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Introduction

Motivation
The existence of symmetries is a fundamental assumption of theoretical me-
chanics.

In the classical Newton model, the laws of motion do not depend on a par-
ticular choice of a linear coordinate system. Therefore, they are unchanged by
translations, rotations, and reflections. These transformations generate the Eu-
clidean group E(3), the group of isometries of 3-dimensional Euclidean space
R3. The motion of n particles within R3 is described by a dynamical system
given by a vector field X on the tangent space TR3n = R3n × R3n. The diago-
nal E(3)-action on R3 induces an action of E(3) on the tangent space, and the
invariance of the laws of motion is reflected by the fact that the flow ϕX of the
vector field X is E(3)-equivariant, that is ϕX(gx) = gϕX(x) for any g ∈ E(3).

More generally, it is often assumed in classical mechanics that unknown
external forces constrain the motion to a submanifold Q ⊂ R3n. In that case,
the symmetries of the system are given by a Lie group G that acts on Q.

For example, the motion of a rigid body may be described by a curve in
the Euclidean group. If (R(t), b(t)) is such a curve, where R(t) is an element
of the orthogonal group and b(t) is a translation, the motion of any particle
of the rigid body is given by the curve xi(t) = R(t)Xi + b(t), where Xi is the
position of the particle in a fixed reference body. The Euclidean group acts
by left multiplication on the configuration space. If the rigid body has some
rotational symmetry that is given by a subgroup K ⊂ SO(3) and preserves the
reference body, there is an additional K-action by right multiplication.

The equations of motion for the dynamical system on the manifold have a
particularly simple form in the Hamiltonian formalism. A curve q : R ⊃ I → Q
corresponds to a curve (q(t), p(t)) in the cotangent bundle, where p(t) ∈ T ∗q(t)Q
is an expression of q(t) and q̇(t). The equations of motion are determined by
the Hamiltonian function h ∈ C∞(T ∗Q,R).

The Hamiltonian function h defines the Hamiltonian vector field Xh by

dh(p) = ωp(Xh(p), ·)

for any p ∈ T ∗Q, where ω denotes the canonical symplectic form of T ∗Q. A
G-action on Q induces a G-action on T ∗Q, which lifts the G-action on Q and
leaves ω invariant. The Hamiltonian system on T ∗Q has G-symmetry if the
Hamiltonian function h is G-invariant. Then, the Hamiltonian vector field is
G-equivariant and hence the G-action commutes with the flow of Xh.

Theoretical mechanics is the original motivation for studying Hamiltonian
dynamical systems, which is nowadays a research field in its own right. A
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Hamiltonian system with symmetry consists of a symplectic manifold P with a
Lie group G acting by symplectomorphisms on P and a G-invariant Hamiltonian
function.

One of the main objects of interest in the study of Hamiltonian systems with
symmetry are trajectories that are contained in a single group orbit. A point
of P whose trajectory has this property is a relative equilibrium. The G-action
on P defines a map ξ 7→ ξP from the Lie algebra g of G into the space of vector
fields on P such that ∪ξ∈gξP (p) coincides with the tangent space TpGp. If p ∈ P
is a relative equilibrium, there is an element ξ ∈ gP such that Xh(p) = ξP (p).
ξ is a generator of the relative equilibrium p. For free actions, the generator is
uniquely defined, but in general, it is only unique modulo the Lie algebra gp of
the isotropy subgroup Gp.

The question of determining the relative equilibria of a given system has a
long tradition in the study of mechanical systems. The relative equilibria of a
mechanical system are often configurations of constant shape that rotate about
a fixed principal axis. In particular, this holds for the n-body problem, which
was described in the beginning.

The investigation of relative equilibria goes back to Riemann and even fur-
ther. In [Rie61], Riemann finds all solutions of constant shape for a model of
ellipsoidal liquid drops, which was proposed by Dirichlet ([Dir60]). Moreover,
he shows that all of these motions of constant shape consist of a rotation about
one of the principal axis of the ellipsoid and an oval motion of the fluid particles
within the ellipsoid, which corresponds to a rotation of a spherical reference
body.

A modern treatment of the same problem may be found in [RdS99]. Here,
the problem is described as a Hamiltonian dynamical system on T ∗GL+, the
cotangent space of the group of 3× 3-matrices with positive determinant.

Outline
In chapter 1, we introduce the basic concepts and notions of the theory of
Hamiltonian systems with symmetry. In particular, we define the momentum
map, which is a basic tool for the most modern approaches to determine the
relative equilibria of a Hamiltonian system:

Noether’s famous theorem of classical mechanics states that symmetries cor-
respond to conserved quantities. For general Hamiltonian systems with symme-
try, this is true at least locally. In this thesis, we will always suppose that these
conserved quantities are given by globally defined functions on the symplectic
space P . Putting these conserved quantities together in an appropriate way
yields the momentum map J : P → g∗. The map Jξ := 〈J(·), ξ〉 is a Hamilto-
nian function of the vector field ξP . Thus, the relative equilibria with generator
ξ coincide with the critical points of the augmented Hamiltonian hξ := (h−Jξ).

In many relevant cases, the momentum map is equivariant with respect to the
coadjoint action on g∗. For example if G is compact, an equivariant momentum
map may be obtained from any given momentum map by averaging over G.

For simplicity, this thesis focuses on actions of compact groups. The more
general case is only formulated if the statement does not become more compli-
cated. Otherwise, we refer to the literature.

In particular, we will assume the equivariance of the momentum map with
respect to the coadjoint action.
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The equivariance of the momentum map implies in general that J(p) = J(gp)
holds if and only if g ∈ Gµ for µ = J(p). Hence if p is a relative equilibrium, p
is also a relative equilibrium with respect to the Gµ-action. If ξ is a generator
of p, we obtain ξ ∈ gµ or equivalently coadξ µ = 0.

This commutation relation occurs in different forms in most of the ap-
proaches to analyse the structure of Hamiltonian relative equilibria presented
in this thesis. For instance, it is equivalent to the first of two equations that
occur in [MR-O13] and [MR-O15] and characterize relative equilibria. These
equations are derived in chapter 2, in which the theory of the local structure
of the system near a given G-orbit is treated. They are stated in the coordi-
nates of the Marle-Guillemin-Sternberg normal form, which is a local model of
the symplectic space P near a given G-orbit. The Marle-Guillemin-Sternberg
normal form is often considered as the symplectic version of the Slice Theorem.
For simplicity, let us assume that G is compact. Then the normal form the-
orem states that for p ∈ P , there is a tubular neighbourhood U of Gp and a
G-equivariant symplectomorphism to a G-invariant neighbourhood of [e, 0, 0] in
the space

Y = G×Gp (m∗ ×N),

where N is a symplectic Gp-representation and m is a Gp-invariant complement
of gp within gµ for µ = J(p). The symplectic form on Y is determined by
the symplectic form on N and the group G. The momentum map on Y is of
particularly simple form: JY ([g, ρ, v]) = Coadg(µ+ρ+ JN (v)), where JN is the
momentum map of N .

With respect to this normal form, Montaldi and Rodríguez-Olmos charac-
terize relative equilibria as follows: Let h̄ denote the induced function of h on
the slice m∗×N . The point [e, ρ, v] corresponds to a relative equilibrium p′ near
p with momentum µ′ = JY ([e, ρ, v]) = µ + ρ + JN (v) if and only if there is an
η ∈ gp such that ξ′ = dm∗ h̄(ρ, v) + η satisfies

coadξ′ µ′ = 0

and
h̄η(ρ, v) := (h̄− JηN )(ρ, v) = 0.

In this case, ξ′ is a generator of p′. Montaldi and Rodríguez-Olmos deduce these
equations from the bundle equations, which lift the Hamiltonian vector field on
Y to the space G × (m∗ × N). The bundle equations have been discovered by
Roberts and de Sousa Dias ([RdSD97]) for actions of compact groups and have
been generalized by Roberts, Wulff, and Lamb ([RWL02]) and others. In these
publications, a particular lift to G× (m∗ ×N) is chosen. In contrast, Montaldi
and Rodríguez-Olmos consider all possible lifts and obtain the bundle equations
with isotropy, which imply the above equations for relative equilibria.

To understand the local dynamics near an equilibrium or a relative equi-
librium, it is also often useful to consider the linearization of the Hamiltonian
vector field. The theory of linear Hamiltonian systems with symmetry will be
presented in chapter 3. In particular, we investigate the possible forms of the
centre space of the linearization dXh(0) and the generic eigenvalue structure of
dXh(0).

Subsequently in chapter 4, we consider free actions of compact connected
groups. For free actions, the level sets J−1(µ) of the momentum map form
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manifolds. Moreover, the G-action induces a Gµ-action on J−1(µ), and we
obtain a flow on the reduced space Pµ := J−1(µ)

/
Gµ . Pµ is a symplectic

manifold and the flow coincides with the flow of the Hamiltonian vector field
for the function hµ induced of h. Consequently, relative equilibria correspond
to critical points of hµ in this case. Thus, an investigation of the topology
of the reduced spaces leads to an estimation of the number of Gµ-orbits of
relative equilibria with momentum µ. This is the approach in [Mon97]. In that
article, Montaldi considers the local picture near a relative equilibrium p with
momentum value α such that d2hα(p) 6= 0. For µ near α, he relates the number
of critical points of hµ to the cardinality of the Weyl group orbits of µ and α.

Patrick and Roberts ([PR00]) analyse the generic structure of the set of rela-
tive equilibria for free actions in a different way: They formulate a transversality
condition, which is generic within the set of G-invariant Hamiltonian functions
with respect to the Whitney C∞-topology. If h satisfies this condition, the
relative equilibria form a Whitney stratified set: The adjoint and the coadjoint
action together give a G-action on g∗⊕g. The strata are given by the sets of rel-
ative equilibria whose momentum generator pairs (ξ, µ) have the same isotropy
type.

The main idea of the proof is as follows: Patrick and Roberts consider vector
subbundles T and K of the tangent bundle TP given by Tp = g · p and Kp =
ker dJ(p). They observe that p is a relative equilibrium if and only if Xh(p) ∈
Tp ∩ Kp. Moreover, they consider the set of pairs (ξ, µ) with coadξ µ = 0 and
show that the stratification by isotropy type of this set induces a stratification
of Tp∩Kp. A relative equilibrium p is called transverse if the Hamiltonian vector
field is transverse to this stratification at p.

From a generalization of Patrick’s and Roberts’ approach, we also obtain
an alternative deduction of the above two equations, which characterize relative
equilibria: The vector bundles K◦ and T ◦ that occur in the formulation of the
transversality condition in [PR00] on the cotangent space are still semi-analytic
sets if the action is not necessarily free. Moreover, it is true in general that
p is a relative equilibrium if and only if dh(p) ∈ K◦ ∩ T ◦. An evaluation of
this condition on the Marle-Guillemin-Sternberg normal form gives the above
equations of relative equilibria.

We will come to these ideas in chapter 6.
Prior to that, we discuss some results for the case of non-trivial isotropy

subgroups in chapter 5. In particular, we permit isotropy subgroups of positive
dimension. Most of the results that we discuss here adapt ideas from bifurcation
theory. Indeed, the augmented Hamiltonians hξ = h−Jξ can be considered as a
family parameterized by ξ ∈ g. Similarly, the left hand side of the second one of
the above equations, that is dh̄(ρ, v)−Jη(v), can be considered as a family with
parameters η and ρ. This point of view is explicitly formulated in [CLOR03].
There, Chossat, Lewis, Ortega, and Ratiu consider equivalent formulations of
the above two equation. Similar methods are used in [MR-O15]. Most of these
results require conditions that assure that the commutation relation coadξ µ = 0
is automatically satisfied, such that only the second equation has to be consid-
ered. Its solutions for a fixed ρ ∈ (m∗)Gp , correspond to relative equilibria of
the Hamiltonian h̄(ρ, ·) on the symplectic slice N .

The special case of Hamiltonian systems on a representation with an equilib-
rium at 0 is treated in [OR04(a)]. In that context, to find the relative equilibria
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near 0 ∈ V , we have to solve dhξ(v) = 0. If we consider ξ ∈ g as a parameter,
in contrast to ordinary bifurcation theory, we have a non-trivial action on the
parameter space. It is given by the adjoint action. To circumvent this prob-
lem, we will fix a maximal torus T ⊂ G and search for relative equilibria with
generators in its Lie algebra t. If ξ is a generator of the relative equilibrium p,
then Adg ξ is generator of gp for g ∈ G. Since all adjoint orbits intersect t, the
G-orbits of relative equilibria with generators in t contain all relative equilibria.

This approach combined with the main theorem in [OR04(a)] yields the
generic structure of Hamiltonian relative equilibria near 0 for representations
of connected compact groups of rank 1, i.e. for the groups SO(3) and SU(2).
For groups of rank 1, all relative equilibria are contained in a periodic orbit.
Therefore, these conclusions alternatively follow from a simple application of
the equivariant Weinstein-Moser theorem of [MRS88]. These consideration will
also be discussed in chapter 5.

Nevertheless, the idea may be generalized to groups of higher rank using
equivariant transversality theory. In mechanics, symmetry groups of higher
rank often occur for approximations of the Hamiltonians. An example will be
discussed in section 6.6 of chapter 6. There might also be applications to modern
physics since there occur symmetry groups of rank greater than 1.

In chapter 6, we introduce equivariant transversality and applications to the
theory of Hamiltonian relative equilibria:

One of my own results in this thesis is the observation that the transver-
sality condition from [PR00] may be extended to the case of non-free actions
using equivariant transversality. Indeed, Field has developed a genericity the-
ory for relative equilibria in 1-parameter families of equivariant vector fields
(see [Fie96]). An adaption of Fields approach to Hamiltonian systems leads to
a transversality condition, which can be formulated in terms of Gp-equivariant
transversality to the semi-analytic set K◦ ∩ T ◦. For free actions, the definition
coincides with the Patrick’s and Roberts’ definition.

The main implication of this observation is that Patrick’s and Roberts’ the-
ory generically holds for the fixed point subspace PH of an isotropy subgroup
H ⊂ G and the free action of the identity component of N(H)

/
H . The density

of this property within the space C∞(P ) of G-invariant smooth functions on P
with the Whitney C∞-topology follows directly from the results in [PR00]. The
equivariant transversality theory approach shows that this condition is open and
that the entire set of relative equilibria is Whitney stratified.

For the second application, we consider representations and generalize the
ideas indicated in chapter 5. We first investigate torus representations. Again,
we adapt Fields method for equivariant bifurcation problems, but this time the
space t is considered as a parameter space. This way, we obtain that generically
the topological structure of the relative equilibria coincides with that of the
linearized vector field. In the generic situation, the set of relative equilibria
near 0 is a union of manifolds that are tangent to sums of weight spaces with
linearly independent weights of the centre space of dXh(0). Conversely, there is
such a manifold for any set of linearly independent weights.

These results may be applied to representations of a general connected com-
pact group G with maximal torus T by restricting the action to T . This way,
we do not obtain the whole generic structure of the relative equilibria, but we
still predict branches that generically exist: Generically, the real parts of the
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sums of the eigenspaces of dXh(0) for each pair of purely imaginary eigenvalues
are irreducible G-symplectic spaces. They may be regarded as irreducible com-
plex G-representations. Consider the set of weights of one of these irreducible
representations. For each affine subset of t∗ that contains only a linearly inde-
pendent subset of these weights (counted with multiplicity), there is a manifold
of relative equilibria tangent to the sum of the corresponding weight spaces.
Moreover, if we join subsets of weights of these kind of different eigenspaces and
the union is linearly independent, we generically obtain a manifold tangent to
the sum of the corresponding weight spaces, too.

In particular, this result implies that there generically are non-trivial rela-
tive equilibria in any neighbourhood of the origin if the G-action on the centre
space of dXh(0) is non-trivial. This seems to contradict a result of Birtea et
al ([BPRT06]) at first glance: These authors also use equivariant transversality
theory to investigate relative equilibria in Hamiltonian systems with symmetry,
but they consider 1-parameter families of Hamiltonian functions. They claim
that under some – quite hard to check – assumption on the G-symplectic rep-
resentation, the Hamiltonian relative equilibria form curves in the orbit space
that only approach the origin at parameter values with a degenerate lineariza-
tion of the Hamiltonian vector field at the origin. However, it is not clear if
their condition holds in relevant cases and moreover, the proof has an essential
flaw. Anyhow, other results in the literature, which we discuss in this thesis,
also indicate that this is not the typical situation.

Since the theory of Hamiltonian dynamical systems is a wide field, the pre-
sentation in this thesis is restricted to a small aspect: The structure of the set
of relative equilibria. In general, these sets may be of arbitrarily complicated
form. Therefore, the emphasis is placed on the generic case within the set of
invariant Hamiltonian functions.

Since the new results of this thesis only consider the structure of the set
of relative equilibria, we usually omit stability results. For these, we refer to
[PRW04] and [MR-O15]. Montaldi ([Mon00]) also contains an introduction to
the topic. Moreover, it is a good overview of the research field of Hamiltonian
relative equilibria in general and influenced the selection of results presented
in this thesis. An introduction to related themes including relative periodic
equilibria can be found in [MBLP05].
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Chapter 1

Relative equilibria in
symmetric Hamiltonian
systems

1.1 Hamiltonian dynamics
Hamiltonian vector fields are defined on symplectic manifolds. The basic defi-
nitions and results are given in the following. Proofs can be found for example
in [McDS98].

A local model of symplectic manifolds is given by symplectic vector spaces:

Definition 1.1. A symplectic vector space is a vector space V together with
a symplectic bilinear form ω that is a non-degenerate skew-symmetric bilinear
form.

A linear map A : (V, ω) → (V ′, ω′) between symplectic vector spaces with
A∗ω′ := ω′(A·, A·) = ω is a linear symplectomorphism.

A vector subspace U of V is isotropic iff ω vanishes on U . A Lagrangian
subspace is a maximal isotropic subspace.

Example 1.2. R2n is a symplectic vector space with the symplectic form ω0 :=
〈·, J0·〉, where 〈·, ·〉 denotes the standard inner product and

J0 =
(

0 −1
1 0

)
.

This example even gives all isomorphism classes of symplectic vector spaces:

Theorem 1.3. Every finite dimensional symplectic vector space is isomorphic
to (R2n, 〈·, J0·〉) for some n ∈ N.

Symplectic manifolds are endowed with a smooth 2-form that defines a sym-
plectic bilinear form on each tangent space and is in addition closed:

Definition 1.4. Let P be a smooth manifold. A non-degenerate closed smooth
2-form ω on P is called symplectic form. The pair (P, ω) forms a symplectic
manifold.

13
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A smooth diffeomorphism Φ : (P, ω) → (P ′, ω′) is called a symplectomor-
phism iff Φ∗ω′ = ω, where Φ∗ω′p(·, ·) = ω′Φ(p)(dΦ(p)·,dΦ(p)·) for p ∈ P .

In classical mechanics, the phase spaces are given by cotangent bundles:

Example 1.5. Let Q be a smooth manifold. Then the cotangent bundle T ∗Q is
a symplectic manifold in a natural way: In coordinates (q1, . . . , qn, p1, . . . , pn) in-
duced by a chart (q1, . . . , qn) : U → Rn defined on U ⊂ Q such that (p1, . . . , pn)
denotes the element

∑
i pidqi of the fibre T ∗qQ, the canonical symplectic form

is given by ω =
∑
i dqi ∧ dpi. ω is exact: Let π : T ∗Q → Q be the projection.

Then for (q, αq) ∈ T ∗Q, the canonical 1-form θ is defined by

θ(q,αq) = αq ◦ dπ(q, αq) : T(q,αq)T
∗Q→ R.

With respect to the above coordinates, θ =
∑
i pidqi. Thus ω = −dθ.

Darboux’s theorem states that symplectic manifolds are indeed locally sym-
plectomorphic to symplectic representations:

Theorem 1.6 (Darboux’s theorem). Let (P, ω) be a symplectic manifold of
dimension 2n and p ∈ P . Then there is an open neighbourhood U of p which is
symplectomorphic to an open subset U ′ of R2n together with the form ω0.

Coordinates corresponding to a symplectomorphism U → U ′ ⊂ R2n are
called canonical coordinates.

If (P, ω) is a symplectic manifold, every smooth function h : P → R defines
a vector field on P : The Hamiltonian vector field Xh is given by

dh(p) = ωp(Xh(p), ·) = (iXhω)(p).

Since ω is non-degenerate, Xh is unique. The function h is called the Hamilto-
nian function and the triple (P, ω, h) defines a Hamiltonian system.

The flow ϕht of the Hamiltonian vector field has some remarkable properties:
For any smooth function f : P → R, the time-derivative of f(ϕht (p)) at t = 0

is given by

d
dtf(ϕht (p)) = df(ϕht (p))Xh(ϕht (p)) = ωϕht (p)(Xf (ϕht (p)), Xh(ϕht (p))).

Thus the function f is constant along the trajectories of Xh, iff the Poisson
bracket {f, h} := ω(Xf , Xh) vanishes on P . The Poisson bracket defines a Lie
algebra structure on C∞(P ) := C∞(P,R). In particular, the level sets of the
Hamiltonian function h itself are flow invariant.

Moreover, the flow ϕht consists of symplectomorphisms, since by Cartan’s
formula

d
dt (ϕ

h
t )∗ω = (ϕht )∗(LXhω) = (ϕht )∗(iXhdω + diXhω) = 0.

If dimP = 2n, the symplectic form yields the volume form
∧n

ω, with respect
to which the flow of the of the Hamiltonian vector field is volume preserving.
Thus in Hamiltonian dynamics, there are for instance no asymptotically stable
equilibria.
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1.2 Group actions
This section contains basic notions and facts on group actions that will be used
in the next chapters. If no other reference is given, proofs may be found in
[DK00].
Definition 1.7. Let G be a Lie group andM be a smooth manifold. An action
of G on M is a smooth map Φ : G×M →M , such that

1. Φ(e,m) = m, where e denotes the neutral element, and

2. Φ(g,Φ(h,m)) = Φ(gh,m).
The manifold M together with the G-action is called a G-manifold or G-space.
Remark 1.8. In the literature, this is often called a left action.

A G-action on a manifold M induces actions on its tangent and cotangent
bundle:
Example 1.9. Set Φg := Φ(g, ·). If Φ defines a G-action on M , the map

(g, (m, vm)) 7→ (gm,dΦg(m)vm)

defines an action on TM .
Example 1.10. In the above setting,

(g, (m,αm)) 7→ (gm, ((dΦg(m))−1)∗αm) = (gm,αm((dΦg(m)−1)·))

defines an action on T ∗M .
Definition 1.11. LetM be aG-manifold. A function f : M → R isG-invariant
iff f(gm) = f(m) for every g ∈ G and m ∈ M . The set of smooth G-invariant
functions on M is denoted by C∞(M)G.
Definition 1.12. Let M , N be G-manifolds. A map f : M → N is G-equiv-
ariant iff f(gm) = gf(m) for every g ∈ G and m ∈ M . The set of smooth
G-equivariant maps from M to N is denoted by C∞G (M,N). M and N are
isomorphic G-manifolds iff there is an equivariant diffeomorphism from M to
N .

In particular vector fields on G-manifolds are called G-equivariant iff they
are equivariant with respect to the induced G-action on the tangent space.
G-equivariance of 1-forms is defined similarly. A short calculation shows that
the derivative df of a G-invariant function f defined on a G-manifold is a
G-equivariant 1-form.

A special case of a G-manifold is a representation:
Definition 1.13. Let V be K-vector space, where K = R or K = C. A G-rep-
resentation on V is a Lie group homomorphism

ρ : G→ GL(V ).

A morphism between G-representations V and W is an equivariant linear map
V → W . The vector space of morphisms is denoted by HomG(V,W ). Accord-
ingly, EndG(V ) := HomG(V, V ). An invertible morphism is an isomorphism of
representations.

A G-invariant subspace of V is called a subrepresentation. V is irreducible
iff V and {0} are the only subrepresentations of V .
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Obviously, the only morphism between non-isomorphic irreducible represen-
tations is the zero morphism. The endomorphisms of irreducible representations
are characterized as follows:

Lemma 1.14 (Schur’s Lemma, [BtD85, Chapter I, Theorem 1.10]). Let V be
an irreducible complex representations of a group G. Then every f ∈ EndG(V )
is of the form λ1 for some λ ∈ C.

Lemma 1.15 (Schur’s Lemma for real representations, [Fie07, Theorem 2.7.2]).
Let V be an irreducible real representations of a group G. Then EndG(V ) is
isomorphic as an R-algebra to one of the algebras R, C or H.

Depending on which case occurs, V is of type R, C of H. An irreducible real
representation of type R is also called absolutely irreducible.

Remark 1.16. If the representation admits a G-invariant inner product (K =
R) or Hermitian product (K = C), the orthogonal complement of any G-invari-
ant subspace is G-invariant, too. Thus the representation V is isomorphic to a
direct sum

⊕
i U

pi
i of irreducible representations Ui in this case. The spaces Upii

correspond to unique subrepresentation of V called the isotypic components.
If the group G is compact, one obtains an invariant inner product or Her-

mitian product from an arbitrary one denoted by 〈·, ·〉 by averaging over G:∫
g∈G〈g·, g·〉 is invariant. Thus for a representation of a compact group, we as-
sume w.l.o.g. in the following that the action is given by orthogonal or unitary
transformations.

For the isotypic composition V =
⊕

i U
pi
i , we have

EndG(V ) =
⊕
i

EndG(Upii ).

If V is real representation and Ui is irreducible of type K ∈ {R,C,H}, then the
R-algebra EndG(Upii ) is isomorphic to the R-algebra of pi × pi-matrices with
entries in K (see [Fie07, Proposition 2.7.3]).

We will abbreviate Φ(g,m) by gm in the following.

Definition 1.17. For m ∈M , the isotropy subgroup or stabilizer of m is given
by

Gm := {g ∈ G | gm = m} .

The isotropy type of m is the conjugacy class (Gm).

It is easy to see that points of the same G-orbit have the same isotropy type.

Definition 1.18. A G-action on a manifold M is transitive iff M = Gm for
some m ∈M .

Definition 1.19. A G-action on a manifold M is free iff Gm = {e} for every
m ∈M .

Definition 1.20. A continuous map f : X → Y between locally compact
Hausdorff spaces is proper iff the preimage of every compact set is compact.
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Definition 1.21. An action Φ : G×M →M is proper iff the map

Φ̃ : G×M →M ×M
(g,m) 7→ (gm,m)

is proper.

Example 1.22. If G is a compact Lie group, any G-action is proper: Let K ⊂
M ×M be compact. Then K is closed and thus Φ̃−1(K) is closed. Moreover,
the projection p2(K) of K onto the second copy of M is compact and Φ̃−1(K)
is contained in G× p2(K). Thus Φ̃−1(K) is a closed subset of a compact subset
and thus compact.

Example 1.23. For any closed subgroup H of a Lie group G, the action of
H on G given by ΦH(h, g) = gh−1 is proper: If H = G, the map Φ̃G is a
homeomorphism and thus proper. Thus for a general closed subgroup H ⊂ G
and a compact subset K ⊂ G×G, the set

(Φ̃H)−1(K) = (Φ̃G)−1(K) ∩H ×G

is the intersection of a compact subset and a closed subset. Hence (Φ̃H)−1(K)
is compact.

If the action is proper, obviously all isotropy subgroups are compact. In this
thesis, we will consider proper group actions with the emphasis on actions of
compact groups. The following results characterize the G-manifold structure
for proper actions:

Theorem 1.24 (Bochner’s linearization theorem). Let M be a G-manifold and
suppose that Gm is compact for some m ∈ M . Then there is a Gm-invariant
neighbourhood U and a Gm-invariant open subset O of 0 ∈ TmM (with respect
to the linear Gm-representation on TmM) such that U and O are isomorphic
Gm-manifolds.

Theorem 1.25 (Free proper actions). Let G act freely and properly on the
smooth manifold M . Then the orbit space M

/
G := M

/
∼ , where m ∼ n iff

m = gn for some g ∈ G, has a unique structure of a smooth manifold of
dimension dimM − dimG such that the projection M → M

/
G is a submersion

and M is a fibre bundle over M
/
G .

In particular for a closed subgroup H ⊂ G, the space of left cosets G
/
H is

smooth, since it is the quotient space with respect to the free, proper H-action
on G given by (h, g) 7→ gh−1.

If G acts properly on M , it can be shown that for m ∈ M with Gm = H
the orbit Gm is a smooth submanifold of M diffeomorphic to G

/
H . Moreover,

there is a G-invariant neighbourhood of m that is isomorphic to a fibre bundle
over G

/
H :

Definition 1.26. Let H ⊂ G be a compact subgroup and S be an H-manifold.
Then H acts freely on the product space G × S by h(g, s) = (gh−1, hs). The
orbit space with respect to this action forms the twisted product G×H S.
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G ×H S is a smooth manifold. The G-action from the left on G yields a
G-action on G × S, which induces a G-action on G ×H S. Thus G ×H S is a
G-manifold. The projection G× S → G induces a map G×H S → G

/
H , which

defines a fibre bundle over G
/
H .

Definition 1.27. Let M be a G-manifold and m ∈ M . A slice Sm for the
G-action at m is a Gm-invariant smooth submanifold of M transverse to the
G-orbit Gm such that

1. Sm ∩Gm = m,

2. GSm :=
⋃
g∈G gSm is an open neighbourhood of Gm, and

3. gSm ∩ Sm 6= ∅ iff g ∈ Gm.

Theorem 1.28 (Slice Theorem/ Tube theorem). Let G act properly on the
manifold M . Then for m ∈ M with H := Gm, there is a G-invariant open
neighbourhood U and a slice Sm at m such that U ' G×H Sm as G-manifolds.

Remark 1.29. 1. Such a neighbourhood of U is called a tubular neighbour-
hood of the orbit Gm.

2. By Bochner’s linearization theorem, the Gm-manifold Sm is locally iso-
morphic to the Gm-representation on V = TmSm. Thus the vector bun-
dle G ×H V is a local model for the G-manifold structure near Gm, in
the sense that U is isomorphic to a neighbourhood of the zero section of
G×H V → G

/
H .

3. If N is a G-manifold and f : Sm → N is a smooth H-equivariant map,
f may be extended to a smooth G-equivariant map from U to N . (See
[Fie07, Theorem 3.5.1 and Exercise 3.5.1])

We define isotropy subspaces of the G-manifold M as follows:

Definition 1.30. For a closed subgroup H ⊂ G, the fixed point space is given
by

MH := {m ∈M | hm = m ∀h ∈ H} .

Mτ for τ = (H) is the set of points of M of isotropy type τ . MH denotes the
set of points with isotropy subgroup H. If H is compact

MH = Mτ ∩MH

(see [OR04(b), Proposition 2.4.4]).

If V is a representation, the fixed point subspaces of V are obviously sub-
spaces. If G acts properly on the smooth manifold M , Bochner’s linearization
theorem yields that the connected components of MH are smooth manifolds.
The Slice Theorem implies the same for connected components of Mτ and MH .
Moreover, an equivariant map f : M → N between G-manifolds obviously maps
the fixed point space MH into NH . In particular, equivariant vector fields are
tangent to the fixed point spaces, which thus form invariant submanifolds.

Theorem 1.31. If G acts properly on M , the partition of M into connected
components of the spaces Mτ corresponding to the isotropy types of the action
is a Whitney stratification.



1.2. GROUP ACTIONS 19

(For the definition of a Whitney stratification, see appendix A.2.)
For a closed subgroup H ⊂ G, the normalizer is given by

N(H) = NG(H) =
{
g ∈ G

∣∣ gHg−1 = H
}
.

The submanifolds MH and MH are obviously N(H)-invariant.
The main objects of interest of this thesis are relative equilibria:

Definition 1.32. Let X be a G-equivariant smooth vector field defined on a
G-manifold M . A point m ∈ M is a G-relative equilibrium (or simply relative
equilibrium) of X iff the G-orbit Gm is invariant with respect to the flow of the
vector field X.

Suppose that H = Gm for the relative equilibrium m ∈M . Then (Gm)H =
N(H)m. Since fixed point spaces are invariant subspaces, the trajectory of m
is even contained in the orbit N(H)m.

Alternatively, relative equilibria can be characterized with respect to the
action of the Lie algebra g on M :

Definition 1.33. An element ξ ∈ g defines a vector field ξM on a G-manifold
M by

ξM (m) = d
dt exp(tξ)m

∣∣∣∣
t=0

.

We also write ξ ·m for ξM (m) and g ·m :=
⋃
ξ∈g ξ ·m = Tm(Gm).

Remark 1.34. The map ξ 7→ ξM is a Lie algebra anti-homomorphism from g
to the Lie algebra of vector fields onM , i.e. it is linear and [ξ, η]M = −[ξM , ηM ].
In addition, the map (ξ,m) 7→ ξM (m) is a smooth map from g×M to TM . A
map with these properties is called a (left) Lie algebra action. See [OR04(b),
Definition 2.2.6].

A point m ∈ M is a relative equilibrium of X iff there is a ξ ∈ g such that
m is a zero of the vector field X − ξM . In this case, ξ is called a generator or
velocity of the relative equilibrium m. The generator ξ is not unique in general.
It is only unique modulo the Lie algebra h of the group H := Gm. Since the
generator is contained in the Lie algebra of the group N(H), it may be regarded
as an element of the Lie algebra of the group N(H)

/
H .

If m is a relative equilibrium, this holds also for any other element gm of the
G-orbit of m. If ξ ∈ g is a generator of m, Adg ξ is a generator of gm, where
AdgM is defined as follows:

Definition 1.35. A Lie group G acts on itself by conjugation: Φ : G×G→ G
is given by

Φ(g, h) = c(g)h := ghg−1.

The neutral element e ∈ G is a fixed point of this action. Thus the action
induces a representation of G at the tangent space TeG = g. This representation
is called the adjoint representation of G and the corresponding map is denoted
by Ad : G → GL(g). The dual representation of G on g∗ is called coadjoint
representation and denoted by Coad : G → GL(g∗). Explicitly, Coadg µ =
Ad∗g−1 µ = µ(Adg−1 ·) for µ ∈ g∗ and g ∈ G.
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The adjoint and the coadjoint representation induce corresponding represen-
tations of the Lie algebra, that is Lie algebra homomorphisms ad and coad to
the Lie algebras gl(g) and gl(g∗) of GL(g) and GL(g∗) respectively. The homo-
morphism ad coincides with the homomorphism g→ gl(g), i.e. adξ = [ξ, ·].

Let us assume in the following that G is compact and connected. We will
need some facts about maximal tori, that are stated in the following. Proofs
can be found in for instance in [BtD85].

Lemma 1.36. Any compact connected Abelian Lie group is isomorphic to a
torus T = Tn = Rn/Zn for some n ∈ N.

In the following, an Abelian connected closed subgroup of G will be called
a torus of G.

Definition 1.37. A torus T of G is maximal iff T ⊂ T ′ for any torus T ′ ⊂ G
implies that T = T ′.

Theorem 1.38. Each element g ∈ G is contained in a maximal torus.

Theorem 1.39. All maximal tori of G are conjugate.

Fix a maximal torus T ⊂ G. The action by conjugation of G on itself
restricts to an action of the normalizer N(T ) on T , which again induces an
action of N(T )

/
T on T .

Definition 1.40. W = W (G) = N(T )
/
T is called the Weyl group of G.

(Since all maximal tori are conjugate, the isomorphism class of W is inde-
pendent of the choice of T .)

Theorem 1.41. The Weyl group W is finite.

Lemma 1.42. For any t ∈ T and g ∈ G with gtg−1 ∈ T , there is an element
w ∈W such that gtg−1 = wtw−1.

Definition 1.43. A maximal Abelian Lie subalgebra of g is called a Cartan
subalgebra of g.

By [Hal03, Proposition 11.7], every Cartan subalgebra is the Lie algebra t
of a maximal torus T .

The adjoint representation induces a representation of W on t. Similarly,
the coadjoint representation induces a representation of W on t∗. Choosing a
G-invariant inner product on g yields an isomorphism of the adjoint represen-
tation and its dual, the coadjoint representation. The W representations on t
and t∗ are isomorphic as well.

The infinitesimal version of Lemma 1.42 is as follows:

Lemma 1.44. For ξ ∈ t (µ ∈ t∗), the intersection of the adjoint orbit Gξ (Gµ)
with t (t∗) coincides with the Weyl group orbit Wξ (Wµ).

Since the representation of W on t is faithful, W can be identified with a
subgroup of GL(t).

Theorem 1.45. The Weyl group W is generated by reflections of t.
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The fixed point spaces of the reflections in t and t∗ are called Weyl walls.
The isotropy subgroup Gξ of an element ξ ∈ t is determined by the Weyl walls
that contain ξ. Gξ = T iff ξ is not contained in a Weyl wall. The same is true
for the coadjoint representation.

Lemma 1.46. Let G be a compact Lie group, M be a smooth G-manifold, X be
a smooth G-equivariant vector field on M , and p ∈M be a relative equilibrium.
Then there is a torus T ⊂ G such that the X-orbit Op is contained in Tp.

Proof. Let ξ ∈ g be a generator of p. Then there is a maximal torus T ⊂
G such that ξ is contained in its Lie algebra t. Thus p is also a T -relative
equilibrium.

1.3 Momentum maps
Definition 1.47. Let Φ : G × P → P be an action of the Lie group G on the
symplectic manifold (P, ω). The action Φ is canonical iff Φ∗gω = ω for every
g ∈ G. Then ω is G-invariant and P is a G-symplectic manifold.

An equivariant symplectomorphism Φ : P → P ′ between G-symplectic
spaces P and P ′ is an isomorphism.

Example 1.48. If Q is a G-manifold, the cotangent bundle T ∗Q is a G-sym-
plectic space.

Example 1.49. Let Oµ be the coadjoint orbit of µ ∈ g∗. If the coadjoint action
is proper, Oµ is a smooth submanifold diffeomorphic to G

/
Gµ . (If not, Oµ is

the image of an immersion G
/
Gµ ↪→ g∗ and we endow Oµ with the differentiable

structure of G
/
Gµ .) The Kostant-Kirillov-Souriau symplectic form ωOµ is given

by
ωOµ(ν)(ξg∗(ν), ηg∗(ν)) = 〈ν, [ξ, η]〉.

Since TνOµ ' TνOν ' g
/
gν , ωOµ is a well-defined 2-form on Oµ.

(Coad∗g ωOµ)(ν)(ξg∗(ν), ηg∗(ν)) = ωOµ(Coadg ν)((Adg ξ)g∗(ν), (Adg η)g∗)(ν))
= 〈ν, [ξ, η]〉,

implies that ωOµ is G-invariant. Thus Lξg∗ωOµ = 0 holds for every ξ ∈ g.
Inserting this into the contraction axiom for the Lie derivative yields

ξg∗(ωOµ(ζg∗(ν), ηg∗)) = ωOµ([ξg∗ , ζg∗(ν)], ηg∗) + ωOµ(ζg∗ , [ξg∗ , ηg∗(ν)])

for ξ, ζ, η ∈ g. If this again is inserted into the formula for dωOµ , the Jacobi
identity for the Lie bracket on g yields that ωOµ is closed. Since 〈ν, [ξ, ·]〉 =
coadξ ν = 0 iff ξ ∈ gν , the form ωOµ is non-degenerate. Thus (Oµ, ωOµ) is a
G-symplectic space.

Similarly we define a G-symplectic representation, which is a special case of
a G-symplectic manifold:
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Definition 1.50. Let G be a Lie group and V be G-representation together
with a G-invariant symplectic form ω. Then we call V a G-symplectic repre-
sentation (or just symplectic representation). A G-symplectic representation is
irreducible if it contains no proper non-trivial G-symplectic subrepresentations.
Two G-symplectic representations are isomorphic if there is a G-equivariant
symplectic linear isomorphism that maps one into the other.

A G-symplectic manifold P together with a G-invariant Hamiltonian func-
tion h : P → R form a Hamiltonian system with G-symmetry. The G-invari-
ant symplectic form ω yields a G-equivariant isomorphism of vector bundles
ω# : T ∗P → TP given by the inverse of the map (p,Xp) 7→ (p, ωp(Xp, ·)).
Since the 1-form dh : P → T ∗P is a G-equivariant section of the bundle map
T ∗P → P , the Hamiltonian vector field

Xh = ω# ◦ dh

is G-equivariant as well.
A fundamental concept of classical mechanics is that symmetries of the sys-

tem give rise to conserved quantities:
For each ξ ∈ g, the form ω(ξP , ·) = iξP ω is closed by Cartan’s formula:

0 = d
dtΦ

∗
exp(tξ)ω

∣∣∣∣
t=0

= LξPω = iξP dω + diξP ω = diξP ω.

Vector fields with this property are called locally Hamiltonian, since they are
Hamiltonian on simply connected neighbourhoods. Let us assume that ξP is
even globally Hamiltonian with Hamiltonian function Jξ, that is

dJξ = ω(ξP , ·). (1.1)

Theorem 1.51 (Noether’s theorem). Let (P, ω, h) be a Hamiltonian system
with G-symmetry. Suppose that Jξ satisfies equation (1.1) for ξ ∈ g. Then Jξ
is constant along the trajectories of Xh.

Proof.
Xh(Jξ) = {h,Jξ} = −{Jξ, h} = ξP (h) = 0.

Definition 1.52. A canonical action of a Lie group G on a symplectic mani-
fold P is weakly Hamiltonian iff for each ξ ∈ g, the vector field ξP is globally
Hamiltonian.

Let us suppose that G acts on P in a weakly Hamiltonian way. The functions
Jξ are defined by equation (1.1) up to a constant on each connected component
of P . Choosing a basis ξ1, . . . , ξn of g and functions Jξ1 , . . .Jξn , we may extend
the definition linearly to g and obtain a linear map g→ C∞(P ), where ξ 7→ Jξ.
This yields a map J : P → g∗, defined by

〈J(p), ξ〉 = Jξ(p).

J is called a momentum map, since it can be considered as a generalization of
the linear and angular momentum (see examples below). The definition of the
momentum map goes back to Lie, see [MR99, section 11.2] for an overview of
the history of the momentum map.
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In this thesis, the existence of a momentum map will always be assumed. For
generalizations in the case that no momentum map as defined above is available,
consider [OR04(b)].

Given a canonical action of a Lie group G on a symplectic manifold P , each
of the following conditions implies that the action is weakly Hamiltonian and
thus a momentum map can be constructed:

1. If H1(P ) = 0, the closed vector fields iξP ω for ξ ∈ g are exact and thus
the action is weakly Hamiltonian.

2. Canonical actions of semi-simple Lie groups are always weakly Hamilto-
nian, see [GS84, chapter II, section 24]. A Lie group is semi-simple iff
its Lie algebra has no non-trivial Abelian ideals. A compact Lie group is
semi-simple iff its centre is finite (see [DK00, Corollary 3.6.3]).

3. If ω = dθ for a G-invariant 1-form θ, then by Cartan’s formula

0 = LξP θ = diξP θ + iξP dθ

and thus iξP ω = diξP θ is exact and the momentum map is given by

〈J(p), ξ〉 = iξP θ(p) = θp(ξP (p)).

In the following, we suppose that P is connected. The momentum map is
an equivariant map from the G-manifold P to g∗ with respect a G-action on g∗,
which often coincides with the coadjoint action:

The map ξ 7→ ξP from g to the space of vector fields on P satisfies Φ∗gξP =
(Adg−1 ξ)P :

Φ∗gξP (p) = d
dt (Φ

−1
g ◦ Φexp(tξ)Φg)(p)

∣∣∣∣
t=0

= (Adg−1 ξ)P (p).

Since ξP = XJξ and Φ∗gXJξ = XJξ◦φg by the G-invariance of ω, this yields

XJξ◦φg = X
J

Ad
g−1 ξ .

Thus, for fixed g ∈ G and ξ ∈ g, the function

σ(g) = J ◦ φg − Coadg J : P → g∗

is constant.

Definition 1.53. If there is a choice of the momentum map such that σ van-
ishes, we call the action Hamiltonian.

Remark 1.54. The definition of an Hamiltonian action is quite inconsistent
in the literature. Sometimes the term Hamiltonian action is used for weakly
Hamiltonian actions as defined above.

A weakly Hamiltonian G-action on the connected manifold P is Hamiltonian
if one of the following condition holds:

1. P is compact: ωn defines a G-invariant volume form on P , where dimP =
2n. If we require

∫
P

Jξ(p)ωn = 0, we obtain a unique choice of Jξ, which
is linear in ξ. Then for any g ∈ G, the integral over P vanishes for the
two functions Jξ ◦Φg and JAdg−1 ξ, which have the same derivative. Thus
they coincide.
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2. G is compact, and J is a momentum map: Averaging over G yields an
equivariant momentum map J̄:

J̄(p) :=
∫
g∈G

Coad J(g−1p).

This argument is taken from [Mon97].

3. G is semi-simple, as in condition 2 above. Again we refer to [GS84, chap-
ter II., section 24].

4. ω = dθ for a G-invariant 1-form θ (condition 3 above): Since Jξ = iξP θ
and θ is G-invariant

Jξ(gp) = θgp(ξP (gp)) = (Φ∗gθ)(Φ∗gξP )(p) = θ(Adg−1 ξ)P (p) = JAdg−1 ξ(p).

Since in this thesis the emphasis is placed on action of compact groups, the
momentum map will be assumed to be equivariant with respect to the coadjoint
action. Nevertheless in general, J is equivariant with respect to the action on
g∗ given by

(g, µ) 7→ coadg µ+ σ(g).

This action has been introduced by Souriau, [Sou69]). A simple calculation
shows that this is indeed an action, see for example [MR99, Proposition 12.3.1].
If the coadjoint action is replaced by this modified action, many of the results
for Hamiltonian actions still hold for weakly Hamiltonian actions.

Now, we calculate the momentum map for some basic examples:

Example 1.55. Let P = T ∗Q be the cotangent bundle of the G-manifold Q.
Then ω = dθ for the G-invariant canonical 1-form θ. Since for (q, αq) ∈ T ∗Q
we have

dπξP (q, αq) = ξQ(q),

this yields
〈J(q, αq), ξ〉 = αq(ξQ(q)).

In particular, we obtain:

Example 1.56. Let G = R3 act by translations on Q = R3. Then g∗ = g = R3,
ξQ(q) = ξ, and the momentum map for the action on T ∗Q = R3 × R3 is given
by

〈J(q, p), ξ〉 = 〈p, ξ〉.

Thus J(q, p) = p is just the linear momentum.

Example 1.57. Let Q = R3 be the standard representation of SO(3) = G.
Then g∗ = g = so(3) consists of the Lie algebra of skew symmetric linear maps,
which may be identified with R3 via the isomorphism ξ ∈ R3 7→ (ξ × ·), where
× denotes the cross product on R3. Then

〈J(q, p), ξ〉 = 〈p, ξ × q〉 = 〈ξ, q × p〉,

and thus J(q, p) = q × p is the angular momentum.
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Given a momentum map for the G-action, relative equilibria of the Hamil-
tonian vector field are considered as critical points in different ways:

p is a relative equilibrium with generator ξ ∈ g iff Xh − ξP (p) = 0. Since Jξ
is a Hamiltonian function for the Hamiltonian vector field ξP , this is equivalent
to d(h− Jξ)(p) = 0.

Definition 1.58. The functions

hξ := h− Jξ

are called augmented Hamiltonian functions.

Another approach is to fix the value of the momentum: By Noether’s the-
orem, the momentum level sets J−1(µ) for µ ∈ g∗ are invariant subsets. Thus
each set J−1(µ) may be considered as a dynamical system on its own. In general,
this is difficult, since the momentum level sets are not necessarily manifolds. For
free actions the momentum map is a submersion, as follows from the following
lemma:

Lemma 1.59. For any p ∈ P , the kernel and image of dJ(p) are given by

ker dJ(p) = (g · p)⊥ω ,
im dJ(p) = ann gp,

where V ⊥ω denotes the ωp-orthogonal complement of a vector subspace V of
TpP and ann denotes the annihilator.

Proof. If v ∈ TpP ,

d〈J(p), ξ〉v = 0⇔ ωp(v, ξ · p) ∀ξ ∈ g.

Thus ker dJ(p) = (g · p)⊥ω . Since im dJ(p) ⊂ ann gp holds obviously,

dim ker dJ(p) = dimTpP − dim(g · p) = dimTpP − dim g + dim gp

yields the equality.

Thus J−1(µ) is a manifold if the action is free. Then p ∈ P is a relative
equilibrium iff p is a critical point of the restriction h

∣∣
J−1(µ): This is equivalent

to the existence of a Lagrange multiplier ξ ∈ g such that dh(p) = 〈dJ(p), ξ〉.
Suppose in addition that the action is proper. Then the (Marsden-Weinstein)

reduced space
Pµ := J−1(µ)

/
Gµ

is a manifold, too. Let π : J−1(µ) → J−1(µ)
/
Gµ be the projection and

ωµ denote the restriction of ω to the tangent space of J−1(µ). The form
ωµ(dπX,dπY ) = ω(X,Y ) is well-defined and symplectic on Pµ. (We postpone
the proof to the next chapter.) The restricted Hamiltonian function induces
a function hµ on Pµ called the reduced Hamiltonian function. The associated
Hamiltonian vector field Xhµ is called the reduced (Hamiltonian vector) field.
This way the equations of motion may be reduced to the ones of Hamiltonian
systems of smaller dimension which carry all information except from the mo-
tion along the group orbit. The formalization of this process first appeared
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in [MW74]. In particular, p ∈ P with J(p) = µ is a relative equilibrium iff
[p] := π(p) is a critical point of hµ, equivalently iff [p] is an equilibrium of the
reduced field.

Alternatively, the reduced spaces may be defined by

Pµ := J−1(Oµ)
/
G ,

where Oµ denotes the coadjoint orbit of µ. The two definitions yield isomorphic
symplectic spaces, see [OR04(b), Theorem 6.4.1].

If the G-action is not free, the structures of the momentum level sets and the
reduced spaces are in general complicated. Nevertheless, the relative equilibria
may be considered as critical points if G is compact:

The following lemma yields that the fixed point submanifolds PH for an
isotropy subgroup H ⊂ G together with the restricted invariant Hamiltonian
function form a Hamiltonian system with L-symmetry, where L := N(H)

/
H

with Lie algebra l:

Lemma 1.60. Let G× P → P be a proper Hamiltonian action and H ⊂ G be
a closed subgroup with Lie algebra h. Then PH is an L-symplectic manifold. If
n(H) denotes the Lie algebra of N(H) and P : g∗ → n(H)∗ is the projection,

P ◦ J(PH) ⊂ ann h = l.

Thus P ◦ J is a momentum map for the L-action.

Proof. PH is a manifold, since the action is proper. For p ∈ PH , we have
(TpP )H = Tp(PH) and (T ∗pP )H = T ∗p (PH). By equivariance of ω#, we have
ω# : Tp(PH) → T ∗p (PH) and (ω#)−1 : T ∗p (PH) → Tp(PH). Thus PH is a
symplectic submanifold. P ◦ J(PH) ⊂ ann h is obvious.

As Sjamaar and Lerman have shown ([SL91]), if G is compact, the mo-
mentum level sets J−1(µ) are stratified by the connected components J−1(µ)τ
of the same isotropy type τ , and their images in Pµ form symplectic mani-
folds. If τ = (H), the image of J−1(µ)τ in Pµ may be identified with the
quotient of (P ◦ J)−1(P(µ)) ⊂ PH with respect to the LP(µ)-action. We obtain
J−1(µ)τ

/
Gµ ' (PH)P(µ), where the right hand side is a symplectic manifold,

since the L-action on PH is free. p ∈ PH ∩ J−1(µ) is a relative equilibrium for
Xh iff it is a relative equilibrium for the Hamiltonian system on PH . Moreover,
dh(p) = 0 iff this holds for the projection of dh(p) to T ∗p (PH). Thus p is a
relative equilibrium iff it is a critical point of the restriction of h to the cor-
responding stratum in J−1(µ)τ , or equivalently iff [p] is a critical point of the
restriction of hµ to the corresponding stratum in Pµ.

For a Hamiltonian action, we obtain a further restriction on the generator
of a relative equilibrium from Noether’s theorem and the equivariance of the
momentum map: If p is a relative equilibrium with generator ξ and momentum
µ,

0 = d
dtJ(exp(tξ)p)

∣∣∣∣
t=0

= coadξ µ.



Chapter 2

Local theory

Here we consider the Hamiltonian analogues to some methods to investigate
the dynamics in equivariant dynamical systems near a given relative equilib-
rium. The G-action is always to assumed to be proper. We start with the
characterization of the G-symplectic structure near a G-orbit in the first two
sections:

In section 2.1, we cite an equivariant version of Darboux’s theorem.
A symplectic version of the Slice Theorem is presented in section 2.2. This

yields a normal form for a tubular neighbourhood of the relative equilibrium.
As shown by Krupa ([Kru90]), a general vector field that is equivariant with
respect to the action of a compact group may be decomposed as the sum of
the tangential vector field, which is tangent to the orbit, and the normal vector
field. Similarly in section 2.3, the Hamiltonian vector field is written in the
coordinates given by the symplectic normal form. Such a normal form exists in
general for a proper group action (see for instance [OR04(b)].) It has, however,
a simpler form if g has an inner product that is invariant with respect to the
isotropy subgroup Gµ of the momentum µ of some element p of the orbit. We
will impose this condition, which holds in particular for compact group actions.

The presentation in sections 2.2 and 2.3 follows [OR04(b)].
From the normal form of the Hamiltonian vector field, we obtain two equa-

tions that characterize relative equilibria. Some solutions of the second equation
correspond to relative equilibria near an equilibrium in a Hamiltonian system
with Gp-symmetry. One of the aims of this thesis is to understand this special
case, in which the symmetry is given by the action of a compact group and we
are in a small neighbourhood of an equilibrium. Section 2.4 is devoted to this
aim. Here, a method to reduce the search of relative equilibria to the kernels of
the Hessians at the equilibrium of the augmented Hamiltonians is illustrated.
It can be seen as a special form of Lyapunov-Schmidt reduction, which is a
standard technique of (equivariant) bifurcation theory.

2.1 Equivariant Darboux theorem
The equivariant version of Darboux’s theorem states in particular, that G-sym-
plectic manifolds are locally isomorphic to G-symplectic representations near
fixed points of the G-action if the action is proper. It is a special case of the

27
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Darboux-Weinstein theorem, see [GS84, Theorem 22.2].
Theorem 2.1 (Equivariant Darboux theorem, [OR04(b), Theorem 7.3.1]). Let
G act properly on the smooth manifold P . Suppose that there are two G-invari-
ant symplectic forms ω0 and ω1 and a point p ∈ P with ω0

∣∣
Gp

= ω1
∣∣
Gp

. Then
there are G-invariant neighbourhoods U0 and U1 of Gp and a G-equivariant
diffeomorphism φ : U0 → U1 such that φ

∣∣
Gp

= 1Gp and φ∗ω1 = ω0.

As Dellnitz and Melbourne point out in [DM93b], there are incorrect equiv-
ariant generalizations of the Darboux theorem stated in the literature, for ex-
ample in [GS84, Theorem 22.2]: In contrast to the non-symmetric case, it is not
true in general that all G-invariant symplectic forms on a given G-representation
can be transformed into each other by an equivariant linear coordinate change.
We will come back to this in chapter 3.

In particular, two G-symplectic manifolds with a fixed point of the G-action
on each one such that the underlying G-manifolds are locally isomorphic near
the fixed points are not in general locally isomorphic as G-symplectic manifolds.

2.2 Marle-Guillemin-Sternberg normal form
Given a proper Hamiltonian action of a Lie group G on a symplectic manifold
P , Marle ([Mar85]) and Guillemin and Sternberg ([GS84]) classify the local
isomorphism classes of G-invariant neighbourhoods of G-orbits in P :

The local structure of the G-manifold P is characterized by the Slice The-
orem 1.28, which states the existence of a tubular neighbourhood of p ∈ P
isomorphic to the normal form G×Gp V . To describe the G-symplectic space P
locally, we have to include the symplectic form and the corresponding momen-
tum map.

We start with a splitting of the tangent space, which in this general formu-
lation first appeared in [MRS88]. It is often called Witt-Artin decomposition.1

In the Slice Theorem, we use a splitting of the tangent space TpP into the
Gp-invariant spaces g · p and V . For the Hamiltonian version, we choose a
particular form of V :

Since level sets of the momentum map are invariant sets of the flow, the
Hamiltonian vector field is tangent to the level sets, hence Xh(p) ∈ ker dJ(p).
We fix a Gp-invariant inner product and split the tangent space into ker dJ(p)
and its normal space (ker dJ(p))⊥. Then we consider the intersections T0 =
ker dJ(p) ∩ g · p and T1 = (ker dJ(p))⊥ ∩ g · p and their complements N1 and
N0 within ker dJ(p) and (ker dJ(p))⊥ respectively. We obtain the Gp-invariant
orthogonal splitting

TpP = T0 ⊕ T1 ⊕N0 ⊕N1, (2.1)
where T0 ⊕ T1 = g · p, T0 ⊕N1 = ker dJ(p), and T1 ⊕N0 = (ker dJ(p))⊥. (The
notation is as in [PR00].) In the following, we often denote N0⊕N1 by V since
this space is a Gp-invariant complement of g · p as in the Slice Theorem.

1The name refers to the decomposition of a symplectic vector space (V, ω) defined by
any subspace U ⊂ V into pairwise ω-orthogonal symplectic subspaces: V can be written as
V = X⊕Y ⊕Z, where X is a complement of U∩U⊥ω within U , Y is a complement of U∩U⊥ω

within U⊥ω and Z can be written as the sum of U∩U⊥ω and a complement of U +U⊥ω . This
splitting in principle occurs in Artin’s theory of vector spaces with a non-degenerate symmetric
or skew-symmetric form ([Art57]), which is based on Witt’s investigation of symmetric forms
([Wit37]).
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If J(p) = µ,

T0 = gµ · p ' gµ
/
gp and

T1 ' g
/
gµ .

For ξ ∈ g and µ ∈ g∗, let Oξ and Oµ denote the G-orbits with respect to the
adjoint and coadjoint action respectively.

Lemma 2.2. TµOµ = ann gµ.

Proof. Obviously, these two spaces are of the same dimension. Moreover, for
η ∈ gµ and ξ ∈ g, we obtain

〈coadξ µ, η〉 = −〈µ, [ξ, η]〉 = 〈µ, [η, ξ]〉 = 〈− coadη µ, ξ〉 = 0.

Remark 2.3. If G is compact, we identify g and g∗ via a G-invariant inner
product. For any subspace k ⊂ g, the dual space k∗ is identified with the image
of k under this isomorphism g ' g∗. In this case, Lemma 2.2 can be formulated
as follows:

Lemma 2.4. Suppose that G is compact. With respect to any choice of a
G-invariant inner product on g,

gξ = TξO⊥ξ and g∗µ = TµO⊥µ .

In general, there is no G-invariant inner product on g and g∗. Anyhow,
since Gp is compact, there is a Gp-invariant inner product. The equivariance
of J implies Gp ⊂ Gµ and thus gp ⊂ gµ. From the Gp-invariant inner product,
we obtain a Gp-invariant splitting gµ = m ⊕ gp. This yields a corresponding
splitting g∗µ = m∗ ⊕ g∗p.

Lemma 2.5. 1. The restriction of dJ(p) composed with the projection to
the quotient by gp yields an isomorphism N0 ' (gµ

/
gp )∗ ' m∗ between

Gp-representations, where the Gp-action on (gµ
/
gp )∗ is given by the quo-

tient of the coadjoint action.

2. N1 and T1 are symplectic and ω-orthogonal to each other. T0 is an isotropic
subspace of the ω-orthogonal complement of N1 ⊕ T1.

3. (g
/
gµ , ωµ) with ωµ = 〈µ, [·, ·]〉 is a symplectic space isomorphic to T1.

4. For some suitable choice of the inner product, T0 ⊕ N0 is a symplectic
subspace of TpP , which is ω-orthogonal to T1 ⊕ N1 and isomorphic to
gµ
/
gp ⊕ (gµ

/
gp )∗ together with the canonical symplectic form.

Proof. 1. Since the restriction dJ(p)
∣∣
T1⊕N0

is injective,

T1 ⊕N0 ' im dJ(p) = ann gp

by Lemma 1.59. Moreover,

dJ(p)T1 = TµOµ = ann gµ.
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Thus, dJ(p)N0 forms a Gp-invariant complement of ann gµ within ann gp.
Hence

N0 ' dJ(p)N0 ' (gµ
/
gp )∗ ' m∗.

2. Since ker dJ(P ) = (g · p)⊥ω , the space T0 = g · p ∩ (g · p)⊥ω is isotropic,
T1 ' g · p/T0 and N1 ' (g · p)⊥ω

/
T0 are symplectic, T1 ⊥ω N1, and

T0 ⊂ (T1 ⊕N1)⊥ω .

3. ωµ is the Kostant-Kirillov-Souriau symplectic form on TµOµ ' g
/
gµ , see

Example 1.49. The isomorphism is given by dJ(p):

ωp(ξ · p, η · p) = 〈dJ(p)(η · p), ξ〉 = 〈coadη J(p), ξ〉 = 〈µ, [−η, ξ]〉.

4. Choose a Gp-invariant Lagrangian complement of T0 within (T1 ⊕N1)⊥ω
for N0. Such a complement exists: There is a Gp-invariant inner prod-
uct on (T1 ⊕ N1)⊥ω such that ω is represented by an orthogonal skew-
symmetric endomorphism J which is obviously Gp-equivariant. Then
N0 = JT0 is a possible choice. T0 ⊕N0 is symplectic, since (T1 ⊕N1)⊥ω
is symplectic.

The isomorphism dJ(p) : N0 → (gµ
/
gp )∗ corresponds to the isomorphism

T0 → T ∗0 defined by ω(p)
∣∣
T0
: For [ξ] ∈ (gµ

/
gp ) and n ∈ N0,

〈dJ(p)n, [ξ]〉 = ω(p)(ξ · p, n).

Hence the symplectic space T0 ⊕ N0 is isomorphic to gµ
/
gp ⊕ (gµ

/
gp )∗

together with the canonical symplectic form.

Remark 2.6. In the case of a free action, N1 is obviously isomorphic to the
tangent space T[p]Pµ of the reduced space and π∗ω coincides with the restriction
of ω to N1. Thus (Pµ, π∗ω) is indeed a symplectic manifold.

In the following we will always assume that in addition to the Gp-invariant
splitting gµ = gp ⊕ m, there is a Gµ-invariant splitting g = gµ ⊕ q. If we set
g∗µ := ann q and q∗ = ann gµ, we obtain a Gµ-invariant splitting g∗ = g∗µ ⊕ q∗.

The Slice Theorem together with the Artin-Witt decomposition of the tan-
gent space gives rise to a symplectic normal form of the tubular neighbourhood:
By the equivariant Darboux Theorem 2.1, the isomorphism class of the tubular
neighbourhood as a symplectic space is determined by the restriction of ω to
the G-orbit of p. In principle, to obtain a normal form, it is sufficient to iden-
tify the restriction TP

∣∣
V

of the tangent space to the slice with g
/
gp × V via a

local section of the projection G→ G
/
Gp and to extend the form ωp, which is

computed in the Artin-Witt decomposition theorem, constantly to TP
∣∣
V

and
equivariantly to T (G×Gp V ). This choice of normal form would depend on the
choice of the section. It is more natural and more practicable to have a normal
form for ω that comes from a Gp-invariant closed two-form on G × V which is
degenerate on the tangent spaces to the Gp-orbits. Then ω may be expressed
with respect to coordinates (g, ρ, v) ∈ G×m∗ ×N1 = G× V . For convenience,
we denote N1 by N from now on.
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To construct such a natural normal form for ω, we start with the subbundle of
G×Gp V over the Gµ-orbit of p consisting of the copies of N0 ' m∗ ' (gµ

/
gp )∗.

We obtain the symplectic bundle

Gµ ×Gp (gµ
/
gp )∗,

which is isomorphic to T ∗(Gµ
/
Gp ): For ξ ∈ TeG, µ ∈ T ∗eG and g ∈ G, e

abbreviate dΦgξ ∈ TG by g · ξ and dΦ∗g−1µ ∈ T
∗G by g · µ.

For h ∈ G, the derivative of the right multiplication

Rh : G→ G

g 7→ gh−1

is given by dRh(g · ξ) = gh−1 ·Adh ξ, and hence for g · µ ∈ T ∗G, we obtain

((dRh−1)∗(g · µ))(gh−1 · ξ) = (g · µ)(dRh−1(gh−1 · ξ)) = (g · µ)(g ·Adh−1 ξ).

Thus (dRh−1)∗(g · µ) = gh−1 · Coadh µ. Therefore there is a submersion

Gµ × (gµ
/
gp )∗ → T ∗(Gµ

/
Gp ),

such that for g ∈ Gµ and µ ∈ (gµ
/
gp )∗ = ann gp, all elements of the form

(gh−1,Coadh µ) with h ∈ Gp are identified.
Hence a natural choice for the restriction of ω to this subbundle is the canon-

ical symplectic form of T ∗(Gµ
/
Gp ), whose restriction to the zero-section coin-

cides with the symplectic form determined by the Artin-Witt decomposition
theorem.

The cotangent space T ∗(Gµ
/
Gp ) is isomorphic to the reduced space (T ∗Gµ)0

with respect to the right Gp-action and the corresponding momentum map, see
for example the last theorem in [Arn78, appendix 5 B]. This is a motivation to
consider the bundle T ∗Gµ ' Gµ × g∗µ. By invariant extension and by adding
forms on new parts of the tangent space, we will obtain a symplectic form
defined on G× g∗µ ×N , which is invariant with respect to a suitable Gp-action,
such that G×Gp (m∗⊕N) is isomorphic to the reduced space for the momentum
value 0 ∈ g∗p:

Let ω0 be the restriction of the canonical symplectic form of T ∗G = G×g to
G×g∗µ. Then the 2-form ω0 extends the the canonical symplectic form of T ∗Gµ
and is G-invariant with respect to the left G-action on G and trivial action on
g∗µ.

The form ω0 is given by

ω0(g, ν)((g · ξ, ρ), (g · η, σ)) = 〈σ, ξ〉 − 〈ρ, η〉+ 〈ν, [ξ, η]〉,

see [OR04(b), Example 4.1.20]. (Recall that g∗µ is identified with the annihilator
of q.)

For each tangent space Tg(gGµ) to a coset ofGµ, the space (Tg(gGµ)×g∗µ, ω0)
is symplectic. Clearly, ω0 vanishes on the subspace (g ·q)×{0} ∈ T(g,0)(G×g∗µ).

Moreover, for points p = (g, 0) ∈ G × g∗µ of the zero section, the space
q · p ⊂ Tp(G × g∗µ) corresponds to the space T1 = q · p ⊂ T(g,ν)(G × g∗µ) of
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the Artin-Witt decomposition, which is symplectic with the Kostant-Kirillov-
Souriau symplectic form ω1(ξ · p, η · p) = µ([ξ, η]). If we define the extension ω1
to G× g∗µ via

ω1(g, ν)((g · ξ, ρ), (g · η, σ)) = µ([ξ, η]),

the subspace g · q× {0} ∈ T(0,ν)(G× g∗µ) together with ω1 is symplectic. Since
ω1 vanishes on Tg(gGµ) × g∗µ, the form Ω = ω0 + ω1 is non-degenerate on the
zero section of the vector bundle G × g∗µ → G. Therefore this holds as well on
a neighbourhood of the zero section. Ω is closed, since ω0 and ω1 are closed.
Thus, Ω is symplectic. Since for h ∈ G, the derivative of the right multiplication

Rh : G→ G

g 7→ gh−1

is given by dRh(g · ξ) = gh−1 · Adh ξ and Gp ⊂ Gµ, the 2-form Ω is invariant
with respect to the Gp-action R with

R(h)(g, ν) = (gh−1, coadh ν) for h ∈ Gp, g ∈ g, ν ∈ g∗µ.

A corresponding momentum map JR : G× g∗µ → g∗p is given by

JR(g, ν) = −Pg∗p
ν,

where Pg∗p
denotes the projection to g∗p: The form ω1 vanishes on the tangent

spaces to the Gp-orbits. Hence for ξ ∈ gp,

〈dJR(g, ν)(g · η, σ), ξ〉 = ω0(g, ν)((g · (−ξ), coadξ ν), (g · η, σ))
= 〈σ,−ξ〉 − 〈coadξ ν, η〉+ 〈ν, [−ξ, η]〉 = 〈−σ, ξ〉.

Thus, dJR(g, ν)(g · η, σ) = −Pg∗p
σ. Hence JR is also given by −Pg∗p

.
Next, we consider the product action of Gp on G × g∗µ × N and add the

Gp-invariant symplectic form ωN defined on N to Ω to obtain an invariant
symplectic form on G× g∗µ ×N . The momentum map for the product action is
given by K := JR+ JN , where JN : N → gp denotes the momentum map of N .
The space G×m∗ ×N may be identified with K−1(0) via the diffeomorphism

l : G×m∗ ×N → K−1(0) ⊂ G×m∗ × g∗p ×N
(g, ρ, v) 7→ (g, ρ,JN (v), v).

Thus, the space Y := G ×Gp (m∗ × N) is diffeomorphic to the reduced space
K−1(0)

/
Gp . Since the Gp-action on G×m∗× g∗p×N is free, the reduced space

is a symplectic manifold. Hence Y is a symplectic manifold with the induced
symplectic form

ωY ([g, ρ, v])(dπ(g · ξ1, ρ̇1, v̇1), (dπ(g · ξ2, ρ̇2, v̇2))
= 〈ρ̇2 + dJN (v)v̇2, ξ1〉 − 〈ρ̇1 + dJN (v)v̇1, ξ2〉

+ 〈µ+ ρ+ JN (v), [ξ1, ξ2]〉+ ωN (v̇1, v̇2),
(2.2)

where π : G× m∗ ×N → Y denotes the projection. (Note that in fact dJN (v)
is constant in v, since N is a representation).
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Since ωY is G-invariant and coincides at any point of the orbit G[e, 0, 0] with
the symplectic form computed in the Artin-Witt decomposition theorem, the
equivariant Darboux theorem yields that there is a G-equivariant symplecto-
morphism defined on a tubular neighbourhood of G[e, 0, 0] that maps [e, 0, 0] to
p and whose image is a tubular neighbourhood of Gp. Hence we have obtained
a symplectic version of the Slice Theorem: a local description of the symplectic
G-manifold about some G-orbit.

A real benefit of the Marle-Guillemin-Sternberg normal form is the existence
of a quite simple momentum map:

Lemma 2.7.

JY : Y = G×Gp (m∗ ×N)→ g∗

[g, ρ, v] 7→ Coadg(µ+ ρ+ JN (v))

is a momentum map for the G-action on (Y, ωY ).

Proof. Clearly, JY is well-defined.
For η ∈ g and y = [g, ρ, v] ∈ Y ,

η ·y = d
dt [exp(tη)g, ρ, v]

∣∣∣∣
t=0

= d
dt [gg

−1 exp(tη)g, ρ, v]
∣∣∣∣
t=0

= dπ(g ·Adg−1 η, 0, 0).

Thus,

ωY (y)(η · y,dπ(g · ξ, ρ̇, v̇)) = ωY ([g, ρ, v])(dπ(g ·Adg−1 η, 0, 0),dπ(g · ξ, ρ̇, v̇))
= 〈ρ̇+ dJN (v)v̇,Adg−1 η〉+ 〈µ+ ρ+ JN (v), [Adg−1 η, ξ]〉.

Since

dJηY (y)dπ(g · ξ, ρ̇, v̇) = d
dt 〈JY ([g exp(tξ), ρ+ tρ̇, v + tv̇]), η〉

∣∣∣∣
t=0

= d
dt 〈Coadg exp(tξ)(µ+ ρ+ tρ̇+ JN (v + tv̇)), η〉

∣∣∣∣
t=0

= d
dt 〈Coadexp(tξ)(µ+ ρ+ tρ̇+ JN (v + tv̇)),Adg−1 η〉

∣∣∣∣
t=0

= 〈µ+ ρ+ JN (v), [Adg−1 η, ξ]〉+ 〈ρ̇+ dJN (v)v̇,Adg−1 η〉,

JY is a momentum map for the G-action on Y .

2.3 Bundle equations
The bundle equations or reconstruction equations give a normal form of Xh with
respect to coordinates of the Marle-Guillemin-Sternberg normal form. Thus
they characterize the dynamics locally near a G-orbit, in particular near an orbit
of relative equilibria. For a (local) lift of Xh to G×m∗×N , the bundle equations
describe the components Xg, Xm∗ and XN . In [RdSD97], they are computed
for the case of a compact group action. A comprehensive generalization may be
found in [RWL02].

As in the last section, we will only discuss the case that a Gµ-invariant
splitting g = gµ ⊕ q exists. Recall that m denotes a Gp-invariant complement
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of gp within gµ. Let Xg = Xgp + Xm + Xq be the sum of the corresponding
components. Since h is G-invariant,

dh([g, ρ, v])dπ(g · ξ, ρ̇, v̇) = dm∗(h ◦ π)(g, ρ, v)ρ̇+ dN (h ◦ π)(g, ρ, v)v̇.

For ξ = ξgp + ξm + ξq,

dh([g, ρ, v])dπ(g · ξ, ρ̇, v̇)
= ωY ([g, ρ, v])(dπ((g ·Xg, Xm∗ , XN ),dπ(g · ξ, ρ̇, v̇))
= 〈ρ̇, Xm〉+ 〈dJN (v)v̇, Xgp〉 − 〈Xm∗ , ξm〉 − 〈dJN (v)XN , ξgp〉

+ 〈µ+ ρ+ JN (v), [Xgp +Xm +Xq, ξgp + ξm + ξq]〉+ ωN (XN , v̇).

Since
〈dJN (v)v̇, Xgp〉 = ωN (Xgp · v, v̇)

and µ([η, ξ]) vanishes for η ∈ gµ or ξ ∈ gµ, this is equivalent to the following
five equations:

Xm = dm∗(h ◦ π), (2.3)
ωN (XN +Xgp · v, ·) = dN (h ◦ π), (2.4)

Pq∗(− coadXgp+Xm+Xq
(µ+ ρ+ JN (v))) = 0, (2.5)

Pm∗(− coadXgp+Xm+Xq
(ρ+ JN (v))) = Xm∗ , (2.6)

Pg∗p
(− coadXgp+Xm+Xq

(ρ+ JN (v))) = dJN (v)(XN ). (2.7)

Lemma 2.8. Equation (2.5) is equivalent to Xg ∈ gµ.

Proof. IfXq = 0, equation (2.5) is obviously satisfied. For the converse, consider
the linear map

L([e, ρ, v]) : q→ q∗

ζ 7→ Pq∗(coadζ(µ+ ρ+ JN (v))

parameterized by m∗ ×N . Since coadζ(µ) is contained in the annihilator of gµ,
which we identify with q∗, L([e, 0, 0])ζ = 0 implies ζ ∈ q ∩ gµ = {0}. Therefore
L([e, ρ, v]) is an isomorphism for small ρ and v. Equation (2.5) yields that near
[e, 0, 0] the value of Xq must be equal to 0.

Now, we search for solutions of equations (2.3) to (2.7): The Xm-component
is determined by equation (2.3). Since the vector field Xh is defined on the
quotient by Gp, we may choose the gp-component and set Xgp = 0. Then
equation (2.4) yields

XN = (ω#
N )(dN (h ◦ π)),

where ω#
N : N∗ → N denotes the isomorphism given by ωN . By Lemma 2.8,

equation (2.5) is equivalent to Xq = 0. At last, the component Xm∗ is given
by equation (2.6). Hence, the components of the preimage of Xh under the
projection π : G× (m∗ ×N)→ Y are given by

Xg(g, ρ, v) = dm∗ h̄(ρ, v) (2.8)
Xm∗(g, ρ, v) = −Pm∗(coaddm∗ h̄(ρ,v)(ρ+ JN (v))) (2.9)

XN (g, ρ, v) = (ω#
N )(dN h̄)(ρ, v), (2.10)
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where h̄ = h ◦ π
∣∣
m×N is locally defined on the quotient P

/
G .

We only have to verify that equation (2.7) is automatically satisfied for
this choice of components. To do this, we consider both sides evaluated at an
arbitrary element ξ ∈ gp. We start with the right-hand side:

〈dJN (v)(XN ), ξ〉 = ωN (v)(ξ · v,XN )
= −dN h̄(ρ, v)ξ · v

= − d
dt h̄(ρ, exp(tξ) · v)

∣∣∣∣
t=0

= − d
dt h̄(exp(−tξ)ρ, v)

∣∣∣∣
t=0

= dm∗ h̄(ρ, v) coadξ ρ = 〈coadξ ρ,Xm〉.

For the left-hand side, we obtain

〈(− coaddm∗ h̄(ρ,v)(ρ+ JN (v))), ξ〉 = 〈ρ+ JN (v), addm∗ h̄(ρ,v) ξ〉

= 〈ρ+ JN (v)),− adξ dm∗ h̄(ρ, v)〉
= 〈coadξ ρ,Xm〉,

where the last equation holds, since − adξ dm∗ h̄(ρ, v) ∈ m and JN (v) is contained
in g∗p, the annihilator of m.

Thus the equations (2.8) to (2.10) describe a vector field on G × m∗ × N
that projects to the Hamiltonian vector field Xh on Y = G ×Gp m∗ × N . As
Montaldi and Rodríguez-Olmos suggest in [MR-O13] and [MR-O15], it can be
helpful to omit the condition Xgp = 0 and consider all possible preimages of
Xh(0) in G × m∗ × N instead. To do this, one has to add all lifts of the zero
vector field. These are of the form

X(g, ρ, v) = (g · η, coadη ρ,−η · v).

Gp-invariance of the splitting g∗µ = g∗p ⊕m∗ yields

coadη ρ ∈ m∗ and coadη JN (v) ∈ g∗p.

Thus adding coadη ρ to (2.9) is the same as adding coadη(ρ+JN (v)) to the term
inside the parentheses. Moreover, −η · v is equal to (ω#

N )(dNJηN (ρ, v)v). This
yields the bundle equations with isotropy as given in [MR-O13] and [MR-O15]:

Xg(g, ρ, v) = dm∗ h̄(ρ, v) + η (2.11)
Xm∗(g, ρ, v) = −Pm∗(coaddm∗ h̄(ρ,v)+η(ρ+ JN (v))) (2.12)

XN (g, ρ, v) = (ω#
N )−1(dN (h̄− JηN )(ρ, v)) (2.13)

An advantage of this approach is that relative equilibria can be characterized
easily: [g, ρ, v] is a relative equilibrium iff there is an η ∈ gp such that

Pm∗(coaddm∗ h̄(ρ,v)+η(ρ+ JN (v))) = 0

dN (h̄− JηN )(ρ, v) = 0.
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In this case, dm∗+ηh̄(ρ, v) + η is a generator of [g, ρ, v]. Inserting XN = 0 into
equation (2.7) yields that these two equations are equivalent to

coaddm∗ h̄(ρ,v)+η(ρ+ JN (v)) = 0 (2.14)

dN (h̄− JηN )(ρ, v) = 0. (2.15)

Let (ρ, v) correspond to a relative equilibrium with generator ξ′ = dm∗+ηh̄(ρ, v)+
η and momentum

µ′ = JY (e, ρ, v) = µ+ ρ+ JN (v).

Since ξ ∈ gµ, equation (2.14) is equivalent to coadξ′ µ′ = 0. Thus we will call
equation (2.14) the commutation equation in the following. Equation (2.15) will
be called the symplectic slice equation. For ρ ∈ (m∗)Gp , solutions correspond
to relative equilibria of the Hamiltonian systems with Gp-symmetry on the
symplectic slice N with Hamiltonian functions h(·, ρ) parameterized by ρ.

Thus, we are in particular interested in the structure of relative equilibria
near the origin in Hamiltonian systems on symplectic representations of compact
groups. A method to investigate this situation is illustrated in the next section.

2.4 Splitting Lemma reduction
Given a symplectic representation V of a compact Lie group G and a G-invariant
Hamiltonian function h : V → R with dh(0) = 0, all relative equilibria near 0
with a generator near some element ξ ∈ g can be characterized by an equation
on ker d2(h−Jξ)(0). This reduced equation may be obtained from the Splitting
Lemma or Lyapunov-Schmidt reduction. Both methods yield the same equation,
which will be shown in Remark 2.12.

In the following, we will denote a locally defined function f between topo-
logical spaces V and W by f : (V, v) → W . This means that f is defined in a
neighbourhood of v ∈ V . If we write (V, v) → (W,w), we require in addition
that f(v) = w. We are often mainly interested in the germ of f , that is the
equivalence class of functions defined in a neighbourhood of v that coincide with
f on a possibly smaller neighbourhood. Correspondingly, we are often interested
in germs of sets near v ∈ V , also called local sets, that is an equivalence class
of sets with respect to the equivalence relation that two sets coincide in some
neighbourhood of v.

We start with a proof of the Splitting Lemma. The proof is in principle
the proof in [PS78] combined with an argument of the proof of the equivariant
Morse lemma given in [Arn76].

Lemma 2.9 (Equivariant Splitting Lemma). Let G be compact, W , Λ be G-rep-
resentations, and f : W × Λ → R be a smooth G-invariant function with crit-
ical point (0, λ0). If for λ0 ∈ ΛG the Hessian d2

W f(0, λ0) is non-degenerate,
then there is a G-equivariant local diffeomorphism ϕ : (W × Λ, (0, λ0)) →
(W × Λ, (0, λ0)) of the form ϕ(w, λ) = (ϕ1(w, λ), λ), such that

f ◦ ϕ(w, λ) = g(λ) +Q(w),

where g is a smooth G-invariant function and Q is the non-degenerate quadratic
form Q(w) = d2

W f(0, λ0)(w,w).
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If Λ coincides with the kernel of d2f(0, λ0) (i.e. d2f(0, λ0)(·, λ) = 0 for
every λ ∈ Λ), then dΛϕ1(0, λ0) = 0 and the functions g and f(0, ·) have the
same Taylor polynomial of third order at λ0.

Proof. Since dW f(0, λ0) = 0 and d2
W f(0, λ0) is non-degenerate, there is a local

implicit function w of λ with

dW f(w(λ), λ) = 0.

By uniqueness of the implicit function, the function w is equivariant. Hence
ψ : W×Λ, (0, λ0)→W×Λ, (0, λ0) with ψ(x, λ) := (x+w(λ), λ) is an equivariant
diffeomorphism such that dW (f ◦ ψ)(0, λ) = 0. Thus we can assume without
loss of generality that dW f(0, λ) = 0 for every λ. Then

f(w, λ) = Q(w) + F (w, λ)

for some smooth function F such that 0 is a critical point of F (·, λ) for every
λ, and the Hessian of F (·, λ0) vanishes at 0. In order to construct a diffeo-
morphism with the desired properties, we search for a family ϕ(·, λ, t) of local
diffeomorphisms of W , defined for t ∈ [0, 1] and λ in some neighbourhood of λ0,
such that ϕ(0, λ, t) = 0 for every λ and t and

Q(ϕ(w, t, λ)) + tF (ϕ(w, t, λ), λ) = Q(w) + tF (0, λ). (2.16)

Denote Fλ := F (·, λ) and ϕλt := ϕ(·, λ, t). For fixed λ near λ0, we show the
existence of a family of time-dependent vector fields ξλt that generates the family
ϕλt . Differentiating equation (2.16) with respect to t yields a linear equation for
ξλt :

d(Q+ tFλ)ξλt = Fλ(0)− Fλ (2.17)

in some neighbourhood of 0. A solution ξλt of equation (2.17) that satisfies
ξλt (0) = 0 generates a solution to (2.16) with ϕλt (0) = 0 for t ∈ [0, 1]. Now
we construct such a vector field ξλt , that is defined in some neighbourhood of
0: Since Q is non-degenerate, there is a linear change of coordinates such that
Q(x) = ±x2

1 ± · · · ± x2
k, k = dimW . If ξλt =

∑
i η
λ
i (x, t)∂xi , equation (2.17) is

equivalent to

Fλ(0)− Fλ(x) =
∑
i

ηλi (x, t)yλi (x, t), yλi (x, t) := ±2xi + t∂xiF
λ(x).

dFλ(0) = 0 yields yλ(0, t) = 0. For λ = λ0 and t ∈ [0, 1], d2Fλ0(0) = 0 implies
det(dxyλ0(0, t)) = ±2k. Hence (x, t, λ) 7→ (yλ(x, t), t, λ) is a diffeomorphism in
some neighbourhood of (0, λ0) × [0, 1]. Since the left-hand side vanishes at 0
and for fixed λ and t the functions yλ,ti := yλi (·, t) are local coordinates on V ,
the Hadamard lemma yields functions ηλi with

Fλ(0)− Fλ(yλ,t) =
∑
i

ηλi (yλ,t)yλ,ti .

Therefore there is a (possibly non-equivariant) vector field solving equation
(2.17).

Next, we construct an equivariant solution of (2.17), i.e. a family of time-
dependent vector fields ξ̄λt , such that (ξ̄gλt )(gv) = g(ξλt )(v) for every g ∈ G:
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Since λ0 ∈ WG, f(·, λ0) is G-invariant. Therefore the quadratic form
Q(w) = d2

V f(0, λ0)(w,w) is G-invariant, and hence F and Q + tF are G-in-
variant functions. Assume that the family ξλt solves equation (2.17) and is
defined on some G-invariant neighbourhood of (0, λ0)× [0, 1]. For g ∈ G, define

((gξ)gλt )(gw) := g(ξλt )(w).

Then (gξ) solves (2.17) as well:

d(Q+ tF gλ)(gw)((gξ)gλt )(gw) = d(Q+ tFλ)(w)g−1g(ξλt )(w)
= Fλ(0)− Fλ(w) = F gλ(0)− F gλ(gw).

Therefore, averaging over G yields an equivariant solution ξ̄ :=
∫
g∈G(gξ)dg of

(2.17). The family ξ̄λt generates a family of equivariant local diffeomorphisms
ϕλt . The local diffeomorphism ϕ1(x, λ) = ϕλ1 (x) solves

f(ϕ1(x, λ), λ) = Q(v) + F (0, λ).

For the last part, notice that under the assumption w(λ) = 0, we have
ϕ1(0, λ) = 0. In general, we have to consider this change of coordinates, then
ϕ1(0, λ) = w(λ). Hence,

dW f(ϕ1(0, λ), λ) = 0

for every λ and therefore

0 = dΛ(dW f(ϕ1(0, λ), λ))
∣∣
λ=λ0

= d2f(0, λ0)(·
∣∣
Λ, ·
∣∣
W

)︸ ︷︷ ︸
=0

+d2
W f(0, λ0)(dΛϕ1(0, λ0)·, ·).

Since d2
W f(0, λ0) is non-degenerate, dΛϕ1(0, λ0) = 0. For the Taylor polynomi-

als, we calculate:

g(λ) = f ◦ ϕ(0, λ) = f(w(λ), λ)
⇒ dg(λ) = dW f(w(λ), λ)︸ ︷︷ ︸

=0

dΛw(λ) + dΛf(w(λ), λ)

⇒ d2g(λ) = dWdΛf(w(λ), λ)dΛw(λ) + d2
Λf(w(λ), λ)

= dΛ(dW f(w(λ), λ)︸ ︷︷ ︸
=0

dΛw(λ))− d2
W f(w(λ), λ)(dΛw(λ)·,dΛw(λ)·)

+ d2
Λf(w(λ), λ)

Since dΛw(λ0) = dΛϕ1(0, λ0) = 0, all terms that contain a first derivative of
w vanish in λ0. Hence the derivatives up to second order coincide in λ0 (all
vanish) and in addition

d3g(λ0) = d3
Λf(0, λ0).

By applying the Splitting Lemma to the augmented Hamiltonian, we may
reduce the search for critical points near 0 to some gradient equation on the
kernel of the Hessian at 0:
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Let V be a symplectic G-representation and h : V → R be a smooth G-in-
variant Hamiltonian function. Suppose that for some ξ0 ∈ g

ker d2(h− Jξ0)(0) =: V0 6= {0}.

Let K ⊂ G be a subgroup such that ξ0 ∈ gK . Then V0 is K-invariant. Let V1
be a K-invariant complement to V0. Define H : V1 × V0 × g→ R by

H(v1, v0, ξ) = (h− Jξ)(v1 + v0).

(0, 0, ξ0) is a critical point of H, because dV (h − Jξ)(0) = 0 and dξJξ(0) = 0.
Since d2

V1
H(0, 0, ξ) is non-degenerate, the Splitting Lemma yields a K-equivari-

ant local diffeomorphism

ϕ : V1 × V0 × g, (0, 0, ξ0)→ V1 × V0 × g, (0, 0, ξ0)

of the form
ϕ(v1, v0, ξ) = (ϕ1(v1, v0, ξ), v0, ξ)

with
H ◦ ϕ(v1, v0, ξ) = Q(v1) + g(v0, ξ)

for some K-invariant quadratic form Q and some K-invariant function g. Since
ϕ(·, ·, ξ) is a diffeomorphism, (ϕ1(v1, v0, ξ), v0) is a critical point of H(·, ·, ξ) iff
(v1, v0) is a critical point of H ◦ ϕ(·, ·, ξ). The latter is equivalent to v1 = 0
and dV0g(v0, ξ) = 0. Hence the solutions (v0, ξ) of dV0g(v0, ξ) = 0 near (0, ξ0)
are in one-to-one correspondence to the pairs (v, ξ) of relative equilibria v near
0 with generators ξ near ξ0. Moreover, since ϕ is a diffeomorphism, the local
sets of such pairs can be mapped diffeomorphically into each other (if both are
considered as subsets of V × g).

Furthermore, the kernel of d2H(0, 0, ξ0) coincides with V0 × g: We have
d2
VH(0, 0, ξ0)

∣∣
V0

= 0 by assumption. The second derivatives that involve at
least one derivative in the direction of g coincide with those of the function
(v, ξ) 7→ Jξ(v). Since this function is linear in ξ and quadratic in v, these
derivatives vanish at (0, ξ) for any ξ, in particular at (0, ξ0). Therefore the
second part of the Splitting Lemma applies and

dV0ϕ1(0, 0, ξ0) = dgϕ1(0, 0, ξ0) = 0.

Hence the relative equilibria near 0 with generators near ξ0 are in some sense
tangent to V0 at 0. (We will see later that they generically form a manifold
tangent to V0 if G is a torus.) Moreover, the Taylor polynomial of third order
of g at (0, ξ0) coincides with that of the restriction of H to V0 × g (both are
homogeneous of degree 3).

Remark 2.10. If in the above setting V0 ⊂ V L for some subgroup L ⊂ K,
Jξ(v0) is constant in the direction of the Lie algebra l of L for every v0 ∈
V0. Hence for every η ∈ g with η − ξ0 ∈ l, we have the same kernel, i.e.
ker d2(h−Jη)(0) = V0. This leads to the question how the local diffeomorphisms
ϕ and local functions g at (0, ξ0) and (0, η) are related to each other. Let
v1 : V0 × g→ V1 be the local K-equivariant function ϕ1(0, ·, ·) at (0, ξ0), hence
v1 solves

dV1H(v1(v0, ξ), v0, ξ) = 0
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uniquely. Assume that for some x ∈ V0, v1(x, η) and v1(x, ξ0) are defined. Since
H
∣∣
V L

is invariant in the direction of l and v1(x, ξ0) ∈ V L,

dV1H(v1(x, ξ0), x, η) = 0

and by uniqueness
v1(x, η) = v1(x, ξ0).

Thus v1 is also locally constant in the direction of l and hence can be extended
to a function defined on a neighbourhood of (0, ξ0) + l such that the function
is constant on l. Then v1 is equivalent to a local function defined on a neigh-
bourhood of (0, [x0]) ∈ V0 × g/l . Thus ϕ and g can also be considered as maps
on a neighbourhood of (0, [x0]) ∈ V0 × g/l . We obtain the same ϕ and g, when
we consider h as a function defined on V L × g/l and perform the reduction at
(0, [x0]).
Remark 2.11. More generally, if we are interested in the solutions near (0, ξ0)
that are fixed by L for some subgroup L ⊂ K, we can restrict the system to the
fixed point space V L. Then ker(h− Jη)(0) ∩ V L = V L0 for every η ∈ (0, ξ0) + l.
As in Remark 2.10, v1 and g can be extended constantly in l to a neighbourhood
(0, ξ0) + l. By uniqueness of v1, the germs of v1 and g at (0, ξ0) are equivalent
to those of the restrictions to V L0 of the corresponding functions defined on V0.
Remark 2.12. Alternatively, we may apply a Lyapunov-Schmidt reduction to
obtain an equation on the kernel of d2(h− Jξ)(0):

Let f , W and Λ be as in the Splitting Lemma. To find the critical points of
f , we have to find the zeros of

df : W × Λ→ (W × Λ)∗.

As in the proof of the Splitting Lemma, the implicit function theorem yields the
local function v with

dW f(w(λ), λ) = 0.
If PW∗ : W ∗ × Λ∗ →W ∗ is the projection, the critical points are then given by
the solutions of

PW∗ ◦ df(w(λ), λ) = 0.
For f = H as above, W = V1, and Λ = V0 × g, we obtain the equation

PV ∗0 ◦ d(h− Jξ)(v1(v0, ξ) + v0) = 0.

The application of Splitting Lemma yields that the relative equilibria correspond
to the critical points of the function

(h− Jξ)(v1(v0, ξ) + v0).

As argued in [CLOR03], both formulations are equivalent: Choose an invariant
inner product 〈·, ·〉 on V = V0 + V1. Then for any w0 ∈ V0:

〈∇V0g(v0, ξ), w0〉
= d(h− Jξ)(v1(v0, ξ) + v0)(w0 + dV0v1(v0, ξ)w0)
= 〈∇V (h− Jξ)(v1(v0, ξ) + v0),PV0w0 + (1− PV0)dV0v1(v0, ξ)w0〉
= 〈PV0∇V (h− Jξ)(v1(v0, ξ) + v0), w0〉,

since PV0 is self-adjoint and

〈(1− P)∇V (h− Jξ)(v1(v0, ξ) + v0), ·〉 = dV1(h− Jξ)(v1(v0, ξ) + v0) = 0.



Chapter 3

Linear theory

In this section, we study the derivative of the Hamiltonian vector field near some
equilibrium. Suppose that the Hamiltonian system has a symmetry given by a
proper Lie group action. By the equivariant Darboux theorem and Bochner’s
linearization theorem, we can assume w.l.o.g. that the symplectic manifold is a
symplectic representation V of a compact group G and the equilibrium point is
0.

Since

ω(dXh(0)v, w) = d2h(0)(v, w) = d2h(0)(w, v) = ω(dXh(0)w, v)
= −ω(v,dXh(0)w),

dXh(0) is contained in

sp(V ) = {A ∈ EndR(V ) | ω(A·, ·) + ω(·, A·) = 0} ,

which is the Lie algebra of the group SP(V ) of linear symplectomorphisms V →
V .

Since V is G-symplectic and h is G-invariant, dXh(0) is contained in

spG(V ) := sp(V ) ∩ EndG(V ),

the Lie algebra of the subgroup SPG(V ) ⊂ SP(V ) of G-equivariant elements.
The elements of sp(V ) are investigated in [Wil36], where Williamson studies

the eigenvalue structure, the Jordan normal form, and the corresponding nor-
mal form of the matrix representing ω and gives normal forms for symplectic
linear coordinate changes. The theory is transferred to the equivariant case in
[DM93a]. To do this, Dellnitz and Melbourne use the fact that the equivariant
homomorphisms preserve the isotypic components and the restrictions to the
isotypic components can be identified with K-linear endomorphisms of finite
dimensional K-vector spaces for K ∈ {R,C,H}. Hence they have to extend the
results for K = R to include the cases K = C and K = H.

The eigenvalue structure of elements of spG(V ) and 1-parameter families in
spG(V ) had already studied in [GS87] and [DMM92] before, where the emphasis
is placed on the generic case.

See also [MRS88] for the classification of G-symplectic irreducible represen-
tations and implications of the components of V on the eigenvalues of elements

41
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of SPG(V ) (and hence spG(V )). In particular, the authors classify cyclospectral
representations V , for which eigenvalues of any linear map of SPG(V ) are all
contained in the unit circle, and therefore elements of spG(V ) admit only purely
imaginary eigenvalues.

Below, these results are presented as far as needed for the theory developed
later on.

Let V be a symplectic vector space.

Proposition 3.1. If λ is an eigenvalue of A ∈ sp(V ), λ̄, −λ, and −λ̄ are also
eigenvalues of A with the same geometric and algebraic multiplicities and the
same sizes of Jordan blocks.

Proof. Since A is a real matrix, we only have to show the claim for −λ. Choose
an inner product 〈·, ·〉 and suppose ω = 〈·, J ·〉. Then A ∈ sp(V ) implies ATJ =
−JA. Thus, AT and −A are similar matrices and the same is true for A and
−A.

The proposition yields a fundamental difference between the generic dy-
namic behaviour near equilibria in Hamiltonian systems and general dynamical
systems:

Corollary 3.2. If dXh(0) has a pair of algebraically simple purely imaginary
eigenvalues, there is some neighbourhood N ⊂ C∞(V ) of h (C∞-topology or
Whitney C∞-topology) such that dXh̃(0) has the same property for any h̃ in N .

Proof. If h̃ is close to h, the map dXh̃(0) is close to dXh(0) within the space
of linear maps. If αi is an algebraically simple eigenvalue of dXh(0) with α ∈
R \ {0}, the implicit function theorem yields a single solution c = c(A) ∈ C to
the equation

det(A− c1) = 0

for any complex linear endomorphism A in some neighbourhood of dXh(0) such
that c(dXh(0)) = αi. Since −c(dXh̃(0)) is also an eigenvalue of dXh̃(0), by
uniqueness,

−c(dXh̃(0)) = c(dXh̃(0)),

and thus, c(dXh̃(0)) is purely imaginary.

Hence, in contrast to general dynamical systems, equilibrium points in Hamil-
tonian systems are not generically hyperbolic.

Moreover, the quadruplets of eigenvalues give rise to a symplectic splitting
of V :

Definition 3.3. For A ∈ sp(V ) and any λ ∈ C, let Eλ denote the real part of
the sum of the generalized eigenspaces of λ and λ̄ and set E±λ := Eλ + E−λ.

Proposition 3.4. For any A ∈ sp(V ) and λ ∈ C, the space E±λ is symplectic.
If µ /∈ {λ, λ̄,−λ,−λ̄}, E±λ and E±µ are ω-orthogonal.

Proof. See [GS87, Proposition 3.1] for a direct proof. Alternatively, this follows
from the normal form theory in [Wil36].

The following result can be shown in a similar way:
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Proposition 3.5. For A ∈ spG(V ) and any λ ∈ C with Reλ 6= 0, the space Eλ
is a Lagrangian subspace of E±λ.

Proof. Set
B := (A− λ1)(A− λ̄1) = A2 − 2ReλA+ |λ|21.

Then there is some n ∈ N such that Bn
∣∣
Eλ

= 0. Consider Bn as a polynomial
in A and let (Bn)o be the sum of the odd terms in A and (Bn)e the sum of the
even ones. Then Bn = (Bn)o + (Bn)e. We claim that the restrictions of (Bn)o
and (Bn)e to the space Eλ are both invertible: It is

Bn =
n∑
k=0

(−1)k
(
n
k

)
2k(Reλ)kAk(A2 + |λ|21)n−k

=
n∑
k=0

(−1)k
(
n
k

)
2k(Reλ)kAk((A− λ1)(A− λ̄1) + 2ReλA)n−k,

and (Bn)o is given by the sum over the odd numbers k, while (Bn)e is given
by the sum over the even ones. Now, (Bn)o and (Bn)e have a factorization
in the polynomial ring with variable A into linear factors of the form A − c1,
c ∈ C. For every c 6= λ, λ̄, these factors are invertible on the space Eλ. Thus,
we only have to show that A − λ1 and A − λ̄1 do not occur as factors of
(Bn)o and (Bn)e. To show this, we insert λ1 and λ̄1 in the place of A in the
polynomial representations of (Bn)o and (Bn)e. We obtain a product of the
term 2n(Reλ)nλn1 and 2n(Reλ)nλ̄n1 respectively and a negative real number
in the case (Bn)o and a positive one in the case (Bn)e. Thus, in all cases, the
result does not vanish and hence no factor λ1 or −λ1 occurs. This proves the
claim.

Now, the bilinear form ω(·, Bn·) vanishes on Eλ. Thus on Eλ,

ω(·, (Bn)o·) = −ω(·, (Bn)e·).

Since the form on the left hand side is symmetric while the on the right hand
side is skew-symmetric, both forms vanish. This yields that ω vanishes on Eλ,
since (Bn)o and (Bn)e are automorphisms of Eλ.

Next, we consider the symmetry given by the action of the compact group
G.

Lemma 3.6. V admits a G-invariant inner product such that the endomor-
phism J that represents ω commutes with the group action and defines a complex
structure, i.e. J2 = −1.

Proof. Let J̃ denote the endomorphism which represents the symplectic form ω
with respect to some G-invariant inner product 〈·, ·〉. Then J̃ commutes with
the G-action: ∀g ∈ G

〈g·, gJ̃ ·〉 = 〈·, J̃ ·〉 = 〈g·, J̃g·〉.

Since J̃ is skew-symmetric, J̃ is normal and has only purely imaginary eigen-
values. Thus there is an orthogonal splitting W = ⊕E±βi into the sums of
the eigenspaces for pairs ±βi. By the equivariance of J̃ , the spaces E±βi are
G-invariant. Hence rescaling 〈·, ·〉 on each of the E±βi components yields a G-in-
variant inner product such that the representing endomorphism J with respect
to this inner product has the eigenvalues ±i and J2 = −1.
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Theorem 3.7 ([GS87, Theorem 2.1]). Any G-symplectic representation splits
into a direct sum of pairwise ω-orthogonal irreducible G-symplectic subrepresen-
tations.

Theorem 3.8. An irreducible G-symplectic representation V is of one of the
three following types:

1. a sum of the form W ⊕W , where W is an absolutely irreducible G-rep-
resentation such that each of the two summands is a Lagrangian subspace
of W ⊕W ,

2. an irreducible representation of complex type, or

3. an irreducible representation of quaternionic type.

In the cases 1 and 3 two such symplectic representations are isomorphic iff the
underlying G-representations are isomorphic. In the complex case 2, each rep-
resentation admits exactly two isomorphism classes of G-symplectic structures.
Each pair ω and −ω of G-invariant symplectic forms represents both isomor-
phism classes.

Proof. By Lemma 3.6, ω can be represented by a G-equivariant complex struc-
ture. In this way, V can be considered as an irreducible complex G-representa-
tion. The underlying real representation of a complex irreducible one is of one of
the forms 1, 2, or 3. Furthermore, two complex irreducible representation of the
form 1 or 3 are isomorphic iff they are isomorphic as real representations, while
in case 2, there are the two isomorphism classes of V and V . (See for example
[BtD85, chapter II, Theorem 6.7, Table 6.2, and Proposition 6.1] and use the
uniqueness of the isotypic decomposition of eCRrCRV1 ' eCRr

C
RV2 if rCRV1 ' rCRV2

for complex representations V1 and V2).

Definition 3.9. Two irreducible G-symplectic representations of complex type
are dual to each other iff they are isomorphic as (real) G-representations, but
non-isomorphic as G-symplectic representations.

Again, we are interested in the stable occurrence of non-hyperbolic equilib-
ria. Non-hyperbolicity is necessary for interesting dynamic behaviour like the
existence of nearby relative equilibria.

In contrast to general dynamical systems, in Hamiltonian systems an equi-
librium needs to be non-hyperbolic to be stable: If the equilibrium is stable,
even all eigenvalues have to lie on the imaginary axis, since every eigenvalue
with non-vanishing real part implies the existence of one with positive real part.

Definition 3.10. The real part of the sum of the eigenspaces corresponding to
purely imaginary eigenvalues of dXh(0) is called the centre space Ec of dXh(0).

In the following, we investigate the centre space Ec of dXh. In particular, we
are interested in isomorphism classes of Ec that are stable under perturbation
of h.

We start with the following well-known observation on continuity of eigen-
values:
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Lemma 3.11. Consider the action of the symmetric group Sn on Cn by per-
mutation of coefficients. Let F : Cn

/
Sn → Cn be the map from the roots to the

coefficients of monic polynomials of degree n (which can be computed explicitly
be factoring out p(x) = (x−xn−1) · · · · · (x−x0)). Then F is a homeomorphism.

Proof. F is continuous and bijective. Moreover, F is proper: We only need an
estimation in the coefficients which yields anM > 0 such that |xn+an−1x

n−1 +
· · ·+ a0| > 0 if |x| > M . For example, we may take

M = nmax(|an−1|,
√
|an−2|, 3

√
|an−3|, . . . , n

√
|a0|)

Thus F is a continuous proper bijection into a compactly generated Hausdorff
space and hence a homeomorphism.

Therefore, the eigenvalues of a matrix depend continuously on its entries,
which determine the characteristic polynomial.

Now, we consider a generalization of Corollary 3.2 to the symmetric case:

Lemma 3.12. Let V be a G-symplectic vector space and h : V → R be a
G-invariant Hamiltonian function. If dXh(0) has a pair of purely imaginary
eigenvalues ±αi, α ∈ R \ {0} such that Eαi is an irreducible G-symplectic sub-
representation, there is a neighbourhood N ⊂ C∞(V )G such that dXh̃(0) has a
pair of purely imaginary eigenvalues ±α̃I, α ∈ R\{0} with Eα̃i ' Eαi for every
h̃ ∈ N .

Proof. By Lemma 3.6, V may be considered as a complex G-representation.
Then Eαi is a complex irreducible subrepresentation. LetW denote the isotypic
component of Eαi. For any invariant Hamiltonian h̃, the space W is dXh̃(0)-in-
variant. If h̃ is close to h, dXh̃(0)

∣∣
W

is close to dXh̃(0)
∣∣
W
. Then dXh̃(0)

∣∣
W

has an eigenvalue λ near αi. Since generalized eigenspaces of G-equivariant
linear maps are G-invariant, all eigenvalues of dXh̃(0)

∣∣
W

and dXh(0)
∣∣
W

occur
with multiplicities that are multiples of dimREαI . (Note that the generalized
eigenspaces of dXh̃(0)

∣∣
W

and dXh̃(0)
∣∣
W

are subspaces of W ⊗R C, where W
is considered as a real vector space.) Thus, for h̃ near h, all eigenvalues of
dXh̃(0)

∣∣
W

in some neighbourhood of αi coincide. This yields −λ̄ = λ.

Corollary 3.13. If all the spaces Eλ contained in Ec are G-symplectic irre-
ducible and dXh(0) is non-degenerate, the centre space of dXh̃(0) is isomorphic
to Ec for every h̃ close enough to h.

Proof. By Lemma 3.12, the centre space of dXh̃(0) contains a space isomorphic
to Ec. Since the other eigenvalues of h̃ are bounded away from the imaginary
axis and the sum of their multiplicities coincides with that of the eigenvalues
with non-vanishing real part of dXh(0), the dimensions of both centre spaces
are the same.

By the following theorem of Dellnitz, Melbourne, and Marsden, the assump-
tion of Corollary 3.13 is generic:

Theorem 3.14. ([DMM92, Theorem 3.1]) Let G be a compact Lie group and
V be a G-symplectic representation. There is a dense open subset O ⊂ spG(V )
such that for every A ∈ O and any β > 0 the space E±βi of A is symplectic
irreducible.



46 CHAPTER 3. LINEAR THEORY

Theorem 3.14 yields the following result about generic normal forms, which
is also a corollary of the normal form theory of [DM93a]:

Theorem 3.15. If A ∈ O (as in Theorem 3.14), then there are G-invariant
inner products on the eigenspaces E±βi of A such that the matrix that represents
A commutes with the matrix J that represents ω and J satisfies J2 = −1.

Proof. The form Q = ω(·, A·) is G-invariant and symmetric. If E±βi is irre-
ducible, the representing endomorphism JA of Q with respect to any G-invari-
ant inner product is a real multiple of the identity (since JA is G-equivariant
and has only real eigenvalues) and hence commutes with J . Then A commutes
with J as well. Thus we may choose any appropriate inner product such that
J2 = −1.

Otherwise E±βi is a sum of two isomorphic absolutely irreducible repre-
sentations by Theorem 3.8. For any choice of an invariant inner product,
the endomorphism representing ω(·, A·) has absolutely irreducible perpendic-
ular eigenspaces W1 ' W2 and V = W1 ⊕W2. By Theorem 3.8, W1 and W2
are isotropic. Hence for any invariant inner product, the representing endo-
morphism of ω maps W1 into W2 and vice versa. Thus for any choice of a
G-invariant inner product, ω is represented by a matrix of the form(

0 a1
−a1 0

)
with a ∈ R. Choosing an appropriate inner product, we may suppose a = 1.

If the eigenvalues of J ◦A are λ1, λ2 ∈ R, A is a multiple of(
0 −1
1 0

)
◦
(
λ1 0
0 λ2

)
=
(

0 −λ2
λ1 0

)
.

Since detA = β2 > 0, λ1λ2 > 0 (hence Q is definite). An appropriate scaling
of the inner products on W1 and W2 yields a new invariant inner product, with
respect to which Q is represented by a multiple of the identity and the matrix
J is preserved.

From Theorem 3.14 and Theorem 3.15 we obtain immediately:

Corollary 3.16. There is an open, dense subset W of C∞(V )G (C∞-topology
or Whitney C∞-topology) such that for h ∈ W, there is an inner product such
that the eigenspaces of the matrix representing d2h(0)

∣∣
Ec

are G-symplectic irre-
ducible subrepresentations and ω is represented by a matrix J with J2 = −1.
Namely, W consists of the functions h ∈ C∞(V )G with dXh(0) ∈ O (as in
Theorem 3.14).

Here, W is the set of Hamiltonian functions h with dXh(0) ∈ O.
As pointed out in [MRS88], in some cases, V and Ec coincide for all Hamilto-

nian functions. Montaldi, Roberts, and Stewart call these symplectic representa-
tions cyclospectral representations and characterize their isotypic compositions:

Theorem 3.17. A G-symplectic representation is cyclospectral iff it contains
no representation of real type and no pair of dual G-symplectic representations
of complex type and each isotypic component of a representation of quaternionic
type is irreducible.
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Proof. Assume that V is a G-symplectic representation of this form. Using
Lemma 3.6, the symplectic form on V can be represented by a complex structure
J . If we split V into G-symplectic irreducible components, each component is
J-invariant. Furthermore, J commutes with any A ∈ spG(V ):

Since A and J are G-equivariant endomorphisms and hence preserve isotypic
components, we only have to show this for the restrictions of A and J to isotypic
components of V .

If W ⊂ V is irreducible of complex type, J
∣∣
W

is a complex structure on W
which commutes with the G-action. Since EndG(W ) ' C, J

∣∣
W

corresponds to
i or −i under this identification. The isotypic component associated to W does
not contain a dual of the G-symplectic irreducible representationW . Therefore,
either J

∣∣
W

acts as multiplication by i or by −i on all G-symplectic subrepre-
sentations of V that are isomorphic to W as (real) G-representations (if the
isomorphism EndG(W ) ' C is fixed). Hence, J is a complex multiple of the
identity on any isotypic component of complex type and commutes with restric-
tion of A.

If W ⊂ V is irreducible of quaternionic type, W coincides with the corre-
sponding isotypic component. Since JA ∈ EndG(W ) ' H is symmetric, JA is
a real multiple of the identity: If 〈·, ·〉 is a G-invariant inner product, this is
also true for 〈h·, h·〉 for any h ∈ AutG(W ). Hence, by averaging over the unit
quaternions, we may assume that the unit quaternions correspond to orthogonal
endomorphisms of EndG(W ). Then, i, j and k correspond to skew-symmetric
matrices and hence the symmetric matrices in EndG(W ) are the real multiplies
of the identity. Therefore, J commutes with JA and hence with A.

Since J and JA commute, the eigenvalues of their product −A are given by
products of eigenvalues of J and JA. Since J has the eigenvalues i and −i and
the symmetric matrix JA has real eigenvalues, the eigenvalues of A are purely
imaginary.

For the contrary, it suffices to give examples of endomorphisms in spG(V )
with eigenvalues with non-vanishing real part in the case that V is a sum of two
absolutely irreducible representations, two irreducible representations of quater-
nionic type, or two dual G-symplectic representations of complex type. These
examples are shown in the following table, where we choose an isomorphism
EndG(W ) ' EndK(K2), K = R,C,H, an inner product, and an orthonormal
base with respect to which J is of this form:

W ⊕W W1 ⊕W2 W ⊕W
W absolutely irreducible W1,W2 complex duals W irreducible of type H

J =
(

0 −1
1 0

)
J =

(
i 0
0 −i

)
J =

(
i 0
0 −i

)
A =

(
0 a
a 0

)
A =

(
0 ai
−ai 0

)
A =

(
0 ai
−ai 0

)

For our applications, we are interested in general how the centre space may
look like for a given G-symplectic representation V . More precisely, we would
like to have a list of all isotypic decompositions of Ec that occur. Such a list
will be given in the following with the additional property that for each iso-
typic composition of this list, there is a non-empty open subset of Hamiltonian
functions in C∞(V ) with Ec of this isomorphism class.
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The main part is to determine the “minimum” of Ec, i.e. a G-symplectic
representation Vmin such that the centre space always contains a G-symplectic
subrepresentation isomorphic to Vmin. This is done in [DM93a]: The authors call
a representation weakly cyclospectral iff Ec 6= {0} holds for every Hamiltonian
function. They classify the weakly cyclospectral representations by deducing
the isotypic composition of Vmin from the normal forms calculated in [DM93a].
We give a more direct proof here:

Theorem 3.18. Let V be a G-symplectic representation and V = ⊕iVi its
isotypic decomposition. Let Vmin be the sum of the following spaces:

1. Ui for each i with Vi ' Uui , where Ui is irreducible of type H and u is odd.

2. For each i corresponding to an irreducible representation Ui of type C,
we distinguish the two isomorphism classes Ui and Ūi of G-symplectic
representations such that Vi decomposes as Vi = Uki ⊕Ū li . W.l.o.g. suppose
k ≥ l. Then Vmin contains a copy of Uk−li .

Then Ec contains a G-symplectic subrepresentation isomorphic to Vmin for every
Hamiltonian function.

Proof. Since every isotypic component of V is a dXh(0)-invariant G-symplectic
subrepresentation, we may suppose V = Vi and consider the two cases one after
another.

1. Let c be an eigenvalue of dXh(0) with nonzero real part. Recall that
Ec denotes the real part of the sum of the generalized eigenspaces of the
pair c and c̄. Then by Proposition 3.1, dimEc = dimE−c. Moreover,
both spaces are G-invariant and hence isomorphic to U li for some number
l ∈ N. Thus, E±c ' U2l

i . Since u is odd, dXh(0) must have at least one
purely imaginary eigenvalue if V = Uui .

2. Again, let c be an eigenvalue of dXh(0) with nonzero real part. By
Proposition 3.5, Ec is a Lagrangian subspace of the symplectic space
E±c. Choose an appropriate G-invariant inner product such that ω is
represented by a G-equivariant endomorphism J with J2 = 1. Then
E±c = Ec ⊕ J(Ec). Split Ec into a sum

⊕
i Ui of irreducible G-repre-

sentations. Then E±c =
⊕

i(Ui ⊕ J(Ui)). If we consider J as a complex
structure, each space Ui ⊕ J(Ui) is just the complexification of the real
representation Ui. By [BtD85, chapter II, Proposition 6.6], the complexi-
fication of a real representation is isomorphic to a sum of complex duals.
Thus E±c splits into a sum of pairs of complex duals and hence both types
occur with the same multiplicity in E±c.

We now state a theorem which yields a list as described above. This implies
the minimality of Vmin.

Theorem 3.19. For a G-symplectic representation V and a Hamiltonian func-
tion h ∈ C∞(V )G, the decomposition of the centre space Ec of dXh(0) into
pairwise ω-orthogonal G-symplectic irreducible subrepresentations is given by a
sum consisting of

• pairs of absolutely irreducible G-representations,
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• an even number of every isomorphism class of irreducible G-representa-
tions of type H,

• the same number of every isomorphism class of irreducible G-representa-
tions of type C and its dual, and

• the decomposition of Vmin as described in Theorem 3.18.

Moreover, for each sum of this form, there is a non-empty open set of Hamilto-
nian functions such that Ec is of this isomorphism class.

Proof. The proof of 3.18 yields immediately that Ec has to be of this form.
For the converse, consider a splitting of V into pairwise ω-orthogonal G-sym-

plectic irreducible subrepresentations and choose a subspace given by a sum⊕
i Ui of components of this splitting of the described form. Fix an inner prod-

uct as in Lemma 3.6. If with respect to this inner product, for each i, the space
Ui coincides with the αi-eigenspace of d2h(0) for some αi ∈ R\{0},

⊕
i Ui is an

invariant subspace of dXh(0). If in addition on a dXh(0)-invariant complement
of
⊕

i Ui, the matrix dXh(0) consists of block-matrices of the form described
in the proof of Theorem 3.17, the centre space of dXh(0) coincides with

⊕
i Ui.

Thus the set of Hamiltonian functions h with this property is non-empty. By
Corollary 3.13, small perturbations of a function h with dXh(0) of this form
preserve the isomorphism class of Ec if αi 6= αj for i 6= j.
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Chapter 4

Free actions

If the Hamiltonian action of the connected compact group G on the phase space
P is free, the structure of relative equilibria is quite well-understood. This
situation occurs in the dynamics of a rigid body moving in space without the
action of external forces.

The starting point of the survey was a persistence result for non-degenerate
relative equilibria with regular momenta, which are defined as follows:

Definition 4.1. A relative equilibrium for a free action is non-degenerate iff
its image in the reduced space is a non-degenerate critical point of the reduced
Hamiltonian.

Definition 4.2. An element ξ ∈ g (µ ∈ g∗) is regular iff its isotropy with
respect to the adjoint (coadjoint) action of G is a maximal torus.

The set of regular elements is open and dense in g (g∗) (see for example
[BtD85, chapter V, Proposition 2.6]).

Let P be a symplectic phase space with a free Hamiltonian action of the
connected compact Lie group G. The following theorem is known as Arnol’d’s
theorem, since the main ideas can be found in principle in [Arn78]. (There, see
Theorem 8 of appendix E and appendix 5.)

Theorem 4.3. If p ∈ P is a non-degenerate relative equilibrium and α = J(p)
is regular, there is a neighbourhood of p in which the set of relative equilibria
forms a smooth manifold such that for any momentum value µ near α, there is
exactly one relative equilibrium in the reduced space Pµ close to p.

Proof. Since the action is free, the momentum map J is a submersion. For any
smooth path γ from α to µ, the isotopy theorem of transversality theory implies
that there is a smooth isotopy of diffeomorphisms φt : J−1(α)→ J−1(γ(t)) (see
[AR67]). If µ is close to α, the isotropy subgroups Gµ and Gα are conjugate.
We assume w.l.o.g. that Gµ = Gα and choose a path in (g∗)Gµ . Then we can
construct equivariant diffeomorphisms φt. (This follows from the proof of the
isotopy theorem given in [AR67]). Hence we obtain a family of diffeomorphisms
φ̄t : Pα → Pγ(t). The result follows from the implicit function theorem applied
to the family h ◦ φ̄t.

51
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Arnol’d’s theorem was generalized in the 90s up to 2000 by Montaldi, Patrick,
and Roberts to the case of non-regular momentum values. In [Pat95, Theo-
rem 17, part (i)], Patrick proves another smoothness result:

Theorem 4.4. Let p ∈ P be a non-degenerate relative equilibrium with gener-
ator ξ and momentum µ. If µ or ξ is regular, the set of relative equilibria is a
smooth manifold of dimension dimG+ rankG.

Moreover, Patrick shows that this manifold is symplectic if µ is regular and
the spectrum of the linearization of the reduced vector field is disjoint from
the spectrum of the linear map adξ (see [Pat95, Theorem 17, part (ii)]). Both
results are generalized and improved in [PR00], see below.

The results in [Mon97] and [PR00] show the occurrence of bifurcation of
the structure of relative equilibria, in the sense that the set is not smooth
at each element. In [Mon97], Montaldi investigates the structure of the set
of relative equilibria near a non-degenerate equilibrium with regular generator
but possibly non-regular momentum. He shows that the number of relative
equilibria in the reduced spaces is related to the cardinality of the Weyl group
orbit of the corresponding momentum and hence changes in the neighbourhood
of non-regular momentum values.

Patrick and Roberts generalize Patrick’s Theorem 4.4 in [PR00] and obtain
a result about the generic global structure of the set of relative equilibria, which
holds for all Hamiltonian functions that satisfy some transversality condition:
For these, the set of relative equilibria is stratified by the conjugacy class of
Gµ ∩Gξ.

We start with a sketch of the results of Montaldi ([Mon97]) about free actions
and study the results of Patrick and Roberts ([PR00]) afterwards.

4.1 Bifurcation at non-regular momentum val-
ues

In [Mon97], Montaldi generalizes Arnol’d’s observation to the case non-regular
momentum by analysing the topology of the reduced spaces in the case of free
group actions. This yields an estimate of the number of relative equilibria near
a given relative equilibrium p with momentum value α in the reduced space Pµ
for µ near α. Let w(µ) denote the cardinality of the Weyl group orbit of µ with
respect to a maximal torus T with µ ∈ t∗. Moreover, g∗α contains a slice in α for
the coadjoint action (see Lemma 2.4) and thus the coadjoint orbit of µ contains
an element of g∗α if µ is close to α. W.l.o.g. we assume µ ∈ g∗α. Let Oαµ be the
coadjoint Gα-orbit of µ in g∗α.

Theorem 4.5. Let P be a symplectic manifold with a free Hamiltonian action
of a compact Lie group G. If p ∈ P is a non-degenerate relative equilibrium
with J(p) = α, there is a G-invariant neighbourhood U of p such that for µ ∈ g∗

near α, there are at least 1 + 1
2 dimOαµ relative equilibria in Pµ. If all relative

equilibria in Pµ are non-degenerate, this number is at least w(µ)
w(α) .

Theorem 4.6. If in addition the generator ξ ∈ g of p is regular, all relative
equilibria near p are non-degenerate and this estimate is exact.
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For the proof, Montaldi shows first that we may assume α = 0: As can be
seen from the Guillemin-Sternberg normal form, the local isomorphism class of
the orbit space near [p] ∈ Pα is determined by Gp and Gα (hence in the free case
by Gα). In fact, P is locally isomorphic to G ×Gα Qα, where Qα = J−1(Sα)
for some Gα-invariant slice Sα ⊂ g∗ to the coadjoint orbit of α (for details
see [Mon97]). Qα is a manifold, since it follows from the G-equivariance of J
that im dJ(p) contains the tangent space to the coadjoint orbit and hence J is
transverse to Sα at p. The local isomorphism P ' G ×Gα Qα yields locally
P
/
G ' Qα

/
Gα .

The space Qα is symplectic: With respect to an appropriate choice of the
decomposition

TpP = T0 ⊕ T1 ⊕N0 ⊕N1

(see section 2.2), the tangent space TpQα is given by T0 ⊕N0 ⊕N1:

dJ(p)T1 = dJ(p)(g · p) ⊂ TαOα,

and dJ(p) is injective on T1. Hence dJ(p)−1(Sα) ∩ T1 = {0} ∈ TpP . Further-
more, T0 ⊕N1 = ker dJ(p) and dJ(p)N0 ' m∗ is a complement of TαOα within
im dJ(p) = ann(g · p), see Lemma 2.4 and Lemma 2.5, 1. A suitable choice of
N0 yields

dJ(p)(T0 ⊕N0 ⊕N1) = TpSα.

By 2.5, T0 ⊕N0 ⊕N1 is symplectic, thus Qα is a Gα-symplectic space.
The projection of the restriction of J to Qα to g∗α defines a momentum

map on Qα, which we modify by adding −α. Since α ∈ gGαα , we obtain a
Gα-equivariant momentum map on Qα such that the momentum of p is 0.
Then reduced space (Qα)0 is symplectomorphic to the reduced space Pα.

To complete the reduction to the case α = 0, Montaldi shows that the cardi-
nality wα(µ) of the Weyl group orbit of µ ∈ g∗α with respect to the Gα-action is
equal to w(µ)

w(α) : If W and Wα denote the Weyl groups of G and Gα respectively,
Wα ⊂ W . Fix a Cartan subalgebra t ⊂ gα containing µ. The slice theorem
applied to the W -action on t in the point α yields

Wµ 'W ×Wα (Wαµ),

and hence
w(µ) = #(W

/
Wα

) · wα(µ) = w(α) · wα(µ).
Now the result follows from the topology of the reduced spaces: By the

Guillemin-Sternberg normal form theorem, for free actions, any point with mo-
mentum 0 has a neighbourhood isomorphic to G × N × g∗. Hence the orbit
space is locally isomorphic to N × g∗ and the reduced spaces are of the form
Pµ = N × Oµ. The Hamiltonian function h decomposes as h = h̄ ◦ π, where
π : P → P

/
G denotes the projection map. If p is a non-degenerate equilibrium,

the Hessian of h̄(·, 0) = h0 is non-degenerate. An application of the implicit
function theorem or the Splitting Lemma as described in section 2.4 yields that
for every µ in some neighbourhood of 0, there is a unique v(µ) ∈ N such
that dN h̄(v(µ), µ) = 0. Moreover, it follows that (v(µ), µ) is a critical point of
h̄
∣∣
N×Oµ

iff µ is a critical point of the function

Hµ : Oµ → R
ν 7→ h̄(v(ν), ν).



54 CHAPTER 4. FREE ACTIONS

Hence, we only have to estimate the number of critical points of a real valued
function defined on Oµ. The most general estimate follows from Lyusternik-
Schnirelmann-theory, which yields that a lower bound of the number of critical
points of a function on a manifold is given by its cup lengths plus 1. For a
symplectic space of dimension 2n, ωn defines a volume form and hence n is a
lower bound of the cup length. Since Oµ together with the Kirillov-Kostant-
Souriau-form 〈µ, [·, ·]〉 is symplectic, a function on Oµ has at least 1+ 1

2 dim(Oµ)
critical points.

For Morse functions, we obtain a sharper estimate: The Morse inequality
yields that the number of critical points of a Morse function defined on Oµ is
at least w(µ). To obtain this estimate, one has to compute the homology of
Oµ. A way to do this is to fix a regular element ξ ∈ g = g∗∗ and to restrict the
linear function ν 7→ ν(ξ) to Oµ. It can be shown that ξ is a Morse function and
a computation of the indices of the critical points implies the above estimation.

The main observation for the proof that ξ defines a Morse function is that the
Hamiltonian vector field of this function with respect to the Kostant-Kirillov-
Souriau symplectic form is given by ν 7→ coadξ ν: For any η ∈ g, the directional
derivative along the vector η · ν = coadη µ is

coadη ν(ξ) = ν([ξ, η]).

Therefore, the critical points of the function are exactly the points of (g∗)ξ ∩Oµ
where (g∗)ξ is the zero set of coadξ. If we identify g∗ and g via an invariant inner
product, this becomes gξ ∩Oµ. Since ξ is regular, gξ = t for the maximal torus
T whose Lie algebra contains ξ and hence the set of critical points coincides with
a Weyl group orbit within Oµ. For the non-degeneracy of the critical points,
Montaldi gives a short argument: Any critical point ν ⊂ Oµ is fixed by the
torus T (ξ) generated by ξ and hence its tangent space TνOµ is T (ξ)-invariant
and locally T (ξ)-symplectomorphic to Oµ at µ. The evaluation at ξ is the
Hamiltonian function of the Hamiltonian vector field on the symplectic space
TνOµ ⊂ g∗ defined by the coadjoint action of ξ. Therefore the evaluation map
coincides with the momentum map Jξ for the linear T (ξ)-action and for the
T (ξ)-action on Oµ. For a linear action, the momentum map is a homogeneous
quadratic function. The same holds for the momentum map on Oµ with respect
to appropriate local coordinates in a neighbourhood of µ. Hence a critical point
is non-degenerate iff it is isolated. Since the points of t∩Oµ are isolated, ν is a
non-degenerate critical point.

Montaldi also uses this fact to prove Theorem 4.6:
The derivative of the function

H : g∗ → R
ν 7→ h̄(v(ν), ν)

in 0 coincides with the restriction of

dh(p) : TpP ' g× g∗ ×N → R

to g∗. In [Mon97], it is shown that dh(p)
∣∣
g∗

is given by the evaluation at ξ.
(This is also contained in the characterization of relative equilibria derived from
the bundle equation, see section 2.3.) Hence dH(0) restricted to Oµ has exactly
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w(µ) critical points for every µ ∈ g∗. A blow up argument shows that the
function Hµ has the same number of critical points if µ is small:

Let S be the unit sphere in g∗ and consider H as a smooth function defined
on R × S by H(r, θ) := H(rθ). W.l.o.g., we assume H(0) = 0 and hence
H(0, θ) = 0. Then, there is a smooth function H1 with

H(r, θ) = rH1(r, θ). (4.1)

To find critical points of H on Oµ, we search for critical points of H1 on Oµ,
since Oµ is contained in a sphere. ForH1, equation (4.1) and the Taylor theorem
yield

H1(r, θ) = ∂rH(r, θ)− r∂rH1(r, θ) = ∂rH(0, θ) + rH̃(r, θ)− r∂rH1(r, θ)
= dH(0)θ + rR(r, θ) = 〈ξ, θ〉+ rR(r, θ)

for appropriate smooth functions H̃ and R. Now, we consider the restriction
of H1 to R × Oθ. If ν0 ∈ Oθ is a critical point of the evaluation at ξ, ν0 is
non-degenerate. The implicit function theorem yields that there is a smooth
function ν : (−δ, δ)→ Oθ such that ν(0) = ν0,

dOθH1(r, ν(r)) = 0,

and ν(r) is a non-degenerate critical point. Then rν(r) is a non-degenerate
critical point of Hrθ if r 6= 0. Moreover, rν(r) is unique in rU for some neigh-
bourhood U of ν0 ∈ Oθ. By compactness of Oθ, there are exactly w(θ) = w(rθ)
critical points of Hrθ for small r > 0.

4.2 Transverse relative equilibria
In [PR00], Patrick and Roberts extend Patrick’s Theorem 4.4 to arbitrary
isotropy subgroups K = Gξ ∩ Gµ of (ξ, µ) ∈ g ⊕ g∗. The non-degeneracy con-
dition is replaced by a transversality condition, which is generic with respect to
the Whitney C∞-topology and a weaker condition than non-degeneracy in the
case K = T (not in general). The main idea is that the Whitney stratification
by isotropy type of g∗ ⊕ g induces a stratification of P × g. Moreover, P × g
is isomorphic to the subbundle T ⊂ TP with Tp = g · p. The image of Xh is
contained in the subbundle K ⊂ TP with Kp = ker dJ(p). It is shown that the
intersection T c := T ∩K corresponds to the set (g∗⊕g)c = {(µ, ξ) | coadξ µ = 0},
which coincides with the points whose isotropy type contains a maximal torus.
Hence, the set T c is Whitney stratified. The authors call a relative equilib-
rium p transverse1 iff Xh t T c at p within K with respect to this Whitney
stratification.

Alternatively, the transversality condition may be expressed in terms of dh
and a stratification of a subbundle of T ∗P which corresponds to the stratified
subbundle of TP via the isomorphism TP ' T ∗P induced by the symplectic
form ω.

For all this, the condition that the action is free (at least locally free) is
essential: First of all, the stratification of P ×g is given by the preimages of the

1Originally, Patrick and Roberts use the term transversal here. Since this is a noun, which
is often confused with the adjective transverse, it is better to say transverse.
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strata of g∗ ⊕ g under the map J̃ defined by the momentum map via

J̃ : P × g→ g∗ ⊕ g

(p, ξ) 7→ (J(p), ξ).

Since im dJξ(p) = ann(gp) ⊂ g∗, J is a submersion iff gp = {0} and so is
J̃. Therefore, in the case of a free action, the preimages of the strata form a
Whitney stratification.

Moreover, K and T are vector bundles in the free case, and the map I :
(p, ξ) 7→ ξp is an isomorphism of P × g and T .

The same holds, of course, for the dual formulation: Here we consider the
subbundles of T ∗P that correspond to T and K under the isomorphism TP '
T ∗P via Xp 7→ ω(Xp, ·). Since Tp = g · p and

Kp = ker dJ(p) = (g · p)⊥ω = T⊥ωp ,

the image of T is given by the bundle K◦ with K◦p = ann(Kp) and the image of
K coincides with T ◦ which is given by T ◦p = ann(Tp). The map

I◦ : (p, ξ) 7→ ω(ξp, ·) = dJξ(p)

is an isomorphism of P × g and K◦ if the action is free.
Now, let us consider the results about the stratifications on g∗⊕g and P ×g

in detail.
A basic observation is that (g∗ ⊕ g)c = {(µ, ξ) | coadξ µ = 0} coincides with

the image of T c = T ∩ K and K◦c := T ◦ ∩ K◦ under J̃ ◦ I−1 and J̃ ◦ (I◦)−1

respectively: If J(p) =: µ, ξ · p ∈ ker dJ(p) is equivalent to ξ ∈ gµ due to the
equivariance of J.

Moreover, the isotropy subgroup of an element (µ, ξ) ∈ g∗ ⊕ g is given by
Gµ∩Gξ, and in the case ξ ∈ gµ, this coincides with the isotropy subgroup (Gµ)ξ
of ξ with respect to the adjoint action of Gµ. Since (Gµ)ξ contains a maximal
torus T of Gµ which is also maximal in G, (g∗ ⊕ g)c is contained in the set of
points whose isotropy type contains a maximal torus. For the contrary, assume
that a maximal torus T is contained in Gµ∩Gξ and note that (g∗⊕g)T = t∗⊕ t,
where t is the Lie algebra of T . This yields coadξ µ = 0. Hence (g∗⊕g)c consists
of a substratification of the isotropy type stratification of g∗ ⊕ g and thus T c
and K◦c are stratified subsets with the induced stratifications.

Next, we investigate the stratification by isotropy type on (g∗⊕g)c. Consider
(µ, ξ) ∈ g∗ ⊕ gc with isotropy subgroup K = Gµ ∩ Gξ with Lie algebra k. In
[PR00, Proposition 1], it is shown using the Slice Theorem, that there is a
neighbourhood of (µ, ξ) in (g∗ ⊕ g)c which is isomorphic to

G×K (k∗ ⊕ k)c.

Hence, the local stratification of (g∗ ⊕ g)c by isotropy type near (µ, ξ) is deter-
mined by that of (k∗ ⊕ k)c.

Let Z(K) denote the centre of K with Lie algebra z and l be the Lie algebra
of L = K

/
Z(K) . The next observation is that the K-representation k∗⊕k splits

into
k∗ ⊕ k = (z∗ ⊕ z)⊕ (l∗ ⊕ l)
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and (k∗ ⊕ k)K = z∗ ⊕ z. Altogether, the dimension of the stratum of isotropy
type (K) in (g∗ ⊕ g)c is equal to

2 dim z + dim(G
/
K ) = 2 dimZ(K) + dimG− dimK. (4.2)

Straightforward calculations with codimensions show that near a transverse rel-
ative equilibrium, the relative equilibria for which the pair (µ, ξ) of momentum
and generator is of isotropy type (K) form a manifold of the same dimension.

In addition, the above observations allow to determine the local structure
of the set of relative equilibria near a transverse relative equilibrium: For any
point x contained in a stratum S of a locally closed Whitney stratified set Z,
there is a cone C such that Z and C × S are locally homeomorphic near x, see
[GWPL76, chapter II, Corollary (5.5)]. If Z is a subset of a manifold M and
C is contained in a vector space E such that there is an open subset U of a
Euclidean space and a smooth local embedding E× U →M that maps C × U
to Z, Patrick and Roberts say that Z has singularity type C at x. The above
observations show that (g∗ ⊕ g)c ⊂ g∗ ⊕ g is of singularity type (l∗ ⊕ l)c at x if
Gx = K. As is easily verified, if f : N → M is transverse to Z at n ∈ f−1(x),
the preimage f−1(Z) has also singularity type C at n. Applied to the maps J̃
and Xh, this yields that at a transverse relative equilibrium with generator ξ
and momentum µ and corresponding isotropy subgroup K, the set of relative
equilibria is of singularity type (l∗ ⊕ l)c.

As may be deduced from transversality theory, the set of Hamiltonian func-
tions h that have only transverse relative equilibria is open and dense in C∞(P )G
with respect to the Whitney C∞-topology: Since K◦c is a closed Whitney strati-
fied subset of T ∗P , openness follows from the Thom-Mather transversality The-
orem A.21. The Jet-transversality theorem (see [Hir76, Theorem 2.8]) implies
that the set of Hamiltonian functions h with dh transverse to any single stratum
of K◦c is residual. By the local finiteness, a Whitney stratified set has at most
countable strata. Thus the set of those h for those dh is transverse to all strata
of K◦c is a countable intersection of residual sets. Hence it is residual and hence
dense.

Patrick and Roberts also give an explicit characterization of transversality
at a relative equilibrium p with generator via the derivative of Xhξ = Xh − ξM
at p (recall that ξM (q) := ξ · q for any q ∈ P and hξ = h−Jξ): To do this, they
use another equivalent formulation of their transversality condition:

Let ψ : P × g → TP be the map (p, ξ) 7→ Xh(p) − ξ · p = Xhξ(p) and
ψ◦ : P × g→ T ∗P its dual (p, ξ) 7→ dh(p)−dJξ(p) = dhξ(p). The subscript (K)
denotes the restriction to (P × g)c(K), whose image is contained in K.

Lemma 4.7. A relative equilibrium p ∈ P with momentum µ, generator ξ,
and Gµ ∩Gξ = K is transverse iff one of the following equivalent conditions is
satisfied:

1. ψ(K) : (P × g)c(K) → K is transverse to the zero section of K at (p, ξ);

2. ψ◦(K) : (P × g)c(K) → T
◦ is transverse to the zero section of T ◦ at (p, ξ).

Proof. The two conditions are obviously dual to each other with respect to the
isomorphism TP ' T ∗P via ω and hence are equivalent. Either condition is
equivalent to transversality of p by the following lemma, for example for the
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first we have to choose E = K, M = ((P × g)c(K)), f = I : (p, ξ) 7→ ξ · p,
f0 : (p, ξ) 7→ p, and X = Xh.

Lemma 4.8. For a vector bundle π : E → P with smooth section X, a smooth
embedding f and a smooth map f0 as in the commutative diagram

E

M P

π
f

f0

,

X is transverse to f(M) iff X ◦ f0− f is transverse to the zero section Z(E) of
E.

Proof. If X is transverse to f(M) and X(p) = f(m) (and hence p = f0(m)), in
particular

T (Ep) ⊂ dX(p)TpP + df(m)TmM. (4.3)

In coordinates with respect to a local splitting π−1(U) ∼= U×Ep for a neighbour-
hood U of p, the maps X and f are of the form (1, Xe) and (f0, f1) respectively.
For vp ∈ TpP and vm ∈ TmM ,

dX(p)vp + df(m)vm = (vp + df0(m)vm,dXe(p)vp + df1(m)vm).

The right hand side is contained in T (Ep) iff df0(m)vm = −vp. Thus,

d(Xe ◦ f0 − f1)(m)TmM = T (Ep) (4.4)

and hence X ◦ f0 − f is transverse to Z(E).
For the converse, note that by the above argument (4.4) ⇔ (4.3) and hence

X ◦ f0 − f is transverse to Z(E) iff (4.3) holds. Since dX(p)TpP contains a
complement of T (Ep), this yields transversality of X to f(M).

Let
dXhξ(p) : TpP → TpP

denote the linear Hamiltonian vector field of the quadratic form

v 7→ d2hξ(p)(v, v)

on TpP , which is well-defined, since p is a critical point of hξ. To justify this
definition, consider the whole map

dXhξ : TP → T (TP )

and a local trivialization TP ⊃ π−1(U) ' U × V , where U is an open neigh-
bourhood of p, π : TP → P is the projection, and V ' TpP . Then

T (p−1(U)) ' TU × TV ' U × V × V × V.

With respect to corresponding coordinates

dXhξ(p)v = (p, v, (Xhξ)p, A(v)),
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where A is the derivative of the map p 7→ (Xhξ)p from U to V . Similarly T (T ∗P )
is locally isomorphic to U × V × V ∗ × V ∗ and

d2hξ(p) = (p, v,d(hξ)p, B(v)),

where B is the derivative of p 7→ d(hξ)p from U to V ∗. Since Xhξ(p) = ω#
p ◦

d(hξ)p for the linear isomorphism ω#
p : V ∗ → V defined by the symplectic form

ωp on V , this also holds for the derivatives A and B.
As shown in [Pat99], with respect to the splitting of the tangent space in-

troduced in section 2.2,

TpP ' g⊥µ ⊕ gµ ⊕N ⊕ g∗µ,

the linear map dXhξ(p) is of the form
− adξ

∣∣
g⊥µ

0 0 0
0 − adξ

∣∣
gµ

C∗ D

0 0 dXhµ([p]) C
0 0 0 − coadξ

∣∣
g∗µ

 , (4.5)

where the map dXhµ([p]) is the derivative of the Hamiltonian vector field of the
reduced system. Hence dXhµ([p]) corresponds to d2

N h̄(0, 0) via the symplectic
form on N . Furthermore, D is symmetric and (ω#

N )−1 ◦ C and C∗ are dual to
each other, where ω#

N : N∗ → N is the isomorphism defined by the symplectic
form ωN on N .

Remark 4.9. In [Pat99], the complement of gµ · p within g · p is identified
via dJ(p) with the tangent space of the µ-orbit in g∗ and the corresponding
component of dXhξ(p) is given by − coadξ. This is the same as − adξ for our
identification g⊥µ p ' g⊥µ (which is also used in [PR00]), since

dJ(p)ηp = d
dtJ(exp(tη)p)

∣∣∣∣
t=0

= coadη µ

and
coad[ξ,η] µ = coadξ(coadη µ)− coadη(coadξ µ︸ ︷︷ ︸

=0

).

Nowadays, the normal form (4.5) can be deduced directly from the bundle
equations (2.8) to (2.10), which in the free case represent Xh(g, ρ, v) by

ġ = g · dg∗µ
h̄(ρ, v)

v̇ = (ω#
N )(dN h̄(ρ, v))

ρ̇ = − coadd∗gµ h̄(ρ,v) ρ.

Recap that g· denotes the lift of the left multiplication by g to TG.
Since

exp(tξ)(g, ρ, v) = (exp(tξ)g, ρ, v)
and

d
dt exp(tξ)g

∣∣∣∣
t=0

= d
dtg(g−1 exp(tξ)g)

∣∣∣∣
t=0

= g ·Adg−1 ξ,
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we obtain for ξP (g, ρ, v):

ġ = g ·Adg−1 ξ

v̇ = 0
ρ̇ = 0.

Hence, with respect to the local trivialization TG ' G× g given by left multi-
plication, the g-component of Xhξ equals dg∗µ

h̄(ρ, v)−Adg−1 ξ. Since

(ω#
N )(d2

N h̄(ρ, v)) = dNXhµ(ρ, v)

and
dg∗µ

h̄(0, 0) = ξ,

we obtain the matrix (4.5) for dXhξ(e, 0, 0), where

C∗ = dN,g∗µ h̄(ρ, v), C = (ω#
N )−1(dN,g∗µ h̄(ρ, v)), D = d2

g∗µ
h̄(ρ, v).

Here, the linear maps have to be considered as maps between the following
spaces:

C : g∗µ → N, C∗ : N → gµ, D : g∗µ → gµ.

Remark 4.10. Since dg∗µ
h̄(ρ, v) coincides with the generator in the direction

of the group orbit, D describes in some sense the change of the g · p-component
of the generator, when the momentum is varied in orthogonal direction to the
orbit Oµ.

Next, Patrick states that dXhξ(p) can be written as the sum of the semi-
simple and the nilpotent part of its Jordan normal form as follows:

− adξ
∣∣
g⊥µ

0 0 0
0 − adξ

∣∣
gµ

0 0
0 0 S 0
0 0 0 − coadξ

∣∣
g∗µ

+


0 0 0 0
0 0 C∗ D
0 0 Z C
0 0 0 0

 ,

where S and Z denote the semi-simple and the nilpotent part of the Jordan
normal form of dXhµ([p]) respectively.

Remark 4.11. If the spectrum of dXhξ([p]) is disjoint from the spectrum of
adξ, C = C∗ = 0. This case is investigated in [Pat95].

Since the semi-simple part and the nilpotent part of the Jordan normal form
of dXhξ(p) commute, we then obtain

SC = −C coadξ
∣∣
g∗µ

(4.6)

C∗S = − adξ
∣∣
gµ
C∗ (4.7)

adξ
∣∣
gµ
D = D coadξ

∣∣
g∗µ
. (4.8)

Despite the fact that the matrix on the left hand side is semi-simple and the
matrix on the right hand side is obviously nilpotent, I do not see why they have
to coincide with he corresponding part of the Jordan decomposition in general.
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Nevertheless, there is a choice of an Artin-Witt decomposition such that the
equations (4.6) to (4.8) are satisfied:

First of all, equation (4.8) follows from the fact that coadξ = ad∗ξ and D =
D∗. Equation (4.7) holds for an appropriate choice of N :

ker dJ(p) ' gµ ⊕ N and gµ · p are invariant subspaces of dXhξ(p). The
complement N of gµ · p within ker dJ(p) may be chosen in such a way that
C∗ forms the corresponding component of the nilpotent part of the restriction
dXhξ(p)

∣∣
ker dJ(p). Then equation (4.7) is true. With the identification N∗ ' N

via ω#
N , equation (4.6) follows from equation (4.7) by taking duals.

For this choice of the normal form, Patrick and Roberts state the following
characterization of transverse relative equilibria:
Theorem 4.12 (as stated in [PR00, Theorem 4], corrected version see below).
A relative equilibrium p ∈ P with momentum µ and generator ξ, Gµ ∩Gξ = K
is transverse iff all the following conditions are satisfied (with C, C∗ and D as
above):

1. Either p is non-degenerate or 0 is a semi-simple eigenvalue of dXµ([p]).

2. C maps the dual z∗ of the Lie algebra of Z(K) onto ker dXµ([p]).

3. C∗(ker dXµ([p])) +D(kerC ∩ z∗) + z = k.
In Patrick’s and Roberts’ proof ([PR00]), the equations (4.6), (4.7), and (4.8)

are used with S replaced by dXhµ . Thus the theorem is true in the case of a semi-
simple reduced derivative dXhµ but probably not in general. To obtain a more
general version, it has to be slightly modified. Nevertheless, most conclusions
of this theorem given in [PR00] are true:

To describe transverse relative equilibria in terms of the matrices dXhξ(p),
C, C∗, and D, we consider the matrix

M =
(

dXhµ([p]) C
C∗ D

)
,

which maps N ⊕ g∗µ to N ⊕ gµ. Note that this matrix coincides with d2h̄([p]) if
we omit the isomorphism (ω#

N ) : N∗ → N given by the symplectic form. The
following corrected theorem gives two conditions, which are both equivalent to
transversality of the relative equilibrium. The second one depends on the choice
of the splitting, for we assume that the above commutation equations hold true:
Theorem 4.13. A relative equilibrium p ∈ P with momentum µ and generator
ξ with Gµ ∩ Gξ = K is transverse iff the following equivalent conditions are
satisfied, where z denotes the Lie algebra of Z(K):

1. N∗ ⊕ gµ coincides with the sum of z, gµξ and the image of the restriction
d2h̄([p]) : N ⊕ z∗ → N∗ ⊕ gµ.

2. If E0 denotes the generalized 0-eigenspace of dXhµ([p]),

E0 ⊕ k = imM
∣∣
E0⊕z∗

+ z.

The proof of 1 is just the correct first part of the proof of [PR00, Theorem 4],
which is sketched in the following. Alternatively, 1 can be shown using ideas
from chapter 6, see Remark 4.14 below. The equivalence of 1 and 2 is in principle
the last part of the proof, the argument is just slightly corrected.
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Proof of Theorem 4.13. First, the authors unravel the condition that

dψ(p, ξ)T(p,ξ)(P × g)c(K) = ker dJ(p) = gµ ⊕N.

Calculating the P and g-derivatives of ψ yields together

dψ(p, ξ)(v, η) = (v,dXhξ(p)v − η · p). (4.9)

As the above investigation of the isotropy structure of (g∗⊕ g)c shows, the pair
(v, η) ∈ TpP × g is contained in T(p,ξ)(P × g)c(K) iff

(dJ(p)v, η) ∈ (z∗ ⊕ z)⊕ g · (µ, ξ).

Hence, the g∗µ-component µ0 of v is contained in z∗ (recap that the corresponding
part of the tangent space was identified with gµ via dJ). Moreover, inserting
the normal form of dXhξ(p)v and evaluation yields

gµ ⊕N = 〈
{
C∗w +Dµ0 + gµ · ξ + z,dXhµ([p])w + Cµ0

∣∣ w ∈ N,µ0 ∈ z∗
}
〉

(for details, see [PR00]). If we compose the second component with the inverse
of the isomorphism ω#

N : N∗ ' N , this is just the same as condition 1. Note that
we have not used the equations (4.6) to (4.8), hence the result is independent
of the concrete choice of coordinates.

We now proceed with the equivalence of 1 and 2: Since z∗ ⊂ k∗ ⊂ g∗ξ ,
equation (4.6) shows that imC

∣∣
z∗

is contained in the generalized eigenspace
E0 ⊂ N of dXhµ([p]). If E1 denotes the sum of the other generalized eigenspaces
of dXhµ([p]), the restriction dXhµ([p]) : E1 → E1 is invertible. Hence the map
(dXhµ([p]), C) : N ⊕ z∗ → N is surjective iff its restriction to E0⊕ z∗ maps onto
E0. By equation (4.7), C∗ maps E0 into k and E1 into gµ · ξ, and by equation
(4.8), D maps k∗ (and hence z∗) into k∗. Moreover, gµ · ξ is a complement of k
within gµ, see Lemma 2.4. Therefore, 1 holds iff

imM
∣∣
E0⊕z∗

+ z = k + E0.

Remark 4.14. The first part of Theorem 4.13 (i.e. the equivalence of condi-
tion 1 and transversality of the relative equilibrium) can also be shown using
ideas that will be presented in chapter 6. As we will see there, a relative equi-
librium p with generator ξ and momentum µ is transverse iff for the restriction
h̄ of h to V = g∗µ ⊕ N the map dh̄ : V → T ∗V is transverse to the Whitney
stratified set K◦c

∣∣
V
, which is equal to K◦c ∩ T ∗V . Since

K◦cx = 〈dJ(x)·, gJ(x)〉

and by Lemma 2.7, in the case of a free action

J([e, ρ, v]) = µ+ ρ,

it is
〈dJ([e, ρ, v])(0, ρ̇, v̇), η〉 = ρ̇(η).

Hence for x = [e, ρ, v], the set K◦cx ⊂ T ∗V = (g∗µ ⊕N) ⊕ (gµ ⊕N∗) is given by
(ρ, v)⊕ gµ+ρ. If ρ is small, Gµ+ρ ⊂ Gµ and hence Gµ+ρ = (Gµ)ρ. Rearranging
the components of T ∗V , we obtain

K◦c
∣∣
V

= N ⊕ (g∗µ ⊕ gµ)c.



4.2. TRANSVERSE RELATIVE EQUILIBRIA 63

Therefore, K◦c
∣∣
V

is a Whitney stratified set which is stratified by isotropy type
of the momentum and generator pair. If K = Gµ ∩Gξ, the relative equilibrium
is transverse iff dh̄ is transverse to N ⊕ (g∗µ⊕ gµ)c(K) at p. The tangent space of
(g∗µ ⊕ gµ)c(K) is given by

(gµ · (µ, ξ))⊕ (z∗ ⊕ z) = z∗ ⊕ (z + gµ · ξ).

The map

dh̄ : g∗µ ⊕N → (g∗µ ⊕N)⊕ (gµ ⊕N∗)
(ρ, v) 7→ ((ρ, v),dh̄(ρ,v))

is transverse to N ⊕ z∗ ⊕ (z + gµ · ξ) at p = (ρ, v) iff z, gµ · ξ and the image of
restriction of d2h̄(ρ,v) to N ⊕ z∗ together span gµ ⊕N∗.

Theorem 4.13 yields a relation between non-degeneracy and transversality:

Corollary 4.15. 1. A non-degenerate relative equilibrium p is transverse iff
Dz∗ + z = k.

2. If p is a non-degenerate equilibrium and K is a maximal torus, p is trans-
verse.

Proof. 1. E0 = 0 yields C
∣∣
z∗

= 0 by equation (4.6) and hence C∗
∣∣
z∗

= 0.

2. In this case k = z and Dz∗ + z = k is automatically satisfied.

Remark 4.16. Corollary 4.15 illustrates a connection to the results in [Mon97]:
If p is a non-degenerate relative equilibrium with generator ξ and Gξ = T
is a maximal torus, p is transverse and all relative equilibria near p have a
momentum generator pair of isotropy type (T ). Since p is transverse, the map

dh̄ : N ⊕ t∗ → (N ⊕ t∗)⊕ (N∗ ⊕ gµ)
(v, ρ) 7→ ((v, ρ),dh̄(v,ρ))

is transverse to
(N ⊕ t∗)⊕ (t + gµ · ξ) = (N ⊕ t∗)⊕ gµ,

see Lemma 2.4 for the equality. Thus, the set of relative equilibria with mo-
mentum generator pair of type (T ) forms a dimT -dimensional submanifold of
N ⊕ t∗. Moreover, since p is non-degenerate, there is locally a unique v(ρ) ∈ N
for any ρ ∈ g∗µ such that the N∗-component of dh̄(v(ρ),ρ) vanishes. The set
of relative equilibria of isotropy type (T ) forms a (dimG+ dimT )-dimensional
manifold (see equation (4.2) and below), hence its intersection with the slice
N ⊕g∗µ is a manifold of dimension dimT , too. Thus the set of relative equilibria
of (N ⊕ g∗µ) is locally given by the pairs (v(ρ), ρ) for ρ ∈ t∗. The reduced space
Pρ within some neighbourhood of p is represented by N ⊕ Oρ. Therefore, the
set of relative equilibria in Pρ is given by the pairs (v(α), α) for every element
α of the set t ∩ Oρ, which is of cardinality w(ρ). (ρ ∈ t∗ is no real restriction,
since every element of g∗µ is conjugate to one in t∗.)

Possibly in a similar way, Montaldi’s Theorem 4.6 may be generalized to
relative equilibria that are both non-degenerate and transverse with non-regular
generators to compute the exact number of orbits of relative equilibria for a given
momentum value near the momentum of p.
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Next, Patrick and Roberts calculate the tangent space at the transverse
relative equilibrium p to the corresponding stratum E(K) of the set E of relative
equilibria and obtain

TpE(K) =

(ξ0, ξ1, w, µ0)

∣∣∣∣∣∣∣∣∣∣
ξ0 ∈ g⊥µ ,
ξ1 ∈ gµ,

w ∈ ker dXhµ([p]),
µ0 ∈ z∗ ∩ kerC,
C∗w +Dµ0 ∈ z

 . (4.10)

The proof is similar to that of Theorem 4.13. TpE(K) is given by the zero set of
dψ(p, ξ)

∣∣
T(p,ξ)(P×g)c(K)

. Now again the normal form is inserted in equation (4.9)
and everything is evaluated. At one point, the proof uses imC ⊂ ker dXhµ([p]),
which is probably wrong in general, but the argument may be replaced by one
which holds in general: The normal form yields that

dXhµ([p])w + Cµ0 = 0 (4.11)

for (ξ0, ξ1, w, µ0) ∈ TpE(K). From this, we may conclude dXhµ([p])w = 0 and
Cµ0 = 0 in the following way: imC ⊂ E0 holds true in general. After a possible
reordering of the base, dXhµ([p])

∣∣
E0

and C are submatrices of the nilpotent part
of the Jordan normal form of dXhξ(p). Thus

imC ∩ im dXhµ([p])
∣∣
E0

= {0}

and hence equation (4.11) yields dXhµ([p])w = 0 and Cµ0 = 0.
Using the description of the tangent space (4.10), Patrick and Roberts prove

a generalization and partial converse of a result in [Pat95], see our Theorem 4.4
and below:

Theorem 4.17. If the relative equilibrium p as in Theorem 4.13 is trans-
verse, then the manifold E(K) is symplectic in a neighbourhood of p iff p is
non-degenerate and Gµ is a maximal torus.

Proof. Since gµ ⊂ TpEK , if TpEK is symplectic, g∗µ = z∗ ∩ kerC, hence Gµ
is Abelian and coincides with a maximal torus. Moreover, C = 0. Since
dXhµ([p])E0 + imC = E0, dXhµ([p]) is invertible.

Conversely, if Gµ is a maximal torus, gµ = z and C∗w + Dµ0 ∈ z is auto-
matically satisfied. Moreover, adξ

∣∣
gµ

= 0. Thus by Remark 4.11, C = 0 if p is
non-degenerate. In this case,

TpEK = g⊥µ ⊕ gµ ⊕ {0} ⊕ g∗µ

is symplectic.

Remark 4.18. One might wonder what happens in the case of non-connected
compact groups. Later on, this case will occur during the reduction to isotropy
subspaces PGp , on which the group N(Gp)

/
Gp acts freely.

Requiring the group G to be connected is no real restriction: Suppose that
a non-connected group G acts freely on the space P . Then for any p ∈ P ,
the G-orbit Gp is non-connected. By the Slice Theorem, there is a slice S and
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G-invariant neighbourhood of Gp of the form U ' G × S. If G◦ denotes the
identity component of G, U is a G◦-space which consists of several copies of
the G◦-invariant subspace G◦ × S. Moreover, a G◦-invariant smooth function
on G◦ × S can be extended uniquely to a G-invariant function on U and this
extension defines a homeomorphism between the corresponding function spaces
(with the Whitney C∞-topology). Hence, for the investigation of the generic
structure of relative equilibria near the orbit Gp, it is sufficient to consider the
G◦-action.

Furthermore, the G-action and the G◦-action both yield Whitney stratifica-
tions of g∗⊕g, which induce Whitney stratifications of K◦c. Hence the question
arises which one is the “right” or more natural one. Obviously, the stratifica-
tion induced by the G-action refines the stratification by G◦-isotropy type of
the momentum-generator pair. Moreover, we will show later that the stratifica-
tion corresponding to the G◦-action coincides with the canonical stratification.
Hence it is in some sense the more natural stratification and we will stick to
this one. Thus in the above setting, we will call a relative equilibrium p ∈ P
transverse iff it is transverse with respect to the G◦-action. Nevertheless, the
G-isotropy type of the pair (µ, ξ) also defines a stratification into manifolds,
which are submanifolds of the canonical strata.
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Chapter 5

Continuous isotropy

For both approaches to investigate the structure of relative equilibria in Hamil-
tonian systems with a free group action that we have seen in the last chapter,
the condition that gp is finite is essential. Montaldi’s results can be generalized
to locally free actions, see [MoR99].

Ortega and Ratiu suggest in [OR97] to consider the subspaces PH of points
with the same isotropy subgroup H ⊂ G. Since the spaces PH are symplectic
and the group N(H)

/
H acts freely on PH , the results for free actions can be

applied to these spaces. Nevertheless, this way we obtain no information about
the overall structure of the relative equilibria. Moreover, genericity statements
may not be transferred to general isotropy groups. In particular, we cannot
conclude that for generic G-invariant Hamiltonian functions all relative equi-
libria in PH are transverse with respect to the N(H)

/
H -action. It is easy to

see that the set of Hamiltonians whose restriction to any fix point space has
only transverse relative equilibria is dense in C∞(P )G, but openness may not
be deduced this way. We will give a proof of openness in chapter 6.

Another result that applies in the case of actions of compact groups with
non-finite isotropy groups is given in [Mon97]: A relative equilibrium is called
extremal iff its equivalence class is an extremum of the reduced Hamiltonian.
(The reduced space is not necessarily a manifold here.) Simple topological
arguments show that an extremal relative equilibrium has a neighbourhood U
such that every non-empty intersection of U and a momentum level set contains
an extremal relative equilibrium.

In this chapter another approach is presented, which adapts ideas from bifur-
cation theory: Relative equilibria are characterized by equation (2.14) (commu-
tation equation) and (2.15) (symplectic slice equation) or equivalent (possibly
more general) ones. In principle, the solutions of the symplectic slice equation
are studied, while some assumptions assure that the commutation equation is
satisfied. The symplectic slice equation is considered as a parameter dependent
family on the symplectic slice N . Using the reduction techniques known from
bifurcation theory as described in section 2.4, the symplectic slice equation may
be reduced to the kernel of Hessian of the augmented Hamiltonian.

67
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5.1 Bifurcation theory perspective
The search for relative equilibria in symmetric Hamiltonian systems may be con-
sidered as a bifurcation problem: Bifurcation theory is the study of parameter-
dependent dynamical systems and the change of the occurrence and structure
of specific dynamical phenomena like (relative) equilibria and periodic orbits at
particular parameter values. A single Hamiltonian system with symmetry may
be seen as a parameterized family of dynamical systems in several ways:

The parameter value may be the momentum, in the sense that the whole
system is considered as the collection of the reduced systems of the reduced
Hamiltonians hµ on the reduced spaces Pµ. This way, the symmetry is elimi-
nated and the investigation of the structure of relative equilibria reduces to the
investigation of the change of the set of critical points. In contrast to ordinary
bifurcation theory, the geometry of the underlying space may change. Thus,
there are two reasons for a change of the local structure of relative equilibria:
Degeneracy of the relative equilibrium or a bifurcation due to the geometry of
momentum level sets of the phase space. The investigation of the second case
is the approach in [Mon97] that was presented in section 4.1. We have seen
the simplest case, in which all spaces are isomorphic and can be identified, in
the proof of Arnol’d’s observation (Theorem 4.3). In the case of non-free ac-
tions, this approach may be difficult, since the reduced spaces are not necessarily
manifolds and their structure may be rather complicated.

A different point of view, which is more close to ordinary bifurcation theory,
is to consider the augmented Hamiltonian functions hξ as families parameterized
by ξ ∈ g. In this case, all functions are defined on the same space. In contrast
to the reduced Hamiltonians, the augmented Hamiltonians still have symme-
tries. In ordinary bifurcation theory involving symmetry it is usually assumed
that every family element has the same symmetry properties, but here we have
in general a non-trivial action on the parameter space, which causes different
symmetry groups for the functions with fixed parameter values. This difficulty
does not occur if the adjoint action on the parameter space g is trivial, i.e. if
G is Abelian. For this reason, the treatment of Abelian groups is usually much
simpler than the general case. Most results for non-free group actions require
at least some commutativity assumptions.

This also holds for a third approach based on the Marle-Guillemin-Sternberg
model and the corresponding equations for relative equilibria (i.e. the commu-
tation equation (2.14) and the symplectic slice equation (2.15) derived from the
bundle equations, or equivalent ones): The solutions of the slice equation (2.15)
are investigated, where the function h̄ is considered as a family of functions
defined on N with parameters ρ ∈ m∗ and η ∈ gp, while commutativity as-
sumptions make sure that the commutation equation (2.14) is satisfied and in
addition simplify the symmetry properties of the parameter-dependent family.

An example of the last approach is presented in [CLOR03], which contains
a Hamiltonian version of the famous Equivariant Branching Lemma of bifurca-
tion theory and a similar result concerning bifurcation of relative equilibria of
maximal isotropy type. Another example of this approach based on the bun-
dle equations with isotropy can be found in [MR-O15]. These results will be
sketched in section (5.3). The results in [CLOR03] are developed independently
from the bundle equations: Using the implicit function theorem several times,
the authors derive analogues to equations (2.14) and (2.15), which hold in a
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more general context. Even though the bundle equations were known in 2003,
the bundle equations with isotropy, which yield the equations (2.14) and (2.15),
were first considered in [MR-O13] and [MR-O15]. In the following presentation,
the results in [CLOR03] will also be considered in view of the equations (2.14)
and (2.15). If the action is proper and there is a Gµ-invariant complement of
gµ and hence the equations (2.14) and (2.15) are valid, the equations given in
[CLOR03] are equivalent but in a more implicit expression. An application of
Lyapunov-Schmidt reduction to the analogue to the symplectic slice equation
(2.15) yields an equation on the kernel of d2hξ(p), where ξ is a generator of
the relative equilibrium p. This equation is called the bifurcation equation. The
analogue to the commutation equation is called rigid residual equation.

In a second paper, [OR04(a)], Ortega and Ratiu use the bifurcation equation
to investigate the structure of relative equilibria near an ordinary equilibrium
with the full symmetry. In this case, the rigid residual equation is trivial and
in addition, we only have the bifurcation parameter ξ ∈ g of the augmented
Hamiltonian. Thus, the last two of the bifurcation theory points of view illus-
trated above coincide here. We will present the results of Ortega and Ratiu
([OR04(a)]) in the next section and come back to [CLOR03] in more detail first:

The theory presented in [CLOR03] is formulated in a quite general context,
such that the proceeding in principle may be applied to general Hamiltonian Lie
group actions and many ideas may be adapted to infinite dimensional systems.
The main assumption is the existence of a slice mapping:

Let P be a G-symplectic manifold and J : P → g∗ an equivariant momentum
map. For p ∈ P with J(p) = µ, let g = gµ ⊕ q and gµ = m⊕ gp.
Definition 5.1. A slice mapping for p ∈ P is an embedding Ψ of a neigh-
bourhood of (0, 0) in m∗ × N into P , where N is a vector space, such that
ψ(0, 0) = p,

TpP = (m⊕ q) ·Ψ(ρ, v) + dΨ(ρ, v)(m∗ ×N),
and JY := J ◦Ψ satisfies dJY (0, 0)(ρ̇, v̇) = ρ̇.

For the main results in [CLOR03], P is assumed to be finite-dimensional and
the action is assumed to be proper. In this case, the existence of a slice mapping
is given by the Marle-Guillemin-Sternberg normal form and JY is given by

JY (ρ, v) = µ+ ρ+ JN (v), (5.1)

see Lemma 2.7.
Using the slice mapping, the authors split the equation dhξ(x) = 0 into four

equations.
For x = Ψ(ρ, v), each equation is obtained from the derivative in one of the

four directions q · x, m · x, dψ(ρ, v)m∗, and dψ(ρ, v)N . Since h is G-invariant
and J is G-equivariant with respect to the coadjoint action, the derivative in
the direction on the G-orbit yields the relation coadξ J(x) = 0. For q · x and
m · x, we obtain the corresponding restricted relations. Thus, x = Ψ(ρ, v) is a
relative equilibrium with generator ξ′ iff

coadξ′ JY (ρ, v)
∣∣
q

= 0, (5.2)

coadξ′ JY (ρ, v)
∣∣
m

= 0, (5.3)
dm∗ h̄ξ′(ρ, v) = 0, (5.4)
dN h̄ξ′(ρ, v) = 0, (5.5)
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where h̄ξ′ := hξ′ ◦Ψ.
Next, the system of equations is simplified step by step near the relative

equilibrium p with generator ξ and momentum µ. In a first step, equation
(5.2) is solved using the implicit function theorem such that the q-component
of ξ′ is given as a function of ρ, v, and the m- and gp-components of ξ′. If we
assume that q is Gµ-invariant (which is always a possible choice in the case of a
compact group G), this function is just the zero function and the first step may
be omitted.

In a second step, equation (5.4) is solved for the m-component of ξ′, again
using the implicit function theorem. In the case of a proper action, the Marle-
Guillemin-Sternberg normal form is valid and JY is given by equation (5.1). In
this case, we obtain an explicit expression of the projection Pmξ

′ of ξ′ to m:

0 = dm∗ h̄(ρ, v)− dm∗Jξ
′

Y (e, ρ, v) = dm∗ h̄(ρ, v)− Pmξ
′.

If in addition q is Gµ-invariant, there is some η ∈ gp with ξ′ = dm∗ h̄(ρ, v) + η.
Inserting this expression into the equations (5.3) and (5.5) and using (5.1)
yields the commutation equation (2.14) and the symplectic slice equation (2.15).
Equation (5.3) with the implicit function for the m-component of ξ′ inserted is
called rigid residual equation in [CLOR03]. If there is no Gµ-invariant splitting
g ⊕ q = g, ξ(ρ, v, η) is at least defined implicitly near (0, 0,Pgpξ). This is in-
serted into (5.5). In a last step, the resulting equation, which is the symplectic
slice equation in the above case, is reduced to the kernel V0 of d2

N h̄ξ′(0, 0) via
Lyapunov-Schmidt reduction. Since the g-derivative of the augmented Hamil-
tonian is given by the momentum map, the g-derivative of dN h̄ξ′(0, 0) is equal
to dNJN (0, 0) = 0 for any ξ′. Thus,

V0 = ker d2
N h̄ξ′(0, 0) = ker d2

N (h̄ξ′(ρ,v,η))(0, 0)

and hence the Lyapunov-Schmidt reduction step indeed yields an equation on
m∗ × V0 × gp.

The resulting equation is called the bifurcation equation. It is of the form

B(ρ, v0, η) = 0,

where B is a smooth function defined on a neighbourhood of (0, 0,Pgpξ) in
m× V0 × gp with values in V0. In the case of an equilibrium with symmetry G,
the bifurcation equation is a gradient equation, see Remark 2.12 or [CLOR03,
Remark 3.1]. If the action is proper and a Gµ-invariant complement exists, this
holds as well if some ρ ∈ (m∗)Gp is fixed: Then the symplectic slice equation
determines the relative equilibria near 0 ∈ N for the Gp-invariant Hamiltonian
system on the symplectic slice N with the Hamiltonian function h̄(ρ, ·). Thus,
the argument given in [CLOR03, Remark 3.1] applies. (As explained in Re-
mark 2.12, the Splitting Lemma yields the same equation in this case.) Set
Gp,ξ := Gp ∩Gξ. If all occurring subspaces are Gp,ξ-invariant (such a choice is
always possible for proper actions), the functions on the left hand side of the
rigid residual equation and the bifurcation equation are Gp,ξ-equivariant.

First, the authors apply this formalism to actions of Abelian groups and
obtain a generalization of theorem of Lerman and Singer, which is valid for
torus actions (at least Gµ has to be torus, see [LS98, Theorem 1.5]) to proper
actions:
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Theorem 5.2. If the Abelian group G acts properly on P and p ∈ P is a relative
equilibrium with generator ξ such that d2

Nhξ(0) is non-degenerate, p is contained
in a symplectic manifold of relative equilibria with the same isotropy type (H)
of dimension 2(dimG− dimH).

(This result was already presented in Ortega’s PhD thesis [Ort98].)
The proof relies on the fact that in this case the rigid residual equation

holds due to the commutativity of the group and the bifurcation equation is
also trivially satisfied, since the function B takes values in V0 = {0}. Thus, all
relative equilibria near p with generators near ξ are contained in the image of a
smooth function S. S is defined in a tubular neighbourhood of (e, 0) ∈ G× g =
G× (m⊕ h) by

(g, ρ, η) 7→ [g, ρ, v(ρ, η)],

where the right hand side denotes a point in the Marle-Guillemin-Sternberg
normal form and v : m⊕ h→ N is an implicitly defined H-equivariant smooth
function. Here, the Lyapunov-Schmidt-reduction step is just a trivial application
of the implicit function theorem. An examination of this step and the normal
form of the momentum map yield together that the rank of dhv((g, ρ, η) is given
by dimH−dimHv(ρ,η). (For a detailed computation, see [CLOR03].) Thus the
rank of S at a point (g, ρ, η) is given by

2(dimG− dimH) + (dimH − dimHv(ρ,η)).

Therefore the image of the restriction of S to a tubular neighbourhood of (e, 0) ∈
G×m is a manifold of dimension 2(dimG−dimH): Since v isH-equivariant and
H acts trivially on m, Hv(ρ,0) = H and the claim follows from the constant rank
theorem. A straightforward computation with the standard symplectic form of
the Marle-Guillemin-Sternberg model shows that the manifold is symplectic.

Remark 5.3. Curiously, the authors do not mention the fact that H acts
trivially on the whole Lie algebra g = m ⊕ h and hence Hv(ρ,η) = H for
every pair (ρ, η) which implies that v and S are constant in η. Thus, the
2(dimG − dimH)-dimensional manifold contains all relative equilibria near p
with velocities near ξ.

The case of non-trivial kernels of the Hessian of the augmented Hamiltonian
is also investigated in [CLOR03]. In this case, the solution set of the bifurcation
equation may bifurcate. The existence of non-trivial branches of relative equi-
libria is shown for maximal isotropy types with 1-dimensional fix point spaces
in V0 under the assumption that the rigid residual equation is satisfied on the
corresponding isotropy subspace of m∗×V0. For the Hamiltonian version of the
classical Equivariant Branching Lemma, the fix point space has to be real 1-di-
mensional, while another theorem deals with the case that the corresponding
normalizer induces an S1-action on the fix point space.

For the Hamiltonian analogue to the Equivariant Branching Lemma, the
fix point subspace of m∗ of the maximal isotropy subgroup is considered as
the parameter subspace. Thus this space has to be non-trivial. In particular
the theorem does not apply for relative equilibria near a true equilibrium with
the full symmetry. Moreover, the value of the momentum is varied along each
branch. The precise statement is as follows:
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Theorem 5.4. Let P be a symplectic manifold and p ∈ P be a relative equi-
librium with respect to a proper Hamiltonian action of the Lie group G with
generator ξ ∈ g and momentum µ ∈ g∗. Suppose that ker d2hξ(p) = gµ ⊕ V0.
Generically, for any subgroup K ⊂ Gξ,p with dimV K0 = 1, dim(m∗)K ≥ 1, and
the property that the rigid residual equation is satisfied on (m∗)K×V K0 ×{Pgpξ},
a branch of relative equilibria with isotropy subgroup K bifurcates from p.

Proof. If L := NGξ,p(K)
/
K , L acts freely on V K0 \ {0} ' R \ {0} and thus

L ' {e} or L ' Z2.
From a general property of equations obtained by Lyapunov-Schmidt reduc-

tion, it follows that dV0B(0, 0,Pgpξ) = 0:
Doing a Lyapunov-Schmidt reduction, the local solutions of an equation

F (x, λ) = 0 near a given solution (0, λ0) ∈ V ×Λ are expressed as the zeros of a
map of the form f(x0, λ) = PF (x0 + x1(x0, λ), λ). Here P is a projection whose
kernel coincides with the range of dV F (0, λ0) and x0 and x1 are coordinates
with respect to a splitting V0 ⊕ V1 with V0 := ker dV F (0, λ0). The implicit
function x1 satisfies x1(0, λ0) = 0. Thus, dV0f(0, λ0) = 0. In our special case,
f is given by B.

Set η0 := Pgpξ. dV0B(0, 0,Pgpξ) = 0 yields that in the two cases L ' {e}
and L ' Z2 the Taylor expansion of BK := B

∣∣
(m∗)K×V K0 ×{η0}

is of the following
form:

BK(ρ, v0, η0) =
{
〈κ, ρ〉+ cv2

0 + . . . L ' {e}
v0(〈κ, ρ〉+ cv2

0 + . . . ) L ' Z2
,

where the dots denote terms of at least second order, κ is an element of m∗,
〈·, ·〉 is an inner product on m∗, and c is a constant. By [GS85, chapter IV,
Table 2.1 and Table 2.3], in the generic case κ 6= 0 and c 6= 0, we have a saddle-
node bifurcation if L ' {e} and a pitchfork bifurcation if L ' Z2, when the
parameter ρ is varied in the direction of κ.

Next, the authors investigate the solution set of the bifurcation equation
on the vector space N within isotropy subspaces of maximal isotropy subgroups
K ⊂ NGp,ξ such that L := L(K) := NGp,ξ(K)

/
K is isomorphic to S1 or S1×Z2.

Such an isotropy subgroup is called complex isotropy subgroup. Indeed, they fix
a K-invariant complement of the Lie algebra k of K within the Lie algebra of
NGp,ξ . Since it is isomorphic to the Lie algebra of L, the complement will be
denoted by l in the following. Then, they restrict their search for solutions of
the bifurcation equation to the set {0}×V K0 ×l. This means that they search for
relative equilibria that correspond to periodic orbits of the Hamiltonian vector
field on N for the Hamiltonian function h̄(0, ·): The solutions correspond to
relative equilibria in NK with generators in the Lie algebra of NGp,ξ . Thus
their N◦Gp,ξ -orbits are invariant, which correspond to the orbits of the induced
L-action on NK . Hence the trajectories form periodic orbits.

Theorem 5.5 (as stated in [CLOR03, Theorem 5.2], see remark below for a
correction). Let p ∈ P be a relative equilibrium with generator ξ ∈ g with respect
to a proper Hamiltonian action of the Lie group G. Suppose that ker d2hξ(p) =
gµ ⊕ V0 and V Gp,ξ0 = {0}. Then for each maximal complex isotropy subgroup
K of the Gp,ξ-action on V0 for which the L = L(K)-action on gKp is trivial and
the rigid residual equation is satisfied on {0} × V K0 × l, there are generically at
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least 1
2 dimV K0 branches of relative equilibria bifurcating from p if L ' S1 and

1
4 dimV K0 ones if L ' S1 × Z2.

Remark 5.6. As far as I can see, there is a definiteness condition missing in
the statement of the theorem. We will come back to this below in a sketch of
the proof. For example, the assumption that d2h(0) is definite on V K0 suffices.

Moreover, it is not completely clear what “generically” and “branch” mean
in this context. I do not expect smoothness at the origin in general. A more
cautious formulation is that there are at least 1

2V
K
0 ( 1

4V
K
0 ) relative equilibria

such that the v0-component has norm ε > 0 for small values of ε and the
norm ‖v0‖ = ± 1

2d2h(0)(v0, v0). Then an additional genericity assumption is
unnecessary.

Let us broadly sketch the proof of Theorem 5.5:

Sketch of the proof of 5.5. Since by assumption the rigid residual equation is
satisfied on the set {0}×V K0 ×l, the solutions of the restriction of the bifurcation
equation to this set correspond to relative equilibria.

In a first step, the bifurcation equation is solved partly: For any choice of
an invariant inner product 〈·, ·〉, a blow up argument together with the implicit
function yields a smooth function α : V K0 → l such that

〈B(0, u, α(u)), u〉 = 0.

To apply the implicit function theorem, the lower order terms of 〈B(0, u, α), u〉
have to be computed. One obtains that 〈B(0, u, α), u〉 is of the form

〈B(0, u, α), u〉 = −Pd2
NJαY (0, 0)(u, u) + 〈u, L1(α)u+ g(u, α)〉, (5.6)

where P is the projection to V0, L1(α) is a linear endomorphism of V K0 with
L1(0) = L′1(0) = 0, g(0, α) = 0, and dug(0, α) = 0 for all α ∈ l. (Note that
d2
NJαY (0, 0) = d2JαN (0) if the Marle-Guillemin-Sternberg form is valid.)
Now, the authors argue that Pd2

NJαY (0, 0) is a multiple of the identity. This
is not true in general, but follows from the additional definiteness assumption
of Remark 5.6: Since d2

NJαY (0, 0) is linear in α ∈ l and l is 1-dimensional,
d2
NJαY (0, 0) is definite for all α 6= 0 if this is true for a particular choice of α 6= 0.

Now, V K0 6= {0} implies that ξ is contained in the Lie algebra of NGξ(K), since
V K0 is an invariant subspace with respect to the linear map d2

N (h̄ − JξY )(0, 0)
and the elements of V K0 are relative equilibria of the linearized vector field with
generator ξ. Since the restriction of d2

N h̄(0, 0) to V K0 is definite and d2
N h̄(0, 0) =

d2
NJξY (0, 0) on V0, d2

NJαY (0, 0) is definite for all α 6= 0. Moreover, since L
acts freely on V K0 , all irreducible subrepresentations of V K0 are given by an
isomorphism L ' SO(2). Definiteness of d2

NJαY (0, 0) on V K0 yields that only one
of the two possible isomorphisms occurs. Hence the restriction of d2

NJαY (0, 0) to
V K0 is given by ±α1.

Thus the right hand side of equation (5.6) is of the form f(u, α) ·‖u‖2, where
f is smooth and dαf(0, 0) = ±1. The implicit function theorem yields a locally
defined function α with f(u, α(u)) = 0.

For the second step, the authors set

Xε(u) := B(0, εu, α(εu)).
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Then Xε defines an L-equivariant vector field on the unit sphere S2n−1, 2n =
dimV K0 , such that the zeros of Xε correspond to solutions of the bifurcation
equation of norm ε2. As shown in [CLOR03, Lemma 5.3], the assumption that
NGξ(K) acts trivially on gKp implies that Xε is orthogonal to the L-orbits. In
the case that the action is proper and there is a Gµ-invariant complement of
gp in gµ, this follows even without this assumption, since in this case Xε is a
gradient vector field of an invariant function. Since this function is constant
on L-orbits, its gradient is perpendicular to them. (This argument is from
[CLOR03, Remark 5.5].) Thus the L-orbits of zeros of Xε correspond to the
zeros of the induced field X̃ε on S2n−1

/
L . By the Poincaré-Hopf theorem

(see for example [Mil65]), this number is generically not less than the Euler
characteristic χ(S2n−1

/
L ). In the case L ' S1, S2n−1

/
L is homeomorphic to

the projective space ξ(CPn−1) and thus χ(S2n−1
/
L ) = n. If L ' S1 × Z2, the

space S2n−1
/
L is homeomorphic to CPn−1

/
Z2 and thus χ(S2n−1

/
L ) = n

2 .

Since the orbits correspond to periodic orbits of the reduced field, this result
is related to the equivariant Weinstein-Moser-theorem of [MRS88], which will be
discussed in more detail in section 5.2.3: For simplicity, suppose that p = 0 is an
equilibrium in the symplectic representation V . In this case, the assumption that
the L-action on gKp is trivial is not necessary. Moreover, to exclude bifurcation
of equilibria, we suppose that d2h(0) is non-degenerate. The relative equilibria
predicted by Theorem 5.5 are contained in the fix point space V K , on which we
have an L-action. Let u be the trajectory of a relative equilibrium in V K \ {0}.
Then u forms a periodic orbit and an L◦-orbit. Let T be the minimal period of
u. Then for each t ∈ R, there is a map α : L◦ → S1 ' R/Z such that

lu(t) = u(t+ α(l)T ). (5.7)

By L-equivariance of the flow of Xh, α is independent of t and defines a group
homomorphism. Since the L-action on V K0 \ {0} is free, α is an isomorphism.

As explained above in the sketch of the proof, the definiteness condition
yields that the restriction of d2Jξ(0) to V K0 is a multiple of the identity. Thus
the same holds for d2h(0)

∣∣
V K0

. Hence V K0 is contained in the real part E±λ of
the sum of the eigenspaces of a pair ±λ ∈ iR of dXh(0).

All orbits of dXh(0) in E±λ are periodic with the same period and this yields
a free S1-action on E±λ. This action commutes with the G-action on E±λ. In
particular, we obtain a G × S1-action on E±λ. Consider the subgroup A of
G × S1 formed by the elements (n, s) with n ∈ NGξ(K)◦ and s = −α([n]),
where [n] ∈ L◦ is the equivalence class of n. Note that K = K × {e} ⊂ A,
and thus EA±λ. The equivariant Weinstein-Moser theorem (with the weaker
definiteness assumption as in [MRS88, Remark 1.2(c)]) states that there are
at least 1

2 dimEA±λ periodic orbits, which satisfy equation (5.7). Here we use
that EA±λ = V Aλ , where Vλ is the resonance space of λ as defined in [MRS88],
see also section 5.2.3. This follows easily from the fact that by maximality of
K, L◦ acts freely on V Kλ \ {0}. Moreover, we claim that EA±λ = V K0 . Thus,
Theorem 5.5 predicts the same number of group orbits of relative equilibria on
each energy level (if L ' S2 × Z2, two periodic orbits correspond to the same
group orbit). To be precise, the “energy levels” are defined a bit different in
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Theorem 5.5, see remark 5.6, but this should not make much difference. To
prove the claim, note that there is an element ηλ ∈ R of the Lie algebra of
S1 such that dXh(0)x = ηλx for every x ∈ E±λ and the S1-action on E±λ.
If x ∈ V0, then d2h(0)x = d2Jξ(0)(x) = d2Jξ(x) and hence dXh(0)x = ξx.
Since V K0 ⊂ E±λ, we have ηλx = ξx for x ∈ V K0 . This defines a Lie algebra
isomorphism between l and R and because the S1-action and the L◦-action are
free on V K0 , we obtain a group automorphism α : L◦ → S1 which transforms
the two actions into each other. Hence V K0 ⊂ EA±λ for the corresponding group
A. On the contrary, for x ∈ EA±λ ⊂ V K , the vector ηλx coincides with ηx for
η = dα(0)−1ηλ ∈ l. Since V K0 ⊂ EA±λ is non-empty, the equivalence class of ξ in
l coincides with η and thus EA±λ ⊂ V K0 .

5.2 Representations
One of the main goals of this thesis is the survey of the structure of relative
equilibria near 0 in a symplectic representation of the compact group G.

In this section, some known results for the case of representations are pre-
sented and some conclusions are added afterwards: We start in section 5.2.1 with
the paper [OR04(a)], in which Ortega and Ratiu apply the reduction method
presented in [CLOR03] to this case in order to find relative equilibria near a pos-
sibly non-extremal equilibrium. Their main result predicts branches of relative
equilibria tangent to a kernel V0 of the Hessian d2(h− Jξ)(0) of the augmented
Hamiltonian if d2h(0) is definite on V0 and the group Gξ acts transitively on
the unit sphere of V0.

We will discuss which part of the result remains true if the transitivity con-
dition is omitted. In fact, we obtain a lower bound for Gξ-orbits of relative
equilibria on each energy level which have a generator that is a multiple of ξ.
(In contrast, in chapter 6, the structure of the set of all relative equilibria with
arbitrary generators is investigated. For future work, it might be helpful to
combine both approaches.)

Afterwards in 5.2.2, the main result in [OR04(a)] is applied to the case of
groups of rank 1. In this case, all relative equilibria consist of periodic orbits
and thus the theory of periodic orbits near 0 in symplectic representations with
symmetry may also be helpful to predict relative equilibria (thanks to James
Montaldi for pointing this out). Indeed, the conclusions of 5.2.2 may also be
deduced directly from the equivariant Weinstein-Moser theorem of [MRS88].
This is sketched in 5.2.3. Nevertheless, the ideas presented in 5.2.2 may be
generalized using equivariant transversality theory. This way, we will obtain
one of the main results of this thesis, which will be presented in chapter 6.

5.2.1 Bifurcation equation for representations
In order to obtain the main result in [OR04(a)], which predicts relative equilibria
near an equilibrium, which is not necessarily stable, Ortega and Ratiu first
consider the stable case with definite Hessian d2h(0) and generalize the result
to the case that the restriction of d2h(0) to the kernel V0 of some augmented
Hamiltonian d(h−Jξ)(0) is definite. The theorem for the stable case is stated as
follows (note the explanation of the notions below): For the whole section 5.2,
let G denote a compact group.
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Theorem 5.7. Let (V, ω) be a Hamiltonian G-representation with momentum
map J and h a G-invariant Hamiltonian function such that h(0) = 0, dh(0) = 0,
and the quadratic form Q := d2h(0) is definite. If d2Jξ(0) is definite for ξ ∈ g
and ε > 0 is small enough, there are at least

CatGξ(h−1(ε)) = CatGξ(Q−1(ε))

Gξ-distinct relative equilibria in h−1(ε) whose generators are multiples of ξ.

Here, relative equilibria are called Gξ-distinct iff their Gξ-orbits are distinct.
Hence, the number of Gξ-distinct relative equilibria whose generators are mul-
tiples of ξ coincides with the number of G-orbits of relative equilibria whose
generators are given by a G-orbit of a multiple of ξ.

CatG denotes the equivariant Lyusternik-Schnirelmann category with re-
spect to the G-action, which is a lower bound for the number of critical orbits
of a G-invariant smooth function, see [Mar89].

The proof is quite simple and relies on the fact that Jξ is linear in ξ: For
any critical point x ∈ Q−1(ε) of the function Jξ restricted to the sphere Q−1(ε),
there is a Lagrange multiplier λ such that dJξ(x) = λdh(x). Since d2Jξ(0) is
definite, λ 6= 0 for small values of ε. Thus dJ

ξ
λ (x) = dh(x).

We now discuss the literal formulation of the generalization to the case that
the quadratic form is definite only on the kernel of d2(h − Jξ)(0) as stated in
[OR04(a)]: (The quintuple (V, ω, h,G,J) is called a Hamiltonian G-vector space
iff (V, ω) is a Hamiltonian G-representation with momentum map J and h is a
G-invariant Hamiltonian function.)

Theorem 5.8. Let (V, ω, h,G,J) be a Hamiltonian G-vector space with G a
compact Lie group. Suppose that h(0) = 0 and dh(0) = 0. Let ξ ∈ g be a root
of the polynomial equation

det(d2(h− Jξ)(0)) = 0.

Define
V0 := ker(d2(h− Jξ)(0))

and suppose that:

1. The restricted quadratic form Q := d2h(0)
∣∣
V0

on V0 is definite.

2. Let ‖·‖ be the norm on V0 defined by ‖v0‖ := d2h(0)(v0, v0), v0 ∈ V0. This
map is indeed a norm due to the definiteness assumption on d2h(0)

∣∣
V0

(if
d2h(0)

∣∣
V0

is negative definite, a minus sign is needed in the definition).
Let l = dimV0 and Sl−1 be the unit sphere in V0. The function j ∈
C∞(Sl−1) defined by j(u) := 1

2d2Jξ(0)(u, u) is Gξ-Morse with respect to
the Gξ-action on Sl−1.

Then there are at least

CatGξ(h
∣∣−1
V0

(ε)) = CatGξ(Q−1(ε))

Gξ-distinct relative equilibria of h on each of its energy levels near zero. These
relative equilibria appear in smooth branches when the energy is varied and their
velocities are close to ξ.
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First, let us consider condition 2 more closely: Since V0 := ker(d2(h−Jξ)(0)),
j is just the constant function 1

2 and thus condition 2 is true, iff the Gξ-action
on Sl−1 is transitive. Seemingly, this is not noticed by the authors (but all
examples in [OR04(a)] satisfy the transitivity condition). Moreover, this implies
that CatGξ(Q−1(ε)) = 1. In addition, condition 2 implies condition 1, since Q
is constant on Gξ-orbits.

We will discuss some suggestions for generalizations later. Nevertheless, the
result for the transitive case is also very useful as the examples in [OR04(a)]
illustrate. We will only need this version for the application presented in 5.2.2.

Let us outline the proof and meanwhile make the meaning of “branch” more
precise: As in [CLOR03], Ortega and Ratiu start with the mapping F : V ×
gGξ → V given by F (v, α) = dV (h−Jξ+α)(v) and perform a Lyapunov-Schmidt
reduction. Choosing a Gξ-invariant splitting V = V0 ⊕ V1 with corresponding
equivariant projection P : V → V1 and defining the map v1 : V0 × gGξ → V1
implicitly by

PF (v0 + v1(v0, α), α) = 0 ∀v0 ∈ V0,

they obtain the bifurcation equation

(1− P)F (v0 + v1(v0, α), α) = 0

on V0, which characterizes relative equilibria near 0 with generators near ξ in
gGξ . This the same proceeding as in [CLOR03] for the special case of represen-
tations. As mentioned in the discussion in [CLOR03], (x, α) is a solution of the
bifurcation equation iff dV0g(x, α) = 0, where

g(x, α) = (h− Jξ+α)(v0 + v1(v0, α)).

Alternatively, this may also be obtained using the Splitting Lemma.
Now, the main idea of the proof is to define the functions hα and Jβα on V0

by
hα(v0) := h(v0 + v1(v0, α)) and Jβα(v0) := Jβ(v0 + v1(v0, α))

and to consider critical points of the restriction Jξ+βα to the level sets on hα. If
v0 is such a critical point,

dJξ+βα (v0) = Λ(v0)dhα(v0). (5.8)

Then v0 is a relative equilibrium iff in addition

ξ + β

Λ(v0) = ξ + α. (5.9)

As a first step, the existence of smooth functions v0 : R × gGξ × gGξ → V0
such that v0(ε, α, β) is a critical point of Jξ+βα

∣∣
h−1
α (ε) is shown. Using the equiv-

ariant Splitting Lemma 2.9, there is a Gξ-equivariant α-dependent change of
coordinates ψα such that hα(ψα(v0)) = ‖v0‖2 + f(α) for some smooth function
f : gGξ → R. (If the quadratic form Q is negative definite, a minus has to be
added.) Moreover, since ψα(0) is a local minimum of hα, we have ψα(0) = 0
and f ∼= 0. Hence for fixed α, the level sets of hα are diffeomorphic to spheres.
Since equation (5.9) holds for the pair of functions Jξ+βα and hα iff it is true for
the pair Jξ+βα ◦ ψα and hα ◦ ψα, we may consider the latter pair instead.
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From now on, we replace the variable ε by r =
∥∥ψ−1

α (v0)
∥∥ depending on α.

In case of a transitive Gξ-action on Sl−1, the existence of a smooth branch
v0 is trivial: We may just set v0(r, α, β) = ru for any u ∈ Sl−1. Anyway, the
argument in [OR04(a)] does not rely directly on the transitivity condition and
hence it may possibly be adapted for a proof of a generalization. Ortega and
Ratiu use a blow-up to obtain branches corresponding to the non-degenerate
critical Gξ-orbits of the function j. (Hence the Gξ-Morse property of j is used,
but the equation V0 = ker d2(h − Jξ)(0) does not enter here). To do this, the
function Jξ+βα is composed with the mapping

R× Sl−1 → V0

(r, u) 7→ ψα(ru)

to obtain a function J̄ξ+βα depending on r and u. Since ψα(0) = 0, the resulting
function and its r-derivative vanish in 0. Hence, it is given by a product of r2

and third smooth function Ĵξ+βα . For fixed α = β = 0 and r = 0, we have
Ĵξ0(0, ·) = j:

2Ĵξ+βα (0, u) = ∂2
r J̄ξ+βα (0, u) = d

dr

2
Jξ+βα (ψα(ru))

∣∣∣∣
r=0

= d
drdJξ+βα (ψα(ru))dψα(ru)u

∣∣∣∣
r=0

= d2Jξ+βα (0)(dψα(0)u,dψα(0)u) + dJξ+βα (0)︸ ︷︷ ︸
=0

d2ψα(0)(u, u)

Moreover, since dJξ(0) and dh(0) vanish and dV0v1(0, 0) = 0 (as is quite stan-
dard and easy to see),

d2Jξ0(0)(·, ·) = d2Jξ(0)((1+ dV0v1(0, 0))·, (1+ dV0v1(0, 0))·) = d2Jξ(0)(·, ·)
(5.10)

holds on V0. Thus, we only have to show that d2Jξ(0)(·, ·) is dψ0(0)-invariant.
Since d2Jξ(0) = d2h(0), we may as well show this for d2h(0). Now from a
calculation analogous to equation (5.10), we obtain d2h(0) = d2h0(0). The
identity

h0 ◦ ψ0(v0) = ‖v0‖2 = d2h(0)(v0, v0)

implies

2d2h(0)(·, ·) = d2(h0 ◦ ψ0)(0)(·, ·) (5.11)
= d2h0(0)(dψ0(0)·,dψ0(0)·) = d2h(0)(dψ0(0)·,dψ0(0)·), (5.12)

which completes the proof of the claim.
Locally near a critical point u0 ∈ Sl−1 of j, an application of the Slice

Theorem yields coordinates z and s of u, where s is a point of a (Gξ)u0-invariant
slice and z ∈ Gξu0. By Gξ-invariance, Ĵξ+βα is independent of z. Since the
critical Gξ-orbits of j are non-degenerate, d2

sĴξ+βα (0, 0) is invertible for α = β =
0. Thus, the implicit function theorem yields a function s(r, α, β) such that

r · (z, s(r, α, β))
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is a critical point of Jξ+βα restricted to the sphere of norm r for any z. Set

u0(r, α, β) := (0, s(r, α, β))

and v0 = r · u0.
Next, we may deduce that the Lagrange multiplier

Λ(r, α, β) := Λ(v0(r, α, β))

depends smoothly on (r, α, β):

Λ(r, α, β) = d(Jξ+βα ◦ ψα)(v0(r, α, β)) · v0(r, α, β)
d(hα ◦ ψα)(v0(r, α, β)) · v0(r, α, β))

and the denominator does not vanish if r 6= 0. Moreover Λ can be extended
smoothly to the set r = 0: If

J̄ξ+βα (r, u) = Jξ+βα (ψα(ru)) and h̄α(r, u) = hα(ψα(ru)) = r2

for r ∈ R and u ∈ Sl−1, we have

d(Jξ+βα ◦ ψα)(ru)u = ∂rJ̄ξ+βα (r, u) = 2rĴξ+βα (r, u) + r2∂rĴξ+βα (r, u)
d(hα ◦ ψα)(ru)u = ∂rh̄α(r, u) = 2r.

Thus, if we abbreviate u0(r, α, β) by u0,

Λ(r, α, β) = 2rĴξ+βα (r, u0) + r2∂rĴξ+βα (r, u0)
2r = Ĵξ+βα (r, u0) + 1

2r∂rĴ
ξ+β
α (r, u0).

Hence Λ is smooth for r = 0 and Λ(0, 0, 0) = 1.
Now, to complete the proof, the zeros of the local mapping

E : R× gGξ × gGξ → gGξ

(r, α, β) 7→ ξ + β − Λ(r, α, β)(ξ + α)

near the zero in (0, 0, 0) are investigated via Lyapunov-Schmidt reduction. In a
first step, the authors show thatW0 := ker dβE(0, 0, 0) = Rξ. Hence, choosing a
complementW1 ofW0 within gGξ , the implicit function theorem yields a smooth
locally defined function ρ : R× gGξ × Rξ →W1 that solves

(1− PW0)E(r, α, w0 + w1) = 0,

where w0 ∈ W0, w1 ∈ W1, and PW0 is the projection to W0 associated to the
splitting gGξ = W0 ⊕W1. Next,

g(r, α, w0) := PW0E(r, α, w0 + ρ(r, α, w0)) = 0

has to be solved. As calculated in [OR04(a)], the directional derivative

dαg(0, 0, 0)
∣∣
Rξ⊂gGξ

is given by −1. Thus, there is an implicitly defined local function λ : R×W1 ×
Rξ → R with λ(0, 0, 0) = 0 and

g(r, λ(r, ν, w0)ξ + ν, w0) = 0.
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Hence, in case of a transitive Gξ-action on Sl−1, we obtain a branch of relative
equilibria parameterized by (r, ν, w0) ∈ R×W1 × Rξ: The smooth function

v : (r, ν, w0) 7→ v0(r, α(r, ν, w0), β(r, ν, w0))
+ v1(v0(r, α(r, ν, w0), β(r, ν, w0)), λ(r, ν, w0)ξ + ν)

gives the location of a relative equilibrium for (r, ν, w0), whose generator is given
by ξ + λ(r, ν, w0)ξ + ν and whose energy level (value of the function h) is r2.

Remark 5.9. We now investigate these branches more closely: Consider the
sets gGξ . Since Gξ contains a maximal torus T

gGξ ⊂ gT = t,

where the last equation follows from the maximality of T . Thus,

gGξ = tGξ .

By [BtD85, chapter V, Proposition 2.3, part (ii)], tGξ is given by t if ξ is regular
and tGξ coincides with the intersection of all Weyl walls containing ξ other-
wise (where t∗ and t are identified). As will be shown in section 6.4, the set
of elements η ∈ t with det(d2(h − Jη)(0)) = 0 forms a union of affine hyper-
planes of t. Moreover, each of these hyperplanes is associated to an irreducible
subrepresentation of T such that ker(d2(h − Jη)(0)) consists of the sum of the
irreducible subrepresentations corresponding to the hyperplanes that contain η.
The underlying subspace of an affine hyperplane coincides with the Lie algebra
tx of the stabilizer Tx of any nonzero element x of the associated irreducible
representation. By the non-degeneracy of d2h(0), these affine hyperplanes do
not contain 0. Thus the intersection of each of these affine hyperplanes with
gGξ = tGξ is an affine hyperplane of tGξ or empty. We now take the condi-
tion into account that Gξ acts transitively on Sl−1. This implies that (Gξ)v0

and (Gξ)w0 are Gξ-conjugate for any two non-zero elements v0, w0 ∈ V0. If
the corresponding Lie algebras are denoted by gξ,v0 and gξ,w0 respectively, this
yields

tv0 ∩ gGξ = gξ,v0 ∩ gGξ = gξ,w0 ∩ gGξ = tw0 ∩ gGξ .

Hence, ξ is contained in only one of these affine hyperplanes of tGξ : The underly-
ing subspaces of these hyperplanes are of the form tv0∩gGξ for some v0 ∈ V0\{0}
and hence are all equal.

Thus, we may choose W1 to be the underlying subspace of the affine hyper-
plane of tGξ that contains ξ. Indeed, since 0 is not an element of this affine
hyperplane, in this case, W1 is a complement of the space W0 generated by ξ.
Then W1 is contained in the Lie algebra of the stabilizer of any element of V0.

If we perform the Lyapunov-Schmidt reduction with respect to the sym-
metry, i.e. we choose a Gξ-invariant complement V1, the implicitly defined
function v1 is Gξ-equivariant. Hence, we may assume that the stabilizers of
v0 and v0 + v1(v0, α) within Gξ coincide for any α ∈ gGξ . Thus, W1 is con-
tained in tGξ ∩ gv(r,ν,w0) for every triple (r, ν, w0). This implies that for every
ν ∈ W1, the Lie algebra element ξ + λ(r, 0, w0)ξ + ν is a generator of the rel-
ative equilibrium v(r, 0, w0). Since the proof of Theorem 5.8 yields all pairs
of a relative equilibrium near 0 and a generator in gGξ near ξ and the pair
(v(r, ν, w0), ξ + λ(r, ν, w0)ξ + ν) is the unique one with W1-component ν, the
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functions v and λ are constant in ν. Alternatively, this can be argued in a
more explicit way: Since W1 is contained in the Lie algebra of the stabilizer of
v0 + v1(v0, α) for any v0 and α, dJν(v0 + v1(v0, α)) vanishes for any ν ∈ W1.
Hence, v1(v0, α) = v1(v0, α+ ν) and the function Jβα is constant in the W1-com-
ponent of both α and β. Going through the construction of v and λ, we obtain
that these functions are constant in ν ∈W1.

Thus, the branches can be parameterized by r and the 1-dimensional variable
w0.

Now, we discuss some ideas how to generalize the transitivity condition:
First, we replace the condition by the assumption that Gξ acts irreducibly

on V0. If we define

‖v‖0 = ±d2h(0)
∣∣
V0

(v0, v0) = ±d2Jξ(0)
∣∣
V0

(v0, v0),

it is not hard to see that the function h̄(u, r) := h(ru) is of the form

h̄(u, r) = r2(1
2 + rf(u, r))

for some C∞-function f : Sl−1 × R→ R.
Thus, we have to consider terms of at least order 3 to obtain non-constant

restrictions to the spheres. Due to symmetry, even higher order terms may be
forced to be constant. It seems to be reasonable to consider the lowest order
terms that are not constant. Then a blow-up argument might be possible if
an additional condition is satisfied: Suppose that the lowest order term that is
not constant on spheres is a Morse-function. In this case, we may proceed in
a similar way as Ortega and Ratiu ([OR04(a)]) or Field ([Fie07, chapter 4]),
who presents a blow-up method for bifurcation theory developed by Field and
Richardson. Unfortunately, the condition on the lowest order term without
spherical symmetry is presumably not generic for every irreducible representa-
tion.

Moreover, as far as I can see, the assumption that V0 is an irreducible Gξ-rep-
resentation is necessary for a blow-up argument that yields a non-constant func-
tion on the 1-sphere for r = 0: For simplicity, search for relative equilibria
with generators in the space W0 of multiples of ξ. Let us call the correspond-
ing 1-dimensional parameter λ (instead of w0). Then the Lyapunov-Schmidt
reduction may cause terms that depend on λ and u in a non-constant way
and are only quadratic in r. In this case, a blow-up cannot be performed. If
V0 := ker d2(h − Jξ(0)) is irreducible, the Gξ-equivariance of the derivatives of
the invariant functions v0 7→ h(v0 + v1(v0, λ)), v0 7→ Jξ+λ(v0 + v1(v0, λ)), and
similar ones prohibits such terms.

Thus, a generalization in this way would not gain much if we aim to inves-
tigate the structure of the set of relative equilibria near the equilibrium 0 in
general.

Therefore, it seems to be impossible to prove the existence of branches that
are smooth at the origin under genericity assumptions this way. Smoothness
at the origin is probably not a generic phenomenon in general. Nevertheless,
there is another approach to generalize the transitive condition, which yields a
theorem in spirit of the original intention of Theorem 5.8 without a smoothness
result. In some way, it is even closer to the original idea of Theorem 5.7:
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For simplicity, we search only for solutions with generators of the form λξ
for λ in R. Set

hλ(v0) = hλξ(v0), Jλ(v0) = Jλξλξ(v0), Ψλ(v0) = Ψλξ(v0),

where the right hand sides are defined in the proof of Theorem 5.8. Then
hλ ◦Ψλξ(v0) = ‖v0‖2. In order to find solutions of

d(hλ ◦Ψλξ − Jλ ◦Ψλξ) = 0,

we proceed in a similar way as the authors of [CLOR03] in the proof of Theo-
rem 5.5:

First we use the implicit function theorem to obtain a locally defined function
λ such that

〈∇(Jλ(v0) ◦Ψλ(v0))(v0), v0〉 = 0. (5.13)

To do this, we observe that for r ∈ R and an element u of the unit sphere of V0

〈∇(Jλ ◦Ψλ)(ru), u〉 = d(Jλ ◦Ψλ)(ru)u

= ∂rJ̄
λξ
λξ (r, u)

= r(2Ĵλξλξ(r, u) + r∂rĴλξλξ(r, u)).

A similar calculation as in the proof of Theorem 5.8 yields that the λ-derivative
of the term in the parenthesis at λ = 1 and r = 0 is given by 2j(u, u) = 1. Thus
there is a locally defined function λ such that equation (5.13) holds. Then the
critical points of

Jλ(v0) ◦Ψλ(v0)

restricted to the spheres of norm ε correspond to relative equilibria within the
energy level h−1(ε2). Since this function is Gξ-invariant, we obtain Theorem 5.8
with condition 2 and the smoothness statement omitted.

Example 5.10. Consider the T -representation on C ⊕ C with T = S1 × S1

such that the first factor acts on the first summand and the second factor on the
second one by multiplication in C. Suppose that h : C⊕C→ R is a T -invariant
Hamiltonian function with dh(0) = 0 and d2h(0) definite. Any G-invariant
real-valued function on C⊕ C is of the form (z1, z2) 7→ a|z1|2 + b|z2|2 for some
real numbers a and b. Thus the minimum number of critical orbits on the unit
sphere of such a function is 2. It is easy to see that there is a ξ ∈ t with
d2(h − Jξ)(0) = 0. Hence from the above variant of Theorem 5.8 follows that
there are at least 2 orbits of relative equilibria on each energy level. Anyhow,
every point of C ⊕ C is a relative equilibrium, since the momentum level sets
coincide with the T -orbits, see section 6.4.

Anyway, if we search for relative equilibria with periodic orbits, the tran-
sitivity condition is often satisfied for the relevant kernels and thus we obtain
smooth branches. This will be presented in the next section.

5.2.2 Implications for groups of rank 1
Again, we suppose that V is a symplectic G-representation and 0 ∈ V a non-
degenerate critical point of a G-invariant Hamiltonian function h. We will see
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that Theorem 5.8 predicts a branch of relative equilibria for every 2-dimensional
kernel V0 = ker d2(h− Jξ)(0). In particular, if G is a connected compact group
of rank 1, this application of Theorem 5.8 yields the generic structure of all
relative equilibria near 0.

Indeed, let T ⊂ Gξ be a maximal torus with ξ contained in the Lie algebra t of
T and consider V0 = ker d2(h−Jξ)(0) as a T -representation. This representation
is non-trivial: Otherwise, Jξ

∣∣
V0

and hence d2Jξ(0)
∣∣
V0

= d2h(0)
∣∣
V0

vanishes,
which contradicts the assumption that d2h(0) is non-degenerate. Thus V0 is
2-dimensional iff V0 is a non-trivial irreducible T -representation and in this case,
T ⊂ Gξ acts transitively on the unit sphere of V0. Then Theorem 5.8 applies
and we obtain a branch of relative equilibria tangent to V0 with multiples of ξ
as generators.

We now consider an approach to find all relative equilibria near 0:
A necessary condition for the local existence of relative equilibria near 0

is the occurrence of purely imaginary eigenvalues of dXh(0). Otherwise, 0 is
a hyperbolic equilibrium of Xh. As presented in chapter 3, purely imaginary
eigenvalues can occur in a stable way in Hamiltonian systems.

Indeed, using the Splitting Lemma or equivalently Lyapunov-Schmidt reduc-
tion, we may reduce our search for relative equilibria to the union of the kernels
ker d2(h−Jξ)(0) for ξ ∈ g, and the next lemma shows that all these kernels are
contained in the centre space Ec of dXh(0):

Lemma 5.11. ker d2(h− Jξ)(0) ⊂ Ec for every ξ ∈ g.

Proof. Consider the linearization of Xh at 0. The vector field x 7→ dXh(0)x
is the Hamiltonian vector field of the quadratic part Qh of h. Since Jξ is also
quadratic, d(Qh − Jξ)(x) vanishes for x ∈ V0 := ker d2(h − Jξ)(0) and hence
V0 consists of relative equilibria of XQh . Obviously, all compact trajectories of
the linearization have to be contained in the centre space, in particular relative
equilibria.

By Theorem 3.16, generically there is a choice of an inner product such
that the eigenspaces of the restriction d2h(0) to Ec are irreducible G-symplectic
representations and the symplectic form defines a complex structure J . In the
following, we assume that this genericity assumption is satisfied and fix an
appropriate inner product and a base. Since the eigenspaces are G-symplectic,
they are d2Jξ(0)-invariant for any choice of ξ ∈ g. Thus, we can search for
solutions ξ of

det d2(h− Jξ)(0) = 0

on any restriction to an eigenspace of d2h(0) separately. Generically, we ob-
tain disjoint solution sets for each eigenspace of d2h(0). (From the following
calculation of the eigenvalues of d2Jξ(0) in the rank 1 case, it will follow that
this is satisfied if the purely imaginary eigenvalues of Xh(0) = Jd2h(0) are non-
resonant in an equivariant sense, which means that for each pair ±αi of purely
imaginary eigenvalues, no other integer multiples of αi occur and the space Eαi
is an irreducible G-symplectic subrepresentation.)

Hence, for each eigenvalue c ∈ R \ {0} of d2h(0), we have to identify the
values of ξ ∈ g such that c is an eigenvalue of d2Jξ(0). Since the set of those
ξ consists of G-orbits of the adjoint representation on g, we may restrict our
search to the Lie algebra of a maximal torus of G.
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If J denotes the linear map representing ω with respect to our choice of an
invariant inner product, we consider each eigenspace as an irreducible complex
representation by setting ix := Jx.

We now suppose that G is a connected compact group of rank 1. By [BtD85,
chapter V, Corollary 1.6], there are only two groups of this kind: SO(3) and
SU(2). Hence we consider a symplectic G-representation (V, ω), where G =
SO(3) or G = SU(2).

In case G = SU(2), the irreducible complex representations are given by the
spaces Sn, n ∈ N, where S0 is the trivial representation, S1 is the standard
representation on C2, and Sn is the nth symmetric power of S1. (The theory
of SO(3)- and SU(2)-representations is presented for example in [BtD85]. The
relevant facts are summarized in this paragraph.) Sn may be identified with
the space of homogeneous polynomials of power n. Then g ∈ SU(2) acts on a
polynomial P ∈ Sn by

(gP )(z) = P (zg),

where z is considered as a line vector and the product zg denotes matrix mul-
tiplication. The polynomials

Pk(z1, z2) = zk1z
n−k
2 , 0 ≤ k ≤ n

form a basis of Sn. Moreover, each of these basis elements generates an irre-
ducible representation of the maximal torus of SU(2) formed by the elements of
the form

gθ =
(
θ 0
0 θ−1

)
, θ ∈ U(1) ' S1 :

Since gθPk = θ2k−nPk, the representation is isomorphic to the irreducible
U(1)-representation U(1) → U(1) given by θ 7→ θ2k−n. Moreover, since these
representations are pairwise different, the elements Pk are pairwise orthogonal
with respect to any invariant Hermitian product. The irreducible subrepresen-
tations Pk of the maximal torus of SU(2) are called weight spaces. Now, let us
compute d2Jξ(0) for ξ contained in the Lie algebra t of this maximal torus: By
definition,

dJξ(x)y = ω(ξ · x, y) = 〈ξ · x, iy〉

for our fixed invariant (real-valued) inner product 〈·, ·〉. Thus d2Jξ(0) is given
by −iAξ, where Aξ is the matrix corresponding to the action of ξ:

Aξx = ξ · x = d
dt

(
e2πitξ 0

0 e−2πitξ

)
x

∣∣∣∣
t=0

= d
dtge2πitξx

∣∣∣∣
t=0

Thus the vectors Pk are complex eigenspaces of Aξ with corresponding eigen-
values 2πi(2k − n)ξ and hence the eigenvalues of d2Jξ(0) are 2π(2k − n)ξ.

Let U be an eigenspace U of d2h(0) contained in Ec with eigenvalue c 6= 0
isomorphic to Sn. Then the solutions ξ ∈ t of det d2(h − Jξ)(0) = 0 are given
by 1

2k−n ·
c

2π for k = 0, . . . , n if n is odd and k = 0, . . . , n2 − 1, n2 + 1, . . . , n
if n is even. Since ξ and −ξ belong to the same adjoint orbit, we obtain n+1

2
adjoint orbits in the Lie algebra of SU(2) with a non-invertible restriction of
d2(h − Jξ)(0) to U for odd n and n

2 orbits for even n. For each element ξ of
these orbits, the kernel is isomorphic to C and the stabilizer Gξ = SU(2)ξ is
isomorphic to the maximal torus S1 which acts transitively on the unit sphere
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of the kernel. Thus we generically obtain n+1
2 branches of relative equilibria for

each summand Vn of Ec with n odd and n
2 branches for each summand Vn of Ec

with n even. Each branch is the SU(2)-orbit of an R-2-dimensional symplectic
manifold.

The analysis in the case G = SO(3) is similar: SU(2) can be expressed as a
two-fold covering of SO(3) and hence the irreducible representations of SO(3)
can be considered as irreducible SU(2)-representations. This way, we obtain ex-
actly those irreducible SU(2)-representations, whose kernel contains −1. These
are the representations Sn with n even. (See [BtD85] for details.) Thus, we also
generically obtain l branches for each summand S2l of Ec. Since the covering
epimorphism SU(2)→ SO(3) may be restricted to a two-fold map between the
maximal tori which induces multiplication by 2 on the corresponding Lie alge-
bras, the corresponding generators on a c-eigenspace of d2h(0), c 6= 0 are given
by the adjoint orbits of 1

k−l ·
c

2π for k = 0, . . . , l − 1.

5.2.3 Equivariant Weinstein-Moser theorem
Alternatively, the results for SO(3)- and SU(2)-representations may be deduced
by a simple application of the equivariant Weinstein-Moser theorem of [MRS88].
We first state the theorem, which is an adaption of a theorem proved by Wein-
stein and Moser to the symmetric case, and prove the results for the rank 1 case
as a corollary. A broad sketch of the proof and history of the Weinstein-Moser
theorem and its equivariant version is given afterwards.

As before, let G be a compact Lie group, V be a G-symplectic representation,
and h : V → R be a G-invariant Hamiltonian.

Definition 5.12. For any non-zero purely imaginary eigenvalue νi (i.e. ν ∈
R \ {0}) of L := dXh(0), let the resonance space Vνi be the real part of the sum
of eigenspaces with eigenvalues of the form kνi, k ∈ Z.

Any resonance space Vνi is G-invariant. Moreover, if the restriction of the
linearization L to Vνi is diagonizable over C, there is an S1-action on Vνi: The
trajectories of the flow of the linearized vector field x 7→ Lx are all 2π

|λ| -periodic,
and thus the flow defines an S1-action which commutes with the G-action by
equivariance of the flow. This yields a G× S1-action on Vνi.

The equivariant Weinstein-Moser theorem requires the following two condi-
tions on the Hamiltonian function and the resonance space, which Montaldi,
Robert, and Stewart call H1 and H2:

• (H1) d2h(0) is a non-degenerate quadratic form.

• (H2) d2h(0)
∣∣
Vνi

is positive definite.

Condition H2 implies the semi-simplicity of L
∣∣
Vνi

: There is an inner product
〈·, ·〉 with respect to which d2h(0) is represented by a multiple of the identity.
Thus L is a multiple of the matrix J with ω = 〈·, J ·〉, which is skew-symmetric
and hence diagonizable.

Thus Vνi may be considered as a G × S1-symplectic representation as ex-
plained above.

The set of periodic orbits may also considered as a G-space: Let σ : R→ V
be a periodic trajectory with minimal period τ . With the identification S1 =
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R/Z , for (g, θ) ∈ G× S1, we define

((g, θ)σ)(s) = gσ(s+ θτ).

For each isotropy subgroup of the G × S1-action on Vνi, the equivariant
Weinstein-Moser theorem predicts periodic orbits that have this symmetry with
respect to the G× S1-action on the set of periodic orbits:

Theorem 5.13 (Equivariant Weinstein-Moser theorem, [MRS88, Theorem 1]).
Suppose (H1) and (H2) hold. Then for every isotropy subgroup K ⊂ G× S1 of
the G× S1-action on Vνi, there exist at least

1
2 dimV Kνi

periodic trajectories of Xh with periods near 2π
|λ| and symmetry group containing

K on each level set of h near 0.

To be precise, for our application, we need the following special case, which
is a generalization of the Lyapunov centre theorem. (See [AM67, appendix C]
for a version by Kelley, which coincides with the theorem below for the case of
a trivial representation if the word “smooth” is replaced by “C1”. The original
version of the Lyapunov centre theorem, that appeared in [Lya49], misses the
smoothness statement and applies only for analytic Hamiltonians.) In this case,
the proof also yields smooth branches of relative equilibria:

Theorem 5.14 (Equivariant Lyapunov centre theorem, Remark 1.2 (b) in
[MRS88]). Suppose that in Theorem 5.13, dimV Kνi = 2. Then there is a smooth
2-dimensional submanifold of V through 0 tangent to V Kνi which consists of pe-
riodic orbits with symmetry group K.

In addition, we need the following completeness statement, which follows
from the proof of Theorem 5.14:

Theorem 5.15. In the setting of Theorem 5.14, the 2-dimensional manifold
contains all periodic orbits near 0 with symmetry group K and periods near 2π

|λ| .

Lemma 1.46 implies immediately:

Corollary 5.16. If in the setting of Lemma 1.46, the group G has rank 1, p is
contained in a periodic orbit.

(Here, we consider an equilibrium as a special case of a periodic orbit.)
Thus for groups of rank 1, we only have to find periodic orbits with additional

symmetry properties to obtain all relative equilibria:
Suppose that p is a relative equilibrium, but not an equilibrium. Fix a torus

T such that the trajectory of p is contained in Tp. Then the trajectory of p is
periodic and coincides with Tp. Let τ denote its minimal period.

If S1 = R/Z and σ : R → V denotes the trajectory of p, there is a map
θα : T → S1 such that for any t ∈ T and s ∈ S1

tσ(s) = σ(s+ θα(t)τ).
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By T -equivariance of the flow, θα(t) is independent of s and forms a group
homomorphism. Then the isotropy subgroup of σ contains the group

Kα :=
{

(t,−θα(t)) ∈ G× S1 ∣∣ t ∈ T} .
On the contrary, any periodic orbit fixed by a group of this type is a relative
equilibrium iff θα is surjective, which is equivalent to θα being non-trivial.

If the resonance space Vνi of any purely imaginary eigenvalue νi of L is
considered as a complex representation by extending the S1-action R-linearly
to C, the space V Kανi coincides with the weight space corresponding to θα of Vνi.
(Note that in case dXh(0) ∈ O and hence Vνi = E±νi, this complex structure
coincides with the one that we obtain from theorem 3.15.)

Now, the equivariant Lyapunov centre Theorem 5.14 yields the following
generic structure of relative equilibria:

Corollary 5.17. Suppose that each resonance space Vνi forms an irreducible
complex G-representation and hence Vνi ' Sn for some n. Moreover, suppose
that (H1) and (H2) are satisfied for each Vνi. Then there are n+1

2 smooth
branches of G-orbits of relative equilibria bifurcating from 0 if n is odd and n

2
such branches if n is even. The trajectories form periodic orbits with periods
near |λ|2π . The union of these branches for all resonance spaces contains all
relative equilibria near 0.

Proof. The result follows from the above arguments, the decomposition of Sn
into weight spaces as presented in the last section and Theorems 5.14 and 5.15.

Remark 5.18. Suppose that G is a compact connected group, not necessarily
of rank 1 and T ⊂ G is a maximal torus. A (global) weight of a complex
G-representation V is a complex 1-dimensional T -subrepresentation given by
a map θα : T → U(1) ' S1. As in the last chapter, we obtain a branch of
relative equilibria (with periodic trajectories) for each non-trivial weight θα of
the centre space Ec (counted with multiplicities): Let Kα = {(t, θα(t)) | t ∈ T}
be the corresponding subgroup of G × S1. For every resonance space Vνi, the
space V Kανi coincides with the weight space of Vνi corresponding to the weight θα.
Moreover, the periodic orbits with isotropy group containing Kα are obviously
relative equilibria. Thus, the the Equivariant Weinstein-Moser Theorem implies
the existence of a family of relative equilibria that intersects each energy level in
a G-orbit. If θα occurs with multiplicity one, this family is smooth. Obviously,
these relative equilibria are contained in the fixed point space of the group ker θα,
which coincides with the weight space in V corresponding to α. Conversely, all
relative equilibria in this weight space are contained in such a family. This
follows from the following implication of corollary 5.16.

Corollary 5.19. If in the setting of Lemma 1.46, M is a representation and p
is contained in an irreducible real subrepresentation of a maximal torus of G, p
is contained in a periodic orbit.

Proof. Since irreducible torus representations are at most of dimension 2, the
isotropy subgroup H = Gp contains a torus whose dimension is at least rankG−
1. Thus the group N(H)

/
H is at most of rank 1. V H is an X-invariant
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subspace, and the restriction of X to V H is N(H)
/
H -equivariant. Hence p is

either a relative equilibrium with respect to a finite group action, which is an
equilibrium, or corollary 5.16 applies.

The proof of Theorem 5.13 in principle follows [Wei78], which was preceded
by several publications on persistence of periodic orbits, starting with [Mos70]
and [Wei73].

These articles deal with manifolds consisting of periodic orbits contained in
a level set of the Hamiltonian function. If these manifolds satisfy some non-
degeneracy assumption, it is shown that a finite number of periodic orbits per-
sists under perturbations of the Hamiltonian function and the number of these
orbits is estimated with respect to the topology of the manifold. By consider-
ing the Hamiltonian function as a perturbation of its linearization and using a
blow-up argument, this yields periodic solutions near an equilibrium point with
definite Hessian of the Hamiltonian function.

The reasoning in [Wei78] is similar to the proof of the Hopf theorem known
in bifurcation theory: The problem of finding periodic orbits in a symplectic
manifold P is reformulated on the infinite dimensional loop space of maps S1 →
P . Then the periodic orbits correspond to the zeros of some closed 1-form
defined on the loop space (and thus in the exact case, to the critical points
of some function called the action integral). Afterwards, one reduces to finite-
dimensions again using some kind of Lyapunov-Schmidt reduction. In principle,
this proceeding is suggested by Moser in [Mos76], where the existence of periodic
orbits near an equilibrium point is investigated, but it is implemented in a quite
indirect way there. In [Wei78], Weinstein deals with the technical difficulties
to give an appropriate notion of a Hamiltonian system on the loop space such
that the periodic orbits correspond to the zeros of the Hamiltonian vector field
on the loop space and hence to the zeros of a 1-form. Moreover, Weinstein
gives a definition of non-degeneracy for this setting, which allows to perform a
Lyapunov-Schmidt reduction:

In case of infinite-dimensional manifolds, we cannot expect the tangent space
at a point to be isomorphic to its dual space in general. Thus, the symplectic
form defined by Weinstein on the loop space induces an isomorphism of the
tangent space of a point to a dense subspace of its dual. Accordingly, it is called
a weak symplectic structure.

Indeed, let the loop space
∧
P be the function space C1(S1, P ). (This way,

it is a Banach manifold.) The tangent space Tc
∧
P at c ∈

∧
P is given by the

space of Γ1(c∗TP ) of C1 vector fields along c. Its dual is given by some space of
distributions. If ω is the symplectic form on P , Weinstein endows

∧
P with the

weak symplectic structure given by its lift
∧
ω, where the lift

∧
α of an n-form

α on P is given by

〈
∧
α, (v1, . . . vn)〉 =

∫ 1

0
〈ω(c(t)), (v1(t), . . . vn(t))〉dt.

(Here S1 is identified with R/Z , thus c can be considered as a curve pa-
rameterized t ∈ [0, 1].) For each c ∈

∧
P ,
∧
ω yields an isomorphism from

Tc
∧
P = Γ1(c∗TP ) to Γ1(c∗T ∗P ), which is a dense subspace of T ∗c P .

Next, Weinstein determines a 1-form, whose zeros correspond to periodic
orbits of Xh in P : Let D denote the vector field on

∧
P defined by D(c) = dc

dt .
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(To be precise, D(c) is in general only a continuous vector field along c and thus
D(c) is not a section of T

∧
P but of its super-bundle Ť

∧
P , where Ťc

∧
P =

Γ0(c∗TP ). We will come back to this later.)
A loop c ∈

∧
P forms a periodic orbit of Xh of period 1 iff

∧
Xh(c) :=

Xh ◦ c = D(c). More generally, c corresponds to a periodic orbit of period τ > 0
iff D(c) = τ

∧
Xh(c). Now, we consider the dual formulation:∧

ω(D, ·) = τ
∧
ω(Xh, ·) = τd

∧
h,

where
∧
h(c) =

∫ 1
0 h(c(t))dt. The periodic orbits contained in an energy level

set h−1(E) with E ∈ R may be expressed as the zeros of a single closed 1-form
αhE defined on the space

∧
P × R+:

〈αhE(c, τ), (v, a)〉 =
∧
ω(D, v)− τd

∧
h− a

∧
(h− E)(c).

As Weinstein shows,
∧
ω(D, v) is exact if ω is exact. More precisely, ω = dθ

implies
∧
ω(D, v) = dA for A(c) =

∫
c
ω. In this case, αhE = dψhE for

ψhE(c, τ) = (A− τ(h− E))(c).

Since D(c) is an element of Γ0(c∗TP ),
∧
ω(D, ·) can be considered as an

element of Γ0(c∗T ∗P ), which is a subspace of the dual space T ∗c P of TcP =
Γ0(c∗TP ). Thus αhE is a section of the dense subbundle Ť ∗

∧
P , whose fibre

T ∗c
∧
P is Γ0(c∗T ∗P ).

Now, Weinstein develops a theory of weak non-degeneracy for zero sets of 1-
forms, whose image is contained in a fixed dense subbundle Ť ∗B of the cotangent
bundle of a manifold B modelled over a reflexive Banach space: If α : B → T ∗B
is a closed 1-form on B and Z ⊂ B is a compact manifold with α(b) = 0
for every b ∈ Z, Z is called non-degenerate (due to definitions by Bott and
others) iff for every b ∈ Z, the derivative dbα : TbB → T ∗b B has closed range
and ker dbα = TbZ. In the case that the image of α is contained in Ť ∗B this is
impossible, since dbα cannot have a closed range and a finite dimensional kernel.
Then, α = i ◦ α̌, where α̌ : B → Ť ∗B and i : Ť ∗B → T ∗B is the inclusion.
In this case, Weinstein calls Z a weakly non-degenerate zero manifold of α iff α̌
has closed range and ker(dbα̌)∗ = i∗TbZ. Since the domain of (dbα̌)∗ contains
the domain of (dbα)∗ = dbα, the elements of ker(dbα̌)∗ may be seen as weak
solutions of dbα̌v = 0.

Using this concept, Weinstein is able to perform a Lyapunov-Schmidt re-
duction, formulated in terms of transversality theory, to obtain the following
result:

Theorem 5.20. If α and φ are 1-forms on B with image in Ť ∗B, α is closed,
and Z ⊂ B is a compact weakly non-degenerate zero manifold for α, then there
is a neighbourhood UofZ and a family of embeddings eε : Z → U defined for
small ε > 0 such that the zero set of α+εφ is given by the zero set of its pullback
to eε(Z).

In addition, Weinstein argues that by homotopy invariance of de-Rham-
cohomology, the pullback α to eε(Z) is exact, since its pullback to e0(Z) = Z
is 0. If φ is exact, the zeros of α + εφ consequently coincide with the critical
points of a function.
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To obtain a result for periodic orbits, this theorem is applied to the closed
1-form αhE on the space

∧
P × R+. A submanifold Z ⊂

∧
P × R+ is called a

non-degenerate periodic manifold iff Z is a weakly non-degenerate zero manifold
of αhE and none the of the corresponding periodic orbits is a point curve. As
shown in [Wei78], this definition is equivalent to former characterization of non-
degenerate periodic manifolds given in [Wei73]: For a periodic orbit c in P with
period τ , let L : Tc(0)P → Tc(0)P be the linearization at c(0) of the of the
time-τ -map defined by the flow of the Hamiltonian vector field. Then the zero
manifold Z of αhE is weakly non-degenerate iff

dimZ = dim
{
x ∈ Tc(0)(h−1(E))

∣∣ x− Lx is a multiple of Xh(c(0))
}
. (5.14)

As Weinstein points out, the Lyapunov-Schmidt reduction may be performed
with respect to symmetry if there is a continuous action by diffeomorphisms
of a compact group K on B and α and φ are K-invariant. In [Wei78], this
is applied to the S1-action on the loop space, whereas Montaldi, Roberts, and
Stewart use this more generally for a G× S1-action on the loop space induced
by a symplectic G-action on P .

If h+εh1 is aG-invariant perturbation of aG-invariant Hamiltonian function,
the embedding eε : Z →

∧
Z × R+ and the form αh+εh1

E are G-equivariant.
Moreover, αh+εh1

E = αhE + εd
∧
h1 and thus the pullback αh+εh1

E is exact on
eε(Z). Thus the periodic orbits of the Hamiltonian vector field h + εh1 near
Z on the energy level E coincide with the critical points of a G× S1-invariant
function ϕ defined on eε(Z). Hence for any subgroup Σ ⊂ G× S1, the periodic
orbits whose isotropy subgroup contains Σ correspond to the critical points of
ϕ contained in eε(Z)Σ, which in turn coincide with the critical points of the
restriction ϕ

∣∣
eε(Z)Σ .

To predict periodic orbits near an equilibrium, Montaldi, Roberts, and Stew-
art use a blow-up argument similar to the one used in the proof of the non-
equivariant version of the theorem (see for example [Wei73]): If x = εy, the
equation

ẋ = Xh(x)

is equivalent to
ẏ = Ly + εX̄(y),

where X̄(y) = ε−2(Xh(εy)− εLy) is smooth. The vector field L+ εX̄ is Hamil-
tonian with Hamiltonian function y 7→ ε−2h(εy), and periodic orbits of Xh with
energy ε2 correspond to periodic orbits of L + εX̄ with the same period and
energy 1. For ε = 0, Vλ consists of periodic solutions of period 2π

|λ| . Thus Vλ
can be embedded in a G×S1-equivariant way into the loop space such that the
image of the energy-1-level set can be identified with a compact submanifold Z
of ∧

Vλ × {
2π
|λ|
} ⊂

∧
Vλ × R+.

Since this periodic manifold coincides with the level set of energy 1, it is a non-
degenerate periodic manifold (and in fact for any closed curve C, x − Lx = 0
for every element x of the tangent space at c(0)). Thus the periodic orbits
fixed by Σ on the energy level h−1(ε2) of the original Hamiltonian function
correspond to the critical points of a G × S1-invariant function on eε(Z)Σ.
eε(Z)Σ is homeomorphic to a sphere. The restriction can be considered as an
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S1-invariant function on eε(Z)Σ. As shown in [Wei73, Theorem 1.3], such a
function has at least

1
2(dim eε(Z)Σ + 1) = 1

2(Vλ)Σ

critical orbits. The proof of [Wei73, Theorem 1.3] uses a theorem of Kras-
nosel’skii, which gives the Lyusternik-Schnirelmann category of some quotient
space. For a hint to a simpler approach see [Mos76], end of the proof of Theo-
rem 4: Similarly as Chossat et al. in their proof of Theorem 5.5, Moser suggests
to use that the quotient space is isomorphic to a complex projective space if the
action is free. A footnote indicates that Weinstein has extended this argument
to the general case, but the proof is not given.

For the equivariant version of the Lyapunov centre theorem, we note that in
the case dim(Vλ)Σ = 2, each space eε(Z)Σ is a 1-dimensional sphere and thus
forms a critical orbit. The Lyapunov-Schmidt reduction argument in [Wei78]
yields the completeness statement of Theorem 5.15 and that the embeddings
depend differentiably on ε. Thus we obtain a C1-manifold of periodic orbits in
this case. It may be shown that this manifold is even smooth, see for example
[Mos76], there the remark after Lemma 2 on page 739 and the last paragraph
of the proof of Theorem 3 on page 742).

5.3 Some results derived from the bundle equa-
tions

The bundle equations yield two equations that characterize relative equilib-
ria. For the bundle equations with isotropy, these are the commutation equa-
tion (2.14) and the symplectic slice equation (2.15).

Most of the results that describe solutions of the two equations require con-
ditions that assure that the commutation relation is automatically solved. One
theorem of this type is [RdSD97, Theorem 3.2]. In [MR-O15], this result is
generalized and similar theorems are added. As Montaldi and Rodríguez-Olmos
point out, the following condition suffices to solve the commutation equation:

Definition 5.21. Let H be a compact subgroup of G with Lie algebra h. h is a
co-central subalgebra of g iff there is a splitting g = h⊕m with m ⊂ z(g), where
z(g) denotes the centre of g.

If gp is a co-central subalgebra of gµ, for every triple (ρ, v, η), the equation

Pm∗(coaddm∗ h̄(ρ,v)+η(ρ+ JN (v))) = 0

is satisfied, which together with the symplectic slice equation (2.15) implies the
commutation relation (2.14): This follows from ξ′ := dm∗ h̄(ρ, v) + η ∈ gµ and

(coadξ′ ν)(ζ) = −ν([ξ′, ζ]) = 0

for any ζ ∈ m.
Moreover, to obtain solutions of a specific isotropy type (K), we only need

the fixed point subalgebra gKp to be co-central in gKµ . (Since the adjoint rep-
resentation is induced by Lie group automorphisms, it consists of Lie algebra
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automorphisms and thus the fix point subspaces are indeed Lie subalgebras.)
This is how the condition occurs in the theorems in [MR-O15].

To obtain solutions of the symplectic slice equation, Montaldi and Rodríguez-
Olmos use two lemmas. The first one is just an implication of the implicit
function theorem and may be applied to a relative equilibrium p with a generator
such that p is a non-degenerate critical point of the augmented Hamiltonian:

Lemma 5.22 ([MR-O15, Lemma 2.8]). Let H ⊂ Gp be a closed subgroup and
f ∈ C∞(gp ×m∗ ×N)H . Suppose that K ⊂ H is a closed subgroup such that

dNf(0, 0, 0) = 0 and
d2
Nf(0, 0, 0)

∣∣
NK

is non-degenerate.

Then there is a unique locally defined NH(K)-equivariant smooth map

v : ((m∗)K × gKp , (0, 0))→ (NK , 0)

such that
dNf(η′, ρ, v(ρ, η′)) = 0.

For m = (ρ, v(ρ, η′)), the isotropy subgroup (Gp)m satisfies

K ⊂ (Gp)m ⊂ (Gp)ρ.

The second lemma may be considered as a version of the Equivariant Branch-
ing Lemma (see for example [Fie07]) combined with a reduction argument. The
proof is based on the Splitting Lemma and a Taylor expansion argument as in
the standard proof of the Equivariant Branching Lemma.

If K is a compact group and V is a K-representation, V is of cohomogeneity
one iff for any choice of a K-invariant inner product, K acts transitively on the
norm-1-sphere. (Note that this is the transitivity condition of Theorem 5.8.) A
representation of cohomogeneity one is obviously irreducible.

A continuous real-valued function σ on a topological space crosses 0 at u0
iff σ(u0) = 0 and any neighbourhood of u0 contains points u1 and u2 with
σ(u1) > 0 and σ(u2) < 0.

Lemma 5.23 ([MR-O15, Lemma 2.9]). Let W and N be representations of the
compact Lie group K and f be contained in C∞(W × N)K . Let L ⊂ K be a
closed subgroup and Λ a path-connected open neighbourhood of the origin in WL

such that
dNf(λ, 0) = 0 ∀λ ∈ Λ.

Suppose that N := ker d2
Nf(0, 0) ∩NL 6= {0} and

1. the NK(L)-representation N is of cohomogeneity one,

2. the eigenvalue σ(λ) of d2
Nf(λ, 0)

∣∣
N crosses 0 at λ = 0.

If NL = N ⊕ S is a NK(L)-invariant decomposition and v ∈ N is small, there
is λv ∈ Λ and sv ∈ S such that

dNf(λv, v, sv) = 0.



5.3. SOME RESULTS DERIVED FROM THE BUNDLE EQUATIONS 93

If L is an isotropy subgroup of N , condition 1 implies that L is maximal,
i.e. the only isotropy subgroup of N that contains L as a proper subgroup is
K. Thus in this case for v 6= 0 and m = (λv, v, sv), the isotropy subgroup Km

coincides with L.
In the following, we sketch some of the results given in [MR-O15]. We always

consider a proper Hamiltonian action of a Lie group G on a symplectic space
P and suppose that p ∈ P is a relative equilibrium with generator ξ ∈ gµ and
momentum J(p) = µ such that gµ has a Gµ-invariant complement in g. We
write ξ = ξ⊥ + η with ξ⊥ ∈ m and η ∈ gp.

We start with a generalization of [RdSD97, Theorem 3.2], which itself is
deduced from the bundle equations given in [RdSD97]:

Theorem 5.24 ([MR-O15, Theorem 4.3]). Suppose that K ⊂ (Gp)η is a closed
subgroup such that

1. gKp is a co-central subalgebra of gKµ and

2. d2hξ(p)
∣∣
NK

is non-degenerate.

Then there is a smooth N(Gp)η (K)-equivariant local map

p̄ : (m∗K × gKp , (0, 0))→ (PK , p)
(ρ, η′) 7→ p̄(ρ, η′)

such that p̄(·, η′) is an immersion for each η′ and p̄(ρ, η′) is a relative equilibrium
with generator ξ + η′. Moreover

K ⊂ Gp̄(ρ,η′) ⊂ (Gp)ρ.

The image of p̄ contains every relative equilibrium in P k near p with generator
ξ′ near ξ such that ξ′ − ξ ∈ gKp .

The proof is an application of Lemma 5.22 with f(η′, ρ, v) = h̄η+η′ . By
[MR-O15, Lemma 3.5], condition 2 yields that d2

Nf(0, 0, 0)NK is non-degenerate.
Clearly, p̄(ρ, ·) is not an embedding, since p̄(ρ, η′) = p̄(ρ, η′′) if η′ − η′′ ∈

gp̄(ρ,η′). Thus in general, the image of p̄ is not a smooth manifold.
As is shown in [MR-O15, Theorem 4.4], if condition 1 is replaced by the

assumption that the Lie algebra l of L := NGµ(Gp)
/
Gp is Abelian and we

choose K = Gp, then we obtain a manifold of relative equilibria of dimension
dim G

/
Gp + dim(m∗)Gp , all of which have the same isotropy type as p. If

L is compact, this follows from the results discussed in section 4.2 applied to
the L-action on PGp : Since L is Abelian and p ∈ PGp is a non-degenerate
equilibrium, p is transverse then. As an easy computation shows, (m∗)Gp '
(mGp)∗ ' l∗ (compare Lemma 6.38). Thus the set of relative equilibria within
PGp forms a manifold of dimension 2 dimL. Hence its G-orbit is a manifold of
dimension

2 dimL+ dim G
/
Gp − dimL = dim G

/
Gp + dimL.

[MR-O15, Theorem 4.4] contains a generalization of this conclusion to the non-
compact case. Moreover, Montaldi and Rodríguez-Olmos show that the mani-
fold is symplectic if Gp is a normal subgroup of Gµ, which in the case of compact
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L may also be deduced from the results for free actions and the fact that q · p
is a symplectic subspace for the complement q of gµ in gp.

For generators ξ of p such that d2hξ(p) is degenerate, the second one of
the above lemmas, Lemma 5.23, yields relative equilibria of a different isotropy
type if there is an admissible isotropy subgroup L ⊂ (Gp)η. In particular, one
obtains branches that bifurcate from a given manifold of relative equilibria:

Montaldi and Rodríguez-Olmos say that two relative equilibria p and p′ with
J(p) = µ and J(p′) = µ′ are of the same symplectic type iff there is a g ∈ G with
gGpg

−1 = Gp′ and gGµg−1 = Gµ′ . A parameterized branch of relative equilibria
is an injective smooth map p̄ from a neighbourhoodW of 0 in some vector space
to P whose image consists of relative equilibria such that the G-orbits of p̄(w)
and p̄(w′) are disjoint for w 6= w′.

Theorem 5.25 ([MR-O15]). Let K ⊂ (Gp)η be a closed subgroup, W ⊂ m∗ ×
gKp be an open neighbourhood of 0 of a vector subspace and p̄ : W → P be
a parameterized branch of relative equilibria of the same symplectic type such
that p̄(0, 0) = p, J(p̄(ρ, η′)) = µ + ρ, Gµ+ρ = Gµ, and Gp̄(ρ,η′) = Gp. Choose
generators ξ(ρ, η′) for p̄(ρ, η′) with gp-component η + η′. Suppose that there is
a closed subgroup L ⊂ K such that

1. gLp is co-central in gµ,

2. NGp(L) acts on N := ker d2hξ(0)
∣∣
NL

with cohomogeneity one, and

3. the eigenvalue σ(ρ, η) of d2hξ(p̄(ρ, η))
∣∣
N crosses 0 at 0 ∈W .

Then for every 0 6= v ∈ N near 0, there is a relative equilibrium pv near p,
which is not contained in the G-orbit of any point of the original branch, with
generator ξv ∈ gµ near ξ. Its isotropy subgroup contains L.

Remark 5.26. If L is an isotropy subgroup, it is maximal and Lemma 5.23
implies Gpv = L.

So far, all cited results of Montaldi and Rodríguez-Olmos ([MR-O15]) are
of the form described in the beginning: A commutativity condition assures
that every solution of the symplectic slice equation solves the commutation
equation and the focus of the theorem lies mainly in the solution set of the
symplectic slice equation. There is also another persistence result of a different
type given in [MR-O15] whose proof is based on an approach that resembles
the method in [Mon97] for free actions of compact groups. As indicated in
[MR-O15, Remark 2.7], this approach might possibly yield a generalization of
these results to actions with isotropy subgroups of positive dimension. The
given result deals with a formally stable relative equilibrium p, that means that
there is a generator ξ such that d2hξ(p) is definite. The main stability theorem
in [MR-O15] states that a formally stable relative equilibrium is stable modulo
Gµ, that is every Gµ-invariant neighbourhood U of the Gµ-orbit Gµp contains
an open neighbourhood O of p such that the integral curves starting in O are
contained in U . This also shows that it is reasonable to take all possible choices
of generators of a relative equilibrium into account.

In particular, a formally stable relative equilibrium is extremal in the sense
of the definition given in [Mon97], see the introduction of this chapter. Thus the
following result may be seen as a part generalization of the results on extremal
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relative equilibria in [Mon97] and also [MT03], even though formal stability is
a slightly stronger condition than extremality.

Theorem 5.27 ([MR-O15, Theorem 4.6]). Let p be a formally stable relative
equilibrium with momentum µ = J(p). Suppose that gµ has a Gµ-invariant
inner product. Then there is a G-invariant neighbourhood U of p such that for
every µ′ near µ with µ′ ∈ J(U) there is a relative equilibrium p′ near p with
momentum J(p′) = µ′.

The proof is based on the following observation: Identify p with the point
[e, 0, 0] of the local model. The commutation equation

coaddm∗ h̄(ρ,v)+η(ρ+ JN (v)) = 0

may equivalently be written as

(dm∗ h̄(ρ, v) + η)
∣∣
Tρ+JN (v)O

= 0, (5.15)

where O denotes the coadjoint orbit of ρ + JN (v) within g∗µ: The left hand
side of the commutation equation is contained in g∗µ = ann q, where q is a
Gµ-invariant complement. Moreover, for any ζ ∈ gµ with ξ := dm∗ h̄(ρ, v) + η
and ν := ρ+ JN (v), we have

〈coadξ ν, ζ〉 = −〈ν, [ξ, ζ]〉 = 〈ν, [ζ, ξ]〉 = −〈coadζ ν, ξ〉.

For a fixed γ ∈ gp, let f ∈ C∞(g∗µ ×N) and φ ∈ C∞(g∗µ ×N, g∗p) be defined by

f(α, v) := h̄γ(α
∣∣
m
, v)− h̄γ(0, 0) + 〈α, γ〉

φ(α, v) := JN (v)− α
∣∣
gp
,

where h̄γ(ρ, v) := h̄(ρ, v)− JγN (v) is the augmented Hamiltonian of h̄(ρ, ·). De-
note the restrictions to O×N by fO and φO respectively. Then equation (5.15)
and the symplectic slice equation

dN h̄η(ρ, v) = 0

are both satisfied for some η ∈ gp iff the restriction of fO to φ−1(0) has a critical
point at (ρ + JN (v), v): This holds iff there is a Lagrange multiplier η′ ∈ gp
such that

dN (f − 〈φ, η′〉)(ρ+ JN (v), v) = 0,
dg∗µ

(f − 〈φ, η′〉)
∣∣
Tρ+JN (v)O

= 0.

In this case, η := γ + η′, ρ, and v solve equation (5.15) and the symplectic slice
equation.

Thus it only has to be shown that for small values of ρ and v and some
choice of γ, the function fO has a critical point on φ−1

O (0): Recall that

JY ([g, ρ, v]) = Coadg(µ+ ρ+ JN (v)).

If the relative equilibrium p′ corresponds to the critical point in the coadjoint
orbit O ⊂ g∗µ of ρ + JN (v), then J(Gp′) = GO ⊂ g∗ is the coadjoint orbit of
ρ+ JN (v) within g∗.
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The proof of Theorem 5.27 proceeds as follows: γ ∈ gp is chosen such that
d2
N h̄γ(0, 0) is definite. Since there is a Gµ-invariant product on g∗µ, O is compact.

Together with a Splitting Lemma argument, this yields that fO is proper and
bounded from below or above depending on whether d2

N h̄γ(0, 0) is positive or
negative definite. Thus fO has a minimum or maximum and hence a critical
point. (See [MR-O15] for details.)

Investigating the topology of the Gp-space φ−1
O (0) might yield an estimation

of the number of critical Gp-orbits of the Gp-invariant function fO. In the
case of a free action, φ−1

O (0) coincides with O × N and we obtain the setting
investigated in [Mon97], see section 4.1.



Chapter 6

Equivariant transversality
approach

Equivariant transversality was defined by Field and independently by Bierstone
in 1977 ([Bie77] and [Fie77a]). In the followup paper [Fie77b], Field shows that
the definitions of equivariant general position and equivariant transversality
given in the two papers are equivalent.

The two authors have developed the theory with different intentions: Field
applies the theory to equivariant dynamical systems in [Fie90] and gives for
example an equivariant version of the Kupka-Smale theorem.

In [Bie76], Bierstone develops the theory further to include jets of equivari-
ant functions in order to generalize one of Mather’s results on the stability of
C∞-mappings to equivariant maps. (The result is the equivalence of C∞-sta-
bility to an infinitesimal condition.)

The theory has turned out to be very useful for applications in equivariant
bifurcation theory. In [FR89], Field and Richardson show that the equilibrium
sets of smooth 1-parameter families of G-equivariant vector fields generically
consist of finitely many C1-curves and are topologically stable under small per-
turbations. In [Fie89], Field defines a notion of determinacy of a representa-
tion that respects derivatives at the points of the branches. Using Bierstone’s
generalization to jets of equivariant maps, he shows the genericity of the non-
degeneracy of the bifurcating branches. In later publications, he also considers
relative equilibria of the vector fields. (See [Fie96] for a comprehensive presen-
tation or [Fie07] for a more elementary one.) We will sketch the bifurcation
theory results in section 6.2.

As will be presented in this chapter, equivariant transversality theory may
also be a powerful tool for the investigation of relative equilibria in equivariant
Hamiltonian systems. We will apply the theory in two different ways: The first
one combines Field’s approach to the local investigation of relative equilibria
in equivariant systems with Patrick’s and Roberts’ theory of transverse relative
equilibria and yields a partial generalization of the results in [PR00] to the
non-free case, see section 6.3.

The second way is presented in section 6.4. As it was suggested by Chossat et
al. ([CLOR03]), we consider the family of augmented Hamiltonians hξ = h−Jξ
on a symplectic representation as a family of functions parameterized by ξ. In

97
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case of a torus action, the group action on the parameter space is trivial and we
may proceed similarly as Field and Richardson in [FR89]. These results apply
to G-symplectic representations for compact connected groups G by considering
a maximal torus.

The approach of this thesis is not the first application of equivariant transver-
sality theory to the theory of Hamiltonian relative equilibria: Birtea et al
([BPRT06]) give a definition of equivariant transversality for families of Hamil-
tonian systems. However, the proof of their main result has faults that seem to
be irreparable. We will discuss this in section 6.2. In contrast, in this thesis we
investigate the structure of relative equilibria in a single Hamiltonian system
with symmetry given by a Hamiltonian action of a compact Lie group G. We
obtain results about their generic structure, which are valid for a quite general
class of Hamiltonian systems with symmetry.

6.1 Equivariant transversality theory
The goal of equivariant transversality theory is to develop an appropriate notion
of transversality to G-invariant submanifolds for smooth G-equivariant maps
f : M → N , where G is a compact Lie group andM and N are smooth G-mani-
folds. If P ⊂ N is a G-invariant manifold, we recap the classical definition of
transversality and the properties of this definition:

Definition 6.1. f is transverse to P at x ∈M (f tx P ) if f(x) /∈ P or

df(x)(TxM) + Tf(x)P = Tf(x)N.

f is transverse to P along A ⊂ M (f tA P ) if f is transverse to P at every
x ∈ A. f is transverse to P (f t P ) iff f is transverse to P along M .

This yields the following implications, see [AR67]:

Theorem 6.2 (Transversality Theorem). 1. (smoothness) f−1(P ) is a man-
ifold with

codim f−1(P ) = codimP.

2. (openness) If f tx P for x ∈ M , there is a neighbourhood U ⊂ M of x
such that f ty P for every y ∈ U .

3. (density) If M is compact, the subset T of maps that are transverse to P
is residual in C∞(M,N) with respect to the C∞-topology.

4. (stability) If A ⊂M is compact and P is closed, the set

TA := {f ∈ C∞(M,N) | f tA P}

is C∞-open.

5. (isotopy) IfM is compact, f : M×[0, 1]→ N smooth, and ft := f(·, t) t P
for all t ∈ [0, 1], then there is an isotopy of diffeomorphisms K : M ×
[0, 1]→M , Kt := K(·, t) with

Kt(f−1
t (P )) = f−1

0 (P ) and K0 = 1M .
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Remark 6.3. If M is not compact, the implication 3 is also true with respect
to the Whitney C∞-topology instead of the C∞-topology. If A is not compact
but closed in 4, TA is Whitney C1-open and hence Whitney C∞-open. See
appendix A.1 for the definitions of the topologies.

A good definition of equivariant transversality should transfer these prop-
erties as far as possible to equivariant maps. For the properties 3 and 4, this
means that for compact M and closed P , the subset of equivariant maps f with
f t P should be generic (open and dense) within the set of equivariant maps.
The density property 3 is the reason why a new definition is necessary for the
equivariant case. Transverse equivariant maps may not even exist:

Example 6.4. If M and N are representations with MG = 0 and NG = 0,
P = {0}, and there is a subgroup H ⊂ G such that codimMH < codimNH ,
then there is no equivariant map that is transverse to P .

The analogues to the properties 3 and 4 also imply that there is no chance
to have the same smoothness property as implication 1: It is well-known in
bifurcation theory that generically zero sets may not be manifolds. For example,
if RZ2 denotes the non-trivial Z2-representation on R and R the trivial one, for
an equivariant map

f : RZ2 × R→ RZ2

(x, λ) 7→ f(x, λ)

generically near a point (0, λ0) with ∂xf(0, λ0) = 0, the zero-set has the form of
a pitchfork (see for example [GSS88]).

Anyhow, there is a more general notion of transversality with a suitable
analogue to property 1: transversality to Whitney stratified sets. A Whitney
stratified set is a subset of a manifold together with a partition into submanifolds
which fit together in a nice way. For the precise definition see appendix A.2.
A smooth map is transverse to a Whitney stratified set Q iff it is transverse
to each stratum. In that case, f−1(Q) is a Whitney stratified set, too. If in
property 1 of Theorem 6.2, we only require P to be Whitney stratified and we
replace the word “diffeomorphisms” in property 5 by “homeomorphisms”, we
obtain true statements, which form the Thom-Mather-transversality-theorem,
see appendix A.2.

In fact, the definition of equivariant transversality relies on the theory of
transversality to Whitney stratified sets and the transversality condition implies
that the preimage f−1(P ) is a Whitney stratified set.

For equivariant transversality, we also want to have an isotopy statement
as property 5 of Theorem 6.2 such that an equivariant isotopy of homeomor-
phisms exists. This implies that the preimages in each isotropy subspace are
homeomorphic.

Before we give the definition of Field ([Fie07]), we consider a definition which
seems to be an apparent attempt:

For an isotropy subgroup H ⊂ G and the conjugacy class τ = [H], set
MH := MH

τ :=
{
x ∈MH

∣∣ Gx = H
}
.

Definition 6.5. f : M → N is stratumwise transverse to P iff for all isotropy
subgroups H ⊂ G and [H] = τ the map

fH := f
∣∣
MH

: MH → NH
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is transverse to PH .

If M is compact or alternatively if M is a representation and P is closed,
the set of equivariant maps f : M → N that are stratumwise transverse to
P is residual in C∞G (M,N): For every compact subset K ⊂ MH , the set T HK
of maps f for which fH is transverse to PH along K is open and dense. If
K1 ⊂ K2 ⊂ · · · ⊂ MH is a countable system of compact subsets of MH with⋃
i∈NKi = M , the intersection

⋂
i∈N T HKi is equal to the set of maps f with

fH t PH which hence is residual. If H ′ is conjugate to H, fH t PH is
equivalent to fH′ t PH

′ . Since M has only finitely many isotropy types, the
stratumwise transverse maps form a residual subset of the equivariant maps.

The problem with this definition is that the set of stratumwise transverse
maps to P may not be open in the set of equivariant maps:

Example 6.6. Let M = N be the non-trivial Z2-representation on R and
P = 0. fε(x) = x(x+ ε)2(x− ε)2 is stratumwise transverse to 0 iff ε = 0.

Nevertheless, it seems to be reasonable that an appropriate definition of
G-transversality should imply stratumwise transversality: If f is G-transverse
to P , for any small perturbation f̃ , the preimages (fH)−1(P ) and (f̃H)−1(P )
should be homeomorphic. If it was possible to perturb fH locally near some
point x ∈MH such that locally near x the topology of the preimage (fH)−1(P )
changes, this perturbation could be extended via the Slice Theorem to a per-
turbation of f . Hence, we want to exclude the possibility of such perturbations.
This can be done by requiring f to be stratumwise transverse to P .

In fact, equivariant transversality implies stratumwise transversality, as is
shown in [Bie77].

6.1.1 Definition of equivariant transversality
The definition of equivariant transversality which was given in [Bie77] relies on
some basic results about G-spaces and G-representations, which are essential
for the understanding of equivariant maps: the Slice Theorem, Bochner’s lin-
earization theorem, and the theory of polynomial generators of invariant and
equivariant maps.

By the Slice Theorem, for every x ∈ M , there is a tubular neighbourhood
U ' G ×Gx Sx, where Sx is a Gx-invariant slice, such that the set of smooth
equivariant maps C∞G (M,N) is in one-to-one correspondence to C∞Gx(Sx, N):
The inverse of the restriction map f 7→ f

∣∣
Sx

for f ∈ C∞G (Sx, N) is given by the
unique equivariant extension h 7→ h̃ of g ∈ C∞Gx(Sx, N) with h̃(gx) = gh(x) for
x ∈ S and g ∈ G.

Together with Bochner’s linearization theorem (Theorem 1.24), the Slice
Theorem (Theorem 1.28) shows that locally G-equivariant maps can be consid-
ered as equivariant maps between representations: By Bochner’s theorem for
any x ∈ m, there is a neighbourhood U of f(x) that is locally Gf(x)-equivari-
antly diffeomorphic to the Gf(x)-representation on Tf(x)N . If f isG-equivariant,
Gx ⊂ Gf(x) and Tf(x)N can be considered as a Gx-representation.

Furthermore, we can choose Sx such that f(Sx) ⊂ U . Let Sx be locally
Gx-diffeomorphic to the Gx-representation V . Since a small perturbation of f
also maps Sx into U , we only need to consider Gx-equivariant smooth maps
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from V into Tf(x)N to study the stability of the set f−1(P ) locally at x. Sup-
pose f(x) ∈ P , otherwise we define f to be G-transverse to P at X. Since
P is G-invariant, Tf(x)P is a Gx-invariant subspace of Tf(x)N , hence it has a
Gx-invariant complement W .

In this way, we reduce the definition to the case of representations and the
invariant submanifold 0: We will define Gx-transversality to 0 ∈ W at a point
in V Gx and extend the definition to the general case by calling f G-transverse
to P ⊂ N at x ∈ M if the composition of f with the projection to W is
Gx-transverse to 0 ∈ W . Of course, it has to be shown that this definition is
independent of the choice of the slice. We will omit this proof and refer to the
literature.

To define transversality to 0 in the case of representations, we need the
theory of polynomial generators of invariant and equivariant smooth maps on
representations. An introduction to the theory and proofs can be found in
[GSS88, chapter XII, §4–6]. (The proof of Schwarz’s theorem is only sketched.
For a complete proof, we refer to Schwarz’s original paper [Schw75].)

Recall that for G-spacesM and N , C∞(M)G denotes the ring of G-invariant
smooth real-valued functions on M and C∞G (M,N) denotes the C∞(M)G-mod-
ule of G-equivariant smooth maps fromM to N . Similarly for G-representations
V andW , we write P (V )G for the ring of G-invariant real-valued polynomials on
V and PG(V,W ) for the P (V )G-module of G-equivariant polynomial maps from
V toW , where polynomial means that the map can be expressed in polynomials
in the coordinates with respect to some (and hence any) choice of bases.

First, we need some facts about invariant polynomials and equivariant poly-
nomial maps, which can be derived from Hilbert’s basis theorem:

Theorem 6.7 (Hilbert-Weyl Theorem). Let G be a compact Lie group and V
be a G-representation. Then P (V )G is finitely generated.

Obviously, the generators p1, . . . , pl of PG(V ) can be chosen to be homoge-
neous. If such a set is minimal (no proper subset is a generating set), it is called
a minimal set of homogeneous generators of P (V )G.

Theorem 6.8. PG(V,W ) is a finitely generated P (V )G-module.

As for the invariant polynomials, it is possible to choose homogeneous gen-
erators of PG(V,W ): Take the homogeneous parts of any set of generators.
Again, if such a set is minimal, it is a minimal set of homogeneous generators
of PG(V,W ).

Although we do not need it for the definition of equivariant transversality, we
start with Schwarz’s theorem, since it will be necessary later on for the higher
order version. Moreover, the theorem for equivariant maps may be derived from
it.

Theorem 6.9 (Schwarz’s Theorem, [Schw75]). Let G be a compact Lie group
and V be a G-representation. If p1, . . . , pl generate P (V )G, any f ∈ C∞(M)G
can be written in the form f = h ◦ P , where P = (p1, . . . , pl) : V → Rl and
h ∈ C∞(Rl).

The next theorem is due to Malgrange and appeared first in [Poe76]. A
possible proof uses Schwarz’s theorem (see [Poe76] or [GSS88]). Another proof
is based on an equivariant version of the Stone-Weierstraß theorem (see [Fie07]):
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Theorem 6.10. If the equivariant polynomial maps F1, . . . , Fk generate the
P (V )G-module PG(V,W ), they also generate the C∞(V )G-module C∞G (V,W ).
Hence, every f ∈ C∞G (V,W ) can be written as

f(x) =
k∑
i=1

gi(x)Fi(x),

where the gi are invariant functions.
Example 6.11. Let V = W be the non-trivial Z2-representation RZ2 on R.
Then every equivariant map is a product of an invariant function and the func-
tion F1(x) = x.
Example 6.12. Let V = RZ2 × R, where Z2 acts trivially on the component
R, and W = RZ2 . Then every equivariant map is also a product of an invariant
function and the function F1(x, λ) = x.

To define equivariant transversality, we fix a minimal set F1, . . . , Fk of ho-
mogeneous generators of PG(V,W ). With respect to this choice, we define the
algebraic function

ϑ(x, t1, . . . , tk) = ΣtiFi(x).
Σ := θ−1(0) is an algebraic set. Any algebraic set admits a canonical Whit-

ney stratification. Hence, there is an appropriate definition of transversality to
Σ such that the Thom-Mather transversality theorem applies.

For any function f ∈ C∞G (V,W ), we choose a representation

f(x) =
k∑
i=1

gi(x)Fi(x)

and set
Γf (x) = (x, g1(x), . . . , gk(x)) ∈ V × Rk.

Then f = ϑ ◦ Γf .
We use this to define G-transversality to 0 ∈W at 0 ∈ V :

Definition 6.13. f ∈ C∞G (V,W ) is G-transverse to 0 ∈ W at 0 ∈ V (f tG 0
at 0) iff Γf is transverse to Σ at 0.

Of course, it has to be shown that this is well-defined. In particular, one
has to prove the independence of the choice of the Fi and the choice of the
representation of f as a linear combination of the Fi, which is not always unique.
Again, we refer to [Bie77], [Fie96], and [Fie07].
Example 6.14. In Example 6.11, Σ ⊂ RZ2 × R is given by the union of the
two lines x = 0 and t = 0. The canonical stratification consists of the point
(0, 0) and each of the lines with the point (0, 0) omitted. Hence f : RZ2 → RZ2

is Z2-transverse to 0 at 0 iff ∂xf(0, 0) = g(0, 0) 6= 0.
Example 6.15. In Example 6.12, Σ ⊂ (RZ2 × R) × R consists of the product
of the two lines x = 0 and t = 0 with the λ-axis. The canonical stratification
is the same but each stratum is multiplied with the λ-axis. In this case, Γf is
transverse to Σ at (0, 0) if ∂xf(0, 0) = g(0, 0) 6= 0 or ∂xf(0, 0) = g(0, 0) = 0 and
∂λ∂xf(0, 0) = ∂λg(0, 0) 6= 0. In the second case, the local preimage of the zero
set of f looks like a pitchfork.
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Example 6.15 illustrates the application of equivariant transversality theory
to bifurcation theory. We will come back to this in section 6.2.

As explained above, Definition 6.13 is extended to the general case by choos-
ing a slice at x ∈M and a complement to Tf(x)P if f(x) ∈ P . Independence of
choices is proved in [Bie77].

Remark 6.16. For any x ∈ V , S = (gx)⊥ contains a slice for the G-action.
Hence a G-equivariant map f : V → W is G-transverse to 0 ∈ W at x iff its
restriction to S is Gx-transverse to 0 ∈W . Since generators of PG(V,W ) restrict
to generators of PGx(S,W ), this is equivalent to Γf t Σ at x, see [Bie77].

Based on the theory of transversality to Whitney stratified sets, the transver-
sality Theorem 6.2 can be transferred to the equivariant case:

Theorem 6.17 ([Fie07, Proposition 6.14.2 and Theorem 6.14.1]). Let M and
N be smooth G-manifolds and P ⊂ N be a smooth G-invariant submanifold.

1. If f : M → N is a smooth G-equivariant map and f tG P , then f−1(P )
is a Whitney stratified subset of M .

2. If f : M → N is a smooth G-equivariant map and f tG P at x ∈ M ,
there is a neighbourhood U ⊂M of x such that f tG P at every y ∈ U .

3. If M is compact, the subset T of maps that are G-transverse to P is
residual in C∞G (M,N) with respect to the C∞-topology.

4. If A ⊂M is compact and P is closed, the set

TA := {f ∈ C∞G (M,N) | f tG P along A}

is C∞-open.

5. If M is compact, f : M × [0, 1] → N smooth, ft := f(·, t) tG P for
all t ∈ [0, 1], then there is an isotopy of G-equivariant homeomorphisms
K : M × [0, 1]→M , Kt := K(·, t), with

Kt(f−1
t (P )) = f−1

0 (P ) and K0 = 1M .

Remark 6.18. Again we may omit the compactness assumption onM in 3 and
A in 4 if we replace the C∞-topology with the Whitney C∞-topology. Then we
require A to be closed.

For our application to Hamiltonian relative equilibria, we will need the gen-
eralization of the theory to jets of functions, which is also used in bifurcation
theory to predict stability properties of the branches:

6.1.2 Higher order version
In [Bie76], Bierstone develops a theory of equivariant general position, which
includes the derivatives of an equivariant map, in order to overcome the following
problems:

1. In the definition of equivariant transversality, the degrees of the homoge-
neous generators are not taken into account. In particular, one obtains no
information about a possible degeneracy of the derivative at a specified
point.
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2. Let Jq(M,N) denote the space of q-jets, which forms a bundle overM×N
(see Definition A.3 in appendix A.1). The classical transversality theory
naturally extends to the case of a closed analytic submanifold (or more
general, a closed semi-analytic subset) Q ⊂ Jq(M,N): The set of maps f
for which jqf : M → Jq(M,N) is transverse to Q at a given point x ∈M
is open and dense in C∞(M,N).
If M and N are G-manifolds, there is an induced G-action on Jq(M,N):
gjqf(x) = jq(gfg−1)(gx). Hence, if f is equivariant, jqf : M → Jq(M,N)
is an equivariant section. If Q ⊂ Jq(M,N) is a G-invariant analytic
submanifold, the set of equivariant maps f with jqf G-transverse to Q at
x ∈M is not always dense in C∞G (M,N).

Bierstone ([Bie77]) gives a suitable definition of G-transversality of jqf to
Q and puts the definitions for the q-jet spaces together to give a definition of
general position of equivariant maps. For our purpose, the definition for the
q-jet suffices. For this, we adapt the term G-q-jet-transversality, which was
introduced by Field.

The definition of G-q-jet-transversality again splits into two parts, where one
part is the definition for maps between representations and the second one is
the extension to the general case via the Slice Theorem.

For the application to Hamiltonian systems, we will only need the case q = 1
and N = R with the trivial G-action. Hence in the presentation of the theory,
the emphasis is placed on this case.

We start with the first part: Assume that V and W are representations.
Let p1, . . . , pl and F1, . . . , Fk form minimal sets of homogeneous polynomial
generators of P (V )G and PG(V,W ) respectively. Set P = (p1, . . . , pl). P is also
called the orbit map. An equivariant map f can be written as

f(x) =
k∑
i=1

li(p1(x), . . . , pl(x))Fi(x) =
k∑
i=1

li(P (x))Fi(x).

This yields an expression of jqf(x) in terms of L = (l1, . . . , lk) : Rl → Rk, P ,
and the maps Fi. For example j1f(x) = (x, f(x),df(x)) is given by

(x,
k∑
i=1

li(P (x))Fi(x),
k∑
i=1

(dli(P (x)) ◦ dP (x)·)Fi(x) + li(P (x))dFi(x))

Note that in the case W = R, the module PG(V,R) coincides with the ring
P (V )G and hence it is generated by the constant map F1(x) = 1. In this case,
L is a real valued function and

j1f(x) = (x, L ◦ P (x),
l∑
i=1

∂iL(P (x))dpi(x)).

Let Pq(Rl,Rk) denote the space of polynomial maps of degree ≤ q from Rl
to Rk. Pq(Rl,Rk) is a vector space and Jq(Rl,Rk) = Rl×Pq(Rl,Rk). The map
jqf : V → Jq(V,W ) can be decomposed as

jqf = Uq ◦ (1, j̃qL ◦ P ),
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where
j̃qL : Rl → Pq(Rl,Rk)

is the q-jet of L with the Rl-component omitted and the map

Uq : V × Pq(Rl,R)→ Jq(V,R)

can be written in terms of derivatives of P and the Fi and is in particular
independent of f . We give the explicit forms of Uq and j̃qL in the case q = 1
and W = R:

We write (t0, t11, . . . , tl1) for the coordinates of P1(Rl,R) ' R× Rl. Then

U1 : V × P1(Rl,R)→ J1(V,R)

(x, t0, t11, . . . , tl1) 7→ (x, t0,
∑

ti1dpi(x))

and

j̃1L : Rl → R× V ∗

y 7→ (L(y),dL(y)).

With these maps, we may formulate the definition for the case of representations:

Definition 6.19. If Q ⊂ Jq(V,W ) is a G-invariant closed semi-algebraic subset,
f ∈ C∞G (V,W ) is G-q-jet-transverse to Q ⊂ Jq(V,R) iff (1, j̃qL◦P ) is transverse
to U−1

q (Q).

For the definition of a semi-algebraic subset of a real vector space, see ap-
pendix A.2.

Of course, it has to be shown that the definition is independent of the choice
of generators and the representation of f . The proof is given in [Bie76].

By abuse of notation, we write jqf tG Q in the case of equivariant jet-
transversality, even though this is not consistent with our former definition of
this notation.

Example 6.20. Suppose that we are interested in the critical points of some
G-invariant function f defined on the G-representation V . Then we have to
investigate the preimage (j1f)−1(Q), where

Q = V × R× {0} ⊂ V × R× V ∗ = J1(V,R).

In this case, U−1
1 (Q) ⊂ V × R × Rl is given by the product of R and the zero

set in V × Rl of the function

(x, t11, . . . , tl1) 7→
l∑
i=1

ti1dpi(x).

We omit the constant index 1 and denote this function by ϑ and its zero set
by Σ to emphasize the analogy to ordinary equivariant transversality. Similarly
(again by abuse of notation), Γf denotes the map

x 7→ (x, ∂1L(P (x)), . . . , ∂lL(P (x))) ∈ V × Rl.

Then j1f tG Q at x iff Γf t Σ.
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Now let us consider the general case. Let us assume for simplicity that G
is algebraic. Since we are interested in local properties of an equivariant map
M → N near some point x ∈ M , we can assume w.l.o.g. that M = G ×H V ,
where H = Gx and V is an H-representation that is locally H-equivariantly
isomorphic to a slice at x, and define G-q-jet-transversality with respect to a
semi-algebraic subset Q ⊂ Jq(G×H V,N) at the point [e, 0].

In addition, for any y ∈ NH , there is an H-representation W and an
H-equivariant local diffeomorphism (W, 0) → (N, y) with the property that
any f ∈ C∞H (V,W ) can be extended to a map f̃ ∈ C∞G (G ×H V,N), where
f̃([g, x]) = gf(x). It is easy to see that the map jqf(x) 7→ jq f̃(x) is well-defined
on the set of jets of H-equivariant maps V →W and that the image of the set
jq0(C∞H (V,W )) of jets of H-equivariant smooth maps at 0 is an open subset of
the set

jq[e,0](C
∞
G (G×H V,N))

of jets of G-equivariant smooth maps at [e, 0].
If we choose a smooth local section σ of G → G

/
H defined in a neighbour-

hood of H, f̃ can be expressed as

f̃ [σ(gH), x] = σ(gH)f(x).

Via this expression, f̃ can locally be defined for any f ∈ C∞(V,W ). This yields
a map

Aσ : Jq(V,W )→ Jq(G×H V,N)
jqf(x) 7→ jq f̃(x),

which depends on the choice of σ for jets of non-equivariant functions.
Let ι : V → G×H V be the inclusion. The map

Aσ ◦ Uq : V × P q(Rl,Rk)→ Jq(G×H V,N)

has a unique G-equivariant extension Uq to (G×H V )× P q(Rl,Rk):

V × P q(Rl,Rk) Jq(V,W ) Jq(G×H V,N)

(G×H V )× P q(Rl,Rk)

Uq

ι×1

Aσ

Uq

If Aσ ◦ Uq(x, t) = jq f̃(x), then Uq([g, x], t) = jq f̃(gx) = g · (jq f̃(x)), since f̃ is
G-equivariant.

In addition, the H-invariant orbit map P : V → Rk extends uniquely to a
G-invariant map G ×H V → Rk, which we also denote by P . This yields the
map

(1, j̃qL ◦ P ) : G×H V → (G×H V )× P q(Rl,Rk).
Using this extension, the G-equivariant map

jqf : G×H V → Jq(G×H V,N)

is equal to the composition

Uq ◦ (1, j̃qL ◦ P ).
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This motivates the general definition of G-q-jet-transversality: Suppose that
for Q ⊂ Jq(P,N) and p ∈ P with H := Gp, tubular neighbourhoods G ×H V
of p and T of f(p) can be chosen in such a way that Q ∩ Jq(G ×H V, T ) is
semi-algebraic.

W.l.o.g. we assume Q ⊂ Jq(G×H V, T ).

Definition 6.21. If Q ⊂ Jq(G ×H V, T ) is a closed G-invariant semi-analytic
subset, f ∈ CG(G ×H V, T ) is G-q-jet-transverse to Q (jq tG Q) at [e, 0] iff
(1, j̃qL ◦ P ) is transverse to U−1

q (Q) at [e, 0].

Remark 6.22. Even if G is not algebraic, Jq(G×H V,N) is an analytic mani-
fold: By [BtD85, chapter III, Theorem 4.1], G is isomorphic to a closed subgroup
of GL(V ) for some vector space V . Thus the exponential map yields an analytic
structure on G and hence G×H V , T , and Jq(G×H V,N) are analytic manifolds.
In [Bie76], Q is required to be an analytic submanifold. In fact, the necessary
assumption is that U−1

q (Q) has a canonical Whitney stratification. This holds
as well for a semi-analytic Q, since U−1

q (Q) is also semi-analytic in that case
and semi-analytic sets admit a canonical Whitney stratification as well.

For simplicity, we restrict ourselves to the semi-algebraic case. As will be
discussed below, there is an equivalent definition based on the definition for
representations. This way, we do not need an algebraic structure on G.

As is shown in [Bie76], G-q-jet-transversality is well-defined and in particular
independent of the choice of a local isomorphism of G×HV and a neighbourhood
of x ∈M that sends [e, 0] to x. Furthermore, the definition admits the following
generalization of Thom’s transversality theorem:

Let M and N be smooth G-manifolds and Q ⊂ Jq(M,N) be an admissi-
ble G-invariant subset such that G-q-jet-transversality to Q can be defined, i.e.
there are appropriate choices of tubular neighbourhoods such that the corre-
sponding sets U−1

q (Q) have a canonical Whitney stratification.

Theorem 6.23 ([Bie76]). Let Q be closed and be A ⊂M be a closed G-invariant
subset.

1. {f ∈ C∞G (M,N) | jqf tG Q along A} is open and dense in C∞G (M,N)
with respect to the Whitney C∞-topology.

2. Let M be compact, f : M × [0, 1] → N be smooth and set ft := f(·, t).
If jqft tG Q holds for every t ∈ [0, 1], there is an isotopy of G-equiv-
ariant homeomorphisms ht : M → M , t ∈ [0, 1] such that h0 = 1 and
ht(jqf−1

t (Q)) = jqf−1
0 (Q).

Remark 6.24. For any x ∈ G×H V , jqf tG Q at x iff (1, j̃qL◦P ) is transverse
to U−1

q (Q) at x, see [Bie76, Proposition 7.4].

For q = 0, G-0-jet-transversality to V ×{0} ⊂ V ×W is just G-transversality
to 0 ∈ W : If Γf = (1, γf ) is transverse to Σ at 0 ∈ V , this is also true if we
extend γf G-invariantly to G×H V and replace Σ by GΣ ⊂ G×H V . Moreover,
γf = L ◦ P , ϑ = U0, and j0f(x) = j0f̃(x) imply U0

∣∣
V

= U0. Therefore,
U−1

0 (0) = GΣ.

Remark 6.25. The other way round, we now reformulate the general defini-
tion of G-jet-transversality in a way such that the analogy to the definition of
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ordinary equivariant transversality theory becomes clearer: We consider the re-
striction of the map jqf : V ×HG→ Jq(V ×HG,N) to V . This map decomposes
as

Aσ ◦ Uq ◦ (1, j̃qL ◦ P ),

compare the following diagram:

V V × P q(Rl,Rk) Jq(V,W ) Jq(G×H V,N)

(G×H V ) (G×H V )× P q(Rl,Rk)

(1,j̃qL◦P )

ι

Uq

ι×1

Aσ

(1,j̃qL◦P )
Uq

Since U−1
q (Q) is G-invariant, the map

(1, j̃qL ◦ P ) : G×H V → (G×H V )× P q(Rl,Rk)

is transverse to U−1
q (Q) at [e, 0] iff it is transverse to the intersection

U−1
q (Q) ∩ (V × P q(Rl,Rk)),

which equals (Aσ◦Uq)−1(Q). Moreover, the derivative of j̃qL◦P at [e, 0] vanishes
in the direction of the G-orbit, since P is G-invariant. Hence, jqf tG Q iff the
map

(1, j̃qL ◦ P ) : V → V × P q(Rl,Rk)

is transverse to (Aσ ◦ Uq)−1(Q) at 0, equivalently, iff f
∣∣
V

is H-q-jet-transverse
to the H-invariant subset A−1

σ (Q).
The image of Aσ ◦Uq coincides with the set of jets of equivariant maps (i.e.

the jets that have a representation as a jet of an equivariant function) with base
points in V . Hence the image of the G-equivariant extension Uq of Aσ ◦ Uq is
given by the set of jets of equivariant maps. That means that Q may be replaced
with its intersection with this set without any difference.

In the case q = 1 and N = R with the trivial G-action, the set of jets of
equivariant maps is contained in the set of jets that vanish in the direction of
the G-orbits.

More precisely, assume M = G ×H V and let T ⊂ TM and T ◦ ⊂ T ∗M
denote the sets given by

Tx = gx and T ◦x = ann(Tx).

Then, we have

im(Aσ ◦ Uq) = (T ◦ × R)
∣∣
V
⊂ T ∗M × R = J1(M,R).

In our applications, Q is of the form Q′ × R with Q′ ⊂ T ∗M and we can omit
the R-component. Then we only have to consider the intersection Q′ ∩T ◦. The
preimage of this intersection under Aσ consists of the derivatives in V -direction
and f is G-1-jet-transverse to Q iff f

∣∣
V

is H-q-jet-transverse to the projection
of Q′ ∩ T ◦ to T ∗V .
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6.2 Application to bifurcation theory
As Field and Richardson observe, equivariant transversality theory is quite use-
ful to describe the “branching pattern” of generic 1-parameter families f :
(x, λ) 7→ fλ(x) of equivariant vector fields. Here, the term “branching pat-
tern” initially means the germ of the zero set of f near a bifurcation point:
A zero (x0, λ0) of f is a bifurcation point iff dxf(x0, λ0) is not invertible. (If
dxf(x0, λ0) is invertible, the implicit function theorem implies that the zero set
can be locally parameterized by λ.)

Obviously, the zero set of f corresponds to the equilibria of the vector fields
fλ. Later on, the points (x, λ) near (x0, λ0) such that x is a relative equilibrium
of fλ will also be considered as part of the “branching pattern”.

This section gives a broad sketch of the main ideas of this application of
equivariant transversality theory.

Via Lyapunov-Schmidt-reduction or a centre manifold reduction, the search
for the local zeros of f can be reduced to the search for the zeros of an equivariant
map from ker dxf(x0, λ0)×R to ker dxf(x0, λ0) (where the group acts trivially
on R). As is well-known, for equivariant 1-parameter-families generically the
kernels ker dxf(x0, λ0) at bifurcation points are absolutely irreducible (see for
example [Fie07, section 7.1.1]).

Thus, as far as we are interested in bifurcation of equilibria, we only have
to consider G-equivariant maps f : V × R → V , where V is an absolutely
irreducible representation and R the trivial representation, such that f(0, 0) = 0
and dxf(0, 0) = 0. Since the non-symmetric case is well-known, we suppose in
addition that V is non-trivial. Then V G = {0} implies f(0, λ) = 0.

dxf(0, λ) = σ(λ)1, σ(λ) ∈ R,

since V is absolutely irreducible. In the following, we assume in addition that
the genericity condition σ′(0) 6= 0 is satisfied.

The set of these maps f is denoted by C∞G (V ×R, V )∗. This set of functions is
considered in [FR89]. In his later publications, Field uses a reparameterization
to assume σ(λ) = λ. The set of maps f with this property is denoted by V0.
Both function spaces are endowed with the Whitney C∞-topology.

Now, an equivalent characterization of equivariant transversality, which is
closer to the original definition of Field ([Fie77a]), turns out to be useful:

We first consider a slight modification, that is also considered in [Bie77]: Let
F1, . . . , Fk be a set of homogeneous polynomial generators of the P (V )G-module
PG(V, V ). Note that the maps

(x, λ) 7→ Fi(x)

form a homogeneous set of generators of the P (V )G-module PG(V ×R, V ). By
abuse of notation, these generators will also be denoted by Fi in the following.
Suppose f =

∑
i gi(x, λ)Fi(x).

As illustrated in Example 6.15, we may replace the maps

θ : V × R× Rk → V

(x, λ, t) 7→
∑
i

tiFi(x, λ) =
∑
i

tiFi(x)
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and

Γf : V × R→ V × R× Rk(x, λ) 7→ (x, λ, g1(x, λ), . . . , gk(x, λ))

(again by abuse of notation) by

θ : V × Rk → V

(x, t) 7→
∑
i

tiFi(x)

and

Γf : V × R→ V × Rk(x, λ) 7→ (x, g1(x, λ), . . . , gk(x, λ)).

If we set Σ = θ−1(0) for our new definition of θ, then f tG 0 ∈ V at (0, 0) ∈
V × R still holds iff Γf t Σ at (0, 0).

Now, consider the map

γf : V × R→ Rk

(x, λ) 7→ (g1(x, λ), . . . , gk(x, λ)).

Note that Γf (x) = (x, γf (x)) is the graph of γf .
Moreover the canonical stratification S of Σ ⊂ V ×RK yields a stratification

of Rk = ΣG = Σ(G): For each isotropy type τ , set Sτ = ∪s∈SSτ . By [Fie07,
Theorem 6.10.1], Sτ is a Whitney stratification of Στ consisting of S-strata.

Thus, f tG 0 ∈ V at (0, 0) is equivalent to γf t S(G). The next lemma gives
some insight into the stratification S(G). From now on, we fix a minimal set of
homogeneous polynomial generators F1, . . . , Fk with F1(x) = x. Then Fk is of
order ≥ 2 for x ≥ 2.

Lemma 6.26. Every stratum S ⊂ S(G) with codimS > 0 in Rk is contained in
Rk−1 :=

{
t ∈ Rk

∣∣ t1 = 0
}
.

Proof. Consider a point (0, t) ∈ Rk = {0} × Rk ⊂ V × Rk. Since θ(x, t) =∑
i tiFi(x), we obtain dxθ(0, t) = t11. If t1 6= 0, the implicit function theorem

yields that there is a neighbourhood U of (0, t) whose intersection with the
set Σ = θ−1(0) ⊂ V × Rk coincides with U ∩ Rk. By the construction of the
canonical stratification, U ∩ Rk is contained in a single stratum of S.

This alternative characterization of G-transversality has some advantages:

• For a fixed choice of a minimal set of homogeneous polynomial generators
F1, . . . , Fk, the map γf is independent of the choice of the representation
f(x, λ) =

∑
i gi(x, λ)Fi(x) (see [Fie07, Lemma 6.6.3] and the definition

of γ after his Corollary 6.6.1). This yields an elegant alternative to Bier-
stone’s proof of the independence of the choice of the representation. As in
Bierstone’s proof, a general G-representation V is considered as a product
V ×Rs, where V G = {0} and G acts trivially on the parameter space Rs.

• We would like to prove openness and density of the property f tG 0 ∈ V
at (0, 0) within the function space that we choose for the investigation of
bifurcation problems. Openness follows from the openness in the space
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C∞G (V × R,R). For the proof of density, we give another equivalent de-
scription of G-transversality:
Consider the map γ : f 7→ γf from C∞G (V × R, V )∗ or V0 to C∞(R,Rk).
γ is continuous ([Fie07, Lemma 6.6.7]). The image is given by the set of
functions whose first coordinate is given by σ(λ) or λ respectively. Thus,
γf (0) ∈ Rk−1 and γf is transverse to Rk−1 at 0. By Lemma 6.26, inter-
secting the strata of S(G) with Rk−1 yields a Whitney stratification A of
Rk−1 and γf is transverse to S(G) if γf (0) is contained in a stratum of A
of codimension 0.
Since this holds for a dense subset of the image of γ, the preimage of this
set in C∞G (V × R,R)∗ or V0 is also dense.

• This alternative description of G-transversality confirms that a vector field
f ∈ C∞G (V ×R,R)∗ is G-transverse to 0 at (0, 0) if this is true for the d-jet
of f0, where d is the maximal degree of the Fi. We will see below that in
this case the homeomorphism class of the zeros of f is stable under pertur-
bations. This yields Field’s finite (weak) determinacy result. (In Field’s
terminology, broadly speaking, a representation is weakly d-determined
if for a generic equivariant smooth family fλ, the topological properties
of the zero set are stable under perturbations and determined by jdf0.
Determinacy requires also hyperbolicity of the non-trivial zeros.)

If f ∈ C∞G (V × R,R)∗ is G-transverse to 0 at (0, 0), the local zero set of f
is a Whitney stratified subset of V × R whose structure may be deduced from
that of Σ.

The following smoothness result for the isotropy components Στ is essential:
For any isotopy type τ = (H), set

gτ := dim G
/
H = dimG− dimH,

nτ := dim N(H)
/
H = dimN(H)− dimH.

Lemma 6.27 ([Fie07, Lemma 6.9.2]). For each isotropy type τ of V , the set
Στ is a smooth manifold with

dim Στ = k + gτ − nτ .

If f tG 0 at (0, 0), Γf is transverse to the canonical stratification S of Σ
along a neighbourhood U of (0, 0). Since for each τ , the stratification Sτ consists
of S-strata, Γf is transverse to Sτ and hence to Στ along U as well. Thus the
zeros of f of isotropy type τ contained in N form a dim gτ −nτ + 1-dimensional
smooth manifold of V ×R, whose closure contains the origin (0, 0) if they exist.

We first consider the case of a finite group G: In this case, we obtain 1-di-
mensional smooth manifolds, whose boundaries consist of the origin. Each of
these curves is Whitney regular over the origin. Let us call each union of the
origin and one of these curves a branch. Applying a result of Pawlucki on regu-
larity of Whitney stratified semi-algebraic sets to Στ and a stratum in Σ̄τ ∩Rk,
Field and Richardson even show that each branch may be parameterized as a
C1-curve [0, δ)→ V × R.

If dimG > 0, the zeros of isotropy type τ consist of G-orbits of dimension
gτ . Thus, if nτ > 1, we do not expect any zeros of isotropy type τ near 0. If
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nτ = 1, connected components of zeros of isotropy type τ in N consist of single
G-orbits. Since the zero set of f is Whitney stratified, by local finiteness, they
are bounded away from zero. Hence in the local sense, there are no zeros of
isotropy type τ near zero. Only in the case nτ = 0, we obtain a “branch” of
G-orbits of zeros: If p1, . . . , pl form a minimal set of homogeneous generators of
the ring P (V )G, the orbit map P ×1 = (p1, . . . , pl, λ) maps each of these orbits
to a single point of Rl×R. As in the finite case, it may be shown that the image
in Rl may be expressed as a union of C1-curves starting at (0, 0).

For a non-finite group G, it seems to be more natural to include relative
equilibria. This is illustrated by the above results: Local branches of zeros
of isotropy type τ only occur in the case nτ = 0. In this case, all relative
equilibria are in fact equilibria, since the trajectory of a relative equilibrium
with isotropy subgroup H is contained in its N(H)-orbit. Moreover, in the case
nτ = 1, isolated orbits of zeros may occur. As examples show, these are usually
embedded in branches of relative equilibria. The analysis of the local structure of
relative equilibria yields that this is indeed the behaviour we generically expect.

The generalization of the results for finite groups to the bifurcation of relative
equilibria first appeared in [Fie96]. For the generalization, we have to consider
also bifurcations that are caused by a pair of purely imaginary eigenvalues ±αi,
α > 0. Centre manifold reduction or a Lyapunov-Schmidt reduction in a way
used for the proof of Hopf bifurcation theorems yields an equivariant family fλ
of vector fields on the real part V of the sum of the generalized eigenspaces
for ±αi. Generically, the generalized eigenspaces coincide with the eigenspaces
such that df0(0)2 = −α2

1. Thus, 1
αdf0(0)2 defines a complex structure on V .

Moreover, it may be shown that V with respect to this complex structure forms
a complex irreducible G-representation. Using the theory of Birkhoff normal
forms, we may assume that the Taylor polynomial Trf of order r commutes
with the S1-action defined by the complex structure for an arbitrary finite r.
Field proves that for r large enough, the branches of relative equilibria of Trf
persist if the higher order terms of f are added. (But there may be additional
relative equilibria for f .) Thus, Field restricts his analysis to the case of complex
irreducible representations of compact groups of the formG = K×S1. For these,
he considers the set of normalized families

V0(V,G) = {f ∈ C∞G (V × R, V ) | dfλ(0) = (λ+ i)1} .

(The normalization consists of a scaling of time which corresponds to a scaling
of f and a reparameterization in the variable λ afterwards.) The rest of the
argument is similar to the one for bifurcations of equilibria:

The set Σ is replaced by the set

Σ∗ = {(x, t) | θ(x, t) ∈ TxGx} .

Note that Σ∗ is an algebraic set, since (x, t) ∈ Σ∗ iff dP (x)θ(x, t) = 0:
Suppose that x has isotropy type τ . Since θ(·, t) is an equivariant vector

field, θ(x, t) ∈ V Gx ⊂ TxVτ .
For every connected component V iτ ⊂ Vτ , the image P (V iτ ) = V iτ

/
G is

a smooth manifold and P : V iτ → V iτ
/
G is a submersion (see [DK00, Re-

mark 2.7.5]). Hence for x ∈ Vτ , the kernel of dP (x)
∣∣
TxVτ

coincides with TxGx.
The isotropy components of Σ∗ also form smooth manifolds:
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Lemma 6.28 ([Fie07, Lemma 10.2.2]). For each isotropy type τ of V , the set
Σ∗τ is a smooth manifold with

dim Σ∗τ = k + gτ .

As before, each Σ∗τ is a union of strata of the canonical stratification of Σ∗.
Thus, for any f ∈ V0(V,G) with Γf t Σ∗ at (0, 0), the set of pairs (x, λ)

such that x is a relative equilibrium of fλ consists of branches of G-orbits (in
the same sense as above).

It only remains to show that this transversality condition is open and dense
in V0(V,G). Openness is clear. Density is proved in a similar way as above:
We choose a minimal set of homogeneous equivariant generators F1, . . . , Fk
with F1(x) = x and F2(x) = ix. Again, Σ∗τ ∩ Rk is contained in Rk−1 ={
t ∈ Rk

∣∣ t1 = 0
}
. Thus, again we obtain a Whitney stratification A∗ of Rk−1

such that the transversality condition is satisfied if

γf (0) = (0, i, g3(0, 0), . . . gk(0, 0))

is contained in a stratum of A of codimension 0. Moreover, using ix = TxS
1x ⊂

TxGx, it may be shown that the stratification A∗ is invariant under transla-
tion in the direction of the t2-axis. As above, this yields the density of our
transversality condition.

Remark 6.29. The transversality condition can be formulated in terms of
equivariant transversality: Consider the algebraic subset

T := {(x, v) | dP (x)v = 0} ⊂ V × V

and the map

1× θ : V × Rk → V × V

(x, t) 7→ (x,
∑
i

tiFi(x)).

Then Σ∗ = (1 × θ)−1(T ). The space V × V may be identified with the space
J0(V, V ) and 1× θ coincides with the map U0. The composition U0 ◦ Γf yields
the graph of f that may be seen as the 0-jet of f . Thus, in the notation of
equivariant 0-jet-transversality, the condition is j0f tG T . Equivariant 0-jet-
transversality is just a slight generalization of equivariant transversality.

Field also considers an equivariant 1-jet-transversality condition in order
to show that the bifurcating equilibria and relative equilibria are generically
hyperbolic and normally hyperbolic respectively. For the characterization of
normal hyperbolicity in this context, the splitting f = fT + fN of a vector field
f ∈ C∞G (V, V ) within a tubular neighbourhood is used, where fT is tangential to
the G-orbits and fN is tangential to the slices. The existence of such a splitting
is a result of Krupa [Kru90]. A G-orbit of relative equilibria is a normally
hyperbolic submanifold for f iff each of its elements is a hyperbolic zero of fN
restricted to the corresponding slice. Equivalently, for any element x of the
orbit and any equivariant vector field f̃ with f̃(x) = f(x) that is tangential to
the G-orbits, the centre space of d(f − f̃)(x) has dimension dimGx.
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Let H(V ) ⊂ EndR(V ) be the semi-algebraic subset consisting of hyperbolic
manifolds. In the case of a finite group G, Field sets

Z1 :=
{

(x, 0, A) ∈ J1(V, V ) = V × V × EndR(V )
∣∣ A /∈ H(V )

}
.

For the non-finite case, the definition of a corresponding set Z∗1 is more involved.
Starting with the semi-algebraic set

Z∗0 (τ) = {(x, v) ∈ V × V | x ∈ Vτ , v ∈ TxN(G)x}

for any isotropy type τ , a map Ξ from Z∗0 (τ) into the set of vector fields
C∞G (V, V ) is constructed such that (Ξ(x, v)) is tangential to the G-orbits and
(Ξ(x, v))(x) = v. Based on these maps, one obtains a semi-algebraic set Z∗1 with
the property that the G-orbit of relative equilibrium x is a normally hyperbolic
submanifold for f iff j1f(x) /∈ Z∗1 .

In both cases, Field proves that for dimensional reasons, j1f tG Z1 and
j1f tG Z∗1 are equivalent to j1f(x) /∈ Z∗1 and j1f(x) /∈ Z∗1 respectively. Again,
openness and density of this condition can also be shown for the sets V0(V,G).

These methods of analysing questions in bifurcation theory have strongly
inspired the proceedings of this thesis.

As mentioned in the beginning, Birtea et al ([BPRT06]) also build on Field’s
ideas to study bifurcations in 1-parameter families of equivariant vector fields. In
particular, they investigate bifurcations of relative equilibria in the Hamiltonian
case. Their analysis relies on a variant of Field’s method proposed by Kœnig
and Chossat ([KC94]): For a given equivariant vector field X on a G-represen-
tation V , we consider the projection X̃ to the orbit space V

/
G ⊂ Rk, given by

X̃(P (x)) = dP (x)X(x). The space V
/
G is Whitney stratified, where the strata

are given by the images of the subsets of the same isotropy type. The projection
X̃ is a vector field on V

/
G , in the sense that it is tangent to the strata. If the

family f is represented by f(x, λ) =
∑
i gi(P (x), λ)Fi(x) then we have

f̃(P (x), λ) =
∑
i

gi(P (x), λ)F̃i(x).

Instead of the map θ : V ×Rk → V , we consider the induced map θ̃ : V
/
G×Rk →

V
/
G given by

θ̃(P (x), t) =
∑
i

tiF̃i(x).

Then Σ̃ := θ̃−1(0) coincides with the projection of the set Σ∗ ⊂ V × Rk to
V
/
G × Rk. Moreover, the projections of the strata of Σ∗ form a stratification

of Σ̃. The induced stratifications of Rk are the same, when we identify Rk with
the subsets {0}×Rk of Σ∗ and Σ̃ respectively. Kœnig and Chossat say that the
projected family f̃ is G-transverse to 0 = P (0) ∈ V

/
G at (0, 0) ∈ V

/
G × R iff

the map γ with γ(λ) = (g1(0, λ), . . . , gk(0, λ)) is transverse to this stratification
of Rk. This is equivalent to Field’s condition.

Now, Birtea et al formulate a Hamiltonian analogue of equivariant transver-
sality theory: They note that for a G-invariant Hamiltonian function h with a
representation h = g ◦ P , the Hamiltonian vector field Xh is given by

Xh(x) = Σli=1∂ig(P (x))J∇pi(x),
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where ω = 〈·, J ·〉. Thus, if we redefine θ by θ(x, t) :=
∑l
i=1 tiJ∇pi(x) for

(x, t) ∈ V × Rl and Γh by Γh(x) := (x, ∂1g(P (x)), . . . , ∂lg(P (x))), then Xh can
be decomposed as θ ◦ Γh. This is in principle what we will do in section 6.3 of
this chapter. We will give our definition in terms of 1-jet-transversality in order
to deduce directly from Bierstone’s theory that our transversality condition is
well-defined and generic – a matter that Birtea et al take no notice of when they
give their definition.

For a family f of Hamiltonian functions f(·, λ), we obtain an analogous
decomposition. Alternatively, one could transfer Kœnig’s and Chossat’s formu-
lation. This is the approach of Birtea et al ([BPRT06]). They observe that the
projections of the vector fields J∇pi are given by

{p1, pi}
{p2, pi}
. . .
{pl, pi}

 .

Thus the map θ̃ : V
/
G×Rl → V

/
G ⊂ Rl induced by θ is given by (x, t) 7→ A(x)t,

where the l×l-matrix A(x) has the entries (A(x))ij = {pi, pj}(x). We also define
Σ̃, and S(G) in an analogous way as for general equivariant vector fields; i.e.
Σ̃ := θ̃−1(0) and S(G) is the stratification of Rl ⊂ Σ̃ induced by the canonical
stratification of Σ̃.

Birtea et al consider families of Hamiltonian functions parametrized by λ ∈ R
such that at λ = 0 the derivative of the Hamiltonian vector field at the origin
has either an eigenvalue 0 or a pair of non-zero purely imaginary eigenvalues ±βi
such that E±βi is not irreducible as a G-symplectic representation. In the first
case, generically this can be reduced to the study of families f : V × R → R,
where V is an irreducible symplectic representation and dXf(·,λ)(0) = σ(λ)J
with σ(0) = 0 and σ′(0) 6= 0. In the second case, the generic situation can be
reduced to the case that V is a sum of a pair of complex duals and dXf(·,λ)(0)
is given by a sum of four matrices, each of which is a product of a constant
matrix and a function in λ. One of these functions is also called σ and satisfies
σ(0) = 0, σ′(0) 6= 0. (This is a result from [COR02]. See [BPRT06] or [COR02]
for the precise form.)

If f : V × R→ R is such a family of Hamiltonian functions with

Xf(·,λ)(x) = Σli=1∂ig(P (x), λ)J∇pi(x),

equivalently
X̃f(·,λ)(x) = A(x)∇P (x)g(P (x), λ),

Birtea et al set γ(λ) := (∂p1g(0, λ), . . . , ∂plg(0, λ)) ∈ Rl) and call the family
X̃f(·,λ) transverse to 0 ∈ V

/
G at λ = 0 iff γ is transverse to S(G) at 0.

Then, they consider such families that satisfy this transversality condition
and state that for a special class of symplectic representations V , the relative
equilibria form ’branches’ as they do for generic equivariant families of general
vector fields. That is, they locally form C1-curves in the orbit space V

/
G × R

that start at (0, 0) and contain no point (0, λ) with λ 6= 0. The condition on V
is, that there are indices i0, i1 ∈ {1, . . . , l}, such that the function {pi0 , pi1} does
not vanish identically and there is x0 ∈ V with limx→x0

{pi0 ,pi}(x)
{pi0 ,pi1}(x) for all i 6= I1

and x in the domain of definition. The proof, however, is erroneous: The authors
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claim, that this condition implies that all strata of S(G) of codimension ≥ 1 are
contained in the subspace {ti1 = 0} ⊂ Rl and that it is hence possible to adapt
Field’s argument. First, such an adaption of the arguments is only possible if σ
coincides with the i1-th entry of the function γ. Second, the proof of the claim
about the stratification relies on the assertion, that if the i0-component of map
θ̃ vanishes for some pair (P (x0), t0), then the i0-component of θ̃(·, t0) vanishes
identically. This is obviously not true.

Moreover, if there was a G-symplectic representation V such that the relative
equilibria of a generic family of Hamiltonian systems with G-symmetry on V
form branches of this kind, a single generic Hamiltonian function would have
no non-trivial relative equilibria in some neighbourhood of the origin. This is
not the behaviour that we expect. Indeed, as we have shown in chapter 3, if
the connected component G◦ of the identity acts non-trivially on V , there is
an open set of Hamiltonian functions h such that G◦ acts non-trivially on the
corresponding centre space Ec of dXh(0). In this case, the results discussed
in chapter 5 show that we have to expect relative equilibria near 0 ∈ V . For
example, this follows from remark 5.18.

Nevertheless, it is an interesting observation that θ̃ takes this particular sim-
ple form. It may lead to a better understanding of the structure of Hamiltonian
relative equilibria in symplectic representations in future work. The approach
of the following sections, however, is different:

In section 6.3, we consider an algebraic set similar to that considered by Field
for his investigation of the bifurcation of relative equilibria. We only need a
suitable notion for equivariant transversality of Hamiltonian vector fields which
will be given in terms of equivariant 1-jet-transversality. As mentioned, this is
in principle equivalent to the definition given by Birtea et al ([BPRT06]).

The analysis of torus representations of section 6.4 is similar to Field’s orig-
inal method of analysing the bifurcation of zero sets: As suggested by Chossat
et al. in [CLOR03], we search for zeros of the augmented Hamiltonian and con-
sider the ξ ∈ g as parameter. If g is Abelian, the action on the parameter space
is trivial and thus the problem can be handled as above. The only difference is
the dimension of the parameter space, which is not an obstacle. As mentioned,
more dimensional parameter spaces even occur in the proof of the independence
of choices.

6.3 Transverse relative equilibria with continu-
ous isotropy

In an analogous way as Field’s approach in the context of bifurcation theory
for equivariant vector fields, equivariant transversality theory may be used to
study the generic structure of relative equilibria of Hamiltonian vector fields for
invariant Hamiltonian functions. In this way, the theory for free actions can
be generalized to some extent. We will see that the definition of a transverse
relative equilibrium given in [PR00] is a special case of a more general definition,
which involves equivariant transversality.

In particular, we obtain that generically the results of Patrick and Roberts
([PR00]) for transverse relative equilibria hold within isotropy submanifolds PH
for any isotropy subgroup H ⊂ G with respect to the free action of the group
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N̄(H) := (N(H)
/
H )◦. If we identify the groups N̄(H) of relative equilibria of

the same isotropy type via conjugation, generically the subsets of the same type
(K) within N̄(H) of the momentum generator pair form a smooth manifold of
dimension

dimG− dimH + 2 dimZ(K)− dimK.

In addition, the set of these relative equilibria within the set of phase space
points of the same isotropy type has singularity type (l∗ ⊕ l)c, where l is a
K-invariant complement of the Lie algebra z of Z(K) within k. That these
properties hold for a residual set of G-invariant Hamiltonian functions, can
also be deduced directly from the theory presented in [PR00], but equivariant
transversality theory yields the openness of this set. Moreover, we can conclude
in addition that the whole set of relative equilibria forms a Whitney stratified
set.

There are several possible ways how to obtain these generalizations of the
theory of transverse relative equilibria. A possible approach might be to gener-
alize the fact that equivariant transversality implies stratumwise transversality
to the jet version of transversality theory and invariant algebraic subsets of
the jet space. Then the results of Patrick and Roberts ([PR00]) may be ap-
plied to the fixed point spaces. But for algebraic sets, the subsets of the same
isotropy type are no longer manifolds and this may cause difficulties with the
implications between the transversality properties with respect to the different
occurring stratifications. (It might be necessary to modify the definition and
use a stratification which respects the isotropy type.)

However, we will show stratumwise transversality only in the relevant special
case and conclude the results in a more direct way here, which is a bit closer to
Field’s proceeding for general equivariant vector fields.

We start with a generalization of the definition of transverse relative equi-
libria: For finding relative equilibria in the Hamiltonian case, we search for
solutions (p, ξ) of the equation

Xh(p)− ξp = 0,

which is the same equation as for equivariant vector fields with the only dif-
ference that we vary the vector field within the class of Hamiltonian vector
fields. This leads to the question how equivariant transversality to the subset
T =

⋃
p∈P g · p of TP should be defined for Hamiltonian vector fields.

This question can be answered by considering the dual equation

dh(p)− dJξ(p) = 0 :

If K◦ ⊂ T ∗P denotes the set K◦ =
⋃
p∈P,ξ∈g dJξ(p), the product R × K◦ can

be considered as a subset of J1(P,R) ' R× T ∗P . Then we only have to apply
equivariant jet-transversality theory. More precisely:

Definition 6.30. A relative equilibrium p ∈ P is transverse iff h is G-1-jet-
transverse to K◦ × R at p.

If w.l.o.g. P ' G×HV , the set K◦ is a semi-analytic subset of T ∗P and hence
transversality of p is well-defined: The analytic isomorphism ω# : T ∗P → TP
induced by the symplectic form ω maps K◦ to the subset T ⊂ TP with Tx = g·x.
Since P is locally analytically isomorphic to g

/
h×V , TP is locally isomorphic to
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the analytic manifold T (g
/
h )×TV and the subset T corresponds to the product

of T (g
/
h ) and the subset T ′ ⊂ TV given by T ′x = h · x. The set T ′ is even a

semi-algebraic subset of TV . This follows in a similar way as Field’s argument,
why the set Σ∗ is algebraic: If p1, . . . , pl are polynomial generators of P (V )H
and P = (p1, · · · , pl) is the orbit map, T ′ is equal to union of the zero sets of
the maps dP : TVτ → Rl, (x, v) 7→ dP (x)v, defined on the tangent bundles of
the isotropy subspaces. We only have to show that the tangent bundles TVτ are
semi-algebraic subsets of TV . By [Fie07, Lemma 6.8.1] the subsets Vτ ⊂ V are
semi-algebraic. In addition, the points of Vτ are non-singular points of their real
Zariski closure, in the sense of [BCR98, Chapter 3, Section 3]. (This was shown
by G. Schwarz, see [Fie96, Lemma 9.6.1, part (1)].) Therefore it follows from
[BCR98, Proposition 3.3.8] that Vτ can be covered by semi-algebraic subsets
whose tangents spaces are semi-algebraic. Hence TVτ is semi-algebraic itself.
Thus, K◦ is semi-analytic. If G is an algebraic group and hence is H, K◦ is even
semi-algebraic.
Remark 6.31. In order to avoid to use the – far from trivial – result shown
by Schwarz, we could alternatively proceed analogously to Field: Instead of K◦,
we can consider the image K̃◦ under ω# of the G-invariant set T̃ , where T̃[e,x] '
T (g
/
h )×ker dP (p) with respect to the local isomorphism (P, p) ' (g

/
h×V, (e, 0))

near p and the orbit map P : V → V
/
H ⊂ Rl for the representation of H := Gp

on the tangent space V to a slice in p. In the case of a free action, the sets K◦ and
K̃◦ coincide. In general, their intersections with the set T ◦ with T ◦q = ann gq

coincide: The vectors in the preimage (ω#)−1(T ◦q ) can locally be extended
to Hamiltonian vector fields of G-invariant Hamiltonian functions. Thus, if
q = [e, x] and K := Hx, then (ω#)−1(T ◦q ) is contained in TPK ⊂ TP(K) and
the latter is locally equivariantly diffeomorphic to g

/
h ×V(K). As argued above,

if v ∈ TxV(K), then dP (x)v = 0 is equivalent to v ∈ hx.
From the equality of these intersections, it follows that we obtain the same

transversality condition if we replace K◦ by K̃◦.
This implies, that the set U−1

1 (K◦) is closed and in particular locally closed,
even though this does not hold in general for K◦. Thus, the Thom-Mather-
transversality theorem A.21 applies.

To justify the definition, we first consider the free case:
Example 6.32. If G acts freely on P , P is locally of the form G × V , where
V is a vector space (only with a trivial group action). The corresponding map
U1 is just the identity J1(V,R) → J1(V,R). Hence the map U1 is given by
the embedding G × J1(V,R) ↪→ J1(G × V,R) that maps (g, j1fx) to j1f̃gx
where f̃ is the invariant extension of f . In local coordinates corresponding to
local coordinates on G and V , the embedding is just the extension by 0 in the
coordinates of the G-derivative. This means that G×J1(V,R) can be identified
with the set T ◦ × R, where T ∗(G× V ) ⊃ T ◦ =

⋃
p∈G×V ann(g · p). If we omit

the R-factors, U−1
1 (K◦) is just the intersection K◦ ∩ T ◦.

Since V and R are trivial representations, invariant and equivariant poly-
nomial generators are given by the coordinate functions on V and R. Thus,
l = dimV , Rl ' V , k = 1, V × P 1(Rl,R) can be identified with J1(V,R) and
(1, j̃1h ◦P ) : V → J1(V,R) is just the 1-jet j1h. The extension to G×V of this
map may be considered as a map to T ◦ ×R and again we can omit the R-com-
ponent and accordingly the function value of j1h. Then, if we assume w.l.o.g.



6.3. TRANSVERSE REL. EQUILIBRIA WITH CONT. ISOTROPY 119

G× V ' P , a relative equilibrium p is transverse iff dh : P → T ◦ is transverse
to the Whitney stratified set K◦c = K◦ ∩ T ◦ at p. This is just the definition
given in [PR00]. We only have to show that the canonical stratification of K◦c
coincides with the stratification by isotropy type. This will be done with the
next lemma and theorem.

Remark 6.33. Note the relation of the subsets T ◦, K◦ of T ∗P and their in-
tersection Koc to the Witt-Artin decomposition of the tangent space at p: We
have TpP = T0⊕T1⊕N0⊕N1 and the corresponding splitting of the dual space
T ∗pP = T ∗0 ⊕ T ∗1 ⊕ N∗0 ⊕ N∗1 . The subspace g · p = Tp ⊂ TpP coincides with
T0 ⊕ T1. Thus T ◦p = ann Tp is identified with N∗0 ⊕N∗1 . Since

K◦p = ω#(Tp) = ω#(T0 ⊕ T1) = N∗0 ⊕ T ∗1

(see Lemma 2.5 for the last equation), we obtain Kocp = N∗0 ' m.

Lemma 6.34. Let K be a connected compact Lie group with Lie algebra k and
l be a K-invariant complement of the Lie algebra z of the centre Z(K) with
respect to the adjoint action. Suppose that a closed subset U ⊂ l∗ ⊕ l contains
the point (0, 0), all points of isotropy strata of dimension d for some d > 0,
and no points of isotropy strata of dimension greater than d. If U is a smooth
manifold, U = l∗ ⊕ l.

Proof. Let S be the union of isotropy strata of dimension d. S is a d-dimensional
smooth manifold. Moreover, any x ∈ S has a neighbourhood within U which is
contained in S. If U is a manifold, for any sequence (si) ⊂ S approaching (0, 0),
the sequence of tangent spaces TsiS converges to T(0,0)U . Since in particular for
any s ∈ S, the sequence 1

ns converges to (0, 0) and the corresponding sequence
of tangent spaces is the constant sequence ai = TsS, all tangent spaces of
the manifold S are the same. Thus, S is an open subset of a d-dimensional
subspace E of l∗ ⊕ l and U = E. We only have to show that S spans l∗ ⊕ l: Let
L := K

/
Z(K) and τ = (H) be an isotropy type of the L-representation l∗ ⊕ l.

Then for any isotropy subgroup H ⊂ L, τ := (H), the dimension of the isotropy
stratum (l∗ ⊕ l)τ is given by dimL− dimH + 2 dimZ(H), see [PR00].

Let t be the Lie algebra of a maximal torus T of L with Z(H) ⊂ T . If we
identify t and t∗, the set tH is given by the intersection W of some Weyl walls.
Moreover, dimH is determined by dimW = dimZ(H) ([BtD85, chapter V,
Proposition 2.3]). Hence, within t = {0} ⊕ t ⊂ l∗ ⊕ l, all points of intersections
of some specific number of Weyl walls are contained in S. Since dimS > 0, all
edges of some Weyl chamber belong to S. Thus S spans t and by L-invariance,
S spans l. Similarly, S spans l∗. Thus, U = l∗ ⊕ l.

Theorem 6.35. Let P be a symplectic manifold with a free Hamiltonian action
of a connected compact group G.

1. The canonical stratification of K◦c coincides with the stratification by
isotropy type of the momentum generator pair.

2. Any G-invariant Whitney stratification of K◦c is a refinement of the canon-
ical stratification.
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Proof. 1. As presented in section 4.2, near a point of K◦c(K), the stratified set
K◦c is locally diffeomorphic to a product of (l∗⊕ l)c and a vector space E.
Therefore the canonical stratification locally coincides with the product
of the canonical stratification of (l∗ ⊕ l)c and E.
To construct the canonical stratification of K◦c, we start with the subset
of highest dimension, which consists of all points for which a neighbour-
hood of K◦c forms a manifold of dimension dimG+ dimT , where T ⊂ G
is a maximal torus. By Lemma 6.34, these are exactly the points whose
generator momentum pair is of isotropy type (T ): For any isotropy sub-
group K of (g∗ ⊕ g)c with (K) 6= (T ), (l∗ ⊕ l)c ( l∗ ⊕ l is not regular at
(0, 0) and thus the set K◦c is not regular at points of isotropy (K). Next,
we consider the set K◦c with the points of type (T ) omitted. Again by
Lemma 6.34 the set of regular points consists of the sets K◦cτ of maximal
dimension, where τ is an isotropy type of (g∗⊕g)c \ (g∗⊕g)c(T ). Moreover,
since the stratification by isotropy type is a Whitney stratification, the set
K◦c(T ) is Whitney regular over the set of regular points of K◦cτ \K◦c(T ). Going
on, the construction of the canonical stratification yields step by step the
stratification by isotropy type of (µ, τ).

2. Let S be the canonical stratification of K◦c and S ′ be another Whitney
stratification of K◦c. Suppose that (K◦c)j = (K◦c)′j for all j > i and
(K◦c)i ⊂ (K◦c)′i (notation as in appendix A.2). There are two possible
cases:

(a) The set (K◦c)′i\(K◦c)i consists of S ′-strata each of which is contained
in an S-stratum.

(b) There is an S ′-stratum S′ with S′ ∩ ((K◦c)′i \ (K◦c)i) 6= ∅ which
intersects at least two S-strata.

In the first case, we modify the stratification S ′ by joining all strata to-
gether that are contained in the same S-stratum of dimension i+ 1. This
way, we obtain a new Whitney stratification S ′′ with (K◦c)j = (K◦c)′′j for
all j > i − 1. If we continue with this procedure, we either eventually
obtain the second case or S ′ was a refinement of S.
In the second case, the dimension of an S-stratum that intersects S′ is at
most i + 1 since the higher dimensional strata coincide for both stratifi-
cations. For two (i+ 1)-dimensional S-strata form a disconnected set, S′
intersects (K◦c)i. Let x ∈ S′ ∩ (K◦c)i and y ∈ S′ ∩ ((K◦c)′i \ (K◦c)i). By
topological triviality of the stratification S ′ along the stratum S′, there are
homeomorphic neighbourhoods of x and y within (K◦c)′i+1 = (K◦c)i+1. At
y ∈ (K◦c)i+1 \ (K◦c)i, the set (K◦c)i+1 is locally a manifold. Thus, x has a
neighbourhood U whose intersection with (K◦c)i+1 is a topological mani-
fold. Hence (K◦c)i+1 is locally a topological manifold at any x̃ ∈ U∩(K◦c)i
and we may assume w.l.o.g. that x̃ is contained in a stratum of (K◦c)i of
locally maximal dimension. As shown in [PR00], the set K◦c is locally
diffeomorphic at x̃ to a product of a vector space and (l∗ ⊕ l)c at 0 for
the Lie algebra l of some Lie group L. For x̃ is contained in a stratum
S of locally maximal dimension within (K◦c)i, there is locally no stratum
whose dimension is greater than dimS and less than i + 1. The isotropy
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type by an element ξ of l contained in a Cartan subalgebra of l is deter-
mined by the number of Weyl walls of the Cartan subalgebra that contain
ξ (see [BtD85, chapter V, Proposition 2.3, part (ii)]). Since x̃ corresponds
to (0, 0) ∈ (l∗⊕ l)c, (K◦c)i+1 corresponds to the set W of pairs (µ, ξ) such
that µ and ξ are both contained in 1-dimensional intersections of Weyl
walls within the Lie algebra t of a maximal torus T ⊂ Lξ ∩ Lµ. We now
show that W \ {(0, 0)} is disconnected. This is a contradiction to the as-
sumption that (K◦c)i+1 was locally a manifold. To do this, we investigate
the projection of W to l∗ which consists of the L-orbits of the 1-dimen-
sional edges of Weyl walls of t∗. Choose some Weyl chamber C of t∗ and
consider its 1-dimensional edges. By [BtD85, chapter V, Lemma 4.3], if
x, y ∈ C, w is a Weyl group element, and wx = y, then w = 1 holds.
Hence the L-orbits of the interiors of the 1-dimensional edges of C are
disjoint. Thus the projection of W \ {(0, 0)} to l∗ is disconnected and so
is W \ {(0, 0)}.

By the first part of the theorem, our definition is a natural extension of the
definition of Patrick and Roberts ([PR00]) to the case of possibly non-free ac-
tions. Genericity of the property that all relative equilibria are transverse within
the space of invariant C∞-functions with respect to the Whitney C∞-topology
follows immediately from the theory presented in [Bie76]. Moreover, if this
genericity assumption is satisfied, the relative equilibria form a Whitney strati-
fied subset.

Remark 6.36. Let us unravel the condition dh(x) ∈ K◦c = K◦ ∩T ◦ for x near
p. We identify p with [e, 0, 0] in the corresponding Guillemin-Sternberg normal
form Y = G ×H (m∗ × N), where H = Gp. Since dh(x) ∈ K◦c holds for x iff
it holds for gx for any g ∈ G, we may assume w.l.o.g. that x ∈ V = (m∗ ×N).
(Recall that to simplify the notation, the symplectic normal space N1 of the
Witt-Artin decomposition is denoted by N in the Guillemin-Sternberg normal
form). The set (K◦ ∩T ◦)x is given by the forms dJξ(x) with dJξ(x) ∈ ann(gx).
Therefore we investigate for which ξ ∈ g the derivative dJξ(x) is contained in
ann(gx). The momentum map is given by

J = JY : G×H (m∗ ×N)→ g∗ (6.1)
[g, ρ, ν] 7→ Coadg(µ+ ρ+ JN (ν)), (6.2)

where JN is the momentum map on N . Hence, for a point x = [e, ρ, ν] of
V = m∗ ×N , the derivative of J in the direction of the group orbit is equal to

dJ(x)ηx = coadη(µ+ ρ+ JN (ν))

for any η ∈ g. Thus,

dJξ(x)ηx = (µ+ ρ+ JN (ν))(−[η, ξ]) = − coadξ(µ+ ρ+ JN (ν))(η).

Therefore, dJξ(x) vanishes on g · x iff

coadξ(µ+ ρ+ JN (ν)) = 0. (6.3)

If x is close to p, µ′ := J(x) = µ + ρ + JN (ν) is close to µ, and hence we may
assume that Gµ′ ⊂ Gµ. Then equation (6.3) is equivalent to ξ ∈ gµ and

coadξ(ρ+ JN (ν)) = 0. (6.4)
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Next, we assume that dJξ(x) ∈ ann(g ·p) and investigate the condition dh(x) =
dJξ(x). Since dh(x) ∈ ann(g · p), this is true iff it holds for the restrictions h̄
and J̄ξ to V = m∗ ×N , i.e.

dm∗ h̄(ρ, ν) + dN h̄(ρ, ν) = Pmξ + 〈dNJN (ν)·,Phξ〉,

where Pm and Phξ denote the projections to m and h respectively. Since ξ ∈ gµ,
this yields Pmξ = dm∗ h̄(ρ, ν) and for η := Ph∗ξ

dN h̄(ρ, ν)− dNJηN (ν) = 0.

Thus we obtain the commutation equation (2.14) and the symplectic slice equa-
tion (2.15), which characterize relative equilibria.

Now, we keep the notation of remark 6.36 and suppose in addition, that p is
a relative equilibrium. As illustrated in section 6.1.2, p is a transverse relative
equilibrium if dh(p) ∈ K◦c = K◦∩T ◦ and the restriction h

∣∣
V
is H-transverse to

the projection of K◦c to T ∗V , which coincides with the intersection K◦c ∩ T ∗V .
The structure of this set may be complicated in general, but the intersection

with T ∗VH is easier to analyse:
As argued above, for (ρ, ν) ∈ V = m∗ ⊕N , we have that

K◦c(ρ,ν) =
⋃

ξ∈(gµ)J(ρ,ν)

dJξ(ρ, ν).

Recall that
J(ρ, ν) = JY ([e, ρ, ν]) = ρ+ JN (ν).

Lemma 6.37. The momentum map JN : N → h∗ vanishes on NH .

Proof. In general, for a Hamiltonian G-action on a phase space P with mo-
mentum map J : P → g∗, the kernel of dJ(p) is given by (g · p)⊥ω for p ∈ P .
In particular, dJ(p) = 0 if p ∈ PG. Hence J is constant on PG. On the
representation N , we choose JN (0) = 0 (otherwise equation (6.1) for the mo-
mentum on the model space G×H (m∗ ⊕N) would contradict the requirement
J(e, 0, 0) = µ).

Let n(H) be the Lie algebra of the normalizer N(H) within G, c(H) be the
Lie algebra of the centralizer C(H) within G, n be the Lie algebra of N̄(H) =
(N(H)

/
H )◦, and nµ be the Lie algebra of (N̄(H))µ = NGµ(H)

/
H .

Lemma 6.38. If m is an NGµ(H)-invariant complement of h within gµ (and
hence the corresponding splitting g∗µ = m∗ ⊕ h∗ is NGµ((H)-invariant), then
mH ' nµ and (m∗)H ' n∗µ as N̄(H)µ-spaces.

Proof. Since we may identify g and g∗ via a G-invariant inner product, we only
have to show mH ' nµ. Since m is N(H)-invariant, m ' gµ

/
h as N(H)-spaces.

We show (g
/
h )H = n. Then the restriction to the subgroup Gµ yields the

required result. We have

[ξ] ∈ (g
/
h )H ⇔ Adh ξ − ξ ∈ h ∀h ∈ H.

The right hand side is equivalent to ξ ∈ n(H), as can be shown using the Baker-
Campbell-Hausdorff-formula, see [OR04(b), Lemma 2.1.13]. Alternatively, we
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may use the fact that n(H) = h + c(H) (for a proof, see for example [Fie07,
Corollary 3.10.1]): The right hand side is obviously true for ξ ∈ h + c(H). On
the contrary, suppose that the right hand side holds for ξ ∈ g and choose an
H-invariant complement l of h. If ξ = η + λ, η ∈ h, and λ ∈ l, then for any
h ∈ h, the element Adh λ−λ is contained in l∩h = {0}. Thus, ξ ∈ h+c(H).

Lemma 6.38 shows that

T ∗V H = (NH ⊕ (m∗)H)⊕ ((NH)∗ ⊕mH) = NH ⊕ n∗µ ⊕ (NH)∗ ⊕ nµ.

For (ρ, ν) ∈ V H = n∗ν ⊕ NH , we have J(ρ, ν) = ρ and thus dJ(ρ, ν)
∣∣
V H

coincides with the projection to n∗ν . Hence 〈dJ(ρ, ν)
∣∣
V H

, ξ〉 only depends on the
nν-component ξnν of ξ for any

ξ ∈ gµ = mH ⊕ (mH)⊥ = nµ ⊕ n⊥µ

with respect to an N(H)-invariant inner product on gµ. Indeed,

dJξ(ρ, ν)
∣∣
V H

(ρ̇, ν̇) = ρ̇(ξnν ).

Hence the subspaceK◦c(ρ,ν)∩T
∗
(ρ,ν)(V H) is given by (nν)ρ ⊂ N∗⊕nν = T ∗(ρ,ν)(V H).

Thus,
(K◦c

∣∣
T∗VH

) = (NH ⊕ (n∗µ ⊕ nµ)c)H ⊂ T ∗VH . (6.5)

Let Σ∗ ⊂ V × Rk be the preimage of K◦c
∣∣
T∗V

under U1 (where we omit
the factor R). For an isotropy subgroup K ⊂ (N̄(H))µ of (n∗µ ⊕ nµ)c, let
(K◦c

∣∣
T∗VH

)(K) be the subset K◦c(K) with respect this action and (Σ∗)H(K) be its
preimage under U1.

Let p1, . . . , pl be a minimal set of homogeneous generators of P (V )H .
We now obtain a Hamiltonian analogue to [Fie07, Lemma 6.9.2]:

Theorem 6.39. The set (Σ∗)H is a Whitney stratified subset with strata (Σ∗)H(K)
of dimension 2 dimZ(K)− dimK + l, where Z(K) is the centralizer of K. If l
is a K-invariant complement of the Lie algebra z of Z(K) within the Lie algebra
k of K, the set (Σ∗)H has singularity type (l∗ ⊕ l)c at any point of (Σ∗)H(K).

Proof. The map U1 : V × Rl → T ∗V = V × V ∗ is given by

(x, t) 7→ (x,
l∑
i=1

tidpi(x)).

Since the functions pi are H-invariant, dpi(x) ∈ (V ∗)H for x ∈ V H with respect
to the dual H-action on V ∗. Therefore U1 maps V H ×Rl to T ∗V H . Moreover,
the map U1 : V H × Rl → T ∗V H is a submersion: For any x ∈ V H and α ∈
(V ∗)H , α(·) is an H-invariant function and hence α = a ◦ P for some function
a : Rl → R. Thus,

α = dα(x) = da(P (x)) ◦ dP (x) =
l∑
i=1

∂ia(P (x))dpi(x).
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By equation (6.5) and the theory presented in [PR00], (K◦c
∣∣
T∗VH

) is a Whit-
ney stratified set with strata (K◦c

∣∣
T∗VH

)(K) of dimension

dimNH +dim(N̄(H)µ)+2 dimZ(K)−dimK = dimV H +2 dimZ(K)−dimK.

Since U1 is a submersion, its preimage (Σ∗)H(K) is a submanifold of the same
codimension dimV H − 2 dimZ(K) + dimK, hence

dim(Σ∗)H(K) = 2 dimZ(K)− dimK + l.

Moreover, since the singularity type of (K◦c
∣∣
V

)H at a point of (K◦c
∣∣
T∗V

)H(K) is
given by (l∗ ⊕ l)c, this is also true for the preimages.

The next result is completely analogous to the first part of [Fie07, Theo-
rem 6.10.1]: Let S be the canonical stratification of Σ∗. By uniqueness of the
canonical stratification, every S ∈ S is G-invariant. Thus for any isotropy type
of the H-representation V , the subset Sτ = S ∩ Σ∗τ is an isotropy subspace of
the G-space S. Hence Sτ is a manifold. Let Sτ denote the stratification of Σ∗τ
consisting of the sets Sτ for S ∈ S.

Theorem 6.40. For every isotropy type τ of the H-representation T ∗V , Sτ is
a Whitney stratification of Σ∗τ .

Since we will only need the case τ = (H) of the theorem, we will only prove
this case. To do this, we just reproduce the proof of Field ([Fie07]). The proof
of the general case is similar.

Proof of Theorem 6.40 for τ = (H). Suppose S, T ∈ S(H) and x ∈ ∂S ∩ T . We
have to show Whitney regularity: Let (pn) ⊂ S and (qn) ⊂ T be sequences
converging to x such that TpnS converges to a dim(S)-dimensional subspace E
of V ×Rl and R(pn − qn) converges to a line L. We show L ⊂ E: Suppose S =
S̃∩(V H×Rl) and T = T̃ ∩(V H×Rl) for some S̃, T̃ ∈ S. There is a subsequence
of Tpn S̃ that converges to a dim S̃-dimensional subspace Ẽ of V × Rl. Since S
is a Whitney stratification, L ⊂ Ẽ. If V = W ⊕ V H is an H-invariant splitting
and π : (W ⊕ V H)× Rl → V H × Rl is the projection, π maps any H-invariant
subspace to its intersection with V H×Rl. ByH-invariance of S̃, the spaces Tpn S̃
are H-invariant. Thus π(Tpn S̃) = TpnS and hence E = π(Ẽ) = Ẽ ∩ (V H ×Rl).
L ⊂ V H × Rl yields L ⊂ E.

Let h = h(p1, . . . , pl) be the H-invariant restriction of the Hamiltonian func-
tion to V . The relative equilibrium p is transverse if the map

Γh : V → V × Rl

x 7→ (x, ∂1h(P (x)), . . . , ∂lh(P (x))

is transverse to Σ∗ in 0 ∈ V . As discussed, we may suppose V H = 0 by
considering

Γh : V × Rs → V × Rl

(x, s) 7→ (x, ∂1h(P (x, s)), . . . , ∂lh(P (x, s)).
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H-equivariant transversality in (0, s) may also be described in terms of the map

γh : Rs → Rl

s 7→ (∂1h(P (0, s)), . . . , ∂lh(P (0, s))).

As in [Fie07], we obtain:

Lemma 6.41. Γh is transverse to Σ∗ in (0, s) ∈ V ×Rs iff γh is transverse to
Σ∗(H) = (Σ∗)H with respect to the stratification S(H) in s ∈ Rs.

Proof. Suppose Γh(0, s) = y ∈ S ∈ S.
Since dxP (·, s) : V → V ∗ is H-equivariant, dxP (0, s) = 0 and hence the

image of the x-derivative of Γh in (0, s) is equal to V . Thus Γh is transverse to
S in (0, s) iff dγh(s)Rs + (TyS ∩ Rl) = Rl. By the H-invariance of S, we have
TyS ∩ Rl = Ty(SH), see the proof of Theorem 6.40.

For τ = H, set

gτ = dimG− dimH = dim G
/
H ,

nτ = dim N̄(H) = dim N(H)
/
H .

Again, E denotes the set of relative equilibria. If p is a relative equilibrium
with isotropy group Gp = H, its generator may naturally be considered as
an element in n, this way, it is unique. Lemma 6.37 and Lemma 6.38 show
that its momentum may also be considered as an element of n∗. Moreover, at
least locally µ is also naturally an element of the quotient by h: In a tubular
neighbourhood G×H V of p, the momentum map might be modified by adding
an element of h∗ to the restriction to V and G-equivariant extension such that
the resulting map is still equivariant.

Let EH,(K) be the set of relative equilibria with isotropy subgroup H and
isotropy type (K) of the momentum generator pair, where K ⊂ N̄(H). More-
over, for τ = (H), let Eτ,(K) denote theG-orbit of EH,(K). Similarly, letK◦cH,(K) ⊂
K◦c be the set of pairs (x, ξ · x) with Gx = H and (N̄(H)ξ ∩ N̄(H)J(x)) = (K),
and let K◦cτ,(K) be its G-orbit.

Theorem 6.35, Theorem 6.39, Theorem 6.40, and Lemma 6.41 yield together

Theorem 6.42. If p ∈ P is a transverse relative equilibrium of type (K),
K ⊂ N(H)

/
H , the sets EH,(K) and Eτ,(K) form smooth manifolds of dimension

nτ + 2 dimZ(K)− dimK and dimension gτ + 2 dimZ(K)− dimK respectively
in a neighbourhood of p. Moreover, the sets EH and E(τ) have singularity type
(l∗ ⊕ l)c at p.

Proof. By Lemma 6.41, the restriction of Γh to theH-isotropy subspace is trans-
verse to Σ∗(H) with respect to the stratification S(H). By Theorem 6.40, S(H)
is a Whitney stratification of Σ∗(H). As we have shown in the proof of Theo-
rem 6.40, Σ∗(H) is the preimage of (K◦c

∣∣
T∗V

)H under a submersion. Hence, Σ∗(H)
is locally isomorphic to a product of a vector space and K◦c(H). By Theorem 6.35,
any Whitney stratification of K◦c(H) is a refinement of the stratification into the
strata (K◦c)H(K) for isotropy subgroups K ⊂ N̄(H) of the N̄(H)-representation
n∗ ⊕ n. Similarly, any Whitney stratification of (Σ∗)H is a refinement of the
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stratification into the manifolds (Σ∗)H(K). In particular, Γh is transverse to the
strata (Σ∗)H(K). Hence, E ∩V H has singularity type (l∗⊕ l)c at p and the same is
true for the set of relative equilibria in a neighbourhood in G×H V H of p in Pτ .
Furthermore, the intersection EH,(K) ∩ VH is a smooth manifold of dimension
2 dimZ(K)− dimK. Since

EH,(K) ' N(H)×H (EH,(K) ∩ V H)

and
Eτ,(K) ' G×H (EH,(K) ∩ V H),

both are smooth manifolds and

dim EH,(K) = nτ + 2 dimZ(K)− dimK,

dim Eτ,(K) = gτ + 2 dimZ(K)− dimK.

Remark 6.43. Note that near a transverse relative equilibrium, all relative
equilibria are transverse, even those of a different isotropy type.

Theorem 6.42 shows that the conjugacy class of the pair (H, N̄(H)ξ∩N̄(H)µ)
contains important information about the local structure of relative equilibria
near a relative equilibrium p with generator ξ ∈ n and momentum µ ∈ n∗.

Definition 6.44. Two relative equilibria p and q are of the same type iff Gp =
gGqg

−1 for some g ∈ G and the isomorphism N(Gp) ' N(Gq) that is induced
by the conjugation with g identifies the isotropy subgroups K ⊂ N̄(Gp) and
L ⊂ N̄(Gq) of the momentum generator pairs.

Thus, each of the sets Eτ,(K) is a set of relative equilibria of the same type.

Remark 6.45. There is another apparent generalization of the definition of
transverse relative equilibria for free actions to the case of non-trivial isotropy
subgroups using equivariant transversality theory: As shown in Lemma 4.7,
in the free case, transversality of a relative equilibrium p with generator ξ is
equivalent to the map ψ◦(K) : (P × g)c(K) → T

◦ being transverse to the zero
section of T ◦ at (p, ξ), where ψ◦(K) = ψ◦

∣∣
(P×g)c(K)

and ψ◦(x, η) = dhη(x). This
is equivalent to G-1-jet-transversality of

Ψ : P × g→ R
(x, η) 7→ hη(x)

to the product of R and zero section Q of T ∗P × g, where we consider T ∗P × g
as a subbundle of T ∗(P × g) over P × g: The G-action on P × g is given by
the product of the G-action on P and the adjoint action on g. Since P is a free
G-space, this is also true for P × g. Ψ is a G-invariant function with respect to
this action.

If V is a slice at p for the G-action on P , V × g forms a slice at (p, ξ)
transverse to the G-orbit G(p, ξ).

As we have seen in Remark 6.25, G-1-jet-transversality of Ψ to R × Q is
equivalent to transversality of the derivative of the restriction Ψ

∣∣
V×g to the

intersection Q ∩ T ∗(V × g), i.e. the subset of Q consisting of cotangent vectors
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that vanish in the direction of the G-orbit. A cotangent vector df(p,ξ) is an
element of T ∗(V × g) iff

df(p,ξ)(η · p, [η, ξ]) = 0 ∀η ∈ g.

Moreover, df(p,ξ) ∈ Q implies

df(p,ξ)(η · p, 0) = 0 ∀η ∈ g.

Hence df(p,ξ) ∈ Q ∩ T ∗(V × g) is equivalent to

coadξ dgf(p,ξ) = 0

and
dP f(p,ξ) = 0.

Thus

Q ∩ T ∗(V × g) = (V ⊕ {0})× (g⊕ g∗)c ⊂ (V ⊕ V ∗)× (g⊕ g∗) = T ∗(V × g).

Suppose that p is a relative equilibrium with generator ξ ∈ g and momentum
µ and Gµ ∩ Gξ = K. The map Ψ is G-1-jet-transverse to R × Q at (p, ξ) iff
d(Ψ

∣∣
V×g) is transverse to (V ⊕{0})×(g⊕g∗)c(K) at (p, ξ). Since dgΨ(x,ξ) = J(x)

and dJ(p)
∣∣
V
is a submersion to g∗, this is equivalent to the transversality of the

restriction dV Ψ
∣∣
(V×g)c(K)

to V ⊕{0}, where (V × g)(K) := (P × g)c(K) ∩ (V × g).

By G-invariance of ψ, equivalently ψ◦(K) = dPΨ
∣∣
(P×g)c(K)

is transverse to the
zero section of T ◦.

In the next section, we use this generalization to investigate relative equilib-
ria near 0 in symplectic representations of connected compact groups (but we
restrict the action to the action of the maximal torus). It might be interesting
to analyse how both generalizations are related. Anyway, both transversality
properties are generic in the class of invariant Hamiltonian functions.

6.4 Representations
We now consider the case of a symplectic representation of a connected compact
group and investigate the structure of the relative equilibria near an equilibrium
at 0. Understanding this special case may also be helpful for the theory of
bifurcations of Hamiltonian relative equilibria in general, since it is related to the
symplectic slice equation (2.15): For a fixed ρ ∈ mGp , the Gp-relative equilibria
for the Hamiltonian system for h̄(ρ, ·) on the slice N at a relative equilibrium p
correspond to solutions of equation (2.15).

As we have seen in the case of groups of rank 1, it can be fruitful to con-
sider the action of the maximal torus, since the adjoint representation of tori is
trivial. Therefore we start with torus representations and deduce implications
for general connected compact groups afterwards.

For rank ≥ 2, the structure of generators which possibly admit bifurcations
is more complex and we will need equivariant transversality theory to handle
this issue.
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6.4.1 Torus representations
Since symplectic representations admit a complex structure that commutes with
the group action, we can consider them as complex representations. Then sym-
plectic subrepresentations correspond to complex subrepresentations. The irre-
ducible complex representations of a torus T = Tn := Rn/Zn are of dimension
1 and are determined by the elements α ∈ t∗ that map Zn to Z. These elements
are called integral forms. Under the identification t∗ ∼= t = Rn via an inner
product, the set of integral forms is given by Zn. An integral form α defines an
irreducible representation on C by

θα : exp(ξ) 7→ e2πiα(ξ) ξ ∈ t,

here the exponential map exp : t → T coincides with the projection Rn →
Rn/Zn . We denote this representation by Cα and consider it as a symplectic
representation on R2 with the symplectic form ω = 〈·, i·〉, where 〈·, ·〉 is the stan-
dard (real) inner product on R2. For the momentum map on Cα, we compute:

−dJξ(x) = ω(·, (ξ · x)) = 〈·, (i · 2πiα(ξ)x)〉 = −2πα(ξ)〈·, x〉.

Hence J(x) = π|x|2α is a momentum map, which is obviously equivariant with
respect to the (trivial) coadjoint action.

Now let V be a symplectic T -representation. The integral forms α that
correspond to the irreducible components of V are called the (infinitesimal)
weights of V . (The infinitesimal weight α defines the global weight θα. In the
following, a weight is an infinitesimal weight.) Our goal is to understand the
structure of the relative equilibria for a generic T -invariant Hamiltonian h. We
start with some simple examples:

Example 6.46. If V is irreducible and hence V = Cα, every point of V is a
relative equilibrium, since the level sets of the momentum map are the circles
centred at the origin and hence coincide with the T -orbits. (Alternatively, note
that for x ∈ V , the h(x)-level set of h consists of the norm circle of x or
∇h(x) = 0.)

Example 6.47. The same holds for a sum Cα ⊕ Cβ with α and β linearly
independent or more generally for sums

⊕
Cαi for linearly independent αi:

Since for x =
∑
xαi ∈

⊕
Cαi

J(x) =
∑
i

JCαi (xαi) = π|xαi |2αi,

the preimages J−1(µ) and the group orbits coincide and are given by the tori
that are products of norm spheres in the Cαi .

Since in these examples the set of relative equilibria does not even depend
on the Hamiltonian, the set seems to be rather stable.

We now investigate the set of relative equilibria near an equilibrium at the
origin of a general T -symplectic representation. By the implicit function the-
orem, a necessary condition for the occurrence of relative equilibria near the
origin with generators ξ near some given ξ0 ∈ t is that V0 := ker d2(h− Jξ0)(0)
is non-trivial.
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Suppose now that V0 has only linearly independent weights. Splitting Lemma
reduction yields a T -invariant germ g : V0 × t → R at (0, ξ0) whose Taylor ex-
pansion at (0, ξ0) coincides with that of H(v0, ξ) := h−Jξ(v0) up to third order
(see section 2.4). If dV0g(v0, ξ) = 0, v0 corresponds to a relative equilibrium
with generator v0. This leads to the conjecture that there is a branch of relative
equilibria tangent to V0.

Remark 6.48. The conjecture is supported by the following observation: Fac-
tor out the kernel of the torus action on V0 :=

⊕
Cαi with α1, . . . , αn linearly

independent to obtain a faithful action of T := Tn. We consider the Hamiltonian
system on V0 with Hamiltonian function h

∣∣
V0
. For each x =

∑
i xαi ∈

⊕
Cαi

in which no component xαi vanishes, the isotropy subgroup Tx is trivial. Hence
there is a unique generator ξ(x) ∈ t of the relative equilibrium x. Since H

∣∣
V0×t

is a T -invariant function, dV0H(x, ξ) is contained in the annihilator ann(tx) of
tx. The ξ-derivative of dV0H(x, ξ) is given by

dξdV0H(x, ξ) = dξdV0Jξ(x) : t→ ann(tx) ⊂ V ∗0

η 7→
n∑
i=1

2παi(η)〈·, xαi〉.

Since ann(tx) is n-dimensional and α1, . . . , αn are linearly independent,

dξdV0H(x, ξ) : t→ ann(tx)

is invertible, in particular for ξ = ξ(x). If we consider the restrictions of C1-maps

A : V0 × t→ ann(tx)

to some compact neighbourhood of (x, ξ(x)) together with the C1-norm, we
obtain a Banach space and the map (A, v0, ξ) 7→ A(v0, ξ) is C1. By the implicit
function theorem, for A close enough to dV0H, there is a unique ξ = ξ(A, x)
with A(ξ, x) = 0. Since the Splitting Lemma reduction yields a local map
g : V0 × t, (0, ξ0) → R that is in some sense close to H near (0, x0), there is
hope that we obtain a manifold of relative equilibria tangent to V0. Anyway,
this heuristic reasoning is by no means a proof, since we do not know if dV0g is
close enough to dV0H at any point with trivial isotropy. g is only locally defined
near the singular point (0, x0). Equivariant transversality theory is designed for
handling difficulties of such kind and will be our way to solve this problem.

Before proving the conjecture, we will survey the set of those ξ ∈ t with
singular Hessian d2(h− Jξ)(0):

By Lemma 5.11, we may consider the restriction to the centre space Ec of
dXh(0). By Theorem 3.14, generically Ec splits into irreducible T -symplectic
representations, each of which is the real part of the sum of the eigenspaces
corresponding to a pair of purely imaginary eigenvalues. By Corollary 3.16,
then there is an appropriate choice of an inner product of Ec such that the
eigenspaces of the restriction of d2h(0) are irreducible symplectic representations
and consequently are given by weight spaces.

Since we will often suppose this condition on the centre space, we give it a
name:
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Definition 6.49. The G-invariant Hamiltonian function h : V → R satisfies the
generic centre space condition (GC) iff dXh(0) is non-degenerate and dXh(0) ∈
O as in Theorem 3.14.

We now assume that (GC) is satisfied, where G = T . Let ci, i = 1, . . . , n
denote the eigenvalues of d2h(0) with corresponding eigenspaces Cαi . Since
on Cαi the matrix that represents d2Jξ(0) is equal to 2παi(ξ)1, the Hessian
d2(h− Jξ)(0) is singular iff ξ solves at least one of the equations

ci − 2παi(ξ) = 0.

Equivalently, ξ is a zero of the product of the left-hand sides. The solution
sets of these equations form affine hyperplanes that are parallel to the kernels
of the αi. For any ξ, the kernel of d2(h − Jξ)(0) is equal to the sum of the
Cαi for those i for which ξ solves the ith equation. Thus each intersection of
hyperplanes forms an affine subspace of generators that correspond to the same
kernel. The following lemma shows that generically for all these kernels the αi
are linearly independent. (A geometric formulation of this property is that no k
hyperplanes intersect in an affine subspace of tn dimension greater that n− k.)

Lemma 6.50. Let T be a vector space and let α1, . . . , αn be linearly dependent
elements of T ∗. For any a ∈ R, let Xi(a) denote the affine subspace of T of
solutions of

αi(x) = a.

There is an open and dense subset OS ⊂ Rn such that for c = (c1, . . . , cn) ∈ OS
the set

⋂
iXi(ci) is empty.

Proof. Consider the linear map

T → Rn

x 7→ (α1(x), . . . , αn(x)).

This map is not surjective, because the αi are linearly dependent. For any
c = (c1, . . . , cn) ∈ Rn contained in the complement of the image of this map,
the intersection

⋂
iXi(ci) is empty.

From now on, we assume this generic condition which we call non-resonance
condition (NR):

Definition 6.51. Suppose that condition (GC) holds for h. Then the non-
resonance condition (NR) is satisfied iff for every ξ ∈ tn, the kernel of Hessian
d2(h−Jξ)(0) consists of a sum of spaces Cαi , 1 = 1, . . . , k, such that the weights
α1, . . . , αk are linearly independent.

Let Qh denote the quadratic part of h:

Qh(x) := 1
2d2h(0)(x, x).

Then XQh is a linear vector field and coincides with linearization of Xh at the
origin.

Lemma 6.52. An element x ∈ V is a relative equilibrium of the vector field
XQh with generator ξ ∈ t iff x ∈ ker d2(h− Jξ)(0).
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Proof. Since Jξ and Qh are quadratic forms and d2Qh(0) = d2h(0), the critical
points of Qh − Jξ are given by ker d2(h− Jξ)(0).

The above considerations give the structure of nontrivial kernels d2(h−Jξ)(0)
in the generic case, which correspond to relative equilibria of XQh :

Theorem 6.53. Suppose that the conditions (GC) and (NR) are satisfied for
h : V → R.

The zero set of ξ 7→ det d2(h − Jξ)(0) consists of a union of affine hyper-
planes, whose underlying subspaces correspond to the kernels of the weights of
Ec, such that there is a bijection between the hyperplanes and the weight spaces
Cαi of some specific splitting Ec =

⊕
i∈I Cαi .

For each ξ ∈ t, the space ker d2(h− Jξ)(0) is given by the sum of the weight
spaces that are associated to the hyperplanes that contain ξ. The corresponding
weights are linearly independent.

Conversely, for each linearly independent subset {αi}i∈J for some J ⊂ I,
there is a ξ ∈ t with ker d2(h− Jξ)(0) =

⊕
i∈J Cαi .

If x ∈
⊕

i∈K Cαi for some minimal set K ⊂ I, then the isotropy subgroup of
x coincides with the intersection of the kernels of the θαi with i ∈ K.

Proof. The first two statements follow from the above reasoning. If the set
{αi}i∈J is linearly independent, then the linear system

ci − 2παi(ξ) = 0 ∀i ∈ J

(where, as above, the ci are the corresponding eigenvalues of d2h(0)) has a
non-empty solution set X ⊂ t. For every superset L ) J , either L is linearly
independent and thus the solution set for L is a lower dimensional subset of X
or L is linearly dependent and thus the corresponding solution set is empty by
the non-resonance condition (NR). Since there are only finitely many subsets of
the finite set I, there is ξ ∈ t such that

ci − 2παi(ξ) = 0

is satisfied iff i ∈ J .
The statement about the isotropy subgroups is obvious.

Since for a generic T -invariant function h, the kernels of all augmented
Hamiltonians have linearly independent weights, the above conjecture suggests,
that the set of relative equilibria of Xh near the origin is locally homeomorphic
to the one of its linearization XQh . Indeed, we will prove the following theorem:

Theorem 6.54. Let T be a torus and V be a T -symplectic representation. Let
h : V → R be a smooth T -invariant Hamiltonian function with equilibrium at 0.
Suppose that h satisfies the genericity assumptions (GC) and (NR), that is:

1. dXh(0) is non-singular.

2. For each pair ±βi of purely imaginary eigenvalues of dXh(0), the space
E±βi is an irreducible T -symplectic representation.

3. For every ξ ∈ t, the weights of ker d2(h− Jξ)(0) are linearly independent.
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Then the local set E of relative equilibria near 0 has the same structure as the
one of the Hamiltonian Qh : V → R defined by Qh(v) = d2h(0)(v, v). More
precisely, for every ξ ∈ t, there is a T -invariant manifold of relative equilibria
tangent to ker d2(h−Jξ)(0) with generators near ξ, and E consists of the union
of these manifolds. (Note that the set of critical points of Qh − Jξ is given
by ker d2(h − Jξ)(0).) Moreover E is locally homeomorphic to the local set of
relative equilibria of XQh via a T -equivariant local homeomorphism.

Theorem 6.54 relies on the following lemma which is proved with the help
of equivariant transversality theory:

Lemma 6.55. Suppose that for some ξ0 ∈ t, we have

V0 := ker d2(h− Jξ0)(0) = ⊕li=1Cαi

such that α1, . . . , αl are linearly independent. Let V1 be a T -invariant comple-
ment of V0 in V .

1. The set of pairs of relative equilibria of Xh and their generators is locally
T -equivariantly homeomorphic to the one of XQh at (0, ξ0) ∈ V × t.

2. Moreover, there are neighbourhoods U0 ⊂ V0 of 0 ∈ V0, U1 of 0 ∈ V1, and
O ⊂ t of ξ0 and a smooth T -equivariant map mV0 : U0 → V of the form

v0 7→ v0 + v1(v0, ξ(v0)),

where ξ : U0 → O and v1 : U0 ×O → U1 are smooth, such that the image
of mV0 coincides with the set of relative equilibria of Xh in (U0×U1)×O.

3. If there is some η0 with W0 := ker d2(h− Jη0)(0) ⊂ V0, then the germs of
mV0

∣∣
W0∩U0

and mW0 coincide.

Proof. 1. We restrict the function H : (v, ξ) 7→ h− Jξ(0) to V0 × t. Then we
check for equivariant (1-jet)-transversality of H to 0 ∈ V ∗0 at (0, ξ0). To
be precise, we consider the subset

Q := R× {0} ⊂ R× V ∗0 = J1(V0,R)

and characterize the functions h such that H is T -1-jet-transverse to Q at
0, but we omit the factor R and the R-components of the reduced 1-jet
j̃1L and the map U1. To stress the similarity to ordinary T -transversality,
we denote the remaining components of the maps 1 × (j̃1L ◦ P ) and U1
by Γh and ϑ respectively.
As is common in bifurcation theory, we moreover can omit the t-component
and replace the space V0 × t× Rl by V0 × Rl, since T acts trivially on t.
A minimal generating set of invariant homogeneous polynomials on V0 is
given by

pi : x = (xα1 , . . . , xαl) 7→ |xαi |2.

Since T acts trivially on t, the functions pi : (x, ξ) 7→ pi(x) form such a
set on V0 × t.
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We identify V ∗0 and V0 via the invariant inner product and since ∇pi(x) =
2xαi , we obtain the universal polynomial

ϑ : V0 × Rl → V0

ϑ(x, t) = 2
l∑
i=1

tixαi

and the universal variety Σ := ϑ−1(0). Let P be the function

P (x) := (p1(x), . . . , pl(x)).

By abuse of notation, let H, h, and Jξ also denote the functions on Rl
whose composition with P is equal to the corresponding functions on V0.
For ΓH, we obtain

ΓH : V0 × t→ V0 × Rl

ΓH(x, ξ) = (x, ∂p1H(P (x), ξ), . . . , ∂plH(P (x), ξ)).

Now, we test for T -1-jet-transversality ofH to 0 at (0, ξ) for some arbitrary
ξ ∈ t:
By definition, we have to check transversality of ΓH to the canonical strat-
ification of Σ. As usual, the image of the x-derivative of ΓH is equal to
V0.
Since for (x, ξ) ∈ V0, we have

H(x, ξ) = h(x)− Jξ(x)

= h(P (x))− π
∑

pi(x)αi(ξ),

the ξ-derivative of ΓH is independent of the Hamiltonian function and we
obtain

dξ∂piH(P (x), ξ) = −dξ∂piJξ(P (x)) = −παi.

Since the αi are linearly independent, this yields dξΓH(0, ξ)t = {0} × Rl.
Thus the image of the total derivative dΓH(0, ξ) is the whole space V0×Rl.
Hence H is always T -1-jet-transverse to 0 ∈ V0 at (0, ξ0).
As presented in chapter 3, by the Splitting Lemma or Lyapunov-Schmidt-
reduction, for an invariant complement V1 of V0, we obtain an equivariant
smooth local map v1 : V0× tn → V1 and a local function g : V0× tn → R at
(0, ξ0) such that v0 is a critical point of g(·, ξ) iff v1(v0, ξ) + v0 is a critical
point of H(·, ξ) : V → R and the 3-jets of g and the restriction of H to
V0×tn at (0, ξ0) coincide. Since the local functions tH+(1−t)g all have the
same 3-jet at (0, ξ0), they form an isotopy of functions that are T -1-jet-
transverse to 0 at (0, ξ0). Thus from the Thom-Mather Transversality
Theorem (Theorem A.21), part 4, we obtain a local T -equivariant homeo-
morphism between the zero sets of of the families (x, ξ) 7→ dV 0g(x, ξ) and
(x, ξ) 7→ dV 0H(x, ξ) in V0 × t near (0, ξ0). Altogether, we have a T -equiv-
ariant continuous embedding (V0, 0) ↪→ (V, 0) that maps the local set of
pairs of relative equilibria of Xh and their generators (v0, ξ) ⊂ V0 × t of
the Hamiltonian vector field of the restriction of h to V0 to the local set
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of these pairs of Xh. Since H is always T -1-jet-transverse to 0 ∈ V0 at
(0, ξ0), this also holds, if we replace h by th+ (1− t)Qh for any t ∈ [0, 1].
Thus, the local sets of these pairs in V0× t are also locally T -equivariantly
homeomorphic for the restrictions of h and Qh to V0. Hence the vector
fields Xh and XQh have locally homeomorphic sets of pairs (x, ξ) ∈ V × t
of relative equilibria and their generators.

2. Looking closer at the differentiable structure, we can even show slightly
more: The above calculation yields that ΓH (respectively Γg) is not only
transverse to Σ ⊂ Rl but also to 0 ∈ Rl. Thus the preimage Γ−1

g (0) forms
a manifold. W.l.o.g. we assume that T = T l (otherwise we factor out the
kernel of the T -action on V0, see Remark 2.10). By the implicit function
theorem, Γ−1

g (0) is the graph of a local smooth function ξ : V0 → t. If
v1 : V × t→ V1 is as in the Splitting Lemma 2.9, the map

mV0 : v0 7→ v1(v0, ξ(v0)) + v0

is a local equivariant smooth embedding (V0, 0) ↪→ (V, 0), which maps a
neighbourhood U0 of 0 ∈ V0 to a manifold of relative equilibria, which is
tangent to V0. Actually, this manifold consists of all relative equilibria near
0 that admit a generator near ξ0: As we have seen in Remark 2.11, if v0 ∈
V S0 for some subtorus S ⊂ T with Lie algebra s, then v0 is also a critical
point of g(·, η) for any η ∈ ξ(v0) + s and v1(v0, η) = v1(v0, ξ(v0)). Now
we only have to show that locally dV0g(v0, ξ) = 0 implies ξ ∈ tv0 + ξ(v0).
To see this, notice that the isotropy subspaces of V0 = ⊕li=1Cαi are given
by sums ⊕i∈MCαi for subsets M ⊂ {1, . . . , l}. In particular x =

∑
xαi

has trivial isotropy iff xαi 6= 0 for every i. In this case, ΓH(x, ξ) ∈ Σ
implies ΓH(x) = (x, 0) and hence ξ = ξ(x). The same reasoning holds
for x in some proper isotropy subspace V Tx0 , we only have to restrict to
this subspace and factor out the kernel Tx of the T -action again, hence we
can assume that Tx is trivial. Since there are neighbourhoods U1 ⊂ V1 of
0 ∈ V1 and O ⊂ t of ξ0 such that all relative equilibria of Xh in U0 × U1
with a generator in ξ ∈ O are of the form v0 + v1(v0, ξ) with v0 ∈ U0 and
v1(v0, ξ) = v1(v0, ξ(v0)), all pairs of relative equilibria and their generators
in U0 × U1 ×O are contained in the image of mV0 .

3. First, we argue that the germmV0 does not depend on the choice of ξ0 with
ker d2(h−Jξ0)(0) = V0: The image of the corresponding map contains all
relative equilibria in U0×U1 with a generator in a neighbourhood O of ξ0.
Suppose that ξ1 also satisfies ker d2(h − Jξ1)(0) = V0. Then d2Jξ1−ξ0(0)
vanishes on V0 and hence the Lie algebra element ξ1 − ξ0 acts trivially on
V0. Thus every relative equilibrium in the image of mV0 has the generator
ξ ∈ O iff it also has the generator ξ − ξ0 + ξ1, which is contained in the
neighbourhood O − ξ0 + ξ1 of ξ1. Hence it holds as well, that mV0 maps
U0 × (O − ξ0 + ξ1) onto the set of all relative equilibria in U0 × U1 with
generator in O − ξ0 + ξ1.
Thus for ker d2(h − Jη0)(0) = W0 ⊂ V0, we may assume w.l.o.g. that
η0 ⊂ O. By Theorem 6.53, W0 = V S0 for some isotropy subgroup S ⊂ T .
Thus by equivariance, the image ofmW0 is contained in V S . A complement
of W0 in V S is given by V S1 . Therefore, if w0 ∈W0 is small, mW0(w0) is a



6.4. REPRESENTATIONS 135

relative equilibrium that has a generator in O and the V0-component w0
with respect to the splitting V = V0 ⊕ V1. Hence mW0(w0) = mV0(w0).

Proof of Theorem 6.54. Since h satisfies the genericity assumptions (GC) and
(NR), the set of ξ ∈ t with ker d2(h − Jξ) non-trivial consists of a union of
hyperplanes as in theorem 6.53. We assume w.l.o.g. that the T -action on Ec
is faithful. (Otherwise we consider the quotient of t and the Lie algebra of
the subgroup that acts trivially on Ec.) Then there are finitely many points
ξ1, . . . , ξk in t which coincide with the intersection of a particular subset of
hyperplanes. By Lemma 6.55, for each ξi, there is an εi > 0 such that the
map mV i0

: v0 7→ v0 + v1(v0, ξ(v0)) is defined on an εi-neighbourhood Ui of
0 ∈ V i0 := ker d2(h − Jξi)(0) and mV i0

(Ui) contains all relative equilibria of
norm less than εi that have a generator ξ with ‖ξ − ξi‖ < εi. We can find such
an εi for any choice of the norm on t and here we choose the following one:
The weights of V i0 define a linear coordinate system on t, where the coordinates
are given by the values of the evaluation maps divided by 2π. We choose the
supremum norm with respect to these coordinates. Thus our choice of the norm
depends on i; we denote it by ‖·‖i. Then ‖ξ − ξi‖i < εi iff all eigenvalues of
d2(h− Jξ)(0)

∣∣
V i0

have absolute value less than εi.
Now, we set ε := mini εi and define a map Ψ from the set of relative equilibria

of XQh within Bε(0) to the set of relative equilibria of Xh: The set of relative
equilibria of XQh is given by the union of the kernels ker d2(h−Jξ). If x ∈ V0 =
ker d2(h− Jξ) ∩Bε(0), we set

Ψ(x) = mV0(x).

Since V0 ⊂ (V i0 ) for some i and the germ mV i0
restricts to mV0 by Lemma 6.55,

the map mV0 can indeed be defined on Bε(0) ∩ V0 and moreover, the map Ψ
is well-defined since mV0(x) is independent of the choice of the kernel V0 that
contains x. By Theorem 6.53, there is an isotropy subgroup S ⊂ T such that
V0 = (V i0 )S . Since mV i0

is T -equivariant, the image of its restriction mV0 to
the fixed point set of S contains all relative equilibria in Bε(0)S that have a
generator ξ with the property that all eigenvalues of d2(h − Jξ)(0)

∣∣
V i0

have
absolute value less than ε.

We now consider the eigenvalue structure of d2(h−Jξ+η)(0)
∣∣
V i0

correspond-
ing to alternative generators of the form ξ + η with η contained in s, the Lie
algebra of S: The group S is given by the intersection of the kernels of rep-
resentations defined by the weights of V0. With respect to the coordinates on
t given by the weights of V i0 , the subset s hence corresponds to the subspace
on which the coordinates given by the weights of V0 vanish. Thus all diagonal
matrices for complex linear maps V i0 → V i0 that vanish on V0 are of the form
d2Jη(0)

∣∣
V i0

for some η ∈ s. Hence mV0(Bε(0)S) contains all relative equilibria
of Xh in Bε(0)S with generators ξ, such that the eigenvalues of d2(h−Jξ)(0)

∣∣
V0

have absolute value less than ε.
Ψ is obviously a T -equivariant homeomorphism onto its image. Thus we

only have to show, that there is a δ > 0 such that all relative equilibria of Xh

in Bδ(0) are contained in the image of Ψ.
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To see this, we note that

d(h− Jξ)(x) = d2(h− Jξ)(0)x+Rh(x), (6.6)

for some map Rh : V → V ∗ with Rh(0) = 0 and limx→0
Rh(x)
‖x‖ = 0. If

‖d2(h−Jξ)(0)x‖
‖x‖ has a positive lower bound for all x 6= 0, there is thus a neigh-

bourhood of the origin that contains no relative equilibria with generator ξ.
Let Esu denote the real part of the sum the eigenspaces of dXh(0) corre-

sponding to eigenvalues with non-vanishing real part. Then Esu is a T -invari-
ant, d2(h− Jξ)(0)-invariant complement of Ec. We now argue, that there is an
ε′ > 0, which is independent of ξ, such that for x ∈ Esu with ‖x‖ = 1 we have∥∥d2(h− Jξ)(0)x

∥∥ > ε′: We split Esu into isotypic components for the T -action.
Each isotypic component is d2h(0)-invariant and dJξ(0)-invariant. Choosing a
T -invariant inner product and the corresponding norm, we only have to find such
a number on every isotypic component, then ε′ is given by the minimum of these
numbers. On each isotypic component, d2Jξ(0) = λ1 for some λ = λ(ξ) ∈ R.
Obviously

∥∥d2h(0)x− λx
∥∥ is bounded away from 0 for large absolute values of

λ and x in the unit sphere Sk of the isotypic component (of dimension k). Since
by Lemma 5.11, the linear map d2(h−Jξ)(0) is invertible on Esu for every ξ, we
can also find a lower bound for d2(h − Jξ)(0)x for all x in Sk and ξ such that
d2Jξ(0)x = λx for some λ contained in a given compact interval. Hence there is
indeed such an ε′. If d2(h−Jξ)(0) has eigenvalues of absolute value less than ε′,
the sum of the corresponding eigenspaces is hence contained in Ec. Replacing
ε′ by a possibly smaller ε′′, we can force the corresponding sum of eigenspaces
to be contained in one of the V i0 .

Now, we choose δ ≤ ε such that ‖Rh(x)‖
‖x‖ < ε′′′ := min(ε′′, ε) for every

x ∈ Bδ(0). Suppose that x ∈ Bδ(0) is a relative equilibrium with generator ξ.
We consider the sum V0 of the eigenspaces corresponding to eigenvalues of

d2(h − Jξ)(0) of absolute value < ε′′′. By ε′′′ ≤ ε′′ and the assumption on ε′′,
we have V0 ⊂ V i0 for some i.

Let S ⊂ T be an isotropy subgroup with V0 = (V i0 )S . For any choice of a
T -invariant inner product, the vector field ∇(h− Jξ) is T -equivariant and thus
sends V S to V S . Let W denote the orthogonal complement of V S and consider
only theW -component of equation 6.6 (where we identify V and V ∗ via the inner
product). It depends only on the W -component xW of x. Since all eigenvalues
of d2(h−Jξ)(0)

∣∣
W

have absolute value greater than ε′′′ and ‖Rh(xW )‖
‖xW ‖ < ε′′′, we

conclude xW = 0. Thus, x ∈ V S . Since ξ satisfies that the eigenvalues of the
restriction of d2(h − Jξ)(0) to V0 = (V i0 )S all have absolute value less then ε,
the relative equilibrium x is contained in the image of mV0 , which is a subset of
the image of Ψ.

Definition 6.56. If V0 = ker d2(h− Jξ0)(0) for some ξ0 and Ψ is the T -equiv-
ariant local homeomorphism between the local set of relative equilibria of XQh

and E , we call Φ(V0) the manifold that bifurcates at V0, or at ξ0, or at the affine
set X :=

{
ξ ∈ t

∣∣ V0 ⊂ ker d2(h− Jξ)(0)
}
. Similarly, we refer to the stratum of

minimal isotropy of Φ(V0) as the stratum that bifurcates at V0, ξ0, or X.

Remark 6.57. LetM0 be the stratum that bifurcates at the affine subsetX ⊂ t.
Then for each relative equilibrium in M0 the corresponding set of generators is
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a parallel translation of X: Let V0 denote the corresponding subspace and s
be the underlying subspace of X. Then for any η ∈ s, the linear map d2Jη(0)
vanishes on V0 and s is the maximal subset of t with this property. Equivalently,
s is the Lie algebra of the minimal isotropy subgroup S ⊂ T of elements of V0.
Thus the isotropy subgroup of any element of M0 is S and equivalently the
underlying subspace of its set of generators is s.

Moreover, M0 contains all relative equilibria in some neighbourhood of 0
with this property whose set of generators is contained in a particular s-invariant
neighbourhood of X. Indeed, if V0 = ker d2(h − Jξ0)(0), then by Lemma 6.55
Φ(V0) contains all relative equilibria near 0 with a generator contained in a
neighbourhood O of ξ0 ∈ X. ThusM0 = Φ(V0)(S) contains all relative equilibria
near zero with with isotropy subgroup S whose set of generators is contained in
O + s.

6.4.2 Representations of connected compact groups
Fortunately, our results about torus representations are derived from explicitly
given generic conditions. This is not always the case when dealing with equiv-
ariant transversality, because it is often hard to specify the open and dense
subset of equivariant smooth maps that are G-transverse to some invariant set.
In that case, the results for some specific group do not help to understand the
generic behaviour of maps with higher symmetry. But in our results for tori, our
assumptions on the Hessian of the augmented Hamiltonian imply the necessary
T -transversality condition. This circumstance makes it possible to apply the
method to representations of connected compact groups. In general, we will not
be able to investigate the generic structure of all relative equilibria, but never-
theless, the method yields some branches of relative equilibria that generically
exist:

Let G be a connected compact Lie group and V be a G-representation. To
apply the results about torus representations, fix a maximal torus T ⊂ G and
consider V as a T -representation. If ξ is a generator of a relative equilibrium x,
then every element of the adjoint orbit of ξ is a generator of a relative equilibrium
in the G-orbit of x. Since all adjoint orbits intersect the Lie algebra t of T , we
only have to find the solutions of d(h− Jξ)(x) = 0 with x ∈ V and ξ ∈ t. Then
all relative equilibria are contained in the G-orbits of these solutions.

Again, we start with an investigation of the kernels of the Hessians of the
augmented Hamiltonians for generic Hamiltonian functions. The reasoning is
similar as for torus representations: By Lemma 5.11, for any ξ ∈ t, the kernel
of d2(h − Jξ)(0) is contained in the centre space Ec of dXh(0). Moreover,
we assume that Ec splits into G-symplectic irreducible spaces corresponding to
pairs of purely imaginary eigenvalues. Recall that this is our generic centre
space condition (GC). Then Ec admits a complex structure i and a (real) inner
product 〈·, ·〉 such that ω is represented by the multiplication with i and the
quadratic form d2h(0) is represented by a real multiple of the identity on each
space E±βi of dXh(0) (see Theorem 3.15 and Corollary 3.16). We fix this choice
of an inner product in the following.

Recall that for torus representations the generic situation is that exactly each
sum of weight spaces corresponding to linearly independent weights forms such a
kernel (see Theorem 6.53). Here, the structure of the kernels is more complicated
and depends on the weights of the G-symplectic irreducible subrepresentations
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of Ec. The kernels are characterized by the following lemmas:
Lemma 6.58. Suppose that the generic centre space condition (GC) is satisfied.
Then Ec splits into a sum of G-symplectic irreducible eigenspaces Ui of d2h(0).
For each ξ ∈ t, we have

ker d2(h− Jξ)(0) =
⊕
i

ker d2(h− Jξ)(0)
∣∣
Ui
.

For each Ui the kernel of the restriction d2(h−Jξ)(0)
∣∣
Ui

is of the form
⊕

α∈Si Cα
for some subset Si of the weights of Ui which is maximal within aff(Si) and such
that 0 /∈ aff(Si). (Here, we allow multiple weights in Si. Maximality of Si in
aff(Si) implies that every weight of Si occurs with the same multiplicity in Si
as in the set of all weights of Ui.)
Proof. Consider each eigenspace Ui of d2h(0)|Ec as an irreducible complexG-rep-
resentation. Then Ui splits into irreducible T -representations Cαi

j
, its weight

spaces with corresponding weights αij . The momentum map J restricted to t is
the same as the momentum map corresponding to the T -action on V . Thus for
any ξ ∈ t, the endomorphism that represents d2Jξ(0) on Ec with respect to our
choice of the inner product has the eigenspaces Cαi

j
with eigenvalues 2παij(ξ).

Since the function h − Jξ is T -invariant, V0 := ker d2(h − Jξ)(0) is T -invariant
and splits into a sum of weight spaces. Let ci be the eigenvalue of d2h(0) on
the eigenspace Ui. Then V0 is given by the sum of those weight spaces Cαi

j
of

the eigenspaces of d2h(0)
∣∣
Ec

such that

2παij(ξ) = ci

is satisfied. For each ξ and each eigenvalue ci, the set of solutions α ∈ t∗ of the
equation 2πα(ξ) = ci is affine. Since d2h(0) is non-degenerate, 0 is not contained
in any of these affine subsets of t∗. Thus the solution set Si of weights of Ui is
maximal in its affine span aff(Si), which does not contain 0.

For torus representations, the non-resonance condition (NR) is generic. This
is no longer true for representations of general connected compact groups G, as
we will see soon. We replace condition (NR) by a more general condition:
Definition 6.59. Let T be a real vector space and S =

⋃n
i=1 Si be a union of

subsets Si ⊂ T ∗. Then S is full iff for every vector (c1, . . . , cn) ∈ Rn, there is
an x ∈ T with

∀i : ∀α ∈ Si : α(x) = ci.

Remark 6.60. Equivalently, S is full iff for every k ∈ {1, . . . , n} there is a
solution for the k-th standard vector ek of Rn. Let Wk be the underlying
subspace of aff(Sk). Then x ∈ T satisfies α(x) = 0 for all α ∈

⋃
i 6=k Sj and

α(x) = β(x) for all α, β ∈ Sk iff

x ∈ (〈
⋃
i 6=k

Si〉+Wk)⊥,

where 〈·〉 denotes the span and A⊥ ⊂ T the zero set of a subspace A ⊂ T ∗.
Hence there is a solution for ek iff

(〈
⋃
i 6=k

Si〉+Wk)⊥ * 〈Sk〉⊥,
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equivalently,
〈Sk〉 * 〈

⋃
i6=k

Si〉+Wk.

In other words, in the quotient T
/
Wk , the projection of 〈Sk〉, which is a single

element of T
/
Wk

, is not contained in the span of the image of
⋃
i 6=k Si under

the projection.

Definition 6.61. Suppose that G-invariant Hamiltonian function h satisfies
condition (GC). Then h satisfies the generalized non-resonance condition (NR’)
iff for each union S =

⋃
i Si of sets Si of linearly independent weights of

eigenspaces Ui of d2h(0) and the vector c = (c0, . . . cn) of the corresponding
eigenvalues, there is an x ∈ T with

∀i : ∀α ∈ Si : α(x) = ci

iff S is full.

Since there are only finitely many such sets S, condition (NR’) obviously
holds for all h contained in a dense open subset of C∞G (V ) (with the C∞-topology
or Whitney C∞-topology).

Now we can formulate a converse of Lemma 6.58, which holds for generic
G-invariant Hamiltonian functions h:

Lemma 6.62. Suppose that h : V → R satisfies conditions (GC) and (NR’).
Let U ⊂ Ec be an eigenspace of d2h(0) with corresponding eigenvalue c and
S ⊂ t be a subset of the weights of U with the property that S is maximal in
aff(S) and 0 /∈ aff(S). (See the comment in Lemma 6.58 about the multiplicity
of weights.) Then there is a ξ ∈ t such that

ker d2(h− Jξ)(0) =
⊕
α∈S

Cα ⊂ U.

Proof. Use a G-invariant inner product to identify t∗ and t and consider the
perpendicular s from 0 ∈ t to aff(S). The inner product with any point of s is
constant along aff(S). Moreover, if we vary the point of s, we may obtain any
real number as the result of the inner product. In particular, there is a ξ̃ with
2πα(ξ̃) = c for any α ∈ S ⊂ aff(S). Thus,⊕

α∈S
Cα ⊂ ker d2(h− Jξ̃)(0). (6.7)

The same inclusion holds if we add any point of the orthogonal complement
of the span 〈S〉 to ξ̃. If S ( S̃ for some subset S̃ of the set of weights of U ,
the maximality of S yields aff(S) ( aff(S̃). Suppose that 0 ∈ aff(S̃). Then by
Lemma 6.62,

⊕
α∈S̃ Cα is not contained in ker d2(h − Jξ̃)(0) for any ξ ∈ t. If

0 /∈ aff(S̃), then 〈S〉 ( 〈S〉. Thus, we obtain a lower dimensional solution set
for ξ̃ if we replace S by S̃ in the inclusion 6.7. Hence, for ξ contained in an open
dense subset of solutions of the above inclusion, we obtain⊕

α∈S
Cα = ker d2(h− Jξ)(0)

∣∣
U
.
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If we consider the whole kernel ker d2(h − Jξ)(0), it is a sum of the kernels of
the restrictions of d2(h− Jξ)(0) to irreducible subrepresentations Ui of Ec with
d2h(0)

∣∣
Ui

= ci1 , where w.l.o.g. U = U1. By Lemma 6.58, for each Ui, the
kernel ker d2(h − Jξ)(0)

∣∣
Ui

is given by a sum
⊕

α∈Si Cα, where Si is a set of
weights which is maximal within its affine span aff(Si) and 0 /∈ aff(Si). Now,
genericity assumption (NR’) implies that the dimension of the set of solutions
ξ of the system

∀i : ∀α ∈ Si : 2πα(ξ) = ci

is less then the dimension of the set of solutions ξ of the system

∀α ∈ S1 : 2πα(ξ) = c1.

Since there are only finitely many choices for
⋃
i Si, there are values of ξ ∈ g

with ⊕
α∈S

Cα = ker d2(h− Jξ)(0).

The following corollary now shows, that non-resonance condition (NR) is not
generic in general. Again, we consider V as a complexG-representation. IfG has
rank ≥ 2, all but a finite number of the irreducible complex G-representations
have linearly dependent sets of weights whose affine span does not contain 0.
See (See [Hal03, Theorem 10.1]).

Corollary 6.63. Let U ⊂ V be a complex irreducible subrepresentation and
suppose that S ⊂ t is set of weights of S with S maximal in aff(S) and 0 /∈ aff(S).
Then there is an open subset U ⊂ C∞(V )G (C∞- or Whitney C∞-topology) such
that for every h ∈ U there is a ξ ∈ t with

d2(h− Jξ)(0) '
⊕
α∈S

Cα.

Proof. By Theorem 3.19, there is an open subset Ũ ⊂ C∞(V )G such that for
every h ∈ Ũ , the centre space Ec of dXh(0) contains a subspace isomorphic to
U . Then Lemma 6.62 implies the existence of such a ξ for h in a dense open
subset U of Ũ .

However, our results for torus representations apply to kernels of d2(h−Jξ)
with linearly independent weights. We obtain:

Theorem 6.64. Let G be a connected compact Lie group with maximal torus
T and V be a symplectic G-representation. Suppose that h : V → R is a
smooth G-invariant Hamiltonian function with critical point at 0 that satisfies
the genericity assumptions (GC) and (NR’), that is:

1. dXh(0) is non-degenerate.

2. Ec =
⊕

i∈I Ui, where each Ui is irreducible and Ui = E±βii for a pair of
purely imaginary eigenvalues ±βii of dXh(0).

3. Consider subspaces Ui ⊂ Ec and the vector c = (c1, . . . , cn) such that
d2h(0)

∣∣
Ui

:= −JdXh(0)
∣∣
Ui

= ci1Ui for a representation matrix J of ω
with respect to a G-invariant inner product on V such that J2 = −1. For
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each union S =
⋃
i Si of sets Si of linearly independent weights of Ui, we

have a solution x of
∀i : ∀α ∈ Si : α(x) = ci.

iff S is full (see Definition 6.59 and Remark 6.60).

Consider (possibly empty) subsets Si of weights of Ui such that each Si is max-
imal in aff(Si) (in particular, the elements of Si occur with multiplicity 1 in
the set of weights of Ui). If S :=

⋃
i∈I Si is linearly independent, there is a

T -invariant manifold of T -relative equilibria whose tangent space at 0 is given
by the sum of the corresponding weight spaces of the elements of S: For α ∈ Si,
we obtain the summand Cα ⊂ Ui.

Proof. We show first that for a linear independent set S, there is indeed a
ξ ∈ t such that ker d2(h − Jξ)(0) consists of the corresponding weight spaces
of the weights contained in S: Since the Si are linearly independent, we have
0 /∈ aff(Si). Thus by Lemma 6.58, there are nonempty subsets Xi ⊂ t such⊕

α∈Si Cα is contained in ker d2(h − Jξ)(0) if ξ ∈ Xi. Since S =
⋃r
i=1 Si is

linearly independent, the intersection X :=
⋂
iXi is non-empty. Moreover, as

argued in the proof of Lemma 6.58, the condition 3 (which is condition (NR’))
implies, that there is a ξ ∈ X with ker d2(h− Jξ)(0) =

⊕
α∈S Cα.

Now the result follows from Lemma 6.55.

Let us consider again the affine subset X ⊂ t related to the subspace
V0 := ker d2(h− Jξ0)(0). We have X :=

{
ξ ∈ t

∣∣ V0 ⊂ ker d2(h− Jξ)(0)
}
. Sup-

pose that X is contained in k hyperplanes of t consisting of zeros of the map
ξ 7→ det d2(h − Jξ)(0) and that dim t = n. (Here, we distinguish hyperplanes
corresponding to different weight spaces even if they coincide.) Then the weights
of V0 are linearly independent iff dimX = n−k. In this case, we call X regular.
Moreover, we use the same terminology as in Definition 6.56 then.

As explained above, the G-orbits of these bifurcating manifolds of T -relative
equilibria consist of G-relative equilibria. Now, we investigate the structure of
these group orbits.

For torus representations, points of V0 =
⊕

Cαi for linearly independent αi
are contained in the same group orbit exactly if their momenta coincide. Hence
by equivariance of mV0 , the orbits of relative equilibria in the stratum tangent
to
⊕

Cαi are given by the preimage of the canonical stratification of J(
⊕

Cαi).
In contrast, when we consider the G-action, different T -orbits may be contained
in the same G-orbit.

For example, this happens in the following case:

Lemma 6.65. Let X,Y ⊂ t be regular affine subsets of

Z :=
{
ξ ∈ t

∣∣ det d2(h− Jξ)(0) = 0
}

with the same W -orbit, where W = W (G) is the Weyl group of G. Then the
manifolds that bifurcate at X and Y respectively are contained in the same
G-orbit.

Proof. If Y = wX for w ∈ W and w̃ ∈ N(T ) is a representative of w, multipli-
cation by w̃ maps the manifold M0 of T -relative equilibria that bifurcates at X
to a manifold w̃M0 of T -relative equilibria with generators near the elements of
wX. By uniqueness (see Remark 6.57), w̃M0 coincides with the manifold that
bifurcates at wX.
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Remark 6.66. Note that the Weyl group W permutes the weights of Ec and
hence the corresponding affine hyperplanes of t, which form together the zero
set of ξ 7→ det d2(h − Jξ)(0). Obviously, an intersection X of some of these
affine hyperplanes is regular iff this holds for every wX for w ∈W .

To identify the relative equilibria of the same G-orbit in general, we consider
them together with their generators. The set of pairs (v, ξ) ∈ V ×g of a relative
equilibrium and an admissible generator is given by theG-orbit of its intersection
with (v, ξ) ∈ V × t.

If two elements (v, ξ) and (v′, ξ′) of this intersection are contained in the same
G-orbit, we have in particular ξ′ = Adg ξ for some g ∈ G. Since the intersection
of the adjoint orbit Gξ with t coincides with the Weyl group orbit Wξ, there is
a w ∈W with ξ′ = Adw ξ. We already know that for regular affine subsets that
have the same W -orbit, the bifurcating strata have the same G-orbit; we only
want to find additional relations between the G-orbits of strata. Thus we choose
some representative w̃ ∈ G of W and replace (v′, ξ′) by (w̃−1v′,Ad−1

w ξ′) =
(w̃v′, ξ), which is also contained in theG-orbit. Hence we assume in the following
that ξ = ξ′. Then v and v′ are contained in the same Gξ-orbit.

Gξ 6= T iff ξ is contained in some Weyl wall ([BtD85, chapter V, Theo-
rem 2.3]). If we consider only relative equilibria whose generator ξ is contained
in some small neighbourhood of some ξ0 with det d2(h − Jξ0)(0) = 0, we may
deduce that ξ0 must also be contained in this Weyl wall and Gξ = Gξ0 . Hence,
if two relative equilibria v and v′ near 0 with generators in t are contained in the
same G-orbit but not in the same T -orbit, they must necessarily be contained
in the manifold tangent to ker d2(h− Jξ0)(0) for some Weyl wall element ξ0.

We now investigate the intersection of group orbits with such a manifold:
Since h−Jξ0 is a Gξ-invariant function, V0 := ker d2(h−Jξ0)(0) is Gξ-invariant.
Hence, the Splitting Lemma yields a Gξ-equivariant local map

v1 : (V0 × gξ, (0, ξ0))→ V1,

where V1 is a Gξ-invariant complement of V0, such that v1 solves

dV1(h− Jξ)(v1 + v0) = 0.

By uniqueness, v1 extends the corresponding local map

v1 : (V0 × t, (0, ξ0))→ V1.

Similarly, the Gξ-invariant function g : (V0 × gξ, (0, ξ0))→ R given by

g(v0, ξ) = (h− Jξ)(v1(v0, ξ) + v0)

is an extension of the T -invariant function g defined on a neighbourhood of
(0, ξ0) in V0 × t. Since V1 and V0 are Gξ-invariant and v1 is Gξ-equivariant, the
pairs (v1(v0, ξ) +v0, ξ) and (v1(v′0, ξ) +v′0, ξ) are contained in the same Gξ-orbit
iff this is true for (v0, ξ) and (v′0, ξ). Hence we only have to understand the
Gξ-action on V0.

(Note that we do not require that V0 has linearly independent weights at
this point. Nevertheless, we will investigate the Gξ-action on V0 later on only
for the case hat the weights of V0 are linearly independent. It will turn out,
that this suffices to describe the G-orbits of the strata of T -relative equilibria
that bifurcate at regular affine sets.)
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Remark 6.67. If two pairs (x, ξ), (x′, ξ′) ∈ V × t are contained in the same
G-orbit, this is obviously also true for the points x and x′. Conversely, if two
T -relative equilibria x and x′ are contained in the same G-orbit and ξ ∈ t is a
generator of x, it is an interesting question if there is generator a ξ′ ∈ t of x′
such that the pairs (x, ξ) and (x′, ξ′) are contained in the same G-orbit. Since
x = gx′ for some g ∈ G implies that Adg ξ′ is a generator of x, this is true
if there is an element h ∈ Gx′ with Adh(Adg ξ′) ∈ t. The following lemma
describes a situation when this happens.

Lemma 6.68. Let X̃ ⊂ g be the set of generators of the G-relative equilibrium
x and X := X̃ ∩ t. If X is not contained in a Weyl wall, then each Gx-adjoint
orbit of an element of X̃ contains an element of X.

Proof. To see this, note that X̃ is a Gx-invariant affine subset of g of the form
η0 + gx, where we can choose η0 to be contained in g⊥x (with respect to an
invariant inner product on g). Since X̃ is Gx-invariant, Gx fixes η0 and hence
[ξ, η0] = 0 ∀ξ ∈ gx. Consider the Lie algebra l = gx⊕〈η0〉. Suppose that c is a
Cartan subalgebra of l. Then all Gx-orbits in l intersect c: There is a splitting c
= c′⊕〈η0〉, where c′ is a Cartan subalgebra of gx and thus intersects all adjoint
orbits in gx.

Since l∩t is an Abelian subalgebra of l, it is contained in a Cartan subalgebra
c ⊂ l. If l∩t = c, every element of X̃ has an element of l∩t in its Gx-orbit. Then
the Gx-invariance of X̃ implies that it is contained in X̃ ∩ t = X. If l ∩ t ( c,
there is a Cartan subalgebra t′ 6= t of g that contains c. Thus the elements of
l∩t are contained in the two different Cartan subalgebras t and t′ of g and hence
they have to be contained in a Weyl wall of t (see [BtD85, Proposition 2.3, part
(iv)]).

Together with the consideration in Remark 6.67 we obtain:

Corollary 6.69. Let X ⊂ Z be a regular affine subset that is not contained in
a Weyl wall and M be the stratum that bifurcates at X. Then M intersects the
G-orbit of a T -relative equilibrium x iff for every generator ξ of x there is g ∈ G
with gx ∈M and Adg x ∈ t.

Remark 6.70. Notice that Gξ is the union of all tori whose Lie algebra contains
ξ and hence Gξ is connected ([BtD85, chapter IV, Theorem 2.3, part (ii)]).
T ⊂ Gξ is also a maximal torus of Gξ and hence the subspaces of V0 of the form
Cα are also weight spaces of the Gξ-representation V0. The Weyl group W (Gξ)
is generated by a subset of the reflections of W (G).

Since V0 is Gξ-invariant, the set of weights of V0 is W (Gξ)-invariant. The
following lemma shows, that there are two possible cases:

Lemma 6.71. Let S := {α1, . . . , αk} ⊂ t∗ be a subset of the weights of some
complex G-representation V , c ∈ R \ {0}, and X ⊂ t maximal with

αi(ξ) = c ∀ξ ∈ X, ∀i = 1, . . . , k

such that S is the maximal set of weights of V with this property for X. Let
Z ⊂ G be a connected subgroup with T ⊂ Z and W (Z) its Weyl group. The
following conditions are equivalent:
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1. W (Z)S = S,

2. W (Z)X = X.

If the conditions hold, each reflection w ∈W (Z) acts trivially on exactly one of
the sets S and X. Hence either S or X is contained in the corresponding Weyl
wall.

Proof. 1 ⇒ 2: By invariance of S,

αi(Adw(ξ)) = Coadw−1 αi(ξ) = c ∀ξ ∈ X, ∀i, ∀w ∈W (Z).

By maximality of X, W (Z)X = X.
2 ⇒ 1: Similar.
For the last statement, we identify t and t∗ via a W -invariant inner product.

Let 〈S〉 be the span of S and consider the splitting t = 〈S〉⊕〈S〉⊥. If w ∈W (Z)
is a reflection with wS = S, then w〈S〉 = 〈S〉 and w〈S〉⊥ = 〈S〉⊥. Then
X = x0 + 〈S〉⊥ for some x0 ∈ 〈S〉w. Since w is a reflection about a hyperplane,
w fixes either 〈S〉 or 〈S〉⊥ but not both. Hence either X ∈ tw or S ∈ tw.

Hence, if Gξ = Gξ0 is non-Abelian, either the set X for V0 is contained in
some Weyl wall or X is perpendicular to a Weyl wall, ξ0 is contained in the
intersection of X with the Weyl wall, and the weights of V0 are all contained in
the corresponding Weyl wall.

Since we can predict bifurcations if the set {α1, . . . , αk} is linearly indepen-
dent, we investigate the Gξ-action on V0 in this case now.

Now, let us investigate the W (Gξ)-action on the linear independent set S if
V0 =

⊕
α∈S Cα.

Lemma 6.72. Assume a set of linearly independent weights of some symplectic
G-representation is left invariant by a Weyl group reflection w. Then there is
at most one pair of different weights α and wα contained in the set and all the
other elements are fixed by w.

Proof. Assume that α, wα, β, and wβ are pairwise different weights. Since
w fixes a hyperplane, the image of 1 − w is 1-dimensional. Hence, α − wα
and β − wβ are multiples of each other. Thus α, wα, β, and wβ are linearly
dependent.

Hence, given a reflection w ∈ W (Gξ), there are two possible cases for the
linearly independent set S of weights of V0:

1. w fixes every element of S.

2. w fixes every element of S but some pair of different weights β and wβ
contained in S.

The main observation on the orbit structure of V0 is contained in the follow-
ing lemma. Here, we assume that V0 is contained in some symplectic irreducible
G-representation. To prove the general case, we will split V0 into Gξ-invariant
sums of weight spaces that are contained in different irreducible G-symplectic
representations.
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Lemma 6.73. Suppose that V0 = ker d2(h − Jξ)(0) is contained in an irre-
ducible G-symplectic subrepresentation of V and has a linearly independent set
of weights S. Consider a Weyl group reflection w ∈ W (Gξ). Then there is a
connected closed subgroup Z ⊂ Gξ with T ⊂ Z and W (Z) = 〈w〉. The Z-orbits
are as follows, depending on the above two cases:

1. In case 1, the Z-orbits coincide with the T -orbits.

2. In case 2, the space Cβ ⊕ Cwβ is Z-invariant. The Z-orbits in Cβ ⊕ Cwβ
coincide with the norm spheres. The complement

⊕
α∈S\{β,wβ} Cα is also

Z-invariant. Within this space, the Gξ-orbits coincide with the T -orbits.

With the help of Lemma 6.73 we can deduce the relations between the G-or-
bits of strata that bifurcate at regular intersections of hyperplanes in t:

Theorem 6.74. Assume that the G-invariant Hamiltonian function h : V → R
satisfies the genericity assumptions (GC) and (NR’). Consider the strata of
T -relative equilibria of Xh that bifurcate at regular affine subsets of Z. Then
the union of these strata is contained in the G-orbit of the union of those strata
that bifurcate at regular affine subsets of Z that are not contained in a Weyl
wall.

If X,Y ⊂ Z are regular affine subsets not contained in a Weyl wall, the
strata that bifurcate at X and Y respectively have the same G-orbit iff the Weyl
group orbits of X and Y coincide. Otherwise, their G-orbits are disjoint.

Proof. Let X ⊂ Z be a regular affine subset contained in a Weyl wall tw fixed
by the Weyl group reflection w ∈W . Then X is an intersection of hyperplanes
consisting of the solutions ξ of equations of the form

2παij(ξ) = ci,

where ci is an eigenvalue of d2h(0)
∣∣
Ec

and αij a weight of the corresponding
eigenspace Ui. Let Xi denote the intersection of solution sets corresponding
to the eigenvalue ci and Si be the corresponding set of weights. Since X is
w-invariant and X ⊂ Xi, we also have X ⊂ wXi and thus also Xi = wXi

by minimality of Xi. Thus by Lemma 6.71, each set Si is w-invariant, too.
Moreover, for each i, Xi is either contained in tw or perpendicular to tw. Since
X =

⋂
iXi ⊂ tw and X is non-empty, there is at least one particular i∗ with

Xi∗ ⊂ tw. Then again by Lemma 6.71, Si∗ contains a pair β 6= wβ of weights.
By Lemma 6.72, all weights in α ∈ S \ {β,wβ} satisfy wα = α. Now we choose
ξ ∈ X with

ker d2(h− Jξ) =
⊕
i

⊕
α∈Si

Cα︸ ︷︷ ︸
⊂Ui

=: V0.

Since wξ = ξ we have w ∈ W (Gξ). By Lemma 6.73 and the Gξ-invariance of
V0, we have V0 = GξW0 with

W0 :=
(⊕
i6=i∗

⊕
α∈Si

Cα︸ ︷︷ ︸
⊂Ui

⊕
⊕

α∈Si∗\{β,wβ}

Cα︸ ︷︷ ︸
⊂Ui∗

)
⊕ Cβ .
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Thus the above reasoning shows that the stratum that bifurcates at V0 is con-
tained in the G-orbit of the stratum that bifurcates at W0.

On the contrary, let Y ⊂ Z be a regular affine subsets that is not contained
in any Weyl wall. By Lemma 6.65 all strata that bifurcate at any image of Y
under the action of a Weyl group element have the same G-orbit.

Suppose that Y ′ ⊂ Z is also a regular affine subset not contained in any
Weyl wall such that the intersection of the G-orbits of the strata M and M ′

that bifurcate at Y and at Y ′ respectively is non-empty. We have to show, that
there is a Weyl group element that maps Y to Y ′. Suppose that x ∈ M and
x′ ∈ M ′ are contained in the same G-orbit and choose a generator ξ ∈ t of x
that is not contained in any Weyl wall. By Corollary 6.69, there is g ∈ G with
gx = x′ and a generator ξ′ ∈ t of x′ with Adg ξ = ξ′. As argued above, we may
assume that g ∈ Gξ; we just replace Y by one of its images under the action of
the Weyl group W (G). Now, since Gξ = T and the strata are T -invariant, x
and x′ are contained in the same stratum then.

The content of remaining part of this section is the proof of Lemma 6.73.
In order to investigate the Gξ-action on V0, we will need the following fact

about compact Lie groups:

Lemma 6.75. Let Z ⊂ G be a connected closed subgroup with T ⊂ Z. For
w ∈W (Z), let (t∗)w be the corresponding Weyl wall and let G(w) :=

⋂
ξ∈(t∗)w Gξ

denote the maximal subgroup that acts trivially on (t∗)w. Then the Weyl group
of G(w) of the identity is generated by w. Moreover, the group Z is generated
by the groups G(w).

Remark 6.76. Note that G(w) is the centralizer of the group connected compo-
nent of 1 of the group ker θα, where α is a root corresponding to w (see below).
Thus, as for Gξ, we obtain from [BtD85, chapter IV, Theorem 2.3, part (ii)]
that G(w) is connected.

To prove the lemma, we will use the following observation:

Lemma 6.77. If G′ ⊂ G is a closed connected subgroup of the compact con-
nected Lie group G such that G′ contains a maximal torus T of G and W (G′) =
W (G), then G′ = G.

Proof. The Weyl group of G is determined by the roots of G, i.e. the non-
trivial weights of the complexified adjoint representation on g. The roots form
a root system, see [BtD85, chapter V, section 3] for the definition and proofs.
The Weyl group W (G) is generated by the orthogonal reflections that map a
pair of roots of the form α and −α into each other, where we have chosen an
appropriate inner product. There are no other roots than α and −α contained
in the span of α. Thus each of these reflections corresponds to a single pair of
roots. Since W (G) = W (G′), all (such pairs of) roots of G are also roots of
G′. Moreover, the weight space corresponding to weight 0 of the complexified
adjoint representation is (g⊗C)T = t⊗C ⊂ g′⊗C. Thus g′⊗C = g⊗C, which
implies g′ = g and hence G′ = G.

Proof of Lemma 6.75. In principle, this is just [BtD85, chapter V, Proposi-
tion 2.3, part (ii)]: The above observation shows that Z is uniquely deter-
mined by W (Z): If Z ′ ⊂ G is a closed connected subgroup with T ⊂ Z ′ and
W (Z ′) = W (Z), this implies W (Z ′ ∩ Z) = W (Z) and thus Z = Z ′ ∩ Z = Z ′.
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Let α be a root of G and wα ∈W be the reflection associated to the pair of
roots α and −α (see the proof of the above lemma). Let θα : T → U(1) be the
homomorphism given by

exp(ξ) 7→ e2πiα(ξ)

and set Uα := ker θα ⊂ T . Then wα fixes the Weyl wall kerα, which coincides
with the Lie algebra of Uα.

Suppose that uα ∈ Uα and uα /∈ Uβ for any root β 6= α of G and uα =
exp ξα for some small ξα. Then the centralizer Z(uα) :=

{
g ∈ G

∣∣ guαg−1 = uα
}

satisfies Z(uα) = Gξα . Thus [BtD85, chapter V, Proposition 2.3, part (ii)] yields
that G(wα) = Gξα and that the Lie algebra of G(wα) is given by t⊕Mα, where
Mα is the real part of the sum of the weight spaces of α and −α in g. Thus the
Weyl group of G(wα) is generated by wα.

Let R+ contain exactly one of each pair α,−α of roots of Z and suppose
t ∈

⋂
α∈R+ Uα. Then by [BtD85, chapter V, Proposition 2.3, part (ii)], the Lie

algebra of Z(t) is given by t
⊕

α∈R+ Mα. Thus the Lie algebra of Z(t) is the sum
of the Lie algebras of the groups G(wα) for α ∈ R+. Hence the groups G(wα)
generate Z(t) (see [BtD85, chapter I, equation (3.5)]). Moreover, Z(t) and Z
have the same roots (and hence the same Weyl groups). Thus Z = Z(t).

Lemma 6.78. Assume the genericity assumption (GC) is satisfied. Suppose

V0 = ker d2(h− Jξ)(0) ⊂ U

for some ξ ∈ t∗ and some complex irreducible eigenspace U ⊂ V of d2h(0) such
that V0 =

⊕
α∈S Cα for a linearly independent set of weights of S. Suppose

further that there is some connected subgroup Z ⊂ Gξ containing T such that
S is W (Z)-invariant. Then for any W (Z)-invariant subset S′ ⊂ S, the space⊕

α∈S′ Cα is Z-invariant.

Proof. By Lemma 6.75, it suffices to show that for any w ∈ W (Z) and any
w-invariant subset S′ ⊂ S the space

⊕
α∈S′ Cα is G(w)-invariant.

To show this, partition S into its 〈w〉-orbits. Each orbit has either 1 or 2
elements. Let d2h(0)

∣∣
U

= c1, where c ∈ R \ {0}. For each of these orbits Si,
consider the maximal affine subset Xi ⊂ t of solutions ξ of

2πα(ξ) = c

for all α contained Si. By the linear independence of S, Xi 6⊂ Xj if i 6= j. Xi

is perpendicular to the Weyl wall tw if Si has 1 element, and Xi is contained in
tw if Si has 2 elements. In both cases, the intersection Xi ∩ tw is a hyperplane
of tw. By Xi 6⊂ Xj for i 6= j, no two of these hyperplanes coincide. Thus, for
any i, there is an ηi ∈ Xi ∩ tw that is not contained in Xj for any j 6= i. Thus,

ker d2(h− Jηi)(0) ∩ V0 =
⊕
α∈Si

Cα.

Since G(w) ⊂ Z, V0 is G(w)-invariant. Moreover, by definition, G(w) ⊂ Gηi .
TheGηi-invariance of ker d2(h−Jηi)(0) yields theG(w)-invariance of

⊕
α∈Si Cα.

We are now in the position to prove Lemma 6.73
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Proof of Lemma 6.73. Set Z := G(w). Let us investigate the Z-orbits in both
cases:

1. According to Lemma 6.78,W (Z)α = α implies ZCα = Cα for every α ∈ S.
Since T acts transitively on the spheres of Cαi , the Z-orbits of V0 coincide
with the T -orbits.

2. Since w̃Cβ = Cwβ for some representative w̃ of w in Z and Z is connected,
there is a path contained in a Z-orbit that connects a point of the unit
sphere of Cβ with a point of the unit sphere of Cwβ . Because

Z(Cβ ⊕ Cwβ) = Cβ ⊕ Cwβ

holds by Lemma 6.78, the path is contained in Cβ ⊕ Cwβ . On the unit-
sphere of Cβ ⊕ Cwβ , the T -orbits coincide with the level sets of |xβ |2.
Since the path connects a point in the 1-level set to a point of the 0-level
set, it intersects all T -orbits. Hence Z acts transitively on the spheres of
Cβ ⊕ Cwβ . G(w)Cαi = Cαi for every αi 6= β,wβ yields⊕

Cαi = Z(
⊕
αi 6=wβ

Cαi) = Z(
⊕
αi 6=β

Cαi).

Remark 6.79. More generally, suppose that V0 = ker d2(h−Jξ)(0) is contained
in a complex irreducible eigenspace of d2h(0) and let the set S of weights of
V0 be linearly independent. If a subset S′ ⊂ S is an orbit of the action of
the Weyl group W (Z) of a connected closed subgroup T ⊂ Z ⊂ Gξ, Z acts
transitively on the spheres of the sum

⊕
α∈S′ Cα of the weight spaces: This

follows from Kostant’s theorem, which states that for a connected compact
group, the projection of a coadjoint orbit to t coincides with the convex hull
of the corresponding Weyl group orbit (see for example [Ati82]):

⊕
α∈S′ Cα is

Z-invariant by Lemma 6.78. Furthermore, for any point x of the unit-sphere of
Cα with momentum value J(x) = µ, the projection of the orbit Zµ to t must
contain the convex hull of πS′. Hence Zx intersects all T -orbits in the unit
sphere of

⊕
α∈S′ Cα.

6.5 Examples
In the following, we consider some representations of SU(3) and compute the
tangent spaces at which manifolds of relative equilibria bifurcate. Consider the
centre space Ec of dXh(0) as a complex SU(3)-representation. The diagonal
matrices with entries in S1 ⊂ C and determinant 1 form a maximal torus T
of SU(3). Its Lie algebra t consists of diagonal matrices with entries in iR and
trace 0. We identify t and t∗ with the space

{
ξ ∈ R3 ∣∣ x1 + x2 + x3 = 0

}
=

1
1
1

⊥ .
Then the restriction of an element in the dual space (R3)∗ to t corresponds to
the orthogonal projection to (1, 1, 1)⊥.
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The Weyl group is the symmetric group S3, which acts on t = t∗ by permu-
tations of the coordinates (see [BtD85, chapter IV, Theorem 3.3]).

Example 6.80. Let Ec = C3 be the standard representation of SU(3). The
weights of V are given by the projections of (1, 0, 0), (0, 1, 0), and (0, 0, 1) to
(1, 1, 1)⊥. Thus the weights are α1 = ( 2

3 ,−
1
3 ,−

1
3 ), α2 = (− 1

3 ,
2
3 ,−

1
3 ), and

α3 = (− 1
3 ,−

1
3 ,

2
3 ). Each pair of weights forms the orbit of a reflection of the

Weyl group. Thus if c ∈ R\{0} is the eigenvalue of d2h(0)
∣∣
Ec
, the corresponding

affine lines of solutions to −2πα(ξ) = c intersect only in the Weyl walls. See
Figure 6.1: The black lines represent the Weyl walls in t∗. The black dots mark
the weights. The dashed lines show a possible configuration of the affine lines
when t∗ and t are identified.

Thus we obtain one branch of SU(3)-orbits of relative equilibria, whose tra-
jectories form periodic solutions. The branch forms a manifold tangent to the
centre space Ec. Alternatively, we may deduce this from the fact that each
1-dimensional complex subspace is the fix point subspace of a group isomorphic
to SU(2).

Figure 6.1: C3 (Example 6.80)

Example 6.81. Let Ec = C3 ⊕ C3 be the sum of two copies of the standard
representation. Suppose the genericity assumption that d2h(0)

∣∣
Ec

has two dif-
ferent non-zero eigenvalues c1, c2 with c1 6= −2c2 and c2 6= −2c1. This situation
is shown in Figure 6.2. The dashed lines represent the affine lines for the first
eigenvalue, the dotted lines correspond to the second one.

Then we obtain two manifolds of relative equilibria, each of which is tangent
to one copy of C3. Moreover, for any pair of two weight spaces contained in
different copies of C3 and corresponding to different weights, there is a manifold
of T -relative equilibria tangent to their sum. All of these additional relative
equilibria are contained in one branch of SU(3)-orbits.

By representation theory of compact connected Lie groups G, the irreducible
representations G are uniquely determined by the Weyl group orbit of theirmax-
imal weight. A weight is maximal iff the convex hull of its Weyl group orbit
contains all other weights of the representation. We now consider the SU(3)-rep-
resentation with maximal weight (1, 0,−1). This is a complex representation of
dimension 8. The weights are given by the Weyl group orbit of (1, 0,−1) and
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Figure 6.2: C3 ⊕ C3 (Example 6.81)

the weight 0, which occurs with multiplicity 2. (See [Hal03, section 6.5]. Note
that Hall chooses a different isomorphism t∗ ' R2 there, such that the weight
(1, 1) in [Hal03] corresponds to our weight (1, 0,−1).)

Example 6.82. Let Ec = C8 be the irreducible representation with maximal
weight (1, 0,−1) and suppose that d2h(0) is non-degenerate. First of all, we
obtain for each non-trivial weight a manifold of T -relative equilibria with pe-
riodic trajectories which is tangent to the corresponding weight space. Since
all these weights are contained in the same Weyl group orbit, the G-orbits of
these manifolds coincide. Although we have only one Weyl group orbit of non-
trivial weights here, there are pairs of weights that do not form an orbit of some
reflection. A possible configuration of the affine lines is shown in Figure 6.3.

Thus in addition to the relative equilibria contained in the above G-orbit
of manifolds, we obtain a manifold of T -relative equilibria for each such pair
that is tangent to the sum of the corresponding weight spaces. Again, all these
additional manifolds are contained in the same G-orbit.

Figure 6.3: C8 (Example 6.82)
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6.6 Application to Birkhoff normal forms
Although in mechanical systems the symmetries of nature typically correspond
to isotropy subgroups of the states of at most rank 1, approximations of the
Hamiltonian functions near an equilibrium often have symmetry groups of higher
rank.

Consider for example the harmonic oscillator in n degrees of freedom. It
consists of the quadratic part h2 of the Hamiltonian h near an equilibrium p
such that d2h(p) is positive definite. There are canonical coordinates

(q1, . . . qn, p1, . . . pn)

such that qi(p) = pi(p) = 0 and

h2 = 1
2

n∑
i=1

λi(q2
i + p2

i ) λi > 0, i = 1, . . . n.

For each symplectic subspace Ci generated by the elements of the form

(0, . . . , 0, qi, . . . , pi, 0, . . . , 0),

the standard action of S1 ' SO(2) ' U(1) is canonical and leaves h2 invariant.
Thus the Hamiltonian system for the harmonic oscillator h2 has Tn-symmetry.

Typically, the Hamiltonian function h is not Tn-invariant. Nevertheless, we
often obtain canonical coordinates from the theory of Birkhoff normal forms,
with respect to which also higher order approximations of h are invariant for an
action of a subtorus:

The eigenvalues λ1, . . . , λn of d2h(0) are called rationally independent iff the
only integer solution of

∑n
i=1 aiλi = 0 is ai = 0 for all i. In this case, the

Birkhoff normal form theorem implies that of any r ∈ N, there are canonical
coordinates such that the Taylor polynomial hr of h up to order r is Tn-invariant
(see [Arn78, appendix 7 A]). Then all solutions of the Hamiltonian dynamical
system for hr are relative equilibria. Hence they are quasi-periodic, that is,
their trajectories are dense in some torus. This is in general not true for the
dynamical system for the vector field Xh. Nevertheless, for small time intervals,
the integral curves for hr are good approximations of the integral curves for
h. Moreover, KAM theory implies that generically there is a set of invariant
tori for the Hamiltonian system of the original Hamiltonian function h and the
ratio of the measure of its intersection with a neighbourhood of the equilibrium
and the full measure of the neighbourhood is arbitrarily close to 1 for small
neighbourhoods, see [Arn78, appendix 8 D, section 4].

If the eigenvalues λ1, . . . , λn are rationally dependent, this is no longer true
for arbitrary r ∈ N in general. For example, this may occur if symmetries of the
mechanical system cause multiple eigenvalues. Nevertheless, there are canonical
coordinates such that hr is invariant with respect to a subtorus of Tn:

Set λ := (λ1, . . . , λn) ∈ Rn. The integer vectors j ∈ Zn with 〈j, λ〉 = 0 form
a Z-submodul J . Let k be the rank of the free Z-modul J .

As shown in the proof of [Mos68, Theorem 3], there are canonical coordinates
Qi, Pi with the following properties: The quadratic part of hr is given by

1
2

n∑
i=1

λi(Q2
i + P 2

i ).
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We may choose (n− k) integer vectors γ1, . . . , γr that form a basis of J⊥ ∩ Zn.
For each γj = (γj1, . . . , γjn), we obtain the function

Gj = 1
2

n∑
i=1

γji (Q
2
i + P 2

i ).

Then we have {Gj , hr} = 0 for every j and hence the Gj are conserved quantities
of the Hamiltonian system for hr.

The flow ϕj of the Hamiltonian vector field XGj is obviously periodic. More-
over, we have {Gj , Gk} = 0 for every pair i, j. Thus, the flows ϕi and ϕj
commute. Hence they define a linear Tn−k-action on

R2n = {(Q1, . . . , Qn, P1, . . . , Pn)},

which leaves hr invariant.
The weight spaces of the representation are the subspaces Ci of vectors of

the form (0, . . . , 0, Qi, . . . , Pi, 0, . . . , 0). The weights are given by

αi = (γ1
i , . . . , γ

n−k
i ).

Since λ ∈ J⊥, λ is contained in the image of the matrix with columns γj , which
coincides with the matrix with rows αi. Let I be a subset of {1, . . . n}. For an
element ξ of the Lie algebra t of Tn−k,

ker d2(h− Jξ) = ⊕i∈ICi

holds iff
−2παi(ξ) = λi

is satisfied exactly for i ∈ I. Since λ is contained in the image of the matrix
formed by the αi, there is a such a ξ if the linear spans 〈αi〉i∈I and 〈αi〉i/∈I are
complements within the span 〈α1, . . . , αn〉. This is the case if the λi for i ∈ I
are not part of any resonance relation, i.e. for any j = (j1, . . . , jn) ∈ J , we
have ji = 0 for i ∈ I. If there is a set I with this property and in addition
the set {αi | i ∈ I} is linearly independent, then the Hamiltonian dynamical
system for hr has a manifold of relative equilibria. This is not true for the
original Hamiltonian function h anymore. Nevertheless for small time scales,
some solutions resemble quasi-periodic motion. Moreover, the system on the
symplectic manifold of relative equilibria may be considered as a perturbation
of the quadratic system on its tangent space. Thus I also expect that generically
a dense subset of this manifold consists of tori, which have in some sense a
counterpart in the original system.



Chapter 7

Prospects

For future work, it might be interesting to determine the isotropy subgroups of
the relative equilibria and their momenta. Then for a given relative equilibrium
p with isotropy subgroup Gp = H, the isotropy subgroups of the momentum
generator pair within the group N = (N(H)

/
H )◦ may be computed. The fol-

lowing thought is a first idea to compute the group Gµ: LetM0 be the manifold
of T -relative equilibria that bifurcates at V0. By the equivariant Darboux the-
orem, M0 is locally T -symplectomorphic to V0, its tangent space at the point
0. If φ : M0 → V0 is a T -equivariant symplectomorphism and p is a element
of M0 with J(m) = µ, the t∗-components of µ and J(φ(p)) coincide. For any
connected closed subgroup K ⊂ G, Kostant’s theorem (see for example [Ati82])
implies that the projection of the orbit Kµ to t∗ contains the Weyl group orbit
of the t∗-component µ

∣∣
t
of µ. Thus the Weyl group of K fixes µ

∣∣
t
. Conse-

quently, K fixes µ
∣∣
t
. Hence Gµ must be contained in the isotropy subgroup

Gµ|t = GJ(φ(m))|t and the same is true for Gp.
Another approach for the future can be to consider parameter families of

Hamiltonians on torus representations. This is interesting for two reasons:
The results for torus representations yield the local structure of the set of

relative equilibria near a non-degenerate relative equilibrium for proper actions
of Abelian groups. The global set of relative equilibria in general also contains
degenerate relative equilibria. To analyse this situation, it might be helpful to
introduce additional parameters that correspond to ρ.

Moreover, this may also give some insight into systems of representations
of non-Abelian groups. In this case, the Hessian d2(h − Jξ)(0) can have ker-
nels that consist of sums of weight spaces corresponding to linearly dependent
weights. In this case, there may be branches of relative equilibria tangent to
the kernel, but the results of this thesis do not predict them. Kernels of this
type generically do not occur for torus representations, but this changes if we
consider parameter families of Hamiltonians. Thus, an analysis of this situation
might yield generalizations of the theory in several ways.

As Patrick and Roberts point out in [PR00], the Hamiltonian functions that
occur in mechanics are usually contained in a much more restricted set of func-
tions. It may be valuable to investigate genericity properties within a smaller
set of functions than C∞(P )G.

153



154 CHAPTER 7. PROSPECTS



Appendix A

Thom-Mather
transversality theorem

This appendix is a translated part of my diploma thesis, which again follows
[GWPL76].

A.1 C∞- and Whitney C∞-topology
In this appendix the definitions and properties of the topologies on spaces of
differentiable functions used in this thesis are presented. In the case of smooth
functions, the spaces are mostly considered with the C∞-topology or Whitney
C∞-topology and we are usually not too strict which one to choose. The reason
is that for the investigation of local phenomena, it does not matter: We will see
that the quotient topologies on the spaces of germs are the same.

We start with the C∞-topology. Let V andW be finite-dimensional R-vector
spaces. For n ∈ N and a compact subset K ⊂ V we define the semi-norm

‖f‖Kn := sup
x∈K
‖dnf(x)‖ .

Set Dn := Bn(0) ⊂ V . We obtain a metric

d(f, g) =
∞∑
n=0

2−n
‖f − g‖Dnn

1 + ‖f − g‖Dnn
,

which induces the C∞-topology.

Definition A.1. A locally convex topological vector X space is called Fréchet
space iff its topology is induced by a metric with respect to which X is complete.

As is easy to see, C∞(V,W ) together with the C∞-topology is a Fréchet
space. Thus for mappings between such function spaces, the open mapping
theorem applies:

Theorem A.2 (Open Mapping Theorem, [Rud73, Theorem 2.11]). Let V , W
be Fréchet spaces and f : V → W a surjective continuous linear map. Then f
is open.
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In a similar way, the definition can be extended to C∞(M,N) for smooth
manifolds M and N : Given a coordinate chart (U, φ) on M , a compact subset
K ⊂ U , a coordinate chart (V, ψ) on N , a function f ∈ C∞(M,N) such that
f(K) ⊂ V , n ∈ N, and ε > 0, we consider the set N (φ, ψ,K, f, n, ε) of maps
g ∈ C∞(M,N) with g(K) ⊂ U and ‖ψ ◦ (f − g) ◦ φ‖φ

−1(K)
n < ε. Then the sets

of this type form a base of the C∞-topology.
Alternatively, we will often use the Whitney C∞-topology, which coincides

with the C∞-topology if M is compact. Following [GG73], we introduce the
Whitney Ck-topologies on C∞(M,N). For k = ∞, we obtain the finest one of
these topologies.

Definition A.3. LetM and N be smooth manifolds, p ∈M , and f, g : M → N
smooth maps with f(p) = g(p) =: q.

1. f and g are in contact of first order at p iff dfp = dgp. f and g are in
contact of k-th order at p, denoted f ∼k g at p, if df, dg : TM → TN are
in contact of (k − 1)-th order in all points of TpM .

2. Let Jk(M,N)p,q be the set of equivalence classes of mappings f : M → N
with respect to the relation ∼k at p. Then we define

Jk(M,N) := ∪(p,q)∈M×NJ
k(M,N)p,q.

An element σ ∈ Jk(M,N) is called a k-jet from M to N .

3. Let α : Jk(M,N) → M denote the projection Jk(M,N)p,q 3 σ 7→ p.
Accordingly, let β : Jk(M,N)→M be given by Jk(M,N)p,q 3 σ 7→ q.

For open sets U ⊂ Rn, V ⊂ Rm, there is a bijection between Jk(U, V ) and
the open subset U×V ×P (k)(Rn,Rm)0 ⊂ Rn×Rm×P (k)(Rn,Rm)0. For smooth
manifolds M and N , the sets Jk(U, V ) ⊂ Jk(M,N), where U ⊂M and V ⊂ N
are domains of charts, may be used to define the structure of a differentiable
manifold on Jk(M,N) ([GG73, chapter II, Theorem 2.2]).

Every smooth map f : M → N defines a smooth map

jkf : M → Jk(M,N)
p 7→ jkf(p),

that maps p ∈M to the equivalence class of f in Jk(M,N).

Definition A.4. For smooth manifolds M and N , k ∈ N0 and U ⊂ Jk(M,N),
set

M(U) :=
{
f ∈ C∞(M,N)

∣∣ jkf(M) ⊂ U
}
.

Since M(U) ∩M(V ) = M(U ∩ V ), the sets M(U) for open subsets U ⊂
Jk(M,N) form a base of a topology on C∞(M,N).

Definition A.5. The topology on C∞(M,N) generated by{
M(U)

∣∣ U ⊂ Jk(M,N) open
}

is called Whitney Ck-topology. Wk denotes the set of Whitney Ck-open subsets
of C∞(M,N).
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For k ≤ l, we have Wk ⊂ Wl: Let πlk : J l(M,N) → Jk(M,N) map the
equivalence class of a function f in J l(M,N)p,q to the equivalence class of f
in Jk(M,N). Then M(U) = M((πlk)−1(U)) for any U ⊂ Jk(M,N). Thus
∪∞k=0Wk is a base of a topology.

Definition A.6. The topology on C∞(M,N) generated by the base ∪∞k=0Wk

is called Whitney C∞-topology

Since Jk(M,N) is a smooth manifold, it is metrizable. Fix a metric d that
induces the topology of Jk(M,N).

For f ∈ C∞(M,N) and a continuous function δ : M → R+, set

Bkδ (f) :=
{
g ∈ C∞

∣∣ d(jkf(x), jkg(x)) < δ(x) ∀x ∈M
}
.

The sets Bkδ (f) form a neighbourhood system of f with respect to the Ck-topol-
ogy: Bkδ (f) = M(U), where

U :=
{
σ ∈ Jk(M,N)

∣∣ d(jkf(α(σ)), σ) < δ(α(σ))
}
.

Since U is open, Bkδ (f) is Whitney Ck-open. Moreover, we show that for each
open set V ⊂ Jk(M,N) with f ∈M(V ), there is a continuous function δ : M →
R+ such that Bkδ (f) ⊂M(V ). Set

m(x) := inf
{
d(σ, jkf(x))

∣∣ σ ∈ α−1(x) ∩ (Jk(M,N) \ V )
}
.

Since m is bounded below by a positive number, there is a continuous function
δ : M → R+ such that δ(x) < m(x) for every x ∈ M . This yields Bkδ (f) ⊂
M(V ).

If M is compact, every continuous function δ : M → R+ is bounded be-
low. Thus the sets B 1

n
(f) form a neighbourhood system for f ∈ C∞(M,N)

of the Whitney Ck-topology. Thus, a sequence fn converges to f iff all partial
derivatives up to order k converge uniformly to the partial derivatives of f .

If M is not compact, convergence with respect to the Whitney Ck-topology
is a stronger condition than uniform convergence of the partial derivatives up
to order k: A sequence fn converges to f iff there are a compact set K and
a number N ∈ N such that fn and f coincide outside of K for n > N and
all partial derivatives up to order k converge uniformly on K to the partial
derivatives of f ([GG73, chapter II, §3]).

Definition A.7. Let X be a topological space. A subset of X is residual iff
it is the intersection of countably many dense open subsets of X. X is a Baire
space iff every residual subset of X is dense.

Theorem A.8 ([GG73, Proposition 3.3]). For smooth manifolds M and N , the
space C∞(M,N) with the Whitney C∞-topology is a Baire space.

Now, let us come back to the local case: Let C∞(Dk,W ) be the set of
functions from Dk to W that may be extended smoothly to V . Obviously, the
restriction map C∞(V,W ) to C∞(Dk,W ) induces for the Whitney C∞- and the
C∞-topology on C∞(V,W ) the same quotient topology on C∞(Dk,W ). Thus
for the investigation of local phenomena, it does not matter, which of both
topologies is chosen.
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A.2 Transversality toWhitney stratified subsets
Here, we collect the definitions and most important facts of the theory of Whit-
ney stratified subsets. For details, we refer to [GWPL76].

Definition A.9. A stratification S of a subset P of a smooth manifold M is a
partition of P into smooth submanifolds of M such that each point of P has a
neighbourhood that intersects only finitely many elements of S. An element of
S is called stratum. The pair (P,S) forms a stratified set.

To define a Whitney stratification, we need a topology on the set G(k, n) of
k-dimensional vector subspaces of Rn for every pair of natural numbers k ≥ n.

Suppose W ⊂ G(k, n) and let {w1, . . . , wk} be a basis of W . If {w′1, . . . , w′k}
is another basis of W , the elements w′1 ∧ · · · ∧ w′k ∈

∧k(Rn) and w1 ∧ · · · ∧
wk ∈

∧k(Rn) are multiples of each other. Moreover, w ∈ W is equivalent to
w ∧ w1 ∧ · · · ∧ wk = 0 ∈

∧k+1(Rn).
Let P(

∧k(Rn)) be the projective space of
∧k(Rn). Then we obtain an in-

jective map ψ : G(k, n)→ P(
∧k(Rn)), which is called Plücker-embedding.

Definition A.10. The image ψ(G(k, n)) of the Plücker-embedding together
with the subset topology of P(

∧k(Rn)) is called Graßmann space G(k, n).

Remark A.11. For k = 1, the Graßmann space coincides with the projective
space Pn−1(R).

To begin with, we define Whitney regularity for pairs of strata of a stratified
set that is contained in an open subset of Rn.

Definition A.12. For smooth submanifolds X,Y ⊂ Rn, we call Y Whitney
regular over X at x ∈ X iff for all sequences (xi) ⊂ X, (yi) ⊂ Y with xi → x
and yi → x the following condition is satisfied: Set k := dim(Y ). If the sequence
of tangent spaces (TyiY ) converges in the Graßmann space G(k, n) to a vector
subspace T ⊂ Rn and the sequence of lines passing trough the origin spanned
by xi − yi has a limit L in G(1, n) = Pn−1(R), then L ⊆ T .

Remark A.13. This condition is often called Whitney condition (b). It implies
the Whitney condition (a): With the notation of the definition, TyiY → T
implies TxX ⊆ T .

For a triple (X,Y, x) as in the definition, the Whitney conditions (a) and (b)
are obviously local conditions that are preserved under local diffeomorphisms.
For smooth submanifolds X and Y of a smooth manifold, we call Y Whitney
regular over X at x ∈ X iff this holds with respect to local coordinates. Y is
Whitney regular over X iff Y is Whitney regular over X at x for every x ∈ X.

Definition A.14. A stratification is called a Whitney stratification iff every
stratum is Whitney regular over every other stratum.

For subsets P ⊂M and Q ⊂ N of smooth manifoldsM and N with Whitney
stratifications S of P and T of Q, the stratification

S × T := {S × T | S ∈ S, T ∈ T }
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is a Whitney stratification of P × Q ⊂ M × N . For S ∈ S, let S × T :=
{S × T | T ∈ T } be the induced stratification of S ×Q. If U is an open subset
of P , the stratification U ∩ S := {S ∩ U | S ∈ S} is a Whitney stratification of
U .

In the literature, the definition of a Whitney stratification often contains an
additional requirement, the frontier condition: If X ∩ Y 6= ∅ for a pair of strata
X,Y , then X ⊂ Y .

We do not require the frontier condition here. Nevertheless, for a Whitney
stratification of a locally closed subset of a smooth manifold consisting of con-
nected strata, the frontier condition is always satisfied ([GWPL76, chapter 2,
Corollary 5.7]). (We may suppose connectedness of the strata w.l.o.g., since the
connected components of the strata of a Whitney stratification form a locally fi-
nite partition and hence are a Whitney stratification, too ([GWPL76, chapter 2,
Theorem 5.6]).)

Moreover, the local topological properties of the stratification are constant
along a stratum of a Whitney stratification of a locally closed set. More pre-
cisely:

Definition A.15. A stratification S of a subset P of a smooth manifold is
topologically locally trivial at x ∈ P with x contained in the stratum X ∈ S, iff
there are a neighbourhood U of x in P , a stratified set (F,F), a point y ∈ F
with {y} ∈ F , and a homeomorphism h from U to a neighbourhood W of
(x, y) ∈ X × F such that h(x) = (x, y) and h maps each stratum of U ∩ S to a
stratum of W ∩ (X ×F). S is topologically locally trivial iff this holds at every
x ∈ P

Theorem A.16 ([GWPL76, chapter II, Corollary 5.5]). Any Whitney stratifi-
cation of a locally closed set is topologically locally trivial.

Given a set which admits Whitney stratifications, the question arises which
one to choose. Of course, we would like to have one which is as coarse as
possible in the sense that any other Whitney stratification is a refinement. Such
a stratification does not always exist (see the counterexample in [GWPL76,
chapter 1, below Result 1.4]). Nevertheless, in many cases, there is an apparent
choice that is minimal in some sense:

Definition A.17. Let S be a stratification of a subset P of a smooth manifold.
Then the associated filtration by dimension of P is given by P = ∪i≥0Pi, where
Pi denotes the union of strata of dimension ≤ i.

Definition A.18. A Whitney stratification of a subset P of a smooth manifold
is called canonical iff the associated filtration by dimension is given as follows:
For every i ≥ 0, the set Pi \ Pi−1 is the maximal subset of Pi that forms a
smooth submanifold over which the set Pj \ Pj−1 is Whitney regular for every
j > i.

Obviously, the canonical stratification satisfies the following minimality prop-
erty: If S and S ′ are Whitney stratifications of the same set, let Pi and P ′i be
the associated filtrations by dimension. We say that S ≤ S ′ iff there is some i
such that Pj = P ′j for all j > i and Pi ) P ′i . Then the canonical stratification
is minimal with respect to this partial order.

Now, we define a class of subsets of Rn, which admit a canonical Whitney
stratification:
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Definition A.19. A subset M of Rn is called semi-algebraic iff it is a finite
union of sets of the form {x ∈ Rn | p(x) = 0, q(x) > 0}, where p and q are poly-
nomials in the coordinates of Rn.

Complements, finite intersections, and finite unions of semi-algebraic sets are
obviously semi-algebraic. Moreover, the following holds (see [Loj65]): If M ⊂
Rn is semi-algebraic, M , M◦, and ∂M are semi-algebraic. For any polynomial
map p ∈ P (Rn,Rm), the image p(M) is semi-algebraic. Each semi-algebraic set
consists of finitely many connected components.

Theorem A.20 ([GWPL76, chapter 1, Result 2.7]). Every semi-algebraic sub-
set of Rn has a canonical Whitney stratification.

To construct the canonical Whitney stratification for P ⊂ Rn, the sets Pn \
Pn−1, Pn−1 \ Pn−1, . . . , P1 \ P0, and P0 are defined one after another as the
maximal set with the above property.

In the following, we require the strata of the canonical stratification to be
connected. This way, it is unique.

A smooth map f : M → N between smooth manifoldsM andN is transverse
to a stratified set (P,P) ⊂ N or to the stratification P iff f is transverse to every
stratum of S. For transverse maps to Whitney stratified sets, the Thom-Mather
transversality theorem applies:

Theorem A.21 (Thom-Mather transversality theorem). Let M,N be smooth
manifolds, (P,P) a closed Whitney stratified subset of N , and f ∈ C∞(M,N).

1. The set T := {x ∈M | f t P in x} is an open subset of M .

2. T := {f ∈ C∞(M,N) | f t P} is a dense subset C∞(M,N) with respect
to the Whitney C∞-topology. (This holds also if P is not closed.)

3. For a closed subset A ⊂M , the set

TA := {f ∈ C∞(M,N) | f t P along A}

is Whitney C1-open.

4. If M is compact and g ∈ C∞(M × (−δ, δ), N) such that gt := g(·, t) is
transverse to P for every t ∈ (−δ, δ), there is an isotopy of homeomor-
phisms h : M × (−δ, δ)→M , ht := h(·, t) such that h0 = 1M and

ht(g−1
t (P )) = P

for every t ∈ (−δ, δ).

5. If x ∈ M (M not necessarily compact) and g ∈ C∞(M × (−ε, ε), N)
for some ε > δ such that gt := g(·, t) is transverse to P in x for every
t ∈ (−ε, ε), there is a compact neighbourhood K of x and an isotopy of
continuous embeddings h : K × (−δ, δ) → M , ht := h(·, t) such that h0 is
given by the inclusion K ↪→M and for every t ∈ (−δ, δ), we have

ht(K ∩ f−1
0 (P )) = ht(K) ∩ f−1

t (P ).
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Part 1 is a consequence of Whitney condition (a).
Part 2 follows from the classical transversality theorem.
For part 3, consider the set U ⊂ J1(M,N) which is defined as follows:

σ ∈ J1(M,N) with representative f : M → N and α(σ) =: x, β(σ) = f(x) =: y
is contained in U iff one of the following conditions holds: x /∈ A, y /∈ P , or
df(TxM) + TyS = TyN . Then f is transverse to P along A iff f ∈ M(U).
Whitney condition (a) implies that J1(M,N) \ U is closed.

Parts 4 and 5 may be deduced from Thom’s first isotopy lemma ([GWPL76,
chapter 2, Theorem 5.2]).

Similar statements hold for a Whitney stratified subset Q of Jk(M,N): If
jkf t Q, we call f k-jet-transverse to Q. T ′ :=

{
f ∈ C∞(M,N)

∣∣ jkf t Q
}
is

a dense subset of C∞(M,N) and T ′A :=
{
f ∈ C∞(M,N)

∣∣ jkf t Q along A
}
is

open if A ⊂M and Q are closed. This follows from the above theorem together
with [GG73, Theorem 4.9 and Proposition 3.4]. The other statements imply
their jet analogues immediately.
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