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Kurzfassung

Diese Arbeit widmet sich einer theoretischen Untersuchung von Sys-
temen mit stark korrelierten Elektronen mit Hilfe einer Methode, die
dazu dient, eine ab initio Beschreibung unter der Berücksichtigung von
Vielteilcheneffekte zu realisieren. Die Verbindung DFT + DMFT wur-
de in einer ladungsselbstkonsistenten Weise realisiert. Als Erstes un-
tersuchen wir die Auswirkung der dynamischen Korrelationen auf die
Energie- und Phasenstabilität von Fe3Al, als auch auf die komplizier-
te Energielückenöffnung von der Fe2V Al - Verbindung. Eine ladungs-
selbstkonsistente Version von DFT + DMFT ist wichtig, um die kor-
relierte Ladungsdichte und magnetische Energie richtig zu bekommen,
damit eine bessere Charakterisierung und ein besseres Verständnis der
Phasenstabilität von bcc - basiertem DO3 − Fe3Al zu erreichen. Die
errechnete DFT + DMFT - Spaltgröße und ihre Temperaturempfind-
lichkeit stimmen hervorragend mit den experimentellen Ergebnissen
für Fe2V Al überein.

In dieser Arbeit präsentieren wir auch eine detaillierte Vielteilchen-
untersuchung der Wirkung von Sauerstoffleerstellen in Rutil - TiO2,
sowohl im unteren als auch im höheren Konzentrationsbereich.

Die verwendete Methode ist nicht trivial, insbesondere Proble-
me bestehen, die Doppelzählung vom Korrelationseffekten zu vermei-
den. Die bereits im DFT - Hamilton - Operator enthaltenen Teile
der Coulomb - Wechselwirkung (Hartree- and Austauschkorrelations-
terme) müssen in dem DFT + DMFT - Schema approximativ kor-
rigiert werden. Diese Doppelzählungskorrektur ergibt sich aus einer
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sphärisch symmetrischen Behandlung. Der DFT - Teil der Hartree
- und der Austauschkorrelationsenergien bleiben zusammen mit den
nichtsphärischen Beiträgen in dem DFT + DMFT - Energiefunktio-
nal erhalten. Wir haben die Methode entwickelt, so dass diese nicht
- sphärische Doppelzählung in DFT + DMFT ausgeschlossen werden
können. Die dargestellte Methode wird für die Berechnung der Ge-
samtenergie und strukturellen Optimierung des Supraleiters LaFeAsO
angewendet.

Abschließend motiviert durch eine neue Art des Tunnelmechanis-
mus untersuchen wir die Temperatur- und Magnetfeldabhängigkeit der
Magnonenspektren innerhalb der selbstkonsistenten Spinwellentheo-
rie.

—
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Abstract

This thesis is devoted to a theoretical investigation of systems contain-
ing strongly correlated electrons using a methodology for an ab initio
description taking into account many - body effects. The combination
DFT + DMFT was developed in a charge self - consistent manner. In
the first part we study the impact of dynamical correlations on the en-
ergetics and phase stability of Fe3Al, and on the intricate gap opening
in Fe2V Al. The charge self - consistency obtains special importance
for the calculation of the correlated charge density and the magnetic
energy to achieve a better characterization and understanding of the
phase stability of bcc - based DO3 − Fe3Al. The DFT + DMFT gap
size and its sensitivity to temperature are in excellent agreement with
experimental results for Fe2V Al compound.

We also present a detailed many - body study of the effect of
oxygen vacancies in rutile - TiO2, both in the lower and in the higher
concentration range.

The presented method is nontrivial; problems exsist to avoid dou-
ble - counting of correlation effects. The parts of the Coulomb interac-
tion already contained in the DFT - Hamiltonian have to be corrected
approximative in the DFT + DMFT scheme. This double - count-
ing correction results from a spherically symmetric treatment, but the
DFT part of the Hartree and the exchange - correlation energies re-
main accounted together with the nonspherical contributions into the
DFT + DMFT energy functional. We developed the method so that
the nonspherical contributions of the double - counting could be re-
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moved in the DFT+ DMFT total - energy charge self - consistent
calculations. The presented method was applied for the calculation
of the total energy and structural optimization of the superconductor
LaFeAsO.

Finally, motivated by the new type of tunneling mechanism in re-
cent experiments, we test the temperature and magnetic field depen-
dence of the magnon spectra within the self - consistent spin - wave
theory.

—
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One

Preface

The subject of the work is devoted to a theoretical study of electronic
structure and magnetism of real systems exhibiting electronic correla-
tion effects using DFT - based methods. Physical systems with strong
correlations correspond to ensemble of the valence electrons, which
cannot be described as independent particles. There are a lot of im-
portant materials with strong interactions between the particles, and
these interactions play a crucial role in determining the properties
of such systems. Strongly correlated real materials are represented
by solid state systems containing atoms with open d- or f- shells. A
lot of observed effects are characteristic for considered systems. The
most famous of these is the high - temperature superconductivity in
cuprates [BM86]. Most of the modern magnetic materials have strong
electronic correlations, since the presence of an uncompensated mag-
netic moment in them is due to the incomplete filling of the valence
shell in the transition metals. It is thus of interest to many fields of sci-
ence to understand the fundamental forces and interactions governing
the behavior of such systems. The magnetic and electronic properties
tend to be complicated to describe theoretically. The density func-
tional theory (DFT) is the most successful and prominent approach
to compute the electronic structure of matter. The density functional
theory regards the electron density as the central variable, instead of
the many - body wavefunction. DFT could reproduce to an astound-
ing accuracy the electronic properties of weakly correlated systems,
such as simple metals, semiconductors, or band insulating materials,
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1. Preface

but not applicable to systems with strongly electronic correlations.
DFT cannot describe the physical behavior of such systems, which is
caused by the localization of electrons. There are a lot of examples
of transition metal systems like NiO, that are experimentally an insu-
lator, but is predicted to be a metal by DFT. Electronic correlations
are not only relevant for strongly correlated oxides but do matter also
for intermetallic compounds like Fe - Al, which are hard to describe
in conventional DFT, as shown in various relevant publications. With
a new combination of the local density approximation and dynamical
mean field theory (LDA + DMFT) one now tries to investigate more
rigorously the effects of correlations. We use DFT to parametrize a
Hubbard Hamiltonian and solve it with DMFT (details in section 2).
In chapter 3 we perform a realistic many - body study based on DFT
+ DMFT in a charge self - consistent manner. We show the impor-
tant impact of many - body effects on the electronic structure in two
intermetallic systems, namely Fe3Al and Fe2V Al. An enhanced rep-
resentation of the correlated charge density and the magnetic energy
was achieved, so that the phase stability of bcc - based DO3 − Fe3Al
could be better characterized and understood. For the realization of
the Heusler compound Fe2V Al one of the Fe sublattice was substitute
with V. Conventional DFT based on LDA/GGA characterize Fe2V Al
as a non - magnetic semimetallic [SM98, WP98]. Improving on the
exchange part in DFT, Fe2V Al becomes a semiconductor. The size of
this gap varies wildly in size depending on which functional and which
admixture parameter is used. For Fe2V Al we found a strongly renor-
malized pseudogap, which size and its sensitivity to temperature are
in excellent agreement with experimental results for this compound.

The rutile - based TiO2 and the Ti3O5 magneli phase will be stud-
ied in chapter 4. We go beyond conventional DFT/DFT + U studies
to investigate the physics of oxygen vacancies in rutile - based TiO2.
This sheds new light on the electron states in this compound and pro-
vides excellent agreement with experiment, e.g. concerning the deep -
level positioning. In addition, we also address the correlation physics
of the related Magneli phase, to our knowledge the first examination
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with DFT + DMFT methods. The work is an important contribution
to the research on transition - metal oxides. Rendering it obvious that
also band - insulating oxides, and here first from the rutile - structure
group, are potential candidates for strong correlation physics. This
pushes the limits of materials science research in favor of first - prin-
ciples many - body methods.

By combining the DFT with the DMFT, there are problems with
extracting a suitable correlated subspace from the DFT calculation,
and also to avoid double counting of correlation effects. In chapter
5 we developed a sheme to avoid a problem of nonspherical double
- counting in DFT + DMFT. Using this scheme calculations of the
total energy and structural optimization of the pnictide superconduc-
tor LaFeAsO were performed. The results are compared to a recently
proposed ”exact” double - counting formulation. We have shown that
both the double - counting free schemes give the similar results.

Finally we report a new type of tunneling mechanism in van der
Waals heterostructures by demonstrating that electrons in our device
tunnel between graphene layers via the emission of magnons in the
CrBr3 barrier. The electron tunneling has been investigated experi-
mentally and theoretically. We show the computed density of magnon
states in CrBr3, on the basis of experimentally determined exchange
parameters. Announced inelastic neutron scattering investigations of
magnons in CrBr3 are in a good agreement with calculated results.
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Two

Theoretical framework

2.1 DFT+DMFT for strongly correlated
real Materials

We begin with the description of the DFT+DMFT approach
[APK+97a,LK98] that will be used to investigate correlated real mate-
rials. It will be noted that the full many - body Hamiltonian describes
the interacting electrons in the external potential comprised of an
ionic lattice and their interactions. This many - body Hamiltonian is
calculated using the following formula

H =
∑
σ

∫
dr ψ̂+

σ (r)[−1

2
∆ + Vext(r)− µ]ψ̂σ(r)

+
1

2

∑
σσ′

∫
dr

∫
dr′) ψ̂+

σ (r′)ψ̂+
σ′(r

′)U(r− r′)ψ̂σ(r′)ψ̂σ′(r), (2.1)

where, Vext(r) is the external ionic potential and µ the chem-
ical potential, and the electrons interact via the Coulomb law:
U(r − r′) = 1/|r − r′|. The natural atomic units are used, where
~ = e = m = 1.

The electronic system is described by the the density functional
theory (DFT). DFT is one of the most successful methods for the
characterization of the electronic properties of weakly correlated sys-
tems. The main idea of DFT is that the full electronic density is the
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2. Theoretical framework

basic quantity in describing the ground - state of an interacting sys-
tem of fermions. The ground - state total energy of the ineracting
electron system is a functional of electronic density. The ground -
state determination of the electronic many - body system is based on
the minimization of the total - energy functional with respect to this
quantity. The Hohenberg - Kohn (HK) theorems prove the existence
of such functional. Kohn - Sham equations are a particullary imple-
mentation of this theorems in order to calculate physical properties
of different systems. In these equations, there is an effective potential
which contains different terms. In the KS potential, the whole many
- body effects are incorporated into a functional of density, known as
the exchange - correlation functional. We briefly present the most
important equations and approximations that are used in DFT. We
start with the Hamiltonian of the system of interacting electrons that
is subject to an external potential

Ĥ = T̂ + V̂ee + V̂ext, (2.2)

where T̂ is the kinetic energy, V̂ee is the electron - electron interaction,
and V̂ext is the external potential.

Hohenberg and Kohn [HK64] suggested that in the ground state
of the system the only the electronic - density of the ground state is
necessary. It can be also connected to the external potential acting on
the interacting system. This idea leads to two theorems. In short, the
first theorem says that the external potential is uniquely determined
by the ground - state electron - density ρ0(r). Thus, we can now
rewrite the ground - state total energy as functional of ρ(r)

E[ρ(r)] = T [ρ(r)] + Vee[ρ(r)] + Vext[ρ(r)]

= F [ρ(r)] +

∫
drνext(r)ρ(r). (2.3)

Here, the universal functional F [ρ(r)] contains the kinetic and po-
tential contribution of electrons.
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2.1. DFT+DMFT for strongly correlated real Materials

The second HK theorem gives the energy variation principle to find
the ground - state. E[ρ(r)] reaches its minimal value of the ground
state energy when ρ = ρ0. It means that the ground - state energy
is obtained when the ground - state electron - density is introduced
into the energy functional. It should be found the minimum of the
following functional,

E[ρ(r)]− µ
(∫

ρ(r)dr−Ne

)
, (2.4)

where µ is the Lagrange multiplier, and Ne is the total number of
electrons. The variational principle is given by

δE[ρ(r)]

δρ(r)
=
δF [ρ(r)]

δρ(r)
+ νext(r) = µ (2.5)

The many - body problem is reduced to finding a functional en-
ergy in terms of the electron - density, and solving the corresponding
variational problem. Kohn and Sham provided the practically de-
termination of the ground state density. The Kohn - Sham [KS65]
approach replaced the interacting many - body system with a related
but fictitious non - interacting electron system. The simplified system
can be solved more easily. We can write the equation for this system
as

[−1

2
∇2

r + VKS(r)]φi(r) = εiφi(r), (2.6)

where VKS(r) is the Kohn - Sham potential. The density can be
calculated as

ρ(r) =
N∑
i=1

|φ(r)|2. (2.7)

The kinetic energy for the system of a non - ineracting electron gas
can be evaluated as

Ts[ρ(r)] =
N∑
i=1

∫
drφ∗i (r)[−

1

2
∇2

r]φi(r). (2.8)
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2. Theoretical framework

The total energy functional for this system is

E[ρ(r)] = Ts[ρ(r)] +

∫
drVKS(r)ρ(r). (2.9)

The evaluable kinetic energy of the auxiliary system and the kinetic
energy of the interacting system are different. Therefore, we introduce
an exchange - correlation term

EXC [ρ(r)] = (T [ρ(r)]− Ts[ρ(r)]) + (< V̂ee > −EH [ρ(r)]), (2.10)

which contains the kinetic energy difference and the general electron
- electron interaction reduced by the classical electron repulsion, the
Hartree energy. If we apply now the variational principle to the fol-
lowing energy functional

E[ρ(r)] = Ts[ρ(r)] + EH [ρ(r)] +

∫
drνext(r)ρ(r) + EXC [ρ(r)], (2.11)

we get the following:

δTs[ρ(r)]

δρ(r)
+ νext(r) +

1

2

∫ ∫
dr′

ρ(r′)

|r− r′|
+ VXC(r) = µ, (2.12)

in which VXC(r)=δEXC [ρ(r)]
δρ(r) is the exchange - correlation potential. Sim-

ilar we can find
δTs[ρ(r)]

δρ(r)
+ VKS(r) = µ. (2.13)

If we compare both, equation (2.12) and equation (2.13), we get for
the Kohn - Sham potential

VKS(r) = νext(r) + VH(r) + VXC(r). (2.14)

Now we can rewrite equation (2.6) as

[−1

2
∇2

r + νext(r) + VH(r) + VXC(r)]φi(r) = εiφi(r) (2.15)

16



2.1. DFT+DMFT for strongly correlated real Materials

This is exactly the Kohn - Sham equation.
In particular, many applications use successfully the local - density

approximation (LDA). The LDA used exact QMC results for interact-
ing homogeneous electron gas (HEG) [CA80] to express exchange -
correlation energy EXC via εXC of HEG:

EXC [ρ] =

∫
d3rρ(r)εXC [ρ(r)], (2.16)

and finally:

VXC(r) =
δEXC

δρ(r)
. (2.17)

As shown above, from the Hohenberg - Kohn theorems follows that
the Kohn - Sham potential bases on the electronic density itself, and
after a self - consistent solution of the Schrödinger equation, the band
dispersions εn(k) appear. The most important problem is, how the
inerface between DFT and the Hubbard model looks like. A suit-
able correlated subspace C starting from the complete Hilbert space
of Bloch Kohn - Sham band states should be extracted. The Kohn -
Sham Hamilton operator has to be expressed in a suitable basis set.
From the Bloch Green’s function GB

n(k, iω) = [iω − εn(k)]−1 one ob-
tains the local Green’s function using the projectors onto localized
Wannier states related to the correlated material sites,

Gαβ(iω) =
∑
kn

Pαn(k)GB
n(k, iω)P+

βn(k)

= [iω − ε−∆(iω)]−1
αβ , (2.18)

where, α,β are spin - orbital indices, [α=(m,σ)], εαβ is the on - site
crystal - field matrix, and ∆αβ(iω) the hybridization function. Both
are defined on the correlated local orbitals and indexed by Greek la-
bels. The choice of a localized basis set for realistic systems is in
principle arbitrary and depended on the basis of the DFT code (i.e.
maximally localized Wannier functions for ”Wien2k” [BSM+01], and
projections onto localised orbitals for ”Mixed - basis pseudopoten-
tial” (MBPP) [MELFed]). In the context of DFT + DMFT many
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2. Theoretical framework

choices of a localized basis have been developed, like linear muffin -
tin orbitals (LMTO) [APK+97b,LK98,SKA01], N - th order muffin -
tin orbitals (NMTO) [PBP+04], Wannier functions constructed by a
projection onto a subset of Bloch wave functions [AKK+05,KRPS02],
maximally localized Wannier functions [LGP+06] or projection onto
local orbitals in the full - potential linear augmented plane - wave
(FLAPW) method [APV+09,ALG+08].

In the next sections we will present two basis sets that are used in
this work.

Written in Grassmann variables cα, c
∗
α, the action for the resulting

multi - orbital Anderson impurity model (AIM) on the imaginary -
time axis is given by

S = Sloc + Shyb

=

∫ β

0

dτHloc(τ) +

∫ β

0

dτ

∫ β

0

dτ ′
∑
αβ

c∗α(τ)∆αβ(τ − τ ′)cβ(τ ′)

(2.19)

Hloc =
∑
αβ

εαβc
∗
αcβ +

1

2

∑
αβγδ

Uαβγδc
∗
αc
∗
βcδcγ. (2.20)

The most used formalism for an ab - initio determination of the
Coulomb interaction parameters is the constrained random phase ap-
proximation (cRPA) [imcmcieifbuFB11] which considers that the ef-
fective interaction between the correlated electrons is the bare interac-
tion screened by all the non - correlated electrons. The cRPA is part
of the so - called GW approximation [vSKF06] introduced first by
Hedin [Hed65] which treats the self - energy term in a diagrammatic
expansion of the Hubbard model approximately in a self - consistent
way. The name ”GW“ comes from the Green’s function (G) and the
screened interaction line (W).

For the solution of an AIM a many - body quantum Monte-Carlo
(QMC) calculation can be performed, for which an efficient imple-
mentation of the continuous time hybridization expansion (CTHYB)
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2.1. DFT+DMFT for strongly correlated real Materials

algorithm [Gul08] within the TRIQS/CTHYB collaboration [PFA+15,
SKFP16] has been established. It corresponds to the DMFT without
self - consistency, and refers to the situation of a correlated adatom
embedded in a bath of non - interacting electrons, i.e. a surface system.
To describe a bulk material, the AIM is used in a self - consistency
loop. Let us have a look at the particular steps:

1. Having determined the DFT Hamiltonian HDFT(k), we start the
iteration with calculating the local Green’s function in the Wan-
nier basis by

Gloc
mm′σσ′(iωn) =

1

Nk

∑
k

[
1

(iωn + µ)I−HDFT
k +HDC − Σ(iωn)

]σσ′
mm′

(2.21)
Here, the sum runs over the Nk points first Brillouin zone, HDFT

k

is the DFT Hamiltonian, in the general form expressed as

HDFT
k =

∑
ij,mn

∑
σσ′

tijmσ,nσ′ ĉ
+
imσĉjnσ′ =

∑
k,mn

∑
σσ′

εmσ,nσ′(k)ĉ+
kmσĉknσ′,

(2.22)
and the HDC is the double - counting correction which sub-
tracts from the DFT Hamiltonian the Coulomb effects already
contained in HDFT(k). The self - energy Σ(iωn), which is k-
independent in the DMFT approximation and set to zero in the
first iteration.

2. Calculate the bath Green’s function G(iωn) from the local Dyson
equation

(G−1
0 )σσ

′

mm′(iωn) = (G−1
loc)

σσ′

mm′(iωn) + Σσσ′

mm′(iωn). (2.23)

3. Solve the effective impurity problem given by
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2. Theoretical framework

S = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
mm′

∑
σσ′

c∗mσ(τ)[G−1
0 (τ − τ ′)]σσ′mm′cm′σ′(τ

′)

+
1

2

∫ β

0

dτ
∑
mm′
m′′m′′′

∑
σσ′

Umm′m′′m′′′ c
∗
mσ(τ)c∗m′σ′(τ)cm′′′σ′(τ)cm′′σ(τ).

(2.24)

i. e. calculate its one - particle Green’s function G(iωn). The
action here corresponds to the one in Eq. equation (2.19).

4. Using the Dyson equation once again, obtain a new local self -
energy Σ(iωn) from the just calculated Green’s function G(iωn)
and the bath Green’s function G(iωn). Continue with step 1
using the new self - energy.

These steps are iterated until self - consistency in the Green’s func-
tion or the self - energy is reached. The self - consistency loop in the
DFT + DMFT approach can be extended to include the electronic
charge density ρ(r). In such a charge self - consistent calculation, only
one or a few iterations are performed per DMFT calculation. Then,
the resulting charge density ρ(r) is used as a starting point for a new
DFT calculation, performing only one or a few of iterations to obtain
a new DFT Hamiltonian, which serves as starting point for a new
DMFT calculation. Those steps are iterated until self - consistency in
both the self - energy and the charge density are reached. In practice,
however, most applications of the DFT + DMFT method, so far, are
restricted to calculations obtaining self - consistency only in the self -
energy. An implementation of the full charge self - consistency is re-
alized within TRIQS/DFT Tools which provides an interface between
several DFT codes and the TRIQS/CTHYB code [APS+16].

20



2.1. DFT+DMFT for strongly correlated real Materials

Full charge self - consistency

As mentioned above, the self - consistency loop in the DFT + DMFT
approach can be extended to include the electronic charge density
ρ(r). The charge - consistency is especially important for total energy
calculations because the modified charge and one - electron potentials
due to correlations will also effect the electron - nuclei and exchange
- correlation energy, that also contribute to the total DFT + DMFT
energy.

Here we will briefly describe this scheme in a standard way, fol-
lowing the outline of Ref. [APS+16, PABG07]. For further details of
the implementation in specific basis set used in this work we refer to
Ref. [Gri13].

For the charge density from a post - processing DMFT calculation
we can write the DFT + DMFT density matrix for all bands ν,ν ′ in
the energy window W for projection on the local orbitals as

N
(k)
νν′ = lim

τ→0−

1

β

∑
iωn

Gνν′(k, iωn)e−iωnτ . (2.25)

In real space the full charge density matrix including additionally
the bands outside the energy window W is given by

ρDMFT (r) = ρOW (r) +
∑
k,νν′

< r|Ψkν > N
(k)
νν′ < Ψkν′|r > . (2.26)

Here, ρOW (r) (OW=outside window) is the contribution of the states
outside the window W . Depending on the basis of the DFT code,
one inserts the expansion of the Bloch wave function < r|Ψkν > into
Eq. 2.26 to obtain an expression for the charge density in the corre-
sponding basis.

The representation of the total energy functional in the Bloch basis,
in which the kinetic Hamilton operator consists of the diagonal matrix
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2. Theoretical framework

of Kohn - Sham energy eigenvalues εk, can be written as [Gri13]

EDFT+DMFT =
∑
k

∑
νν′

εkνδνν′n
B
kνν′

−
∫
d3r(VKS(r)− νext(r))ρDMFT (r)

+ EH [ρDMFT (r)] + EXC [ρDMFT (r)]

+ < Ĥ int > −Edc, (2.27)

where the first four terms are the estimation of the standard DFT
functional at the self - consistently determined charge density. In a
practical implementation, the total energy of the charge self - consis-
tent DFT + DMFT reads [Gri13,PABG07,DMC+09],

EDFT+DMFT = EDFT [ρDMFT (r)]

+
∑
k

∑
ν

εkν∆N
(k)
νν + 〈Ĥint〉 − Edc . (2.28)

where EDFT is a standard DFT functional acting on the DMFT charge
density ρDMFT , εkν are the Kohn - Sham (KS) energy eigenvalues,
∆N (k) is the KS occupation matrix correction due to the DMFT self
- energy [LGP+06]. < Ĥ int > is an expectation value of the Coulomb
vertex, using the Galitskii - Migdal formula [GM58] it can be written
as (in [FW71] is the complete derivation)

< Ĥ int >=
1

2

∑
n

Tr[Σimp
n (iωn) ·Gimp

n (iωn)]. (2.29)

The other equivalent formulation thereof in Bloch space is possible
because the trace operator is invariant under cyclic permutations, even
for matrices that are not quadratic. It can be written as
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2.1. DFT+DMFT for strongly correlated real Materials

< Ĥ int > =
1

2

∑
kn

Tr[Σimp
n (iωn) · Pn(k)GB

n(k, iω)P+
n (k)]

=
1

2

∑
kn

Tr[P+
n (k)Σimp

n (iωn)Pn(k) ·GB
n(k, iω)]

=
1

2

∑
kn

Tr[ΣB
n(iωn) ·GB

n(k, iω)] (2.30)

In addition to the Galitskii - Migdal formula, there are other tech-
niques for estimating this expectation value. Particularly in the quan-
tum Monte - Carlo technique,which is used in this work, one can mea-
sure expectation values of operators directly in the Monte - Carlo
process.

Finally, Edc marks the double - counting correction. Eq. 2.28 as-
sumes the use of the Bloch basis in which the kinetic energy operator
is diagonal in a basis of the Kohn - Sham eigenstates.
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2.2 Projections onto localised orbitals

The method of projection onto local orbitals as proposed by Amadon
et al. [ALG+08] is based on the projection of the Bloch wave functions
and the Green’s function from the Bloch basis onto localized functions
|χTm > in the ”correlated subspace” at the lattice vector T, or the
Bloch transform |χkm > thereof. The index m is a atomic index. But
if we express the Hamilton operator in the basis |Bkα >, where α is a
spin - orbital index, then the main quantity of DMFT (local Green’s
function) could be rewritten as follows [LGP+06]

Gloc
mm′(iωn) =

∑
k

∑
αβ

< χkm|Bkα >< Bkβ|χkm′ >

·
(

[(iωn + µ)I−Hkin(k)−∆Σ(k, iωn)]
−1

)
αβ

. (2.31)

Here, ∆Σ(k, iωn) can be unfolded from the impurity self energy
Σimp(iωn) as follows:

∆Σαβ(k, iωn) =
∑
mm′

< Bkα|χkm >

[
Σimp
mm′(iωn)−Σdc

mm′

]
< χkm′|Bkβ >,

(2.32)
where Σdc is the double - counting correction, which we will discusse
in detail in the next section. In this projection scheme, the choice of a
subsetW of the original Bloch wave functions |ψnk > leads to the fact
that the kinetic part of the Hamiltonian operator becomes diagonal:

Hkin
νν′ (k) = εkνδνν′. (2.33)

Here, εkν are the Kohn - Sham energy eigenvalues. As mentioned
above, |χkm > define the basis of the ”correlated subspace”. We
can determine elements of the projection matrix that occur in equa-
tion (2.31) as follows:

P̃mν(k) =< χkm|ψkν >

P̃ ∗νm(k) =< ψkν|χkm > (2.34)
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2.2. Projections onto localised orbitals

This matrix is not quadratic because the correlated subspace is gener-
ally smaller than the subspace W of Bloch bands. Only if the system
has well separated low - energy bands, the size of the correlated sub-
space and the subspace of Bloch bands can be the same.

The localized orbitals can be written in terms of the Bloch func-
tions as

|χkm >=
∑
ν

< ψkν|χkm > |ψkν > . (2.35)

If we use now the projection matrices equation (2.34), the func-
tions in equation (2.35) can be rewritten as

|χ̃km >=
∑
ν∈W

< P̃ ∗νm(k)|ψkν >=
∑
ν∈W

< ψkν|χkm > |ψkν > . (2.36)

This functions are not normalized, but we can define the overlap marix
as

Omm′(k) =< χ̃km|χ̃km′ >=
∑
ν∈W

P̃mν(k)P̃ ∗νm(k). (2.37)

The orthanormalization of local orbitals to true wannier functions
are then obtained by

φkm =
∑
m′

[O(k)]
− 1

2

m′m|χ̃km′ >, (2.38)

and correspondingly the normalized projection matrices

Pmν(k) =
∑
m′

[O(k)]
− 1

2

mm′P̃m′ν(k)

P ∗νm(k) =
∑
m′

[O(k)]
− 1

2

m′mP̃νm′(k) (2.39)

Because of the orthonormalization, one can find the unitarity re-
lation (

P (k) · P+(k)
)
mm′

=
∑
ν

Pmν(k) · P ∗νm′(k) = δmm′. (2.40)
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The implementation of equation (2.40) is not valid because P+(k)
is generally not quadratic:

P (k) · P+(k) 6= I. (2.41)

In the case when the subspace of Bloch bands is equally large
as the correlated subspace, the projection matrices are unitary. If we
insert equation (2.39) into equation (2.31), the local Green’s function,
projected onto the local orbitals, is given by

Gloc
mm′(iωn) =

∑
k

∑
νν′

Pmν(k) ·GB
νν′(k, iωn) · P ∗ν′m′(k), (2.42)

with the corresponding Bloch Green’s function, given by

GB
νν′(k, iωn) =

([
(iωn + µ)I− εk −∆ΣB(k, iωn)

]−1
)
νν′
, (2.43)

and the corresponding Bloch self - energy, calculated from the im-
purity self - energy of DMFT, defined as

∆ΣB
νν′(k, iωn) =

∑
mm′

P ∗νm(k)

[
Σimp
mm′(iωn)− Σdc

mm′

]
Pm′ν′(k) (2.44)

If the projection matrices are quadratic, they have an inverse ma-
trix. Thus, the local Green’s function of equation (2.42) can be writ-
ten in the following form:

Gloc(iωn) =
∑
k

(
P+(k)

)−1 ·GB(k, iωn) ·
(
P (k)

)−1

=
∑
k

(
P (k)

[
(iωn + µ)I− εk −∆ΣB(k, iωn)

]
P+(k)

)−1

=
∑
k

[
(iωn + µ)I− P (k)εkP

+(k)− Σimp(k, iωn) + Σdc

]−1

.

(2.45)

For the quadratic case P (k)εkP
+(k) assume the role of Hkin(k).

26



2.3. Maximally Localised Wannier Functions

2.3 Maximally Localised Wannier
Functions

This section will briefly introduce the method of maximally localised
wannier functions as proposed by Marzari and Vanderbilt [MV97].
The practically implementation is good described in [MYL+08]. Wan-
nier functions are defined as the Fourier transform of the Bloch func-
tions (output if DFT), given by

φν(r−R) =
V

(2π)3

∫
dkψνk(r)e−ikR, (2.46)

where V is the unit cell volume in real space, and the integral is
over the Brillouin zone (BZ). The Bloch wave functions result from
the sum of the lattice periodic part uνk(r). We can rewrite them as
follows:

ψνk(r) = uνk(r) · e−ikr. (2.47)

Since functions uνk(r) are not uniquely defined, there is still the free-
dom in the choice of the phase factor of the Bloch orbitals. It trans-
forms to the freedom of performing a unitary rotation in the multi -
band case:

uνk(r) 7−→
∑
ν′

Uνν′(k) · uν′k(r). (2.48)

Marzari and Vanderbilt suggested for the optimal (maximal) localiza-
tion of the resulting the use of the arbitrary k - dependent unitary
matrix Uνν′(k). They defined the localization or ”spread” functional
Ω [FB60], which is the sum of the quadtratic spreads of the wannier
probability distributions:

Ω =
∑
ν

[< r2 >ν − < r >2
ν], (2.49)

where< r2 >ν is the expectation value of the squered position operator
r2 in the ν - th wannier function, and < r >2

ν is the expectation value
of the position operator. The minimisation of this functional is carried
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out using the minimisation algorithm with smallest descents, which is
described in detail in [MV97].

This construction scheme is valid only if the numbers of con-
structed wannier functions and input Bloch functions are not different.
To do this, it is required that a certain isolated set of Bloch bands can
construct a correlated subspace of the appropriate size.
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2.4. Coulomb interaction tensor

2.4 Coulomb interaction tensor

In the following, we will consider important properties of the Coulomb
interaction tensor (U - matrix). First we go back to the many - body
Hamiltonian introduced in the previous section. The general form of
the Coulomb interaction term can be written as

ĤU =
1

2

∑
ijkl

∑
mnpq

∑
σσ′

U ijkl
mnpqĉ

†
imσĉ

†
jnσ′ ĉlqσ′ ĉkpσ, (2.50)

for all bands that were considered in the energy window with the
interaction parameters

U ijkl
mnpq =

∫
d(r, r′)φ∗mσ(r−Ri)φ

∗
nσ′(r

′−Rj)
1

|r− r′|
φqσ′(r

′−Rl)φpσ(r−Rk),

(2.51)
where φmσ(r − Ri) is a basis set of localized Wannier functions

centered at each atomic sit Ri. We assume that the intersite Coulomb
interactions could be neglected (i=j=k=l) and the most important
Coulomb interactions are among electrons in a single electronic shell(l
is fixed). Thus, the Coulomb interaction has the following form

ĤU =
1

2

∑
i

∑
mm′m′′m′′′

∑
σσ′

Umm′m′′m′′′ ĉ
†
imσĉ

†
im′σ′ ĉim′′′σ′ ĉim′′σ′. (2.52)

It is convenient to expand the Coulomb interaction in terms of spher-
ical harmonics as

1

|r− r′|
=

∞∑
k=0

k∑
q=−k

4π

2k + 1

rk<
rk+1
>

Ykq(Θ, φ)Y ∗kq(Θ
′, φ′), (2.53)

where r> (r<) is greater (lesser) of r and r′.
We use this expansion to rewrite equation (2.51) and get:

Umm′m′′m′′′ =
2l∑
k=0

ak(mm
′m′′m′′′)F k, (2.54)
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where the angular and radial integrals are divided, and ak is the an-
gular part given by

ak(mm
′m′′m′′′) =

4π

2k + 1

k∑
q=−k

< lm|Ykq|lm′ >< lm′′|Y ∗kq|lm′′′ >,

(2.55)
and the radial part F k is the Slater integral

F k =

∫
dr

∫
dr′(rr′)

rk<
rk+1
>

R2
nl(r)R

2
nl(r

′). (2.56)

All two - index terms could be written in equation (2.52), using
the direct Umm′ ≡ Umm′mm′, and exchange Jmm′ ≡ Umm′m′m matricies,
so the interaction Hamiltonian is expressed

ĤU =
1

2

∑
i

∑
σ,m,m′

Um,m′nmσnm′−σ +
1

2

∑
σ,m 6=m′

(Umm′ − Jmm′)nmσnm′σ

+
∑
i

∑
m 6=m′

Jmm′(ĉ
†
im↑ĉ

†
im′↓ĉim↓ĉim′↑ + ĉ†im↑ĉ

†
im↓ĉim′↑ĉim′↓), (2.57)

which contains density - density interactions, spin - flip and pair -
hopping terms. We obtain now the Coulomb interaction tensor for the
d - orbitals in the real harmonic basis. We define first the Coulomb
parameters for a certain value of angular momentum l

U =
1

(2l + 1)2

∑
mm′

Umm′ = F 0, (2.58)

(U − J) =
1

2l(2l + 1)

∑
mm′

(Umm′ − Jmm′). (2.59)

For the d - orbitals, we can parametrize the Coulomb interactions by
only three Slater integrals; F0,F2,F4. The ratio between parameters is
almost a constant. Thus, we can parametrize the two - index direct
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2.4. Coulomb interaction tensor

and exchange matrices for the d shell orbitals. In the basis of the real
harmonics as (|xy >, |yz > , |3z2 - r2 > , |xz > , |x2-y2 > ), we have

Umm′ =


U0 U ′1 U ′2 U ′1 U ′3
U ′1 U0 U ′4 U ′1 U ′1
U ′2 U ′4 U0 U ′4 U ′2
U ′1 U ′1 U ′4 U0 U ′1
U ′3 U ′1 U ′2 U ′1 U0


where U ′i = U0 - 2Ji with U0 = U + 8

7 J = F0 + 8
7
F2+F4

14 and

J1 =
1

49

(
3F2 +

20

9
F4

)
,

J2 = 3J1 − 2
5

7

F2 + F4

14
,

J3 = −5JJ1 + 6
5

7

F2 + F4

14
,

J4 = −3J1 + 4
5

7

F2 + F4

14
.
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2.5 Double - Counting problem

When combining the density functional theory with dynamical mean -
field theory, we encounter a double - counting of correlations that have
been included in both DFT and DMFT, treated it by each approach
in its own way. The significant part of the electronic correlations
already contained in the DFT has to be subtracted from the Hamil-
tonian by introducing an additional parameter (the double - counting
correction). The spectral function was in good agreement with exper-
iments only when the double - counting correction is obtained as an
adjustable parameter [KUW+10]. There was no precise identification
of the double - counting using DFT implemented in the local - density
or generalized - gradient approximations (LDA or GGA).

Nevertheles, different approximation schemes for double - count-
ing were developed. There are two widely used double - counting
correction approaches in the literature: first, the around - mean -
field correction (AMF) introduced by V. I. Anisimov et al. [AZA91],
and second, the fully - localized limit approach by M. Czyzyk and G.
Sawatzky [CdzS94]. Both methods have been originally developed for
use in the LDA + U approach [AZA91,AAL97].The LDA + U method,
explicitly introduces the Hubbard U - kind of interaction between the
localized orbitals. The method, similar to the Anderson [And61] or
Hubbard models [Hub63], separates the electrons into two sets: delo-
calized s, p, that are usually well described by the LDA method. The
other set is localized d - or f - states, to which the Coulomb repulsion
U between electrons in the same shell is added as in the Hartree - Fock
approximation [CdzS94]

HHF =
1

2

∑
σ,m,m′

Um,m′nmσnm′σ̄+
1

2

∑
σ,m 6=m′

(Umm′−Jmm′)nmσnm′σ, (2.60)

where Umm′ and Jmm′ are the Coulomb - and exchange interaction
respectively, and nmσ = c†mσ cmσ are occupation number operators.
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2.5. Double - Counting problem

The DFT + U total energy functional may be written in the form:

EDFT+U = EDFT [n↑, n↓] + EHF [nmσ]− EDC . (2.61)

The AFM and the FLL approaches are based on the assumption
that the double - counting energy can be written as mean - field com-
ponent of the Hartree - Fock, EDC = < HHF >. Using the Wick’s
theorem [Czy08] for the equation (2.60)

< c†αc
†
βcγcδ > =< c†αcδ >< c†βcγ > − < c†αcγ >< c†βcδ >, (2.62)

and assuming that the non-diagonal terms can be neglected, we
get:

< HHF > =
1

2

∑
mm′σ

Umm′(< nm′σ̄ >< nmσ >)

+
1

2

∑
mm′σ,m 6=m′

(Umm′ − Jmm′)(< nm′σ >< nmσ >). (2.63)

The AMF approach assumes that the LDA corresponds to the
mean - field solution. The exchange and correlation effects are ro-
tationally invariant in the LDA potential. The occupation numbers
are orbital - independent. So the AMF approximates the included
interaction by calculating the difference between the interaction in
Hubbard form and their deviations from a mean field value for the oc-
cupation number. Thus the spin - occupation numbers can be written
as [CdzS94]

Nσ =
∑
m

< nmσ >, (2.64)

The resulting double - counting expression (with interactions de-
fined in equation (2.58) and equation (2.59)) is given by

HAMF
DC = UN 2 − 1

2

2l

2l + 1
(U − J)

∑
σ

N 2
σ , (2.65)
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in which N=(N↑+N↓) is the total occupation, and Nσ the occupa-
tion per spin.

The corresponding double - counting energy has the following for-
mula:

EAMF
DC = UN↑N↓ +

1

2
(N 2
↑ +N 2

↓ )
2l

2l + 1
(U − J). (2.66)

The idea of the FLL approach is that the energy of the atomic
limit is determined on the assumption that the localized d - and f -
electrons have almost atomic character (localized orbitals).

The double - counting term is given by [CdzS94]:

HFLL
DC =

1

2
UN(N + 1)− 1

2
J
∑
σ

Nσ(Nσ − 1), (2.67)

where N and Nσ have the same meaning as in the AMF case. The
corresponding double - counting energy within this approximation has
the following form:

EFLL
DC =

U

2
N(N − 1)− J

2
(N↑(N↑ − 1) +N↓(N↓ − 1)). (2.68)

These approaches are necessary because the Coulomb interaction
of the d - electrons in unknown form is contained in the exchange
correlation potential. Therefore, no final statement can be made about
which approach leads to better results. Both approaches don’t work
for all cases. This depends on the kind of materiails. The around
mean - field approximation is better suitable for metals or ”weakly
correlated” systems and the fully - localized limit more suitable for
the ”strongly correlated” systems.
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2.6 Numerical Methods and Algorithms

Impurity Solver

In the DMFT method, the lattice model can be mapped to a quan-
tum impurity Anderson model. Thus, the lattice problem is reduced
to effective single impurity problem. Fortunately, impurity models
have been of long - standing interest, and few methods have been
developed to handle them. The numerical renormalization group
(NRG) [BCV01], exact diagonalization (ED) [CK94] , and especially
the quantum Monte Carlo (QMC) [GML+11a] methods are of the
most important numerical methods. The advantage of this algorithms
is that they are ”numerically” exact. Nonetheless, the big drawbacks
are the large computational requirements of the schemes and the intro-
duced Monte - Carlo noise. In the next Section we will present briefly
the hybridization expansion continuous time (CT - Hyb) Quantum
Monte Carlo algorithm [WCD+06,WM06,GML+11a] as implemented
in the TRIQS code [SKFP16] that was used to obtain ”exact” solu-
tions of the Anderson impurity model.

TRIQS/CTHYB

The hybridization - expresion quantum Monte Carlo (CT - Hyb al-
gorithm), implemented in the TRIQS/CTHYB code, has gotten sev-
eral important improvements and optimization algorithms for the ef-
fective treatment of multi - orbital strongly correlated systems. We
briefly describe the general method, as well as the automatic partition-
ing (autopartition) algorithm which divides the local Hilbert space
into subspaces, and the realization of the left - leaning red - black
tree [SKFP16].

The main idea of CT - QMC start from the splitting the effective
action S into two parts, an exactly solvable part S0 and a not neces-
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sarily small part ∆S. The partitition function Z can be found, if the
path - integral evaluation will be done in a perturbative way using a
power series expansion:

Z =

∫
D[c∗c]e−S0−∆S (2.69)

=

∫
D[c∗c]e−S0

∑
k

(−1)k

k!
(∆S)k. (2.70)

A possible decomposition can be found already in equation (2.24):

S = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

c∗σ(τ)G−1
0 (τ − τ ′)cσ(τ ′) (2.71)

∆S = U

∫ β

0

dτn↑(τ)n↓(τ). (2.72)

This is the basic idea of interaction - expansion or ”weak -
coupling” CT - QMC [RL04]. It induces the following expansion
[GML+11a] of the partition function Z (knowing the exact part Z0):

Z = Z0

∞∑
k=0

(−U)k

k!

∫ β

0

dτ1 · · · dτk
(∏

σ

detDσ
k

)
(2.73)

(Dσ
k)ij = Gσ0 (τi − τj). (2.74)

Some additional tricks are necessary to avoid sign problems. Thus,
such an approach leads to small perturbation orders, especially for
small interactions U. The hybridization - expression or ”strong - cou-
pling” CT - QMC [WCD+06, WM06] does the opposite and is espe-
cially effective for large interactions U. This hybridisation - expression
idea makes an expansion of the partition function in powers of the
hybridization between impurity and bath. The time evolution is done
by the local part of the Hamiltonian. In the effective action formalism,
this corresponds to the hybridisation function ∆(τ) [Hau07]:
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∆S =

∫ β

0

dτ

∫ β

0

dτ ′
∑
αβ

c∗α(τ)∆αβ(τ − τ ′)cβ(τ ′). (2.75)

The partition function is given as (similar to the interaction ex-
pansion approach) [GML+11a]

Z = Zbath
∑
k

∫
dτ1 · · · dτk

∑
α1···αk

∑
α′1···α′k

Trc[Tτe
−βĤloc

· cαk
(τk)cα′k · · · cα1

(τ1)cα′1(τ
′
1)] detM−1 (2.76)

(M−1)lm = ∆jljm(τl − τm). (2.77)

Thus, it is the task of the Monte - Carlo algorithm to estimate the
integrants. More details can be found here [GML+11a].

If we detaily consider this equations, it is clear that the order of
expansion causes the size of the hybridization matrices in the pertur-
bation expansion. We obtain a very large local Hilbert space, i.e., in
case of d - orbital systems it has already 210 = 1024 - dimensions.

The gain factor for calculating the dynamic trace can be obtained
by the partition of the local Hilbert space in the form of a diagonal
block structure, which agrees with the symmetries of the system under
consideration, shown in Fig. 2.1. Then the matrix multiplications in
the dynamic trace must be executed only within the subspaces.

The efficiency of calculating the dynamical trace, and therefore also
the computantional enhancement, can be improved by presenting it in
terms of a tree structure. Storing configurations and paired operator
products in the trace in the tree reduces the number of matrix multi-
plications that must be recalculated after each QMC update because
only a small subset of leaves changes. It is shown in Fig. 2.2, where
O(log2(β)) is the tree scaling and O(β3) is that of the determinants.
At low temperatures the calculation of the hybridization determinants
dominates over that of the dynamical trace, while at high tempera-
tures it will be the reverse. The average perturbation order 〈k〉 is
approximately proportional to β.
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Figure 2.1: Sketch of results of the autopartition algorithm. From
Ref. [GML+11b].

Figure 2.2: Scaling of computational time with inverse temperature β
for a representative 5 - orbital system containing three electrons sub-
ject to a rotationally invariant full Hamiltonian. The tree algorithm
is compared against the linear case where the full trace is recomputed
after each QMC update. From Ref. [SKFP16].
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2.7 Momentum resolved spectral
function - ARPES

In this section we obtain momentum - resolved spectral functions and
are thus able to compare our results with recent angular resolved pho-
toemission (ARPES) studies.

(a) Spin - up

(b) Spin - down

Figure 2.3: Majority and minority states, ARPES spectra on a 15
ML hcp cobalt film along GK and GM directions, respectively
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First, we will discuss and describe details of the experimental data.
Figure 2.3 shows ARPES spectra taken on a (approximately) 15 ML
Co film on W(110) along GK (GM for spin - down) high symmetry
direction with two different photon energies. In the proximity of the
Fermi level a number of quantized states can be observed, their posi-
tion does not change with varying the photon energy. Only the relative
intensity is modulated due to the matrix element effects. For example,
at 56 eV photon energy we can see clearly the nearly linear states in
the proximity of the Fermi level at positive wave vector values (we will
refer to them as U1 in the following). We evidence some of them by
dashed red lines. The same states U1 are much weaker at 75 eV, while
one can see better the less dispersive state below 0.2 eV close to the K
point (U2 in the following). All these states have majority character
according to the spin - resolved data. To perform a better comparison
to the calculations we will refer to two parameters: the slope of the
U1 state, and the binding energy of the U2 state.

The states that have a minority character according to the spin
- resolved data are better seen along the GM direction. We mark
them by D1 and D2. The D1 states is overlapping with the majority
states, but at this energy and experimental geometry its intensity is
selectively enhanced, and the spin - resolved maps provide a clear
evidence for its minority character.

We performed DFT + DMFT calculation for 5 ML slab hcp cobalt
in order to achive a better agreement between experimental and the-
oretical data. In all cases U = 3.5 and J = 0.75 eV were applied. The
momentum - resolved spectral function was computed from the QMC
data as follows:

Ai(k, ω) = −1

π
Im
(
ω + µ− εi(k)− Σi(ω)

)−1
, (2.78)

which is shown in Fig. 2.4 together with the data of spin - resolved
ARPES measurments for 15 ML films.

We can show in Fig. 2.4 an overall good agreement of the observed
states: there are several nearly linear states in the proximity of the
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Figure 2.4: Majority (left) and minority (right) states, 5 ML hcp
cobalt along GK and GM directions, respectively

Fermi level, similar to U1 and a curved state in the proximity of the
K point, similar to the U2. The calculated (but not here presented)
DFT bands have a strong disagreement with the experimental spectra
in the slope of the U1 states and the binding energy of the U2 state.
Including the correlation effects gives the correct values.

The spin - down band structure shows features, which are also in
a good agreement with dispersion and binding energy of the D1 and
D2 states.
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Three

Quantum many - body intermetallics

Fe3Al - iron based aluminides have been a subject of great interest for
years because of their excellent corrosion resistance, specific stiffness,
good wear resistance and good processability. Fe3Al exhibit limited
strength and creep resistance at high temperatures and low ductility
at ambient temperatures. These alloys undergo a persistent trans-
formation from a DO3 structure (highly ordered) to a B2 structure
(imperfectly ordered) at around 820 K upon heating, thus, resulting
in a sharp drop in strength [MDTS91]. Former experimental and the-
oretical investigations revealed that there is a very complicated phase
diagram that shows a complex interaction between metallicity, mag-
netism, and structure. Although theoretical studies based on first -
principles calculations have already studied Fe3Al [GOPS06], [LFS05],
[Col03], [LWE+02], [RD02], [SSJ05], [DRJD02], the correlation be-
tween magnetic properties and the stability of these alloys is not well
established. Previous authors used LSDA to describe/investigate the
electronic, magnetic properties and phase stability of bcc - based DO3

- Fe3Al. Former calculations within the framework of the LSDA have
shown that the systematics of the formation of magnetic moments on
Fe atoms in various transition - metal hosts depend very sensitively
on the symmetry of the transition - metal hosts. We now concentrate
on the additional influence of electronic correlations beyond LSDA.
The DFT + U method, which includes static correlation effects, can
handle some of the subtle energetics for a good choice of the local
Coulomb - interaction parameters. This scheme is not well defined
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3. Quantum many - body intermetallics

for correlated itinerant systems and, normally has to enforce magnetic
order to give correct results. The conventional DFT or DFT + U are
usually used to describe non - magnetic (NM) or magnetically ordered
compounds, but true paramagnetic (PM) states are not available in
both methods. In general, Fe - Al compounds are hard to describe in
conventional DFT, as shown in various relevant publications, and we
here show that the advanced DFT + DMFT approach can improve
thereon. In this work we document the important impact of many -
body effects on the electronic structure in two prominent intermetallic
systems, namely Fe3Al and Fe2V Al.

The Heusler compounds [Heu03] were discovered in 1901. They
benefit from rising interest because of their high Curie temperature,
their high spin polarization, and their low magnetic Gilbert damping.
We are interested in the so - called full-Heusler structure X(2)Y Z -
intermetallics. Here X and Y are transition metals and Z is a main
group element, which crystallizes in the cubic L21 structure. Fe2V Al
was first proposed to be a 3d heavy fermion candidate in 1997 by
Y.Nishino et.al [NKA+97]. The electrical and magnetic properties
of Fe2V Al vary from metals to semiconductors. They observed a
large decrease of resistivity with rising temperature, a moderately co-
efficient of resistivity clearly distinguished this material from typical
metals. On the other hand, a crystalline semiconductor would not
have a very distinct Fermi edge because of the low density of states at
EF . Since then, many articles have been published reflecting on the
physical properties of this alloy. The physical picture behind these
seemingly contradictory physical properties is still not clear. Experi-
ments characterize Fe2V Al as a semiconductor with narrow gap of 90
- 130meV [KNMA00, NTY+05],100 - 200meV [OKN+00, ISDSAM15],
or 210 - 280 meV [LR98] as extracted from transport, optical, and nu-
clear magnetic resonance (NMR) measurements, respectively. Former
theoretical studies based on first - principles calculations have shown
that Fe2V Al is a non - magnetic semimetallic with a low - density
pseudogap of 0.1 - 0.2 eV [SM98, WP98], whereas the use of hybrid
functionals renders the system semiconducting with a band gap of ∆g

44



= 0.34 eV [BG11], and DFT + U calculations revealed a gap of ∆g =
0.55 eV [DLM11]. In our study we go beyond conventional DFT(+U)
to consider the effects of quantum fluctuations and finite temperature.
A combination of DFT with DMFT reveals important modifications
of the correlated electronic structure. For Fe2V Al we found a strongly
renormalized pseudogap of about 150meV at low temperatures and a
mass - enhancement factor of 1.4 for vanadium states. It was identi-
fied to correlation - induced changes near the Fermi level. It is shown
that the spectral weight at the Fermi level depends strongly on tem-
perature, which leads to metallization with increasing temperature.

Our work is important for the materials science audience, since it
renders it clear that electronic correlations are not only relevant for
strongly correlated oxides but do matter also for selected intermetal-
lic compounds. The charge self - consistent scheme makes it possible
to reveal Fe3Al formation energies in good agreement with experi-
ment and account for the intricate gap opening in Fe2V Al. Especially
for the Fe - Al system, since bcc-Fe and Fe3Al are not coherently -
well described within DFT + DMFT, this method stands out since
LDA(GGA) fails for bcc - Fe(Fe3Al). This should stimulate further
reseach on the relevance of many - body effects in intermetallic sys-
tems.
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Various intermetallic compounds harbor subtle electronic correlation effects. To elucidate this fact for the Fe-Al
system, we perform a realistic many-body investigation based on a combination of density functional theory with
dynamical mean-field theory in a charge self-consistent manner. A better characterization and understanding of
the phase stability of bcc-based D03-Fe3Al through an improved description of the correlated charge density
and the magnetic energy is achieved. Upon replacement of one Fe sublattice with V, the Heusler compound
Fe2VAl is realized, known to display bad-metal behavior and increased specific heat. Here we document a
charge-gap opening at low temperatures in line with previous experimental work. The gap structure does not
match conventional band theory and is reminiscent of (pseudo)gap characteristics in correlated oxides.

DOI: 10.1103/PhysRevB.95.045114

I. INTRODUCTION

The Fe-Al system is well known for its intricate phase
diagram, displaying a complex interplay between metallic-
ity, magnetism, and structure. Stoichiometric FeAl poses a
longstanding problem regarding its magnetic ground state.
While experimentally B2-FeAl is characterized as a Curie-
Weiss paramagnet [1] with no detectable ordered moment,
conflicting results exist in theory [2–5]. On the Al-rich side, the
low-symmetry structures FeAl2 and Fe2Al5 exhibit spin-glass
physics at low temperature [6,7]. On the iron-rich side, in
the Fe3Al composition a bcc-based D03 crystal structure
is stable with well-defined ferromagnetic (FM) order up to
Tc = 713 K [8]. A further increase of the Fe content transforms
the system into a doped bcc Fe (or α) phase, also with FM order
below a Curie temperature of 1043 K for pure iron. Albeit
unambiguous in nature, both α-Fe and D03-Fe3Al appear
difficult to be described within conventional density functional
theory (DFT) [9–11]. The generalized-gradient approximation
(GGA) for the exchange-correlation energy is necessary to
detect the FM-bcc-Fe ground state [10]. Intriguingly, the
FM-D03 compound is only stable within the local-density
approximation (LDA), while GGA favors the fcc-based L12

structure in the ferromagnetic state [11].
This lack of a coherent theoretical description of the

Fe-rich side of Fe-Al in standard Kohn-Sham DFT asks
for extended approaches. The inclusion of static electronic
correlation effects via the DFT+Hubbard U method may cope
with part of the subtle energetics for a reasonable choice
of the local Coulomb-interaction parameters [12]. But that
scheme is in principle not well defined for correlated itinerant
systems and, in addition, usually needs to enforce magnetic
order to deliver proper results. True paramagnetic (PM) states
based on fluctuating local moments are neither accessible in
conventional DFT nor in DFT+U , which either describes non-
magnetic (NM) or magnetically ordered compounds. Within
the so-called disordered local moment (DLM) method [13,14]
there is the chance to account for a DFT-based orientational
mean-field effect of PM-like spins. Yet quantum fluctuations
as well as general finite-temperature fluctuations of, e.g., the
proper size of the local moments are still missing.

A further facet of the intriguing correlated electronic
structure in iron aluminides is revealed when replacing one
Fe sublattice in D03-Fe3Al with vanadium. This transforms
the intermetallic crystal into the Heusler L21 compound
Fe2VAl. The ordered alloy is paramagnetic down to lowest
temperatures and displays bad-metal behavior in transport
[15]. It is still a matter of debate if Fe2VAl is a small-gap (∼0.1–
0.3 eV) semiconductor or a semimetal [16,17]. Reminiscent
of f -electron systems such as SmB6 with Kondo-insulating
characteristics [18], heavy-fermion physics was originally
associated with this 3d-electron system [15,16]. Though
magnetic defects later explained a sizable part of the large
specific heat at low temperature, the overall mass enhancement
remains substantial [19]. A promising thermoelectric potential
due to an enhanced thermopower is associated with Fe2VAl-
based materials [20,21]. Again, a theoretical first-principles
assessment is difficult, since, e.g., there are substantial dif-
ferences concerning the existence of a charge gap � and
its eventual size. Conventional DFT based on LDA/GGA
classifies Fe2VAl as semimetallic [22,23], whereas the use
of hybrid functionals renders the system semiconducting with
a band gap of �g = 0.34 eV [24]. A gap of �g = 0.55 eV is
revealed from DFT+U calculations [25].

In this paper a first-principles many-body approach is
employed to consider the effects of quantum fluctuations and
finite temperature on the electronic structure of Fe3Al and
Fe2VAl beyond conventional DFT(+U ). A state-of-the-art
combination of density functional theory with dynamical
mean-field theory (DMFT) reveals important modifications
of the correlated electronic structure. We show that the subtle
electronic states rely on many-electron quantum processes,
with important consequences for the phase stability and
tendencies concerning gap formation. This paves the way
towards a coherent modeling and understanding of Fe-Al
and signals the general importance of advanced theoretical
schemes for intermetallic systems.

II. CRYSTAL STRUCTURES

The crystal structures relevant for this work are displayed
in Fig. 1. With bcc Fe and fcc Al as the end members, the
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FIG. 1. Relevant crystal structures. From left to right: D03-Fe3Al,
L12-Fe3Al, and L21-Fe2VAl. Fe (red/light gray), Al (green/dark), and
V (blue/gray).

cubic lattice system also accounts for the dominant ordered
phases in Fe-Al. Starting with B2-FeAl at stoichiometry, the
bcc lattice is the common host for the stable solid phases in
the Fe-rich part. Though the D03 structure is stable in the
Fe3Al phase regime, the fcc-based L12 structure appears as a
relevant competitor. The D03 unit cell consists of three Fe sites
and one Al site, whereby the Fe basis atoms are grouped in
two symmetry shells. One Fe site belongs to the Fe1 sublattice
and two Fe sites to the Fe2 sublattice. As a bcc structure, each
Fe site has eight nearest-neighbor (NN) sites. Whereas the
Fe2 atoms have a mixed Fe/Al nearest neighborhood, the Fe1
atom has only Fe nearest neighbors. The experimental lattice
constant of fully ordered Fe3Al reads a = 5.473 a.u.

The L12 structure also consists of three Fe atoms and one Al
atom in the primitive unit cell, but all Fe sites are equivalent by
symmetry. The 12-atom NN shell of these Fe sites is composed
again of both Fe and Al sites.

Finally, in the Heusler L21-Fe2VAl compound, the Fe1
sublattice of the D03 structure is fully replaced with V atoms.
The measured lattice constant amounts to a′ = 5.442 a.u.
[15,16].

Note that throughout this work we investigate the stoi-
chiometric compounds, i.e., the defect physics and effects of
chemical disorder are not treated.

III. COMPUTATIONAL FRAMEWORK

The charge self-consistent DFT+DMFT methodology
[26–28] is put into practice, utilizing a mixed-basis pseudopo-
tential approach [29,30] for the DFT part and the continuous-
time quantum Monte Carlo scheme [31,32] from the TRIQS

package [33,34] for the DMFT impurity treatment. Exchange
correlation in the Kohn-Sham cycle is handled by the GGA
functional of Perdew-Burke-Ernzerhof (PBE) [35] form.

The correlated subspace where quantum fluctuations are
explicitly accounted for is associated with the transition-metal
sites of Fe and V types. Projected local orbitals [36–40] of
a 3d character are used to extract Wannier-like states based
on 22 Kohn-Sham bands, stemming from Fe/V(3d 4s) and
Al(3s 3p) orbitals. Each transition-metal site represents a
DMFT impurity problem, which, due to symmetry, amounts
to two such ones in D03-Fe3Al and Fe2VAl, while only
one symmetry-inequivalent transition-metal site is hosted in
L12-Fe3Al. A multiorbital Hubbard Hamiltonian of Slater-
Kanamori form, parametrized by the Hubbard U and the
Hund’s exchange JH, is applied to the respective full five-
orbital 3d manifold. We overtook the values U = 3.36 eV

and JH = 0.71 eV for the local Coulomb interactions from
Ref. [5], where those are computed for B2-FeAl using the
constrained random-phase approximation. A double-counting
correction of the fully localized form is used in this work. If
not stated otherwise, the temperature within the DMFT part
is set to T = 387 K, i.e., β = 1/T = 30 eV−1. The analytical
continuation of the Green’s functions on the Matsubara axis
iω is performed via the maximum-entropy method.

We mainly focus in our DMFT calculations on phases
without broken spin symmetry, i.e., paramagnetic states. Albeit
D03-Fe3Al is ferromagnetic at ambient temperatures, the
explicit magnetic-ordering energy, as will be shown below,
is not of vital importance for our investigation and its
conclusions.

IV. RESULTS

A. Fe3Al

1. Electronic states

We first focus in some detail on the electronic states
in Fe3Al. Let us start with the fcc-based L12 structure,
having only one transition-metal sublattice. The close-packed
lattice type is an important one in intermetallic systems, e.g.,
the ordered phases Cu3Au and Ni3Al condense in the L12

structure. Because of the cubic symmetry, here the local Fe(3d)
states in principle split twofold into eg and t2g states. However,
due to the ordering pattern, not all eg/t2g sublevels may still
be degenerate. This is illustrated in Fig. 2, where the obtained
Fe(3d) projected local orbitals are plotted as isosurfaces. The
eg manifold consisting of {x2 − y2,z2} is defined by the orbital
lobes pointing towards the next-nearest-neighboring (NNN)
Fe sites. Since both pointing directions are anisotropic in
terms of the respective nearest-neighbor sites, the two eg are
nondegenerate. The t2g manifold consisting of {xz,yz,xy} are
defined by the orbital lobes pointing to the NN sites. For
xz,yz the associated NN sites are exclusively of a Fe type,
therefore both orbitals are degenerate. Yet in the case of xy,
the associated NN shell consists exclusively of Al sites, thus
this t2g orbital has a different, in fact, the lowest effective,
crystal-field level.

FIG. 2. Projected local Fe(3d) orbitals in L12-Fe3Al. On-site
level energies: εα = {−624, − 699, − 843, − 843, − 998} meV for
the effective orbitals α = {x2 − y2,z2,xz,yz,xy}.
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FIG. 3. Spectral functions of L12-Fe3Al. (a) Total, (b) local Fe
from GGA, and (c) local Fe from DFT+DMFT. Insets in (b) and (c)
are low-energy blowups.

Figure 3 compares the integrated spectral functions
ρ(ω) = ∑

k A(k,ω) of L12-Fe3Al within DFT(GGA) and
DFT+DMFT. From the broadly itinerant band structure, an
effective relevant bandwidth of about 7 eV (ranging from
−6 to 1 eV) may be read off. Seemingly, the full Fe(3d)
manifold is crucial to understand the electronic structure in
the bonding part and at low energy, since the hybridization
between Fe and Al is rather strong in a wide energy range.
Close to the Fermi level, the z2 and xy effective orbitals are

TABLE I. Projected local-orbital occupations in Fe3Al. The
first rows are GGA, and the second rows DFT+DMFT results,
respectively.

eg t2g

x2 − y2 z2 xz yz xy Total

1.38 1.34 1.43 1.43 1.58 7.16
L12

Fe 1.55 1.56 1.54 1.54 1.79 7.98
1.45 1.45 1.31 1.31 1.31 6.83

Fe1 1.47 1.47 1.54 1.54 1.54 7.56

D03 1.20 1.20 1.59 1.59 1.59 7.17
Fe2 1.45 1.45 1.70 1.70 1.70 8.00

most dominant in GGA, while, e.g., the xz/yz part displays a
bonding-antibonding signature.

For the xy state with a deepest crystal-field level and broad
dispersion, the orbital filling is also largest (see Table I). The
total local Fe electron count is slightly above seven within
GGA. A further strengthening of the xy dominance at low
energy occurs in the DFT+DMFT treatment. While the filling
of all effective Fe orbitals increases with correlations, here also
the occupation of the xy state is enhanced the most by relative
means. Overall, a substantial increase in the total effective
Fe(3d) filling close to eight electrons takes place. Note that
the site-filling differences between GGA and DFT+DMFT are
also due to the respective effective-orbital definitions, as usual
in determining local occupations in crystalline solids. First,
the projected local orbitals in both calculational schemes are
not identical (only the projecting functions are), since via the
charge self-consistent loop the Kohn-Sham part (i.e., the bands
used for the projection) changes. Second, the resulting orbitals
are of a Wannier type, i.e., their spread is substantial and not
localized on the site center within a small spherical radius.

Still, correlations may enhance the electron localization on
the Fe sites. The correlation strength can be estimated from
the quasiparticle (QP) weight Z ∼ 1/meff , computed from the
electronic self-energy on the Matusbara axis as

Z =
(

1 − ∂ Im 	(iω)

∂ω

∣∣∣∣
ω→0+

)−1

. (1)

There is no strong orbital variation of the QP weight in the
L12 structure and it amounts to a moderate value of Z ∼ 0.7.

Though the D03 structure consists of two different Fe
sublattices, the conventional internal degeneracies of the eg

and t2g subshells of Fe(3d) are fulfilled here. This is due to
the fact that the NN environments are either of a pure Fe type
or of an equally mixed-isotropic Fe,Al type. As in fcc-based
L12, the eg orbitals point again towards NN and NNN sites.
However, since bcc-based D03 is not close packed, the t2g

orbitals point in between the NN and NNN, i.e., towards the
third-nearest-neighbor sites.

The total integrated spectral function of D03-Fe3Al is
similar to the one of L12-Fe3Al [see Fig. 4(a)], but with
a more pronounced quasiparticle peak at low energy. The
effective relevant bandwidth seems also smaller by about 1 eV
in extent. On the local level, the Fe1 spectrum exhibits stronger
eg-t2g discrimination than the Fe2 spectrum. This speaks to
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FIG. 4. Spectral functions of D03-Fe3Al. (a) Total, (b) local Fe1,
and (c) local Fe2. Insets in (b) and (c) are low-energy blowups.

a more subtle orbital/directional electronic structure around
Fe1, whereas Fe2 with its “washed-out” orbital signature looks
similar to Fe in the L12 structure. A strong GGA favoring of
eg character at low energy in the case of Fe1 is weakened in
DFT+DMFT, i.e., with correlations there are orbital-balancing
tendencies at the Fermi level.

From the electron count, the Fe1(t2g) states become strongly
correlation enhanced, while on the other hand, the Fe2(eg)
electrons benefit from a local Coulomb interaction (cf. Table I).
In principle, localizing D03 electrons in effective t2g orbitals
is understandable from a charge-repulsion argument due to

FIG. 5. Relevant charge-density plots in D03-Fe3Al around Fe1
(left) and Fe2 (right) with the c axis perpendicular to the plotting
plane. (a) GGA bonding charge density (see text). (b) DFT+DMFT
bonding charge density. (c) Charge difference nDFT+DMFT − nGGA.

the orbital direction. Because of the stronger hybridized
environment on Fe2 imposed by the nearby Al, the single-site
argument is not easily applicable there. Note that the effective
eg filling is leveled out in DFT+DMFT between Fe1 and
Fe2. Figure 5 underlines the present findings by inspecting
the intra- and intersite charge transfers. The bonding charge
density nbond ≡ ncrystal − natom with many-body effects shows,
furthermore, a charge depletion in the interstitial bonding
region compared to the GGA result. In total, also the Fe sites
in the D03 structure gain 3d electrons upon the impact of
local Coulomb interactions. While as expected the Fe2 site
has a similar filling as the Fe site in L12, the Fe1 site has a
lower electron count by roughly half an electron. Note that the
absence of significant Fe filling differences with correlations
in the recent work by Galler et al. [5] for B2-FeAl might be
explained by the fact that no charge self-consistent framework
was utilized in that study.

Concerning the correlation strength, though the Fe1 site
and in general the eg orbital character has a somewhat lower
QP weight, there is neither a striking difference between
the two Fe sublattices, nor between the eg/t2g character. In
numbers, an average value of Z ∼ 0.8 is slightly higher than
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FIG. 6. Comparison of Fe3Al formation-energy curves for the
D03 and the L12 structure within NM-GGA and PM-DFT+DMFT.
The dashed line marks the experimental equilibrium volume.

for the L12 structure, marking somewhat weaker correlation
effects.

The Fe3Al compound is not a particularly strongly corre-
lated material, since the ratio of the local Coulomb interaction
and the bandwidth is well below unity. In addition, the local
Fe occupation ranging between seven and eight electrons is
already above the optimal Hund’s physics scenario [41–43]
of about 5 ± 1 electrons (where, e.g., iron pnictides reside).
Still, correlation effects are effective in modifying the charge
density and the low-energy character, impacting the bonding
properties as well as the charge and spin responses.

2. Energetics

We turn now to the structural phase competition between
D03 and L12, by comparing the formation energy Eform per
atom with respect to the volume V , i.e.,

E
Fe3Al
form,m(V ) = E

Fe3Al
tot,m (V ) − 3

4Ebcc-Fe
tot,m (Veq) − 1

4Efcc-Al
tot,m (Veq),

(2)

where Veq marks the respective equilibrium volume of the
elemental phase. The additional common index m refers to the
fact that each energy is given for the same magnetic state, e.g.,
NM, PM, or FM. Thus explicit magnetic formation/ordering
terms do not enter our definition of Eform. In that respect,
the data shown in Fig. 6 are based on NM-GGA and PM-
DFT+DMFT calculations. Both numerical schemes designate
the D03 structure correctly as the stable one, with, however,
two obvious differences. First, while in the many-body scheme
the equilibrium volume is well reproduced, GGA yields a value
too small by about 10%. Second, the energy difference �E

L12
D03

between both structural types is about eight times larger within
DFT+DMFT. Furthermore, the bulk modulus B is smaller in
the latter scheme.

It was indeed shown in Ref. [11] that the first-principles
description of the electronic structure and the phase stability
of Fe3Al is delicate. Upon ferromagnetic order, the L12 phase

TABLE II. Comparison of structural data for D03-Fe3Al. For-
mation energy Eform (in meV/atom), bulk modulus B (in GPa),
lattice constant (in a.u.), and stability against the L12 structure.
The (NM,FM,PM) formation energies are computed using the
corresponding (NM,FM,PM) total energy of bcc Fe [cf. Eq. (2)].

Eform B a Stable

NM-GGA −394 218 5.331 �
FM-GGA −202 151 5.465 �
PM-DFT+DMFT −325 143 5.480 �
Experiment −320 ± 20a 144b 5.473c �
aReference [44].
bReference [45].
cReference [46].

is by mistake stabilized in GGA(PBE). In this regard, a detailed
data comparison is provided in Table II. While NM-GGA
yields the correct qualitative structural hierarchy, the detailed
structural data are off the experimental values. On the good
side, introducing ferromagnetism on the GGA level brings
the lattice constant and bulk modulus close to experiment.
However, it not only misleadingly stabilizes the L12 structure
[11], but now strongly underestimates the formation energy.
This major difference from the experimental E

Fe3Al
form does

not appear to be linked solely to the GGA functional, but
due to a generally insufficient Kohn-Sham description of the
magnetic energy in Fe-Al. Magnetism has been shown to be
important for the D03 alloy ordering in that system [49]. Also
in the LDA-based work by Watson and Weinert [50], a value
E

Fe3Al
form,FM = −230 meV/atom was obtained for spin-polarized

D03-Fe3Al. From the computation of the formation energy
of various Fe compounds, the authors there concluded that
introducing spin polarization in the Kohn-Sham exchange-
correlation functional underestimates the magnetic energy for
such alloys.

For comparison, we computed also the formation energy
of FM-D03 within DFT+DMFT. The corresponding value
E

Fe3Al
form,FM = −315 meV/atom differs only slightly from the

PM value. Thus the magnetic-ordering energy does not
strongly influence the D03 ordering, when assuming coherent
magnetic states. Of course, the explicit magnetic-ordering en-
ergy E

Fe3Al
form,FM − E

Fe3Al
form,PM = −170 meV/atom is still sizable.

Concerning the competition between chemical orderings with
PM or FM order in the Fe-Al phase diagram, this latter energy
is surely relevant. A detailed statistical-mechanics study of
this problem is, however, beyond the scope of the present
work. For completeness, we provide in Table III the magnetic

TABLE III. Comparison of the Fe magnetic moments in ferro-
magnetic D03-Fe3Al (in μB).

mFe1 mFe2

FM-GGA 2.45 2.12
FM-DFT+DMFT 2.17 1.48
Experiment 2.18,a 2.12b 1.50,a 1.46b

aReference [47].
bReference [48].
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moments in FM-D03. While GGA overestimates the local Fe
moments, DFT+DMFT once more brings the data in line with
experimental findings.

The results of the DFT+DMFT scheme are overall in
very good agreement with the available experimental data.
Note again that in order to evaluate the formation energy, the
bcc Fe problem was of course also treated in DFT+DMFT,
respectively, with the same magnetic state m and with identical
local Coulomb interactions. Compared to NM-GGA, the less
negative Eform of the D03 structure, in better agreement with
experiment, matches the reduced bonding strength revealed
from the correlated charge densities (cf. Fig. 5). For the case
of L12-Fe3Al, correlations not only render it much more
energetically unfavorable compared to D03, but its forma-
tion energy becomes even positive, marking the compound
unstable. This may be explained by the discussed correlation-
induced weakening of the xz/yz states with a significant
bonding-antibonding nature, compared to the strengthening
of the xy and z2 states. Thus many-body effects beyond
conventional DFT do not merely lead to some quantitative
changes, but display a qualitative effect on the energetics in
the Fe-Al system.

The general improvement in the theoretical description of
D03-Fe3Al underlines not only the importance of electronic
correlations, but renders it clear that a faithful description of
the paramagnetic state is sufficient to account for the phase-
relevant characterization.

B. Fe2VAl

In the final section, we discuss the electronic structure of the
Heusler L21-Fe2VAl compound that emerges from D03-Fe3Al
by replacing the Fe1 sublattice with V atoms.

Figure 7 shows the total and local spectral properties,
again by comparing GGA and DFT+DMFT. As in the earlier
DFT-based studies [22,23], we find a semimetallic solution
in the former Kohn-Sham calculation. A dichotomy is seen
by inspecting the transition-metal electron-state characters
on the local level. Below the Fermi level the low-energy
region is dominated by Fe(t2g) states, while above εF there
are dominantly V(eg) states. As expected because of replacing
the Fe1 ions, the V site has a more pronounced orbital
differentiation. Yet due to the different vanadium valence, the
GGA filling is of course only a bit more than half the size of
the Fe site.

Note that within DFT+DMFT we utilize the same U and
JH on the Fe and V sites. This choice can be motivated
based on the strong intersite hybridizations in the given
intermetallic system, leading to a coherent screening that
minimizes substantial site differences in the local Coulomb
interactions. With correlations, a clear gap structure emerges
in the low-energy region, which is only fully realized at lower
temperature. A pseudogap signature is obtained at a higher
T = 387 K. It is notable that the spectral weight is shifted
towards the low-energy region to form sharp gap edges. Thus
the gap formation is not of obvious single-particle character
and has similarities with, e.g., the (pseudo)gap structure in
cuprates. Therefore, the insulating state is not of a conventional
band-insulating semiconductor type. Measuring the charge gap
from the middle of the gap-edge structure, a size �g ∼ 0.15 eV

FIG. 7. Spectral function of L21-Fe2VAl. Top: Total with
DFT+DMFT for two different temperatures. Middle: V local.
Bottom: Fe local.

is read off at T = 193 K. This is in excellent agreement with
experimental values for a charge gap in Fe2VAl [16].

Both transition-metal elements contribute to the intricate
gap formation, but the V ion seems to play a more dominant
role due to the larger spectral-function enhancement at the
gap edges. Moreover, the low-energy spectra with correlations
display a more balanced eg,t2g contribution compared to
GGA. This is in line with a nearly orbital-independent local
self-energy on the V sites. Therefrom, the correlation strength
is enhanced on the latter sites in comparison to the Fe sites,
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TABLE IV. Projected local-orbital occupations in Fe2VAl for
T = 387 K. The first rows are GGA, and the second rows are
DFT+DMFT results, respectively.

eg t2g

x2 − y2 z2 xz yz xy Total

0.45 0.45 0.97 0.97 0.97 3.81
V 0.70 0.70 0.90 0.90 0.90 4.10

L21 1.09 1.09 1.65 1.65 1.65 7.13
Fe 1.45 1.45 1.72 1.72 1.72 8.06

yet the vanadium-based QP weight Z ∼ 0.7 is again moderate.
Needless to say, Fe2VAl is of course no Mott insulator. Still,
electronic correlations beyond conventional DFT are at the
origin of the gap formation and gap opening. In this context,
the different electron fillings of V and Fe are interesting (see
Table IV). While the Fe ion unsurprisingly shows a very similar
filling characteristic as the Fe2 ion in D03-Fe3Al, the V ion
already surely differs in the number of valence electrons. With
an effective filling close to four electrons, the V site lies one
hole below half filling, i.e., in a designated Hund’s metal
regime [41–43]. The orbital-resolved V occupations align
somewhat in DFT+DMFT, however, it seems that the overall
correlation strength due to the given sizes of the bandwidth and
local Coulomb interactions is still too weak to drive very strong
Hund’s physics. But unconventional spin fluctuations could
nonetheless play a relevant role in the enhanced experimental
specific heat [19].

V. CONCLUSIONS

Recently, there have been various investigations that
employ realistic DMFT approaches beyond Kohn-Sham
DFT(+U ) to elemental iron and its alloy with aluminum.
Studies on phase stabilities in the Fe phase diagram [51,52], on
the α-Fe phonon spectrum [53], on vacancy formation in α-Fe
[54], and on the magnetism in B2-FeAl [4,5] were performed.
The present work adds a DFT+DMFT examination of the
Fe3Al and Fe2VAl correlated electronic structure.

We show that although both compounds do not fall in the
standard category of strongly correlated systems, more subtle

many-body effects are still relevant for a correct description.
The energetics and phase stability of Fe3Al build upon such
effects, by providing an improved value for the formation
energy with a clear energy separation to the L12 structure. Note
that the charge self-consistent version of the DFT+DMFT
framework is important to elucidate such physics. Thereby, not
only do local changes on the explicitly correlated lattice sites
matter, but the overall charge redistributions including also the
interstitial and ligand regions are crucial. On general grounds
for cubic intermetallics, the open bcc lattice seems more
adequate for correlated (Fe-based) compounds. For systems
on a close-packed fcc lattice with sizable local Coulomb
interactions, the local correlations become comparatively too
strong, weakening important bonding properties. So, fcc-
based compounds such as, e.g., Ni3Al and Cu3Au either do
not display substantial local correlation physics or are well
described in standard DFT. We want to note that the issue
of chemical disorder is surely relevant concerning the phase
stabilities close to the Fe3Al composition of the Fe-Al phase
diagram [55]. Treating such additional degrees of freedom
together with the correlations encountered here beyond DFT
is a formidable task which has to be faced in the future for a
detailed thermodynamic understanding of Fe-Al.

The Fe2VAl compound manifests an intriguing twist to tra-
ditional intermetallics, in the sense that the material is derived
from the well-known Fe3Al metal but displays an intricate
gap opening reminiscent of (pseudo)gap physics observed in
correlated oxides. The DFT+DMFT gap size and its sensitivity
to temperature are in excellent agreement with experimental
results for this compound. Since also Hund’s physics may
play a role on the vanadium site, this example shows how
easily traditional material physics may be confronted with
challenging mechanisms from strongly correlated matter. In
a future work, addressing the thermoelectric properties of
Fe2VAl on the basis of the results established here would be
highly interesting.
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Four

Oxygen - vacancy rutile - based TiO2

The TiO2 compound has a very prominent role in condensed matter
physics, both from a fundamental as well as from a possible techno-
logical point of view.

Most widely used are the three thermodynamically stable crystal
structures: rutile, anatase and brookite. Of these forms, rutile TiO2

is the most stable [BHM+87] and of most interest.

The oxygen vacancy (VO) is a very important point defect in TiO2,
which has been widely investigated both by theoretical calculations
and experimental characterizations. It influences the absorption of
water and other molecules on TiO2 surfaces in photocatalytic de-
vices [STL+01]. The main phases encountered at room temperature
are Ti2O, TiO, Ti2O3, Ti3O5 and TiO2. In addition, in between Ti3O5

and TiO2 a series of TinO2n−1 phases can be found. This is the Mag-
neli series of homologous compounds [KO97, Ard94] where physical
properties are changed dramatically, ranging from metallic to insu-
lating depending on n. The formation of such reduced oxide phases
can be described in terms of the elimination of a plane of oxygen
atoms [Ard94].

The stoichiometric titanium dioxide with the rutile structure is
a wide band - gap semiconductors with the band gape size of 3.06
eV [PCM78]. Values of the band - gap depend on the crystallo-
graphic direction. Kofstad [Kof67, Kof72] has proposed that doubly
- charged vacancies and interstitial titanium ions with three or four
charges may occur as point defects in the rutile crystal. The valence
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4. Oxygen - vacancy in rutile - based TiO2

band consists of O 2p states and the conduction band is formed of Ti
3d states [HG94]. Many theoretical papers have been devoted to the
study of the electronic structure, and the physico - chemical properties
of nonstoichiometric rutil [ERW05], [CHA+06], [AKN+06], [IBG07],
[JVR+10]. An overview of band structure calculations for TiO2 is
given in [Can03,Tan03]. In the studies mentioned above different DFT
calculation techniques (e.g FLAPW, PAW) have been used. The re-
sults of electronic structure calculations of wide - band semiconductors
in this works yields bad agreement with experiments. We have seen
that, in terms of band structure calculations, the DFT tends to under-
estimate band gaps, the Hartree - Fock method always overestimates
band gaps.

In our work we perform a realistic many - body study of the im-
pact of oxygen vacancies in rutile TiO2, both in the regime of lower-
and higher - concentrations, based on a combination of density func-
tional theory with dynamical mean - field theory in a charge self -
consistent manner. Contrary to Kohn - Sham - based DFT, an iso-
lated oxygen vacancy (VO) in TiO2 is insufficient for metallization of
the system in the regime of low temperatures. The results of DFT +
DMFT provide also both shallow and deep levels (in - gap) for oxy-
gen - defficient TiO2, known from experiments. Both bandlike levels
are connected in the many - body sense, like a lower Hubbard band
and a renormalized quasiparticle state, thus become localized due to
site - dependent electronic correlations. In a semiconducting phase,
we find an in - gap state at εIG ∼ -0.75, which is in excellent agree-
ment with various experiments, e.g. an absorption peak in reduced
semiconducting TiO2 single crystals at 0.75 eV was observed in optics
measurements [CG51, Cro52]. By a variation of the correlated sub-
space the Coulomb interactions on the Ti sites mostly regulate the
contrast between itinerancy and localization. The localized states at
the VO show a different occupation and energy state when excited. In
the case of a higher oxygen vacancy concentration, the stabilization
of a correlated metal occurs in the Magneli phase. The orbital - re-
solved character and the spectral properties are significant different
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for a VO - defect rutile structure of equal stoichiometry. Even with the
proven importance of the charge disproportionation in the oxygen - de-
ficient compounds, metal - insulator transitions driven or supported
by charge are not detected.
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Oxygen-deficient TiO2 in the rutile structure as well as the Ti3O5 Magnéli phase is investigated within the charge
self-consistent combination of density functional theory with dynamical mean-field theory. It is shown that an
isolated oxygen vacancy (VO) in titanium dioxide is not sufficient to metallize the system at low temperatures. In
a semiconducting phase, an in-gap state is identified at εIG ∼ −0.75 eV in excellent agreement with experimental
data. Bandlike impurity levels, resulting from a threefold VO-Ti coordination as well as entangled (t2g,eg) states,
become localized due to site-dependent electronic correlations. Charge localization and strong orbital polarization
occur in the VO-near Ti ions, the details of which can be modified by a variation of the correlated subspace.
At higher oxygen vacancy concentration, a correlated metal is stabilized in the Magnéli phase. A VO-defect
rutile structure of identical stoichiometry shows key differences in the orbital-resolved character and the spectral
properties. Charge disproportionation is vital in the oxygen-deficient compounds, but obvious metal-insulator
transitions driven or sustained by charge order are not identified.

DOI: 10.1103/PhysRevB.95.195159

I. INTRODUCTION

From two motivating research directions, the investiga-
tion of oxygen-deficient transition-metal oxides has gained
enormous renewed interest. First, the emerging field of oxide
heterostructures leads to questions concerning the impact of
oxygen vacancies on interface properties. Since especially
the SrTiO3 band insulator marks an important heterostructure
building block, elucidating the role of such vacancies in
that compound has recently attracted lots of attention [1–7].
Second, on the search of realizing a memristor [8], TiO2−δ

remains a key material [9,10]. Formation and migration of
oxygen-vacancy defects are identified to regulate the resistance
modulation therein.

Stoichiometric SrTiO3 is characterized as a cubic (per-
ovskite) Ti4+(3d0) compound with crystal-field split eg and
t2g states (cf. Fig. 1). The band gap is located between the
dominant O(2p) and the t2g manifold. Due to the strong
O(2p) − eg hybridization, the creation of an oxygen vacancy
(VO) leads to local Ti3+(3d1) sites and eg-dominated in-
gap states [1]. The interplay of Ti4+- and Ti3+-like states
gives rise to a competition between electron localization
and itinerancy, posing an intriguing many-body problem.
Recently, that problem was approached by theory within
the combination of density functional theory (DFT) with
dynamical mean-field theory (DMFT) [5,6,11]. Experiments
indeed suggest that VO’s on the surface of strontium titanate
as well as in the interface of LaAlO3/SrTiO3 may be relevant
not only for metallicity, but also for emergent magnetic and/or
superconducting order.

Oxygen vacancies in TiO2 pose a related intricate problem,
yet with a twist. Besides single-defect scenarios, long-range-
ordered vacancy structures provided by the TinO2n−1 Magnéli
phases [12–14] are an additional point of materials reference.
The role of oxygen vacancies in titanium dioxide, with its
twofold structural representations of rutile and anatase, is
a longstanding problem, and has so far been studied in
several theoretical works based on conventional DFT [15],
using hybrid functionals [16–20], as well as by treating static

electronic correlations within DFT+U [20–24]. Within the
latter framework, Mattioli et al. [21] originally showed that
isolated VO’s in TiO2 can introduce shallow electronic levels
only in anatase, while solely deep localized levels are induced
in rutile. The more recent oxygen-deficient rutile studies
[18,22,24] suggest an intricate coexistence of shallow and deep
levels.

Electronic structure investigations of various Magnéli
phases, which may in fact be derived starting from the rutile
structure [15], furthermore revealed challenging physics, such
as, e.g., metal-insulator transitions and charge ordering [25–
27]. But those assessments are so far limited by the possibilities
of DFT(+U) to describe electron correlation.

In this work we want to provide a theoretical account of
electron correlations in oxygen-deficient rutile-based TiO2

from a DFT+DMFT perspective. This not only provides a
relevant examination of defect-mediated electronic self-energy
effects beyond Kohn-Sham exchange-correlation treatments
for an oxide compound with high potential for technological
applications. It also allows us to compare the characteristics
of the induced defect states to, e.g., the ones found in the
SrTiO3 perovskite. We show that energy-similar in-gap states
are emerging upon creation of VO’s, but metallicity does only
occur above a corresponding concentration threshold.

Rutile is known to be the thermodynamically stable TiO2

phase at all temperatures and pressures [28], while anatase
is metastable but can kinetically be stabilized at low tem-
peratures. We therefore restrict the investigation on the rutile
structural case of TiO2 as well as the Ti3O5 Magnéli phase as
a higher VO-concentration counterpart.

II. COMPUTATIONAL APPROACH

The supercell defect structures of rutile-TiO2−δ as well as
the Magnéli Ti3O5 structure are structurally relaxed [10] on
the DFT level within the generalized-gradient approximation
(GGA) using the PBEsol [29] functional in the VASP code
[30–33].

2469-9950/2017/95(19)/195159(10) 195159-1 ©2017 American Physical Society
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FIG. 1. Crystal-field splitting of a transition-metal 3d shell,
located in a full-cubic symmetry environment, into t2g and eg states.

Our present charge self-consistent DFT+DMFT frame-
work [34–36] builds up on the mixed-basis pseudopotential
approach [37,38] for the DFT part and the continuous-time
quantum–Monte Carlo method [39,40], as implemented in
the TRIQS package [41,42] for the DMFT impurity problem.
We utilize the GGA in the PBE [43] functional form within
the Kohn-Sham cycle.

Locally, threefold effective Ti(3d) functions define the
correlated subspace, which as a whole consists of the corre-
sponding sum over the various Ti sites in the defect problem.
Projected-local orbitals [44–48] of 3d character provide the
effective functions from acting on Kohn-Sham conduction
states above the O(2p)-dominated band manifold. Note that
the resulting effective orbitals are not of exclusive t2g or eg

kind, but are defined by the local three-orbital sector lowest in
energy, respectively. Each Ti site marks an impurity problem,
and the whole number of explicitly treated impurity problems
depends on the number of symmetry-inequivalent transition-
metal sites in the given supercell. A three-orbital Hubbard
Hamiltonian of Slater-Kanamori form, if not otherwise stated
parametrized by the Hubbard U = 5 eV and the Hund’s
exchange JH = 0.7 eV, is active on each Ti site. These values
for the local Coulomb interactions are in line with previous
studies on titanates [49–52]. A double-counting correction
of the fully localized form [53] is utilized in this work.
The analytical continuation of the finite-temperature Green’s
functions on the Matsubara axis iω to real frequencies is
performed via the maximum-entropy method.

Note that we study only paramagnetic states without broken
spin symmetry, as well as charge-neutral lattice configurations.
Yet possible intersite charge disproportionation is surely
allowed.

III. RESULTS

A. Rutile TiO2

To set the stage for the discussion of oxygen-deficient
titanium dioxide, we briefly discuss the electronic structure
at stoichiometry. The rutile structure [54] [see Fig. 2(a)] has
tetragonal symmetry (space group P 42/mnm) with a ratio
c/a = 0.64 and the primitive cell comprises two TiO2 formula
units. It consists of corner- and edge-sharing TiO6 octahedra,
such that each oxygen ion is coordinated by three neighboring
titanium ions. This is in contrast to common perovskite-based
titanates, where the TiO6 octahedra are exclusively corner
sharing and O is twofold Ti coordinated. Of the three rutile
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FIG. 2. Characterization of rutile-TiO2. (a) Crystal structure with
Ti (large blue/gray) and O (small red/dark) atoms. (b) Total and
local-orbital GGA density of states. (c) Projected local Ti(3d) orbitals.

minimal Ti-O bond lengths, the two shorter ones are identical
in extent. Nominally, titanium is in the Ti4+ oxidation state
with 3d0 occupation.

The given compound is a band insulator with an experimen-
tal (optical) band gap of size �g ∼ 3 eV [55–57]. Conventional
DFT calculations yield a smaller gap �g ∼ 2 eV [cf. Fig. 2(b)].
Since TiO2 is a nominal 3d0 material, the HOMO orbitals are
of dominant O(2p) kind and the LUMO orbitals are mainly
of Ti(3dt2g

) character, while dominant Ti(3deg
) is located at

even higher energies above the band gap. Because of the fact
that the c axis and the main TiO6-octahedra axes are locally
aligned trigonal, the Ti(t2g,eg) orbitals may be written as
linear combinations of cubic harmonics from diagonalization
of the orbital-density matrix (see Table I). Due to the local
symmetry, the internal (t2g,eg) degeneracies known from the
full octahedral group are lifted, respectively. Comparison of
the crystal-field levels εCF marks the a1g level as the lowest one:

TABLE I. Titanium t2g = (e′
g(2),e′

g(1),a1g) and eg =
(eg(1),eg(2)) orbitals in TiO2 with their respective crystal-field level
εCF (in meV), expressed in terms of cubic harmonics.

Orbital εCF |z2〉 |xz〉 |yz〉 |x2 − y2〉 |xy〉
|e′

g(2)〉 2684 0.000 0.000 0.000 1.000 0.000
|e′

g(1)〉 2653 0.000 0.707 0.707 0.000 0.000
|a1g〉 2574 −0.827 0.000 0.000 0.000 −0.562
|eg(1)〉 4398 0.000 −0.707 0.707 0.000 0.000
|eg(2)〉 4413 0.562 0.000 0.000 0.000 −0.827
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Ti1

Ti2
Ti3

FIG. 3. Structural characterization of an oxygen vacancy (large
purple/light gray) in rutile.

110 meV below e′
g(2). The t2g-based states are about 2.2 eV

lower in energy than the eg-based ones. Within the effective
t2g manifold, which has a bandwidth of about 2.5 eV, the e′

g(2)
orbital is designated, since its lobes point along the in-plane
tetragonal axes [see Fig. 2(c)].

B. Oxygen vacancy in rutile TiO2

1. Structural details and correlated subspaces

As shown in Fig. 3, a supercell five times the size of
the primitive cell, i.e., with 10 Ti and 20 O atoms, serves
as basis structure for the defect study. A single VO leaves
three nearest-neighbor titanium ions behind, here labeled Ti1,
Ti2, and Ti3. In the stoichiometric rutile structure, the Ti2-Ti3
distance marks the short side of the given Ti triangle. The
nominal VO concentration in this constellation amounts to
c ≡ δ/2 = 0.05, i.e., our modeling describes a TiO1.9 defect
case. This represents a large VO concentration, however, not
unrealistic for the given system [58]. Table II shows that the
interatomic distances are only weakly modified upon structural
relaxation, which may be also related to the small supercell
size. Still, the obtained pattern describes a shortening of the
Ti1-Ti2,3 distances and an elongation of the Ti2-Ti3 bonding,
providing a trend to balance the triangle distances through
the VO.

In the following we want to investigate the effect of
a VO in the rutile structure in terms of the local-orbital
configuration as well as the net electronic structure. We will
discuss two different choices for the correlated subspace. First,
in Sec. III B 2, that space is formed by all Ti sites in the
given structure, which marks the canonical and ground-state-
oriented case. Second, in Sec. III B 3, the correlated subspace is
restricted to the contribution of the Ti1-3 sites, i.e., it becomes
more local. This second choice may be interpreted as treating
an excited state of the system, where electrons do not see

TABLE II. Comparison of the interatomic distances (in Å)
between Ti ions surrounding a vacancy-designated oxygen site.

Ti1 − Ti2 Ti1 − Ti3 Ti2 − Ti3

TiO2 3.57 3.57 2.96
TiO1.9 3.53 3.53 2.97
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FIG. 4. Total spectral information for rutile-TiO1.9 in GGA and
DFT+DMFT. at different temperatures in two energy windows.

the explicit Coulomb repulsion on the remaining Ti sites.
Since the 3d occupation on the original Ti(d0) sites distant
to the VO is expected to be small, double occupation is there
rather rare. If, moreover, the electrons have gained energy
from an excitation process, they can even more easily escape
from such double occupations (as well as more efficiently
screen the Coulomb penalties). Thus the average effect of
local U and JH on the VO-distant Ti sites can then be
neglected to a good approximation to obtain a rough picture
of the present system on a globally higher excitation level.
This approximation and interpretation is also not in conflict
with the definition of a one-particle spectral function. We
thus simply term that space “excited correlated subspace,”
and this second choice allows us to shed light on possible
changes in the oxidation state of the oxygen vacancy. Still note
however that the Coulomb interactions on the Ti sites away
from the VO’s are crucial to understand the semiconducting
character of TiO2−δ , as will be explained in the following
Sec. III B 2.

2. Canonical correlated subspace formed by all Ti sites

Let us start with the well-defined DFT+DMFT setting
of the correlated subspace built by all the Ti sites. On the
GGA level, as displayed by plotting the total spectral function
A(ω) = ∑

k A(k,ω) in Fig. 4, the considered system becomes
metallic with semimetallic tendencies around the Fermi level
εF positioned within the t2g manifold. Yet correlations and fi-
nite temperature T render the situation more intriguing. At low
T the defect structure is semiconducting within DFT+DMFT,
with a small charge gap � ∼ 0.06 eV at T = 145 K. That gap
is filled with rising temperature, marking a bad-metal regime.
In addition, there is sizable transfer of spectral weight to a
broad in-gap structure centered at εIG ∼ −0.75 eV. Note that
optics measurements detect an absorption peak in reduced
semiconducting TiO2 single crystals at 0.75 eV [55,56],
commonly used to explain its blue color [58]. Photoemission
measurements on the rutile surface report a defect-state peak at
∼−0.9 eV [59–61], while on the anatase surface it is located at
a higher energy of ∼−1.1 eV [59,62]. Furthermore, scanning
tunneling spectroscopy finds an in-gap state at ∼−0.7 eV
on the defect-rutile surface [63] and x-ray photoelectron
spectroscopy on rutile TiO2 nanoparticles reveals a defect state
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TABLE III. Effective VO-induced orbitals on the three nearby Ti
sites in the rutile structure, with their respective crystal-field level
εCF (in meV), written in terms of linear combinations of the original
(t2g,eg) functions.

Site Orbital εCF |e′
g(2)〉 |e′

g(1)〉 |a1g〉 |eg(1)〉 |eg(2)〉
|ψ1〉 1102 0.035 −0.999 0.000 0.000 −0.002

Ti1 |ψ2〉 698 0.000 0.000 −0.147 −0.006 0.990
|ψ3〉 1023 0.000 0.001 0.990 −0.003 0.147

|ϕ1〉 710 −0.032 −0.023 0.837 −0.427 −0.214
Ti2 |ϕ2〉 785 0.077 0.073 0.308 0.733 0.473

|ϕ3〉 992 −0.759 −0.642 −0.221 0.096 0.058

|ϕ′
1〉 709 0.036 −0.027 0.872 0.437 −0.220

Ti3 |ϕ′
2〉 780 0.083 −0.079 −0.488 0.726 −0.470

|ϕ′
3〉 992 0.758 −0.641 0.018 −0.103 0.063

at ∼−0.8 eV [20]. It is tempting to relate these experimental
findings of deep levels in TiO2−δ to the present satellite
peak. On the other hand, n-type conductivity with rather high
mobilities due to shallow level has been also reported in the
literature [64], which might be connected to our small-gap
feature.

To gain insight in the nature and characteristics of the Ti-
local states near the VO, first Table III provides the effective
orbitals on Ti1–3 written in terms of linear combinations of
the original (t2g,eg) functions from Table I. The ϕ and ϕ′
orbitals on Ti2,3 behave very similarly; therefore, we restrict
the discussion to the ϕ branch. It is seen that while the ψ2

orbital has strong eg character, the orbitals ϕ1, ϕ2 have sizable
contributions from both original orbital sectors. Thereby ϕ1 is
t2g dominated and ϕ2 is eg dominated. Thus a nearly exclusive
eg character of the local defect states, as, e.g., given in oxygen-
deficient SrTiO3 [1,6], does not apply for oxygen vacancies
in TiO2. Note furthermore that the e′

g(2) orbital has almost
negligible contribution to the VO-induced physics, as the e′

g(2)-
dominated ϕ3 orbital remains nearly empty.

Concerning tight-binding parameters, the hopping between
both ϕ1 on Ti2 and Ti3 is largest with tϕ1 = −0.2 eV, while
the other hopping amplitudes on the Ti triangle are of absolute
value �0.1 eV. Not surprisingly, this marks Ti2,3 as more
strongly coupled, and thus possibly prone to singlet/triplet
formation.

Figure 5 provides the spectra on Ti1–3, which are expected
to display (partly) Ti3+ character. Note that although all Ti
sites in the supercell contribute to the full correlated subspace,
electron occupation on the remaining Ti sites is very small.
The filling on the Ti sites farther away from VO is also not
significantly raised with temperature. The effective orbitals on
Ti2 and Ti3 are nearly equivalent by symmetry and behave
here very similarly, so no site differentiation is needed. Of
the three correlated orbitals {ψm} on Ti1, only ψ2 has sizable
filling. Spurious occupation of ψ1,ψ3 in GGA is eliminated
by correlations. On the contrary, two orbitals, i.e., ϕ1 and ϕ2,
are occupied on Ti2,3. The designation of ψ2, ϕ1, and ϕ2

is already suggested from their favorable crystal-field lev-
els (cf. Table III). In DFT+DMFT the occupations read
(nψ2 , nϕ1 , nϕ2 ) = (0.65, 0.29, 0.33); thus all three Ti sites have
similar occupation, however, nTi1 > nTi2,3 holds. Since the
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FIG. 5. Local spectral information for rutile-TiO1.9 on Ti1 and
Ti2,3 (cf. Fig. 3) at T = 290 K. Dashed lines correspond to the GGA
result, respectively.

site-resolved fillings sum up to nVO = 1.89 and oxygen is in the
O2− oxidation state in the compound, the defect is described
as being close to the nominal neutral vacancy state V0

O.
In order to check for the influence of the chosen local

Coulomb interactions on the physics, we additionally per-
formed calculations for U = 3.5 eV and U = 2.5 eV, both
with JH = 0.5 eV. The values U = 3.5 eV and JH = 0.5 eV
were used in a recent DFT+DMFT study of the oxygen-
deficient SrTiO3 surface [6]. There are no qualitative differ-
ences between the resulting total spectral functions (cf. Fig. 6)
for the sets (U = 5 eV, JH = 0.7 eV) and (U = 3.5 eV, JH =
0.5 eV); hence the detected physics is rather stable within
a reasonable range of local Coulomb-interaction parameters.
Only at much smaller U = 2.5 eV do the semiconducting gap
as well as the deeper in-gap state seem to disappear.

It remains to specify the likely mechanism behind the
DFT+DMFT finding. The results suggest that the VO provides
electron doping by initially forming rather shallow states
below the original t2g mainfold. Because of the higher O-
Ti connectivity and the entangled (eg,t2g) defect signature
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FIG. 6. Total spectral function for rutile TiO1.9 based on three
different sets of local Coulomb interactions at T = 290 K.

195159-4



OXYGEN-VACANCY DRIVEN ELECTRON LOCALIZATION . . . PHYSICAL REVIEW B 95, 195159 (2017)

in rutile, both compared to, e.g., surface SrTiO3 [6], the
coherency of those states is increased and they seemingly
develop bandlike character. Sizable Coulomb interactions then
lead to a Mott criticality, resulting in band renormalization
and formation of Hubbard(-like) bands. The latter give rise to
the deep-level in-gap spectra. Importantly, the driving force
between the Mott(-like) gap formation is different from a
conventional correlated multiband lattice problem. Since the
local states near the VO are connected between different
VO’s by fragile hopping paths, mainly the local Coulomb
interactions on the Ti sites distant from the defects are
determinative for driving the doped system again insulating.
In other words, the “interstitial” Coulomb-repulsive region
between the VO’s destroys the fragile bandlike defect states and
localizes the electrons dominantly near the oxygen vacancy.

3. Excited correlated subspace formed by Ti1, Ti2, and Ti3

Letting only the sites Ti1–3 contribute to the correlated
subspace serves our goal. First, it gives access to a possibly
different VO charging state. Second, it provides a check for
our presented mechanism, denoting the Coulomb interactions
on Ti away from VO as being mainly to be blamed for the
semiconducting character.

In general, the states V0
O, V+1

O , and V+2
O are discussed for

oxygen-deficient TiO2 [18,22,24,65], which in other works
appeared relevant to fit findings of shallow-donor properties
and well-localized defect states within a coherent picture.
As discussed in Sec. III B 2, the present DFT+DMFT study
already provides means to such a coexistence by revealing
small-gap as well as deeper in-gap features. Nonetheless, by
performing additional calculations within the local-restricted
correlated subspace one may learn further details of the VO

energy-level structure. Note that in principle the local Coulomb
interactions also change when the correlated subspace is
modified, i.e., in the present scenario should be lowered for the
smaller subspace. But for simplicity we keep U = 5 eV and
JH = 0.7 eV on Ti1–3 to reveal the key features of the excited
system.

As expected, a metallic solution results from the calcu-
lation, with reduced and shifted incoherent weight at higher
energy [see Fig. 7(a)]. This is indeed in favor of our “interstitial
Coulomb” mechanism being relevant for fully localizing
electrons near VO’s. Interestingly, the Ti1–3 sites now display
a rather different local filling in the dominant orbitals, namely
(nψ2 , nϕ1 , nϕ2 ) = (0.24, 0.19, 0.43), and a total filling of these
sites amounting to nVO = 1.56. This means that in the excited
scheme not only the total filling of Ti close to VO is
substantially reduced compared to the canonical scheme, but
also the local filling symmetry is different. Now the Ti2,3
sites are majorly occupied and the Ti1 site plays the weaker
role, also visualized by plotting the local spectral functions in
Fig. 7(b). The high-energy, incoherent, and strongly localized
part of the spectra is now dominantly carried by states on Ti2,3.
It appears that in the excited-system calculation, localized
charge on Ti1 has been partially transferred to itinerant states.

These findings are indeed reminiscent of the identification
of different VO charging states in DFT+U and/or DFT
hybrid-functional studies [18,22,24]. Also the characterization
of two different site-orbital levels has been reported before,
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FIG. 7. Comparison of spectral information for rutile-TiO1.9

using the canonical and the excited correlated subspace at T = 290 K.
(a) Total spectral function. (b) Local spectra for Ti1 and Ti2,3 (cf.
Fig. 3) at T = 290 K; full lines: excited; dashed lines: canonical.

yet usually by invoking explicit magnetic ordering. Our two
detected charging states with ncan

VO
= 1.89, reading V+0.11

O , and
nex

VO
= 1.56, reading V+0.44

O , do not very strongly deviate from
the neutral-vacancy case. However, note that highly oxidized
states like V+1

O /V+2
O are usually found in the presence of

additional trivalent substitutional impurities on the Ti site, such
as Fe3+ and Cr3+ [65]. An established theoretical picture [18]
describes the vacancy-defect state as a bound object consisting
of V2+

O plus two polarons, rendering it charge neutral again.
In principle, one may try to interpret our results also along
such lines, since the present filling scenario with Hubbard-like
high-energy spectral parts points to a local S = 1 spin in the
paramagnetic material. On the other hand, as discussed, we
do not have to invoke the polaron picture on clear grounds to
account for the coexistence of shallow and deep states.

Let us finally note that the overall qualitative picture that
we here derived for a single VO in rutile TiO2 is believed
to be stable against modified structural relaxations, as, e.g.,
provided by a different (larger) supercell. More dilute VO

cases could still lead to a weakening of the shallow levels in
favor of the deep level, with an increase of the semiconducting
gap. Within the local-level manifold the subtle details of the
energy hierarchy might be affected by structural issues. But
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FIG. 8. Illustration of (a) the γ -Ti3O5 structure and (b) the defect-
rutile Ti3O5 structure, both with Ti (large blue/gray) and O (small
red/dark) atoms. In (b), the labels Ti1-4 mark symmetry-inequivalent
Ti sites, with gray polyhedra surrounding the fivefold coordinated Ti4
sites.

the general notion of the relevant ψ2 on Ti1 as well as ϕ1 and
ϕ2 on Ti2,3 appears robust.

C. Higher oxygen-vacancy concentration: Ti3O5

1. Spectral properties and total energies

We now shift attention to the problem of oxygen vacancies
at higher concentration. In order to gain insight in the
properties of VO’s in a designated ordered limit, we study
a specific Magnéli compound at Ti3O5 stoichiometry. There
is strong interest in the various Magnéli phases at Ti3O5

[12,26,27,66–68], since, e.g., photoreversible phase transitions
occur at room temperature. But as we are interested in the main
effect of vacancy ordering, we focus on a single allotrop, the
so-called γ phase. The underlying crystal structure has mon-
oclinic symmetry and can be stabilized at room temperature
[66].

Described in simple terms, whereas perovskite SrTiO3 has
corner-sharing TiO6 octhedra and rutile TiO2 an elementary
alternation of corner- and face-sharing octahedra, the Magnéli
phases exhibit more complicated arrangement of those two
octahedra-sharing types to accommodate a desired stoichiom-
etry [see Fig. 8(a)]. This may be interpreted as an ordering of
vacancies; however, importantly, contrary to, e.g., our TiO1.9

structure, there is no VO-induced “destruction” of local TiO6

octhedra. In terms of a formal oxygen deficiency δ, the given
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FIG. 9. Comparison of the GGA density of states of γ -Ti3O5 (top)
and defect-rutile Ti3O5 (bottom), in view of (t2g,eg) contributions. The
labeling Ti1-3 and Ti4 refers to the sites marked in Fig. 8(b).

Ti3O5 stoichiometry amounts nonetheless to δ = 0.33, i.e.,
the compound would correspond to TiO1.67 with vacancy
concentration c = 0.167.

In order to compare the electronic characteristics of the
optimal-ordered Magnéli structure with VO’s in rutile, we
in addition performed calculations for defect rutile with
stoichiometrty Ti3O5. The corresponding crystal structure
[cf. Fig. 8(b)] was determined by energy minimization of
oxygen-vacancy arrangements at the desired composition by
making use of the cluster-expansion technique (see Ref. [10]
for details). In this defect-rutile structure, part of the TiO6

are indeed “damaged,” resulting in selected fivefold-O co-
ordinated Ti sites, here designated as Ti4. A total-energy
comparison on the GGA level, as expected, clearly favors
the Magnéli structure. The more clever restoration of ideal
sixfold-oxygen coordination around Ti is appreciated by a
substantial ∼0.42 eV per Ti atom against defect rutile.

Figure 9 documents the differences in the GGA density of
states in terms of the partitioning in Ti(t2g,eg)-like contribu-
tions. Based on the robust TiO6-octahedral structuring of the
Magnéli phase, the electronic structure of γ -Ti3O5 shows a
clear distinction into those 3d submanifolds. This is partly
also true for defect-rutile Ti3O5, yet the (t2g,eg) states from
the TiO5 polyhedra show there is more substantial overlap
in energy. In fact, the small t2g-eg gap region above 2 eV in
γ -Ti3O5 just becomes filled by such states in the defect-rutile
structure.

The total spectral functions obtained within DFT+DMFT
are plotted in Fig. 10. Both systems remain metallic with
including many-body correlations. A lower Hubbard band
located at ∼−1.1 eV and renormalization at low energy are
identified for the Magnéli phase. This marks the system as
a seemingly “textbook” correlated material, with coherent
renormalized quasiparticles at low energy and incoherent
Hubbard bands at higher energies. Already on the GGA level
there is a small spectral dip at the Fermi level, verified also

195159-6



OXYGEN-VACANCY DRIVEN ELECTRON LOCALIZATION . . . PHYSICAL REVIEW B 95, 195159 (2017)

-2 -1 0 1 2
ω (eV)

0

5

10

A
 (

1/
eV

)

-0.15 0 0.15
ω (eV)

0

5

10

GGA
T=580 K
T=290 K

-4 0 4 8

-4 0 4 8

defect rutile

Magneli

FIG. 10. Comparison of the correlated total spectral function
of γ -Ti3O5 (top) and defect-rutile Ti3O5 (bottom) at two different
temperatures.

with correlations at lower temperature. Note that the Hubbard
band is of course nearly exclusively formed by t2g-like states.
Satellite structures of t2g kind have recently been detected in a
hard x-ray photoelectron spectroscopy study of the structurally
different β-Ti3O5 and λ-Ti3O5 Magnéli compounds [69].

Though the same total filling scenario holds for the defect-
rutile phase, the characterization with electronic correlations
appears more subtle. First, in view of the semiconducting
defect-rutile state discussed in Sec. III B 2, the metallic
response at higher VO concentration is not that surprising.
The fragile hopping paths between VO-near electronic states
become increasingly robust with growing concentration of
vacancies, such that eventually Coulomb repulsion is not
anymore capable of establishing a charge-gapped material. In
the low-energy spectrum there is some renormalization due to
correlations, but not of a significant kind. On a first glance, the
spectral function looks furthermore rather monotonic in the
occupied part, yet importantly not necessarily implying that
correlations are weak, because the comparison to the GGA
results shows there is significant spectral-weight transfer to
energies far away from the Fermi level, too. However, this
transfer does not give rise to an obvious lower Hubbard-band
peak, but is broadly distributed over a wider energy range
(see inset of Fig. 10). This finding is somewhat reminiscent
of observations made in resonant-photoemission experiments
on electron-doped SrTiO3 [70]. There, broader in-gap weight
was assigned to the increased relevance of Ti(3d)-O(2p)
hybridization. Since the eg character, which is more strongly
hybridized with O(2p) than t2g , plays a more prominent role
in the defect-rutile case, the present result could possibly
point to a similar interpretation. On the other hand, a recent
GW+DMFT study suggests the possibility of diminished
satellite peaks in some correlated compounds, as well as a
reinterpretation of their original character [71].

The total-energy difference between both Ti3O5 structural
types is even slightly increasing with including many-body

FIG. 11. Effective two-Ti-sublattice representation of γ -Ti3O5

(see text). Light(dark) blue octahedra correspond to Ti sites on
sublattice 1(2).

correlations. At room temperature, the Magnéli phase is
favored by ∼0.46 eV per Ti atom.

2. Charge disproportionation between Ti sites

So far we did not comment on the local occupations of
the respective Ti sites in γ - and defect-rutile Ti3O5. Since
the nominal oxidation state at that stoichiometry amounts to
Ti3.33+, charge fluctuations are expected to be more relevant
than in many other oxides with nominal integer Ti valence.
In fact, charge ordering in connection with a metal-insulator
transition is commonly discussed for various Magnéli phases,
especially for the Ti4O7 compound [25].

The oxygen deficiency quite naturally introduces
symmetry-inequivalent Ti sites with potentially different elec-
tron occupation. Figure 8(b) shows four different Ti sites
with especially the Ti4 site surrounded only by five oxygen
atoms. The γ -Ti3O5 structure formally has eight Ti sites
different by symmetry, which were also differently treated
in our calculations. In the discussion, however, to a very good
approximation, four Ti classes may be grouped to a single
effective class, respectively, since the local-orbital structure
only marginally differs. Figure 11 displays the present Magnéli
structure in that effective two-Ti-sublattice picturing. An
obvious pattern is derived therefrom. The TiO6 octahedra of
Ti sites within a given sublattice are corner sharing, whereas
the octahedra are edge sharing between both sublattices.
Therefore, the intrasublattice Ti-Ti distance is about 0.5 Å
longer than the intersublattice pair distance. Both effective
sublattices are not of equal-site size, since the Ti2 sublattice
(dark-blue octahedra in Fig. 11) covers twice as many Ti sites
as the Ti1 sublattice (light-blue octahedra in Fig. 11). Note
that the Ti1 octahedra mark the middle of the stoichiometric
undisturbed TiO2 rutile slabs, which consist of three octahedra
in the rutile (001) direction and are interrupted by a (121) VO

defect plane.
Tables IV and V provide the Ti(3d) occupations for both

considered Ti3O5 structures. Not surprisingly in defect rutile,
the charge on the Ti4 sites with fivefold oxygen coordination
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TABLE IV. Comparison of the 3d filling of the different Ti sites in
defect-rutile Ti3O5 [see Fig. 8(b) for Ti labeling]. The DFT+DMFT
data is taken at T = 290 K.

GGA DFT+DMFT (U = 5 eV)

Ti1 0.22 0.20
Ti2 0.26 0.24
Ti3 0.90 0.86
Ti4 1.15 1.23

is largest, marking that site with a Ti2.8+ oxidation state.
The nearby Ti3 sites are still close to Ti3+, while Ti1-2 are
closer to Ti4+. There are no dramatic differences between the
numbers based on GGA and those from DFT+DMFT; only the
occupation of Ti4 is still somewhat higher with correlations.

The Magnéli phase γ -Ti3O5 has a more subtle Ti ordering.
The geometrical constraints of keeping the TiO6 octahedra
in line with the nominal Ti3.33+ state leads to slightly
different charge states on both effective sublattices. The
smaller Ti1 sublattice carries already on the GGA level more
charge, with a disproportionation ρ(Ti1) − ρ(Ti2) = 0.11e−.
Electronic correlations increase this charge splitting only by
small amounts, even when invoking a rather large Hubbard
U = 8 eV. Importantly, the system remains always metallic.
Also because a seemingly straightforward Ti3+/Ti4+ splitting,
as in principle possible in the Ti4O7 Magnéli system with a
nominal Ti3.5+ oxidation state, is not an obvious option. Note,
however, that there is also a metal-insulator transition reported
for Magnéli Ti3O5 [27], but from γ -Ti3O5 to δ-Ti3O5 upon
lowering temperature. Thus further structural changes are in
addition indispensable to allow for insulating behavior.

D. Summary and discussion

We presented a detailed first-principles many-body inves-
tigation of the effect of oxygen vacancies in rutile TiO2,
both in the lower- and the higher-concentration regime. In the
former case, the DFT+DMFT results directly provide the three
key ingredients known from experiment for TiO2−δ , namely
semiconducting behavior and shallow levels as well as deep
levels. Our deep-level (or in-gap) positioning is in excellent
agreement with results from various experimental studies.
Thereby the many-body perspective provides a different view-
point on the longstanding discussion of deep vs shallow levels
for oxygen-deficient TiO2. Here, both levels are connected in
the many-body sense, similar as a lower Hubbard band and a
renormalized quasiparticle state in a conventional moderately
correlated metal. Still the correlation-induced gap opening in

TABLE V. Comparison of the 3d filling on the two effective
sublattices in γ -Ti3O5 (see Fig. 11 for Ti-sublattice labeling). The
DFT+DMFT data is taken at T = 290 K.

GGA DFT+DMFT

U = 5 eV U = 8 eV
Ti1 0.740 0.752 0.766
Ti2 0.630 0.624 0.617

the bandlike initial shallow levels is not of standard Mott type.
Key to the electron localization at low VO concentration is
the Coulomb-repulsion region between defects that blocks the
fragile hopping paths. Therefore, the resulting charge gap is
rather small and does not scale with U in a conventional way.

By invoking an excited correlated subspace we brought the
semiconducting solution into the transport regime, therewith
showing that indeed the Coulomb interactions on the Ti sites
distant from the oxygen vacancies dominantly control the
competition between itinerancy and localization. Moreover,
the localized states at the VO display a different occupation
and energy state upon excitation. This connects our study to
other (static-correlation) theory work for TiO2−δ , where, e.g.,
different VO charge states and polaron formation are discussed
[16–24].

In comparison to oxygen-deficient SrTiO3, the defect-rutile
problem differs in two crucial points. First, the defect structure
with a VO in nearest-neighbor distance to three Ti sites,
contrary to two Ti sites in the perovskite structure, fosters
a modified oxygen-vacancy impact. The higher connectivity
with the defect gives way to the formation of more bandlike
impurity states on the single-electron level. Second, the higher
entanglement between t2g and eg states lifts the electron
dichotomy observed on the SrTiO3−δ surface [6], suppressing
both a decoupled t2g band formation and a rather disconnect
straightforward eg deep-level formation. Therefore, at small
VO concentrations, rutile TiO2 remains insulating (or semi-
conducting) due to correlation-induced gap opening in (t2g ,
eg)-entangled bandlike impurity levels. Note in this context,
however, that the very correlation details of bulk SrTiO3−δ still
need to be investigated by similar means.

In the higher VO-concentration regime we focused on the
Ti3O5 stoichiometry, studying the metallic Magnéli γ phase
as well as a theory-derived metallic defect-rutile phase. The
interplay of Ti coordination and (t2g,eg) electronic structure
properties was discussed and therefrom the differences in
total energy and in the spectral features explained. While
γ -Ti3O5 turns out as a “textbook”-like correlated metal,
the defect-rutile version displays spectral-weight transfers
to higher energies in a much broader (incoherent) fashion.
Charge disproportionation is a natural by-product of the
VO ordering in rutile-based TiO2 (which formally includes
the Magnéli phases) [15] and is already captured on the
Kohn-Sham level. Electronic correlations beyond the latter
provide at least for Ti3O5 only minor changes to the Ti charging
states.

Although in direct comparison, defect-rutile Ti3O5 is
energetically rather unfavorable compared to the Magnéli
phase, its discussion is nonetheless relevant in view of
engineering memristive processes and devices. Since there
in TiO2, transport of VO’s and electrons when starting from
the rutile structure is a possible technological aspect. In fact,
in realistic close-to-device-like TiO2 materials, the formation
of defect-rutile and Magnéli TinO2n−1 phases may happen in
parallel within a given material system [9]. Thus understanding
the differences between both structural types on a basic level
is of crucial importance. In the long run, the present study
shall contribute to paving the road for elucidating further
engineering options in the interplay between the transport of
oxygen vacancies and electrons.
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It would also be highly interesting to extend the present
investigation to the rutile VO2 system. As the vanadium ion
in the +4 oxidation state has 3d1 occupation, it is known that
already the stoichiometric system is prone to strong correlation
physics [72–76], possibly giving reason to the hallmark metal-
to-insulator transition slightly above room temperature [77].
Recent doping studies of VO2 via oxygen vacancies display
opportunities to tune the competition between the metallic and
insulating regime [78,79].

Finally coming back to basic features of VO’s in transition-
metal oxides, our examination challenges the simplest views
on in-gap states, namely the weak-coupling defect-level
and the strong-coupling Hubbard-band paradigm. Albeit one
encounters features of both original mechanisms in oxygen-
deficient TiO2, as in related systems such as SrTiO3−δ or the
LaAlO3/SrTiO3 interface, a unique and well-defined picture

describing the general nature of defects in transition-metal
oxides is still missing. Crystal-field effects, renormalizations,
Hubbard-band formation, lifetime effects, p-d hybridization,
screening, charge transfer, polaron formation, etc. are poten-
tially part of this demanding physics. Thoughts trying to put the
problem in an adequate model setting have been put forward
from several perspectives, e.g., Ref. [80]. The future task is to
cast those into a sound and solid materials-dependent picture.
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[12] S. Åsbrink and A. Magnéli, Acta Crystallogr. 12, 575 (1959).
[13] S. Andersson and L. Jahnberg, Ark. Kemi 21, 413 (1963).
[14] L. A. Bursill and B. G. Hyde, Prog. Solid State Chem. 7, 177

(1972).
[15] L. Liborio and N. Harrison, Phys. Rev. B 77, 104104 (2008).
[16] A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and

C. G. Van de Walle, Phys. Rev. B 81, 085212 (2010).
[17] P. Deák, B. Aradi, and T. Frauenheim, Phys. Rev. B 86, 195206

(2012).
[18] A. Janotti, C. Franchini, J. B. Varley, G. Kresse, and C. G. V. de

Walle, Phys. Status Solidi RRL 7, 199 (2013).
[19] D. Berger, H. Oberhofer, and K. Reuter, Phys. Rev. B 92, 075308

(2015).
[20] G. C. Vásquez, S. Z. Karazhanov, D. Maestre, A. Cremades, J.

Piqueras, and S. E. Foss, Phys. Rev. B 94, 235209 (2016).

[21] G. Mattioli, F. Filippone, P. Alippi, and A. Amore Bonapasta,
Phys. Rev. B 78, 241201(R) (2008).

[22] G. Mattioli, P. Alippi, F. Filippone, R. Caminiti, and A. A.
Bonapasta, J. Phys. Chem. C 114, 21694 (2010).

[23] B. J. Morgan and G. W. Watson, J. Phys. Chem. C 114, 2321
(2010).

[24] C. Lin, D. Shin, and A. A. Demkov, J. Appl. Phys. 117, 225703
(2015).

[25] I. Leonov, A. N. Yaresko, V. N. Antonov, U. Schwingenschlögl,
V. Eyert, and V. I. Anisimov, J. Phys.: Condens. Matter 18,
10955 (2006).

[26] A. C. M. Padilha, J. M. Osorio-Guillén, A. R. Rocha, and G. M.
Dalpian, Phys. Rev. B 90, 035213 (2014).

[27] K. Tanaka, T. Nasu, Y. Miyamoto, N. Ozaki, S. Tanaka, T.
Nagata, F. Hakoe, M. Yoshikiyo, K. Nakagawa, Y. Umeta
et al., Cryst. Growth Des. 15, 653 (2015).

[28] D. A. H. Hanaor and C. C. Sorrell, J. Mater. Sci. 46, 855 (2011).
[29] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E.

Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev.
Lett. 100, 136406 (2008).

[30] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[31] G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
[32] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169

(1996).
[33] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
[34] S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nature (London)

410, 793 (2001).
[35] L. V. Pourovskii, B. Amadon, S. Biermann, and A. Georges,

Phys. Rev. B 76, 235101 (2007).
[36] D. Grieger, C. Piefke, O. E. Peil, and F. Lechermann, Phys. Rev.

B 86, 155121 (2012).
[37] S. G. Louie, K. M. Ho, and M. L. Cohen, Phys. Rev. B 19, 1774

(1979).
[38] B. Meyer, C. Elsässer, F. Lechermann, and M. Fähnle, Fortran

90 program for mixed-basis-pseudopotential calculations for
crystals.

[39] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys. Rev.
B 72, 035122 (2005).

[40] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J.
Millis, Phys. Rev. Lett. 97, 076405 (2006).

195159-9



LECHERMANN, HECKEL, KRISTANOVSKI, AND MÜLLER PHYSICAL REVIEW B 95, 195159 (2017)

[41] O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L.
Messio, and P. Seth, Comput. Phys. Commun. 196, 398 (2015).

[42] P. Seth, I. Krivenko, M. Ferrero, and O. Parcollet, Comput. Phys.
Commun. 200, 274 (2016).

[43] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[44] B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. O. Wehling,
and A. I. Lichtenstein, Phys. Rev. B 77, 205112 (2008).

[45] V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A.
Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim,
P. Metcalf, S. Suga et al., Phys. Rev. B 71, 125119 (2005).

[46] M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O.
Parcollet, T. Miyake, A. Georges, and S. Biermann, Phys. Rev.
B 80, 085101 (2009).

[47] K. Haule, C.-H. Yee, and K. Kim, Phys. Rev. B 81, 195107
(2010).

[48] M. Karolak, T. O. Wehling, F. Lechermann, and A. I. Lichten-
stein, J. Phys.: Condens. Matter 23, 085601 (2011).

[49] T. Mizokawa and A. Fujimori, Phys. Rev. B 51, 12880(R) (1995).
[50] E. Pavarini, S. Biermann, A. Poteryaev, A. I. Lichtenstein, A.

Georges, and O. K. Andersen, Phys. Rev. Lett. 92, 176403
(2004).

[51] S. Okamoto, A. J. Millis, and N. A. Spaldin, Phys. Rev. Lett. 97,
056802 (2006).

[52] F. Lechermann and M. Obermeyer, New J. Phys. 17, 043026
(2015).

[53] V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyżyk,
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Phys. Rev. B 95, 035113 (2017).

[77] F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
[78] J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and

S. S. P. Parkin, Science 339, 1402 (2013).
[79] Z. Zhang, F. Zuo, C. Wan, A. Dutta, J. Kim, J. Rensberg, R.

Nawrodt, H. Hejin Park, T. J. Larrabee, X. Guan et al., Phys.
Rev. Appl. 7, 034008 (2017).

[80] F. D. M. Haldane and P. W. Anderson, Phys. Rev. B 13, 2553
(1976).

195159-10



Five

Double - counting solution: Total energy
and structural optimization of pnictide

superconductors

The main fundamental problem of the combined DFT + DMFT
scheme is the double - counting of the electronic Coulomb interac-
tions, since in DFT calculations there is already a part of local elec-
tron - electron interactions in the form of a Hartree contribution and
exchange - correlation potential, and the DMFT gives the exact local
solution of the Hubbard model. Thus, it becomes clear that to unite
the DFT and DMFT, it is necessary to subtract a certain quantity
from the DFT of the Hamiltonian in order to avoid double taking into
account local interactions. The problem of double - counting is that it
was no connection between DFT and DMFT at the microscopic level.
The double - counting problem is very important. According the study
of [KUW+10] it was shown that the choice of different approaches to
”solve” the problem plays a big role and could lead to qualitatively
different results.
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Figure 5.1: Double - counting corrections to the DFT + DMFT
method

In the CT - QMC scheme the nonspherical part of local Coulomb
interactions could be treated exactly. As shown in Fig. 5.1, the double
- counting corrections in a standard DFT + DMFT scheme [KSH+06]
are from spherically symmetric treatment (spherical). This spherical
correction is able to repair only the average Coulomb interactions ei-
ther in the DFT or the DMFT parts. As is usually done in the static
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mean - field - like DFT + U scheme, the double - counting can be cor-
rected within a substraction of an average Coulomb interaction that
is taken either in the limit of itinerant or localized electrons. With
the full - potential DFT approach for various structural calculations,
this will work just for a stricly spherical type of Hubbard - U correc-
tion [DBS+98].

In this work we developed a scheme to avoid a problem of the non-
spherical double - counting in a simple way. It was used a traditional
DFT + U way of correcting full - potential part of the density func-
tional theory. We make use of our ”Mixed - basis pseudopotential”
code (MBPP), which electronic charge density ρ(r) consists of three
terms. We are interested in the purely local term because the cor-
rection is designed to remove the nonspherical contributions between
d(f) - orbitals on given site. These contributions are then included
in the DMFT part. Thus, we spherically average this local term for
those states, which are corrected by DMFT. So, the local nonspherical
parts in the purely local charge density do not contribute to the DFT
part of the Hartree and exchange - correlation energies. It removes the
nonspherical double - counting in the DFT + DMFT total - energy
charge self - consistent calculations.

As mentoined above, most of the double - counting formulas were
derived by approximating the Hubbard interaction term by some static
approximation. It is not clear how to solve the Hubbard model by
DFT. But if Luttinger - Ward functionals for the two approximate
methods are written side by side in the same form, the intersection of
the two is evident. We can either perform the DMFT approximation
on the LDA functional, or, the LDA approximation on the DMFT,
and in both cases we arrive at the same term, which is counted twice.

In Ref. [Hau15], K. Haule makes use of this Luttinger - Ward
functional to develope a new form of the double - counting correc-
tion, which is able to derive ”exact” overlap between the dynamical
mean field theory and density functional theory. This ”exact” Edc is
free from the nonspherical double - counting (see Fig. 5.1), so it was
applied to the structural optimization of the pnictide superconduc-
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tor LaFeAsO. In our work we have shown that the both double -
counting free schemes gives the similar results for structural proper-
ties of pnictide superconductor materials, but our scheme can be more
useful for practical calculations of crystal - field splitting in f - elec-
tron system [DBMP17] than the so - called ”exact” double - counting
corrections of [Hau15]. This should be carefully check in the future
investigations.

Most recently in 2006 superconductivity has been reported in
LaFePO, a member of the iron oxypnictides with a Tc = 3.2 K
[KHH+06]. This group of materials gained much more attention in
2008 when another material of the iron oxypnictides - LaO1−xFxAs -
was reported to be superconducting at a much higher critical temper-
ature of Tc = 26 K [KWHH08]. The crystal structure of LaO1−xFxAs
is a tetragonal ZrCuSiAs - type structure (P4/nmm), and is composed
of a stack of insulating LaO and conducting FeAs layers. The correct
description of the equilibrium structure is particularly important for
cases where the forces on the ions are important, e.g., phonon calcu-
lations. The magnetic properties show an unusual sensitivity to the
internal As position and are aslo sensitive, unusual for localized mo-
ments but typical for itinerant magnets, to the exchange - correlation
potential.

In general, the structural optimization of LaFeAsO are hard to
describe in conventional DFT + DMFT, as shown in previous publi-
cations, and we show here that the advanced DFT + DMFT approach
can improve thereon.

The simple scheme for avoiding nonspherical double - counting in
DFT + DMFT and ”exact” double counting makes it possible to reveal
Fe - As distance in good agreement with experiment. The standard
double - counting scheme in the atomic limit will be useful for strongly
correlated d - and f - systems with anisotropic Coulomb interaction
close to insulating states. This should stimulate further research on
the relevance of many - body effects for structural properties correlated
systems.
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A simple scheme for avoiding nonspherical double counting in the combination of density functional theory
with dynamical mean-field theory (DFT+DMFT) is developed. It is applied to total-energy calculations and
structural optimization of the pnictide superconductor LaFeAsO. The results are compared to a recently proposed
“exact” double-counting formulation. Both schemes bring the optimized Fe-As interatomic distance close to the
experimental value. This resolves the long-standing controversy between DFT+DMFT and experiment for the
structural optimization of LaFeAsO.

DOI: 10.1103/PhysRevB.97.201116

I. INTRODUCTION

Recent progress in realistic electronic structure calculations
of correlated materials is based on a combination of the density
functional theory (DFT) with the dynamical mean-field theory
(DMFT) [1,2]. The DFT+DMFT approach opens unique pos-
sibilities to investigate the electronic and structural properties
of solids with partially filled d- and f -electron shells. The
main reason for this success is based on the optimal nature of
the local self-energy scheme in the DMFT method [3], and on
the development of an efficient multiorbital impurity solver
within continuous-time quantum Monte Carlo (CT-QMC)
schemes [4].

The ability to treat the nonspherical part of local Coulomb
interactions exactly in the CT-QMC scheme brings an addi-
tional aspect to the so-called double-counting correction in the
DFT+DMFT approach, which is commonly used to account
for Coulomb interactions already treated on the DFT level.
In a standard DFT+DMFT scheme [1] the double-counting
corrections are spherical and are designed to repair only the
average Coulomb interactions either in the DFT or the DMFT
parts. Usually, as in the static mean-field-like DFT+U scheme,
the double-counting correction consists of a subtraction of an
average Coulomb interaction that is taken either in the limits of
itinerant or localized electrons [5]. With the full-potential DFT
approach for different structural calculations, this will work
only for a strictly spherical type of Hubbard-U correction [6].

Already in the nonspherical rotationally invariant DFT+U

investigations of orbital ordering and structural instability in
the KCuF3 perovskite [7], care was taken to avoid full-potential
contributions of d electrons in the DFT part. Applications of
the rotationally invariant DFT+U scheme to calculations of
the complex crystal structure of cuprates [8] and magnetic-
anisotropy problems [9] show the importance of accurate
treatments of the double-counting corrections.

Another way to solve the problem of the proper
DFT+DMFT interface is related to transferring the double-
counting corrections to the DFT part, in order to subtract
the part of the exchange-correlation energy related to d or f

electrons [10]. Recently, a so-called “exact” double-counting
correction to the DFT+DMFT scheme employs a similar idea
to subtract the exchange-correlation term that corresponds to
a local Yukawa-like short-range interaction [11]. It is not clear
which scheme is more appropriate for different classes of ma-
terials. For instance, a successful application of DFT+DMFT
to the complicated problem of the anisotropic Fermi surface of
Sr2RuO4 [12] used a standard mean-field-like double-counting
correction for the itinerant limit.

In this Rapid Communication, we introduce a proper
double-counting scheme for the atomic limit and make a
comparison with a recent “exact” scheme [11]. As a test case,
we choose the problem of structurally optimizing the Fe-As
distance in the pnictide superconductor LaFeAsO.

II. METHODOLOGY

In a practical implementation, the total energy of the charge
self-consistent DFT+DMFT reads [13,14],

EDFT+DMFT = EDFT[ρDMFT(r)] +
∑

k

∑
ν

εkν�N (k)
νν

+〈Ĥint〉 − Edc, (1)

where EDFT is a standard DFT functional acting on the DMFT
charge density ρDMFT, εkν are the Kohn-Sham (KS) energy
eigenvalues, �N (k) is the KS occupation matrix correction due
to the DMFT self-energy [15], 〈Ĥ int〉 is an expectation value
of the Coulomb vertex, and Edc marks the double-counting
correction. Equation (1) assumes the use of the Bloch basis in
which the kinetic energy operator is diagonal in a basis of the
Kohn-Sham eigenstates.

The double-counting correction Edc in Eq. (1) accounts
approximately for the mean-field value of the electron-electron
interaction, already included in EDFT. Until recently, there
was no precise solution for the double counting when uti-
lizing conventional DFT implemented in the local-density
or generalized-gradient approximations (LDA or GGA). The
most commonly used double-counting correction forms in the
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DFT+DMFT scheme are the so-called “fully localized (or
atomiclike) limit” (FLL) [7,16]

E
(FLL)
dc = U

2
N (N − 1) − J

2

∑
σ

Nσ (Nσ − 1), (2)

or, the “around-mean-field” (AMF) scheme [17,18],

E
(AMF)
dc = Un↑n↓ + 1

2
(n2

↑ + n2
↓)

2l

2l + 1
(U − J ), (3)

where nσ = Tr[nmσ,m′σ ], n = n↑ + n↓ is the total d (or f ) on-
site occupation, and U and J are the intra-atomic Coulomb
repulsion and exchange parameters, respectively [19]. This Edc

stems from a spherically symmetric treatment, while the DFT
part of the Hartree and the exchange-correlation energies,

EH + EXC = 1

2

∫
d�rd�r ′ ρ(�r)ρ(�r ′)

|�r − �r ′| +
∫

d�rρ(�r)εXC[ρ(�r)],

(4)

remain accounted together with the nonspherical contributions
into the DFT+DMFT energy functional Eq. (1) (for simplicity,
we write everything in terms of a charge density only, while
the inclusion of the spin is straightforward).

One way to exclude this “nonspherical” double counting
is to keep only the spherically symmetric contributions in the
〈Ĥint〉 term of Eq. (1) [6]. But this is not what one truly aims
for, and the DFT+DMFT-induced enhancement of the orbital
polarization beyond DFT will be lost.

Alternatively, the nonspherical contributions entering the
DFT part of the Hartree and the exchange-correlation energies
from the d (or f ) states can be excluded in a simple way,
similar to what was proposed earlier in DFT+U [20], and
DFT+HIA (Hubbard-I approximation) [21,22] implementa-
tions of the full-potential linearized augmented plane-wave
(FLAPW) method [23].

In this work, we make use of the mixed-basis pseudopoten-
tial method (MBPP) [24–27], and expand the KS wave function
for the Bloch vector k and band ν into plane waves (pw’s) and
localized functions (lf’s),

ψkν(r) = 1√
�c

∑
G

ψ kν
G ei(k+G)·r +

∑
γ lm

βkν
γ lm φk

γ lm(r), (5)

where �c is the unit-cell volume, G a reciprocal-lattice vector,
γ labels an atom in the unit cell, and lm are the usual angular-
momentum quantum numbers. The localized functions are
given by

φγ lm(r) = il gγ l(r) Klm(r̂),
(6)

φk
γ lm(r) =

∑
T

eik·(T+Rγ )φγ lm(r − T − Rγ ),

whereby g is a radial function, and K is a cubic harmonic.
Accordingly, the MBPP electronic charge density ρ(r)

consists of three terms, i.e.,

ρ(r) =
∑

kν

fkν |ψkν(r)|2 = ρpw,pw(r) + ρpw,lf(r) + ρ lf,lf(r).

(7)

For our concerns, the purely local third term ρ lf,lf is of key
interest. It is written as

ρ lf,lf(r) =
∑

kν

fkν

∣∣∣∣∣∣
∑
γ lm

βkν
γ lm φk

γ lm(r)

∣∣∣∣∣∣
2

=
∑

T ,γ lm

ρ
lf,lf
γ lm(r) Klm(r̂), (8)

with r ′ = r − T − Rγ , and hence can be understood as an
expansion into the cubic harmonics on each site Rγ .

We spherically average the purely local term ρ lf,lf in Eq. (8)
for those states which are corrected by DMFT (with l = 2
for the d states, and l = 3 for the f states). Thus, the local
nonspherical parts in ρ lf,lf

γ vanish on each site Rγ , and do not
contribute to the DFT part of the Hartree and the exchange-
correlation energies Eq. (4). It removes the nonspherical
double counting in the DFT+DMFT total-energy charge self-
consistent calculations.

Until recently, there was no exact solution of the double-
counting problem. Density functional theory does not have
a diagrammatic representation that would provide an explicit
identification of the corresponding many-body interaction
terms. Also, it is not clear how to solve the Hubbard model
by DFT. The FLL/AMF forms of Edc, which were discussed
above, are derived in some static approximations to the Hub-
bard interaction term. The “physical” arguments prevailed in
the choice of Edc.

In Ref. [11], Haule proposed a new “exact” form of the
double-counting correction making use of the Luttinger-Ward
functional representation for both DFT and DMFT. This
Edc was applied to a number of correlated solids, and good
agreement between the theory and experiment was achieved.
Importantly, the Edc of Ref. [11] is free from the nonspherical
double counting, and no additional correction is required.
Therefore, we applied it to the structural optimization of the
pnictide superconductor LaFeAsO.

III. RESULTS

Electronic structure theory of the high-temperature super-
conductor LaFeAsO occupies a fundamental place in con-
densed matter physics and material science. The calculations
are often performed either within the DFT or DFT+DMFT.
Both approaches fall short in the correct description of the
equilibrium crystal structure. When the paramagnetic high-
temperature phase is modeled by a nonmagnetic DFT calcula-
tion, a too short Fe-As distance, governed by the internal unit-
cell parameter z, is obtained. The latter has a drastic influence
on the low-energy electronic structure [28], and very precise
electron-electron correlation effects need to be tackled. Charge
self-consistency within DFT+DMFT becomes important and
based thereon, previous studies [29,30] indeed improved upon
pure nonmagnetic DFT calculations. However, still, those
correlated electronic structure results remain ambiguous, and
depend on the choice of the double-counting correction (FLL
or AMF).

We overtook the values of Hubbard-U = 2.7 eV and
Hund’s exchange of J = 0.8 eV for the local Coulomb in-
teractions from Ref. [29], which were calculated within the
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FIG. 1. The relative total energy of LaFeAsO as a function of the
As height, expressed by the z parameter, in the unit cell. (a) MBPP
based, (b) WIEN2K based (AMF is from Ref. 30). The dashed line
marks the experimental z position of the As atom.

constrained random-phase approximation (cRPA) [31,32]. The
inverse temperature is set to β = 40 eV−1, which corresponds
to room temperature T = 290 K. For the solution of the
quantum impurity problem we apply the continuous-time
hybridization (cthyb)-QMC method [33]. The multiorbital
Hubbard Hamiltonian of Slater-Kanamori form, parametrized
by Hubbard-U and Hund’s exchange J , is applied to the
respective full five-orbital 3d manifold.

We performed the total-energy electronic structure DFT
and DFT+DMFT calculations of LaFeAsO making use of the
MBPP method [34] and compared them with WIEN2K calcu-
lations [35]. The FLL form of the double-counting correction
was used, as well as the exact double counting from Ref. [11].
The total energies within the MBPP-based schemes are shown
in Fig. 1(a), and are compared with WIEN2K-based results
shown in Fig. 1(b). The values of the As atom z parameter that
correspond to the total-energy minima are given in Table I.

TABLE I. Comparison of the As atom z position calculated with
different methods and codes.

MBPP z WIEN2K z

DFT 0.628 DFT 0.634
DMFT (FLL) 0.633 DMFT (FLL) 0.638
DMFT (FLL+NSPH) 0.638 DMFT (“exact”) 0.648

Both MBPP and WIEN2K DFT calculations yield values for
the As atom z parameter that are substantially smaller (see
Table I) than the experimental value of z = 0.651 [28]. The
inclusion of correlation effects by DFT+DMFT (FLL) without
the nonspherical (NSPH) double-counting correction has a
visible effect on the total energy, and improves the As atom
z parameter over the DFT results. This is in agreement with
the previous WIEN2K-based DFT+DMFT calculations [29].
Still, the difference �z = 0.013 between the experimental and
theoretical values remains unresolved.

Note that within an identical setting, DFT and DFT+DMFT
calculations based on the pseudopotential (MBPP) method
produce z parameter values ≈0.005 smaller than the cor-
responding all-electron (WIEN2K) calculations. Nevertheless,
the difference between DFT and DFT+DMFT results ob-
tained with MBPP is the same as from the WIEN2K calcula-
tions, and illustrates the important role of electron-correlation
effects.

It was proposed in Ref. [30] that a further improvement
of the value of z = 0.643 can be achieved by switching to
the AMF form of Edc, suggesting a partial delocalization
of the 3d states in metallic LaFeAsO, shown in Fig. 1(b).
However, no nonspherical double-counting corrections were
used in these calculations. As follows from our MBPP results
shown in Fig. 1(a) and Table I, avoiding nonsphericity in the
FLL double counting leads to an increase of the z parameter to
z = 0.638 over the z = 0.633 FLL result with no nonspherical
double-counting correction. Taking into account that MBPP
yields slightly smaller values for the z parameter, the proposed
double-counting correction brings the total-energy minimum
into close proximity of the experimental data.

Finally, we performed calculations with the exact double-
counting implementation [11], and obtained the total-energy
minimum at z = 0.648 [see Fig. 1(b) and Table I], now shifted
close to the experimental value [28]. The accuracy of this
implementation, which is free from the nonspherical double
counting, for structural optimizations in correlated materials
has been validated in a previous study [36]. This supports our
finding that the source of discrepancy between experiment and
DFT+DMFT is not a form of the double counting due to the
metallic character of LaFeAsO, as suggested by Ref. [30], but
because of the nonspherical double counting in the DFT and
DMFT parts of DFT+DMFT.

To conclude, we developed a simple scheme for avoiding
nonspherical double counting in DFT+DMFT and compared
with the “exact” double-counting scheme [11]. As a proof
of principle, the results show a similar shift in the Fe-As
distance and bring results of DFT+DMFT closer to exper-
iments. While the so-called exact double-counting scheme
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[11] aims to exclude additional nonspherical contributions
from the correlated subspace of DFT numerically, our FLL
double-counting scheme forces the removal of double counting
from DFT analytically. In the case of the AMF double-counting
scheme, due to a simple mean-field nature of the approxima-
tion, one can do both flavors of the spherical AMF scheme with
analytical DFT subtraction [20] and numerical nonspherical
AMF subtraction [12], similar to the rotationally invariant
LDA+U method [7]. In this respect, in future investigations
it will be very interesting to check more fine effects, for
example, the crystal field parameters of transition-metal and
rare-earth ions in different crystals. We think that the standard
double-counting scheme in the atomic limit will be useful for

strongly correlated d and f systems with anisotropic Coulomb
interactions close to insulating states.
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Six

Magnon dynamics in CrBr3

Recently, the family of two - dimensional materials has been expanded
to include ferromagnets. It was shown that CrI3 exhibited ferromag-
netism down to thicknesses of a single monolayer [HCNM+17]. CrI3

is part of a group of materials known as the chromium trihalides,
CrX3 (where X=Cl, Br or I). Here, for the first time, we show that
a few layers of exfoliated CrBr3 (2 - 6 layers) are also ferromagnetic
by fabricating and characterizing functional tunnelling devices where
the CrBr3 layer is sandwiched in between two graphene electrodes.
We also report a new type of tunneling mechanism in van der Waals
heterostructures by demonstrating that electrons in our device tunnel
between the graphene layers via the emission (and, at high tempera-
ture, absorption) of magnons in the CrBr3 barrier. The temperature
and magnetic field dependence of the magnon spectra were investi-
gated within the self - consistent spin - wave - theory. We modify it
to the case of a hexagonal lattice and calculated the magnon density
of states in the nearest - neighbor approximation with the exchange
integrals taken from the experiment. We have also calculated the den-
sity of states, the optical properties, and the exchange parameters
with spin - polirization using a the full potential linearized augmented
plane - wave (FLAPW) Wien2k code within the generalized gradient
approximation (GGA) and experimental crystal structure [BSM+01].
We further investigate the electronic structure and optical properties
of CrBr3. As shown in Fig. 6.1 results implies inderect semicon-
ductors. The corresponding value of the band gap are 1.63 eV for
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6. Magnon dynamics in CrBr3

ferromagnetic orientation (1.18 and 1.88 eV for ferromagnetic in each
layers with antiferromagnetic orientation between the layers, and an-
tiferromagnetic within the layer respectively).

(a) Total
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Figure 6.1: Total and partial density of states of CrBr3 for ferromag-
netic orientation.

The dielectric functions are only along the z axis different (along
the x and y are identical), due to hexagonal symmetry of the lattice.
Figure 6.2 shows the imaginary part of the dielectric function for fer-
romagnetic and antiferromagnetic orintation between the layers. The
main peak is contributed by p - d excitation from Br - 3p states of
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valence band to Cr - 3d states of lowest conduction band. The satellite
states are induced by d - d excitation from occupied 3d and unoccu-
pied states as shown in Fig 6.1(b). We expected a large difference
between the values of the dielectric functions along the z axis for the
antiferromagnetic and ferromagnetic calculations and a small differ-
ence along the x and y axis. Contrary to our expectation, we didn’t
observe any striking differences, only a small renormalization and a
shift of peaks.
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Figure 6.2: Imaginary part of the dielectric function of CrBr3.
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6. Magnon dynamics in CrBr3

To estimate the parameters J (in the plain) and JL (interlayers)
from the total energies from DFT calculations, we consider three dif-
ferent magnetic configurations: ferromagnetic, ferromagnetic in each
layers with antiferromagnetic orientation between the layers, and an-
tiferromagnetic within the layer. Using the Heisenberg spin Hamilto-
nian

Ĥ = −1/2
∑
i6=i

JijSi · Sj, (6.1)

where Si denotes the magnetic moment on atom i (which is about
S = 3/2 in magnitude), magnetic energies of CrBr3 for each Cr - atom
in the cell can be explicitly expressed as:

EH = 2JijSi · Sj. (6.2)

The results for (12x12x2) k - point mesh are J=0.94meV and JL
= 0.076meV, respectively. The calculated exchange parameters are
strong dependet on ineratomic distance. It was confirmed by other
calculations which were peformed with the theoretical GGA latice pa-
rameters [ZQZL15] instead of the experimental ones (the intralayer ex-
change J is about 45 % larger than the experimental value [SSSR71]).
We chose the experimental values for the calculation of the magnon
density of states. The van Hove singularities in the spectrum at 8.5
meV and 17 meV result from the hexagonal symmetry of the CrBr3

lattice. We refer these peaks to the two step - like increases in G ob-
served in the low bias experiment when Vb about 7.5 mV and 17 mV.
Announced inelastic neutron scattering investigations of magnons in
CrBr3 are in a good agreement with calculated results. At low tem-
peratures and high magnetic fields, a larger shift of the van Hove
singularities of ≈ 2.4 µBB is observed by self - consistent spin wave
calculations. It results from magnon - magnon interactions.

The differential conductance depends on the temperature. In the
regime of temperatures close to TC the magnon population is very high,
therefore absorption of a magnon by a tunneling electron is more prob-
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able. There are no longer a short - range magnetic ordering between
the layers and a long - range magnetic ordering within the CrBr3

layer.
The creation of van der Waals heterostructures on the basis of

ferromagnetic materials enriches the spectrum of experiments and ap-
plications of two - dimensional ferromagnets. Experiments to lift the
spin degeneracy of electrons in the layers, and the study of circularly
polarised optical emission from these types of structures, are only two
examples of possible directions of research in this field. Furthermore,
as magnon emission can only occur for a given polarization of the
spin of the tunneling electron, only electrons with that particular spin
polarization will be able to tunnel. Therefore, our results raise the in-
teresting possibility of using these types of magnetic tunnel barriers for
spin injection into two - dimensional materials, a crucial requirement
for the development and creation of 2D spintronic devices.
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Magnon - assisted tunnelling in van der Waals
heterostructures based on CrBr3
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The growing family of two-dimensional (2D) materials1–5 can 
be used to assemble van der Waals heterostructures with a 
wide range of properties6–9. Expanding the range of available 

materials to ferromagnetic layered crystals10–16 would substantially 
increase the possible functionality of the van der Waals heterostruc-
tures. Of particular interest are tunnelling heterostructures17–20, 
which have been used to study the electronic states both in the tun-
nelling barrier and in the emitter and collector contacts21,22. The use 
of ferromagnetic materials as tunnelling barriers can offer novel 
tunnelling mechanisms where momentum conservation can be ful-
filled by magnon16 emission (unlike in the case of non-ferromag-
netic barriers where the tunnelling occurs through emission of a 
phonon18,23–25 or via localized states18,25,26). In this Article, we inves-
tigate electron tunnelling through a thin (2–6 layers) ferromagnetic 
CrBr3 barrier and demonstrate that magnon-assisted tunnelling 
offers the possibility of spin-injection, as has previously been dem-
onstrated with other ferromagnetic barriers27,28.

Device fabrication and characterization
Our devices were assembled on an oxidized silicon wafer by the 
dry transfer method in an inert atmosphere. The layer struc-
ture of our devices is Si/SiO2/hBN/Gr/CrBr3/Gr/hBN; here, Gr 
stands for graphene and hBN stands for hexagonal boron nitride  
(see Fig. 1a). The typical area of the devices is a few tens of square 
micrometres. We prepared several devices with different numbers 
N =​ 2, 4 and 6 of CrBr3 monolayers (see Supplementary Fig. 1 for 
more details on sample fabrication). A tunnel current, I, flows 
when a bias voltage, Vb, is applied across the two graphene layers. 
A typical plot of differential conductance G =​ dI/dVb is presented 

in Fig. 1b. The zero-bias conductance depends exponentially on 
the barrier thickness (see Fig. 1c).

The dependence of G on the applied gate (Vg) and bias voltages 
for a sample with six CrBr3 monolayers is presented as a colour 
map in Fig. 1b. In previously studied devices with hBN barriers, 
the passage of the Fermi level through the zero in the density of 
states at the Dirac points of the top and bottom graphene elec-
trodes is observed as an X-shaped feature in the colour map21–23,29, 
where G =​ 0. This feature is not observed in the devices with a 
CrBr3 barrier. We attribute this to a high level of doping of the 
graphene electrodes by the CrBr3.

A magnetic field, B⊥ applied perpendicular to the layers (that is, 
parallel to the tunnel current) causes the electron spectrum to quan-
tize into a series of Landau levels (LL). In Fig. 1d the Landau quan-
tization is revealed in G(Vb,Vg) as a series of parallel stripes, with a 
positive slope, due to the passage of the chemical potential through 
the cyclotron gaps. Only this series of peaks with a positive slope 
is observed, corresponding to Landau quantization in the lower 
graphene electrode. The absence of stripes with a negative slope 
that would arise from LLs in the top electrode indicates that the 
CrBr3 layer screens the gate voltage-induced electric field, so that 
the chemical potential in the top graphene layer is unchanged by Vg.

Figure 1b,e reveals a series of step-like increases of the tunnel 
conductance, with values of Vb that are independent of the gate volt-
age. These features cannot be associated with any modulation in the 
density of states of our crystals, as they are absent in our quantum 
capacitance measurements30,31 (see Supplementary Fig. 4). This type 
of behaviour is characteristic of inelastic tunnelling with phonon 
emission and has been observed previously for Gr/hBN/Gr tunnel 
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Van der Waals heterostructures, which are composed of layered two-dimensional materials, offer a platform to investigate a 
diverse range of physical phenomena and could be of use in a variety of applications. Heterostructures containing two-dimen-
sional ferromagnets, such as chromium triiodide (CrI3), have recently been reported, which could allow two-dimensional spin-
tronic devices to be developed. Here we study tunnelling through thin ferromagnetic chromium tribromide (CrBr3) barriers 
that are sandwiched between graphene electrodes. In devices with non-magnetic barriers, conservation of momentum can be 
relaxed by phonon-assisted tunnelling or by tunnelling through localized states. In contrast, in the devices with ferromagnetic 
barriers, the major tunnelling mechanisms are the emission of magnons at low temperatures and the scattering of electrons on 
localized magnetic excitations at temperatures above the Curie temperature. Magnetoresistance in the graphene electrodes 
further suggests induced spin–orbit coupling and proximity exchange via the ferromagnetic barrier. Tunnelling with magnon 
emission offers the possibility of spin injection.
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junctions18,23–25. When the two graphene electrodes of the device are 
crystallographically misaligned, in-plane momentum conservation 
requires that the tunnelling electrons emit a phonon21 or are scat-
tered by impurities.

Magnon-assisted tunnelling
To identify the quasiparticles responsible for inelastic tunnel-
ling events in the CrBr3 devices, we measure G as a function of 
magnetic field parallel to the layers, B‖ (perpendicular to the tun-
nelling current; see Fig. 1e). In this geometry, LL quantization of  
the electrons in graphene is absent. The measured resistance of 
the device contacts is practically independent of applied mag-
netic field; therefore, any change in position of a particular feature  
in conductance must be due to a change in the tunnel mechanism. 
In Fig. 1e,f, some of the peak positions are clearly dispersed in  
Vb by the applied magnetic field, whereas others are not. We 
attribute the non-dispersing peaks to the phonon-assisted  
tunnelling18,23–25 and the dispersing peaks to the magnon-assisted 
tunnelling16,32. The dispersing peaks are shifted linearly with B‖, 
with a slope of between (5.1 ±​ 0.2)μB and (5.7 ±​ 0.2)μB, depending 
on the particular peak, here μB =​ 5.79 ×​ 10−5 eV T−1 is the electron 
Bohr magneton.

The calculated magnon density of states in CrBr3, based on exper-
imentally measured exchange parameters33,34, is shown in Fig. 1g.  
The two van Hove singularities in the spectrum at 8.5 meV and 
17 meV arise from the hexagonal symmetry of the CrBr3 lattice. We 
relate these peaks to the two step-like increases in G observed in the 
experiment at low bias, when Vb ≈​ 7.5 mV and 17 mV (see Fig. 1b). 
Previously reported inelastic neutron scattering studies of magnons 
in CrBr3 are in good agreement with our calculations and indicate 
that the magnon energy is limited to about 30 meV (refs 33,34). This 
supports our assumption that non-dispersing steps in G at energies 
above 30 meV should be attributed to phonon-assisted tunnelling.

In a magnetic field, the Zeeman effect would shift the whole 
magnon spectrum by an energy 2μBB, along with the two van Hove 
singularities, if the magnon–magnon interaction is neglected 
(Fig. 1g and Supplementary Fig. 7). In the regime of low tem-
peratures and high magnetic fields, self-consistent spin-wave 
calculations35 predict a larger shift of the van Hove singularities 
of ~2.4μBB. This enhanced shift of the magnon spectrum is due 
to magnon–magnon interactions, as explained in detail in the 
Supplementary Information. However, the observed magnetic 
field-induced shift of the position of the steps in conductance of 
~5μBB is approximately twice larger than that expected by our 
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6 nS to 12 nS to 19 nS. e, Differential tunnelling conductance G as a function of B‖ and Vb (Vg =​ 0 V). The colour scale is blue to white to red, 6 nS to 12 nS to 
19 nS. f, Bias position of the step-like features in G as a function of B‖. The red lines are the linear fitting with the slopes (from bottom to top) (5.7 ±​ 0.2)μB, 
(5.1 ±​ 0.2)μB. g, Calculated magnon density of states for T =​ 10 K, B =​ 0 T (blue line), T =​ 10 K, B =​ 6.25 T (black line), and T =​ TC, B =​ 0 T (red line). The same 
calculations provide TC =​ 88 K. h, Calculated changes of the position of the van Hove singularities in magnon density of states (g) as a function of magnetic 
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highlight the change of slope at low magnetic fields.
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theory. Currently, we have no explanation for this discrepancy; 
understanding it will be the subject of future work. However, we 
note that at low B and temperatures close to TC, our self-consistent 
spin-wave calculations predict a magnetic field-induced shift in 
the two van Hove singularities of 4.5μBB and 7.1μBB, respectively  
(Fig. 1h and Supplementary Information), which is comparable to 
the shift measured in our experiments. Such a strong dependence 
of magnon spectra on magnetic field close to TC can be under-
stood as follows. Magnon frequencies depend strongly on tem-
perature because both long- and short-range magnetic order are 
suppressed by spin fluctuations: both interlayer exchange interac-
tions and the Zeeman gap in the magnon spectrum suppress the 
fluctuations, making the magnons stiffer. The transition between 
these regimes occurs when 2μBB ≈​ JL (JL is the exchange integral 
between the layers). This is observed as a change in the slope of 
the calculated energy dependence of the van Hove singularities on 
the magnetic field at low B (Fig. 1h).

We now consider the dependence of the differential conductance 
on temperature, T. Figure 2a,d plots G as a function of Vb and T. We 
observe that the zero-bias differential conductance, G0 =​ G(Vb =​ 0), 
increases with increasing temperature. Its rate of change, dG0/dT, is 
largest for temperatures between 15 K and 30 K and saturates above 
40 K, close to the Curie temperature, TC ≈​ 35 K (refs 33,36), for CrBr3 
(Fig. 2e). This behaviour is similar for devices with different CrBr3 
barrier thicknesses (see Supplementary Figs. 2 and 3) and we attri-
bute it to an increase of elastic scattering of tunnelling electrons 
with temperature. We also measure the dependence of G on bias 
voltage and temperature for different B‖ (Fig. 2a–c). In all cases, 
dG0/dT decreases with increasing B‖ (Fig. 2e).

At temperatures close to TC, the magnon population is very high, 
so absorption of a magnon by a tunnelling electron is more prob-
able. Moreover, at such temperatures, the short-range magnetic 
ordering between the layers and the long-range magnetic ordering 
within the CrBr3 layer are destroyed as described by the self-consis-
tent spin-wave theory of quasi-two-dimensional magnets35,37. The 
correlation length ξ​(T) within the layers is estimated to be

γξ
=

∣μ∣a
T J( )

2
3

where a is the nearest-neighbour distance between magnetic 
atoms, and μ is the chemical potential of the self-consistent spin 
waves (see Supplementary Information). Jγ is the renormalized 
in-plane exchange interaction and the renormalization param-
eter γ is determined from self-consistent equations and defines 
the magnon hopping between adjacent sites (see Supplementary 
Information and ref. 35) It can also be defined as γ =​ SJeff/J, where 
S =​ 3/2 is the spin of Cr ion and Jeff is the effective exchange param-
eter in finite temperatures and magnetic fields when magnon 
occupation factors are finite.

These observations suggest two possible mechanisms for elastic 
tunnelling with momentum conservation at zero bias. First, con-
sider a two-magnon process. In the case of a ferromagnetic barrier, 
emission of two magnons by a tunnelling electron is forbidden by 
spin conservation. However, a three-particle process, in which an 
electron emits one magnon and absorbs another, is possible. This 
type of process does not change the energy of the electron, changing  
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only its momentum, thus ensuring momentum conservation 
for electrons tunnelling between the Dirac cones of the two mis-
oriented graphene layers. The ratio between the intensities of the 
magnon emission (Stokes) and absorption (anti-Stokes) processes 
is given by exp(Em/kBT), where Em is the magnon energy and kB is 
the Boltzmann constant. At low temperatures, absorption processes 
are suppressed. However, close to TC and for our range of param-
eters, the typical magnon energies are of the order of ~kBTC. In 3D 
magnets with S ≈​ 1, typical magnon energies are of the order of kBTC 
since they are both proportional to zJ, where z =​ 3 is the nearest-
neighbour number. For 2D magnets, TC is suppressed by a factor 
~1/ln(J/JL) (see ref. 35 for explicit relations). The exchange integrals 
for CrBr3 have previously been extracted experimentally33,34 as 
J =​ 1.698 mV and JL =​ 0.082 mV, giving J/JL ≈​ 21 and the suppression 
factor to be ~1/3, still of the order of unity. This makes the three-
particle Stokes–anti-Stokes processes significant.

A second potential elastic scattering mechanism, which 
becomes dominant for T ~ TC, is electron scattering on the imper-
fections in the spin texture within a CrBr3 layer38,39. These imper-
fections break translational symmetry and are capable of scattering 
the wavevector of electrons by 1/ξ​(T). According to our calcula-
tions, for temperatures close to TC, the correlation length falls to 
values ~10a, and to ~2a at T ~ 1.5TC (see Supplementary Figs. 5 
and 6). This length scale is much smaller than the de Broglie wave-
length of the tunnelling electrons, which is of the order of tens or 
even hundreds of interatomic distances for the case of graphene 
under the measurement conditions reported here. Hence, close to 
and above TC, tunnelling electrons encounter a highly disordered 
spin configuration; short-range order is lost entirely for T >​ TC 
(ref. 37). Scattering of electrons on the short-range spin disorder is 
therefore analogous to the electron scattering on charged impuri-
ties, thereby ensuring momentum conservation for electrons tun-
nelling between misaligned graphene layers.

We model the elastic tunnelling rate at zero bias by calculating 
the scattering rate due to two-magnon processes at low tempera-
tures (T ≲​ TC) and scattering arising from spin imperfections in 
the ferromagnet at high temperatures (T ≳​ TC) (see Supplementary 
Fig. 8). For T ≲​ TC, elastic scattering is dominated by two-magnon 
processes with a rate, W2mag, proportional to the contribution 
of the longitudinal spectral density40,41. The probability of these 
two-magnon processes go to zero above ~TC because the magnon 
description of spin excitation becomes invalid in this temperature 
regime. Instead, for T ≳​ TC, the elastic tunnelling rate, Wspin, is 
dominated by scattering on the disordered spin texture38,39, which 
is dependent on the magnetization of the ferromagnet42. We com-
bine the two scattering rates by smoothly varying the amplitudes 
of the two scattering rates to reflect the increase in the thermal 

spin disorder of the lattice, hence Wtot =​ (1 −​ f(T))W2mag +​ f(T)Wspin, 
where f(T) =​ 0.5[1 +​ tanh(β(T/TC −​ 1))]. We obtain a good fit to 
the data when β =​ 4 (see Fig. 2f).

The measured magnetic field dependence of the conductance 
also fits well to our model: as the external magnetic field increases, 
the magnon energy increases due to the Zeeman effect (Fig. 1g), thus 
reducing the magnon population and the rate W2mag at a given T. At 
high temperatures, the external magnetic field contributes to spin align-
ment, thus reducing scattering by imperfections of the spin texture.

Inter-LL tunnelling
We also consider the effect of B⊥ on G as a function of bias and 
temperature. Tunnelling between the LLs of the two graphene layers 
gives rise to peaks in G (see Fig. 3a). As T approaches TC, we observe 
a clear shift in the position of the peaks in Vb. We interpret such 
behaviour as a transition from inter-LL tunnelling dominated by 
inelastic transitions, due to emission of a single magnon, to tunnel-
ling dominated by elastic transitions, as described in the previous 
section. These tunnel processes are illustrated in the band diagrams 
(Fig. 3c,d), where inelastic and elastic tunnelling processes are 
depicted by blue and red arrows, respectively.

For instance, for the process depicted in Fig. 3c, in the case of 
inelastic tunnelling, an electron in the third LL of the bottom elec-
trode cannot tunnel with the emission of a magnon since its reduced 
energy lies in the energy gap between the third and fourth LLs of 
the top graphene electrode (see blue arrow in Fig. 3c). In contrast, 
a peak in conductance is observed for electrons tunnelling with 
conservation of energy (red arrow in Fig. 3c), because the third LL 
in the bottom electrode is aligned in energy with the fourth LL in 
the top electrode. A slightly higher bias voltage brings the reduced 
energy of the inelastic tunnelling electron into alignment with an 
unoccupied state of the fourth LL in the top electrode, resulting in 
a peak in conductance (Fig. 3d). To demonstrate the effect of the 
temperature-dependent change in the relative contributions of these 
two processes, we show in Fig. 3b a colour map of conductance cal-
culated using a model developed previously for phonon-assisted23 
inter-LL tunnelling29 in a device with a non-magnetic hBN barrier. 
The model includes the two competing processes: inelastic tunnel-
ling processes induced by a single magnon with an energy of 10 meV 
and a scattering amplitude, ∝​ 1 −​ f(T), which decreases as the tem-
perature increases through TC; and elastic tunnelling processes 
whose amplitude, ∝​ f(T), increases as the temperature increases. The 
model is in qualitative agreement with measured data (see Fig. 3a,b).

Spin-injection and proximity effects
This type of ferromagnetic tunnel barrier could be used to inject 
spin-polarized carriers into graphene or other 2D materials. 
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Pioneering work in traditional 3D materials has established the pos-
sibility to create a large (close to 100%) spin polarization in the tun-
nel current using ferromagnetic barriers, quantified via tunnelling 
spectroscopy using a superconductor electrode (also known as the 
Meservey–Tedrow technique)27,28. In van der Waals heterostructures 
based on graphene and other 2D crystals, the mechanisms of spin 
injection, and thus the possibility of obtaining large spin polariza-
tion, are linked strongly to the momentum conservation conditions. 
Thus, when the tunnelling states in the emitter and collector are 
displaced in the momentum space (as for twisted graphene lattices 
or for two materials with different lattice periodicity), conservation 
of in-plane momentum can be enabled by magnon emission, which 
selects only one spin polarization. Note that this is not the case for 
two-magnon processes, which cannot provide spin polarization. 

The use of ferromagnetic tunnel barriers could therefore enrich the 
type and functionality of van der Waals heterostructures.

A quite different set of physical phenomena, with the potential to 
enable van der Waals heterostructures for spintronics, are proxim-
ity effects between an electrode and ferromagnetic barrier. Recent 
works have provided evidence for the presence of both an induced 
exchange field and spin–orbit coupling in graphene, when in con-
tact with a magnetically ordered 3D insulator, either by measur-
ing the anomalous Hall effect43 or by directly detecting pure spin 
current44. There is also evidence that proximity effects can lead to 
anisotropic magnetoresistance in graphene45. In our multi-terminal 
tunnelling structures, we have also measured in-plane transport 
within each of the two graphene electrodes. Thus, for the device 
shown in Fig. 1a, we measure the voltage between contacts 1 and 
3, when a current flows from contacts 2 to 4 in the graphene layer 
below the ferromagnetic barrier (similar measurements were made 
for the top electrode with current flowing above the ferromagnetic 
barrier). In this type of measurement, the transport within a single 
graphene electrode is studied as a function of the in-plane magnetic 
field, for which there is neither Lorentz magnetoresistance nor LL 
quantization. Surprisingly, we still observe an appreciable magne-
toresistance of ~0.5% (Fig. 4a). More importantly, the magnetore-
sistance exhibits hysteresis on the in-plane magnetic field, with this 
hysteresis diminishing rapidly for temperatures above TC (Fig. 4b).

We attribute these observations to a proximity-induced aniso-
tropic magnetoresistance (PAMR) in graphene46, driven by the 
magnetization reversal processes of the tunnel barrier. The PAMR 
response is in qualitative and quantitative agreement with recent 
experimental45 and theoretical46 works, and indicates the presence 
of both spin–orbit coupling and an exchange field47 in the graphene 
electrode. Finally, we note that the observation of PAMR provides 
an independent demonstration of ferromagnetic order in the tunnel 
barrier. This is further evidence that the vertical transport effects 
shown in Fig. 2 originate from the magnetic nature of the barrier.

Conclusions
We argue that tunnelling with magnon emission and proxim-
ity effects offers new prospects for exploiting 2D ferromagnetic  
barriers in graphene spintronics. In particular, the tunnel cur-
rent can be spin-filtered. For the case of tunnelling through a 
ferromagnetic barrier, one-magnon processes will result in selec-
tive tunnelling of only one spin polarization. Indeed, at low tem-
peratures, spin conservation, combined with the emission of a 
magnon, enables a tunnelling electron, initially in the spin-down 
state, to flip its spin into a final spin-up state. The one-magnon 
tunnelling process from an initial spin-up state is forbidden. Two-
magnon processes would allow both spin polarizations to tunnel. 
However, they have a small probability at low temperatures since 
they require not only emission but also absorption of magnons; 
there are no magnons available for absorption near the ferromag-
netic ground state.

Methods
Fabrication. The CrBr3 crystals were purchased from a commercial supplier, HQ 
graphene.

CrBr3 was first exfoliated onto a polypropylene carbonate-coated SiO2/
Si substrate in an argon-filled glove box maintaining the water and oxygen 
concentration less than 0.1 ppm. CrBr3 flakes of different thicknesses (two to  
six layers) were identified by using the contrast variation under different colour 
filters and dark-field imaging. Heterostructures comprising SLG/CrBr3/SLG  
encapsulated within thin boron nitride (BN) layers were assembled on a 290 nm 
SiO2/Si substrate following a standard dry transfer procedure using a poly(methyl 
methacrylate) (PMMA) membrane. First, a single-layer graphene (SLG) sheet 
was picked up by a thin boron nitride layer (~8–10 nm BN) using the PMMA 
membrane. Subsequently, a suitable CrBr3 layer was picked up by a SLG/BN/PMMA  
membrane in the glove box. Finally, this stack of CrBr3/SLG/BN on the PMMA 
membrane was peeled onto the SLG/BN/290 nm SiO2/Si substrate. The final stack 
consists of Si/290 nm SiO2/~25 nm BN/SLG/CrBr3/SLG/~10 nm BN.
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Fig. 4 | Magnetotransport in graphene proximitized with CrBr3. a, Four-
probe resistance plots of the bottom graphene electrode in a device with 
a 4-layer-thick CrBr3 barrier as a function of in-plane magnetic field B‖, 
at T =​ 5 K. The black and green curves correspond to sweeping B‖ in the 
trace and retrace directions, respectively, indicated by the corresponding 
arrows. In the low field regime, |B‖| <​ 0.1 T, the graphene exhibits a 
magnetoresistance of 0.5% and a hysteretic behaviour. The latter is 
indicated by the blue and red coloured areas between the trace and retrace 
curves. b, Colour map of the difference between trace and retrace curves 
as in a, now also as a function of temperature (colour scale is blue to white 
to red, −​1 Ω​ to 0 Ω​ to 1 Ω​). The black horizontal dashed line marks the 
extracted value of TC, as in Fig. 2a. The hysteresis is visible in the colour map 
as the blue and red lobes in the range |B‖| <​ 0.1 T. Both the magnitude of the 
hysteresis and the range of the hysteresis in B‖ decrease for T >​ TC, indicating 
their origin from the long-range magnetic order in the CrBr3 barrier.
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For electrical characterization of the tunnelling devices, Cr/Au edge contacts 
were made on the top and bottom graphene layers using electron-beam lithography 
followed by boron nitride etching, metal deposition and a lift-off process. Boron 
nitride was etched in a reactive ion etching system using CHF3 and oxygen 
chemistry. Contacts on the graphene sheets were made so as to have a four-probe 
measurement geometry. Note that during the heterostructure assembly, the top and 
bottom graphene layers were chosen to extend beyond the CrBr3 layer so that the 
contact processing (especially the top BN etching and subsequent lift-off process) 
does not affect the CrBr3.

Modelling. The magnon density of states was calculated in the nearest-
neighbour approximation with the values of exchange integrals J =​ 1.698 meV and 
JL =​ 0.082 meV taken from the experiment33,34. The temperature and magnetic field 
dependences of the magnon spectra were calculated within the self-consistent spin-
wave theory35. The details are presented in the Supplementary Information.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon  
reasonable request.
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S1. Device fabrication 

Several devices with a different number of CrBr3 layers (2 to 6) were fabricated.  Fig. S1 depicts the 
procedure for fabricating a device with 4 layers of CrBr3. 

 
Supplementary Figure 1| Optical images of Gr/CrBr3/Gr tunnel device encapsulated with hBN 
during different fabrication steps. a, 4 layers CrBr3 flake (marked by black dashed line). b, 
CrBr3/SLG/top BN picked up on PMMA membrane (SLG – single layer graphene). c, SLG (marked by 
the white arrows) transferred on bottom hBN. After this, the stack shown in b, was transferred on 
the SLG/BN/SiO2/Si shown in c,. d, hBN encapsulated SLG/CrBr3/SLG stack with deposited Cr/Au 
contacts. Black lines highlight different layers and white parallelogram marks the actual tunnelling 
area. Scale bars in all images are 20 µm. 

 

 

 
 



3 
 

S2. Temperature dependence of differential dI/dVb conductance on magnetic field for devices with 
different thickness of CrBr3 

 

Supplementary Figure 2|a, Differential tunnel conductance as a function of Vb and T at B||=0T and 
Vg=0V for a device with 2 layer thick CrBr3 tunnel barrier (colour scale blue to white to red, 244µS to 
343µS to 443µS for all contour plots in the figure). b, Similar to a, except B||=10T. c, Similar to a, 
except B||=17.5T. d, Zero-field tunnel conductance plots for various temperatures at a fixed gate 
voltage of Vg=0V (blue to purple curves range from  T=2K to T=50K with the step 10K). 

 

Supplementary Figure 3|a, Differential tunnel conductance as a function of Vb and T at B||=0T and 
Vg=0V for a device with a 6-layer thick CrBr3 tunnel barrier (colour scale blue to white to red, 3nS to 
9.25nS to 16.5nS for all contour plots in the figure). Black horizontal lines in a,b mark the position of 
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the extracted value of Tc. b, Similar to a, except B||=10T. c, Zero-field tunnel conductance plots for 
various temperatures at a fixed gate voltage, Vg=0V (blue to purple curves range from 2K to 50K in 
steps of 10K, curves are shifted vertically for clarity). d, Dependence of the zero bias tunneling 
conductance dI/dVb on T for different B|| (red to blue curves are  B||=0T, 5T, 10T, 15T, 17.5T).  

 

S3. Quantum capacitance of Gr/CrBr3/Gr devices 

 
Supplementary Figure 4| Quantum capacitance measurements of the top gated Gr/CrBr3/Gr 
device (fabricated on quartz substrate). CrBr3 thickness 15nm, cross-section area 100µm2. a, 
Capacitance as a function of Vb and Vg at T=2K and zero magnetic field (colour scale blue to white to 
red, 0.23pF to 0.24pF to 0.25pF). Two blue regions correspond to the suppressed density of states 
near the Dirac points of the top and bottom graphene layers. The edge of the blue region for the 
bottom layer is vertical, consistent with strong screening of the gate-induced electric field by the 
thick CrBr3 barrier. b, the differential capacitance as a function of  Vb and T  at a fixed Vg=0V voltage.  
 

S4. Magnon density of states 

To calculate renormalized magnon spectra at finite temperatures we use self-consistent spin-wave 
theory in the form suggested in Ref.[S1]. We modify it to the case of a hexagonal lattice. For a single 
layer, there are two magnetic atoms per elementary cell with the corresponding magnon 
annihilation operators b1 and b2. The magnon spectrum is diagonalized by the same unitary 
transformation as for the electronic spectrum of graphene [S2], 
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= . The self-consistent magnon spectrum at finite temperatures is determined by the two 
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parameters, Lγγ , characterizing the renormalization of in-plane and out-of-plane exchange integrals 

(J and JL), respectively. The two magnon branches are: 

( )( ) ( ) µγγ −−+= ckJkfJE zLLk cos12322,1


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where c is the interlayer distance and µ is the magnon chemical potential which is nonzero above 

the Curie temperature. The self-consistent equations for the parameters Lγγ , and the average spin 

per site S are 
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where ( )( )µγγ −++= LLf JJSE 2612  and ( ) ( ) 1/exp
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B is the Bose Einstein 

distribution function. 

The computational results are shown in Fig.S5. The calculations show that the effective magnetic 

coupling between the layers characterized by the parameter Lγ  disappears near the Curie 
temperature whereas the short-range order in-plane characterized by the parameter γ survives to 

higher temperatures, as expected for quasi-two-dimensional magnets [S3].  

The in-plane correlation length ( )Tξ  can be estimated from the effective spin-wave spectrum above 

the Curie temperature, 
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where D is the spin-wave stiffness constant. For the particular case of the honeycomb lattice in the 
nearest-neighbour approximation 

( )
γ
µ
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J
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/ = , 

where a is the distance between the neighbouring magnetic ions. The computational results are 
shown in Fig. S6.  

 

The self-consistent spin-wave theory does not give a very accurate estimate of Tc, but is rather an 
upper estimate. Fluctuation corrections will lower the value of Tc, by a factor ~1.5 [S1]. Therefore, in 
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our comparison of the theory with experiment, we have shifted the temperature dependence of 
calculated variables by the calculated value of Tc but keeping the same ratio of J/JL.  

 

To consider how the magnetic field B affects the magnon spectrum, one needs to replace µ− by 
the Zeeman gap 2μBB, where μB is the Bohr magneton, in all the above equations. Self-consistent 
solution of the equations for our parameters gives us the shift of magnon energy peaks with the 
slope being between 4.5⋅μB V/T and 7.1⋅μB V/T depends on two Van Hove singularities at 
temperature close to Tc (Figure S7). 

 

Within the self-consistent spin-wave theory, the intensity of the two-magnon processes (one 
magnon is emitted and one magnon is adsorbed) with the total energy change close to zero and the 
total wave vector change equal to q is proportional to the corresponding contribution to the 

longitudinal spectral density and reads [S4] 

 

( ) ( )qkk
k

qkkq EENNHTK 

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++

−+=∑ δ)1(,  

 

In all the calculations we use the experimental values of the exchange parameters. We have 
performed also the first-principle calculations of these quantities. Assuming the nearest-neighbour 
approximation, we estimated the parameters J and JL from the total energy differences of various 
magnetic configurations (ferromagnetic, ferromagnetic in each layers with antiferromagnetic 
orientation between the layers, and antiferromagnetic within the layer) using the accurate full 
potential linearized augmented plane-wave (FLAPW) Wien2k code [S5] within the generalized 
gradient approximation (GGA) and experimental crystal structure. The results for (12x12x2) k-point 
mesh are J=0.94mV and JL=0.076mV, respectively. The theoretical exchange JL  parameter agrees 
well with the experimental values [S6], while the intralayer exchange J is about 45% smaller. If one 
uses the theoretical GGA lattice parameters [S7] instead of the experimental ones, the 
corresponding exchange J is about 44% larger than the experimental value [S6]. So strong 
dependence of the calculated exchange parameters on interatomic distances makes the use of the 
experimental values the most reliable choice.   
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Supplementary Figure 5|Temperature dependences of LS γγ ,, at zero magnetic field. 

 

Supplementary Figure 6|Temperature dependence of ( )Tξ / a. 
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Supplementary Figure 7|Magnetic field dependence of the positions of van Hove singularities in 
magnon spectrum.  

 

S5 Scattering rates 

The scattering rate for the two magnon process (one magnon is emitted and one magnon is 
adsorbed) is proportional to the corresponding contribution to the longitudinal spectral density 
which is given by the function Kq.  To make this relationship explicit we define 𝑊𝑊2𝑚𝑚𝑚𝑚𝑚𝑚 ∝ 𝐾𝐾𝑞𝑞. The 
temperature dependence of 𝑊𝑊2𝑚𝑚𝑚𝑚𝑚𝑚 is shown in Fig S8.  

The scattering rate from the disordered spin texture at high temperatures  𝑇𝑇 ≳ 𝑇𝑇𝑐𝑐 is proportional to 
the spin correlator for the longitudinal component of the atomic spin, 〈(𝛿𝛿𝑆𝑆𝑧𝑧)2〉 , see ref. 42 of the 
manuscript for more detail, so that 

𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∝ 〈(𝛿𝛿𝑆𝑆𝑧𝑧)2〉 

We find that a good fit to the data can be obtained if we take a mean field approach where  

〈(𝛿𝛿𝑆𝑆𝑧𝑧)2〉 = 𝑆𝑆(𝑆𝑆 + 1) + 〈𝑆𝑆𝑧𝑧〉 coth𝛽𝛽/2 − 〈𝑆𝑆𝑧𝑧〉2 

and the expectation value of the spin 〈𝑆𝑆𝑧𝑧〉  is obtained using the standard self-consistent solution of 
the Brillouin function, using the Curie Weiss law so that: 

𝛽𝛽 =
𝑔𝑔𝑔𝑔𝜇𝜇𝐵𝐵
𝑘𝑘𝐵𝐵𝑇𝑇

(𝐵𝐵 + 𝜆𝜆𝜆𝜆) 

In which 𝜇𝜇𝐵𝐵 is the Bohr magneton, 𝜆𝜆(𝑇𝑇𝑐𝑐) is the Weiss molecular field constant and 𝑀𝑀=𝑁𝑁𝑔𝑔𝜇𝜇𝐵𝐵〈𝑆𝑆𝑧𝑧〉 is 
the magnetisation.  
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Supplementary Figure 8| Scattering rates. Curves blue to red are for magnetic fields B‖=0T to 
B‖=17.5T in 2.5T increment. 
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Conclusion

The aim of the present thesis was to study the electronic and magnetic
properties of strongly correlated systems within the approach based
on a combination of density functional theory and dynamical mean
- field theory in charge self - consistent manner and to develop the
scheme to avoid a problem of nonspherical double - counting.

The main conclusions and scientific results of the thesis can be
formulated as follows:

1) We applied a DFT + DMFT approach in a charge self - con-
sistent manner to show that although both compounds do not fall in
the standard class of strongly correlated systems, more subtle many
- body effects are required for an accurate description of the Fe3Al
and Fe2V Al. This study provides an explanation as to how such ef-
fects provide an improved value for the formation energy with a clear
separation to the L12 structure to get enhanced energetics and phase
stability. The charge self - consistent version of the DFT + DMFT
framework is essential to clarify such physics. The issue of chemical
disorder is definitely applicable concerning the phase stabilities close
to the Fe3Al composition of the Fe - Al phase diagram. The detailed
thermodynamic understanding of Fe - Al still needs to be further faced.

The Fe2V Al compound is gotten from the well - known Fe3Al
metal however shows an intricate gap opening reminiscent of
(pseudo)gap physics found in correlated oxides. The DFT + DMFT
gap size and its sensitivity to temperature are compared with the ex-
perimental data and are in excellent agreement. Since also Hund’s
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7. Conclusion

physics may assume a part on the vanadium site, this example in-
dicates the whole difficulty of mechanisms from strongly correlated
properties for traditional material physics. Our results concerning the
thermoelectric properties of Fe2V Al could be interesting in a future
work.

2) We performed a first - principles many - body examination of the
impact of oxygen vacancies in rutile TiO2, both in the regime of lower
- and the higher - concentration. In the previous case, the results of
DFT + DMFT give the three key components known from experiment
for TiO2−δ, particularly semiconducting behavior and shallow levels as
well as deep levels. Our deep - level (or in - gap) position is in excellent
agreement with results of different experimental studies.

3) One important issue arising in the DFT + DMFT approach
is that when we add the Coulomb interaction to the one - electron
DFT Hamiltonian, we are counting effects of the Coulomb interaction
twice, because some parts of the interaction are already included in
the DFT Hamiltonian through the Hartree and exchange - correlation
terms. In this scheme, double - counting is corrected approximately.
This double - counting correction stems from a spherically symmetric
treatment. The DFT part of the Hartree and exchange correlation
energies are preserved along with the nonspherical contributions into
the DFT + DMFT energy functional. We managed to exclude this
nonspherical double - counting in DFT + DMFT. In our work we used
the advanced DFT + DMFT approach to calculate the total - energy
calculation and structural optimization of the pnictide superconductor
LaFeAsO. We compared our results with the ”exact” double - counting
scheme of [Hau15]. In both cases a similar shift in the distance of Fe
- As is observed, which brings the DFT + DMFT results closer to
experiments. In future investigations it will be interesting to check
more fine effects, for example, the crystal field parameters of transition
- metal and rare - earth ions in different crystals. The standard double
- counting scheme in the atomic limit could be appropriate for strongly
correlated d - and f - systems with anisotropic Coulomb interactions
near the insulating states.
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4) Finally, it was demonstrated that electrons tunnel between the
graphene layers via the emission (and, at high temperature, absorp-
tion) of magnons in the CrBr3 barrier. Motivated by this new type of
tunneling mechanism, we investigated the temperature and magnetic
field dependence of the magnon spectra within the self - consistent
spin - wave - theory. We performed the first - principle calculations of
the density of states, optical properties and exchange parameters for
better understanding of physical properties of this material.
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First-principles investigation of the ni–fe–al sys-
tem. Intermetallics, 13(10):1096 – 1109, 2005.

[LGP+06] F. Lechermann, A. Georges, A. Poteryaev, S. Bier-
mann, M. Posternak, A. Yamasaki, and O. K. An-
dersen. Phys.Rev.B, 74:125120, 2006.

[LK98] A. I. Lichtenstein and M. I. Katsnelson. Ab ini-
tio calculations of quasiparticle band structure in
correlated systems: Lda++ approach. Phys. Rev.
B, 57:6884–6895, 1998.

[LR98] Chin-Shan Lue and Joseph H. Ross. Semimetallic
behavior in fe2VAl : nmr evidence. Phys. Rev. B,
58:9763–9766, Oct 1998.

[LWE+02] F. Lechermann, F. Welsch, C. Elsässer, C. Ederer,
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