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Abstract

Spin Foam Models (SFM) provide a non-perturbative and background independent
path integral formulation of Quantum Gravity. The models are built on a lattice
which represents spacetime and serves as a tool to control the d.o.f. of geometry. In
fact, a given discretization can be thought as a scale at which we look at spacetime,
while its refinement resembles a shift towards UV regimes. In the light of this
interpretation, a SFM state sum is understood as an effective theory for the available
degrees of freedom provided by the lattice. Then, the Wilsonian renormalization
group approach stands out as an ideal tool to organize and describe the flow of the
theory along a scale of complexity of the base lattice.

While many promising results have been achieved in SFM, the dynamics of these

models is still hard to solve and most calculations are performed on extremely coarse

discretizations. In order to get access to finer lattices we reduce the path integral

state sum to certain symmetric configurations of geometry. This allows a numerical

evaluation of some geometric observables on coarser and finer discretizations. Their

comparison defines the renormalization group flow of the model in the parameter

space. Notably, we find a fixed point with one attractive and two repulsive directions

in the three-dimensional parameter space of the asymptotic Euclidean EPRL-FK

Spin Foam Model. In such point, the expectation value of the observables do not

depend on the lattice complexity. The existence of a fixed point opens the way to

study another open problem of SFM, i.e. the continuum (infinite refinement) limit.



Zusammenfassung

Spin-Schaum Modells ermöglichen eine nicht-perturbative Pfadintegral Formulierung
der Quantengravitation unabhängig von Hintergrund. Diese Modelle werden auf
einem Gitter konstruiert, welches die Raumzeit repräsentiert und als Hilfsmittel di-
ent um die Freiheitsgrade der Geometrie zu kontrollieren. Tatsächlich kann eine
bestimmte Diskretisierung als Größenordnung auf welcher wir die Raumzeit betra-
chten, verstanden werden. Eine Verfeinerung bedeutet eine Verschiebung in den ul-
traviolett Bereich. In Anbetracht dieser Interpretation kann eine Spin-Schaum Zus-
tandssumme als eine effektive Theorie für die durch das Gitter vorgegeben verfügbaren
Freiheitsgrade verstanden werden. Daraus ergibt sich der Ansatz der Wilsonschen
Renormierungsgruppe als ideales Hilfsmittel um den Fluss der Theorie in die Rich-
tung einer Größenordnung an Komplexität des Grund-Gitters zu organisieren und
zu beschreiben.

Während viele vielversprechende Ergebnisse mit Spin-Schaum Modellen erre-

icht wurden, ist die Dynamik dieser Modelle immer noch schwer zu lösen und die

meisten Berechnungen werden auf extrem groben Diskretisierungen durchgeführt.

Um eine feinere Gitterauflösung zu erreichen, reduzieren wir die Zustandssumme

des Pfadintegrals auf gewisse symmetrische Konfigurationen der Geometrie. Dies

erlaubt eine numerische Auswertung von einigen geometrischen Observablen auf

gröberen und feineren Diskretisierungen. Der Vergleich von diesen definiert den

Fluss der Renormierungsgruppe des Modells im Parameterraum. Bemerkenswerter-

weise finden wir einen Fixpunkt mit einer attraktiven und zwei repulsiven Richtun-

gen im dreidimensionalen Parameterraum eines asymptotisch euklidischen EPRL-

FK Spin-Schaum Modell. In einem solchen Punkt hängt der Erwartungswert der Ob-

servablen nicht von der Gitterkomplexität ab. Die Existenz eines solchen Fixpunktes

öffnet einen neuen Weg um anderen offene Probleme des Spin-Schaum Modells wie

das kontinuierliche Limit (unendliche Verfeinerung) zu studieren.
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Chapter 1

Introduction

Identifying a theory which is able to predict how nature behaves at the smallest
distances of the Planck scale 10−35m has puzzled generations of theoretical
physicists. A solution to this riddle is expected to shed a new light on modern
physics, whose boundaries are currently posing more questions than solutions.
The great experimental achievements of the last years, especially the discovery
of the Higgs boson at LHC [1] and the detection of the gravitational waves at
the LIGO laboratories [2], have signed a historical decade and provided yet
another confirmation of the well established Standard Model (SM) for particle
physics and of the theory of General Relativity (GR).

Based on the principles of Quantum Mechanics and Special Relativity, and
formulated as a Quantum Field Theory (QFT), the SM has indeed achieved
the classification of all known fundamental particles and the description of
electromagnetic, weak and strong fundamental forces in an organic framework
[3]. These forces are the effect of dynamical gauge fields which mediate the
interactions of elementary particles, also described as quantum fields.

Unanimously praised by scientists for its extraordinary elegance, to the
point of being considered the most beautiful theory in physics, GR fuses the
concepts of space and time into a single entity: spacetime. In the light of this
paradigm shift, the gravitational force is described in a geometric framework
as the curvature of spacetime. The theory has a record of staggering predic-
tions concerning, among others, the passage of time (think gravitational time
dilation [4]) and the propagation of light (see the gravitational lensing effect
[5]).

These theories are so ‘correct’ that the best experimental tests in the history
of physics e.g., the measure of the magnetic moment of the electron [6], confirm
predictions made by the SM, while GR has by now entered our everyday life
and its effects can be best appreciated when we get lost and we rely on our
GPS [7].

Despite the success these theories do not come without critiques, open

1



2 CHAPTER 1. INTRODUCTION

problems and missing pieces. The Standard Model of particle physics, for
example, raises conceptual questions of naturalness [8] i.e., it does not offer
a clear explanation about how Nature chose the parameters of the model,
including the cosmological constant. Also, the lacking description of dark
matter and dark energy, among others, is hinting to a necessity of a physics
beyond the Standard Model [9].

The gravitational singularities contemplated by GR could suggest that, in
its current formulation, the theory is insufficient to describe what happens at
extreme densities. A primordial singularity appears for example in the Big
Bang theory, the prevailing cosmological model for the universe forged on Ein-
stein’s field equations [10]. A new understanding of the nature of such singular-
ity might explain the observed high homogeneity among causally disconnected
regions of space [11]. This is also known as the horizon problem. The most
popular solution relies on the paradigm of a cosmic inflation [12], conjecturing
an exponential expansion which stretched the primordial quantum fluctuations
across the universe. A clear mechanism responsible for inflation is unknown
[13]. Other singularities appear at the center of black holes. The mystery
deepens around these spacetime regions, where a clear understanding of the
microscopic mechanism underlying their thermodynamics is lacking [14].

Alongside these aspects, there is a desire for unification of all four fun-
damental forces, beyond the partial unification of electromagnetic, weak and
strong forces in the SM [15].

A hope is that these open problems will find a new creative engine in
the framework of a theory which unifies General Relativity with Quantum
principles. These two realms, however, seem to avoid each other like oil and
water. In the eyes of a theoretical physicist, this single reason is enough to
feel uncomfortable and motivated to search for a solution to the problem of
Quantum Gravity (QG). Many research sectors have emerged to confront this
challenge.

The most conservative attitude remains within the realm of quantum field
theory and studies the quantum properties of gravitational perturbations around
a fixed background spacetime geometry. The major problem of this approach
is that it results in a nonrenormalizable theory [16, 17]. A reason why the prob-
lems related to renormalization deserve attention is that their solutions may
alter the properties of the classical action and affect the physics in remarkable
ways [18]. Among other things, we know that renormalization predicts that
various symmetries of the classical action must be dropped, because they are
anomalous. The axial anomaly is what makes the neutral pion decay into two
photons [19]. Even more, renormalization predicts that the coupling constants
are not actually constants, but ultimately depend on the energy scale i.e., they
are running couplings.

The nonrenormalizable divergences arising from the Einstein-Hilbert action
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cannot be turned into a running of a finite set of couplings. Instead, the
more one enters into the quantum regime, the more the theory generates new
couplings. In practical terms, having a nonrenormalizable theory means that
to confirm it we need to test an infinite number of coupling constants: this
might be the sad conclusion of it [18].

Remaining within the realm of quantum field theory, a change of attitude
towards certain fundamental assumptions e.g., about the locality of the inter-
actions [20], may unlock new sectors that are still rather unknown. A simple
way to achieve renormalizability in quantum gravity is, for example, by ex-
tending the Einstein-Hilbert action by means of higher-derivative terms [21].
However, local higher-derivative theories have a serious weakness: they are
not unitary. Recent advancements in this field have overcome this problem by
introducing a novel quantization prescription which makes higher derivative
theories unitary [22, 23]. Recent results from the Planck mission seem to in-
dicate that the best models of inflation are governed by an action including
higher derivative terms [24].

The main limit of this conservative approach is the fact that it adopts per-
turbative methods and it is background dependent. In other words, it treats
the gravitational field as a small perturbation around a fixed background ge-
ometry. In this sense, this is not after all the most conservative approach since
it ‘betrays’ one of the essential principles of GR, which is the independence
from any background structure. In fact, according to Einstein’s interpretation,
spacetime is not an absolute entity with respect to which motion is defined.
Rather, it is a dynamical object and motion can only be defined in relative
terms.

Then, in the language of QFT, the gravitational field as a whole (not just
as a perturbation) is nothing more than a new field. Its gauge symmetry is
the invariance under arbitrary differentiable coordinate transformations. Its
vacuum is not empty space, it is just nothing. Matter and gauge fields should
not be defined on spacetime, but in a relational framework as an integrated
interaction with the gravitational field.

A different approach to the problem of quantum gravity is offered by String
Theory, which studies the quantum field theory of finite-size nonlocal objects
called strings [25]. Particles are identified with different oscillation modes (or
quantum states) of the string. Surprisingly, one of these vibrational states
corresponds to the graviton i.e., the particle which mediates the gravitational
force. A theory of gravity is then naturally incorporated within this framework.
At ordinary low energies, this theory roughly corresponds to GR, while at
high energies it is modified. Also Yang-Mills gauge theories (like the SM)
are included, however it is not yet understood how the U(1)× SU(2)× SU(3)
gauge group of the Standard Model is singled out. The potential description
of gravity and all other forces in a unified mathematical framework makes
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String theory a candidate for a ‘theory of everything’. The consistency of
String Theory requires, or predicts, the existence of supersimmetry and of
ten or more spacetime dimensions. Among the main drawbacks, is the fact
that there exists a huge ‘landscape’ of possible false string vacua, which raises
technical as well as philosophical questions [26, 27]. Another criticism to string
theory is that it is not manifestly background independent [28].

In this work we analyze another candidate theory, which has gathered at-
tention in recent years, and attempts a formulation to quantum gravity which
is explicitly background independent and non-perturbative. This goes by the
name of Spin Foam Theory or Spin Foam Models (SFM) [29, 30]. Here, the
gravitational field is treated in the same way as a fundamental quantum field
i.e., according to the framework of quantum mechanics, made of probabilities,
uncertainty principles, Hilbert spaces and so on. In this work we are con-
cerned with the study of pure quantum gravity in the absence of matter fields.
Spin foam models provide a covariant formulation for Loop Quantum Gravity
(LQG) [31, 32], and it connects with several other approaches to quantum
gravity such as Quantum Regge Calculus [33] , Group Field Theory [34] and
Dynamical Triangulation [35], to name but a few.

1.1 An overview of Spin Foam Models

Spin Foam Models (SFM) provide a non-perturbative and background inde-
pendent path integral formulation of Quantum Gravity. These models are
built on a fiducial discretization of spacetime, which serves as a tool to control
the d.o.f. of the gravitational field. More precisely, a spin foam is character-
ized by an allocation of quantum labels on a reticulum which plays the role
of a representative for spacetime, and can be pictured as its skeleton. The
labels encode the information about the geometry. Freezing their value one
establishes a ‘geometric configuration’ which is a quantum state of the theory.

The reticular structure differs substantially e.g., from those of Lattice
Gauge Theories. A first differentiation factor, compared to standard theo-
ries built on a lattice, is that here there is no definition of lattice spacing
involved. Indeed, as we already pointed out, we are not seeking for a back-
ground structure on which to describe the dynamics of some field. We want
the spacetime reticulum to be itself a dynamical object.

The way SFM achieve this purpose is by defining the dynamics in terms
of a path integral over spacetime geometries. Roughly speaking, to get from
a geometric state A to a state B, spacetime walks through all its possible
configurations with a certain weight associated. In some sense this corresponds
to summing over all lattice spacings (precisely, over all quantum labels).

While the ‘spacings’ vary, the complexity of the reticulum is kept fixed



1.1. AN OVERVIEW OF SPIN FOAM MODELS 5

in the number of its constituent nodes and links. The choice of a reticulum
corresponds to a truncation of the theory to a certain accuracy. To capture
more details of spacetime, we can use a finer reticulum which carries more
degrees of freedom. In the light of this interpretation, a spin foam state sum
can be understood as an effective theory for the available d.o.f. provided by
the lattice. Then, the Wilsonian renormalization group (RG) approach stands
out as an ideal tool to organize and describe the flow of the theory along a
scale of complexity of the base lattice [36].

The idea behind Wilsonian renormalization is that the physics of a system
at large scales should be independent of most microscopic (UV) details, and
predictions should involve only a small portion of all the degrees of freedom
of the system. Simply put, we do not need all the details about the water
molecules to describe water flowing in a stream.

This approach is used in the context of QG e.g., by the Asymptotic Safety
program [37]. In a QFT setting, an energy scale is defined by integrating
out the high momentum (UV) modes above a certain cut-off. This operation
defines an effective action which can be used to make predictions about ex-
periments performed in a regime less energetic than the scale. The coupling
constants defining this effective action depend themselves from the scale i.e.,
they are running couplings. In some rare point of the parameter space, it can
happen that the couplings do not depend on the energy scale anymore. In
these fixed points, independently of how many degrees of freedom we restore in
the theory, the couplings do not run anymore i.e., they are scale independent.

Similar techniques are employed in the context of Lattice gauge theories,
where a scale is defined by fixing a value for the lattice spacing which enforces
a (UV) cut-off i.e., a smallest distance under which we forget about the degrees
of freedom and work with an effective theory.

In the background independent context of SFM, there is no length scale
to use as a (UV) cut-off since configurations with different geometries are
being summed over. This means that on the same graph both low and high
curvature (i.e., energy) states occur in the sum over states. This, as we have
already mentioned, is a central feature of GR, in that geometry itself becomes
a variable. Therefore, in the spin foam context the RG formalism needs to
be adapted so to be independent of the spacetime background structure [38].
When we talk about renormalization in SFM we refer to what happens to the
theory when we build it on finer or coarser reticles.
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Figure 1.1: The RG flow interpolates between a scale with few degrees of freedom defined
by coarse lattices and one which carries more information defined by finer reticulums.

In this sense, the renormalization group does not ‘flow’ with an energy
scale interpolating between IR and UV regimes. Neither it flows on a scale
defined by the lattice spacing since we have seen that there is none (or, more
precisely, there are infinite of them summed over). It will instead flow in a scale
defined by the complexity of the lattice, which we can roughly identify with
the number of its nodes. A fixed point in this context indicates a region of the
parameter space where the parameters are independent of the complexity of
the base reticulum. The existence of a fixed point in SFM could lead towards
an advancement in the thorny question of the continuum limit of spin foams
i.e., the limit of infinite refinement of the base reticulum 1. The final goal of
this work is the definition and the analysis of the renormalization group of a
specific SFM, and the search of its fixed points.

1.2 Structure of the Thesis

In Chapter 2, we focus our attention on the classical theories of gravitation,
which provide the groundwork for developing the quantum theory.

In Chapter 3 we review the canonical and the covariant formulations of
Loop Quantum Gravity. Depending on the quantization procedure, the co-
variant approach defines distinct Spin Foam Models.

In Chapter 4, we study the Euclidean formulation of the EPRL-FK spin
foam model 2. This is one of the most acclaimed SFM and is the subject of
study in the rest of this work. In the same chapter we also consider an ad-
hoc deformation of the model so to couple a cosmological constant term. The
reported calculation is based on a recent publication of the author and collabo-
rators [41]. The results of this section is used in the following chapters, however

1One must be careful not to confuse this with the classical limit, which is instead the limit where
we get back to a low energy regime. The classical limit can be defined on each finite reticulum
separately. Starting from a finite size reticulum one finds discrete GR in the classical limit. A
missing piece of the LQG puzzle is a proof that, starting from a infinitely refined graph (continuum
limit), one recovers standard GR in the classical limit. This goal can be achieved only if we
understand the continuum limit of SFM.

2After its authors Engle, Pereira, Rovelli and Livine [39], and Freidel and Krasnov [40].
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the details of the calculation are not fundamental for the understanding of the
work. The reader is free to move on to the next chapter.

While many promising results have been achieved in SFM, the dynamics
of these models is still hard to solve and most calculations are performed on
extremely coarse discretizations. In order to get access to finer lattices, in
Chapter 5 we reduce the path integral state sum to certain symmetric config-
urations of geometry which resembles the evolution of a flat homogeneous and
isotropic universe. First, we compute the (semi)classical limit of the EPRL-FK
spin foam state sum in the symmetry restricted setting. These approximations
open the path to a numerical evaluation of the expectation values of geometric
observables on different lattices and, ultimately, provide a setup for treating
the renormalization of the EPRL-FK spin foam model (in Chapter 6). In the
second part of Chapter 5, we investigate the classical dynamics associated to
our reduced model in the three cases of vacuum, coupling with a cosmologi-
cal constant, and with dust particles. From the discrete action we obtain the
classical equations of motions and we find that in all cases, the corresponding
Friedmann-Lemaitre-Robertson-Walker dynamics is recovered in the limit of
fine lattices. Thus, the symmetry reduction adopted defines a cosmological
sector of the EPRL-FK model. This section shows a large intersection with
computations done in the context of cosmological modeling with discrete grav-
ity. All the results presented in this chapter are an original work of the author
and collaborators published in [42].

In Chapter 6, we review the concept of background independent renormal-
ization for Spin Foam Models. Then, based on a recent work of the author
and collaborators [43], we study the renormalization group flow of the ap-
proximated model obtained in the previous chapter (the EPRL-FK spin foam
model, symmetry reduced, deformed by a cosmological constant, and used in
its asymptotic limit). The reduction of degrees of freedom allows a numerical
evaluation of certain geometric observables on coarser and finer discretizations.
Their comparison defines the renormalization group (RG) flow in the param-
eters (α,Λ, G) of the model. Remarkably, we find the indications of a fixed
point showing one repulsive and two attractive directions. In such point, the
expectation value of the observables do not depend on the lattice complexity.
Thus, its the existence opens the way to study another open problem of SFM,
i.e. the continuum (infinite refinement) limit.

In Chapter 7 we conclude with an overview of the results.
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Chapter 2

Classical Theories of Gravity

In this chapter we discuss the formalism of smooth curved surfaces and intro-
duce the classical principles of General Relativity (GR).

In the first part, we study some of the main formulations of GR. Namely,
after the standard metric approach is discussed, we explore the action formu-
lations in the tetrad formalism as well as in terms of a constrained topological
‘BF-theory’. Next, we move to the description of the Hamiltonian approach
in the Arnowitt-Deser-Misner (ADM) formalism as well as in terms of the
Ashtekar variables.

In the second part, a discrete formulation of gravity which goes by the name
of Regge Calculus is studied. The Regge action, defining the classical dynamics
of the discrete spacetime surface, will show up often in this work, primarily
in the (semi)classical limit of the quantum theory. Also, we introduce the
concepts of 2-complex and graph, basic discrete structures which respectively
form a skeleton for spacetime and its boundary geometry. On their bones
we distribute the smooth variables of BF-theory and those of the Ashtekar
formulation. This provides the classical groundwork from which we build and
develop the quantum theory in Chapter 3.

2.1 General Relativity

Classical General Relativity describes the spacetime structure as a four dimen-
sional differentiable manifold M. On this object we are interested in defining
concepts which are independent of the choice of a reference frame. This prop-
erty ensures that the general covariance principle is respected and we can
study the physics of gravitational fields in arbitrary coordinate systems. On a
differentiable manifold we can define tensor calculus and formulate the phys-
ical laws as tensorial equations. Although one can define vectors and tensors
as abstract geometric entities, in the following we use an equivalent but more
practical approach. Intuitively, to each point p ∈ M we can associate a tan-

9
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gent space Tp and a cotangent space T ∗p , which are both real, four-dimensional
vector spaces isomorphic to each other. Given a chart of coordinates xµ, at
each point we can set up a basis {∂µ} for Tp and a basis {dxµ} for T ∗p , with
µ = 0, 1, 2, 3. Then any abstract vector v ∈ Tp and 1-form ω ∈ T ∗p can be
written as a linear combination of elements of the respective basis

v = vµ∂µ, ω = ωµdxµ.

The coefficients vµ and ωµ are respectively the components of the vector v and
of the 1-form ω. Here, we treat the components vµ and ωµ as fundamental
objects, denoting them respectively as contravariant and covariant vectors.

Under a change of frame xµ → x′µ(x), the differentials dxµ transform as

dxµ → dx′µ =
∂x′µ

∂xν
dxν .

In general, a contravariant vector is defined as a set of four numbers that, under
a generic change of frame, transform as the differential of the coordinates

Aµ → A′µ =
∂x′µ

∂xν
Aν .

Conversely, we define a covariant vector as a quantity that transforms with
the inverse

Aµ → A′µ =
∂xν

∂x′µ
Aν .

We call tensor of rank (p, q) an object T
µ1···µp
ν1···νq with p contravariant indices and

q covariant indices, which transforms as

T µ1···µp
ν1···νq → T ′µ1···µp

ν1···νq =
∂x′µ1

∂xρ1
· · · ∂x

′µp

∂xρp
∂xσ1

∂x′ν1
· · · ∂x

σq

∂x′νq
T ρ1···ρp
σ1···σq .

The relative distance between events i.e., spacetime points on M, is specified
by the metric tensor gµν . It defines the line element i.e., the square of the
infinitesimal displacement as

ds2 = gµνdx
µdxν . (2.1)

Applying the metric tensor and its inverse to a generic tensor, we can switch
from contravariant to covariant indices and vice versa

Vµ = gµνV
ν , V µ = gµνVν , Tµν = gµρgνσT

ρσ, etc...

In a mathematical language, the equivalence principle states that, given a
spacetime point, it always exists an inertial frame of reference i.e., a coordinate
patch in which ds2 assumes the Minkowskian form

ds2 = ηµνdx
µdxν .
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Nevertheless, in a curved space it is not possible to change gµν into ηµν through-
out all spacetime points via a coordinate transformation.
In order to compare geometries at different spacetime points, one requires an
unambiguous way to ‘parallel transport ’ objects along curves in M. This is
achieved by introducing a connection on M, determined by a set of functions
of the coordinates Γρµν called Christoffel symbols, which vanish in an inertial
frame of reference. In terms of these objects one can define the covariant
derivative ∇µ, which acts on tensors as

∇µV
ν = ∂µV

ν + ΓνρµV
ρ,

∇µVν = ∂µVν − ΓρνµVρ,

∇µT
ρσ = ∂µT

ρσ + ΓρνµT
νσ + ΓσνµT

ρν ,

· · ·

(2.2)

The covariant derivative generalizes the derivative operator on curved spaces
so to be independent of the the choice of coordinate system.

The commutator of two covariant derivatives

(∇ρ∇ν −∇ν∇ρ)Vµ = Rσ
µρνVσ, (2.3)

defines the Riemann tensor

Rσ
µρν = ∂ρΓ

σ
µν − ∂νΓσµρ + ΓσρλΓ

λ
µν − ΓσνλΓ

λ
µρ, (2.4)

which encodes the information about the curvature of spacetime. In fact, if we
parallel transport a vector along an infinitesimal closed path γ, its variation is
proportional to the product of the Riemann tensor and the area of the surface
enclosed by γ. Contracting the Riemann tensor with the metric tensor we
obtain the Ricci tensor Rµν = Rρ

µρν and a further contraction produces the
scalar curvature R = gµνRµν .

On a manifold one can also define the concept of torsion which formally
measures how tangent vectors rotate when they are parallel transported. In
its original formulation, GR adopts the torsionless assumption, which is re-
flected in the symmetry of the Christoffel symbols in the lower indices in any
coordinate basis

Γρµν = Γρνµ. (2.5)

Also we demand that parallel transported vectors maintain the value of their
scalar product. This property is called metric compatibility and mathemati-
cally is represented by the vanishing of the covariant derivative of the metric
tensor

∇µgνρ = 0. (2.6)
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With these assumptions, the only torsionless, metric compatible connection is
the Levi-Civita connection, and the Christoffel symbols can be expressed in
terms of the metric tensor as

Γρµν =
1

2
gρλ(∂µgνλ + ∂νgµλ − ∂λgµν). (2.7)

General Relativity is a theory which describes the dynamics of the spacetime
manifold and it comes with different formulations.

2.1.1 Standard Formulation

A theory of gravitation can be formulated by using the metric tensor as a dy-
namical variable. We assume that its dynamics is regulated by a variational
principle based on an action functional S, which is invariant under diffeomor-
phisms

xµ → x′µ = xµ + ξµ,

where ξµ(x) are four local parameters. To define such a functional, we must
integrate scalar quantities, using the invariant measure d4x

√−g, where we
have defined the determinant of the metric tensor g = det(gµν).

In its original formulation the dynamics of the metric tensor is encoded in
the Einstein-Hilbert action

SEinstein−Hilbert[gµν ] =
1

16πG

∫ √−gR[gµν ], (2.8)

where G is the gravitational constant with dimension [G] = −2 in units of
mass. 1

The Einstein equations of motion for a gravitational field coupled to bosonic
matter are

Rµν −
1

2
gµνR = 8πGTµν , (2.9)

where Tµν is the covariant version of the energy-momentum tensor which de-
scribes the density and flux of energy and momentum in spacetime.

2.1.2 Tetrad Formalism

The tetrad is a collection of four linearly independent one-forms eIµ that pro-
vides a local isomorphism between a general reference frame and an inertial

1In principle one could include in the action infinite invariant terms 1, R2, RµνR
µν , R3, · · · . These

include a cosmological constant term as well as terms which are more than quadratic in the deriva-
tives of the metric tensor. In what follows we stick to the classical formulation and ignore all these
terms. Nonetheless, in Chapter 6 we will modify the theory at the quantum level so to re-introduce
a cosmological constant term.
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one, characterized by the flat metric δIJ
2, so that we can recast the metric

tensor in the form

gµν(x) = δIJe
I
µ(x)eJν (x).

This is why the tetrads are sometimes described as the square root of the met-
ric. The new indices I = 0, 1, 2, 3 are then internal flat indices and come to-
gether with an additional invariance under a local gauge group G e.g., SO(3, 1)
in the Lorentzian theory or SO(4) in the Euclidean one. We can interpret ge-
ometrically the tetrads as the linear map that, for each point p ∈ M, sends
the tangent space Tp in the flat space. Then, given a vector v in p, the tetrads
are the matrices eIµ(x) that transform the components V µ (i.e., contravariant

vectors) into new components V I by

V I = eIµ(x)V µ.

The inverse of the tetrad is a collection of four linearly independent vectors eIµ
such that

eIµe
µ
J = δIJ , eIµe

ν
I = δνµ. (2.10)

Then, any tensor can be decomposed using internal or spacetime coordinates
related by the tetrads and their inverse i.e.,

T
I1···Ip
J1···Jq = eI1µ1

· · · eIpµpeν1
J1
· · · eνqJq T µ1···µp

ν1···νq . (2.11)

Related to the local gauge symmetry there is a connection ωIJµ which is used
to define the covariant derivative ∇µ on any object that transforms under the
local gauge group. For example,

∇µV
I = ∂µV

I + ωIµJV
J . (2.12)

The components ωIµ J are related to the coefficients Γρµν of the Levi-Civita
connection via

∂µe
I
ν + ωIµJe

J
ν − Γρµνe

I
ρ = ∇µe

I
ν = 0, (2.13)

where ∇µe
I
ν is the total covariant derivative of the tetrad i.e., the one acting

on both spacetime and internal group indices. Its vanishing corresponds to
the condition of compatibility of the connection ωIµ J with the internal metric

i.e., ∇µη
IJ = 0. One can easily check this by writing ηIJ = eIµe

J
ν g

µν and using

the metric compatibility (2.6). Under this condition, ωIµ J is the unique spin
connection that we can write as a function of the tetrads.

2For the moment we keep the flat metric generic. Depending whether we are studying the
Lorentzian theory or the Riemannian, we should pick up the Minkowski metric ηIJ or the positive
defined Euclidean metric.
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Moving from the coordinate basis to the differential form notation 3, we
write eI = eIµdxµ and ωIJ = ωIJµ dxµ. Then, the curvature is defined as the
2-form

F IJ ≡ ∇ωIJ ≡ dωIJ + ωIK ∧ ωKJ , (2.14)

where we used the exterior derivative d, the wedge product ∧ and the covariant
derivative ∇ associated to the connection. In coordinates we write F IJ =
F IJ
µν dxµ ∧ dxν with

F IJ
µν = ∂µω

IJ
ν − ∂νωIJµ + ωIµ Kω

KJ
ν − ωIν Kω

KJ
µ . (2.15)

These are related to the Riemann tensor via

Rµ
νρσ = eµI e

J
νF

I
µνJ . (2.16)

The action (2.8) can be rewritten in the Palatini first order formulation i.e.,
using tetrads and connection as independent dynamical variables, as

SPalatini[e, ω] =
1

16πG

∫
εIJKL e

I ∧ eJ ∧ FKL[ω]

=
1

16πG

∫
∗(e ∧ e) ∧ F [ω],

(2.17)

where εIJKL is a completely antisymmetric object such that ε0123 = 1 = −ε0123,
and ∗ is the hodge dual operator. One can check that the equations of motion
for ωIJ enforce the vanishing of torsion i.e.,

T I = ∇eI = deI + ωIK ∧ eK = 0. (2.18)

In fact, writing this equation in coordinates and using (2.13), one can check
that it corresponds to the symmetry of the Christoffel symbols Γρµν in the lower
indices (2.5). Equation (2.18) is uniquely solved by the spin connection ω[e]
which, based on (2.13), is a function of the tetrad.

The equations of motion for the tetrad eI , evaluated on-shell requiring
(2.18), return the vacuum Einstein equations (2.9), corresponding to the van-
ishing of curvature F [ω[e]] = 0.

It is possible to add a topological ‘Holst’ term to the Palatini action so that
we get the more general

SHolst[e, ω] =
1

16πG

∫ (
∗ (e ∧ e) +

1

γ
e ∧ e

)
∧ F [ω], (2.19)

where γ is called Barbero-Immirzi parameter. The first term in the parentheses
defines the Palatini action. The second is a topological sector in the sense

3Refer to [44] for an introduction.
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that it does not alter the classical equations of motion. In fact its variation
with respect to the tetrads vanishes if there is no torsion i.e., as long as we
are on-shell 4. Nevertheless, as we will see in the next chapter, the topological
term gives a substantial contribution in the quantum domain and the Barbero-
Immirzi parameter will play a crucial role in the definition of LQG and Spin
Foam Models.

2.1.3 Gravity as Constrained BF-Theory

The theory of gravitation that we have studied above can be related to a rather
general set of topological field theories which go by the name of BF-theory.
On a D-dim manifold the dynamical variables are a connection 1-form ω(x) =
ωIa(x)dxaτI and a (D−2)-form B(x) = BI

a1,··· ,aD−2
(x)dxa1∧· · ·∧dxaD−2τI , both

with values a the Lie-algebra g with generators τI . For the moment, we just
require the corresponding gauge group G to be a generic finite dimensional Lie
group. The BF action is

SBF[B,ω] =

∫
〈B,F [ω]〉

=

∫
δIJB

I ∧ F J [ω]

=

∫
B ∧ F [ω],

(2.20)

being F [ω] = ∇ω the curvature of the connection. The B field acts as a
Lagrange multiplier which enforces the curvature F of the connection to vanish
i.e.,

δSBF

δB
= 0 ⇒ F [ω] = 0. (2.21)

On-shell, in absence of boundary, the equations of motion for ω are instead

δSBF

δω
= 0 ⇒ ∇B = 0 ⇒ dB = 0. (2.22)

Let φ be a generic g-valued (D − 3)-form. The action (2.20) is invariant
under a gauge symmetry B̃ ≡ B + ∇φ. In fact, using the Bianchi identity
∇F = 0 and the vanishing of boundary, by partial integration we get∫

〈B̃, F 〉 =

∫
〈B,F 〉+

∫
〈∇φ, F 〉 =

∫
〈B,F 〉. (2.23)

Locally, a general solution of the equations of motion (2.22) is B = dφ and it
is always possible to gauge transform this solution into B = 0. Since we can

4One can check this by using the Bianchi identity εµνρσRµνρδ = 0.
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gauge away any local degrees of freedom, BF is called a topological field theory.

In three dimensions BF-theory with gauge group SU(2) is equivalent to
GR, which is indeed a topological theory in 3d. The B-field is a 1-form and we
can define a metric as gab = δijB

i
aB

j
b , where i = 1, 2, 3 are indices associated to

the generators Ji of the Lie algebra of SU(2). The equations of motion for B
imply that ω is the Levi-Civita connection of gab and the equations of motion
of ω impose the flatness of the metric [45].

In four dimensions instead, GR can be written as a topological BF-theory
with constraints e.g., on the B field. Let us focus on the Euclidean theory with
local gauge group SO(4) or, rather, its double cover Spin(4) ' SU(2)×SU(2).
The B-field is an element in the algebra spin(4) ' su(2) ⊕ su(2) ' R4 ∧
R4. In the light of the last isomorphism, the B-field is also a bivector (see
Appendix A). Then we can write its internal components BIJ using indices
I, J = 0, 1, 2, 3.

The constraints are formally implemented by adding to the set of variables
a Lagrange multiplier tensor λIJKL with indices in the internal space such that
λIJKL = λKLIJ = −λJIKL = −λIJLK and satisfying εIJKLλIJKL = 0. Writing
explicitly the Lie algebra indices the resulting Plebanski action is

SPlebanski[B,ω, λ] =

∫
BIJ ∧ FIJ [ω] + λIJKLB

IJ ∧BKL, (2.24)

and the simplicity constraints imply

BIJ ∧BKL ∝ εIJKL, (2.25)

or, in the dual version and using spacetime coordinates (see [30])

εIJKLB
IJ
µνB

KL
ρσ ∝ εµνρσ. (2.26)

As it was shown in [46], this quadratic expression has two solutions

B = ± ∗ (e ∧ e) and B = ±(e ∧ e), (2.27)

which define a gravitational and a topological sector given that, once substi-
tuted in (2.24) they respectively recover the Palatini action and the Holst term
of (2.19).

In fact, if these two sectors are related via the Barbero-Immirzi parameter
in a way such that we can write

(16πG)B ≡ ∗(e ∧ e) +
1

γ
e ∧ e, (2.28)

then it is clear that BF action (2.20) reduces to the Holst-Palatini (2.19).
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There exists also a boundary formulation for the condition (2.28). Let
us consider a manifold with a 3d spacelike boundary ∂M = Σ. Here the
invariance under 4d rotations is broken down to an invariance under local
SO(3) rotations. In other words, on the boundary we have the freedom of
choosing a gauge fixing that induces this group breaking. It is convenient to
work in the time gauge defined by requiring that the normal to all the tangent
vectors in Σ is a time-like unit vector nI = (1, 0, 0, 0) i.e., the local boundary
corresponds to a spatial surface at fixed time. The 2-form BIJ can be projected
on this boundary and decomposed as KI = nJB

IJ and LI = nJ(∗B)IJ =
εIJKLnJBKL. These vectors have no time component i.e., nIK

I = nIL
I = 0.

In other words the B-field bivector is reduced in the time gauge to two vectors
on the boundary

Ki = Bi0 and Li =
1

2
εijkB

jk, (2.29)

with i = 1, 2, 3. One can check that the imposition (2.28) implies that on the
boundary Σ is satisfied the condition

~L ≡ 1

γ
~K. (2.30)

We will come back to this formula in the next section where the formulation
of the constraints will be a hot topic.

2.1.4 Hamiltonian formulation in ADM variables

Let us now continue our fly over classical formulations of GR but now in
the Hamiltonian formalism, which provides a road to quantization as done
in non relativistic quantum mechanics and also in relativistic field theory 5.
Eventually, this will be the basis of the canonical formulation of LQG.

The canonical analysis of GR is based on a 3+1-decomposition of the space-
time manifold into a foliationM = Σt×R in terms of hypersurfaces Σt, labeled
by a real parameter t.

Each spatial slice Σt is equipped with its own Riemannian structure. Let
us call nµ the unit vector normal to all the vectors tangent to Σt0 . The induced
metric qµν on Σt can be uniquely determined by demanding that qµνn

ν = 0
and qµνs

ν = gµνs
ν for any vector sν spanning the tangent space of Σt. Then,

one has

qµν = gµν + nµnν , nµn
µ = −1. (2.31)

5For a detailed introduction on the Hamiltonian analysis of GR and of covariant systems in
general see for example [47]. There, one can also find an explicit derivation of the formulas appearing
in the next two subsections
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The diffeomorphism which maps Σt0 into Σt0+t is generated by a time-evolution
vector field t = tµ∇µ. This defines the direction of time derivatives and is nor-
malized such that tµ∇µt = 1. A choice of tµ satisfying the above requirements
is not unique, and allows for some arbitrariness. A convenient choice of refer-
ence system is made in terms of the Arnowit-Deser-Misner (ADM) variables.

One introduces a function N ≡ nµt
µ and a vector field Nµ ≡ hµνt

ν so that
the time vector field can be decomposed into the spatial and normal parts as

tµ = Nnµ +Nµ. (2.32)

In this coordinates one has

tµ = (1, 0, 0, 0), Nµ = (0, Na), nµ = (−N, 0, 0, 0), nµ = (
1

N
,−N

a

N
).

(2.33)
The ADM variables are the spatial 3-metric qab, the lapse function N and

the shift vector field Na, where a = 1, 2, 3 are space indices that behave like
regular indices in a curved space. They have a clear interpretation: let us
stand on Σt at a point xµ = (t, xa). The distance that separates us from any
other point in Σt is determined by the spatial 3-metric qab. Now, if we move
by Ndt in the direction of the time-like vector nµ normal to all tangent vectors
in Σt, we end up on Σt+dt at a point y′µ = (t + dt, ya). If we further shift on
the Σt+dt surface by Nadt we arrive to the point x′µ = (t+ dt, xa) which in our
coordinates is the time evolution of xµ. Thus the lapse function N = N(xµ)
determines how the proper time dτ = Ndt elapses for an observer moving from
Σt to Σt+dt. The shift vector field Na = Na(x

µ) = xa − ya measures instead
the spatial shift on Σt+dt.

One can rewrite the manifold structures in the ADM variables. The full
spacetime metric reads

gµν =

(
NaNa −N2 Na

Nb qab

)
. (2.34)

The extrinsic curvature of Σt reads

Kab =
1

2N
( ˙qab −∇aNb −∇bNa), (2.35)

being ∇a the spatial covariant derivative. This can also be regarded as an
evolution equation for the spatial metric.

The ADM decomposition is particularly useful since no time derivatives of
N and Na appear in the action and hence they correspond to non-propagating
fields that enforce constraints. In other words they play the role of Lagrange
multipliers. Therefore all the dynamics of the gravitational field is contained
in the 3-metric qab and its conjugate momentum

πab =

√
q

16πG
(Kab −Kc

cq
ab), (2.36)
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where q = det(qab). They satisfy the canonical Poisson brackets

{qab(t, x), πcd(t, y)} =
1

2
(δcaδ

d
b + δcbδ

d
a)δ

(3)(x− y),

{qab(t, x), qcd(t, y)} = 0,

{πab(t, x), πcd(t, y)} = 0.

(2.37)

The action with ADM variables takes then the totally constrained form

SADM(N,Na, q, π) =
1

16πG

∫
dt

∫
d3x(πabq̇ab −NC(π, q)−NaCa(π, q)).

(2.38)
The Hamiltonian constraint is

C(π, q) = (16πG)Gabcdπ
abπcd −

√
qR[q]

16πG
, (2.39)

where we defined the Wheeler-DeWitt metric Gabcd = 1
2
√
q
(qacqbd + qadqbc −

qabqcd) and R[q] is the Riemann curvature scalar on Σt. The diffeomorphism
constraint reads

Ca(π, q) = −2qac∇bπ
bc. (2.40)

The equations of motion for lapse and shift respectively enforce these con-
straints i.e.,

C(π, q)
!

= 0, Ca(π, q)
!

= 0. (2.41)

The Hamiltonian of GR in the ADM variables is

H =
1

16πG

∫
d3x(NC +NaCa), (2.42)

and it vanishes when the constraint equations are satisfied. Thus, strictly
speaking, in such system time is not a physical quantity but a free parameter.
Then, evolution must be interpreted in a relational way. Explicitly, the 6
degrees of freedom of qab are halved by the diffeomorphism constraint and the
dynamics is encoded in the Hamiltonian constraint, as a relation among the
remaining 3 degrees of freedom. Eventually, at each point in space one has 2
degrees of freedom as expected.

Starting from (2.37) one can also show that the constraints satisfy the
following relations [48] 6

{Ca(x), Cb(y)} = Ca(y)∂
(x)
b δ(x− y)− Cb(x)∂(y)

a δ(x− y),

{Ca(x), C(y)} = C(x)∂(x)
a δ(x− y),

{C(x), C(y)} = Ca(y)∂(x)
a δ(x− y)− Ca(y)∂(y)

a δ(x− y).

(2.43)

6Notice that this does not constitutes a Lie algebra. In fact, raised and lowered spacetime indices
imply a dependence on the metric tensor.
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These Poisson brackets vanish on the constraint surface, which catalogs the
constraints as first class. The Poisson brackets of the constraints with the
dynamical variables qab and πcd generate infinitesimal gauge transformations.
The Hamiltonian constraint C associated to the lapse function generates time
reparametrizations. The diffeomorphism constraint Ca associated to the shift
function gives rise to changes of spatial coordinates. Points in the phase space
related by these transformations are physically equivalent.

2.1.5 Hamiltonian formulation in Ashtekar variables

There exists a change of variables that makes the Hamiltonian formulation of
GR very close to that of SU(2) gauge theory, apart from the unavoidable fact
that the Hamiltonian is a fully constrained one. This turns out to be quite
useful in that it makes possible the use of tools borrowed from Yang-Mills
theories.

In each point of the Cauchy surface Σt a reference frame is specified by
the triads eia, where i = 1, 2, 3 are internal indices which behave like indices of
flat-space. The spatial 3-metric qab can be expressed in terms of the triads as

qab = δije
i
ae
j
b. (2.44)

The dynamics on a slice Σt is invariant under local SO(3) transformations of
the triad or, more generally, under its double cover SU(2). The new dynamical
variables are the densitized triad

Ea
i = det(e)eai =

1

2
εijkε

abcejbe
k
c , (2.45)

and a su(2)-connection on Σt called Ashtekar connection

Aia = Γia + γKi
a, (2.46)

where Γia = Γia[e] is the torsionless spin connection associated to the triad, γ is
the Barbero-Immirzi parameter already introduced in the tetrad formulation
of GR while Ki

a is related to the extrinsic curvature Kab of Σt and to the
densitized triad via

Ki
a =

KabE
b
jδ
ij

√
detE

, (2.47)

with detE = det(Ec
k).

Let us notice that, on a spatial slice, the metric is fully specified by the
densitized triad. Then, any geometric quantity in space can be written in
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terms of Ea
i . For example, the area of a surface S on Σt with local coordinates

σ1, σ2 and normal unit vector na is a functional 7

α(S) =

∫
S

d2σ
√
Ea
i E

binanb. (2.50)

Also, given a region R ⊂ Σt we can write its volume as

V (R) =

∫
R

d3x
√
g =

∫
R

d3x

√
| 1
3!
εabcεijkEa

i E
b
jE

c
k|. (2.51)

We will come back to these expressions in the quantum theory, where areas
and volumes will become operators and the solution of their eigenvalue prob-
lem will show that in the quantum regime geometric quantities come in discrete
levels.

The pair (Aia,E
a
i ) forms a set of canonically conjugated variables fulfilling

the Poisson brackets

{Aia(x), Eb
j (y)} = 8πGγδijδ

b
aδ(x, y),

{Aia(x), Ajb(y)} = 0,

{Ea
i (x), Eb

j (y)} = 0.

(2.52)

Once again, the general covariance of the theory is manifest in the totally
constrained form of the dynamics of the Ashtekar variables. The action can
be written as

SAshtekar(N,Na, A,E) =
1

16πG

∫
dt

∫
d3x(ȦiaE

a
i −NC −NaCa − Ai0Ci).

(2.53)
The Hamiltonian and the diffeomorphism constraints take the form

C =
EajEbk

√
detE

(
εijkF

i
ab − 2(1 + γ2)Ki

[aK
j
b]

)
,

Ca = Eb
kF

k
ba − (1 + γ2)Ki

aCi,

(2.54)

7In fact, the area in terms of the 3-metric is

α(S) =

∫
S

dσ1dσ2

√
det
(
qab

∂xa

∂σu
∂xb

∂σv

)
, u, v = 1, 2 (2.48)

With few manipulations, using the relations qabqcd − qacqbd = 1
2
εaceεbdfqq

ef and the definition of

the normal unit vector to the surface ne = εeab
∂xa

∂σ1
∂xb

∂σ2 , we obtain

α(S) =

∫
S

dσ1dσ2

√
ggabnanb =

∫
S

dσ1dσ2

√
e2eai e

binanb =

∫
S

d2σ
√
Eai E

binanb. (2.49)
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being
F i
ab = ∂aA

i
b − ∂bAia + εijkA

j
aA

k
b , (2.55)

the curvature of the Ashtekar connection, and

Ci = ∇aE
a
i = ∂aE

a
i + εijkA

j
aE

ak, (2.56)

the first class Gauss constraint generating the infinitesimal transformations
associated to the additional SU(2) gauge freedom.

This Hamiltonian formulation of GR will be the starting point to define
the Canonical formulation of LQG in the next Chapter.

2.2 Discrete Gravity

Born as a tool for performing complex relativistic calculations, discrete gravity
has been proved a convenient instrument in the development of a conceptually
consistent quantum theory of gravitation. For example, the standard construc-
tion of the quantum theory developed in Chapter 3 relies on a operational
discretization of the spacetime manifold. This corresponds to a substantial
cut of geometrical degrees of freedom. We should then expect that, once we
have defined our quantum model, the theory we obtain taking the classical
limit does not exactly resemble GR but rather a discrete version of it. The
following section is thus dedicated to the discrete formulations of gravity.

2.2.1 Regge Calculus

In order to simplify the study of general relativity, and in particular the calcu-
lation of the solutions of the Einstein field equations, Tullio Regge developed
in the early sixties a mathematical formalism which now goes by the name
of Regge Calculus [49]. The original idea was to develop a formulation of
General Relativity avoiding the use of co-ordinates. A strategy to do so is
by approximating the smooth geometry of spacetime using discrete building
blocks whose metric is internally flat. For the moment we consider the signa-
ture to be Euclidean, however the formulation supports a Lorentzian signature
as well. Let us consider a general D-dimensional surface whose geometry is
described by a metric gij(x) with i, j = 1, · · ·D. Intuitively we would expect
that such surface can be arbitrarily well approximated by a growing number
of D-dimensional polyhedra glued through their faces 8(see the 2d example in
Figure 2.1). Upon refinement, this approximation does not look exact if we
focus on the small details, however the broad picture will be quite satisfactory.

8Along the work we often refer to some fixed dimensional examples to get the reader familiar
with jumping back and forth into imagining different dimensions so to facilitate the comprehension
of the work.
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Figure 2.1: Approximation of a smooth 2-dimensional manifold M by a triangulation ∆.
The metric degrees of freedom are carried by the sides lengths. The curvature is distribu-
tional, peaked on the 0-dimensional hinges h and equivalent to the deficit angle δh.

The easiest way to perform such approximation is by means of a simplicial dis-
cretization. Formally a D-simplex σ is defined as the convex hull of its n + 1
vertices vi i.e.,

σ =
{
x =

n∑
i=0

λivi

∣∣∣ n∑
i=0

λi = 1 and λi ≥ 0 ∀i
}
. (2.57)

Let us notice that at any point of the manifold one needs D(D+1)/2 numbers
to fix the metric gij(x). This corresponds also to the number of side lengths
lij which uniquely identify a D-simplex, the lij being defined as the Euclidean
distance between vi and vj. We can then approximate the surface in a local
neighborhood around a point x with a D-simplex σ. The size of the simplex
defines the resolution of the picture. The metric inside a D-simplex is assumed
to be flat. Thus, we do not see any curvature d.o.f. inside σ.

We can glue together two D-simplices σ1 and σ2 through their boundaries
so that they meet at a (D− 1)-simplex. If the side lengths at the intersection
σ1 ∩ σ2 agree, than the two discrete metrics can be merged to a flat metric on
σ1 ∪ σ2.

More than two D-simplices glued together do not necessarily have a flat
metric anymore. In fact, in a cluster of D-simplices the metric is flat anywhere
except for (D − 2)-simplices where there is distributional curvature. A (D −
2)-simplex is also called hinge h given that it ‘hinges’ together multiple D-
simplices. Then, a vector parallel transported on a closed loop around a hinge
h does not necessarily point in the same direction. It can come back rotated
by a deficit angle

δh = 2π −
∑
σ>h

Θσ
h, (2.58)

where Θσ
h is the dihedral angle at the corner of σ which hinges on h (see

Figure 2.1). Summarizing, our manifold is approximated by a piecewise linear
flat metric. The edge lengths completely determine the geometric properties
of the simplicial space. The deficit angle δh(lij) takes the role of the curvature.



24 CHAPTER 2. CLASSICAL THEORIES OF GRAVITY

The Regge Calculus formulation of discrete gravity, describes the dynamics
of a simplicial discretization in terms of 4-dimensional building blocks. The
dynamical variables are the edge lengths lij. The action that describes the
dynamics of the discrete geometry is the Regge action

SRegge[lij] =
1

16πG

∑
h

Ahδh. (2.59)

Its variation with respect to the edge lengths produces the analog of Einstein’s
equations. As it was shown by Regge, the contribution of the variation of the
deficit angles δh for all h vanishes so that we can write the equations of motion
as ∑

h

∂Ah(lij)

∂lij
δh = 0. (2.60)

A handy introduction on Regge calculus with a discussion on its continuum
limit i.e., the limit of infinite refinement of the lattice, can be found in [50].

In Chapter 5, we will explicitly prove the convergence of the Regge equa-
tions of motion to the Einsteins solutions, in the specific case of a discrete
model describing a isotropic and homogeneous universe whose equations of
motion nicely converge to Friedmann ones at first order.

2.2.2 Dual discretization: 2-complexes and graphs

In the usual formulation of the quantum theory that we are going to introduce
in the next chapter, rather than the simplicial discretization presented above
one uses its dual representation in terms of 2-complexes and graphs.

A 2-complex K is a collection of vertices, edges and faces glued together so
to carry some of the combinatorial information of the original discretization
∆. To construct it, we associate a vertex v ⊂ K to each D-simplex σ ⊂ ∆.
Then an edge e ⊂ K is associated to every (D − 1)-simplex so that any time
two D-simplices meet into a (D− 1)-simplex, then two vertices are connected
by an edge. Finally, a face is dual to a (D− 2)-simplex (i.e., an hinge) so that
every time that a hinge is shared by a certain number of (D − 1)-simplices,
then an equivalent number of edges define the boundary of a face f ⊂ K. One
might find useful the 2d and 3d examples depicted in Figure 2.2.
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Figure 2.2: On the left, a 2d discretization ∆ (in black) in terms of five triangles. The
dual 2-complex K (in blue) is made of vertices, edges and faces. For each triangle in ∆ we
have a dual vertex in K. Any time two triangles meet on a common side, then the two dual
vertices are connected through an edge (dual to the side). The closure of the five bulk edges
defines the face dual to the hinge h in the bulk (a point). On the right, a 3d discretization
∆ consists of three tetrahedra glued together. Then the dual 2-complex K has three vertices
connected via their common edges. The closure of the three central edges defines the face
dual to the hinge h in the bulk (i.e., the dashed common side of the three tetrahedra.

A manifoldsM with boundary ∂M is triangulated in such a way that if the
bulk region is approximated through a simplicial discretization ∆ in terms of
n-simplices, then its boundary is described by a discretization ∂∆ in terms of
(D− 1)-simplices. Or, in the dual language, if a 2-complex K forms a skeleton
for the bulk geometry, then the bones of the boundary are determined by a
graph ΓK.

Figure 2.3: On the left, a 1d boundary discretization ∂∆ (in black) in terms of five sides.
The dual graph ΓK (in red) is made of a node for each side, and links connecting them, dual
to points (i.e., the corners linking two sides). On the right, for a cleaner representation we
have slightly unfolded the 2d boundary ∂∆ of the 3d cluster ∆ in Figure 2.2. Pulling up the
arrows and connecting them at the top one recreates the drawing. The boundary consists
of six triangles glued together. Then the dual graph ΓK has six nodes connected via links.
Each node is 3-valent reflecting the fact that a triangle is bounded by three sides.
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In general, a graph is a reticulum made of nodes n connected by links `.
For example, since the graph ΓK is dual to ∂∆, then its nodes n are associated
to (D − 1)-simplices and its links ` are dual to (D − 2)-simplices.

In Figure 2.3 we show the same 2d and 3d objects depicted in Figure 2.2, but
now we respectively remove their bulk geometry and just show their boundary
∂∆ and the associated dual graph ΓK.

It is also possible to define a boundary graph Γv around each vertex v dual
to a D-simplex σ. This is done by assigning a node na to each (D−1)-simplex
∂σa in the boundary of σ and connecting the nodes via links `ab any time ∂σa
and ∂σb meet at a hinge hab = ∂σa ∩ ∂σb. In Figure 2.4 a 3d example is shown
and the resulting graph Γv is drawn in red. In order to avoid confusion we will
always draw a discretization ∆ in black, a 2-complex K in blue and a graph Γ
in red.

Figure 2.4: On the left a vertex v ∈ K dual to a tetrahedron σ. On the right the boundary
graph Γv around v.

An orientation can be defined on Γ by specifying target t` and source s`
nodes for each link `. This will then be represented by arrows on the links.

All these concepts have a natural extension to discretizations in terms of
general polytopes. In this work we will often work with non-simplicial dis-
cretizations.

2.2.3 Partial ordering of graphs

We have defined a graph Γ starting from a discretization ∆ of a manifold M.
Here we will instead give a more abstract definition of graph from which a
geometric interpretation will eventually emerge. In fact, these are two com-
plementary views of the general picture. Let us take a compact 3-dimensional
surface Σ. A path on Σ is an equivalence class of oriented curves γ : [0, 1]→ Σ
with no self intersection and piecewise analytic. A graph Γ is defined as a set
of paths such that two curves intersect at most in their respective end points
e.g.,
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In the notation of the previous section, such intersection is called a node n
while a path is another way of defining a link `.

Among graphs there exists a partial ordering so that one can say that Γ ≤ Γ′

if and only if all nodes n in Γ are also nodes n′ in Γ′ and all links ` in Γ can be
constructed from links `′ in Γ′ by inverting the orientation, removing links or
concatenating several links together. These operations define a coarse graining
of Γ′ into Γ. Then if we call N the number of nodes and L the number of links
in Γ one has that Γ′ is such that N ≤ N ′ and L ≤ L′. Similarly, upon partial
ordering, one can always obtain Γ′ from Γ by a finite sequence of moves. Take
for example Γ to be the graph in the figure above. There exists three types of
moves defining the refinement of a graph. One can add a link e.g.,

or subdivide a link inserting a node e.g.,

or invert the orientation of a link e.g.,

2.3 Discrete Geometric Variables

At the beginning of this chapter we have looked at different formulations of
GR, each defined by a characteristic set of dynamical variables entrusted with
the task of describing the evolution of spacetime. Here we show how it is
possible to distribute these variables on the skeleton structures that we have
just defined.
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2.3.1 Distribution of BF variables on a 2-complex

Early in this chapter we have introduced the topological BF theory described
by the action (2.20) and we have seen how it is related to GR. Now, we want
to define BF theory on a triangulation ∆ of a manifold M. The idea is to
distribute the variables B and ω on the 2-complex K dual to ∆.

Let us work in the general case of n-dim spacetime and local gauge group
G. Then both the B-field and the connection ω have values in the Lie algebra
g. Since the B-field is a (D − 2)-form, it fits a smearing procedure which
distribute it on the (D−2)-cells of ∆ which are dual to the faces f ⊂ K. Then
we define

Bf =

∫
f∗
B ∈ g. (2.61)

The connection ω is instead a 1-form that can be naturally ‘smeared’ along
edges e ⊂ K. It defines the holonomy

he[ω] = P
∫
e

exp
(
− ω

)
∈ G. (2.62)

An action for the discrete BF variables can be written in the form

SKBF[he, Bf ] ≡
∑
f

Tr(Bf ·Hf ), (2.63)

where
Hf = Hf [{he⊂f}] = he1 , · · · , heR , (2.64)

denotes the holonomy around a face f ⊂ K.

Figure 2.5: The holonomy Hf associated to a face f is the product of the holonomies of
its boundary edges.

The action (2.63) is indeed a discrete version of (2.20) written in the new
variables. The integral has been substituted by a sum over faces f , which in
any dimension are dual to hinges h ⊂ ∆ i.e., the (D− 2)-cells where curvature
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is distributed. Since the holonomy of the connection around closed loops is a
measure of curvature, the matrix Hf resembles a discrete version of the smooth
curvature F . The inner product 〈B,F 〉 is written in the new variables as the
inner product 〈Bf , Hf〉 = Tr(Bf ·Hf ) for matrices 9.

Example: Discrete 3d gravity

We have already mentioned that continuous BF-theory is equivalent to GR in
3d. Then, let us compare it with discrete BF-theory in 3d by looking at their
equations of motion. The gauge group is G = SU(2) and the generators of the
algebra are Ji for i = 1, 2, 3 (see Appendix A for details). Then we can write
the discrete fields as

he = exp(Xe
i J

i),

Bf = bfi J
i,

Hf = af01+ afi J
i, with (af0)2 +

∑
i

(afi )
2 = 1.

(2.65)

In these components the action (2.63) takes the form SKBF =
∑

f a
f
i (b

f )i. De-

riving it with respect to the components bfi of the Bf -field we get the first
equation of motion

δSKBF

δbfi
= 0 ⇒ afi = 0 ⇒ Hf = ±1. (2.66)

The positive solution corresponds to the continuous equation of motion (2.21)
i.e., vanishing of curvature. Deriving the action (2.63) with respect to the
components Xe

i of he and imposing the first equation of motion (2.66) we get
instead

δSKBF

δXe
i

= 0 ⇒
∑
f⊃e

Tr(bfj J
jJ iHf ) = 0 ⇒

∑
f⊃e

bfi = 0, (2.67)

for all the components i = 1, 2, 3. This corresponds to the equation of motion
(2.22). In fact, by the divergence theorem, we can write∫

σ

dB =

∫
∂σ

B, (2.68)

where σ is a 2d surface and ∂σ is its 1d boundary. On a simplicial discretization
the integral over σ becomes a sum over triangles and the integral over ∂σ is

9The dot product in (2.63) is well defined for matrix groups. We work in the fundamental
representation of the group G so that the matrices Bf ∈ g and Hf ∈ G have the same dimension.
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a sum over the sides of a triangle. On a 2-complex the last term corresponds
exactly to (2.67) i.e., ∑

f⊃e

Bf = 0. (2.69)

Discrete BF theory on the boundary

As we have seen in section 2.2.2, a discretization ∆ with boundary ∂∆ can be
described on a 2-complex K inducing a graph ΓK dual to the boundary. The
induction is obtained by noticing for each face f ⊂ K there is a corresponding
link ` ⊂ ΓK so that the discrete Bf ∈ g variable becomes B` ∈ g while on the
same link we can smear the boundary holonomy h` ∈ G.

In the next chapter we are interested in defining the 4d Euclidean theory.
Then the we get at each link of the boundary graph a set of phase space
variables

(h`, B`), (2.70)

where h` ∈ Spin(4) ' SU(2) × SU(2) is a group element and B` ∈ spin(4) '
su(2)⊕ su(2) is an algebra element. These become operators in the quantum
theory. In order to define the model we must however impose some restriction
at the quantum level so that, at least in the classical limit, the simplicity
constraints (2.30) are satisfied and the BF topological theory reduces to GR.

Discrete simplicity constraints

In 4-dimensions the imposition of the simplicity constraints (2.26) is a fun-
damental requirement to recover GR. Thus, in the discrete setting that we
are defining, it is important to formulate them as constraints on the discrete
variables. In a 4d simplicial discretization each component (µν) of the smooth
field BIJ

µν is associated to a triangles t ⊂ ∆ or equivalently to a face f ⊂ K, as
given in (2.61). While the smooth constraint was defined in every spacetime
point, here we define it at every 4-simplex and it takes the form of a constraint
on the 10 faces adjacent to v.

From (2.26) we can directly define the following set

• for each face f ⊂ v we have the triangle or diagonal simplicity constraint

εIJKLB
IJ
f B

KL
f

!
= 0, (2.71)

which says that Bf is a simple bivector i.e., of the form u ∧ v defining a
geometrical plane (Appendix A).

• for all f, f ′ ⊂ v sharing a common edge e there is a tetrahedron or cross
simplicity constraint

εIJKLB
IJ
f B

KL
f ′

!
= 0, (2.72)
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saying that out of the four vectors defined by BIJ
f and BKL

f ′ only three
are independent and span a 3d space.

• for any f, f̄ ⊂ v such that they are attached only through v there is a

4-simplex or volume simplicity constraint εIJKLB
IJ
f B

KL
f̄

!
= ±12V ,

where V has the interpretation of the 4-volume of the 4-simplex [30]. These
constraints are quadratic in the B-field, however in [40] it was shown that the
first two can be written as linear simplicity constraints

CI
f = nJ

(
∗BIJ

f −
1

γ
BIJ
f

)
!

= 0, (2.73)

upon imposition of the closure constraint∑
f⊃e

BIJ
f = 0, (2.74)

where the sum is over triangles of the same boundary tetrahedron. Further-
more these conditions are sufficient to guarantee also the validity of the volume
simplicity constraint in the case of a simplicial discretization.

The spin(4) = su(2) ⊕ su(2) elements BIJ
f can be decomposed in terms of

the generators of rotations Lif and boosts Ki
f of the two respective su(2) sub-

algebras. In terms of the bivector BIJ
f they read Ki

f = Bi0
f and Lif = 1

2
εijkB

jk
f .

Then one has the constraint

Di
f = Lif −

1

γ
Ki
f

!
= 0, (2.75)

which is the discrete version of the condition (2.30) defined on the boundary
of a manifold.

The quantization of discrete BF theory is the starting point of the covari-
ant approach to LQG. Here, the quantum states are defined on the boundary
of the manifold and therefore, at least in the classical limit, they should satisfy
the condition (2.75). The dynamics of the states is encoded in the transition
probabilities among the states and is defined in terms of a sum over bulk ge-
ometries. There exists different models developed in the covariant approach
and governed by such path integral dynamics. They are also called Spin Foam
Models, and they mainly differ about how the classical constraints (2.75) are
implemented at the quantum level. This is the topic of Chapter 4.

2.3.2 Distribution of Ashtekar variables on a graph

In the Hamiltonian formalism we have sliced spacetime into 3d spatial hyper-
surfaces Σt with an orthogonal time axis. On Σt we have studied the Ashtekar
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variables (Aia,E
a
i ) which are a set of canonically conjugated variables. Now,

we want to distribute them on oriented graphs ΓΣt which are dual to Σt. Let
us write the Ashtekar connection as

A(x) = Aia(x)Jidx
a, (2.76)

where Ji are the generators of the su(2) Lie algebra. This is a 1-form, thus we
can go over holonomies by integrating it along paths γ ⊂ Σt, or we should say
along links ` ⊂ ΓΣt . We get

h`[A] = P exp
(
−
∫
`

A
)
∈ SU(2). (2.77)

This object measures the discrepancy of the geometric data undergoing parallel
transport. The holonomy satisfies the following nice properties:

• it is invariant under reparametrization of the curve i.e., upon φ : [0, 1]→
[0, 1] with φ[0] = 0 one has h`◦φ[A] = h`[A].

• it satisfies the concatenation rule: given two concatenated curves `1 and
`2, one has h`1◦`2 [A] = h`1 [A] · h`2 [A].

• it satisfies the inversion relation h`−1 [A] = h`[A]−1.

• it has a particularly likable behavior under the gauge transformations
generated by the Gauss constraint (2.56) i.e.,

h′`[A]→ gt` · h`[A] · g−1
s`
, (2.78)

being t` and s` the target and source nodes of the link.

• is invariant under diffeomorphisms φ generated by the second constraint
in (2.54) i.e., h`[φ(A)] = hφ(`)[A]

Also the densitized triad can be distributed on a space skeleton. Let us
first notice that from the densitized triad (2.45) we can define a 2-form

Ei ≡ εabcE
a
i dxbdxc, (2.79)

that can be naturally smeared on 2d surfaces S ⊂ Σt as

Ei(S) ≡
∫
S

εabcE
a
i dxbdxc =

∫
S

naE
a
i d2σ, (2.80)

where σ1, σ2 are some local coordinates on the surface S and na = εabc
∂xb

∂σ1

∂xc

∂σ2

is a normal vector. The quantity Ei(S) represents the flux of the densitized
triad across a surface S ⊂ Σt, which we recall being dual to a link ` ⊂ ΓΣt).
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Notice that, for each link ` ⊂ ΓΣt the area (2.50) of the dual surface S` = `∗

can be written in terms of the 2-form (2.79) and takes the neat form

α(S`) =

∫
S`

√
EiEi. (2.81)

The holonomy (2.77) and the flux (2.80) form a pair of canonically conju-
gate variables on `

(h`[A], Ei(S`)). (2.82)

In the quantum theory they become operators defining the so-called holonomy-
flux algebra.

It is finally time to work out a quantization for the classical theories re-
viewed above. In the next chapter we will present the canonical and covariant
formulations of Loop quantum gravity and explain why and how they rely on
the discrete structures just introduced.
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Chapter 3

Quantum Theories of Gravity

In this chapter we give a general introduction on the quantization of gravity
as given in Loop Quantum Gravity (LQG). Starting from the Hamiltonian
formulation of GR we apply the Dirac quantization procedure which defines
the Canonical formulation of LQG [47, 31]. We then work out a set of Covariant
formulations of LQG which define the so called Spin Foam Models [51, 30].

3.1 Canonical formulation: Loop Quantum Gravity

The canonical approach to LQG starts from the Hamiltonian formulation of
GR as given in the Ashtekar variables, and proceeds to the quantization by
following the Dirac program [52]. According to it, one would like to promote
the Ashtekar phase space variables to quantum operators and to build a kine-
matical Hilbert space Hkin consisting of a set of functionals of the connection
ψ[A] which are square integrable with respect to a suitable (gauge invariant
and diffeomorphism invariant) measure on the space U of all SU(2) connec-
tions. On these wave functionals the Ashtekar connection A ∈ U would act as
a multiplicative operator while the densitized triad would be a derivative op-
erator E = −i δ

δA
. The constraints (2.54) and (2.56) would then be promoted

to quantum operators on Hkin, and imposed at the quantum level to define the
physical Hilbert space of the theory Hphys [53]. Eventually one would like to
define a complete set of observables for the quantum theory. However, working
with configuration variables on U comes with some problems e.g., defining an
invariant measure on the Hilbert space. The way out adopted by LQG con-
sist of switching to the holonomies as the basic variables or, rather, quantum
operators.

35
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3.1.1 The space of generalized connections

The key observation here is that it would be possible to uniquely reconstruct
each element A ∈ U knowing the holonomy h`[A] (given by (2.77)) for all the
paths ` in Σ. The strategy is then to promote the holonomies to quantum op-
erators and then simplify the problem of constructing the kinematical Hilbert
space by considering holonomies along a finite set of curves i.e., building the
theory on finite-size graphs Γ where the partial Hilbert space HΓ have a well
defined measure µΓ. The kinematical Hilbert spaceHkin would then be defined
as the projective limit of HΓ for infinite refinements Γ→∞ 1.

Let us define the partial configuration space as UΓ = SU(2)L⊂Γ being L the
number of links in Γ. Then given two oriented graphs such that Γ ≤ Γ′, there
exists a projection map πΓ′Γ : UΓ′ → UΓ defined by

πΓ′Γ({h`′})` =
←−∏
`′⊂`

h
[`,`′]
`′ , (3.1)

where the arrow represent the order of the product from the right to the left,
as befits parallel transports, while [`, `′] = ±1 is the relative orientation of `
and `′. The projector πΓ′Γ formalizes the coarse graining procedure Γ′ → Γ
and determines how the fine degrees of freedom in UΓ′ combine and reduce to
the coarse degrees of freedom on UΓ. In particular it defines the operations

• addition: πΓ′Γ(h1 · · ·hL+1) = (h1 · · ·hL)

• subdivision: πΓ′Γ(· · · , hi, hj, · · · ) = (· · · , hi · hj, · · · )
• inversion: πΓ′Γ(· · · , hi, · · · ) = (· · · , h−1

i , · · · )
which, according to the definitions given in the previous chapter, are necessary
to move in the partial ordered set of graphs.

For Γ ≤ Γ′ ≤ Γ′′ the projector (3.1) satisfies the condition

πΓ′ΓπΓ′′Γ′ = πΓ′′Γ. (3.2)

Using πΓ′Γ we can glue together all the finite-dimensional spaces UΓ to form
the projective limit

U = lim
Γ←
UΓ ≡

{
{aΓ}Γ

∣∣ aΓ ∈ UΓ, πΓ′ΓaΓ′ = aΓ ∀ Γ ≤ Γ′
}
. (3.3)

The space U is called the space of generalized connections and contains all the
‘quantum’ continuum SU(2) connections {aΓ}Γ. In other words, a generalized

1See for example [54] for a short review on the definition of projective limit and its application
in LQG.
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connection is equivalent to an assignment of h` ∈ SU(2) to any path ` ⊂
Σ. Strictly speaking, this space is a distributional extension of U , containing
elements which do not come from a connection. Now, the holonomy itself
becomes the fundamental variable. Let us notice that the limit in (3.3) is not
an analytic one. Rather, a continuum generalized connection is given by the
collection of all its partial representatives aΓ.

We can also define the new projector ΠΓ : U → UΓ such that

ΠΓ({aΓ}Γ) ≡ aΓ, (3.4)

and satisfying the rule πΓ′ΓΠΓ′ = ΠΓ.

3.1.2 Partial Hilbert spaces

The challenge now is to proceed in such a way that partial Hilbert spaces built
on different graphs are consistently related to each other and consequently
there exists a way to reach the continuum limit i.e., the limit of infinite refine-
ment Γ→∞.

The resolutive step is to require the Hilbert space HΓ to be built of cylin-
drical functions of generalized connections. A function f : U → C is cylindrical
over a graph Γ if there exists fΓ : UΓ → C such that

f({aΓ}Γ) = fΓ(aΓ), (3.5)

which is equivalent to say f = fΓΠΓ. One can easily check that, if f is
cylindrical over Γ, then it is also cylindrical over all Γ′ with Γ ≤ Γ′ and the
following relation holds fΓ′ = fΓπΓ′Γ. Most notably, the set Cyl of cylindrical
functions over a partial ordered set of graphs forms a vector space. In fact,
given f ∈ CylΓ cylindrical over Γ and f ′ ∈ CylΓ′ cylindrical over Γ′, then
both f and f ′ are cylindrical on Γ′′ ≥ Γ,Γ′. The same is true for their sum
f + f ′ ∈ CylΓ′′ .

2

2A perfect example of cylindrical function is the Wilson loop. This operator is in fact resilient to
the operations defining the partially ordered set which were introduced in the previous chapter. Take
for example a graph Γ consisting of a single closed loop `. The associated Wilson loop W`[A] ∈ CylΓ
is defined as

W`[A] = Tr(h`[A]). (3.6)

On a graph Γ′ obtained by a subdivision of the loop into ` = `1 ◦ `2 the Wilson loop becomes

W`=`1◦`2 [A] = Tr(h`1 [A] · h`2 [A]), (3.7)

and is a function in CylΓ′ . It can be also be defined as a cylindrical function on a graph Γ′′ built
from Γ′ by adding a link `3, provided that the contribution of the new holonomy h`3 [A] is trivial
i.e., it carries no curvature. Indeed, the physics that this operator describes it is supposed to be
the same, independently of how much we refine the graph. Notice also that, thanks to the cyclicity
of the trace, the Wilson loop is invariant under gauge transformations g ∈ SU(2). Cylindrical
functions satisfying this invariance will be of fundamental importance when defining a basis of the
Hilbert space.
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The partial Hilbert space HΓ consists of functions ψΓ,f : UΓ → C which are
cylindrical over Γ and defined by

ψΓ,f [A] ≡ fΓ(aΓ) = fΓ(h`1 [A], · · · , h`L [A]) ∈ CylΓ. (3.8)

Since these are functions of L elements of SU(2) we can use the Haar measure
dµH to define the inner product

〈ψΓ,f |ψΓ,f ′〉 =

∫
SU(2)L

dµ⊗LH fΓ(h`1 [A], · · · , h`L [A])f ′Γ(h`1 [A], · · · , h`L [A]). (3.9)

Summarizing we finally have

HΓ = L2(UΓ, dµΓ), (3.10)

having defined dµΓ ≡ dµ⊗LH .
The measure dµΓ satisfies the so-called cylindrical consistency condition for

the measure
(πΓ′Γ)∗dµΓ = dµΓ′ . (3.11)

In other words it can be consistently pushed forward into finer graphs in a
partial ordered set via the projector πΓ′Γ. The collection of measures {µΓ}Γ

comes from a unique 3 measure on U which is called the Ashtekar-Lewandowski
measure dµAL [57].

3.1.3 Kinematical embedding maps

In order to relate Hilbert spaces on different graphs Γ and Γ′ with Γ ≤ Γ′ we
define the embedding maps

ιΓΓ′ : HΓ → HΓ′ , (3.12)

such that
(ιΓΓ′ψΓ)(aΓ′) ≡ ψΓ(πΓ′Γ(aΓ′)). (3.13)

For Γ ≤ Γ′ ≤ Γ′′ the embedding maps satisfy the consistency condition 4

ιΓ′Γ′′ ◦ ιΓΓ′ = ιΓΓ′′ . (3.14)

The nice feature of the embedding maps ιΓΓ′ is that they are isometries i.e.,
they preserve the Hilbert space inner product (3.9). To prove this statement
one needs to study only the three cases of Γ′ obtained from Γ via the operations
of addition, subdivision and inversion. This is not shown explicitly here for
compactness.

3See LOST theorem [55, 56].
4This is the usual construction adopted in LQG, where the embedding maps are defined at the

kinematical level with respect to the Ashtekar-Lewandowski measure dµAL. However it has been
argued, with good reasons, that such embedding maps should be defined at the dynamical level
[58, 59]. We will come back on this point in Chapter 6.
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3.1.4 The kinematical Hilbert space

The kinematical Hilbert space is defined as

Hkin ≡
⊔

Γ⊂Σ

HΓ

/
∼, (3.15)

i.e., the disjoint union of the partial Hilbert spaces modulo the equivalence
relation ∼ which is defined as follows: two states ψΓ and ψ′Γ′ are equivalent
if there exists a Γ′′ with Γ ≤ Γ′′ and Γ′ ≤ Γ′′ such that ιΓΓ′′ψΓ = ιΓ′Γ′′ψ

′
Γ′ .

In other words, two states on different discretizations Γ,Γ′ are equivalent if
they can be refined to the same state. This notion of inductive limit allows
us to embed any discrete state ψΓ into the continuum Hilbert space Hkin via
an embedding map. So defined, the space (3.15) corresponds to the space of
wave functionals of generalized connections

Hkin = L2(U , dµAL), (3.16)

with the Ashtekar-Lewandowski measure dµAL i.e., the measure whose projec-
tion to any UΓ yields the corresponding Haar measure dµΓ ≡ dµ⊗LH , being Γ a
graph with L links.

3.1.5 Spin Networks

Under the light of the above theoretical framework, here we define the or-
thonormal basis of gauge invariant functionals for the Hilbert space. Since
we are working with functions of SU(2) elements we can use the Peter-Weyl
theorem (Appendix A) which says that given a function f : SU(2) → C we
can decompose it into unitary representations of SU(2) as

f(h) =
∑
j∈Z

2

j∑
mn=−j

Cj
mnD

j(h)mn, (3.17)

being Cj
mn the coefficients

Cj
mn = (2j + 1)

∫
SU(2)

dµHf(h)Dj(h)mn, (3.18)

and Dj(h) the Wigner-D matrices whose elements form a complete orthonor-
mal set with respect to the Haar measure. Then, a generic cylindrical function
(3.8) defined over a graph Γ consisting of N nodes connected by L links, can
be written as a sum

ψΓ =
∑

ji,mi,ni
∀i=1,··· ,L

Cj1,··· ,jL
m1,··· ,mL,n1,··· ,nLD

j1(h`1)m1n1 , · · · ·DjL(h`L)mLnL . (3.19)
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Now, we want to impose the Gauss constraint (2.56) on the states of the

Hilbert space i.e., we demand that CiψΓ,f [A]
!

= 0 so to define SU(2) gauge in-
variant states in the kinematical partial Hilbert space HΓ. Since the holonomy
transforms with (2.78), the invariance can be imposed as a group average of
(3.8) at each node n ⊂ Γ

ψΓ,Inv =

∫
SU(2)N

N∏
n=1

dgnfΓ

(
gs(`1)h`1g

−1
t(`1), · · · , gs(`1)h`Lg

−1
t(`L)

)
. (3.20)

Similarly, working in the Wigner D-matrices decomposition we can implement
the group averaging by placing at each node a Haar projector

P n
Inv =

∫
dg
∏
`⊃n

Dj`(g), (3.21)

where the product is over links meeting at the node n. Let us call Vj` the base
space where the representation Dj`(g) acts. Then, the projector P n

Inv acts on
the tensor product of base spaces to make it invariant i.e.,

P n
Inv :

⊗
`

Vj` −→ InvSU(2)

⊗
`

Vj` . (3.22)

The elements of InvSU(2)

⊗
` Vj` are called intertwiners |ι〉.

Take for example the simple case of a 3-valent node. Each link ` ⊃ n carries
a representation labeled by a spin j`, ` = 1, 2, 3. In this case a basis

⊗
` Vj` is

the tensor product |j1m1〉⊗|j2m2〉⊗|j3m3〉 and the invariant space is spanned
by a unique intertwiner so that any state is proportional to

|ι〉 =
∑

m1,m2,m3

ιm1m2m3|j1m1〉 ⊗ |j2m2〉 ⊗ |j3m3〉. (3.23)

In general, if the valence of a node is Ln > 3 (i.e., there are Ln links at the
node) one has a higher dimensional invariant space spanned by intertwiners
which are tensors with Ln indices m1, · · · ,mLn .

The intertwiner basis can be used to define the Haar projector (3.22) as a
resolution of the identity on the invariant subspace

P n
Inv = 1InvSU(2)

⊗
` Vj`

=
∑
ι

|ι〉〈ι|. (3.24)

Inserting this operator into (3.19) we can express the coefficients

Cj1,··· ,jL
m1,··· ,mL,n1,··· ,nL = Cj1,··· ,jL(ι1)m1··· · · · (ιN)···nL , (3.25)
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in terms of N intertwiners, one for each node n ⊂ Γ. The generic gauge
invariant state ψΓ ∈ HΓ can then be written as a linear superposition of states

ψΓ =
∑
j`

Cj`ψΓ,j`,ιn , (3.26)

where
ψΓ,j`,ιn =

⊗
n

ιn
⊗
`

Dj`(h`), (3.27)

is called spin network state and provides a basis element for the invariant
partial Hilbert space HΓ.

In total generality, a spin network is an oriented graph Γ whose links are
associated with irreducible representations of a compact Lie group G (spins j`
for G = SU(2)) and whose nodes are associated with intertwiners ιn of the link
representations adjacent to it.

We omit here the discussion about the implementation of the vector and
diffeomorphism constraints, but the reader is referred to the reviews [30, 48].

3.1.6 Schrödinger representation of holonomy-flux algebra

Let us recall from Chapter 2 that the holonomy and the flux are conjugate
variables (2.82), and that in the quantum theory they are operators acting
on functions ψΓ[h`[A]] ∈ HΓ. It is possible to define their action e.g., in
the Schroedinger representation. Details on the derivation of the following
formulas are found e.g., in [48]. Let us work for simplicity in the fundamental
representation where D1/2(h`) = h`. In the Schrödinger representation, the

holonomy operator ĥγ[A], defined on a path γ, acts on the holonomy along a
link ` as

ĥγ[A]h`[A] = hγ[A]h`[A]. (3.28)

The flux Êi(S) associated to a surface S acts instead as a derivative operator

Êi(S)h`[A] = −i~γ
∫
S

d2σna
δh`[A]

δAia(x(σ))
= ±~γh`1 [A]Jih`2 [A], (3.29)

where we are using the notation of formula (2.80), Ji are SU(2) generators,
`1, `2 are two new edges defined by the point where the densitized triad (2.45)
acts and are such that ` = `1 ◦ `2. The sign ± depends on the orientation of
` and S. Equation (3.29) vanishes when the link ` is tangential to the surface
S or when it does not puncture the surface i.e., S ∩ ` = 0. The scalar product
of two fluxes acts on the holonomy as

Êi(S)Êi(S)h`[A] = ~2γ2h`1 [A]J iJih`2 [A]

= ~2γ2C2h`1 [A]h`2 [A] = ~2γ2C2h`[A],
(3.30)
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being C2 = J2 the Casimir of SU(2). In analogy with the expression above, in
a generic representation one finds

Êi(S)Êi(S)Dj`(h`) = ~2γ2j(j + 1)Dj`(h`). (3.31)

Always in [48], the commutation relations among holonomy and flux are
derived.

3.1.7 Discreteness of quantum geometry

As we have seen in (2.81), classically we can define the area of a surface S
dual to a link in terms of the flux (defined at the link). Suppose that we
want to evaluate the area of a generic 2d surface S. Then a strategy consists
in puncturing this surface with N links `a of a graph, each one dual to a
subsurface S`a . All together, these dual subsurfaces cover the total surface
and then provide a triangulation for S ' ∪aS`a . According to (2.81), the
approximated surface has area

αN(S) =
N∑
a=1

√
Ei(S`a)E

i(S`a). (3.32)

The area of S is then defined as the infinite refinement limit

α(S) = lim
N→∞

αN(S). (3.33)

In the quantum theory, the area becomes an operator α̂(S), defined by simply

upgrading the flux to a quantum operator Êi(S). According to (3.31), its
action on a state ψΓ[h`[A]] ∈ HΓ is given by

α̂(S)ψΓ = lim
N→∞

N∑
a=1

√
Êi(S`a)Ê

i(S`a)ψΓ =
∑
p∈S∪Γ

~
√
γ2jp(jp + 1)ψΓ, (3.34)

where in the last term the sum is over punctures p made by the graph Γ on the
surface S. Notice that the finite size of the graph is the reason why the limit
disappears. In other words, fixing a graph corresponds to fixing the accuracy
at which we can look at the physics of a system.

From formula (3.34) we see that spin networks are eigenstates of the area
operator. However, the most striking observation is that formula (3.34) offers
a genuine prediction about the eigenvalues of the area operator. Namely, the
spectrum is discrete and, restoring the Newton’s constant, the area can only
exist in quanta proportional to the squared Plank length ~G. A similar result,
with some further complication, holds for the spectrum of the volume operator
[60, 61]. When we talk about discreteness of quantum spacetime in LQG, we
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do not refer to the fact that the theory is built on a discretization (or rather
on the dual graph). Instead, we refer to the discreteness of the eigenvalues of
geometric operators. These results do not depend in fact on the fineness of the
base graph Γ or, in other words, there will always be a minimal area element
proportional to the Plank length squared.

3.2 Covariant formulation: Spin foams

The quantum theory defined in the covariant formulation consists of two main
ingredients. The first is the kinematic defined by a boundary Hilbert space
describing states of quantum geometry. The Hilbert space is built from the
discrete BF variables at the boundary (2.70), which in the quantum theory
are operators. In the next chapter we will see that in the 4d Euclidean theory
they correspond to the spin network states of the canonical theory.

The second ingredient is the dynamics, formulated as a path integral over
states of geometry. Then, the transition probability between two quantum
geometries is given by a partition function. We can built it on a 2-complex K
in terms of the discrete action (2.20) describing the dynamics of the smeared
BF variables (2.62) and (2.61). One then writes

ZKBF =

∫
dhe

∫
dBfe

i
∑
f Tr(Bf ·Hf ), (3.35)

where there is an integration with respect to the Haar measure dhe for each of
the E edges e ⊂ K, and an integration in terms of the Lebesgue measure dBf

for each of the F faces f ⊂ K. Integrating with respect to the latter, we get 5

ZKBF =

∫
dhe

∏
f

(
δ(Hf ) + δ(−Hf )

)
. (3.37)

According to Peter-Weyl theorem, given a compact group G, we can de-
compose the delta function δ(g) with g ∈ G, into a sum of irreducible repre-
sentations ρ(g) of dimension dρ. Explicitly,

δ(g) =
∑
ρ

dρχ(g), (3.38)

being
χ(g) = Tr(ρ(g)), (3.39)

5In fact, writing the holonomy (2.64) as Hf = 1 cos θ + i(n̂ · ~σ) sin θ and Bf = i(~b · ~σ) we find∫
dBfe

iTr(Bf ·Hf ) ∼
∫

dBfe
−i(n̂·~b) sin θ, (3.36)

which vanishes apart in the case sin θ = 0 i.e., Hf = ±1 which corresponds to
∫

dBf =∞.
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the character of the irreducible representation ρ(g).
In what follows we consider just the first delta function in (3.37) and pro-

ceed to the evaluation of the integral 6. Then flatness is enforced in the form of
trivial parallel transport around each face i.e., Hf = 1. The partition function
becomes

ZKBF =

∫
dhe

∏
f

∑
ρ

dρχj(Hf )

=
∑
ρf

∫
dhe

∏
f

dρfTr
(
ρf (he1 · · ·heR)

)
,

(3.40)

where ρf is a representation acting on group elements defined on the face f .
The holonomy Hf is expanded using the same notation as in Figure 2.5. We
can also expand the representation of the product of holonomies in (3.40) as
the product of the representations

ρf (he1 · · ·heR) = ρf (he1) · · · ρf (heR), (3.41)

In a D-dimensional simplicial discretization, for each edge e ⊂ K there are
always D faces f1, · · · , fD ⊂ K meeting 7, each coming with an independent
representation ρ1, · · · , ρD. Therefore he appears precisely in D different traces
in (3.40). Then, for each edge e, we can isolate integrals of the form

P e
Inv =

∫
dheρ1(he)⊗ · · · ⊗ ρD(he), (3.42)

where for each i = 1, · · · , D there is an independent representation matrix ρi.
Let us call

Ve = Vρ1 ⊗ · · · ⊗ VρD , (3.43)

the tensor product of vector spaces on the faces where the respective represen-
tations act as

he . (v1 ⊗ · · · ⊗ vD) ≡ ρ1(he)v1 ⊗ · · · ⊗ ρD(he)vD, (3.44)

for vectors vi ∈ Vρi . The operator defined in (3.42) satisfies P e
Inv = (P e

Inv)2 and
projects V , into its subspace invariant under group transformations i.e.,

P e
Inv : Ve −→ InvG(Ve). (3.45)

6In fact, the second delta function in often ignored in the literature since one expects geometric
fluctuations to happen around the flat metric on which the first delta is peaked. Nonetheless, this
point would require a deeper analysis.

7In fact, an edge e is dual to a (D−1)-simplex which is bounded by D hinges ((D−2)-simplices),
each of them dual to a face f .
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Then for every edge e the projector P e
Inv can be written as resolution of the

identity on the invariant subspace. This is spanned by an orthonormal basis of
so-called intertwiners i.e., invariant tensors ιe ∈ InvG(Ve). Explicitly, we write

P e
Inv = 1InvG(Ve) =

∑
ιe

ιe ⊗ ι†e =
∑
ιe

|ιe〉〈ιe|, (3.46)

where in the last term we introduce the classical bra-ket notation.
We can think at the |ιe〉 and 〈ιe| in (3.46) as placed at the opposite ends of

the edge e as in Figure 3.1. Then, they are respectively inherited by the two
extremal vertices v1, v2, where a mechanism of contraction have place among
the intertwiners coming from the other edges.

Figure 3.1: Two vertices v1, v2 connected through edges. For each edge e there is a resolu-
tion of the identity (3.46).

Recall in fact that the intertwiner |ιe〉 is an element in InvG(Vρ1⊗· · ·⊗VρD)
and, as such, it carries D free indices m1, · · · ,mD, associated to the D faces
that meet at e. Similarly, to 〈ιe| are entrusted the indices n1, · · · , nD. These
are the same indices of the representation matrix elements (ρi)

mi
ni

appearing in
(3.42).

Summarizing, each edge ‘entering’ into (or ‘exiting’ from) a vertex, carries
D indices corresponding to the D faces of which it is the common juncture.
Then, a contraction among all the indices is performed at the vertex. This
must take into account the fact that at a vertex v ⊂ K there are D + 1 edges
meeting. We can refer to the 3d example in Figure (3.2).

In other words, there are D(D + 1) indices to be contracted in pairs. The
pairs are chosen according to the 2-complex structure i.e., two indices coming
from two distinct edges e1 and e2 are contracted if and only if they are asso-
ciated to the unique face f ⊃ e1, e2 bounded by both the edges. Eventually,
there is one contraction for each of the D(D + 1)/2 faces in the vertex.

Let us call Av the operator realizing this contraction. We write it as

Av ≡ tr

(⊗
e→v

|ιe〉
⊗
e←v

〈ιe|
)
, (3.47)
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Figure 3.2: On the left: the 2-complex K dual to a tetrahedron. There are D+ 1 = 4 edges
meeting at the vertex, each edge has D = 3 faces attached. There are in total D(D+1)/2 = 6
faces touching the vertex. On the right: the boundary graph Γv around the vertex.

where the trace represents the full contraction among the intertwiners associ-
ated to the D + 1 edges e connecting to the vertex v (ingoing → or outgoing
←). The operator (3.47) is called vertex amplitude and will play a fundamental
role.

Now, recall from the previous chapter (see also Figure 3.2) that each edge
connecting with v can be put in one to one correspondence with a node n ⊂ Γv
in the boundary graph Γv around v. Similarly, every face adjacent to v can
be thought in terms of links ` ⊂ Γv. Then the group theoretic data can be
transfered from the two complex to the boundary graph as ιe → ιn and ρf → ρ`.
In other words, the set of all the intertwiners {ιe}v and all representations {ρf}v
converging into a vertex structure v, define a vertex spin network state ψΓv ,ρ`,ιn

(3.27) in the Hilbert space HΓv . In this notation, for each vertex we can write
the vertex amplitude as a functional

AΓv : HΓv −→ C. (3.48)

Putting all together, we can write the partition function (3.40) as

ZKBF =
∑
ρf ,ιe

∏
f

dρf
∏
v

Av({ρf}v, {ιe}v). (3.49)

Let us notice here that, unlike in lattice gauge theory, a 2-complex K does
not carry any geometric information a priori (a part for the combinatorial).
Rather, its geometry is given by representation-theoretic data (spins and inter-
twiners) distributed among the edges and faces. Then, once fixed the geometry
of the boundary (by assigning a fixed value to the boundary spins and inter-
twiners), the sum over all bulk data which appears in (3.49) realizes a discrete
version of the integral over all metrics. In this way the dynamics is given in
terms of transition amplitudes between boundary states.
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3.2.1 Path integral of SU(2) BF theory in 3d

We start from the simple case of 3d BF theory. Let us refer, for simplicity,
to the example in Figure 3.3 showing in a dual fashion a piece of manifold
discretized in terms of tetrahedra and a boundary geometry made of triangles.
The associated partition function ZKBF is built on the 2-complex K and can
be interpreted as giving the transition amplitude among the boundary states
built on graphs ΓK,A and ΓK,B.

For each edge e ⊂ K there are always three faces f1, f2, f3 ⊂ K meeting,
each coming with an independent representation ρ1, ρ2, ρ3.

Figure 3.3: The 2-complex K dual to a 3d simplicial discretization and built between two
graphs ΓK,A and ΓK,B dual to boundary triangulations. All the vertices are 4-valent and
dual to tetrahedra. The faces are not colored for clarity, however in Figure 3.2 one can
see, for example, the faces around the central vertex. All the nodes are 3-valent and dual
to triangles. The graph ΓK,A is dual to the 2d boundary of a tetrahedron. The reader is
invited to an exercise of visualization of the 2d discretization dual to ΓK,B .

As we have seen in the previous chapter, 3d BF theory is equivalent to 3d
gravity provided that we choose the local gauge group to be G = SU(2) 8.
In this setting, all the irreducible representations are labeled by a half-integer
spin j, have finite dimension dρ = 2j + 1 and correspond to the Wigner-D
matrices i.e., ρi(g) = Dji(g). Thus, for a generic element g ∈ SU(2) we can

8Refer to Appendix A for details on the group structure and its representations.
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write (3.42) as

P e
Inv =

∫
SU(2)

dheD
j1(he)⊗Dj2(he)⊗Dj3(he), (3.50)

or in explicit indices notation

(P e
Inv)m1m2m3

n1n2n3
=

∫
SU(2)

dheD
j1(he)

m1
n1
Dj2(he)

m2
n2
Dj3(he)

m3
n3
. (3.51)

Due to the left/right invariance of the Haar measure, this integral is invariant
under a separate group action acting respectively on the indices mi and ni
with i = 1, 2, 3. The only invariant object with three indices m1,m2,m3 in the
SU(2) representation is the Wigner 3j-symbol,

ιm1m2m3 =

(
j1 j2 j3

m1m2m3

)
. (3.52)

Then, equation (3.51) can be written in the form (3.46) as

(P e
Inv)m1m2m3

n1n2n3
= ιm1m2m3

e (ι†e)n1n2n3 . (3.53)

At each vertex v ⊂ K there are four edges meeting, which echoes the four
faces bounding a tetrahedron. Therefore, at each vertex there are four fully
contracted intertwiners defining a so-called Wigner 6j-symbol (see Appendix
A)

{6j}v =

{
j1 j2 j3

j4 j5 j6

}
. (3.54)

where the spins ja, a = 1, 2, 3, 4, 5, 6 are associated to the six faces fa touching
v ⊂ fa. This is reminiscent of the fact that a tetrahedron has six sides. The
object (3.54) defines, up to a sign [62], the vertex amplitude for the SU(2) BF
theory in three dimensions.

Notice that in the derivation above we relied on the convention of Figure
2.5, where the face is positive (clockwise) oriented and in accordance with the
orientation of the boundary edges. However, in an oriented 2-complex it is
easy to find opposite orientations of f and some boundary edge e′ ⊂ f , in
which case the holonomy Hf will be defined in terms of the inverse h′−1

e of the
holonomy on e′. Also, we have not mentioned the choice of starting vertices
which defines the holonomy around a face. Nonetheless, the partition function
depends on the character (3.39) of Hf which is invariant with respect to this
choice. Eventually, from the above analysis and taking into account the correct
signs we obtain the formula

ZKBF =
∑
jf

∏
f

(−1)2jf (2jf + 1)
∏
v

(−1)
∑6
a=1 ja{6j}v. (3.55)
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The sum is over all bulk spins and, to each of these spin configurations, it
assigns a weight which is a real number.

If we had taken into account the other delta function in (3.37) the result
would have been the same but with the sum ranging over integer spins jf ∈ N.

This model is also called the Ponzano-Regge model. Remarkably, Ponzano
and Regge discovered that the 6j-symbol contains the Regge action in its
asymptotic behavior. For a detailed reference see [62].

3.2.2 Path integral of SU(2) BF theory in 4d

Let us extend the analysis above to the case of a path integral for discrete
BF-theory in 4d with gauge group G = SU(2).

To help the visualization we refer to Figure 3.4 where a 4d simplicial dis-
cretization is depicted via the dual 2-complex K and two selected geometrical
states with support on the graphs ΓK,A and ΓK,B.

Figure 3.4: The 2-complex K is dual to a simplicial discretization in terms of three 4-
simplices. Each vertex is 5-valent given that a 4-simplex is bounded by 5-tetrahedra. The
graphs ΓK,A and ΓK,B are dual to 3d discretizations. All the nodes are 4-valent and dual
to tetrahedra. Then the graph ΓK,A is a 3d object made by gluing two tetrahedra face by
face. The graph ΓK,B is dual to the 3d boundary of a 4-simplex.

For each edge e there are four faces f1, f2, f3, f4 coming with relative rep-
resentations ρ1, ρ2, ρ3, ρ4. Now, in 4d the invariant vector space

InvG(Ve) = InvG(Vρ1 ⊗ Vρ2 ⊗ Vρ3 ⊗ Vρ4), (3.56)
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has dimension grater than one. Then, according to (3.46) we can express
the projector P e

Inv in terms of invariant vectors in Ve i.e., using a basis of
independent intertwiners |ιe〉.

For every vertex v ⊂ K there are five edges, given that a 4-simplex is
bounded by five tetrahedra (see Figure 3.4). Then at each vertex a contraction
pattern among intertwiners with free indices has place. In analogy with the
3d case, here we can think each intertwiner coming with four indices mi, i =
1, 2, 3, 4. The result of the contraction is a vertex amplitude Av({jf}, {ιe})
which, up to a sign, corresponds to a 15j-symbol {15j}v, so-called in virtue of
the fact that each vertex recouples 15 quantum numbers, the ten spins jf and
the five intertwiners ιe. Explicitly,

ZKBF =
∑
jf ,ιe

∏
f

(2jf + 1)
∏
v

{15j}v. (3.57)

3.2.3 The coherent states representation

The 15 quantum numbers defining the vertex amplitude (3.57) are not enough
to characterize the classical geometry of the five tetrahedra in the boundary
of a 4-simplex. Indeed, a classical tetrahedron in three dimensions is specified
by its six lengths or, equivalently, by the area of its four faces (+4 d.o.f.),
the relative normal unit vectors (+4 · 2 = +8 d.o.f.), a closure relation of its
boundary (−3 d.o.f.), and an invariance under rotations (−3 d.o.f.), for a total
of six degrees of freedom. In the standard basis however, each tetrahedron is
only specified by five degrees of freedom, four spins with the interpretation
of face areas, and a ‘standard’ intertwiner carrying a single degree of freedom
which can be interpreted as a 3d dihedral angle among two of its boundary
triangles. This means that, in the quantum regime, the remaining degree of
freedom (e.g., a second 3d dihedral angle) is totally spread. Then, in order to
give a geometric interpretation to the intertwiners at the vertex boundary, it
would be convenient to dispose of invariant quantum states |ιe〉 depending on
the right amount of quantum numbers, such that they have a direct geometric
interpretation in terms of areas and angles minimally spread around their
classical values and becoming sharp after taking the classical limit.

A major advancement in the formulation of spin foam models arrived with
the adoption of a over-complete basis for the irreducible representations used to
define the intertwiners [63]. This springs out from a classical tool of quantum
mechanics i.e., with the introduction of coherent states.

In this language the invariant basis is given by the so-called Livine-Speziale
coherent intertwiners obtained by tensoring together coherent states. These
new objects allow for a clean semiclassical limit where the intertwiners at the
edges of the 2-complex acquire a nice geometric interpretation in terms of 3d
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polyhedra.

The SU(2) coherent states

Given the standard eigenstate basis |j,m〉 of the angular momentum (see Ap-
pendix A), the maximal weight vector with respect to the ê3 direction is
|j, ê3〉 ≡ |j, j〉 for any spin j. This state is an eigenvector of the angular
momentum J3 = i

2
σ3 such that J3|j, j〉 = j|j, j〉. On such state the dispersion

of the angular momentum J3 is minimized and the uncertainty relations are
saturated i.e.,

∆J3 = 0 and ∆J1∆J2 =
1

2
|〈jj|J3|jj〉|, (3.58)

being

∆Ji =
√
〈jj|J2

i |jj〉 − (〈jj|Ji|jj〉)2. (3.59)

Also, the dispersion of the angular momentum in the x (or y) direction with
respect to the total angular momentum, vanishes in the limit j →∞ e.g.,

∆J1√
〈jj|J2|jj〉

=

√
j
2√

(j(j + 1))
→ 0. (3.60)

In other words, the state |jj〉 becomes sharp in the ê3 direction in the large-
j limit. This limit provides indeed the notion of semiclassical limit in the
context of spin foams. We will come back to this in the next chapter.

A state fulfilling the properties above described is called a coherent state
[64]. Let us take a group element g~n ∈ SU(2) and the unit vector ~n = g~n . ê3

9

defining a direction on the two-sphere S2. Starting from the maximal weight
vector one finds an infinite set of SU(2) coherent states

|j, ~n〉 = |j, g~n . ê3〉 = g~n . |j, ê3〉, (3.61)

for which the angular momentum is minimally spread around ~n. Notice that
such states are defined up to a U(1) phase, corresponding to a rotation about
the ~n-direction. Varying ~n one finds an over-complete set spanning the vector
space Vj.

The coherent states (3.61) can be written in the canonical basis of eigen-
states of J3 as

|j, ~n〉 =
∑
m

Cm(~n)|j,m〉, with Cm(~n) = Dj(g~n)mj, (3.62)

9We use the symbol g. to mean the action of the group element g through the appropriate
representation e.g., g . ~v = ρ(g)~v with ρ : SU(2)→ SO(3).
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being Dj(g)mj a Wigner D-matrix element. Using the fact that the basis |j,m〉
provides a resolution of the identity and that the Wigner D-matrices form an
orthonormal set with respect to the Haar measure on SU(2) one can show that
the coherent states |j, ~n〉 form an orthogonal basis such that

1j = dj

∫
S2

d2n|j, ~n〉〈j, ~n|, (3.63)

where the integration is with respect to the invariant measure on the two-
sphere (see for example [30]). Another key property of coherent states is the
following

|j, ~n〉 = |1/2, ~n〉 ⊗ · · · ⊗ |1/2, ~n〉 ≡ |1/2, ~n〉⊗2j ≡ |~n〉⊗2j. (3.64)

Coherent intertwiners

Let us consider a set of F coherent states |ji, ~ni〉 such that they satisfy the
closure condition10 ∑

i

ji~ni = 0. (3.65)

The basic idea is to associate such states to F faces of area ji and outward-
pointing normals ~ni. A coherent polyhedron is constructed by tensoring them
together and imposing the invariance under rotations by SU(2)-group averag-
ing. The associated SU(2) coherent intertwiner reads

|ι〉 =

∫
SU(2)

dg g .
⊗
i

|ji, ~ni〉. (3.66)

and spans the space InvSU(2)

⊗
i Vji as the vectors ~ni vary [65]. The SU(2)

integration guarantees the invariance under the group action. A coherent in-
tertwiner then becomes a sharp polyhedron in the large-j limit.

The resolution of the identity (3.63) can be extended to the invariant sub-
space InvSU(2)

⊗
i Vji where it is written in the coherent intertwiners basis as

1InvSU(2)

⊗
i Vji

=

∫ ( F∏
i=1

djid
2ni

)
|ι〉〈ι|

=

∫ ( F∏
i=1

djid
2ni

)∫
dg g .

⊗
i

|ji, ~ni〉
∫

dg′
⊗
i

〈ji, ~ni| / (g′)−1.

(3.67)

10A theorem by Minkowski states that if the ji and ~ni satisfy the closure condition, then there
exists a convex polyhedron, unique up to translation, with face normals ~ni and face areas ji.
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This expression can then be used in the place of (3.46) to project onto
the invariant subspace, at each edge e ⊂ K. Then we see that the coherent
state representation endows each edge e with two group integrations and a
bunch of spins ji and unit vector ~ni for each face attached to e. This data is
evenly split in two and inherited by the extremal vertices v1, v2 ⊃ e. In other
words the second and the third integrals of (3.67) are respectively entering the
contractions in v1 and v2. The first integral in (3.67) is a normalization factor.

Notice that the closure condition (3.65) is a crucial requirement for the
semiclassical interpretation of the coherent states. This condition is not sat-
isfied by all the states entering the partition function ZKBF . However, as it
was shown in [63], the quantum correlations are dominated by the semiclas-
sical states in the large spin limit. Furthermore in [65] it was shown that, by
slightly changing the integration measure, one can restrict the integration to
the states which satisfy (3.65) exactly.

The coherent tetrahedron

In the 4d analysis which led us to the partition function (3.57), we adopt
a simplicial discretization in terms of 4-simplices, tetrahedra and triangles.
Therefore, the basic object that we need to define to implement the coherent
state representation, is an intertwiner with four magnetic indices, also called
a coherent tetrahedron [66]. On each edge e we have a base space Ve = Vj1 ⊗
Vj2 ⊗ Vj3 ⊗ Vj4 acted upon by the tensor product of SU(2) representations
Dj1⊗Dj2⊗Dj3⊗Dj4 (one for each face f1, f2, f3, f4 ⊃ e attached to the edge).
Let us take a coherent state basis for Ve i.e.,

|j1 ~n1〉 ⊗ |j2 ~n2〉 ⊗ |j3 ~n3〉 ⊗ |j4 ~n4〉, (3.68)

such that
∑4

i=1 ji~ni = 0. This can be thought as a tetrahedron with boundary
areas j1, j2, j3, j4 and normals ~n1, ~n2, ~n3, ~n4. The projection of (3.68) onto the
subspace invariant under the action of SU(2) is achieved by group averaging

|ιe〉 =

∫
SU(2)

dhe

(
Dj1(he)|j1~n1〉 ⊗Dj2(he)|j2~n2〉 ⊗Dj3(he)|j3~n3〉 ⊗Dj4(he)|j4~n4〉

)
=

∫
SU(2)

dhe he .
4⊗

fe=1

|jfe , ~nfe〉,

(3.69)

where by fe we denote the face f ⊃ e. This is the analogue of (3.66) and can
be interpreted as a coherent tetrahedron invariant under SO(3) rotations.
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The resolution of the identity (3.67) becomes

1InvSU(2)(Ve) =

∫ ( 4∏
fe=1

djfed
2nfe

)
×

×
∫

dhe
⊗
fe

Djfe (he)|jfe , ~nfe〉
∫

dh′e
⊗
fe

〈jfe , ~nfe|(Djfe (h′e))
†.

(3.70)

The two integrals in the second row are respectively sent to the two extremal
vertices v1, v2 ⊂ e to get contracted with the data coming from the other edges.
At each vertex, dual to a 4-simplex, there are five edges meeting, dual to its five
boundary tetrahedra. Therefore, the data inherited by a vertex v from a single
edge can be used to describe a boundary tetrahedron with face areas ji and
normals ~ni with i = 1, 2, 3, 4. The group integration implements the invariance
of such tetrahedron under 3d rotations. The data at each intertwiner become
sharp in the semiclassical limit.

Coherent state representation of 4d BF amplitudes

Contracting all the boundary data entering into the 4-simplex vertex from the
five edges and relative faces, we obtain the expression of the vertex amplitude
(3.48). In order to get a neat expression let us use the labeling a = 1, 2, 3, 4, 5
for the five tetrahedra bounding the vertex v (see Figure 3.5). The contraction

Figure 3.5: On the left: the vertex boundary graph and its nodes dual to tetrahedra a.
On the right the labeling of two tetrahedra a and b sharing a triangle (ab) but having
independent normal vectors.
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happens at each triangle (ab) of area jab = jba where the two tetrahedra a
and b meet. From a local perspective at a, the normal vector to the boundary
triangle (ab) is ~nab, while from the perspective of b the normal vector is ~nba

11.
The two vectors ~nab and ~nba are a priori independent. The vertex amplitude
performs such contraction so that one gets

Av =

∫
SU(2)5

dha
∏
(ab)

〈jab, ~nab|Djab(ha)
†Djab(hb)|jba.~nba〉. (3.71)

Using the coherent state property (3.64) one can write the amplitude as

Av =

∫
SU(2)5

dhae
S[ha], (3.72)

where we defined
S[ha] =

∑
(ab)

2jab ln〈~nab|h−1
a hb|~nab〉. (3.73)

Finally, we can write the partition function as

ZKBF (SU(2)) =
∑
jf

∏
f

djf
∏
e

(∫ ( 4∏
fe=1

djfed
2nfe

))∏
v

Av({ρf}v, {ιe}v).

(3.74)

11We adopt the convention for which the normal vector points in the same direction as the oriented
link i.e., for outgoing links the normal vector in outward-pointing and vice versa.
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Chapter 4

The Euclidean EPRL-FK model

Let us recap what we have seen so far. According to section 3.2, the first step
to build a spin foam model is to define a path integral for discrete BF theory on
a 2-complex K, leading to a partition function ZKBF of the type (3.49), which is
interpreted as a sum over quantum states. A ‘path’ in this sense corresponds to
an assignment of spins jf to every face f ⊂ K and intertwiners ιe for each edge
e ⊂ K. The most important element in ZKBF is the so-called vertex amplitude
Av which is built, at each vertex v ⊂ K, through the contraction of the data
({ρf}v, {ιe}v) entering from the edges e ⊃ v (see (3.47)). This data is in one
to one correspondence with the data ({ρ`}v, {ιn}v) stored on the boundary
graph Γv built at each vertex with nodes n ∈ Γv and links ` ∈ Γv respectively
associated to edges and faces or equivalently, if we are in 4d, to tetrahedra and
triangles (see (3.48)).

Thanks to the use of coherent states studied in 3.2.3, we were able to
represent the 4d partition function (3.74) and the vertex amplitude (3.71) for
the gauge group SU(2) in a form which allows a nice geometric interpretation
of the intertwiners at the edges (or at the nodes) as ‘quantum tetrahedra’.

4.1 Construction of the Euclidean EPRL-FK model

Let us now extend the analysis of the previous chapter to the case of a path
integral for discrete BF-theory in 4d with gauge group G = SU(2) × SU(2).
This analysis connects us to Euclidean gravity in 4d. In fact, for Riemannian
signature, the local gauge group is Spin(4) ' SU(2)× SU(2).

From the path integral of 4d discrete BF-theory, with this choice of gauge
group, one can define a 4d spin foam model by imposing the simplicity con-
straints (2.75) at the quantum level. The correct implementation of the con-
straints is a non trivial operation, and different ways of imposing them char-
acterize distinct spin foam models. In this chapter we define the 4d Euclidean
EPRL-FK spin foam model [39, 40], which will be used throughout this work.

57
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In fact, it has a pivotal role in the state of the art works of the spin foam
community.

4.1.1 The group Spin(4)

Let us give some brief information about the structure group that we are us-
ing. The group Spin(4) is isomorphic to SU(2) × SU(2) and its Lie algebra
decomposes into spin(4) ' su(2) ⊕ su(2) (see (A.25)). The unitary repre-
sentations ρ(j+,j−) of the group are then labeled by two half-integers (j+, j−)
where ± indicates the membership to one of the two SU(2)-subalgebras. These
representations act on the base space V(j+,j−).

The algebra spin(4) can be described, for example, in terms of the six
SU(2)-generators Ji,± satisfying the standard angular momentum algebra

[Ji,±, Jj,±] = iεijkJk,±. (4.1)

A basis in the vector space V(j+,j−) is then given by vectors |j+ j− m+ m−〉
which are eigenstates of the two Casimirs C1 = J2

+ + J2
−, C2 = J2

+ − J2
−

and of the two angular momenta operators J3,± (see Appendix A). A Spin(4)
representation can be decomposed into a direct sum of SU(2)-representations

ρ(j+,j−) = ρj− ⊗ ρj+ =

j++j−⊕
j=|j+−j−|

ρj, (4.2)

acting on the base space

V(j+,j−) = Vj+ ⊗ Vj+ =

j++j−⊕
j=|j+−j−|

Vj. (4.3)

The algebra (4.1) can be equivalently characterized by the generators of
rotations Li and boosts Ki, i = 1, 2, 3. The full characterization can be found
in (A.25), in Appendix A. The Casimirs in terms of the new generators are

C1 = L2 + K2 and C2 = ~K · ~L. The choice of this specific SU(2) subgroup of
Spin(4) is made at each edge of the 2-complex. Notice that this choice is the
analogue of the time gauge used to define the two vectors (2.29). Then the
linear simplicity constraints (2.75) can be expressed in terms of the generators
Li and Ki.

4.1.2 Implementation of simplicity constraints

Following the analysis in 3.2.2, at each face f ⊂ K there is a representation
ρf acting on a base space Vf respectively of the form (4.2) and (4.3). The
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EPRL-FK model is defined by imposing the linear simplicity constraints Di
f ,

given by (2.75), à la Gupta-Bleuler i.e., by selecting from the base space Vf at
each face only the states |ψ〉 ∈ Vf for which the matrix elements 〈ψ|Di

f |φ〉 = 0

vanish1. In a Spin(4) basis |ψ〉 = |j+ j− j m〉, the matrix elements of the
constraints read

〈j+ j− j n|Df
3 |j+ j− j m〉 = δn,mm(1− γj

γ
),

〈j+ j− j n|Df
±|j+ j− j m〉 = δn±1,n

√
(j ±m+ 1)(j ∓m)(1− γj

γ
),

(4.4)

where we used the definition (2.75) and the relations (A.26) in Appendix A.
The constraints (4.4) are then satisfied if

γj =
j+(j+ + 1)− j−(j− + 1)

j(j + 1)
= γ. (4.5)

This equation admits different solutions for γ < 1, γ = 1 and γ > 1.
In the rest of this work we focus on the first case γ < 1 2, for which the

solution of (4.5) is

j± =
|1± γ|

2
j, (4.6)

which corresponds to select the maximum weight component j = j+ + j− of
the expansion (4.3) for each vector space Vf = V(j+f ,j

−
f ). Notice that, according

to (4.6), the Barbero-Immirzi parameter γ is restricted so to be compatible
with the half-integer-nature of j ∈ N

2
and j± ∈ N

2
. This is a feature of the

Euclidean model which is not present in the Lorentzian [68].

4.1.3 Boosted coherent intertwiners

In the previous chapter we have introduced the coherent state representation
for defining the partition function and in particular the vertex amplitude.

1This ‘weak’ imposition of the constraints is in contrast with a ‘strong’ imposition of the form
Di
f |ψ〉 = 0 which, as argued in [39], produces an unwanted elimination of physical degrees of

freedom. This is due to the fact that the constraints are second class i.e., they do not commute and
then the constraint algebra is not closed [30]. The strong imposition of the constraint was indeed
proposed in the Barrett-Crane model [67] which for many years had a leading role in Spin foam
models. As of today, this role is taken by the EPLR-FK model that we are reviewing.

2The case for γ > 1 is only marginally more complicated, and we do not expect one were to find
qualitatively different results in that case. Nonetheless, this is something to be checked eventually.
In the case γ = 1 the constraint algebra closes and the constraints (2.75) can be imposed ‘strongly’
(see footnote in the previous page). In such case they reduce to the condition of setting all the
j+-spins to zero in the state sum and the partition function reduces to that of SU(2) BF theory,
which is not a good model for quantum gravity [30].
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The prototype of SU(2) coherent intertwiner |ι〉 ∈ InvSU(2)

⊗
i Vji described

in (3.66), can be lifted to a Spin(4) coherent intertwiner |Φι〉 ∈ InvSpin(4)

⊗
i V(j+i ,j

−
i )

by a boosting procedure which sends

Φ : InvSU(2)

⊗
i

Vji −→ InvSpin(4)

⊗
i

V(j+i ,j
−
i ).

In particular the boosting map Φ consists in the joint action of a map βγji for
each spin ji such that

βγji : Vji −→ V(j+i ,j
−
i ), (4.7)

and a projector P

P :
⊗
i

V(j+i ,j
−
i ) −→ InvSpin(4)

⊗
i

V(j+i ,j
−
i ).

In the rest of the paper we will focus on the specific case of Barbero-
Immirzi parameter γ < 1. In this case the spins j±i are related to γ and ji via
the relation (4.6) and the map (4.7) is defined by embedding the space Vj iso-
metrically into the highest weight space of the Clebsh-Gordan decomposition
(4.3), namely Vj++j− . Thus, If at each edge there are F faces attached we can
write

Φ = P ◦
(
βγj1 ⊗ · · · ⊗ β

γ
jF

)
,

and the boosted coherent intertwiner factorizes in terms of SU(2) coherent
intertwiners |ι±〉 as

|Φι〉 = |ι+〉 ⊗ |ι−〉 =

∫
dg+ g+ .

⊗
i

|j+
i , ~ni〉 ⊗

∫
dg− g− .

⊗
i

|j−i , ~ni〉. (4.8)

We also refer to |Φι〉 as Spin(4) coherent intertwiner and we are going to use
it to build the transition amplitudes in our spin foam model.

Finally, let us write the resolution of the identity for the boosted coherent
intertwiners in the form

1InvSpin(4)

⊗
i V(j+

i
,j−
i

)
=
∑
Φι

1

‖Φι‖2
|Φι〉〈Φι|

=
∑
ι±

1

‖ι+‖2‖ι−‖2
(|ι+〉〈ι+|)⊗ (|ι−〉〈ι−|).

(4.9)

This is the analogue of (3.67) where we have substituted the integration over
the 2-sphere with a sum normalized by the squared norm of the coherent
intertwiner ‖Φι‖2 = 〈Φι|Φι〉.
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4.1.4 The EPRL-FK partition function

A resolution of the identity of the form (4.9) is inserted at each edge e ⊂ K. The
‘bra’ and ‘ket’ parts are respectively sent to the two vertices at the opposite
ends of the edge. Then, the vertex amplitudes contracts the five boosted
coherent intertwiners coming from the edges with the information of spins and
intertwiners. In analogy with (3.47), it is defined as the trace of the boosted
coherent intertwiners

Av ≡ tr

(⊗
e→v

|Φιe〉
⊗
e←v

〈Φιe|
)
, (4.10)

where we recall that the boosting map Φ is required to enforces the simplicity
constraints (2.75) at the quantum level and to lift the SU(2) coherent inter-
twiners to elements of Vj++j− invariant under Spin(4) transformations. Thanks
to the factorization (4.8) for γ < 1, also the vertex amplitude factorizes as

Av({jf}v, {ιe}v) := A+
v ({j+

f }v, {ι+e }v) · A−v ({j−f }v, {ι−e }v), (4.11)

where A±v have the SU(2) form (3.72).
Eventually, we can write the partition function for the 4d Euclidean EPRL-

FK model with Barbero-Immirzi parameter γ < 1 as

ZKBF =
∑
j±f ,ι

±
e

∏
f

Af
∏
e

Ae
∏
v

Av, . (4.12)

where Af , Ae and Av are respectively the face-,edge- and vertex-amplitudes
associated to each element of the 2-complex. Explicitly,

Af = [(2j+ + 1)(2j− + 1)]α, (4.13)

Ae ≡
1

‖ι+‖2‖ι−‖2
, (4.14)

Av = A+
v A−v , A±v =

∫
SU(2)5

dh±a e
S± , S± =

∑
(ab)

2j±ab ln〈~n±ab|(h±a )−1h±b |~n±ab〉.(4.15)

In other words, for γ < 1 one obtains a full factorization of the ± labels and
the EPRL-FK partition function becomes the ‘square’ of the SU(2) partition
function (3.74).

The choice of the face amplitude is not unique and influences the conver-
gence of the state sum [69, 70]. We choose the definition (4.13) depending on a
parameter α. For α = 1 one gets the standard definition dj+f

dj−f
. The param-

eter α will play the role of a coupling constant, in that it is a free parameter
in the path integral measure.
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It is important to mention that there exists a generalization of spin foam
model to arbitrary polyhedral discretization [71]. Therefore, a part for details
in the implementation of the simplicity constraints [72], the validity of the
formulas obtained up to this point can be extended to discretizations different
from the simplicial one.

4.2 Semiclassical limit

The semiclassical limit of a spin foam model is defined through the large spin
limit of the amplitudes written in the coherent state representation. The
asymptotic limit is taken by rescaling by a parameter λ each spin simulta-
neously,

j → λj (4.16)

and then taking the limit λ→∞.
Notice that each factor ± of the vertex amplitude (4.15) corresponds to an

oscillatory integral and the phase of the oscillation, given by the function S±,
allows for complex values. The asymptotic limit of these kind of integrals is
performed through a so-called extended stationary phase approximation. Let
us briefly explain how this method works and give an algorithm to use in the
upcoming calculations.

4.2.1 The extended stationary phase approximation

The extended stationary phase method provides a tool to compute the asymp-
totic approximation of oscillatory integrals whose phases are smooth complex
valued functions S defined over a closed D-dimensional manifold X and such
that ReS ≤ 0. Let us consider the following scalar function

f(λ) =

∫
X

dx a(x) eλS(x), (4.17)

being λ a positive real parameter and a(x) a smooth complex test function. In
the extended stationary phase approximation the asymptotic limit λ → ∞ is
dominated by the points x0 such that ∂xS|x0 = 0 and ReS(x0) = 0. These are
the stationary and critical points. The leading term in the large-λ expansion
of (4.17) is given by

f(λ) ∼
∑
x0

[
a(x0)

(
2π

λ

)n/2
eλS(x0)√
det(−H)

]
. (4.18)

The n×n Hessian matrix H is given by the second-order partial derivative of S
and encodes the informations about the stationary points, which are assumed
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to be isolated and non-degenerate i.e., detH 6= 0.

Summarizing, in order to compute the asymptotic limit of an oscillatory
integral:

• we find the critical and stationary points, i.e. those satisfying ReS = 0
and dS = 0.

• we compute the Hessian of S in these points and calculate its determinant

• we use equation (4.18) to find the leading term of the large-λ limit

Using this method, it was shown in [73] that the asymptotic limit of the
Euclidean EPRL-FK vertex amplitude (4.15) for γ < 13 contains the Regge
action (2.59) as 4

Av →
eiλSR

−D +
e−iλSR

−D∗ + 2
cos(λγSR)√

DD∗
, (4.19)

where D is the determinant of the Hessian of S±. We then see that the ampli-
tude contains both the exponential of the Regge action and its sign-reversed
part (commonly referred to as the cosine problem), as well as other, non-
geometric terms (colloquially called weird terms)

W =
eiλSR

−D . (4.20)

In this work, we are going to perform this calculation explicitly in two sit-
uations: in the next section we apply the stationary phase method to the case
of a vertex amplitude deformed at the quantum level to include a cosmological
constant term. There, we will show that in the semiclassical limit the deforma-
tion has the sole effect of adding the right cosmological constant term in the
Regge action, and it does so without altering the determinant function D of
the undeformed setting. Then, in the next Chapter we are going to apply the
same approximation in the case of a path integral state sum reduced to certain
symmetric configurations, so that a finite number of spin variables are required
to describe the partition function. The advantage of this setting is that, dif-
ferently from the most general case, the determinant D appearing in (5.45)
will become an explicit function of the spins. Relying on the results from the
deformed amplitude, we can also couple a cosmological constant term to the

3The calculation in the reference is also performed for the case γ > 1. Furthermore, in [68] the
calculation is performed also in the Lorentzian setting.

4Here there are some caveats e.g., on the number of solutions of the critical point equation. We
return on the subject in the next chapters.
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Regge action of the reduced model, without further changes of the asymptotic
formulas. Both calculations are an original work of the author and collabo-
rators, published in[41, 42]. These will provide the required ingredients that
in Chapter 6 allows us to study the renormalization properties of our reduced
spin foam model.

4.3 Spin foams with cosmological constant

There are several ways to include a non-zero cosmological constant into spin
foam models e.g. using Chern-Simons theory [74]. The most technically clean
one is probably a deformation of the underlying group SU(2) to a quan-

tum group SU(2)q, with q = e
2πi
k+2 a root of unity, where Λ = 6π/(`2

Pk).
[75, 76, 77, 78]. One of the earliest deformations of the model, however, was
still on the level of classical groups, by deforming AΓ, keeping HΓ unchanged.
The definition was given by Han [76], for the case of a 4-simplex, and a partial
analysis of the asymptotic regime was given, which demonstrated the emer-
gence of the Regge action plus a cosmological constant term.

While this deformation of the EPRL-FK model shows no obvious con-
nection to the later definitions with quantum groups, it is a useful tool for
calculations. In particular, in recent calculations concerning the RG flow of
the EPRL-FK model (see [79, 42, 80]), it turned out to be desirable to have
a running cosmological constant. The boundary graphs are more complicated
in that case, so a generalization of Han’s deformation to more complicated
graphs is needed. Also, the analysis should include the explicit treatment of
the Hessian matrix in the asymptotic analysis of the deformed model. This is
what is going to be undertaken in this chapter.

4.3.1 Deformation of the EPRL-FK model

Given the definition of the vertex amplitude AΓv , the deformation is given
in terms of a parameter ω ∈ R. It is constructed as follows: The graph Γv
needs to be projected down to the 2d plane, where it can be depicted with
crossings. See for example Figure 4.1 representing in a ‘minimally braided’
form the boundary graph of a 4-simplex, which has a unique crossing. We
anticipate that the result does not depend on how we project the graph on the
2d plane. For each crossing C in the graph between two links `, `′ with spins
k`, k`′ , define the crossing operator

RC := eiωσ(C)VC , (4.21)
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Figure 4.1: The graph dual to the boundary of a 4-simplex. Instead of the standard
pentacle-shape of Figure (3.5), we represent it by minimizing the number of crossings.

Figure 4.2: The two types of crossings C get assigned different numbers σ(C) = ±1.

were ω ∈ R is the deformation parameter, σ(C) = ±1 is the type of crossing
(over- or under-crossing, see Figure 4.2), and with

VC :=
∑
ε=±

ε4

(1 ε γ)2

3∑
I=1

D(jε`)
(Xε

I)⊗D(jε
`′ )

(Xε
I), (4.22)

where the X+
I (X−I ) are an orthonormal basis of the self-dual (anti-self-dual)

su(2).

The operator RC acts as endomorphism on the base spaces V(j+` ,j
−
` )⊗V(j+

`′ ,j
−
`′ )

(4.3). By tensoring ⊗CRC with the identity operator for all links in Γv which
do not appear in a crossing, we obtain an endomorphism on H5. The deformed

5Technically, by this definition, the graph has to be such that each link in the graph Γ is
part of at most one crossing. This is of course not the most general case, but our definition can
be straightforwardly extended to a graph with arbitrarily many crossings per link, by trivially
subdividing that link with 2-valent vertices, onto which one places the unique (by Schur’s lemma)
normalized intertwiner.
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vertex amplitude AωΓv is then defined as

AωΓv := tr

(⊗
N

ι±N

(
1⊗

⊗
C

RC

))
. (4.23)

Note that while RC depends on the choice of orthonormal basis, the ampli-
tude AωΓv does not, due to the gauge-invariance of each boosted Livine-Speziale
intertwiner.

4.4 Large-j asymptotics of the deformed amplitude

In the case of γ < 1, the undeformed amplitude AΓv = A+
Γv
A−Γv factorizes over

the two sectors (selfdual and anti-selfdual). Since the respective generators
[X+

I , X
−
J ] = 0 commute, so do the RC = R+

CR
−
C , of course. Hence, also the

deformed amplitude factorizes:

AωΓv = Aω,+Γv
Aω,−Γv

. (4.24)

First we note that, due to the factorization property, it is enough to look
at only the +-part. To simplify notation, in what follows we omit the vector
symbol on the variables ~nab → nab and we abbreviate j+

` → j, j+
`′ → j′,

DJ+
`

(X±I )→ XI , g
+
a → ga, etc..

In particular, we have that the (undeformed) +-amplitude (4.15) is given
by

A+
Γv

=

∫
SU(2)NΓv

dga
∏
b→a

〈jab, nab| (ga)−1 gb |jab, nba〉,

where the product ranges over all links, where in the formula b is the starting
point (source) of the link, and a is the end point (target).

Now assume that there is a crossing between the link b → a and b′ → a′.
Then, in the deformed amplitude, the two corresponding factors in the product
(4.25) are replaced by

〈Ψ| exp

(
4iωσ(C)

(1 + γ)2

3∑
I=1

XI ⊗XI

)
|Φ〉 (4.25)

with

〈Ψ| = 〈jab, nab|(ga)−1 ⊗ 〈ja′b′ , na′b′|(ga′)−1,

|Φ〉 = gb |jab, nba〉 ⊗ gb′ |ja′b′ , nb′a′〉.
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The expression (4.25) can be expanded to

∞∑
n=0

1

n!

(
4iω

(1 + γ)2

)n 3∑
I1,I2,...,In=1

〈jab, nab| (ga)−1XI1XI2 · · ·XIn gb |jab, nba〉

×〈ja′b′ , na′b′| (ga′)−1XI1XI2 · · ·XIn gb′ |ja′b′ , nb′a′〉.
(4.26)

To consider the stationary phase of an individual term, we use the resolution
of identity

(2j + 1)

∫
S2

d2n |j, n〉〈j, n| = 1Vj , (4.27)

n− 1 times, and write

〈jab, nab| (ga)−1XI1XI2 · · ·XIn gb |jab, nba〉 =

= (2j + 1)n−1

∫
(S2)n−1

d2ni 〈j, nab|(ga)−1XI1 |j, n1〉

×〈j, n1|XI2|j, n2〉 · · · 〈j, nn−1|XIn−1gb|j, nba〉.

The XI are the generators of the su(2) Lie algebra [XI , XJ ] = iεIJKXK ,
which is why, in the spin-1

2
-representation, we have XI = σI/2 in terms of

the Pauli matrices σI . We have therefore

〈j, n|XI |j, n′〉 = j〈n|σI |n′〉 〈n|n′〉2j−1, (4.28)

where |n〉 := |1
2
, n〉. 6 With this, we can write

〈jab, nab| (ga)−1XI1XI2 · · ·XIn gb |jab, nba〉 = (4.29)

=

∫
(S2)n−1

d2ni a(ni, ga, gb) e
S(ni,ga,gb), (4.30)

with

a(ni, ga, gb) = (2j + 1)n−1jn
〈nab|(ga)−1σI1|n1〉
〈nab|(ga)−1|n1〉

〈n1|σI2|n2〉
〈n1|n2〉

· · · 〈nn−1|σIngb|nba〉
〈nn−1|gb|nba〉

,

S(ni, ga, gb) = 2j
(

ln〈nab|(ga)−1|n1〉+ ln〈n1|n2〉+ · · ·+ ln〈nn−1|gb|nba〉
)
.

6One can show (4.28) easily by using XI = −i d
dt |t=0

eitXI and the product rule.
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This is now in a form where one can perform the (extended) stationary
phase approximation, applying the algorithm given in section 4.2.1. Note that
this is for one term in the sum (4.26) only, and the variables are all the ga,
and, for every crossing, ni and n′i with i = 1, . . . , n − 1 (the n′i vectors come
from the term similar to (4.29), with the dashed nodes a′, b′). First, we note
that the criticality condition ReS = 0 (where we consider the whole action for
AωΓ now), is equivalent to

ganab = gbnba, (4.31)

and

ni = gbnba, n′i = gb′nb′a′ ∀i. (4.32)

One should note that the criticality equations (4.31) for the group elements
ga are precisely the ones for the undeformed amplitude [73]. The criticality
equations for the unit vectors ni, n

′
i (remember that, per crossing, there are

2(n− 1) unit vectors), are such that, on each edge which participates in some
crossing, all vectors have to be equal, and coincide with the two normal vectors
ganab = gbnba. This shows that, using the same gauge symmetry as in the
undeformed case, setting one ga = 1, all critical points are isolated, when they
are also isolated in the undeformed case.7

The stationary points are equally easily identified, and they are, as in the
undeformed case, the closure condition for each node, and ni = gbnba, n

′
i =

gb′nb′a′ for all i.
In particular, this means that, after gauge-fixing, the critical and station-

ary points of the deformed and the undeformed amplitude are in one-to-one
correspondence. Furthermore, it is easy to see that the value of the respective
actions, evaluated at corresponding critical stationary points, coincide.

4.4.1 The Hessian matrix

To make the notation easier, we assume that there is only one crossing. The
general case with many crossings can be treated similarly, though. We also

assume that there is at least one critical, stationary point g
(c)
a for the unde-

formed (gauge-fixed) amplitude. Before we continue, we perform a coordinate
transformation on the ga, ni, n

′
i variables, via

ga → ga, ni → gbni, n′i → gb′n
′
i. (4.33)

7This is, indeed, the generic case, e.g in the case of the nab forming a Regge boundary geometry
at the 4-simplex [73], in all cases of the hypercuboid [81], or the hyperfrustum, if α ∈ (π/4, 3π/4)
(see next chapter and reference [42]).
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Since SU(2) acts via rotations on S2, the Jacobi matrix for this transfor-
mations is equal to unity. The action after the coordinate transformation is
then given by

S(ga, ni, n
′
i) =

∑
cd6=ab,a′b′

2jcd ln〈ncd|(gc)−1gd|ndc〉

+ 2jab

(
ln〈nab|(ga)−1gb|n1〉+ ln〈n1|n2〉+ · · ·+ ln〈nn−1|nba〉

)
(4.34)

+ 2ja′b′
(

ln〈na′b′|(ga′)−1gb′ |n′1〉+ ln〈n′1|n′2〉+ · · ·+ ln〈n′n−1|nb′a′〉
)
.

Note that the first two lines in (4.34) are the same as in the undeformed
case, while the remaining two come from the deformation due to the crossing.
We compute the Hessian matrix for the deformed amplitude, at the critical
stationary point

ga = g(c)
a , ni = nba, n′i = nb′a′ . (4.35)

In particular, we introduce coordinates around this point via ga = eix
I
aσIg

(c)
a

and

ni = gnba

 sin θi
sinφi cos θi
cosφi cos θi

 , n′i = gnb′a′

 sinχi
sin ξi cosχi
cos ξi cosχi

 ,

where the angles take values in φi, ξi ∈ (−π, π) and θi, χi ∈ (−π
2
, π

2
). The

critical and stationary point is assumed at xaI = 0, φi = ξi = θi = χi = 0. The
vectors |ni〉 are then given by

|ni〉 = gnba exp

(
i
φi
2
σ1

)
exp

(
−iθi

2
σ2

)
|ez〉

= gnba

[(
cos

φi
2

cos
θi
2

+ i sin
φi
2

sin
θi
2

)
| ↑〉

+

(
cos

φi
2

sin
θi
2

+ i sin
φi
2

cos
θi
2

)
| ↓〉
]
,

where |ez〉 = | ↑〉 is the highest weight vector in the spin 1
2
-representation.

A similar formula holds for |n′i〉. This leads to

∂

∂φi
〈ni|ni+1〉|crit, stat = 0, (4.36)

and similar relations for the other angles. Also,
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〈ni|ni+1〉|crit, stat = 1. (4.37)

Therefore, for all second derivatives which have at least one derivative
w.r.t. one of the angles, the logarithm can be left out, e.g.:

∂2

∂φi∂φi+1

ln〈ni|ni+1〉|crit, stat =
∂2

∂φi∂φi+1

〈ni|ni+1〉|crit, stat,

and similar relations for all other varying types of angles. Thus we get, at
the stationary and critical points:

∂2S

∂φ2
i

=
∂2S

∂θ2
i

= −jab, (4.38)

∂2S

∂ξ2
i

=
∂2S

∂χ2
i

= −ja′b′ .

Also, we get

∂2S

∂θi∂θi+1

=
∂2S

∂φi∂φi+1

=
jab
2
,

∂2S

∂φi∂θi
= 0,

∂2S

∂φi∂θi+1

= i
jab
2
,

∂2S

∂φi+1∂θi
= −i jab

2
. (4.39)

All other mixed φ, θ angle derivatives are zero. For ξ, χ angles similar
relations hold. Furthermore, we have

〈nab|(ga)−1gb|n1〉|crit, stat = eiψ. (4.40)

Using this and gagnab = gbgnbae
−iψσ3 , we get on the critical and stationary

point that

∂2S

∂xIb∂φ1

= 2jab
∂2

∂xIb∂φ1

ln〈nab|(ga)−1eix
J
b σJgbgnbae

iφ1σ1/2e−iθ1σ2/2| ↑〉

= 2jabe
−iψ ∂2

∂xIb∂φ1

〈nab|(ga)−1eix
I
bσIgbgnbae

iφ1σ1/2e−iθ1σ2/2| ↑〉(4.41)

= jab

(
iV I

2 − V I
1

)
,

where in the end we have taken all angles φi = θi = 0. Also, V I
J is the

I-th component of the image of the J-th unit vector under the rotation G :=
(gbgnba)

−1, i.e.

GσJG
−1 = V I

J σI . (4.42)
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Furthermore, we have

∂2S

∂xIb∂φ1

= − ∂2S

∂xIa∂φ1

, (4.43)

and

∂2S

∂xIb∂θ1

= jab

(
iV I

1 + V I
2

)
(4.44)

= − ∂2S

∂xIa∂θ1

=
1

i

∂2S

∂xIb∂φ1

.

Also, there are, again, equivalent relations for the ξ1 and χ1 angles, where
a → a′, b → b′. Finally, it is not hard to see that the matrix of second
derivatives of xIa

H̃cd
IJ :=

∂2S

∂xIc∂x
J
d

, (4.45)

at the critical and stationary point coincides precisely with the matrix in
the undeformed case - even if (cd) = (ab) or (a′b′). The determinants of the
Hessian matrix H of the whole integral evaluates to

det(H) = (jabja′b′)
2(n−1) det(H̃). (4.46)

This is shown in Appendix B.
From the analysis, it is clear that that the case of more than one crossing

is treated in complete analogy, since each link is allowed to partake in at most
one crossing. Therefore, the Hessian matrix for the case of more than one
crossing can simply be computed by an induction over the number of crossings
C, and reduced to

det(H) = det(H̃)
∏
C

(jabja′b′)
2(n−1). (4.47)

4.4.2 Putting everything together

We now replace jcd → λjcd, and consider the asymptotic expression for λ→∞.
Using the normalized measure on S2 in φ, θ-coordinates (4.36), we get

dni =
1

4π
dφidθi cos θi, dn

′
i =

1

4π
dξidχi cosχi. (4.48)

Denote by B the large-j-expression for the undeformed +-amplitude (4.25),
and by Bω its deformation. Then, because the critical and stationary points



72 CHAPTER 4. THE EUCLIDEAN EPRL-FK MODEL

are in one-to-one correspondence, and the Hessian matrix det(H̃) for the un-
deformed case can be pulled out of the sum, we have Bω = B C with

C =
∞∑
n=0

1

n!

(
4iωσ(C)

(1 + γ)2

)n(
1

4π

)2(n−1)(
2π

λ

)2(n−1)

×
3∑

I1,I2,...,In=1

4n−1 (λjab)
2n−1(λja′b′)

2n−1√
(jabja′b′)2(n−1)

×
n∏
i=1

(ñba)
Ii (ñb′a′)

Ii

=
∞∑
n=0

λ2n

n!
(jabja′b′)

n

(
4iω

(1 + γ)2

)n( 3∑
I=1

(ñba)
I (ñb′a′)

I

)n

= eiωλ
2σ(C) ~Xab·~Ya′b′ , (4.49)

with the vectors ñab = ganab, and

~Xab = kab ñab, ~Ya′b′ = ka′b′ ña′b′ , (4.50)

with 1+γ
2
kcd = j+

ab = jab. This stays finite if, additionally to scaling jcd up
by λ, one scales the deformation parameter as ω → ωλ−2 at the same time.

This is the computation of the +-part, i.e. C+. It is noteworthy that C−
is the same expression, just with a minus sign in the exponential, i.e. C− =
(C+)−1.

Expression (4.49) is for one crossing. The case of many crossings is straight-
forward, since we demanded that each edge is part of at most one crossing.
For many crossings, one gets

C = eiω
∑
C σ(C) ~Xab·~Ya′b′ (4.51)

4.4.3 Relation to the cosmological constant

We now relate our final result (4.49) to the cosmological constant. For this, we
assume an amplitude in which there are two distinct solutions to the stationary

phase equations (4.31).8 We denote these as g
(i)
a , with i = 1, 2.

We denote the asymptotic expression for the undeformed amplitude by

A±Γv −→ B±(1) + B±(2), (4.52)

8This seems to be the case whenever the boundary data allows for a unique, non-degenerate
4-geometry [81, 82, 42].
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and from this and (4.49) one gets that

AωΓv −→
(
B+

(1)C+
(1) + B+

(2)C+
(2)

)(
B−(1)C−(1) + B−(2)C−(2)

)
= B+

(1)B−(1) + B+
(2)B−(2) (4.53)

+ B+
(1)B−(2) C+

(1)C−(2) + B+
(2)B−(1) C+

(2)C−(1).

The terms B+
(1)B−(1) and B+

(2)B−(2) evaluated on the same solution, have been

called “weird terms”, and one can see that they remain unchanged under the
deformation of the model. The mixed terms however do get changed, and one
has

C+
(1)C−(2) =

(
C+

(2)C−(1)

)−1

= exp

(
iω
∑
C

σ(C)
(
~X

(1)
ab · ~Y

(1)
a′b′ − ~X

(2)
ab · ~Y

(2)
a′b′

))

= exp

(
12iω

∑
C

σ(C) ∗ (Bab ∧Ba′b′)

)
. (4.54)

Here ∗ denotes the Hodge dual, Bab = ( ~X
(1)
ab ,

~X
(2)
ab ) and Ba′b′ = (~Y

(1)
ab ,

~Y
(2)
ab )

are the bivectors in R4∧R4 ' so(4) ' R3⊕R3 associated to the edges (ab) and

(a′b′), which are constructed from the two distinct solutions g
(i)
a . See Appendix

A for details.
In the case of a 4-simplex, the expression in (4.54) has been shown to be

proportional to the 4-volume of such a simplex, given by the boundary data
[76]. In the case of a hypercuboid, a similar calculation can be carried out.
With the notation from [72] and the conventions in Appendix A, one finds∑

C

σ(C) ∗ (Bab ∧Ba′b′) =
j1j6 + j2j5 + j3j4

3
, (4.55)

which coincides with Vhypercuboid if the geometricity conditions j1j6 = j2j5 =
j3j4 are satisfied. See [72] for a closer discussion of this point, and the relation
to the volume simplicity constraints within the EPRL-FK model.

In the next chapter we study a new geometry, whose main building block
is a so-called hyperfrustum. In that case, the critical and stationary equations
are solved, and the solution can be shown to be∑

C

σ(C) ∗ (Bab ∧Ba′b′) = Vfrustum, (4.56)
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where Vfrustum is the 4-volume of the hyperfrustum (see Chapter 5 and Ap-
pendix C or [42]).

One can show, indeed, that for convex 4-dimensional polyhedra P one has
in general that [83]

VP =
∑
C

σ(C) ∗ (Bab ∧Ba′b′) . (4.57)

Thus eventually we have

C+
(1)C−(2) = exp (12iωVP ) . (4.58)

Summarizing, we can write the deformed amplitude as

AωΓv → W +W ∗ +
2

|D| cos (SRegge − ΛV ) , (4.59)

calling W the ‘weird terms’ in (4.20), This way, the deformation provides, in
a straightforward way, a generalization of the EPRL-KKL model to include a
non-zero cosmological constant Λ.

There are two points of note in this analysis:

1. There are cases in which the boundary data does not describe a vector
geometry (in that there are two critical and stationary points), while
not describing a 4d polyhedron. These “non-geometric” configurations
have been discussed in [81, 82], and their presence can be attributed to
the insufficient implementation of the volume simplicity constraint. The
expression V , however, still exists and is non-zero. It is unclear what its
geometric interpretation is in that case.

2. The original EPRL-KKL amplitude AΓv is defined on a graph Γv, but
does not depend on its knotting class. As a consequence, the physical
inner product therefore also does not [84]. Interestingly, the deformation
AωΓ, however, does depend on the knotting of Γ. This is a property it
shares with the quantum group deformations of the model. One can con-
jecture that this would lead to a physical Hilbert space in which graphs
with different knotting classes are not equivalent. This could have inter-
esting physical ramifications. [85]

It should also be noted that, while the expression V (4.54) is a knotting
invariant in the asymptotic limit, i.e. does not depend on the way in which
the graph Γv is presented on the plane [72], it is unknown whether the same
is true for the quantum amplitude.



Chapter 5

Reduced Spin Foam Model

In general, one major obstacle towards progress, and also from allowing to
use the model to make actual, testable, predictions, is the complexity of SFM,
and in particular of the EPRL-FK amplitude 1. A possible strategy to tackle
this issue consists in restricting state sum to certain symmetric configurations.
On one hand this approach limits the range of physical systems that can be
described by the model, on the other hand it greatly simplifies the expressions
of the transition amplitudes. Provided that one can restrict the analysis to a
subset of states which dominate the path integral, the sum over such domain
would tell us something about the continuum limit of spin foams, expectation
values and renormalization group flow of the model.

In the canonical framework, a similar line of thinking has been introduced
in [88]. In the covariant setting, this approach has recently been investigated
in [81] in the context of 4d Euclidean EPRL-FK Spin Foam model. Here
spacetime is described by a hypercuboidal lattice and the state sum is restricted
to coherent intertwiners [63] that in the large-spin limit resemble a cuboidal
geometry. Despite the drastic reduction of the degrees of freedom the model
presents several interesting features. In particular it has been shown that in
the semiclassical limit the parameters of the theory tune the restoration of the
diffeomorphism symmetry and provide a classification of the dominant states
in the path integral. Under the imposed restrictions, such results open the
path to a preliminary analysis of the renormalization properties of spin foams.
Recent analysis based on this reduced model have in fact shown numerical
evidences of a phase transition in the RG flow [79, 80].

A first clear limitation of such a model is the absence of curvature due to

1Numerical tools for performing such tasks are under development. For example, in [86] it is
provided a C-coded library for the evaluation of the Lorentzian EPRL-FK vertex amplitude. Using
these tools, in [87] the transition amplitudes between two spin networks with dipole graphs are
evaluated in the Lorentzian framework of the EPRL-FK model with up to two (non-simplicial)
vertices.

75
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vanishing dihedral angles between the cuboidal blocks. In this chapter we take
the next step along this path by including an elementary form of curvature.
In particular we focus on a discretization in which spacetime is chopped into
hyperfrusta Fn i.e., the four dimensional generalization of a truncated regular
square pyramid (to which we will in short refer as frustum). The state sum
is reduced to coherent intertwiners that in the large-spin limit describe the
geometry of a frustum. The emergent curvature is a function of the angle
variable that defines the slope of the frustum itself. This extension of degrees
of freedom will allow us to go beyond the features of the cuboid model and to
forward some cosmological considerations. 2

The results presented in this chapter are part of an original work of the
author and collaborators and is published in [42].

5.1 Isotropic and homogeneous reduction

We define the model on a 2-complex K (as described in section 2.2.2) which
is the dual skeleton of our particular discretization of the manifold. The com-
binatorics of vertices v, edges e and faces f in K is the same of a hypercubic
lattice in which all the vertices are 8-valent. In particular each vertex v in
K is dual to a 4d hyperfrustum, and the eight edges meeting at v are dual
to the eight 3d hexahedra (two cubes and six pyramidal frusta) which bound
the hyperfrustum (see figure 5.1). The faces f of the 2-complex are dual to
squares or to regular trapezoids, which in turn form the 2d boundary of cubes
and frusta.

The hyperfrustum geometry arises by equipping every face f with a spin jf
and every edge e with an intertwiner ιe. A 2-complex colored by such specific
labeling describes a spacetime configuration in the state sum. Varying the
values of the labels in the bulk while keeping fixed the boundary ones amount
to consider different ‘paths’ in the path integral. The physical information is
deduced from the transition amplitudes between fixed boundary states which
belong to the kinematical Hilbert space of LQG (see Chapter 3).

2The reader familiar with spin foam models might be puzzled by our setup, where we claim
to allow for discrete geometries with curvature while using spin foam amplitudes in the large-j-
limit. Indeed, this limit is the context in which the so-called “flatness-problem” was discovered and
discussed in great detail [89, 90]. It states that in this limit, no matter the boundary state of the spin
foam, the bulk geometry is flat and accidental curvature constraints occur. In our case, where we
only study a subset of the full spin foam path integral, the configurations that we permit in principle
allow for curvature, in particular compared to the previously studied cuboid configurations. From
our numerical studies, which we report in this article, we do not observe that this subset of the path
integral is dominated by flat, i.e. cuboid, geometries. Due to the restrictiveness of the path integral
studied here, this finding is by no means a proving that the flatness problem is non-existent, yet it
hints towards its intricacies that we need to understand better
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Figure 5.1: The figure shows the 3d boundary of a hyperfrustum, obtained by unfolding
it into six equal frusta and two cubes of different size. This is the analogue, one dimension
higher, of the unfolding of a 3d pyramidal frustum into four trapezoids and two squares.

The use of the hyperfrustum as the fundamental grain of spacetime is jus-
tified by a number of advantages:

• A regular hyperfrustum is defined by using just three spins. Conse-
quently, all the formulas that we obtain depend on a quite restricted
set of variables. This feature makes the analysis of the model more easy
to manage.

• The geometry of a hyperfrustum allows a simple and intuitive interpreta-
tion as a time-evolving homogeneous and isotropic flat space. Therefore
we can use it to model the evolution of a Friedmann universe (see the
next sections). Varying the values of the spins one obtains hyperfrusta
with different shapes representing spacetime with different curvature.

• Taking the flat spacetime limit of an hyperfrustum i.e., choosing the spin
variables so that the two boundary cubes have the same size, one degen-
erates into a hypercuboid. Thus, as a double check on our computations,
we can use the results of [81] where the semiclassical limit of a reduced
spin foam built on a hypercuboidal geometry is carried out.

• The analysis in this chapter is ultimately a setup to the extension of the
renormalization computations performed with hypercuboidal geometries
in [79, 80], in that also states with 4d curvature are included in the
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path integral. In fact, as in the hypercuboid setting, the handiness of
the hyperfrustum formulas makes possible the numerical analysis of the
dynamics of more complex lattices made of hundreds of vertices. This
represents a crucial requirement to access the renormalization sector of
a spin foam model given that the RG flow is precisely defined by the
comparison of the expectation values of observables on finer and coarser
lattices. This is studied in details in Chapter 6.

In our model the spin network associated to the boundary of a vertex con-
sists of eight 6-valent nodes (see figure 5.2), reflecting the fact that a hyper-
frustum is bounded by eight hexahedra: two cubes and six regular pyramidal
frusta.

Following the prescriptions in Chapter 4, to each node a = 0, . . . , 7 we
assign a boosted coherent intertwiner Φιa and two SU(2) group elements (g−a ,
g+
a ) which account for the group averaging in (4.8). Each link ab is oriented

and is labeled by a spin jab. All the links are automatically endowed with
two other spins j−ab and j+

ab which are related to jab via the Barbero-Immirzi
parameter γ as in (4.6). The allowed values for jab are such that j−ab and j+

ab

are half integers. For consistency we also require that jab = jba.

Figure 5.2: The figure shows the spin network associated to a vertex boundary. This is
the dual representation of the 3d boundary in figure 5.1. All the links attached to the node 0
are labeled by the spin jn, the links attached to node 7 carry a spin jn+1 and the remaining
ones have spin kn.

The colored spin network just described admits a dual representation in
terms of hexahedra εa which are associated to the nodes a (Figure 5.1). We
call ~nab ∈ S2 ⊂ R3 the normalized outgoing normal to the face �ab ⊂ εa in the
direction of the neighboring hexahedron εb. The area of �ab is given by the
spin jab. The high degree of symmetry chosen ensures that a boundary state is
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defined by using just three independent values of the spins jab, ∀a, b,= 0 . . . 7.
We call such values jn, jn+1, kn and they correspond to the top, bottom and
side face areas of any one of the boundary pyramidal frusta represented in Fig-
ure 5.1. The previous labeling defines the boundary state and the geometry in
our lattice up to a phase factor.

5.1.1 A note on the boundary data

Particular attention needs to be paid in defining the initial configuration of
the vectors ~nab at the boundary of a vertex. In fact this choice influences the
semiclassical limit of the theory. In order to clarify this point let us start from
the definition of the single vertex amplitude. Usually we build it by forming a
closed spin network tensoring together the eight intertwiners Φιa at the nodes
and joining pairwise the free ends of the links according to the combinatorics
(see equation (4.10) and figure 5.2). In our case the outcome of this opera-
tion depends on the initial choice of the vectors ~nab which are used to define
the coherent intertwiners Φιa. For example, embedding the vertex boundary
depicted in figure 5.1 into a coordinate space and defining the vectors ~nab ac-
cordingly to the oriented axes, one finds out that the asymptotic expression
of the vertex amplitude carries a phase factor. Nonetheless, a change of the
boundary data can set such phase to zero. However, at the level of one vertex
there are no preferred criteria to chose such initial configuration of the vectors
~nab. The situation changes if one takes into account the symmetry of a larger
structure K in which many vertices are glued together to form a regular hy-
percubic lattice. For the sake of clarity let us refer to the example in figure
5.3 in which the two vertices v,v′ ⊂ K meet along an oriented common edge.

Figure 5.3: The figure shows the gluing of two eight-valent vertices v and v′ and their
respective boundaries graphs Γv and Γv′ (represented for simplicity as closed lines). In this
picture the coherent intertwiners are sitting in the intersections between the boundaries and
the edges (straight lines).

Here the circles Γv and Γv′ surrounding the vertices represent their respec-
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Figure 5.4: The figure shows a specific configuration of the boundary of a vertex. The
hexahedra drawn using continuous lines are oriented by relying on the axes ê1, ê2, ê3. The
remaining hexahedra are defined from the first by applying the condition (5.1).

tive boundaries. The intertwiners are placed at the marked intersection points
to mean that each of them is associated to an edge e ⊂ K and is also an el-
ement of a vertex boundary. Let us notice that the intertwiner sitting at the
shared edge can be ‘seen’ as an element of Γv as well as of Γv′ . In the bra-ket
notation adopted in figure (5.3) it is denoted by |ι〉 or by 〈ι| depending whether
the edge is outgoing or ingoing w.r.t. the associated vertex. In a regular lat-
tice the proper gluing of the vertices is such that, given a fixed node a ⊂ Γv,
the associated intertwiner Φιa is contracted to the intertwiner (Φι′7−a)

† in Γv′ .
Such (nonlocal) condition must be imposed at all the edges in the lattice. We
can however translate this operation in the following (local) constraint on the
boundary data of a single vertex

(|~nab〉)† ≡ 〈−~n(7−a) b|, ∀a = 4, 5, 6, 7. (5.1)

In the dual representation, the example in figure (5.3) shows two hyper-
frusta meeting along a shared hexahedron. Such object lives independently in
the boundaries of Γv and Γv′ and it must be identified as the unique hexahe-
dron shared by the two hyperfrusta. In the general case in which the lattice
is regular in all the directions, equation (5.1) ensures the proper identification
of the boundary hexahedra shared by neighboring hyperfrusta.

With this purpose in mind we can depict the boundary state starting from
representing the first four nodes 0, 1, 2, 3 as in figure 5.4, and then build the
remaining nodes 4, 5, 6, 7 (dashed lines) respecting the imposition (5.1).

Remarkably, once the lattice symmetry is taken into account by imposing
(5.1) at the local level, the asymptotic expression of the single vertex amplitude
shows no dependence on the choice of phase for the boundary states.
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5.1.2 Quantum frustum

The first step towards the definition of the local amplitudes is finding the ex-
pressions of the coherent intertwiners. The quantum frustum is a coherent
intertwiner that in the large-spin limit describe the geometry of a regular frus-
tum (see figure 5.5). It depends on three spins jn, jn+1 and kn corresponding
to its face areas and in the symmetric case jn = jn+1 = kn = j it reduces to
a quantum cube. Thus, this object furnishes a prototype for the description of
all the intertwiners appearing in our model.

Figure 5.5: The figure shows a frustum i.e., a truncated regular square pyramid

Following the instructions given in the Chapter 3, and in particular from
(3.66), we can define a quantum frustum as

ιjn,jn+1,kn =

∫
dg g .

(
|jn, ê3〉 ⊗ |jn+1,−ê3〉 ⊗

3⊗
l=0

|kn, r̂l〉
)
, (5.2)

where r̂l ≡ e−i
π
4
lσ3e−i

φ
2
σ2 . ê3 (l = 0, 1, 2, 3) are the four vectors perpendicular

to the side faces of the frustum. It is possible to express the slope angle φ of
the frustum in terms of the face areas (i.e., the spins) as

cosφ =
jn+1 − jn

4kn
. (5.3)

Using the invariance of the Haar measure to remove one group integration
and applying the coherent states property (3.64), the norm of the coherent
intertwiner (5.2) can be put in the form

‖ιjn,jn+1,kn‖2 =

∫
SU(2)

dg eSe[g], (5.4)

with

Se = 2jn ln〈ê3|g|ê3〉+ 2jn+1 ln〈−ê3|g| − ê3〉+ 2kn

3∑
l=0

ln〈r̂l|g|r̂l〉. (5.5)
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In the next section we derive the expression of the edge amplitudes in the
large-spin limit starting from the above sample description. In terms of the
coherent states also the vertex amplitude takes the simple and compact form
(4.15). In particular, for γ < 1 it factorizes as Av = A+

v A−v being

A±v =

∫
SU(2)8

dgae
S±[ga], (5.6)

and

S±[ga] =
|1± γ|

2

∑
ab⊃a

2jab ln〈−~nab|g−1
a gb|~nab〉

≡ |1± γ|
2

Sv[ga],

(5.7)

where we are using the general notation introduced at the beginning of this
section to feature the boundary data 3.

5.2 Semiclassical Limit

The semiclassical limit of the probability amplitude described by a spin foam
model corresponds to the large-spin limit of the partition function (4.12). Let
us redefine all the spins ji → λji so that the asymptotic limit is obtained by
sending λ → ∞. The limit of the face amplitude is straightforward. From
formula (4.13) we obtain

Af λ→∞−−−→ (8πΩjn)2α, (5.8)

where we have defined the function

Ω ≡
√

1− γ2

8π
. (5.9)

For edge and vertex amplitudes the task is instead not trivial. Notice that the
norm of the coherent intertwiner (5.4) and the vertex amplitude (5.6) possess
a similar form. To find their large-λ limit we will make use of the extended
stationary phase approximation presented in section 4.2.1 and already used to
carry out the asymptotics of the deformed amplitude in Chapter 4. Now, the
high degree of symmetry will allow us to explicitly evaluate the amplitudes,
and in particular the determinant of the Hessian, as functions of the spins.

3The minus sign appearing in the ‘bra’ part of (5.7) depends on the fact that, from Figure 5.6
we are using the convention (3.65) with all vectors ~ni pointing outward, which disagrees with the
orientation of the links in Figure 5.1. See [73] for details.
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5.2.1 The asymptotic norm of the coherent intertwiner

In order to describe the semiclassical behavior of the edge-amplitude Ae asso-
ciated to a quantum frustum we study the large-spin limit of the norm of the
coherent intertwiner (5.2). As a first step we look for the critical points of the
action Se in (5.5). In our case the manifold carries the structure of a group
and the critical points will be SU(2) group elements. The condition ReSe = 0
that they have to satisfy can be rephrased in the requirement |eλSe(x0)| = 1.
Using the general formula for coherent states

|〈~n|~m〉| =
(

1 + ~n · ~m
2

)1/2

,

one finds (
1 + ê3 · (g . ê3)

2

)jn
×
(

1 + (−ê3) · (g . (−ê3))

2

)jn+1

×
∏
l

(
1 + r̂l · (g . r̂l)

2

)kn
!

= 1.

Since the scalar products in the parentheses have real values in the set [−1, 1],
the above condition is satisfied only for g = ±1. It is easy to check that in these
two points the function Se vanishes. Let us now assign a set of coordinates
xK , K = 1, 2, 3 to the SU(2) group elements as follows

g → gce
i
2
xKσK , gc = ±1,

being σK the standard Pauli matrices. In these variables xK , the Haar measure
is normalized as

1

(4π)2

∫
‖x‖<π

d3x

(
sin(‖x‖/2)

‖x‖/2

)2

= 1. (5.10)

This operation allows to perform the partial derivative of the action Se w.r.t. the
group elements. The first derivative of Se evaluated in x = 0 reads

∂Se
∂xK

∣∣∣∣∣
x=0

= i

(
jnê

(K)
3 − jn+1ê

(K)
3 +

∑
l

knr̂
(K)
l

)
,

where we have used the coherent states property 〈~n|σK |~n〉 = ~n(K) and the
expression ~n(K) indicates the K-th component of the vector ~n . The above
expression is always vanishing since it corresponds to the closure condition.
Thus, we deduce that gc = ±1 are the critical and stationary points that



84 CHAPTER 5. REDUCED SPIN FOAM MODEL

dominate the asymptotic limit of the norm of the coherent intertwiner. The
components of the Hessian matrix evaluated at the gc read

HKL =
∂2Se

∂xL∂xK

∣∣∣
x=0

=
jn + jn+1

2

(
ê

(K)
3 ê

(L)
3 − δKL

)
+

3∑
l=0

kn
2

(
r̂

(K)
l r̂

(L)
l − δKL

)
.

From the above matrix elements one can derive the determinant of the Hessian

det(−H) =
kn sin2 φ

2

(
jn + jn+1 + 2kn(1 + cos2 φ)

)2

,

where the slope angle φ is given by (5.3).
Now that we have all the ingredients we can use equation (4.18) to find

the leading term of the norm of the coherent intertwiner (5.2) in the large-
λ expansion. Inserting the result into equation (4.14) we finally obtain the
asymptotic limit of the edge amplitude for a quantum frustum

Ajn,jn+1,kn
e,frustum → Ω3k3

n

2(4π)4
(1 +K2)(1 +K2 − 2Q)2, (5.11)

where we have used the functions

Q ≡ 2 +
jn + jn+1

2kn
, K ≡

√
− cos 2θ, θ ≡ arccos

1

tanφ
, (5.12)

to guarantee a compact expression. From equation (5.11) we can easily
deduce the large-spin limit of the edge amplitude associated to a quantum
cube of side area j. By setting jn = jn+1 = kn → j we find

Aje,cube −→
1

16π4

(
λ
√

1− γ2

8π

)3

j3. (5.13)

5.2.2 Asymptotics of the vertex-amplitude

The factorization of the vertex amplitude Av for γ < 1 allows us to study its
semiclassical limit by focusing on the asymptotic expression of equation (5.6).
We will make our considerations ignoring the ± indices and working with the
function Sv defined in (5.7). The invariance of the Haar measure dg allows to
discard one of the eight integrations by fixing one of the critical points ga. In
particular, we choose to fix g0 = 1. The first condition that the critical points
have to satisfy is

|eλSv(x0)| = 1⇒ ga . ~nab = −gb . ~nba. (5.14)
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In the geometric picture introduced in the previous section, this condition
corresponds to glue the eight boundary hexahedra by properly rotating the
vectors ~nab and ~nba so that in the end they will point in relative opposite
directions ∀a,b. Modulo the symmetry ga → −ga of the action Sv the critical
points equation (5.14) has two sets of solutions which we list in Table 5.1.

Σ1 Σ2

g1 exp(i θ2σ1) exp(−i θ2σ1)

g2 exp(i θ2σ2) exp(−i θ2σ2)

g3 exp(i θ2σ3) exp(−i θ2σ3)

g4 exp(iπ−θ2 σ3) exp(−iπ−θ2 σ3)

g5 exp(iπ−θ2 σ2) exp(−iπ−θ2 σ2)

g6 exp(iπ−θ2 σ1) exp(−iπ−θ2 σ1)

g7 1 1

Table 5.1: The two sets of critical points which are solutions of equation (5.14). We will
see that the dihedral angles between the boundary hexahedra are functions of the angle θ
in the exponentials.

The rotation angle θ can be expressed in terms of the slope angle φ of the
frustum as

cos θ =
1

tanφ
. (5.15)

The equation (5.15) poses a consistency condition on the allowed values of φ
i.e.,

π

4
≤ φ ≤ 3π

4
.

Using equation (5.3) it is easy to check that the allowed values of the spins in
our system are

− 1√
2
≤ jn+1 − jn

4kn
≤ 1√

2
, (5.16)

which correspond to a restriction of the phase space. The action in the two
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sets of critical points listed in Table 5.1 reads

Sv(Σ1) = +6i(jn − jn+1)
(π

2
− θ
)

+ 12ikn

(π
2
− arccos

(
cos2 θ

))
,

Sv(Σ2) = −6i(jn − jn+1)
(π

2
− θ
)
− 12ikn

(π
2
− arccos

(
cos2 θ

))
.

The Hessian is a 21×21 matrix and is constructed with the second derivatives
of the action (5.7). Defining the vectors ñab ≡ ga.~nab, its components evaluated
on the critical points are

Haa,KL =
∂2Sv

∂xLa∂x
K
a

∣∣∣∣∣
x=0

=
∑

(ab)⊃a

jab
2

(
− δKL + ñ

(K)
ab ñ

(L)
ab

)
,

Hab,KL =
∂2Sv

∂xLb ∂x
K
a

∣∣∣∣∣
x=0

=
jab
2

(
δKL − iεKLI ñ(I)

ab − ñ
(K)
ab ñ

(L)
ab

)
.

Using a computer algebra program it is possible to calculate the exact expres-
sion of the determinant of the Hessian matrix D ≡ detH, which is a homo-
geneous function of the spins. Finally, computing the leading order (4.18) for
both A+

v and A−v and taking their product one obtains the leading order of the
vertex amplitude Av in the large-λ limit

Ajn,jn+1,kn
v →

( 1

8πΩ

)21
(
e

(1+γ)
2

λSv(Σ1)

√
−D +

e
(1+γ)

2
λSv(Σ2)

√
−D∗

)(
e

(1−γ)
2

λSv(Σ1)

√
−D +

e
(1−γ)

2
λSv(Σ2)

√
−D∗

)

→
( 1

8πΩ

)21
(
eiλSR

−D +
e−iλSR

−D∗ + 2
cos(λγSR)√

DD∗

)
,

(5.17)

where D = D(jn, jn+1, kn) the determinant of the Hessian which in terms of
the functions defined in (5.12) reads

D =
j3
nj

3
n+1k

15
n

16
K(K − 3i)2

(
K − iK2 + iQ

)3 (
1 +K2 − 2Q

)3(
1 + 3K2 − 2Q− 2iK(Q− 1)

)3
(K + i)6.

(5.18)

The function SR = SR(jn, jn+1, kn) reads

SR = 6(jn − jn+1)
(π

2
− θ
)

+ 12kn

(π
2
− arccos(cos2 θ)

)
, (5.19)

and is interpreted as the Regge action describing the dynamics of the classical
model. Let us observe that it has indeed the form

SR ∼
∑
h

Ahδh,
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being Ah the area of the hinge h (i.e., a 2-dimensional face) to which is associ-
ated a spin jh and δh = π

2
−Θh the contribution of the analyzed vertex to the

deficit angle at the hinge. The 24 dihedral angles 0 < Θab < π can be com-
puted by performing the scalar product between all the couples Na,Nb ∈ R4 of
outward pointing normals to the boundary hexahedra εa and εb (see Appendix
C). We find six dihedral angles Θ = θ associated to hexahedra which meet
along jn faces, six dihedral angles Θ′ = π− θ associated to hexahedra meeting
along jn+1 faces and twelve dihedral angles Θ′′ = arccos(cos2 θ) corresponding
to boundary frusta meeting along kn faces.

Notice that for the allowed values (5.16) of the spins, the function K is real
and has values in the set [0, 1]. In particular K = 1 corresponds to the flat
cuboid case while K = 0 corresponds to a degenerate frustum with φ = π

4
, 3π

4
.

The full expression (5.18) of the determinant D is relative to the first set Σ1 of
critical points. The solution for the second set of critical points Σ2 is simply
given by its complex conjugate.

Let us also notice that both the determinant function (5.18) and the Regge
action (5.19) are invariant under exchange jn ↔ jn+1. In the light of the
physical interpretation which we propose in the next section, a consequence of
this symmetry is that the full transition amplitude does not distinguish locally
between space expansions or contractions at the same rate.

Finally, we can absorb the expressions (5.8),(5.11) and (5.13) of Af and Ae
in the vertex amplitude (5.17) in order to write the generating functional (4.12)

in terms of a dressed vertex amplitude Âv. Since every edge e is bounded by
two vertices, we split the contribution of the corresponding edge amplitude by
assigning to each vertex sitting at the extremes of e the square root of Ae.
In the same fashion, since a face is shared by four vertices (corresponding to
the fact that four hyperfrusta meet in a 2d trapezoid) we multiply each vertex
amplitude with the fourth root of Af . Summarizing, for a generic vertex v we
have

Âv ≡
∏
f⊃v

A1/4
f

∏
e⊃v

A1/2
e Av, (5.20)

and the generating functional (4.12) takes the compact form

ZΓ =
∑
jf ,ιe

∏
v

Âv. (5.21)

As we have already mentioned in Chapter 3, the spin foam sum can be written
in terms of boundary amplitudes in the following way: For each vertex v and
configuration jf , ιe, a SU(2)-spin network function ψΓv ,jf ,ιe is induced on the
corresponding boundary graph Γ(v). The boundary amplitude AΓv is then an
operator on HΓv , which is defined by

AΓv(ψΓv ,jf ,ιe) := Âv. (5.22)
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Figure 5.6: The projection of the boundary graph of a hyperfrustum (see also Figure 5.1).
This graph has 8 nodes, 24 links, and 6 crossings. All the outgoing lines meet at node 7.

5.2.3 Coupling to the cosmological constant

Following the instructions of Chapter 4, we can also couple a cosmological
constant term to the Frustum model. The spin network around a vertex which
is depicted in Figure 5.1 can be flattened with a minimal number of crossings
as in 5.6.

Then for each crossing we can assign a quantum operator (4.21) to the
vertex amplitude (5.6). Eventually, in the semiclassical limit the right discrete
cosmological constant term appears together with the Regge action (5.19).
Also, the determinant of the Hessian (5.18) will remain unchanged as we have
shown in the general case. The final set of asymptotic deformed amplitudes is
explicitly reported in the summary section at the end of this chapter.

This concludes the semiclassical analysis of the EPRL-FK spin foam model
in the reduced state sum approximation. Starting from these results, we will
study in Chapter 6 the renormalization properties of this model.

In the next section we continue the analysis of the Frustum model, this time
at the classical level i.e., by focusing only on the (Regge-type) action (5.19)
(and not on the partition function). We will see how the restricted set of
geometrical configurations considered carries enough information to reproduce
the standard cosmological dynamics of a flat FLRW universe in the limit of
fine discretization of the lattice as well as in the small deficit angles limit.
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5.3 Discrete Classical Cosmology

The action (5.19) encodes the classical properties of the system under study.
It is the generalization of the Regge action (2.59) to the case of hyperfrusta,
instead of triangulations, where the areas (instead of edge lengths) are the
free variables. Nonetheless, we will refer to (5.19) as “Regge action” in what
follows, and show that, in the limit of large lattices, classical cosmology is
obtained. To this end, we investigate the dynamics of the spin variables de-
scribed by the equations of motion, which we are going to derive in the next
section. Here we consider a spacetime manifold M∼ T 3 × [0, 1] given by the
product of the 3-torus and a closed interval. In particular we define homoge-
neous and locally isotropic states on T 3 and let them evolve. Such states are
represented by a Daisy graph (see figure 5.7 on the left) in which the node is
dual to a cube and all the links are labeled by the same spin value. A similar
construction has been studied in the context of spin foam cosmology where
the transition amplitudes between holomorphic coherent states are calculated
[91]. The dressed vertex amplitude defined in the previous section can be in-
terpreted as the transition probability between two space-like hypersurfaces Σi

and Σf at different time steps ti and tf as it is shown in figure 5.7 on the right.
In particular, we regard the two cubes at the boundary of a hyperfrustum as
isotropic and homogeneous space-like hypersurfaces. The evolution occurs in
the bulk region bounded by the six boundary frusta, which in our setup are
time-like hypersurfaces. The characteristic size of space at a fixed time is then

Figure 5.7: The figure on the left shows a Daisy graph which corresponds to the spin
network graph associated to a boundary cube. On the right we represent a hyperfrustum as
the time evolution of its space-like boundary cubes Σi and Σf .

encoded by the spin values associated to the cube faces. The peculiar choice
of reducing the state sum to hyperfrusta makes possible the variation in size
of the boundary cubes at successive time steps. Thus, from an intuitive per-
spective the model allows a basic concept of expansion and contraction of a
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Figure 5.8: The figure shows a chain obtained by gluing together many hyperfrusta. In
particular, the n-th node in the chain represents the ‘past’ cube cn in the boundary of the
hyperfrustum Fn. The (n+ 1)-th cube cn+1 is the ‘future’ cube in the boundary of Fn. The
line connecting these two cubes is associated to the remaining six boundary frusta fn.

flat space.

5.3.1 Classical Dynamics of the Frustum

In order to describe the classical dynamics of the space slices let us consider the
chain in figure 5.8 obtained by gluing together a series of hyperfrusta Fn and
representing the time evolution of their boundary cubes cn having areas jn. At
each step the evolution occurs in the bulk region bounded by the six boundary
frusta fn with bottom faces jn, top faces jn+1 and side faces of area kn. Let
us observe that such construction resembles a so-called CW skeleton (Collins-
Williams), which is a discrete structure specifically designed to approximate
a FLRW universe in the context of Regge calculus [92, 93] 4. The Cauchy
surfaces of a CW skeleton are discretized by regular polytopes (in our case
cubes) and, as in the FLRW approximation, they are identical to each other
apart from an overall scaling factor. This analogy allows us to interpret the
spin jn associated to the n-th cube as a discrete surrogate of the scale factor
at a fixed time. Therefore, we define the scale factor at the n-th step as 5

an ≡
√
jn. (5.23)

Let us also define the time step of the evolution between the cubes cn and cn+1

to be the distance between their centers or, equivalently, the height Hn of Fn
i.e.,

tn+1 − tn ≡ Hn.

Let θn be the dihedral angle between cn and fn and let hn be the height of fn.
From the results of the last section and using arguments of classical geometry

4A similar construction is investigated in [94] and [95] to model the flat FLRW and the Kasner
solutions of general relativity.

5The scale factor here is dimensionless. In order to give the right dimensions to an one should
insert physical fundamental constants such as G Newton. However this operation does not change
the results of the present analysis and we will omit these details for the sake of clarity.
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one can show that their values in terms of the spins are

θn = arccos(cotφn),

hn =
2kn√

jn+1 +
√
jn

sinφn,
(5.24)

being φn the slope angle of the frustum fn such that (in analogy with (5.3))

cosφn =
jn+1 − jn

4kn
.

In terms of these variables we find the expression for the n-th time step

Hn = hn sin θn =
2kn√

jn+1 +
√
jn

√
1− (jn+1 − jn)2

8k2
n

. (5.25)

Before proceeding to the explicit computation of the equations of motion,
let us find out how the vacuum Friedmann equations look like in the reduced
model under study by performing a qualitative analysis. From the above def-
initions we can compute the discrete time derivative of the scale factor as a
function of the spin variables

ȧn =
an+1 − an
tn+1 − tn

=
2√

tan2 φn − 1
.

Using the first equation in (5.24) it is easy to check that, in terms of the
dihedral angle θn between cn and fn, the expression above reads

ȧn = 2 cot θn. (5.26)

The first vacuum Friedman equation ȧn = 0 would then tell us that locally the
classical evolution happens for φn = π

2
i.e., on a hypercubic lattice in which

all the dihedral angles are θn = π
2
. Since at each square in the lattice the

contribution to the deficit angle is given by four hypercuboids, then the sum
of the angles vanishes at all the hinges, which corresponds to flat space. The
second derivative of the scale factor is easily derivable and reads

än = − 2

sin2 θn

(θn − θn+1

tn+1 − tn

)
. (5.27)

Since 1/2 ≤ sin θn ≤ 1 is constrained by the consistency condition (5.16) and
is not vanishing, we deduce that the acceleration of the scale factor vanishes
only when the dihedral angle does not vary with the time flow i.e., θn = θn+1.
Therefore, at the scale defined by the building blocks, the vacuum Friedman
equations än = ȧn = 0 are fulfilled only in the case of a flat reduced universe



92 CHAPTER 5. REDUCED SPIN FOAM MODEL

with vanishing deficit angles at the hinges. Let us note that in general an
accelerated expansion (contraction) of the universe would be described by a
growth (decrease) of the dihedral angles at successive steps.

The next step in our analysis is the explicit derivation of the equations of
motion, that we obtain by deriving the discrete action with respect to the spins
i.e., the area variables. In fact we want to verify that the expected results are
obtained without imposing the Friedmann equations a priori as we just did.

An important remark: it is known that, given a generic triangulation, dif-
ficulties may arise in the context of Regge calculus when considering two-
dimensional areas as independent variables instead of the edge lengths [96]. In
particular, the information given by the areas of a four dimensional polyhe-
dron is in general not enough to unambiguously reconstruct its geometry. For
example, although a 4-simplex has the same number of edge lengths and faces,
one can construct two 4-simplices with the same triangular areas but different
edge lengths. The situation gets worse in the case of many four-dimensional
blocks glued together. Another ambiguity is in the interpretation of the Regge
equations where, for instance, the vanishing of the deficit angles (seen as func-
tions of the areas) does not necessarily imply flatness. Various solutions to
these issues have been studied in the literature [97, 98, 99], and extensions of
the so-called area Regge calculus have been proposed [100]. These concerns,
however, are not necessary in the context of our model where the spins are a
priori constrained into a rigid symmetric configuration. In fact, the number of
spins required to reconstruct the geometry of a regular hyperfrustum is equal
to the number of independent edge lengths. Further, this result holds for arbi-
trary numbers of hyperfrusta glued together. As a consequence, one can freely
invert the relationship between length and spin variables without affecting the
accuracy of the geometrical description. Finally, as we will see, the equations
of motion derived are equal to the standard Regge calculus ones.

We study the classical dynamics of the discrete model in three cases: pure
gravity, in presence of a cosmological constant and in the case of dust mat-
ter coupling. The following analysis is inspired by a collection of works on
cosmological models with Regge calculus [92, 94, 93, 101, 102, 103, 104, 95].

5.3.2 Flat vacuum FLRW universe

Let us refer once again to the chain model in figure 5.8. The full Regge action
is given by a sum of terms of the form (5.19) for each hyperfrustum Fn

SR({jn}, {kn}) =
∑
n

SR,n(jn, jn+1, kn)

=
∑
n

(
3

2
(jn − jn+1)δ(j)

n + 3knδ
(k)
n

)
,

(5.28)
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being the deficit angles

δ(k)
n = 2π − 4 arccos(cos2 θn),

δ(j)
n = 2π − 4θn,

(5.29)

and

cos θn =
jn+1 − jn√

16k2
n − (jn+1 − jn)2

. (5.30)

Deriving the Regge action with respect to the spins kn and jn and setting the
result equal to zero gives the equations of motion which solve the classical
dynamics of the discrete model 6. A direct calculation shows that the con-
tribution of the derivatives of the dihedral angles sum up to zero. Thus, a
posteriori, one does not need to derive the deficit angles in the Regge action in
order to obtain the equations of motion. This can be regarded as the analogue
of the Schläfli identity [105]. The Regge equations of motion for the spins kn
and jn are then

∂SR
∂kn

= 3 δ(k)
n = 0,

∂SR
∂jn

=
3

2

(
δ(j)
n − δ(j)

n−1

)
= 0.

(5.31)

Let us notice that these equations correspond respectively to the vanishing of
(5.26) and (5.27). Indeed, the first equation of motion implies the vanishing
of the dihedral angle θn, while the second equation tells us that the dihedral
angle remains constant at successive time steps i.e., θn = θn+1. Therefore, as
it is illustrated in the previous subsection, the equations of motion (5.31) can
be interpreted as a discrete version of the vacuum Friedmann equations.

Let mn be the length of a ‘strut’ of the n-th frustum (i.e., the diagonal edge
of its trapezoidal faces) and ln the edge length of the n-th cube. One can show
that the first equation in (5.31) is equivalent to the one obtained by deriving
the Regge action w.r.t. the strut length, apart from an overall non-vanishing
factor. Explicitly,

∂SR
∂mn

=
∂kn
∂mn

∂SR
∂kn

= 0. (5.32)

It has been noted that such equation can be interpreted as the analogue of
the Hamiltonian constraint (2.39) of the ADM formalism studied in Chapter

6 Such procedure is regarded as a global variation since the six spins jn of cn, as well as the
twelve spins kn of the frusta fn, are first constrained to form a regular hyperfrustum and then they
are all derived at once. A local variation would instead consider each spin separately and impose
the constraints at the end. For more details see [93].
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2 [93]. In the same way, the equation of motion for the variable ln is linked to
the evolution equation (2.35) of ADM formalism and it can be written as

∂SR
∂ln

=
∂jn
∂ln

∂SR
∂jn

+
∂kn
∂ln

∂SR
∂kn

+
∂kn−1

∂ln

∂SR
∂kn−1

= 0. (5.33)

This coincides with the equation of motion for the spin jn only when it is
evaluated on the solution of the equations of motion for the variables kn and
kn−1. We will still refer to ∂SR/∂kn = 0 as the Hamiltonian constraint and to
∂SR/∂jn = 0 as the evolution equation. Such observations will be valid also in
the next subsections where we study the Friedmann universe in presence of a
cosmological constant and coupled to dust particles.

In order to remove any doubt about the connection between the Regge
equations of motion (5.31) and the vacuum Friedmann equations, let us pass
to the continuum time limit. From the time step formula (5.25) we get

k2
n =

(
√
jn+1 +

√
jn)2

4
H2
n +

(jn+1 − jn)2

8
. (5.34)

Substituting this expression into the dihedral angle (5.30), one can write the
Regge equations (5.31) in terms of the spins jn’s and the time steps Hn’s. Let
us now perform the following replacement in the equations of motion

Hn, Hn−1 → dt,

jn → j(t),

jn+1 → j(t) + j′dt+
1

2
j′′dt2 +O(dt3),

jn−1 → j(t)− j′dt+
1

2
j′′dt2 +O(dt3),

(5.35)

and find the continuum time limit by sending dt → 0. Note that we have
imposed that the time step Hn is constant in this limit ∀n. This corresponds
to a gauge fixing choice and it is justified by the fact that the equations of
motion (5.31) do not impose constraints on the allowed values of kn and Hn.
At the leading order in dt the Regge equations read

3

(
2π − 4 arccos

j′2

16j + j′2

)
= 0,

12
1√
j

2jj′′ − j′2
16j + j′2

= 0.

(5.36)

Deriving the Hamiltonian constraint (first equation) one can easily check that
it is a first integral of the evolution equation (second equation). Let us note
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that we are still working in Euclidean signature. To argue a solution which
is comparable to the standard Friedmann cosmology we need to perform a
Wick rotation t → it. This results in the replacements j′′ → −j′′ and j′2 →
−j′2. One can check that the vacuum solutions remain unchanged. However,
this step will be fundamental when investigating the coupling to cosmological
constant and to dust particles. We stress the fact that the Wick rotation is
effective only because we are working on the classical action (5.28). Thus there
is no statement of relation between the Euclidean and the Lorentzian EPRL-
FK models nor among the semiclassical limit of their amplitudes.
The solutions of the Hamiltonian constraint and the evolution equation are
readily derived

j′ = 0, j′′ =
j′2

2j
. (5.37)

In the interpretation given in the previous section in which the scale factor is
a =
√
j, the Regge equations correspond to

a′2

a2
= 0,

a′′

a
= 0,

(5.38)

which are the standard vacuum Friedmann equations for a flat universe.

5.3.3 Flat Λ-FLRW universe

In Chapter 4 we have studied the coupling of a cosmological constant term to
the EPRL-FK model via a deformation of the quantum amplitudes. Taking
the semiclassical limit of the deformed vertex amplitude one obtains the Regge
action SR = SR({jn}, {kn},Λ) in presence of a cosmological constant term
Λ > 0. Explicitly,

SR =
∑
n

(
3

2
(jn − jn+1)δ(j)

n + 3knδ
(k)
n − ΛVn

)
, (5.39)

being Vn the four dimensional volume of the n-th hyperfrustum. We can
express it in terms of the spins as (see Appendix C)

Vn =
kn(jn + jn+1)

2

√
1− (jn+1 − jn)2

8k2
n

. (5.40)

Let us notice that in the present notation all the spins, the volume and Λ
are dimensionless. In the last section of this chapter we will reintroduce the
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dependence on G Newton and with that also the physical dimensions of areas,
volumes and cosmological constant. The new Regge equations are

∂SR
∂kn

= 3 δ(k)
n − Λ

∂Vn
∂kn

= 0,

∂SR
∂jn

=
3

2

(
δ(j)
n − δ(j)

n−1

)
− Λ

(
∂Vn
∂jn

+
∂Vn−1

∂jn

)
= 0.

(5.41)

Performing the continuum time limit as we did in the vacuum case, one can
find the Hamiltonian constraint and the evolution equation for a flat Λ-FLRW
universe. After a Wick rotation t→ it, j′′ → −j′′, j′2 → −j′2 they read

2π − 4 arccos
j′2

j′2 − 16j
=

Λ

3
j

√
1− j′2

8j
,

2jj′′ − j′2
j′2 − 16j

=
Λ

12
j

(
1− j′2

16j
− j′′

8

)
.

(5.42)

As in the vacuum case, the Hamiltonian constraint (first equation) is the first
integral of the evolution equation (second equation). Thus, we can use it to
study the evolution of the model. Notice that the Hamiltonian constraint is
only defined for

j′2

8j
≤ 1, (5.43)

which imposes a condition on the maximal rate of expansion of the space
surfaces. Let us define the Wick-rotated dihedral angle associated to the time-
like hinges

ΘW ≡ arccos
j′2

j′2 − 16j
. (5.44)

When evaluated in the range (5.43) this is a function with real values

π

2
≤ ΘW ≤ π, −1 ≤ cos ΘW ≤ 0. (5.45)

From (5.44) we find

j′2 = −16j
cos ΘW

1− cos ΘW

. (5.46)

Using the above definitions the Hamiltonian constraint becomes

j2 =
9

Λ2

1− cos ΘW

1 + cos ΘW

(2π − 4ΘW )2. (5.47)
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Expressing the volume of the universe as U = j3/2 we can find the equation
describing its time evolution

dU

dt
=

3

2
j

1
2 j′ = 6j

√
− cos ΘW

1− cos ΘW

= −18

Λ

√
− cos ΘW

1 + cos ΘW

(2π − 4ΘW ).

(5.48)

where we have used the equations (5.44) and (5.46). Let us notice that also
the square root of equation (5.47) is involved in the above derivation. Since
it can assume both positive and negative values, one must carefully select the
signs according to the angle range (5.45) in order to get a positive value of j.
The volume and its time variation form a set of parametric equations which
can be solved using numerical methods.

Note that the use of a rigid hyperfrustum is not well suited to capture the
degrees of freedom of a constantly curved spacetime such as in the case of a
Friedmann universe in presence of a cosmological constant. Thus, in order to
get a better approximation of the Friedmann dynamics one needs to refine the
lattice discretization by describing the evolution of a larger number of cubes
tessellating each Cauchy surface 7 as in figure (5.9).

Figure 5.9: The figure shows some coarse graining steps of a 3-Torus.

In the case we want to describe the evolution of N3 identical cubes, the
Hamiltonian constraint does not vary since the number of cubes factorizes in
the action (5.39) and the continuum time limit procedure is not affected by
the coarse graining. What changes is instead (modulo rescaling) the volume
of the universe

U → N3U. (5.49)

In figure (5.10) we plot the time derivative of the volume (for some positive
value of Λ) against the volume of the universe itself for different numbers of
cubes tessellating a Cauchy surface. The results are compared to the analytic
ones obtained from the Friedmann equations of a flat universe with cosmolog-

7Actually, one can also consider the use of constantly curved building blocks to discretize space-
time as in [106, 107]



98 CHAPTER 5. REDUCED SPIN FOAM MODEL

Figure 5.10: Flat universe with cosmological constant Λ = 0.5, as approximated by the
hyperfrustal evolution with N3 cubes.

ical constant i.e.,

Uanalytic = a3 = e
√

3Λt,
dUanalytic

dt
=
√

3Λ e
√

3Λt. (5.50)

In many models which make use of the CW formalism the Cauchy surfaces
analyzed are 3-spheres triangulated by using regular tetrahedra. Therefore the
universe examined is a closed one. However a 3-sphere can be triangulated by
using only 5, 16 or 600 regular tetrahedra (see for example [108]), thus there
exists a geometric constraint which prevents from approaching the analytic
limit at will. The advantage of the model studied in this article is that a flat
3-torus can be tessellated by an arbitrarily high number of cubes and there
is no theoretical limit to the refinement steps that one can take to show the
convergence to the analytic results.

Another way to solve the Hamiltonian constraint is by studying the limit in
which the deficit angle at the hinges is small, corresponding to a slow (measured
in Planck times) expansion or contraction of the universe. In fact, only in
this regime the discrete lattice of Regge calculus approximates the continuous
smooth manifold of general relativity [49]. In our case such limit is made
explicit by the requirement

ΘW =
π

2
+ η, |η| � 1. (5.51)

Intuitively this condition indicates that the boundary frusta fn in figure 5.8
present a small deviation from a cuboidal geometry. Substituting the above
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expression into equation (5.46) and taking the limit η → 0 we find at the
leading order of η and j′2, that

η =
j′2

16j
. (5.52)

Let us come back to the Hamiltonian constraint (5.47) and substitute the
angle (5.52). We get

j2 =
9

Λ2
(−4η)2 =

9

Λ2
16

(
j′2

16j

)2

(5.53)

Finally, from the definition of the scale factor a =
√
j we obtain the first

Friedmann equation for a flat Λ-FLRW universe

a′2 =
Λ

3
a2. (5.54)

The second Friedmann equation is simply given by the time derivative of the
first and reads

a′′ =
Λ

3
a. (5.55)

Let us note that this is consistent with the fact that the evolution equation is
the derivative of the Hamiltonian constraint in (5.42). In fact, one can check
that the second Friedmann equation can also be derived from the evolution
equation using the same arguments just presented.

5.3.4 Flat FLRW universe with dust

Let us place a test particle of mass M at the center of each cube cn in the
chain (5.8). Classically, the motion of a point particle in a gravitational field
is found by applying the variational principle to the following action

SM = −M
∫

ds, (5.56)

being ds the line element. We define the discrete analogue of the line element as
the length sn of the trajectory joining the centers of the cubes cn and cn+1. In
fact the choice of placing the test particle at the center of the cubes guarantees
that it is comoving and travels along geodesics [101]. Thus in our case the
discrete line element is given by the time step (5.25) i.e., sn = Hn (remember
that we are working in Euclidean signature). More general settings have been
studied on a simplicial discretization of a closed universe. For example, in [101]
it has been shown that the Hamiltonian constraint depends on the particle
position inside the tetrahedra.
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In order to describe a universe in which more than one dust particle is
present, one can refine the lattice as in 5.9 and distribute N3 particles, each
of mass M/N3, over the initial cubes, such that one particle sits at the center
of each cube. The full action SR = SR({jn}, {kn},M) becomes

SR =
N3

8π

∑
n

(
3

2
(jn − jn+1)δ(j)

n + 3knδ
(k)
n

)
−M

∑
n

Hn, (5.57)

where we have rehabilitated the factor 1/8π in front of the Regge action8 and
we are working in Plank units c = G = 1. The new Regge equations are

∂SR
∂kn

=
3N3

8π
δ(k)
n −M

∂Hn

∂kn
= 0,

∂SR
∂jn

=
3N3

16π

(
δ(j)
n − δ(j)

n−1

)
−M

(
∂Hn

∂jn
+
∂Hn−1

∂jn

)
= 0.

(5.58)

Performing the continuum time limit and the Wick rotation we get the Hamil-
tonian constraint and the evolution equation

2π − 4 arccos
j′2

j′2 − 16j
=

8πM

3N3

1√
j

√
1− j′2

8j
,

2jj′′ − j′2
j′2 − 16j

= −πM
3N3

1√
j

(
1− j′2

4j
+
j′′

4

)
.

(5.59)

Once again, it is easy to check that the second equation is the time derivative
of the first. Substituting equation (5.46) in the Hamiltonian constraint and
applying the Wick rotation one gets

j =

(
8πM

3N3

)2
1 + cos ΘW

1− cos ΘW

1

(2π − 4ΘW )2
, (5.60)

where the Wick-rotated angle ΘW is given in (5.44). From the above equation
we can write the set of parametric equations describing the volume of the
universe and its time variation

U = N3j
3
2 ,

dU

dt
= 6N3j

√
− cos ΘW

1− cos ΘW

. (5.61)

8In the previous cases the factor 1/8π does not contribute to the dynamics since it factorizes in
the action.
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Figure 5.11: Evolution of flat universe filled with dust of massM , with space approximated
by N3 cubes.

The Friedmann equations describing the evolution of the scale factor a(t)
in a flat space and in presence of dust are

ȧ2

a2
=

8π

3
ρ,

ä

a
= −4π

3
ρ,

being ρ = M/a
3
2 the density of the universe. Using the same arguments

that we applied in the cosmological constant case, one can check that the
above equations can in fact be obtained as the small deficit angle limit of the
Hamiltonian constraint and the evolution equation. Their solution is

a(t) = (6πM)
1
3 t

2
3 , (5.62)

thus the analytic expression for the volume of the universe and its time varia-
tion are

Uanalytic = a3 = 6πMt2,
dUanalytic

dt
= 12πMt.

For some value of the mass M we can plot the numerical result (5.60),(5.61)
to find that the model converges quite rapidly to the analytic curve (see figure
5.11).
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5.4 Summary and dimensional analysis

In this summary section the dependence on G Newton of the asymptotic for-
mulas derived in the first sections of this chapter is made explicit. Thus, the
physical dimensions of areas, volumes, and cosmological constant are restored.
We work in units in which ~ = 1, so [G] = `2

Planck has the dimension of an
area. As we have shown in Chapter 4, the deformation of the vertex ampli-
tude depends on an additional parameter ω. In the asymptotic formula this
parameter appears in the action in front of the dimensionless volume term (see
(4.58)), i.e. the volume expressed in terms of spins. Thus ω is dimensionless
and related to the cosmological constant via ω ∼ ΛG so that one gets the
correct dimension [Λ] = 1/`2

Planck. The spins variables j are instead related to
areas by A = Gj. In order to keep in line with the majority of the literature,
we will, from now on, substitute Gj → j, and also change the corresponding
notations. In other words we are giving the spins a physical dimension of ar-
eas i.e., [j] = `2

Planck. For example, expressing equation (5.40) in terms of the
functions (5.12) we can write the physical 4d volume of a hyperfrustum as

V = k2
nK (Q− 2), (5.63)

and it has already the right dimensions [V ] = `4
Planck. Also the Regge action

SR in equation (5.19) is now expressed in terms of areas.
Finally, summing up all the contributions of the hyperfrustum amplitudes

(5.8), (5.11) and (5.17) and arranging the determinant of the Hessian (5.18)
as D = |D| exp(iϕ) we can write the dressed vertex amplitude (5.20) with the
correct dimensions as

Âv ∼
(jnjn+1)3α− 3

2k
6(α−1)
n

B

(
cos(

SR
G

+ ϕ) + cos(
γSR
G
− Λ

G
V )
)
, (5.64)

being

B =
|D|

(1 +K2)3 (1 +K2 − 2Q)6 .

The partition function (4.12) can be written in the compact form (5.21).
In the next sections we use the fact that in the large spin limit the sum over

the spins is well approximated by an integral
∑

j →
∫

dj so that we can nu-
merically integrate observables O weighted with the dressed vertex amplitude
(5.64) and thus evaluate their expectation values

〈O〉 =

∫
djfO

∏
v Âv∫

djf
∏

v Âv
. (5.65)

Again notice that, strictly speaking, one is actually integrating over areas
A rather than spins j. We also recall that the determinant D is a homogeneous
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function of the spins, thus the overall integration measure acquires additional
powers of G as a factor, which do not play a role in the path integral nor in
expectation values of observables. Eventually the state sum will depend on
the three parameters α, G and Λ as they appear in (5.64).
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Chapter 6

Renormalization of Spin Foam
Models

6.1 Background independent renormalization

Renormalization in this work is understood in the Wilsonian sense [109]. A
theory with infinitely many degrees of freedom can be formulated in terms
of effective theories on only part of those degrees of freedom. This effective
theory then depends on the scale, usually by scale-dependent parameters called
coupling constants. In perturbative QFT for example, the cut of degrees of
freedom introduces an energy scale µ which interpolates between the IR and
the UV regimes.

IR
µ ! UV

In lattice gauge theories a scale g(a) is instead defined by the lattice spacing
a.

These are all examples of background dependent theories. On the contrary, in
the background independent setting of spin foam models, lengths or energy are
encoded in the variables, not in any background structure. This prevents the
use of e.g. a fixed lattice spacing to characterize the scale, and requires one to
generalize the well-established renormalization group methods from e.g. lattice
gauge theory. This has been achieved in recent years [110, 111, 112, 58, 59, 38,
113], and has led to a version of the RG flow in which space-time discretization

105
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itself is regarded as scale.1 Hence the scale is taken to be the 2-complex K
itself, or equivalently the set of graphs {Γi} in the boundary of its vertices.

The regularization is understood as restricting the theory to only finitely
many holonomies, i.e. those which are associated to {Γi}. On a technical level,
this makes the RG flow procedure very similar to those employed e.g. in tensor
network renormalization [114, 115], see also e.g. [116]. Of course, this begs the
question how the results of this article compare to ones obtained in similar
approaches, such as quantum Regge calculus, see e.g. [117, 118, 119], or causal
dynamical triangulations [120]. We refer to the discussion in [81], although
this is still an open question at this point.

In the background independent framework for renormalization we employ,
the spin foam sum (4.12), is understood as an effective theory for the available
degrees of freedom provided by the 2-complex. It can be seen as the result of
integrating out all of the finer degrees of freedom, which are below the lattice
resolution. The lattice itself, then, can be regarded as the result of successive
coarse graining of a much finer lattice.

The question, then, is how the theories on different lattices, i.e. on differ-
ent scales, are related. Mathematically, the amplitudes are given in terms of
linear maps on the boundary graphs Γ of vertices (5.22). However, several of
them together can be made to a linear map onto a larger lattice, with refined
boundary graph Γ′. This allows to rewrite the RG flow of bulk lattices into
equations for boundary amplitudes. See also [113].

To relate the amplitudes on the original vertex, and the new effective one,
one needs an identification of degrees of freedom. This can be realized by a
projection of configuration spaces, or injection of boundary Hilbert spaces 2 3

1Note that on a fixed geometry, refinement of the lattice is equivalent to shrinking of lattice
length, while in the background independent setting of spin foam models, only the former can be
defined, since the lattice spacing is a variable to be summed over in the path integral.

2For a definition of the partial Hilbert spaces HΓ see section 3.1 and the subsection 3.1.2 therein.
3Notice that a similar embedding map was defined in (3.12) when we introduced the canonical

formalism of LQG. Such an embedding map was acting at the kinematical level and was not tied
to a dynamics. However, when refining a theory with a dynamics i.e., involving time evolution, the
embedding maps should be able to separate among the mathematical refinement of a state and its
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4

ιΓΓ′ : HΓ −→ HΓ′

ψΓ 7−→ ψΓ′ = ιΓΓ′ψΓ,
(6.1)

such that ιΓΓ = Id and ιΓ′Γ′′ ◦ ιΓΓ′ = ιΓΓ′′ . for Γ ≤ Γ′ ≤ Γ′′.
If the state sum (4.12) on the coarse lattice Γ is defined by a total amplitude

AΓ : HΓ −→ C, then on the fine boundary Γ′ the dynamics is specified by a
fine amplitude AΓ′ : HΓ′ → C. We make the ansatz for the fine amplitude
to be of the EPRL-FK type, i.e. a local expression over the vertices (5.21)
which gives a fine amplitude

AΓ′(ψΓ′,j`,ιn) :=
∑
j′f ,ι
′
e

∏
v

Âv, (6.2)

where the sum ranges over all bulk spins and intertwiners j′f , ι
′
e of the fine

lattice, while the boundary spins and intertwiners j`,ιn (∀` ⊂ f and n ⊂ e)
are kept fixed. Let us notice that the overall boundary geometry is the same
in the coarse and in the fine settings i.e., we are basically describing the same
physical process but with more or less degrees of freedom. The amplitude AΓ′

contains all information of the fine theory, represented as amplitude on the fine
boundary. Then we want to compare the amplitudes AΓ′(ψΓ′) and AΓ(ψΓ)

Here the amplitude operators are represented with outgoing lines to be
imagined as plugs which can be inserted in the appropriate sockets (defined
by the ingoing lines) in equation (6.1). To do so we relate the fine amplitude
to the coarse boundary via the embedding map as

AΓ′(ψΓ′) = AΓ′ιΓΓ′(ψΓ) ≡ AR
Γ (ψΓ) (6.3)

time evolution. Using a quite cheap example, in Figure 3.3 the graph ΓK,B could be thought as
a refinement of ΓK,A, while it actually corresponds to its time evolution. Understanding the role
of dynamical embedding maps is of pivotal importance. We will come back to this topic in the
following.

4In what follows we adopt a schematic representation of the equations in order to help the
visualization of the general reasoning.
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where we have defined the renormalized amplitude AR
Γ : HΓ → C. The renor-

malization group flow equation is then defined on the amplitudes by requiring

AΓ
!

= AR
Γ (6.4)

Notice that, even though these amplitudes describe a transition on the same
boundary geometry, they do not necessarily coincide since AR

Γ is defined from
the richer information of the fine graph Γ′. Practically, in order to satisfy
(6.4) one has to carefully tune the parameters of the theory defined on the fine
lattice. This is the essence of the concept of “running coupling” in the RG
flow.

Mathematically, equation (6.4) is the notion of cylindrical consistency,
which is required to define the continuum limit.5 Notably, assume one has
solved the RG flow equations along all lattices, i.e. one has a collection of
amplitudes {AΓ}Γ which satisfy cylindrical consistency:

AΓ = AΓ′ ιΓΓ′ . (6.5)

for all Γ ≤ Γ′, i.e. whenever Γ arises as a refinement of Γ′. Then, this is
a necessary condition that the continuum amplitude A∞ : H∞ → C can be
defined on the continuum Hilbert space

H∞ := lim
Γ→∞

HΓ, (6.6)

which is the inductive limit of all the HΓ. See [58] for details.
This shows a nice interplay between mathematical concepts and physical

intuition. The notion of scale is here played by the choices of lattices, and
their relation to one another, which provides a hierarchy among the degrees of
freedom. Once again note that, even though in our case the lattices are regular
hypercubic ones, there are no lengths or other geometric properties assigned
to them. Rather, the sum (6.2) ranges over different geometries of the same
lattice.

5 This should not be confused with the notion of cylindrical consistency of Chapter 3, employed
in the construction of the Ashtekar-Lewandowski vacuum in loop quantum gravity, which is entirely
kinematical (see e.g. [121], and the discussions in [111, 58, 38, 113]).
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6.1.1 Observables

In this context, using the notation from section 3.1, an observable O : U →
C is a continuous function acting on the generalized connections (3.3). In
order to be adaptable to a graph structure Γ, we require it to be cylindrical
over such graph i.e., we demand the existence of a continuous function OΓ :
UΓ → C, which in the projective limit of infinite refinement corresponds to
the continuous function O. In other words, using the projector ΠΓ : U → UΓ

defined in (3.4), we can write

O = OΓΠΓ. (6.7)

The expectation value of such observable, weighted by some amplitude function
A∞ (which is also cylindrical over Γ and Γ′), is defined as

〈O〉 =

∫
dµALOA∞ =

∫
dµΓOΓAΓ = 〈OΓ〉Γ, (6.8)

where dµAL and dµΓ are respectively the Ashtekar-Lewandowski measure and
the partial measure defined in (3.10) and at the end of subsection 3.1.2.

Notice that, whenever O is cylindrical over Γ, then it is automatically
cylindrical over all Γ′ ≥ Γ, since

O = OΓΠΓ = (OΓπΓ′Γ)ΠΓ′ = OΓ′ΠΓ′ , (6.9)

where we used the projector (3.1) and its properties listed in Chapter 3.
The RG flow equation (6.5) can be rephrased as a condition on the expec-

tation values of observables

〈OΓ〉Γ = 〈OΓ′〉Γ′ . (6.10)

6.1.2 On embedding maps

It should be noted that the coarse graining prescription depends on the way in
which degrees of freedom are represented, and identified along different scales.
In particular, the embedding map ιΓΓ′ depends on these choices, which are not
unique. For instance, any family of unitary operators UΓ on HΓ lead to an
equivalent theory with

ÃΓ := AΓUΓ,

ι̃ΓΓ′ := U−1
Γ′ ιΓΓ′UΓ.

However, the freedom one has in this choice is much larger than this. The
precise definition of ιΓΓ′ can make the actual problem of solving (6.5) harder
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or easier. In particular, there are, in general, some choices which can work
well – or not so well – in conjunction with certain approximation methods.

In [58], it is argued that the most beneficial way would be to use dynamical
embedding maps, which in and of themselves already contain all the informa-
tion of the dynamics of the theory. The reason for this is that one can interpret
the embedding maps ιΓΓ′ as ways to identify and add degrees of freedom under
refinement. Then (6.5) suggests that refining should be done with respect to
the dynamics encoded in the amplitude AΓ, i.e. degrees of freedom should be
added in the dynamical vacuum state. This is a highly non-trivial condition
on both AΓ and ιΓΓ′ . A real-space coarse graining algorithm, called tensor
network renormalization [115, 114, 122], aims exactly at implementing such a
scheme: the partition function of the system is rewritten as the contraction of
a (local) network of tensors, which does not refer to a background and does
not require a notion of scale. This network is coarse grained by defining effec-
tive coarse degrees of freedom from fine ones and ordering them by dynamical
relevance. Thus these variable transformations, given by the dynamics, are
the inverse of embedding maps. To keep this algorithm numerically feasible,
one usually has to truncate the maximum number of degrees of freedom kept
in each iteration. In quantum gravity, this algorithm has been successfully
applied to 2D analogue spin foam models for finite [116, 123] and quantum
groups [124, 125, 126] and 3D lattice gauge theories [127, 126]. One of its
main advantages is the applicability to oscillating amplitudes and fermionic
systems [128]. However a main disadvantage is the exponential growth in nu-
merical cost with growing number of degrees of freedom, which has prohibited
a direct application to 4D spin foam models.

When using the physical embedding maps, the continuum Hilbert space is
equivalent to the physical Hilbert space, in which time translation becomes
trivial, i.e. scattering matrix elements are simply computed taking the inner
product between in- and out-states.

Since we do not have the physical embedding maps at our disposal (indeed
they would have to be found by solving the RG flow equations), we instead use
an ad hoc choice for embedding maps, which identify (kinematical) geometric
quantities among different scales, such as spins. The degrees of freedom here
are added by ιΓΓ′ in such a way that e.g. fine areas add up to coarse areas. This
condition is translated to a condition on the coupling of fine spins to coarse
spins. Details can be found in [80].

6.2 Approximations

In order to solve the RG flow equation (6.10) we adopt a number of approxi-
mations
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6.2.1 1st approximation: Reduced state sum

The partition function (4.12) is hardly usable to carry out predictions about
transition probabilities and expectation values of observables. This fact has
roots in the complexity of its expression which involves a sum over all the
possible geometric configurations {jf , ιe}. To overcome this issue we can re-
strict the state sum to a subset of symmetric configurations. A setting which
has recently been proven successful in delivery the RG flow, consists of a dis-
cretization in terms of hypercuboids [81, 79, 80]. Using a set of approximations
similar to the one described in this section, the highly symmetric hypercuboidal
configuration allowed the evaluation of the RG flow of the parameter α ap-
pearing in the face amplitude (4.13). Also, the detection of a UV-attractive
fixed point αc showed an indication of invariance of the model under refine-
ment. While opening the way to the numerical study of the continuum limit
of restricted spin foams, the hypercuboid model stands on a severe restriction
of d.o.f. which does not allow for curvature. The curvature is in fact vanishing
everywhere and thus the theory is independent of other interesting parameters
such as Newton’s constant G and the cosmological constant Λ. This justifies
the introduction of discrete structures able to support a basic concept of cur-
vature and still simple enough to allow the exploration of the renormalization
properties. The symmetric configurations studied in Chapter 5 and firstly in-
troduced in the original work [42], provide such a working basis. To recap, they
define a discretization of spacetime in which only a limited number of spins
jf is required to keep track of the geometric degrees of freedom, while all the
intertwiners ιe are confined into the shape of a quantum frustum. The typical
grain of spacetime, defining the spin foam vertex, is the so called hyperfrustum
Fn i.e., the four dimensional generalization of a truncated regular square pyra-
mid. In the limit of large refinements, this ‘pyramidal’ discretization provides
a natural description of a foliated manifold M = Σ × R in which the spatial
hypersurfaces Σ ∼ T 3 have the topology of a 3-torus, are flat, isotropic and
homogeneous and can grow or contract at successive times.

6.2.2 2nd Approximation: Semiclassical limit

In the large spin limit the EPRL-FK vertex amplitude (4.11) has been proven
to be connected to discrete GR, when built on a simplicial discretization [73].
This result was confirmed in [41] and [42] by a saddle point approximation
of the reduced amplitude. In particular, as we have shown in Chapter 5, un-
like the case of a general simplicial decomposition, the thinning of the state
sum leads to an explicit asymptotic expression of the vertex amplitude as a
function of the spins (5.64). This allows us to numerically evaluate the expec-
tation values (5.65) for some geometric observables OΓ on a given boundary
graph Γ. Although the error one makes by replacing the amplitude with its
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large-j-asymptotic expression is hard to estimate, it can be expected that the
approximation is quite good already for small values of the spins [129, 42].
Since for large parts of the phase space the multi-vertex-amplitude appears to
be suppressed for small spins [81], the error might in fact not be that large.
Still, this point warrants further study.

6.2.3 3rd Approximation: Projection of the RG flow

In general, the cylindrical consistency equations (6.10) are very hard to solve,
even though we restrict ourselves to specific lattices6. To simplify matters, one

can instead consider amplitudes A(gi)
Γ on Γ, which are given in terms of few

parameters gi, called coupling constants. One then attempts to rewrite the
flow of amplitudes in terms of a flow of coupling constants

gi −→ g′i . (6.11)

The question whether a parametrization in terms of few coupling constants
is feasible, depends on its renormalizability, i.e. on whether the effect of the
integrated out degrees of freedom in (6.3) can be absorbed by a shift in the gi.
Whether quantum gravity is renormalizable or not, is still an open question.
While it is often argued that the perturbative formulation is not [130], there
are hints that there might exist a non-Gaussian fixed point, around which the
flow might be renormalizable [131].

We have to leave this question open for now. To be able make computations,
however, we truncate the flow to only finitely many parameters. That is, we

make an ansatz for AΓ = A(gi)
Γ in terms of the EPRL-FK model described in

Chapter 4. The asymptotic formulas are in (5.64), and the model has three
free parameters

{gi} = {α, G, Λ}, (6.12)

i.e. the parameter defined in the face amplitude (4.13), as well as Newton’s
constant G and the cosmological constant Λ. We specifically do not choose the
Barbero-Immirzi parameter γ as a running coupling, since its connection to the
allowed spins is rather pathological in the Euclidean EPRL-FK model. The
precise range of allowed spins jf sensitively depends on γ, by the condition that
j±f given by (4.6) are half-integers. In particular, changing γ by a tiny amount
can make huge changes in the range. In particular, the chosen boundary data
which works for one γ might not be allowed for another, which would spoil the
RG flow equations. To avoid this complication, we fix the value to

γ =
1

2
. (6.13)

6See [38] for the treatment of a case allowing for all possible lattices at the same time. In that
case, there are uncountably many RG flow equations to solve.
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Since the same pathology does not appear in the Lorentzian signature model,
we surmise that, in that case, it would be prudent to also choose γ as a running
coupling.

The projection of the flow will be achieved by requiring that the amplitudes
AΓ and AΓ′ weighting the expectation values (6.10) are of the EPRL-FK type
(5.64).

6.2.4 4th Approximation: Numerical working point

If we truncate the theory space to amplitudes given in terms of few coupling
constants gi, we cannot expect (6.10) to hold for all observables any more
exactly. Instead, we will only demand it to hold approximately, for a subset

of all observables. In particular, we choose a finite set of observables O
(i)
Γ (in

general, as many as the number of coupling constants that are allowed to run),
which we call reference observables, and demand that the error

∆g,g′

Γ,Γ′ :=
∑
i

∣∣〈O(i)
Γ 〉gΓ − 〈O

(i)
Γ′ 〉g

′

Γ′

∣∣2, (6.14)

is minimal7. This truncation of the RG flow obviously depends on the choice of
observables, and a good flow requires that one finds observables which capture
the dynamics of enough interesting degrees of freedom.

In this work, we choose a specific set of observables, depending on the
situation we are in. We will describe these in more detail in the next chapter.
In particular, we will, in some instances, truncate the flow further and keep
some of the parameters in (6.12) fixed. Depending on which and how many,
the choice for reference observables will be adapted.

6.2.5 Resolution algorithm

In order to deal with the resolution of the RG flow in the reduced setting, we
developed in [83] a novel resolution strategy which eventually has been proven
successful.

Let us choose a quantum gravity model which can be described by the
EPRL-FK partition function on a coarse graph Γ or on a finer one Γ′. Also,
suppose that we explicitly know the asymptotic expression of the respective
amplitudes. Call {j} and {j′} the respective sets of free variables in the two
systems. Then, we evaluate expectation values of i observables O(i) by numer-

7To simplify notation we refer to all parameters by g = (α,G,Λ) and drop the subscript i.
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ically integrating over these variables

〈O(i)
Γ 〉gΓ =

1

ZΓ

∫
dj O(i)

Γ AΓ,

〈O(i)
Γ′ 〉g

′

Γ′ =
1

ZΓ′

∫
dj′ O(i)

Γ′ AΓ′ ,

(6.15)

where g and g′ are sets of parameters defining the theory. Observables should
be cylindrically consistent, written as:

〈O(i)
Γ 〉gΓ = 〈O(i)

Γ′ 〉g
′

Γ′ ∀n. (6.16)

This defines the RG flow equation for our model. In fact, if one can solve it, for
any point g′ the equation returns a point g and we can connect them with an
arrow Ag′→g to draw the flow in the parameter space 8. The existence of an ex-
act solution to equation (6.16) depends on many factors. We already discussed
the relevance of the choice of Γ and Γ′ as well as the various approximations
that may spoil the solution. A further technical obstacle is represented by
the fact that the solution of (6.16) would require the knowledge of the val-

ues 〈O(i)
Γ 〉Γ and 〈O(i)

Γ′ 〉Γ′ in all the points of the parameter space. However, in
our case these observables are evaluated numerically for every couple (g, g′).
Therefore we must consider a finite number of points in the parameter space
in order to perform a finite number of integrations. The solution of the flow
equation is then approximated whereas for a point g′ we cannot access all
the points in its neighbor with infinite accuracy and, consequently, the point
g cannot be defined exactly. In the light of this observations we impose the
cylindrical consistency condition in (6.14) in the weak form

∆g,g′

Γ,Γ′
!

= min. (6.17)

Our plan consists in considering an adequate number of points in a ‘large’
region of the parameter space, draw the flow accordingly to the weak cylindrical
consistency condition (6.17) and finally, for each arrow Ag′→g, check how small
is the relative error

Rg,g′

Γ,Γ′ ≡
∆g,g′

Γ,Γ′

Og,g
′

Γ,Γ′

, (6.18)

8In analogy with the RG flows generated in the Asymptotic Safety scheme, where the arrows
point from high to low energy, here the arrows start at g′ associated to the fine observables, and
point at g which is related to coarse observables. We recall that, in our context of background
independent renormalization, there are no continuous labels tracing the energy scale. Instead, the
shift of resolution happens in discrete steps and is associated to a change of discretization. This also
equates to a change in the number of degrees of freedom that we keep when describing a physical
process. Thus, in a ‘Wilsonian’ sense, the refinement of a discretization can be interpreted as a
shift towards high energy regimes.
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being

Og,g
′

Γ,Γ′ ≡
∑
i

∣∣∣∣∣〈O(i)
Γ 〉gΓ + 〈O(i)

Γ′ 〉g
′

Γ′

2

∣∣∣∣∣. (6.19)

Eventually we will aim for an improved accuracy by zooming further into some
regions of the parameter space where the arrows show the lowest relative errors
and an overall ‘interesting behavior’. During our analysis we encountered many
regions of the parameter space where the cylindrical consistency condition is
in fact violated and the RG flow cannot be trust. We concentrate on those
regions where the error is small, and cylindrical consistency is satisfied up to
only small errors.

6.3 Renormalization of reduced spin foam model

We are finally ready to apply the renormalization techniques introduced in
the first part of this chapter to the asymptotic limit of the deformed and
symmetry reduced Euclidean EPRL-FK model studied in Chapter 5. Refer to
the summary section 5.4 for the important formulas. In what follows we are
going to use these results to define and numerically solve the RG flow equation
(6.17).

At this point, it is worthwhile to recap which degrees of freedom we are
summing over when evaluating the expectation values of observables (6.15).
Originally, the spin foam model depends on spins j and intertwiners ι. The
truncation leaves us with a subset of variables jn and kn of spins (i.e. areas),
which are assigned to space-like and time-like faces in the 4d lattice, where the
first ones describe the geometry of the isotropic and homogeneous space-like
Cauchy-surfaces, while the latter describe the transitions between hypersur-
faces, i.e. time-steps.9

By going over to continuous areas, and because of the equivalence to length
variables, this describes essentially a subsector of the state space of quan-
tum Regge calculus. There are a few differences though: Firstly, the factor
coming from the Hessian of the asymptotic formula induces a different mea-
sure. Secondly, the amplitude is not of the form exp(−S), but rather (5.64),
i.e. cos(S̃) + cos(S).

Also, it should be noted that the RG flow is defined slightly differently
here, since we do not introduce a correlation length, but use, as ordering
parameter, a different observable, usually certain volume fluctuations. These
will be described in more detail in the following section. How to define a
correlation length, other than in the pure combinatorial sense, is not obvious,
but intriguing to explore in future research.

9Remember though, that the choice of time-direction is somewhat arbitrary at this point, since
we deal with Riemannian geometries in this article.
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In principle, the integral over degrees of freedom is unbounded, which could
lead to divergences of the integral in the limit of large spins j, k →∞. However,
depending on the value of the coupling constant α appearing in (5.64), the
integrand goes to zero sufficiently fast in that limit, so the integral stays finite.
This has been discussed for hypercuboids in [81], and a similar calculation is
true for the frustum case, which we consider in this work. In particular, we
only consider a flow of α well inside the region in which the large-j-region is
not a problem.

The Hessian matrix which occurs in the measure factor of the path inte-
gral goes to zero in the limit of vanishing spins, which might a priori lead to
divergences in the j, k → 0 region as well. However, this is an artifact of the
asymptotic formula, which does not hold for the small spin case. Indeed, the
actual amplitude stays finite in that region, where the integral would have to
be replaced by the sum anyway. Indeed, our numerical investigations show
that there is usually only a very small region around j, k ≈ 0 in which the
amplitude diverges. Figure (6.4) is an example for this behavior, in which
we find that the integrand itself tends to zero as spins approach small values,
and only suddenly diverges very close to j, k = 0. We attribute this behav-
ior to the breakdown of validity of the asymptotic formula, and remove it by
introducing a small spin cutoff. As long as one does not enter the region in
which the asymptotic formula breaks down anyway, the results appear not to
be influenced by the precise position of the cutoff.

6.3.1 Renormalization setup

We work on a system Φ describing the time evolution of an isotropic and
homogeneous universe. Such process is studied on a discretization given in
terms of hyperfrusta. Thus, among all the possible paths in the state sum we
are just focusing on those such that, at fixed time, the spatial geometry and
its quantum fluctuations are represented by cubes.

Let us focus on the table in Figure 6.1 which catalogs some possible dis-
cretizations of Φ preserving the symmetries of the system. Each slot (X ,Y)
represents a discretization Φ(X ,Y) of Φ in terms of n = X 3Y vertices.

In what follows we are considering the initial and final slices as our discon-
nected boundary. There exists a unique embedding map (6.1) which allows for
using only and solely the hyperfrustum vertex at each refinement step. This
is such that it maps a coarse boundary cube into the unique configuration of
X 3 smaller cubes, all of the same size. A posteriori, the interpretation that
derives from the use of our special vertex can be summarized as follows: we
are modeling a symmetry restricted quantum dynamics which is not allowed
to fluctuate in a direction violating the Friedmann symmetries. In particular
it does so not only globally, but also in any local region of space.
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Figure 6.1: Catalog of some possible discretizations of Φ which preserve the homogeneity
of the spatial hypersurfaces. The labels X refer to the number of links used to discretize
each spatial direction. The labels Y refer to the number of time steps in which the transition
occurs.

At the coarsest level the process is described by a single vertex i.e., a
hyperfrustum Φ(1,1) with boundary cubes of areas ji and jf . These labels
fix the boundary geometry of Φ(1,1) and determine the coarsest scale where
there is a single degree of freedom available e.g., the height H. Shifting to
the right in the picture (i.e. along X ) corresponds to a homogeneous split of
the spatial discretizations, dictated by the embedding map. Thus, in the slot
(X , 1) each spatial edge is split into X equal pieces. Correspondingly, each of
the coarsest boundary cubes of areas ji and jf is respectively subdivided into
X 3 cubes of areas ji/X 2 and jf/X 2. Stepping down in the picture (i.e. along
Y) corresponds instead to refining the discretization in the time direction. As
an example, at the slot (1,Y) of Table 6.1 one has the transition of a single
cube in Y time steps which is represented by a chain of Y hyperfrusta of heights
H1, . . . , HY with

∑Y
i=1Hi = H. The variables of a discretization Φ(X ,Y) are

the bulk spatial spins jn and the time-like spins km, where n = 1, . . . ,Y − 1,
m = 1, . . .Y .

The flow is extrapolated from the comparison of the dynamics of two dis-
cretizations Γ = Φ(X ,Y) (coarse) and Γ′ = Φ(X ′,Y ′) (fine) defining a coarse
graining step. One can choose whatever couple (Γ,Γ′) in Table 6.1 with the
condition that X ·Y < X ′ ·Y ′. In general, the flow will depend on such a choice.
However we expect that for highly discretized Γ and Γ′ the dependence of the
flow becomes negligible since the discretization is fine enough to capture the
dynamics of the system.

Let us notice that all the configurations shown in Table 6.1 give rise to real
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transition amplitudes in view of the fact that they are built as a product of

real amplitudes Âv of the form (5.64). The discretizations laying in the even
columns have positive amplitudes while the odd columns can take negative
values since each time step comes with an odd power of vertex amplitudes. In
what follows we restrict ourselves to discretizations with positive amplitudes
only. This ensures in general a faster numerical evaluation of the expectation
values of the observables.

6.3.2 One dimensional isochoric RG flow

First, we consider a restricted flow where all coupling constants are kept fixed,
except for α. The RG flow in α is computed in the isochoric setting i.e.,
keeping fixed the total 4-volume of space-time. This is a generalization of a
previous work, in which the discretization has been restricted to hypercuboids,
and where it has been observed that the RG flow of α is intimately connected
to the vertex displacement symmetry of the model [79].

In particular, in [81], it was observed that the EPRL-FK model breaks
vertex displacement symmetry, which is the manifestation of diffeomorphisms
on the lattice [132, 106, 133, 134, 81, 135]. While this breaking of symmetry
is well-known in classical Regge calculus, where it appears whenever curvature
is involved, the quantum theory breaks it even in the case of flat metrics.

If one restricts the state sum to only these flat metrics, by using hyper-
cuboids, then it could be shown that the RG flow has an UV-attractive fixed
point, on which vertex displacement symmetry is roughly restored. Since one
only considers flat configurations, only the coupling constant α plays a role.
Depending on the boundary state, the fixed point lies around α ≈ 0.63 [80].
In the following, we extend the RG flow to frusta geometries which also allow
for curvature.

We consider the coarse-graining step of Γ = 2 × Φ(1,2) into Γ′ = 2 × Φ(2,4)

which are respectively discretizations with nΓ = 13 × 2 × 2 = 4 and nΓ′ =
23 × 4 × 2 = 64 vertices (Figure 6.2). The lattice is doubled in one of the
spatial directions, so that the amplitude is always positive. The initial and
final boundary spins are fixed and equal ji = jf = jb.

The RG flow is then evaluated in the isochoric regime, i.e. summing over
all configurations which have identical total 4-volume Vtot. This is achieved by
performing a transformation of the integral over spins (jn, km) to an integral
over (jn, Vm), with the 4-volumes Vm of a vertex at time-step m. This adds a
Jacobian determinant to the integration, after which the total volume is fixed
by including a δ(

∑
m Vm − Vtot) into the integral, which allows to express one

of the volumes by the others and Vtot. For the coarse lattice Γ this results in
two variables j1, V1, while for the fine lattice Γ′ one has six variables j′n, V

′
n,

with n = 1, 2, 3.
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Figure 6.2: Coarse graining step used to generate the one-dimensional flow in the isochoric
setting i.e., keeping the total 4-volume fixed.

We use the amplitude (5.64) and equation (5.65) to compute the expec-
tation values of an observable corresponding to the fluctuation of half of the
volume, i.e.

〈OΓ〉Γ ≡ 〈(V1 − Vtot/2)2〉, (6.20)

〈OΓ′〉Γ′ ≡ 〈(V ′1 + V ′2 − Vtot/2)2〉. (6.21)

To compare to the computation in [80], we fix 1/G = 1.5, Λ = 0.1, and consider
the amplitude depending only on the coupling constant α. For a given α′ on
the fine lattice, we compute the fine observable (6.21), and look for the value
α on the coarse lattice, which leads to the same value for (6.20), i.e. the RG
flow α′ → α is given by the condition (6.10) i.e.,

〈OΓ〉αΓ
!

= 〈OΓ′〉α
′

Γ′ . (6.22)

The result can be seen in Figure 6.3. The intersection with the line of α = α′

lies at about

α∗ ≈ 0.69, (6.23)

which marks an unstable (i.e. UV-attractive) fixed point of this flow. This
value is slightly above the one found in [80], but only differs by about 10%.

A plot of the path integrand for the coarse lattice (depending on the two
free variables j1, V1) is depicted in Figure 6.4. It can be seen that for α at the
fixed point, there is a plateau in the integrand, indicating that some symmetry
among the variables is approximately realized in the path integral. This can be
regarded as some vertex displacement symmetry. It should be noted, however,
that in this case the connection to the diffeomorphisms is much less clear,
due to the presence of non-trivial deficit angles. Numerical tests show indeed
that the plateau depicted in Figure 6.4 vanishes, as soon as one moves α away
from the fixed point α∗. All of this is in agreement with what has been found
previously in the case of hypercuboids [80, 79].
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Figure 6.3: RG flow α → α′ in the isochoric case. The intersection with the dashed line
(αα′) lies at about α ≈ 0.69, while the other coupling constants are fixed to 1/G = 1.5,
γ = 1

2 , and Λ = 0.1.

Figure 6.4: Path integrand Â1 · Â2 for the coarse lattice at α = α∗, depending on the two
variables j1, V1. The plateau indicates the presence of vertex displacement symmetry.
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6.3.3 The isotemporal gauge

Let us now go beyond the one dimensional analysis and generate higher dimen-
sional RG flow diagrams. In fact, the theory is also defined by the parameters
G and Λ. We first look at a two dimensional flow in the space (Λ, G) while
keeping fixed the value of α. Such analysis reveals a partial information be-
ing a projection of the three dimensional flow. Nonetheless we will see that
it carries the traces of non trivial regions. We then extend this result to the
entire parameter space generating a more detailed flow diagram in the space
(α,G,Λ). As we will show, the flow has a fixed point with one attractive and
two repulsive directions.

Here we relax the constraint which keeps fixed the total 4-volume and
instead we fix the total height H. Furthermore, we work in an isotemporal
gauge i.e., we demand that all the hyperfrusta in a given discretization have
the same height. As an example, the slot (1,Y) of Fig.6.1 is now interpreted
as the transition of a single cube into the same cube in Y time steps which is
represented by a chain of Y hyperfrusta of same height H/Y .

In our analysis we consider the case of Γ = Φ(3,2) and Γ′ = Φ(4,3) which
respectively correspond to discretizations of Φ in terms of nΓ = 33 × 2 = 54
and nΓ′ = 43× 3 = 192 hyperfrusta (Figure 6.5). We also choose a fiducial set

Figure 6.5: Coarse graining step used to generate the two- and three-dimensional flows
in the isotemporal gauge, i.e. keeping fixed the height of the vertices in each discretization
and imposing the total height H to be fixed

of boundary conditions ji = jf = 1 and we fix H = 6.
Let us note that the total amplitude of Γ′ is always positive being given as a

product of an even number of identical dressed vertex amplitudes for each time
step. The coarse lattice Γ has instead an odd number of vertices contribut-

ing to each time step. However, thanks to the symmetry Âv(jn, jn+1, kn) =

Âv(jn+1, jn, kn) of (5.64), the chosen boundary conditions and the isotempo-
ral gauge setting guarantee the positivity of the total amplitude as both time
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steps carry the same amplitude.
In the large spin limit the partition functions associated to these two sys-

tems are respectively

ZΓ =

∫
dj1dk1dk2 Âv(

ji
9
, j1, k1)27 Âv(j1,

jf
9
, k2)27,

ZΓ′ =

∫
dj′1dj′2dk′1dk′2dk′3 Â64

v (
ji
16
, j′1, k

′
1)

× Â64
v (j′1, j

′
2, k
′
2) Â64

v (j′2,
jf
16
, k′3),

(6.24)

where j1, j
′
1, j
′
2 are internal space-like spins associated to square areas while

k1, k2, k
′
1, k
′
2, k
′
3 are internal ‘time-like’ spins associated to trapezoidal faces.

To implement the isotemporal gauge we first perform a change of variables

k1 → H1, k2 → H2,

k′1 → H ′1, k′2 → H ′2, k′3 → H ′3.
(6.25)

Each of these substitutions generates a Jacobian factor. For an hyperfrustum
Fn(jn, jn+1, kn) the Jacobian J ≡ J(jn, jn+1, Hn) reads

J =
∂Hn(jn, jn+1, kn)

∂kn

=
Hn(
√
jn +

√
jn+1)2√

4Hn(
√
jn +

√
jn+1)2 + 2(jn − jn+1)2

,
(6.26)

and refers to the change of variables kn → Hn, the height Hn being given in
terms of (5.12) by

Hn =
2kn√

jn+1 +
√
jn

K. (6.27)

As a second step we insert in the coarse and fine partition functions respectively

δ(H −H1 −H2)δ(H1 −H2),

δ(H −H ′1 −H ′2 −H ′3)δ(H ′1 −H ′2)δ(H ′1 −H ′3).

(6.28)

The partition functions then become

ZΓ =

∫
dj1 AΓ,

ZΓ′ =

∫
dj′1dj′2 AΓ′ ,

(6.29)
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where we have defined

AΓ = J
(ji

9
, j1,

H

2

)
J
(
j1,

ji
9
,
H

2

)
× Â27

(ji
9
, j1, k1

)
Â27
(
j1,

ji
9
, k2

)
,

AΓ′ = J
( ji

16
, j′1,

H

3

)
J
(
j′1, j

′
2,
H

3

)
J
(
j′2,

jf
16
,
H

3

)
× Â64

( ji
16
, j′1, k

′
1

)
Â64
(
j′1, j

′
2, k
′
2

)
Â64
(
j′2,

jf
16
, k′3

)
.

(6.30)

The ‘time-like’ spins in the expressions above must be understood as functions
kn ≡ kn(jn, jn+1, Hn).

Thus, in the coarse case we remain with a system with a single d.o.f. given
by the intermediate spatial spin j1 ∈ [0,∞]. In the fine case there are two
d.o.f. corresponding to the two intermediate spins j′1, j

′
2 ∈ [0,∞].

6.3.4 Two dimensional isotemporal RG flow

Let us look at the projection of the RG flow on the two dimensional parameter
space (Λ, G). To do so we fix the value of α = 0.68. We recall that the choice of
α influences the convergence of the amplitude for large spins. In particular, the
chosen value for α favors small spins. This allows us to set an upper spin cutoff
during the Monte Carlo integrations so that the results will be independent of
it. Furthermore, this value of α stands out in our analysis as a point where an
interesting and consistent dynamics takes place.

In order to draw a flow diagram we proceed as follows

• Select a domain in the parameter space (Λ, G) and identify n = 32×32 =
1024 points homogeneously distributed in this domain.

• In each point of the domain evaluate numerically the coarse and fine
expectation values of three operators:

1. the 3-volume at middle height 〈O(1)〉 ≡ 〈V3〉
2. its variance 〈O(2)〉 ≡ 〈V 2

3 〉 − 〈V3〉2
3. the total 4-volume 〈O(3)〉 ≡ 〈V4〉.

• Starting from each g′ = (Λ′, G′) draw an arrow Ag′→g pointing at g =

(Λ, G) such that, following the notation of (6.17), the distance ∆g?,g′

Γ,Γ′ is
minimal for g? = g, where g? is a point in the selected domain. This
defines an RG flow diagram.10

10In the first plots we fix a maximum length for the arrows since we are interested in getting an
idea about where to zoom next to satisfy equation (6.17) at best. Later, when we are in a region
that we can trust, we will allow the arrows to have any length.
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Figure 6.6: RG flow with cylindrical consistency condition maximally and minimally
violated with the respective relative errors Rred = 4.0675, Rblue = 0.0169.

• Assign a color to the arrows depending on the value of the relative errors

Rg,g′

Γ,Γ′ , where we have used the notation as in (6.18). Namely, draw in
red the arrow that violates the most the cylindrical consistency condition
(6.17) (w.r.t. the other arrows in the plot). On the contrary, color in blue
the one which satisfies at best the condition. Report the corresponding
values Rred and Rblue of the relative errors. Accordingly to the above
classification, draw the other arrows in a tonal progression from red to
blue.

The resulting RG flow in the region Λ = (−0.04, 0.04) and G = (−0.02, 0.02)
is shown in Figure 6.6.

As the relative errors suggest, at the analyzed resolution the flow is hardly
reliable in some regions. Still we notice that the arrows drawn in dark blue have
a small relative error R ∼ 0.017. Most notably, those in the first quadrant,
close to (Λ, G) = (0, 0), show an interesting behavior whereas they have a
vanishing length (represented by dots). This is exactly what we would expect
to happen at a fixed point. Let us then zoom into such region. The result for
Λ = (−0.01, 0.01) and G = (−0.004, 0.004) is shown in Figure 6.7.

A first clear observation is that the overall relative errors have improved,
reaching a top precision R ∼ 0.008. In an angular region around G = 0 the
flow is still unreliable. However, in correspondence to the interesting region
(blue arrows), the relative errors are fairly small and the flow shows a more
coherent behavior. In particular there are still some arrows with null distance.
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Figure 6.7: RG flow with cylindrical consistency condition maximally and minimally
violated with the respective relative errors Rred = 4.0675, Rblue = 0.0169.

We then want to zoom further into the top right region of Figure 6.7. We do
so by also unlocking the parameter α and let it vary slightly around α = 0.68.

6.3.5 Three dimensional isotemporal RG flow

Using the same strategy as in the two dimensional case, it is possible to gen-
erate an RG flow in the space defined by the three couplings (α,G,Λ). Figure
6.8 shows the RG flow in the region Λ = (0.006, 0.01), G = (0.003, 0.0045)
and α = (0.6765, 0.6775) in which we have selected 32 × 32 × 32 points. All
the arrows in the plot satisfy with a fine precision the cylindrical consistency
condition, the smallest relative error being R ∼ 0.00017 11.

Remarkably, nestled at the center of this region there is the indication of a
fixed point showing one attractive and two repulsive directions. At this order
of precision, both the relevant and irrelevant directions seem to be associated
with linear combinations of all three parameters. A better precision can be
reached by further zooming. Our research suggest that this is a rare point of
the parameter space. Whether this point is unique needs further analysis.

6.3.6 Expanding and contracting universes

We now investigate the dynamics described by the amplitudes, in order to gain
an insight into the interpretation of the RG flow.

11 For practical graphical reasons, we only draw the most reliable arrows in blue and green.
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Figure 6.8: Three dimensional RG flow with cylindrical consistency condition maximally
and minimally violated with the respective relative errors Rgreen = 0.004, Rblue = 0.00017.

Frusta geometries are geared towards studying cosmological transitions.
The spatial cubes essentially encode the scale factor a of the universe at a
certain ‘time step’, and the ‘time-like’ frusta mediate between spatial cubes of
different size12. Naturally the question arises which configurations are preferred
in the path integral given by the EPRL-FK amplitudes. In particular we intend
to examine how the parameters of the model, e.g. the cosmological constant
Λ, influence the dynamics and whether familiar features of the classical theory
emerge as well. In the case of our simple model this could be whether the
universes expansion is accelerating or slowing down, depending on the sign of
the cosmological constant.

To this end, we study again the expectation values of observables that we
have used before to define and compute a renormalization group flow. More
precisely, we consider the 3D volume for the coarse transition investigated
before, as it essentially gives the intermediate scale factor between an initial
and final state of the same size. Furthermore, studying an observable used for
the renormalization group flow in more detail may reveal a few insights as to
the form of the flow. We show its expectation value in fig. 6.9.

As a first striking feature, we recognize the ‘X’-shape in the values of the
observables similar to the 2D scans of the renormalization group flow. Inside
this region, the 3D volume fluctuates significantly and can reach quite high
values. These peaks appear to be slightly larger for negative cosmological

12The cuboid intertwiners we use are sharply peaked on the cuboid shape, yet they are undeter-
mined in the extrinsic curvature, i.e. how the 3D cubes are embedded in a 4D geometry. In this
sense the states are sharply peaked in a, but ȧ is maximally uncertain.
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Figure 6.9: Expectation value for the 3D volume of the intermediate spin, 〈j 3
2 〉, for

α = 676855. This is the case of the coarse transition with 54 hyperfrusta.

constant, but there also exist regions for positive Λ, in which the intermediate
3D volume is significantly larger compared to the initial / final state. Note
that this is also the region in which the cylindrical consistency conditions
for the observables of the RG flow are strongly violated, which implies that
a similar behavior does not exist in a similar region for the fine observable.
Judging from the plot, this behavior is due to the small size of |G| and it
appears to extend slightly as |Λ| is increased. A possible explanation is that
both parameters enhance the oscillatory behavior of the integral, resulting in
a highly fluctuating expectation value.

Outside that region, more precisely for larger |G|, we observe a rather
uniform behavior, where the 3D volume is around or slightly larger than 1,
which is also the volume at the initial and final slice.

There is only little dependence on the sign of the cosmological constant:
For negative Λ, we observe a slightly larger intermediate 3D volume already
for smaller |G|. Thus, Λ < 0 appears to favor a larger intermediate 3D volume
compared to Λ > 0, however in both cases we observe an intermediate volume
that is larger than the initial and final one. Hence, we generically observe a
transition in which the universe first expands and then contracts, or at most
remains constant. A transition to a contracting and then expanding universe
is not observed numerically.

Naturally, one would like to compare this behavior to classical dynamics.
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However it is not clear to which discrete action we should compare our results
to. In the vertex amplitude (5.64) several oscillating terms appear, containing
different actions. While the cosine contains the (area) Regge action and a
volume term times the cosmological constant, the other oscillating terms only
contain the Regge action. Clearly the former term is the desired one, we will
briefly compare our results to the classical, discrete dynamics.

Since we consider the transition for fixed heights, with jin = jfin = 1. There
is one discrete equation of motion to solve depending on Λ13. For Λ = 0 the
equations of motion are solved by j = 1, so there is no expansion or contraction
as one would expect. For Λ > 0 we find j < 1 as the solution, while for
Λ < 0 we find j > 1. So we see a first contracting, then expanding universe
for positive cosmological constant and the opposite for negative cosmological
constant. Something similar can be seen in the continuum, where Λ > 0 implies
ä > 0. Hence in order to arrive at the same scale factor a at a later time, the
universe first contracts before expanding again. The behavior is reversed as
Λ < 0 implies ä < 0.

It seems that the behavior of the truncated SFM does not reproduce the
classical dynamics. Instead we usually see 〈j 3

2 〉 > 1, no matter the sign of the
cosmological constant. Nevertheless, we do observe generically larger expecta-
tion values 〈j 3

2 〉 > 1 for negative Λ compared to positive Λ. There are a few
plausible explanations for these deviations: The vertex amplitude contains sev-
eral oscillating functions, some contain the cosmological constant term, some
do not. Moreover, the ‘proper’ action appears in the cosine, which might lead
to unwanted interference of different bulk solutions. Additionally, the whole
spin foam does not oscillate with the sum of Regge actions assigned to hyper-
frusta, as the cosine is not additive. Another possible deviation might stem
from the face amplitudes, which favor small or large spins depending on the
value of the parameter α. If α is large, it puts emphasis on large spins, which
generically results in larger expectations values for spins or volume etc.

A possibility to overcome the ‘cosine’ problem would be to consider states
which are not just peaked on the shape of cuboids or frusta, but which are
also peaked in the extrinsic curvature. This would roughly correspond to
prescribing both a and ȧ at the initial and final time. As a result, one of
the two stationary and critical points in the asymptotic expansion might be
suppressed, resulting in a quantum dynamics closer to its classical counterpart.
We leave this for future research.

6.3.7 Free theory

In this chapter we consider the limit of the RG flow equations G → 0 and
Λ→ 0. This can be understood as the free theory, as the gravitational coupling

13As G is an overall constant, only Λ determines the classical dynamics in the absence of matter.



6.3. RENORMALIZATION OF REDUCED SPIN FOAM MODEL 129

G, which governs the strength of the perturbative interaction in the linearized
theory, vanishes. It should be noted that, due to its non-perturbative nature,
the EPRL-FK model does not exist for G = 0 (Λ = 0 is no problem, though).
We therefore approach this point in theory space asymptotically.

Considering the RG step of a lattice with 4× 4× 4× 3 = 192 to one with
3 × 3 × 3 × 2 = 54 vertices, as described in section 6.2. We compute the
observables V3 and V4 for the isotemporal case, i.e. when the time-steps are
gauge-fixed, for Λ = 0 in the asymptotic limit 1/G → ∞. The initial and
final boundary spins are fixed to the same (but ultimately arbitrary) value
ji = jf = j.

We first consider not the full EPRL-FK model, but only its proper vertex,
where the amplitude as replaced simply by the exponential of the Regge action.
In that case, we have that

Z54 =

∫ Jmax

0

dj1

(
Â
)54

, (6.31)

with

Â = F (j1)
e54i/GSR

|D| ,

where D is the Hessian determinant, and SR = SR(j1, j,H) is the Regge action
for one hyperfrustum with initial/final spin j, intermediate spin j1, and height
H. Also, F (j1) is a function depending on j1 (and j and H), which are given
by a collection of face- and edge-amplitudes.

To evaluate (6.31) in the limit 1/G → ∞, we can perform a stationary
phase approximation. For this we simply observe that the condition

∂SR(j, j1, k(j, j1, H))

∂j1

= 0 (6.32)

has only j1 = j as solution. To compute expectation values, we perform the
same calculation, but include another function O(j,H, j1) (in our case V3 and
V4) into the integral, which we evaluate at the respective stationary point as
well. We can immediately conclude that

〈V3〉G→0,Λ=0
54 = 27j

3
2 , 〈V4〉G→0,Λ=0

54 = 54H j
3
2 . (6.33)

The computation for Z192 is only slightly more complicated. We have

Z192 =

∫
dj′1dj

′
2

(
Â1Â2Â3

)64

, (6.34)
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where the Âi, i = 1, 2, 3 denote the vertex amplitudes for the i-th time step.
We get

Â1Â2Â3 =
e
i/G

(
S1+S2+S3

)
|D1D2D3|

, (6.35)

with the Regge actions Si for the i-th time step, and Di the corresponding
Hessian determinant. The variables for these are j′1 and j′2, and one can show
that, again, the only solution to

∂

∂j′1
(S1 + S2 + S3) =

∂

∂j′2
(S1 + S2 + S3) = 0 (6.36)

is j′1 = j′2 = j′. This immediately leads to

〈V3〉G→0,Λ=0
192 = 64(j′)

3
2 , 〈V4〉G→0,Λ=0

192 = 192H ′ (j′)
3
2 .

With H ′ = 2
3
H and

√
j′ = 3

4

√
j, we can conclude that

〈V3〉G→0,Λ=0
192 = 〈V3〉G→0,Λ=0

54 ,

〈V4〉G→0,Λ=0
192 = 〈V4〉G→0,Λ=0

54 .

This demonstrates that the point G = 0, Λ = 0 is a fixed point of the discussed
RG flow of the reduced amplitude.

It is notable that this analysis rests on using the reduced amplitude, i.e. where
only one term in the exponential expression for EPRL-FK amplitude (the one
containing the exponential of the Regge action) is kept. As soon as this is
replaced with the full EPRL-FK amplitude, the analysis does not hold any
more. This can be traced back to the presence of the cosine, as well as the
weird terms. Indeed, in the case where these terms are present, the path inte-
gral is a sum over different possibilities, in which different vertices contribute
the same parts of the Regge action with different signs. This allows for sev-
eral terms in which the individual contributions of vertices identically cancel,
irrespective of the configuration. As a result, the stationary phase approxima-
tion is dominated by those terms, which do not only contribute the classical
solutions, but many non-classical configurations as well. For instance, all tran-
sitions via arbitrary intermediate (bulk) spin j contribute. Since the quantum
theory is not dominated by the classical solutions in this case, it seems unlikely
that the free theory is a fixed point in this case.

Incidentally, the problem, can be avoided when using only the cosine, as
well as an odd number of vertices per time step. This is an indication that,
for Lorentzian signature and an odd number of vertices, the free theory might
indeed be a fixed point.



Chapter 7

Summary and conclusions

In this thesis we investigate the renormalization of a symmetry reduced spin
foam model in its semiclassical limit. Let us recap each section and make a
linear short story of this work.

7.1 A linear story

Many faces of classical General Relativity

In Chapter 2 we give a brief review about the classical (Action and Hamil-
tonian) formulations of GR. The most important for the development of the
quantum theory are the Plebanski formulation, in which GR is described as
a topological BF theory with constraints (Section 2.1.3), and the canonical
formulation in terms of the Ashtekar variables (Section 2.1.5). Then we in-
troduce to discrete gravity à la Regge, a theory that approximates GR on a
simplicial discretization of spacetime. The Regge action (2.59) appears mul-
tiple times throughout the work e.g., in the semiclassical limit (4.19) of the
quantum theory studied in later chapters. Eventually, we prepare the working
basis of the quantum formulations by distributing the classical variables on
discrete structures. To introduce the covariant quantum formulation we define
BF theory on a 2-complex dual to a 4d triangulation. To prepare the canonical
formulation, we distribute instead the Ashtekar variables on a graph dual to a
3d triangulation.

Canonical and Covariant Quantum Gravity

In Chapter 3 we give the quantization algorithms defining the Canonical theory,
also called Loop Quantum Gravity (LQG), and the covariant theory which
comes with different configurations called Spin Foam Models (SFMs). The
two frameworks have many features in common.

131
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Roughly speaking, LQG defines the kinematical Hilbert space of the theory,
whose states (3.8) are cylindrical functionals of the holonomy of the Ashtekar
connection (2.77). A basis in this space is given in terms of Spin Networks
(3.27), representable as (directed) graphs whose links are associated with irre-
ducible representations of a compact Lie group and whose nodes are associated
with intertwiners of the link representations adjacent to it.

A SFM defines the quantum dynamics in terms of a path integral over
states. The partition function (3.49) of a spin foam model is generated from
a BF action (2.63). This can be expressed as a product of amplitudes as-
sociated to each element of a 2-complex. The most important are the vertex
amplitudes. A partition function ultimately defines the transition probabilities
among different spin network states.

In the covariant approach we introduce the coherent state representation,
fundamental in the study of the semiclassical (i.e., large spin) limit of SFMs.

The 4d Euclidean EPRL-FK Spin Moam Model

In Chapter 4, we define the EPRL-FK spin foam model which is used in its
Euclidean formulation throughout this work (4.12), (4.13), (4.14), (4.15).

One nice characteristics of this model is its link with discrete classical grav-
ity in the semiclassical limit i.e., in the limit of large spins of the vertex am-
plitude where we recover the Regge action (4.19). Although promising, the
resulting formula is hard to handle given that it depends on complex functions
of the spins, the first of which is a certain determinant D of a Hessian matrix.

In the final sections of Chapter 4, we have discussed a deformation of
the Euclidean EPRL-FK model, so to introduce a cosmological constant term.
This is an original work published in [41] and generalizes Han’s formulation [76]
to arbitrary vertices i.e., not only those dual to a 4-simplex. The deformation
amounted to introducing an operator for each crossing C of the graph Γ in
the formula for the amplitude (see section 4.3.1). Such operator depends on
a parameter ω, and we have considered the definition for arbitrary graphs as
well as the corresponding asymptotic expression of the deformed amplitude
AωΓ.

The main statement is that the deformed amplitude AωΓ has a close con-
nection to AΓ, the undeformed one. Firstly, the equations for the stationary
critical points in the asymptotic analysis are in one-to-one correspondence.
Also, we could show that the Hessian determinant (the one appearing in the
general formula (4.18) so to speak) can be treated, and is just a multiple of
the undeformed one. This led to an expression of the asymptotic expression
in terms of the original Regge action. In particular, the original expression
(4.19) consists of the so-called weird terms W (4.20), as well as the cosine of
the Regge action. Our analysis (4.59) shows that the weird terms remain un-
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changed, while the Regge action is replaced by a term ΛV , where Λ = −12ω,
and V is an expression which, if the boundary data is that of a convex, non-
degenerate polyhedron, is equal to its volume.

Spin Foam state sum reduced to Frustum geometries

In Chapter 5 we present an original work in which we investigate the Eu-
clidean EPRL-FK model by cutting off most degrees of freedom of the theory
and leaving in only some very symmetric ones. In particular, we work on a
hypercubic lattice in which all the vertices are dual to a 4d truncated pyramid
with cubic bases (hyperfrustum). Furthermore we restrict the state sum by
considering only coherent intertwiners which in the large-spin limit reproduce
the geometry of a 3d pyramidal frustum. The reduced state sum allows us
to investigate the semiclassical structure of the Euclidean EPRL-FK model
and in particular to compute explicitly the asymptotic formula of the vertex
amplitude AΓv (5.64). We show that the final expression contains the correct
Regge action (5.19) describing the classical properties of our model. Starting
from these results one can perform a numerical analysis of the semiclassical
features of the model. This opens a path to study the renormalization of a
symmetry reduced model of quantum gravity, which is notoriously difficult to
access in the full state sum setting due to the intricacy of the formulas. Further
developments are possible in studying the diffeomorphism symmetry which is
usually broken by the discretization of the spacetime manifold. In fact, know-
ing the full analytic expression of the partition function (4.12) and gauging
the parameters in the theory one can look for configurations in which this
symmetry is restored. Such perspectives can potentially shed a new light on
a sector of the EPRL-FK model which still has many unknown features. This
research line has been originally paved by a series of works on hypercuboidal
geometry and non-trivial results have been found in the case of flat spacetime
[81, 79, 80]. Our analysis provides a step further in this direction. In particu-
lar, in the purely flat case only the parameter α, as set in the face amplitude
(4.13), is a running coupling constant, while the inclusion of hyperfrusta also
offers Newton’s constant and the cosmological constant as nontrivial coupling.
This makes the renormalization computation more general.

In the second part 5.3 of Chapter 5, taking inspiration from a series of
works on cosmological modeling with Regge calculus [92, 94, 93, 101, 102, 103,
104, 95], we have completed the study of our model by focusing on its classical
description. We have first shown that the discretization of spacetime in terms
of hyperfrusta have a clear classical interpretation. In fact, a hyperfrustum
can be pictured as the time evolution of its boundary cubes, each of them
tessellating a flat Cauchy surface. The regular geometry of the cubes and their
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even distribution on the lattice reproduce an isotropic and homogeneous space.
Moreover, the change in size of the cubes in the boundary of a hyperfrustum
mimic an expansion of the universe. These facts enable us to compare the
dynamics of our model to the FLRW one. We do it in three different cases: In
vacuum, in presence of a cosmological constant and by coupling dust particles
to the lattice. The simplicity of our model allows us to consider the spins as
the main variables instead of the edge lengths which are usually adopted in
Regge calculus. Notably, the results do not change and an analogue of the
Schläfli identity is proved to be satisfied. Indeed, with a numerical analysis
of the Regge equations (for the spins), we show that in the continuum time
limit the evolution of the model universe resembles the one predicted by the
standard Friedmann dynamics in the case of fine discretization of the manifold.
Furthermore, for small deficit angles this resemblance becomes exact and we
find the Friedmann equations as the limit of the Regge equations.

A crucial open question is, of course, in what way this model can be used
to perform actual quantum cosmological computations. Apart from the signa-
ture issues, the first quantum correction of this model comes from the Hessian
matrix. This matrix is, in general, complex, such that its phase would give
quantum corrections to the Regge action, while its modulus provides the path
integral measure. It would be quite interesting to see whether these correc-
tions have a classical limit which can be interpreted as higher order terms in
the Einstein-Hilbert action. To probe the deep quantum regime in order to
derive e.g. statements about singularity avoidance, however, one would have
to depart from the large-j asymptotics, and consider the full amplitude in the
regime of small spins.

The last section 5.4 of Chapter 5 summarizes the results of the semiclassical
limit of the deformed vertex amplitude and more in general of the EPRL-FK
partition function. Here we also make a clarification on the physical dimensions
of areas, volumes and coupling constants. Finally, all the asymptotic formulas
used to evaluate the RG flow in Chapter 6 are listed in a compact form.

Renormalization of the reduced model

In chapter 6, we review the concept of background independent renormal-
ization. This is a fundamental tool to deal with spin foams, given that the
absence of a background metric makes the standard QFT and Lattice gauge
theories techniques not usable. In fact, in standard Wilsonian renormalization
one associates the scale of the flow with a value of maximal energy or minimal
length, which are introduced as cutoff. Then, for a given background geome-
try, a finer and finer regular lattice leads to an ever-decreasing value of lattice
spacing. However, in our background independence case these two notions (of
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refinement and of lattice spacing) are disentangled, in that on coarse or fine
lattices both small and large spins occur. The reason is that on both lattices
the geometry is not fixed, but rather the path integral sums over all of them.
Hence, the notion of refinement of lattices is the only one that remains in this
particular way of dealing with the sum over geometries. As a consequence,
notions of UV and IR limit are not associated to e.g., small and large spins,
but rather to fine and coarse lattices.

In order to deal with actual calculations of the RG flow, several approxi-
mations and truncations are employed 6.2.

First, we use the reduced state sum and semiclassical limit introduced in
Chapter 5. Previous investigations [79][80] only allowed for quasi-local geo-
metric fluctuations which are, in the semiclassical limit, expected to turn to
gauge degrees of freedom. It can be expected that these appear in theory as
spurious degrees of freedom, since it is well-known that the gauge symmetry
of GR is broken in the EPRL-FK model [132][81]. The crucial innovation in
our work (see also [83]) is to relax previous truncations to allow for quantum
frustal geometries [42]. This allows, for the first time, to also treat some curved
configurations, which are not just pure gauge. Also, the model restricted to
frusta is an extension of previous settings, which allow for degrees of freedom
which are local (in time).

Also, we project the RG flow so to use the same type of amplitudes at all
scales. In fact, in general, given a theory defined by a set of couplings gi, the
dimension of the parameter space can grow or decrease when one looks at the
physics at different scales. In other words, new parameters may arise during
the coarse graining process. Here we truncate the RG flow by considering the
system as self-similar at all the scales. Thus, at each renormalization step we
project the amplitude down to the reduced Euclidean EPRL-FK model.

The interesting coupling constants of this model are the gravitational and
cosmological constants G and Λ, as well as a parameter in the path integral
measure α, which is connected to the 4-volume in the measure, and has been
shown to play a crucial role in the restoration of broken diffeomorphism sym-
metry [79].

In our analysis, we have worked on hypercubic lattices, which provide dis-
cretizations of a torus universe. These are depicted in figure 6.1. The RG flow
was considered for various coarse graining steps of finer to coarser discretiza-
tions.

To define a flow in terms of coupling constants G, Λ, α, it was necessary to
choose a couple of reference observables, which we compared on the coarse and
the fine lattice. Here, we mostly restricted ourselves to 3- and 4-volumes, as
well as their fluctuations. Different choices are possible, but we expect those to
yield only qualitatively minor changes to the results, as long as one considers
observables which are diverse enough as to separate the space of considered
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path integral measures. See also discussion in [38].
Furthermore, we employed a novel system which made the RG flow much

more accessible to us (see Section 6.2.5). By relaxing the condition for cylindri-
cal consistency, but allowing only slight changes in the coupling constants, we
were able to produce a much smoother flow. As a drawback, not all of the flow
diagrams can be trusted, but with the deviation R from cylindrical consistency
(6.18), we had a control parameter to judge the quality of the resulting flow in
that region. This allowed for quick scanning of parts of the phase space, since
in the region of fixed points it can be expected that the value of R has to be
small. It is in the vicinity of these regions that one can trust the flow images
the most.

7.2 Our findings

Our results are as follows:

• Firstly, the employed approximations (see Section 6.2) allow us to gener-
ate images of the RG flow. The introduction of the R-parameter allowed
us to quickly decide which regions of the phase space are more likely
to contain fixed points, and were worthwhile to concentrate our anal-
ysis around. This is in general very encouraging, and we believe that
this method can also be used more generally in other RG applications,
possibly even beyond the spin foam context.

• We have considered three main flows. One in the parameter α, which was
taken to be isochoric, i.e. with fixed total 4-volume. This was a direct
generalization of the flow computed in [79], where the non-trivial fixed
point was found. Our analysis revealed that the fixed point was still
present, albeit with a slightly changed numerical value. We found that
in the case of frusta, that the fixed point lies at

α∗ ≈ 0.69, (7.1)

which is slightly increased from α∗ ≈ 0.62 in the case of hypercuboids.

• For considering the RG flow in more parameter, we considered a 2d flow
in G and Λ, keeping α ≈ 0.67 fixed. We used this to scan the parameter
space for regions likely containing the fixed points, using the procedure
describe above. We the considered a 3d flow in the parameters (G,Λ, α)
within that region. This is one of the main results of this work and it is
summarized by Figure 6.8.

We found that there appears to be a fixed point at

α∗ ≈ 0.677, G∗ ≈ 0.037, Λ∗ ≈ 0.008. (7.2)



7.3. DISCUSSION 137

Numerical evidence shows that the fixed point has one repulsive and two
attractive directions.

• We also considered the free theory, i.e. the point on which the coupling
constant G = 0. This point plays an important role in the perturbative
renormalization of GR, which is defined by perturbations around it. The
EPRL-FK model is defined non-perturbatively, which is seen as one of
the strengths of the (loop) quantum gravity approach. This, however,
makes it difficult to draw comparisons to more traditional forms of the
analysis.

In particular, this point is not part of the range of EPRL-FK amplitudes.
However, with our methods of defining the flow via observables, we can
investigate this point at least asymptotically, since it sits on the infinite
boundary of the EPRL-FK theory space., and expectation values of some
observables converge when approaching this point.

In particular, we could approach this point both numerically and analyt-
ically by asymptotic methods. We found that, contrary to our assump-
tions, the free theory appears not to be a fixed point of the Riemannian
EPRL-FK model. If we replace the EPRL-FK amplitude by the ex-
ponential of the Regge action, however (with measure factors from the
asymptotic EPRL-FK amplitude), we however can show that the free
theory is a fixed point.

7.3 Discussion

The main goal of our analysis was to learn more about the RG flow of the
EPRL-FK model. Indeed, there are several lessons one might draw from our
findings.

• The stability of existence of fixed point under extension of the parameters,
and relaxing of truncations, fosters hope that this sort of fixed point is an
actual feature of the model, rather than an artifact of the approximation.
Of course, further study needs to be taken before this point can be settled
decidedly. At this instance, it is unclear whether this fixed point is the
only interesting one of its kind in the considered phase space. It is also
not clear whether this point bears any relation to the non-Gaussian fixed
point discussed in the Asymptotic Safety Scenario [131].

• The fact that the free theory (i.e. where G = 0, Λ = 0) is not a fixed
point of the EPRL-FK model, but becomes one when replacing it with
simply the exponential of the Regge action, was an unexpected feature
(see Section 6.3.7). It can be understood by the form of the EPRL-FK
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amplitude: Apart from the exponential of the Regge action, it also con-
tains its sign-reversed part (commonly referred to as the cosine problem),
as well as other, non-geometric terms (colloquially called weird terms).

It is the presence of these additional terms which spoil the fixed point
properties. In the free theory, it should be expected that quantum fluctu-
ations around the classical solution are suppressed, since the prefactor in
front of the Regge action oscillates rapidly for even minor deviations from
the classical trajectory. However, in the EPRL-FK amplitude, the situ-
ation changes, since terms with opposite signs can cancel each other in
the action. Fluctuations in these directions are therefore not suppressed
since they do not change the value of the amplitude. These highly curved
contributions are quite different numerically on different lattices, which
is why the fixed point properties are spoiled.

The main message one might take away from this is that the Riemannian
EPRL-FK model can be expected, in general, to be quite a different
theory from (Riemannian signature) quantum gravity. This in itself is
not surprising, but, to our knowledge, this is the first instance where
this fact has been observed explicitly. It should be noted that in the
Lorentzian-signature version of the EPRL-FK model, the weird terms are
absent. Also, there is work on the so-called proper vertex, which aims at
resolving the cosine issue, even for the Lorentzian amplitude [136, 137].

The question of whether the two terms in the cosine interfere with one
another has not been decisively settled by our analysis, but the question
appears to be answered in the affirmative. There are, however, some
caveats which might, in the long run, change this point of view:

Firstly, if the weird terms are absent (as happens in the Lorentzian the-
ory), one can make the free theory into a fixed point by only considering
lattices with an odd number of vertices. This prevents precise cancellation
of contributions from vertices with differing signs. Still, this restriction
appears slightly artificial to us, but it illustrates an important point: the
cancellations also happen because of the large amount of symmetries we
consider, i.e. by using frusta. In the unrestricted theory where all fluc-
tuations are considered, the states in which precise cancellation among
all vertices happens might be dominated by those where it does not.
This kind of entropic argument could resolve the issue for the Lorentzian
amplitude.

Secondly, our choice of coherent states might influence the result as well.
In general, it is expected that one can restrict to either sign of the ac-
tion by prescribing the proper extrinsic curvature on the boundary. The
Livine-Speziale intertwiners used in our analysis are maximally uncertain
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in the extrinsic curvature, so that both signs of the Regge action are ex-
cited equally. It is feasible to assume that by choosing boundary states
which suppresses one sign, one can effectively implement the proper ver-
tex (with minor fluctuations), which would turn the free theory into a
fixed point.

This point certainly warrants further investigations in the future.
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Appendix A

Groups and Bivectors

A.1 The group SU(2)

The Lie group SU(2) is the group of 2 × 2 complex valued unitary matrices
with determinant 1. Its Lie algebra su(2) is given by the set of three generators
Ji, which satisfy the commutation relations

[Ji, Jj] = iεijkJk. (A.1)

A group element g ∈ SU(2) is then given by

g = exp(iXiJ
i), (A.2)

where the coordinates Xi are real. The condition det g = 1 and the unitarity
g†g = 1 are satisfied if the generators Ji are Hermitian and traceless i.e.,

J†i = Ji, Tr(Ji) = 0. (A.3)

Working in the fundamental representation, the generators are Ji = σi/2
where we use the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.4)

They satisfy the relation

σiσj = δij + iεijkσk. (A.5)

Also, the following formula holds

eiαn̂·σ̂ = 1 cosα + in̂ · σ̂ sinα. (A.6)

A generic element g ∈ SU(2) has the form

g =

(
p −q̄
q p̄

)
(A.7)
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with p, q ∈ C such that |p|2 + |q|2 = 1. Equivalently, we can write it in terms
of the independent basis elements (1, J1, J2, J3) as

g = a01+ aiJ
i, (A.8)

with a0, ai ∈ R such that (a0)2 +
∑

i(ai)
2 = 1.

For all integers N there exists an irreducible representation of the algebra
su(2) i.e., there is always a set of matrices N×N satisfying (A.1). Since SU(2)
is compact and simply connected, these are also all the representations of the
group.
A generic irreducible representation ρj is labeled by an half-integer j ∈ N/2
and has dimension N = 2j + 1. Since J3 is Hermitian it can be diagonalized.
Also, according to Schur’s lemma the unique SU(2) Casimir J2 =

∑
i J

2
i ,

which by definition commutes with all the generators, has a diagonal form.
The corresponding basis of eigenvectors is given by the states |j m〉 with m =
−j,−j + 1 · · · , j satisfying

J3|j m〉 = m|j m〉,
J2|j m〉 = j(j + 1)|j m〉. (A.9)

Let Vj be the base vector space on which the representation ρj is realized. The
states |j m〉 provide an orthonormal basis such that we can write the resolution
of the identity acting on states of Vj as

1j =
∑
j

|j m〉〈j m|. (A.10)

In terms of the generators we can also write a 3d rotation operator as

R(α, β, γ) = e−iαJ3e−iβJ2e−iγJ3 , (A.11)

where (α, β, γ) are the Euler angles. Then we can define the Wigner matrices

Dj
mn = 〈jm|R(α, β, γ)|jn〉. (A.12)

An SU(2) invariant state in the tensor product of L elements |j1m1〉⊗· · ·⊗
|jLmL〉 is called an intertwiner |ι〉. Let us take for example the tensor product
of three states |j1m1〉⊗|j2m2〉⊗|j3m3〉 ∈

⊗
i Vji , with i = 1, 2, 3. The invariant

space InvSU(2)

⊗
i Vji is spanned by a unique intertwiner which is a tensor with

three indices such that any invariant state is proportional to the following

|ι〉 =
∑

m1,m2,m3

ιm1m2m3|j1m1〉 ⊗ |j2m2〉 ⊗ |j3m3〉, (A.13)
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where we use the Wigner 3j-symbols

ιm1m2m3 =

(
j1 j2 j3
m1m2m3

)
≡ (−1)j1−j2−m3

√
2j3 + 1

〈j1m1j2m2|j3−m3〉, (A.14)

written in terms of the Clebsh-Gordan coefficients. The invariant contraction
of four Wigner 3j-symbols defines a Wigner 6j-symbol{
j1 j2 j3

j4 j5 j6

}
=

∑
m1,...,m6

(−1)
∑6
k=1(jk−mk)

(
j1 j2 j3

−m1 −m2 −m3

)(
j1 j5 j6

m1 −m5 m6

)
×
(
j4 j2 j6

m4 m2 −m6

)(
j4 j5 j3

−m4 m5 m3

)
.

(A.15)

In Chapter 3 a fundamental step, which realizes the first appearance of the
spins in the quantum theory of gravity, is determined by the application of
the Peter-Weyl theorem. It states that the Wigner matrix elements (A.12),
seen as functions of SU(2), are orthogonal with respect to the scalar product
defined by the Haar measure∫

dg =
1

16π2

∫ 2π

0

dα

∫ π

0

sin βdβ

∫ 4π

0

dγ, (A.16)

which is an invariant measure such that for g, h ∈ SU(2) and given a test
function F (g) the following relations hold∫

dgF (g) =

∫
dgF (g−1) =

∫
dgF (g · h) =

∫
dgF (h · g). (A.17)

Explicitly, the Wigner matrices satisfy∫
dgDj′

m′n′(g)Dj
mn(g) =

1

2j + 1
δjj
′
δmm′δnn′ . (A.18)

Then they form an orthogonal basis in the Hilbert space

H = L2[SU(2), dg], (A.19)

of square integrable functions of SU(2) with the Haar measure dg. Given such
Hilbert space, we can decompose it into finite dimensional subspaces of spin j
spanned by the matrix elements of Dj(g).
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A.2 The group Spin(4)

This appendix extends the informations provided in section 4.1.1. The group
of four dimensional rotations SO(4) can be realized as SU(2)× SU(2) in the
following way: given a vector xI ∈ R4 one can build the matrix x̂ ≡ xIτI with
τ0 = 1 and τi = iσi (using the Pauli matrices (A.4)) i.e.,

x̂ =

(
x0 + ix3 ix1 + x2

ix1 − x2 x0 − ix3

)
. (A.20)

We also require that

det x̂ = ‖x‖2. (A.21)

Then, we can use two SU(2) elements (g1, g2) to act as a rotation in the
following way

g1x̂g
−1
2 = ŷ, and det x̂ = det ŷ. (A.22)

Since (g1, g2) and (−g1,−g2) have the same effect on x̂, one has the isomor-
phism

SO(4) ' SU(2)× SU(2)/Z2. (A.23)

The group Spin (4) is the double cover of SO(4) and they have the same
algebra.

Let us call |j+ j− m+ m−〉 a vector in the base space V(j+,j−) where the
Spin(4) representations act. This vectors are eigenstates of the two Casimirs
C1 = J2

+ + J2
−, C2 = J2

+ − J2
− and of the two angular momenta operators J3,±

such that

C1|j+ j− m+ m−〉 = (j+(j+ + 1) + j−(j− + 1))|j+ j− m+ m−〉,
C2|j+ j− m+ m−〉 = (j+(j+ + 1) + j−(j− + 1))|j− j− m+ m−〉,
J3,±|j+ j− m+ m−〉 = m±|j− j− m+ m−〉.

(A.24)

The algebra of spin(4) can be completely described in terms of generators
of the subgroups of rotations Li and of boosts Ki. Let us call L± = L1 ± iL2

and K± = K1 ± iK2. The algebra then is

[L3, L±] = ±L±, [L3, K±] = ±K±, [L+, L−] = 2L3, [K+, K−] = 2L3,

[K3, L±] = ±K±, [L±, K∓] = ±2K3, [K3, K±] = ±L±,
[L+, K+] = [L−, K−] = [L3, K3] = 0.

(A.25)

The Casimirs become C1 = L2 + K2 and C2 = ~K · ~L. The action of the
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generators on the basis |j+ j− j m〉 is

L3 |j+ j− j m〉 = m |j+ j− j m〉,
L± |j+ j− j m〉 =

√
(j ±m+ 1)(j ∓m) |j+ j− j m± 1〉,

K3 |j+ j− j m〉 = αj
√
j2 −m2 |j+ j− j − 1 m〉

− αj+1

√
(j + 1)2 −m2 |j+ j− j + 1 m〉

+ γjm|j+ j− j m〉,
K± |j+ j− j m〉 = ±αj

√
(j ∓m)(j ∓m− 1) |j+ j− j − 1 m± 1〉

± αj+1

√
(j ±m+ 1)(j ±m+ 2) |j+ j− j + 1 m± 1〉

+ γj
√

(j ∓m)(j ±m+ 1) |j+ j− j m± 1〉.
(A.26)

having defined

αj =

√
(j2 − (j+ + j− + 1)2))(j2 − (j+ − j−)2)

j2(4j2 − 1)
,

γj =
j+(j+ + 1)− j−(j− + 1)

j(j + 1)
.

(A.27)

A.3 Bivector conventions

A bivector Bab = −Bba ∈
∧2 R4, a, b = 0, 1, 2, 3, can be dualized via the Hodge

operator

(∗B)ab :=
1

2
εabcdBcd, (A.28)

where indices are raised and lowered with the Kronecker delta δab. The Killing
form on

∧2 R4 is taken to be positive definite as

〈B1, B2〉 := −1

4
tr(B1B2). (A.29)

The isomorphism
∧2 R4 ' R3 ⊕ R3

B ↔ (~b+, ~b−), (A.30)

is given by

b±,I =
1

2

(
B0I ±

1

2
εIJKBJK

)
, (A.31)
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with I = 1, 2, 3. The wedge product of two bivectors B and C is defined to be

(B ∧ C)abcd =
1

24
εabcdε

efghBefCgh. (A.32)

Acting with the Hodge dual on this yields a number which is

∗(B ∧ C) =
1

24
εefghBefCgh

=
1

12

(
~b+ · ~c+ −~b− · ~c−

)
,

and which can be regarded as the expression for the 4d volume in the volume
simplicity constraint [39, 72].



Appendix B

Matrices and determinants of
deformed amplitude

The Hessian matrix of a term at level n of the expansion (4.26) is rather
involved, and needs to be treated with care. Its matrix elements are given by
(4.38), (4.39), (4.41), (4.43), (4.44), and (4.45). In all that follows, remember
that the indices a, b, a′, b′ are not free, but (ab) and (a′b′) label the links in the
graph which are crossing. If we need free indices from the beginning of the
alphabet to indicate nodes, we’ll begin with c, d, . . ..

With this, we get that the final Hessian matrix is of the form

H =

(
A B
BT C

)
, (B.1)

where C is the same Hessian matrix as in the undeformed case, B is the
matrix of mixed XI

c and angle variables, and A is the quadratic matrix of two
angle derivatives. We have

det(H) = det(A) det(C −BTA−1B). (B.2)

First, we consider the matrix 4(n− 1)× 4(n− 1)-dimensional matrix A. It
is of the form

A =

(
D 0
0 D′

)
, (B.3)

where the order of the indices is as:

φ1, . . . , φn−1, θ1, . . . , θn−1, ξ1, . . . , ξn−1, χ1, . . . , χn−1.

(B.4)
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D is therefore the 2(n − 1) × 2(n − 1)-dimensional matrix which has the
form

D =
jab
2

(
E F
−F E

)
, D′ =

ja′b′

2

(
E F
−F E

)
,

with E and F being (n− 1)× (n− 1)-dimensional matrices, with

Err = −2, r = 1, . . . , n− 1,

Er,r+1 = Er+1,r = 1, r = 1, . . . , n− 2,

Fr,r+1 = i r = 1, . . . , n− 2,

Fr+1,r = −i, r = 1, . . . , n− 2,

and all other entries being equal to zero. One readily computes

det(D) = j
2(n−1)
ab , det(D′) = j

2(n−1)
a′b′ , (B.5)

as well as

D−1 =
1

2jab

(
K L
−L K

)
, (B.6)

(D′)−1 =
1

2ja′b′

(
K L
−L K

)
,

with

Krs = −δrs − 1, Lrs =

 i r < s
0 r = s
−i r > s

(B.7)

with r, s = 1, . . . , n− 1. With this, we get

det(A) = (jabja′b′)
2(n−1). (B.8)

Next we are turning our attention to the part BTA−1B. We note that the
matrix B is of dimension 4(n− 1)× 3N , where 3N is the number of different
values of the multi-index (cI), i.e. N is the number of nodes in the graph.
Out of these 3N columns, only twelve contain (potentially) nonzero entries,
namely aI, bI, a′I, and b′I, with I = 1, 2, 3. These columns are (u runs from 1
to 4(n− 1), in the order (B.4) given above):

Bu,(aI) = xI δu,1 − ixI δu,n,

Bu,(bI) = −xI δu,1 + ixI δu,n,

Bu,(a′I) = yI δu,2n−1 − iyI δu,3n−2,

Bu,(b′I) = −yI δu,2n−1 + iyI δu,3n−2,
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with xI = jab

(
iV I

2 − V I
1

)
and yI = ja′b′

(
i(V ′)I2 − (V ′)I1

)
. Denote

M := BTA−1B, (B.9)

then it is clear that M is a 3N × 3N matrix, which has zero entries until both
row and column index are equal to one of the twelve combinations (aI), . . . (b′I)
above. Now it is straightforward to show that also

M(aI)(a′J) = M(aI)(b′J) = M(bI)(a′J) = M(bI)(b′J) = 0,

and similarly for other mixed combinations. This is clearly the case, since
A−1 is block-diagonal, as can be seen from (B.3). The potentially nonzero
entries are

M(aI)(aJ) =

2(n−1)∑
u,v=1

Bu,(aI)Bv,(aJ)(D
−1)uv

=
1

2jab

(
xIxJK11 − 2ixIxJL11 + (ixI)(ixJ)K11

)
= 0,

as can be seen from (B.6) and (B.7). We also get

M(aI)(bJ) =

2(n−1)∑
u,v=1

Bu,(aI)Bv,(bJ)(D
−1)uv

=
1

2jab

(
− xIxJK11 + 2ixIxJF11 + (−ixI)(ixJ)K11

)
= 0.

Similar relations hold for M(a′I)(a′J), etc., which lets us conclude that

M = 0. (B.10)

With (B.2) and (B.8), this immediately leads to

det(H) = (jabja′b′)
2(n−1) det(C), (B.11)

where C is the Hessian matrix of the undeformed case.
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Appendix C

Geometric properties of
Hyperfrustum

Here we derive some geometric properties of the hyperfrustum introduced in
Chapter 5. Although all the formulas that we are going to derive can be
found by assigning a set of four dimensional coordinates to the elements in
the boundary of the hyperfrustum, we will propose different solutions which
do not require this labeling.

C.1 Dihedral angles

The dihedral angles Θab between the couples of hexahedra in the boundary of
a hyperfrustum (as depicted in figure 5.4) can be found from the critical points
in table 5.1 using the following formula (see [73])

cos Θab = Na ·Nb =
χab
2

tr
[
ga(Σ1)ga(Σ2)−1gb(Σ2)gb(Σ1)−1

]
, (C.1)

being Na and Nb the four dimensional outward-pointing normals to the hexa-
hedra a and b and

χab =


1 if a, b ∈ [0, 3]
1 if a, b ∈ [4, 7]
−1 if a ∈ [0, 3] ∧ b ∈ [4, 7]
−1 if a ∈ [4, 7] ∧ b ∈ [0, 3]

Notice that this prefactor is necessary since imposing the condition (5.1) we
have chosen outward-pointing normals to describe the hexahedra a = 0, 1, 2, 3
and inward-pointing normals to describe the hexahedra a = 4, 5, 6, 7. We find
six dihedral angles Θ = θ associated to hexahedra which meet along the faces
of the cube 0, six dihedral angles Θ′ = π − θ associated to hexahedra meeting

151



152 APPENDIX C. GEOMETRIC PROPERTIES OF HYPERFRUSTUM

along the faces of the cube 7 and twelve dihedral angles Θ′′ = arccos(cos2 θ)
corresponding to boundary frusta meeting along their side faces. These angles
are the four dimensional analogue of the one represented in figure C.1 on the
left.

Figure C.1: A 3d representation of a 4d hyperfrustum. The top and bottom square faces
represent cubes. The side faces represent squared pyramidal frusta.

C.2 Volume of a hyperfustum

For the following analysis we refer to figure 5.8. The volume Vn of the hyper-
frustum Fn that appears in equation (5.40) can be computed as the difference
of the volumes of two four dimensional pyramids with base cubes cn and cn+1.
A comparison with the three dimensional representation in figure C.1 on the
right may be helpful to get an intuitive understanding. The volume of the four
dimensional pyramids with base cubes cn and cn+1 are

Vp,n =
1

4
Hp,nj

3/2
n , Vp,n+1 =

1

4
Hp,n+1j

3/2
n+1. (C.2)

being Hp,n and Hp,n+1 the heights of the pyramids. These have to be deter-
mined in order to ensure that the ‘slope’ of the hyperpiramidal sides is the
same as for the hyperfrustum. Their values are

Hp,n =
1

2

√
jn tan θn, Hp,n+1 =

1

2

√
jn+1 tan θn, (C.3)

and they are constrained so that their difference gives the height of the hyper-
frustum (5.25). Finally, the four dimensional volume of the hyperfrustum is
given by

Vn = Vp,n − Vp,n+1 =
1

8
(j2
n − j2

n+1) tan θn. (C.4)

Using equation (5.30) for the angle θn, one can easily find the expression (5.40)
of the volume of the hyperfrustum in terms of the spin variables.



Appendix D

Numeric integration method

The vital ingredient of this article is the calculation of expectation values of
geometrical observables in the spin foam state sum. Since we are working in
the large j-limit, we can replace the sums over irreducible representations by
integrals and assume the spins to be continuous. However since the spin foam
amplitudes are intricate functions of the spins j, these integrations generically
cannot be performed analytically. As in a similar analysis for cuboid-shaped
spin foams REF. we will perform these integrations numerically.

We perform our numerical simulations in the programming language Julia
REF and use algorithms suitable for higher-dimensional integration from the
Cuba package REF. See REF for the package and documentation how to use
these algorithms in Julia.

While the Cuba package contains several algorithms, most of which employ
Monte Carlo techniques, we use a deterministic algorithm called Cuhre. It
roughly works as follows: Similar to Monte Carlo algorithms, the integrand is
evaluated at several points. Cuhre then attempts to approximate the integrand
by a polynomial in the integration variables and estimates the error. If the
error is larger than requested, the region with the largest error gets subdivided
and the algorithm is iterated. Once this procedure has sufficiently converged,
or the maximum number of iterations has been reached, the polynomials are
used to deterministically evaluate the integral.

For our purposes this algorithm is particularly useful since it is more ef-
ficient for integrating oscillatory integrands than ordinary Monte Carlo tech-
niques, at least if the dimensionality of the integrand is not too high1. Indeed,
as Frusta configurations allow for curvature, the vertex amplitude is a sum
of several oscillating terms, which marks an important generalization com-
pared to the pure cuboid case. Fortunately Hyperfrusta are prescribed by only
three spins, compared to six of a hypercuboid, which. Together with the large

1To approximate higher dimensional regions by polynomials requires considerably more sample
points rendering the algorithm less efficient.
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amount of symmetry in these configurations, we can study discretizations con-
taining many spin foam vertices, which only depend on a few spins. Indeed
most of the integrations performed in this article are two dimensional, which
can be efficiently performed.

Another generalization compared to the cuboid case is the necessity of
introducing a cut-off on the spins. While in the cuboid case we implemented
an embedding map fixing the total area of a coarse face, we a priori cannot
enforce such a restriction onto the hyperfrusta. To efficiently perform the
integrals, an upper cut-off on the spins is necessary. Usually one then has to
carefully check that the result does not change under gradually increasing the
cut-off. In our case this question is closely tied to the value of the parameter α
as it determines whether large or small spins are preferred. Generically if α is
too large the result is cut-off dependent as the amplitudes diverge for growing
spins. We have performed our simulations in a regime of α where the results
converge for relatively small cut-off jmax ∼ 10. Fortunately this is also the
regime of interesting dynamics.

Thus the difficulty of the numerics stems less from the integrand itself but
from the fact that we have to scan a 3-dimensional parameter space. To quickly
generate the results we have used the local HPC at Perimeter Institute, e.g.
to perform 1024 one- and two-dimensional integrations took roughly 12 hours
on a single core. This can be further accelerated as the Cuba package in Julia

can be straightforwardly vectorized and parallelized.

Cuba
Julia
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ungenügend beurteilt.

Hamburg, den October 4th 2018

Giovanni Rabuffo


	Introduction
	An overview of Spin Foam Models
	Structure of the Thesis

	Classical Theories of Gravity
	General Relativity
	Standard Formulation
	Tetrad Formalism
	Gravity as Constrained BF-Theory
	Hamiltonian formulation in ADM variables
	Hamiltonian formulation in Ashtekar variables

	Discrete Gravity
	Regge Calculus
	Dual discretization: 2-complexes and graphs
	Partial ordering of graphs

	Discrete Geometric Variables
	Distribution of BF variables on a 2-complex
	Distribution of Ashtekar variables on a graph


	Quantum Theories of Gravity
	Canonical formulation: Loop Quantum Gravity
	The space of generalized connections
	Partial Hilbert spaces
	Kinematical embedding maps 
	The kinematical Hilbert space
	Spin Networks
	Schrödinger representation of holonomy-flux algebra
	Discreteness of quantum geometry

	Covariant formulation: Spin foams
	Path integral of SU(2) BF theory in 3d
	Path integral of SU(2) BF theory in 4d
	The coherent states representation


	The Euclidean EPRL-FK model
	Construction of the Euclidean EPRL-FK model
	The group Spin(4)
	Implementation of simplicity constraints
	Boosted coherent intertwiners
	The EPRL-FK partition function

	Semiclassical limit
	The extended stationary phase approximation

	Spin foams with cosmological constant
	Deformation of the EPRL-FK model

	Large-j asymptotics of the deformed amplitude
	The Hessian matrix
	Putting everything together
	Relation to the cosmological constant


	Reduced Spin Foam Model
	Isotropic and homogeneous reduction
	A note on the boundary data
	Quantum frustum

	Semiclassical Limit
	The asymptotic norm of the coherent intertwiner
	Asymptotics of the vertex-amplitude
	Coupling to the cosmological constant

	Discrete Classical Cosmology
	Classical Dynamics of the Frustum
	Flat vacuum FLRW universe
	Flat -FLRW universe
	Flat FLRW universe with dust

	Summary and dimensional analysis

	Renormalization of Spin Foam Models
	Background independent renormalization
	Observables
	On embedding maps

	Approximations
	1st approximation: Reduced state sum
	2nd Approximation: Semiclassical limit
	3rd Approximation: Projection of the RG flow
	4th Approximation: Numerical working point
	Resolution algorithm

	Renormalization of reduced spin foam model
	Renormalization setup
	One dimensional isochoric RG flow
	The isotemporal gauge
	Two dimensional isotemporal RG flow
	Three dimensional isotemporal RG flow
	Expanding and contracting universes
	Free theory


	Summary and conclusions
	A linear story
	Our findings
	Discussion

	 Groups and Bivectors
	The group SU(2)
	The group Spin(4)
	Bivector conventions

	Matrices and determinants of deformed amplitude
	Geometric properties of Hyperfrustum
	Dihedral angles
	Volume of a hyperfustum

	Numeric integration method
	Acknowledgments

