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Abstract

Abstract

Understanding human actions is crucial for establishing an effective interaction

between an assistive system and humans in the real world. Humans are able to

understand others’ behavior by interpreting body movements and finding relevant

contextual cues in their surroundings. Such ability is supported by a highly de-

veloped visual system that creates a coherent perceptual experience by effortlessly

integrating different sources of information. Furthermore, the human brain is con-

tinuously projected into the future, hence anticipating the development and the

intentions of the observed actions. Artificial systems, however, are far from a

human-like performance in these tasks. The reliable recognition and anticipation

of human actions from multiple visual cues still remain an open challenge.

In this thesis, we focus on human daily activities that involve interactions

with objects. We aim at designing artificial learning systems for the recognition

and prediction of human-object interactions while considering interdisciplinary as-

pects of neuroscience and human psychology for the two perception tasks. We

apply hierarchical arrangements of self-organizing neural networks that resemble

the cortical processing of action features with an increasing complexity of repre-

sentation. We introduce a novel architecture that can segment and recognize the

manipulated objects from a scene and map them to their action possibilities in an

unsupervised manner. The spatiotemporal representations obtained through the

self-organizing learning are then associated with symbolic labels for the classifica-

tions of the human-object interactions. We evaluate our model with two different

corpora containing fine-grained human daily activities in home-like scenarios and

demonstrate that our model is competitive with respect to supervised state-of-the-

art approaches.

We address human action anticipation by focusing on both what will hap-

pen next and how the action will be performed. First, we present and discuss

a novel hierarchical self-organizing architecture for the incremental learning and

prediction of human motion patterns. Our experimental results demonstrate that

self-organization can account for robust body motion prediction, yielding high

performance during the online adaptation also in the presence of missing data

samples. Then, we introduce a temporal association mechanism for storing goal-

oriented action sequences of arbitrary lengths into our model. We demonstrate

that both short-term and long-term temporal dependencies of the human actions

can be learned with the same underlying neural mechanism, thereby allowing for

the anticipation of actions in a longer activity sequence. Finally, we present and

analyze an approach with top-down feedback connectivity that uses the classi-
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Abstract

fication error to modulate the neural growth of a self-organizing hierarchy. We

show how the interplay between feedforward and feedback connectivity generates

an adequate number of prototype neurons and promotes the learning of compact

representations of actions from the sensory input.

This thesis contributes to the field of visual recognition and prediction of

human-object interactions with a set of novel models that take inspiration from

biological mechanisms of action perception serving as a stepping-stone for different

future research directions.
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Zusammenfassung

Menschliche Aktionen zu verstehen ist äußerst wichtig, um ein effektives Zusam-

menspiel zwischen einem Hilfssystem und Menschen in Szenarien der realen Welt

herzustellen. Menschen sind im Stande das Verhalten anderer zu verstehen, indem

sie ihre Körpersprache interpretieren und relevante, kontextbezogene Hinweise in

der Umgebung finden. Solche Fähigkeit wird von einem hochentwickelten visuellen

System unterstützt, das durch eine mühelose Integration verschiedener Informa-

tionsquellen ein einheitliches Wahrnehmungserlebnis hervorbringt. Zudem pro-

jiziert das menschliche Gehirn kontinuierlich die Zukunft und sagt so die zukünftige

Entwicklung und die Absichten der beobachteten Aktionen voraus. Künstliche Sys-

teme sind jedoch noch weit davon entfernt Aufgaben so auszuführen, wie es einem

Menschen möglich ist. Die zuverlässige Erfassung und Voraussage menschlichen

Handelns mittels verschiedener visueller Hinweise bleibt noch immer eine Heraus-

forderung.

In der vorliegende Arbeit fokussieren wir uns auf menschlich Aktivitäten des

täglichen Lebens, die den Umgang mit Objekten beinhalten. Wir streben an, ein

künstliches Lernsystem für die Erkennung und Prognose von Interaktionen zwis-

chen Mensch und Objekt zu entwickeln, während wir interdisziplinäre Aspekte der

zwei Wahrnehmungsaufgaben betrachten. Wir wenden hierarchische Anordnungen

selbstorganisierender neuronaler Netze mit Schicht für Schicht höher werdender

Darstellungskomplexität an, die der kortikalen Verarbeitung von Handlungseigen-

schaften gleichen. Wir stellen eine neuartige Architektur vor, die manipulierte

Gegenstände in einer Szene identifizieren kann und mögliche Handlungen für diese

in unüberwachter Weise bestimmt. Die räumlichen und temporalen Darstellun-

gen, die durch das selbst organisierte Lernen erlangt werden, werden mit symbol-

ischen Labeln für die Klassification von Mensch-Objekt-Interaktionen verbunden.

Wir evaluieren unser Modell an zwei unterschiedlichen Korpora, welche detailge-

naue Tagesaktivitäten in alltäglichen Szenarien häuslich darstellen, und demon-

strieren damit die Wettbewerbsfähigkeit unseres Modells mit den aktuellen Stand

der Forschung.

Zuerst präsentieren und diskutieren wir eine neuartige, selbst organisierte und

hierarchische Architektur für das inkrementelle Lernen und für die Vorhersage men-

schlicher Bewegungsmuster. Unsere experimentellen Ergebnisse demonstrieren,

dass Selbstorganisation eine robuste Erkennung von Bewegungsmustern gewährleis-

tet, was auch im Falle von fehlenden Beispieldaten guten Ergebnissen während der

Online-Anpassung führt. Außerdem erweitern wir unser Model mit einem As-

soziationssmechanismus zum Speichern von zielorientierten Aktionssequenzen be-
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liebiger Länge. Wir demonstrieren anhand von verschiedenen Experimenten, dass

kurzfristige und langfristige Abhängigkeiten menschlicher Handlungen mit demsel-

ben zugrundeliegenden neuralem Mechanismus erlernt werden können, wodurch die

Antizipation von Handlungen in Langzeitsequenzen ermöglicht wird. Schließlich

präsentieren und analysieren wir eine top-down Feedbackverbindung die Klassi-

fizierungsfehler nutzt, um das neuronale Wachstum einer selbstorganisierten Hier-

archie zu modulieren. Wir zeigen, wie das Zusammenspiel zwischen Feedforward-

und Feedback-Konnektivität eine ausreichende Anzahl an Prototyp-Neuronen gener-

iert und das Erlernen der aktionsrelevanten Repräsentationen aus sensorischem

Input begünstigt.

Diese Arbeit trägt zum Feld der visuellen Erkennung und Vorhersage von

Mensch-Objekt Interaktionen bei. Eine Reihe von Modellen, die von biologis-

chen Mechanismen der Handlungswahrnehmung inspiriert sind, dienen dabei als

Sprungbrett für zukünftige Forschungsrichtungen.
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Chapter 1

Introduction

1.1 Motivation

The ongoing development of robotics and the increasing number of elderly in-

dividuals have led to an increasing interest in applying assistive technologies in

order to improve the quality of care (Scassellati et al., 2012; Kachouie et al., 2014;

Amirabdollahian et al., 2013; Cecchi et al., 2016). Despite the many physical

forms in which assistive robots come, their main functionalities include providing

assistance, serving, and interacting with humans. Human behavior understanding

through visual perception is one of the most important steps towards a successful

and safe execution of each task (Aggarwal and Ryoo, 2011; Sciutti et al., 2018).

Current systems, e.g., Apple Siri or Amazon Alexa, need to be given explicit vocal

commands to take action, but this is not sufficient when monitoring patients or

elderly individuals at home. While providing care, an interactive robot system

should know if the patient has performed essential daily activities fundamental to

the patient’s well-being, such as drinking water and taking medications. On the

other hand, for an anticipatory planning of a reactive response, e.g., fetching a glass

of water when the person wants to drink, an assistive robot should predict human

motion and infer the intention of a human activity beforehand (Ryoo, 2011).

Real-world domestic scenes are quite cluttered and diverse. On the one hand,

they pose several challenges to the visual analysis systems but on the other, they

also provide relevant contextual information about the human activities. Thus,

different relevant action components should be detected from the scene, processed,

and later integrated, such as the present objects, the human body pose and motion,

and the relationship between humans and objects during the interaction. The

human brain is highly skilled in integrating multiple contextual information in

just a brief glimpse of visual input due to the importance that goal inference
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has for survival and social activities, e.g., detecting a threat (Henderson, 2003)

or accessing the emotional status and the intentions of a person (Karg et al.,

2013). Hence, the underlying biological mechanisms for action perception remain

a source of inspiration for the development of artificial systems which address the

recognition and anticipation of human activities (Giese and Rizzolatti, 2015). From

the computational perspective, one question is of central concern: How to process

and represent the visual stimuli arising from human-object interactions, given their

spatiotemporal components with different levels of abstraction and heterogeneous

temporal dynamics.

1.2 Problem Statement and Research Objectives

In this thesis, we aim to develop and analyze neural network learning architectures

for the recognition and anticipation of human activities in domestic scenarios. In

particular, we want to investigate self-organizing architectures, which have mainly

focused on the recognition and generation of human gestures and full-body ac-

tions (Kawashima et al., 2009; Coleca et al., 2015; Parisi et al., 2015), for the

modeling of high-level cognitive functions such as the recognition and prediction

of human-object interactions and the learning of hierarchical representations of hu-

man activities. The application of self-organizing architectures is appealing due to

their capability to adapt in an online manner while resembling neurophysiological

processes such as input-driven self-organization (Merzenich et al., 1983; Blakemore

and Cooper, 1970; Hirsch and Spinelli, 1970) and synaptic plasticity (Hebb, 1949).

Moreover, these models can learn in an unsupervised manner, i.e., when the manual

annotation of the input is not provided. Hence, their investigation is an important

step towards building autonomous systems.

Our first research question is: how can relationships between objects and hu-

man motion patterns be learned in an unsupervised manner during the observation

of human-object interactions? Detecting objects in cluttered scenes and recogniz-

ing human actions are two important, yet challenging research topics which have

received a lot of attention from the computer vision, computational neuroscience

and cognitive science community. From the computational perspective, however,

it is not clear how to link architectures specialized in object recognition and bi-

ological motion recognition, e.g., how to match between classes of objects and

hand/arm movements. To answer this question, we take inspiration from different

findings on the neural mechanisms in the human brain including the hierarchical

processing of spatiotemporal patterns with an increasing complexity and abstrac-
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tion of representation (Hasson et al., 2008; Taylor et al., 2015) and the integration

of the manipulated objects with the body motion for action understanding and

goal inference (Beauchamp et al., 2002; Baldassano et al., 2017). Keeping in mind

a real-world application of our methods, we aim at technologies that require the

least computational effort and that can operate in real-time. Thus, we rely on the

3D body tracking frameworks provided by inexpensive depth sensors, e.g., Kinect

cameras.

Plenty of studies address the modeling of the temporal structure of human ac-

tivities for action classification (Aggarwal and Ryoo, 2011). Yet, it remains largely

unknown how to apply existing recognition approaches for the anticipation of goals

before actions have been fully executed (Ryoo, 2011). Human activity prediction

is a relatively new topic which can have significant implications for the assistive

systems operating in domestic scenarios, for instance, the planning of reactive

responses for assisting individuals according to their needs (Koppula and Saxena,

2016). Building upon well-studied computational mechanisms, such as the Hebbian

learning rule (Hebb, 1949), we develop and analyze a temporally sensitive neural

architecture which is capable of storing and recalling sequences of arbitrary lengths

in order to both classify and predict an ongoing and the upcoming human-object

interaction respectively. For this reason, we revisit ideas about the encoding of

temporal sequences through neural self-organization and lateral weighted Hebbian

connections, which have been successfully applied for robot control (Barreto et al.,

2003) and the prediction of human motion (Parisi et al., 2016b). Our objective is

to investigate similar learning mechanisms for the learning and the recall of atomic

actions that compose longer human activities. In particular, we look at how can

the most frequently activated lateral connections be used to encode the temporal

order of the perceived body motion patterns during human-object manipulation

and to develop goal-oriented neural chain activations (Chersi et al., 2014).

The last research objective we pursue in this thesis is the investigation of a novel

top-down modulation mechanism for the optimization of the neural growth of a

hierarchical architecture comprising growing self-organizing networks. In the hu-

man visual system, top-down connections outnumber bottom-up connections and

have a strong influence in the shaping of the visual features (Gilbert and Sigman,

2007). In a hierarchy of growing self-organizing networks with an increasing depth

of the temporal context, we let the emergence of prototype atomic actions with

a shorter temporal context be influenced by the upper layer, composed of proto-

type sequences of relatively long temporal contexts. This is useful, for instance,

for the learning of hierarchical representations of human activities on two different
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semantic levels: atomic actions and activities performed over a longer duration. In

this case, the activity labels can provide constraints on the development of atomic

action prototypes in order to have better recognition of the actions and vice versa.

1.3 Contribution to Knowledge

This thesis contributes to the knowledge on neural self-organization with a set

of methods, experiments and detailed analyses of self-organizing models for the

learning and prediction of human actions with a particular focus on human-object

interactions. The neural architectures take inspiration from a set of biological

findings, such as the hierarchical processing of body pose and motion cues and

the encoding of goal-oriented actions through chain-like neural activations, but

do not attempt to model the underlying neural mechanisms in detail. We pro-

pose and evaluate possible extensions of the growing self-organizing networks in

order to account for a set of visual tasks such as the recognition and prediction of

human-object interaction, the online human motion prediction and the learning of

hierarchical representations of human activities. Taking advantage of the capabil-

ity of Growing When Required (GWR) networks (Marsland et al., 2002) to learn

input data streams incrementally, we provide a detailed analysis of a novel hierar-

chical architecture for the incremental learning and prediction of human movement

sequences. Furthermore, we propose a top-down modulation mechanism that can

be applied to a GWR-based hierarchical architecture in order to optimize the pro-

cess of neurogenesis and the topological organization of each layer according to

the classification task. Through our experimental results, we discuss the learning

properties of the architectures based on sensory-driven topology preserving net-

works and their advantages for real-world applications, especially in the case of

noisy or even missing sensory information.

1.4 Structure of the Thesis

The thesis is organized into eight chapters. In Chapter 2, we provide an overview on

neural mechanisms for the action perception in the brain together with an introduc-

tion to current trends and state-of-art approaches in human activity recognition,

human motion prediction, and human action anticipation.

In Chapter 3, we present some of the biological findings providing evidence

for the topographic organization of the input in several areas of the brain. We

describe models of neural network self-organization, which similar to the cortical
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organization, develop topology-preserving neural arrangements and connectivity

patterns being driven by the distribution of the sensory input.

In Chapter 4, we introduce the first neural framework for the modeling of

human-object interactions from RGB-D videos. Our approach consists of two net-

work streams processing action cues in terms of body posture and the manipulated

object which converge into a final layer mapping motion patterns to objects in an

unsupervised manner. Moreover, we introduce a dataset of transitive actions that

we have collected for the purpose of the current study, but which will be used to

evaluate the architectures proposed in the following chapters as well. We provide

an in-depth analysis of the architecture by analyzing the importance of the objects

as contextual information and the neural responses to congruent and incongru-

ent action-object pairs. Furthermore, we carry out a quantitative evaluation by

comparing action recognition rates achieved on a benchmarking dataset to the

state-of-the-art methods for the recognition of human-object interactions.

In Chapter 5, we investigate the use of hierarchical self-organizing learning

together with a temporal association mechanism for the simultaneous learning

and prediction of human motion patterns. We evaluate this architecture in the

context of a human-robot interaction scenario in which the robot has to learn

and reproduce visually demonstrated arm movements. To assess the prediction

accuracy, we set up experiments whereby the training of the architecture is carried

out by introducing action categories incrementally. We analyze the online response

of the architecture during the introduction of a new input sequence, the prediction

performance during incremental learning and the sensitivity of the model with

respect to learning parameters. Additionally, we show the robustness of our model

when dealing with occasionally missing sensory data during the training process.

In Chapter 6, we propose a model for the prediction of human-object interac-

tions in which the temporal order of action sub-sequences emerges through asym-

metric lateral connections between neurons. We investigate the use of the model

for the prediction of plausible future actions as well as its capability to synthesize

body motion patterns.

In Chapter 7, we propose a novel top-down modulation mechanism which mod-

ulates the neural growth and the topological structure in a hierarchical arrange-

ment of growing self-organizing networks. We apply both learning mechanisms

in order to learn the compositionality of human activities and capture temporal

relations between composing actions. Experimental results with a benchmarking

dataset show that we outperform the state-of-the-art approaches with respect to

the recognition of high-level human activities while the application of the top-down
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learning mechanism optimizes the internal representations according to the task.

Concluding in Chapter 8, the neural network architectures and the experi-

mental results presented in this thesis are discussed from the perspective of our

research questions. Furthermore, we discuss the advantages of topology preserv-

ing networks for the tasks of human action recognition and prediction as well as

analogies and limitations with respect to biological findings from which we take

motivation. Finally, we provide a series of possible future research directions.
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Chapter 2

Human Activity Recognition and

Anticipation

Action understanding and anticipation lie at the heart of social interaction. Know-

ing the goal of other persons’ actions allows for anticipating what they are going

to do next and planning one’s own actions accordingly. Neurophysiological studies

have identified a widely distributed and complex network of brain areas which are

specialized in the visual encoding of biological motion and body parts, such as fin-

gers, hands, face, and limbs, and the identification of manipulated objects (Down-

ing and Peelen, 2011; Beauchamp et al., 2002; Rizzolatti et al., 2001). The human

brain efficiently processes multiple streams of information regarding the action

cues in order to infer others’ goals as well as interact with the environment, a

capability which is crucial for survival. Hence, the investigation of the underly-

ing neuro-computational mechanisms for action recognition in the human brain is

fundamental for the development of artificial systems which face several challenges

such as cluttered environments and reasoning on complex scenes.

In Section 2.1, we give an introduction to how action understanding is achieved

in the human brain and the underlying neural mechanisms. In Section 2.2, we

describe state-of-the-art approaches for complex visual tasks such as transitive

action recognition, motion prediction, and human action anticipation.

2.1 The Understanding of Actions in the Brain

2.1.1 How Do We Understand Others’ Actions?

The capacity of humans to effectively use objects sets them apart from all other

species (Johnson-Frey, 2003). Most human actions are transitive actions, i.e.,
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involve manipulation or interaction with objects (Johnson and Grafton, 2003).

The use of objects unlocks a variety of effects humans can achieve in their living

environment, from cutting with a knife to contacting others through a mobile

phone and traveling the world with various types of vehicles. The understanding

of others’ transitive actions, on the other hand, represents a key function of the

human visual system for goal inference and social communication. Over the last

decade, action processing and understanding has received a lot of attention in the

neuroscience community as well as other disciplines, such as computer vision and

robotics (Giese and Rizzolatti, 2015; Aggarwal and Ryoo, 2011; Demiris and Hayes,

2002). However, the neural basis of this visual capability remains only partially

understood.

Researchers from the neuroscience community have argued that themirror neu-

rons are the key element of action/intention understanding (Gallese et al., 1996;

Rizzolatti et al., 2001). Mirror neurons were originally found in the ventral pre-

motor cortex of the macaque brain. The key characteristic of the mirror neurons

is that they fire both when the monkey manipulates an object in a specific way

and when it observes another monkey (or experimenter) perform the same action

or a similar one. This distinguishes mirror neurons from other sensory or motor

neurons whose discharge is associated either with observation or execution, but

not both. So, action execution and observation are closely related and the ability

to interpret others’ actions requires the involvement of the own motor system. It

was proposed that the mechanism underpinning action understanding and goal in-

ference is a ‘direct matching’ between the observed motor acts (e.g., the trajectory

of the hand) to the observer’s motor repertoire. Given that the observer knows

the outcome of an action when executing it, he/she can recognize the goal of the

observed action when the same set of neurons are active during the execution of

that action.

The actions associated with the mirror neurons are mainly transitive. For in-

stance, whole-body motions such as walking, turning, and gazing typically do not

recruit mirror-related areas. Also in the adult human brain, there is evidence for

the existence of a mirror neuron system, i.e., brain regions (or a set of regions)

which are activated both during the observation as well as during the execution

of similar actions (Rizzolatti and Fogassi, 2014). Apart from action understand-

ing (Umilta et al., 2001), many other high-level functions have been associated with

the human mirror neuron system such as imitation (Carr et al., 2003), intention

attribution (Iacoboni et al., 2005), and the evolution of language (Rizzolatti and

Arbib, 1998). However, studies conducted at the cellular level are mostly available
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for monkeys, leaving the underlying neural and computational mechanisms of the

human mirror neurons system largely unknown (Kilner and Lemon, 2013).

Recent findings have contrasted the traditional view that mirror neurons are

activated only by the type of motor act being observed/executed and have demon-

strated that the objects knowledge plays a key role in action understanding. For

instance, a gaze can sometimes recruit mirror areas when the gaze points to gras-

pable objects. Rizzolatti and Craighero (2004) showed that the mirror neurons

exhibited a decrease in response in the case actions were mimicked, i.e., the target

object was absent. Furthermore, the category of the object being manipulated and

the value the object has for the monkey, e.g., food vs an inedible object, has been

recently found to modulate the mirror neurons’ response (Caggiano et al., 2012).

Neurophysiological data in the human brain concerning mirror areas and beyond

confirm that only when the information about the object identity is added to the

semantic information about the action, then the actions of other individuals can

be completely understood (Saxe et al., 2004). Objects are also one of the factors

having an impact on the intention inference and action prediction. From the ex-

periments with a monkey observing demonstrations of the task of grasping to eat

and grasping to place an object, Fogassi et al. (2005) found that the observer could

only make predictions based on the object’s identity. For instance, the presence

of food led the monkey to anticipate the action of eating, while the presence of an

inedible object led the monkey to anticipate the action placing.

The knowledge about objects and their action-related attributes is acquired

gradually during the development as a result of both exploratory and observational

learning. The process starts early on with innate reflexes such as the palmar-grasp

reflex to objects inside the palm and then goes through self-exploration and obser-

vation of the own action consequences towards building concepts like affordances

and the object’s function within 9 months of age (Rosenbaum, 2009). The idea be-

hind the concept of object affordances is that there exists a direct relation between

low-level visual features of objects to the type of grasping possibly performed on

that object (Gibson, 2014; Jamone et al., 2016). This is supported by neurophys-

iological evidence found in the so-called canonical neurons which are activated

during the visual presentation of a given object and also during the grasping of

that object (Murata et al., 1997; Rizzolatti and Fadiga, 1998). Behavioral and

imaging studies in humans have confirmed, for instance, that passively viewing an

object, i.e., without interacting with it, can activate basic movements for reaching

and grasping it (Buccino et al., 2009). Building on top of the self-explored object

affordances, the emulation of others’ goal and action imitation become possible at
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Figure 2.1: The hierarchical organization of goals (reprinted with permission
from Hamilton and Grafton (2006)). A task goal may involve several immedi-
ate goals, achieved through a sequence of basic actions. Each action is composed
of several movements.

the age of 12 months (Want and Harris, 2002). During the second year of life,

a cognitive leap follows towards understanding scenarios that include the use of

multiple tools and complex problem-solving. A number of researchers believe that

the latter developmental stage requires not just the information that is directly

perceived but also the ability to engage symbolic or relational thinking, although

how this happens is still an unresolved issue (Bates, 2014).

Actions and their goals can be ordered hierarchically according to their level

of abstractness or the time required for their completion. Neuroscientists distin-

guish mainly between motions (e.g., opening the hand), actions (often transitive

actions e.g., reaching or grasping a cookie), immediate goals (e.g., take a cookie)

and task goals (e.g., prepare a snack) (Hamilton and Grafton, 2006) (see Fig. 2.1).

A great variety of these goals are encoded irrespective of the motor acts executed

for achieving it (Rizzolatti and Fogassi, 2014). Moreover, goals can be inferred by

observing only a few of the activity’s motor acts. According to the mirror neuron

literature, an internal simulation of the observed action, based on the observer’s

motor repertoire, allows the observer to infer others’ goals. The underlying mech-

anism for this is believed to be the sequential activation of a subpopulation of

neurons encoding subsequent motor acts. Different computational models have

been proposed for modeling the chained neural activation, for instance, the synfire

chains model first theorized by Abeles (1982), and the neuronal chains model pro-

posed by Chersi et al. (2011). Unlike the first model, the neuronal chains model

does not require synchronicity between the neurons and can generate the same se-

quence with varying durations of the composing motor acts determined by external

regulatory signals.
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The actions performed in an implausible or unusual way, e.g., turning on a

light switch with the knee when both hands are free, seem to be an exception.

A functional magnetic resonance imaging (fMRI) study conducted by Brass et al.

(2007) showed that the observation of this type of actions elicits greater activity

in the brain areas which lack mirror properties. This is presumably explained by

the fact that the action does not allow a match with one’s own motor repertoire.

In addition to this, Van Overwalle and Baetens (2009) suggest that several brain

areas beyond the mirror neuron system are activated when observed actions lead to

multiple goals, due to requiring more mental processing for selecting one of them.

Even though the debate about how goals and intentions are encoded in the

brain is on-going and often controversial (Cavallo et al., 2016), there exists a wide

spectrum of physiologically inspired models for action processing and understand-

ing (see Giese and Rizzolatti (2015) for a review). Many of these models have never

been concretely implemented and have served only as conceptual frameworks. Fur-

thermore, only a few of them address simple transitive actions such as grasping,

placing and holding (Fleischer et al., 2013; Prevete et al., 2008; Tessitore et al.,

2010). However, the insights they provide about biological motion processing and

integration of the information regarding hand and the manipulated objects im-

prove our understanding of the brain and can contribute to the development of

artificial models of perception.

2.1.2 Neural Mechanisms for Transitive Action Perception

The processing of the perceived visual cues about body and objects produce

distinct patterns of activity in the human cortex (Beauchamp et al., 2002). A

schematic illustration of the brain containing a set of areas involved in visual pro-

cessing of transitive actions is shown in Fig. 2.2. According to the two visual

streams hypothesis, visual information is processed in two separate pathways in

the primate cerebral cortex. The ventral pathway plays an important role in con-

structing semantic perceptual information about the objects, whereas the dorsal

pathway is involved in spatial awareness and guidance of actions. Object recog-

nition is carried out in the ventral visual stream which is composed of feedfor-

ward, hierarchically-organized cortical areas culminating in the Inferior Temporal

Cortex (IT) (Felleman and Essen, 1991). With each layer in the hierarchy, the

abstraction level of visual features is increased through the alternation of simple

and complex cells decreasing sensibility to objects’ location and scale (Hubel and

Wiesel, 1962). Taken together, these findings have led to the successful devel-

opment of biologically inspired architectures for object recognition (Fukushima,
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Figure 2.2: Schematic illustration of the location of the human brain areas involved
in the perception of transitive actions. EBA, extrastriate body area; LOC, lateral
occipital complex, IT, inferior temporal cortex; MTG, middle temporal gyrus; STS,
superior temporal sulcus; IPL, inferior parietal lobule, IFG, inferior frontal gyrus
(homologous to the macaque area F5). Image modified from Wikimedia (2007)

1980; Riesenhuber and Poggio, 1999; Serre et al., 2007). In contrast to the com-

monly accepted invariant representations with respect to the object’s position and

scale, the view-independent object representations have found no consensus among

researchers. Three-dimensional rotation changes objects’ shape due to the 2D

retinal projections from the three-dimensional space. Some theories suggest the

view-invariant representations of objects, i.e., the underlying neural representa-

tions respond similarly to an object across it views (Marr et al., 1980; Biederman,

1987; DiCarlo et al., 2012). Other theories suggest that objects representations

are view-dependent, that is, they consist of several 2D views of an object (Poggio

and Edelman, 1990; Perrett, 1996). Empirical evidence for the view sensitivity of

the human object-selective cortex has been found recently by Grill-Spector (2013).

The author hypothesizes that view invariance may be achieved utilizing a popula-

tion code across neurons, which themselves are not view-invariant.

The neural mechanisms for the processing of the body pose is an extension

of the shape-processing ventral pathway model. It continues to higher levels of

cortical substrates consisting of ‘snapshot neurons’ selectively responding to body

shapes, whose existence is supported by neurophysiological data and brain imaging

experiments (Grossman and Blake, 2002). The highest hierarchy level of the body

pose processing pathway consists of motion pattern neurons, which, according to

physiological data, are possibly located in the superior temporal sulcus (STS) and
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the ventral premotor cortex (F5) (Perrett et al., 1985). The motion pattern neu-

rons summate the activity of all snapshot neurons that are active during the same

movement pattern. Therefore the biological movements might be recognized as

sequences of body poses corresponding to snapshots of complex movements (Giese

and Poggio, 2003). Interestingly, the motion pattern neurons are highly selective

to the temporal order of the snapshots, e.g., randomization of the temporal order

of the frames of a movie typically disrupts the perception of a biological movement

pattern. Not only posture but also motion plays a key role in biological motion

perception (Oram and Perrett, 1996). The motion-processing dorsal pathway pro-

cesses biological movements as optic-flow patterns and has, in principle, a similar

hierarchical architecture as the form pathway. The two pathways converge at the

level of the STS area.

Representations of human body parts reside in cortical areas distinct from rep-

resentations of other object categories. Downing and Peelen (2011) identified a

part of the human extrastriate cortex involved in the visual processing of the hu-

man body and body parts, namely the extrastriate body area (EBA). On the

other hand, the identity of the objects is processed in the Lateral Occipital Com-

plex (LOC) area (Grill-Spector, 2013). The functional and anatomical segregation

for the processing of objects and body pose has been confirmed by experimen-

tal results on the brain’s response during viewing of human object-manipulation

images (Beauchamp et al., 2002). The STS was not activated during viewing of

animated pictures of man-made objects. Instead, the activation occurred in the

middle temporal gyrus (MTG) even when viewing static pictures of objects com-

monly associated with motion, e.g., a picture of a house does not activate the

lateral temporal cortex. The mirror neuron literature suggests that the biological

motion after having been processed and encoded in the STS is further transmitted

to the inferior parietal lobule (IPL) area where the relationship with the object

is specified and kinesthetic qualities are evaluated and then to the inferior frontal

gyrus (IFG) which is the human homolog of area F5 in the macaque brain (Keysers

and Perrett, 2004; Rizzolatti et al., 2001) (both areas are highlighted in blue in

Fig. 2.2). The IFG is where the action goal coding occurs.

All these findings together suggest that the processing and integration of dif-

ferent visual information underlie the emergent representations of human-object

interactions. From the computational perspective, an important question can be

posed on the type of representations of body postures and manipulated objects

involved in the learning of transitive actions and, in particular, on the way the two

can be integrated. Representations of human-object interactions are not merely
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the visual features of shape and motion of the action components but also higher

order features which represent the interaction stimuli (Tunik et al., 2007; Bal-

dassano et al., 2017). Translated to the computer vision task of the recognition

of human transitive actions, this requires further reasoning on the visual and se-

mantic features of full interactions, such as the spatial relationships between the

manipulated objects and the body parts and their temporal dynamics (Yao and

Fei-Fei, 2010b) or the identity of the objects involved.

2.2 Computational Models

2.2.1 Introduction to Challenges of Visual Activity Recog-

nition

The goal of vision-based human activity recognition systems is to automatically

detect and analyze human activities from the information acquired from visual

sensors, e.g., a sequence of images captured by an RGB or an RGB-D camera.

The task has been of strong interest for different fields of research since the early

1990s (Aggarwal and Ryoo, 2011). Major components of such recognition systems

include feature extraction, action learning and classification, and action recognition

and segmentation (Poppe, 2010). A simple recognition process for a learning-based

algorithm consists of three steps, namely the detection of the human and/or his/her

body parts, motion tracking, and then recognition using the tracking results. For

example, to recognize the waving activity, the person’s arms and hands are first

detected and tracked, then spatiotemporal descriptions of the movement are ex-

tracted and compared to existing patterns in the data learned during training to

finally determine the action class.

The literature suggests a conceptual categorization of human activities into

four different levels depending on the complexity: gestures, actions, interactions,

and group activities (Aggarwal and Ryoo, 2011; Ziaeefard and Bergevin, 2015;

Aggarwal and Xia, 2014). Gestures are elementary movements of a person’s body

part and are the atomic components describing the meaningful motion of a person,

e.g., stretching an arm or raising a leg. Actions are single-person activities that

may be composed of multiple gestures such as walking and waving. Interactions

are human activities that involve a person and one object (or multiple objects).

For instance, a person making a phone call is a human-object interaction. Finally,

group activities are the activities performed by groups composed of multiple per-

sons or objects, e.g., a group having a meeting. While there has been extensive
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work on gestures and actions, only in the last decade the field has moved towards

the recognition of complex human activities involving objects or multiple persons.

Vision-based human activity recognition faces several challenges:

• Intra-class variations and inter-class similarity: Different individuals can

perform the same action in a different manner. For example, the walking

action can be performed with different speed and stride length. Furthermore,

there are anthropometric differences between individuals which may increase

the variations of the possible movement patterns within one action class.

With the increasing number of action classes, there is more overlap between

movement patterns as well. Two actions may become distinguishable by very

subtle spatiotemporal details. This remains a major issue for a great number

of existing approaches, especially those relying solely on the body pose and

motion information (Wang et al., 2014; Shahroudy et al., 2016; Cippitelli

et al., 2016).

• Environment and recording settings: Occlusions, cluttered environments,

shadows, varying illumination conditions, and dynamic backgrounds may

lead to erroneous body segmentations and may alter significantly the way

actions are perceived. In addition to this, the same action observed from dif-

ferent viewpoints can lead to very different image sequences. This remains

particularly a major issue for applications with traditional 2D sensors (e.g.,

RGB cameras) (Lea et al., 2016; Ma et al., 2017).

• Temporal segmentation: Many action recognition systems require actions to

be manually segmented in time. Erroneous segmentations can have a nega-

tive impact on the performance, especially for systems that rely on a single

representation for entire image sequences, for instance, bag-of-words repre-

sentations built on spatiotemporal interest points (STIPs) descriptors (Wang

et al., 2009; Rybok et al., 2014).

• Unlabelled training data: The performance and scalability of an action recog-

nition system need to be analyzed through larger-scale experiments, which

require a large amount of training and test sequences. Oftentimes training

data labels are sparse or unavailable. Since manual annotation is expensive,

the development of unsupervised or semi-supervised approaches is encour-

aged (Wu et al., 2015; Lan et al., 2015; Parisi et al., 2016b).

The introduction of depth sensing devices, such as the Microsoft Kinect and ASUS

Xtion, represents a significant contribution to the field of action recognition since
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Figure 2.3: Action recognition requires contextual information. The same pose
can have different meanings based on the context: (a) running and (b) kick-
ing (reprinted with permission from Gupta et al. (2009)).

they largely alleviate some of the aforementioned low-level difficulties. This sensor

technology provides depth measurements used to obtain reliable estimations of

3D human pose in cluttered environments, including a set of body joints in real-

world coordinates and their orientations. The representation of the human body

pose through a 3D skeletal configuration is more robust to varying illumination

conditions and dynamic environments and can be used for building a view-invariant

action recognition approach (Aggarwal and Xia, 2014). Although deep learning

architectures have recently shown high accuracy in body segmentation from RGB

images (Lea et al., 2016), capturing articulated human motion from sequences of

RGB images may result in loss of information, due to for instance limb occlusion or

bad point of view. Moreover, 3D body tracking through depth sensors remains the

less computationally expensive method for motion segmentation and body pose

estimation (Han et al., 2013).

Many human actions involve similar movement patterns but have different

meanings according to their context, i.e., the visual cues from the surrounding

environment which carry information about the action such as the manipulated

objects (see Fig. 2.3). Behavioral studies show that context plays an important

role in action recognition in the human visual system. Detecting visual abnormal-

ities out of context can become crucial for survival (e.g., detecting an unattended

bag in the airport) (Henderson, 2003). In computer vision, context has often been

used in problems such as object detection and recognition (Divvala et al., 2009;

Heitz and Koller, 2008), scene recognition (Murphy et al., 2004), and object seg-

mentation (Shotton et al., 2006). The idea of using context information for action

recognition has been tackled only in the last decade and has shown to significantly

boost performances in action recognition tasks starting from the first experiments

with static images (Yao and Fei-Fei, 2010b).

16



2.2. Computational Models

The recognition of human-object interaction activities relies heavily on the con-

textual information, e.g., the motion analysis and identification of the manipulated

objects (Gupta et al., 2009; Yao and Fei-Fei, 2010a). However, object detection

and recognition are subject to ambiguity due to clutter and occlusion or even bad

light conditions as long as appearance features are used, i.e., color, texture, and

shape cues. The difficulty is even higher when objects are being manipulated, due

to being partially visible or completely occluded. All these can have a negative

impact on the resulting action recognition performance. Another issue is the differ-

ence in the appearance of objects belonging to the same category, e.g., cups come

in different sizes and shape, however, they all serve the purpose of drinking. For

this, several approaches assign high-level, semantic attributes to each class of ob-

ject instead of relying on the single object category (Farhadi et al., 2009; Lampert

et al., 2009). Object attributes can describe parts (a car’s wheels), shape (rect-

angular), and materials (metallic). Although this has been shown to generalize

well to unseen objects and transfer information between classes, it has the disad-

vantage of being sensitive to the manual selection and assignment of the semantic

attributes.

The understanding of human activities is essential for various applications,

from surveillance systems in public places such as airports and subway stations to

human-computer interaction systems. The reliable recognition of human activities

is fundamental for real-time monitoring of people with disabilities, seniors, and

babies in a residential context or for assessing the progress of patients during the

at-home rehabilitation (see Fig. 2.4). Within this context, mobile robots may be

designed to process the sensed information and assist people according to their ne-

cessities. There has been an increasing number of ongoing research projects aimed

to develop assistive robots in smart environments for self-care and independence

of the elderly at home (Amirabdollahian et al., 2013; Cecchi et al., 2016). As a

result, advanced robotic technologies which comprise socially-aware human-robot

interaction have been developed. This increasing interest and effort are closely

related to the rising user acceptance (Torta et al., 2012). During the last decade,

people seem to advocate the use of assistive robots in their homes, be it for physi-

cal or mental training, or for support for basic daily tasks such as reminding them

when to take medication or drink/eat food. The positive effects on the senior’s

well-being through the use of socially assistive robots in domestic environments

is supported by recent studies as well (see Kachouie et al. (2014) for a review).

However, together with the promising results, robotic technologies introduce a vast

set of challenges and technical concerns which need to be addressed.
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Figure 2.4: A robot monitoring and assisting an elderly in a home environment.
In this example, the Care-O-Bot 3 robot (Reiser et al., 2013) offers water to the
elderly after detecting that she has not drunk enough water for a long time.

2.2.2 Recognition of Transitive Actions

Different approaches: Understanding human-object interactions requires the

integration of complex relationships between features of human body action and

object identity. From a computational perspective, it is not clear how to link

architectures specialized in object recognition and motion recognition, e.g., how to

bind different types of objects and hand/arm movements. Recently, Fleischer et al.

(2013) proposed a physiologically inspired model for the recognition of transitive

hand-actions such as grasping, placing, and holding. Nevertheless, this model

works with visual data acquired in a constrained environment, i.e., videos showing

a hand grasping balls of different sizes with a uniform background, with the role

of the identity of the object in the transitive action recognition being unclear.

Similar models have been tested in robotics, accomplishing the recognition of grip

apertures, affordances, or hand action classification (Prevete et al., 2008; Tessitore

et al., 2010).

Various approaches for the recognition of human-object interactions do not ex-

plicitly model the interplay between object recognition and body pose estimation.

Typically, first, objects are recognized and activities involving them are subse-

quently recognized, by analyzing the objects’ motion trajectories (Wu et al., 2007).

The approach from Yang et al. (2015) infers actions by considering all possible tri-

grams <Object1, Action, Object2> extracted from the sentences in the English

Gigaword corpus. Pieropan et al. (2014b) proposed including action-related audio
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cues in addition to the spatial relationship among objects in order to learn object

manipulations for the purpose of robot learning by imitation. However, important

descriptive visual features like body motion or fine-grained cues like the hand pose

during manipulation were not considered.

Probabilistic approaches have been extensively used for reasoning upon rela-

tionships and dependencies among objects, motion, and human activities. Gupta

et al. (2009) modeled hand trajectories with Hidden Markov Models (HMM) and

applied a Bayesian network for integrating the appearance of manipulated objects,

human motion, and reactions of objects. Following a similar approach, Ryoo and

Aggarwal (2007) introduced an additional semantic layer providing feedback to the

modules for object identification and motion estimation leading to an improvement

of object recognition rates and better motion estimation. Nevertheless, the sub-

jects’ articulated body pose was not considered as input data, leading to applica-

tions in a restricted task-specific domain such as airport video surveillance. Other

research studies have modeled the mutual context between objects and human pose

through graphical models such as Conditional Random Fields (CRF) (Yao and Fei-

Fei, 2012; Koppula et al., 2013; Kjellström et al., 2011). These types of models

suffer from high computational complexity and require a fine-grained segmentation

of the action sequences.

A different approach for the recognition of human-object interactions has been

the extraction of novel low-level visual features encoding the spatial relation-

ships between the human and the manipulated objects. Yao and Fei-Fei (2010a)

proposed the Grouplet feature which captures the spatial organization of im-

age patches encoded through Scale-Invariant Feature Transform (SIFT) descrip-

tors (Lowe, 2004). Their method is able to distinguish between interactions or

just co-occurrences of humans and objects in an image, but no applications on

video data have been reported. Aksoy et al. (2011) proposed the Semantic Event

Chains (SEC), i.e., a matrix whose entries represent the spatial relationship be-

tween extracted image segments for every video frame. Action classification is

obtained in an unsupervised way through maximal similarity. While this method

is suitable for teaching object manipulation commands to robots, the representa-

tion of the visual stimuli does not allow for reasoning upon semantic aspects such

as the congruence of the action being performed on a certain object.

Early attempts to apply neural networks for the problem of understanding

human-object interactions from visual perception yielded promising results. Shi-

mozaki and Kuniyoshi (2003) proposed a Self-Organizing Map (SOM) based hier-

archical architecture capable of integrating object categories, spatial relationships,
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and movement and it was shown to perform well on simple 2D scenes of ball

handling actions. However, compared to the static image domain, there is limited

work on understanding human-object relationships from video data sequences with

neural network architectures (Lea et al., 2016; Ma et al., 2017).

On object affordances: When reasoning about the environment in terms of

actions and objects the concept of affordances also comes into play. For this rea-

son, affordances have been a major focus of numerous robotic studies especially

in scenarios of robots learning by demonstration and action planning. However,

studies based on a practical interpretation of the concept do not provide a unified

view of how to represent affordances for effectively using them in complex scenar-

ios (see Jamone et al. (2016) for an overview). Early work from Fitzpatrick and

Metta (2003) put forward the idea that a robot can learn about affordances by

acting on objects and observing the effects. This idea was followed by a number

of researchers, who implemented methods for the learning of the action effects in

an unsupervised way and then clustering the stored experiences in order to dis-

cover object categories (Ugur et al., 2009; Ridge et al., 2010). In scenarios with

multiple objects, Stoytchev (2005) investigated the learning of affordances as a

tool-behavior pair that provides a desired effect but did not make associations

between the distinctive features of the objects and their affordances.

Although useful for robot operations, it is not clear how to bootstrap the affor-

dance knowledge acquired through self-exploration in order to generalize to previ-

ously unseen objects or to understand others’ actions. To address this problem,

different approaches describe objects in terms of the function of their geometrical

parts (Schoeler and Wörgötter, 2016) or through the modeling of the interaction

scene, for instance, by observing humans performing activities using objects and

clustering them into functional classes (Pieropan et al., 2014a). While such sys-

tems are very useful in practice (e.g., for a service or collaborative robot), they

do not provide insights into how humans use affordances to understand others’

actions. Therefore, even though the idea of endowing an agent with the capability

of reasoning about objects in terms of affordances is quite attractive, it also means

that the affordances need to be encoded in terms of sensory data such that gen-

eralizations can be made in different scenarios, e.g., an affordance model should

represent the roll-ability of an object but also the sit-ability of a chair, and this

seems to be an open challenge.

Body features from RGB-D data: Since the introduction of the low-cost

depth sensing devices, such as Microsoft Kinect and Asus Xtion, there has been

an extensive work in human action recognition from depth data (Cippitelli et al.,
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2016; Yang and Tian, 2014; Sung et al., 2012). Among a large number of human

body representation approaches we can distinguish between two broad categories:

1) representations based on the RGB-D information , and 2) representations based

on the 3D skeleton data. Some methods that belong to the first category use, for

instance, 3D silhouettes and extract spatiotemporal features from the temporal

evolution of the silhouettes during action performance (Li et al., 2010; Yang et al.,

2012). 3D silhouettes-based algorithms are usually view-dependent, thus more

suitable for describing actions parallel to the camera. A number of methods have

explored the use of the spatio-temporal interest points (STIP) descriptor for RGB-

D data. The advantage of this descriptor stands in its invariance to spatiotemporal

shifts and scales and its capability to deal with occlusions, thereby being suitable

for the recognition of human-object interactions. However, STIP-based methods

require the whole video as input and are very slow to compute, thus limiting their

real-time application. High computational cost and poor real-time performance

is also the major limitation of approaches based on 3D optical flow or scene flow

using RGB and depth (see Aggarwal and Xia (2014) for a review).

The representation of the human body as skeletons, i.e., an articulated system

of rigid segments connected by joints, has been of great interest long before the

proliferation of low-cost depth sensors. Back in 1973, Johannson’s experiments

evidenced the remarkable efficiency of the humans in recognizing actions by only

seeing animated figures of light spots attached to a person’s major joints (Jo-

hansson, 1973). In computer vision, researchers tried to extract skeletons from

silhouettes (Fujiyoshi et al., 2004) or label main body parts such as arms, legs,

torso, and head for activity recognition (Ben-Arie et al., 2002). By now, skeletal

joints tracking algorithms are built into the Kinect device or are offered by freely

available OpenNI libraries, thereby offering an easy access to the skeletal joint

locations in real-time applications. The convenience of this technology has led to

a great number of applications for the recognition of full-body actions and hand

gestures (Aggarwal and Xia, 2014; Parisi et al., 2015).

Unlike the features from 3D silhouettes, the skeletal joint features are invariant

to the camera location and subject appearance or to body size. Moreover, hu-

man action recognition schemes based on the skeletal joints features are better at

modeling finer activities compared to the 3D silhouettes based approaches. The

main limitation of the skeletal features is the lack of information about surround-

ing objects. For this, Wang et al. (2014) proposed a new 3D appearance feature

called Local Occupancy Pattern (LOP) describing the depth appearance in the

neighborhood of a 3D joint, and thus capturing the relations between the human
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body parts, e.g., hands, and the environmental objects that the person is interact-

ing with. Although their method produces state-of-the-art results, the identity of

the objects is completely ignored, and the discriminative power of such features is

unclear when the objects being manipulated are small or partially occluded. An

alternative method would be to model human-object interactions considering the

skeletal features combined with object recognition and tracking.

2.2.3 Motion Prediction

Motion analysis and prediction are an integral part of robotic platforms that coun-

terbalance the imminent sensorimotor latency. Well-known methods for tracking

and prediction are the Kalman Filter models, as well as their extended versions

which assume non-linearity of the system, and the Hidden Markov Model (HMM)s.

Kalman filter-based prediction techniques require a precise kinematic or dynamic

model that describes how the state of an object evolves while being subject to a set

of given control commands. HMMs describe the temporal evolution of a process

through a finite set of states and transition probabilities. Predictive approaches

based on dynamic properties of the objects are not able to provide correct long-

term predictions of human motion (Vasquez et al., 2008) due to the fact that human

motion also depends on other higher-level factors than kinematic constraints, such

as plans or intentions.

Neural networks provide an alternative approach for motion prediction. They

are known to be able to learn universal function approximations and thereby pre-

dict non-linear data even though dynamic properties of a system or state tran-

sition probabilities are not known (Schaefer et al., 2008; Saegusa et al., 2007).

For instance, the Multilayer Perceptron (MLP) and the Radial Basis Function

(RBF) networks, as well as Recurrent Neural Networks (RNNs) have found suc-

cessful applications as predictive approaches (Mainprice and Berenson, 2013; Bar-

reto, 2007; Ito and Tani, 2004; Zhong et al., 2012). A subclass of neural network

models, namely the Self-Organizing Map (SOM) (Kohonen, 1990), is able to per-

form local function approximation by partitioning the input space and learning

the dynamics of the underlying process in a localized region. The advantage of the

SOM-based methods is their ability to achieve long-term predictions at much less

expensive computational time (Simon et al., 2007).

Johnson and Hogg (1996) first proposed the use of multilayer self-organizing

networks for the motion prediction of a tracked object. Their model consisted of a

bottom SOM layer learning to represent the object states and the higher SOM layer

learning motion trajectories through the leaky integration of neuron activations
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over time. Similar approaches were proposed later by Sumpter and Bulpitt (2000)

and Hu et al. (2004), who modeled time explicitly by adding lateral connections

between neurons in the state layer, obtaining performances comparable to that of

the probabilistic models.

Several other approaches use SOMs extended with temporal associative mem-

ory techniques (Barreto, 2007), e.g., associating to each neuron a linear Autore-

gressive (AR) model (Walter et al., 1990; Vesanto, 1997). A drawback which is

common to these approaches is their assumption of knowing a priori the num-

ber of movement patterns to be learned. A better alternative would be to adopt

growing extensions of the SOM such as the Growing When Required (GWR) al-

gorithm (Marsland et al., 2002; Parisi et al., 2016a). The GWR algorithm has

the advantage of a nonfixed, but varying topology and requires no specification

of the number of neurons in advance. However, the prediction capability of the

self-organizing approaches in the case of multidimensional data sequences has not

been thoroughly analyzed in the literature.

2.2.4 Incremental Learning of Motion Patterns

In the context of learning motion sequences, an architecture capable of incremental

learning should identify unknown patterns and adapt its internal structure in con-

sequence. This topic has been the focus of a number of studies on the Programming

by Demonstration (PbD) (Billard et al., 2016). Kulić et al. (2008) used Hidden

Markov Models (HMMs) for segmenting and representing motion patterns together

with a clustering algorithm that learns in an incremental fashion based on intra-

model distances. In a more recent approach, the authors organized motion pat-

terns as leaves of a directed graph where edges represented temporal transitions

(Kulić et al., 2012). However, the approach was built upon automatic segmen-

tation which required observing the complete demonstrated task, thereby becom-

ing task-dependent. A number of other works have also adapted Hidden Markov

Model (HMM)s to the problem of incremental learning of human motion (Takano

and Nakamura, 2006; Billard et al., 2006; Ekvall et al., 2006; Dixon et al., 2004).

The main drawback of these methods is their requirement for knowing a priori the

number of motions to be learned or the number of Markov models comprising the

learning architecture.

Ogata et al. (2004) proposed a model that considers the case of long-term in-

cremental learning. In their work, an RNN was used to learn a navigation task

in cooperation with a human partner. The authors introduced a new training

method for the recursive neural network in order to avoid the problem of mem-
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ory corruption during new training data acquisition. Calinon and Billard (2007)

showed that the Gaussian Mixture Regression (GMR) technique can be success-

fully applied for encoding demonstrated motion patterns incrementally through a

Gaussian mixture model (GMM) tuned with an expectation-maximization algo-

rithm (EM). The main limitation of this method is the need to specify in advance

the number and complexity of tasks in order to find an optimal number of Gaussian

components. Therefore, Khansari-Zadeh and Billard (2010) suggested a learning

procedure capable of modeling demonstrated motion sequences through an adap-

tive GMM. Cederborg et al. (2010) suggested to perform a local partitioning of

the input space through kd-trees and training several local GMR models.

However, for high-dimensional data, the partitioning of the input space in a

real-time system requires additional computational time. Regarding this issue, it

is convenient to adopt self-organizing networks that perform in parallel the par-

titioning of the input space, through the creation of prototypical representations,

as well as the fitting of necessary local models. The application of a growing

self-organizing network, such as the GWR, allows for the learning of prototypical

motion patterns in an incremental fashion (Parisi et al., 2016a).

2.2.5 Action Prediction

The goal of human activity prediction has been formally defined as the capabil-

ity to infer an ongoing activity given an incomplete temporal observation (Ryoo,

2011). Subsequently, most of the existing recognition approaches which make a

decision at the end of an action sequence cannot be directly applied to the problem

of activity prediction. Several approaches have been proposed, often referred to as

early activity recognition, with the primary goal to infer the activity label from just

the initial part of the video sequence (see Fig. 2.5). Ryoo (2011) proposed two vari-

ants of the bag-of-words for capturing how the distribution of the spatiotemporal

features changes over time and represents video sequences as histograms. Train-

ing activity sequences were then modeled as histograms and comparison between

learned activity models and incomplete test observations were computed using a

dynamic programming algorithm. However, this approach did not account for

the sequential nature of the temporal events. Cao et al. (2013) extended Ryoo’s

work by dividing each activity into multiple temporal segments and estimating

the activity likelihood at each segment and finally combining the likelihoods to

achieve a global posterior probability. Lan et al. (2014) proposed the hierarchical

movemes, a new human motion representation that allows for describing motion

at multiple levels of granularity and developed a learning framework on top of it
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Figure 2.5: A comparison between the activity classification problem and the ac-
tivity prediction problem (reprinted with permission from Ryoo (2011)).

for performing action prediction. SOM-based architectures have also been pro-

posed for the purpose of action prediction (Ding et al., 2016) and motion sequence

completion (Okada et al., 2004; Araujo and Barreto, 2002; Parisi et al., 2016b).

However, the main goal of these approaches is to recognize an action while it is

unfolding rather than what is likely to happen next. The latter would require to

learn motion patterns and the temporal order of the atomic actions composing an

activity. This would allow, for example, a better planning of a robot’s response.

Typical hierarchical representations of the human activity rely on hybrid ap-

proaches in which perceptual sequences are learned, e.g., through a neural network

model, at the lower level and are combined into more complex sequences, or ac-

tivities, by assigning them arbitrary symbols or rules (Wermter, 2000; Taniguchi

et al., 2016). However, these symbols are usually fixed and defined a priori by the

designers based on their knowledge. For this purpose, many researchers believe

that symbolic processing should be performed exclusively with analog dynamical

systems, e.g., with neural network architectures (Arie et al., 2012; Nishimoto et al.,

2008).

Chersi et al. (2014) have proposed a SOM-based computational model that

combines principles of Hebbian learning and topological self-organization and re-

produces the encoding of actions as well as language in the brain. The learn-

ing mechanism of this model establishes neural pools, i.e., neurons responding to

similar visual input, and links among these pools which then form goal-directed
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neuronal chains. Although this model is quite interesting by considering human

cognition mechanisms, no results have been reported on real-world action recogni-

tion applications. The work of Koppula and Saxena (2016) addresses the problem

of anticipation of human actions at a fine-grained level of atomic actions. The

authors also focus on predicting not only what comes next but also how it is per-

formed. However, they demonstrate the capability of their architecture to generate

object trajectories, whereas no generation of body postures has been reported.

2.3 Summary

Humans possess an outstanding capability to easily infer and reason about ab-

stract concepts such as the goal of actions which can vary from immediate goals

related to a transitive action (e.g., take a cookie) to long-term intentions (e.g.,

prepare a romantic dinner) (Van Overwalle and Baetens, 2009). This capability

requires processing of complex visual stimuli regarding body movement patterns

and contextual cues, such as the manipulated objects as well as learning represen-

tations of the interaction stimuli. Since the discovery of the mirror neurons, the

underlying neural mechanisms for action processing and goal inference have been

of great interest to the neuroscience community (Rizzolatti and Fogassi, 2014).

The study of the cortical areas activated during action perception has provided

evidence for a highly distributed network of regions responsible for the coding

and integration of the different action components. Body motion cues are pro-

cessed through a hierarchy of spatiotemporal receptive fields with an increasing

complexity of the representation, i.e., higher-level areas process information accu-

mulated over larger temporal windows with increasing invariance to the position

and the scale of stimuli. Segregated pathways are engaged in the processing and

representation of the information about biological and non-biological stimuli, i.e.,

man-made objects (Beauchamp et al., 2002). The brain then integrates all streams

of information as well as engages higher-level cortical areas in order to infer ac-

tion goals in spite of apparent ambiguities. The underlying biological mechanisms

for this process are largely unknown and complex, yet have been of fundamental

importance to the development of basic artificial systems for the recognition or

imitation of hand actions and provide a stepping stone to the robust recognition

of whole-body transitive actions in real-world scenarios.

The goal of learning-based systems for the visual recognition of human activ-

ities is to automatically extract spatiotemporal descriptions of movements from

sequences of images and learn action templates to compare to during the deter-

26



2.3. Summary

mination of the action label of a new sequence. The development of systems for

the recognition of transitive actions is computationally more effortful than for sim-

pler human activities such as gestures and single-person actions like walking and

jumping due to requiring more fine-grained visual analysis. In the last decade,

progress on transitive action recognition was accelerated by the latest technologi-

cal advancements in visual sensing devices and the increase in the computational

power of modern graphics processing units (GPU). In particular, the use of the

low-cost depth sensing devices such as Microsoft Kinect and Asus Xtion cameras is

quite promising due to the computational efficiency in sensory data processing and

the real-time performance that such technology offers. Deep neural networks, on

the other hand, are recently exhibiting high accuracy in terms of action recognition

from large-scale datasets including actions that involve human-object interactions.

However, despite recent progress in the field of action recognition, important ques-

tions remain open on how to extract and better process body features and how

to encode spatial relationships between the human and the manipulated objects

for effectively learning the complex dynamics of transitive actions in real-world

scenarios. Further challenges have to be addressed such as the unreliable body

tracks or systematic sensor errors affecting the integrity of the input stream. Most

importantly, intelligent systems should not be limited to the recognition of human

behavior but should also anticipate it while continuously adapting to the changing

environment.

In the next chapters, we propose a set of neural network architectures for

transitive action recognition and anticipation from RGB-D videos. We design our

architectures taking into account some aspects of the biological transitive action

perception and seek to achieve robust and online adaptable intelligent systems for

enhancing human-robot interaction.
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Chapter 3

Self-Organizing Networks

Neural network models of self-organization are inspired by biological findings such

as the Hebbian learning and the brain maps plasticity (Hebb, 1949). These mod-

els have been applied to a variety of applications such as data compression and

visualization, clustering, pre-processing of large datasets, classification, and regres-

sion. Moreover, they have shown their applicability in several high-level cognitive

functions such as human action recognition as well as multi-modal perception (Shi-

mozaki and Kuniyoshi, 2003; Ding et al., 2016; Parisi et al., 2016b). In this chap-

ter, we provide an overview of existing self-organizing networks. We start with

the competitive Vector Quantization (VQ) (Biehl et al., 2016) method and the

Self-Organizing Map (SOM) network proposed by Kohonen (1990). Both com-

prise most of the computational ingredients that facilitate the understanding of

the growing self-organizing networks described later on. In particular, we review

the main properties, functionality, and drawbacks of each model while progres-

sively moving towards hierarchical network arrangements for processing temporal

sequences.

3.1 Self-Organization in the Brain

The main structures of the brain are determined genetically (Shatz, 1992). Humans

are born with almost all neurons they will ever have. However, during lifetime,

the brain becomes bigger because neurons grow in size and the number of connec-

tions increases. Continuous stimulation from the environment requires the brain

to adapt by modifying its internal structure in order to achieve higher functional

complexity and increase the probability of survival. There exists evidence show-

ing that extrinsic factors such as sensory experience define the way patterns of

connectivity and functions of the cortex are shaped. The earliest are studies from
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Figure 3.1: A somatotopic map of the body surface onto the primary somatosen-
sory cortex. Neurons in each area are most responsive to the parts of the body
illustrated above them1.

the mammalian visual system, especially during the neonatal stages. Mountcastle

(1957) and later Hubel and Wiesel (1962) found that certain neural cells in the cat’s

brain respond selectively to some specific sensory stimuli. These cells are arranged

in the so-called brain maps, in which their topological location corresponds to some

stimuli property, e.g., orientations, in an orderly fashion. Different studies suggest

that the brain maps are strongly modified by visual experiences (Merzenich et al.,

1983; Golarai et al., 2017) and that visual inputs are crucial for the normal cortical

organization in general (Blakemore and Cooper, 1970; Hirsch and Spinelli, 1970).

The brain’s adaptation is also evident in case of injuries or sensory deprivation at a

young age. A brain tumor, for instance, elicits the so-called cortical reorganization,

meaning that different parts of the brain attempt to compensate for the functional

deficit of the affected area (Fisicaro et al., 2016). These effects are explained by

the brain’s plasticity and they demonstrate the neural cells’ self-organization that

is mainly driven by sensory information.

Similar to the visual cortex, also other cortical areas of the brain exhibit topo-

graphic arrangements which are driven by the sensory information (Arbib, 2003).

In the somatosensory cortical area, for instance, the inputs received from receptors

of different body regions are organized topographically into the so-called somato-

1Figure adapted from: https://blogs.aalto.fi/neuroscience/
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topic maps (see Fig. 3.1). How the topography is developed and maintained has

been the subject of a number of studies (Buonomano and Merzenich, 1998), which

have identified synaptic plasticity and local excitation and inhibition, i.e., neural

cells exciting the closest neighbors and inhibiting the more distant ones, as two

necessary conditions for the development of the somatotopy. Other examples are

the tonotopic map (Reale and Imig, 1980) in which the spatial order of the cell

responses correspond to the pitch of acoustic frequencies of tones perceived, or

the semantic space recently analyzed and visualized in details by a fMRI study

conducted by Huth et al. (2012). This study showed that the brains of different

individuals represent object and action categories in a common semantic space

that is mapped smoothly onto the cortical sheet so that nearby points in cortex

represent semantically similar categories.

Synaptic plasticity is a process that affects the strengths of synaptic connec-

tions between neurons during the learning process and plays an important role in

the brain’s adaptation. The most well-known theory describing the basic mech-

anisms of synaptic plasticity was first proposed by Donald Hebb in 1949 (Hebb,

1949), postulating that simultaneous activation of two neurons leads to an in-

crease in synaptic strength between them. This learning mechanism is at the core

of most computational models (Floreano and Mattiussi, 2008). Hebb’s rule implies

strong locality of the plasticity since the modification of the synapses depends only

on the presynaptic and the postsynaptic neurons. It also introduces the concept

of activity-induced reinforcement or weakening of the synapses. There are several

other neurophysiological processes that contribute to the brain’s adaptation such as

the neurogenesis (Boldrini et al., 2018; Sorrells et al., 2018), the growth and death

of the connections and the molecular modifications of the neuron membrane (Tier-

ney and Nelson III, 2009). However, these processes are less understood than the

activity-dependent synaptic changes and are thus less frequently incorporated in

computational modules of neural systems.

Attempts for modeling the brain maps date back in the 1970s with the work

from Von der Malsburg (1973) and Grossberg (1976) who formulated biologically

plausible models capable of self-organizing in an unsupervised environment. In

these models, the emergence of feature-sensitive cells was implemented by the so-

called competitive learning, i.e., the adaptation of the strongest activated cells to

the given input made them become tuned to specific input features. These ideas

were later embodied into the best-known and most popular model of self-organizing

networks, namely the self-organizing maps proposed by (Kohonen, 1982). During

training, SOMs build a neural map through the so-called vector quantization, a
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process that finds prototype vectors for encoding a submanifold of the input space.

Through such process, the network learns topological relations of the input space

in an unsupervised manner.

3.2 Competitive Vector Quantization

Vector Quantization (VQ) is a quantization technique that models a probability

density function through a finite set of prototype vectors which are often referred

to as code-vectors, and the set of code-vectors is called a codebook. The standard

vector quantization was introduced by Dirichlet (1850) with the so-called Dirich-

let tessellation in two- and three-dimensional spaces and by Voronoi in spaces of

arbitrary length (Voronöı, 1908). The idea behind vector quantization is to par-

tition the input space into a finite number of regions, called Voronoi regions, and

to find an optimal prototype vector for each region. In the end, the prototype

vectors should represent the data as faithfully as possible. If we consider data

samples from the Euclidean space, the goal would be to compute prototypes with

the smallest Euclidean distance from the input.

Competitive VQ (Biehl et al., 2016) is a very basic scheme for unsupervised VQ

which employs the concept of competitive learning (Rumelhart and Zipser, 1985),

i.e., in each learning iteration the prototypes compete for updates. So, given a set

of P data vectors {xi ∈ R
N}, i = 1, 2, ...P , and a set of prototypes with the same

dimensionality W = {w1,w2, ...,wK}, the learning of the competitive VQ method

is guided by a cost function called quantization error, defined as:

HV Q =
P
∑

i=1

1

2
||wb − xi||

2, (3.1)

where wb ∈ R
N denotes the prototype with the smallest Euclidean distance from

the input vector xi ∈ R
N :

||wb − xi|| ≤ ||wj − xi||, j = 1, 2, ..., K. (3.2)

In words, the quantization error is the sum of the distances of all individual input

vectors from their respective closest prototype. The competitive VQ follows a

stochastic gradient descent approach for the minimization of the cost function

HV Q. At each time step, a single input vector xi is randomly selected and the

closest prototype vector, or winner, wb is computed following Eq. 3.2. Then, the
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winner prototype is updated according to the equation:

∆wb = ǫ(t) · (xi −wb), (3.3)

where the learning rate ǫ(t) < 1 controls how much the prototypes are updated. As

in any stochastic gradient descent approach, the convergence of the prototype vec-

tors is guaranteed by employing a time-dependent learning rate, initially set to an

arbitrary value for then slowly approaching zero in the course of training (Robbins

and Monro, 1985).

Typically, the prototypes are placed at randomly selected data points and are

then moved during learning into regions with the highest density of the input space.

However, the training outcome is very sensitive to the prototype initialization. If,

for instance, the prototypes are initially placed in empty regions of the input space,

they may never be identified as the winner of any data point, thus remaining

unchanged during the whole training process. For this reason, the concept of

neighborhood cooperativeness between prototypes was introduced by Kohonen as

part of his biologically motivated model, the self-organizing maps.

3.3 The Self-Organizing Map

The Kohonen’s Self-Organizing Map (SOM; Kohonen (1990)) was originally pro-

posed as a biologically inspired model of the brain maps. In the SOM, the proto-

type vectors are neurons assigned with weights of the same dimensionality as the

input space. Topological relations are imposed between neurons. Typically, their

position is arranged in a two-dimensional grid, or so-called neural lattice A. Unlike

the VQ method, the update of the weights affects not only the winner neuron,

i.e., the neuron with the smallest Euclidean distance from the current input data

sample but also the neurons in its immediate neighborhood defined by a Gaussian

function:

hSOM(t) = exp

(

−
||b− r||2A
2σ(t)2

)

, (3.4)

where ||b − r||2A is the Euclidean norm, b and r are the positions of the winner

neuron and its neighbor in the lattice A, and σ(t) limits the neighborhood range.

Then, all prototype neurons are updated according to:

∆wr = ǫ(t) · hSOM(t) · (xi(t)−wr). (3.5)
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Thus, all neurons within the defined neighborhood range are updated, though to

a lesser extent. The learning rate ǫ(t) is a monotonically decreasing function of

time between [0, 1], for instance, the exponentially decreasing function defined as:

ǫ(t) = ǫ0

(

ǫT
ǫ0

)
t
T

. (3.6)

The neighborhood radius σ(t) is a monotonically decreasing function of t as well.

The values are fairly large at the beginning of the learning process in order to

develop the rough topological ordering of the prototype vectors and are then grad-

ually reduced to allow for the convergence towards optimal values.

The key feature of the SOM is that it provides a low-dimensional, topology-

preserving representation of the input space in the following sense: input samples

with small Euclidean distance are mapped either to identical or adjacent neurons

on the map. Similarly, neurons which are neighbors in the map correspond to

prototype vectors with a small Euclidean distance in the input space. This con-

stitutes a powerful tool for the visualization of high-dimensional data and can be

extended with posterior labeling for being employed in classification and regression

tasks. However, a main drawback of the SOM is the fixed topology that may limit

the resulting mapping accuracy. For more details on this matter and examples of

applications and different implementations, we refer the reader to a recent review

of the SOM by Kohonen (2013).

Neural Gas

Inspired by Kohonen’s approach, Martinetz and Schulten (1991) developed a VQ

scheme with neuron neighborhood cooperativeness, called the Neural Gas (NG)

algorithm. Similarly to the SOM, the NG consists of a competitive layer with a

fixed number of neurons that must be defined a priori. However, the network’s

structure is not fixed and adapts to the input data distribution through the learning

process.

The main idea of the NG is to update several prototypes at a time, not based on

their vicinity to the winner prototype neuron defined by the network’s structure,

but according to their rank with respect to the distance from the given sample. At

each time step t, an input vector x is randomly selected from the dataset and the

prototype neurons are ordered based on the distance to the given sample and are

assigned a rank k. Then, each neuronW = {wj, j = 1, ..., K} is adapted according
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to:

wj(t+ 1) = wj(t) + ǫ · exp

(

−
kj
λ

)

· (x−wj), (3.7)

where ǫ is the learning rate, the exponential function represents the neighborhood

function which decreases with increasing ranks, and λ determines the range of the

neighborhood with respect to the prototype ranks, thus defines the prototypes with

significant updates. The learning rate ǫ and the range λ decrease with increasing

t.

After a sufficient number of adaptation steps, the neurons will cover the data

space with a minimum representation error. In fact, since the structure of the net-

work is not constrained by a fixed topology, the NG has been shown to minimize

the quantization error. However, the algorithm requires the number of neurons to

be chosen a priori and cannot be changed over time. Depending on the relation-

ship between inherent data dimensionality, some information on the topological

arrangement on the input data may be lost when being mapped.

3.4 Growing Self-Organizing Networks

Growing networks address the limitations of the so far described models by creating

(or removing) neurons to support the correct formation of topological maps. Mod-

els like the Growing Neural Gas (GNG) and the Growing When Required (GWR)

network have the ability to incrementally add neurons based on representation

errors and preserve the input’s topology through the learning process by applying

the Competitive Hebbian Learning (CHL) method (Martinetz, 1993). These mod-

els have been successfully applied for clustering human motion patterns in terms

of multi-dimensional flow vectors (Parisi et al., 2014, 2015) as well as for learning

object representations without supervision (Donatti et al., 2010). In this section,

we provide a comparison between the GNG and the GWR models.

Competitive Hebbian Learning

As mentioned in Section 3.2, the standard vector quantization procedure partitions

the input manifold V ⊂ R
N into a number M of Voronoi regions. These regions

are defined as:

Vi = {v ∈ V : ||v−wi||
2 ≤ ||v−wj||

2 ∀i 6= j}, (3.8)
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(a) (b) (c)

Figure 3.2: (a) The Voronoi tessellation. The dashed lines delineate the Voronoi
regions for the given data points. (b) The solid lines are the edges of the Delau-
nay triangulation, connecting points with a neighboring Voronoi region. (c) The
induced Delaunay triangulation. Edges exist only in areas where P (x) > 0.

where all vectors in V have a distance to wi not greater than their distance to wj.

The set {Vi}
M
i=1 forms a partition of V and is known as a Voronoi tessellation or

the Voronoi diagram of V , while the points {wi}
M
i=1 are called generating points

or centers. The geometric dual, the Delaunay triangulation is a graph in which

the nodes are the generating points and points of adjacent Voronoi regions are

connected by an edge. These two closely related data structures are one of the most

fundamental data structures in computational geometry (Aurenhammer, 1991).

The CHL as proposed by Martinetz (1993) provides a way to generate Delaunay

triangulation graphs from a given set of centers. The principle of this method is:

For each input signal x, an edge is inserted between the two closest

nodes, measured by the Euclidean distance.

The resulting graph is a subgraph of the Delaunay triangulation, called the “in-

duced Delaunay triangulation”. In this subgraph, two centers are only connected

if the common border of their Voronoi regions lies at least partially in the input

space, i.e., where P (x) > 0. The induced Delaunay triangulation has been shown

to preserve the input topology in a very general sense (Martinetz, 1993).

The idea underlying the GNG algorithm when originally proposed by Fritzke

(1995) was the combination of the Neural Gas model, used for the purpose of

vector quantization, i.e., for defining the centers of the Voronoi regions, with the

CHL principles. In fact, the CHL is the essential component of both the GNG

and the GWR networks since it is used for creating network edges which guide the

local adaptation of the nodes. Additionally, the incremental networks adopt an

edge-aging mechanism for the removal of the edges between nodes not belonging

anymore to adjacent Voronoi regions after several updates. For this, each edge is

associated with an age which can be incremented during learning. Those edges
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with an age exceeding a predefined threshold are removed and nodes with no

connections, i.e., isolated nodes, are removed consequently.

Growing Neural Gas

The GNG network starts with a set of N = 2 neurons in the input space. At

each learning iteration, the algorithm is given a random input x(t) drawn from the

input distribution p(x). The closest neuron b and the second closest neuron s in

N are computed as follows:

b = argmin
n∈N

||x(t)−wn||,

s = arg min
n∈N/{b}

||x(t)−wn||,
(3.9)

and if the connection (b, s) does not exist, it is created. If the edge exists already,

its age is reset to zero. The local quantization error of b is updated by ∆Eb =

||x−wb||
2. The weight vector of the first best-matching unit, wb, and the weights

of all the topological neighbors of b, wi, are moved towards the input x:

∆wb = ǫb · (x(t)−wb),

∆wi = ǫi · (x(t)−wi),
(3.10)

where the learning rates are such that ǫi < ǫb. This means that the neighbors are

updated to a lesser extent compared to the winner neuron.

If the number of learning iterations is a multiple of a predefined parameter

λ, a new neuron is created halfway between the neuron with the largest accumu-

lated error and its topological neighbor with the largest accumulated error. The

connection-age-based mechanism takes care of removing rarely used connections

and neurons without connections as a consequence. The algorithm stops when a

criterion is met, i.e., some performance measure, network size, or a given number

of training epochs.

The λ parameter has a significant impact on the performance of the algorithm.

Setting the parameter low will results in a poor initial distribution of the nodes

and the accumulated local error will be badly approximated in the first learning

iterations. A higher λ, on the other hand, results in a slower network’s growth

and requires the algorithm to run for many iterations in order to achieve a good

node distribution. The fixed value of the λ parameter leads to a constant neural

growth which inhibits the network to adapt to rapidly changing distributions. For

this reason, the author proposed the GNG with Utility Factor (GNG-U), which

37



Chapter 3. Self-Organizing Networks

relocates less useful nodes during training (Fritzke, 1997). However, this adds

another parameter to the algorithm which, when not selected carefully, affects

significantly the network’s behaviour (Holmström and Gas, 2002).

Growing When Required

Unlike the GNG which creates new neurons at a fixed growth rate, the GWR

algorithm proposed by Marsland et al. (2002) creates a new node whenever the

network’s activation is not sufficiently high. The amount of network activation at

time t is computed as a function of the distance between the current input x(t)

and its best-matching unit wb:

a(t) = exp(−||x(t)−wb||). (3.11)

New neurons are added when the activity of the best-matching unit is not higher

than a predefined insertion threshold aT . In order to handle both the creation

of new neurons as well as their adequate training, the GWR algorithm adopts

a mechanism for measuring how often each neuron has fired. This firing rate is

initially set to one and then decreases every time a neuron is trained in the following

way:

∆h = τ · κ · (1− h)− τ, (3.12)

where τ and κ are constants controlling the behavior of the decreasing curve. These

constants are set in a way to reduce faster the firing counter of the winner neuron

than of its neighbors. The firing rate is considered also during the update step

of the network. The position of the winner neuron and its neighbors are moved

towards the input x(t):

∆wb = ǫb · hb · (x(t)−wb),

∆wi = ǫi · hi · (x(t)−wi).
(3.13)

The use of the activation threshold and firing counters to modulate the growth of

the network leads to create a larger number of neurons at early stages of the training

process. Afterward, the created neurons are fine-tuned to the input data through

subsequent training epochs. This makes the GWR algorithm more suitable than

the GNG algorithm for learning representations of non-stationary datasets and for

the incremental learning of sensory data since neurons are created immediately to

represent the new region in the input space. The GWR algorithm iterates over the

given data until a given stop criterion is met, e.g., a maximum network size or a
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maximum number of iterations. The learning algorithm for GWR is illustrated in

Appendix B.

The standard GNG and GWR learning algorithms do not account for temporal

sequence processing. Therefore, there is a motivation to extend these networks

while preserving desirable learning properties such as computational efficiency and

network convergence.

3.5 Self-Organizing Networks for Temporal Se-

quences

In all the methods discussed so far the network’s response and the activation

values computed at time step t are based only on the input at time step t. The

temporal aspect of the input data does not play a role during learning, thus such

methods are not suitable for temporal sequence processing. In such cases, the

goal would be to inspect an input signal at a given time step, taking into account

its temporal context. For a topology-preserving algorithm, this means that input

signals mapped to neighboring neurons should have both the value x(t) and their

temporal context similar. There have been quite a few extensions proposed for

the SOMs, the GNG, and the GWR networks in order to learn spatiotemporal

dynamics of the input. We will review here only the methods which are relevant

for understanding our work.

3.5.1 Delay Embedding

One method for handling temporal sequences with a self-organizing network is by

embedding time into the input data samples at each learning iteration. The delay-

embedding technique, also often referred to as the sliding time window technique,

comprises the specification of a temporal window over the input sequence and the

concatenation of the corresponding successive items into a single vector of higher

dimensionality. The advantage of this technique, being simply a pre-processing of

the input data, is that it preserves all the network properties of the self-organizing

algorithms. On the other hand, it may demand a higher computational effort

because of the increase of the input dimensionality, which slows the network’s

training. However, such a strategy has been shown to produce very good results

in recognition tasks because the relevant temporal information is always explicitly

available (Parisi et al., 2014, 2015).
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Figure 3.3: Distribution of the representations learned with a GWR network for
the Mackey-Glass time series. From left to right, the values of the time window
size and the lag parameter have been set to q = {2, 10, 20} and ξ = {1, 5, 10}
respectively.

Referring to Takens’s embedding theorem (Takens, 1981), it is possible to re-

produce entirely the properties of a deterministic dynamical system starting from

a series of observations. The embedding technique consists of grouping equidistant

observations x = (xi)i=1,...,N into vectors of dimension q such that:

ψi(x) = {xi,xi−ξ, ...xi−(q−1)ξ}, i ∈ [q,N ], (3.14)

where q is the width of the time window and ξ is the so-called time delay or the lag

parameter. Both q and ξ are data-dependent and are chosen in order to achieve a

good input reconstruction. In general, the choice of the lag is selected in order to

maximize the independence of the components in ψi(x), but still keeping the value

of ξ small. The lag parameter has been found to play an import role in obtaining

meaningful spatiotemporal clusters as well (Simon et al., 2006).

An example for the processing and learning of continuous temporal sequences

is the well-known Mackey-Glass time series described by the differential equation
dx
dτ

= bx(t) + ax(τ−d)
x(t−τ)10

, using a = 0.2, b = −0.1, d = 17. To demonstrate the effects

of the two delay embedding parameters, we train a GWR network on the series

after being pre-processed following Eq. 3.14. We use three different parameter

settings: q = {2, 10, 20} and ξ = {1, 5, 10}, while keeping the learning parameters

for the GWR algorithm unchanged. The distribution of the learned spatiotemporal

representations is illustrated in Fig. 3.3. As can be seen from the figure, the greater

the lag parameter ξ, the more spreads the distribution of the representations in

the time series domain. Moreover, with the increasing value of each parameter, the

GWR algorithm increases the number of generated neurons N = {80, 250, 340} in

order to cover the input space sufficiently.
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Neuron Activation Trajectories

Another method for learning spatiotemporal dependencies without affecting the

self-organizing network’s learning dynamics is to train the network without con-

sidering the temporal dimension and then post-process the outputs with the so far

described time window technique. One popular method of this type is the so-called

trajectory-based SOM (Kohonen, 1988) which takes into account temporal relations

among succeeding best-matching units. This means that for fixed time intervals

of width q, the best-matching units are computed and their position is recorded

on the map. Then, the spatiotemporal representations are built by concatenating

the subsequent best matches of each temporal interval into single vectors:

ψSOM
i (x) = {b(xi), b(xi−1), ...b(xi−(q−1))}, i ∈ [q,N ], (3.15)

where b(·) indicates the position of the winner neuron matching the input in each

time step t. These spatiotemporal vectors can be visually illustrated as neuron

activation paths or trajectories in the map, hence the name of this method.

The activation trajectory strategy cannot be applied in the current form to the

growing self-organizing networks, for instance, to the GWR, due to the fact that

the topological arrangement of the neurons is dynamic and changes during the

learning process. So instead of the neurons’ position, it is possible to concatenate

the weight vectors associated with consecutively activated neurons:

ψGWR
i (x) = {wb(xi),wb(xi−1), ...wb(xi−(q−1))}, i ∈ [q,N ]. (3.16)

Trajectories of the neural activations from one network can be used as input for

the training of a subsequent network in a self-organizing multi-layer architecture.

In this way, it is possible to obtain neurons coding progressively increasing spa-

tiotemporal dependencies of the input. This hierarchical learning strategy has been

shown to produce very good results in the human body pose and motion processing

and classification (Parisi et al., 2015).

3.5.2 Recurrent Connections

The temporal dynamics of an observed signal can be taken into account by a self-

organizing network during local node adaptations as well. This can be obtained,

for instance, by introducing recurrent connections, whereby past network outputs

are fed back into the network and contribute to the current network’s activation

at each learning iteration. Early models often relied on leaky integrators, such as
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the so-called temporal Kohonen maps (TKM; Chappell and Taylor (1993)) or the

recurrent SOM (Varsta et al., 1997). More recent models incorporate an explicit

representation of the temporal context. Such a context is attached to every neuron

and is learned in a similar way as the neuron weights itself. Examples for this

principle include Merge SOM (Strickert and Hammer, 2005), Merge NG (Strickert

and Hammer, 2003), Merge GNG (Andreakis et al., 2009), γ-SOM (Estévez and

Hernández, 2009), γ-NG (Estevez et al., 2011), γ-GNG (Estévez and Vergara,

2013), and γ-GWR (Parisi et al., 2017a). These methods differ in the way in

which the temporal context is represented but rely on a similar treatment of the

temporal dynamics of the input signal.

In general, the performance of the gamma models is better than those of the

merge models with respect to the temporal quantization error metric (Voegtlin,

2002). This is due to the fact that for the gamma models the temporal context

is extended in order to equip each neuron with an arbitrary number of context

descriptors leading to an increase in memory depth and temporal resolution. In

the gamma models, each neuron is equipped with a weight vector wi and a set of

context descriptors C = {ci1, c
i
2, ..., c

i
K}, k = 1, ..., K, where K is the Gamma filter

order. The computation of the winner neurons in a network is as follows:

di(t) = αω · ||x(t)−wi||
2 +

K
∑

k=1

αk · ||Ck(t)− cik||
2, (3.17)

Ck(t) = β · c
It−1

k + (1− β) · c
It−1

k−1 ∀K = 1, ..., K, (3.18)

where α, β ∈ (0; 1) are constant values that modulate the influence of the current

input and the past, and c
It−1

0 = wIt−1 with random cI0k at t = 0. Both depth and

temporal resolution are modulated by the value of β. The depth measures how far

into the past the internal memory stores information and the resolution indicates

the degree to which the information carried from each individual element of the

input sequence is preserved. When using a K = 1, this approach reduces to the

learning mechanism of the merge models.

Estévez and Vergara (2013) provide an extensive nonlinear time series analysis

with the γ-GNG, showing that their model builds some kind of delay embedding

using Gamma filters instead of delay coordinates. However, the model needed a

careful selection of the β parameter and of the number of context descriptors K.

The parameter selection was carried out through a grid search for the minimization

of the temporal quantization error on a given dataset, followed by picking the model

with the maximum mutual information from the first 10 results.
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3.6 Summary

Computational models for self-organization constitute a highly attractive and ver-

satile framework for the unsupervised learning of complex and potentially high-

dimensional data. The conceptual simplicity of the models has allowed the de-

velopment of a number of extensions and efficient training schemes for dealing

with static input as well as temporal sequences. In addition to improving the

understanding of cortical map organization via the development of simplified com-

putational models, self-organizing networks have been successfully applied to a

large number of tasks, from simple data analysis to more complex ones such as the

recognition of human action sequences from multiple visual and auditory cues. In

particular, growing self-organizing networks have been an effective model for clus-

tering human motion patterns in terms of multi-dimensional flow vectors (Parisi

et al., 2014, 2015) as well as for learning object representations without supervi-

sion (Donatti et al., 2010). The generative nature of this type of networks makes

them particularly suitable for the task of learning human-object interactions when

considering a possible generalization towards unseen action-object pairs.

One important strength of the self-organizing networks and, in general, of

prototype-based systems is their flexibility with respect to the choice of similarity

metrics. The Euclidean distance function takes into account all features with the

same weight, however, depending on the nature of the problem at hand, other

choices may be more suitable. A weighted Euclidean distance, for instance, is

a good alternative in case the feature vector is an integration of different sen-

sory sources or of different properties, e.g., the body motion expressed as three-

dimensional joints in space and the identity of the manipulated objects during the

perception of human-object interactions. If we want to give both data the same

importance during distance computation, a weighted Euclidean distance must be

applied as we will see in Chapter 6. The neural insertion criteria in the grow-

ing self-organizing models is another versatile component that can be adapted to

the task at hand. For instance, if data labels are available, they can be used to

optimize internal neural representations as we will see in Chapter 7.

So far, computational models of self-organization have shown their applicabil-

ity in several high-level cognitive functions such as human action recognition and

multi-modal perception (Parisi et al., 2016b). In the next chapters, we propose

a set of learning architecture for the recognition of human-object interaction sce-

narios where the integration of visual context plays a decisive role in achieving a

good performance. Furthermore, we show how simple modifications of the com-

putational steps in a hierarchical GWR algorithm can be implemented for online
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motion learning and prediction in robotic scenarios. We show how Hebbian learn-

ing of inter-modular neural connections can create an architecture sensitive to the

temporal order of action segments and thus applied for action prediction. Finally,

we show how hierarchical arrangements of GWR networks with different temporal

resolutions, equipped with top-down modulation mechanisms, can contribute to

the emergence of hierarchical action representations from visual input.
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Chapter 4

Learning Human-Object

Interactions with a

Self-Organizing Architecture

4.1 Introduction

The recognition of transitive actions, i.e., actions that involve the interaction with

an object, represents a key function of the human visual system that fosters learn-

ing and social interactions. Given the outstanding capability of humans to infer

the goal of actions from the interaction with objects, the biological visual system

represents a source of inspiration for developing computational models. The ability

of computational approaches to reliably recognize human-object interactions can

establish an effective cooperation between assistive systems and people in real-

world scenarios, promoting learning from demonstration in robotic systems (Pre-

vete et al., 2008; Tessitore et al., 2010).

From the computational perspective, an important question arises regarding

the potential links between the representations of body postures and manipu-

lated objects and, in particular, how these two representations interact and can

be integrated. As discussed in Section 2.1, the information about body pose and

objects are processed separately and reside in distinct areas of the human visual

cortex (Beauchamp et al., 2002; Downing and Peelen, 2011; Grill-Spector, 2013).

Neuroscientists have widely studied object and action perception, with a focus on

where and how the visual cortex constructs invariant object representations (Hubel

and Wiesel, 1962) and how neurons in the superior temporal sulcus (STS) area en-

code actions in terms of patterns of body posture and motion (Grossman and Blake,
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2002; Giese and Poggio, 2003). As discussed in Section 2.1.2, the identity of the

objects plays a crucial role for the complete understanding of human-object inter-

actions (Saxe et al., 2004) and modulates the response of specific action-selective

neurons (Gallese et al., 1996; Nelissen et al., 2005; Yoon et al., 2012). Yet, little

is known about the exact neural mechanisms underlying the integration of actions

and objects.

In this chapter, we propose a self-organizing neural architecture that learns to

recognize human-object interactions from videos in real time. The design of the

proposed architecture relies on the following assumptions:

• The visual features of body pose and man-made objects are represented in

two distinct areas of the brain (Downing and Peelen, 2011; Grill-Spector,

2013; Beauchamp et al., 2002) (see Section 2.1).

• Input-driven self-organization defines the topological structure of specific vi-

sual areas in the brain (Miikkulainen et al., 2006) (see Section 3.1).

• The representations of object and action categories are based on prototyp-

ical examples. Prototype-based learning has its counterpart in cognitive

psychology, which hypothesizes that a category is represented by a number

of representatives and class membership is based on resemblance (Rosch and

Mervis, 1975).

• The identity of the objects is crucial for the understanding of actions per-

formed by other individuals (Saxe et al., 2004; Gallese et al., 1996).

We develop a hierarchical architecture with the use of growing self-organizing net-

works, namely the Growing When Required (GWR) network (Marsland et al.,

2002), to learn prototypical representations of actions and objects and the result-

ing action-object mappings in an unsupervised fashion. The architecture consists

of two network streams processing separately feature representations of body pos-

tures and manipulated objects. A second layer, where the two streams are inte-

grated, combines the information in a self-organized manner for the development

of action–object mappings. The visual identification and segmentation of the body

pose from RGB videos are challenging due to the spatial transformations compro-

mising the appearances, such as translations, the difference in the point of view,

changes in ambient illumination, and occlusions. For this reason, we consider

three-dimensional body skeletal representations, which are the most straightfor-

ward way of achieving invariance to the subjects’ appearance and body size, for

instance, through normalization. Moreover, three-dimensional articulated body
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pose and motion in real-world can be easily obtained through widely available

low-cost depth sensor technologies, such as the Asus Xtion cameras.

We evaluate our architecture with a dataset of RGB-D videos containing daily

actions, which will be introduced in Section 4.2.1, acquired for the purpose of this

study. In particular, we look into the role of the objects’ identity as contextual

information for distinguishing between different activities, the classification per-

formance of our architecture in terms of recognition of human-object interaction

activities, and the response of the network when fed with congruent and incongru-

ent action-object pairs. Furthermore, we provide an evaluation of the performance

of our architecture with respect to the state of the art in the transitive action

recognition from RGB-D data with experiments on a publicly available bench-

mark dataset CAD-120 (Koppula et al., 2013). The actual body pose feature

extraction and the segmentation and representation of the objects are described

in Section 4.3. We present and discuss our results on both datasets in Section 4.5.

4.2 Datasets

In this chapter, we will provide experimental results on two datasets for the recog-

nition of human-object interactions from RGB-D videos. Before analyzing the long

human activities composing the CAD-120 benchmarking dataset, we will focus on a

smaller scale dataset which we have acquired for the purpose of this study, namely

the Transitive Actions dataset. The reason for this is twofold. First, running ex-

periments with a cleaner and more controlled dataset allows us to understand the

learning properties as well as the limitations of the proposed architecture. Recent

studies from Torralba and Efros (2011) show that the evaluation of new algorithms

on uncontrolled data collections (i.e., “in the wild”) creates biased results and lim-

its progress. Second, by providing a dataset with low inter-class variability, e.g.,

eating and drinking, we can study the role of the object recognition module which

is part of our hierarchical architecture.

4.2.1 The Transitive Actions Dataset

We collected a dataset of the following daily activities: picking up (an object),

drinking (from a container like a mug or a can), pouring (from can to mug), eating

(an edible object like a cookie), and talking on the phone (Fig. 4.1). The data

collection was planned having in mind the role of the objects’ identity in distin-

guishing the actions, in particular when the sole body motion information may not
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Picking up Drinking Talking on the phone Eating

t t t t

Figure 4.1: Examples of sequences of skeleton joints and objects taken from the
Transitive Actions dataset. The object category labels are: can, mug, biscuit box
and phone.

be sufficient to unequivocally classify an action. The actions were performed by 6

participants that were given no explicit indication of the purpose of the study nor

instructions on how to perform the actions. The average duration of each action

is of ≈ 75 frames corresponding to 2.5 seconds. The dataset was collected with an

Asus Xtion depth sensor that provides synchronized RGB and depth frames at a

frame rate of 30 Hz. The distance of each participant from the sensor was not fixed

but maintained within the maximum range for the proper functioning of the depth

sensor, i.e., 0.8 - 3.5 meters. The tracking of the skeleton joints was provided by

the OpenNI framework1. To attenuate noise, we computed the median value for

each body joint every 3 frames resulting in 10 joint position vectors per second.

We added a mirrored version of all action samples to obtain invariance to actions

performed with either the right or the left hand. Action labels were then manually

annotated.

While the body segmentation and skeletal representations are automatically

provided by tracking frameworks like OpenNI, the extraction of the objects’ infor-

mation requires additional computational steps. We chose the point-cloud-based

table-top segmentation2, which is a simple but effective method operating on a

3D representation of the scene (Aldoma et al., 2012; Rusu et al., 2009) and is

1OpenNI/NITE: http://www.openni.org/software
2Point Cloud Library: http://www.pointclouds.org/
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commonly used in the robotics community. The position of the 3D points is given

from the depth maps, whereas the color of each point can be extracted by the

intensity of the corresponding pixel in the RGB image. The segmentation method

is based on the extraction of a dominant scene plane, e.g., a table or the floor,

and a Euclidean clustering step applied on the remaining points after the plane

removal in order to obtain the objects’ hypotheses. The clustering step is guided

by a threshold, which indicates how close two points are required to be to belong

to the same object. Therefore, for a successful segmentation, the method requires

different objects to be standing from each other at a distance higher than the pre-

defined threshold. After the clusters were individualized, we extracted the RGB

region of the corresponding objects. The main assumption of the table-top seg-

mentation method is the presence of an identifiable surface like a table with the

objects standing on it. However, this type of scene configuration is quite common

for human daily activities, e.g., having meal, and these activities are the focus of

this dataset and of this chapter in general. In case false positives were obtained

through the automatic segmentation, they were manually deleted. The obtained

object images compose the training data for the object recognition module of the

proposed architecture.

4.2.2 The CAD-120 Dataset

The Cornell Activity Dataset CAD-120 is an RGB-D benchmarking dataset con-

taining object interactions, which has been collected and made publicly available

by the Cornell University. This dataset consists of a total of 120 videos containing

10 long daily activities: arranging objects, cleaning objects, having meal, mak-

ing cereal, microwaving food, picking objects, stacking objects, taking food, taking

medicine and unstacking objects. These activities are performed by four different

subjects (two males, two females and, of these four, one left-handed) repeating

each action three to four times. The dataset has a total of 61.585 RGB-D video

frames and the average duration of the activities is of ≈ 600 frames corresponding

to 20 seconds. Similar activities are performed with different types of objects, e.g.,

the stacking and unstacking are performed with either pizza boxes, plates or bowls.

Each video is annotated with the human skeleton tracks and the position of the

manipulated objects across frames.

Sample images from the CAD-120 are shown in Fig. 4.2. This dataset provides

significant variations in the way the subjects perform the activities and the scenes

contain significant background clutter. In addition, subjects are partially occluded

in different scenarios and not facing the camera. All these conditions can be
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Arranging objects Cleaning objects Having meal Making cereal Microwaving food

Picking objects Stacking objects Taking food Taking medicine Unstacking objects

Figure 4.2: Examples of high-level activities from the CAD-120 dataset (Koppula
et al., 2013)3.

Figure 4.3: A skeleton sequence representing a seated person having meal (eating
and drinking): the legs and feet have a very high tracking noise in this position.

Figure 4.4: A skeleton sequence representing a person standing behind a table and
microwaving food: the legs and feet have a very high tracking noise in this position
due to not being visible.

challenging for the skeleton tracking algorithm yielding a noisy and often disrupted

motion of the tracked joints (see Fig. 4.3 and 4.4). In particular, the tracking of

feet and knee joints is mostly unreliable due to scenarios with subjects performing

actions while sitting or standing behind objects. Thus, for our experiments, only

the upper body joints are considered.

4.3 Feature Extraction

Both datasets introduced so far provide us with the three-dimensional body joint

positions and the RGB images of the objects segmented from the scene. However,

the processing of such information with our GWR-based architecture primarily

requires a feature extraction step for both the body pose in order to achieve in-

3Images are taken from http://pr.cs.cornell.edu/humanactivities/data.php
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variance to the translation scale and viewpoint, and the images of the manipulated

objects in order to have a compact vectorial representation of objects discrimina-

tive enough for a successful classification.

4.3.1 Body Pose Features

We consider only the position of the upper body joints (shoulders, elbows, hands,

center of torso, neck and head), given that they carry more significant information

(than for instance the feet and knee joints) about the human-object interactions

we focus on in this chapter (see Appendix C for the full list of joints provided by

the OpenNI framework). However, the number of considered joints does not limit

the application of our architecture for the recognition of full-body human-object

interactions.

We extract the skeletal quad features (Evangelidis et al., 2014), which are in-

variant with respect to location, viewpoint as well as body-orientation. These

features are built upon the concept of geometric hashing and have shown promis-

ing results for the recognition of actions and hand gestures. Given a quadruple

of body joints {J1, J2, J3, J4} where Ji ∈ R
3, a local coordinate system is built by

making J1 the origin and mapping J2 onto the vector [1, 1, 1]T . The positions of

the other two joints J3 and J4 are calculated with respect to the local coordinate

system and are concatenated in a 6-dimensional vector [ĵ3,1, ĵ3,2, ĵ3,3, ĵ4,1, ĵ4,2, ĵ4,3].

The latter becomes the compact representation of the four body joints’ positions.

We empirically select two quadruples of joints: [center torso, neck, left hand, left

elbow ] and [center torso, neck, right hand, right elbow ]. This means that the po-

sitions of the hands and elbows are encoded with respect to the torso center and

neck. We choose the neck instead of the head position due to the noisy tracking

of the head caused by occlusions during actions such as eating and drinking.

Composing such holistic body pose vectors, i.e., concatenations of joint posi-

tions, is quite convenient when employing a GWR network for the learning. In the

case of missing joints in a data frame, due to, for example, noise or body occlusion,

the best-matching unit for that input vector can be computed omitting the missing

parts of the body pose vector. Self-organizing networks, such as SOMs and the

GWR networks as their growing extension, are able to operate robustly in the case

of missing values (Vatanen et al., 2015).

4.3.2 Object Features

The natural variations in RGB images such as variations in size, rotation, and

lighting conditions, are usually so wide that objects cannot be compared to each
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other simply based on the images’ pixel intensities. For this reason, visual features

are first extracted from the object images and subsequently encoded into compact

vectorial representations in order to allow for an image comparison through vec-

torial metrics, such as the Euclidean distance function. What is important for

our study is to have a classifier that generalizes to the objects’ categories, de-

spite of inter-class variations in shape and color. For this reason, we look into

local appearance-based image descriptors to capture local shape convexities, for

instance, the handle of a cup, or salient textures such as the keys in a keyboard

etc. This can be obtained with the Scale-Invariant Feature Transform (SIFT) fea-

tures which have been successfully applied to the problem of unsupervised object

classification (Tuytelaars et al., 2010) and to learning approaches based on self-

organization (Kinnunen et al., 2012). Moreover, SIFT descriptors are known to

be, to some extent, robust to changes in illumination and image distortion.

In Lowe’s original form (Lowe, 2004), the interest points are extracted from

the grey-level image and then the image patches around each interest point are

summarized through statistics of the local gradient directions of image intensities.

When applying the SIFT descriptor to tasks such as object category recognition,

experimental results have shown that better classification results are achieved by

computing the SIFT descriptor over dense grids in the image domain as opposed to

the sparse interest points obtained by the keypoint extractor. This improvement is

explained by the fact that the descriptors computed over such a dense grid provide

more information than the descriptors of a much sparser set of image points. Thus,

we extract the dense SIFT features following the implementation provided by the

VLFeat library3. In the dense SIFT features, the descriptors are of a fixed scale,

thereby not accounting for the objects’ scale variations between images. Therefore,

multiple descriptors with four different window sizes are computed for each grid

point on every image. The orientation of each dense SIFT descriptor is fixed and

this relaxes the descriptors’ invariance with respect to the object’s rotation. With

this kind of representation, we can train a GWR network and obtain neurons tuned

to different object views, yet invariant to translation and scale.

We perform quantization followed by an image encoding step in order to have

a fixed-dimensional vectorial representation of each object image. We apply the

Vector of Locally Aggregated Descriptors (VLAD) (Jegou et al., 2012) encoding

method (Fig. 4.5) which has shown higher discriminative power than the exten-

sively used Bag of Visual Features (BoF) (Everingham et al., 2010; Szeliski, 2010)

and has established itself as state of the art for the image retrieval problem (Arand-

3Dense SIFT from VLFeat library: http://www.vlfeat.org/
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Figure 4.5: Illustration of the steps for encoding object images with the VLAD
encoding method (Mici et al., 2018a).

jelovic et al., 2016). The BoF method simply computes a histogram of the local

descriptors by hard assignment to a dictionary of visual words, whereas the VLAD

method computes and traces the differences of all local descriptors assigned to each

visual word. Some examples of words from the vocabulary of the VLAD encoder

trained on two different object datasets are illustrated in Fig. 4.6. In the first row

of the figure, examples from the Transitive Actions dataset are illustrated, and in

the second row examples from the object-recognition benchmarking Washington

Dataset are illustrated (classification results on the latter dataset are provided in

Appendix D). As can be seen from the examples provided in the figure, some vi-

sual words do capture meaningful object parts, e.g., the handle of the cup or the

keyboard keys. However, there are also cases (not illustrated in the figure) when

the visual words represent simple oriented bars and corners without semantic or

functional significance. These types of visual words can be quite convenient when

the objects are distinguishable by their rich textures, such as books from their

cover or cereal boxes from their logo and so on. It should be noted, however, that

the image encoding process is completely unsupervised and no knowledge about

the objects’ categories is required during the feature extraction. Indeed, this can

be one reason for the descriptors holding little category-related information.

The computational cost of the VLAD image encoding is moderate, given that

the codebook size, K, is usually quite small, e.g., in our case, it is composed of

only 64 visual words. So, the visual word assignment process, during which each

feature of the new image should compute its distance with the visual words of

the vocabulary, has a complexity of O(pKD). In our case, K = 64 and the PCA

dimensionally-reduced SIFT descriptor, p = 5, and D is the number of descriptors
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Figure 4.6: Examples of vocabulary words learned on two object datasets. The
keypoints on the original object image matching one word are depicted with green
circles and the corresponding image patches are on their left.

extracted from the image being encoded. Due to this low computational complexity

SIFT features and compact image encodings based on them have been widely

applied to real-time object retrieval and classification problems. However, their

popularity in the second half of the last decade has been eclipsed by the multi-

layer convolutional neural network (CNN) architectures, which have become state

of the art in a variety of visual tasks (Zheng et al., 2017). Nowadays, there is

a good choice of pre-trained CNN models which can be used out of the box for

feature extraction and which are, as we speak, being outperformed by newer ones

with a deeper and more complex neural structure (Lin et al., 2017). Of course,

the similarity of the source used for training such models and the target images

we want to encode and classify plays a critical role in the quality of features and

defines how discriminative they are. Thus, quite often, fine-tuning is necessary

before using such models for feature extraction on a new object dataset. For a

deeper understanding of the differences between SIFT and CNNs, the reader can

refer to the review by Zheng et al. (2017). Since our goal is the implementation of a

system that can work in real time and does not require considerable computational

power nor powerful GPUs, we opt for simple and efficient features like the body

skeletal representations and SIFT for the objects. Also, as we will see in the rest of

this chapter, SIFT features perform well on small datasets of objects particularly

undergoing occlusions due to relying on local image representations.
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Figure 4.7: Overview of the neural architecture for the recognition of human-
object interactions. (A) Processing of the body postures. A set of local features
that encode the posture of upper body limbs is extracted and fed to the GWRb

network. (B) The input for the object recognition module is the RGB image of
the manipulated object. If not provided by the dataset, the region of interest
is automatically extracted through a point-cloud-based table-top segmentation.
The object is represented as a compact feature vector and is fed to the GWRo

network which classifies the object. (C) The last network, GWRa, learns the
combinations of body postures and the object(s) involved in an action. (D) Action
labels are associated with each neuron in the GWRa network in order to evaluate
the architecture’s action classification performance (Mici et al., 2018a).

4.4 The Self-Organizing Hierarchical Architec-

ture

The proposed architecture consists of two main network streams processing sep-

arately visual representations of the body postures and of the manipulated ob-

jects. The information from the two streams is then combined for developing

action-object mappings. The building block of our architecture is the GWR net-

work (Marsland et al., 2002), which is a growing extension of self-organizing net-

works with competitive learning. An overview of the architecture is depicted in

Fig. 4.7.

The body pose cue is processed under the assumption that action-selective neu-

rons are sensitive to the temporal order of prototypical patterns. Therefore, the

output of the body pose processing stream is computed by concatenating consec-

utively activated neurons of GWRb with a sliding time window technique. The

object appearance cue is processed in order to have topological arrangements in

GWRo where different 2D views of 3D objects as well as different instances of
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the same object category are mapped to proximal neurons in the prototypes do-

main. The advantage of having such a topological arrangement consists in mapping

any unseen view of a known object into the corresponding views learned during

the training. This capability resembles, to some extent, biological mechanisms

for learning three-dimensional objects in the human brain (Poggio and Edelman,

1990; Perrett, 1996; Grill-Spector, 2013). Moreover, prototype-based learning ap-

proaches are supported by psychological studies claiming that semantic categories

in the brain are represented by a set of most typical examples of these categories

(Rosch and Mervis, 1975). For evaluating the architecture in terms of classification

of human-object interaction activities, semantic labels are assigned to prototype

neurons in GWRa by extending the GWR algorithm with a labeling strategy.

4.4.1 Hierarchical Learning

We adopt hierarchical GWR learning (Parisi et al., 2015) for the data processing

and subsequent action-object integration. Hierarchical training is carried out layer-

wise and in an offline manner with batch learning. We first extract body pose, A,

and object features, O, from the training image sequences, T . The obtained data

is processed by training the first layer of the proposed architecture, i.e., GWRb is

trained with body pose data and GWRo with objects (Fig. 4.7). After training

is completed, the GWRb network will have created a set of neurons tuned to

prototype body pose configurations, and the GWRo network will have learned to

classify objects appearing in each action sequence.

The next step is to generate a new dataset T ∗ for the GWRa network that

integrates information coming from both streams (Fig. 4.8). In order to encode

spatiotemporal dependencies within the body pose prototype space, we compute

trajectories of the GWRb best-matching units when having as input training action

sequences. For all body pose frames xi ∈ A, the best-matching units are calculated

(see Appendix B, Eq. B.1) and the corresponding neuron weights are concatenated

following a temporal sliding window technique, as follows:

ψ(xi) = wb(xi) ⊕wb(xi−1) ⊕ ...⊕wb(xi−q+1), i ∈ [q,m], (4.1)

where ⊕ denotes the concatenation operation, m is the total number of training

frames, and q is the width of the time window. We will refer to the computed

ψ(xi) by the name action segment.

The object data y ∈ O extracted from each action sequence is provided as input

to the GWRo network and the best-matching units b(y) are calculated. Objects
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Figure 4.8: Schematic description of the hierarchical learning and of the association
of action labels (not all neurons and connections are shown). At each time step t,
the input data sample x(t) is represented by the weight w of the winner neuron
which is then concatenated with the previous winner neuron weights (two previous
neurons in this example) and the category label of the object lio in order to compute
the winner neuron in GWRa. Each GWRa neuron is associated with a histogram
of action categories, and the most frequently matched class will be the recognized
action (Mici et al., 2018a).

are extracted only at the beginning of an action sequence. Therefore, the object

representations to be learned contain no temporal information and the computation

of neural activation trajectories, reported in Eq. 4.1, is not performed. The label

of the GWRo best-matching unit is represented in the form of one-hot encoding,

i.e., a vectorial representation in which all elements are zero except the ones with

the index corresponding to the recognized object’s category. When more than one

object is segmented from the scene, the object data processing and classification

with GWRo is repeated as many times as the number of additional objects. The

resulting labels are merged into one multiple-hot-encoded vector for the following

integration step.

Finally, the new dataset T ∗ is computed by concatenating each action segment

ψ(xi) with the label of the corresponding object lo(y) as follows:

T ∗ = {φu(xi) ≡ ψ(xi)⊕ lo(y);xi ∈ A,y ∈ O, u ∈ [q,m− q]}. (4.2)

Each pair φu, which we will refer to as an action-object segment, encodes both

temporally-ordered body pose sequences and the identity of the object being ma-

nipulated during the action sequence. The GWRa network is then trained with

the newly computed dataset T ∗, thereby learning the provided action-object pairs.

The resulting representative vectors of the body pose can have a very high di-

mension, which further increases when concatenating them through the temporal

57



Chapter 4. Learning Human-Object Interactions with a Self-Organizing
Architecture

window technique. Methods based on the Euclidean distance metric, as in our case,

are shown to have a performance degradation when data lies in high-dimensional

space (Aggarwal et al., 2001). Therefore, we apply the principal component anal-

ysis (PCA) technique to the neural weights of GWRb. The number of principal

components is chosen empirically in order to have a smaller-dimensional discrep-

ancy with the object’s label and maximize the classification performance. The

new basis is then used to project weights of activated neurons in GWRb before the

concatenation of the activation trajectories and the subsequent integration step.

4.4.2 Classification

We extend the GWR algorithm with a labeling strategy for classification tasks

while keeping the learning process unsupervised. We apply the majority vote

strategy as in Strickert and Hammer (2005). For each neuron ni, we store infor-

mation about the category of the data points it has matched during the training

phase. Thus, each neuron is associated with a histogram hist(c, ni) counting all

cases of seeing a sequence with an assigned specific label c. Additionally, the his-

tograms are normalized by scaling the bins with the corresponding inverse class

frequency fc and with the inverse neuron activation frequency fa,ni
. In this way,

class labels that appear less during training are less penalized, and the vote of

the neurons is weighed equally regardless of how often they have fired. When the

training phase is complete, each neuron that has fired during training, i.e., BMUs,

will be associated with a histogram:

H(c, ni) =
1

fc · fa,ni

· hist(c, ni). (4.3)

At recognition time, given a test action sequence with length k, the best-matching

units bi are computed for each frame and the action label l is given by:

l = argmax
c

(

k
∑

i=1

H(c, bi)

)

. (4.4)

The classification of non-temporal data, e.g., object classification with the GWRo

network, is performed by applying majority vote only on the histogram associated

to one best-matching unit Hbmu. This is a special case of Eq. 4.4, considering that

k = 1 for non-temporal data.

In our case, action sequences are composed of smaller action-object segments

as described in Section 4.4.1. Thus, the majority vote labeling technique described
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so far is applied as follows. Let us assume we have a set of activity labels La

along with our training data, for instance, drinking and eating. Therefore, each

action-object segment φ ∈ T ∗ will be assigned with one of these labels and one

action sequence will have the following form:

Φ = {(φ1, l
j
a), ..., (φk, l

j
a), l

j
a ∈ La}, (4.5)

where lja is the activity label and k is the number of action-object segments included

in the sequence. During training of the GWRa network on the action sequence Φ,

the label lja will be added to the histogram of the neurons activated for each of

its composing segments φ. After the training is complete, the action sequence Φ

will be classified according to the majority vote strategy (see Fig. 4.8). It should

be noted that the association of neurons with symbolic labels does not affect the

formation of topological arrangements in the network. Therefore, our approach for

the classification of objects and actions remains unsupervised.

4.4.3 Training

In Table 4.1, we list the parameters used for training the proposed neural archi-

tecture throughout the experiments presented in Section 4.5. The selection of the

range of parameters is made empirically while also considering the GWR algorithm

learning factors. The parameters that we fix across all layers are the constants con-

trolling the decreasing function of the firing rate variable (τb, τi and κ), the learning

rates for the weights’ update function (ǫb and ǫi) and the threshold for the max-

imum age of the edges (amax). We set a higher insertion threshold parameter for

the data processing layers, i.e., GWRb and GWRo, than for the integration layer

GWRa. The higher value chosen for the GWRb and GWRo networks leads to a

greater number of neurons created and a better representation of the input data

as a result, whereas the slightly lower value for GWRa seeks to generate a set of

neurons that tolerate more discrepancy in the input and generalize relatively more.

The insertion threshold parameters are very close to each other and very close to

1, but their impact is perceptible given that the input data are normalized, i.e.,

take values within the interval [0, 1]. We train each network for 300 epochs over

the whole dataset in order to ensure convergence, during which the response of

the networks to the input shows little to no significant modifications. We choose 4

principal components for dimensionality reduction of the body pose spatiotemporal

vectors prior to the concatenation with the corresponding object label.

In addition to the aforementioned parameters, the sliding window mechanism
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Table 4.1: Training parameters of the GWRb, GWRo and GWRa networks of our
architecture for the classification of human-object interactions.

Parameter Value

Insertion threshold aT = {0.98, 0.98, 0.9}
Firing threshold fT = 0.1
Learning rates ǫb = 0.1, ǫi = 0.01
Firing rate behavior τb = 0.3, τi = 0.1, κ = 1.05
Maximum edge age amax = 100
Training epochs 300

applied to the processed body pose data also has an impact on the growth of the

GWRa network. Wider windows lead to the creation of more neurons, albeit the

slightly smaller number of data samples. This is an understandable consequence

of the fact that the more temporal frames included in each time window, the

higher the variance of the resulting data and the more prototype neurons created

as a consequence. However, this parameter has to be set empirically according

to the experimental training data distribution. We report the time window width

parameter we set in each of our experiments in the following sections.

4.5 Experiments and Evaluation

We evaluated the proposed neural architecture both on the Transitive Actions

dataset that we have acquired for the purpose of this study and on the publicly

available action benchmark dataset, CAD-120 (Koppula et al., 2013), described in

Section 4.2. In this section, we provide details on the classification performances

obtained on these datasets, a quantitative evaluation of the integration module

in the case of incongruent action-object pairs and a comparative evaluation on

CAD-120.

4.5.1 Experiments with the Transitive Actions Dataset

Classification results

We now assess the performance of the proposed neural architecture for the classifi-

cation of the actions described in Section 4.2.1. In particular, we want to evaluate

the importance of the identity of the manipulated object(s) in disambiguating

the activity that a subject performs. For this purpose, we conducted two sepa-
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rate experiments, whereby we process body pose cues alone and in combination

with recognized objects. Moreover, to further exclude any possible bias towards

a particular subject, we followed a leave-one-subject-out strategy. Therefore, six

different trials were designed by using video sequences of the first five subjects for

training and using the remaining subject for the testing phase. This type of cross-

validation is quite challenging since different subjects perform the same action in

a different manner and with a different velocity.

We trained each GWR network with the learning parameters reported in Sec-

tion 4.4.3. Since this dataset is composed of short temporal sequences, a time

window of five frames was chosen for the concatenation of the processed body

cues. This led to action-object segments of 0.5 seconds, considering 10 frames per

second. When the training of the whole architecture was complete, the number of

neurons reached for an input containing ≈ 6500 video frames was: 170 neurons for

the GWRb network, 182 for GWRo and for the GWRa network the number varied

from 90 to 120 across different trials.

A plot showing the neural weights of the GWRo network is depicted in Fig. 4.9.

Given that the neural weights have a high dimensionality, i.e., the dimensionality

of the VLAD descriptors, for illustration purposes we performed principal com-

ponent analysis (PCA) and show the first two principal components. As can be

seen from the plot, the neurons are topologically organized into clusters composed

of different 2D views of the objects as well as different instances of the same ob-

ject category. This is quite advantageous for our architecture since it allows for

generalization towards unseen object views and, to some extent, towards unseen

object instances. The overlap between the can and mug clusters suggests that

the visual appearance of these object categories is more similar than compared to

the others and, as a consequence, can be confused. However, this does not affect

the action classification performance, since both of the objects are involved in the

same activity, namely drinking.

We evaluated our architecture for the classification of human-object interactions

using standard measurements (Van Rijsbergen, 1979):

Recall =
TP

TP + FN
, (4.6)

Precision =
TP

TP + FP
, (4.7)

F1-score = 2 ·
Recall · Precision

Recall + Precision
, (4.8)
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Figure 4.9: Neural weights of theGWRo network after having been trained with the
objects from the Transitive Actions dataset. The first two principal components
have been chosen for the visualization in two dimensions (Mici et al., 2018a).

eating talking on the phone pouring drinking picking up0.00
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Figure 4.10: Classification results on the Transitive Actions dataset. Illustrated are
precision, recall, and F1-score for the experiments without the object’s information
and the F1-score for the experiment setup considering the object. The mean values
over 6 trials of cross-validation and the standard deviation are reported for each
performance metric.

where, in a classification task with multiple classes C = {C0, C1, ...., Ci}, TP in-

dicates true positives, i.e., the number of items correctly assigned to class Ci, FN

indicates false negatives, i.e., the number of data items which were not recognized

as examples of class Ci, and FP are the data examples that were incorrectly as-

signed to the class Ci. The precision score equals 1 (or 100%) for each class C

when every item labeled as belonging to class C does indeed belong to class C,

whereas a recall value that equals 1 (or 100%) means that every item from class

62



4.5. Experiments and Evaluation

Figure 4.11: Normalized confusion matrices for the classification of the Transitive
Actions dataset when leaving out the object’s information and when including
the object.

C was labeled as belonging to class C. The F1-score is a combination of precision

and recall.

We report precision, recall, and F1-score for each class of activity without the

object’s information and the F1-score for the experiments considering the manip-

ulated object. The mean values over the six trials and the standard deviation are

illustrated in Fig. 4.10 and the normalized confusion matrices are illustrated in

Fig. 4.11. For the eating, drinking, and talking on the phone actions, we obtained

F1-score values greater than 0.95 when using the objects’ identity information and

lower values when using only body pose. For the picking up activity, on the other

hand, the difference in the classification performance is marginal due to the fact

that this action can be performed on all of the objects and the identity of a specific

object does not play a decisive role. For the pouring activity the recognition rate

does increase but is not as high as the other action classes. We assume that the

reason for this is the similarity between the body pose during the picking up ac-

tion and the pouring action. This points out the need for more fine-grained visual

cues, for instance, the pose of the hand, which could lead to a higher recognition

accuracy.

Experiments with incongruent action-object pairs

In addition to the classification experiments, we carried out a qualitative evaluation

of the integration module when test data sequences of incongruent action-object

pairs are given as input. We consider incongruent pairs to be unusual or function-
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Figure 4.12: Comparison of the GWRa network activations when having as input
an action sequence combined with an incongruent object (in red) and one combined
with the congruent one (in blue). The y axis represents the activation values, with 1
being the highest, and the x axis represents the number of frames of the illustrated
data sequences. The number of frames can vary among different actions, e.g., the
action eating is typically shorter than talking on the phone and drinking (Mici
et al., 2018a).

ally irrelevant combinations of actions with objects, e.g., drinking with a telephone

or eating with a can. As introduced in Section 2.1, several regions of the human

brain have been found to be affected by object-action congruence (Yoon et al.,

2012). The neural response in these areas is greater for actions performed on ap-

propriate objects as opposed to unusual actions performed on the same objects.

For this experiment, we artificially created a test dataset, for which we replaced

the image of the object being manipulated in each video sequence with the image

of an incongruent object extracted from a different action video.

We analyzed the activation values of the GWRa BMUs (Eq. 3.11) on both the

original action sequence and the manipulated one. A few examples of the obtained

neural activations are illustrated in Fig. 4.12. We observed that the activations
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were typically relatively low for the incongruent samples. This can be explained

by the fact that the GWRa prototypes represent the joint distribution of action

segments and congruent objects taken from the congruent set. The activation of the

network is expected to be lower when the input has been taken from a different data

distribution than the one the model has learned to fit. The incongruent samples

yield a higher discrepancy with respect to the prototype neurons, thereby leading

to a lower network activation. However, we also noticed some exceptions, e.g., the

incongruent pair <talking on the phone, can> depicted in Fig. 4.12.c. In this case,

we can observe that the network activation becomes higher for the incongruent

input at a certain point of the sequence, i.e., at a certain action-object segment.

Nevertheless, a decreased network activation on the congruent input indicates that

the network has a high quantization error for that particular action-object segment.

It should be noted that a small quantization error of the GWR network is

not a requirement for a good performance in the action classification task. As

described in Section 4.4.2, the classification of an action sequence is performed by

considering the label histograms associated with the activated neurons. We can

also notice some cases where the network activation on the incongruent input is

not significantly low at the beginning of the sequence, but even slightly higher in

the case of <eating, phone> (Fig. 4.12.b). A reason for this is the similar motion of

the hand holding the object towards the head which may precede both eating and

talking on the phone activities. Therefore, exchanging the object biscuit box with

phone for the initial action segments has from little to no impact on the network’s

response.

4.5.2 Experiments with CAD-120

We evaluated the classification performance of our architecture on the publicly

available benchmark dataset CAD-120. We computed skeletal quad features (de-

scribed in Section. 4.4.1) for the encoding of the pose of the upper body, based

on the three-dimensional position of skeletal joints provided in the dataset. Ad-

ditionally, we extracted RGB images of manipulated objects from each frame and

encoded them through the VLAD encoding technique as described in Section. 4.4.1.

For the concatenation of the processed body pose cues, a time window of 9 frames

was chosen. Since we down-sample the activity video frames to a rate of 10 fps, this

leads to an action-object segment having a temporal duration of 0.9 seconds. After

training the whole architecture with input data of ≈ 18.000 frames, the number of

neurons reached in each GWR network was 460 for GWRb, 410 for GWRo, while

for GWRa the number varied from ≈ 3200 to ≈ 3700 across different trials of the
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Figure 4.13: Confusion matrix for the 10 high-level activities of the CAD-120
dataset (Mici et al., 2018a).

cross-validation.

In Fig. 4.13, we show the confusion matrix for the 10 high-level activities of

this dataset. We expected that the activities interchanged by our model were

the ones including the same category of objects and similar body motions, e.g.,

stacking objects and unstacking objects, microwaving food and taking food. In fact,

in the first two activities, the subjects repeat the same sequence of atomic actions:

reaching, moving and placing objects, whereas the second two activities share

the same atomic actions but in different orders: reaching, opening (microwave),

moving, placing, and closing (microwave). The continuous interchange in the two

mentioned examples is evident by looking at the architecture’s output in Fig. 4.14.

Also, the activity of picking objects was often confused with arranging objects, due

to the fact that body pose segments of the picking objects activity are similar to

the segments preceding the activity of arranging objects. In Table 4.2, we show a

comparison of our results with the state of the art on the CAD-120 dataset with

accuracy, precision, and recall as evaluation metrics. We obtained 79% accuracy,

80.5% precision, and 78.5% recall.

We reported only the approaches that do not use ground-truth temporal seg-

mentation of the activities into smaller atomic actions or sub-activities (Hu et al.,
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Figure 4.14: Output labels of the architecture during testing on unseen subjects of
CAD-120. First row: the architecture interchanges stacking objects with unstacking
objects, two activities involving the same objects and similar body motions. Simi-
larly, in the second row, the architecture confuses taking food (from the microwave)
with microwaving food.

Algorithm U O. Rec. O. Tr. Acc.(%) Prec.(%) Rec.(%)

Koppula and Saxena (2013),
(CRF, SVM )

- - X 83.1± 3.0 87.0± 3.6 82.7± 3.1

Koppula et al. (2013),
(CRF, SVM )

- - X 80.6± 1.1 81.8± 2.2 80.0± 1.2

Our approach,
(GWR)

X X - 79.0± 3.4 80.5± 2.9 78.5± 3.6

Rybok et al. (2014),
(SVM )

- X - 78.2 - -

Tayyub et al. (2015),
(SVM )

- - X 75.8± 6.8 77.9± 11.0 75.4± 9.1

Table 4.2: Results on the CAD-120 dataset for the recognition of 10 high-level
activities. Reported are accuracy, precision and recall (in percentage) averaged
over 4-fold cross-validation experiments. For comparison, we have included which
of the reported methods is unsupervised (U), performs object recognition for the
classification of the activities (O.Rec.) or relies on object tracking (O.Tr.).
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2014; Taha et al., 2015). Our results are comparable with Rybok et al. (2014).

Similar to our work, their method considers objects’ appearance as contextual in-

formation which is then concatenated with body motion features represented as

a bag of words. The best results were obtained by Koppula and Saxena (2013)

reporting 83.1% accuracy, 87% precision, and 82.7% recall. In their work, spa-

tiotemporal dependencies between actions and objects are modelled by a Condi-

tional Random Field (CRF) which combines and learns the relationship between

a number of different features such as the coordinates of the object’s centroid, the

total displacement and the total distance moved by the object’s centroid in each

temporal segment, the difference in (x, y, z) coordinates of the object and skele-

ton joint locations and their distances. After the generation of the graph, which

models spatiotemporal relations, they use a Support Vector Machine (SVM) for

classifying action sequences.

We assume that the tracking of the objects’ position in the scene as well as

the objects’ distance from the subject’s hand provides additional information that

might improve our classification results. Therefore, the objects’ position infor-

mation will be considered in Chapter 7. Nonetheless, current results are quite

promising considering that we extract less visual information compared to the

other approaches and that the CAD-120 dataset contains complex scenes with

varying points of view and considerable body occlusions leading to high tracking

errors. The attenuation of noise may be to some extent achieved by the learning

algorithm of the GWR networks. The algorithm is equipped with a mechanism to

remove rarely activated neurons that may represent noisy input. Moreover, due

to the firing counter mechanism of the GWR algorithm, well-trained neurons are

trained less, thereby leading to less learning perturbations by slight input fluctua-

tions.

4.6 Summary

In this chapter, we presented an approach based on neural self-organization for

learning to recognize actions comprising human-object interaction from RGB-D

videos. The proposed neural architecture relies on four assumptions that are con-

sistent with evidence on neural mechanisms for transitive action recognition and

on human psychological studies: 1) visual features of body pose and manipulated

objects are processed in distinct pathways and are represented in distinct areas

of the brain (Downing and Peelen, 2011; Grill-Spector, 2013; Beauchamp et al.,

2002), 2) the visual input drives the arrangement of specific visual areas in the
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brain through self-organization (Miikkulainen et al., 2006), 3) categories and con-

cepts are learned as a set of typical examples or prototypes from observation and

new observations are assigned to an existing category according to their similarity

to the learned prototypes (Rosch and Mervis, 1975), and 4) the identity of the

objects plays a crucial role in understanding the transitive actions (Saxe et al.,

2004; Gallese et al., 1996).

Our architecture consists of two pathways of GWR networks processing respec-

tively body pose and object appearance and identity, with a subsequent integration

layer learning action-object mappings in an unsupervised way. The prototype-

based learning mechanism of the GWR allows to attenuate input noise and to

generalize towards unseen data samples. For the purpose of classification, we ex-

tended the GWR with a labeling technique based on majority vote.

The evaluation of our approach has shown good results on a dataset of human-

object interactions collected specifically for the study on the importance of the

identity of objects. The analysis of the neural response of the integration layer

showed an overall lower network activation when given incongruent action-object

pairs compared to the congruent pairs. Furthermore, the classification accuracy

of our unsupervised architecture on a publicly available action benchmark dataset

is competitive with respect to supervised state-of-the-art approaches. Unlike our

approach, most state-of-the-art approaches rely on activity graphs which require

fine-grained segmentation of body movements, usually done offline, making the

framework computationally expensive and unsuitable for adaptive systems. Thus,

the reported results motivate the application of our learning algorithm to assistive

robot platforms, which will be able to extract the semantics of human activities

perceived by the robot’s vision system. At the current state, the proposed archi-

tecture can recognize human activities while being performed. However, in many

real-world scenarios, the assistive system is required to identify an intended human

activity before it is fully executed. For this reason, in the following two chapters we

extend and evaluate our self-organizing approach towards more complex scenarios,

such as simultaneous learning and prediction of human motion in HRI scenarios

(see Chapter 5) and prediction of human-object interactions (see Chapter 6).
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Chapter 5

Incremental Learning and

Prediction of Human Motion with

Self-Organization

5.1 Introduction

Real-time interaction with the environment requires robots to adapt their motor

behavior according to perceived events. However, each sensorimotor cycle of the

robot is affected by an inherent latency introduced by the processing time of sen-

sors, transmission time of signals, and mechanical constraints (Mainprice et al.,

2012; Zhong et al., 2012; Saegusa et al., 2007). Due to this latency, robots ex-

hibit a discontinuous motor behavior which may compromise the accuracy and

execution time of the assigned task. For social robots, delayed motor behavior

makes Human-Robot Interaction (HRI) asynchronous and less natural. Synchro-

nization of movements during HRI may increase rapport and endow humanoid

robots with the ability to collaborate with humans during daily tasks (Lorenz

et al., 2011). A possible solution to the sensorimotor latency is the application of

predictive mechanisms which accumulate information from the robot’s perceptual

and motor experience and learn an internal model which estimates possible future

motor states (Bahill, 1983; Behnke et al., 2003). The learning of these models in

an unsupervised manner and their adaptation throughout the acquisition of new

sensorimotor information remains an open challenge.

The efficient compensation of sensorimotor latencies caused by neural trans-

mission delays plays a crucial role in human beings (Nijhawan and Wu, 2009).

Predictive mechanisms in our sensorimotor system account for both motor pre-
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diction and anticipation of the target movement during each action we take. The

human cerebellum, for instance, is capable of estimating the effects of a motor com-

mand through an internal action simulation and a prediction model (Miall et al.,

1993). Furthermore, there are additional mechanisms for visual motion extrapola-

tion which account for the anticipation of the future position and movement of the

target (Kerzel and Gegenfurtner, 2003). Internal models for sensorimotor predic-

tion in humans constantly adjust to the sensory feedback (Rohde et al., 2014) as

well as to the specific task (de la Malla et al., 2014). Similarly, artificial systems

for the prediction of sensorimotor data and for delay compensation must be able

to learn an internal model from sensorimotor observations and account for the

continuous adaptation to the environment.

As discussed in Section 2.2.3, most of the existing prediction techniques mainly

operate in a “learn then predict” approach, i.e., typical motion patterns are ex-

tracted and learned from training data sequences and then learned patterns are

used for prediction (Zhong et al., 2012; Mainprice and Berenson, 2013; Ito and

Tani, 2004; Levine et al., 2016). The main issue with this approach is that the

adaptation of the learned models is interrupted by the prediction stage. However,

it is desirable for a robot operating in natural environments to be able to learn

incrementally, i.e., over a lifetime of observations, and to refine the accumulated

knowledge over time. Therefore, the development of learning-based predictive

methods accounting for both incremental learning and predictive behavior still

need to be fully investigated.

In Chapter 4, we applied hierarchical self-organizing neural learning in order

to map actions and manipulated objects for the classification of human-object in-

teractions in an unsupervised manner. The experimental results showed that the

hierarchical arrangement of two GWR networks with neurons encoding neural ac-

tivation trajectories was able to successfully process three-dimensional body pose

sequences and learn spatiotemporal action features. In this chapter, we propose

a novel predictive mechanism based on the GWR learning algorithm (Marsland

et al., 2002) which utilizes the neural trajectories to both learn the spatiotem-

poral input and predict future data samples in an online manner. Furthermore,

we implement an architecture capable of compensating the sensorimotor delay of

a small humanoid robot in the context of an imitation task in an HRI scenario.

In this scenario, body motion patterns performed by a human demonstrator are

mapped to trajectories of robot joint angles and then learned by the proposed

neural architecture for subsequent imitation by the robot. We evaluate our system

on a dataset of three subjects performing 10 different arm movement patterns.
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We study the eligibility of the proposed neural framework for online sensorimotor

delay compensation by measuring its prediction accuracy while being continuously

trained. Experimental results reported in Section 5.4 show that the proposed

architecture can adapt quickly to an unseen pattern and can provide accurate pre-

dictions albeit continuously incorporating new knowledge. Moreover, the system

seems to maintain its performance even when training takes place with missing

sensory information.

5.2 The Neural Framework

5.2.1 Overview

The standard GWR learning algorithm does not account for learning temporal

sequences. This limitation has been addressed by different extensions described in

detail in Section 3.5. The extension we made use of in the previous chapter was

the hierarchy of GWRs augmented with a window in time memory (Parisi et al.,

2015, 2016b; Mici et al., 2016). Now, our goal is to both encode data sequences

and generate them. For this reason, we adopt the same approach, given that the

relevant information regarding data samples in a window of time is always explicitly

available. Furthermore, in contrast to the self-organizing networks equipped with

Gamma filters, the sliding window technique does not affect the learning properties

of the GWR algorithm.

The neural framework consists of a hierarchy of GWR networks (Marsland

et al., 2002) which process input data sequences and learn inherent spatiotempo-

ral dependencies (see Fig. 5.1) in an unsupervised manner. The outputs of the

GWR1 and GWR2 networks are computed as the concatenation of the weights

of consecutively activated neurons within a pre-defined temporal window q (see

Fig. 5.2):

o(t) = wb(t) ⊕wb(t−1) ⊕ ...⊕wb(t−q+1), (5.1)

where ⊕ denotes the concatenation operation. Moving up the hierarchy, the output

o(t) will represent the input for the GWR network of the higher layer. In this

way, the GWR1 network learns a dictionary of prototypes of the spatial body

configurations domain, while the GWR2 and P-GWR networks learn body motion

patterns accumulated over a short and a longer time period respectively.

Such use of a multilayered GWR comes with three main advantages: First,

it shapes a functional hierarchy that encodes spatiotemporal dependencies of the

input in various timescales, e.g., for a sliding time window of width 3, the GWR2
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Figure 5.1: Overview of the proposed system for the sensorimotor delay compen-
sation during an imitation scenario. The vision module acquires motion from a
depth sensor and estimates the three-dimensional position of the joints. Shoulder
and elbow angle values are extracted and fed to the visuomotor learning algo-
rithm. The robot then receives predicted motor commands processed by the delay
compensation module (Mici et al., 2018c).

network encodes 3 frames that correspond to 0.3 seconds and the P-GWR encodes

5 frames that correspond to 0.5 seconds of video when considering a discrete tem-

poral sequence with a frame rate of 10 frames per second. This is consistent with

evidence supporting increasingly large temporal receptive windows in the mam-

malian cortex (Giese and Poggio, 2003). Second, this scheme allows for a data

compositionality, i.e., the sub-sequences learned and encoded by each neuron on

a lower level can be re-used for representing different sequences on a higher level.

Third, from the perspective of a system learning through a lifetime of observations,

this hierarchical arrangement allows us to apply different neuron removal strate-

gies in each layer in order to address the problem of forgetting rarely encountered,

yet relevant information. More details about this point and on the online training

strategy of the proposed neural framework are given in Section 5.4.1.

The hierarchical architecture is convenient for the application of a predictive

mechanism due to the fact that the concatenations of consecutively matched proto-

types, computed as the output of each layer, are explicitly mapping past values to

the future ones. In fact, each vector can be split into two parts: the first carrying

information about the input data at previous time steps, i.e., the regressor and

the second representing the desired output of this mapping. Thus, if x(t) is the

input vector fed to the P-GWR network, we can divide it into two parts:

xin(t) = x(t)⊕ x(t− 1)⊕ ...⊕ x(t− p+ 1),

xout(t) = x(t+ 1),
(5.2)

where xin(t) is the regressor, xout(t) is the desired output, and p denotes the

maximum index of the past values. In the following section, we will see how to use

the obtained regressor and output vectors in order to train the P-GWR network.
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Figure 5.2: Schematic description of the output computation for the GWR1 and
GWR2 networks (not all neurons and connections are shown). Given an input data
sample x(t), the weight of the best-matching unit is concatenated with the weights
of the previously activated neurons (depicted in fading yellow) in order to compute
the output o(t). The length of the concatenation vector is a pre-defined constant
q (q = 3 in this example). The z−1 blocks denote the time delay (Mici et al.,
2018c).

5.2.2 The Predictive GWR Algorithm

The problem of one-step-ahead prediction can be formulated as a function approx-

imation problem. Given a multi-dimensional time series denoted by {y(t)}, the

function approximation is of the form:

ŷ(t+ 1) = f̂ (y(t),y(t− 1), ...,y(t− (p− 1))|Θ) , (5.3)

where the input of the function, or regressor, has an order of regression p ∈ Z
+,

with Θ denoting the vector of adjustable parameters of the model and ŷ(t+ 1) is

the predicted value. In other words, the prediction function maps the past p input

values to the observed value y(t+1) directly following them. We extend the GWR

learning algorithm in order to implement this input-output mapping and apply

this learning algorithm to the last layer of our architecture, i.e., to the P-GWR

network.

The input samples fed to the P-GWR network are concatenations of the tem-

porally ordered best-matching units (BMUs) from the preceding layer (Eq. 5.1)

and are divided into two parts following Eq. 5.2. Each neuron of the P-GWR

network will then have two weight vectors which we will call the input win and the

output wout weight vectors. During training, the input weight vector will learn to

represent the input data regressor and the output weight vector will represent the

corresponding predicted value. This learning scheme has been successfully applied

to the Vector-Quantized Temporal Associative Memory (VQTAM) model (Barreto,

2007), shown to perform well on tasks such as time series prediction and predictive
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control (Barreto et al., 2003).

The learning procedure for the Predictive GWR algorithm resembles the orig-

inal GWR algorithm (see Appendix B) with a set of adaptations for temporal

processing. During training, the first and the second best-matching units, b and s,

at time step t are computed considering only the regressor part of the input:

b = argmin
n∈A

||xin(t)−win
n ||,

s = arg min
n∈A/{b}

||xin(t)−win
n ||,

(5.4)

where win
n is the input weight vector of the neuron n and A is the set of all neurons.

However, for the weight updates both xin(t) and xout(t) are considered:

∆win
i = ǫi · hi · (x

in(t)−win
i ),

∆wout
i = ǫi · hi · (x

out(t)−wout
i ),

(5.5)

with the learning rates 0 < ǫi < 1 being higher for the BMUs (ǫb) than for the

topological neighbors, as in the GWR algorithm, and hi is the firing counter of the

neuron. This learning mechanism guarantees that both the regressor space and

the output space are vector-quantized. At each learning iteration, the quantization

error of the output space is minimized following Eq. 5.5, hence the prediction error

for the learned sequences is decreased.

The Predictive GWR algorithm operates differently from supervised prediction

approaches. In the latter, the prediction error signal is the factor that guides the

learning, whereas in the Predictive GWR the prediction error is implicitly com-

puted and minimized without affecting the learning dynamics. Moreover, unlike

the SOM-based VQTAM model, the number of input-output mapping neurons, or

local models, is not pre-defined nor fixed but instead adapts to the input data.

5.2.3 Predicting Sequences

Given an input regressor xin(t) at time step t, the one-step-ahead estimate is

defined as the output weight vector of the P-GWR best-matching unit:

ŷ(t+ 1) = wout
b , (5.6)

where b is the index of the best-matching unit (Eq. 5.4). In the case that the

desired prediction horizon is greater than 1, the multi-step-ahead prediction can

be obtained by feeding back the predicted values into the regressor and computing
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Eq. 5.4 recursively until the whole desired prediction vector is obtained. An al-

ternative to the recursive prediction is the vector prediction which is obtained by

increasing the dimension of the xout vector with as many time steps as the desired

prediction horizon h. Thus, the input regressor and the desired output would have

the following form:

xin(t) = x(t)⊕ x(t− 1)⊕ ...⊕ x(t− p+ 1),

xout(t) = x(t+ 1)⊕ x(t+ 2)⊕ ...⊕ x(t+ h),
(5.7)

where p denotes the index of the past values. The same dimensionality should be

defined for the weight vectors win and wout of the P-GWR neurons as well. This

solution requires the training of the architecture with this setting of the weights.

5.3 Experimental Setup

The experimental setup consists of a simulated Nao robot incrementally learn-

ing a set of visually demonstrated body motion patterns and directly imitating

them while compensating for the sensorimotor delay. We showcase the predictive

capabilities of the proposed architecture in the context of an imitation scenario

motivated by the fact that it can potentially imply behavior synchronization in

the human-robot interaction. For humans, the synchronization of behavior is a

fundamental principle for motor coordination and is known to increase rapport in

daily social interaction (Lorenz et al., 2011). Psychological studies have shown

that during conversation humans tend to coordinate body posture and gaze di-

rection (Shockley et al., 2009). This phenomenon is believed to be connected to

the mirror neuron system, suggesting a common neural mechanism for both motor

control and action understanding (more details in Section 2.1.1). Interpersonal co-

ordination is an integral part of human interaction, thus we assume that, applied

to HRI scenarios, it may promote the social acceptance of robots.

5.3.1 System Description

A schematic description of our sensorimotor delay compensation system is given

in Fig. 5.1. The system consists of three main modules:

1. The vision module which includes the depth sensor and the tracking of the

3D skeleton through OpenNI/NITE framework;1

1OpenNI/NITE: http://www.openni.org/software
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2. The visuomotor learning module which receives angle values and provides

future motor commands;

3. The robot control module which processes motor commands and relays them

to the microcontrollers of the robot, which in our case is a locally simulated

Nao.

We approach the demonstration of the movements through motion capture with a

depth sensor, which provides us with reliable estimations and tracking of a 3D hu-

man body pose. Thus, the three-dimensional joint positions of the skeleton model

constitute the input to the architecture. Then, the motor commands for the robot

are obtained by mapping the user’s arm skeletal structure to the robot’s arm joint

angles. This direct motion transfer allows for a simple, yet compact representation

of the visuomotor states that does not require the application of computationally

expensive inverse kinematics algorithms. Demonstrated motion trajectories are

learned incrementally by training our hierarchical neural framework. This allows

for extracting prototypical motion patterns which can be used for the generation of

robot movements as well as the prediction of future target trajectories in parallel.

Although the current setup uses a simulated environment, we consider the same

amount of motor response latency as it has been quantified in the real Nao robot,

being between 30 to 40 ms (Zhong et al., 2012). This latency could be even higher

due to reduced motor performance, friction or weary hardware. Visual sensor

latency on the other hand, for an RGB and depth resolution of 640x480, together

with the computation time required from the skeleton estimation middleware can

peak up to 500 ms (Livingston et al., 2012). Taking into consideration also possible

transmission delays due to connectivity issues, we assume a maximum of 600 ms

of overall sensorimotor latency in order to carry out experiments described in

Section 5.4.

5.3.2 Data Acquisition and Representation

The motion sequences were acquired by an Asus Xtion Pro camera at 30 frames per

second. This type of sensor is capable of providing synchronized color information

and depth maps at a reduced power consumption and weight, making it a more

suitable choice than a Microsoft Kinect for being placed on a small humanoid robot.

Moreover, it offers a reliable and markerless body tracking method (Han et al.,

2013) which makes the interface less invasive. The distance of each participant

from the visual sensor was maintained within the sensor’s operational range, i.e.,

0.8−3.5 meters. To attenuate noise, we computed the median value for each body
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Figure 5.3: Nao’s arm angles2. We consider only shoulder pitch and yaw and
elbow yaw and roll. Wrist orientations cannot be extracted from the body skeletal
representations.
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Figure 5.4: Mapping skeletons to Nao’s joint angles. Left shoulder roll motion in
Kinect and NAO spaces. Image drawn based on Rodriguez et al. (2014).

joint every 3 frames resulting in 10 joint position vectors per second (Parisi et al.,

2016b).

We selected joint angles to represent the demonstrator’s postures. Joint angles

allow a straightforward reconstruction of the regressed motion without applying

inverse kinematics, which may be difficult due to redundancy and leads to less

natural movements. Nao’s arm kinematic configuration differs from the human

arm in terms of degrees of freedom (DoF)2. For instance, the shoulder and the

elbow joints have only two DoFs (see Fig. 5.3) while human arms have three. For

this reason, we compute only shoulder pitch and roll and elbow yaw and roll from

the skeletal representation by applying trigonometric functions and map them to

2Software Documentation: http://doc.aldebaran.com
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the Nao’s joints by appropriate rotation of the coordinate frames (see Fig. 5.4):

αLShoulderRoll = arccos((
−−−−−−−→
LShoulder −

−−−−−−−→
RShoulder) · (

−−−−−→
LElbow −

−−−−−−−→
LShoulder))−

π

2
,

αLShoulderP itch = 2π − arcsin(z
||
−−−−−−−→
LShoulder−

−−−−−→
LElbow||

),

αLElbowRoll = arccos((
−−−−−−−→
LShoulder −

−−−−−→
LElbow) · (

−−−−→
LHand−

−−−−−→
LElbow))− π,

αLElbowY aw =
π

2
·
y
(
−−−−−→
LHand−

−−−−−→
LElbow)

sin(αLElbowRoll)

For more details on the angle mapping see Rodriguez et al. (2014). Angle con-

straints are taken into account during this mapping. So, if a certain joint angle

is impossible for the robot arm, the movement will stop at the maximal feasible

value. Wrist orientations are not considered since they are not provided by the

OpenNI/NITE framework. Considering the two arms, a frame contains a total of

8 angle values of body motion, which are given as input to the visuomotor learning

module.

5.4 Experimental Results

We conducted experiments with a set of movement patterns that were demon-

strated either with one or with both arms simultaneously: raise arm(s) laterally,

raise arm(s) in front, wave arm(s), rotate arms in front of the body both clock-

wise and counter-clockwise. Some examples from these movement patterns are

illustrated in Fig. 5.5. In total, 10 different motion patterns were obtained, each

repeated 10 times by three participants (one female and two male) who were given

no explicit indication of the purpose of the study nor instructions on how to per-

form the arm movements. In total, we obtained 30 demonstrations for each of the

patterns. We first describe the incremental training procedure, then we assess and

analyze in detail the prediction accuracy of the proposed learning method. We fo-

cus on the learning capabilities of the method while simulating a possible recurring

malfunctioning of the visual system leading to the loss of entire data chunks. We

conclude with a model for choosing the optimal predicted value for a system with

a variable delay.

5.4.1 Hierarchical Training

The training of our architecture is carried out in an online manner. This requires

that the GWR networks are trained sequentially with one data sample at a time.
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Raise both 

arms laterally

Wave 

left arm

Raise right 

arm laterally

Figure 5.5: Examples of arm movement patterns. The visual input data are three-
dimensional skeleton sequences which are mapped to the robot’s joint angles (Mici
et al., 2018c).

The networks are initialized with two neurons with random weight vectors. The

GWR1 network is trained to perform spatial vector quantization. Then the current

sequence is gradually encoded as a trajectory of activated neurons as described

in Eq. 5.1 and given as input to the GWR2 network of the second layer. The

same procedure is then repeated for the second layer until the training of the full

architecture is performed. The learning of 30 demonstrations of one motion pattern

from all three subjects constitutes one training epoch.

The learning parameters used throughout our experiments are listed in Ta-

ble 5.1. The parameters have been empirically fine-tuned by considering the learn-

ing factors of the GWR algorithm. The firing threshold fT and the parameters τb,
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Table 5.1: Training parameters for the GWR1, GWR2, and P-GWR networks in
our architecture for the incremental learning of sensorimotor patterns.

Parameter Value

Activation threshold aT = 0.98
Firing threshold fT = 0.1
Learning rates ǫb = 0.1, ǫi = 0.01
Firing counter behavior τb = 0.3, τi = 0.1, κ = 1.05
Maximum edge age {100, 200, 300}
Training epochs 50

τi, and κ define the firing counter decreasing function (see Appendix B, Eq. B.3)

and were set in order to train a best-matching unit at least seven times before

inserting a new neuron. It has been shown that increasing the number of trainings

per neuron does not affect the performance of a GWR network significantly (Mars-

land et al., 2002). The learning rates are generally chosen to yield faster training for

the BMUs than for their topological neighbors. However, given that the neurons’

decreasing firing counter modulates the weights’ update (see Eq. 5.5), an optimal

choice of the learning rates has little impact on the architecture’s behavior in the

long run. The training epochs were chosen by analyzing the converging behavior

of the composing GWR networks in terms of neural growth.

The activation threshold parameter aT , which modulates the number of neu-

rons, has the largest impact on the architecture’s behavior. The closer to 1 this

value is, the larger is the number of neurons created and the better is the data

reconstruction during the prediction phase. Therefore, we kept aT relatively high

for all GWR networks. We provide an analysis of the impact of this parameter on

the prediction performance of our architecture in Section 5.4.2. Finally, the max-

imum edge age parameter, which modulates the removal of rarely used neurons,

was set increasingly higher with each layer. The neurons activated less frequently

in the lower layer may be representing noisy input data samples, whereas in the

higher layers the neurons capture spatiotemporal dependencies which may vary

significantly from sequence to sequence. For instance, at the level of the GWR1

network, which represents spatial body configurations, it is more probable that

rarely seen input data samples are due to sensory noise. For the GWR2 and P-

GWR networks, on the other hand, rarely seen data samples are most probably

due to sub-sequences encountered in the far past. For them, we set a higher edge

age threshold so that neurons are removed more rarely.
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Figure 5.6: The behavior of the proposed architecture during training on an unseen
sequence demonstrated by one subject (the sequence is presented three times to
the network). From top to bottom illustrated are: the skeleton model of the visual
sequence, the ground-truth data of robot joint angles, the values predicted from
the network, and the Euclidean distance between predicted values and the ground
truth over time (red dashed line indicating the statistical trend) (Mici et al., 2018c).

5.4.2 Predictive Behavior

We now assess the predictive capabilities of the proposed method while the training

is occurring continuously. Considering that the data sample rate is 10 fps, we set

a prediction horizon of 6 frames in order to compensate for the estimated delay of

600 ms.

How fast does the architecture adapt to a new sequence?

An example of the online response of the architecture is shown in Fig. 5.6. We

observed that, except in cases of highly noisy trajectories, the network adapted to

an unseen input already after a few video frames, e.g., ≈ 100 frames which corre-

spond to 10 seconds of the video sequence, and refined its internal representation

after three presentations of the motion sequence demonstrated by one subject, i.e.,

after 30 demonstrations. This can be seen by the statistical trend of the prediction

error.

83



Chapter 5. Incremental Learning and Prediction of Human Motion with
Self-Organization

(a)

GWR1

GWR2

P-GWR

(b)

Figure 5.7: (a) The cumulative prediction error (C.P.E) averaged over all learned
sequences up to each learning epoch (in blue) and the prediction error (P.E.)
computed between the predicted sequence and the sequence represented by the
architecture (in red), (b) Average and standard deviation of the neural growth of
the three GWR networks during learning (Mici et al., 2018c).

Behaviour analysis and prediction performance during in-

cremental learning

We presented the movement sequences one at a time and let the architecture

train for 50 epochs on each new sequence. The training phase was a total of 500

epochs for the whole dataset. Then, we re-ran the same experiment by varying

the presentation order of the sequences and report the results averaged across all

trials. In this way, the behavior analysis does not depend on the order of the data

given during training. We analyzed the cumulative prediction error (C.P.E) of the

model by computing the mean squared error (MSE) over all movement sequences

learned up to each training epoch:

C.P.E =
1

m

m
∑

i=1

(y− ŷ)2, (5.8)
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where m is the total number of frames seen so far. For comparison, we also com-

puted the MSE between the values predicted by the model and the sensory input

after being processed by the GWR1 and the GWR2 networks. For this, we substi-

tute y in Eq. 5.8 with the weight vectors wGWR2
b of the GWR2 neurons matching

the input sequence. We refer to this performance measure as the prediction error

(P.E.) since it evaluates directly the prediction accuracy of the P-GWR network

while removing the quantization error propagated from the first two layers.

The flow of the overall MSE during training and the neural growth of the

GWR networks composing the architecture are reported in Fig. 5.7. The moment

in which we introduce a new motion sequence is marked by a vertical dashed line.

As expected, the cumulative prediction error increases as soon as a new sequence

is introduced (leading to the high peaks in Fig. 5.7.a.), for then decreasing im-

mediately. However, the error does not grow but stays constant even though new

knowledge is being added every 50 learning epochs. This is a desirable feature for

an incremental learning approach. In Fig. 5.7.b., we observe that with the intro-

duction of a new motion sequence there is an immediate neural growth of the three

GWR networks followed by the stabilization of the number of neurons indicating

a fast convergence. This neural growth is an understandable consequence of the

fact that the movement sequences are very different from each other. In fact, the

GWR1 network, performing quantization of the spatial domain, converges to a

much lower number of neurons, whereas the higher layers, namely the GWR2 and

the P-GWR network, have to capture a high variance of spatiotemporal patterns.

Impact of the activation threshold

In the described experiments, we set a relatively high activation threshold param-

eter aT which led to a continuous growth of the GWR networks. Thus, we further

investigated how a decreased number of neurons in the P-GWR network would

affect the overall prediction error. For this purpose, we fixed the weight vectors of

the first two layers after having been trained on the entire dataset, and ran multiple

times the incremental learning procedure on the P-GWR network, each time with

a different activation threshold parameter aT ∈ {0.5, 0.55, 0.6, ..., 0.9, 0.95, 0.99}.

We observed that a lower number of neurons, obtained through lower threshold

values, led to quite high values of the mean squared error (Fig. 5.8). However,

due to the hierarchical structure of our architecture, the quantization error can

be propagated from layer to layer. It is expected that similar performances can

be reproduced with a smaller number of neurons in the P-GWR network when a

lower quantization error is obtained in the preceding layers.
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Figure 5.8: Prediction mean squared error (MSE) versus the number of neurons
in the P-GWR network (Mici et al., 2018c).

Figure 5.9: Mean absolute error (in radians) for increasing values of prediction
horizons (in frames). In our case, 20 frames correspond to 2 seconds of a video
sequence.

Sensitivity to the prediction horizon

We now take the architecture trained on the whole dataset and evaluate its pre-

diction accuracy while increasing the prediction horizon up to 20 frames, which

correspond to 2s of a video sequence. For achieving a multi-step-ahead predic-

tion, we compute the predicted values recursively as described in Section 5.2.3. In

Fig. 5.9, we report the mean absolute error and the standard deviation in radians

in order to give a better idea of the error range. The results show that the magni-

tude of error and the standard deviation increase with larger prediction horizons.

This should come as no surprise since producing accurate long-term predictions

is a challenging task when dealing with human-like motion sequences. However,

it seems that on average the error does not grow linearly but remains under 0.25

radians.
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Figure 5.10: Prediction MSE averaged over 50 epochs of training on each motion
pattern. For up to 30% of data loss the MSE does not grow linearly but rather
stays almost constant. From this point on, the increasing percentage of data loss
leads to the inevitable growth of the prediction error (Mici et al., 2018c).

5.4.3 Learning with Missing Sensory Data

In the following set of experiments, we analyze how the predictive performance of

the network changes when trained on input sequences with missing data frames

due to a faulty visual sensor or due to body occlusions. We simulate an occurring

loss of entire input data chunks in the following way: during the presentation of a

motion pattern, we randomly choose video frames where a second of data samples

(i.e., 10 frames) is removed. The network is trained for 50 epochs on a motion

sequence, each time with a different missing portion of information.

We repeat the experiment increasing the occurrence of this event in order to

compromise up to 95% of the data and see how much the overall prediction error

increases. Results are averaged over epochs and are presented in Fig. 5.10. As can

be seen, the prediction MSE stays almost constant up to 30% of data loss. This

means that the network can still learn and predict motion sequences even under

such circumstances.

5.4.4 Compensating a Variable Delay

Experimental results reported so far have considered a fixed time delay which

has been measured empirically by generating motor behavior with the real robot.

However, the proposed architecture can also be used when the delay varies due to

changes in the status of the hardware. In this case, given the configuration of the

robot at time step t in terms of joint angle values Jξ(t), where ξ is the time delay

estimation, the optimal predicted angle values to execute in the next step can be
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chosen in the following way:

P ∗ = arg min
i∈[0,h]

||Jξ(t)− P (t+ i)||, (11)

where P (t+ i) are the predictions computed up to a maximum h of the prediction

horizon.

The application of this prediction step requires a method for the estimation of

the time delay ξ, which is out of the scope of this work. Current time delay esti-

mation techniques mainly cover constant time delays, random delay with a specific

noise characteristic, or restricted dynamic time delays, which nonetheless do not

address uncertainty affecting real-world robot applications. Computational models

inspired by biology have also been proposed for the time delay estimation (Sar-

golzaei et al., 2016). However, these models assume knowledge of the sensorimotor

dynamics. The variable delay compensation technique needs further experiments

which are not provided in this chapter.

5.5 Summary

Incremental learning and prediction of human motion patterns have been tack-

led by a great number of studies, which have adopted different methodologies,

from Hidden Markov Models (HMM) to Gaussian Mixture Regression (GMR)

and neural network architectures (see Section 2.2.3 and 2.2.4). In this chapter,

we presented a self-organizing hierarchical neural architecture that achieved both

tasks simultaneously and was evaluated in the context of a sensorimotor delay

compensation system for a small humanoid robot. In particular, we evaluated the

proposed architecture in an imitation scenario, in which the robot had to learn and

reproduce visually demonstrated arm movements. Visuomotor sequences were ex-

tracted in the form of joint angles which can be computed from a body skeletal

representation in a straightforward way. Sequences generated by multiple users

were learned using hierarchically-arranged GWR networks equipped with an in-

creasingly large temporal window. For the prediction of the visuomotor sequences

we extended the original GWR algorithm with a temporal association mechanism,

taking inspiration from the Vector-Quantized Temporal Associative Memory (VQ-

TAM) model (Barreto, 2007). Experimental results demonstrated that the model

can incrementally learn mappings of the regressors to the output vectors in the

spatiotemporal domain with good precision. We conducted experiments with a

dataset of 10 arm movement sequences showing that our system achieves low pre-
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diction error values on the training data and can adapt to unseen sequences in

an online manner. Experiments also showed that a possible system malfunction

causing loss of data samples has a relatively low impact on the overall performance

of the system. All these findings together suggest that the system is suitable for

further applications to a robotic platform that operates in real environments and

adapts continuously to sensorimotor feedbacks.

Similar to Chapter 4, we encoded temporal sequences through the sliding time

window technique which comes with the disadvantage of increasing the computa-

tional cost due to the data’s higher dimensionality. However, in our case, using

angles as body pose features leads to a low-dimensional input compared to, e.g.,

raw images. Therefore, the training with long time windows does not pose a com-

putational challenge. Furthermore, it has been shown that long-term predictions

based on a sliding window are more accurate than recurrent approaches (Bütepage

et al., 2017). The use of joint angles as visuomotor representations may seem to

be a limitation of the proposed delay compensation system due to the fact that it

requires sensory input and robot actions to share the same representational space.

For instance, in an object manipulation task, this requirement is not satisfied,

since the visual feedback would be the position given by the object tracking al-

gorithm. This issue can be addressed by including both the position information

and the corresponding robot joint angles as input to our architecture. Due to the

generative nature of the self-organizing networks and their capability to function

properly when receiving an incomplete input pattern, only the prediction of the

object movement patterns would trigger the generation of corresponding patterns

of the robot behavior.
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Chapter 6

Prediction of Human-Object

Interactions

6.1 Introduction

Human action analysis has been a major research topic since the early 1990s (Ag-

garwal and Ryoo, 2011) due to its relevance to a variety of applications such as

health-care and assistive technologies as well as human-robot interaction and coop-

eration. As discussed in Chapter 4, learning to recognize complex human activities

is more than just extracting body poses. For understanding human behavior, a

more fine-grained visual analysis must be performed in order to extract more dis-

criminative cues, for instance, the appearance and the identity of the objects during

object manipulation. Due to this extra computational effort, the field of human

action recognition has moved towards the recognition of realistic human activities

involving objects or multiple persons only in the last decade. However, the focus

has been mainly on the recognition of activities after a full observation, leaving the

prediction of human actions an open challenge (Ryoo, 2011; Trong et al., 2017).

The prediction of human activities before their full execution allows assistive robots

to act anticipatorily and not just when given a command. For instance, when a

robot sees a person holding a water carafe, it could infer that the person wants to

drink and, consequently, it would react by fetching a cup.

As discussed in Section 2.2.5, existing recognition methodologies cannot be di-

rectly applied to the problem of activity prediction. State-of-the-art approaches

for prediction (Lan et al., 2014; Koppula and Saxena, 2016), typically symbolic

approaches, represent human activities as compositions of simpler entities, called

atomic actions or action primitives. Similarly, in this chapter, we will approach
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action prediction from the view of the hierarchical compositionality of activities,

however, by means of an unsupervised neural framework. According to the hier-

archical organization of goals proposed by Hamilton and Grafton (2006), human

activities may involve several immediate goals, e.g., take a cookie or pour milk,

each of which is achieved through a sequence of basic movements, e.g., extend an

arm, preshape hand and close fingers. We will focus mainly on atomic actions

that reach immediate goals in conjunction with a particular object without sub-

sequent partitioning. For instance, we will consider the drinking activity as being

composed of the atomic actions of picking up the cup and bringing the cup to-

wards the mouth, but no elemental actions such as grasping or extend arm will be

distinguished.

We will extend the hierarchical architecture described in Section 4 with a tem-

poral association mechanism for the learning of consecutive body motion patterns

during human-object manipulations. The architecture proposed in this chapter

is novel in two main aspects: First, our learning mechanism develops distinctive

mappings between objects and possible actions. This allows for the bidirectional

retrieval of the information, i.e., it is possible to retrieve the appropriate object

given a body action as well as to retrieve body motion patterns for manipulating

a given object. Second, we use the same learning mechanism, i.e, the temporal

Hebbian connectivity, for both learning the spatiotemporal dynamics of the body

motion and the temporal order of the action sequences in longer activities. The

application of both mechanisms allows for the emergence of action chains, i.e., tem-

porally connected prototype neurons encoding consecutive action segments which

are modulated by the specific target object. In this way, the architecture is able,

when it receives only the initial action segment(s) starting a learned sequence,

to carry out its most likely completion through an internal simulation of the full

action sequence. Such a neural structure is reminiscent of the so-called neural

chains (Chersi et al., 2011, 2014), which are believed to be the underlying neu-

ral mechanism for action recognition and execution in the human brain. Neural

activity propagation through neural chains allows us to recognize activities by ob-

serving only a few of their composing motor acts. Neural chain activations are

strictly modulated by the visual cues in the environment, for instance, a target

object (Fogassi et al., 2005). Furthermore, neurons in one chain are not inter-

changeable with those of other chains even if they code the same motor act.

In Chapter 5, we implemented and analyzed a hierarchical neural framework

for extracting and storing the temporal relationship between body motion patterns

through self-organization. The multivariate prediction function was approximated
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through a simple temporal association mechanism that mapped the regressor vec-

tors to the corresponding output vector at each learning iteration (by following

Eq. 5.2). Such input-output mappings are sufficient for motion prediction applica-

tions but cannot cope with a probabilistic interpretation of human activities. For

instance, the action of pick up can can lead to both the action of drinking as well as

the action of pouring from the can to a container like a mug. Such ambiguities will

now be represented by multiple outgoing temporal connections whose weights are

defined by the transitions frequency, as reported later in our experimental results.

We evaluate our architecture with the Transitive Actions dataset described in

Section 4.2.1. Our experimental results show a high accuracy of the architecture in

learning and anticipating plausible future actions. We also demonstrate the archi-

tecture’s capability to synthesize body motion, thereby allowing for anticipating

the way the next action will be performed. For robotic applications, the latter be-

comes relevant especially when robot planning takes place in environments shared

with humans or other robots (Mainprice and Berenson, 2013).

6.2 A Self-Organizing Approach for the Predic-

tion of Human-Object Interactions

The neural architecture consists of three network streams processing separately

visual features of the body pose, motion, and the objects being manipulated. The

information coming from the three streams is then integrated in order to develop

spatiotemporal representations of action segments. The visual input is processed

by three GWR networks (Marsland et al., 2002), whereas a GWR extended with the

aforementioned temporal connections is applied for the integration of the processed

information. In order to determine if the learned action segments are semantically

meaningful, we associate each neuron of the integration module with an additional

semantic layer comprising action labels. It should be noted, however, that the

associative connections do not modulate the learning process of the integration

module which remains unsupervised. An overview of the architecture is given in

Fig. 6.1.

The proposed architecture has three main properties for the modeling of human-

object interaction activities: First, activities are modeled as hierarchical structures

in time, i.e., they are decomposed in sequences of atomic actions. Second, object

identities are associated with actions in an unsupervised manner and serve as

context information for disambiguating similar motion patterns. Third, human
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Figure 6.1: Extending the self-organizing architecture proposed in Section 4.4 to-
wards action prediction from RGB-D videos. The current architecture is novel in
three main aspects: 1) an additional network stream processes body motion in-
formation, 2) the GWR algorithm extended with asymmetric lateral connections
is used for training the GWRa network, and 3) associative connections are devel-
oped between the GWRa neurons and the symbolic layer (Mici et al., 2018b). The
PCA dimensionality reduction is not applied at the integration step of the current
architecture in order to be able to generate action sequences.

motion trajectories are internally stored and can be retrieved at any point in order

to predict and simulate how an action can be performed on a given object.

6.2.1 Learning Action-Object Segments

Except for the newly introduced body motion network stream, the hierarchical

GWR learning adopted for the visual data processing remains similar to Sec-

tion 4.4.1. First, we extract visual features of body pose, A, body motion, B,

and manipulated objects, O, from the training image sequences, as described in

Section 6.3.1. Then, we separately train the GWRp network with the body pose

features, the GWRm with body motion, and the GWRo with the objects. After the

training is completed, the GWRp will have created a set of prototype neurons rep-

resenting typical pose configurations, the GWRm will have neurons for prototype

body motion vectors and the GWRo network will have learned to classify objects

appearing in each action sequence.

In order to encode spatiotemporal dependencies within the body features pro-

totype space, we compute the neural activations of the GWRp and GWRm, i.e.,

the best-matching units b(·), and apply the delay embedding technique (Takens,

1981) which has been introduced in Section 3.5.1. For this, we take trajectories of
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neural activations over time and group them into vectors of the form:

ψi(x) = {b(xi), b(xi−ξ), ...b(xi−(q−1)ξ)}, i ∈ [q, k], (6.1)

where k is the total number of training frames and q and ξ are the embedding

parameters denoting the width of the time window and the lag or delay between

two consecutive frames, respectively. The choice of q is not critical as long as

it is large enough. The lag parameter ξ, on the other hand, is chosen in order

to maximize the independence of the delay vector components. The embedding

parameters are data-dependent and can be set following a heuristic method or can

be chosen empirically. Note that in the previous chapters the lag parameter has

been fixed to ξ = 1, whereas now it will be further investigated for optimizing

the performance of the neural architecture. By applying the delay embedding

technique, we obtain two sets of spatiotemporal vectors with equal cardinality:

one for the body pose ψi(p) and one for the body motion ψi(m), with p ∈ A and

m ∈ B.

The object data sample y ∈ O extracted at the beginning of each action se-

quence is provided as input to the GWRo network and the corresponding best-

matching units b(y) are computed. The label of the GWRo best-matching unit is

represented in the form of a one-hot encoding, i.e., a vectorial representation in

which all elements are zero except the ones with the index corresponding to the

recognized objects’ category. When more than one object appears in one action

sequence, the object data processing and classification with GWRo is repeated as

many times as the number of additional objects. The resulting one-hot-encoded

labels are merged into one fixed dimension vector for the following integration step.

Finally, all information processed by the GWR networks in the first layer of

the architecture is integrated into a higher dimensional vector:

φi = ψi(p)⊕ ψi(m)⊕ lo(y), i ∈ [q, k − q], (6.2)

where ⊕ denotes the concatenation operator (see Fig.6.2). We will refer to the

computed φi by the name action-object segment. Each segment is thus comprised

of two parts:

1. the pre-processed visual sensor information about the body pose and motion,

2. the context information about the manipulated object, which is necessary to

deal with ambiguities during the recognition and recall of segments which

are shared among different action sequences.
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p(t) p(t- ) p(t-2 ) p(t-3 )

w w w w

w w w

y

GWRoGWRb

GWRa

Action Labels

m(t) m(t- ) m(t-2 )m(t-3 )
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Figure 6.2: Schematic description of the hierarchical learning and of the associa-
tion of action labels (not all neurons and connections are shown). At each time
step t, the body pose p(t) and body motion m(t) are represented by the weight
w of the winner neurons in GWRb and GWRm respectively. Then, each of these
weight vectors is concatenated with the previous winner neuron weights (two pre-
vious neurons in this example) and the category label of the object lio, in order
to compute the winner neuron in GWRa. Each GWRa neuron is equipped with
Hebbian connections to the semantic layer and the most frequently matched class
will be the recognized action.

The set of newly computed spatiotemporal vectors is then used for training theGWRa

network.

6.2.2 Learning Goal-Oriented Action Chains

We now describe how we augment the GWR algorithm with two simple mechanisms

in order to store and recall goal-directed action chains. For capturing the temporal

aspects of human-object interaction sequences, we employ a time-delayed Hebbian

learning rule in the GWRa network which develops asymmetric temporal connec-

tions among the neurons. This learning mechanism has been successfully applied

to the problem of trajectory learning with a self-organizing network (Araujo and

Barreto, 2002). Interestingly, sequence completion driven by asymmetric connec-

tions between neurons is believed to be a feature of the human cortex (Mineiro

and Zipser, 1998).

We define a fully connected matrix of weighted connections Ω among the neu-

rons of the GWRa network. The weights are adjusted in each learning iteration

when the best-matching units are determined. The order of activation of the BMUs

indicates the correct temporal order of the action-object segments that they rep-
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t=0

t=1

t=2

t

Figure 6.3: An illustration of how the temporal connections are established between
consecutive BMUs in the GWRa module. For simplicity, the action frames are
depicted only as body skeletal configurations. At time t = 0, the delay embedded
vector has a width lower than the defined time window (depicted as a sliding
box). Thus, no response is obtained from the network yet. At time step t = 1,
the first available action-object segment activates a neuron. An asymmetric lateral
connection with a non-zero weight is established between the two consecutively
activated neurons at time step t = 2.

resent (see Fig. 6.3). The learning rule is as follows:

∆ωij = µ · aj(t) · ai(t− 1), (6.3)

where 0 < µ < 1 is the temporal learning rate, and ai(t − 1) and aj(t) are the

activity values of the best-matching units at time step t− 1 and t. The activity of

a neuron is computed as a nonlinear function of the Euclidean distance between its

weight w and the input data sample x(t) (see Eq. 3.11). Thus, following Eq. 6.3,

when the two neurons i and j are consecutive BMUs, the temporal connection

between them is strengthened in proportion to their activation, i.e., their similarity

to the input data.

Taking the neurons’ activation into account for the update of the temporal

connections can help alleviate the problem of high quantization errors during the

first learning iterations, while the network’s growth is still taking place. Therefore,

the farther the consecutive winner neurons are from the input they match, the less

is the temporal connection between them strengthened. The temporal weights are
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initialized to zero. Thus, non-zero connections are established only among consec-

utive winners and represent frequent transitions between action-object segments

seen during training.

Since different trajectories, i.e., action sequences, should be handled by one

single network, attention should be paid to have neurons responding to unique

action-object pairs, e.g., pick up mug and not to pick up phone in order to have

unambiguous goal-directed chains. For this purpose, we provide the objects’ iden-

tity as a binary vector to each action-object segment as described in Section 6.2.1.

However, the GWR neuron competition during training, which is based on the

Euclidean distance function, does not guarantee that neurons specialize in unique

action-object pairs. Thus, we apply a weighted Euclidean distance function to

consider equally the two composing components of the action-object segments.

The weights of the Euclidean distance are computed in the following way: For

the pose and motion components of each action-object segment (ψi(p), ψi(m), see

Eq. 6.2) the weights are given by an exponential function exp(−j), where j ∈ [0, q],

while for the object’s identity the weights are set to 1. Then, the obtained weights

are normalized such that their sum equals 1. With this type of configuration, a

higher weight will be given not only to the manipulated object but also to the

latest pose and motion frame in the action-object segment. Additionally, we mod-

ify the neuron insertion strategy in the following way: if the weight vector of the

best-matching unit computed at time step t contains the identity of an object, ob,

different from the matched input, ox(t), then a new neuron is created.

6.2.3 Action Classification

While leaving the learning of the GWRa network unsupervised, we simultaneously

link each neuron to a symbolic action label l ∈ L, where L is the set of action

classes. The GWRa will then have a many-to-many relation with the symbolic

layer. The set of weights Π, which are initialized to zero, are updated according

to the rule:

∆πilj = γ · ai(t), (6.4)

where 0 < γ < 1 is the learning rate, ai(t) is the activity of the winner neuron at

time step t and lj is the target action label. After the training phase is complete,

the weights are normalized by scaling them with the corresponding inverse class

frequency and with the inverse neuron activation frequency. In this way, class labels

that appear less during training are not penalized, and the vote of the neurons

is weighed equally in spite of how often they have fired. The extended GWR
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algorithm with the additional so-far described learning mechanisms is illustrated

in Algorithm 1 (the modifications are highlighted in bold).

At recognition time, given one temporal segment of a human-object interaction

at the time step t, the best-matching unit b(t) is computed in the GWRa module

and the action label is given by:

lj = argmax
l∈L

(πb,l). (6.5)

In order to classify an entire action sequence, a majority vote labelling technique

is applied on the labels of its composing temporal segments.

Algorithm 1 The modified GWR algorithm (used for training the GWRa module)

1. Create two random neurons with weights {w1,w2}

2. At each iteration t, generate an input sample x(t)

3. Select the best and second-best matching neuron:
b = argmin

n∈A
||x(t)−wn||, s = arg min

n∈A/{b}
||x(t)−wn||

4. Create a connection E = E ∪{(b, s)} if it does not exist and set its age to 0.

5. (New insertion condition) If (a(t) < aT ) and (hb < fT )) or (ob 6= ox(t))
then:

• Add a new neuron r (A = A ∪ {r}) with
wr = 0.5 · (x(t) +wb), hr = 1,

• Update edges: E = E ∪ {(r, b), (r, s)} and
E = E/{(b, s)}.

6. If no new neuron is added:

• Update best-matching neuron and its neighbors i:
∆wb = ǫb · hb · (x(t)−wb), ∆wi = ǫi · hi · (x(t)−wi),
with the learning rates 0 < ǫi < ǫb < 1.

• Increment the age of all edges connected to b by 1.

7. (Newly introduced temporal connections) If b(t) 6= b(t− 1) update the
temporal connection weight between b(t) and b(t− 1) following Eq. 6.3.

8. (Newly introduced symbolic connections) Update the symbolic connec-
tion weight between b(t) and the target action label lj following Eq. 6.4.

9. Reduce the firing counters of the best-matching neuron and its neighbors i:
∆hb = τb · κ · (1− hb)− τb, ∆hi = τi · κ · (1− hi)− τi
with constant τ and κ controlling the curve behavior.

10. Remove all edges with ages larger than a pre-defined threshold and remove
neurons without edges.

11. If the stop criterion is not met, repeat from step 2.
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6.2.4 Action Prediction

During the prediction phase, each action sequence is presented to the trained archi-

tecture and the action-object segments are computed as described in Section 6.2.1.

As can be seen in Fig. 6.3, the first winner neuron of the GWRa is obtained at

time t = 1, i.e., after the first q frames have been processed and the first compos-

ing temporal segment is available. The one-step-ahead prediction of the sequence

can then be computed following the outgoing temporal connection with the maxi-

mal weight. In the case that the desired prediction horizon is greater than 1, the

multi-step-ahead prediction can be obtained by recursively applying the one-step-

ahead prediction computation. In both cases, the predicted action label for the

last activated neuron is given by Eq. 6.5.

In contrast to Chapter 5, where we focused mainly on the motion prediction

task, here we are interested in the higher-level action prediction problem, which is

often indeterministic. For instance, the action of pick up can can lead to both the

action of drinking as well as the action of pouring from the can to a container like

a mug. In the current architecture, such ambiguities are represented by multiple

outgoing temporal connections with non-zero weights. In other words, the maximal

temporal weight gives the most probable, but not the only possible transition, after

the observed action-object segment.

The proposed architecture has the advantage of self-organizing and learning

sequences of arbitrary lengths in an unsupervised manner. The recall of a sequence

can start at any point given one component action-object segment. Finally, the

architecture can learn ordered action sequences, in our case called atomic actions,

as a single long sequence, thereby providing a mechanism to recall the atomic

action following the observed one.

6.3 Experimental Results

Now we assess the action label prediction capability of our architecture on an RGB-

D dataset of human-object interactions, namely, the Transitive Actions dataset.

The dataset consists of 4 simulated daily activities: drinking (from a container like

a mug or a can), eating (an edible object like a biscuit), pouring (from a can into a

mug) and talking on phone performed by 6 subjects. For the experiments reported

here, each sequence was segmented into fine-grained atomic actions which define

the activity: pick up mug and drinking, pick up phone and talking on phone, pick

up biscuit from the biscuits box and eating, pick up can and pouring the liquid

inside it into a mug. It should be noted that we distinguish between different pick
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up sequences only for evaluation purposes. It allows us to better view the learned

action-object chains and the consistency of the object in each sequence of atomic

actions learned by the neural architecture. However, as mentioned also earlier, the

learning process and the emergence of the internal representations are independent

of the symbolic labels being used. In addition to the available activity sequences,

we synthetically build longer ones in which the actions of pick up mug and drinking

from mug follow the action of pouring from can to mug. With this type of sequence,

we want to assess the prediction of more complex action sequences that lead to

the inference of higher-level activities like, for example, having meal.

6.3.1 Feature Extraction

We consider only the position of the upper body joints shoulders, elbows, hands,

center of torso, neck, head and hips, given that they hold all necessary informa-

tion about the human-object interactions we focus on. However, the number of

considered joints does not limit the application of our architecture for the task of

recognition and prediction of full body actions. From each video frame, we extract

the (x, y, z) position of each joint and we translate them into a coordinate system

having the torso as the origin and concatenate them into one vector p, which will

then represent the body pose. Notice that we do not extract the skeletal quad

features (Evangelidis et al., 2014) here since we are interested in not only the

recognition but also the generation of body movement patterns.

We also consider the body motion vector m, which we define as the differences

in position of the upper body joints between two consecutive frames. We assume

that these motion vectors, which encode the velocity of the movement between

frames, hold significant information about apparently similar motion patterns, e.g.

pick up can for drinking or pick up can for pouring its liquid into a mug. Behavioral

studies with human infants have shown that the hands’ motion velocity plays an

important role in action anticipation (Stapel et al., 2015). Finally, the objects are

extracted from the scene through a table-top segmentation algorithm and encoded

by applying the Vector of Locally Aggregated Descriptors (VLAD) method (the

same approach has been adopted in Section 4.3.2).

6.3.2 Predicting the Action Label

We follow the same cross-validation scheme described in Chapter 4, i.e., we train

our architecture on activities performed by 5 subjects and test on activities of an

unseen subject. The parameters used for training the architecture throughout our
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Table 6.1: Training parameters for each GWR network in our architecture for the
learning of human-object interaction sequences.

Parameter Value

Activation Threshold aT = 0.98
Firing Threshold fT = 0.1
Learning rates ǫb = 0.1, ǫi = 0.01
Firing counter behavior τb = 0.3, τi = 0.1, κ = 1.05
Maximum edge age {100,100,200}
Training epochs 50
Hebbian connections µ = 0.3, γ = 0.5

experiments were determined experimentally and are listed in Table 6.1. We define

a time window width q = 15 and a lag ξ = 3 for the computation of the delay

embedded vectors. In this way, we obtain action-object segments with a temporal

length of 15 video frames.

In this set of experiments, we fix a prediction horizon of 500 ms (i.e, 15 frames

at 30 fps) and compare the predicted action labels with the ground truth. In

our dataset, the length of each atomic action is variable ranging from very short

sequences, like pick up and pouring which can last less than a second, to very

long sequences like talking on phone which can last up to 15 seconds. Thus, a

prediction horizon of 500 ms is necessary not to penalize the short sequences in

our dataset. The precision, recall, and F1-score for each action class, computed

across all 6 folds, are reported in Fig. 6.4. Additionally, we report the confusion

matrix both for the predicted and for the classified (ongoing) actions in Fig. 6.5 in

order to further clarify the obtained results.

Analyzing the confusion matrices we can observe that the actions of eating,

drinking and talking on phone are predicted with high accuracy, even though the

test sequences have never been seen during training. Pouring, on the contrary,

is not predicted with the same accuracy. We assume that the reason for this is

twofold: (1) the misclassification of the pouring frames (which is evident from the

classification confusion matrix) due to the fact that the body pose for pick up can

and pouring are very similar (see Fig. 6.10), (2) the architecture often predicts

what comes after pouring already, like pick up mug in order to drink. In both

cases, the considerable number of false negatives causes the drop of the pouring

recall metric, as can be seen in Fig. 6.4.

As for the prediction of the pick up sub-sequences, the confusion matrix is far-

ther from the diagonal. However, the results demonstrate the temporal ambiguity
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Figure 6.4: Action label prediction results on the Transitive Actions dataset. Illus-
trated are precision, recall, F1-score, averaged over 6 trials of cross-validation (Mici
et al., 2018b).
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Figure 6.5: Normalized confusion matrices of the predicted and classified actions
averaged over six trials (Mici et al., 2018b).

between consecutive atomic actions which can often lead to an imperfect segmen-

tation. For instance, in the case of pick up biscuit/mug/phone the architecture

predicts eating, drinking and talking on phone, respectively, quite early. However,

this cannot be considered an error, but rather a desirable feature for real-time

robotic applications, where the robot’s response needs to be planned as much in

advance as possible. Finally, there are obviously little to no implausible predic-

tions such as talking on phone instead of drinking or eating and this shows that

the architecture successfully performs in the task that has been assigned to it.
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Figure 6.6: Body pose trajectories generated by the architecture when given the
onset action-object segment of pick up (biscuit) which is followed by eating.
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Figure 6.7: Body pose trajectories generated by the architecture when given the
onset action-object segment of the action pick up (can) which is followed by drink-
ing.

6.3.3 Visual Generation of Actions

We analyze the output of our architecture when simulating an entire action se-

quence given a specific object. While predicting action labels is important for a

robotic platform when planning responses to those actions, predicting motion is

crucial for planning robot motor commands in a shared workspace. In this round

of experiments, we feed the trained architecture only the onset action-object seg-

ment starting a learned sequence and rely on the GWRa’s temporal connections

for completing the sequence automatically. In order to do so, we recursively com-

pute the one-step-ahead action-object segment, as described in Section 6.2.4. The

iterations will stop when the current best-matching unit has no temporal connec-

tions to any other neurons - this indicates the end of the learned sequence. The

performance of the architecture in this task is evaluated qualitatively, given that

human motion synthesis is highly non-deterministic and its plausibility is hard to

evaluate in a quantitative manner. This is evident by looking at the examples

illustrated in figures 6.6, 6.7, and 6.8 (upper body joints are outputs of the GWRa
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Figure 6.8: Body pose trajectories generated by the architecture when given the
onset action-object segment of the action pick up (phone) which is followed by
talking on phone.

module, whereas the feet are added for illustration purposes). For comparison,

each generated sequence is depicted nearby its ground truth, i.e., the actual action

sequence following the given onset action-object segment. As can be seen from

the figures, the generated body pose trajectories are not strictly similar to the

ground truth but do represent plausible actions. It can happen that the action

following the pick up sub-sequence starts earlier, it is composed of fewer frames or

it is performed with a different style than in the ground truth, e.g., the subject

talking on the phone in Fig. 6.8 is also gesticulating with his left arm but not

in the ground-truth sequence. This is an understandable consequence of the fact

that the recall of the sequences is based on the most frequently seen body pose

transitions during training and does not take into consideration different styles or

speed of execution for each action. The neural activation trace of the GWRa net-

work when generating the sequence pick up phone→talking on phone is depicted

in Fig. 6.9. For illustration purposes, the neuron weights have been projected into

the 2D space through the Linear Discriminant Analysis (LDA) technique (Fuku-

naga, 2013). The figure reports an example of the action chains developed during

training for the aforementioned sequence. It starts with a neuron belonging to the

cluster pick up phone and transitions to the cluster talking on phone.

If the given onset action-object segment comprises the initial body postures of

the atomic action pick up can and no further input is given to the architecture, the

complete sequence composed by pouring and drinking will be generated. An exam-

ple is illustrated in Fig. 6.10. However, if pouring is the only desired sequence, its

action label, lp, can be used to control the sequence generation in the following way:

j = arg max
wij∈Ω

(wij) if lj = lp. In words, among the outgoing temporal connections

of the winner neuron, i, representing the current action-object segment, we choose
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Figure 6.9: Example of an action chain developed for the sequence: pick up phone
→ talking on phone

onset future
pouring pick up mug drinkingpick up can

Figure 6.10: Body pose trajectories generated by the architecture when given the
onset action-object segment of the action pick up (can). The action labels on top
are output by the architecture. The sub-sequence pouring is automatically followed
by pick up (mug) and drinking.

the one leading to the neuron with the specified action label. The same mechanism

can also serve the purpose of choosing among multiple ambiguous states, which

are common to different actions, in order to generate sequences that remain in the

correct action class.

6.4 Summary

We presented a hierarchical neural network architecture for jointly learning to rec-

ognize and predict human-object interactions from RGB-D videos. In particular,

we focused on how to extend a GWR learning algorithm in order to encode tem-

porally ordered body motion patterns from sequences of arbitrary lengths. For

this purpose, we employed the Hebbian learning in its simplest form in order to

associate consecutive network activations. Additionally, actions were represented
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as sequences of spatiotemporal segments consisting of body pose, motion, and the

identity of the manipulated object(s). The temporal association mechanism to-

gether with the GWR network’s self-organizing capability led to the formation of

neural chains encoding goal-oriented actions. The formation of prototype neural

chains resembles mechanisms for the execution and recognition of actions in the

brain (Chersi et al., 2011). We showed that with the same underlying learning

mechanism the architecture is able to predict body motion and scale to the pre-

diction of action labels by learning ordered sequences of atomic actions. We evalu-

ated our architecture on the Transitive Actions dataset showing that it can predict

plausible future actions with high accuracy albeit being tested on sequences never

encountered before. This dataset has low inter-class variability, i.e., the motion

patterns are very similar across different action classes. This made the action pre-

diction more challenging and allowed us to focus on analyzing in detail the internal

neural chain representations developed within our architecture. However, further

evaluation of our architecture should be performed as part of the future work on

larger-scale datasets composed of more complex sequences of actions. Finally, the

action generation results showed that our architecture can deal with receiving only

some initial sensory input and internally simulate the rest of the action without

being fed any further input.

The experiments with the generation of actions provided a qualitative anal-

ysis of the goal-oriented action chains developed within the architecture. The

results showed that the learned sequences can be replicated accurately in the vi-

sual domain. This was our main focus, considering that not only predicting hu-

man actions but also anticipating how the actions are performed can be useful

features for assistive robotic platforms that share the motion workspace with hu-

mans. Furthermore, the generative property of the proposed architecture makes it

an attractive approach for robot action learning. For instance, instead of learning

body posture trajectories it can be used to learn object state transitions, i.e., the

object’s position and pose over time, during the observation of object manipula-

tion activities. Then, the same object trajectories can be replicated with a robotic

platform by means of inverse kinematics. In Chapter 5, we approached the cor-

respondence problem through direct angle mappings but this was more suitable

for learning arm gestures. Moreover, the temporal connections developed between

consecutively activated neurons can be seen as possible paths between states in an

abstract representation of the robot workspace. On top of this representation, it

is possible to benefit from the graph theory, which provides efficient path planning

algorithms. Robot path planning can be performed, for instance, by searching

107



Chapter 6. Prediction of Human-Object Interactions

the shortest path when the weights of the neural connections refer to the distance

from one state to another (Barreto et al., 2003). Thus, different extensions towards

robotic scenarios are possible each of which introduces its own challenges.
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Chapter 7

Learning Hierarchical

Representations of Human-Object

Interactions

7.1 Introduction

The network models presented in Chapter 4, 5, and 6 learn the spatiotemporal

dependencies of the body movement patterns in an unsupervised manner being

driven by bottom-up sensory information. However, it is known biologically that

feedback, also called top-down, connections are widely present in the dorsal and

ventral streams which process the visual sensory inputs in the human cortex. The

top-down connections are thought to have a powerful influence in the shaping of

the lower-level processes (Gilbert and Sigman, 2007). For instance, top-down con-

nections from the premotor cortex play a role in the formation of the topographic

class-grouped representations in the higher substrates of the visual processing hi-

erarchy (Luciw and Weng, 2010). In this chapter, we will focus on a top-down

learning mechanism which uses symbolic labels to modulate the neurogenesis as

well as the topological arrangements in a hierarchical architecture of GWR net-

works. From the computational perspective, a top-down modulation mechanism

is necessary in order to account for the classification error and not just the quan-

tization error, which is not directly related to the classification performance.

In Chapter 6, we explored how learning the most frequent transitions among

body postures by applying temporal Hebbian connections can lead to action an-

ticipation. This anticipation mechanism was shown to enable also the mental

simulation or the generation of human actions. The learning was conducted in
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an unsupervised manner while the identity of the manipulated objects was used

as the action context. In order to evaluate if the representations learned for the

action-object segment sequences were semantically meaningful, we mapped neu-

rons to action symbolic labels based on the co-occurrence of the visual stimuli and

the corresponding label presented during training. In this chapter, we will see

how to use the action labels in order to modulate learning, optimize the internal

representations, and improve the action recognition performance.

The architecture proposed here is novel with respect to the fact that we intro-

duce a new neuron insertion strategy that takes into account the classification error

instead of just the quantization error. As will be shown later in this chapter, a

neuron insertion strategy based on the minimization of the quantization error does

not guarantee a better classification performance and may lead to the creation of

an unnecessarily large number of neurons. We will analyze how this mechanism

can be implemented in a hierarchical self-organizing architecture for the recogni-

tion of human activities on two semantic and temporal levels: atomic actions and

long-term activities. Our goal is to consider both short-range and long-range rela-

tions between action-segments and use the feedback connections among layers for

modulating the learning process.

Most of the previous work on the hierarchical recognition of human activities

addresses activity and atomic actions recognition as separate tasks (Koppula and

Saxena, 2013; Koppula et al., 2013), i.e., the action labels need to be inferred

before the activity labels. In contrast to these approaches, we seek to jointly

model actions and activities with one neural framework. By using the top-down

modulation mechanism we aim to use the activity labels as a constraint for the

atomic actions in order to have a better estimation of the actions and vice versa.

We will conduct a set of experiments with the CAD-120 dataset which has

been previously used to evaluate the architecture for the recognition of human-

object interactions (Chapter 4). Experimental results show that we outperform

the state-of-the-art approaches with respect to the recognition of high-level activi-

ties. A qualitative analysis of the labels generated by the architecture during test-

ing shows that semantically meaningful representations of the composing atomic

actions emerge.

7.2 A New Neuron Insertion Strategy

The insertion criterion of new neurons in the original GWR algorithm is decided

based on the local representation errors of the network. As discussed in Section 3.4,
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the goal of a GWR algorithm is to estimate the unknown probability density of

the input with the local density of the prototype vectors. If the activity of the

best-matching unit (BMU) b(t) at time t is lower than the insertion threshold

aT , then a new neuron will be inserted and will be placed halfway between b(t)

and the input x(t). However, when target labels are available, the fact that the

habituated BMU has been assigned a different label than the input it matches at

time step t, for instance, can indicate that a new neuron should be inserted near

the existing one. With this argument in mind, it seems reasonable to take the local

classification error information into consideration for the neuron insertion criteria

during training.

7.2.1 An In-depth Analysis

The GWR algorithm decides the moment and place for the insertion of a new

neuron at each learning iteration. For this reason, each neuron should be equipped

with a way of measuring how often it has misclassified. We associate each neuron

i with a counter ci, which is incremented whenever that neuron is the BMU of an

input with a different label. In principle, this is very similar to the firing counter, or

the neuron habituation, of the GWR algorithm which measures how often a neuron

has fired. The neuron habituation prevents the creation of new neurons when the

BMU has not been trained enough times. The misclassification counter prevents

the creation of new neurons when the BMU has mismatched the input only a few

times, which can happen when the BMU is a neuron only recently inserted or when

the matched input sample is noisy. The idea of storing the local classification error

is similar to the Supervised Growing Neural Gas (SGNG) algorithm (Holmström

and Gas, 2002). The SGNG algorithm, however, has the extra computational cost

of learning a set of output weights to a Radial Basis Function (RBF) output layer

in parallel with the development of the prototype vectors.

Whenever the misclassification counter cb of the habituated BMU at time step t

exceeds a threshold mT , a new neuron will be inserted between the badly matched

winning neuron and the input and will take the label of the input. If there is

no mismatch between the input and the BMU, then the algorithm will proceed

normally with the weight updates. This insertion mechanism is independent of the

labeling strategy being applied: it can be the frequency-based strategy, described

in Section 4.4.2, or the weighted asymmetric Hebbian connections to a semantic

layer as shown in Section 6.2.3.

If we include the quantization error in the neuron insertion condition described

so far, then the condition would be the following: ((a(t) < aT ) and (hb < fT ) and
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Insertion condition: ((a(t) < aT) and (hb < fT))

(a)
I. c.: ((a(t) < aT) and (hb < fT) and (cb > mT))

(b)

Insertion condition: ((cb > mT) and (hb < fT))

(c)

Figure 7.1: An experiment with a 2D dataset of two nested clusters demonstrating
the neuron placement when applying different neuron insertion conditions. The
neurons are depicted in black. (a) Results using only the quantization error (as
applied in the GWR algorithm). (b) Results using both the quantization error and
the classification error. (c) Results when only the classification error is considered
as a neuron insertion condition. In each case, the habituation threshold is taken
into account in order to assure sufficient training of the neurons.

(cb > mT )). Figure 7.1 illustrates an example of the neuron placement when using

different neuron insertion strategies during classification. The dataset used for

training the models is composed of one thousand data samples, drawn from a two-

dimensional normal distribution, arranged in two nested clusters. The exact same

parameters were used in each experiment: fT = 0.3, aT = 0.9, ǫb = 0.1, ǫi = 0.01,

50 training epochs and maximum edge age 50. We set a misclassification threshold

mT = 10. As can be easily noted in Fig. 7.1.a, the neurons in a GWR algorithm

try to cover the whole data distribution in the best way possible, no matter what

class each data point belongs to. In Fig. 7.1.b the use of the two insertion criteria

in conjunction leads to the creation of a significantly smaller number of neurons,
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Classification error Class error counter No. Neurons per Class

Iterations Iterations Iterations

Figure 7.2: More details on the effect of different neuron insertion conditions during
training on the nested clusters dataset. Each plot shows the average and the
standard deviation of the results of 5 trials, each time randomly shuffling the
input order. The first row shows results for the GWR with the original insertion
condition, the second row shows results using both neuron insertion conditions,
and the last row, using only the classification error. The first column shows the
classification accuracy measured every 100 iterations, the second and the third
columns show the error counter for each class and the class-specific neural growth
respectively, during each learning iteration.

which are distributed evenly over the data samples. In Fig. 7.1.c, on the other

hand, where the classification error is the sole insertion strategy, we can observe a

greater number of neurons placed near the two clusters border, i.e., where most of

the misclassifications occur.

Figure 7.2 illustrates the average classification error, the neural growth of each

network during training and the class error counter, which is increased every time

the label of the BMU is not matching the input’s label. In the case of the GWR

with the original neuron insertion condition, the neural growth stops way before
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the first 10.000 learning iterations, i.e., the first epoch, albeit the growing error

counter of both classes. In the same way, the classification error converges quite

fast towards 0.05 but is not decreased anymore throughout learning. The effect of

applying both insertion conditions is, in this example, slightly different. We can

observe a smaller number of neurons created for each class and the growth does not

halt but tries to counteract the growing error counter. However, this is not enough

for the classification error to reach the 0 value. In the third case, we see that

the error counter is much smaller for both classes and becomes constant after 50

epochs, whereas the classification error converges to almost 0 after 30 epochs. The

neural growth is slower than the other two cases and does not stop until reaching

the best performance.

The GWR network that bases its neural growth only on the classification er-

ror will tend to be small once it starts classifying all training samples correctly.

When the classification error does not equal zero, on the other hand, the network

will grow continuously. Thus, from all insertion conditions described so far, it

seems more convenient to combine both the quantization error with the classifi-

cation error while keeping the insertion threshold high, e.g., aT = 0.99 for the

current experiments. This would allow for the higher density of neurons in the re-

gions where most misclassifications occur while guaranteeing that, at least, all the

training data have a good prototype representation. Moreover, when the network

has learned to represent the input data in the best way possible, the growth will

stop even though misclassifications may still take place. It should be noted that

the sensibility of the network’s growth with respect to the value of the insertion

threshold parameter is more relaxed. Finding an optimal value for this parameter

is no longer necessary for maximizing the classification performance of the model,

as long as both insertion conditions are used.

7.2.2 Modulating Neural Growth in a Hierarchical Archi-

tecture

The application of the proposed neuron insertion strategy in a hierarchy of GWR

networks equipped with hierarchical spatiotemporal learning (see Section 4.4) may

lead to: (1) a greater number of neurons in areas with higher class uncertainty, as

previously demonstrated, and (2) the modulation of the neural growth of the GWR

network in the lower layer of the hierarchy, thus optimizing resources according to

the task being solved. The second outcome is achieved by simply propagating the

delayed classification error information from the top layer to the previous one. We
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assume that when one action segment is not well classified, the representation of

the spatial data learned by the first layer needs to be adapted accordingly. If we

take the example of the hierarchical learning of human actions, for instance, the

neural growth of the first layer which processes body postures can be modulated

by how well the second layer is classifying actions. The more subtle the differences

between the sequence segments given in input to the second layer, the denser will

be the first layer areas representing the constituent body postures, and, as a re-

sult, the more fine-grained and distinctive will become the subsequently generated

spatiotemporal representations. It is expected that the neural structure and the

internal representations learning through this bilateral process will vary depend-

ing on how well the current training data samples are being classified rather than

based on a quantization error dependent neuron insertion threshold which doesn’t

change during learning.

Now, we demonstrate the validity of our hypotheses with an example. Fig. 7.3

illustrates the neural placement and the dynamics of the hierarchical architecture

in terms of the class error counter and the number of class neurons during training

on the Transitive Actions dataset introduced in Section 4.2.1. For comparison, we

illustrate in Fig. 7.4 the results of the same experiment when the neural growth

is driven by the quantization error and no top-down modulation is applied. Both

architectures have been trained for 10 epochs and the results have been averaged

over 6 trials (the Transitive Actions dataset is composed of actions executed by 6

different subjects). In the first column of the two figures, the neuron weights have

been projected to the 2D space by means of the LDA technique (Fukunaga, 2013).

The parameters of the projection matrix have been adapted by projection pursuit

to yield a maximum Gaussian separation of the prototypes in the two-dimensional

target space (Friedman and Stuetzle, 1981).

The most evident difference in the two experimental results is the decreased

number of neurons in both layers of the first trained architecture. Secondly, the

class with the highest number of neurons in both layers is the one being mostly

misclassified, i.e., the picking up action. We see that this is not the case with

the second architecture, whose second layer dedicates more neurons to the talking

on the phone action. Moreover, it reaches a stable number of neurons between

the second and the fourth epoch independent of the increasing classification error

for picking up. By analyzing the 2D-projected neuron weights we can observe a

slightly better separability between the clusters in the second layer of the first

architecture. Hence, in the unprojected original space, a good separability can be

expected. This is confirmed by the experiment: the first architecture reaches a
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Figure 7.3: Experimental results on the Transitive Actions dataset when applying
the top-down modulation mechanism. The LDA-projection of the weights is shown
in the first column and the learning dynamics of the two-layer GWR hierarchy
during training are shown in the second column. Each action category is illustrated
with the same color in all the plots.

relatively low classification error by the end of the training session.

In Fig. 7.5 we illustrate the sensitivity of the architecture with respect to the

misclassification threshold. We observe that the recognition rate for a threshold

mT = 6 is on average slightly higher than for mT = 0 albeit the almost halved

number of neurons. A misclassification threshold equal to 0 is equivalent to a hier-

archy of GWR networks where neural growth occurs as soon as misclassifications

occur. Looking at the standard deviation, the recognition rate oscillates from trial

to trial and it might be higher than the average for lower thresholds. This means

that increasing the threshold does not always result in better performance. This is
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Figure 7.4: Experimental results on the Transitive Actions dataset when dis-
abling the top-down modulation mechanism. Looking at the LDA-projection of the
weights, we see that the trained neural architecture has a larger number of neurons
than when the top-down modulation mechanism is applied (see Fig. 7.3). During
learning, the neural growth for each action category is independent of the class
error counter.

an understandable consequence of the fact that this top-down modulation mecha-

nism does not aim at separating prototype neurons belonging to different classes,

as in the case of the Learning Vector Quantization (LVQ) algorithm for instance,

but rather concentrates resources in areas where classification is difficult. More-

over, the growth of the network becomes much slower with an increasing threshold

and the available resources might not be enough to solve the classification task.
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Figure 7.5: Sensitivity analysis of the misclassification threshold. The mean value
and the standard deviation are computed over the 6 folds of the Transitive Actions
dataset.

7.3 An Architecture for Learning the Composi-

tionality of Human Activities

We now present a hierarchical architecture extended with the so far described top-

down modulation mechanism for learning human actions on two levels of semantic

and temporal complexity: 1) atomic actions such as reaching, opening which are

completed in a relatively short period of time, and 2) the high-level activities that

can be composed of different atomic actions. An overall diagram of the architecture

is shown in Fig. 7.6.

The GWRb, GWRo, and GWR1 networks process and subsequently integrate

the body pose and the information about the manipulated object(s), while the

GWR2 network integrates spatiotemporal dependencies over longer time windows

and learns to classify human activities. Both the GWR1 and the GWR2 networks

capture different temporal ranges of actions by the accumulation of body move-

ment patterns over a short and a longer time period respectively. The feedforward

hierarchical computation of the spatiotemporal inputs is identical to the one in-

troduced in Section 4.4.1. Besides the identity of the manipulated objects, we

consider additional visual features capturing the object-object and object-body

spatial relations, as will be described in Section 7.4.1.

We introduce delayed feedback connections and extend the traditional GWR

learning algorithm with the proposed top-down modulation mechanism. Thus,

during training, the error regarding the misclassification of the atomic actions and

of the activities is propagated not only to the GWR2 and GWR1 respectively,

118



7.4. Experiments with the CAD-120 Dataset
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Figure 7.6: Illustration of the neural architecture for learning the compositional-
ity of the human activities. This model extends the self-organizing architecture
proposed in Section 4.4 with: 1) an additional network layer that captures spa-
tiotemporal dependencies over longer time windows, 2) two associative connection
matrices between GWR1 and the atomic actions symbolic layer and between GWR2

and the activities symbolic layer, and 3) the top-down modulation mechanism that
modulates the learning of the GWRb, GWR1, and GWR2 networks. Additional vi-
sual features capturing the object-object and object-body spatial relations are also
provided as input to the current architecture.

but also to the network layers preceding them (the feedback connections are de-

picted with red arrows in Fig. 7.6). This is done in order to: 1) allow changes of

the topological structures for all the body processing GWR networks, and 2) to

better match the input space for jointly learning the atomic actions and the high-

level activities. We apply the proposed neuron insertion strategy to each network

layer. Notice that the action classification error is not propagated to the object

recognition module which provides the identity of the manipulated objects at the

beginning of each action sequence.

7.4 Experiments with the CAD-120 Dataset

We run experiments with the CAD-120 benchmarking dataset of human activities

previously used to report activity recognition performances in Chapter 4. This

dataset provides 120 videos of 10 long daily activities composed of a varying number

of atomic actions (see Table 7.1). The dataset is challenging in the following

aspects: 1) The activities in the dataset are performed by four different actors,

which behave quite differently, e.g., use left or right hand or follow a different order

of atomic actions. 2) There is a large variation even for the same activity, e.g.,
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Table 7.1: The high-level activities of CAD-120 in terms of atomic actions. The
order of the atomic actions can be different for some activities. The high-level
activities are learnt at the top-most layer of our architecture and the atomic actions
are learnt by network layer 2.

Activity Reaching Moving Placing Opening Closing Eating Drinking Pouring Cleaning Null

Making cereal X X X X X

Taking medicine X X X X X X X

Stacking objects X X X X

Unstacking objects X X X X

Microwaving food X X X X X X

Taking food X X X X X X

Picking objects X X X

Cleaning objects X X X X X X X

Arranging objects X X X X

Having meal X X X X X

the atomic action opening can refer to opening a bottle or opening the microwave.

Although both of them have the same label, they appear significantly different from

each other in the video. 3) As also shown in Section 4.2, occlusion is a critical issue

for this dataset, e.g., in some of the videos, legs are occluded by the table, leading

to completely unreliable leg tracks (see Fig. 4.3 and 4.4).

Since in this set of experiments we will use the object motion information pro-

vided by the dataset, an additional issue is presented by the objects being occluded

by other objects (e.g., the pizza box is not tracked while inside the microwave) or

not being tracked due to their small size, e.g., the apple object appearing in the

having meal activity. This means that object location annotations provided by the

dataset are often unreliable.

7.4.1 Adding Objects’ Motion and Spatial Relationships

The recognition of human activities can be guided by the information regarding

the objects involved and the way their spatial relationships change over time.

For instance, putting a pizza box inside the microwave indicates that the person

is microwaving food or bringing the cup towards the mouth indicates that the

person is drinking. The use of objects’ spatial relationships as visual features,

though, raises an important question: how can such features be invariant to the

scene despite the varying number and type of objects appearing in it?

One way to represent object relationships is through the scene graphs proposed

by Aksoy et al. (2017). However, their approach requires the manual definition of

discrete labels for spatial relations. In contrast, our goal is to keep continuous

position values. Thus, we take the tracked position of the objects and form a
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Figure 7.7: An illustration of how we represent the spatial relationships between
objects and humans in a scene from the CAD-120 dataset. We extract the three-
dimensional centroids of the objects, cO1 and cO2 , and compute the Euclidean
distance between them and the left hand, right hand, and head joints. This is then
concatenated to the Euclidean distances between the objects’ centroids. In this ex-
ample, the person first interacts with the microwave and then with the bowl. Hence,
the tracks of the microwave will take the first place in the concatenated vector of
the spatial relationships.

vector whereby the order is given by the manipulation order, e.g., if the activity

sequence is composed of opening (microwave)→moving (bowl) into the microwave,

then the object motion vector will contain the microwave tracks concatenated to

the bowl’s tracks (see Fig. 7.7). From the x, y coordinates given in pixels for the

left upper corner and right bottom corner of the bounding boxes surrounding each

tracked object, we extract the three-dimensional centroids from the corresponding

depth image patches. We capture the body-objects relationship by computing

the Euclidean distance between the centroid of the objects to the left hand, right

hand, and the head joints of the body skeleton. The object-object relationships

are computed as the Euclidean difference between the three-dimensional object

centroids. To capture the objects’ motion information, we compute the mean

velocity and the displacement of the object’s centroid along the x, y and z axis

across consecutive video frames.

It should be noted that our representation of the objects’ motion and spatial

relationship comprises only a fraction of the input features used by the related

work on the CAD-120 dataset. This is due to the fact that the input features

provided by the dataset authors are suitable for learning with graphical models,

such as the conditional random field (CRF) model. For instance, some features
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about the objects’ relative positions are provided for the first, middle and the last

frame of the temporal segments, which are extracted before training the model.

Unlike these methods, both the learning and the recognition phase of our archi-

tecture are performed on a continuous stream of input data and no prior temporal

segmentation of the atomic actions is necessary.

7.4.2 Impact of the Top-down Modulation During Training

Now we evaluate the architecture described in Section 7.3 by running experiments

with the CAD-120 dataset under two conditions: 1) considering only the archi-

tecture’s feedforward connections and using the standard GWR neuron insertion

strategy, and 2) considering both feedforward and top-down connections, thus

applying the proposed neural growth modulation mechanism. For the first experi-

mental setup the architecture is trained through the hierarchical learning strategy

described in Section 4.4.1, thus the training remains unsupervised. For the second

setup, at each learning iteration, the delayed classification errors of the activities

and atomic actions are propagated from the semantic layer to the GWR2 and

GWR1, respectively, and to the network layers preceding them.

The visual features computed from the skeletal body tracks and the RGB im-

ages of the manipulated objects are the same as the ones described in Section 4.3.

For each experimental setup, we run 4 trials, each time leaving one subject out

of training, and average the obtained results. We empirically set a time window

width of q = 30 and a lag ξ = 5 for the GWR1 network and q = 5, ξ = 1 for the

GWR1. Thus, the first network has a temporal depth of 3 seconds, given that the

data has a frame rate of 10 fps due to the median filter applied every 3 frames

for attenuating noise. The average duration of an atomic action in the CAD-120

dataset is around 3 seconds. The GWR2 network will have a temporal depth of

3.5 seconds thus developing spatiotemporal segments representing frames from at

least two atomic actions.

The recognition rates of the GWR1 and GWR2 networks during training for

both experiments are illustrated in Fig. 7.8. The neural growth of the body pose

processing networks is illustrated in Fig. 7.9. We can observe that the impact of

the feedback connections on the neural growth are similar to what we saw with the

Transitive Actions dataset. This means that the proposed top-down modulation

mechanism scales up to deeper architectures with a more complex input. As can

be seen from Fig. 7.9, the number of neurons developed during learning for the

second experimental setup (illustrated in red) is significantly lower than for the first

setup. Most importantly, the reduced number of neurons does not compromise
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Figure 7.8: Comparison of the classification results on the training data of CAD-
120 when training is conducted only with a feedforward input stream and when
using the proposed neural growth modulation. a) The accuracy of the GWR1 net-
work which learns to classify atomic actions, and b) the accuracy of the GWR2

network which learns to classify the activities. The results are averaged over 4-fold
cross-validation experiments.
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Figure 7.9: The number of neurons over the training epochs for the GWR networks
with and without the top-down neural growth modulation. The results are averaged
over 4-fold cross-validation experiments.

the classification accuracy of the activities. For the recognition of the atomic

actions, on the other hand, the experimental setup with the feedback connections

results in a slightly lower accuracy. One reason for this might be the fact that

the two classification errors regarding the atomic actions and the activities are

simultaneously intervening on the topographic organization of the GWR2 network

causing this slight performance decay. Another reason might simply be that the

segmentation of the atomic actions of this dataset contains errors, thus causing

higher confusion among classes. A few examples illustrating the second hypothesis

will be shown in the following section.
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Without ground-truth segmentation
Sub-activity Activity

Algorithm Acc.(%) Prec.(%) Rec.(%) Acc.(%) Prec.(%) Rec.(%)
Koppula and Saxena (2013),

(CRF, SVM )
70.3± 0.6 74.8± 1.6 66.2± 3.4 83.1± 3.0 87.0± 3.6 82.7± 3.1

Koppula et al. (2013),
(CRF, SVM )

68.2± 0.3 71.1± 1.9 62.2± 4.1 80.6± 1.1 81.8± 2.2 80.0± 1.2

Hierarchical feedforward,
(GWR)

45.9± 3.8 45.0± 4.2 55.9± 7.1 92.0± 3.6 92.5± 4.1 91.7± 3.7

Rybok et al. (2014),
(SVM )

- - - 78.2∗ - -

Tayyub et al. (2015),
(SVM )

- - - 75.8± 6.8 77.9± 11.0 75.4± 9.1

With ground-truth segmentation
Koppula and Saxena (2013),

(CRF, SVM )
89.3± 0.9 87.9± 1.8 84.9± 1.5 93.5± 3.0 95.0± 2.3 93.3± 3.1

Koppula et al. (2013),
(CRF, SVM )

86.0± 0.9 84.2± 1.3 76.9± 2.6 84.7± 2.4 85.3± 2.0 84.2± 2.5

Hierarchical with top-down,
(GWR)

43.8± 3.4 41.3± 3.1 58.6± 6.1 93.5± 3.2 94.4± 3.4 93.3± 3.3

Hu et al. (2014),
(CRF, SVM )

87.0± 1.9 89.2± 4.6 83.1± 2.4 - - -

Tayyub et al. (2015),
(SVM )

- - - 95.2± 2.0 95.2± 1.6 95.0± 1.8

Table 7.2: Classification results on the action hierarchy of the CAD-120 dataset.
Reported are accuracy, precision and recall (in percentage) averaged over the 4-fold
cross-validation experiments. ∗Note that Rybok et al. (2014) have not provided
the standard deviation of their results.

7.4.3 Comparison to the Other Approaches

In Table 7.2, we report the accuracy, precision, and recall of our two models on both

the atomic actions and the high-level activities of the CAD-120 dataset. We also

compare our results to the other approaches on this dataset. Note that the authors

of the dataset refer to the atomic actions with the name sub-activities. We report

both the average values of the performance measurements as well as the standard

deviation across the 4 validation folds. Our model equipped with the top-down

modulation mechanism has been listed among approaches using ground-truth seg-

mentation, due to the fact that we use the sub-activity labels during training to

modulate the learning of the GWR1 network. The model with only feedforward

connections does not use the sub-activity labels for modulating learning but as-

sociates them with each neuron for evaluation purposes. The direct comparison

of the results on this table needs some caution though. The other approaches use

the input features provided by the authors of the dataset, which are computed

at each ground-truth temporal segment, whereas in our approach the features are

computed continuously at each video frame.

We observed that the model with top-down connections shows a better perfor-
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mance regarding the classification of high-level activities and a slight decrease of

the accuracy and precision on the sub-activities. Yet, the feedforward model per-

forms better than state of the art on the high-level activities albeit the relatively

low recognition accuracy on the sub-activities. This indicates that our approach

does not require a fine-grained manual segmentation and a successful recognition

of the atomic actions in order to correctly classify high-level activities. The rea-

sons for the low accuracy on the sub-activities for both models need to be further

investigated.

We visually analyzed the output labels of the GWR1 network on the activity

sequences from the test sets at each cross-validation trial. In Fig. 7.10, we illustrate

some examples from the unseen subject 1. Each subfigure illustrates one activity

sequence and the frame rate is of 10 fps. The ground-truth temporal segmentation

provided by the dataset is depicted with vertical gray dashed lines and each plotted

line interpolates the output of the best-matching neuron representing each video

frame. An output of 1 indicates that the BMU has one Hebbian connection with

non-zero weight towards that particular category label, whereas multiple lines in-

dicate that the BMU is connected to multiple category labels in the semantic layer.

The second case happens when the neuron has matched spatiotemporal segments

belonging to different categories during training and this may be due to either

the similarity in the feature space of these segments, due to the incorrect manual

segmentation of the atomic-actions or due to the pre-defined temporal window

including several atomic actions in it. The second reason is not to be excluded

given that the segmentation of the atomic actions in this dataset is particularly

fine-grained. In Fig. 7.10.c, for instance, we can see that the activity making cereal

is composed of 10 atomic actions in only 100 video frames (corresponding to 10

seconds). There is a considerable overlap between the atomic actions of reaching,

moving, and placing. These actions compose more than half of the instances of the

CAD-120 dataset.

From the examples reported in Fig. 7.10 we can also observe the different tem-

poral borders between the recognized atomic actions and the ground-truth seg-

mentation. Again, the correctness of the ground-truth segmentation plays a role

here. In Fig. 7.10.a, for instance, the sequence of atomic actions is opening (mi-

crowave), reaching (for an object), moving (the object), placing (the object inside

the microwave), null (no action), closing (the microwave), and then null. In this

example, the ground-truth segmentations did not take the atomic action reaching

(the microwave) into account, which is, for instance, not the case in Fig. 7.10.d

where there is reaching and then opening (the microwave). In the example re-
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(a) Activity sequence microwaving food

(b) Activity sequence unstacking objects

(c) Activity sequence making cereal

(d) Activity sequence cleaning objects

Figure 7.10: Output labels of the GWR1 network (atomic actions) for the test
subject 1 of the CAD-120 dataset. The ground-truth temporal segmentation of
the atomic actions is illustrated with vertical gray dashed lines. The ground-truth
atomic action labels are reported on top of each plot.
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ported in Fig. 7.10.a, however, although with incorrect temporal boundaries, the

sequence of labels output from our model is plausible.

Finally, in comparison to the other approaches in Table 7.2, the proposed feed-

forward model seems more advantageous than the model with the top-down mod-

ulation. However, for applications where human activities need to be learned

incrementally during the lifetime of an intelligent agent, the second model pro-

vides a trade-off between high recognition rates and the optimization of the neural

resources.

7.5 Summary

In this chapter, we presented a hierarchical self-organizing architecture for learning

hierarchical representations of the human-object interactions. The architecture

builds on top of the hierarchical learning scheme, successfully applied in the other

chapters of this thesis, and is further equipped with a top-down mechanism for the

modulation of the neural growth of each body feature processing GWR network of

the hierarchy. In particular, we focused on analyzing in detail the learning effects of

the proposed top-down mechanism by conducting experiments with both synthetic

data as well as two real-world datasets composed of human-object interactions.

Overall, we saw that the application of this mechanism can lead to the creation of

a considerably low number of neurons and to a higher concentration of neurons in

the areas where classification is harder.

The experimental results with the CAD-120 dataset demonstrated that the pro-

posed architecture outperforms the state-of-the-art approaches with respect to the

classification of the high-level activities. Experiments also showed that the average

recognition accuracy for the atomic actions was lower than the other approaches

and we analyzed a few possible reasons for this. Unlike the other methods, the

proposed architecture operates on a continuous stream of information and the tem-

poral boundaries between atomic actions are certainly hard to determine. However,

this seemed to not affect the overall activity classification performance indicating

that our approach is not sensitive to the correct segmentation and classification

of the atomic actions. Moreover, a qualitative analysis of the atomic action labels

generated by the architecture on the test data sequences showed that semantically

meaningful representations had emerged. Thus, the reported results motivate fur-

ther applications of the proposed architecture on other datasets for the learning of

the compositionality of the human activities.
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Chapter 8

Discussion and Conclusions

8.1 Summary of the Thesis

In this thesis, we focused on the recognition and the prediction of human daily ac-

tivities, which are two crucial perception tasks required for establishing a natural

and efficient interaction between an assistive system and a human (Vignolo et al.,

2017). We presented a number of neural network architectures that learn spa-

tiotemporal representations of human-object interactions from sequences of RGB

and depth maps. First, we proposed an architecture motivated by neurobiological

findings for the processing and integration of the body pose sequences and the

manipulated objects. The architecture considered the object’s identity as an im-

portant contextual information for disambiguating similar movement patterns of

different action categories. The experimental results showed that the recognition

accuracy of our approach is competitive with respect to supervised state-of-the-art

approaches on a challenging benchmark dataset of high-level human daily activi-

ties. The architecture was then extended with a temporal association mechanism

based on Hebbian learning in its simplest form in order to also address the an-

ticipation of human-object interactions. We showed how the architecture could

capture long-term temporal dependencies by both evaluating the action prediction

accuracy on a transitive actions dataset and analyzing the learned spatiotemporal

representations during the closed-loop generation of the learned action sequences.

Taking advantage of the online and incremental learning capability of the GWR

algorithm, we proposed a neural framework for the learning and prediction of hu-

man motion which was then applied for the online sensorimotor delay compensation

of a mid-size humanoid robot during an imitation task. Visuomotor sequences of

arm movements were extracted in the form of joint angles, which could be directly

mapped to the robot. Experimental results showed that our system can achieve
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low prediction error values while being trained in an online manner.

Finally, we investigated a top-down modulation mechanism for the optimiza-

tion of the architecture’s neural growth during the learning of human-object in-

teractions. In particular, we looked at the application of the modulatory signal

during the emergence of hierarchical representations of the human activities. Ex-

perimental results demonstrated that the top-down mechanism provided a way to

optimize neural resources according to the classification task rather than based

on the quantization error, thus preventing the creation of an unnecessarily high

number of neurons. Such results encourage the application of our method in au-

tonomous systems that learn from continuous sensorimotor experiences based on

limited processing and memory resources.

8.2 Discussion

8.2.1 Mapping Actions to Objects

Our first research question was how can relationships between objects and hu-

man motion patterns learned in an unsupervised manner from image sequences

of human-object interactions. For this reason, in Chapter 4 we proposed a self-

organizing hierarchical architecture composed of two network streams, each one

processing the body pose features and the manipulated objects respectively. The

GWR network that processed the objects’ visual appearance was further connected

to a semantic layer containing object category labels. Thus, the identity of the ma-

nipulated object was then concatenated to the prototype spatiotemporal segments

representing body motion during the manipulation of that particular object. This

is in line with the biological findings suggesting that there are separate functional

and anatomical pathways processing the information about biological motion and

man-made objects and that the identity of the object is crucial for a full under-

standing of a human activity. The use of prototype-based representations for ob-

jects is motivated by psychological studies on the nature of human categorization

(Rosch and Mervis, 1975), suggesting that categories are typically learned as a set

of prototypical examples and the similarity, or the so-called family resemblance, is

used for class association.

Apart from the biological motivation, this solution benefits from the advan-

tages of the modular architectures, for instance, when a new object instance is

available (a box of a new brand of cereal) only the object recognition module

should be trained and not the entire architecture. Consequently, the new learned
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object will be associated with a previously learned action, e.g., pouring cereal.

When considering hybrid architectures, it is quite straightforward to introduce an

object recognition module with a higher classification accuracy, for instance, based

on a state-of-the-art CNN architecture. As long as the output of the applied object

recognition module is of the form of one-hot encoding, i.e., a vectorial representa-

tion in which all elements are zero except the ones with the index corresponding

to the recognized object category, the integration of the information can be per-

formed exactly in the same manner as when using the proposed dense SIFT- and

GWR-based object recognition module. Another advantage of this approach is

the possibility to retrieve the information from the learned pairs, i.e., it is possible

to tell on what object a certain action can be performed as well as retrieve the

body motion patterns that can be executed for manipulating a given object. The

latter was demonstrated in Chapter 6 and it was achieved through an extension

of the recognition architecture with a temporal association mechanism that allows

for recalling the learned action sequences.

The proposed multi-stream neural architecture was shown to be competitive

with the state-of-the-art approaches on a real-world dataset composed of long hu-

man daily activities performed in cluttered environments. Furthermore, it allowed

us to extend our experiments beyond the classification of human activities and

analyze, for instance, neural responses when the input is composed of incongru-

ent action-object pairs. Interestingly, these experiments demonstrated a behavior

resembling the action-selective neural circuits which show sensitivity to the con-

gruence of the action being performed on an object (Yoon et al., 2012). Moreover,

it allowed us to study the relevance of different contextual information such as the

identity of the object and the spatial relationships between manipulated objects

and the body in the scene. In Chapter 7, we saw that spatial relationships can

help discriminate short atomic actions such as pouring and opening.

The association of an action with an object can be seen also as learning the

functional properties of the objects or their action possibilities, which, according

to Gibson, define the so-called object affordances. However, in this thesis, we do

not claim to have modeled such a concept. It is argued that object affordances

in the human visual system are not defined by the object’s category, appearance,

and shape but rather on the actions a human can perform with/on them. A bottle

and a kettle, for instance, can be both used for pouring water into a cup due to

being two types of containers. A person can sit on a chair as well as on a rigid

box that can hold the person’s weight even though the box is not categorized

as a chair and does not even look like one. In other words, low-level features
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are associated with action possibilities without the need to have a fully detailed

model of the objects nor to recognize them semantically. However, it is unclear

what visual attributes of the human-object interaction define object affordances.

It may be that the visual attributes are different for different types of actions,

e.g., the tilting movement of a bottle that contains water may define the pourable

affordance but the sitable affordance of a chair is defined by the anthropomorphic

shape (Grabner et al., 2011). If the affordances are defined as the spatiotemporal

pairwise relationships between objects and the relationships between the human

and the manipulated object(s) (Pieropan et al., 2014a), then we might have used

this definition of object affordances in the hierarchical architecture proposed in

Section 7.3. Although humans do not need to recognize an object in order to

perceive its affordance and act on it, the semantic object recognition information

has been shown to modulate the execution of the manipulation actions in a top-

down fashion (Goodale, 2008).

8.2.2 Self-Organizing Neural Learning

Generative approaches based on self-organization learn an input probability distri-

bution through a finite set of reference vectors associated with neurons. Moreover,

they resemble the topological relationships of the input space through the neurons’

organization. Growing self-organizing approaches such as the GNG (Fritzke, 1995)

and the GWR networks (Marsland et al., 2002) are characterized by a dynamic

topological structure able to adapt to the input data space through the mechanism

of the competitive Hebbian learning (Martinetz, 1993). Unlike the GNG, where

the network grows at a constant rate, the GWR algorithm is equipped with a learn-

ing mechanism that creates new neurons whenever the current input is not well

represented by the prototype neurons. Thus, from the perspective of incremental

learning, the GWR algorithm is more suitable than the GNG since new knowledge

can be added to the network as soon as new data become available.

The parameters modulating the growth rate of a GWR network are the acti-

vation threshold and the firing counter threshold. The activation threshold estab-

lishes the maximum discrepancy between the input and the prototype neurons in

the network. The larger we set the value of this parameter, the smaller is the dis-

crepancy, i.e., the quantization error of the network. The firing counter threshold

is used to ensure the training of recently added neurons before creating new ones.

Thus, smaller thresholds lead to more training of existing neurons and the slower

creation of new ones, favoring better network representations of the input. Intu-

itively, the less discrepancy between the input and the network representations,
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the smaller is the input reconstruction error and this is a necessary condition dur-

ing human motion prediction as shown in Chapter 5. However, less discrepancy

means also more neurons. This proved to be not the main issue in our motion

prediction experiments since the number of neurons did not affect significantly the

computational complexity of the prediction function.

When it comes to the classification of the actions, there is no straightforward

relationship between the number of neurons and the classification performance (see

Section 7.2.1). In this case, the activation threshold should be set empirically in

order to increase the classification performance. From this point of view, there is

no clear advantage of the growing self-organizing networks with respect to networks

with a fixed number of neurons, e.g., the SOM or the NG network. For the latter

architectures, defining a smaller number of neurons also means that the resulting

quantization error will be higher but not necessarily that the classification accuracy

will decrease. The advantage of the growing self-organizing networks becomes

clearer when the error measure used as the basis for neuron insertion is optimized

for the task at hand (Fritzke, 1996). The arbitrary choice of an error measure for

the neural growth is a central property of the growing models. As was shown in

Chapter 7, using the classification error for the GWR neural growth concentrates

network resources on the areas where classification is more difficult, thus avoiding

the unnecessary insertion of neurons where the classification is correct.

8.2.3 Feature Extraction

One drawback of the self-organizing neural frameworks proposed in this thesis is

the need to extract features from the raw images using other methods in order to

perform classification and prediction tasks. For the processing of human body mo-

tion we rely on the extraction of a 3D skeleton model, from which, in some cases,

we compute features describing body pose while maintaining a low-dimensional

feature space and achieving scale and view-invariance. For the processing of the

manipulated objects, we rely on a number of computer vision techniques, such as

the object segmentation and tracking and the dense SIFT features for discriminat-

ing among objects. An end-to-end approach whereby features are extracted from

the raw RGB and/or depth images through a hierarchy of self-organizing networks

can also be implemented (Miikkulainen et al., 2006; Parisi et al., 2017a; Hankins

et al., 2018). However, the performance of such models has been demonstrated

on static images containing only objects or sequences of gestures and full-body

actions. How well these approaches perform on image sequences of fine-grained

human-object interaction activities needs further investigation.
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More sophisticated feature extraction approaches are also offered by state-of-

the-art pre-trained convolutional neural networks which are available as libraries in

python deep learning APIs (e.g., Keras1). Rapid advances of this technology have

led to models with outstanding performance in several classification tasks based

on large-scale datasets in the wild. Thus, the application of this technology for

feature extraction would presumably lead (although this needs to be proved) to a

better performance for the recognition and prediction of human-object interactions

in our architectures, especially considering the high amount of noise our models

currently face due to the unreliable skeleton tracks.

It should be mentioned, however, that the skeleton body representations re-

main advantageous for tasks like body motion prediction and generation (Bütepage

et al., 2017; Ghosh et al., 2017). Moreover, we saw in Section 5.3.2 that skeletal

body representations are a low-dimensional description of the articulated human

body that can be directly mapped to a humanoid robot during imitation learning.

The extraction of the object motion and of the spatial relationships, of which we

make use in Chapter 7, and the identification of humans/objects in one scene still

remain perception tasks that require the application of separate dedicated deep

learning architectures (Santoro et al., 2017; Johnson et al., 2017). This makes the

application of the deep learning technology for the recognition of human-object

interactions computationally more expensive (Guo et al., 2016; Ma et al., 2017),

thus not ideal for real-time applications.

8.2.4 Hierarchies of Self-Organizing Networks

The architectures proposed in Chapters 4, 6, and 7 are hierarchical in the sense that

visual information of body pose (and motion, when considered) was vector quan-

tized prior to the integration with the objects and then prototype spatiotemporal

segments were developed. One reason for this is to attenuate, to some extent, the

noise of the body skeletal tracking which becomes considerable in the cases of body

occlusion or when the subject touches objects in the background. The noise attenu-

ation can be achieved by the GWR algorithm which is equipped with a mechanism

to remove rarely activated neurons that may represent a noisy input. In addition

to this, the firing counter of the neurons modulates the weights update, thereby

leading to less learning perturbations of the well-trained neurons when slight in-

put fluctuations occur. Another reason for the hierarchical arrangement of the

GWR networks is to generalize with respect to the body motion. After training

1Keras: The Python Deep Learning library: https://keras.io/
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the GWR on body pose frames, for instance, each neuron may still respond during

slight joint translations, which may be due to noise or due to differences in motion

execution between subjects.

The hierarchical arrangement of the GWR networks proposed in Chapter 5

has the advantage of increased computational efficiency by sharing neurons across

multiple levels, e.g., prototype spatiotemporal patterns can be shared during the

encoding of different motion sequences. This seemed to be an intuitive choice

for the learning of visuomotor sequences for which resource-efficiency is desired.

However, the extent to which neurons are reused is tightly coupled with the input

distribution. In fact, in our experiments with input data samples represented as

multi-dimensional vectors of both arms’ shoulder and elbow angles, there was little

to no overlap among training sequences. This led to the growth of the networks

with each iteration over unseen sequences. One solution would be to implement a

deeper hierarchy, similar to the work from Du et al. (2015), such that the whole

skeleton is divided into parts, e.g., limbs, which then would feed separate network

streams and develop spatiotemporal dependencies in parallel. The output of these

network streams would then be combined to be the input of the P-GWR layer

which then learns to predict future joint position or angle values. However, this

solution relies on a correct tracking of each body limb. This is not the case in

realistic scenarios whereby body tracking is affected by missing data due to body

partial occlusions and self-occlusions (e.g., caused by a lateral view of the body).

Thus, a holistic body representation is preferable due to its robustness to noise

and missing information in the input data.

We followed a hierarchical learning architecture, meaning that the GWR net-

works in higher layers received as input the concatenation of the neural activa-

tion trajectories from lower-level layers. The temporally ordered neural activa-

tions obtained in this way resemble the sensitivity to the temporal order of the

action-selective neurons in the STS area of the brain (Giese and Poggio, 2003).

Interestingly, there is also neurophysiological evidence that actions are represented

by sequences of poses over fixed temporal windows (Singer and Sheinberg, 2010).

From the computational perspective, the sliding window technique allows for the

extrapolation of spatiotemporal dependencies in the data sequences.

A limitation of the sliding time window technique for the encoding of temporal

sequences is the high computational cost it introduces due to the data dimen-

sionality increasing along the hierarchy. During our experiments with a skeletal

representation of the human body, long time windows did not pose a computational

challenge due to the low-dimensional input. However, for a high-dimensional in-
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put, e.g., raw images, an alternative should be considered since, apart from the

computational effort, the performance of the similarity measure degrades with the

increasing data dimensionality. One alternative would be to apply the recurrent

extensions of the growing self-organizing networks presented in Section 3.5.2. For

a low dimensional input such as the skeleton body representation the sliding time

window approach has been successfully applied also in other studies referenced in

this thesis. Furthermore, it has been shown that long-term predictions based on

a sliding window are more accurate than recurrent approaches (Bütepage et al.,

2017).

The sliding time window allows for defining an arbitrary memory depth of the

neurons at each level of the hierarchy, i.e., how far into the past the internal memory

of each neuron stores information. This resulted in being quite useful for studying

the compositionality of the action sequences, e.g., learning atomic actions and long

human activities which are composed of atomic actions. A similar behavior can

be obtained by applying a Gamma memory instead of the sliding time window

computed at the output of each GWR layer. The γ-GNG (Estévez and Vergara,

2013) and the γ-GWR (Parisi et al., 2017a) models have an arbitrary number of

temporal context descriptors and can be used thus in a hierarchical arrangement

similar to the one presented in this thesis. However, for a low-dimensional input,

the advantage of one approach over the other is not quite clear. Moreover, the

Gamma models introduce additional hyperparameters that need to be optimized

empirically (Estévez and Vergara, 2013) and the impact of these parameters on

the final performance is not yet entirely understood.

8.3 Future Work

In this thesis, we saw how architectures built upon growing self-organizing net-

works can be quite flexible and can be successfully applied for the recognition and

prediction of human activities in real-world scenarios. Thus, the obtained results

motivate the extension of our approach into several future directions.

In our current work, we used depth information for the extraction of a three-

dimensional skeleton model. We were motivated by the convenience of the depth

sensing devices in real-time applications and the fact that they are the least com-

putationally expensive method for motion segmentation and body pose estimation.

However, the learning models based on tracked skeletons are susceptible to sensor

noise and body occlusions. This issue becomes highly relevant during the seg-

mentation of a body interacting with objects and can have a great impact on the
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recognition and prediction accuracy considering the subtle hand/arm movements

during object manipulation. For this reason, either the spatiotemporal features

should be learned from depth images through a deep self-organizing architecture,

similar to Parisi et al. (2017a), or hybrid architectures whereby action features are

extracted through pre-trained deep CNN architectures should be applied. This

would require, however, the application of additional (separation) mechanisms so

that appropriate features are fed into each of the processing streams of the pro-

posed architecture. Moreover, feature extraction with deep learning architectures

has been shown to be either computationally expensive or it requires large amounts

of training data.

The imitation scenarios presented in Chapter 5 were carried out in a simulated

environment. Future studies with the real robot should address the introduction

of overall body configuration constraints for learning the perceived motion. When

the visual body tracking framework becomes unreliable, the provided body con-

figurations may become unrealistic and cannot be mapped to the robot, or, in the

worst case, when mapped to the robot may lead to hardware damage. For this

reason, outlier detection mechanisms should be investigated in order to discard

these unrealistic body configurations during training.

An additional future work direction would be to extend the neural framework

presented in Chapter 5 towards the learning and imitation of manipulation tasks

with a humanoid robot (Billard et al., 2016). The use of joint angles as visuomotor

representations might be not sufficient in this case, since the visual feedback of the

human demonstrator would include also the correct position and, perhaps, orien-

tation of the manipulated object and not just the correct arm configuration. This

issue can be addressed by including both the position information and the corre-

sponding robot joint angles as input to the architecture. Due to the generative

nature of self-organizing networks and their capability to function properly when

receiving an incomplete input pattern, only the prediction of the object move-

ment patterns would trigger the generation of corresponding patterns of the robot

behavior. Moreover, the current results encourage further experiments towards

learning by demonstration scenarios, whereby demonstrated motion patterns are

stored and then recalled for the execution of different tasks with a robotic plat-

form. For this reason, temporal association mechanisms and architectures similar

to the ones presented in Chapter 4 can be extended to further consider the robot’s

hardware constraints.

So far, the proposed models consider only the visual stimuli of the human-object

interactions. However, there are certain human-object interactions that cannot
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be detected relying only on visual perception. It is, for instance, very difficult to

detect whether a person is turning on an oven or boiling water with the kettle. One

approach to tackle this limitation is to add other sources of information, such as for

instance, the sound generated by the interaction. Multimodal learning of human

actions and gestures has gained a lot of interest in the recent years (Stork et al.,

2012; Teo et al., 2012; Parisi et al., 2016b). However, the audio-visual recognition

of object manipulation actions has so far remained an open challenge (Pieropan

et al., 2014b).

8.4 Conclusions

This thesis contributes to the field of visual recognition and prediction of human-

object interactions with a set of self-organizing architectures that take inspiration

from biological mechanisms of action perception. The proposed architectures stand

among quite a few existing neural network approaches for the fine-grained under-

standing of human activities from video sequences.

Reported experiments showed that unsupervised learning with growing self-

organizing architectures yields robust action-object representations, exhibiting com-

parable performance to the state-of-the-art, supervised, graph-based approaches.

Such architectures can be extended to deal with both the recognition and the antic-

ipation of human actions as well as human motion generation by applying similar

underlying neural mechanisms. Symbolic labels of human actions, when available,

can be used to modulate learning and can lead to compact spatiotemporal repre-

sentations of the actions. Moreover, experimental results showed the robustness of

the self-organizing architectures in learning streams of body motion information

incrementally with no incurring overall performance decay.

Our findings demonstrate the suitability of the proposed approaches for be-

ing applied in real-world assistive systems, which should adapt continuously to

the sensorimotor feedback, a changing environment, and most importantly to the

humans’ needs.
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List of Abbreviations

BMU best-matching unit

BoF Bag of Visual Features

CHL Competitive Hebbian Learning

CRF Conditional Random Fields

EBA extrastriate body area

EM expectation-maximization algorithm

fMRI functional magnetic resonance imaging

F5 ventral premotor cortex

GMM Gaussian mixture model

GMR Gaussian Mixture Regression

GNG Growing Neural Gas

GNG-U GNG with Utility Factor

GPU graphics processing unit

GWR Growing When Required

HMM Hidden Markov Model

HRI Human-Robot Interaction

IFG inferior frontal gyrus

IPL inferior parietal lobule

IT Inferior Temporal Cortex

LDA Linear Discriminant Analysis

LOC Lateral Occipital Complex

LOP Local Occupancy Pattern
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LVQ Learning Vector Quantization

MLP Multilayer Perceptron

MTG middle temporal gyrus

NG Neural Gas

PCA Principal Component Analysis

PbD Programming by Demonstration

RBF Radial Basis Function

RNN Recurrent Neural Networks

SEC Semantic Event Chains

SGNG Supervised Growing Neural Gas

SIFT Scale-Invariant Feature Transform

SOM Self-Organizing Map

STIP spatio-temporal interest points

STS superior temporal sulcus

SVM Support Vector Machine

VLAD Vector of Locally Aggregated Descriptors

VQ Vector Quantization
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Supplementary Algorithms

Algorithm 2 Growing When Required (GWR) (Marsland et al., 2002)

1. Start with a set A of two random neurons with weights {w1,w2} in the input
space.

2. At each iteration t, generate an input sample x(t)

3. Select the best and second-best matching neuron:
b = argmin

n∈A
||x(t)−wn||,

s = arg min
n∈A/{b}

||x(t)−wn||
(B.1)

4. Create a connection E = E ∪{(b, s)} if it does not exist and set its age to 0.

5. If (a(t) < aT ) and (hb < fT )) or (ob 6= ox(t)) then:

• Add a new neuron r (A = A ∪ {r}) with
wr = 0.5 · (x(t) +wb), hr = 1,

• Update edges: E = E ∪ {(r, b), (r, s)} and
E = E/{(b, s)}.

6. If no new neuron is added:

• Update best-matching neuron and its neighbors i:
∆wb = ǫb · hb · (x(t)−wb),

∆wi = ǫi · hi · (x(t)−wi),
(B.2)

with the learning rates 0 < ǫi < ǫb < 1.

• Increment the age of all edges connected to b by 1.

7. Reduce the firing counters of the best-matching neuron and its neighbors i:
∆hb = τb · κ · (1− hb)− τb,

∆hi = τi · κ · (1− hi)− τi
(B.3)

with constant τ and κ controlling the curve behavior.

8. Remove all edges with ages larger than a pre-defined threshold and remove
neurons without edges.

9. If the stop criterion is not met, repeat from step 2.

141



Appendix B. Supplementary Algorithms

142



Appendix C

The Skeleton Human Body Model

Head

Neck

Left ShoulderRight Shoulder

Left Elbow

Left Hand

Right Elbow

Right Hand

Left Hip

Left Knee

Left Foot

Right Hip

Right Knee

Right Foot

Figure C.1: The skeleton human body model obtained from the Asus Xtion Pro
camera. The OpenNI library tracks the three dimensional position of the 15 illus-
trated joints. Image drawn based on the OpenNI library documentation1.

1NITE: http://pr.cs.cornell.edu/humanactivities/data/NITE.pdf
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Appendix D

Additional Results

This appendix shows the results obtained with the object recognition module pre-

sented in Section 4.4 on the Washington RGB-D Objects Dataset (Lai et al., 2011).

This dataset comprises ≈ 42000 images of 300 object instances taken from mul-

tiple views and angles with a Kinect 3D camera and organized into 51 categories

of common household objects. Only the RGB images of this dataset were used.

The dataset is quite challenging because it contains objects without texture and

several object categories have high intra-class similarity. The experiments reported

here are conducted leaving one random object instance out for testing within each

object category and training the classifier on all views of the remaining object in-

stances. The images were encoded with the VLAD encoding technique described

in Section 4.3.2.

We obtained an average classification accuracy of 74, 5%. The highest recogni-

tion rate using the RGB images of this dataset is 82.4% (Bo et al., 2013). However,

the results are not directly comparable due to the fact that we base our experi-

ments on the first three (out of ten) trials provided for evaluation by the dataset

authors.

Figure D.1: Examples of confused classes: a plate classified as a bowl, one mush-
room labeled as garlic, an orange classified as peach due to shape similarities, a
calculator classified as keyboard due to the common visual word representing the
image patch of the keys. Images from Washington RGB-D object dataset (Lai
et al., 2011).
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Figure D.2: The normalized confusion matrix for the first three trials of the Wash-
ington RGB-D Object Dataset.
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Pubblications Originating from
this Thesis

Journal Articles

• Mici, L., Parisi, G.I., Wermter, S. (2018) A self-organizing neural network

architecture for learning human-object interactions. Neurocomputing(307),

pages 14–24, doi:10.1016/j.neucom.2018.04.015.

• Mici, L., Parisi, G.I., Wermter, S. (2018) An Incremental Self-Organizing

Architecture for Sensorimotor Learning and Prediction. IEEE Transactions

on Cognitive and Developmental Systems (TCDS), vol. 10, no. 4, pages

918–928, doi:10.1109/TCDS.2018.2832844.

Conference Papers

• Mici, L. Parisi, G.I., Wermter, S. (2018) Recognition and Prediction of

Human-Object Interactions with a Self-Organizing Architecture. In Pro-

ceedings of the International Joint Conference on Neural Networks (IJCNN),

pages 1197–1204.

• Mici, L., Parisi, G.I., Wermter, S. (2016) Recognition of Transitive Actions

with Hierarchical Neural Network Learning. In Proceedings of the 25th Inter-

national Conference on Artificial Neural Networks (ICANN), pages 472–479.

• Mici, L., Hinaut, X., Wermter, S. (2016) Activity Recognition with Echo

State Networks using 3D Body Joints and Objects Category. In Proceedings

of the European Symposium on Artificial Neural Networks, Computational

Intelligence and Machine Learning (ESANN), pages 465–470.
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V., Pérez, J. G., Gelderblom, G. J., Ruiz, C. G., Hewson, D., et al. Assistive

technology design and development for acceptable robotics companions for age-

ing years. Paladyn, Journal of Behavioral Robotics, 4(2):94–112, 2013.

Andreakis, A., Hoyningen-Huene, N. v., and Beetz, M. Incremental unsupervised

time series analysis using merge growing neural gas. In International Workshop

151



Bibliography

on Self-Organizing Maps, pages 10–18. Springer, 2009.

Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., and Sivic, J. Netvlad: CNN

architecture for weakly supervised place recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 5297–

5307, 2016.

Araujo, A. F. and Barreto, G. A. Context in temporal sequence processing: A

self-organizing approach and its application to robotics. IEEE Transactions on

Neural Networks, 13(1):45–57, 2002.

Arbib, M. A. The handbook of brain theory and neural networks. MIT press, 2003.

Arie, H., Arakaki, T., Sugano, S., and Tani, J. Imitating others by composition of

primitive actions: A neuro-dynamic model. Robotics and Autonomous Systems,

60(5):729–741, 2012.

Aurenhammer, F. Voronoi diagrams - a survey of a fundamental geometric data

structure. ACM Computing Surveys (CSUR), 23(3):345–405, 1991.

Bahill, A. A simple adaptive smith-predictor for controlling time-delay systems:

A tutorial. IEEE Control systems magazine, 3(2):16–22, 1983.

Baldassano, C., Beck, D. M., and Fei-Fei, L. Human–object interactions are more

than the sum of their parts. Cerebral Cortex, 27(3):2276–2288, 2017.

Barreto, G. A. Time series prediction with the self-organizing map: A review. In

Perspectives of neural-symbolic integration, pages 135–158. Springer, 2007.
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Buccino, G., Sato, M., Cattaneo, L., Rodà, F., and Riggio, L. Broken affordances,

broken objects: a TMS study. Neuropsychologia, 47(14):3074–3078, 2009.

Buonomano, D. V. and Merzenich, M. M. Cortical plasticity: from synapses to

maps. Annual review of neuroscience, 21(1):149–186, 1998.
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