simulations with slice++ of three different biological macromolecules with
molecular weights ranging from 64 kDa to 4MDa. We choose the 64 kDa he-
moglobin [123], the 706 kDa 20S proteasome from yeast [124], and the 4MDa
human ribosome [125]. Hemoglobin is one of the smallest proteins imaged to
date with cryo-EM, 20S proteasome is a typical test-sample because of its sym-
metry, and the ribosome is an example for a large non-symmetric particle in
the MDa range. We create atomic potential maps using the Matlab code InSili-
coTem [33], with a thickness of 50 nm and at an electron energy of 300 keV. We
use the isolated atom superposition approximation, without solving the Poisson-
Boltzmann equations for the interaction between the molecule and the ions. We
also do not model the amorphousness of the solvent, which was performed in
[33] using molecular dynamics simulations, but was seen to have a negligible
effect at very low doses. As described in [33], we model the imaginary part of
the potential via the inelastic mean free path, creating a minimal transmission
contrast between the vitreous ice and the protein. Using these potential maps,
we simulate a ptychography experiment by cropping three-dimensional slices
from the potential at several positions and propagate a coherent incoming wave
through the slices using the methods described in [28] in the slice++ code. The
final model for the formation of the intensity on the detector is described in
section 1.2.

A notable difference both in simulation and practice is the fact that for cryo-EM,
usually no pixel binning is applied to maximize the imaged area and increase
throughput. Therefore, also high spatial-frequency regions with low values of
DQE and NTF are used for image formation [126]. For ptychography, on the
other hand, the detector can be heavily binned, as long as the real-space patch
given by λ∆z/dpix ≡ rd · Npix still encompasses the probe beam on the sample
and the sampling requirements discussed in section 3.1.3 are met. For typical
detectors used in cryo-EM, this condition is fulfilled at bin sizes equivalent to a
few percent of the Nyquist frequency. This leads to a near-constant DQE and a
near-unity NTF, such that they can be omitted in the ptychography reconstruc-
tions, whereas we still include them in the simulation of the diffraction data.
We note, however, that a convolution with a detector transfer function can be
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modeled with a partially coherent beam if necessary, as demonstrated in [112,
127].

We choose the Gatan K2 Summit as the detector for our simulations because
it has the highest published DQE and MTF values at low spatial frequencies at
300 keV [126]. We note that direct detection cameras with frame rates of 1 kHz
and above may be more suitable for high-throughput scanning experiments [43,
128, 129], but characteristics for these cameras at 300 keV are either not pub-
lished or inferior to the K2 Summit. Assuming the K2 Summit for both ptychog-
raphy and phase-contrast TEM simulations also simplifies a direct comparison
between the two methods.
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2.6.1 2D single-particle imaging: low-dose ptychogra-
phy vs. Zernike phase contrast vs. phase contrast from
defocus

Fig. 2.5 shows a comparison of low-dose ptychography reconstructions with cur-
rently used methods for single-particle imaging with electrons: defocus-based
cryo-EM, and Zernike phase contrast cryo-EM with a Volta phase-plate.

Figure 2.5: Cryo-electron ptychography reconstrucধons from simulated data and simulated
cryo-EM images for different doses and 3 macromolecules with growing molecular weights in
columns 1-3. Row a): Phase of the transmission funcধon, the ground truth for the ptychography
reconstrucধons. The scale bar next to the figures is in rad. Rows b) and e): ptychography recon-
strucধon at doses of 5 e−/Å

2
and 20 e−/Å

2
. Rows c) and f): Simulated cryo-EM image with a defo-

cus of 1.6µm at a dose of 5 e−/Å
2
and 20 e−/Å

2
. Rows d) and g): Simulated cryo-EM image with a

Zernike phase plate and a defocus of 50nm at doses of 5 e−/Å
2
and 20 e−/Å

2
. Column (1) hemo-

globin, column (2) 20S proteasome, column (3) human ribosome (from Pelz et al. [96])
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We choose exemplary doses of 5 e−/Å
2
as the typical threshold where the highest

resolution details are destroyed [130] and 20 e−/Å
2
as a typical dose at which

experiments are performed. We have reversed the contrast in the cryo-EM im-
ages to simplify the visual comparison with the ptychography reconstructions.
To quantitatively assess the image quality, we have computed the 2D Fourier
Ring Correlation (FRC) [131] with the ground truth for both the ptychographic
reconstruction and simulated cryo-EM images of the macromolecules, as shown
in Fig. 2.6. The ground truth images are depicted in appendix 6.5.

As ground truth for the images we use the electron counts in a noiseless, aberra-
tion-free phase-plate image. Using the 1-bit criterion as a resolution threshold
[131], the achieved resolutions at 5 e−/Å

2
and 20 e−/Å

2
, respectively, are 12Å

and 8.9Å for hemoglobin; 10.9Å and 9.1Å for 20S proteasome; and 10.3Å
and 5.4Å for human ribosome. In the case 20S proteasome, these values are
identical to the FRC threshold for the phase plate image; for hemoglobin and
human ribosome, the phase plate image yields a slightly better resolution of
8.7Å and 5.1Å respectively at a dose of 20 e−/Å

2
and 10Å at a dose of 5 e−/Å

2
.

As the FRC is insensitive to very small and very large values of SNR, we also
show the spatial-frequency resolved SNR in Fig. 2.6 d) - f). We define the SNR
as

SNR(q) = 10 · log10
(

|F [T(r)] |2

|F [T(r)]−F [Tmodel(r)] |2

)
dB. (2.34)

The SNR of the ptychographic reconstruction is significantly lower than the
SNR of the phase-plate image for all three particles at spatial frequencies be-
low 0.1Å

−1
. It does however scale better to high spatial frequencies, and does

not drop below −15dB for all particles and all resolution up to nearly 0.5Å
−1
,

where the SNR is close to two orders of magnitude better than the phase-plate
image SNR. This helps ptychography perform better when multiple reconstruc-
tions are averaged, because a positive single-digit SNR can be reachedwith fewer
particles.
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Figure 2.6: FRC a) - c) and SNR d) - f) as a funcধon of spaধal frequency for the cryo-electron pty-
chography reconstrucধons and simulated cryo-EM images in Fig. 2.5 (from Pelz et al. [96]).
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2.6.2 Effect of averaging

In single-particle cryo-EM, a three-dimensional reconstruction can be obtained
by collecting a large ensemble of 2D images, before orienting and averaging
them in three dimensions, such that a satisfactory SNR is achieved [16, 132]. A
similar 3D reconstruction from ptychographic data was not prioritized for this
thesis, and a future full integration of ptychographic reconstruction with 3D
reconstruction is certainly a challenging problem. A straightforward approach
would be to use the reconstructed 2D phase images as an input to existing 3D
reconstruction algorithms [132, 133], as is done routinely in ptychographic X-
ray tomography [134]; however, it is likely that a dedicated algorithm which
reconstructs the 3D structure directly from the diffraction patterns achieves the
best results. Coarse orientation alignment for such an algorithm could be done
in real space from 2D reconstructions shown here. We leave the evaluation of
such approaches to future studies, and for now concentrate on the achievable
2D resolution when averaging a larger ensemble of particles.
To give a rough estimate how the resolution and SNR achieved by our algo-
rithm scales with averaging over multiple datasets, we simulate 30 independent
datasets with identically oriented particles, and average the reconstruction re-
sults. We found that the resolution corresponding to the diffraction limit as
defined by the probe-forming aperture is achieved with roughly 40 averaged
reconstructions as shown in Fig. 2.8. Superresolution beyond this point is in
principle possible because ptychography transfers information up to double the
half-convergence angle, but due to the low electron counts and the low contrast
transfer for higher angles, more images are needed for further improvements.
To limit the amount of necessary computation we use an average of 30 images,
where a resolution of roughly 3Å is reached, close to the resolution correspond-
ing to the probe-forming aperture of 2.7Å. Fig. 2.7 a)-f) show images of the
averaged reconstructions of the three samples, at doses of 5 e−/Å

2
and 20 e−/Å

2

respectively. We also compare the FRC between respectively 30 averaged recon-
structions of 60 independently Poisson-sampled ptychographic data sets, to give
a resolution estimate. We use here the 1/2-bit resolution threshold discussed in
[131], which gives a slightly more conservative estimate than the 0.143-criterion
commonly used for the 3D Fourier Shell correlation in averaged reconstructions
for 3D cryo-EM. With averaging, a resolution of 3.4Å is achieved for hemo-
globin, 3.1Å for 20S proteasome and 2.9Å for human ribosome, all at a dose
of 20 e−/Å

2
. This shows that cryo-electron ptychography can recover atomic

resolution information in 2D from only tens of averaged images, facilitated by
the favorable scaling of the SNR with spatial frequency, as discussed above. It
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may therefore be possible to drastically reduce the number of particles that is
required for a successful 3D reconstruction at atomic resolution. A rough esti-
mate [135] suggests that the ribosome could be reconstructed to 3Å resolution
in 3D with less than 10 000 particles.
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Figure 2.7: Average over 30 ptychographic reconstrucধons from independent data sets for a) hemo-
globin with 5 e−/Å

2
, b) hemoglobin with 20 e−/Å

2
, c) proteasome 20S with 5 e−/Å

2
, d) proteasome

20S with 20 e−/Å
2
, e) human ribosome with 5 e−/Å

2
, f) human ribosome with 20 e−/Å

2
. FRC of av-

eraged reconstrucধons from independent data sets for g) hemoglobin, h) proteasome 20S i) human
ribosome. (From Pelz et al. [96])
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Fig. 2.8 shows how the FRC scales with the number of averaged reconstruc-
tions, showing that also resolution beyond 3Å are possible if enough particles
are averaged. This is of course only possible if the sample fulfills the thickness
requirements of ptychography, as explained in section 3.1.2.
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2
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2
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2
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2
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2

Figure 2.8: Scaling of the FRC between the ground truth and the averaged reconstrucধons with
the number of averaged reconstrucধons for human ribosome at 20 e−/Å

2
. The verধcal line is the

wave-vector where the probe-forming aperture ends (from Pelz et al. [96]).

2.7 scikit-pr: a GPU-accelerated neural network-based
implementation of Bayesian phase-retrieval

The algorithms presented above are highly parallelizable, because many oper-
ations are element-wise and fast parallel implementations of the Fourier trans-
form exist. The use of gradient-based optimization schemesmakes them amenable
to be implemented in highly-optimized machine learning frameworks such as
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pytorch [136] or Tensorflow [137]. We chose to implement the algorithms in
pytorch because of its numpy-like interface and because of its imperative con-
trol flow. At the time the project was initiated, the Tensorflow library only sup-
ported an interface based on computational graphs, which makes the code hard
to digest for the normal python user, while pytorch offered an imperative pro-
gramming style used in many programming languages. We therefore extended
the pytorch framework to be able to specify networks with complex variables. A
computational graph is generated by creating a Variable, which holds a data
tensor and a gradient tensor. All operations on the Variable are recorded by an
internal tape system, such that the gradient of any computation with respect to
all Variables used in that computation can be computed by simply calling the
function backward() on the Variable. The following code listing provides a
simple example of the ease of gradient computation in pytorch.

1 import torch as th
2 import numpy as np
3
4 x_array = np.array([5.])
5 y_array = np.array([3.])
6
7 x = th.autograd.Variable(th.from_numpy(x_array), requires_grad=True)
8 y = th.autograd.Variable(th.from_numpy(y_array), requires_grad=True)
9

10 z = 5*x+3*y**2
11
12 z.backward()
13
14 print(x.grad)
15 print(y.grad)
16
17 #Output:
18 #
19 #Variable containing:
20 #5
21 #[torch.DoubleTensor of size 1]
22 #
23 #Variable containing:
24 #18
25 #[torch.DoubleTensor of size 1]

In this way, complex computational graphs can be constructed just by calling
differentiable functions on a Variable. Fig. 2.9 shows the computational graph
for the ptychographic phase retrieval algorithm outlined in section 2.3. We have
built a framework around this neural network-based modeling of experiments,
so that the forward model, the loss function, and the optimizer can be swapped
in a plug-and-play fashion. This means that for the implementation of a new
experimental setup, only the neural network module must be swapped out.
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Figure 2.9: Schemaধc diagram of the computaধonal graph for ptychographic phase retrieval. All
nodes but the last node in the computaধonal graph can be encapsulated into a neural network
module we call PtychoNet. The loss funcধon operates on the output tensor of the network, i.e.
the model intensiধes I, and the measured intensiধes y. Different loss funcধon depending on the
measurement staধsধc can be adapted in a plug-and-play style, the rest of the network stays the
same.
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The following code listing shows an example of the configuration of a ptycho-
graphic reconstruction with scikit-pr:

1 import skpr.core.ptycho as pty
2 import skpr.nn as n
3 from skpr.core.parameters import *
4 from skpr.inout.h5rw import h5read
5 from skpr.nn import modules as M
6 from skpr.util import *
7
8 #Load the data
9 f1 = '/path/to/data.h5'

10 f = h5read(f1)
11 pr = f['probe']
12
13 #Load default parameters dictionary
14 p = get_ptycho_default_parameters()
15
16 #Specify the forward model
17 p.model = pty.models.PtychoNet
18
19 #Specify probe parameters
20 p.probe.initial = th.from_numpy(pr[np.newaxis, ...].astype(np.complex64))
21 p.probe.amplitude_constraint = None
22 #Specify at which iteration to start updating the probe
23 p.probe.update_start = 0
24 #Specify at which iteration to start centering the probe
25 p.probe.centering_active = lambda epoch: True if epoch > 1 else False
26 #Specify support radius of the probe in real and fourier space
27 p.probe.support_radius = None
28 p.probe.support_radius_fourier = None
29 #Specify a solution if this is from simulated data
30 p.probe.solution = None
31 #scale probe intensity to maximum diffraction data intensity
32 p.probe.scale_intensity_to_data = True
33 #use a mask on the probe gradients?
34 p.probe.gradient_mask = None
35 #is an amplitude constraint available for the probe?
36 p.probe.amplitude_constraint = None
37 #at which epochs should the probe be centered?
38 p.probe.centering_active = lambda epoch: True if epoch < -1 else False
39 #at which epochs should we include subpixel shifts?
40 p.probe.subpixel_precision_active = lambda epoch: True if epoch > 0 else False
41 # at which epochs should we optimize probe positions? - experimental
42 p.probe.subpixel_optimization_active = lambda epoch: True if epoch > 100 else False
43 #should we fix dead pixels in the bright field?
44 p.probe.fix_dead_probe_pixels = False
45
46 #specify the loss function depending on the measurement characteristics
47 p.loss.function = M.PoissonLikelihood
48
49 #specify a prior for the object
50 p.loss.object_prior = M.BM3DPrior
51 #noise parameter for the prior
52 p.loss.object_prior_parameters.sigma = 5
53
54 #specify the input data
55 p.ptycho.pos = th.from_numpy(f['pos']).cuda()
56 p.valid_mask = f['mask']
57 p.y = d = f['data']
58
59 #specify the optimization algorithm for probe, object, and object prior
60 p.optimizer.probe.type = th.optim.SGD
61 p.optimizer.probe.parameters.lr = 20e-2
62 p.optimizer.probe.parameters.momentum = 0.9
63 p.optimizer.probe.parameters.nesterov = True
64
65 p.optimizer.object.type = th.optim.SGD
66 p.optimizer.object.parameters.lr = 10e-2
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67 p.optimizer.object.parameters.momentum = 0.7
68 p.optimizer.object.parameters.nesterov = True
69
70 p.optimizer.object_prior.type = th.optim.SGD
71 p.optimizer.object_prior.parameters.lr = 0.5
72
73 #specify if gradient should be calculated again after probe/object update
74 #or used for both updates
75 p.optimizer.optimize_probe_and_object_jointly = lambda epoch: False
76
77 #number of batches for minibatching the data
78 p.optimizer.n_batches = 250
79 #how the batches should be selected, 'random' or
80 #'clustering' of the positions
81 p.optimizer.batch_selection = 'random'
82
83 #logging specifications
84 p.logging.level = INFO
85 p.logging.log_reconstruction_parameters = False
86 p.logging.log_object_progress = True
87 p.logging.log_probe_progress = True
88 p.logging.log_error_progress = True
89 p.logging.print_summary = True
90 p.logging.print_report = True
91
92 #number of optimization epochs
93 p.epochs = 100
94
95 #hand the parameters to an engine and optimize
96 eng = pty.StochasticPtychoEngine(p)
97 eng.fit()

We note that the forward model

p.model = pty.models.PtychoNet,

the loss function

p.loss.function = M.PoissonLikelihood

and the optimization algorithm (in this case stochastic gradient descent (SGD))

p.optimizer.probe.type = th.optim.SGD

can be swapped with a single line of code, thereby making it easy to implement
new experimental designs and test out new optimization algorithms. scikit-pr
is available as open source with an MIT-license under https://github.com/
PhilippPelz/scikit-pr-open. Currently PtychoNet and its dependencies
are not released as open source, because Phasefocus Ltd. has a suit of patents re-
garding iterative ptychography and is prosecuting the publication of open source
code.
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3 Low-dose electron ptychography
experiments

In this chapter we go over all practical considerations when designing and per-
forming a low-dose ptychography experiment, and then show two proof-of-concept
experiments with different combinations of microscope and direct electron de-
tector.

3.1 Practical considerations for low-dose electron pty-
chography experiments

3.1.1 Electron microscopy equipment and availability

To perform a proof-of-principle low-dose electron ptychography experiment suc-
cessfully with more than a few hours time on the same sample, the following
equipment is required: An electron microscope with

1. a Schottky field emission gun [138] or a cold field emission gun [138] for
a sufficiently coherent electron beam

2. STEM equipment for fast scanning of the sample

3. a fast direct electron detector with DQE(0) ∼ 1, ideally with electron count-
ing

4. synchronization of the STEM scanning coils with the direct detector

5. a cryo-capable microscope with ancillary equipment

The fifth requirement can be lifted if one is content with exchanging the sample
every few hours and using a conventional cryo-transfer holder. This combination
of equipment is very unusual, because STEM is generally only used in materials
science and is usually not fitted in cryo-electron microscopes. The synchroniza-
tion with the direct detector must usually be purchased as an add-on package,
or is even disabled per software in some cases to prevent over-exposure of the
sensitive back-thinned direct electron detectors usually found in cryo-electron
microscopes.
After a thorough search we found only one microscope which fulfills all the re-
quirements. It is located at Cornell university in the group of Prof. Kourkoutis.
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Unfortunately, beam time at this instrument was not available.
We found however several instruments which fulfill four of the five requirements,
and the experiments performed on these machines are be presented in the fol-
lowing sections.

3.1.2 Sample thickness limits for ptychography

The sample thickness limit for ptychography is discussed in the seminal paper by
Rodenburg & Bates [13]. The argument goes as follows: the scattering vector
in z direction qz is restricted by elastic scattering to the Ewald sphere:

qz = q−
√
(q2 − q2x − q2y). (3.1)

For small scattering angles qx ≪ q, this can be Taylor expanded around
−(q2x + q2y)/q

2 to yield

qz ≃
λ

2
(q2x + q2y). (3.2)

The maximum scattering angle determines the attainable resolution qx,max =
1/∆r. For a truly 2D object, the 3D transform is independent of the frequency qz
and the measurement on the Ewald sphere is equivalent to measurement of the
2D diffraction intensities. An object of finite thickness t has speckles of size 1/t in
longitudinal direction. If the Ewald sphere at the highest transverse frequencies
still cuts through a speckle the is centered at qz = 0, then the measurement can
be treated just like a 2D Fourier transform. Different criteria can now be applied
for the validity of the Ewald sphere departure. Rodenburg & Bates [13] used the
criterion qz < 1/t, while Chapman et al. [139] use a stricter criterion qz < 1/4t.
Rodenburg’s criterion leads to a maximum allowable sample thickness of

tmax ≃
2(∆r)2

λ
, (3.3)

while Chapman’s criterion leads to a maximum thickness of

tmax ≃
(∆r)2

2λ
. (3.4)

Tsai et al. [140] conclude after a numerical study, that Rodenburg’s criterion
can be relaxed even more and suggest a thickness limit tmax ≃ 5.2(∆r)2

λ
. We stick

here to Rodenburg’s original formula. If, for the sake of a proof of principle
experiment, if one aims for a resolution of 3Å at an electron energy of 300 keV,
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the maximum allowable sample thickness is tmax ≃ 91nm. While this is a quite a
steep requirement for cryo-EM sample preparation, preparing a vitrified protein
sample with this thickness is certainly within reach of current sample prepara-
tion methods. If one aims for higher resolution, two or more slices would need
to be reconstructed in a multi-slice fashion [141, 142], or thinner samples would
need to be prepared, adding more complication to the experiment. The relation
between resolution and thickness limit is in line with the just recently imple-
mented Ewald sphere corrections to achieve sub-3Å resolution for conventional
cryo-EM [143–145].

3.1.3 Sampling considerations for low-dose ptychogra-
phy

The sampling requirements of ptychography were studied by Bunk et al. [146]
and Edo et al. [147] and then more rigorously by da Silva & Menzel [148] and
da Silva & Menzel [148]. As discussed in section 1.3.3.3, a ptychographic data
set comprises a discretely-sampled phase-space convolution of the Wigner dis-
tributions of probe and object. The usual sampling in coherent diffractive imag-
ing (CDI) is oversampling with respect to the underlying Nyquist detector sam-
pling of the complex-valued wave. This means that the diffraction pattern has
to be sampled at twice the periodicity of the wave amplitude incident upon the
detector because twice as many intensity measurements are required to solve
for the complex-valued wave function (real and imaginary numbers) arriving at
the detector [149]. This gives the CDI sampling criterion

∆θ ≤ λ

2D
, (3.5)

where ∆θ is the angular sampling of a detector pixel, and D is the spatial extent
of the object, or the probe, whichever is smaller. Because ptychography over-
samples phase space, the CDI sampling criterion can be significantly relaxed,
and Batey et al. [150] and Edo et al. [147] show in experiments and simulations
that the phase-space sampling criterion

∆θ∆R ≤ λ

2
(3.6)

must be fulfilled for successful reconstruction. Here, ∆R is the step size in real
space. Batey et al. [150] define also the quantity

S =
λ

2∆θ∆R
≥ 1 (3.7)
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to easily evaluate if the ptychographic sampling criterion is fulfilled. This means
that poor sampling in real space, i.e. a large step size, can be compensated by
dense sampling in detector space, i.e. using a detector with many pixels, and
vice versa.

For ptychography at low doses this means that the detector can be binned up to a
point where the ptychographic sampling criterion is still fulfilled, thus increasing
the signal-to-noise ratio for each measurement. As we discuss in the detector
section, this has the additional beneficiary effect of using the DQE of the detector
in the most efficient way.

3.1.4 Ambiguities in ptychographic reconstructions

The result of a ptychographic reconstruction is only unique with respect to the
autocorrelation of the exit waves ψj(r) = ψ(r− rj)T(r). With any rf,qf ∈ R2 and
cf ∈ C we may construct alternative probes and objects,

ψ′(r) = cfe2πiqfrψ(r− rf) andT′(r) =
1
cf
e−2πiqfrT(r− rf), (3.8)

and note that these primed solutions are also compatible with the model

Ij(q) = |Fr,q [ψ
′(r− rj)T′(r)]|2 . (3.9)

The amplitude of the multiplicative scaling factor cf can usually be fixed if the
probe intensity is known, while the constant phase factor is an inherent ambi-
guity in every phase retrieval problem. Because of the multiplicative model of
ptychography, another ambiguity arises dependent on the scan pattern [121].
If a solution to Eq. (3.9) has been found in form of a wave function ψj(r)
and a transmission function T(r), let two new functions be T′′(r) = f(r)T(r) and
ψ′′(r) = f(r)−1ψ(r). It can be seen that T′′(r) and ψ′′(r) are also a solution of the
problem iff

f(r) = f(r− rj)∀rj. (3.10)

This means that, when the real space sampling is not dense enough to represent
a true convolution in discrete phase space, i.e., if the step size is larger than
the diffraction-limited resolution, and the sample is scanned on a periodic lat-
tice with step size s in pixels, s2 additional degrees of freedom are introduced,
which manifest itself as the so-called raster grid pathology [121, 151]. Since the
typical scan in STEM is done on a periodic lattice, and the scanning coils suffer
hysteresis when they are scanned arbitrarily, it is currently favorable to scan
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very densely to avoid these artifacts. However, as is discussed in the following
chapter, the beam current together with available camera speeds do currently
not allow to sample densely enough.

Somemicroscopemanufacturers have already begun developing specialized scan
hardware for ptychography, so it is only a matter of time until this problem is
solved. Recently it was shown that the raster grid problem can be mitigated
when the far-field intensity of the probe function is know [103], but this is not
always practical in electron ptychography experiments, since a vacuum region
needs to be present on the sample or the sample needs to be removed from the
microscope column after a scan, which can change the illumination conditions
depending on stability of the microscope.

3.1.5 Direct electron detectors for low-dose ptychogra-
phy

There are two different families of direct electron detectors currently available.
Monolithic active pixel sensor (MAPS) detectors have rather small pixels and are
back-thinned so that the streak that an electron leaves on the pixels is confined
to a small area. They are intrinsically integrating detectors, but if the frame
rate is high enough and the electron flux per pixel is low enough, the electrons
can be counted and localized after detection, in some cases even with sub-pixel
precision. MAPS detectors were developed for real-space imaging applications,
where a large number of pixels is important to achieve a large field of view.
Because of the large number of pixels, the electron-counted unbinned frame
rate of these detectors is usually below 100Hz, which makes them suboptimal
for ptychography. The other family of detectors are called hybrid pixel array
detectors. Most of these detectors were initially developed for X-ray applications
at synchrotrons. They feature a rather large pixel size, and the sensitive area is
bump-bonded onto a readout chip. This decoupling of readout and detection
gives them very low readout noise, and most of these detectors are intrinsically
counting detectors. In table 3.1 we give an overview about the characteristics
of most of the currently available direct electron detectors.
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detector ffull [kHz] / dyn. range fmax [kHz] / binning counting/windowing DQE(0)

EMPAD [129, 152] 1.1 / 1× 106 1.1 / 1 no/no 0.94
Medipix3 [153] 1 / 24bit, 2 / 12bit 1 / 1, 2 / 1 yes/no 0.8
EIGER [154, 155] 2 / 32bit, 6 / 12bit, 23 / 4bit 23 / 1 yes/yes 0.8
pnCCD [128] 1 / [1bit @ >200 keV , 2bit @ < 200 keV ] 4 / 4 no/yes N.A.
DE16 [126, 156] 0.06 / 32bit 6 / 2 yes/yes 0.85
K2 [126, 156] 0.04 / 32bit 0.04 / 1 yes/yes 0.8
K2 IS [126, 156] 0.4 / 32bit 1.6 / 4 no/yes 0.8

detector DQE(Nyquist) Imax pixel size [µm] pixels

EMPAD N.A. 2.7 pA / pixel 150 128x128
Medipix3 0.3 N.A. 55 panels of 256x256, max 1536 x 1536
EIGER 0.1 (extrapolated) N.A. 75 panels of 256x256, max 4150 x 4371
pnCCD N.A. N.A. 48 264 x 264
DE16 0.2 N.A. 6.5 4096 x 4096
K2 0.26 4.8× 10−7 pA / pixel 5 3838 x 3710
K2 IS 0.26 4.8× 10−7 pA / pixel 5 3838 x 3710

Table 3.1: Overview of currently available direct electron detectors, ordered by descending pixel size. fmax is the max. frame rate possible.
ffull is the maximum full-field frame rate. DQE values are given for 200keV energy. Imax is the maximum current per pixel for opধmum
performance @ 200keV.
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Since the current in a focused electron beam can be several tens of pA, and a
beam current of 10 pA in a 10 nm diameter beam deposits an electron flux of
∼2000 e/Å

2
s on the sample, detectors with high frame rates are desirable for

low-dose ptychography, because it is difficult to tune down the current in the
microscope enough to achieve the low doses needed for cryo-EM in a ptychog-
raphy experiment. The fact that most cryo-microscopes are equipped with slow
MAPS detectors makes a proof-of-principle experiment currently difficult.

3.1.6 Data preprocessing steps

As an electron microscope has more lenses than ideally needed for an electron
ptychography experiment, the data can vary greatly from experiment to exper-
iment, because the microscope is usually newly aligned each time. The largest
source of error in the reconstructions is the shifting of the bright field disk dur-
ing the scan as a consequence of imperfect alignment of the pivot points in the
beam deflection system. Equally important is the determination of hot or dead
pixels, as these can deteriorate reconstructions by a large amount. A pixel mask
is routinely determined for every experiment. Fig. 3.1 shows the order in which
the data and metadata are processed to form an input data set for the reconstruc-
tion algorithm. First, data, metadata, hot pixel mask and gap mask are loaded
from disk. Then, if not already known, the rotation of the diffraction pattern
due to the projection lenses in the microscope is determined, and also the per-
column and per-row shifts of the bright field disk. From the metadata camera
length, convergence angle, and defocus, an initial estimate of the probe wave
function is generated. Then data are cropped to a square size from the center
and binned, if the sampling criterion Eq. (3.6) allows it. Then, bright-field and
dark-field STEM images are created from the dataset, by summing the respective
intensities with a mask given by the convergence angle, and saved to get a first
impression if everything is prepared correctly so far. Optionally, intensity from
dead pixels can be interpolated if the counts in the neighboring pixels are not
too low. The final data, masks, and positions are then saved to an hdf5 file as
input for the reconstruction algorithm. An example of a metadata file is shown
in appendix 6.2.
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Figure 3.1: Flow graph of the data preprocessing rouধne. At the Tecnai F20 microscope in Ham-
burg, the metadata are saved in a separate json file for every scan
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3.2 Discussion of previous published experiments in elec-
tron ptychography

The electron dose used for successful reconstruction used in electron ptychog-
raphy experiments has exceeded 1× 103 e−/Å

2
so far, limiting the usability of

ptychography to radiation-hard specimens. Table 3.2 lists recently published
electron ptychography experiments and the used average electron doses. The

Reference resolution dose

Putkunz et al. [157] ∼1Å 9.2× 106

Wang et al. [158] ∼2Å 2.1× 106

Gao et al. [142] 3.4Å not specified
D’Alfonso et al. [159] ∼1.5Å 1.77× 104

Yang et al. [160] atomic 1.3× 104

Humphry, Kraus & Hurst [161] ∼2.3Å 3.33× 103

Jiang et al. [162] ∼2Å 1× 103

Table 3.2: List of previously published electron ptychography experiments, achieved resoluধon, if
stated, and used electron dose.

lowest dose was reported in Jiang et al. [162], which performed a dose series
with electron doses down to 250 e−/Å

2
on a two-dimensional molybdenum disul-

fide sample. At this dose, however, the atomic positions cannot be recovered
anymore from a reconstruction with the ePIE algorithm. A reasonable recon-
struction was only possible with 1× 103 e−/Å

2
. We note that most samples re-

constructed with electron ptychography so far have been crystalline samples,
where all the intensity is scattered only into few reciprocal lattice vectors, and
therefore the achieved resolution is not comparable with the reconstruction of
an amorphous sample such as a protein.
The only publications on amorphous samples are Yang et al. [160], where only
heavy atoms in carbon nanotube conjugates could be resolved at a dose of
1× 103 e−/Å

2
. Gao et al. [142] resolve the 3.4Å spacing of carbon nanotubes

but do not report the used dose.
The following two sections describe therefore experiments at unprecedented
low-dose conditions and with amorphous samples.
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3.3 Demonstration with carbon black flakes on a Titan
Krios microscope

A major obstacle to perform the above mentioned cryo electron ptychography
experiment is the scarcity of suitable equipment and the limited access to equip-
ment. A benchmark experiment was therefore performed at the Ramaciotti Cen-
tre for Cryo-electron Microscopy at Monash University with the microscopist
Georg Ramm. It houses a Titan Krios Microscope with an autoloader system for
12 microscope grids, cryo-box, Gatan K2 Summit and FEI Falcon II direct detec-
tors and a STEM system. The Titan Krios is a microscope with three condenser
lenses, such that the probe convergence angle is not coupled to the size of the
condenser aperture. The FEI Falcon II detector was disabled via software as
soon as the microscope was set to STEM mode, so that it could not be used for
ptychography experiments. The K2 detector is not synchronized with the STEM
system, so that it was necessary to start the movie mode of the camera first and
then start a STEM scan and select only data sets where the camera was synchro-
nized with the STEM motion. This was the only way to perform ptychography
experiments with a direct detector on the Titan Krios.
The K2 summit has a maximum frame rate of 40Hz, 3838× 3710 pixels and a
pixel size of 5 µm. At the time of the experiment, it was the detector with the
best detective quantum efficiency on the market. A downside of this detector is
the low frame-rate, which cannot be increased by binning. We were not allowed
to change condenser apertures for the experiment, so the only tunable parame-
ter to control the dose, after setting gun lens and spot size to the highest values
to spread the beam as large as possible before the condenser aperture, was the
step size of the scan.
Due to the low frame-rate we did not reach the desired dose of 20 e−/Å

2
. Even

when inserting the smallest condenser aperture of 50 µm size, and using the mi-
croscope settings with highest coherence and lowest electron dose (spot size 11,
gun lens 9), we could only reach a dose of 40 e−/Å

2
by slightly misaligning the

gun, such that the intensity maximum is off-center on the condenser aperture.
The defocus was set to 800nm to achieve a probe size of roughly 10 nm with
a convergence semi-angle of 6mrad. This corresponds to a diffraction-limited
half-period resolution of 1.6Å. The step size was 3 nm to achieve a probe over-
lap of 66%. With these parameters a ptychographic oversampling parameter of
S = 13.9 is achieved. We performed a dose series to illustrate the impact of
electron dose on image quality. The camera length was set to 1.22m, such that
the bright-field disk almost filled the whole detector.
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A set of sample diffraction patterns at doses of 40 e−/Å
2
, 100 e−/Å

2
and 500 e−/Å

2

is shown in Fig. 3.2 b) - d). In Fig. 3.2 d), the first diffraction orders of the car-
bon planes become visible at the edges of the screen. The diffraction patterns
were cropped to a size of 512× 512 pixels after binning. The carbon planes in

0

5

10

15

20

25

30

35

40

a b

c d

Figure 3.2: a) Example reconstructed amplitude profile of the carbon black sample at . b)-d) Ex-
ample intensity measurements of the datasets with a total dose of 40 e−/Å

2
, 100 e−/Å

2
and

500 e−/Å
2
.

the sample greatly alleviated the determination of the defocus for the experi-
ment, as the beam size on the specimen and therefore the defocus can be read
off the bright field disc by counting the number of lattice fringes in the disk. Fig.
3.2 a) - c) show the phase of the reconstructed transmission function for the
three different doses. For the reconstruction we used Algorithm 2 with parame-
ters IterMax = 40, □ = BM3D, nbatch = 32, ρψ∨ = 0.9, ρT∨ = 0.6, learning rates
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γψ∨ = 10−3, γT∨ = 10−3.
After the first successful reconstruction the microscopist at the Ramaciotti Cen-
tre for Cryo-electron Microscopy contacted the microscope manufacturer FEI to
enable the Falcon detector for STEM imaging, as it would be automatically in-
tegrated in the STEM system of the microscope software. After a few months,
FEI released the software lock so that a first cryo-experiment was performed on
GroEL particles in April 2017. It was then realized that the counting mode of
the Falcon II camera could not be activated when it is operated in STEM mode.
The integrating mode of the Falcon II has a much worse DQE, therefore the ex-
periments were discontinued. In the following months I was only granted single
days on the microscope and was attending the experiments remotely.
A general problem in cryo-ptychography experiments is that the only available
online analysis tool while performing the experiment is the high-angle annular
dark field signal. This signal is relatively weak for biological macromolecules,
such that navigating the specimen and choosing the area to image can can ei-
ther be achieved by changing between TEM and STEMmode, which changes the
whole lens system of the microscope and makes it difficult to image a previously
selected area, or by defocusing the beam very strongly, so that the particles be-
come visible in the ronchigram.
Another difficulty is the exact determination of the defocus for a good initial
estimate for the reconstruction algorithm, and to roughly know that the sam-
pling criteria are fulfilled. A usual trick from cryo-tomography is to use gold-
nanoparticles (AuNPs) with a narrow size distribution. We also tried to include
carbon black flakes into the sample solution, so that the typical fringes shown in
Fig. 3.2 could be used for defocus determination. The carbon black flakes look
very similar to ice crystals at low magnification and are therefore not optimal,
because an area with both carbon black flakes and protein sample is hard to find.
This of course depends on the time one invests in sample preparation, and could
easily be improved in future experiments. Although the experimental time on
the microscope is limited, the refinements of the experimental procedure are
still ongoing.
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Figure 3.3: Comparison of ptychography reconstrucধons at different doses, and comparison with
Volta phase plate. a) Reconstrucধon at 50 e−/Å

2
, b) Reconstrucধon at 200 e−/Å

2
, c) Reconstruc-

ধon at 500 e−/Å
2
, d) Reconstructed probe in the condenser aperture plane, e) Reconstructed

probe in the sample plane, f) Image taken with a Volta phase-plate in the back focal plane at ap-
proximately zero defocus at 100 e−/Å

2
.
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3.4 Demonstration with apo-ferritin proteins at room
temperature at a Tecnai F20 microscope

In 2014 a collaboration between the microscope manufacturer FEI and the Max
Planck Institute for Structure and Dynamics of Matter was initiated. Part of the
collaboration agreement was the delivery of a Tecnai F20 microscope with a
Schottky field emitter to the Max Planck Institute in Hamburg. Due to delays in
the acquisition and installation process, the microscope was available for exper-
iments in late 2017.
Concurrently with the negotiations, a prototype of a water-cooled Medipix 3 de-
tector was developed by the postdoc Fabian Westermeyer in collaboration with
the DESY detector group. It was installed on themicroscope in Jan. 2018, so that
the first benchmark experiments could be performed in February 2018. After a
first set of experiments in February and March 2018, the detector was unavail-
able due to a cooling failure. A second set of experiments was performed in June
2018 with unfixed apo-ferritin molecules from horse spleen on ultra thin carbon
film (3 nm thickness). The microscope was operated and aligned by the postdoc
Robert Bücker and the apo-ferritin sample was prepared by Dennis Eggert.

Because the F20 microscope has only two condenser lenses, the convergence
angle can only be set by choosing and appropriate size of the condenser aperture.
An aperture of 70 µm diameter was chosen, which results in a half-convergence
angle of 7.4mrad and a diffraction-limited resolution of 1.69Å for an electron
energy of 200 keV. We choose a defocus of 800 nm, resulting in a probe diameter
of 11.5nm, and a scan step size of 3.4nm. This corresponds to a probe overlap
of 70.4%. This results in an oversampling parameter of S = 6.4.

The beam current was chosen as 2.8pA and the exposure time of the camera to
2ms, such that a scan of 64× 64 positions completed in 8.2 s. The total accu-
mulated dose on the sample was 30 e−/Å

2
.

The reconstruction is shown in Fig. 3.4. One can clearly make out the ferritin
particles in the phase image, but the background from the thin carbon substrate
is quite strong. Also because the experiment was performed at room tempera-
ture, the particles are expected to have undergone significant radiation damage,
although the shape of some particles clearly resembles the known structure, for
which we show a phase map in Fig. 3.4 c). It can also be seen that the recon-
structed phase shift of 0.08 rad is only half of the expected maximum phase shift
of 0.16 rad. This can either come from mass lose due to radiation damage, or
the inhomogeneous background phase shift of the carbon substrate. For a de-
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tailed assessment of the improvement in SNR over conventional methods, an
experiment under cryogenic conditions must be performed. For the reconstruc-
tion we used Algorithm 2 with parameters IterMax = 50, □ = BM3D, nbatch = 64,
ρψ∨ = 0.9, ρT∨ = 0.6, learning rates γψ∨ = 10−3, γT∨ = 10−3.
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Figure 3.4: Ptychographic reconstrucধon of apo-ferriধn molecules on ultra-thin carbon at a dose of
30 e−/Å

2
. a) Amplitude of the reconstructed transmission funcধon, b) phase of the reconstructed

transmission funcধon. c) phase maps of apo-ferriধn molecules simulated for 200keV for visual
comparison with the reconstrucধon. d) simulated Volta-phase plate cryo-EM image at a dose of
30 e−/Å

2
. e) Reconstructed probe at the sample plane. Slight aliasing can be seen at the edges of

the probe due to binning to fit the data set into GPU memory. This should be avoided in future ex-
periments to achieve an opধmal reconstrucধon. f) Reconstructed probe at the aperture plane. In
the lower right corner of the aperture on can see some dirt protrude towards the center, obstruct-
ing the intensity.
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3.5 Conclusion and remarks

We have discussed the experimental implications and difficulties when planning
and performing a low-dose ptychography experiment with currently available
equipment. We show two proof-of-principle experiments and demonstrate that
ptychographic phase contrast imaging is possible at the low doses required for
cryo-EM. Due to the lack of experimental access to the equipment we could
not show a reconstruction under cryo conditions yet, but with a sample of suffi-
cient quality we do not see any obstacles to perform cryo-electron ptychography
experiments in the near future.
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4 Towards optimal experimental design
for phase retrieval in the TEM

In this chapter we review several papers that hint at the advantages of using
structured illumination in phase retrieval experiments. We discuss how struc-
tured illumination can be realized in the TEM and design and test nano-struc-
tured phase masks which can be inserted in the condenser aperture to produce
a beam with strongly varying local phase structure.

4.1 The case for structured illumination electron pty-
chography

It is well-known that the phase profile of the ptychographic probe can heavily
influence the reconstruction quality. The use of a ’phase-diverse’ beam for pty-
chography was first realized in 2011 for visible light [163], where it was used
to achieve super-resolution of up to 4 times the diffraction limit imposed by the
detector cut-off. It was subsequently used to achieve three-dimensional imag-
ing by reconstructing multiple slices of the specimen [141, 164]. In the frame-
work of WDD it was shown that a probe with multiple vortices produces higher
quality reconstructions and suppresses noise, because its large extent in phase
space stabilizes the numerical deconvolution procedure [111]. Subsequently,
diffusers were also used in X-ray ptychography to enhance the reconstruction
quality [165–167] and it was suggested that partial coherence can be analyzed
in real time by characterizing the intensity histogram of a diffuser beam diffrac-
tion experiment [167]. Marchesini, Tu & Wu [97] provided another argument
similar to [111] for diffuser beams: when the illuminated pixels are connected
with the measurements in a connection graph, a beam that is large in real and
Fourier space provides a denser graph and therefore more constraints for phase
retrieval. Recently, randomized zone plates have been developed for the soft
X-ray regime that provide µm-sized beam with speckled phase structure to bet-
ter distribute the intensity over the detector and improve reconstruction quality
[168].

From these reports alone it seems highly beneficial to use a structured beam in
low-dose electron ptychography experiments. We therefore analyze the impact
of structured illumination in the reconstruction quality of low-dose ptychogra-
phy experiments below. We numerically test three different probes, depicted in
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Fig. 4.1, and their influence on the reconstruction SNR at low and high doses:
1) a standard defocused probe with defocus aberration of 400 nm, 2) a defo-
cused Fresnel Zone Plate (FZP), and 3) a randomized probe generated by a
holographic phase plate and a conventional lens. Fig. 4.1 depicts these probes

0 1 2 3 4 5 6
1a

2a

3a 3b

2b

1b
0.0 0.2 0.4 0.6 0.8 1.0

1c

3d

1d

2d2c

3c

Figure 4.1: Different probes evaluated in this paper and corresponding diffracধon paħerns. Row
1: defocused beam with defocus aberraধon of 400nm, convergence half-angle 9.2mrad; row 2:
defocused beam created by a Fresnel zone plate, 600nm from focus; row 3: randomized beam, gen-
erated by a holographic phase plate and focused by a convenধonal lens. Column a: beam in real
space, at the sample posiধon, scale bar is 8.5nm; column b: beam at the probe forming aperture,
scale bar is 4.5mrad; column c: diffracধon paħern of human ribosome at unlimited dose, normal-
ized to the maximum intensity; column d): diffracধon paħern for a scan with an electron dose of
20 e−/Å

2
. The inset in 1a shows the color wheel that is used to represent amplitude and phase in

columns a) and b).

in real and Fourier space, and typical diffraction patterns at infinite dose and
low dose. The FZP was recently suggested as a phase modulator for bright-field
STEM [169], because its simple phase modulation allows analytical retrieval of
linear phase contrast. However, diffractive optics typically have imperfections
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due to the manufacturing process, which introduce errors and dose inefficiency
if the reconstruction is obtained by a simple fitting procedure. Iterative ptychog-
raphy algorithms allow for the simultaneous retrieval of the probe wave function
[99, 121], and therefore offer full flexibility in the design of the phase profile.
We test as a third probe a random illumination generated by a holographic phase
plate and a focusing lens.
Fig. 4.2 shows the SNR of reconstructions of a ribosome particle with the three
proposed probes as a function of spatial frequency for doses of 20 e−/Å

2
and

80 e−/Å
2
. It can be seen that the simple defocused probe has almost 2 orders of

magnitude worse SNR than the FZP and the random probe at the lowest spatial
frequencies. At low spatial frequency the FZP achieves the best SNR, while at
high spatial frequencies the random probe does slightly better. We have there-
fore used the random probe for the reconstructions shown in Figs. 2.5 and 2.7.

a b

c

Figure 4.2: SNR of reconstrucধons of the human ribosome at different radiaধon doses using the a)
defocused probe, b) the Fresnel zone plate and c) the randomized probe. (from Pelz et al. [96])
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4.2 Design of diffuser apertures for structured illumina-
tion electron ptychography

As discussed already in section 1.3.2, the phase of an electron wave function
can be manipulated by electrostatic potentials, the magnetic vector potential, as
well as holographically by amplitude modulation from a specifically designed
obstruction and subsequent free space space propagation to a desired plane,
usually the far-field. All these approaches have been used in the recent past to
shape the electron wave function, and we review them here shortly with regards
to ease of fabrication, ease of implementation in the electron microscope, and
flexibility.

Manipulation by electrostatic potentials is most easily achieved by inserting ma-
terial into the path of the electron wave. The electrostatic potential of the atoms
in the material causes a phase shift relative to vacuum. Ideally, non-crystalline
materials are used to mitigate diffraction effects from propagation through the
material. In this case, the phasemodulation can just be described by thematerial
thickness h(x, y) and the mean inner potential V0 of the material [170]:

T(x, y) = exp
(
ik̃h(x, y)

)
, (4.1)

where k̃ = σ V0 + iα is the effective complex wavenumber of the electron within
the material (see section 1.2.1). This is just a variation of Eq. (1.20) in section
1.2.4. The amplitude coefficient α describes the effects of inelastic and high-
angle scattering and σ is the interaction constant that depends only on the energy
of the beam [171]. The transmitted electron wave function immediately behind
such a thickness-modulated mask is then calculated just by transmission through
a single slice of material as in Equ. 1.19.

The standard material for such height-modulated masks is silicon nitride (Si3N4)
because of its robustness, amorphousness, and easy handling for FIB milling.
Usually, FIB milling is used to produce the desired height profile, and pixel sizes
of 50 nm can easily be realized, such that 1000 pixels are available for a typi-
cal 50 µm diameter aperture. After calibration of the FIB to produce a certain
thickness, the process to create a mask is a matter of minutes and many designs
can be realized relatively quickly. A drawback is the energy dependence of the
phase shift, therefore a new mask must be produced for every electron energy
that is used in the experiment. It is possible to create off-axis holograms and
inline holograms [170] this way, depending solely on the thickness profile, but
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the use of higher diffraction orders off the optical axis requires careful realign-
ment of themicroscope and is therefore impractical in otherwise already difficult
low-dose ptychography experiments.

The creation of magnetic vector potentials in the beam path was suggested to
create a Zernike-like phase plate [65], but a pixel-by-pixel design would involve
multiple current-carrying wires and is difficult to fabricate, as already the fabri-
cation of a single thin enough wire poses practical difficulties. Therefore, this
option was not further pursued.

The last, simplest option is to fabricate an binary amplitude grating, where the
desired phase is holographically imprinted such that the phase profile after a
certain propagation distance has the desired properties [172]. The practical dis-
advantage is again the off-axis position of the hologram, requiring additional
microscope alignment. Additionally, the current is greatly reduced and the re-
quired thickness to totally block the beam does not allow as fine features as pure
silicon nitride masks, such that the flexibility in this regard is limited. Changing
the electron energy however only changes the angle at which the desired phase
profile appears.

Because of the great freedom of design, we chose to use the first method to cre-
ate structured illumination masks for ptychography. Masks with 1000× 1000
pixels were designed with an iterative Gerchberg-Saxton algorithm depicted in
Fig. 4.3. Starting with random phases in the aperture plane, we iteratively apply
amplitude projectors Par and Paf in real and Fourier space to confine the beam
to a certain area. After a few iterations, the vortex structure as shown in Fig. 4.5
evolves. Then, the algorithm is terminated and an additional phase is added to
correct for the spherical aberration of the microscope. From the resulting phase
profile, a stream file was created for processing in the FIB. The python code to
create such a mask is displayed in appendix 6.6. An SEM image of an example
resulting height profile h(x, y) is shown in Fig. 4.4.

4.3 Structured illumination ptychography with a K2-IS
camera and a Titan microscope: lessons learned

A first structured illumination experiment was performed at the Ernst Ruska
Centre in Juelich in collaboration with Penghan Lu, who fabricated the phase
masks, and Dr. Vincenzo Grillo, who generated the stream files for FIB milling
and advised on important design parameters. Dr. Grillo suggested to use aper-
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Figure 4.3: Schemaধc of the Gerchberg-Saxton type algorithm to create the random phase masks

tures no larger than 50 µm in diameter to reduce charging effects that appear
with larger apertures. The experiments were performed at the Titan Holo mi-
croscope, which is equipped with an image abberration corrector, STEM system
and a synchronized K2-IS direct detection camera. The K2-IS camera has the
same Hardware specification as the K2 Summit used in section 3.3, but the full
frame rate of 400Hz is accessible for data collection. At this frame rate only
integrating mode is available, and the electron counting has to be performed on
the raw integrated images after data collection. This means that the electron hit
rate on the camera must be in the same range as the dose rate suggested for the
K2 Summit detector, i.e 3 e per pixel per second, to achieve the high DQE of the
K2 in counting mode and avoid coincidence losses.

This means that the gun must be used at a very coherent setting (gun lens 9 spot
11), to achieve the low currents needed for this detector. It also means that the
electron counts per pixel in a single diffraction pattern are very low, as shown
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Figure 4.4: SEM image of a height profile created from a phase mask similar to Fig. 4.3. The diame-
ter of the mask is 50µm.

in an example pattern, after electron counting and binning by 8, shown in Fig.
4.5 c). An additional limitation of the camera software is the fact that only a
single exposure can be performed at each position of a 4D STEM scan, leaving
very few electrons per exposure on the detector. This means that the detector
would have to be binned by a factor of 32 to achieve an average of more than 1
electron per pixel in the bright field disk.

This in turn clashed with the fact that increasing the step size and the beam
diameter was the only option to achieve low enough dose to achieve less than
100 e−/Å

2
. It was necessary to choose a step size of 4 nm to achieve an electron

dose of 50 e−/Å
2
with a beam current of 2.1pA and the 400Hz frame rate of

the K2-IS. This in turn meant that the detector could not be binned by more
than 8x to achieve sufficient sampling of the probe. This lead to data sets with
diffraction patterns as shown in Fig. 4.5 c).

Due to the many zero intensity pixels in the bright field, the gradient updates
from a single measurement are very sparse and we were not able to reconstruct
good quality images. The aforementioned limitations regarding the camera soft-
ware only became clear during the experiment. Because of this, a mask that
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produces a beam with diameter of 5 nm at a convergence semi-angle of 7mrad
was designed to achieve a half-period resolution of 1.4Å. The designed probe
at focus is shown in Fig. 4.5 f). Because of the step size requirement, the probe
had to be defocused to −1.2 µm to achieve the desired diameter of 20 nm. The
phase and amplitude profiles of this defocused probe from simulation are shown
in 4.5 d) and the measured amplitude at −1.2 µm is shown in Fig. 4.5 e). We
note that the speckle size for the simulation and the experimental amplitudes
are very similar, although the simulated pattern does not display the amplitude
drop that is present in the center of the experimental intensity. Additionally,
spurious amplitude outside the 20 nm diameter is visible in the experimental
defocus image. This can be attributed to to two possible causes: either to the
fact that the Si3N4 mask is not a perfect phase mask and inelastic and multiple
scattering still occur in the material, which are not accounted for in the design
process so far, or the fact that the thickness profile is not perfect and therefor
the phase shift does not amount to exactly 2π, therefore creating vortices with
fractional topological charge, which leak out intensity off-axis of the beam. The
first reason also leads to electrons being scattered to higher angles, such that
the ADF images with inserted diffuser are particularly noisy. These electrons
scattered into the dark field will need to be included in the probe reconstruction.
In Fig 4.5 d) on the left side it is also visible that at such a large defocus the
phase profile of the defocus aberration is very dominant and the sub-nm tiling
of the speckles seen in 4.5 f) is lost. It would be interesting to study how this
affects the reconstruction SNR.

4.4 Conclusion and remarks

Ptychography experiments with diffuser masks at very low doses are challenging
for a number of reasons. The lack of a proper online analysis tool because of the
poor quality of ADF is the biggest obstacle, which can in principle be resolved by
fast ptychography reconstruction. This is currently hindered by the firmware of
most of the cameras, which does not allow to stream the data from the camera
into memory directly, but saves it on disk before further processing. With data
files f several to hundreds of GB in size, this causes a significant delay from data
collection to phase contrast image.
Another obstacle is that in microscopes with two condenser systems the con-
denser plane is not fully in the front focal plane of the sample, so that in the
diffraction plane one sees a slightly propagated aperture. This is no problem for
a standard round aperture, because the Fresnel fringes are usually very small. If
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Figure 4.5: Data and simulaধons for the first structured illuminaধon experiment. a) Sum of all inten-
siধes of a scan with 80× 80 posiধons, revealing the depth profile of the SI mask. The edge of the
HAADF detector blocks most of the electrons scaħered into the dark field. b) aperture design with
corresponding phase shiđ for the mask used in a). c) Experimental diffracধon paħern with an 8x
binning applied, resulধng in 426× 426 pixels. d) simulated probe with an addiধonal defocus aber-
raধon of 1.2µm to achieve a diameter of roughly 20nm. The leđ half shows the domain-colored
complex wave, the right half shows the amplitude only. e) Experimental amplitude recorded at ap-
proximately 1.2µm defocus. f) Simulated complex wave at focus.
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a diffuser mask is used, one observes strong Fresnel fringes in the whole bright
field disk because of the strong height profile of the mask. In principle this
should not be a problem for the reconstruction, but it leads to a very non-uniform
intensity distribution over the bright field. The effects of this need to be studied
in the reconstructions.
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5 Summary and future directions

After the tremendous success of cryo-EM in structural biology in the past years,
the development of a reliable, quantitative and easily implementable phase con-
trast technique is still on the wish list of the cryo-EM practicioners.

In this thesis we show that computational phase contrast imaging via electron
ptychography at the low doses required to image biological macromolecules is
possible with the help of Bayesian reconstruction algorithms, and demonstrate
it in two proof-of-principle experiments on two different electron microscopes.
This turns cryo-electron ptychography into a viable alternative to current phase
contrast imaging methods in cryo-EM, which could eventually outperform those
methods, as we have shown in reconstruction from simulated data.

We have shown how ptychography relates to other phase retrieval techniques
in the general framework of quantum state reconstruction and highlighted its
advantages in terms of implementability, uniqueness of the reconstruction, and
susceptibility to partial coherence effects.

A challenging hurdle in achieving the high resolutions of state-of-the art cryo-EM
is certainly a multi-slice reconstruction at such low-doses, or implementation of
another method of Ewald sphere correction for electron ptychography.

We believe that the next generation of pixelated STEM detectors enables ptycho-
graphic phase contrast imaging even on mid-range microscopes, substantially
lowering the instrumental hurdles for performing phase contrast cryo-EM. A
dedicated ptychographic STEM could dispatch all of the lenses after the sample
and the objective lens. This would essentially be a high-voltage scanning elec-
tron microscope (SEM) with a long propagation tube, and would lower the entry
cost for cryo-EM by a large amount.

In the following sections we discuss investigations that could not be performed
within this thesis, but for which it could provide a starting point.
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5.1 Dose rate dependence of cryo-electron ptychogra-
phy

Due to limitations in camera frame rate, the experiments presented in this thesis
were performed at an electron dose rate which is unusual for cryo-EM. Typical
cryo-EM data collection strategies work with a dose rate of<1 e−/Å

2
s and expose

the sample for 20 seconds or longer, to minimize the beam-induced specimen
movement [173]. While a whole scan takes a similar amount of time in pty-
chography as in cryo-EM, all the dose is delivered onto one sample area in a
single exposure with the defocused beam. This is is because the detector usually
operates already at the highest frame rate, and a dose fractionation as done in
conventional cryo-EM is currently not possible. This will be alleviated with the
next generation of detectors, which increase the frame rate by a factor of 10 to
50. In our experiments we used dose rates of 64 e−/Å

2
s in the case of the Titan

Krios microscope and 557 e−/Å
2
s, thus with one and two orders of magnitude

difference to what is used with the conventional cryo-EM technique.
In the future it will be interesting to explore how the electron dose rate influ-
ences the reconstruction quality, and if dose-fractionation techniques need to be
applied to achieve resolution comparable to conventional cryo-EM.

5.2 Multi-modal cryo-electron ptychography

Electron ptychography being a STEM technique has the unique advantage that
incoherent images and spectroscopic signals can be collected simultaneously to-
gether with the 4D ptychographic data set. This means that in principle one
could collect additionally the EDX signal and the ADF signal of a biological sam-
ple. While these signal are expected to be very weak for weakly scattering bio-
molecules, they could be averaged, oriented and then combined with the 3D
phase contrast reconstruction. The EDX signal would be especially useful to
disambiguate between elements with very similar atomic scattering potentials,
which are hard to infer from the atomic potential alone, e.g. the differentiation
of metal ions with very similar elastic scattering cross sections (e.g. Ca2+, Mg2+,
Mn2+). Ptychography with a focused electron probe makes it possible to collect
these different incoherent signals at atomic resolution, and therefore make the
most use of all available scattering cross sections [174]. Such multi-modal and
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correlative microscopy approaches are becoming increasingly important as the
systems under study become more complex [175, 176].

5.3 Optimal experimental design

In this thesis we have made the connection between quantum state tomogra-
phy and the generalized phase retrieval problem. While we studied the behav-
ior of the reconstruction-algorithms with respect to different illuminating wave
fronts, a theoretical study of the optimal experimental scheme would certainly
be very fruitful. This problem could be approached from several angles, which
we shortly describe in the following.
First, drawing from the connection to quantum tomography, one can explicitly
design a minimal set of informationally complete measurements, also called quo-
rum, which allow to reconstruct an arbitrary quantum state. In the case of pure
state quantum tomography, this has been done e.g. by Pohl, Yang & Boche
[177], who construct a measurement basis with 4N measurements that guaran-
tees reconstruction of pure states, and they even provide an analytic reconstruc-
tion procedure. Carmeli et al. [178, 179] provide measurement bases with 5N,
from which stable recovery is guaranteed. [180] discuss the minimal number of
measurements that is needed to recover a pure state.

Second, one could optimize certain information theoretical measures regarding
the information content of the measurements about the object. This approach
has been performed by Shlezinger, Dabora & Eldar [181, 182]. They maximize
the amount of mutual information between the signal of interest, in our case
the transmission function, and the measurements. However, [181] performs
this exercise only for the case of masked Fourier measurements, i.e a binary am-
plitude mask is performed in real space, before the signal is Fourier transformed
and recorded. Performing such an experiment is probably very difficult with
electrons, although one could imagine demagnifying an amplitude mask in the
condenser aperture to the required pixel size. Demagnifying 500nm pixels of an
amplitude mask in the condenser plane to 3Å pixels in the image plane requires
a demagnification factor of 1666 and is certainly feasible, if only with an unusual
electron optical configuration. An application of this information-theoretical ap-
proach to ptychography would therefore certainly be very interesting.

The third approach can be understood as an extension of the neural network
implementation of generalized phase retrieval as presented in section 2.7, and
an implementation of this principle is the presented PtychoNet. A promising
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branch of recent developments in machine learning focuses on optimizing ex-
perimental designs by representing a physical measurement system by a set of
differentiable transformations, such that back-propagation of errors is possible
via the chain rule. An example of such neural network for ptychography was pre-
sented in section 2.7, with the operator P being the differentiable ptychographic
measurement operator. Once a network presenting the measurement process is
defined, the optimization loop of an algorithm like Algorithm 2 can be unrolled
[183–185], such that the whole optimization is a simple forward pass through
the unrolled network.
This allows now to propagate gradients back through the whole optimization al-
gorithm, for example making it possible to optimize the probe wave function to
achieve the best spectral SNR, or the smallest residual error when compared to
a ground truth. scikit-pr lays the groundwork for this next step by implementing
ptychographic phase retrieval as a neural network.
This approach was recently demonstrated for Fourier ptychography with visible
light [186], showing that phase recovery from only 2N measurements is pos-
sible, and showing that the mean squared error of the reconstruction can be
improved by over 80% when optimizing the illumination system compared to
conventional illumination.

5.4 Inelastic electron ptychography - quantum tomogra-
phy of specimen excitations

Electron microscopes have developed into extremely versatile instruments, en-
abling the collection not only of high-resolution images, but also of spectral in-
formation with extremely high spatial resolution. When using a post-specimen
energy filter, it is possible to select inelastically electrons with a very narrow
range of energy losses. Electrons with the same final state after interaction
with a specimen where only single scattering occurs interfere coherently, and
form a coherent diffraction pattern like elastically scattered electrons. It should
therefore be possible to reconstruct the inelastic mode of the object they were
scattered from.
This has already been demonstrated with the differential phase contrast tech-
nique on nano-rods which exhibit surface plasmon excitations from passing high-
energy electrons [187]. A natural extension would be to apply ptychography to
get a full picture of the excitation modes of the specimen. Since the inelastic
cross sections for a very narrow electron energy loss range are very small, the
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Bayesian techniques presented in this thesis could prove very useful for the data
analysis.
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6 Appendix

6.1 Some conventions

Variables

We adopt the following conventions for variables:
A variable in lower case bold-face type represents a vector, a ∈ Cn,Rn.
A variable in upper case bold-face type represents a linear operator, A ∈ Cn×n,Rn×n.
A variable in sans-serif type represents an integer number, a ∈ Z,N.
A variable in italic type is usually a scalar, a ∈ C,R.

Fourier transform

For functions g, h : x ∈ Rn → g(x) ∈ C, we denote

F [g] (v) ≡
∫
Rn
g(x)e−2πixv dx , (6.1)

as the Fourier transform of g and indicate it with the symbol F . Usually, the
domain of integration is inferred from the integration variable and the domain
subscript is dropped when the integration includes the whole vector space. The
inverse transformation to Eq. (6.1) is called the inverse Fourier transform and
indicated by the label F †,

F † [h] (x) ≡
∫
Rn
h(v)e2πixv dv (6.2)

If only a subspace ofRn is integrated, we indicate this with a subscript to the label
F . For example, for (x, y) ∈ R2 × R2, we write the two-dimensional Fourier
transform with respect to x as

Fx [g(x, y)] (v, y) ≡
∫

g(x, y)e−2πixv dx , (6.3)

such that a short hand notation is possible, e.g. Fx
[
exp
(
x2y2

)]
(v, y). In cases

where the argument v is not needed in an equation, we can use the shorter form

Fx [g(x, y)] ≡
∫

g(x, y)e2πixv dx . (6.4)
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In cases where the argument of the Fourier transform is clear, we may omit the
argument brackets for brevity. We also introduce an additional shorthand for
Fourier transforms of functions of a single variable:

f̃ (v) ≡ F [g(v)] (6.5)

Fourier slice theorem

The Fourier slice theorem or projection-slice theorem [188] states that “the Fourier
transform of the projection of anN-dimensional function f(r) onto anm-dimensional
linear submanifold is equal to an m-dimensional submanifold is equal to an m-
dimensional slice of the N-dimensional Fourier transform of that function con-
sisting of anm-dimensional linear submanifold through the origin in the Fourier
space which is parallel to the projection manifold.” [189]

Fractional Fourier Transform

The fractional Fourier transform is a generalization of the Fourier transform
that gives access to a continuum of functions joining the original function and
its Fourier transform. The fractional Fourier transform of degree θ is defined as

Fθ [g] (v) ≡
[
tan(θ)− i
π tan(θ)

] ∫
Rn
g(x) exp

(
πi
(x2 + v2) cos(θ)− 2xv

2 sin(θ)

)
dx . (6.6)

Notice that, for θ = 0 and θ = π/2, the fractional Fourier transform reduces,
respectively, to the original function and its Fourier transform

F0 [g(x)] (v) = g(x) (6.7)
Fπ/2 [g(x)] (v) = F [g] (v) (6.8)

Convolution and cross-correlation

For functions g, h : x ∈ Rn → g(x) ∈ C, we define

g(x) ⋆ h(x) ≡ (f ⋆ g)(x) =
∫

f∗(y)g(y+ x)dy . (6.9)

as the cross-correlation and

g(x)⊗ h(x) ≡ (f⊗ g)(x) =
∫

f(y)g(y− x)dy (6.10)
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as the convolution of f and g. Both may be expressed in term of Fourier trans-
forms,

F [g(x)⊗ h(x)] = Fg · Fh (6.11)

and
F [g(x) ⋆ h(x)] = Fg · (Fh)†. (6.12)

If either convolution or cross-correlation is carried out on a subspace of Rn, we
indicate this with a subscript to the label ⋆ or ⊗ as follows:

g(x, y)⊗y h(x, y) ≡
∫

g(x,w)h(x, y−w)dw (6.13)

6.2 Json metadata file from the Tecnai F20 microscope
in Hamburg

Belowwe show the contents of a typical metadata file as produced by the custom
software written by Robert Buecker.

1 {
2 "Scanning": {
3 "Total Pts": 4096,
4 "Scan complete": false,
5 "Idx": {
6 "y": 0,
7 "x": 0
8 },
9 "Curr Point": 0,

10 "Pixel size": {
11 "y": 0.21484375,
12 "x": 0.21484375
13 },
14 "Frame dose": NaN,
15 "Parameters": {
16 "Smp/Pos": 1,
17 "Mask file": "",
18 "Pattern": 0,
19 "Continuous": false,
20 "Rate": 500.0,
21 "Pre-pts": 0,
22 "Frame (Y)": {
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23 "Extend Scan": false,
24 "Max V": 7.5,
25 "ROI st": 32,
26 "ROI len": 64,
27 "Min V": -7.5,
28 "Pts": 128
29 },
30 "Line (X)": {
31 "Extend Scan": false,
32 "Max V": 7.5,
33 "ROI st": 32,
34 "ROI len": 64,
35 "Min V": -7.5,
36 "Pts": 128
37 }
38 },
39 "Current": NaN,
40 "Running": false,
41 "Field of view": {
42 "y": 220.0,
43 "x": 220.0
44 },
45 "Position": {
46 "y": 3.72047244094488,
47 "x": 3.72047244094488
48 }
49 },
50 "STEM Image": {
51 "Name Root": "ADF",
52 "Image Directory": "C:\\Data\\Robert\\20180606_Ferritin",
53 "File Inc": true,
54 "File No": 1530,
55 "Autosave": true,
56 "Filename": "ADF_01530",
57 "Save": false
58 },
59 "Projection": {
60 "ImageBeamShift": {
61 "Y": 0.0,
62 "X": 0.0
63 },
64 "LensProgram": 1,
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65 "Defocus": 6e-07,
66 "CameraLength": 1.0,
67 "ObjectiveExcitation": 0.888735340391214,
68 "Focus": 0.00331796012784327,
69 "ImageBeamTilt": {
70 "Y": 0.0,
71 "X": 0.0
72 },
73 "ImageShift": {
74 "Y": 0.0,
75 "X": 0.0
76 },
77 "SubModeString": "STEM nano D",
78 "Magnification": 320000.0,
79 "MagnificationIndex": 0,
80 "SubMode": 6,
81 "Mode": 2,
82 "CameraLengthIndex": 11,
83 "TEMMagnification": -1.0,
84 "TEMCamLength": 1005.0,
85 "DiffractionShift": {
86 "Y": -0.000261798,
87 "X": 0.0
88 },
89 "ProjectionIndex": 11
90 },
91 "Screen": {
92 "MainScreen": 2,
93 "IsSmallScreenDown": true,
94 "ScreenCurrent": 0.0609916998816225,
95 "Dose": 0.684837795378426
96 },
97 "Time Stamp": "2018-06-06T19:14:12.218Z",
98 "Gun": {
99 "HTValue": 200000.0,

100 "Shift": {
101 "Y": -0.00169399145477323,
102 "X": 0.0112431831204754
103 },
104 "HTState": 3,
105 "Tilt": {
106 "Y": -0.459406323081482,
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107 "X": 0.552593046995164
108 }
109 },
110 "LowDose": {
111 "LowDoseState": 0,
112 "BeamBlanked": true,
113 "Dose": 0.0
114 },
115 "Illumination": {
116 "CalibCurrent": NaN,
117 "CalibDiameter": NaN,
118 "Shift": {
119 "Y": 0.0,
120 "X": 0.0
121 },
122 "BeamBlanked": true,
123 "CalibDoseRate": NaN,
124 "STEMSize": 440.0,
125 "Intensity": 0.379443834592606,
126 "Mode": 0,
127 "Tilt": {
128 "Y": 0.0,
129 "X": 0.0
130 },
131 "SpotsizeIndex": 9,
132 "StemMagnification": 320000.0,
133 "StemRotation": -0.202300000000001
134 },
135 "Detector": {
136 "Layout": "1556X516",
137 "FrameNumbers": 4096,
138 "LatestImageNumber": -1,
139 "ConfigFilePath": "/localdata/share/config",
140 "FilePreExt": "",
141 "FreeBuffer": 24576,
142 "CompressorShuffle": false,
143 "Width": 1556,
144 "DelayTime": 0.0,
145 "PrecompressEnabled": true,
146 "ShutterTimeMin": 0.0,
147 "SaveFilePath": "/scratch/20180606",
148 "OperatingMode": "ContinuousReadWrite",
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149 "CompressionEnabled": true,
150 "Status": "Detector ID is:0?0.State is:*ON*\n",
151 "DistortionCorrection": 1,
152 "FileNamePathCaseSensitive": true,
153 "CompressionRate": 2,
154 "FilePostfix": "nxs",
155 "TotalLossFrames": 1,
156 "FilePrefix": "FerritinPtychoLoDef",
157 "ShutterTime": 2.0,
158 "LiveMode": true,
159 "ThreadNo": 0,
160 "Depth": 12,
161 "FileStartNum": 71,
162 "TriggerMode": 2,
163 "CreateDir": false,
164 "FramesPerFile": 4096,
165 "SaveAllImages": true,
166 "SaveFileName": "FerritinPtychoLoDef_00071",
167 "CheckFileExists": false,
168 "Height": 516,
169 "EnergyThreshold": 44000.0,
170 "LiveFrameNo": 0,
171 "ShutterTimeMax": 2147483647.0,
172 "AppendData": false
173 },
174 "Stage": {
175 "Status": 0,
176 "A": 1.70344134994647e-05,
177 "Y": 0.0002325774,
178 "X": 4.61565e-05,
179 "Z": -4.203087e-05,
180 "Holder": 1
181 }
182 }
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6.3 Json config file for slice++

1 {
2 "nthreads":"1",
3 "wave":{
4 "phi_33":"0.000000",
5 "phi_31":"0.000000",
6 "gaussian":"false",
7 "phi_55":"0.000000",
8 "phi_51":"0.000000",
9 "phi_53":"0.000000",

10 "tiltX":"0",
11 "tiltY":"0",
12 "astigmatismAngle":"0.000000",
13 "phi_44":"0.000000",
14 "a_44":"0.000000",
15 "defocus":"500",
16 "a_62":"0.000000",
17 "a_66":"0.000000",
18 "a_64":"0.000000",
19 "AISaperture":"0.0",
20 "type":"2",
21 "dE/E":"0.00000",
22 "C5":"0.000000",
23 "a_42":"0.000000",
24 "astigmatism":"0",
25 "dI/I":"0.00000",
26 "dV/V":"0.000003",
27 "phi_62":"0.000000",
28 "phi_42":"0.000000",
29 "phi_66":"0.000000",
30 "alpha":"10",
31 "a_31":"0.000000",
32 "a_33":"0.000000",
33 "Cc":"1",
34 "smooth":"true",
35 "gaussScale":"1.0",
36 "a_55":"0.000000",
37 "a_53":"0.000000",
38 "a_51":"0.000000",
39 "Cs":"0",
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40 "phi_64":"0.000000"
41 },
42 "beam":{
43 "sourceDiameterAngstrom":"0",
44 "dwellTimeMsec":"1.6021773e-4",
45 "beamCurrentpA":"1",
46 "energy_keV":"200.000000"
47 },
48 "mode":"1",
49 "output":{
50 "showProbe":"false",
51 "writeLogFile":"false",
52 "loglevel":"1",
53 "SaveWaveAfterTransform":"true",
54 "SaveWaveAfterNSlices":"1",
55 "logFileName":"slicelog.log",
56 "pendelloesungPlot":"false",
57 "SaveAtomicPotential":"false",
58 "savePath":"/home/philiipp/projects/slicepp/Examples/configs/gold.h5",
59 "readPotential":"false",
60 "SaveWaveAfterPropagation":"true",
61 "SaveWaveAfterTransmit":"true",
62 "folder":"CBED",
63 "saveProjectedPotential":"true",
64 "saveProbe":"true",
65 "SaveWaveAfterSlice":"true",
66 "savePotential":"true"
67 },
68 "model":{
69 "resolutionCalculation":"2",
70 "centerSample":"false",
71 "slices":"80",
72 "beamTiltY":"0.000000",
73 "beamTiltX":"0.000000",
74 "resolutionXAngstrom":"0.050000",
75 "sliceThicknessAngstrom":"2.039125",
76 "nx":"256",
77 "tds":"false",
78 "centerSlices":"false",
79 "potential":{
80 "DoZInterpolation":"true",
81 "UseQPotentialOffsets":"true",
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82 "periodicZ":"false",
83 "plotVr_r":"false",
84 "periodicXY":"false",
85 "FFT":"true",
86 "atomRadiusAngstrom":"5.0",
87 "saveProjectedPotential":"true",
88 "savePotential":"false",
89 "structureFactors":"1",
90 "3D":"true"
91 },
92 "sliceThicknessCalculation":"2",
93 "tiltBack":"false",
94 "displacementType":"3",
95 "tdsRuns":"1",
96 "resolutionYAngstrom":"0.050000",
97 "ny":"256"
98 },
99 "stem":{

100 "scan_y_pixels":"1",
101 "scan_x_stop":"10.570000",
102 "position":"of",
103 "bottom":"right",
104 "top":"left",
105 "scan":"window",
106 "scan_y_stop":"11.300000",
107 "scan_x_start":"10.570000",
108 "corner":"of",
109 "scan_y_start":"11.300000",
110 "scan_x_pixels":"1"
111 },
112 "structure":{
113 "zOffset":"0",
114 "ncellz":"7",
115 "rotateToZoneAxis":"false",
116 "isBoxed":"false",
117 "structure_filename":"/home/philiipp/projects/slicepp/Examples/cif/au.cif",
118 "crystalTiltY":"0.000000",
119 "crystalTiltX":"0.000000",
120 "yOffset":"0.000000",
121 "zoneAxis":"0,1,0",
122 "ncellx":"5",
123 "ncelly":"5",
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124 "temperatureK":"300.000000",
125 "boxZ":"40",
126 "boxY":"40",
127 "crystalTiltZ":"0.000000",
128 "xOffset":"0.000000",
129 "boxX":"40"
130 }
131 }

6.4 Example cif file of Si3N4

1 data_1001248
2 _chemical_name_systematic 'Silicon nitride - $-beta'
3 _chemical_formula_structural 'Si3 N4'
4 _chemical_formula_sum 'N4 Si3'
5 _publ_section_title
6 ;
7 Modifications structurales du nitrure de silicium en fonction de la
8 temperature
9 ;

10 loop_
11 _publ_author_name
12 'Billy, M'
13 'Labbe, J C'
14 'Selvaraj, A'
15 'Roult, G'
16 _journal_name_full 'Materials Research Bulletin'
17 _journal_coden_ASTM MRBUAC
18 _journal_volume 18
19 _journal_year 1983
20 _journal_page_first 921
21 _journal_page_last 934
22 _cell_length_a 7.6322(6)
23 _cell_length_b 7.6322(6)
24 _cell_length_c 2.9191(4)
25 _cell_angle_alpha 90
26 _cell_angle_beta 90
27 _cell_angle_gamma 120
28 _cell_volume 147.3
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29 _cell_formula_units_Z 2
30 _symmetry_space_group_name_H-M 'P 63/m'
31 _symmetry_Int_Tables_number 176
32 _symmetry_cell_setting hexagonal
33 loop_
34 _symmetry_equiv_pos_as_xyz
35 'x,y,z'
36 '-y,x-y,z'
37 'y-x,-x,z'
38 '-x,-y,1/2+z'
39 'y,y-x,1/2+z'
40 'x-y,x,1/2+z'
41 '-x,-y,-z'
42 'y,y-x,-z'
43 'x-y,x,-z'
44 'x,y,1/2-z'
45 '-y,x-y,1/2-z'
46 'y-x,-x,1/2-z'
47 loop_
48 _atom_type_symbol
49 _atom_type_oxidation_number
50 N3- -3.000
51 Si4+ 4.000
52 loop_
53 _atom_site_label
54 _atom_site_type_symbol
55 _atom_site_symmetry_multiplicity
56 _atom_site_Wyckoff_symbol
57 _atom_site_fract_x
58 _atom_site_fract_y
59 _atom_site_fract_z
60 _atom_site_occupancy
61 _atom_site_attached_hydrogens
62 _atom_site_calc_flag
63 N1 N3- 2 c 0.3333 0.6667 0.25 1. 0 d
64 N2 N3- 6 h 0.3394 0.0362 0.25 1. 0 d
65 Si1 Si4+ 6 h 0.1952 0.7656 0.25 1. 0 d
66 _cod_database_code 1001248

114



6.5 Ground truth images used for the FRC calculation

Figure 6.1: Images used for calculaধng the FRC plots in the manuscript: a) ground truth for phase-
plate TEM and defocus TEM of ribosome at 20 e−/Å

2
. b) Second averaged ribosome image for

average FRC calculaধon at 20 e−/Å
2
c) Second averaged ribosome image for average FRC calcu-

laধon at 5 e−/Å
2
d) Second averaged proteasome image for average FRC calculaধon at 20 e−/Å

2

e) Second averaged proteasome image for average FRC calculaধon at 5 e−/Å
2
f) Second averaged

hemoglobin image for average FRC calculaধon at 20 e−/Å
2
g) Second averaged hemoglobin image

for average FRC calculaধon at 5 e−/Å
2
h) ground truth for phase-plate TEM and defocus TEM at

20 e−/Å
2

115



6.6 Python code to generate a vortex mask

1 def random_probe(N, rs_rad, fs_rad1, fs_rad2, iterations=50):
2 """
3 Return a vortex mask of shape (N,N) with a radius of N*rs_rad in real space
4 and N * fs_rad1 outer radius and N * fs_rad2 inner radius in Fourier space.
5 """
6 def sector_mask(shape, centre, radius, angle_range):
7 """
8 Return a boolean mask for a circular sector. The start/stop angles in
9 `angle_range` should be given in clockwise order.

10 """
11
12 x, y = np.ogrid[:shape[0], :shape[1]]
13 cx, cy = centre
14 tmin, tmax = np.deg2rad(angle_range)
15
16 # ensure stop angle > start angle
17 if tmax < tmin:
18 tmax += 2 * np.pi
19
20 # convert cartesian --> polar coordinates
21 r2 = (x - cx) * (x - cx) + (y - cy) * (y - cy)
22 theta = np.arctan2(x - cx, y - cy) - tmin
23
24 # wrap angles between 0 and 2*pi
25 theta %= (2 * np.pi)
26
27 # circular mask
28 circmask = r2 <= radius * radius
29
30 # print 'radius - ', radius
31
32 # angular mask
33 anglemask = theta < (tmax - tmin)
34
35 return circmask * anglemask
36 sx = rs_rad
37 rs_mask = sector_mask((N, N), (N / 2, N / 2), rs_rad, (0, 360)).astype(np.float)
38 # rs_mask = nd.gaussian_filter(rs_mask.astype(np.float),10)
39 n = norm(rs_mask, 1)
40 rs_mask = rs_mask / n
41 fs_mask1 = sector_mask((N, N), (N / 2, N / 2), fs_rad1, (0, 360)).astype(np.float)
42 fs_mask2 = sector_mask((N, N), (N / 2, N / 2), fs_rad2, (0, 360)).astype(np.float)
43 fs_mask3 = np.logical_not(sector_mask((N, N), (N / 2, N / 2), fs_rad2, (0, 360)))
44 # riplot(fs_mask3) + + 3*fs_mask2.astype(np.int)
45 fs_mask = (fs_mask1.astype(np.float)) * fs_mask3.astype(np.float)
46 fs_mask[N / 2 - s:N / 2 + s, :] = 0
47 fs_mask[: , N / 2 - s:N / 2 + s] = 0
48 fs_mask = fs_mask / norm(fs_mask, 1)
49 sh = fs_mask.shape
50
51 fs_mask = fftshift(fs_mask)
52
53 fac = 1
54 phase = 2 * np.pi * zoom(np.random.uniform(size=(N / fac, N / fac)), fac)
55 psi_f = fftshift(fs_mask * np.exp(2j * phase))
56
57 psi_f = ifftshift(psi_f)
58 it = iterations
59 for i in range(it):
60
61 psi = fftshift(ifft2(psi_f, norm='ortho'))
62
63 psir = psi.real
64 psii = psi.imag
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65
66 psi = rs_mask * (psir + 1j * psii) # np.exp(1j*np.angle(psi))#(psir + 1j* psii)
67 psi = psi / norm(psi)
68
69
70 r = int(rs_rad * 1.1)
71
72 psi_f = fft2(ifftshift(psi), norm='ortho')
73 psi_fangle = np.angle(psi_f)
74 psi_f = fs_mask * np.exp(1j * psi_fangle)
75 psi_f = psi_f / norm(psi_f)
76 psi = fftshift(fft2(psi_f, norm='ortho'))
77
78 return np.real(psi).astype(np.float32), np.imag(psi).astype(np.float32)

6.7 Data preprocessing code

1 import json
2 import math as m
3 import time
4 import datetime
5 import mrcfile
6 import numpy as np
7 import pytiff
8 from astropy.convolution import Gaussian2DKernel, interpolate_replace_nans
9 from numpy.fft import ifft2, fftshift

10 from numpy.linalg import norm
11 from si_prefix import si_format
12 from scipy import ndimage as ni
13
14 import h5rw as rw
15 import plot as io
16 import skpr.util as u
17 from skpr.simulation import probe
18 import matplotlib.pyplot as plt
19 from scipy.interpolate import interp1d
20 import os
21 import dask.array as da
22 from dask import compute, delayed
23 import dask.threaded
24 import multiprocessing
25 import h5py
26
27
28 class DataPreparation:
29 def __init__(self, path='./', save_path='./', name='R4_00009', mask_file='./Ref12bit_pxmask.tif', \
30 reference_file='./Ref12bit_reference.mrc',\
31 q_max_rel=1.1, data_size=None, exclude_indices=[], \
32 binning_factor=1, min_fraction_valid=0.5,\
33 interpolate_dead_pixels=True, binary_mask_file=None,\
34 save_suffix='processed', fast_axis=1,\
35 save_hdf5=True, save_matlab=False,\
36 experiment_geometry_entry='auto',\
37 experiment_geometry=None, theta=0, select_area=False,
38 selected_area_start=[0, 0],\
39 selected_area_size=64, file_extension='.nxs',\
40 data_entry='/entry/instrument/detector/data',\
41 mirror=[1, 1], defocus_auto=True, \
42 mask_from_varmean=False, varmean_tolerance=0.1,\
43 dp_centering_method='linear', metadata_file=None,\
44 do_plot=True, blur_stem=0, manual_data_selection=False,\
45 clip_interactive_data=True, cpu_count=None,\
46 gap_mask_file=None, vacuum_measurements=None):
47 self.manual_data_selection = manual_data_selection
48 self.blur_stem = blur_stem
49 self.path = path
50 self.save_path = save_path
51 self.name = name
52 self.mask_file = mask_file
53 self.gap_mask_file = gap_mask_file
54 self.reference_file = reference_file
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55 self.q_max_rel = q_max_rel
56 self.exclude_indices = exclude_indices
57 self.binning_factor = binning_factor
58 self.min_fraction_valid = min_fraction_valid
59 self.interpolate_dead_pixels = interpolate_dead_pixels
60 self.binary_mask_file = binary_mask_file
61 self.save_suffix = save_suffix
62 self.fast_axis = fast_axis
63 self.save_hdf5 = save_hdf5
64 self.save_matlab = save_matlab
65 self.experiment_geometry_entry = experiment_geometry_entry
66 self.experiment_geometry = experiment_geometry
67 self.theta = theta
68 self.select_area = select_area
69 self.selected_area_start = selected_area_start
70 self.selected_area_size = selected_area_size
71 self.file_extension = file_extension
72 self.data_entry = data_entry
73 self.mirror = mirror
74 self.defocus_auto = defocus_auto
75 self.mask_from_varmean = mask_from_varmean
76 self.varmean_tol = varmean_tolerance
77 self.data_size = data_size
78 self.metadata_file = metadata_file
79 self.do_plot = do_plot
80 self.clip_interactive_data = clip_interactive_data
81 self.cpu_count = multiprocessing.cpu_count() if cpu_count is None else cpu_count
82 self.vacuum_measurements = vacuum_measurements
83
84 self.radius = np.array([250])
85 self.radius_aperture = np.array([250])
86 self.radius_aperture_inner = np.array([250])
87 self.c1 = np.array([0, 0, 0])
88 self.c2 = np.array([0, 0, 0])
89 self.c3 = np.array([0, 0, 0])
90 self.pos1 = np.array([0, 0, 0])
91 self.pos2 = np.array([0, 0, 0])
92 self.dp_centering_method = dp_centering_method
93
94 self.valid_mask = None
95 self.bin_mask_positions = None
96 self.data = None
97 self.pos = None
98
99 def gap_mask(self, ms):

100 gm = np.ones(ms, dtype=np.float32)
101 b = 3
102 gm[ms[0] / 2 - b:ms[0] / 2 + b, :] = 0
103 gm[:, ms[1] / 2 - b:ms[1] / 2 + b] = 0
104 gm[:, ms[1] / 2 - 256 - b - b:ms[1] / 2 - 256 - b + b] = 0
105 gm[:, ms[1] / 2 + 256 + b - b:ms[1] / 2 + 256 + b + b] = 0
106 gm[:, ms[1] / 2 - 512 - 3 * b - b:ms[1] / 2 - 512 - 3 * b + b] = 0
107 gm[:, ms[1] / 2 + 512 + 3 * b - b:ms[1] / 2 + 512 + 3 * b + b] = 0
108 return gm
109
110 def load_binary_position_mask(self):
111 if self.binary_mask_file is not None:
112 print('Loading binary position mask ...')
113 with pytiff.Tiff(self.binary_mask_file) as handle:
114 im = np.array(handle) * -1
115 bin_mask_positions = im.astype(np.bool)
116 if self.do_plot:
117 io.plot(bin_mask_positions.astype(np.int), 'binary position mask')
118 else:
119 bin_mask_positions = np.ones((self.stepy, self.stepx)).astype(np.bool)
120 # bin_mask_positions = np.transpose(bin_mask_positions)
121 print('Binary position mask size :', bin_mask_positions.shape)
122 print('Binary position mask entries: %d' % bin_mask_positions.sum())
123 return bin_mask_positions
124
125 def load_hot_pixel_mask(self):
126 s = self.data.shape
127 if self.mask_file is not None:
128 print('Loading hot pixel mask ...')
129 with pytiff.Tiff(self.mask_file) as handle:
130 im = np.abs(np.array(handle))
131 # print(im.dtype)
132 # if self.do_plot:
133 # io.plot(im, 'hot pixel mask file')
134 mask = (1 - im / im.max()).astype(np.int8)
135 if self.do_plot:
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136 io.plot(mask, 'hot pixel mask')
137 mask = mask[self.com[0] - self.rr:self.com[0] + self.rr,\
138 self.com[1] - self.rr:self.com[1] + self.rr].copy()
139 else:
140 mask = np.ones((s[1], s[2]))
141 print(mask.shape, s)
142 return np.broadcast_to(mask[np.newaxis, ...], s)
143
144 def load_gap_mask(self):
145 s = self.data.shape
146 if self.gap_mask_file is not None:
147 print('Loading gap pixel mask ...')
148 with pytiff.Tiff(self.gap_mask_file) as handle:
149 im = np.abs(np.array(handle))
150 # print(im.dtype)
151 # if self.do_plot:
152 # io.plot(im, 'hot pixel mask file')
153 mask = (1 - im / im.max()).astype(np.int8)
154 if self.do_plot:
155 io.plot(mask, 'gap pixel mask')
156 mask = mask[self.com[0] - self.rr:self.com[0] + self.rr,\
157 self.com[1] - self.rr:self.com[1] + self.rr].copy()
158 else:
159 mask = np.ones((s[1], s[2]))
160 return np.broadcast_to(mask[np.newaxis, ...], s)
161
162 def load_correction_factor(self, s):
163 print('Loading correction factors ...')
164 if self.reference_file is not None:
165 filename, file_extension = os.path.splitext(self.reference_file)
166 if file_extension == '.mrc':
167 with mrcfile.open(self.reference_file) as mrc:
168 correction_factor = 1 / mrc.data
169 else:
170 with pytiff.Tiff(self.reference_file) as handle:
171 im = np.array(handle)
172 correction_factor = 1 / im
173 correction_factor = correction_factor[self.com[0] - self.rr:self.com[0]\
174 + self.rr, self.com[1] - self.rr:self.com[1] + self.rr].copy()
175 else:
176 correction_factor = np.ones((s[1], s[2]))
177 return correction_factor
178
179 def prepare_stem_image(self):
180 print('Preparing STEM image ...')
181 s = self.data.shape
182 bf_mask = u.sector_mask((self.M / self.binning_factor, self.M / self.binning_factor),
183 (self.M2 / self.binning_factor, self.M2 / self.binning_factor),
184 self.radius_aperture_inner / self.binning_factor, (0, 360))
185 df_mask = np.logical_not(bf_mask)
186 data_split = np.array_split(self.data, self.cpu_count, 0)
187 bf_stem_list = [delayed(lambda x, y: np.sum(x * y, (1, 2)))(x, bf_mask) for x in data_split]
188 l = compute(*bf_stem_list, scheduler='threads')
189 bf_stem_intensities = np.concatenate(l, 0)
190 print('bf_stem_intensities.shape', bf_stem_intensities.shape)
191 df_stem_list = [delayed(lambda x, y: np.sum(x * y, (1, 2)))(x, df_mask) for x in data_split]
192 l = compute(*df_stem_list, scheduler='threads')
193 df_stem_intensities = np.concatenate(l, 0)
194 print('df_stem_intensities.shape', bf_stem_intensities.shape)
195 # intensities = np.sum(self.data * beam_mask_aperture, (1, 2))
196
197 if self.do_plot:
198 num = np.linspace(0, len(bf_stem_intensities) - 1, len(bf_stem_intensities), endpoint=True)
199 f, a = plt.subplots(figsize=(8, 20))
200 a.scatter(num, bf_stem_intensities, s=1, marker='x')
201 ss = '%s%s_%s_intensities' % (self.save_path, self.name, self.save_suffix)
202 f.savefig(ss + '.png', dpi=600)
203 plt.show()
204
205 if self.binary_mask_file is None:
206 BF_STEM = np.ones((self.stepy, self.stepx)).astype(np.float32) * np.mean(bf_stem_intensities)
207 BF_STEM.flat[:len(bf_stem_intensities)] = bf_stem_intensities.flat
208
209 DF_STEM = np.ones((self.stepy, self.stepx)).astype(np.float32) * np.mean(df_stem_intensities)
210 DF_STEM.flat[:len(df_stem_intensities)] = df_stem_intensities.flat
211 else:
212 from scipy.ndimage.filters import gaussian_filter
213
214 ind = np.linspace(0, s[0], endpoint=False, num=s[0]).astype(np.int)
215
216 indices = np.zeros((self.stepy, self.stepx)).astype(np.int)
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217 indices[self.bin_mask_positions] = ind
218 # io.plot(indices,'indices')
219 BF_STEM = np.zeros((self.stepy, self.stepx)).astype(np.float32)
220 BF_STEM[:] = np.mean(bf_stem_intensities)
221 BF_STEM[self.bin_mask_positions] = bf_stem_intensities
222
223 if self.blur_stem > 0:
224 BF_STEM = gaussian_filter(BF_STEM, sigma=self.blur_stem)
225
226 DF_STEM = np.zeros((self.stepy, self.stepx)).astype(np.float32)
227 DF_STEM[:] = np.mean(df_stem_intensities)
228 DF_STEM[self.bin_mask_positions] = df_stem_intensities
229 if self.blur_stem > 0:
230 DF_STEM = gaussian_filter(DF_STEM, sigma=self.blur_stem)
231
232 unit = BF_STEM.shape[0] // 10 * self.stepsize
233 sc = (BF_STEM.shape[0] // 10, '{}m'.format(si_format(unit, precision=2)))
234
235 io.plot(BF_STEM, 'BF-STEM', savePath='%s%s_%s_BF-STEM' % (self.save_path, self.name, self.save_suffix),
236 show=self.do_plot, scale=sc)
237 io.plot(DF_STEM, 'DF-STEM', savePath='%s%s_%s_DF-STEM' % (self.save_path, self.name, self.save_suffix),
238 show=self.do_plot, scale=sc)
239
240 def determine_center_rotation_alpha(self):
241 if self.metadata_file is None:
242 print('Determine center, alpha, and rotation angle ...')
243
244 r = self.data.shape[1] / 2 * 0.8
245
246 action_sequence = [
247 ('Please match the radius of the diffraction disc CONTROL',\
248 'control', 'r', self.radius),
249 ('Please match the outer rim radius of the aperture CONTROL',\
250 'control', 'r', self.radius_aperture),
251 ('Please match the inner rim radius of the aperture CONTROL',\
252 'control', 'r',
253 self.radius_aperture_inner),
254 ('Now determine the center of the disc with your cursor ENTER',\
255 'enter', 'pos', self.c1),
256 ('Closing', 'close', 'pos', self.pos2)
257 ]
258 show_it = self.data[[0]]
259 show_it *= self.hot_pixel_mask[0]
260 show_it = np.clip(show_it, 0, 5)
261 cursor = u.InteractiveDataPrep(show_it, r, action_sequence)
262
263 action_sequence = [
264 (
265 'Now determine the center again. ENTER', 'enter', 'pos', self.c2),
266 ('Closing', 'close', 'pos', self.pos2)
267 ]
268 show_it = self.data[[self.stepx - 1]]
269 show_it *= self.hot_pixel_mask[0]
270 show_it = np.clip(show_it, 0, 5)
271 cursor = u.InteractiveDataPrep(show_it, self.radius, action_sequence)
272
273 action_sequence = [
274 (
275 'Now determine the center again. ENTER', 'enter', 'pos', self.c3),
276 ('Closing', 'close', 'pos', self.pos2)
277 ]
278 show_it = self.data[[(self.stepy - 1) * self.stepx]]
279 show_it *= self.hot_pixel_mask[0]
280 show_it = np.clip(show_it, 0, 5)
281 cursor = u.InteractiveDataPrep(show_it, self.radius, action_sequence)
282 else:
283 print('Loading centers and radius from metadata file %s' % self.metadata_file)
284 bin = rw.h5read(self.metadata_file, 'binning_factor').values()[0]
285 self.radius = rw.h5read(self.metadata_file, 'r').values()[0] * bin
286 self.radius_aperture = rw.h5read(self.metadata_file, 'r_aperture').values()[0] * bin
287 self.radius_aperture_inner = \
288 rw.h5read(self.metadata_file, 'r_aperture_inner').values()[0] * bin
289
290 print('r= {}'.format(self.radius))
291 print('r_aperture = {}'.format(self.radius_aperture))
292 print('r_inner= {}'.format(self.radius_aperture_inner))
293
294 def crop_data(self):
295 M = self.M
296 M2 = self.M2
297 s = self.data.shape
298 ds = (s[0], M, M)
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299
300 def crop_data1(d, c, corr_fac, ds):
301 cropped_data = np.zeros((d.shape[0], M, M), dtype=np.float32)
302 for i in range(d.shape[0]):
303 c0s = c[i, 0] - M2 if (c[i, 0] - M2) > 0 else 0
304 c1s = c[i, 1] - M2 if (c[i, 1] - M2) > 0 else 0
305 c0e = c[i, 0] + M2 if (c[i, 0] + M2) < s[1] else s[1]
306 c1e = c[i, 1] + M2 if (c[i, 1] + M2) < s[2] else s[2]
307
308 c0size0 = M2 if (c[i, 0] - M2) > 0 else c[i, 0]
309 c1size0 = M2 if (c[i, 1] - M2) > 0 else c[i, 1]
310 c0size1 = M2 if (c[i, 0] + M2) < s[1] else s[1] - c[i, 0]
311 c1size1 = M2 if (c[i, 1] + M2) < s[2] else s[2] - c[i, 1]
312
313 cropped_correction_factor = corr_fac[i, c0s:c0e, c1s:c1e]
314 crop = d[i, c0s:c0e, c1s:c1e]
315
316 cropped_data[i, ds[1] / 2 - c0size0:ds[1] / 2 + c0size1,
317 ds[2] / 2 - c1size0:ds[2] / 2 + c1size1] =\
318 crop.astype(np.float32) * cropped_correction_factor
319
320 return cropped_data
321
322 print('Cropping data ...')
323 data_split = np.array_split(self.data, self.cpu_count, 0)
324 c_split = np.array_split(self.c.astype(np.int), self.cpu_count, 0)
325 bc_corrfac = np.broadcast_to(self.correction_factor[np.newaxis, ...], self.data.shape)
326 bc_corrfac_split = np.array_split(bc_corrfac, self.cpu_count, 0)
327 crop_data_compute_list = [delayed(crop_data1)(d, c, corr_fac, ds) for d, c, corr_fac in
328 zip(data_split, c_split, bc_corrfac_split)]
329 cropped_data = compute(*crop_data_compute_list, scheduler='threads')
330
331 self.correction_factor = None
332 self.data = cropped_data
333
334 def get_cropped_valid_mask(self):
335 if self.mask_from_varmean:
336 print('Taking valid mask from var and mean of data')
337 v = np.var(self.data, 0)
338 m = np.mean(self.data, 0)
339 vm = v / m
340 io.plot(vm, 'var/mean')
341 mask = np.logical_and(vm > 1 - self.varmean_tol, vm < 1 + self.varmean_tol)
342 io.plot(mask.astype(np.float32),
343
344 self.valid_mask = np.broadcast_to(mask, self.data.shape)
345 self.valid_mask = np.array_split(self.valid_mask, self.cpu_count, 0)
346 else:
347 print('Taking valid mask from hot pixel mask')
348 M = self.M
349 M2 = self.M2
350 s = self.hot_pixel_mask.shape
351 ds = (s[0], M, M)
352
353 def crop_mask(vm, c, ds):
354 cvm = np.zeros((vm.shape[0], M, M), dtype=np.int8)
355 for i in range(vm.shape[0]):
356 c0s = c[i, 0] - M2 if (c[i, 0] - M2) > 0 else 0
357 c1s = c[i, 1] - M2 if (c[i, 1] - M2) > 0 else 0
358 c0e = c[i, 0] + M2 if (c[i, 0] + M2) < s[1] else s[1]
359 c1e = c[i, 1] + M2 if (c[i, 1] + M2) < s[2] else s[2]
360
361 c0size0 = M2 if (c[i, 0] - M2) > 0 else c[i, 0]
362 c1size0 = M2 if (c[i, 1] - M2) > 0 else c[i, 1]
363 c0size1 = M2 if (c[i, 0] + M2) < s[1] else s[1] - c[i, 0]
364 c1size1 = M2 if (c[i, 1] + M2) < s[2] else s[2] - c[i, 1]
365
366 crop = vm[i, c0s:c0e, c1s:c1e]
367 cvm[i, ds[1] / 2 - c0size0:ds[1] / 2 + c0size1,
368 ds[2] / 2 - c1size0:ds[2] / 2 + c1size1] = crop
369
370 return cvm
371
372 print('Cropping mask ...')
373 hot_pixel_mask_split = np.array_split(self.hot_pixel_mask, self.cpu_count, 0)
374 gap_mask_split = np.array_split(self.gap_mask, self.cpu_count, 0)
375 c_split = np.array_split(self.c.astype(np.int), self.cpu_count, 0)
376 crop_mask_compute_list = [delayed(crop_mask)(d, c, ds) for d, c in
377 zip(hot_pixel_mask_split, c_split)]
378 cropped_valid_mask = compute(*crop_mask_compute_list, scheduler='threads')
379
380 crop_gap_mask_compute_list = [delayed(crop_mask)(d, c, ds) for d, c in
381 zip(gap_mask_split, c_split)]
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382 cropped_gap_mask = compute(*crop_gap_mask_compute_list, scheduler='threads')
383 self.valid_mask = cropped_valid_mask
384 self.gap_mask = cropped_gap_mask
385
386 def bin_data(self):
387 if self.binning_factor > 0:
388 print('Binning data by %d ...' % self.binning_factor)
389
390 def mul_rebin(x, y):
391 d = x * y
392 ret = u.rebin(d, (1, self.binning_factor, self.binning_factor), mode='sum')
393 return ret
394
395 data_split = self.data
396 vm_split = self.valid_mask
397 binned_data_compute_list = [delayed(mul_rebin)(*z) for
398 z in zip(data_split, vm_split)]
399 res = compute(*binned_data_compute_list, scheduler='threads')
400 self.data = res
401 if self.do_plot:
402 io.plot(self.data[0][0], 'scaled binned data')
403
404 def bin_mask(self):
405 if self.binning_factor > 0:
406 print('Binning mask by %d ...' % self.binning_factor)
407
408 def q(x):
409 ret = u.rebin(x, (1, self.binning_factor, self.binning_factor), mode='sum') / (
410 self.binning_factor * self.binning_factor)
411 return ret
412
413 vm_split = self.valid_mask
414 valid_mask_rebin_compute_list = [delayed(q)(x.astype(np.float32)) for x in vm_split]
415 self.valid_mask = compute(*valid_mask_rebin_compute_list, scheduler='threads')
416
417 gm_split = self.gap_mask
418 gap_mask_rebin_compute_list = [delayed(q)(x.astype(np.float32)) for x in gm_split]
419 self.gap_mask = compute(*gap_mask_rebin_compute_list, scheduler='threads')
420 if self.do_plot:
421 io.plot(self.valid_mask[0][0], 'valid mask 0 after binning',\
422 savePath=self.save_path + 'binned_mask')
423 io.plot(self.gap_mask[0][0], 'gap mask 0 after binning',\
424 savePath=self.save_path + 'binned_mask')
425
426 def define_rebinned_mask(self):
427 if self.binning_factor > 0:
428 def q1(x, fraction):
429 ret = (x >= fraction).astype(np.float32)
430 return ret
431
432 valid_mask_rebin_compute_list = \
433 [delayed(q1)(x, self.min_fraction_valid) for x in self.valid_mask]
434 self.valid_mask = compute(*valid_mask_rebin_compute_list, scheduler='threads')
435
436 gap_mask_rebin_compute_list = \
437 [delayed(q1)(x, self.min_fraction_valid) for x in self.gap_mask]
438 self.gap_mask = compute(*gap_mask_rebin_compute_list, scheduler='threads')
439
440 # valid_mask_compute_list = \
441 [delayed(lambda x, y: x*y)(vm,gm) for vm,gm in zip(self.valid_mask,self.gap_mask)]
442 # self.valid_mask = np.vstack(compute(*valid_mask_compute_list, scheduler='threads'))
443 self.valid_mask = np.vstack(self.valid_mask)
444
445 if self.do_plot:
446 io.plot(self.valid_mask[0], 'scaled binned mask')
447 print('valid_mask.shape ', self.valid_mask.shape)
448
449 def correct_mask_scaling(self):
450 if self.binning_factor > 0:
451 print('Binning data by %d ...' % self.binning_factor)
452
453 def mul_rebin(x, m):
454 x[m > 0] /= m[m > 0]
455 return x
456
457 binned_data_compute_list = [delayed(mul_rebin)(d.astype(np.float32), v.astype(np.float32)) for
458 d, v in zip(self.data, self.valid_mask)]
459 self.data = np.vstack(compute(*binned_data_compute_list, scheduler='threads'))
460 print('cropped_data.shape ', self.data.shape)
461
462 def generate_valid_mask_nonzero_intensity(self):
463 data_nonzero_mask = self.data > 0
464 self.bvm = self.valid_mask
465 valid_mask_nonzero_intensity = np.logical_and(self.bvm, data_nonzero_mask)
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466 return valid_mask_nonzero_intensity
467
468 def generate_valid_mask_beam_valid(self):
469 beam_mask_aperture = u.sector_mask((self.M / self.binning_factor, self.M / self.binning_factor),
470 (self.M2 / self.binning_factor, self.M2 / self.binning_factor),
471 self.radius_aperture_inner / self.binning_factor, (0, 360))
472 valid_mask_beam_valid = self.valid_mask.copy()
473 self.bmb = np.broadcast_to(beam_mask_aperture[np.newaxis, ...], valid_mask_beam_valid.shape)
474 valid_mask_beam_valid[self.bmb] = 1
475 return valid_mask_beam_valid
476
477 def maybe_interpolate_dead_pixels(self):
478 not_valid_and_inside_brightfield = np.logical_and(np.logical_not(self.valid_mask), self.bmb)
479 if self.interpolate_dead_pixels:
480 print('Interpolating dead pixels...')
481 kernel = Gaussian2DKernel(1)
482
483 self.data[not_valid_and_inside_brightfield] = np.NaN
484 # p = Pool(multiprocessing.cpu_count())
485 # p.map(replace_nans, data)
486 for i, data in enumerate(self.data):
487 self.data[i] = interpolate_replace_nans(data.copy(), kernel)
488
489 self.data = np.nan_to_num(self.data, copy=False)
490 else:
491 self.data[not_valid_and_inside_brightfield] = 0
492
493 def determine_positions(self):
494 print('Creating position array ...')
495 print('stepsize ', self.stepsize)
496 print('dx ', self.dx)
497 if self.experiment_geometry.pixel_stepx is None and self.experiment_geometry.pixel_stepy is None:
498 pixel_step_x = self.stepsize / self.dx
499 pixel_step_y = self.stepsize / self.dx
500 self.pixel_step_x = pixel_step_x
501 self.pixel_step_y = pixel_step_y
502 else:
503 self.pixel_step_x = self.experiment_geometry.pixel_stepx
504 self.pixel_step_y = self.experiment_geometry.pixel_stepy
505
506 print('pixel_step_x :', self.pixel_step_x)
507 print('pixel_step_y :', self.pixel_step_y)
508 s = self.data.shape
509 if self.bin_mask_positions is None:
510 print('Creating raster position array ...')
511 pos = u.advanced_raster_scan(ny=self.stepy, nx=self.stepx, \
512 fast_axis=self.fast_axis, mirror=self.mirror,
513 theta=self.theta,
514 dy=self.pixel_step_y, dx=self.pixel_step_x)
515 pos1 = u.advanced_raster_scan(ny=self.stepy, nx=self.stepx, \
516 fast_axis=self.fast_axis, mirror=self.mirror,
517 theta=self.theta + 2,
518 dy=self.pixel_step_y, dx=self.pixel_step_x)
519 pos2 = u.advanced_raster_scan(ny=self.stepy, nx=self.stepx, \
520 fast_axis=self.fast_axis, mirror=self.mirror,
521 theta=self.theta - 2,
522 dy=self.pixel_step_y, dx=self.pixel_step_x)
523 pos3 = u.advanced_raster_scan(ny=self.stepy, nx=self.stepx, \
524 fast_axis=self.fast_axis, mirror=self.mirror,
525 theta=self.theta + 4,
526 dy=self.pixel_step_y, dx=self.pixel_step_x)
527 pos4 = u.advanced_raster_scan(ny=self.stepy, nx=self.stepx, \
528 fast_axis=self.fast_axis, mirror=self.mirror,
529 theta=self.theta - 4,
530 dy=self.pixel_step_y, dx=self.pixel_step_x)
531 else:
532 print('Creating position array from position mask...')
533 X, Y = np.mgrid[0:self.stepx, 0:self.stepy]
534 X = X.astype(np.float32)
535 Y = Y.astype(np.float32)
536 X *= self.pixel_step_x
537 Y *= self.pixel_step_y
538 x_pos = X[self.bin_mask_positions]
539 y_pos = Y[self.bin_mask_positions]
540 pos = np.zeros((s[0], 2))
541 pos[:, 0] = y_pos
542 pos[:, 1] = x_pos
543
544 mins = np.array([pos[:, 0].min(), pos[:, 1].min()])
545 maxs = np.array([pos[:, 0].max(), pos[:, 1].max()])
546
547 center = mins + (maxs - mins) / 2.0
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548 pos -= center
549
550 theta_rad = self.theta / 180.0 * np.pi
551 R = np.array([[np.cos(theta_rad), -np.sin(theta_rad)],
552 [np.sin(theta_rad), np.cos(theta_rad)]])
553 # rotate counterclockwise by theta
554 pos = pos.dot(R)
555
556 pos1 = pos
557 pos2 = pos
558 pos3 = pos
559 pos4 = pos
560
561 for ind in self.exclude_indices:
562 pos = np.delete(pos, ind, 0)
563 pos1 = np.delete(pos1, ind, 0)
564 pos2 = np.delete(pos2, ind, 0)
565 pos3 = np.delete(pos3, ind, 0)
566 pos4 = np.delete(pos4, ind, 0)
567
568 if self.do_plot:
569 io.scatter_positions2(pos, show=self.do_plot, savePath='%s_pos' % self.name)
570
571 return pos, pos1, pos2, pos3, pos4
572
573 def prepare_initial_probe(self):
574 E = self.E_eV
575 N = self.M / self.binning_factor
576 defocus_nm = self.df * 1e9
577 det_pix = self.dpix
578 alpha_rad = self.alpha_diff
579 dx_angstrom = self.dx * 1e10
580
581 print('Preparing initial probe ...')
582 print('defocus_nm:', defocus_nm)
583 print('dx_angstrom :', dx_angstrom)
584 print('alpha_rad :', alpha_rad)
585 print('defocus_nm:', defocus_nm)
586 print('det_pix :', det_pix)
587
588 probes = []
589 fourier_probes = []
590
591 r, i, fr, fi = probe.focused_probe(E, N, d=dx_angstrom,\
592 ^^Ialpha_rad=alpha_rad, defocus_nm=defocus_nm, det_pix=det_pix,\
593 ^^I C3_um=2.2, C5_mm=0, tx=0, ty=0, Nedge=2, plot=False)
594 pr = (r + 1j * i).astype(np.complex128)
595 fpr = ifft2(fftshift(pr), norm='ortho')
596
597 probes.append(pr)
598 fourier_probes.append(fpr)
599
600 for k in range(5):
601 df = (defocus_nm + (k + 1) * 100)
602 r, i, fr, fi = probe.focused_probe(E, N, d=dx_angstrom, alpha_rad=alpha_rad, defocus_nm=df,
603 ^^I det_pix=det_pix, C3_um=2.2, C5_mm=0, tx=0, ty=0, Nedge=2, plot=False)
604 pr = (r + 1j * i).astype(np.complex128)
605 fpr = ifft2(fftshift(pr), norm='ortho')
606
607 probes.append(pr)
608 fourier_probes.append(fpr)
609
610 df = (defocus_nm - (k + 1) * 100)
611 r, i, fr, fi = probe.focused_probe(E, N, d=dx_angstrom, alpha_rad=alpha_rad, defocus_nm=df,
612 det_pix=det_pix, C3_um=2.2, C5_mm=0, tx=0, ty=0, Nedge=2, plot=False)
613 pr = (r + 1j * i).astype(np.complex128)
614 fpr = ifft2(fftshift(pr), norm='ortho')
615
616 probes.append(pr)
617 fourier_probes.append(fpr)
618 if self.do_plot:
619 io.plotAbsAngle(probes[0], 'probe real space')
620 io.plotAbsAngle(fourier_probes[0], 'probe aperture space')
621
622 return np.array(probes), np.array(fourier_probes)
623
624 def prepare_hdf5_dict(self):
625 ret = u.Param()
626
627 ret.mask = fftshift(self.valid_mask.astype(np.float32), (1, 2))
628 ret.mask_beam_valid = fftshift(self.valid_mask_beam_valid.astype(np.float32), (1, 2))
629 ret.data = fftshift(self.data, (1, 2))
630 ret.alpha = self.alpha
631 ret.alpha_diff = self.alpha_diff
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632 ret.z = self.z
633 ret.E = self.E_eV
634 ret.dpix = self.dpix
635 ret.dx = self.dx
636 ret.theta = 0
637 ret.I_beam = self.beam_intensity
638 ret.r_aperture = self.radius_aperture / self.binning_factor
639 ret.r_aperture_inner = self.radius_aperture_inner / self.binning_factor
640 ret.r = self.radius / self.binning_factor
641 ret.centers = self.c
642 ret.centers_residual = self.c_residual
643 ret.stepsize = self.stepsize
644 ret.stepx = self.stepx
645 ret.stepy = self.stepy
646 ret.pixel_step_y = self.pixel_step_y
647 ret.pixel_step_x = self.pixel_step_x
648 ret.pos = self.pos
649 ret.pos1 = self.pos1
650 ret.pos2 = self.pos2
651 ret.pos3 = self.pos3
652 ret.pos4 = self.pos4
653 ret.probe = self.pr.astype(np.complex64)
654 ret.probe_fourier = self.fpr.astype(np.complex64)
655 ret.grid_positions = self.grid_positions
656 ret.binning_factor = self.binning_factor
657 if self.vacuum_measurements is not None:
658 ret.vacuum_mean = self.vacuum_mean
659
660 return ret
661
662 def prepare_mat_dict(self):
663 ret = u.Param()
664
665 ret.mask = self.valid_mask.astype(np.float32)
666 ret.mask_beam_valid = self.valid_mask_beam_valid.astype(np.float32)
667 ret.data = self.data, (1, 2)
668 #data = None
669 ret.alpha = self.alpha
670 ret.alpha_diff = self.alpha_diff
671 ret.z = self.z
672 ret.E = self.E_eV
673 ret.dpix = self.dpix
674 ret.dx = self.dx
675 ret.theta = 0
676 ret.I_beam = self.beam_intensity
677 ret.r_aperture = self.radius_aperture / self.binning_factor
678 ret.r_aperture_inner = self.radius_aperture_inner / self.binning_factor
679 ret.r = self.radius / self.binning_factor
680 ret.centers = self.c
681 ret.centers_residual = self.c_residual
682 ret.stepsize = self.stepsize
683 ret.stepx = self.stepx
684 ret.stepy = self.stepy
685 ret.pixel_step_y = self.pixel_step_y
686 ret.pixel_step_x = self.pixel_step_x
687 ret.pos = self.pos
688 ret.pos1 = self.pos1
689 ret.pos2 = self.pos2
690 ret.pos3 = self.pos3
691 ret.pos4 = self.pos4
692 ret.probe_real = self.pr.real.astype(np.float32)
693 ret.probe_imag = self.pr.imag.astype(np.float32)
694 ret.probe_fourier_real = self.fpr.real.astype(np.float32)
695 ret.probe_fourier_imag = self.fpr.imag.astype(np.float32)
696 ret.grid_positions = self.grid_positions
697 ret.binning_factor = self.binning_factor
698 if self.vacuum_measurements is not None:
699 ret.vacuum_mean = self.vacuum_mean
700 return ret
701
702 def determine_dp_centers(self):
703 if self.metadata_file is None:
704 if self.dp_centering_method == 'linear':
705 ctr_0 = np.array([self.c1[1], self.c1[2]], dtype=np.float32)
706 ctr_end_col = np.array([self.c2[1], self.c2[2]], dtype=np.float32)
707 ctr_end_row = np.array([self.c3[1], self.c3[2]], dtype=np.float32)
708 dp_shift_per_column = (ctr_end_col - ctr_0) / (self.stepx - 1)
709 dp_shift_per_row = (ctr_end_row - ctr_0) / (self.stepy - 1)
710 print('ctr_0', ctr_0)
711 print('ctr_end_col', ctr_end_col)
712 print('ctr_end_row', ctr_end_row)
713 print('dp_shift_per_column', dp_shift_per_column)
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714 print('dp_shift_per_row ', dp_shift_per_row)
715
716 ctr = np.zeros(((self.stepy * self.stepx), 2))
717 ctr_res = np.zeros(((self.stepy * self.stepx), 2))
718
719 for y in range(self.stepy):
720 for x in range(self.stepx):
721 ctr[y * self.stepx + x] =\
722 np.around(ctr_0 + x * dp_shift_per_column + y * dp_shift_per_row)
723 ctr_res[y * self.stepx + x] = (ctr_0 + x * dp_shift_per_column +\
724 y * dp_shift_per_row) - ctr[
725 y * self.stepx + x]
726
727 # fx = interp1d([c1[0], c2[0]], [self.c1[1], self.c2[1]],
728 # fill_value='extrapolate')
729 # fy = interp1d([c1[1], c2[1]], [self.c1[2], self.c2[2]],
730 # fill_value='extrapolate')
731 #
732 # # x = np.linspace(self.c1[1], self.c2[1], endpoint=True, num=self.stepx)
733 # # y = np.linspace(self.c1[2], self.c2[2], endpoint=True, num=self.stepy)
734 # x = fx(np.arange(self.stepx))
735 # y = fy(np.arange(self.stepy))
736 # xr = np.round(x)
737 # yr = np.round(y)
738 # cxx_int, cyy_int = np.meshgrid(xr, yr)
739 # cxx, cyy = np.meshgrid(x, y)
740 # cyy_residual = cyy - cyy_int
741 # cxx_residual = cxx - cxx_int
742 #
743 # # io.plot(cxx_int,'cxx_int')
744 # # io.plot(cyy_int, 'cyy_int')
745 #
746 # cy = cyy_int[self.bin_mask_positions]
747 # cx = cxx_int[self.bin_mask_positions]
748 #
749 # cy_residual = cyy_residual[self.bin_mask_positions]
750 # cx_residual = cxx_residual[self.bin_mask_positions]
751
752 print('centers', ctr)
753
754 self.c = ctr
755 self.c_residual = ctr_res
756 self.grid_positions = np.stack([self.xpos, self.ypos], -1)
757 elif self.dp_centering_method == 'registration':
758 pass
759 else:
760 self.c = rw.h5read(self.metadata_file, 'centers').values()[0]
761 self.c_residual = rw.h5read(self.metadata_file, 'centers_residual').values()[0]
762 self.grid_positions = rw.h5read(self.metadata_file, 'grid_positions').values()[0]
763
764 def set_geometry_parameters(self):
765 if self.experiment_geometry_entry == 'auto':
766 print('Loading experiment geometry from metadata...')
767 json_filename = self.path + self.name + '.json'
768 json_dict = json.load(open(json_filename))
769 post_magnification = 1.58
770 z = json_dict['Projection']['CameraLength']
771 if z == 1.0:
772 z = 1.005
773 elif z == 0.73:
774 z = 0.707
775 elif z == 0.52:
776 z = 0.509
777 self.z = z * post_magnification
778 self.E_eV = json_dict['Gun']['HTValue']
779 self.lam = u.lam(self.E_eV)
780 self.dpix = 55e-6
781
782 self.stepy = json_dict['Scanning']['Parameters']['Frame (Y)']['ROI len']
783 self.stepx = json_dict['Scanning']['Parameters']['Line (X)']['ROI len']
784 self.pointsx = json_dict['Scanning']['Parameters']['Line (X)']['Pts']
785 self.pointsy = json_dict['Scanning']['Parameters']['Line (X)']['Pts']
786 self.stepsize = json_dict['Illumination']['STEMSize'] / self.pointsy * 1e-9
787 self.df = json_dict['Projection']['Defocus']
788 else:
789 print('Manual experiment geometry from metadata...')
790 if self.experiment_geometry.alpha_diff is not None:
791 self.alpha_diff = self.experiment_geometry.alpha_diff
792 else:
793 self.z = self.experiment_geometry.z
794 self.E_eV = self.experiment_geometry.E_eV
795 self.lam = u.lam(self.E_eV)
796 self.dpix = self.experiment_geometry.dpix
797
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798 self.stepy = self.experiment_geometry.stepy
799 self.stepx = self.experiment_geometry.stepx
800 self.stepsize = self.experiment_geometry.stepsize
801 self.df = self.experiment_geometry.df
802
803 if not self.defocus_auto:
804 self.df = self.experiment_geometry.df
805
806 self.dpix *= self.binning_factor
807
808 def print_timestamp(self):
809 ts = time.time()
810 st = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')
811 print(st)
812
813 def prepare_dataset(self):
814 r"""Prepares data for reconstruction
815
816 Args:
817 path (string): path to the data file
818 name (string): name of the h5 file and the json file
819 mask_file (string): path and name of the hot pixel mask
820 step_size (float): real space step size
821 q_max_rel (float): maximum scattering angle relative to\
822 diffraction limit angle (default: 1.1)
823 """
824
825 h5_filename = self.path + self.name + self.file_extension
826
827 self.print_timestamp()
828 self.set_geometry_parameters()
829
830 print('Loading data from file %s' % h5_filename)
831 f = h5py.File(h5_filename, 'r')
832 # self.data = rw.h5read(h5_filename, self.data_entry).values()[0]
833
834 d0 = f[self.data_entry]
835 d0s = np.array(d0.shape)
836 d0s[0] = d0s[0] // 20
837 print('d0s,', tuple(d0s))
838 self.data = da.from_array(d0, chunks=tuple(d0s))
839 s = np.array(self.data.shape)
840 print('data type', self.data.dtype)
841 self.print_timestamp()
842 print('initial dataset size = ', s)
843 print('Data loaded.')
844 self.bin_mask_positions = self.load_binary_position_mask()
845
846 if self.manual_data_selection:
847 dsum = da.sum(self.data[100:200], 0).compute()
848
849 smallest_side = np.min(s[1:] // 2)
850 print(smallest_side)
851 cm = ni.center_of_mass(dsum)
852 self.com = com = np.array(cm).astype(np.int)
853 self.rr = rr = np.min(np.array([com[0], com[1],\
854 s[1] - com[0], s[2] - com[1], smallest_side]))
855 print('com,radius = ', com, rr)
856
857 dcrop = self.data[:, com[0] - rr:com[0] + rr, com[1] - rr:com[1] + rr].compute()
858 self.data = dcrop
859 dcrop1 = da.from_array(dcrop, chunks=dcrop.shape)
860 dcsum = da.sum(dcrop1, (1, 2)).compute()
861
862 def get_com(imgs):
863 ret = np.ones((imgs.shape[0]))
864 for i, dd in enumerate(imgs):
865 comx1, comy1 = ni.center_of_mass(dd)
866 ret[i] = comy1
867 return ret
868
869 dcrop_split = np.array_split(dcrop, self.cpu_count, 0)
870 com_compute_list = [delayed(get_com)(d) for d in dcrop_split]
871 comy = np.hstack(compute(*com_compute_list, scheduler='threads'))
872 print('comy.shape ', comy.shape)
873 global f
874 f, a = plt.subplots(figsize=(20, 8))
875 a.scatter(np.arange(len(comy)), comy, s=1)
876
877 idx = np.array([0, 0])
878
879 def onclick(event):
880 global f
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881 # print(event.button)
882 if event.button == 3:
883 ix, iy = event.xdata, event.ydata
884
885 idx[0] = ix
886
887 f.canvas.mpl_disconnect(cid)
888 plt.close(f)
889
890 cid = f.canvas.mpl_connect('button_press_event', onclick)
891
892 plt.show()
893 idx[1] = idx[0] + (self.stepx * self.stepy)
894 print('start, end = ', idx)
895
896 self.data = self.data[idx[0]:idx[1], ...]
897 dcsum = dcsum[idx[0]:idx[1]]
898 dcsum1 = dcsum.reshape((self.stepy, self.stepx))
899
900 s = np.array(self.data.shape)
901 print('loaded dataset size = ', s)
902 x = u.MaskPrep(dcsum1, np.ones_like(dcsum1))
903 self.bin_mask_positions = x.current_mask.astype(np.bool)
904 if self.do_plot:
905 io.plot(self.bin_mask_positions.astype(np.int), 'valid positions')
906 else:
907 self.data = self.data.compute()
908
909 if self.select_area:
910 size = self.selected_area_size
911 print('Selecting an area of size %d x %d ...' % (size, size))
912 st = self.selected_area_start
913 print('reshape to ', (self.stepy, self.stepx, s[1], s[2]))
914 # d1 = np.reshape(self.data, (self.stepy, self.stepx, s[1], s[2]))
915 d1 = self.data.reshape((self.stepy, self.stepx, s[1], s[2]))
916
917 self.data = d1[st[0]:st[0] + size, st[1]:st[1] + size, ...]
918 self.bin_mask_positions = self.bin_mask_positions[st[0]:st[0] + size, st[1]:st[1] + size]
919
920 ds = self.data.shape
921 self.data = self.data.reshape((ds[0] * ds[1], ds[2], ds[3]))
922 s = np.array(self.data.shape)
923 print('New data shape after selecting area: ', s)
924 self.stepx = self.stepy = size
925
926 x = np.linspace(0, self.stepx, endpoint=False, num=self.stepx).astype(np.int)
927 y = np.linspace(0, self.stepy, endpoint=False, num=self.stepy).astype(np.int)
928 yy, xx = np.meshgrid(x, y)
929 self.xpos = xx[self.bin_mask_positions]
930 self.ypos = yy[self.bin_mask_positions]
931
932 bmflat = self.bin_mask_positions.flatten()
933 self.data = self.data[bmflat]
934 self.bin_mask_positions_flat = bmflat
935
936 s = np.array(self.data.shape)
937
938 print('dataset size after excluding indices = ', s)
939 self.hot_pixel_mask = self.load_hot_pixel_mask()
940 self.gap_mask = self.load_gap_mask()
941
942 self.determine_center_rotation_alpha()
943
944 self.M_diff = int(self.radius * 2)
945
946 if self.data_size is None:
947 self.M = int(self.q_max_rel * self.radius * 2)
948 else:
949 self.M = self.data_size
950
951 self.M = self.M if self.M % (self.binning_factor * 2) == 0 else \
952 self.M - (self.M % (self.binning_factor * 2))
953 self.M2 = self.M / 2
954
955 print(' M = {}'.format(self.M))
956 print('after considering binning: M = {}'.format(self.M))
957
958 if self.experiment_geometry.alpha_diff is not None:
959 self.z = (self.radius * self.dpix /\
960 self.binning_factor / np.tan(self.alpha_diff))[0]
961 self.alpha = np.arctan(self.M / self.binning_factor / 2 * self.dpix / self.z)
962 else:
963 self.alpha_diff = np.arctan(self.M_diff\
964 / self.binning_factor / 2 * self.dpix / self.z)
965 self.alpha =\

128



966 np.arctan(self.M / self.binning_factor / 2 * self.dpix / self.z)
967
968 self.dx = u.real_space_resolution(self.E_eV, self.z,\
969 self.dpix, self.M / self.binning_factor)
970 self.dx_diff = u.real_space_resolution(self.E_eV,\
971 self.z, self.dpix, self.M_diff / self.binning_factor)
972
973 self.pr, self.fpr = self.prepare_initial_probe()
974
975 print('z= {}m'.format(si_format(self.z)))
976 print('E= {}eV'.format(si_format(self.E_eV)))
977 print('lam= {}m'.format(si_format(self.lam, precision=2)))
978 print('det_pix= {}m'.format(si_format(self.dpix, precision=2)))
979 print('dx = {}m'.format(si_format(self.dx, precision=2)))
980 print('dx BF limit= {}m'.format(si_format(self.dx_diff, precision=2)))
981 print('alpha= {}rad'.format(si_format(self.alpha, precision=2)))
982 print('alpha BF limit = {}rad'.format(si_format(self.alpha_diff, precision=2)))
983
984 self.determine_dp_centers()
985
986 self.correction_factor = self.load_correction_factor(s)
987
988 self.get_cropped_valid_mask()
989
990 self.crop_data()
991 self.bin_data()
992
993 self.bin_mask()
994
995 self.correct_mask_scaling()
996 self.define_rebinned_mask()
997
998 if self.do_plot:
999 print(self.valid_mask.shape)

1000 io.plot(self.valid_mask[0].astype(np.float32), 'valid_mask[0]')
1001
1002 self.prepare_stem_image()
1003
1004 # self.valid_mask_nonzero_intensity = self.generate_valid_mask_nonzero_intensity()
1005 self.valid_mask_beam_valid = self.generate_valid_mask_beam_valid()
1006
1007 # io.plot(valid_mask * data[0], 'test cropped valid mask 1')
1008 # io.plot(valid_mask_nonzero_intensity[0] * data[0], 'test cropped valid mask 2')
1009
1010 self.maybe_interpolate_dead_pixels()
1011
1012 if self.vacuum_measurements is not None:
1013 vacuum_data = self.data[self.vacuum_measurements]
1014 self.vacuum_mean = np.mean(vacuum_data, 0)
1015 vacuum_data = None
1016 if self.do_plot:
1017 io.plot(self.vacuum_mean, 'vacuum_mean')
1018
1019 intensities = np.sum(self.data * self.valid_mask, (1, 2))
1020 max_intensity = intensities.max()
1021 max_intensity_ind = intensities.argmax()
1022
1023
1024 print('maximum intensity: %g at index %d' % (max_intensity, max_intensity_ind))
1025
1026 beam_mask = u.sector_mask((self.M / self.binning_factor, self.M / self.binning_factor),
1027 (self.M2 / self.binning_factor, self.M2 / self.binning_factor),
1028 self.radius / self.binning_factor, (0, 360))
1029 # io.plot(beam_mask, 'beam_mask')
1030 mean_beam_pixel_intensity = np.mean(self.data[max_intensity_ind] * beam_mask * self.valid_mask)
1031 print('mean_beam_pixel_intensity: %g' % mean_beam_pixel_intensity)
1032
1033 dead_pixels_in_BF_mask = np.logical_and(np.logical_not(self.valid_mask), beam_mask)
1034 # io.plot(dead_pixels_in_BF_mask, 'dead_pixels_in_BF_mask')
1035 dead_pixels_in_BF = np.sum(dead_pixels_in_BF_mask)
1036 print('dead_pixels_in_BF: %d' % dead_pixels_in_BF)
1037
1038 self.beam_intensity = np.sum(
1039 self.data[max_intensity_ind] * self.valid_mask) + dead_pixels_in_BF * mean_beam_pixel_intensity
1040 print('beam_intensity: %g' % self.beam_intensity)
1041
1042 self.pos, self.pos1, self.pos2, self.pos3, self.pos4 = self.determine_positions()P
1043
1044 for i in range(self.pr.shape[0]):
1045 self.fpr[i] /= m.sqrt(norm(self.fpr[i]) ** 2)
1046 self.fpr[i] *= m.sqrt(self.beam_intensity)
1047
1048 self.pr[i] /= m.sqrt(norm(self.pr[i]) ** 2)
1049 self.pr[i] *= m.sqrt(self.beam_intensity)
1050
1051 if self.save_hdf5:

129



1052 fname = '%s%s_bin%d_%s.h5' % (self.save_path, self.name, self.binning_factor, self.save_suffix)
1053 print('Saving to hdf5 file %s ...' % fname)
1054 ret = self.prepare_hdf5_dict()
1055 rw.h5write(fname, ret)
1056
1057 if self.save_matlab:
1058 fname = '%s%s_bin%d_%s' % (self.save_path, self.name, self.binning_factor, self.save_suffix)
1059 print('Saving to matlab file %s ...' % fname)
1060 from scipy.io import savemat
1061 ret = self.prepare_mat_dict()
1062 savemat(fname, ret, do_compression=True)
1063 ts = time.time()
1064 st = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')
1065 print(st)
1066 print('Done.')
1067 return ret
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6.9 Acronyms

ADF annular dark field

CDI coherent diffractive imaging

DM difference map

cryo-EM cryo-electron microscopy

CTEM conventional TEM

CTF contrast transfer function

DFT discrete Fourier transform

DQE detective quantum efficiency

EDX energy-dispersive X-ray

ePIE extended ptychographic iterative engine

FIB focused ion beam

FRC Fourier Ring Correlation

FZP Fresnel Zone Plate

GIF Gatan Imaging Filter

HAADF high angle annular dark field

IASA isolated atom superposition approximation

MAP maximum-a-posteriori

MAPS Monolithic active pixel sensor

MTF modulation transfer function

NMSR Normalized root mean square error

NTF noise transfer function

PCTF phase contrast transfer function

SEM scanning electron microscope

SNR signal-to-noise ratio

STEM scanning transmission electron microscope/microscopy
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TEM transmission electron microscope/microscopy

TIE transport-of-intensity equation

WDD Wigner Distribution Deconvolution
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