Robust Speech Enhancement Using Statistical Signal
Processing and Machine-Learning

Dissertation zur Erlangung des Doktorgrades
an der Fakultat fur Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
der Universitat Hamburg

vorgelegt von

Robert Rehr
Hamburg, 2018



Robert Rehr: Robust Speech Enhancement Using Statistical Signal Processing and Machine-
Learning

ERSTGUTACHTER:
Prof. Dr.-Ing. Timo Gerkmann

WEITERE GUTACHTER:
Prof. Dr. Simone Frintrop
Prof. Dr.-Ing. Dorothea Kolossa

VORSITZ DER PRUFUNGSKOMMISION:
Prof. Dr. Chris Biemann

TAG DER EINREICHUNG:
15. Januar 2018

TAG DER DISPUTATION:
27. April 2018



ABSTRACT

With the availability of powerful mobile electronic devices, speech communication plays
an important role in many applications such as telecommunications, hearing aids and
voice-controlled devices. Due to their mobility, such devices are often used in noisy acoustic
environments. In such situations, the microphones do not only capture the desired speech
signal but also undesired background noises. This degrades the perceived quality and
the intelligibility of the speech signal. Further, the performance of subsequent speech
processing algorithms may be impaired by background noises. To restore the quality and
possibly also the intelligibility of noise corrupted speech, speech enhancement algorithms
are employed.

In this thesis, single-channel speech enhancement algorithms that either process the signal
captured by a single microphone or the output of a spatial filtering algorithm are considered.
The aim of this thesis is to increase the robustness of machine-learning (ML)-based
and non-ML-based single-channel speech enhancement algorithms by exploiting synergies
between both approaches. In conventional non-ML-based speech enhancement such as
Wiener filtering based approaches, spectral gain functions are applied to the complex
coefficients of the short-time Fourier spectra to enhance the noisy input signal. These
gain functions are derived in a statistical framework where the clean speech and the noise
Fourier coefficients are modeled using parametric probability density functions (PDFs).
The parameters of the PDFs are estimated blindly from the noisy observation. Contrarily,
ML-based algorithms use representative examples to learn the statistics of speech and noise
which are then used for the enhancement. Often, ML-based approaches are motivated by the
fact that conventional approaches are unable to follow highly non-stationary background
noise types. However, it is still unclear how well ML-based approaches generalize unseen
acoustic conditions.

The first part of this thesis deals with non-ML-based noise power spectral density (PSD)
estimators that rely on first-order recursive smoothing filter structures. In contrast to
usual linear smoothing filters, the considered noise PSD estimators adaptively change
the smoothing factor based on the previously estimated noise PSD and the noisy input.
We show that such noise PSD estimators are generally biased and present approaches to
analytically quantify and compensate for the bias.

Second, we address a specific group of speech enhancement approaches where the speech
PSD estimates are obtained using ML techniques. As the considered techniques only
represent coarse spectral envelopes of speech, we refer to them as machine-learning
spectral envelope (MLSE)-based approaches. The coarse speech PSD estimates of an
MLSE approach result in an overestimation of the speech PSD between speech spectral
harmonics. As a consequence, noise between these harmonics is not suppressed, if Gaussian
speech enhancement filters, e.g., the Wiener filter, are employed. As a result, the enhanced



signal exhibits noise bursts in speech active segments which reduce the perceived quality.
Our analysis shows that super-Gaussian estimators are able to suppress the background
noise even if the speech PSD is overestimated. Correspondingly, we propose to use these
estimators to improve the quality of MLSE speech enhancement approaches. Further,
an alternative approach to suppress the noise between speech spectral harmonics is
proposed. Instead of using super-Gaussian models, an ML and a non-ML-based approach
are combined.

In the last part of the thesis, the generalization of unseen noise conditions of deep neural
network (DNN)-based enhancement schemes is considered. To make the ML approach
more robust to unseen noise conditions, it is proposed to use normalized features based on
speech and noise PSD estimates obtained from conventional non-ML-based enhancement
algorithms. More specifically, we propose to use the a priori signal-to-noise ratio (SNR),
i.e., the ratio between the speech PSD and the noise PSD, and the a posteriori SNR,
i.e., the ratio between the noisy periodogram and the noise PSD, as input features. In
comparison to the already existing noise aware training approaches, where an estimate
of the noise PSD is appended to the features extracted from the noisy observation, the
proposed approach has two major advantages: First, the proposed features are scale-
invariant, i.e., their value is not influenced by the overall level of the input signal. As
a result, also the performance of the DNN-based speech enhancement scheme becomes
independent of the overall signal level. Second, the results show that the proposed features
generally outperform noise aware training features in terms of enhancement quality in
unseen noise conditions.



ZUSAMMENFASSUNG

Durch die Verfiigbarkeit von leistungsfahigen, elektronischen Mobilgeréten spielt Sprach-
kommunikation eine immer wichtigere Rolle, inbesondere in Anwendungen wie Telekommu-
nikation, Horhilfen und sprachgesteuerten Gerdte. Aufgrund ihrer Mobilitdt werden solche
Geriéte oft in akustischen Umgebungen eingesetzt, in denen Hintergrundgerdusche auftreten.
In solchen Situationen nehmen die Mikrofone nicht nur das gewiinschte Sprachsignal
sondern auch die ungewiinschten Gerausche auf. Dies verschlechtert die wahrgenommene
Qualitdt und Verstandlichkeit des Sprachsignals. Aulerdem kann die Leistungsfihigkeit
von nachfolgenden Sprachverarbeitungsalgorithmen durch die Storgerdusche verschlechtert
werden. Um die Qualitdt und, wenn moglich, auch die Verstdndlichkeit der gestorten
Sprache wiederherzustellen, werden Sprachverbesserungsalgorithmen eingesetzt.

In dieser Arbeit werden einkanalige Sprachverbesserungsalgorithmen betrachtet, die ent-
weder das Signal eines einzelnen Mikrofons oder den Ausgang eines rdumlichen Filters
verarbeiten. Das Ziel dieser Arbeit ist es, die Robustheit einkanaliger, maschinenlern-
basierter (ML-basiert) Verfahren und nicht-maschinenlernbasierte (nicht-ML-basiert)
Sprachverbesserungsalgorithmen durch das Ausnutzen von Synergien zu erhéhen. In
konventioneller nicht-ML-basierter Sprachverbesserung, z. B. Ansétze, die auf Wiener-
Filterung basieren, werden spektrale Gewichtungsfunktionen auf die komplexen Koeffizien-
ten der Kurzzeit-Fourier-Transformation angewendet, um das verrauschte Eingangssignal
zu verbessern. Diese Gewichtungsfunktionen werden in einem statistischen Rahmenwerk
hergeleitet, in dem die Koeflizienten der unverrauschten Sprache und des Rauschens durch
parametrische Wahrscheinlichkeitsdichten modelliert werden. Die Parameter der Verteilun-
gen werden blind aus den verrauschten Beobachtungen geschétzt. Im Gegensatz dazu nutzen
ML-basierte Algorithmen représentative Beispiele, um die statistischen Eigenschaften der
Sprache und des Rauschens zu lernen, die anschliefend fiir die Verbesserung verwendet
werden. Haufig sind ML-basierte Anséitze dadurch motiviert, dass konventionelle Ansétze
nicht in der Lage sind, hochinstationdren Gerduschtypen zu folgen. Allerdings ist weiterhin
unklar, wie gut ML-basierte Ansitze ungesehene akustische Konditionen generalisieren
kénnen.

Im ersten Teil dieser Arbeit geht es um nicht-ML-basierte Gerduschleistungsdichteschétzer,
die auf Glattungsfilter erster Ordnung basieren. Im Gegensatz zu herkémmlichen linearen
Glattungsfiltern verdndern die betrachteten Gerduschleistungsdichteschiatzer den Glat-
tungsparameter adaptiv basierend auf der zuvor geschitzten Gerduschleistungsdichte und
dem verrauschten Eingang. Wir zeigen, dass die Schéitzung solcher Geréduschleistungs-
dichteschétzer im Allgemeinen fehlerbehaftet ist, und stellen Ansétze zur analytischen
Bestimmung und zur Kompensation des Fehlers vor.

Als zweites wird eine spezifische Gruppe von Sprachverbesserungsansétzen adressiert, bei
denen die Sprachleistungsdichtespektren durch ML-basierte Verfahren bestimmt werden.



Da die betrachteten Methoden nur grobe spektrale Einhiillende der Sprache abbilden,
bezeichnen wir diese als ML-basierte Spracheinhiillendenverfahren. Die groben Sprachleis-
tungsdichteschétzungen der ML-basierten Spracheinhiillendenverfahren fiihren zu einer
Uberschétzung der Sprachleistungsdichte zwischen den spektralen Harmonischen der
Sprache. Dadurch wird das Gerdusch zwischen diesen Harmonischen nicht unterdriickt,
wenn gauflsche Sprachverbesserungsfilter, z. B. das Wiener Filter, eingesetzt werden. In-
folgedessen ist die Gerduschreduktion in sprachaktiven Segmenten stark begrenzt, wodurch
die wahrgenommene Qualitit reduziert wird. Unsere Analyse zeigt, dass supergauf3sche
Schéatzer in der Lage sind, das Gerdusch zu reduzieren, auch wenn die Sprachleistungs-
dichte tiberschéitzt wird. Dementsprechend schlagen wir vor, diese Art von Schétzer zur
Verbesserung der Signalqualitdt bei ML-basierten Verbesserungsalgorithmen einzusetzen,
die nur die Spracheinhiillende abbilden. Zusétzlich, schlagen wir einen alternativen Ansatz
vor, um das Gerdusch zwischen den spektralen Harmonischen der Sprache zu unterdriicken.
Bei diesem Ansatz werden ML- und nicht-ML-basierte Ansétze miteinander kombiniert,
anstatt supergauflsche Sprachmodelle zu verwenden.

Im letzten Teil dieser Arbeit wird die Generalisierbarkeit eines ML-basierten Verbesserungs-
verfahrens, das auf tiefen neuronalen Netzwerken (DNNs) basiert, in ungesehenen Gerdusch-
typen betrachtet. Um den ML-basierten Ansatz robuster gegen ungesehene Gerduschkon-
ditionen zu machen, werden normalisierte Merkmale basierend auf der Sprach- und
Gerauschleistungsdichte vorgeschlagen, die durch konventionelle, nicht-ML-basierte Ver-
besserungsalgorithmen bestimmt werden. Im Speziellen schlagen wir vor, das a priori
Signal-zu-Rauschverhéltnis (SNR), also das Verhéltnis zwischen Sprach- und Rauschleis-
tungsdichte, und das a posteriori SNR, also das Verhéltnis zwischen dem verrauschten Ein-
gangsperiodogram und der Gerduschleistungsdichte, als Eingangsmerkmale einzusetzen. Im
Vergleich zu den zuvor vorgeschlagenen Ansétzen zum gerduschbewusstem Training, bei de-
nen eine Schitzung der Gerduschleistungsdichte an die Merkmale, die aus der verrauschten
Beobachtung extrahiert wurden, angehédngt werden, hat der vorgeschlagene Ansatz zwei
wesentliche Vorteile: Erstens sind die vorgeschlagenen Merkmale skalierungsinvariant,
d. h., dass ihr Wert nicht durch den Gesamtpegel des Eingangssignals beeinflusst wird.
Aufgrund dessen ist die Verbesserungsleistung des DNN-basierten Sprachverbesserungsver-
fahrens entsprechend unabhéngig vom Gesamtpegel. Zweitens zeigen die Ergebnisse,
dass die vorgeschlagenen Merkmale das gerduschbewusste Training im Hinblick auf die
Verbesserungsqualitdt in ungesehenen Gerduschkonditionen schlagen.
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CHAPTER 1

INTRODUCTION

1.1. MOTIVATION

Speech is the most natural forms of communication for human beings and poses an effective
tool to exchange ideas or to express needs and emotions. Due to technical advances, speech
communication is no longer restricted to face-to-face conversations but is also performed
over long distances, e.g., in the form of telecommunication, or is even used as a natural
way for human-machine interaction. As computationally powerful computer hardware has
become available to many users, the number of speech processing devices such as smart
phones, tablets and notebooks, has increased. As a consequence, speech plays an important
role in many applications, e.g., hands-free telephony, digital hearing aids, speech-based
computer interfaces, or home entertainment systems.

With the increasing use of mobile devices, also the demand for processing algorithms to
ensure high quality speech application is constantly increasing. In many speech processing
applications, one or more microphones are used to capture the voice of the targeted speaker.
As the microphones are often placed at a considerable distance from the target speaker,
e.g., in hearing aids or hands-free telephony, the received signal does not only contain the
sound of the target speaker, but possibly also sounds of other speakers or background
noises. Understanding speech becomes increasingly difficult if additional sounds interfere
with the desired speech sound, especially with increasing level of the interferers [1]—[5].
Also moderate amounts of background noise that may not effect the intelligibility can
reduce the perceived quality of speech [6], [7]. Speech signals may additionally be degraded
by reverberation, which is caused by reflections of the speech sound on walls and other
surfaces in closed rooms. While moderate levels of reverberation may improve the speech
intelligibility, high amounts aggravate speech understanding such that conversations
become harder to follow [5], [8].

As noisy and reverberant environments are often encountered in our daily life, approaches
to reduce noise and reverberation, e.g., to restore the quality or to improve the intelligibility
of corrupted speech sounds, are of particular interest. Algorithms specifically tailored to this
task are commonly referred to as speech enhancement algorithms and have been a research
topic for many decades [6], [7], [9]. Initially, noise suppression has been only considered
for signals captured by a single microphone, e.g., [10]-[12], where mainly spectral and
temporal features have been exploited. Meanwhile, also a significant body of work has been
dedicated to speech enhancement algorithms that employ multiple microphones, e.g., [13]-
[16]. Such algorithms allow spatial features to be exploited and, as a result, generally have
a higher performance than single-channel approaches. Recently, also dereverberation has
been considered in the context of speech enhancement [17], [18] which can be explained by
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its challenging nature and its higher computational complexity.

This thesis focuses on single-channel speech enhancement algorithms where mainly the
noise suppression aspect is considered in this thesis. Hence, the term speech enhancement
is used synonymously to noise reduction. Despite the higher performance of multi-channel
noise reduction algorithms, single-channel speech enhancement is still a topic of active
research. One of the reasons is that there are still applications where no extra microphones
can be fitted to a device due to physical size limitations or economical reasons. Further,
advances in this field also benefit multi-channel algorithms because some approaches
are mathematically equivalent to a spatial filter followed by a spectral filter. Hence, by
improving single-channel spectral filters, the overall performance of such multi-channel
algorithms can be improved.

Another important factor for the continuing interest in single-speech enhancement is
the constantly increasing use of machine-learning (ML) algorithms [19]-[24]. ML-based
approaches have been considered to improve the performance of single-channel approaches
in acoustic conditions where non-ML-based approaches fail, e.g., in highly non-stationary
noise types. Correspondingly, research on ML algorithms constantly accompanies the
research on speech enhancement algorithms. ML-based enhancement schemes generally
follow a two-step approach to enhance a noisy speech signal. First, the parameters of a
model are tuned using an ML algorithm on training examples. After that, the obtained
models are used to separate speech from the background noise. However, an often raised
concern with MIL-based speech enhancement is their generalization towards unseen acoustic
conditions [21], [24]-[27]. On the contrary, non-ML-based approaches do not learn any
models from training data prior to processing. Instead the parameters required for the
enhancement are estimated on-line and blindly from the noisy observation independent of
the speaker and the noise type. Generally, non-ML-based algorithms are more robust to
unseen noise conditions but are often not able to track very non-stationary noises. Further,
non-ML approaches are usually based on strong assumptions about the independence and
the distribution of the speech and noise spectral coefficients, where powerful ML-based
models may find more appropriate descriptions. This thesis focuses on the robustness of
ML-based and non-ML-based enhancement schemes, e.g., the generalization of ML-based
algorithms in unseen acoustic environments and the tracking capabilities of non-ML noise
estimators. For this, synergies between both approaches are exploited.

In the following sections of this chapter, an overview of existing ML-based and non-ML-
based single-channel enhancement schemes is given. Further, the contributions and the
structure of the thesis are described.

1.2. NON-MACHINE-LEARNING BASED SINGLE-CHANNEL SPEECH ENHANCEMENT

Single-channel speech enhancement algorithms are employed to obtain an estimate of the
clean speech signal from the noisy input signal. For this, many different non-ML approaches
exist in the literature. This thesis mainly focuses on a specific class of approaches where
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Fig. 1.1.: Block scheme of a general discrete Fourier transform based speech enhancement
scheme. Here, y, denotes the noise corrupted sampled time-domain signal and 5;
the estimated clean speech signal.

the noisy input signal is filtered in the short-time Fourier transform (STFT) domain using
a time-varying filter, e.g., [12], [28]-[33]. Therefore, the overview in this section focuses on
this type of single-channel enhancement schemes. However, it is worth noting that in the
literature also many other possible ways to enhance a noisy signal have been described,
e.g., subspace based methods [34]-[38] and Kalman-filter based methods [39]-[42]. Further
note that some of the approaches described in the following sections are explained in more
detail in Chapter 2 as they form the basis of the work presented in this thesis.

1.2.1. Filtering Based Speech Enhancement in the Short-Time Fourier Transform Domain

Fig. 1.1 shows a general framework which is applicable to a wide range of STFT-based
filtering methods in speech enhancement. Most STFT-based filtering schemes assume
that the speech signal is corrupted by additive noise which yields the noisy signal. This
assumption is often used because it is well motivated by the physical properties of
sound [43]. The task of the enhancement system is to estimate the clean speech signal
from the corrupted version of the speech signal. For this, the signal is transformed to a
time-frequency representation using the STFT which is used to obtain an estimate of
the clean speech spectrum. Often, the estimation the clean speech coefficients can be
represented as the component-wise multiplication of a real-valued gain function and the
noisy complex-valued spectrum. In many cases, the computation of the gain function
depends on the noise power spectral density (PSD) and the speech PSD as shown in
Fig. 1.1. The noise PSD, as well as, the speech PSD are estimated blindly from the noisy
observation. The estimation of the speech PSD is often based on the estimate of the noise
PSD, which has to be obtained in advance. The enhanced spectra are transformed back to

5
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Fig. 1.2.: Gaussian (dotted), Laplace (dashed) and gamma (solid) densities fitted to a
histogram (shaded) of the real part of clean speech coefficients. (Taken from [46],
© IEEE 2005).

the time-domain and the estimated clean speech signal is obtained from an overlap-add
procedure [44].

One of the first methods that has been proposed to reconstruct the clean speech coefficients
from the noisy observation are the spectral subtraction methods presented in [11], [45].
Here, an averaged noise spectrum is subtracted from the noisy observation and is used as
the speech estimate. In contrast to that, modern clean speech estimator are commonly
derived in a statistical framework, where the clean speech and the noise coefficients are
modeled by parametric probability density functions (PDFs) [9], [12], [28]. This allows the
derivation of statistically optimal estimators that minimize specific cost functions, e.g.,
the mean-squared error (MSE), or maximize the posterior distribution.

In such statistical frameworks, the clean speech coefficients and the noise coefficients are
often assumed to follow a complex Gaussian distribution. This is justified by the central
limit theorem [47, Chapter 4]. Here, the time-domain coefficients are interpreted as random
variables and due to the discrete Fourier transform (DFT), which is a linear combination
of the time-domain samples, the distribution of the spectral coefficients converges towards
a Gaussian distribution with increasing number of time-domain coefficients [48], [47,
Chapter 4]. Deriving the MSE optimal estimator of the complex speech coefficients under
a Gaussian model for speech and noise results in the well-known Wiener filter [44]. The
use of this statistical framework further allows the derivation of estimators that minimize
the MSE with respect to functions of complex speech coefficients, e.g., the speech spectral
magnitude [12], the logarithmized magnitude [28], or exponential compressions of the
speech magnitude [49].
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However, experiments that have been conducted to measure the PDF of clean speech
spectral coefficients showed that the Gaussian assumption may not be appropriate [46],
[50], [51]. Instead, it has been found that the PDF of the complex speech coefficients is
rather super-Gaussian which is explained by the strong correlations over time [46], [52]. In
comparison to Gaussian distributions, a super-Gaussian distribution has a more spiky peak
and more heavy tails. Fig. 1.2 shows the results of an experiment conducted in [46] where
the estimated PDF of the clean speech coefficients is compared to various parametric
distributions. The super-Gaussian distributions, i.e., the Laplace and the gamma densities,
show a better fit than the Gaussian distribution. This observation has motivated research
on so-called super-Gaussian clean speech estimators, e.g., [30]-[32], [46], [50], [53], where
the clean speech spectral coefficients are modeled by super-Gaussian densities. Also the
noise coefficients have been modeled by super-Gaussian distributions, e.g., [54], [55] where
a Laplace distribution has been considered. Still, most publications use the Gaussian
model to describe the noise coefficients.

Most clean speech estimators only focus on enhancing the amplitude of the noisy DFT
coefficients and combine the estimated clean speech amplitudes with the noisy phase. For
a long time, it has been believed that enhancing the phase is unimportant [56]. However,
more recent experiments indicate that enhancing the phase may be beneficial [57], [58].
The findings inspired algorithms for phase estimation [59] and phase-aware clean speech
estimators [33], [60], [61]. An overview of this topic is given in [62].

1.2.2. Noise and Speech PSD estimators

As shown in Fig. 1.1, statistically motivated estimators require estimates of the speech
and the noise PSDs. Both quantities are blindly estimated from the noisy observation.
The following paragraphs give an overview over methods that have been proposed in the
literature.

For many non-ML-based enhancement schemes, updating the noise PSD is the first step
when a new noisy observation is processed. A simple method for estimating the noise
PSD is to smooth the noisy input periodogram over time and to suspend the update for
segments where speech is present. Such methods belong to the group of voice activity
detector (VAD)-based approaches where VADs form a subject of its own research, e.g., [63]—
[65]. This noise estimation technique is, however, very limited as it allows only stationary
background noises to be tracked.

The restrictions of VAD-based noise PSD estimators motivated more sophisticated ap-
proaches such as minimum statistics based methods [29], [66]. Here, the noise PSD is
tracked by following the minima of the temporarily smoothed noisy periodograms. For
this, the smoothed periodograms of the last 1.5 s are stored in a buffer and the noise PSD
is obtained by finding the minimum value in the buffer for each frequency band. Due to
the temporal sparsity of speech, i.e., the short pauses between speech bursts, this method
allows the noise PSD to be updated also in speech active segments. However, the minimum
search is a biased estimator and methods for estimating and correcting the bias have been
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analyzed in [66]. Despite the improvements over the VAD-based approach, this method
still suffers from insufficient tracking capabilities in non-stationary noises, especially in
cases where noise level increases. This is due to the employed search buffer because low
energy spectra that remain in the buffer may delay the increase in noise PDF estimate by
up to 1.5 s in the worst case. Improvements of this approach have been considered in [67]
where the temporal smoothing for the noisy periodograms, which are later used for the
minimum search, has been enhanced.

Furthermore, methods have been proposed which compute an MSE optimal estimate of
the noise periodogram, which is then averaged over time to estimate the noise PSD. Such
methods have been shown to be able to track moderately non-stationary noises [68]—[71].
An improved approach related to [69] has been proposed in [70], [71] where the MSE
optimal estimator of the noise periodogram is derived under a speech presence and speech
absence model. This results in a noise PSD estimator where the noisy periodogram is
recusively smoothed with an adaptively changing and frequency dependent smoothing
constant. The adaption is based on the speech presence probability (SPP) which is
estimated for each time-frequency point in the STFT. If speech is likely to be present in a
time-frequency bin the noise tracking in the respective frequency band is slowed down to
avoid speech energy from leaking into the noise PSD estimate. This approach is related to
the previously proposed method in [72], where a frequency dependent VAD is employed.
As in the approach in [70], [71], the noise tracking in [72] is stopped if a time-frequency
point is marked as speech active. In [73] this general idea has been used to derive an
ML-based noise PSD estimator. Here, the noise presence probability, i.e., the opposite of
the SPP, is estimated using a deep neural network (DNN) which is used to control the
smoothing in the frequency bands of the STFT. These methods are further related to
minimum-controlled recursive averaging based approaches [74], [75]. In contrast to the
method considered in [70], [71], a minimum statistics based noise PSD estimate is required
to determine the SPP in [74], [75] which is then used to control the amount of smoothing
of first-order recursive smoothing filters. Various variations of the minimum-controlled
recursive averaging methods have been proposed, e.g., [76], [77]. Other methods that have
been proposed for noise PSD estimation employ subspace techniques [78], high-resolution
DFTs [79] or baseline tracking [80]. Further, an overview over heuristically motivated but
computationally low complex methods has been presented in [81, Chapter 5].

As shown in Fig. 1.1, the speech PSD is estimated based on the noise PSD and the time-
domain representation of the noisy observation. In [12], the maximum likelihood optimal
speech PSD estimator and the widely used decision-directed approach have been presented.
The decision-directed approach can be considered an extension of the maximum likelihood
speech PSD estimator, which combines the estimated clean speech coefficients with the
maximum likelihood speech PSD estimate. Temporal cepstrum smoothing (TCS) [82],
[83] has considerable advantages over the decision-directed approach and the maximum
likelihood estimator. In this approach, the maximum likelihood speech PSD estimate is
transformed to the cepstral domain where only the coefficients are smoothed that are
irrelevant for speech. In comparison to the maximum likelihood estimator and the decision-
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directed approach, this method causes less musical tone artifacts.

1.3. MACHINE-LEARNING BASED SINGLE-CHANNEL SPEECH ENHANCEMENT

In contrast to non-ML-based enhancement schemes where the required statistical parame-
ters are estimated blindly and on-line from the noisy observations, ML-based speech en-
hancement algorithms learn these statistics from training data. After training, the learned
statistics are employed to enhance the noisy speech signal. Several different motivations
have been given to use ML algorithms in the context of speech enhancement. One is that
noise and speaker specific properties can be learned from training data, i.e., more prior
knowledge is available [21], which cannot be easily included in non-ML-based schemes.
Another often raised argument against non-ML-based enhancement schemes is the limited
tracking capability for highly non-stationary background noises [20], [21], [25].

Many different ML-based speech enhancement methods have been proposed in the literature.
Here, the algorithms are categorized based on the employed ML algorithm where the
following types are distinguished

1. Gaussian mixture models (GMMs), hidden Markov models (HMMs) and codebook
methods

2. Non-negative matrix factorization (NMF)
3. Deep neural networks (DNNs)

As some of the methods overlap and also combinations of various ML algorithms are
possible for speech enhancement, this categorization is not necessarily exclusive. This
overview tries to give a broad overview of ML-based speech enhancement methods, but
is not meant to be comprehensive and, correspondingly, many methods are covered only
with little algorithmic detail. The following subsections give an overview over these
approaches.

1.3.1. Generative Models and Codebook Based Enhancement

HMDMs have been among the first ML algorithms that have been considered for speech
enhancement [19], [84], [85]. An HMM is a statistical model which has been widely employed
to capture the temporal correlations of sequential data [86]. A schematic of an HMM is
depicted in Fig. 1.3. It is assumed that a sequence can be described by a set of states
where each state is linked to a PDF that models the observable data belonging to the
respective state. The temporal evolution is captured by modeling the underlying states
as a Markov chain, i.e., the probability that a specific state occurs depends only on the
previous state. The PDF that describes the data given the underlying state is referred to
as emission PDF while the probability of the state occurrence given the previous state
is often called transition probability [86]. Often, only a sequence of observations is given
and the underlying states are unknown. A typical task is then to infer the unknown states
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Fig. 1.3.: Example of an HMM that models the observed weather using the underlying
hidden states which are given by high and low atmospheric pressure. Here, ¢,
denotes the random variable of the hidden state at time ¢. Further, o, is the
random variable which describes whether the observation is that it rains or it is
dry.

from the observation sequence which is why the states are often referred to as hidden or
latent. Commonly, the parameters of an HMM are optimized on training data using the
expectation maximization (EM) approach [86]-[88]. This iterative approach maximizes the
likelihood on the training data and it can be shown that this algorithm always converges
to a locally optimal solution [88].

The first HMM-based speech enhancement schemes have been proposed in [19], [84], [85].
Initially, only the speech component has been modeled by an HMM [84], [85] whereas
the background noise has been described by a single, fixed distribution. The emission
probabilities of the HMM are GMMs where each component describes the time-domain
representation of speech. For this, the GMM components were assumed to have zero mean
while the covariance of the time-domain signal was modeled based on auto-regressive (AR)
coefficients. This type of HMM has also been referred to as AR-HMM and has also found
applications in speech recognition [89]. In [84], [85], the clean speech coefficients were
estimated using a maximum a posteriori (MAP) optimal estimator where the clean speech
coefficients are iteratively updated using the EM algorithm. In each iteration, the clean
speech coefficients are estimated using a weighted sum of Wiener filter based estimations.
The weights are obtained by inferring the probability of the state in the HMM and GMM
model to which the respective observation belongs. This probability is referred to as state
posterior probability and is determined by the forward-backward algorithm [86].

In [19], the fixed distribution used to model the background noise has been replaced by a
noise HMM. To infer the clean speech from the speech and the noise HMM, both HMMs
are combined to form an HMM of noisy speech. For this, each state of the speech HMM is
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combined with each state of the noise HMM. Correspondingly, the number of states in
the combined HMM corresponds to the number of states in the speech HMM times the
number of states in the noise HMM. The states of the speech component and the noise
component are allowed to evolve freely. Such a type of HMM is referred to as factorial
HMM [90]. Further, an MSE optimal estimator of the clean speech coefficients has been
derived for HMM-based speech enhancement. Similar to the MAP approach, also the
MSE optimal estimator is given by a weighted average of the state-dependent estimator,
i.e., for each possible combination of the speech and the noise states, the MSE optimal
clean speech estimate is computed. The weights are, again, given by the state posterior
probabilities.

The MSE approach has also been pursued in other publications [22], [25], [91]. In [25], an
important issue with ML-based approaches has been addressed by considering acoustic
environments where the background noise is not known a priori. Such situations are
expected, e.g., in hearing-aid based applications, where the user moves freely and, with
that, the acoustic environment is constantly changing. To solve this issue, various noise
HMMs are trained in [25], each specializing on a single or a small group of noise types.
During enhancement, the type of background noise is identified using segments containing
only noise which allows the selection of the appropriate noise HMM. Another approach has
been pursued in [22], where a sparsity constraint has been added to the state transition
probabilities and the emission probabilities of speech. The former forces the system to
prefer changes from a state that lead to only few other states, while the latter emphasizes
that the overlap of the emission probabilities should be small. This allows the number of
states of the speech and noise HMMs to be increased such that an appropriate background
noise model can be identified by the forward-backward-algorithm without an additional
selection method. Another motivation for using sparsity given in [22] is the issue that
the MSE estimator combines the MSE optimal speech estimate over all possible speech
and noise states. This potentially allows a combination of phonemes which could not be
produced by humans or for combinations where the speech signal is explained by the noise
states. By employing sparsity, the amount of combinations that exhibit a large weight in
the overall MSE estimate is reduced.

In [85], another common issue with HMM-based enhancement schemes has been identified.
HMMSs can be easily employed to learn the spectral shapes of speech and also noise
signals, but modelling the gain, i.e., the overall level of speech and noise, requires extra
consideration. To resolve this issue, a MAP approach similar to [84] has been proposed
in [85] to estimate the gain of each observation in an iterative EM scheme for a speech
recognition application. In [19], this approach has been extended to speech enhancement.
In [91], [92], this problem has been addressed by including a prior distribution of the
signal level into the AR-HMM to model changes of speech and noise levels. For this, a
log-normal distribution has been used where some of the parameters are considered time-
invariant and some are considered time-variant. The time-invariant parameters model the
overall shape of the gain distribution while the time-variant parameter, which is given
by a shift of the mean in the log-spectral domain, is used to model the changes of the
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level during processing. The time-invariant parameters are learned off-line while the time-
variant parameter is updated using an on-line EM algorithm [93]-[95].

By now, only HMM-based enhancement schemes have been considered that employ
features based on AR coefficients. But also many other representation of the speech
and the noise segments have been considered for modeling in HMMs. Further, some
of the proposed methods in the literature neglect the temporal correlations explicitly
modeled in an HMM and assume that the observations are independent, i.e., the speech
and noise models are replaced by GMMs. In [96]-[99], spectral features are employed
where a special focus is laid on the super-Gaussian distribution of speech as discussed
in [46], [50]. Inspired by automatic speech recognition (ASR) also log-spectral and cepstral
representations, e.g., Mel-frequency cepstral coefficients (MFCCs), of the speech and noise
have been considered for speech enhancement and source separation [100]-[107]. However,
the necessity of taking the logarithm and the absolute value to go from the spectral domain
to the log-spectral and cepstral domain turns the additive signal model into a complicated,
non-linear relationship between speech and noise. Hence, the expression for the noisy
factorial HMM (or GMM), which is required for computing the MSE optimal clean speech
estimator, often cannot be easily derived. This is why approximations of the relationship
between speech and noise are employed if a non-linear feature space is used. Among
the most common approaches are vector Taylor series (VTS) [103]-[105] which have
originally been applied to increase the robustness of ASR towards noise [108]-[111]. Here,
the non-linear function is approximated by a first-order Taylor series such that, again, an
additive relationship can be exploited. But the selection of an appropriate linearization
point for the Taylor series is a common issue. Alternatively, the MixMax approximation,
also known as log-max approximation, is often used, which also finds its roots in noise
robust ASR [112]. Here, it is assumed that the noisy log-spectrum can be approximated
by the maximum of the speech and the noise log-spectral coefficients.

Another challenge that is faced with HMM and GMM-based enhancement schemes is
that the emission probabilities often only represent the spectral envelope but not the
spectral fine structure. In other words, only the vocal tract shape but not the excitation
are modeled. This fact stems from either the low amount of states that is employed for the
speech signal or by the employed features, e.g., AR coeflicient based features. This issue
has been addressed in [22] by employing an estimator that enforces higher suppression
for low energies and in [104], [113] using a harmonic model to suppress the residual noise
between harmonics. In [26], [27], an estimate of the SPP is used to achieve the same goal.
For this, the estimated clean speech spectrum is multiplied by the SPP to reduce the
residual noise between spectral harmonics.

Codebook based approaches are closely related to HMM and GMM-based enhancement
schemes. However, instead of employing a generative model and deriving a training method
for the speech and the noise model, e.g., based on EM, these methods build a using general
vector quantization algorithms, e.g., [114]. Similar, to HMM-based enhancement schemes,
AR coefficients or related quantities are commonly used for the quantization [20], [27],
[115]. The learned codebook entries are then used as parameters in a parametric PDF
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which describe the statistical models of the speech, the noise and the noisy observations.

These are used to obtain maximum likelihood [20] or MSE optimal estimators [115]. A
potential advantage of codebook based speech enhancement is that larger codebooks can
be more easily trained compared to HMM and GMM-based enhancement methods. For
codebook based approaches [20], [115], 1024 codebook entries are employed for speech
while only hundreds of states are employed for the speech model in HMM and GMM-based
enhancement schemes [91], [97]. The challenges of codebook based approaches are similar
to HMM-based and GMM-based approaches. As AR features are often employed, also here,
only the spectral envelope of speech can be learned and, consequently, for reducing the
noise between spectral harmonics post-processing techniques need to be employed. Further,
gain-adaption techniques are required, e.g., [20], [27], which, however, are generally simpler
than for HMM-based methods.

1.3.2. Non-Negative Matrix Factorization

Another widely used ML technique is NMF which has been considered in many different
publications for source separation and speech enhancement, e.g., [21], [116]-[118]. Let
R, denote the set of real positive numbers including zero. Then, NMF is an algorithm
that allows a non-negative matrix Y € Rf *L to be split into two non-negative matrices
B € R and W € R1** such that Y = BW is an approximation of the matrix Y [119].
The notation * is used to indicate an estimate of a quantity. Here, k and ¢ are the row
and column index which correspond to frequency and time, respectively. The matrix B is
often referred to as dictionary or basis matrix while the matrix W is the NMF coefficient
matrix or activation matrix [120]. For speech enhancement application, often K > I. Thus,
NMF is also referred to as a low-rank approximation of the matrix Y. In signal processing
applications, the spectral magnitude or the periodograms of the noisy input signal are
often considered for NMF.

The non-negative decomposition of a given matrix Y is obtained by a two-step approach.
First, a distortion D(Y|BW) between the matrix Y and its decomposition BW is
defined. Afterwards, this distortion is minimized with respect to the basis matrix B
and the activation matrix W under the constraint that the elements of B and W have
to be non-negative. Common choices for the distortion are the Euclidean distance, the
generalized Kullback-Leibler divergence and the Itakura-Saito divergence, which all can be
generalized by the S-divergence [121]-[123]. Generally, the optimization problem is non-
convex and is solved using iterative algorithms. For the §-divergence based cost functions,
such algorithms are given by a set of update rules where the elements of the basis matrix B
and the activation matrix W are updated by an element-wise multiplication with an
update matrix.

Probabilistic models have been a common approach in non-ML-based enhancement schemes
and form also the basis for HMM-based and GMM-based ones. Interestingly, it is possible
for many NMF algorithms to find formulations in a probabilistic framework. All these
relationships are established by comparing the log-likelihood function that results from the
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Fig. 1.4.: General approach to enhance noisy speech using NMF.

statistical model to the corresponding cost function. The statistical models generally assume
that the time-frequency points are independent. As noted in [122], [124], the Euclidean
distance can be associated with the assumption that the elements of Y are normally
distributed with mean (Y), = > i(B)ri(W); ¢ and a constant variance. Here, (-);;
denotes the element at the ith row and the jth column of a matrix. In [125], it was shown
that NMF-based on minimizing the Kullback-Leibler divergence is similar to modeling the
elements (Y)y ¢ using a Poisson distribution. Under the Poisson model, an EM algorithm
was derived in [125] which resulted in the same update rules as in [121]. However, as
the Poisson distribution describes a discrete random variable, this interpretation requires
that the input data is scaled to integer values, which may have theoretical implications
as outlined in [126]. In [127], [128], Kullback-Leibler divergence based NMF was found
to be also related to probabilistic latent semantic indexing and analysis [129], [130] — a
technique for document indexing. Using the Itakura-Saito divergence for NMF results in
the same cost function as if the complex DFT coefficients Y}, ¢, are modelled by a zero-mean

A~

complex Gaussian distribution with variance given by (Y)i, = > . (B)r,:(W);¢ [122].
Similarly, considering the noisy periodogram and modeling it using a gamma distribution
where the mean equals (Y) k.0, as above, leads to the same cost function and log-likelihood
function, respectively [122]. Both cases correspond to an Itakura-Saito divergence based
NMF when the elements of Y are given by the periodogram.

NMEF has been employed for source separation [117], [120], [122], [131], [132] and single-
channel speech enhancement [21], [98], [116], [118], [133]-[136]. For the enhancement, the
basis matrix is split into a speech part B®) and a noise part B™), where B = [B&), B(M)
as shown in Fig. 1.4. Similarly, also the activation matrix is split into a speech activation
part W) and a noise activation part W . Commonly, the basis matrix parts, i.e., B(*)
and B("), are learned from training data prior to processing. During processing, the
factorization of an unknown vector y, is obtained by applying the NMF algorithm where
only the activation matrix W is updated and B remains fixed. Splitting the basis matrix
into a speech and a noise dependent part is used to approximate a noisy observation as
v, =~ Bw, = B(S)WES) + B(")wg"). Here, the vectors WES) and w&n) denote the activations
of the basis functions for a single segment, i.e., they are columns of the matrices w)
and W™ | respectively. Further, B(S)wgs) and B(")W§n) are interpreted as speech and
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noise spectrum, respectively. Given the approximation of y,, it can be concluded that
most NMF approaches make the assumptions that either the magnitude spectra or the
periodograms of speech and noise are additive. Generally, this assumption is incorrect as
the phase relation between speech and noise is neglected. This simplification is, however,
often justified by experiments which indicate that satisfying results with respect to sound
quality can be obtained [117], [137]. Based on the separated speech spectrum and the
corresponding noise spectrum, a gain function is computed to estimate the clean speech
spectrum similar to the Wiener filter. Depending on the used non-negative transform,
i.e., if magnitudes or periodograms have been employed, the speech estimate needs to be
converted to a clean speech magnitude before it is combined with the noisy phase. The
clean speech signal is reconstructed by using an overlap-add scheme.

An advantage of NMF-based algorithms over HMM or GMM-based approaches is that
no explicit gain modeling is required. Instead, changes in the overall level of speech and
noise are implicitly captured by the activations. However, the performance of NMF-based
source separation or speech enhancement depends highly on the difference in the subspaces
spanned by speech and noise basis matrices. In cases where the speech basis vectors are
able to explain the background and, conversely, the noise basis vectors are capable to
explain speech, the enhancement quality may suffer [138]. Hence, further regularizations
terms are often imposed on the NMF cost function to increase the separability. Enforcing
sparsity or employing temporal continuity constraints on the rows of B or columns of
W are commonly used in speech processing applications [136], [139]-[141]. Additionally,
the generalization towards unseen noise types is an issue that is shared with other ML-
based enhancement approaches. Hence, NMF algorithms that are capable to estimate the
background noise in an unsupervised fashion are also a topic of research, e.g., [133], [134],
[142], [143]. In the following paragraphs, the current state of the research, especially with
respect to these challenges, is presented.

Several NMF enhancement algorithms have been described which are able to learn the
noise basis matrix blindly from a noisy observation under the constraint that the complete
noisy speech utterance is given. In [133], a VAD is used to identify segments in the noisy
spectrogram that contain only noise. The non-speech segments of the signal are used to
train a noise basis matrix, which is used for the enhancement afterwards. For this, an
algorithm similar to the general approach that has been sketched above is used. In [143],
a combination of a non-ML-based noise PSD estimator, e.g., [29], [70], and an NMF-based
noise estimation has been proposed. Here, the noise PSD estimate is considered a fixed
component in the NMF and an NMF-based noise estimate is allowed to be added to it.
Previous to processing, clean speech basis vectors are trained and during enhancement only
the activation matrix and the basis vectors of the background noise matrix are updated. As a
noise basis matrix with several basis vectors is learned to support the non-ML estimate, the
updates are performed on a complete utterance. Also in [142], [144], a clean speech model
is trained off-line on training data. Here, however, a non-negative HMM is used which
uses statistical models similar to probabilistic latent component analysis for the emission
PDFs. Similar to HMM-based approaches, a factorial HMM is constructed by expanding
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the non-negative speech HMM by a noise component. Using EM and the observations
of a complete utterance, the noise specific parameters of the model are updated which
allow the computation of a gain function. A completely unsupervised NMF enhancement
scheme, i.e., neither speech basis vectors nor noise basis vectors are trained off-line, has
been proposed in [134].

Methods that are able to estimate the noise basis matrix on segment-by-segment basis
have also been considered. Two of them have been proposed in [21]. In the first method, a
statistical NMF approach is combined with an environment classifier. For the environment
classification, an HMM is used. The states of the HMM are related to the noise environment
that should be detected. Similar to the HMM and GMM-based enhancement schemes
discussed in Section 1.3.1, the final clean speech estimate is obtained by a weighted average
over the state specific clean speech estimates where the weights are again given by the state
posterior probabilities. The second method proposed in [21], is related to the minimum
statistics approach in [29]. Also here, a buffer is used to track a set of segments that
exhibit low energy. This set is used to update a collection of spectra that contain only
noise which are used to update the noise basis vectors in regular intervals. A related
approach has been proposed in [145], where the on-line estimation is also performed
using a sliding window. In contrast to [21], the pre-selection of the noise only segments is
omitted. Instead, all matrices except the speech basis matrix are updated when new data
are available. To prevent speech information from leaking into the noise basis vectors, the
NMF iterations are interrupted prematurely, i.e., only a fixed and low number of iterations
are performed.

Several studies show that the inclusion of the temporal dynamics of the considered sources
make it possible to reduce the overlap of the subspaces spanned by the speech and noise
basis vectors. Hence, a part of NMF research is dedicated to the inclusion of temporal
dependencies in NMF-based enhancement approaches [146]. Often, the dynamics are
incorporated by including additional regularization terms into the NMF cost function. One
of the first approaches to include this information has been proposed in [147], where the
mean and the covariance of the NMF activations and similar statistics about the temporal
evolution of these coefficients are learned prior to the enhancing the signal. Based on these
statistics, a heuristic regularization term is included in the NMF cost function to take
the temporal dependencies into account. Similarly, other approaches impose additional
constraints on the activations by restricting them to be close to the activations of the
previous time step [117], [122], [148]. The approach has been advanced by more flexible
state-space models, e.g., [140], [141], [149]. Here, the temporal progression of the activation
functions is modeled using a vector-AR process which makes it possible to include more
complex temporal dependencies. Further, also combinations of HMMs and NMF have
been considered in [98], [142], [144], [150]. Similar to HMM-based enhancement schemes,
factorial HMMs are used to model the temporal evolution of multiple sources [142], [144],
[150].

Another approach that has been considered to reduce the overlap between speech and
noise subspaces are exemplar based approaches, e.g., [135], [138], [151], [152]. In contrast
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Fig. 1.5.: Block diagram of an example feed-forward neural network.

to the NMF approaches discussed until now, exemplar based approaches do not learn a
low-rank approximation for the speech and noise basis matrices from training data. Instead
the speech and noise basis matrices are obtained by selecting samples from the respective
training data. The motivation for this is that by using a low-rank approximation in the
basis vectors, the model may become too general such that other sounds not lying in the
signal space may be explained too easily [138]. By forcing the basis vectors to be samples of
the training data, the basis vectors are more likely to span the manifold of the speech signal
which reduces the overlap with the noise basis functions. Exemplar based dictionaries are
usually overcomplete, i.e., the number basis vectors exceeds the dimensionality. Hence,
regularizations in form of sparsity constraints or temporal constraints as discussed above
become mandatory. Other disadvantages of this approach are the increased demands in
computational complexity and memory requirements. In [135], the dictionaries for speech
and noise include tens of thousands of vectors which is considerably higher than in previous
studies [21].

Another approach to reduce the overlap of the subspaces has been introduced in [153]-[155].
In contrast to exemplar based approaches, which may be demanding on computational
and memory resources, an additional regularization term is included here which penalizes
similarities between speech and noise subspaces. This is referred to as discriminative
training. In [153], the cross-coherence between the basis vectors of two different sources
is employed to quantify the similarity between the basis vectors. In [154], [155], the
reconstruction error of a specific source extracted from a mixture is added as a regularization
term that is minimized additionally during learning.

1.3.3. Neural Networks

The origin of the name “neural network® can be found in the first attempts to describe
neural information processing mathematically [88], [156], [157]. In general, neural networks
expose a structure which is similar to the block diagram shown in Fig. 1.5 where a feed-
forward network is depicted. The nodes in the first hidden layer of a neural network compute
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multiple affine linear transforms of the input values and the results are non-linearly warped.
The following layers perform the same operations on the outputs of the previous layers
until the output layer is reached. Interestingly, it has been shown that neural networks
are universal approximators, which make it possible to learn arbitrary functions on a
compact range, i.e., a limited subset, of the input space [88], [158]. Correspondingly, such
networks can be trained to yield values of a pre-defined target function given the input
data, e.g., the clean speech coefficients given the noisy ones. Despite the powerful universal
approximation property, the training of such networks, i.e., finding suitable values for
the parameters, is a challenging task. The resulting cost function is generally non-convex
and the solutions are not unique [88]. The advances in [159]-[161] allowed more complex
networks to be trained, e.g., networks with many hidden layers which became known as
DNNSs. Such models allow very complex relationships to be captured and have lead to
considerable progress in various fields such as speech and image recognition.

Similar to HMM and non-ML-based approaches, which have been investigated for several
centuries, also neural networks have been considered for speech enhancement nearly 30
years ago [162]. In [162], a feed-forward network with two hidden layers was used to map
the noisy time-domain signal to a clean version which are processed in 60 sample long
segments that do not overlap. Each hidden layer comprised 60 units, where sigmoid
functions are employed as non-linear activation functions. Similarly, also the output
layer consists of 60 units where linear activations functions are used. However, due to the
limited computational resources, the performance of this approach had been analyzed
using only few processed examples in [162]. It took several years until neural networks
were reconsidered for speech enhancement [163]-[165].

Nowadays, neural networks have become a common tool to approach single-channel speech
enhancement, e.g., [23], [26], [166], [167]. DNN-based single-channel speech enhancement
algorithms often leverage spectral representations. For this, many approaches extract
features from the spectral representation of the noisy input signal which are mapped
directly to the clean speech coefficients or to a multiplicative gain function [23], [168]-[170]
as shown in Fig. 1.5. As for the other speech enhancement approaches that have been
considered in this overview, the time-domain signal is reconstructed using overlap-add
procedures. Research topics in the field of DNN-based speech enhancement are the selection
of input features, the DNN architecture, the target functions and/or cost functions.

In [168], [171], [172] various features are compared with respect to their performance for
speech enhancement and also dereverberation. Many of these features are inspired by ASR
and include MFCCs [173], amplitude modulation spectra (AMS) [174], Perceptive Linear
Prediction (PLP) in combination with relative spectral (RASTA) processing features [175],
as well as, Gabor filterbank features [176]. Even though it has been proposed in [168], [171],
[172] to combine multiple features, many DNN enhancement schemes restrict themselves
to a single set of features. Commonly, magnitude spectra or periodograms are used where
often the logarithmic representation is computed, e.g., [23]. Similarly, Mel filterbank features
and the corresponding logarithmized variants are also often encountered [170], [177].
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name formula

ideal binary mask (IBM) [169] I (ISkel?/|Ng,el* > 7)

ideal ratio mask (IRM) [169] (|Sk,z\2/(\5k,z|2 + |Nk-,£\2))ﬁ
DFT magnitude [169] |Sk,el

DFT mask [169], [170] |Sk,el/[Y,e

phase-sensitive filter [170] |Sk,el/|Yk,el cos(®, , — @ )

complex ideal ratio mask (cIRM) [170], [178]  Sk.¢/Yie

Table 1.1.: List of target functions used in DNN-based speech enhancement. The symbol
Sk,e denotes the complex speech time-frequency points while Ny, denotes
noise time-frequency points. Further, ®} , and <I>Z/ are the respective phases
of the complex coeflicients Sj , and Ny . The index k represents frequency
while ¢ represents time. Here, I(-) denotes the indicator function which is 1 if
the condition in the argument is true and 0 otherwise.

Similarly, also various target functions of the DNN have been investigated for speech

enhancement, e.g., [169], [170]. Most of the target functions are so-called mask functions.

Similar to the Wiener filter gain function, the noisy spectral coefficients are multiplied by
the mask obtained from a trained DNN to estimate the clean speech coefficients. During
training, oracle knowledge about the speech and the noise signal is used to compute the
ideal target values, while the desired mask has to be reproduced blindly by the DNN
during processing. Table 1.1 gives an overview of target functions that have been proposed
in the literature [169], [170], [178]. In comparisons [169], [170], the ideal binary mask
(IBM) shows the largest improvements in signal-to-noise ratio (SNR) as the coefficients
that only contain background noise are completely rejected. Even though studies show
that binary masks can improve the intelligibility of speech in noisy conditions [179], other
studies indicate that these masks do not have advantages over soft masks [170], [180],
[181]. Correspondingly, [170], [181] conclude that the phase-sensitive masks such as the
phase-sensitive filter are best suited if a real gain function needs to be learned. As shown
in [182], it may further be beneficial for speech enhancement applications to use multiple
targets during training. For this, the DNN is used in [182] to directly predict the clean
speech coefficients, as well as, an ideal ratio mask (IRM). The clean speech coefficients are
estimated by averaging the direct estimate and the IRM-based estimate.

The target functions considered above are real, i.e., they do not enhance the phase of the
clean speech signal even though the phase-sensitive filter makes it possible to react to
some phase dependent variations in the input data. Due to this limitation, target functions

have been proposed that makes it possible to enhance the complex speech coeflicients.

In [178], the complex ideal ratio mask (cIRM) (see Table 1.1) is trained by separating
the complex function into its real and its imaginary part. Consequently, the DNN’s task
is to predict both parts separately and, correspondingly, both parts form a separate
term in the cost function. Even though improvements are reported in [178], most input
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features used in [178] remove the phase information. Splitting the target function into
the real and imaginary parts avoids the problem of training complex-valued networks.
However, learning complex-valued mappings using a DNN is doable using the derivations
in [183], [184]. Similarly, also [185] derived analytic expressions of the gradients required
for back-propagation and applied a complex-valued DNN to a beamforming task. From
the obtained results, it is however concluded that “complex-valued neural network[s] do
not perform dramatically better than real-valued” [185]. In [186], complex-valued DNNs
have been used for singing-voice extraction where improvements over non-complex-valued
DNNSs are reported.

Additionally to the input features and the employed target function, the performance of a
DNN-based enhancement scheme depends also on the employed cost function. In [155], two
approaches namely the mask approzimation and the signal approximation are compared for
training the target functions. For mask approximation the error criterion is defined directly
on the target functions, i.e., the mask which should be estimated. Correspondingly, the
error between the target mask and the predicted mask is optimized, e.g., by minimizing the
MSE. In [177] it is shown that defining the error function directly on the target speech signal
instead of the mask function can improve the performance of DNN-based enhancement
schemes. Correspondingly, the error function is defined between the clean speech signal and
the masked, i.e., the enhanced, noisy signal. However, to be able to obtain the advantage
from the signal approximation loss function, the network has been pre-trained in [155]
using a mask based target function before learning the signal approximation. In [187]-[189],
it has been proposed to include also the reconstruction of the interfering source, e.g., noise,
in the cost function. Additionally, [187], [188] proposed to further add a discriminative
constraint to the cost functions that reduces the similarity between two sources, e.g.,
speech and noise.

Another way of finding an appropriate cost function is to use generative adversarial
networks (GANs) [190]. During training, the goal is to find the optimal parameters of
a network which maps an observable space to a target space. For speech enhancement,
this may correspond to the mapping of the noisy observation to clean speech. Further, a
discriminator network is trained whose task is to distinguish between the true observations
in the target space and the generated ones. For speech enhancement, this corresponds
to the classification of true clean speech samples and the estimated ones. After training
the discriminator, it can be used to update the parameters of the generator network.
For this, the generator is optimized such that it becomes harder for the discriminator to
distinguish between the generated or estimated samples and the true samples. To train the
generator network in this specific way, the error is propagated through the discriminator
network. This procedure can be repeated until it becomes impossible for the discriminator
to decide whether an observation is generated or not. In [191], this type of network has
been employed to train a feed-forward network that enhances noisy speech signals in the
time-domain via end-to-end learning.

Another factor of a DNN’s performance in speech enhancement applications is the structure
of the units in the layers. Some initial approaches such as [23], [169], [192], [193] employed
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feed-forward networks as shown in Fig. 1.5. In [194], an evaluation of various feed-forward
architectures is conducted where various dimensionalities such as the non-linearities,
number of hidden units and context size are compared. However, as speech is highly
correlated in time and frequency, deep recurrent neural networks have been quickly adopted
for speech enhancement and speech separation, e.g., [163], [195], [196]. As recurrent networks
are often hard to train [197], [198], long short-term memory (LSTM) cells [199] are a natural
choice [170], [196]. Further, also convolutional neural networks have been employed for
speech enhancement [200], [201]. Some recent approaches use novel network designs such
as WaveNet [202] which models the evolution of the time-domain signal using a conditional
PDF. The PDF is conditioned on the previous speech samples in the time domain, i.e.,
the PDF has the form f(s¢|st—1,...,8+—r). The initial application of WaveNet has been
text-to-speech synthesis but also found its way into speech enhancement [203], [204] which
is also performed in the time-domain due to the model definition.

As for the other ML-based enhancement schemes considered in the previous subsection,
also for neural network based enhancement scheme the generalization of the approaches
is discussed. Using a DNN-based speech enhancement scheme in acoustic conditions

that have not been seen during training is often referred to as mismatching conditions.

In [24], the concern is raised that for several studies the overlap of the acoustic conditions

seen during training and used for testing is rather high, e.g., [188], [194], [205], [206].

Hence, the generalization capability of the DNN-based speech enhancement algorithm has
been investigated in [24]. For this, the effect of changes in the training set diversity on
the performance in seen and unseen acoustic conditions are analyzed. The training set
diversity is changed in terms of the number of speakers, SNR range and noise types. The
authors of [24] conclude that mismatches in the speaker and the SNR are less critical,
while “matching the noise type is critical in acquiring good performance for DNN based
SE [speech enhancement] algorithms” [24]. Even though [24] mainly considers the noise

type as the most critical one with respect to generalization, [207] highlight the speaker.

In [207], it is hypothesized that the speaker plays an important role for DNN-based speech
enhancement. Further, LSTM networks are proposed as a remedy based on the assumption
that non-recurrent DNNs do not have the modeling capabilities to generalize to unseen
speakers. This statement is supported by empirical evaluations where it is shown that the
LSTM states are correlated with speaker identities.

To increase the generalization to unseen noise conditions, various studies employ a large
amount of training data where as many noise types as possible are covered [23], [167], [207].
However, there is no consent on which amount of training data can be considered sufficient.
Hence, some authors argue, e.g., [26], that a limited data set is never sufficient because
infinitely many noise types are encountered under real-world conditions. As a consequence,
a noise PSD estimation algorithm similar to non-ML-based approaches is employed in [26]
which, however, is supported by a DNN-based phoneme classifier. Another approach to
improve the generalization is noise-aware training [208] which has been employed in [23],
[209], [210]. In noise-aware training, an estimate of the noise PSD is appended to the
feature vector used for enhancement to support the learning algorithm with additional
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information. In [23], [208], a fixed noise PSD estimate is used, which is obtained on the first
segments of the input signal. In [209], [210], this estimate has been replaced by a dynamic
noise estimate which is obtained from a non-ML noise PSD estimator or an IBM-based
noise estimating DNN. Both studies report improvements of the noise-aware DNNs over
the corresponding non-noise-aware counterparts. The approach in [211] continues the work
in [209] and employs two separate DNNs for the enhancement. The first DNN is used to
estimate the background noise as in [209], but is also used to jointly predict an IRM. Both
quantities are used in a second DNN to predict the clean speech spectra. In [212], the
influence of the DNN structure on the generalization is analyzed. The experiments indicate
that predicting a gain function instead of the clean speech spectra results in more robust
enhancement algorithms. Further, using a structure of multiple DNNs that follows the
structure of a conventional single-channel speech enhancement scheme similar to Fig. 1.1
may further improve the robustness.

In [213], a speech enhancement approach is proposed which relies only on a speech specific
model given by an deep auto-encoder. This model is trained only on clean speech before
processing noisy signals. Similarly, also the background noise is modeled by an autoencoder,
but its parameters are not trained off-line on training noises. Instead, the parameters
are updated for each noisy input segment based on a noise estimate which is obtained
by subtracting the estimated clean speech from the noisy observation. As this problem
is underdetermined, various constraints and regularizations are applied, e.g., that the
estimated speech and noise sum up to the noisy spectrum, that the speech spectrum
needs to lie in the subspace spanned by pre-trained speech NMF basis vectors, and that
speech and noise should be dissimilar. A somewhat related approach has been proposed
in [214] where a denoising autoencoder is trained on various noise types while a speech
autoencoder is trained separately on clean speech. In the enhancement stage, the speech
autoencoder is stacked on top of the denoising autoencoder and is used as a controlling
instance. More specifically, the weights of the denoising autoencoder are adapted by
minimizing the error between the output of denoising autoencoder and the output of the
speech autoencoder. This allows the quality of the enhanced speech signal obtained from
the denoising autoencoder to be fine-tuned.

1.4. OUTLINE OF THE THESIS AND MAIN CONTRIBUTIONS

The main topic of this thesis deals with improving single-channel speech enhancement.
Non-ML-based single-channel speech enhancement schemes, ML-based enhancement
schemes and the combination of both approaches are considered. Non-ML approaches are
generally more robust to unseen and moderately changing noise conditions, but are unable
to suppress highly non-stationary noise. In such noise conditions, non-ML approaches fail
to track very fast changes. Contrarily, ML-based approaches have the ability to follow such
changes and, hence, are an intriguing approach to improve the quality of the enhanced
signal in adverse acoustic conditions. However, as the previous sections on ML-based
enhancement indicate, the generalization of ML enhancement schemes to unseen acoustic
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conditions is a discussed topic. In this work, various shortcomings of ML and non-ML-
based enhancement schemes are considered and potential solutions are presented. Among
these solutions, approaches to combine both methods are proposed which aim to exploit
the advantages of ML and non-ML speech enhancement at the same time.

The main contributions are three-fold. First, improvements to non-ML-based noise PSD
estimators are presented. We show that non-ML-based noise PSD estimation algorithms
that can be described as first-order recursive smoothing filters with an adaptively changing
smoothing factor, e.g., [70], [71], [81], are biased. Methods for quantifying the bias are
presented and approaches are derived that compensate for the bias. Second, we show
that super-Gaussian models have considerable perceptual advantages for ML-based speech
enhancement algorithms that model only the spectral envelope of speech but not its fine
structure. If spectral envelope models are used, it is not easily possible to reduce noise
between the harmonics of the speech fundamental frequency and its harmonics if the
speech coefficients are modeled by a Gaussian PDF. However, we show that super-Gaussian
estimators are able to suppress the residual noise if only spectral envelope models are
employed. Third, we propose non-ML-based features to improve the generalization of a
DNN-based speech enhancement scheme. For this, we propose to use normalized, i.e.,
SNR-based features, which are obtained from non-ML-based estimates of the speech PSD
and the noise PSD. In contrast to the existing noise aware training [23], [208]-[210], the
proposed features result in better performance in unseen noise conditions.

The following paragraphs give a section by section overview of the thesis, which summarizes
the contributions of the thesis in more detail. Here, also the related publications that have
been worked on during the thesis are referenced.

In Chapter 2, general aspects of single-channel speech enhancement algorithms are consid-
ered. The STFT and commonly used statistical models for the speech and noise spectral
coefficients are explained. As various approaches in this thesis operate in the log-spectral
domain, also log-spectral models are introduced. Additionally, an overview of single-channel
speech and noise PSD estimation methods is given. In the last part of this chapter, the
instrumental measures used to assess the performance of the proposed algorithms are
presented.

In Chapter 3, single-channel noise PSD estimators are considered which can be described
as first-order recursive smoothing filter with an adaptively changing smoothing factor,
e.g., [70], [71] and [81, Section 14.1.3]. To avoid speech energy from leaking into the noise
PSD estimate, the value of the smoothing factor is changed to larger values, i.e., the
tracking speed is reduced, if speech is present. In this chapter, we show that such approaches
are generally biased estimators of the noise PSD. A method for bias compensation is
introduced where the bias is corrected by scaling the input or the output of the adaptive
smoothing filter. We present two iterative algorithms that allow an approximate estimation
of the required scaling factor. The correction factors are first derived under the assumption
that the input signal is stationary and contains only noise. To make the correction method
aware of the speech signal, further extensions of the correction method are presented. The
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results indicate that the proposed bias estimation algorithms are able to estimate the bias
with sufficient precision and make it possible to reduce the error in the estimation of the
noise PSD. For cases, where the noise PSD estimation is considerably biased, the proposed
correction method allows the perceived quality of the enhanced signal to be improved.
This chapter is mainly based on [215], [216].

In Chapter 4, another correction method is proposed to compensate for the bias of adaptive
recursive smoothing filters. Here, a correction factor is applied to one of the quantities
in the adaptive smoothing filters, but at a different point in the smoothing function. As
a result, this correction method can no longer be interpreted as a scaling of the filter
input or the output. The value of the correction factor required to obtain an unbiased
noise PSD estimate is generally different from the ones used in Chapter 3. To determine
the correction factor, one of the methods used in Chapter 3 is modified to meet the
requirements of the alternative correction method considered in this chapter. It is shown
that the required modifications turn the iterative estimation method of the correction
factor into a non-iterative procedure. Similar to Chapter 3, also here, the correction factor
is first derived under the assumption of a stationary signal containing only noise and is
extended afterwards. The results of this method are compared to the bias compensation
from Chapter 3 where it is shown that the alternative method yields similar results. The
publication related to this chapter is [217].

In Chapter 5, an issue specific to ML-based speech enhancement algorithms which use
speech models that only describe the speech spectral envelope is considered. Due to the
missing fine structure, clean speech estimators that are based on Gaussian priors, e.g., the
Wiener filter, are unable to reduce the noise between the spectral harmonics. Existing
methods approach this issue by applying post-processing to the estimated clean speech
spectrum. For this, the estimated speech spectrum is multiplied by an estimate of the
SPP, [26], [27] or a harmonic model is employed [104]. In this chapter, it is shown that
by using super-Gaussian PDFs for the speech priors the residual noise can be reduced
without additional post-processing steps. An analysis of the estimators that result from
the super-Gaussian modeling reveals that they make it possible to reduce the noise in
cases where the speech PSD is overestimated. For ML-based enhancement algorithms
that model speech only by its envelope, super-Gaussian clean speech estimators improve
the quality of the enhanced signals considerably compared to Gaussian estimators. The
chapter is based on [218].

In Chapter 6, we show that the advantages of super-Gaussian enhancement filters do not
only apply if the noisy speech spectrum is modeled as an additive mixture of speech and
noise in the spectral domain as in Chapter 5. Instead, the advantages of super-Gaussian
modelling can also be observed if the MixMax or log-max approximation [26], [101],
[112] is employed. Using a Gaussian distribution [26], [100], [101], [112] for modeling the
log-spectral speech and noise coefficients, an MSE optimal clean speech estimator of the
log-spectral speech coefficients can be derived [26], [101], [112]. In this chapter, the relation
between the parameters of a spectral super-Gaussian model and the log-spectral mean and
variance is exploited (see Section 2.1.3 [83]). The use of log-spectral means and variances
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that correspond to a spectral super-Gaussian model also allows clean speech estimators
derived under the MixMax model to suppress the residual noise if the speech PSD is
overestimated. Comparing the results with estimators derived in the spectral domain, the
estimators based on the MixMax model yields similar results in terms of quality but cause
less musical tone artifacts. This chapter is based on [219].

In Chapter 7, we propose another solution for reducing the residual background noise
if speech is modeled by spectral envelopes in an ML-based enhancement scheme. In
contrast to using super-Gaussian models as in the previous chapters, we combine a
non-ML-based speech enhancement scheme with the ML-based enhancement scheme. The
combination is embedded in a statistical framework where each enhancement method in
the combination has its own likelihood model for the noisy observation. Using Bayesian
statistics, a posterior probability is computed which is used to identify the enhancement
scheme which describes the noisy observation best. The final clean speech estimate is
obtained by mixing the estimated clean speech spectra of the combined enhancement
schemes based on the previously computed posterior probability. The results show that the
proposed enhancement scheme outperforms a purely non-ML-based speech enhancement
as shown by instrumental measures. The related publication is given by [220].

In Chapter 8, the generalization of a DNN-based enhancement scheme towards unseen
noise conditions is considered. It is proposed to improve the generalization by using input
features that are based on classic non-ML methods. A similar approach, referred to as noise
aware training, has been previously used in [23], [208]—-[210]. Here, an estimate of the noise
PSD is appended to the features extracted from the noisy observation. In the proposed
method, the estimated noise PSD is not appended but used as normalization term. More
specifically, we propose to use the a priori SNR and the a posteriori SNR as input features

which are commonly used in non-ML-based clean speech estimators, e.g., [9], [12], [28], [31].

We show that the normalized SNR-based features are advantageous over non-normalized
features such as noise aware training. In contrast to the non-normalized features, the
proposed features are scale-invariant which has the effect that also the performance of the
DNN-based enhancement scheme becomes independent of the overall level of the input
signal. Further, the proposed features yield a considerably higher performance in unseen
noise conditions. The related publication is [221].

Chapter 9 summarizes the main contributions of this thesis and presents suggestions for
further research.

25






CHAPTER 2

STATISTICAL FRAMEWORK FOR SPEECH ENHANCEMENT AND
INSTRUMENTAL MEASURES

In this chapter, the general mathematical notations and the statistical signal models are
introduced. These form the basis of the framework which is used for derivations of the
enhancement algorithms proposed in this thesis. Furthermore, the instrumental measures
are introduced which are used to assess the performance of the proposed algorithms in
terms of signal quality and intelligibility.

In Section 2.1, spectral enhancement methods are considered. In Section 2.1.1, the general
procedure and mathematical notations used in this context are introduced. Section 2.1.2
deals with statistical signal models that describe the interaction between speech and noise
based on an additive interaction model in the frequency domain. Section 2.1.3 presents
the relationship between spectral and log-spectral models which is used to combine ML-
based approaches that employ log-spectral representations and conventional non-ML
approaches. Finally, the non-ML-based speech and noise PSD estimation algorithms that
are used throughout this thesis are described mathematically in Section 2.1.4. Section 2.2
presents the instrumental measures that are used to assess the quality of the enhanced
speech signals. In addition, measures for quantifying the estimation error of noise PSD
estimation algorithms, which are required for the evaluation in Chapter 3 and Chapter 4,
are introduced.

2.1. STATISTICAL MODELS FOR SPECTRAL ENHANCEMENT

2.1.1. Spectral Domain Speech Enhancement

In this section, a general speech enhancement procedure is presented, which is shared
among many single-channel speech enhancement algorithms. If speech is recorded in a
noisy acoustic environment, e.g., as shown in Fig. 2.1, the employed microphone does
not only capture the clean speech time-domain signal s; but also the background noise
signal n,. Here, t is the sample index. Under some mild constraints, the interaction of
sound waves is physically well described by their superposition [43]. Hence, an adequate
expression of the noisy microphone signal y, is given by

Yy = St + ny¢. (21)

As speech is known to be non-stationary, i.e., the speech sounds change considerably over
time, the noisy input signal is split into short overlapping time segments. Each segment of
the input signal is transformed to the frequency domain using the DFT which results in
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St g
! noisy speech y, % enhanced speech §;

time time

speech
enhancement

Fig. 2.1.: Block scheme of a non-MIL-based STFT filter based single-channel based en-
hancement scheme.

the STFT. Mathematically, this procedure is given by

Yio = Wa(t)yzR-Heij%kt/K- (2.2)
t=0

Here, k is the frequency index, ¢ is the segment index and j = /—1. Each segment has
K samples which is equivalent to the number of frequency bins. Zero-padding, where
the number of DFT coefficients is set to a higher value than the segment length, is
not considered in this thesis. Further, R is the segment shift and w,(-) denotes the
spectral analysis window. The multiplication with the window function w,(+) in the time-
domain corresponds to a convolution in the frequency domain, i.e., the frequency-domain
representation of the window is convolved with the spectrum of the noisy input signal. A
rectangular window has often undesirable properties, e.g., low sidelobe attenuation, and
therefore smooth window functions such as the Hann window, the Hamming window or
the square-root Hann window are often used. Due to the linearity of the DFT, the additive
mixing model in the time domain also applies to the STFT, i.e.,

Yie = Ske+ N (2.3)

Here, Si ¢ and Ny, denote the STFT of the clean speech signal s; and the background
noise n;, respectively.

The aim of speech enhancement algorithms is to find an estimate of the clean speech
coefficients Sy, ¢ from the noisy observations Y}, o. Here, = indicates that Sy, , is an estimated
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Fig. 2.2.: Block scheme showing the steps / components of a speech enhancement scheme
operating in the spectral domain. The block scheme shows the blocks of the
enhancement step shown in Fig. 2.1.

quantity. Most spectral clean speech estimators can be written in the form
Sk =GreYio, (2.4)

where G, ¢ is the so-called gain function. Often, the gain function is real-valued as many
statistical models of the clean speech coeflicients do not provide prior knowledge about
the phase. Further, many algorithms estimate only the magnitude Ay, = | Sk | of the
clean speech signal. In these cases, the enhanced speech magnitude AM is combined with
the phase of the noisy observation (I)Zk/:,f as

Sk = Ay exp(jOY ). (25)

Often, the gain function can be expressed in terms of the a priori SNR £, , and the a
posteriori SNR v, 4, e.g., the Wiener filter as in Section 2.1.2 or the gain function used in
Section 5. The quantities have been defined in [12] as

k.0
gk,éz n (2'6)
k0
|Yi el
’Yk,[ = n ’ (27)
ke

respectively. The complex spectral coefficients are assumed to be zero-mean such that

ve = E{|Skel’} and A}, = E{|Ny[*} denote the speech and the noise variance,
respectively. Here, E{-} is the expectation operator. In non-ML-based enhancement schemes,
the speech PSD and the noise PSD are estimated blindly from the noisy observation
Y%.e. The steps taken to enhance the noisy observation Y3 ¢ for a new time segment ¢ are
depicted in Fig. 2.2. They are given by:

1. Estimating the noise PSD A}, from the noisy observation Y ,.

2. Estimating the speech PSD A} , using the estimated noise PSD /A\Zj and the noisy
observation Y ,.
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3. Estimating the clean speech coefficients Sk’g using both PSD estimates, i.e., ]A\Z[

and IAXZJ and the noisy observation Y}, ,.

More details on the estimation of clean speech spectral coefficients and the resulting gain
functions Gy, ¢ is given in Section 2.1.2 and Section 2.1.3. The estimation of the speech
and the noise PSD are dealt with in Section 2.1.4.

After estimating the clean speech spectrum S k¢, the time-domain signal needs to be
resynthesized. For this, the enhanced spectra are transformed back to the time-domain
using the inverse STF'T as

K-1

1 N B
S = E Z Z ws(t - ER)Sk7g€]27r(t7ZR)k/K- (2'8)
£ k=0

Here, ws(+) is the synthesis window which is chosen such that a perfect reconstruction
of the input signal is possible. Block artifacts caused by circular convolution [44] can be
reduced with specific choices for the analysis and synthesis window pair. The circular
convolution of the filter function and the noisy observation in the time domain is caused
by the multiplication of the noisy observation Y}, , with the gain function G} ¢ in the
frequency domain. These artifacts are usually most dominant at the edges of the time-
domain segment and, hence, can be effectively suppressed by applying a tapered synthesis
window. If the segments overlap by 50 %, this reduction can be achieved by using a square-
root Hann window as spectral analysis and synthesis window.

The segment length K is chosen such that it corresponds to a time period between 10 ms
and 40 ms, for which speech is assumed quasi-stationary [44]. This means that the speech
sounds change only slightly in these time periods. The segment shift is chosen such that
the segments overlap by 50 % or 75 %. Using a sufficiently long segment length, the
spectral fine structure of speech, i.e., the speech fundamental frequency and its harmonics,
can be resolved in the STFT domain. As a consequence, it is possible to reduce the noise
between spectral harmonics. If the specific application requires low latency processing,
the segment length may be reduced to lower values, e.g., 8 ms and below. This, however,
comes at the cost of a lower spectral resolution. Another option is to use asymmetric
window functions [222] where spectral windows that are short in time are used for the
synthesis to reduce the algorithmic latency. Temporally long spectral analysis windows
are retained to provide a high-resolution frequency representation.

A potential disadvantage of STFT-based enhancement algorithms is that the enhancement
process may introduce artifacts in the processed signal such as musical tones. To reduce
such artifacts, a lower limit is commonly enforced [223]. The corresponding modified gain
function is given by

ék/ = maX(Gk,g, Gmin)- (2.9)

Here, Gin is the lower limit. Higher values result in less artifacts but reduce the noise
suppression capability. The opposite is true, if G, is reduced.
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2.1.2. Statistical Models for Spectral Speech Enhancement

In this section, we focus on Bayesian approaches for speech enhancement in the spectral
domain. The considered approaches interpret the spectral coefficients of speech Sy ¢
and noise Ny, as random variables. For this, most methods assume that the PDF
of the respective spectral coefficients is known except for the parameters. Further, it is
assumed that the speech and the noise spectral coefficients are zero mean and uncorrelated,
ie., ]E{Sk,gN:,j} = 0, where -* indicates a conjugate complex quantity.

One type of clean speech estimators considered in this thesis minimizes the MSE between

the estimated complex speech coefficients S &,¢ and the true complex speech coefficients Sy, ¢.

The error function is commonly expressed in terms of the expected value as
N ) ~ 2
Sk = argrgnln]E{‘Sk)g — Skt (Vi) } . (2.10)
k.l

The function S k,e(-) of the noisy input Y} o that minimizes the MSE can be any function
and is potentially non-linear. The MSE optimal estimator of the clean speech coefficients
Sk, can also be derived by solving [224, Section 5.2]

Sk = B{Ske|Yie}, (2.11)

i.e., by determining the mean of the posterior PDF f(S) ¢|Ys.¢). As a consequence, the
result of (2.10) and (2.11), respectively, depends on the statistical models f(Sj ) and
f(Nk,e). A generally different type of estimator is obtained if the MSE optimal estimator
for the clean speech amplitude Ay = | S ¢| is derived. In contrast to the estimator of
the complex speech coefficients Si ¢ as in (2.10), often a compression function c¢(-) is
incorporated as

Ay = argminc! (E{‘C(Ak,f) - C(Au(Yk,e))‘Q}) : (2.12)

k.,

The inverse ¢~*(+) is used to undo the compression for the estimate, i.e., to turn the
estimate ¢(Ay ¢) into an estimate of Ay ;. Similarly, the estimator can also be expressed in
terms of the posterior distribution f(Ayg ¢|Yk.¢)

Ao = Y E{c(Ar)|Yii})- (2.13)

In addition to the PDFs used to model the speech and noise coefficients, speech amplitude
estimators also depend on the choice of the compression function ¢(-). Further variations
of clean speech estimators are obtained if the mixing model in (2.3) is changed. This is the
case in Chapter 6 and Chapter 7 where approximations of (2.3) are considered to simplify
the derivation of MSE optimal estimators in the log-spectral domain.

The expected values given above depend on the PDFs of the complex speech and noise
coefficients. Correspondingly, these models play an important role for the clean speech
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estimation in such a statistical framework. For the noise spectral coeflicients Ny ¢, a
common choice is the complex Gaussian distribution, i.e.,

2
F(¥1) = NeNd0, A ) = —oexp (5 ). (2.14)
’ g, k0

In the notation NV'¢(-|-,-) the two latter parameters are the mean and the variance, respec-
tively. Here, only the distribution of a single frequency band is given as it is commonly
assumed that the time-frequency points are independent. Further, it is implicitly assumed
that the complex coefficients are zero-mean and consequently the only parameter of the
distribution is the noise variance A} ,. This quantity A} , is also often referred to as noise
PSD. The Gaussian assumption is often justified by the Fourier sum and the central limit
theorem. In practice, if the time-domain samples are sufficiently uncorrelated, the distri-
bution of the spectral coefficients approximately approaches a Gaussian distribution [47],
[50]. Even though speech is highly correlated in the time-domain, effectively making the
Gaussian assumption inappropriate, the complex Gaussian PDF has also been used to
model speech [12], [28], [49]. Using the Gaussian assumption for both the speech coef-
ficients Sj ¢ and the noise coefficients IVj ¢, the MSE optimal estimator of the complex

speech coefficients Sy, ¢ results in the well-known Wiener filter [44, Section 11.4.3]

. Enye
Sk,é = —— Yk’g. 2.15
Epet1 (2.15)
——
G

Following the definition in (2.4), the gain function Gy ¢ corresponds to the fraction Yy, , is
multiplied with. Similar to the noise PDF, also the Gaussian speech PDF depends only on
the speech variance or PSD A; ¢- Further variants of Gaussian clean speech estimators have
been derived by considering the speech amplitude Ay, ; instead of the complex coefficients
Sk,e. With the Gaussian assumption for speech S}, and noise Ny ¢, the MSE optimal
estimator of the speech amplitude Ay ¢ is the short-term spectral amplitude estimator
(STSA) [12]. Further, using the compression ¢(Ay ¢) = log(Ay ¢) results in the log-spectral
amplitude estimator (LSA) [28].

As stated above, the Gaussian PDF is not an appropriate model to describe the speech
spectral coefficients due to the strong correlations in the time domain. Studies on the dis-
tribution of spectral speech coefficients conclude that the distribution is better represented
by super-Gaussian models, e.g., [30], [46], [50]. Such distributions can be formulated using
representations in polar coordinates, i.e., in terms of the speech magnitude A, ; and the
speech phase @} ,. In [9], [30]-[32] the speech amplitude A, and the speech phase ®j ,
are assumed to be independent, i.e., f(Age, @} ) = f(Ar,e) f(P} ). Further, a uniform
distribution between —m and 7 is employed for @, ,. A super-Gaussian PDF is obtained if
the speech magnitude Ay, ; is model by a x-distribution, as [9], [30]-[32]

v 2
F(Ape) = % <”) A2 exp (- ”A’“f) : (2.16)

S S
ke k.t
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where T'(+) denotes the gamma function and v is the shape parameter. The case v =1 for
f(Ag,¢) combined with the uniformly distributed phase is equivalent to the assumption
that the complex speech coefficients S}, ; follow a circular-symmetric Gaussian distribu-
tion with variance Ay ,. If 0 < v < 1, (2.16) represents the distribution of the speech
amplitudes Ay ¢ under the assumption that the complex speech coefficients S}, , are super-
Gaussian distributed. Using a change of variables, f(Ay ¢, @} ,) can be converted to a
distribution f(Sk¢) depending only on the complex value Sy . The amplitude estimator
derived in [31] is based on the speech model in (2.16), the noise model in (2.14) and the
compression function c¢(Ay¢) = |Ax|?, where 0 < 8 < 1. Depending on the parame-
ters chosen for v and 3, this estimator generalizes various other clean speech estimators,
e.g., [12], [28], [30], [32], [49], [53].

In [30], [46], [55], other PDFs have been considered to model speech as a super-Gaussian
distributed random variable. In [30], the more flexible generalized gamma distribution is
used which generalizes the x-distribution above. In [46], [55], it is assumed that the real
and imaginary part are independent instead of assuming independence between magnitude
and phase. The real and imaginary parts are modeled by a Laplace or gamma distributions.
Those models lead to different estimators which have been analytically derived in the
respective papers.

2.1.3. Log-Spectral Models and Their Relation to Spectral Models

Log-spectral models and their relation to the spectral domain are the fundamental theo-
retical concept of the algorithms presented in Chapter 6 and Chapter 7. Both topics are
covered in this section.

In this thesis, the log-spectral coefficients are defined as the logarithm of the periodogram.
For the noisy speech spectral coefficients Y}, ¢, the corresponding log-spectrum yg(zg) is
given by
1

Yo = log(|Yel?). (2.17)
In a similar way, also the clean speech log-spectrum s,(chzg) and the noise log-spectrum n,(clczg)
are defined. Assuming a super-Gaussian distribution in the spectral domain as in Sec-
tion 2.1.2; the respective log-spectral coeflicients follow an exp-gamma distribution [225].
However, many contributions where speech is processed in the log-spectral domain, e.g., [26],
[100], [101], model the log-spectral coefficients by Gaussian distributions, i.e.,

1 S
(log) =N (log) |, s s _ 1 (Sl(f,(zg)inuk,l)2
f(sk,e ) = (k,e |Mk,€’/\k,£)—7eXp I I (2.18)
2mAL 2.0
(log) n \2
lo og)| n \n 1 (”k,z — Hig)
FOLE) = NP i M) = ——exp | -2 ) (2.19)
\/2mAL, 2Mk 0
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Here, pf , = ]E{s,g;g)} and A} , = E{(sgf) — 11.0)?} are the mean and the variance of the
speech log-spectral coefficients, respectively. Similarly, the parameters of the noise, which
are denoted by py; , and Ak.¢» are defined.

Given the super-Gaussian model for the spectral speech coefficients S, ¢ based on (2.16)
and the uniformly distributed phase, the following relations between the spectral PSDs
and the statistical parameters of the log-spectral coefficients have been established [83],
[226]. As shown in [83], the mean of the log-spectral speech coefficients pj , is related to
the spectral quantities via

pi, e = log(Ag o) + 1 (v) — log(v). (2.20)

Here, 9(-) denotes the digamma function [227, (8.360.1)]. Following [83], the relation
of super-Gaussian distributed spectral coefficients to the variance of the log-spectral
coefficients A}, , is given by

/\Z,e =1 (v). (2.21)

Here, 11 (-) is the trigamma function [228, Chapter 6.4]. As the super-Gaussian distribution
generalizes the complex Gaussian distribution, the equations (2.20) and (2.21) can also be
applied for computing the parameters of the noise coefficients, for which often a Gaussian
assumption is made in the spectral domain. For this, the spectral noise PSD AZ’( needs
to be employed in (2.20) and the shape parameter has to be set to v = 1 in (2.20)
and (2.21). This relationship gives an interpretation of the means and variances of speech
and noise models that are directly trained in the log-spectral domain, e.g., [100]-[102].
Considering (2.21), the log-spectral variance depends only the shape v. Hence, if the log-
spectral variance, e.g., )\Z,(, has been trained as a parameter of an ML-based model, it
can be associated with a specific shape of the spectral coefficients. Correspondingly, the
log-spectral mean in (2.20) is mainly related to the spectral PSD.

2.1.4. Non-ML Estimation of the Spectral Speech and Noise PSD

To use the estimators presented in Section 2.1.2 and Section 2.1.3, the speech PSD A} ,
and the noise PSD A}, need to be estimated from the noisy observation. An overview
over noise and speech PSD estimators has been given in Section 1.2. In the following
paragraphs, the non-ML-based estimation methods that are commonly used in this thesis
are described.

First, the noise PSD estimator proposed in [70], [71] is considered. This algorithm exploits
the uncertainty of speech presence. Given the hypothesis H, i.e., speech is present, the
observed signal is modeled as Y3, ¢ = S ¢ + Nie. Under Hy, i.e., speech is absent, the
observed signal comprises only noise as Yj ¢ = Ny ¢. As for the Wiener filter, the speech
coefficients S, » and the noise coefficients Ny, , are assumed to follow a complex circular-
symmetric Gaussian distribution. Accordingly, the likelihoods under the hypotheses H,
and Hi, i.e., f(Yye|Ho) and f(Yi¢|H1), are also modeled using Gaussian distributions.



2.1. STATISTICAL MODELS FOR SPECTRAL ENHANCEMENT

The posterior probability, i.e., the SPP P(H1|Y ¢), can be derived using Bayes’ theorem
as [70], [71]

~1
P(H1|Yie) = | 14 (14 &5, ) exp _Yeal? S : (2.22)
Ak PR

Here, it is assumed that the prior probability is P(#,) = 0.5, i.e., P(H1) =1 — P(H;) =
P(Ho). A fixed SNR &4, is used which is interpreted as the local SNR that is expected if
the hypothesis #; holds [70], [71]. The likelihood models f(Y ¢|Ho) and f( ) have
been used to formulate a speech detection problem in [71]. By minimizing the total risk of
error, the optimal value £;,, = —15 dB has been found [71].

In [70], [71], the posterior probability P(H1|Y%.¢) is used to estimate the noise periodogram
as
(N> = P(Ho|Yi,o) Ve el* + P(Ha|Yi,0) Ay gy (2.23)

Here, P(Ho|Yk,e) =1 — P(H1|Ys ¢) is the speech absence probability. The estimated noise
periodogram is smoothed over time to obtain the noise PSD estimate N ke as

An (

Ao = (1= ol YViel* + alpR AL oy (2.24)
Here, a(sfé,xg is a fixed smoothing constant. This estimator can be implemented in speech
enhancement framework by evaluating (2.22), (2.23) and (2.24) for each new observa-
tion Y} ¢. If the noise PSD is strongly underestimated, the SPP in (2.22) is overestimated,
i.e., it is close to 1. As a result, the noise periodogram in (2.23) may no longer be updated.
To avoid such stagnations, the SPP is set to a lower value if it has been stuck at 1 for a
longer period of time [70], [71].

As shown in Fig. 2.2, the speech PSD is estimated based on the noise PSD and the noisy
observation Y} . Assuming a Gaussian prior for the speech and the noise coefficients
allows the derivation of a maximum-likelihood estimator of the speech PSD A} ,. Under a
Gaussian model, the PDF of the noisy coefficients Y} ;, can be written as

s n 1 |Yvkrf|2 )
Y A. ) . :ﬁe _37"”/ . 2.25
POl ML) = s xp( S (2.25)

Calculating the derivative of (2.25) with respect to A} ,, setting the result to zero and
solving for Aj , results in the maximum-likelihood estimator. Dividing the result by Ay,
allows the maximum-likelihood estimator to be expressed in terms of the a priori SNR as

2
e (2 1, ). 220

kl

The noise PSD estimate /A\ZJ is used to compute the maximum-likelihood estimator in
practical applications. Further, to avoid numerical issues in the enhancement and a negative
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speech PSD, the maximum of |V} 4|2/ A:a — 1 and &7 is used. The maximum-likelihood
estimator itself is rarely used in practical applications due to the many artifacts which are
induced in the enhanced signal. The artifacts are caused by local overestimations of the
speech PSD such that single time-frequency points are less suppressed which generates
tone like noises. As the estimates of the maximume-likelihood approach are highly variant,

such overestimations occur frequently.

An alternative is the decision-directed approach which has been proposed in [12]. Here, the
maximum-likelihood estimate and the last segment’s estimated clean speech coefficients
are combined as

r ke |Yi,e? ml
é.k:,f =app—qm—— T (1 - aDD) max ~n -1 Emin : (227)
ke —1 Ay o

The rationale behind this combination is that the expected value of both components, i.e.,
E{|Sk73_1|2/AZ75_1} and E{|Yy ¢|?/Aj , — 1}, respectively, yields the a priori SNR & ,.
Here, 0 < app < 1 is a smoothing constant. For high values of app, the estimator
generally generates less artifacts compared to the maximum-likelihood estimator in (2.26).
However, the estimate % k¢ becomes delayed and, as a result, speech onsets may be
suppressed and distorted. For low values, the weight on the maximume-likelihood estimator
part is increased, which, again, results in stronger musical tone artifacts, but reduces
the estimation delay. Hence, the choice of app is a compromise of speech quality and
background noise quality.

An algorithm which allows the estimation of the speech PSD Aj, , without musical tone
artifacts and high tracking speed has been proposed in [82], [83] and is referred to
as temporal cepstrum smoothing (TCS). Here, the maximum-likelihood estimate as
in (2.26) is transformed to the cepstral domain by taking the logarithm and applying the

inverse discrete Fourier transform (IDFT) as

K-1

~s,ml 1 ~s,ml - 2rok

Ao,f = ? Z 1Og(Ak,l )6‘7 K (228)
k=0

The index o denotes the quefrency. In the cepstral domain, speech can be represented
by using only a few coefficients: The speech spectral envelope, which reflects the impact
of the vocal tract filter, is represented by the lower coefficients with o < 2.5 ms whereas
the speech spectral fine structure, i.e., the fundamental frequency and its harmonics, is
approximated by a single peak among the high cepstral coefficients. This peak is also
referred to as pitch peak. The compact representation of speech is exploited by the TCS
approach by using a quefrency and time dependent smoothing constant o, to smooth

~ s,ml
A, as
~S ~ s,ml

App=(1—aon)A)y +asih,, ;. (2.29)

For the cepstral coefficients that are associated with speech only little smoothing is applied
while the remaining cepstral coefficients are strongly smoothed. Accordingly, a, ¢ is set
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close to 0 for the lower cepstral coefficients and close to 1 for the high coefficients. In
voiced segments, the o, ¢ in close vicinity to the cepstral pitch peak are changed to values
close to 0.

The cepstrally smoothed speech PSD IA\ZZ is transformed back to the spectral domain as

Ay = exp(DFT{A, ,} + »). (2.30)

As the smoothing in the cepstral domain results in a biased estimate [83], the correction
term s is added. In [82], it has been argued that the bias of computing the expected
value of a spectral quantity following a Gaussian distribution in the logarithmic domain
amounts to the Euler constant. Due to the smoothing, the estimate in the cepstral domain
is between an instantaneous value and the expected value. Hence, s is set 1/2 of the Euler
constant, i.e., > ~ 0.5-0.5772... is used. A more rigorous analysis of the bias is given
in [83].

2.2. INSTRUMENTAL MEASURES

In this section, instrumental measures are presented that are used to assess the accuracy
of noise PSD estimation algorithms, estimate the quality of the enhanced signal as well as
the speech distortion and noise reduction induced by the enhancement algorithm.

2.2.1. Estimation Accuracy of Noise PSD Estimators

The task of noise PSD estimation algorithms is to determine the variance A} , of the spectral

noise coefficients Ny ,. To assess the accuracy of such estimation algorithms, various

measures have been utilized. In [29], [75], [78], averages of the relative error between the
n

~

true noise PSD A , and the estimate A , have been considered. In [78], it has been found
that the relative error is more sensitive to overestimations than to underestimations and,
therefore, a more symmetric error measure has been proposed. This measure is referred to
as log-error distortion and has been employed in many studies, e.g., [70], [71], [73], [78],
[80], [229]. Accordingly, the log-error distortion is used also here to assess the accuracy of
noise PSD estimation algorithms, e.g., in Chapter 3 and Chapter 4.

As in [70], [71], the log-error distortion is split into an overestimation and an underestima-
tion error
LogErr = LogErr; + LogErr, . (2.31)

Here, LogErr, denotes the contributions of the overestimation while LogErr| are the con-
tributions of the underestimation. These two quantities are computed using the estimated

37



38

2. STATISTICAL FRAMEWORK FOR SPEECH ENHANCEMENT AND INSTRUMENTAL MEASURES

noise PSD AZ’Z and a reference PSD A} , as

| L1l A:¢
LogErr| = “IK min (07 101logy, (;)) , (2.32)
(=0 k=0 kit
| LolE-l AZ[
LogErr; = K max (O, 101log;, <n>> . (2.33)
=0 k=0 k.t

Overestimation errors, as indicated by LogErr,, result in stronger attenuations of the
respective time-frequency points. As a consequence, the clean speech signal may potentially
be suppressed which results in distortions and a reduced perceived quality. Contrarily,
underestimation errors, which is indicated by LogErr |, result in less attenuation of the
background noise. Accordingly, more potentially disturbing residual noise components
remain after the enhancement. Especially if strong underestimations occur locally, i.e.,
the period were the underestimation occurs is short in time, annoying artifacts such as
musical tones may degrade the enhanced signal.

For evaluating (2.32) and (2.33) in practical applications, the reference noise PSD Ay,
needs to be known. For stationary noise types, e.g., white Gaussian noise or pink noise,
the reference noise PSD AZ’ ¢, can be easily determined by averaging the noise periodogram
|Nk.¢|* over several minutes of audio. However, most real-world background noise types are
non-stationary, i.e., the underlying statistical moments change over time. As a consequence,
a temporal average over a long time interval cannot represent the time-varying noise PSD
adequately. In [70], [71], [80], it is proposed to use the noise periodogram | N, ¢|? as reference
noise PSD. However, as the periodogram is a highly variant estimator, other studies,
e.g., [78], [229], smooth the periodograms | Ny ¢|* temporarily using a short smoothing
filter to reduce the variations. If smoothing is applied, exponential smoothing filters such
as

n fix fix 7
k{,f = (1 - a£og)Err)‘Nk1Z|2 + CV§_40g>Err kL,Z—l (234)

are commonly employed. Here, 0 < ag;’;)Err < 1 is the smoothing constant, which controls

the amount of smoothing. On the one hand, using values close to 0, only a slight reduction
of the estimation variance can be achieved but changes in the noise PSD can be tracked
quickly. On the other hand, values close to 1 strongly reduce the variance but the tracking
is considerably slower. For the evaluations, in this thesis, the exponential smoothing
approach given in (2.34) is used to determine the reference PSD. Here, agl)gErr is chosen
such that the exponential smoothing window, which results from applying (2.34), achieves
the same variance reduction as an equivalent rectangular window of 50 ms. This value is

chosen as a compromise between variance reduction and tracking speed.

2.2.2. Instrumental Measures of the Perceived Signal Quality

In this section, instrumental measures are presented that are used to assess the per-
ceived quality of the enhanced signal, distortions of the speech signal and the noise
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reduction.

The overall perceived quality is reflected by improvements of the segmental SNR, (SegSNR)

which is an intrusive measure, i.e., a reference of an optimally enhanced signal is required.

For this, the clean speech signal s; is used. The SegSNR of the noisy signal y, is defined
as

M=1 o
SegSNR(y:) = 53 > 1010g10< =0 2). (2.35)
L] 2eL(®) t=0 (Yenrot — Senr+t)

Here, L®) denotes the set of segments, in which speech is active. The speech active
segments are determined on the clean speech input signal and segments that are at
most 45 dB lower in power compared to the segment with the highest power are marked
as speech active. Note that the segment length and segment shift used to compute the
SegSNR are generally different to the segment length and segment shift used for the speech
enhancement. As in [71], a segment length of 10 ms is used and the segments do not
overlap. Similar to (2.35), the SegSNR of the enhanced speech signal SegSNR(3;) can be
computed. From this, the segmental SNR improvement ASegSNR is obtained as

ASegSNR = SegSNR(5;) — SegSNR(y,). (2.36)

Higher values of the segmental SNR improvements ASegSNR generally indicate a better
performance of the enhancement algorithm.

Further, Perceptual Evaluation of Speech Quality (PESQ) [230] scores are used as an
instrumental measure of the perceived signal quality. Similar to the SegSNR, also PESQ
is an intrusive measure and requires a reference signal, i.e., the clean speech signal. This
measures gives values in the range of —0.5 and 4.5, where —0.5 is the lowest quality score
and 4.5 indicates a very high quality. Again, the improvements in PESQ, denoted by
APESQ), are considered. Similar to the SegSNR improvements, these are obtained by
subtracting the raw PESQ score of the noisy speech signal y, from the raw PESQ score of
the enhanced signal §;.

The speech quality of the enhanced signal and the amount of noise reduction are evaluated
using the segmental speech SNR (SegSSNR) and the segmental noise reduction (SegNR),
respectively. For computing the SegSSNR and the SegNR, a master-slave filtering approach
is employed. This approach is depicted in Fig. 2.3. Here, the speech signal s; and the
noise signal n; are mixed at a given SNR and the noisy signal y, is enhanced using
the enhancement scheme under test. In parallel streams, the filter coefficients of the
enhancement filter, i.e., the coefficients of the gain function Gy, ¢, are also applied to the
clean speech signal and the background noise. For this, the same STFT framework is
used as for the enhancement algorithm. This yields the processed clean speech signal 3,
and the processed noise signal 7; which allow the effects of the enhancement scheme in
terms of speech distortion and noise reduction to be measured separately. In [52], [71], the

39



40

2. STATISTICAL FRAMEWORK FOR SPEECH ENHANCEMENT AND INSTRUMENTAL MEASURES
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Fig. 2.3.: Block scheme of the master-slave filtering approach used to compute the SegSSNR,
and SegNR.

SegSSNR and the SegNR are defined as

M—-1 29
o ST,
SegSSNR, = |]L( ] Z 101logy, < T t=0 szrt 2>’ (2.37)
2eL(®) t=0 (Snmeve — 3nrert)
n
SegNR = Z 101log,, (W) (2.38)
| 26]L<> D=0 Mhrese

High values of the measures indicate low speech distortion and high noise reduction which
are both desirable properties of speech enhancement algorithms.
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CHAPTER 3

ON THE BIAS OF ADAPTIVE SMOOTHING BASED NOISE PSD
ESTIMATION

The topic of Part II of this thesis is the estimation accuracy of single-channel noise PSD
estimators. The task of such algorithms is equivalent to finding the mean of the noise
periodogram, i.e., E{| N} ¢|*}, given a noisy observation. In this part, noise PSD estimators
are considered whose structure is similar to first-order recursive smoothing filters. Because
of the low computational complexity and the low memory demand, first-order recursive
smoothing is a commonly applied technique to track the mean of non-stationary random
variables. It is equivalent to a moving average where an exponentially decaying smoothing
window is employed. A stronger weight is put on the more recent samples allowing these
filters to track changes of the mean value over time.

In [215], it has been shown that the noise PSD estimators presented in [81, Section 14.1.3]
and [70] are implicitly or explicitly based on a first-order recursive structure as shown in
Fig. 3.1. However, in many applications, such as the noise PSD estimators in [70], [81], an
adaptive smoothing factor a(y,,7,_,) is employed as

o= = (e Je—)Ye + (Yr, Yo—1)To—15 (3.1)

where a(y,,7,_;) is a function of both y, and y,_;. The quantity y, is the observation
of the random process describing the periodogram of the input signal at time ¢ while
Yy, denotes the estimated mean, i.e., the estimated noise PSD. Similar to nonadaptive
first-order smoothing, the smoothing factor 0 < a(y,,7,_;) < 1 controls the tracking speed
and the variance of the estimate. The noise PSD estimators in [81, Section 14.1.3] and [70]
employ adaptive smoothing factors to avoid speech leakage. The algorithm described
in [81, Section 14.1.3] switches between two fixed smoothing constants where a larger
one is used if the energy of the noisy periodogram is higher than the background noise
PSD, i.e., for large a posteriori SNRs v, ,. In [70], the value of the adaptive smoothing
factor is implicitly adapted using the SPP and also grows with an increasing a posteriori
SNR 7 ;- In contrast to the noise PSD estimator in [81, Section 14.1.3], this results in a
soft transition.

This chapter is partly based on:

[215] R. Rehr and T. Gerkmann, “On the bias of adaptive first-order recursive smoothing,” in IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New
Paltz, NY, USA, Oct. 2015, © 2015 IEEE.

[216] R. Rehr and T. Gerkmann, “An analysis of adaptive recursive smoothing with applications to
noise PSD estimation,” IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 25, no. 2, pp. 397408, Feb. 2017, © 2017 IEEE.
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Fig. 3.1.: Block diagram of a first-order recursive filter structure.

A disadvantage of the application of adaptive smoothing is that the estimate of the mean
is in general biased as shown in [215]. In this chapter, we analyze this bias and derive
an algorithm to compensate for it. The proposed algorithm adds only a low amount of
computational complexity to the existing noise PSD estimators as only a computation of
a term similar to the Wiener filter and a multiplication with this factor is required. In
this chapter, the approach introduced in [215] is summarized and its extension in [216] is
presented. In [215], the case of speech presence for the correction has not been explicitly
considered which is included in [216]. This helps to prevent overestimations in high SNR
regions. Further, a novel method based on the transition density f(7,|7,_,) between two
successive smoothed filter outputs is presented. Experiments are conducted on real world
signals showing that the reduction of the bias leads to a reduced log-error distortion [231]
and increases the quality in terms of PESQ scores [230]. Additional experiments are
conducted where the influence of signal correlations on the bias is explicitly considered.
Throughout the evaluation, we use the noise PSD estimators [70], [81] as examples
taken from single-channel noise PSD estimation. The methods presented in this chapter
are generally iterative and require multiple steps to determine the correction factor. In
Chapter 4, [217], another method for correcting the bias is presented where the correction
factor can be computed in a single step.

This chapter is organized as follows: First, we introduce basic properties of adaptive
smoothing in Section 3.1. These are used to derive a fixed correction factor to compensate
for the bias caused by adaptive smoothing. In Section 3.2 and Section 3.3 two different
methods are proposed to estimate the fixed correction factor. After that, we apply the bias
compensation methods to speech enhancement frameworks. For this, we describe the signal
model and explain the relationship between components of the model and the quantities
of adaptive smoothing in Section 3.4. In the same section, we also introduce the noise PSD
estimators given in [81, Section 14.1.3] and [70] in the context of adaptive smoothing. For
the application of noise PSD estimation, we extend the correction method to account for
the additional energy of the speech signal in Section 3.5. The evaluation of the proposed
methods follows in Section 3.6 while Section 3.7 concludes this chapter.
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3.1. BASIC PROPERTIES AND BIAS COMPENSATION

In this section, we present basic properties of adaptive first-order recursive smoothing: first,
adaptive smoothing as defined in (3.1) does not alter the properties of the input signal
Y, in terms of stationarity and ergodicity. Second, the adaptive smoothing functions are
scale-invariant if «(y,,7,_,) depends only on the ratio y,/7,_;. Scale-invariance describes
the property that if the input y, is scaled by a factor r > 0, the resulting output 7, is
scaled by the same factor r. These two properties allow the bias to be simply compensated
by a multiplicative factor.

3.1.1. Stationarity and Ergodicity
The propositions 6.6 and 6.31 in [232] state that a process defined by

g@ = (b(ybyé—lr") (32)

is stationary and ergodic, if the process given by y,,y,_;,... is stationary and ergodic.
Here, ¢(+) is a function of the current and the past elements of the random process, e.g.,
the adaptive first-order smoothing as in (3.1). The propositions, however, implicitly assume
that the output process g, exists meaning that the process g, does not diverge. As the
adaptive smoothing factors a(y,,y,_;) are limited to values between zero and one, the
filter function in (3.1) is stable in the sense that a bounded input results in a bounded
output. Thus, considering a finite stationary and ergodic input y,, it follows that also the
filter output 7, is ergodic and stationary.

3.1.2. Scale-Invariance

The process of adaptive recursive smoothing (3.1) is scale-invariant if the adaptive smooth-
ing function depends only on the ratio y,/7,_;. In particular, if the input y, is scaled by
a factor r, the output 7, is scaled by the same factor r. This property is of particular rele-
vance for the noise PSD estimators considered in Section 3.4 as their respective adaptive
smoothing function depends only on the ratio y,/7,_;.

The statement can be proven using the method of induction. For linear first-order recursive
smoothing filters, it is often assumed that the system is initially at rest, i.e., 7, = 0 for
£ < 0. As all of the considered adaptive smoothing functions depend on the ratio y,/7,_1,
this assumption is not applicable because of the division by zero. Thus, we assume that
the first filter output 7, is equal to the first filter input y,. From the assumption that
Yo = Yo it follows that a scaling of y, by r leads to ry, = ry,. Hence, it can be shown for

45



46

3. ON THE BIAS OF ADAPTIVE SMOOTHING BASED NOISE PSD ESTIMATION

the following samples of (3.1) that

o ()] e () e 59
(e G ()7 o

=1y, (3.5)

This shows that the adaptive smoothing procedure is scale-invariant if the smoothing
function depends only on the ratio y,/7,_;.

3.1.3. Bias Compensation

In this part, we describe how the bias caused by adaptive smoothing can be compensated.
For the derivation, we assume that the filter input y, can be described by a stationary and
ergodic random process. Note that the presence of a speech signal in a speech enhancement
context will explicitly be taken into account in Section 3.5. With the stationarity, the
ergodicity, and the scale invariance described in the sections 3.1.1 and 3.1.2, the bias can
be corrected by multiplying the filter output 7, by a fixed correction factor C as

7, = Cyy. (3.6)

Here, 7, denotes the corrected filter output. For obtaining an unbiased estimate E{yj,} =
E{y,}, the factor has to be set to

C =E{y }/E{y,}- (3.7)

As this factor does not depend on the scaling of y, or ¥, it is sufficient to determine
this quantity for a given mean of the input signal, e.g., E{y,} = 1. With the assumption
of stationarity, the fixed factor C does also not depend on time. Consequently, C can be
determined before any processing takes place. The factor C can be considered the bias
between filter input and output after convergence. Despite the assumption of stationarity,
we show that the bias reflected by C is also applicable to nonstationary signals in the
evaluation, i.e., Section 3.6. Methods that can be employed to determine the fixed correction
factor C are presented in Section 3.2 and Section 3.3.

3.2. ITERATIVE BIAS COMPENSATION

In this section, we revise the method for determining the fixed correction factor C that
we propose in [215]. If the adaptive smoothing function depends only on the unsmoothed
input y, but not on the smoothed output y,_,, the bias caused by adaptive smoothing
can be determined by analytically deriving the expected value of 7,. Based on the solution
obtained for the analytically solvable case, an iterative method has been presented in [215]
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that can be used to approximately determine the bias for the more complicated case where
the adaptive smoothing function also depends on the estimated mean %,_;. The method
estimates the fixed correction factor C quite accurately as shown in our evaluations.

First, we consider adaptive smoothing factors a(y,,y,_,) that are independent of the
previous filter output 7,_;. With this assumption, (3.1) simplifies to

Yo = [1—a(ye)ly, + (ye)Tp_1- (3.8)

For the derivations, we assume that all y, are identically distributed and uncorrelated.

Further, using the stationarity property described in Section 3.1.1, we can assume that a
stationary input y, results in a stationary output 7,. From this, it follows that E{y,} =
E{7y,} where i # j are two different time instances. With the first assumption, the expected
value E{y,y,_,} can be written as E{y,}E{7,_,}. Consequently, applying E{-} to (3.8)
and rearranging the terms, results in [215]

Efyey —E{ypaly)}
1 —E{a(y,)}
The obtained expression depends only on the adaptive function a(y,) and the PDF of

Ye-

In the remainder, we consider the case where a(y,,7,_;) depends also on the recursively
estimated mean y,_;. This case is more challenging because the quantity y,_; influences
the behavior of the adaptive smoothing factor which, in turn, influences the estimation of
y,. This type of adaptation is, however, the most relevant for noise PSD estimators, e.g.,
for the approaches [70], [81] considered in Section 3.4.

E{7} = (3.9)

Deriving E{7y,} while taking into account the dependence on g,_; is difficult because 7,_;
appears in a generally non-linear function a(y,,7,_;) and is a random variable itself as it
emerges from the combination of all past y,. Consequently, 7,_; is also correlated with the
previous estimates 7,_,,7,_s, - -. Hence, the problem is simplified in [215] by replacing
Y,_; in the adaptive function by a fixed value 7). With that, the bias can be determined
iteratively based on the result given in (3.9) as

_(fix
S0 _ Blvd —Eluaye 7.5}
' 1 - E{a(y, 3"}

is the estimate of E{y,} obtained for the ith iteration step where the initial
condition is denoted by @éﬁx). This approach is motivated by the recursive update of ¥,
n (3.1), which is performed sample by sample. In each step of (3.10), however, all samples

over an infinite time period are considered. To determine the final estimate of E{7,}, the
(

i

(3.10)

(fix)

%

Here, y

iteration is continued until it converges. With the converged 7 ﬁx), the estimated correction
factor can be determined as C = E{y,} /ggﬁ"). For the adaptive smoothing factors used

in [70], [81], we will show that the parameter ﬂéﬁx) does not influence the convergence of
the iterative approach. This procedure is summarized in Algorithm 1.
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Algorithm 1 Tterative estimation of the fixed correction factor C for adaptive functions
depending on 7,_; proposed in Section 3.2. Here, we refer to the solutions for the specific
noise PSD estimators [70], [81] where appropriate.

i 0,70 1, AV, ¢ 1.

(fix)

2: while convergence criterion for i, ~’ is not met do

3:  Obtain yl(ixl) using (3.10). The solutions for the adaptive functions in [70], [81] are
given in (A.1) and (A.2) of Appendix A.1 if y, is exponentially distributed.

4: 11+ 1

5: end while

6: Compute compensation factor: C = AZZ/yZ(-ﬁX).

3.3. ESTIMATING THE BIAS USING TRANSITION DENSITIES

In this section, we propose a novel method for determining the fixed correction factor C.
For this, we use the transition density f(7,|7,_;) which can be considered a description
that explains how the smoothing factor a(y,,7,_;) influences the filter output 7, and vice
versa.

If the input samples y, are assumed to be independent and identically distributed, i.e.,
stationary and ergodic, the random process of the filter output can be described by the
transition density f(%,|7,_;1)- The conditional density f(7,|7,_;) is a function that depends
on the smoothing function «(y,,7,_;) and the distribution of the input variable y, as
we will show later in this section. It can be considered the link that describes how the
previous filter output 7,_; affects the behavior of the smoothing function, a(y,, 7,_1),
and vice versa. In other words, the interaction between 7,_; and «a(y,,J,_;) is included
in the PDF f(7,|y,_,). We use this conditional PDF to optimize the parameters @ of a
known model PDF f(7,|0) such that it matches the PDF of the filter output samples, i.e.,
f(@,), as close as possible. To determine the parameters 6, we exploit the stationarity
from which it follows that f(y,) = f(7,_1) = ---. According to that, there is a PDF such
that marginalizing f(7,[7,_1)f(¥s_1) over g,_, results in the same PDF for 7,_; as for
U, 1€,y f(To_1) = f(T,). Therefore, we propose to optimize the parameters 6 of a model
PDF f(7,]0) such that the PDF §(7,|@) obtained by the marginalization

awle) = [ @7 ) F T 10)dT (3.11)

resembles the originally used model }’@Ae) as closely as possible. The similarity between
3(5,10) and f(7y,|0) is quantified by the Bhattacharyya distance [233]

B(f.3)=~n[n(f,9)] (3.12)
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Algorithm 2 Estimation of the fixed correction factor C by maximizing the self-similarity
with respect to the transition density f(7,|7,_;) as proposed in Section 3.3. Here, we refer
to the solutions of the specific noise PSD estimators [70], [81] where appropriate.

1: Choose a PDF f(y,) that describes the filter input, e.g., (3.16).

2: Determine f(7,|y,_;) using (3.15).
For the adaptive functions in [70], [81], the analytical solutions for F~'(-) and F'(-)
are given in Appendix A.2 .

3: Select a model PDF f(7,]0), e.g, (3.22).

4: Minimize (3.14) to obtain 8, e.g., using [236].

5: Compute the correction factor: C = E{y,}/m(8).

Here, 7(-) is the Bhattacharyya coefficient which is given by

0(19) = [ "~ ST @10)(x10)da (3.13)

for continuous PDFs [234]. The Bhattacharyya coefficient takes values between zero and
one where a result of one means that both PDFs are identical. Consequently, the optimal
parameters 0 are defined as those that minimize the Bhattacharyya distance as

0= argn%inB (},g) . (3.14)

As the analytic solution for the integrals in (3.11) and (3.13) are unknown, we solve these
expressions using numerical integration methods. This also motivates the usage of the
Bhattacharyya distance which is numerically easier to handle than other distance measures,
e.g., the Kullback-Leibler divergence [235]. After the optimization, the optimal parameters
6 are used to determine the expected value E{7,}. For this, we assume that m(8) is a
function that returns the mean of the model distribution f(%,|@) for the parameters 6.
With that, the fixed correction factor is determined as C = E{y,}/m(8). This procedure
can be described as self-similarity maximization with respect to the transition density

f@elUo—1)-

The transition density function f(7,|7,_,) can be derived given a model for the PDF of
the input f(y,) and (3.1). As §,_; is the given variable in the conditional PDF, 5, _; can
be thought of as a fixed quantity and (3.1) can be treated as a function 7, = F(y,) of
the random variable y,. Then, for a piecewise monotonic function F(-), the conditional
density function f(7,|7,_,) can be determined using a change of variables as described
in [237, Chapter 5]. The solution is given by

&R F@)
f@elUo—1) = ; m

where F j_l() denotes the inverse of the jth monotonic segment of the function F(-) while
L denotes the number of monotonic segments of the considered function. Furthermore, F'(-)

(3.15)
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is the first derivative of the function F(-). In contrast to the iterative method in Section 3.2,
the conditional PDF f(7,[7,_;) is easily derived for any PDF of the input signal y, as
it is only required to exchange f, (-) in (3.15). The whole process of determining the
correction factor C is summarized in Algorithm 2.

3.4. NOISE PSD ESTIMATORS IN THE CONTEXT OF ADAPTIVE SMOOTHING

In this section, we consider the noise PSD estimators [70], [81] in the context of adaptive
smoothing. For this, we introduce the employed signal model in a speech enhancement
context and illustrate the relationship between the model components and the quantities
of adaptive smoothing in (3.1). After that, a brief overview over the considered noise PSD
estimators is given.

3.4.1. Signal Model

The considered smoothing functions are employed in noise PSD estimators that operate in
the STFT domain as detailed in Section 2.1.1. We follow the common assumption that the
periodogram of the noisy input |Yj ¢|? follows an exponential distribution which is given
by

(/AL exp (= IVie2/AL, ) [Yiel? 2 0,

(3.16)
, otherwise,

F(Yiel?) = {

where A} , = E{|Ys|?}. This model strictly holds if the speech coefficients S, and
the noise coefficients N k,¢ follow circular-complex Gaussian distributions as given in
Section 2.1.2. The considered noise PSD estimators [70], [81] are based on an adaptive
recursive smoothing of the noisy periodogram such that the input to the recursive smoother
y, in Fig. 3.1 is given by |V} ¢|* while the output 7, resembles an estimate of the noise

PSD Ay,

3.4.2. Two Different Smoothing Factors Based on Thresholding

In [81, Section 14.1.3], a simple approach for estimating the background noise PSD from
a noisy periodogram has been proposed. Based on a threshold value, one out of two
fixed smoothing constants is selected. A larger smoothing constant is used if the input
periodogram is larger than the noise PSD which has been estimated for the previous
segment. For the other case, a smaller smoothing constant is used. In other words, the
tracking speed is reduced if the a posteriori SNR v, , is larger than one. The goal is
to reduce the speech leakage if the speech signal is likely to be present. The adaptive
smoothing function is given by

of, iy /7, >1

3.17
at, otherwise. ( )

aThe (Vg Yp—1) = {
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Fig. 3.2.: Value of the adaptive smoothing factors arn:(y,, %, 1), [81, Section 14.1.3]
and aspp(Y;,Yp_1), [70] as functions of the a posteriori SNR y,/¥,_, =

AN
|Yk,f|2/Ak,Zfl = Vk,e-

Both, o and o' are fixed smoothing constants chosen between zero and one where o is
chosen larger than at.

Under the assumption that y, is exponentially distributed, the analytic solution to (3.10)
is given in Appendix A.1. For the self-similarity optimization described in Section 3.3,
analytic solutions to the inverse function F'(-) and the derivative F'(-) are given in
Appendix A.2. A sketch of arn: (Y, Gy—q) is given in Figure 3.2 for the proposed parameter
values o = 0.9995 and ot = 0.9 given in [81].

3.4.3. Speech Presence Probability Based Noise PSD Estimation

The noise PSD estimator described in [70] employs an estimate of the SPP to avoid
speech leakage. Even though the noise PSD estimator has not been explicitly derived
as an adaptive smoothing factor, we show here that the algorithm can be rewritten as
such a function. The algorithm has been described in Section 2.1.4 and the main part
of the algorithm is described by (2.22), (2.23) and (2.24). By combining (2.22), (2.23)
and (2.24), the SPP-based noise PSD estimator can be described as an adaptive smoothing

function:
(fix) 1—afpy
aspp(Ye, Yo—1) = ogpp 1+ (146, Yo~ o€y /Tema (€, )] (3.18)

We omit the heuristic that has been proposed in [70] to avoid stagnation of the estimation
if the noise PSD is underestimated. This is done because this procedure is not trivial to
include in the derivations and its effect on the bias can be considered negligible because it
is only activated in degenerate cases. The behavior of the adaptive smoothing function is
similar to the one proposed by [81, Section 14.1.3] in that the function approaches one
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for large a posteriori SNRs and is close to the fixed smoothing constant aé%xlg if the a

posteriori SNR is close to zero.

Again, analytic solutions are given in Appendix A.1 and Appendix A.2 for the iter-
ative estimation method and the self-similarity optimization, respectively. The func-
tion aspp(y,,7,_q) is sketched in Figure 3.2 where the proposed parameter values

a(sf;"g = 0.8 and &;, = 15 dB from [70] have been employed.

3.5. BIAS COMPENSATION FOR NOISE PSD ESTIMATION

In Section 3.1.3, a bias compensation method has been presented that can be employed
to compensate for the bias caused by adaptive smoothing. However, the composition
of the input signal y,, i.e., whether it contains speech, noise or both, is not taken into
consideration. Hence, regarding the application of noise PSD estimation, this correction
may overcompensate for the bias in speech presence. To prevent such overcompensations,
a time-varying correction factor is derived in this section.

For noise PSD estimation, the input signal comprises two components, namely speech and
noise. If speech is present and assumed to be uncorrelated to the noise component, the
expected value E{y,} is equal to the sum of the speech PSD A} , and the noise PSD A} ,.
If adaptive smoothing is employed on such a noisy signal, with (3.7) the mean of the filter
output converges towards

E AL+ AL
E{y,} = {Cye}: R, (3.19)

Applying the fixed factor C removes the bias of the filter output mean E{7,} from the
input mean E{y,}. As a consequence, the output converges towards the noisy PSD, i.e.,

%0 + AL, but not towards the noise PSD. The rate of convergence depends on the
additional inertia imposed by the adaptive smoothing factor a(y,,7,_;) which is increased
in speech presence by the considered noise PSD estimators [70], [81]. Still, applying
C directly may potentially overestimate the noise PSD IA\ZE which, as a consequence,
may result in speech distortions in the speech enhancement context. To take the speech
energy into account, we propose to modify the correction such that the filter output is
corrected towards the noise PSD Ay ,. For this, a time-varying correction term Gy ¢ is
introduced which is set such that Gy (JE{7,} = A} , holds. With (3.19), G ¢ can be derived
as follows:

S n
Apo+ M0

GreB{Ys} = G c = Ay, (3.20)

which can be rearranged to

n

Gy = ciA’“»f (3.21)
ot re AL .
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Algorithm 3 Proposed algorithm for the bias compensation which is aware of the speech
level.

. C is obtained using Algorithm 1 or Algorithm 2.

. Initialize algorithm: 7, < y,.

. Compensate bias: 7/, < G, tYo-

: for all remaining observations y, do

Perform smoothing:

yo=[1- a(?/m?e—})]ye + (Yo, Yo—1)Ve-1-

Compensate bias: ¥, = Gy (7.

7. end for

TUk W

>

The time-varying term Gy, ¢ can be split into the fixed correction factor C and a Wiener-like
term Ay ,/(Ag , + Ay o). Consequently, the fixed correction factor C is reduced such that
overestimations in speech presence are avoided. In Section 3.6, we discuss how the speech
and the noise PSD in (3.21) can be estimated in practical applications.

The proposed bias correction is summarized in Algorithm 3 where ie denotes the corrected
filter output. The additional computational complexity of the proposed correction is given
by the computation of the complete correction term Gy, o and its application. As discussed
in Section 3.1.3, it is possible to determine the factor C before the processing starts. Thus,
the additional computational cost for the bias correction can be considered low.

3.6. EVALUATION

In the first part of this section, we verify that the fixed correction factor C estimated with
the methods described in Section 3.2 and Section 3.3 matches the true underlying bias. For
this, we use Monte-Carlo simulations where the input signal consists of artificially generated
uncorrelated noise samples that follow an exponential distribution. These experiments also
give insights into how large the bias in the considered noise PSD estimators is. Further,
we also include an analysis on how signal correlations affect the bias.

In the second part of this section, the behavior of adaptive smoothing is analyzed in a speech
enhancement context using real world signals. We show that correcting the bias leads to
an improved estimation of the noise PSD in terms of the log-error distortion measure [231]
and also in an improved or similar speech quality as predicted by PESQ [230].

Within our evaluation, the noise PSD estimators given in (3.17) and (3.18) are used. In
the evaluation, we mainly focus on the default parameters which were proposed in the
literature [70], [81]. In accordance with [81, Section 14.1.3], ' and ot are set to 0.9995
and 0.9, respectively in (3.17). In accordance with [70], for the SPP-based noise estimator,
§3, is set to 15 dB while a value of 0.8 is used for the fixed smoothing constant ag?;‘;
in (3.18).
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Fig. 3.3.: Bias correction factor C; = E{ye}/yz(-ﬁx) computed for each iteration step in
Algorithm 1 given the adaptive smoothing functions used in [70], [81] and
the true bias correction term Cyic obtained from Monte-Carlo simulations with
108 realizations.

3.6.1. Verification of the Bias Estimation Methods

Here, we analyze how well the methods proposed in Section 3.2 and Section 3.3 determine
the bias. To obtain the ground-truth, we use Monte-Carlo simulations. For this, 10° random
numbers y, are generated that are independently sampled and follow an exponential
distribution (3.16) with fixed parameter A} , = E{y,}. The generated random numbers are
employed as the input signal of the respective adaptive smoothing filters. As the evaluated
algorithms preserve the ergodicity and stationarity of the filter input, the expected value
E{y,} can be estimated by computing the temporal average of the filter output. With
this, a Monte-Carlo estimate Cpc of the fixed correction factor ¢ = E{y,}/E{y,} is
obtained.

First, the iterative procedure described in Section 3.2 is covered. Fig. 3.3 shows the
Eﬁx), i.e., the outcome for each iteration
step of Algorithm 1. The initial @éﬁx) is set to three different values to show that the
iteration converges to the same value. Additionally, the true correction factor obtained
from Monte-Carlo simulations is included. The results show that the iteration converges
for all considered smoothing functions after 10 to 15 steps and that the value obtained
after convergence is independent of the initial condition ygﬁ"). For the parameters of
the adaptive smoothing functions given in [70], [81], the iteratively determined bias

estimated fixed correction factor C; = E{y,}/y
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corresponds well with the Monte-Carlo simulations. For the smoothing ot (ys,Jp_1)
proposed in [81, Section 14.1.3], the iteratively determined fixed correction factor C is
nearly identical to the ground truth obtained from Monte-Carlo simulations while for the
SPP-based smoothing, i.e., aspp(y,,¥y_1), the bias is underestimated by 0.27 dB (see
Table 3.1). This deviation from the correct result is because 7,_; is replaced by a fixed

(fix

constant 7™ and is not considered as a random variable.

The second method proposed for estimating the bias is described in Section 3.3. Here,
a model PDF f(7,|0) is required for the optimization. It is known that after recursive
smoothing, an exponentially distributed random process approximately follows a x>
distribution with an increased shape parameter [66], [83]. The shape of the resulting PDF
can also be approximated by a generalized gamma distribution or a log-normal distribution.
In our experiments, we obtained the best results using the log-normal distribution which
is consequently employed in the evaluations. The PDF is given by

e (- mogw>>2>
T/ 27TA10g(/\/) 2)‘10g(N)

It assumes that the PDF that results after taking the logarithm of the random variable
y is a normal distribution. Consequently, piogn) and Ajpgar) denote the mean and the
variance of the normal distribution in the logarithmic domain, respectively. The mean of
this distribution can be computed using its parameters as

fz) =

(3.22)

)‘10 N
m(ulog(/\/)7 )\log(N)) = exp (:U/log(/\/) + g2( )> . (323)
For the minimization of the cost function given in (3.14), we use the downhill simplex
method proposed by [236].

Fig. 3.4 shows the PDF of the model f@ﬂ@) with optimized parameters 8, which are
determined using the method described in Section 3.3, and the PDF §(7,|0) which is
the PDF that results after computing (3.11) with the optimized parameters 6. Finally,
the plots also include an estimate of the true PDF of the filter output that has been
estimated from Monte-Carlo simulations. Though slight deviations between the true PDF
and the optimized log-normal distribution can be observed, the optimized model PDF
f(7,10) approximates the distribution of the filter output reasonably well. Furthermore,
Fig. 3.4 shows that the optimized model distribution f(7,|@) and the marginalized PDF
g(yﬂé) are nearly identical from which we conclude that our approach to finding the bias
in Section 3.3 is reasonable.

In Table 3.1, the Monte-Carlo ground-truth of the correction factor C is given along with
the estimates of the iterative method of Section 3.2 and the self-similarity optimization of
Section 3.3. It can be seen that the self-similarity optimization of Section 3.3 outperforms
the iterative method of Section 3.2. Using the self-similarity optimization, for the smooth-
ing with o (Y, ¥y_q) the ground-truth is matched, for the SPP-based smoothing the
difference to the ground-truth is only 0.07 dB.
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— estimated PDE — F(7,00) - 3(7,10)
40 T T T T —
) arhe (Yo, Yo—1), (3.17), [81]
30 [~ »‘M‘NM\ 1
= 20| / ™ |
~ 10 |- ,« \\\‘n a
0 H“T‘“’ | | | | | | }‘T‘l-i -
0.05 0.06 0.07 0.08 009 01 0.11 0.12 0.13 0.14 0.15
T T T T
9
2
= 10
0 I | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 3.4.: Shape of the fitted model distribution f(7,|6), the marginalized distribution
3(7,]0) obtained by using the optimized model in (3.11), and the true PDF of
the filter output obtained from Monte-Carlo simulations with 10% samples for
the adaptive smoothing factors used in [70], [81].

Table 3.1.: Correction factor C = E{y,}/E{y,} for the adaptive smoothing functions in
(3.17) and (3.18) without replacement of 7,_;.

Smoothing factor Monte-Carlo  Sec. 3.2 / Alg. 1 Sec. 3.3 / Alg. 2

arhe, (3.17), [81]  10.18 dB 10.14 dB 10.18 dB
aspp, (3.18), [70]  1.17 dB 0.90 dB 1.10 dB
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Fig. 3.5.: Correction factor C determined using Monte-Carlo simulations on white noise for
different overlaps ) in the STFT domain and the adaptive smoothing functions
used in [70], [81]. Additionally shown: the correction factors reported in Table 3.1.

Also note that the bias obtained for the SPP-based estimation method is only 1.17 dB
and, thus, rather small. In contrast, the method in [81, Section 14.1.3] yields a bias of
10.2 dB which is rather large. The reason for this appears to be the choice of the parameter
al. As it is very close to one, the adaptive smoothing is forced to considerably smaller
values resulting in the observed bias. Further, this result only covers the case where only
noise is present. In the presence of speech, the underestimation is less severe as shown in
Section 3.6.2.

From further experiments we conclude that our proposed algorithms 1 and 2 work also well
for other choices of the parameters o, at, a(sf;}),, and {4, . Considering arn: (y,, 7, 1) and
both algorithms, the deviation of the estimated bias from the true bias is smaller than 1 dB
for a wide range of combinations of a and a*. Determining the bias for aspp(y,,7,_1)
is, however, more challenging. Still, a low deviation of 1 dB from the true mean or less
is obtained for the parameter ranges 0.4 < agligxg <09 and 7.5 dB < &, <20 dB for
Algorithm 1 and Algorithm 2. In general, the estimation method proposed in Algorithm 2
has the potential to estimate the bias with very high accuracy as no approximations were
used in the derivations. For the practical application, however, an appropriate model
PDF f(7,|6) has to be employed and the numerical optimization may converge to local
optima leading to unsatisfactory results. In contrast to that, the estimation method in
Algorithm 1 is more robust but results only in approximate estimates of the bias due to

the used approximations used in the derivation.
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Finally, we analyze how the fixed correction factor C is influenced if the samples of the
input signal y, are correlated over time, e.g., due to the overlap in the STFT framework.
For this, Monte-Carlo simulations are employed again. Also here, E{7,} can be estimated
using temporal averaging, as no further restrictions have to be imposed on the random
process except for ergodicity which is also fulfilled for correlated input samples. Under
the assumption that the sampling rate is 16 kHz, we generate a white Gaussian noise
signal with a length of 360 s in the time-domain. After that, we transform the signal to
the STFT domain where a Hann-window is employed. The segment and window lengths
are set to 32 ms. These STFT parameters are chosen because they allow the results to be
easily related to typical single-channel speech enhancement frameworks; e.g., [12], [29],
[70]. For this experimental design, the results are also valid if shorter or longer window
lengths are used or a different underlying sampling rate is assumed.

To obtain Fourier coefficients with different degrees of correlation, we vary the overlap €2 of
the STFT analysis segments, where (0 = (segment length — segment shift)/segment length.
The adaptive smoothing functions are applied to the magnitude squared coefficients in
each frequency band which can be assumed to follow an exponential distribution (3.16).
Finally, the mean over all time-frequency points is computed, where the 0 Hz bin and the
Nyquist bin are omitted because the assumption that the coefficients follow an exponential
distribution is not fulfilled here. Additionally, we leave out the first 500 segments to
account for the adaptation of the adaptive smoothing filters. In Fig. 3.5, we show the
fixed correction factor C as a function of the overlap Q. In general, it is observed that the
bias becomes smaller with increasing overlap — and, thus, also with an increasing amount
of correlation. For arn:(y,, U,_1), the bias is reduced by 0.06 dB in absolute value if the
overlap is increased from 0 % to 87.5 %. Correspondingly, the correlation has a negligible
influence on the absolute bias of 10.2 dB. For the SPP-based smoothing aspp (Y, J_1),
the bias is reduced by 0.29 dB for the same increase of correlation. As the absolute bias for
aspp(Yy, Yp_q) is with 1.2 dB much smaller than the bias of arrp, (Y, Y1), this difference
indicates that the influence of the correlation is much stronger here. Thus, the higher
overlap leads to a notable reduction of the absolute bias. However, for the typical choice of
50 % overlap, the bias hardly changes. As a consequence, the proposed correction methods
are directly applicable in practice.

3.6.2. Applications to Speech-Enhancement

In this section, we consider the practical implications of the bias caused by adaptive
smoothing for noise PSD estimation in a speech enhancement framework. We show
that the logarithmic estimation error [231] between the true and the resulting noise PSD
is reduced if the bias is corrected. Additionally, we use PESQ scores [230] to give an
instrumental prediction of the change in signal quality. Even though PESQ has been
developed for the evaluation of speech coding algorithms, it has been shown that it also
correlates with the quality of enhanced speech [238]. We show that the log-error distortion
and also PESQ scores can be improved for the noise PSD estimators proposed in [70],
[81]. For the log-error distortion, we additionally consider a special case where noise only
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signals are used as input.

For the evaluation, we employ a variety of synthetic and natural noise types. Among
these noise types are a pink and a babble noise taken from the Noisex-92 database [239].
Additionally, a traffic noise is employed which comprises an acoustic scene with passing
cars. For the experiments that include speech, we use 1120 sentences from the TIMIT
corpus [240]. The sentences are corrupted at SNRs ranging from —10 dB to 30 dB in 5 dB
steps. Each sentence is embedded in a different segment of the respective background
noise. All signals have a sampling rate of 16 kHz.

The speech enhancement framework, in which the considered noise PSD estimators [70],
[81] are embedded, operates in the STFT domain as in Section 2.1.1. For this, a segment
length of 32 ms with 50 % overlap is used. This parameter combination is often used for
speech enhancement, e.g., [12], [29], [70], as speech signals are assumed to be stationary
only for a short time period similar to the chosen segment length [44, Section 5.10]. Further,
a square-root Hann window is employed for spectral analysis. For estimating the a priori
SNR, the decision-directed approach (2.27) on page 36 with a smoothing factor of 0.98 is
used [12]. The clean speech signal is estimated using the Wiener filter where a lower limit
of —12 dB is enforced. For resynthesizing the signal, again, a square-root Hann window is
employed.

The time-varying correction term Gy ¢ has to be determined at the beginning of a new
segment ¢. At this point, there is no updated estimate of the speech PSD ]A\;Z and the

noise PSD f\:e available. As the noise PSD is the first quantity estimated from a new noisy
observation, we propose to use the estimates from the previous segment. Correspondingly,
/A\Z,€71 is used instead of A}, in (3.21) for the practical evaluation. Further, a slightly
modified version of the decision-directed approach (2.27) is used to obtain an estimate of

the clean speech

. Spe1? Yiee|?
S = O[DD% + (1 — app) max (h’?"' 70> : (3.24)
k=1 Apor

The main difference to (2.27) lies in the second term on the right hand side, where
Amn

the noise PSD estimate of the previous segment Ay ,_; is used for normalization. The

modified estimate of the a priori SNR ék,l from (3.24) is used to obtain an estimate of the

speech PSD by multiplying with AZ ¢—1- In the evaluation, we consider only the correction
parameters obtained by Algorithm 2 as both methods yield similar values for C such
that for the considered practical application very similar outcomes would be obtained.
We use the values for C obtained using Algorithm 2 as it performs slightly better than
Algorithm 1. To avoid stagnations of the noise PSD estimation which may be caused by
the time-varying correction factor Gy ¢, we apply a lower limit to Gy, which is set to
—20 dB.

As described in Section 2.2.1, we use a separated version of the log-error distortion which
is computed for each speech signal. Here, only segments after a five seconds initialization
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B o correction HAlg. 2 + Alg. 3
babble noise pink noise traffic noise

RIS

SNR / dB SNR / dB SNR / dB

Fig. 3.6.: Log-error distortion of the adaptive smoothing function arn, (v, 7,_1) described
in (3.17), [81, Section 14.1.3] with and without the proposed correction method
for speech in noise at different SNRs. The lower part (gray) of the bars represents
the overestimation LogErr;, whereas the upper part (black / white) is the
underestimation LogErr .

period, which only includes noise, are considered in the evaluation. During this initialization
phase, the noise PSD estimators can adapt to the background noise. The goal is to exclude
initialization artifacts from the evaluation which may result in an erroneous estimate of
the performance. Even though in real applications, such an initialization period is not
available, this poses only a minor problem as the algorithms recover from an erroneous
initializations after a short processing time, e.g., during speech pauses. As the correction
factors were determined based on the assumption that the periodogram is exponentially
distributed, we exclude the coefficient at 0 Hz and the Nyquist frequency also here. The
measure is computed for each speech signal separately and averaged over all speech signals
afterwards. For the noise only case, the log-error distortion is computed using a long
excerpt of about four minutes from the respective noise signal.

The results for the two noise PSD estimators are shown in Fig. 3.6 and Fig. 3.7, respectively.
Here, an SNR of -Inf denotes the noise only case. For the adaptive smoothing function
arhe (Yp, Y1) proposed in [81, Section 14.1.3], the results in Fig. 3.6 show that the
uncorrected version of the noise PSD estimator tends to underestimate the background
noise PSD in low SNR regions while it overestimates the noise PSD for high SNRs. The
observed overestimation at high SNRs is caused by the fact that this estimator always
allows the input periodogram to be tracked, albeit slowly, even if the a posteriori SNR is
high. Thus, the speech leakage, which is reflected in the overestimation, increases with
increasing SNR. The underestimation at low SNRs is mainly caused by the adaptive
smoothing. If the proposed correction is applied, the noise PSD log-error distortion can
be considerably reduced for all considered SNRs and noise types. As the fixed correction
factor C required for this noise PSD estimator is rather large, the total estimation error
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WMo correction [ Alg. 2 + Alg. 3
babble noise pink noise traffic noise

SNR / dB SNR / dB SNR / dB

Fig. 3.7.: Same as Fig. 3.6, but for the adaptive smoothing function aspp(y,, 7, ;) de-
scribed in (3.18), [70].

is often dominated by the overestimation if the correction is applied. The total log-error
distortion, however, is in general smaller. Especially, if either noise or speech is dominant,
i.e., for low SNRs and high SNRs, lower estimation errors are obtained.

Similar tendencies are also observed for the SPP-based noise estimator aspp(y,, J,_;) as
shown in Fig. 3.7. For both cases, i.e., with and without correction, the overestimation
increases also for this noise PSD estimator with increasing SNR. For an SNR range around
0 dB and 10 dB, the proposed correction increases the log-error distortion slightly. For high
SNRs and low SNRs, however, a slight reduction of the log-error distortion is observed.
In general, the benefits of the correction are expected to be smaller as the bias of this
algorithm is rather low as shown in Table 3.1.

Fig. 3.8 shows the PESQ improvement scores which are obtained if the considered adaptive
smoothing functions are used as noise PSD estimators in a simple enhancement scheme.
Again, the adaptive smoothing functions are employed with and without correction to
show the change in performance. For aspp(y,,7,_1), the corrected and the uncorrected
version of the noise PSD lead to virtually the same result. In general, the measure indicates
a slight reduction of the quality if the proposed correction is applied. Considering the
log-error distortions in Fig. 3.7, the result is not unexpected as the differences between
the corrected and uncorrected version are small. Contrarily, the PESQ scores can be
considerably improved for the smoothing function arn(y,,7,—1), [81, Section 14.1.3].
After applying the correction, the PESQ scores are increased by up to 0.2 points where the
largest gains are obtained for SNRs between 0 dB and 10 dB. The predicted quality of the
corrected version of arp, (Y, Yy_1) is comparable to the SPP-based noise PSD estimator.
These improvements can be attributed to the reduction of the strong underestimation in
low SNR regions and the prevention of overestimation in speech presence. These results
are also confirmed in informal listening tests.
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— athe(Yp, Yp_1), DO cOIT. === arn(Yp, Yp_q), Alg. 3 + Alg. 2
— aspp(Yp, Yp_q1), N0 corr. === aspp(Yy, Yp_q), Alg. 3 + Alg. 2
babble noise pink noise traffic noise

SNR / dB SNR / dB SNR / dB

Fig. 3.8.: PESQ improvement scores for a simple speech enhancement framework where
the adaptive smoothing functions crn, (y,,7,_1) and aspp(y,, ¥y_q) are used as
noise PSD estimators with and without the correction proposed in Algorithm 3.
The fixed correction factor C was estimated using Algorithm 2.

3.7. SUMMARY

In this chapter, we analyzed the bias of adaptive first-order recursive smoothing filters
which play a central role, e.g., in the noise PSD estimators presented in [70], [81]. From our
analysis, it followed that due to the used adaptive smoothing, both algorithms generally
underestimate the noise PSD. We could show that the bias is scale-invariant and that the
bias from the input signal mean E{y,} caused by adaptive smoothing can be compensated
using a single fixed correction factor C. For the application of noise PSD estimation, we
extended the correction method which resulted in a time-varying correction factor to avoid
overestimation by accounting for the speech energy. This led to the proposed correction
method shown in Algorithm 3. The fixed correction factor C can be determined using the
proposed algorithms 1 and 2. Algorithm 1 employs an iterative method which is based on
the analytically solvable case where the adaptive smoothing factor does not depend on
the previous filter output 7,_;. Algorithm 2 determines the factor C by maximizing the
self-similarity of a model PDF with respect to the transition density f(7,|7,_;). In the
evaluation, we could demonstrate that Algorithm 2 estimates the correction factor C with
a higher accuracy than the iterative method, i.e., Algorithm 1. If the estimation error of
the adaptive smoothing filter is sufficiently large, the proposed correction method yields
considerable improvements in terms of the log-error distortion and PESQ.



CHAPTER 4

NON-ITERATIVE BIAS COMPENSATION FOR ADAPTIVE SMOOTHING
BASED NOISE PSD ESTIMATION

In this chapter, another method is proposed to correct the bias of adaptive smoothing
based noise PSD estimators. It is based on [217] and, similar to the methods in Chapter 3,
makes use of a correction factor which is used to scale one of the quantities involved in
the adaptive recursive smoothing. The correction method is however generally different
from the correction method considered in Chapter 3 and results in a correction scheme
which is not based on the scaling of the input or the output of the smoothing filter. As a
result, also the required correction factor is different from the correction factor considered
in Chapter 3. We present a method that allows the approximate determination of the
alternative correction factor. Although the method is related to the iterative method
presented in Section 3.2, we will show that the desired correction factor can be determined
within a single iteration.

Further, the work in [217] is extended in this chapter. Similar to the correction method
considered in Chapter 3, the alternative correction method originally proposed in [217]
is not aware of the speech signal that is present in the noisy mixture. As the considered
noise PSD estimators generally tend to underestimate the noise PSD, the estimation is
corrected by increasing the power of the input signal. In speech presence, however, this
may result in overestimations which possibly cause distortions of the speech signal. To
resolve this issue, we present a method which allows the incorporation of the speech energy
in the correction method similar to the approach in Section 3.5.

The methods proposed in this chapter are based on the theory about adaptive smoothing
presented in Chapter 3. The contributions of this chapter are structured as follows: In
Section 4.1, we start by recapitulating the alternative correction and methods to determine
the corresponding correction factor previously presented in [217]. After this, the extensions
that are required to include the speech energy in the estimation are considered in Section 4.2.
In Section 4.3, the correction method proposed here is evaluated and compared against the
correction method in Chapter 3 in terms of log-error distortion and PESQ improvement
scores.

This chapter is partly based on:

[217] R. Rehr and T. Gerkmann, “Bias correction methods for adaptive recursive smoothing with
applications in noise PSD estimation,” in International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Shanghai, China, Mar. 2016, pp. 206-210, © 2016 IEEE.
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4.1. NON-ITERATIVE BIAS COMPENSATION

In this section, the alternative correction method is introduced mathematically. Further,
we present a method to estimate the correction factor that is required to apply this
method.

First, we recapitulate the correction method in Chapter 3 to highlight the differences to
the correction method presented here. To correct the bias caused by adaptive smoothing,
the input or the output of the adaptive smoothing filter is scaled by a correction factor in
Chapter 3. For now, we consider the case that only a fixed correction factor is employed,
i.e., C is used instead of Gy ¢. Although this does not allow the speech signal in the noisy
mixture to be taken into account, it simplifies the following explanations. If the correction
factor C is applied to the input y,, the adaptive smoothing filter in (3.1) changes to

o= 1 —a(Cyp,Tp—1))Cys + a(Cyp, Yp_1)Tp—1, (4.1)

which is obtained by replacing y, by Cy, in (3.1). The main difference of the alternative
bias correction method in this chapter to the method in (4.1), i.e., in Chapter 3, is that the
correction factor is only applied to the filter input y, that does not occur in the adaptive
smoothing function a(y,, ¥, 1), i.e.,

Y= (1- Of(yeageq))c(a)ye + (Yo, Uo—1)To—1- (4.2)

Here, C () denotes the correction factor required for the correction considered in this chapter.
This factor is generally different from the correction factor C considered in Chapter 3 which
is why a different symbol is employed. If @ in (4.2) is set to the value that corrects the
bias of the respective adaptive smoothing «(y,,7,_;), then only the corrected output is
used to determine the adaptive smoothing factor while the input y, in a(y,,y,_;) remains
unscaled. For adaptive smoothing functions that depend only on the ratio y,/7,_;, such
as noise PSD estimators, the correction factor does not cancel out in the computation
of a(y,,Y,_1) as in Algorithm 3. As a consequence, the smoothing factors change if this
correction method is applied. Considering the SPP-based noise PSD estimator in [70],
this also leads to a correction of the estimated SPP. Note that introducing the correction
factor C™ into the adaptive smoothing equation as in (4.2) does not change the scale-
invariance property. This means that scaling the filter input y, results in the same scaling
of the filter output 7,. This can be verified by performing the same induction steps given
in Section 3.1.2 for (4.2).

In [217], a method has been proposed to determine the correction factor C® which is
recapitulated in the remainder of this section. It is based on the iterative method proposed
in Section 3.2, [215]. As for the method in Section 3.2, it allows the approximative
determination the correction factor C*). It has been derived in [217], by repeating the
same steps as in Section 3.2, [215] for the modified filter function in (4.2). Accordingly,
the expected value of the adaptive smoothing filter in (4.2) is considered without the
dependence on the previous filter output 7,_; first. After this, the dependence on 7,_; is
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replaced by a deterministic value which is updated in an iterative procedure. In contrast to
Section 3.2, we will show that the correction factor C'*) is obtained after a single iteration,
i.e., that no iteration is required.

The first step is to consider (4.2) without the dependence on the previous filter output g,_;.

With that, the filter equation in (4.2) simplifies to

T =[1— a(y)] €™y, + aly)To_s- (4.3)

For computing the expected value, we assume that all y, are identically distributed and
uncorrelated. Additionally, we assume that the filter output ¥y, will remain stationary if
the filter input y, is stationary. Experiments indicate that this property is sufficiently
fulfilled. From this it follows that E{y;} = E{y;} where i # j. With the first assumption,
the expected value E{y,7,_,} can be written as E{y,}E{7,_,}. Thus, by applying E{-}
to (4.3) and rearranging the terms,

() = ¢ 2w ll) (44)

is obtained. It is very similar to the solution obtained in (3.9) of Section 3.2. The main
difference is the additional multiplication with C®. The result given in (4.4) depends only
on the adaptive function a(y,) and the probability density function of y,.

The second step is to derive the iterative procedure to find an approximate estimate of
the bias of the adaptive recursive smoothing for the case where the dependence on 7,_; is
included. For this, the adaptive smoothing factors are simplified by replacing y,_; by a

. (fi . (fi
fixed value y( X). Here, ﬂ( ) is used as symbol for the fixed value to distinguish it from the
fixed values and iteration results used in Section 3.2. Then, the equation for the iteration
is given by

o (fix) a) = (fix)
Yy, = cl )Z(yi—l ), (4.5)
with ()
om0y B{y} — B{yeoys, 7i 1)}
2@ )= —— e (4.6)

1 —E{a(ye, ¥i—1)}

is the estimate of E{7,} obtained for the ith iteration step
o (fix
where the initial condition is denoted by @é >. For determining the final estimate of

E{7,}, in Section 3.2, [215], the iteration is continued until it converges. Here, however,
the correction factor needs to be determined by choosing the constant C @) such that the
. . . . . . .o e(fix)
iteration converges to E{y,} to obtain an unbiased estimate. To achieve this, 7, ~ is set
to the mean of the input signal E{y,}. With that, the correction factor ¢ is determined
as

Similar to Section 3.2, jﬁﬁx)

= Sty o
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which is obtained by solving the following expression for €

P = e Z(EB{y,}) £ By} (4.8)

Using the resulting C® and igﬁx) = E{y,} in (4.5), it can be seen that this correction

o (fix
factor enforces the same result, namely E{y,}, for each iteration step @l(- ). Similar to the
iteration in Section 3.2, [215], it can be shown experimentally that for other initializations
o (fix)

Yo ~ the iteration in (4.5) converges to the same value, i.e., E{y,}. This indicates that
the determined value for C (a), which can be obtained without an iteration, compensates
the bias. Due to the scale-invariance, this procedure leads to the same C @) for any given
mean E{y,}. A convenient choice is to use E{y,} = ﬁéﬁx) =1, but the same correction
factor could as well be obtained by using, e.g., E{y,} = igﬁx) =5.

4.2. BIAS COMPENSATION FOR NOISE PSD ESTIMATION

In this chapter, the bias compensation is, again, mainly used for noise PSD estimators. Thus,
the relationship between noise PSD estimators and adaptive smoothing are recapitulated
in this section. Further, a method is presented that allows the incorporation of the speech
energy in the estimation of the correction factor.

Similar as in Section 3.4, the filter input y, is again considered as the noisy peri-
odogram |Y; ¢|2. As in (3.16) of Section 3.4, it is assumed here that |V} |? follows an

exponential distribution with mean A , = A} , + A} ,. The filter output 7, corresponds

to the estimated noise PSD /A\:,z Further, the noise PSD estimators that have been de-
scribed in Section 3.4 are considered again as adaptive smoothing functions. Due to the
relationship between the estimation methods proposed in Section 3.2 and Section 4.1, the

analytic solutions in Appendix A.1 can also be used for computing the expected value
in (4.6).

The bias compensation method presented in Section 4.1 allows the removal of the bias
induced by adaptive smoothing. However, the approach is not aware of the energy of
additional signals in the input mixture, e.g., the speech signal. Similar to the reasons given
in Section 3.2, using a fixed correction factor C @) without further considerations of the
speech signal may overcompensate the bias in speech presence. In the context of noise PSD
estimation, this is very important as overestimations of the background noise may result
in severe distortions of the speech signal. In the remainder of this section, we show how to
turn the fixed correction factor C*) into a time-variant correction that incorporates the
speech energy in the signal.

If speech is present, the expected value of the input is E{y,} = A} , = A} , + A} ,. In this
case, using the correction factor given in (4.7), will correct the filter output such that
E{7,} = A} o+ A) .. However, the goal of noise PSD estimators is to obtain an estimate

of the noise PSD, i.e., E{7,} = A} 4 The corresponding correction factor can be obtained
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Algorithm 4 Estimation of the time-varying correction factor gﬁf}z for the alternative
correction method considered in Chapter 4.
= (fix) n 1 s n
gy Ny MY A+ A,
2: Obtain Z{jéﬁ")} given in (4.6). The solutions for the adaptive functions in [70], [81]
are given in (A.1) and (A.2).
3: Compute the compensation factor Q](:z, using (4.10).

by small modifications to (4.8) and solving for C® again. For this, the iteration in (4.5)
- (fi
is used again as a starting point, but the initialization is set to yé - %0+ To find the

correction factor that leads to the estimate of the noise PSD A} ,, the result of the next
iteration step is set equal to the noise PSD as

i(ﬁx) a n ! n
Yy = g;e; Z( k,Z) = Ak,z- (4-9)

AR

Analgous to Gy, ¢, Q,gaz is the time and frequency dependent correction factor for the cor-
rection considered in this chapter. Further, Z(-) AS +AT, indicates that Z(-) is computed

under the assumption that E{y,} = A} , + A} . Similar to (4.7), the solution is

O\ = — : (4.10)
Z{Ak’z} AfetAL .

(ﬁx)

Using ggj from (4.10) to compute the iteration steps in (4.5) results in 7

o (fix
for all iterations 7. Again, using a different initialization, i.e., y(() ) # AL 4, the iteration

converges back to the noise PSD AZ,@ Similar to Section 3.5, the time-varying correction
factor Q,(:z also depends on the speech PSD Aj , and the noise PSD A} ,. Again, the
estimates from previous segments are used to allow the time-varying correction in (4.10)
to be used in practical applications. The specific solution used here is discussed in
Section 4.3. Algorithm 4 summarizes the method to compute the time-varying correction
factor g,(f(),

n
= Ay

The alternative correction method proposed in this chapter including the estimation of
the time-varying factor g,ﬁj‘*; is summarized in Algorithm 5. In contrast to the solution
in (3.21) of Section 3.5, the solution here cannot be easily expressed as a multiplication of
the fixed correction C® and a time-varying factor. As a consequence, determining g,ﬁdg is
computationally more complex than the correction method in Chapter 3. However, due
to the scale invariance, it is sufficient to compute the result for various a priori SNRs
&0y 1-e., the correction factors can be easily tabulated. This can be done by assuming
that A} , = A} ,+ Aj, =1, ie, that the energy of the noisy signal is constant. From this

it can be deduced that A} , = 1/(§;, , + 1) which can be used in (4.10) to compute g,(j;
depending on the SNR & ,. /
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Algorithm 5 Bias compensation for adpative smoothing filters where the bias is corrected
by scaling only the y, not occurring in a(y,,7,_,) by gl(:;

1: Initialize algorithm and compensate bias:
Yo < Yo
2: for all all remaining segments ¢ do
3:  Obtain correction factor Q,(j; using Algorithm 4.
4:  Perform smoothing and correct bias:
yo=(1- a(yg,ye,l))g,(ﬂyg + (Y, Yo—1)¥e1
5. end for

4.3. EVALUATION

In this section, we evaluate the proposed correction method and compare it with the
method proposed in Chapter 3. First, it is verified that the proposed estimation method
described in Section 4.1 and Algorithm 4 yields accurate results for both the static
correction factor C® and the time-varying version g;:;. For this, we employ Monte-Carlo
simulations where the samples of the input signal y, are artificially generated. In the
second part of the section, it is analyzed how the proposed correction method performs
against the method in Chapter 3. For this, the accuracy of the noise PSD estimation is
evaluated in terms of the log-error distortion measure given in Section 2.2.1. Further, the
quality of the enhanced signals is compared using PESQ [230] improvement scores as
described in Section 2.2.2.

In the evaluations, we use the default values of the noise PSD estimators as described
in the literature. Correspondingly, o and ot are set to 0.9995 and 0.9, respectively [81,
Section 14.1.3]. For the SPP-based noise estimator £;,, = 15 dB and a(sf;)}), = 0.8 are used

[70].

4.3.1. Verification of the Estimation Methods

First, the estimation of the static correction factor C (@) is considered. For this, we estimate
the correction factor once using (4.7) for both noise PSD estimators. The results are
compared to Monte-Carlo simulations where 10 independent realizations of the input
signal y, are generated. Assuming the same signal model as in Section 3.4, we also employ
an exponential distribution as given in (3.16) here. As the mean of the input samples is
set to a fixed value, the input samples are stationary. The Monte-Carlo reference Cl(&)c for

the factor C® is determined as the factor that minimizes the difference between the mean
of the input signal E{y,} and the mean of the corrected filter output E{y,}, i.e.,

Chic = arg min [E{y,} — E{7,} (4.11)



4.3. EVALUATION

/i(ﬁx) N _ o (fix)

- x - A 2(fix)
=y, =E{y,} Yo =1EB{y} “* 'y  =2E{y,}
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Fig. 4.1.: Iteration steps of (4.5) normalized to the expected value of the filter input,

ie., ﬁgﬁx)/E{yg}, for the noise PSD estimators in (3.17) and (3.18) described in
Section 3.4.

Here, IEI{} denotes the estimate of the expected value that is obtained by temporal

averaging. The optimal CI(VE;)C in (4.11) is obtained using the Simplex-Downhill method
proposed in [236].

First, the claims in Section 4.1 are verified, i.e., that the iteration yields the same value
if initialized as proposed and C® is computed as in (4.7). Further, it is shown that the
iteration converges to the same value if a different value is used for the initialization.
Fig. 4.1 shows the results if the iteration steps in (4.5) are computed. This experiment

verifies that using the computed correction factor, the iteration always yields the same

o (fi
value, namely the sought expected value E{y,}, if the initial value is set to yf, - E{y,}.

Further, the iteration converges to the same value, i.e., the mean of the filter input E{y,},
e 1 = (fix)

if different values are used for y, .

Table 4.1 shows the correction factors C® obtained with Algorithm 4. The factors C @)
determined with Algorithm 4 are smaller than the compensation factors obtained from the
Monte-Carlo simulations. The error which remains by using the estimated correction factors
instead of the ground truth has also been evaluated using Monte-Carlo simulations. By
averaging the output of the corrected adaptive smoothing filter given the C @) obtained from
Algorithm 4, an underestimation of 0.6 dB and 0.2 dB remains for the smoothing factors
athe (Y, Uo_q), (3.17) [81, Section 14.1.3] and aspp(y,,¥p_1), (3.18), [70], respectively.
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Smoothing factor

Monte-Carlo

Sec. 4.1 / Alg. 4

athe (Yo, Uo_q), (3.17), [81]

2.44
1.20

2.37
1.16

OCSPP(Z/[:?[_1); (318)7 [70]

Table 4.1.: Estimation of the correction factor C® by Monte-Carlo simulations and Algo-
rithm 4 for the adaptive smoothing functions in (3.17) and (3.18) of Section 3.4.
The correction factors are shown as linear quantities.

O‘Thr(ybyé—l)v (3'17)’ [81] aSPP(yé7y£—1)7 (3'18)7 [70}

e — ‘ ‘ 1.2 : ‘ ‘ :

) i \ |

O N
o> 1 -

—— Monte-Carlo 0.6 | |— Monte-Carlo
O --------- Alig. 4 ‘ l 0'4 | [ Alig' 4 ‘
—40 —20 0 20 40 —40 —20 0
o/ dB e/ dB

Fig. 4.2.: Estimation of the SNR depended correction Q,(:(), obtained via Monte-Carlo
simulations and Algorithm 4 for the noise PSD estimators (3.17) and (3.18)
described in Section 3.4.

However, as the remaining underestimation is relatively small, it can be concluded that
a good approximation of the true correction factors can be achieved using the method
described in Section 4.1. Further, comparing the values of C™ to the correction factor C
given in Table 3.1, the respective values of C @) are smaller. The difference results from
the more indirect influence of Algorithm 5 on the recursion.

Until now, the dependence on the SNR has not been considered for estimating the
correction factor g;a;. The results in Table 4.1 are equivalent to the case of the a priori

SNR being equal to £, , = —oo dB. Fig. 4.2 shows how the correction factor gﬁj@ changes
with the a priori SNR &, ,. For this experiment, the number of samples for the Monte-
Carlo simulations results has been reduced to 4 - 10° because (4.11) has to be solved for
various SNRs which is computationally rather expensive. The results in Fig. 4.2 show
that, in general, the value of the correction factor decreases with increasing SNR. For high
SNRs, the input signal is no longer boosted and damped instead to make the adaptive
smoothing converge to the sought noise PSD A} ,. Interestingly, for the SPP-based noise

PSD estimator the correction factor g,g‘"‘; does not approach very small values for high
SNRs. Instead Q,(jz converges to values slightly above 0.4 if the SNR is high. The results
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obtained from Algorithm 4 are compared again to the Monte-Carlo simulations. Similar
to the results shown in Table 4.1, the method in Algorithm 4 slightly underestimates the
correction factor. In general, however, the difference is about the same or smaller than
in Table 4.1. From this it can be concluded that the proposed approximative method for

estimating G ,(Ca% also delivers sufficiently accurate results for the SNR dependent case.

4.3.2. Applications to Speech Enhancement

In this section, the correction method considered in this chapter is embedded in a speech
enhancement framework. It is compared to the correction method in Chapter 3 and the
uncorrected versions in terms of the noise PSD estimation accuracy and speech quality.
For the former, the log-error distortion measure is employed as described in Section 2.2.1
while for the latter PESQ [230] improvement scores are considered.

We use 1120 sentences from the TIMIT test corpus [240] which are artificially corrupted
by background noises at SNRs ranging from —10 dB to 30 dB in 5 dB steps. Various
synthetic and natural noise types are employed namely pink and babble noise taken from
the Noisex-92 corpus [239] and a passing car noise. The TIMIT sentences are embedded in
random excerpts of the background noise. All signals have a sampling rate of 16 kHz.

The speech enhancement framework, in which the noise PSD estimators are embedded,
matches the descriptions in Section 2.1.1. For the STFT, we use 32 ms segments with
an overlap of 50 % and a square-root Hann window for spectral analysis and synthesis.
The speech PSD is estimated using the decision-directed approach [12] given in (2.27) of
Section 2.1.4. The smoothing factor is set to app = 0.98. The clean speech coefficients are
estimated using the Wiener filter, i.e., (2.15) where the maximum attenuation is limited
at a maximum of 12 dB.

For computing the time-varying correction factor QE:L%, a similar approach as in Section 3.6
is used. For estimating the speech PSD at the beglnnmg of a new segment ¢, the estimated
noise PSD from the previous segment, i.e. Ak ¢—1, is used with the previously estimated
speech coefficients \S k.o—1|* in the decision-directed approach. This pre-estimate is used to

determine the time-varying correction factor Q,(f; where, again, a smoothing constant of
app = 0.98 is used. Similar to Chapter 3, a limit is imposed on the time-varying correction
factor to avoid stagnation of the estimation process. This is achieved by limiting the pre-
estimated SNR to values equal or below 20 dB.

For the correction method in Chapter 3, which is used for comparisons here, the same
parameters are used as in Section 3.6. Correspondingly, the fixed correction factor C is
estimated using Algorithm 2 and the time-varying extensions presented in Section 3.5 is
used for the bias correction as in Algorithm 3. The same practical methods that have been
used to compute Gy, ¢ in Section 3.6 are also employed here.

For the evaluation of log-error distortion, we ensure that the first 5 s are excluded to
allow the noise estimators to adapt to the background noise. Further, we exclude the 0 Hz
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Fig. 4.3.: Comparison of the proposed correction methods in terms of the log-error
distortion with respect to the noise PSD estimators aTn, (y,,7,_1) proposed
in (3.17), [81] for noisy speech. The lower part of the bars (gray) is the overesti-
mation whereas the upper part (colored) is the underestimation.

bin and the Nyquist frequency as the periodogram cannot be considered exponentially
distributed here. As the pink noise is stationary, the reference noise PSD A}, is obtained
by temporal averaging of the noise periodogram. For the nonstationary noises, we employ
a slightly smoothed version of the noise periodogram, where a fixed smoothing constant of
a(Li’;)L“ = 0.73 is used. The results are shown in Fig. 4.3 and Fig. 4.4 for the noise PSD
estimators in (3.17), [81, Section 14.1.3], and (3.18), [70], respectively.

Considering the results in Fig. 4.3, the log-error distortions show that the correction
methods proposed in this chapter and in Chapter 3 generally reduce the estimation
error. For the noise only case, i.e., SNR = —oo, both correction methods lead to lower
log-error distortions at the cost of a slightly increased noise overestimation in comparison
to the case where no correction is applied. As a consequence, the total log-error distortion
is considerably smaller compared to the case where no correction is employed. The
method proposed here often results in a higher total error for low SNRs in comparison
to the method in Chapter 2 while the total error is lower for high SNRs. In general, the
alternative correction method considered in this chapter tends to underestimate the noise
PSD more strongly. As the noise PSD estimator proposed in [81, Section 14.1.3] always
allows the noise PSD to be tracked, the noise PSD is severely overestimated in high SNRs.
Similar to the correction method in Chapter 3, the alternative correction method proposed
here also reduces the overestimation through a time-varying adaptation of the correction
factor.

A somewhat similar picture is shown by the results in Fig. 4.4, which depicts the log-error
distortion for the SPPs-based noise PSD estimator. Again, the alternative correction factor
generally tends to result in stronger underestimations for low SNRs. As a consequence, the
total log-error is generally higher for this approach compared to the correction proposed
in Chapter 3 in low SNRs. In very high SNRs, the method presented here again leads
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Fig. 4.4.: Same as in Fig. 4.3 but for the noise PSD estimator aspp(yy,y,_1) proposed
in (3.18), [70].

to slightly lower total log-error distortions. However, as mentioned in Section 3.6, the
estimation error of the SPP-based noise PSD estimator given in (3.18), [70] is generally
low. Hence, the corrected versions and the uncorrected version of this algorithm yield
virtually the same results in terms of the log-error distortion.

In the last part of the evaluation, PESQ [230] scores are considered. In Fig. 4.5, the
results of the corrected and uncorrected versions of the noise PSD estimators considered in
Section 3.4 are shown. It compares the correction methods presented in this chapter to the
method presented in Chapter 3. Additionally, also the results of the uncorrected noise PSD
estimators are considered. The results are similar to the PESQ scores shown in Fig. 3.8.
Considering the SPP-based noise PSD estimator given in (3.18), [70], both correction
methods virtually yield no difference to the uncorrected version of this estimator. However,
correcting the bias for the noise PSD estimator given in (3.17), [81, Section 14.1.3], the
PESQ scores are considerably improved. Similar to the correction method considered in
Chapter 3, the improvements can be up to 0.2 points in PESQ. Again, these increases
can be attributed to the reduction of the underestimation in low SNRs and the reduction
of overestimation in high SNRs, which are also obtained by this alternative correction
method presented in this chapter. Comparing the results for the correction method in
this chapter with the correction method considered in Chapter 3, the PESQ scores are
virtually identical.

4.4. SUMMARY

In this chapter, an alternative correction method for compensating the bias of adaptive
smoothing filters has been presented. The proposed estimation method for determining the
fixed correction factor is related to the iterative procedure presented in Section 3.2, [215].
In contrast to the method in Chapter 3, [215], the correction factor for the compensation
method considered here can be determined without any iteration. Further, the correction
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Fig. 4.5.: PESQ improvement scores depending on the adaptive smoothing functions em-
bedded in the speech enhancement framework. Here, the adaptive smoothing
functions o (Y, ¥p_q1) and aspp (Y, Yp_1) are used as noise PSD estimators
with and without the correction proposed in Algorithm 5. The correction fac-

tor Q,(f()) is estimated using Algorithm 4.

method was extended such that the compensation is aware of the speech signal which
prevents overestimations in speech presence. Using Monte-Carlo simulations, we analyzed
the proposed procedure to determine the correction factor and showed that the factors
can be estimated with sufficient accuracy. Further, the correction method proposed here
has been evaluated using the log-error distortion measures. For the SPP-based noise PSD
estimator, the correction method proposed here has little effect while the error induced by
the method proposed in [81, Section 14.1.3] can be considerably reduced. Comparisons
with the compenstation method used in Chapter 3 show that the correction method
proposed here generally tends to lead to underestimations of the noise PSD. This results
in a smaller total log-error distortion for high SNRs but higher distortions for low SNRs.
Further, PESQ scores have been considered by embedding the corrected and uncorrected
versions of the noise PSD estimators in a speech enhancement framework. Similar to
the results obtained for the log-error distortion, the correction method yields virtually
the same results if the SPP-based noise PSD estimator is considered. For the noise PSD
estimator in [81, Section 14.1.3], however, considerable improvements can be obtained.
The PESQ improvements obtained by this compensation method are virtually the same
as for the compensation method presented in Chapter 3.
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CHAPTER 5

EFFECTS OF SUPER-GAUSSIAN PRIORS ON ENVELOPE BASED SPEECH
ENHANCEMENT

To apply statistically motivated clean speech estimators as described in Section 2.1.2,
the clean speech PSD and the noise PSD need to be estimated. In this chapter, we
consider ML-based methods where the structure of the speech and possibly also the noise
PSD are learned before the processing takes place. Specifically, we focus on a type of
ML-based algorithm, where the learned speech models only represent the spectral envelope,
e.g., [19], [20], [26], [27], [91], [101], [104]. The spectral envelope of speech corresponds to
the vocal tract, which acts as a filter on the excitation signal and allows humans to utter
different phonemes. However, the excitation signal, which has a harmonic structure for
voiced sounds due to the vibrating vocal cords, is not reflected by the spectral envelope.
Enhancement schemes where only the spectral envelope of speech is modeled using an ML
algorithm, is referred to as machine-learning spectral envelope (MLSE)-based enhancement
schemes in this chapter. Such approaches increase the generalization and also reduce the
computational complexity, as well as, the amount of data required for training. Often,
these methods belong to the category of HMM, GMM or codebook based methods which
have been considered in Section 1.3.1.

These methods are distinguished from non-MLSE-based estimation schemes considered
in Section 2.1, where the speech and noise PSDs are estimated blindly without any pre-
training. While MLSE approaches exploit prior knowledge about typical speech spectral
structures, the envelope representation also limits the quality of the enhanced signal. Due to
the coarse representation of speech, residual noise may remain between spectral harmonics.
To reduce the undesired residual noise between harmonics, different solutions have been
proposed. In [104], a harmonic model has been used to attenuate the remaining noise
component between harmonics. In [26], [27], the speech presence probability is estimated,
which is used to attain a suppression of the residual noise. Other approaches, e.g., [241],
incorporate the excitation, e.g., the harmonic structures of voiced excitations, explicitly in
a statistical model to avoid this problem.

In this chapter, we show that if super-Gaussian clean speech estimators are used, post-
processing as in [26], [27], [104] is not necessary. For this, we consider the parameterized

This chapter is partly based on:
[218] R. Rehr and T. Gerkmann, “On the importance of super-Gaussian speech priors for machine-
learning based speech enhancement,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 26, no. 2, pp. 357-366, Feb. 2018, © 2018 IEEE.
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clean speech estimator proposed in [31], which leverages the statistical models presented
in Section 2.1.2. An analysis of this estimator shows that, under a super-Gaussian speech
model, the background noise can be reduced even if the speech PSD is overestimated,
e.g., between spectral harmonics when modeling only the envelope. Furthermore, the
estimator in [31] is employed in two MLSE-based enhancement schemes. Both methods
serve as examples and can be considered as variants of previously proposed methods in
the literature. The first one is a DNN-based scheme similar to [26] which is chosen due
to its similarities to other MLSE-based enhancement methods, e.g., [19], [20], [27], [91],
[101], [104]. To demonstrate the effectiveness of super-Gaussian estimators also for other
MLSE-based enhancement methods, the estimator in [31] is additionally embedded in a
supervised, sparse NMF enhancement scheme based on [122], [136]. Here, a low amount
of basis vectors is employed such that mainly spectral envelopes are represented by the
NMF basis vectors. We show that for the used non-MLSE-based enhancement scheme,
which is capable of estimating the spectral fine structure of speech, the super-Gaussian
speech model yields only small improvements. However, for the MLSE-based enhancement
schemes, which only employ a model of the speech envelope, the super-Gaussian model
has a very beneficial effect, because it allows the removal of disturbing residual noises.
Besides the MLSE approaches addressed here, also MLSE approaches with log-max, also
known as MixMax, mixing models benefit from this effect [219] which will be discussed
in Chapter 6. Super-Gaussian speech models have also been previously employed in ML-
based speech enhancement algorithms, e.g., [96], [97], [99]. However, none of the papers
provides an explicit analysis of the obtained improvements over Gaussian estimators in
terms of the gain functions that result under super-Gaussian speech models. Furthermore,
the advantages of these estimators in combination with spectral speech envelope models
have not been highlighted.

This chapter is structured as follows: First, we recapitulate the clean speech estimator
proposed in [31] in Section 5.1. After that, we describe the considered MLSE-based
enhancement schemes in Section 5.2 and Section 5.3. In Section 5.4 and Section 5.5, an
analysis of the super-Gaussian estimator [31] and, respectively, a comparison of clean
speech estimators employed in different enhancement schemes is presented. In Section 5.6,
the results of the subjective evaluation test are reported.

5.1. SPEECH ESTIMATORS

In this section, we revisit the clean speech estimator [31]. This estimator is parameterized
such that various known estimators, e.g., [12], [28], [32], [49], [53], result as special
cases. In particular, it allows the incorporation of super-Gaussian speech models and the
estimation of compressed amplitudes. As in [242], we use the name (M)MSE estimation
with (o)ptimizable (s)peech (m)odel and (i)nhomogeneous (e)rror criterion (MOSIE) for
the estimator in [31].

In this chapter, the STFT-based enhancement scheme described in Section 2.1.1 is shared
among all algorithms. Here, the employed input signals have a sampling rate of 16 kHz.
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Table 5.1.: List of clean speech estimators that MOSIE [31] generalizes.

v I6] Related estimator

1 1 Gaussian STSA [12]

1 8 —0 Gaussian LSA [28]
v<l1 1 super-Gaussian STSA [30], [53]
v<l B—=0 super-Gaussian LSA [32]

The enhancement takes place in the STFT domain where the segment length of the STFT
is set to 32 ms and a segment overlap of 50 % is employed. The estimate of the clean
speech spectral coefficients S k¢ is obtained from the noisy observation Y}, using [31]. For
the analysis and the synthesis a square-root Hann window is used.

MOSIE [31] is a statistically optimal estimator of the speech amplitude Ay, ¢. It results from
the minimization of the expected value in (2.13). MOSIE is derived under the assumption
that the noisy spectra Y} ¢ result from the addition of speech Sy, and Ny, as in (2.3).
Further, the compression function c(-) is set to | Ay ¢|” where 3 denotes a compression factor.
In [31], the complex noise coefficients Ny, are assumed to follow a circular-symmetric
complex Gaussian distribution as given in (2.14). Further, a parametrizable circular-
symmetric possibly heavy-tailed super-Gaussian distribution is employed to describe
Ske in [31]. It is the same model that results from using the y-distribution (2.16) for
the speech magnitude Ay ¢ and a uniform distribution for the phase <I>Z7 , as described in
Section 2.1.2. Given the mixing model and the statistical assumptions about the noise
and speech coefficients, the estimate of the amplitude Ak’g is given by [31]

n 1
- A oo [D(v+ B/2) M(v+B/2,1;¢,.4) 17
Ape = . (5.1)
Eretv I'(v) M, 1;C0)
Here, (y , is given by 7, &y /(v + &} o) and the symbol M(:,-;-) represents the confluent
hypergeometric function [227, Section 9.21]. The remaining symbols are explained in
Section 2.1 and can be found in the glossary. As MOSIE estimates only the clean speech

magnitudes Ay, ¢, the estimated amplitude in (5.1) is combined with the noisy phase ®Y
as in (2.5).

It is interesting to note that MOSIE [31], generalizes existing clean speech estimators.
For example, if § = 1 and v = 1, MOSIE [31] is equivalent to Ephraim and Malah’s
STSA [12] and, for very small values of § and v = 1, the LSA [28] is approximated. Super-
Gaussian estimators are obtained for v < 1. Table 5.1 gives an overview over the related
estimators.

To evaluate the expression in (5.1), estimates of the speech PSD A} , and the noise
PSD A}, are required. These can be obtained from non-MLSE-based speech PSD and
noise PSD estimators. In this chapter, the noise PSD A} , is estimated using the SPP-based
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Fig. 5.1.: Architecture of the employed DNN.

noise estimator [70]. The speech PSD of the non-MLSE-based enhancement scheme is
estimated using TCS as proposed in [82]. More information about these algorithms can be
found in Section 2.1.4. The enhancement scheme that results from using these speech and
noise PSD estimators in MOSIE is referred to as non-MLSE-based enhancement scheme
throughout this chapter. However, also ML-based estimators of the clean speech and the
noise PSD can be employed which are considered next.

5.2. DNN-BASED SPEECH ENHANCEMENT SCHEME

As the first example of an MLSE enhancement scheme, a method using a DNN-based
phoneme recognizer similar to [26] is considered. Similarly, MLSE models have also been
used for enhancement schemes in [19], [20], [27], [91], [101], [104]. In [26], a two step
procedure is used for speech enhancement. First, the spoken phoneme is identified from
the noisy observation. After that, a learned speech PSD corresponding to the recognized
phoneme is used in a clean speech estimator, e.g., MOSIE [31], to enhance the noisy
observation. As speech is modeled on a phoneme level, the speech spectral fine structures,
e.g., the spectral harmonics, are not resolved.

For the phoneme recognition, a DNN is used with the architecture shown in Fig. 5.1.
The DNN’s input is given by 13 MFCCs including the A and AA accelerations which
are extracted for each segment /. To these features, a context is added by including the
features of the three previous and three future segments which results in the feature vector
vy =[v1g,... ,Uv,g]T with dimensionality V' = 273. Here, v; ; denote the elements of the
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Algorithm 6 DNN-based enhancement scheme.

Require: Trained DNN and offline computed Azlq’f.
Require: Noisy observations Y, ¢ of a complete utterance.
1: Extract MFCCs v, from Y}, ¢ for complete utterance and add context.
2: Apply CMVN over complete utterance to give vy.
3: for all segments ¢ do
4:  Estimate noise PSD AZE using [70].
Obtain f(g|ve) from the DNN.
for all phonemes ¢ do

Obtain clean speech estimate S ,(ff, for phoneme gq.
For this, AZW and /A\:[ are employed in (5.1).
8: end for

9:  Obtain final clean speech estimate S} ¢ using (5.2).
10: end for

feature vector v,. Further, -7 denotes the vector and matrix transpose. For the employed
segment length and segment shift, the context is approximately 100 ms. To improve the
robustness of the recognition in noisy environments, the feature vectors are normalized
using cepstral mean and variance normalization (CMVN) [243] before they are employed
for training or testing [26]. The CMVN is applied per utterance.

The features are passed through two hidden layers to finally obtain a score f(g|vy) for
each phoneme ¢ € {1,...,Q}. We base the number of phonemes on the annotation given
in the TIMIT database [240] which distinguishes between @ = 61 classes including pauses
and non-speech events. The hidden layers of the DNN consist of H; and Hs outputs,
where Hy = Hy = 512 is used. Similar to [26], [244], [245], rectified linear units (ReLUs)
are employed as transfer functions of these two layers. For the output layer, a softmax
transfer function is used which is interpreted as the posterior probability f(g|ve) that
phoneme ¢ was spoken given the features vy.

For the enhancement, MLSE-based clean speech PSDs AZ““ are employed where each Ailqi

represents the speech PSD of a specific phoneme ¢. During processing, each Azlq“ is used
in (5.1) via &, , = A;lq" /A ¢, which yields the phoneme specific clean speech estimates
5',(2 For this, the noise PSD A} , is estimated using [70]. Similar to [26], the estimates

S ,(fqz are averaged based on the recognition scores f(g|ve) to give a final estimate S k-
More specifically, the clean speech coefficients are obtained by

Q
: . @
Ske=> fla= Jlve) Sy (5.2)

j=1

The steps required to enhance the noisy observations Y}, , using the DNN-based enhance-
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ment scheme are summarized in Algorithm 6.

For the training of the DNN-based MLSE system, we employ 1196 gender and phonetically
balanced sentences from the TIMIT training set. As in [26], the DNN is trained only
using clean speech to ensure that the phoneme recognition does not depend on the
background noise type. The target vectors for the training are given by a one-hot encoding
of the TIMIT phoneme annotation [240]. The error function is given by the cross-entropy
which is minimized using scaled conjugate gradient back-propagation [246]. Before back-
propagation, the weights of the DNN’s two hidden layers are initialized using the Glorot
method [160]. The weights of the output layer are initialized using the Nguyen-Widrow
method [247].

Similar to the non-MLSE-based enhancement scheme, the noise PSD Ay, is estimated

using [70]. The speech PSDs A‘Zlq’Z that are linked to the phonemes ¢ are obtained as

S|4 1
N = ey 2 1kl 63
LelL(@)

where L(9 denotes the set that contains the segments that belong to the phoneme ¢
in the training data. As (5.3) is scale-dependent, we normalize the time-domain clean
speech input signal both in training and testing such that all sentences have the same
peak value. During training, the clean speech data is available, while during testing, oracle
knowledge is provided. This normalization is also employed for the other enhancement
schemes, i.e., for the non-MLSE-based and the NMF-based enhancement scheme given in
Section 5.3. Here, however, the normalization has no influence as these approaches are
scale-independent.

5.3. NMF-BASED SPEECH ENHANCEMENT SCHEME

In this part, the MLSE-based enhancement scheme that employs NMF is described. It
serves as a second example for MLSE-based enhancement schemes. NMF approximates a
non-negative matrix Y as Y ~ BW, where B and W are also non-negative matrices. The
columns of B are referred to as basis vectors and the columns of W as activation vectors.
An overview of NMF-based enhancement schemes has been given in Section 1.3.2.

Here, a simple, supervised, sparse NMF approach is used which employs the Itakura-Saito
(IS) divergence as the cost function [122], [136]. As argued in [122], if the noisy spectral
coefficients Y}, ; are independent and follow a circular-symmetric Gaussian distribution,
minimizing the IS divergence for approximating the noisy periodogram as HYk_[H =Y =
BW allows the elements of the product BW to be interpreted as the noisy PSD A} ,. The
IS cost function including the sparsity constraint is given by [136] )

J = 6|Wl; + Z (](33\[7\);)13 + log ((SV{\);)J ) -1, (5.4)

i,J
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Algorithm 7 NMF-based enhancement scheme.

Require: Speech and noise basis matrix B(S)7 B™.

. Set B =[B®),B™),

: for all segments ¢ do
Create vector y, = |Y;¢|> and add context.
Initialize W with positive random numbers.
repeat

Update W with the update rule in [136, (4)].

until convergence or maximum iterations reached

end for_ . .

: Obtain A , and A, , using (5.5) and (5.6).

. Use estimated PSDs in (5.1) to obtain S} .

© X NPT R

—_
o

where (-); ; denotes element of the respective matrix, |- |; the Li-norm, and ¢ is the factor
that controls the sparsity. This cost function can be optimized using the multiplicative
update rules in [136].

For estimating the speech and the noise PSD, it is assumed that the basis matrix B is
given by the concatenation of a speech basis matrix B and a noise basis matrix B as
B= [B(S), B(”)]. The speech and noise basis matrices are learned prior to the processing
and are held fixed during processing. This means that only the activation matrices are
updated. For obtaining an estimate of A} , and A} ,, also the activation matrix W is
T
split into a speech and noise dependent part as W = [(W®)T (W)T]" such that
T

Y ~ BW = [B®), B™][(WE)T (W)T]" | With this, the speech and the noise PSD
can be obtained as

A= Z(B(S))k,i(w(s))i,é (5.5)

A= Z(B(n))k:,i(w(n))i,h (5.6)

where I(®) is the number of speech bases while I(™) denotes the number of noise bases.

The steps for enhancing the noisy observations are summarized in Algorithm 7.

For the NMF-based enhancement scheme, the same speech audio material is employed for
training as for the DNN-based enhancement scheme. Also here, a context of 7 segments
is employed, i.e., three past and three future segments are appended to the noisy input
vectors. As a consequence, the number of rows of the basis matrices is increased and the
speech PSD and the noise PSD are reconstructed with a context. For the enhancement,
however, only the elements corresponding to the current segment are employed. We use
30 bases in the speech basis matrix B*) and the noise basis matrix B(™) while the sparsity

83



84

5. EFFECTS OF SUPER-GAUSSIAN PRIORS ON ENVELOPE BASED SPEECH ENHANCEMENT

weight in (5.4) is set to 6 = 10. The low amount speech basis vectors forces the NMF
algorithm to learn a dictionary that represents only the spectral envelope of speech. It is
used to demonstrate the effects of super-Gaussian estimators for MLSE approaches. For
better performance, larger dictionaries are generally used for NMF approaches which allow
the dictionary to resolve the spectral fine structure.

The noise basis matrices B are trained for a set of specific background noise types. The
used types are babble noise, factory 1 noise, and pink noise taken from the NOISEX-92
database [239]. Further, an amplitude modulated version of the pink noise similar to [70]
and a traffic noise taken from [248] are included. These noise types are also used later
in the evaluation in Section 5.5. To ensure that different audio material is used in the
evaluation, only the first two minutes of the respective noise type are used for training.
This corresponds to a partitioning where 50 % of the background noise material is used for
training and 50 % for testing. For training and testing, a maximum of 200 iterations are
performed for the multiplicative updates in [136]. For testing, the noise matrix appropriate
for the respective noise type is chosen in the evaluation, i.e., the background noise type is
assumed to be known. The employed non-MLSE-based and the DNN-based enhancement
scheme do not require such prior knowledge. However, as discussed in [21], [141], such a
supervised approach may be appropriate for some applications, e.g., where the environment
can be identified using an environment classifier.

5.4. IMPORTANCE OF SUPER-GAUSSIANITY FOR MLSE-BASED SPEECH
ENHANCEMENT

In this section, we analyze the effect of the super-Gaussian speech estimators on non-MLSE-
based and MLSE-based speech enhancement schemes. Before that, we analyze how the
shape v and the compression S influence the behavior of MOSIE [31].

5.4.1. Analysis of the Gain Functions

In this part, we analyze the behavior of the clean speech estimator MOSIE [31]. For
this, the gain function Gy as defined in (2.4) is considered. As MOSIE [31] combines
an estimate of the clean speech magnitude AM with the noisy phase ®Y, the gain is a
real-valued. Hence, it describes by how much a spectral coefficient is boosted or attenuated
depending on the speech PSD A‘Zl, the noise PSD Z’_’Z, and the noisy input Y ,.

Fig. 5.2 shows the gain G ¢ of MOSIE [31] over the a posteriori SNR v, , for two a priori
SNRs: §;, , = —5 dB is shown in the upper row and £, , = 10 dB in the lower row. The
compression parameter 3 is varied and the shape v is kept fixed in the left panel and vice
versa in the right panel. It is well known that super-Gaussian estimators (v < 1) preserve
speech better than Gaussian estimators (v = 1) for large a posteriori SNRs [46]. However,
in the context of MLSE-based speech enhancement, it is of particular interest to observe
in Fig. 5.2 that with decreasing shape v, a stronger attenuation is applied to the input
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Fig. 5.2.: Gain function Gy ¢ of MOSIE [31] over the a posteriori SNR v, , for different
values of shape v and compression 3. The upper row shows the results for an a
priori SNR of -5 dB and the lower for an a priori SNR of 10 dB. See Table 5.1
for related estimators for the values of v and f.

coefficients for low a posteriori SNRs v, , even if the a priori SNR &, , is large. A similar
effect is observed if a stronger compression, i.e., smaller values for 3, are employed.

These observations are supported by Fig. 5.3 where the gain function Gy is shown
over the a priori SNR & ,. Here, the two rows show the behavior for two a posteriori
SNRs 7}, , = 0 dB and 7, , = 10 dB. For the Gaussian case (v = 1), Fig. 5.3 shows that
the gain Gy, mainly depends on the a priori SNR &, ,. If the a posteriori SNR v, , is
close to 0 dB and low values for § and v are employed, i.e., the super-Gaussian case is
considered, the attenuation remains low over a wide range of a priori SNRs &, ,. Hence, for
MLSE-based speech enhancement schemes, the residual noise can be suppressed even for
large overestimations of the a priori SNR &, ,. This occurs, e.g., between speech spectral
harmonics which are not resolved by spectral envelope models.

5.4.2. Effects of Super-Gaussian Estimators on the Enhancement

In this part, we analyze how the behavior of MOSIE [31] influences the considered
enhancement schemes. For this, a speech signal taken from the TIMIT test set is corrupted
by stationary pink noise at an SNR of 5 dB. The spectrogram of the used signal is shown
in Fig. 5.4. This signal is processed by the non-MLSE-based enhancement scheme and the
two MLSE-based enhancement schemes.
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Fig. 5.3.: Same as Fig. 5.2 but over the a priori SNR ;, , and for two fixed a posteriori SNRs
’Yk’z =0 dB and 7167@ =10 dB.

In Fig. 5.5, we depict the resulting a priori SNRs £, ,. For the DNN-based enhancement
scheme, the a priori SNR of the phoneme that is most likely to be present is shown for
each segment. Note that this selection is only performed for the visualization in Fig. 5.5.
Otherwise, S'k,g is estimated as in (5.2). In Fig. 5.5, the estimated a priori SNRs & ,
obtained from the non-MLSE-based enhancement scheme shows a fine structure which is
similar to the speech structure visible in Fig. 5.4. Contrarily, the structure of the a priori
SNRs &, , estimated by the MLSE-based enhancement schemes is very coarse and reveals
no or only little of the harmonic fine structure shown in Fig. 5.4. Using these envelope
models for the speech component leads to an overestimation of the a priori SNR §, ,
between spectral harmonics.

15 20 m
= 3 0o =
~
4 2 o
~ 1 -20 =
h o
0 40 =
0.
Fig. 5.4.: Spectrogram of the example speech signal in stationary pink noise at at 5 dB

SNR. Here, f denotes frequency and ¢ time.
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Fig. 5.5.: A priori SNR é k¢ estimated using different enhancement schemes for the excerpt
shown in Fig. 5.4. Here, f denotes frequency and ¢ time.

Next, the gain G, as defined in (2.4) is considered. For this example, we use MOSIE [31]
with two different parameter setups. First, a setup is used where the clean speech coef-
ficients S}, ¢ are assumed to follow a complex circular-symmetric Gaussian distribution. For
this, the parameters of MOSIE [31] are set to v =1 and 8 = 0.001, which approximates
the Gaussian LSA [28]. For the second setup, the shape is reduced to v = 0.2, i.e., a
super-Gaussian LSA is employed. To limit speech distortions, the gain is limited such that
attenuations larger than 12 dB are prevented. This limit is applied throughout the chapter
if not stated otherwise. The applied gains for the Gaussian and super-Gaussian case are
shown in Fig. 5.6.

The upper row in Fig. 5.6 shows that the overestimations of the a priori SNR §, 4, e.g.,
between spectral harmonics, result in a poor suppression for the MLSE-based enhancement
schemes when using a Gaussian estimator (v = 1). The non-MLSE-based enhancement

scheme is, however, not affected and achieves high suppression values between harmonics.

As discussed in Section 5.4, this behavior can be explained from Fig. 5.3. For v = 1, the
attenuation is mainly controlled by the a priori SNR &, , where lower a priori SNRs &, ,
lead to higher suppression values. From this it follows that an overestimation of &, ,
results in lower attenuations as observed for the MLSE-based enhancement schemes. As
a consequence, using Gaussian clean speech estimators (see Table 5.1) for MLSE-based
enhancement schemes results in audible artifacts.

Interestingly, the lower row in Fig. 5.6 shows that the issues observed for v = 1 can be
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Fig. 5.6.: Gain applied to the noisy input coefficients Y3 , by MOSIE [31] for different
MLSE-based enhancement schemes for the excerpt shown in Fig. 5.4. In the upper
rows, v = 1 and 8 = 0.001 which approximates the Gaussian LSA proposed
in [28] as shown in Table 5.1. In the lower rows, v = 0.2 and 8 = 0.001 is used
which corresponds to a super-Gaussian LSA. Here, f denotes frequency and ¢
time.
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reduced if a super-Gaussian estimator (v < 1) is employed. In contrast to Fig. 5.6, noise is
suppressed also between harmonics. Further, also higher attenuations are applied to the
noise only segments. Considering Fig. 5.2 and Fig. 5.3, the behavior can be explained by the
fact that lower shape values cause more suppression for low a posteriori SNRs v, ,. Hence,
our key conclusion is that using super-Gaussian clean speech estimators, the background
noise can be suppressed also when MLSE-based approaches are employed.

5.5. INSTRUMENTAL EVALUATION

We evaluate the performance of the different speech estimators using instrumental measures
such as PESQ improvement scores [230] and SegSNR improvements [50], [71]. As described
in Section 2.2.2; the improvements are based on the noisy signal, i.e., they are computed
as the difference between the raw scores of the enhanced signal and the noisy signal.
Additionally, the SegSSNR, and the SegNR [50] are employed to quantify the speech
distortions and noise suppression, respectively. Information about these two measures can
also be found in Section 2.2.2.

For this evaluation, we use 128 sentences from the TIMIT core set. Again, it is ensured
that the amount of audio material is balanced between genders. The clean speech signals are
artificially corrupted by the same noise types used for training the NMF-based enhancement
scheme. The SNRs are ranging from -5 dB to 20 dB in 5 dB steps. For each sentence, the
segment of the noise signal where the speech signals are embedded in is randomly chosen.
The instrumental measures are only evaluated after a two second initialization period to
avoid initialization artifacts that may bias the results. Similarly, also the SNRs used for
the artificial mixing are determined based on the signal powers in speech presence. Further,
the noise segments that were used for training the NMF-based enhancement scheme are
excluded in the evaluation for all enhancement schemes, i.e., also for the non-MLSE-based
and the DNN-based enhancement schemes. This is done to make the enhancement schemes
more easily comparable.

5.5.1. Performance Impact of MOSIE’s Parameters

In this section, we analyze how the choice of the shape and the compression parame-
ter influences the performance of clean speech estimators if used for the MLSE-based
enhancement schemes.

Fig. 5.7 shows the PESQ improvement scores for MOSIE [31] as a function of the shape
parameter v and the compression parameter 5. The graphs depict the average over all
considered noise types and speech files for two different input SNRs. For the non-MLSE-
based enhancement scheme, increasing super-Gaussianity (v < 1) and compression (8 < 1)
slightly improves the speech quality predicted by PESQ. However, the key message is
that for the MLSE-based enhancement schemes, increasing super-Gaussianity (v < 1)
and compression (5 < 1) improves the signal quality predicted by PESQ considerably
stronger.
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Fig. 5.7.: PESQ improvement scores of MOSIE [31] for all considered enhancement schemes
in dependence of the shape v and compression 3. For relations to other clean
speech estimators, see Table 5.1.

5.5.2. Comparison with Common Enhancement Schemes

In this final part of the evaluation section, we compare the super-Gaussian estimators,
i.e., MOSIE [31] to Gaussian approaches. To demonstrate that super-Gaussian estimators
considerably improve the performance of MLSE-based methods, we use the following
two parameter settings for MOSIE [31]: 3 = 0.001,» = 0.2 and 8 = 1,v = 0.2. The
parameters are chosen as a compromise such that all MLSE-based enhancement schemes
yield satisfying results.

Fig. 5.8 shows PESQ improvement scores and segmental SNR measures for the considered
enhancement schemes. The results again show that for the non-MLSE-based enhancement
scheme, a super-Gaussian estimator only slightly improves the performance. Contrarily,
the super-Gaussian setup for MOSIE [31] performs considerably better than the Gaussian
clean speech estimator, i.e., the Gaussian STSA [12] and the Gaussian LSA [28], if the
MLSE-based estimators are considered. As shown in Section 5.4, the suppression capability
of the Gaussian approaches is mainly controlled by the a priori SNR resulting in low
suppressions between harmonics for the MLSE-based enhancement schemes where the a
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PESQ improvement scores and segmental SNR measures for different clean
speech estimators employed in the non-MLSE-based, the DNN-based, and the
NMF-based enhancement scheme. While LSA and STSA employ Gaussian speech
priors, MOSIE (v = 0.2, = 0.001) and MOSIE (v = 0.2, = 1) represent
modern super-Gaussian speech estimators (see Table 5.1).
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priori SNR is overestimated. Here, this is reflected by the low segmental noise reduction
values observed for the DNN-based and the NMF-based approach if the Gaussian STSA [12]
or the Gaussian LSA [28] are employed. However, for the super-Gaussian estimators
MOSIE (v = 0.2, 8 = 0.001) and MOSIE (v = 0.2, 6 = 1) the noise reduction is strongly
increased and the residual noise, e.g., the noise between harmonics, is reduced. This comes
with a slight increase in speech distortion for MOSIE (v = 0.2, 3 = 0.001) as visible in a
decrease in SegSSNR. For MOSIE (v = 0.2, 8 = 1), the SegSSNR remains unchanged or is
even slightly increased. Overall, the behavior of the super-Gaussian estimators helps to
improve the quality predicted by PESQ and to improve the SegSNR.

5.6. SUBJECTIVE EVALUATION

As the results of instrumental measures cannot perfectly represent the impressions of
human listeners, we verify the results using a subjective listening test. For this, we employ
a multi-stimulus test with hidden reference and anchor (MUSHRA) [249]. In the experiment,
two different acoustic scenarios are tested: traffic noise and babble noise both at an
SNR of 5 dB. For both acoustic scenarios, an utterance of a male and a female speaker
taken from the TIMIT test set are used. These signals are processed by the non-MLSE-
based enhancement scheme, the DNN-based enhancement scheme, and the NMF-based
enhancement schemes. For all enhancement schemes, a Gaussian STSA (v = 1,5 = 1)
and a super-Gaussian STSA (v = 0.2, 5 = 1) are compared (see Table 5.1). Even though
MOSIE with » = 0.2 and g = 0.001 achieves the highest scores in most instrumental
measures, we use MOSIE with 5 =1 in the subjective listening test as this configuration
produces less musical artifacts.

In each trial, four signals are presented to the listeners: the noisy signals processed by
the Gaussian and the super-Gaussian estimator, an anchor, and a hidden reference. The
trials are repeated over all combinations of acoustic conditions, speakers and enhancement
schemes. The reference signal is a noisy signal with an SNR of 17 dB. Finally, for the anchor,
the clean speech utterance is filtered using a low-pass filter at a cutoff frequency of 4 kHz and
mixed at an SNR of —5 dB. This signal is processed using a non-MLSE-based enhancement
scheme where the noise PSD is estimated using [70] and the speech PSD is obtained using
the decision-directed approach [12] with a smoothing constant set to 0.9. A Wiener filter
with a minimum gain of —20 dB is employed to obtain the anchor. The sound examples
used in the experiment are also available at https://uhh.de/inf-sp-tasl2018a.

A total of 13 subjects have participated in the MUSHRA. The test took place in a
quiet office and the subjects listened to diotic signals played back through headphones
(Beyerdynamic DT-770 Pro 250 Ohm) through a RME Fireface UFX+ sound card. The
test was conducted in two phases. In the first phase, the subjects were asked to listen to a
subset of the files used in test such that they can familiarize themselves with the different
signals. During this training phase, the listeners were also asked to set the level of the
headphones to a comfortable level. In the second phase, the listener’s task was to judge the
overall quality of the signals on a scale ranging from 0 to 100, where 0 was labeled with
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Fig. 5.9.: Box plot of the subjective ratings for different enhancement schemes.

“bad” and 100 with “excellent”. The order of presentations of algorithms and conditions
were randomized between all subjects.

The obtained MUSHRA scores are summarized in Fig. 5.9 using box plots. The upper and
the lower edge of the box show the upper and lower quartile while the bar within the box
is the median. The upper whisker reaches to the largest data point that is smaller than
the upper quartile plus 1.5 times the interquartile range. The lower whisker is defined
analogously. The crosses denote outliers that do not fall in the range spanned by both

whiskers. For each box plot, the results of all acoustic conditions and speakers are pooled,

which yields 52 data points. The result show that all participants were able to detect the
hidden reference, which had to be rated with 100, and that the anchor was consistently
given the lowest scores. Further, the results clearly confirm that for the DNN-based and
the NMF-based enhancement scheme, the sound quality of the super-Gaussian estimator

is considered better than the Gaussian estimator. For the non-MLSE-based estimator,

however, the MUSHRA scores of the Gaussian and the super-Gaussian estimator are
nearly the same.

Finally, a brief statistical analysis of the results confirms that the differences in MUSHRA
scores between the Gaussian and super-Gaussian estimators are statistically significant for
the MLSE-based enhancement schemes. For the used statistical tests, a significance level
of 5 % is employed. We apply a Wilcoxon signed-rank test to test for the difference in

medians between the MUSHRA scores of the Gaussian and super-Gaussian estimators.

This test is employed as the Shapiro-Wilk test indicates that the data is not Gaussian
distributed for all conditions. The different enhancement schemes, i.e., the MLSE-based
approaches and the non-MLSE-based approach, are treated separately. Considering the
difference between the Gaussian and super-Gaussian clean speech estimators for the
MLSE-based approaches, the differences are significant in both cases (DNN: p < 0.001,
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NMF: p < 0.001). Comparing the estimators for the non-MLSE-based algorithm reveals no
significant difference (p = 0.55). Hence, the subjective listening tests confirm the previously
obtained results of the instrumental measures.

5.7. SUMMARY

In this chapter, super-Gaussian clean speech estimators have been analyzed in the context
of ML-based speech enhancement approaches that employ spectral envelope models. We
refer to these approaches as MLSE. In the analysis part, we showed that the usage of
envelope models results in an overestimation of the a priori SNR, e.g., between speech
spectral harmonics. As a consequence, using Gaussian estimators, noise between harmonic
structures cannot be reduced such that residual noises remain after the enhancement.
However, in this chapter, we show that employing super-Gaussian clean speech estimators,
such as MOSIE [31], leads to a reduction of the undesired residual noise. This interesting
result stems from the higher attenuation that is applied by the super-Gaussian estima-
tors if the a posteriori SNRs are low. This allows the estimators to compensate for the
overestimated a priori SNRs without any further post-processing steps. As a consequence,
we showed via theoretical analysis and experimental evaluation that for MLSE-based en-
hancement schemes, super-Gaussian estimators have a much larger effect on improving the
enhancement performance than for classic non-MLSE-based enhancement schemes. Sound
examples of the considered algorithms are given at https://uhh.de/inf-sp-tasl2018a.


https://uhh.de/inf-sp-tasl2018a

CHAPTER 6

SUPER-GAUSSIAN MLSE-BASED SPEECH ENHANCEMENT UNDER THE
MIXMAX MODEL

This chapter is an extension to the work presented in Chapter 5. Here, we show that the
additional noise suppression of super-Gaussian speech priors is not restricted to estimators
that have been derived under an additive signal model in the spectral domain. It can
also be observed for MLSE-based speech enhancement algorithms that operate in the log-
spectral domain, e.g., [26], [101], [102], [112], [250]. Often, approximations of the additive
mixing model in Section 2.1.2 are used to simplify statistical inference for the speech
log-spectral coefficients. In this chapter, such an approximation has been employed where
the noisy log-spectral coefficients are modeled as the maximum of the speech and noise
coefficients. This is referred to as MixMax model [112] or log-max approximation [102].
In [112], it has been motivated by the empirical finding that the approximation yields
spectral representations which are visually similar to the results that are obtained if the
additive mixing model is used in the time domain. The validity of this approximation has
been further supported in [251] where it has been shown that the MixMax model is the
MSE optimal estimator of the noisy log-spectral coefficients if the phase of the complex
speech and noise coefficients is uniformly distributed. Further, it is argued in [102] that
the error of the MixMax approximation has only a considerable influence if two sources
have the same energy in time and frequency. Consequently, as speech has a sparse spectral
representation and is uncorrelated to the noise, time-frequency points are often dominated
by either speech or noise. From this, the practical expedience is concluded in [102].

The MixMax model is commonly used in combination with ML-based approaches where
speech and noise are modeled using Gaussian distributions in the log-spectral domain [26],
[101], [102], [112], [250] as in Section 2.1.3. In [112], it has been used to adapt the clean
speech models to the background noise for robust speech recognition. In the context of
speech enhancement, it has been used to infer the log-spectrum of the target speech from
noisy observations [26], [101] or mixtures of multiple speakers [102], [250] in an MSE
optimal way. In this chapter, we show that the MixMax based clean speech estimator can
be interpreted as a super-Gaussian LSA similar to [31], [32]. For this, the relationship
between spectral and log-spectral coefficients described in Section 2.1.3 [83] is exploited.
This relationship also allows the combination of ML-based enhancement schemes based on

This chapter is partly based on:

[219] R. Rehr and T. Gerkmann, “MixMax approximation as a super-Gaussian log-spectral amplitude
estimator for speech enhancement,” in Interspeech, Stockholm, Sweden, Aug. 2017, © 2017
ISCA.
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the MixMax model and non-ML-based speech and noise PSD estimators such as [12], [29],
[70], [82]. As in Chapter 5, we employ the MixMax model in an MLSE speech enhancement
scheme similar to [26]. We show that the MixMax based speech estimator [112] causes
less artifacts in the background noise compared to super-Gaussian LSA [31], [32] without
degrading the speech quality in comparison to the method in Chapter 5.

First, we recapitulate the MixMax based clean speech estimator in Section 6.1. In Sec-
tion 6.2, we analyze the gain functions that result for the MixMax based clean speech
estimator using the relationships in Section 2.1.3 [83]. In Section 6.3, the MixMax based
estimator is compared to the super-Gaussian LSA [31], [32] within an MLSE-based en-
hancement scheme and Section 6.4 summarizes the chapter.

6.1. MIXMAX BASED SPEECH ESTIMATOR

In this section, we recapitulate the MSE optimal estimator of the log-spectral speech
coefficients that results from the MixMax model. This estimator operates on the STFT of
the input signal. The MixMax model considers the log-spectra of the noisy input y,g;g)
which are defined in (2.17) on page 33. The MixMax signal mixing model [112], also known
as log-max approximation [102], is given by

lo lo lo,
y,gf) = max(sé eg),n,(C eg)). (6.1)

Under the model in (6.1), the distribution of the noisy log-spectral coefficients ygfzg) is

given by [112]

lo lo log) lo, lo
1Y) = Lo (i) + Fu i ) ), (6.2)
Here, f,(-) and F4(-) denote the PDF and the cumulative distribution function (CDF) of

the speech log-spectral coefficients si ‘}g), respectively. Similarly, f,(-) and F,,(-) denote

the PDF and the CDF of the background noise. In [26], [101], [112], f,(-) and f,,(-)
are set to a Gaussian distribution as in (2.18) and (2.19) on page 33, respectively. A
Gaussian model in the log-spectral domain differs from modeling the complex Fourier
coefficients by a Gaussian distribution. If a Gaussian distribution is used to model the
spectral Fourier coefficients, it can be shown that the log-spectral coefficients follow an
exp-gamma distribution [225] (see also (7.23) in Chapter 7). Correspondingly, the use of a
Gaussian distribution in the log-spectral domain results in a non-Gaussian distribution
in the complex Fourier domain. If S( g) and n( g) are modeled by a Gaussian PDF and
the mixing model in (6.1) is used, the MSE optlmal estimator of the speech log-spectral

speech coefficients, i.e., (log) E{s, (log |y(1°g }, is [26], [112]

(log)
. (lo (lo s s s (yke )
327gg) = by yk ®) + (1 — bk,e) <;u}c,l T Akt (log) >

6.3
Folyre) o



6.2. ANALYSIS OF THE MIXMAX GAIN FUNCTIONS

n (6.3), by, is given by bre = £, (0 ) Py )/ £, (%) [26], [112]. For obtaining
an estimate of the spectral clean speech coefficients S k¢, the log-spectral transformation
in (2.17) is reverted and the result is combined with the noisy phase ®} , as in (2.5) on
page 29. For obtaining the time-domain representation of the enhanced signal, the inverse
STFT is performed as in (2.8) on page 30.

The parameters of f,(-) and f,(-), i.e., the means p1, , and . ,, as well as, the variances A}, ,
and My 4, can be directly trained in the log-spectral domain [26], [101] Here, however,
we propagate these quantities from spectral estimates of the speech PSD Az’g and the
noise PSD Ay, using the relationship described in Section 2.1.3 [83]. Accordingly, the
same super-Gaussian distribution as in Chapter 5 is employed for the spectral speech
coefficients Sy, ¢, i.e., the magnitudes are assumed to follow a x-distribution as in (2.16)
while the phase is assumed to be uniformly between —m and 7. The spectral noise coefficients
Ny,¢ are assumed to follow a circular-symmetric complex Gaussian distribution as in (2.14)
on page 32. Consequently, the means pj , and jj , can be determined using (2.20) on
page 34. The variances \j , and A}, are given by (2.21) on page 34. As the spectral
noise coefficients Ny, are assumed to follow a Gaussian distribution, v = 1 has to
be used in (2.20) and (2.21), respectively. To reflect super-Gaussian distributed spectral
coefficients in the log-spectral domain, 0 < v < 1 has to be used to determine W, and
Ak.¢» respectively.

The relationship between spectral and log-spectral coefficients in (2.20) and (2.21), allows
the spectral speech PSDs A}, , and noise PSDs A}, to be used in combination with the
MixMax based clean speech estimator in (6.3). As a result, ML-based algorithms using
log-spectral representations can easily be used in combination with speech and noise
spectral PSD estimators, e.g., [12], [70], [82]. Hence, the advantages of both domains can
be exploited: on the one hand, many different non-ML approaches are available for spectral
PSD estimation [12], [29], [82] while, on the other hand, log-spectral representations are
better suited for constructing generalizing pre-trained speech models.

6.2. ANALYSIS OF THE MIXMAX GAIN FUNCTIONS

The relationship between the spectral parameters and the log-spectral ones, i.e,. (2.20)
and (2.21) on page 34, allows the estimator given by (6.3) to be interpreted as a real-valued
spectral gain function G, ¢ that depends on the spectral a priori SNR &, , = A} ,/A} , and
a posteriori SNR v, , = Yy ¢|?/A} ;. Such an interpretation is usually reserved for MSE

optimal estimators that have been defined in the spectral domain, e.g., [12], [28], [31]-[33].

In Figure 6.1, the gain function of the MixMax based estimator is shown that results if
the relationship in (2.20) and (2.21) is exploited. It is compared to the super-Gaussian
LSA [31], [32] which is based on an additive mixing model in the time domain. This
estimator is implemented using MOSIE proposed in [31] which generalizes [32] if small
values are employed for the compression parameter which is set to 8 = 0.001 here. This
estimator is chosen as it is also an estimator of the log-spectral amplitudes, i.e., the S k0 18
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Fig. 6.1.: Gain functions of the super-Gaussian LSA [31], [32] derived under an additive
model in the spectral domain and the MixMax based clean speech estimator.

estimated which minimizes E{log(|Sy.¢|) — log(|Sk.¢|)}. Additionally, the same statistical
model for the spectral coefficients is used as in the derivation of (2.20) and (2.21).

For v = 1, the suppression of both estimators mainly depends on the a priori SNR
&p.o- With increasing a priori SNR, the applied suppression decreases. Differences can be
observed for very high and low a posteriori SNRs v, , where the MixMax model results
in lower gains. Reducing v, i.e., assuming a super-Gaussian distribution for S} ¢, has a
similar effect for both gain functions. In both cases, a higher suppression is applied if
the a posteriori SNR v, , is close to 0 dB. In Chapter 5, [218], it has been shown that
this behavior is beneficial if pre-trained speech models are employed that only represent
the spectral speech envelope. In this case, it allows the suppression of the noise between
harmonics which are not represented by the speech models. Little suppression is applied if
the a posteriori SNR v, , is high, which results in lower speech distortions. This behavior
is characteristic for super-Gaussian estimators.

6.3. EVALUATION

In this section, the MixMax based estimator and the super-Gaussian LSA [32], again
realized as in Section 6.2 using MOSIE, [31], are embedded in an MLSE-based enhancement
scheme similar to [26]. The used enhancement scheme is identical to the DNN method
described in Section 5.2. We show that the MixMax based estimator yields similar results
in comparison to a super-Gaussian LSA in terms of speech quality. For evaluating the
speech quality PESQ improvement scores are used [230] as described in Section 2.2.2.
However, the MixMax approach results in less musical tones as indicated by a modified
version of the log-kurtosis ratio [252]. First, the parameters and evaluation setup are
considered, and the results are presented afterwards.



6.3. EVALUATION

6.3.1. Evaluation Setup

The speech signals processed by the enhancement scheme are sampled at a rate of 16 kHz.
For the STFT, 32 ms segments with 50 % overlap are employed and a square-root Hann
window is used for spectral analysis and synthesis.

The MLSE-based algorithm considered in this chapter is the same as the DNN-based
approach described in Section 5.2. Further, the same setup is used, i.e., the input features,
the hidden layers and the hidden units therein are configured in the same way as in
Section 5.2. As in Chapter 5, the weights of the DNN are optimized prior to the processing
using 1196 sentences taken from the training set of the TIMIT database [240]. Again, it has
been ensured that the training sentences are gender and phonetically balanced. As in [26],
only clean speech data is used for training to avoid noise specific adaptations of the DNN.
The targets of the DNN are given by the TIMIT annotation which are represented by one-
hot encoded target vectors. For each phoneme ¢, the phoneme dependent speech PSD AZ"“
is determined by averaging all speech periodograms |Sy ¢|* labeled as the corresponding
phoneme ¢ in the TIMIT annotation as in (5.3) on page 82.

Due to the averaging of phonemes, only spectral envelopes can be represented by the pre-
trained speech PSDs Azm. Similar to Chapter 5, [218], we show that using the relationship
in Section 2.1.3 and modeling the spectral speech coefficients S, , using a super-Gaussian
distribution also allows the MixMax based estimator to suppress noise between spectral
harmonics if MLSE speech models are employed. Hence, we show results for the Gaussian
case, i.e., v = 1, and for the super-Gaussian case, i.e., v = 0.25. The considered gain
functions Gy, ¢ are limited such that a time-frequency bin may not be suppressed by more
than 15 dB.

We use PESQ [230] improvement scores as instrumental measure for the speech quality and
a modified version of the log-kurtosis ratio proposed in [252] to evaluate the noise quality
in terms of musical tones. Similar to [252], we define the log-kurtosis ratio as

Aro8) = log (Hﬁ> , (6.4)

Kn

where k7 is the empirical kurtosis of the processed noise whereas k,, denotes the empirical
kurtosis of the unprocessed noise. The kurtosis can be considered a measure of outliers and
a positive log-kurtosis ratio Ax(°%) is expected if the processed signals contains musical
tones. Instead of estimating the kurtosis for each segment ¢ and using the average along
time as k, and kj, we estimate the kurtosis per frequency band as

4
1
W ZéeLff’) [‘Nk:,d? - |N|ﬂ

a2\ %
(it Seego [ - TV

Fin[k] = (6.5)

In (6.5), the set IL,S"’) contains only segments in the kth frequency band where the back-
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— additive model, [31], [32] (v =1) —— MixMax model, [112] (v =1)
--------- additive model, [31], [32] (v = 0.25) - MixMax model, [112] (v = 0.25)
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Fig. 6.2.: PESQ improvement score (left panel) and log-kurtosis ratio (right panel) of the
super-Gaussian LSA [31], [32] and the MixMax based estimator averaged over
all noise types.

ground noise is dominant as

L](cn) = {£| 10 loglo (|Sk,€|2/|Nk’e

’) <} (6.6)

Here, 7 is a threshold value which is set to —10 dB in this evaluation. The cardinality

of Lg”) is denoted by |Ll(:l)\ and |N|? is given by |N|3 = > ver |Nk,4|2/|]L,(€n)|. Finally,
B k

Ky is given by Kk, = Ef:_ol knlk]/ K, where K denotes the number Fourier coefficients.

Similarly, the kurtosis of the processed noise periodogram |N ke is determined.

For testing, 128 sentences taken from the TIMIT test corpus [240] are used where, again,
a gender balanced set is used. The clean speech sentences are corrupted by babble noise,
factory 1 noise and pink noise taken from the NOISEX-92 database [239] at SNRs ranging
from -5 dB to 20 dB. Additionally, a modulated version of the pink noise similar to [70]
and a traffic noise taken from https://www.freesound.org/s/75375/ is used.

6.3.2. Results

Fig. 6.2 depicts the PESQ improvement scores and log-kurtosis ratio obtained for the
used variant of the super-Gaussian LSA [31], [32] and the MixMax based clean speech
estimator. The results are averaged over all noise types and the left panel of Fig. 6.2 shows
the PESQ improvement scores. As in Chapter 5, using super-Gaussian speech models, i.e.,
v < 1, results in considerably higher PESQ improvements than a Gaussian assumption
(v = 1). Again, this effect can be explained by the higher suppression that is achieved
using super-Gaussian models as indicated by the gain function G/, depicted in Fig. 6.1.
The log-kurtosis in the right panel of Figure 6.2 shows low values if Gaussian models
are employed, i.e., v = 1, and rises for super-Gaussian models (v = 0.25). As expected,
the log-kurtosis is generally higher for super-Gaussian estimators (v = 0.25) than for


https://www.freesound.org/s/75375/

6.4. SUMMARY

for Gaussian estimators (v = 1). Of the two super-Gaussian estimators, however, the
MixMax based approach introduced in this chapter achieves the lower log-kurtosis ratio,
indicating less spectral outliers such as musical noise. We note that if the babble noise
and the factory noise are considered separately, the log-kurtosis ratio is higher for the
MixMax based estimator. In informal listening tests, however, no disturbing musical tones
could be noticed and both clean speech estimators have been found to sound very similar
in these highly non-stationary noise types. Part of the reason may be that estimating
the fourth-order moments in the kurtosis metric is rather difficult for these noise types.
This possibly renders the log-kurtosis ratio unreliable for non-stationary noises. However,
for other noise types, such as pink noise and traffic noise, it is clearly audible that the
MixMax based estimator causes less artifacts. Hence, the overall averaged log-kurtosis
ratio in Figure 6.2 adequately reflects the trend that the MixMax based estimator results
in less musical tones if super-Gaussian speech models are employed. This is confirmed
in informal listening tests. Further, this is achieved while maintaining the same PESQ
scores as the super-Gaussian LSA [31], [32]. Audio examples can be found at https:
//www.inf.uni-hamburg.de/en/inst /ab/sp/publications/interspeech2017.html.

6.4. SUMMARY

In this chapter, we showed that the MixMax based estimator used in [26], [101] can be
interpreted as a super-Gaussian LSA. For this, the relationship described in [83] (see also
Section 2.1.3) is exploited. Additionally, this allows the combination of pre-trained log-
spectral models with spectral speech and noise PSD estimators for speech enhancement.
Further, the MixMax based speech estimator is compared to the super-Gaussian LSA
proposed in [31], [32] using an MLSE-based speech enhancement scheme. The instrumental
measures indicate that the speech quality of both estimators is nearly identical in the
super-Gaussian case while the MixMax based speech estimator causes less musical artifacts
in the residual background noise.
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CHAPTER 7

COMBINATION OF NON-ML AND ML-BASED ALGORITHMS FOR
ENVELOPE BASED SPEECH ENHANCEMENT

This chapter presents another method for suppressing the background noise between speech
spectral harmonics if MLSE models are employed. In contrast to the approaches presented in
Chapter 5 and Chapter 6, where super-Gaussian models have been exploited, a combination
of a non-MLSE and an MLSE-based speech enhancement approach is proposed. The
combination is embedded in a statistical framework where the enhancement algorithms are
represented by different statistical models. The models describe the likelihood of the noisy
observations allowing the method which is best suited for enhancing a noisy time-frequency
point to be identified. This results in a soft mixing of the estimated clean speech spectra
obtained from the combined enhancement schemes.

Instead of using a DNN-based phoneme recognizer or an NMF-based approach, the MLSE
approach in this chapter is GMM-based. It is similar to the feature enhancement methods
presented in [109], [253]-[255], where the VTS approximation is used to incorporate spectral
noise PSD estimates in cepstral or log-spectral feature vectors for noise robust speech
recognition. In [103]-[105], the VTS approach has been used to develop ML-based speech
enhancement algorithms. These algorithms model the log-spectral speech coefficients
and possibly also the log-spectral noise coefficients using a GMM. The clean speech
coefficients are, hence, inferred in the log-spectral domain. For this, a VTS is used to
approximate the additive mixing model such that statistical inference becomes feasible
in the log-spectral domain. For such GMM-based speech enhancement approaches, the
number of mixtures determines the resolution of the learned speech model, i.e., whether
it describes only the spectral envelope or if it also includes the fine structure. To obtain
a high-resolution estimate of the clean speech, i.e., an estimate which includes the vocal
tract shape as well as the pitch, a large amount of mixtures is employed in [103]. This,
however, increases the demands with respect to memory and computational complexity.
In [104], a reduced amount of mixtures is employed resulting in an MLSE speech model
which may only represent the speech spectral envelopes, but typically not the spectral fine
structure. As a consequence, noise between the speech spectral harmonics is not reduced.
This problem is mitigated in [104] by applying a post-filter based on a harmonic model in
voiced speech. In [26], [27], the residual noise is suppressed by applying an estimate of the

This chapter is partly based on:

[220] R. Rehr and T. Gerkmann, “A combination of pre-trained approaches and generic methods for
an improved speech enhancement,” in ITG Conference on Speech Communication, Paderborn,
Germany, Oct. 2016, pp. 51-55, © 2016 VDE Verlag.
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speech presence probability as a post-filter. In [241], an explicit model of the excitation
has been incorporated to avoid this issue.

In this chapter, we show that combining non-MLSE with MLSE-based approaches reduces
the noise between spectral harmonics which cannot be reduced using only MLSE-based
approaches. As a consequence, the sound quality in terms of PESQ scores improves in
comparison to the sole application of a pure MLSE-based enhancement method. Further, it
is shown that the combination also outperforms a pure non-MLSE estimator based on the
LSA [28] and a harmonic model based post-filter applied to the output of an MLSE-based
estimator similar to [104].

This chapter is structured as follows: First, the employed signal model and the statistical
relations are described in Section 7.1. In Section 7.2 and Section 7.3, the used MLSE-
based speech enhancement and non-MLSE-based enhancement methods are summarized.
Section 7.4 presents the proposed combination which is evaluated in Section 7.5. Finally,
the chapter is summarized in Section 7.6.

7.1. SIGNAL MODEL AND STATISTICAL MODELS

The considered MLSE-based enhancement method learns the statistics of the clean speech
coefficients in the log-spectral domain. Together with cepstral domain models, this represen-
tation is often preferred for learning approaches, e.g., in automatic speech recognition [173],
[256]. The noisy input signal is processed in the log-spectral domain similar to Chapter 6.
For this, the STFT framework given in Section 2.1.1 is employed and the definition of the
log-spectrum given in (2.17) on page 33 is used. The estimate of the log-spectral clean

(log)
k¢

speech coefficients § allows the spectral gain function to be computed as

~(lo: lo:
G = exp([30%) -y %)/2). (7.1)

As in (2.4) on page 29, this function is applied to the noisy input spectrum to obtain
an estimate of the complex clean speech coefficients S k0. As the phase information is
removed with the transformation to the log-spectral domain in (2.17), this is equivalent to
combining the estimated clean speech magnitude with the noisy phase. The time-domain
representation of the enhanced signal is obtained using the overlap-add method after
applying a synthesis window as in (2.8) on page 30.

In contrast to the MLSE-based enhancement scheme, non-MLSE-based enhancement
schemes are generally derived in the spectral domain. Correspondingly, the statistical
quantities, such as the PSDs, are estimated in the spectral domain. To be able to combine
such spectral approaches with the considered MLSE enhancement approach, the spectral
estimates are propagated to the log-spectral domain similar to Chapter 6. This allows the
application of state-of-the-art noise PSD and speech PSD estimators, e.g., [70], [82], in
combination with MLSE-based speech enhancement schemes operating in the log-spectral
domain. The propagation is based on the equations given in Section 2.1.3, [226], [257]. In
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this chapter, specifically, the non-MLSE-based algorithms are based on the assumption that
the complex DFT coefficients of speech, noise and the noisy observation, i.e., Si ¢, N ¢,
and Y}, ¢, respectively, follow a zero-mean circular-symmetric Gaussian distribution. The
respective variances are denoted by Az,z, Z,év and AZ,Z' Further, we assume that speech
and noise are uncorrelated, i.e., A} , can be expressed as A} , = Ay , + A} ;. Under the
assumption that the spectral coefficients of speech and noise are both Gaussian distributed,
the means in the log-spectral domain, i.e., p ,, p1; ,, and ;L,yc} ¢, can be determined by using
v = 1 and the respective spectral variance, i.e., A} ,, A} ,, or AZJ, in (2.20) on page 34.
Similarly, the log-spectral variances, which only depend on the shape parameter v, can be
determined by using v =1 in (2.21). Because the Gaussian assumption (v = 1) is used for
all signal components in the non-MLSE-based approaches, the propagated log-spectral
variance is the same for all components. In [226], it has been derived analytically to be
m2/6, e, A, = Np o = N = 7°/6.

Furthermore, the log-spectral cross-covariance \;Y, is used by one of the estimators

considered in this chapter. It depends on the magnitude squared correlation coefficient pi ‘
between the spectral coefficients of noisy speech Y} , and clean speech Sy, 4, i.e.,

o ES)P
S B{SkePYELVia P}

In [226], [257], it has been shown that this quantity is related to the Wiener filter in the
spectral domain

(7.2)

S
2 k.4
=2 7.3
Pk.e Z,z‘f‘ Z,e (7.3)

With this and the Gaussian assumption for speech an noise in the spectral domain, the
log-spectral cross-covariance A}, can be determined using [226]

NP}
Ay =3 R (7.4)

: i2
i=1

7.2. MLSE-BASED SPEECH ENHANCEMENT

In this section, the MLSE part of the proposed combination is presented. It is based on
the work in [104], [253], [254]. It is assumed that the joint distribution of the log-spectral
speech coeflicients can be described by a GMM as

Q K/2
F(s8°®zg = 258 = 37 f(q) | [T F0P 1ap 200 = 2ME5P) (7.5)
q,=1 k=0
Q K/ (log)| s|ag,zMLSE | s|q,,zMLSE
=3 fla) HN(SM e el ) . (1.6)
q,=1 k=0
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T
Here, sélog) - [88{397 Sgl;g)’ cee 551(0/‘? 4 is a vector which comprises the frequency compo-
T .
nents of the speech log-spectrum at segment /. Further, z, = [Zo,g, 21,000y ZK/Q’[] is a

vector that contains a state indicator for each frequency bin of a segment ¢. The state
indicator is a latent random variable which is used later in Section 7.4 for the combination.
As the MLSE-based approach is considered here, the state indicator is assumed to be
ZMESE i e | the state of the MLSE approach, for all frequency bins. Each mixture com-
ponent, which are indexed by ¢,, is given by a Gaussian distribution which is denoted
MLSE
by N (+). The parameters of the mixture components are the mean uZ‘q[’Z and variance
MLSE
/\Zlq“z . The log-spectral coefficients are assumed to be independent across frequency
allowing each mixture component to be represented by a multiplication over all frequency
bins. The probability f(q,) is the prior of the g,th mixture component and @ denotes the

number of mixtures. During training, which is performed prior to the application of this
MLSE MLSE
algorithm, the parameters leqz ” and )\Zlq‘ ” and the prior probabilities f(q,) are

determined. For this, the expectation maximization algorithm [87] is employed. By using
the EM algorithm, the states ¢, are not directly related to phonemes as in Chapter 5 and
Chapter 6. However, as the number of GMM components is chosen relatively low, the
GMM will only be able to represent phoneme-like structures.

The linear relationship between speech components and noise components in the spectral
domain in (2.3) on page 28 is in general non-linear in the log-spectral domain. Here, similar
to [104], [253], [254], the relationship in the log-spectral domain (2.3) is approximated using
a first-order VTS. Commonly, the phase information is omitted as originally proposed
in [253], so Yy ¢|* can be written as

Yiel® ~ [Skel® + [Nkl (7.7)

This approximation omits the cross-term which additionally depends on the phase difference
between speech and noise. While clearly a simplification, it is often used in VT'S-based
enhancement approaches. Under the reasonable assumption that speech and noise are
uncorrelated, the cross-term cancels out on average, i.e., at least E{|Yy ¢|?} = E{|Sy ¢|*} +
E{|Nk¢|?}, e.g., [109], [223]. Similar approximations are also used in other pre-trained
approaches, e.g., NMF [21], [117]. A study on how these approximations affect the quality
of enhancement algorithms is given in [137]. While attempts for incorporating the cross-
term exist [255], [258], [259], they typically increase the computational complexity. Thus,
for simplicity, we stick to the simple model in (7.7) in this work. In the log-spectral domain,
the relationship in (7.7) can be rewritten as

lo, lo lo lo, lo,
y;;,eg) - V(sé’f), nl(éyf)) = log {exp (sgc,zg)) + exp (n%ﬁ)} : (7.8)
The non-linear mixing function V (s,(ckzg), n,(ql(zg)) is approximated using a first-order VTS

with respect to the speech and noise components s,(cl_(;g) and n,(clczg), as

ygj)ég) ~ Vfo(sgzg) _ 'PO(S)) + Vﬁo (ngjzg) _ ’PO(”)) + VPO, (7.9)
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Here, Py and Py™ form the linearization point Py as Py = [730( $) Po™ ] and yPo =
V(P (s) 730(")) The symbols VPO and VPO denote derivatives with respect to 8( g and

(log) MLSE

ny. . evaluated at Py. The linearization point is usually given by Py () = ,uslq" ’ and

770(”) = py. o and therefore depends on the mixture g,. As in [104], the approximation in (7.9)

is used to determine the parameters of the likelihood of s( Og)

og) |S(log MLSE)

ke 1907
The mean and the variance of f(yk eg)|s,(€kzg)7 qg, 2MESE)

MLSE
expected values p = E{yk}jgg } and )\zlé’q"”z = E{(yg(zg) uzlj’q") } using

the simplified yl(C ) n (7.9). As the speech component s,(clfzg) is given, the only remaining

given the ¢,th mixture and the
state indicator f(yk
are obtained by determining the

ILSE
v\s,q/g,z

random variable is the noise n g) . Thus, the mean and the variance are given by

MLSE
”%!z,qe,z _ V?O(ngzg) _ zP s)) + vPo( rPO n)) 4 VPO (710)
5,q,,2MLSE 2.,
Al = (V) AL, (7.11)

With the model used for f(y{ % [s\'%, q,, 2MF5E), also the likelihood of the g th mixture

(log) 9, MLSE) og)

given the state f (y and the posterior of st k given the g,th mixture and the

state f (sk Kg) |ykl(2‘g), s, ?M¥5E) can be determined. Also these probability density functions

follow Gaussian distributions due to the Gaussian assumption for f (y,(chzg |skl(2g), qg, 2MESE)

and for the speech mixtures in (7.5). The mean and variance of f(y( Og)|qe, MLSEY are
given by
MLSE MLSE
plte = = PP (et Py f VP, — Py VP, (712)
MLSE 2 MLSE
/\azz,z =) Ail%z (VPO) k00 (7.13)
while the mean of the posterior (sk d J](Cl(zg , @y, 2MESEY 45 given by
s|y,qp,2MESE s|qp,zMLSE /\2qu’ ' LSEVVO (log) |q,,zMESE
kot =y " + oNISE (yk,zg — " ) (7.14)

ylg
/\k,e

With this, the MSE estimator of the log-spectral clean speech coefficients is determined.

The estimator is given by the mean of f (sgog)|ygl°g), ZMLSE)

each frequency bin k as

, which can be computed for

Q
MLSE MLSE
pl T = 3T Fgly P, MUSEY e (7.15)

q[:1

which is assumed to follow a Gaussian distribution.

107



108

7. COMBINATION OF NON-ML AND ML-BASED ALGORITHMS FOR ENVELOPE BASED SPEECH ENHANCEMENT

MLSE
By setting 31(612 e — uzhj o in (7.1), the gain function Gj can be determined, which
is then used to to enhance the noisy spectrum Y, ; as S ke = G ¢Yy . The probability

flq, |y(log 2MESE) can be obtained using Bayes’ rule as

1
log) MLSE) fly (Og)|q ,ZMLSE)f(qg)

og , (7.16)
S8y F(y g, 2MISE) £(g))

((M

where f(yélog)|qg,zMLSE) is given by the product of the frequency dependent PDF

f (y,(cl;g)|q¢,zMLSE). Furthermore, for computing the posterior, an estimate of the log-
spectral noise mean /i , and the log-spectral noise variance \j; , is required. For obtaining
these values, a spectral noise tracking algorithm, e.g., [29], [70], [80], is employed to de-
termine the spectral noise variance AZ,@ More details about this algorithm are given in
Section 2.1.4. In contrast to the static speech model, this estimate is time-variant. Using
the equations for propagation given in Section 2.1.3 and Section 7.1, the log-spectral
quantities pj. , and A, can be obtained from A,

7.3. NON-MLSE-BASED SPEECH ENHANCEMENT

This section gives an overview over the non-MLSE clean speech estimators that are
combined with the MLSE enhancement method described in Section 7.2. Here, we consider
a linear log-spectral estimator related to the linear cepstrum estimator in [226] and the
LSA [28]. The non-MLSE approaches model the log-spectral speech coefficients using
distributions which are independent of the GMM and its mixture components. The
parameters are obtained from the noisy spectrum Y}, , using a spectral speech PSD tracker
for which TCS [12], [82] is used. The noise variance is obtained in a similar way as for the
MLSE method, i.e., it is also estimated from the noisy observation using the SPP-based
noise estimator [70], [71]. Both algorithms are described in more detail in Section 2.1.4.
Additionally, in this section, the underlying likelihood models are given as they form the
basis of the combination.

7.3.1. Linear Log-Spectral Filter

The linear log-spectral filter is closely related to the linear cepstrum estimator presented

n [226]. In [226], it is shown that the linearly constrained MSE estimator of the clean
speech cepstral coefficients has an equivalent representation in the log-spectral domain.
It results from assuming that the log-spectral coefficients of speech and noisy speech are
jointly Gaussian distributed as

(log) ylzWF ylz™W sy|zWF
lo (log) Yy 1258 A A
f(ygc Eg)v Sk Zg ‘Qb F) =N éflfg) ];’ﬁWF s Sk7£ZWF kfsz . (7.17)
\ by y| A |
Skt Mo k.l kot
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The joint distribution f (yk(zg), Sk v |qe, zi,¢) generally depends on the mixture g,. However,

g, has no influence on the distribution if z;, = 2WF which reflects the assumption

above that the non-ML approaches are independent of the GMM. The symbol zVF is a
state indicator for the model assumed in this section and is used for the combination in
Section 7.4. The required means and variances are obtained by propagating the spectral

estimates of the speech PSD Aj, , and the noisy speech PSD AY ;¢ to the log-spectral domain.

The PSD of noisy speech is obtained by exploiting the assumption that the spectral speech
and noise coefficients are uncorrelated, i.e., Akl = A} ket Ak,é' For the propagation, the
methods described in Section 2.1.3 and Section 7.1 are used. By marginalizing (7.17) over

(log) , the likelihood of this non-ML-based approach can be obtained, which is given by

lo, lo, lo z WE
PO g0, 2 VF) = FyRo 2 WF) = Al s . (7.18)

Under the joint distribution given in (7.17), the MSE optimal estimator of the log-spectral
clean speech coefficients is

S?JlZWF

/ A wr
sly,ae, 2V sly,2V T sz k.t (log) ylz
e = Hip =M, T+ IVEE ke Hipe . (7.19)
k¢

As the speech and noisy speech coefficients are independent of g, if 25, = 2W¥, the
resulting estimator is also independent of g,.

7.3.2. Log-Spectral Amplitude Estimator

The second enhancement method that can be used in combination with the considered
MLSE enhancement approach is the LSA estimator [28]. Here, it is assumed that the
spectral coefficients of speech and noise follow a complex normal distribution. As discussed
in Section 2.1.2, it is also assumed here that the spectral speech and noise coefficients are
uncorrelated and are zero mean. With these assumptions, the joint distribution of the
complex spectral speech and noisy speech coefficients can be written similar as in [257]

AylzLSA AS‘ZLSA
|:0] s k’zLSA k7éLSA‘|> . (7.20)

s|z s|z
Ajy Ay
Here, 254 is the indicator for the model used for the LSA [28]. Further, the variances

LSAY _ Vit
fYht; Skelap, 2°%) = Ne <|:Sk1’:|

A5|ZLSA y| =S4 s\z A
re and Ay are identical to the speech and noisy speech PSD, i.e., A} =Ags

and A%‘;L = AZJ. As both signal components, i.e., speech and noise, are assumed to
follow a zero-mean Gaussian distribution, their joint distribution is given by a multivariate
zero-mean Gaussian distribution. Because speech and noise are uncorrelated, the variance
of the noisy components can also be expressed as Aj , = A}, + Ay ,. For the same
reason, the off-diagonal elements of the covariance matrix are equal to the variance of
speech A} ,, since E{Y} ¢S} ,} = A} . In [28], the MSE optimal estimator of the speech
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log-spectral coefficients has been derived under the model in (7.20), i.e., E(log(|Sk,¢|)|Yk,¢)-
Correspondingly, this method is the MSE optimal estimator of log(| Sk ¢|) = 1/2 - s,(;(zg).
The result of the MSE estimator given in [28] can be rewritten as an estimator of the

log-spectral speech coefficients s,(clozg) as

sly,q,2"5% sly,z Ak (log) et
’uk’ev 05 — //[/k: Z’ = 210g Ai +yk‘,£ +/ Tdt, (7-21)
ke T Do Cot

where (log)
Z,e eXP(yk eg )
Cre =

s n s
P ke

(7.22)

For this approach, no propagation of the statistics from the spectral domain is required.
The likelihood under this model can be derived as
(log)
Yk,e
P ). (7.23)
Ak ¢

10 lo
FpP lag, 2250 = FyoP 1150 =

Yy
Ak:,é

7.4. PROPOSED COMBINATION

In this section, we describe the proposed method for combining the MLSE approach from
Section 7.2 and the non-MLSE enhancement methods given in Section 7.3.

For the combination, we exploit the fact that each enhancement method exhibits a different
underlying likelihood model. Therefore, we define the likelihood of the state z , given the

q,th mixture f(y,g;g)kk,zy%) as

fly (log)|q ZMLSE) Zhg = »,MLSE
¢ ,
f(yk VA )|quk f) f( ( g)|q[a WF)7 2k = ZWF7 (724)
fly (log)|q ZLSA) Zhp = LLSA

The different enhancement approaches are distinguished by the discrete state variable
zk,¢ which can take the values ZMESE 2 LSA “and 2WF for the MLSE approach, the
non-MLSE LSA, and the non-MLSE linear log-spectral estimator, respectively. The
state zy ¢ is allowed to be different for each frequency k and segment ¢. The likelihoods
fly (log)|zWF) and f(y(log)|zLSA) are given in (7.18) and (7.23). These two likelihoods are
independent of the mixtures g,, such that for all mixtures g, the equalities f (yg;g) |zWE) =
fly (Og)|qp, 2WF) and f(ykkzg |2H8AY) = f(ygczg)|qé, 2154 hold. For the pre-trained approach,

f (yf‘}g lq,, 2MESE) is equivalent to

MLSE

log) lo ylg,,zMESE 1 ,Z2MLS
PO g0, M) = N (0 = AT (7.25)
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with parameters given in (7.12) and (7.13). With Bayes’ rule, it can be determined which
of these states can be considered the most appropriate one for the noisy observation

PO a0 2.0 F(210)

(zu|qhﬂug)) M ) P (7.26)
Zf e |26 240 f(2h0)
Z;c,[

The state prior probability f(z¢) can be used to control the mixing of the combined
algorithms such that a specific method may be preferred over the others. The posterior
probability in (7.26) can be included in the calculation of the MSE estimate of the clean
speech log-periodogram. This leads to a weighted combination of all combined enhancement
methods as

5\!/41[ Zf Z’ff|yké 7q€) 5‘J7‘1ﬁ7 (7.27)
Zk,0
MLSE
For the MLSE trained enhancement method, the mean ,us‘y e is given in (7.14).
WF WF
For the non-MLSE enhancement methods, the means are ,ug‘y’qZ = uzl"lé’z and

uilz S - usly’ * which are given in (7.19) and (7.21), respectively. As the non-MLSE

enhancement methods are independent of the mixture ¢,, the values have to be computed
only once and can be reused for each ¢, in (7.27). The MZ‘%’Q‘] have to be marginalized over

the mixtures ¢, similar to (7.15) to obtain a final estimate of the clean speech. For this,

the probability f(qdy?og)) is required instead of f(q,|y, (log) , 2MLSE)

(log) MLSE)
b

. In our experiments,

however, we found that using f(q,|y,

sly
TWEE

yields better results, i.e., we compute

s lo sly,
il =" Flaly{o®), MUSEY e, (7.28)

e

The reason for this is that f (qg\y(log)) tends more towards the prior f(g,) which only

reflects the global distribution of the mixtures and is inappropriate for describing the

local distribution, i.e., for a new observation yglog). This happens because for computing

(qz|y(log)) f(yg(zg”q@, zk,¢) has to be marginalized over z; ¢ as

f(yk eg) lq,) = Z f(y;(:fzg) |9¢, zk,0) f(2h,0), (7.29)

Zk,0

where the joint distribution f(yé o¢) |g,) is given by the product of f(yk ¥ ‘%) over all k. The

sum in (7.29) includes f(y,(;(zg lq,, 2VF) or f(yl(c(zg lq,, 245%) which are both independent

WF LSA

of g,. If the prior f(zx,) for the non-MLSE approach, i.e., zx¢ = 2" " or z5¢ = 2°%, is

set to 1, for example, then f (qdyélog)) = f(q,) will result after applying Bayes rule. This
does not reflect the actual distribution of the states in the trained speech model and can

be avoided by using f(yélog)|ql, MESEY ag in (7.28).
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While here we focus on the combination of MLSE and non-MLSE enhancement approaches,
it is interesting to note that this method allows different combinations of algorithms,
e.g., it is possible to combine the pre-trained enhancement method with either the linear
estimator or the LSA estimator or both non-MLSE enhancement algorithms. The overall
procedure is summarized in Algorithm 8.

7.5. EVALUATION

In this section, we evaluate the proposed combination and compare it to the non-MLSE
algorithm based on the LSA [28] and an MLSE-based approach with a harmonic post-
filter similar to [104, Section 3]. The algorithm are compared by means of PESQ [230]
improvement scores as described in Section 2.2.2.

For the evaluation, we use 128 sentences taken from the test set of the TIMIT database [240]
where we ensure that the amount of sentences spoken by male and female speakers is
balanced. The speech signals are artificially corrupted by different background noises with
SNRs ranging from —5 dB to 20 dB. Here, we employ babble noise, pink noise, which are
taken from the NOISEX-92 database [260], and a non-stationary traffic noise. Additionally,
we also include an amplitude modulated version of the pink noise as in [70], [71]. In our
evaluation, the sampling rate of all signals is 16 kHz.

The corrupted signals are processed in 32 ms blocks with an overlap of 50 %. For spectral
analysis and synthesis, a square-root Hann window is used. The speech model used in
the MLSE approach consists of 128 mixtures. The parameters are trained off-line on the
log-spectra of 784 gender balanced uncorrupted sentences from the TIMIT training corpus
using the expectation maximization algorithm [87]. The speech presence probability based
harmonic post-filter is implemented according to the description in [104, Section 3]. In [104],
the post-filter is only applied to voiced segments. Therefore, we determine the voiced
probability for each segment using [261]. If the probability exceeds 50 %, the harmonic
post filter is applied. The noise PSD is obtained using the estimator described in [70].
The speech PSD is determined using temporal cepstrum smoothing as described in [82].
These two methods are considered in Section 2.1.4 in more detail. For the MLSE method
in Section 7.2 and the linear log-spectrum estimator in Section 7.3.1, these estimates are
propagated to the log-spectral domain using the method described in Section 2.1.3 and
Section 7.1. For all enhancement methods, we ensure that the noisy input spectrum is
attenuated by a maximum of 12 dB. Further, the VTS approximation may give values
larger than the noisy observation such that the input signal may be boosted. We prevent
this by setting an upper limit to the amplitude of the estimated clean speech spectrum
which is given by the amplitude of the noisy observation. This limit is applied for all
algorithms in the comparison.

The results are shown in Figure 7.1. Here, “LSA” denotes the non-MLSE-based speech
enhancement algorithm which uses the gain function from [28] but no pre-trained speech
models. In the legend, “MLSE” indicates the speech enhancement approach in Section 7.2.
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Fig. 7.1.: PESQ improvements for four different noise types over different SNRs. LSA: [28],
MLSE: MLSE method, no combination, MLSE4+WF: MLSE method with linear
log-spectral filter, MLSE+LSA: MLSE method with LSA, MLSE+H: MLSE
method with harmonic filter (based on [104]).

The combinations are denoted by MLSE+additional method, where the additional methods
are given by the linearly constrained log-spectral filter (WF), the LSA (LSA), and the
harmonic model based speech presence probability mask (H) [104]. Combinations with
more than two algorithms are not analyzed in this chapter. For the combinations with
a non-MLSE-based enhancement method, the prior f(zy¢) = 0.5 is used in (7.26), i.e.,
there is no preference of one algorithm over another.

The results show that the sole application of the MLSE-based enhancement is comparable
to the LSA in pink noise and traffic noise while lower PESQ scores are obtained for the
modulated pink noise and babble noise. Especially babble noise appears to be a challenging
situation for the employed MLSE-based speech enhancement method. Here, the perfor-
mance is usually lower compared to the non-MLSE-based LSA. Only in combination with
the linear log-spectral filter, the performance of the MLSE-based approach is comparable
to the LSA in terms of PESQ scores in babble noise. The results for the remaining noise
types, however, show an improvement of the proposed combination in contrast to the sole
application of either the LSA or the MLSE-based approach. Furthermore, the proposed
combination also outperforms the competing method MLSE+H that employs a harmonic
post-filter [104].

In our experiments, the MLSE-based approaches showed a tendency to preserve weak
speech components more than the compared non-MLSE estimators. This more conservative
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behaviour, however, has the effect that outliers in the noise sometimes remain unsuppressed.
As a result, these enhancement methods generate more audible processing artifacts and
noise activations during speech activity. These issues are, on the one hand, related to the
speech models which mainly represent the envelope of speech, but, on the other hand, are
also linked to the noise PSD estimator which is not able to follow very fast changes in
the background noise, e.g., speech bursts in babble. The combination with the non-MLSE
approaches reduces these artifacts. Informal listening showed that this reduction of artifacts
is largest for the MLSE+WF approach.

7.6. SUMMARY

In this chapter, a combination of an MLSE-based speech enhancement method and
a non-MLSE single-channel speech enhancement algorithms has been introduced. The
proposed combination is employed to reduce processing artifacts of an MLSE and VTS-
based enhancement method, which occur, when only a small number of mixtures is available.
The proposed combinations outperform the stand-alone MLSE-based enhancement scheme
for all noise types under investigation. Highly non-stationary noise types such as babble
noise are the most challenging noise types for the stand-alone MLSE-based enhancement
scheme which is clearly outperformed by the non-MLSE baseline in such environments.
In this noise type, the proposed combination boosts the performance in terms of PESQ
scores to the non-MLSE baseline. In all remaining noise types, the combinations achieve
the highest PESQ scores and outperform the non-MLSE-based baseline and the already
existing combination with a harmonic filter.



7.6. SUMMARY

Algorithm 8 Algorithm for combining MLSE based and non-MLSE based estimators
using Bayesian inference. In the algorithm, it is assumed that the MLSE approach is either
combined with the log-spectral Wiener Filter (Section 7.3.1) or the LSA (Section 7.3.2).

Require: Parameters of the GMM: f(q,), /zkm /\qm
Require: f(z, = zM5F) and f(zg0 = 2VF) or f(Zk,e = 2154
Ensure: > f(zk0) =1

1: for all frames ¢ do

2:

10:
11:
12:

13:
14:

Estimate the noise PSD A} , using [70], [71].

Estimate likelihood and speech coefficients for each state of the MLSE approach.
for all states Qe in the GMM do
MLSE

1 LSE ,
Compute f(yk " )|qe,Zw MLSE) Ny (og)| y\qe J\Z!Zl z ).

qu MLSE qu MLSE
The solution for ,u oF and \}'7¢” are given in (7.12) and (7.13).

SE
Compute us‘y e using (7.14).
end for

Estimate the likelihood and speech coefficients of the non-MLSE approach. This
approach does not depend on q, and hence, no loop over q, is required.

Estimate the speech PSD A}, , using [82], [83].

Compute f(yk 7 |qg, zi) for zg o = 2WF (7.18) or zp 0 = 254 (7.23).

Compute ,uély’q” for z = 2WF (7.19) or z = 2154 (7.21).

Combine estimated speech coefficients of the non-MLSE approach with the estimates
of each state in the MLSE approach.
for all states ¢, in the GMM do
Compute f(zxlq, yl5”) using (7.26).
Use f(zk,g|q¢,y§L eg)) to obtain ,u‘sly’q’ as in (7.27).
end for
Obtain final estimate é,(cl,‘}g) = ,uk‘z using (7.28).

15: end for
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Part IV.

Generalization of ML-Based Enhancement






CHAPTER 8

NORMALIZED FEATURES FOR IMPROVING THE GENERALIZATION OF
DNN-BASED SPEECH ENHANCEMENT

As described in Section 2.1, STFT-based non-ML enhancement schemes such as [12], [28],
[29], [70], [71], [82] use filter functions, which are derived in a statistical framework,
to suppress noise. The required parameters, i.e., the speech PSD and the noise PSD,
are estimated blindly from the noisy observation. Generally, the algorithms used for
this estimation are based on the assumption that the background noise changes more
slowly than the speech signal. This makes these algorithms applicable to many noise types
but transient sounds such as the cutlery in a restaurant environment are generally not
suppressed by non-ML-based enhancement schemes. Contrarily, studies on ML enhancement
approaches, e.g., [23], [24], [167], show that DNN-based approaches in principle have the
ability to reduce highly non-stationary noise, which cannot be easily tracked using non-ML-
based estimators. As a consequence, these methods appear to be a promising approach to
improve single-channel speech enhancement. However, one of the major concerns towards
ML-based approaches is their generalization to noise types that have not been seen during
training.

In [23], [167], the issue of generalization is encountered with large and diverse training
data, where hundreds or even thousands of different noise types are included to allow the
DNN-based enhancement schemes to generalize to unseen noise conditions. Even though
large training sets increase the generalization, a huge number of noise types may still be
inappropriate as in real scenarios virtually infinitely many noise types can possibly occur
as argued in [26], [210]. Contrarily, non-ML approaches have been proven to generalize
well to many different acoustical environments and provide good results in moderately
varying noise types. To improve the robustness in unseen noise conditions, DNN-based
enhancement approaches incorporate estimates of non-ML-based noise PSD estimators,
e.g., [23], [208]-[210]. More specifically, an estimate of the noise PSD is appended to the
noisy input features which is referred to as noise aware training. In [23], [208], a fixed
noise PSD estimate is used which has been obtained from the first segments of the noisy
input signal. In [209], [210], this idea has been advanced by employing a dynamic, i.e.,
time-varying noise PSD estimate, obtained from a non-ML-based estimator. However, the
results in [209], [210] show only small improvements over the approaches that are not

This chapter is partly based on:
[221] R. Rehr and T. Gerkmann, “Robust DNN-based speech enhancement with limited training

data,” in ITG Conference on Speech Communication, Oldenburg, Germany, Oct. 2018, © 2018
VDE Verlag.
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aware of the background noise if a non-ML approach is used to estimate the noise PSD.
Noise aware training has been pursued further in [211], where various improvements over
the methods in [209] are presented.

In this chapter, we propose another powerful method to increase the generalization of
DNN-based approaches to unseen noise conditions. More specifically, we propose to employ
the a priori SNR &, , and the a posteriori SNR v, , as features (see (2.6) and (2.7) in
Section 2.1.1). Thus, instead of appending the noise PSD to the input features extracted
from the noise observation as in [23], [208]-[210], here, the noise PSD estimate is used
for normalization. The usage of the a priori SNR and the a posteriori SNR, is motivated
by non-linear clean speech estimators, e.g., [12], [28] where these quantities result from
the derivation of Bayesian estimators. We show that the proposed features outperform
features where the noise PSD estimate is appended to the noisy input vector. Further,
the proposed SNR-based features have the advantage that the enhancement system is
independent of the scaling of the input signal, i.e., the overall level has no effect on the
enhancement.

These claims are confirmed in the evaluation using instrumental measures. For this,
PESQ [230] scores and the short-time objective intelligibility (STOI) [262] are evaluated in
a cross-validation based experimental setup, where different sets of noise types for training
and testing are used. Further, the instrumental evaluation is supported by subjective
evaluations. First, we describe the employed algorithms in Section 8.1 and Section 8.2.
The results of the instrumental evaluation is given in Section 8.3 while the subjective
evaluation is described in Section 8.4.

8.1. NON-ML-BASED ENHANCEMENT ALGORITHMS

This section gives an overview over the non-ML-based enhancement algorithms which form
the basis of the proposed features in Section 8.2. It is very similar to the enhancement
framework described in Section 2.1. For estimating the clean speech coeflicients, the non-ML-
based clean speech estimators makes use of the STFT. The physically plausible assumption
in (2.3) is used that the speech signal and the noise signal mix additively. The speech
coefficients are estimated using the Wiener filter gain function (2.15), which is applied
as in (2.4). The clean speech estimates S i, are transformed back to the time-domain,
which are used to reconstruct the enhanced time-domain signal using an overlap-add
method.

The SPP-based noise PSD estimator presented in [70], [71] is used to estimate the noise
PSD. This estimator allows moderate changes in the background noise, such as passing
cars, to be tracked. However, it cannot track transient disturbances. For estimating
the speech PSD Azj, the TCS approach described in [82] is employed. In contrast to
the commonly used decision-directed approach [12], this approach causes less isolated
estimation estimation errors, which may be perceived as annoying musical tones. Both
algorithms are summarized in Section 2.1.4.
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8.2. ML-BASED ENHANCEMENT ALGORITHMS

In this section, the ML-based algorithms used in this chapter are presented. First, the
enhancement framework is described and, after that, the employed input features are
considered. Note that the algorithms share the same ML-based enhancement framework
but differ in the input features.

8.2.1. ML-Based Enhancement Framework

The architecture of the used framework resembles the approaches that have been proposed
in [23], [24]. Similar to the non-ML-based enhancement scheme, also the ML-based
approaches operate in the STFT domain. A feed-forward DNN is used to predict an IRM
from the input features extracted from the noisy input signal. The features considered in
this chapter are described in Section 8.2.2 and Section 8.2.3 in detail. The IRM has been
proposed in [169] and is similar to the Wiener filter gain function shown in (2.15) with
the difference that the speech periodogram |Sy ¢|* and the noise periodogram |Ny (|? are
employed instead of the respective PSDs as

Skl
IRM(k, V() = ——M—————. Nl
RM(k, 5 |Sk,e]? + [ Ng,e|? ®1)

Similar to the Wiener filter, the predicted IRM obtained from the DNN is used to estimate
the clean speech coefficients S, ¢ as

Skl = max (@<ka Z), Gmin) Yk7€a (82)

where @[() denotes the IRM estimated by the DNN. We enforce a lower limit Gy,
as in (2.9) on page 30 and the time-domain signal is reconstructed using an overlap-add
method.

8.2.2. Non-Normalized Features

In this part, the non-normalized feature inputs of the DNN are presented. The first
representative of the non-normalized features is the logarithmized noisy periodogram, i.e.,

1
Yo =log (Vi) , (8.3)
which has also been employed in [23], [209]. All spectral coefficients of a segment ¢, i.e.,
y,(cljgg) for all frequency bins k for a given segment ¢, are stacked in a feature vector.

Given only the log-spectral coeflicients, the DNN needs to learn how to distinguish between
speech and noise using the training data. This is a potentially challenging task, as a large

amount of different acoustic scenarios is required for training to match real conditions.

Hence, the approaches in [209], [210] sought to improve the robustness to unseen noise
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environments using non-ML-based noise PSD estimators. For this, the noisy log-spectral
features given above have been extended by appending an estimate of the noise PSD [209],
[210], which is also known as noise aware training [208]. Similar to (8.3), the logarithmized
estimate of the noise PSD is given by

/A\Z:,Elog) = log ([A\ZO ) (8.4)

As a result, the feature vector for this set has twice the dimensionality as using only the
log-spectral features. In our experiments, the noise PSD is estimated using the SPP-based
noise PSD estimator proposed in [70], [71], which is described in Section 2.1.4. For both
features sets, a context of three past segments is added to this vector by appending the
respective feature vectors to the end of the vector. We do not add context from future
segments to keep the algorithmic latency as low as for the non-ML-based enhancement
scheme.

8.2.3. Proposed Normalized Features

The main goal of the proposed normalized features is also to increase the robustness
of DNN-based enhancement schemes to unseen noise conditions. However, instead of
appending the noise PSDs to the noisy input features, we incorporate the generalization of
non-ML-based enhancement schemes by using the estimated noise PSD as normalization
term. More specifically, we employ the logarithmized a priori SNR 5829 = log(¢ W) and

a posteriori SNR yl(flig) = log(7y,¢) as input features. The a priori SNR and a posteriori

SNR are defined as

Ay,
Sk = Z’Z (8.5)
Vil
Vi, = - (86)
kt

The usage of the a priori and a posteriori SNRs is motivated by non-ML-based clean
speech estimators, e.g., [9], [12], [28], [31], where the quantities appear in the analytical
solutions derived in a statistical framework. The speech PSD Aj , and the noise PSD A,
are estimated blindly from the noisy observation using the SPP noise PSD [70] estimator
and TCS [82], which are summarized in Section 2.1.4. Both SNRs can be used separately
or in combination by concatenating both in a single vector. Note that the dimensionality
of the features is the same as the noisy log-spectra if one of the SNRs is used as input. In
all considered cases, a temporal context of three previous segments is appended to the
feature vectors.

In contrast to the non-normalized features in Section 8.2.2, the a priori and the a posteriori
SNR exhibit the advantage that these features are scale-invariant. As their value does not
depend on the overall level, differently scaled training data results in identical normalized
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features as when the scaling is not varied. To make the scale-invariance also available
to a DNN using non-normalized features, e.g., Section 8.2.2, the training data has to
reflect these gain variations. This increases the variations in the training examples such
that learning potentially becomes challenging. Such gain variations do not increase the
variability for the normalized features, which may improve the enhancement.

8.3. INSTRUMENTAL EVALUATION

In this section, the algorithms described in Section 8.1 and Section 8.2 are compared using
instrumental measures. Further, the optimally modified log-spectral amplitude estimator
(OMLSA) proposed in [75], [263] is used as a reference. First, the audio material, the
used parameters and instrumental measures are considered. Afterwards, the results of the
experimental analysis are presented which compares the properties of the normalized and
the non-normalized input features in the DNN framework. Further, the computational
complexity and the training convergence speed are considered. In the last part of the
instrumental evaluation, the performance of the evaluated algorithms is compared.

8.3.1. Audio Material, Parameters and Instrumental Measures

For all algorithms, the STFT uses 32 ms segments which overlap by 50 %. For the analysis
step as well as the synthesis step a square-root Hann window is employed. All signals
have a sampling rate of 16 kHz. For computing the features, the mirror spectrum is
omitted such that the resulting dimension of the spectra is 257. Correspondingly, the

feature dimensionality of the noisy log-spectra yg%g)7 the a priori SNR 5,(6135) and the a

posteriori SNR vl(cl’cf) is 257 x (3 + 1) = 1028 including the context. The dimensionality
of the input features doubles to 2056 for the combination of the a priori SNR &, , and

the a posteriori SNR, as well as, for the combination of the noisy log-spectra y,ilzg) and

the logarithmized noise PSD /A\Z:lglog) as employed in [209], [210]. The DNN’s architecture
comprises three hidden layers with ReLUs [161] as non-linearities and an output layer with
sigmoidal activation functions. The number of units in each hidden layer amounts to 1024
for both DNN-based approaches. For the evaluations in this section, the minimum gain is
set to Gpin = —20 dB for all employed enhancement schemes. For the non-ML algorithms
in Section 8.1 the parameters in the respective publication [70], [82] are used.

The employed background noises are taken from a fixed pool of nine noise types. It includes
the babble noise and the factory 1 noise taken from the NOISEX-92 database [239]. Further,
a modulated version of NOISEX-92’s pink and white noise are included as in [70]. Additional
noise types are taken from the freesound database http://www.freesound.org. Among them
are the sounds of an overpassing propeller plane (https://freesound.org/s/115387/), the
interior of a passenger jet during flight (https://freesound.org/s/188810/), a vacuum cleaner
(https://freesound.org/s/67421/) and a traffic noise (https://freesound.org/s/75375/).
Further, a two-talker babble noise is included which is generated using two read out stories
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taken from https://www.vorleser.net. The two stories are read by a male and a female
speaker, respectively, and are mixed at an SNR of 0 dB after speech pauses have been
removed. The noise types are used to conduct cross-validation experiments where all noise
types except one are included in the training set. The training data of each cross-validation
set are augmented by additionally including a highly non-stationary noise type which is
generated from the noise snippets collected by [264]. The noise excerpts in this database
are generally short and are, hence, concatenated multiple times in various orders to give a
continuous noise signal. Long noise excerpts are split into roughly 2 second long snippets
during this generation. This noise type is referred to as concatenated short noise excerpts
(CSNE). The remaining unseen noise type is used for testing in the evaluations.

The speech material for training is taken from the TIMIT database [240]. For the training
of the DNN-based enhancement schemes, a set of 1196 female and 1196 male sentences
taken from the TIMIT training set is employed. All sentences are embedded once in each
noise type used for training at a random temporal position. For the employed noise PSD
estimator, a two second initialization period is added at the beginning of each sentence to
avoid initialization artifacts during feature extraction. This period is removed from the
final features used for training. However, a noise only period which amounts to 15 % of
the utterance length is included for each sentence in the training data. To allow the DNN
to learn the effect of different SNRs, the sentences are embedded in the background noise
at SNRs ranging from —10 dB to 15 dB. The SNR is randomly chosen for each sentence
and also the scaling is randomly varied for each sentence by adjusting the peak level of
the speech signal from —26 dB and —3 dB. These variations are included in the training
data, to allow the DNN-based on the non-normalized features to learn a scale-independent
function of the IRM.

The parameters of the DNN are adapted by minimizing the following optimization criterion

(8.7)

— 2
J= ; ? ’10g (IRM(k, 0+ e) ~log (IRM(k, 0+ e)

Here, the squared error of the logarithmized quantities is minimized which is motivated by
the human loudness perception which approximately follows a logarithmic law. Further, €
is a bias term which is used to avoid that extremely low gains of the target IRM are overly
penalized by the cost function. Here, ¢ = 0.1 is employed such that differences between
the target IRM and the DNN output are treated as irrelevant if the target IRM is below
—20 dB. The weights and biases of the layers are initialized using the Glorot method [160].
After the initialization, the weights are optimized using the AdaGrad approach [265] where
the learning rate has been set to 0.005 while a batch size of 128 samples has been used.
The order of the training observations is randomized. To avoid overfitting of the network,
an early stopping scheme is employed where the training procedure is stopped if the error
J is not reduced by more than 1% over 10 iterations on a validation set. The validation
set is constructed by randomly selecting 15 % of the training set.

For testing, 128 sentences, 64 female and 64 male, are taken from the TIMIT test set.
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Fig. 8.1.: PESQ and STOI improvements for the considered enhancement algorithms in
dependence of the peak level of the clean speech signal averaged over all noise
types at an input SNR of 0 dB.

Similar to the training, the clean speech sentences are embedded at random positions in
the background. All sentences are mixed at SNRs ranging from —5 dB to 20 dB in 5 dB
steps. Furthermore, also here, an initialization period of two seconds is added to avoid
initialization artifacts of the employed noise PSD estimator [70]. This period is omitted
during the evaluation, i.e., the instrumental measures are only evaluated on the part that
contains the embedded sentence.

For the comparison, PESQ [230] is used as an instrumental measure to evaluate the
quality of the enhanced signals. Generally, PESQ improvement scores (APESQ) are shown
which are obtained by computing the difference between the PESQ score of the enhanced
and the noisy signal. Further, STOI [262] is used to instrumentally predict the speech
intelligibility of the enhanced signals. In this evaluation, the STOI scores are mapped to
actual intelligibility scores, i.e., the percentage of words a human would correctly identify
in a listening experiment. As no mapping is available for the TIMIT database, the mapping
function given for the IEEE sentences in [262] is used. Also here, improvements are
computed (ASTOI) which are obtained by subtracting the mapped speech intelligibility
of the enhanced and the noisy signal.

8.3.2. Analysis

In this part, we give an analysis on the features proposed in Section 8.2.2 and Section 8.2.3.

We demonstrate that the proposed normalized features in Section 8.2.3 are independent
of scaling of the input signal. Further, we show that the DNN converges more quickly if
the proposed features are employed. In the last part of this section, the computational
complexity of the various approaches is considered.

To demonstrate the scale-invariance of the proposed features, the considered enhancement
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Fig. 8.2.: Computational complexity of the considered algorithms in terms of the real-time
factor. This factor describes how many seconds of the audio material can be
processed within a second in the real world. The number on top of the bar shows
the actual value of the real-time factor.

approaches are evaluated on speech material where the peak level of the speech utterances
is varied systematically. For this, we set the peak level of the speech utterances to —6 dB,
—12 dB, —18 dB, —24 dB and —40 dB. The —40 dB peak level has not been seen during
training and can be considered an extreme case whereas the remaining levels are within
the range of variations included in the training data. For this evaluation, the SNR of the
input signals is fixed at —5 dB for STOI and 5 dB for PESQ. A lower SNR is used for
STOI because the speech intelligibility reduces only considerably for SNRs lower than
0 dB. The results in terms of PESQ and STOI improvements are depicted in Fig. 8.1.
For this, the averages over all noise types excluding the CSNE [264] are computed. The
results show that the non-ML-based speech enhancement algorithms and the ML-based
approaches based on the normalized features yield the same outcome independent of the
scaling of the input signal. Contrarily, the performance of the ML-based enhancement
scheme using noisy log-spectra varies over the peak level of the input signal. The same
can be observed for the combination with the estimated noise PSD. This indicates that by
using the normalized features, the ML-based algorithm does not depend on the overall
level. Contrarily, despite the efforts taken to increase the scale-independence during the
training process, the non-normalized features result in scale-dependent results.

The convergence speed of the proposed features is measured using the number of epochs
that have been required until the validation error converges. Due to the cross-validation
setup, nine models are trained for each feature type, which allows the number of epochs
required to train each model to be averaged. About 28 to 29 epochs are required on average
if the non-normalized features are employed, whereas only 20 to 23 iterations are required
for the normalized features. This result provides evidence that the proposed normalized
features simplify the training of the respective DNNs.

Last, the computational complexity of the considered algorithms is considered. Fig. 8.2,
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shows the processing speed of the various algorithms in terms of the real-time factor. The
factor describes how many seconds of the audio signal can be processed within a second in
the real world. Correspondingly, if the factor is larger than one, the algorithm processes
the signals faster than real-time and if the factor is smaller than one, the processing is
slower than real-time. The algorithms have been evaluated on the CPU (Intel Core i7-
5930K) of a desktop PC. For this, their respective Python or Matlab implementations

have been used. Fig. 8.2 shows that the OMLSA runs slowest while the non-ML described

in Section 8.1 and the ML-based algorithms where the noisy log-spectra y,(clzg) or the a

posteriori SNR v, , are used as input feature run fastest. On the used hardware, the
quickest algorithms run roughly 20 times faster than real-time. The OMLSA is only about
three times faster than real-time which may be explained by the fact that the Matlab
implementation is run through Python which potentially introduces further processing

overhead. Using the a priori SNR §gzg) instead of the a posteriori W,ilzg) reduces the real-

time factor to 10. This is because, in comparison to Wl(clff), the TCS needs to be additionally

computed to obtain 51(:(;‘%). Using both, the a priori SNR 52,1(?) and the a posteriori

SNR. fy,(clczg), as input features, the real-time factor further drops to 9. Concatenating yl(ckzg)

and AZ:élog) is computationally more complex than using the Y} ; normalized by Ay ,, i.e.,

'y,(fl%g). For the concatenated features, the input dimensionality is twice as large as for the a

posteriori SNR, 'ygc;g) which results in the additional computational complexity. From this,

it is followed that the inclusion of the noise PSD generally increases the computational
complexity as expected. Using ’y,(cl;g), the increase is only small whereas including the a

priori SNR considerably increases the complexity.

8.3.3. Comparisons

The following results show the outcome of the cross-validation procedure and are used
to compare the enhancement algorithms used in this chapter. For these experiments, the
peak level of the 128 TIMIT sentences used for testing is randomly varied between —6 dB
and —26 dB which is similar to the range used for training. Fig. 8.3 and Fig. 8.4 depict
the results.

For both instrumental measures, first the performance of the non-ML-based approach is
considered. For the aircraft interior noise, the OMLSA achieves higher PESQ scores in
low SNRs. This is, however, an exception as for the remaining noise types, especially the
nonstationary ones such as babble noise or the amplitude modulated versions of the pink
and white noise, the performance of the employed non-ML enhancement approach is higher
than for the OMLSA. In terms of the speech intelligibility predicted by STOI, both non-ML
approaches have either little effect or reduce the intelligibility. In all cases, however, ASTOI
is higher for the approach described in Section 8.1 than for the OMLSA. Consequently, the
algorithm described in Section 8.1 generally outperforms the OMLSA [75], [263].

The speech intelligibility predicted by STOI is generally higher for the ML-based algorithms

127



128 8. NORMALIZED FEATURES FOR IMPROVING THE GENERALIZATION OF DNN-BASED SPEECH ENHANCEMENT

—e—non-ML -e- ML (yl(cl,oég>) i (fl(cl,oég)) e ML (,ylalzg))
—— OMLSA =~ ML, ({29, A70°9) ~= ML (€059, 029)

APESQ

APESQ

APESQ

APESQ

APESQ

0.2¥ | |vacuum cleaner| 0L | [average] |

—5 0 5 10 15 20 —5 0 5 0 15 20
SNR / dB SNR / dB

Fig. 8.3.: PESQ improvements that results for the considered enhancement algorithms in
dependence of the background noise type and the SNR. The ML-based algorithms
are always trained on CSNE [264] and the noise types not given in the respective
plot, i.e., the background noise is unseen in all cases.
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than for the non-ML approaches. In factory noise and the aircraft interior noise, STOI
predicts a higher speech intelligibility for the non-normalized features. The same is true
for the overpassing plane and the two-talker noise. Here, however, ASTOI is generally
smaller compared to the other noise types. Among the non-normalized features, ASTOI

(1 og)

is generally higher for the combination of the noisy log-spectra Yy, and the estimated

noise PSD A (log) For the remaining noise types, however, the proposed normalized
features yleld snmlar or higher STOI improvements than the non-normalized features.
Comparing the normalized feature sets amongst each other shows that using only the a

priori SNR &, (°8) ften results in the lowest scores. Contrarily, the combination of the a

priori SNR f (log) and the a posteriori SNR, 'y( o) generally yields the highest scores. In

many cases, using only the a posteriori SNR fy,(C ) yields scores similar to the combination.

For cases, where the computational cornplex1ty plays an important role this feature type
is thus a considerable alternative.

The PESQ improvements for the ML-based algorithms indicate a clear preference for the
proposed normalized features. Only for the two talker noise, the PESQ improvements
obtained for the non-normalized features are higher than for the normalized features.
However, as basically all the considered enhancement algorithms struggle in this noise type,
the gains of 0.05 points are rather small and therefore negligible. For most of the remaining
noise types, the performance of the non-normalized features predicted by PESQ is between
the OMLSA and the non-ML approach described in Section 8.1. Except for the modulated

white noise, PESQ does not indicate considerable advantages if an estimate of the noise

PSD A (log is appended to the noisy log-spectra yg Y, ¢) This changes if the normalized

features are used. Using these features, the performance of the ML approach is more
robust and, often, both non-ML approaches are outperformed Again, the combination of

the a priori SNR f(l %) and a posteriori SNR ’yk ylelds the highest scores in most noise

types. Also here, using the a posteriori SNR 7( o8) without the a priori SNR 5( o) yields
similar results as the combination of both. Consequently, it is possible to beneﬁt from
the advantages of the normalized features without severely increasing the computational
complexity. Further, as this feature type has the same dimensionality as the noisy log-
spectra, this demonstrates the importance of the normalized features on the generalization
of ML-based enhancement schemes.

8.4. SUBJECTIVE EVALUATION

Instrumental measures such as PESQ give an indication on how the quality of the processed
signals would be judged by humans. Still, as such measures cannot perfectly model
human perception, we verify the instrumental results in Section 8.3 using subjective
evaluation tests. Here, a MUSHRA [249] is employed to compare the algorithms described
in Section 8.1 and Section 8.2. First, the audio material, parameters and evaluation are
explained and, after that, the results are discussed.
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8.4.1. Audio Material, Parameters and Setup

For this experiment, a sentence of a male and a female speaker is embedded in factory 1
noise and traffic noise at an SNR of 5 dB. The noisy signals are processed by the speech
enhancement schemes described in Section 8.1 and Section 8.2. The ML-based algorithm is

included once using the noisy log-spectra as features yg%g)

of a priori SNR fl(flzg) and a posteriori SNR wlgl;g). For this experiment, the CSNE [264]
and the two talker noise are excluded from the noise type pool such that eight noise types
remain. We train the DNN once on a set which includes mod. pink noise, mod. white
noise, factory 1 noise and traffic noise. Note that this includes the traffic and factory noise
which is also used for testing, i.e., this corresponds to a seen condition. For this condition,
it is ensured that the noise realizations used for the training are not reused for testing.
Therefore, only the first 120 s of the noise types are used while the last 120 s are used to
embed the sentences for the listening experiment. The algorithms have also been evaluated
in an unseen condition where all noise types are included in the training set except the
one used for evaluation. Here, the full length of the training noise is utilized. For each
sentence embedded in the training noise type, the peak level is varied between —26 dB
and —6 dB, while the SNR is chosen between —5 dB and 15 dB. The minimum gain is set
to Gmin = —15 dB in this experiment.

and once using the combination

In each trial of the experiment, the participants compared six stimuli. In addition to the
processed signals, the noisy signal is included and a reference signal is presented where the
speech signal and the background noise are mixed at an SNR of 20 dB. Lastly, a low quality
anchor is added where the speech signal is low pass filtered at 2 kHz and mixed at an SNR
of —5 dB. This signal is enhanced using a non-ML-based enhancement algorithm where
the noise PSD is estimated using [70] while the speech PSD is obtained using the decision-
directed approach [12]. The smoothing constant is set to 0.9 and the signal is enhanced using
the Wiener filter where a more aggressive lower limit of —20 dB is employed. This results in
an anchor signal with very poor quality due to many musical tone artifacts and strong speech
distortions. The audio examples used for the listening experiment are available under
https://www.inf.uni-hamburg.de/en/inst/ab/sp/publications/tasl2017-dnn-rr.

A total of 11 subjects with age in the range of 24 to 38 years who are not familiar with
single-channel signal processing have participated in the MUSHRA. The experiment took
place in a quiet office. The diotic signals were presented via Beyerdynamic DT-770 Pro
250 Ohm headphones attached to an RME Fireface UFX+ sound card. All signals were
normalized in amplitude. The test consisted of two phases. First, the participants were
asked to complete a training phase to familiarize themselves with the presented sounds
and to adjust the volume to a comfortable level. For this, a subset of the processed signals
was presented. In the second part of the experiment, the participants were asked to rate
the signals according to their overall preference on a scale from 0 to 100, where 0 was
labeled with “bad” and 100 with “excellent”. The order of the presentation of algorithms
and conditions were randomized between all subjects.
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Fig. 8.5.: Box plots for the subjective rating of different enhancement schemes. The left
column shows the results for factory 1 noise and the right column for traffic noise
as test signals. The rows show different training strategies. The linking lines
show pairings that are not identified as statistically significant by the post-hoc

tests.

8.4.2. Results

For the evaluation, we average the ratings over the two speakers for each tested scenario.
Further, the results are validated using a statistical analysis. For each acoustic scenario, a
repeated measures analysis of variance (ANOVA) [266] is performed to test if the factor
“enhancement algorithm” has a significant effect on the participants’ rating. For this, we
employ a significance level of 5 % for all statistical tests. For each acoustic scenario, we
validated that the residuals of the general linear model fitted during the process of the
repeated measures ANOVA are normally distributed using the Shapiro-Wilk test [267].
The sphericity assumption has been validated using Mauchly’s test [268] and a Greenhouse-
Geisser correction [269] is employed in cases where it has been violated. In all acoustic
scenarios, the enhancement algorithms have a statistically significant effect on ratings.
Hence, post-hoc tests are used to identify the sources of significance. For this, matched
pair t-tests with a Bonferroni-Holm [270] correction are employed to account for the error
inflation. The results are shown in Fig. 8.5 where the ratings that are statistically not
significantly different are indicated by linking lines.

All listeners were able to correctly identify the hidden reference and assigned the highest
score to it. The anchor signal and the noisy signal were assigned the lowest scores in
most of the cases. For the seen conditions, all enhancement schemes have been rated
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similar in traffic noise, while in factory noise, both ML-based speech enhancement schemes
yield slightly better results than the non-ML-based algorithm. For the unseen conditions,
the ratings for the ML-based approach only using the non-normalized noisy log-spectra
as features drop while the ratings for the proposed normalized features remain high.
Additionally, the proposed features show slightly higher ratings in comparison to the
non-ML enhancement scheme in factory noise. The statistical evaluation confirms that the
highlighted differences are statistically significant.

8.5. SUMMARY

In this chapter, we propose features for ML-based speech enhancement which incorporate
non-ML-based estimates of the speech and noise PSD. The goal is to improve the robustness
of ML-based enhancement scheme towards unseen noise conditions. In contrast to the
already existing noise aware training [23], [208]-[210], the noise PSD is not appended
but used as a normalizing term. This results in the a priori SNR and the a posteriori
SNR which exhibit the advantageous property of being scale-invariant. For the noisy
log-spectra, the performance of the ML-based enhancement scheme in terms of PESQ
is low in unseen noise conditions. Appending an estimate of the noise PSD has only a
little impact on the performance in PESQ while the intelligibility predicted by STOI
increases. Using the proposed normalized features, however, the performance of the ML-
based enhancement scheme is generally higher as for the compared algorithms in both
instrumental measures. This is supported by the MUSHR A-based listening experiments
where, in unseen noise conditions, the proposed combination was significantly preferred
over the ML-based enhancement scheme using only the log-spectra of the noisy observations.
Audio examples are available under https://www.inf.uni-hamburg.de/en/inst/ab/sp/
publications/tasl2017-dnn-rr. Feed-forward networks clearly benefit from the proposed
normalized features, but their effect on other architectures such as recurrent neural
networks or convolutional networks remains a question for future research.
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CHAPTER 9

CONCLUSIONS AND FURTHER RESEARCH

This chapter summarizes the main contributions of the thesis and provides directions for
further research.

9.1. CONCLUSIONS

In many speech communication based applications, undesired background noises may
be captured by the microphones in addition to the desired speech signal. This generally
degrades speech such that the perceived quality and potentially also the intelligibility is
reduced. This does not only affect human perception but also affects automatic speech
recognition systems. This thesis dealt with robust approaches to reduce background noise
such that the quality and, if possible, also the speech intelligibility are improved. Single-
channel algorithms have been considered that either process the input of a single microphone
or the output of a spatial filtering algorithm. The main objectives of this thesis was to
improve non-ML-based and ML-based single-channel speech enhancement algorithms by
exploiting synergies of both approaches. On the one hand, ML-based approaches show
potential for suppressing highly non-stationary noise types, which non-ML approaches
fail to suppress. On the other hand, non-ML approaches are more robust in unseen
noise conditions. In this thesis, various aspects of the respective approaches and their
combinations have been highlighted. All proposed methods have been evaluated using
instrumental measures and selected methods have been validated by subjective listening
tests. In the following paragraphs, the respective contributions are summarized.

In Chapter 3 and Chapter 4, methods for estimating and correcting a bias occurring in
noise PSD estimation algorithms were proposed. The methods allow the estimation bias
of noise PSD estimators based on first-order recursive smoothing filters with adaptively
changing smoothing factors to be compensated. The concept of first-order adaptive recursive
smoothing filters and their basic properties were introduced in Chapter 3. If the adaptive
smoothing factor depends only on the ratio of the input and the previous output, which
is generally the case for noise PSD estimators, the filter is scale-invariant. For signals
that contain only noise, this allows the compensation of the bias by scaling the input
or the output of the filter with a fixed correction factor. For determining the correction
factor, two methods were proposed in Chapter 3. The first approach seeks to estimate the
expected value of the filter output for which an iterative procedure was proposed. The
second approach leverages the transition densities of the respective adaptive smoothing
factors which model the distribution of the filter output given the previous filter output.
To estimate the bias, the parameters of a candidate distribution were optimized such that
the filter output distributions of two adjacent segments become as similar as possible. In
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the evaluation, both bias estimation methods were applied to quantify the bias of the
SPP-based noise PSD estimator proposed in [70], [71] and a threshold based noise PSD
estimator given in [81, Section 14.1.3]. In Monte-Carlo simulations, the accuracy of the
proposed bias estimation methods was validated for stationary inputs that correspond to
noise only signals. The SPP-based noise PSD estimator underestimates the noise PSD
by 1.2 dB while the threshold based method underestimates the PSD by 10.2 dB. The
bias estimation algorithms generally underestimate the error where the deviation from the
reference values has been found to be less than 0.3 dB. The proposed estimation methods
only estimate a fixed correction factor which implicitly assumes that the input comprises
only noise. To avoid overestimations in speech presence, a time-varying correction factor
was proposed which is given by the multiplication of the fixed correction factor and a time-
varying Wiener like term. In a speech enhancement framework, the used PESQ measure
indicates that using the time-varying correction factor yields virtually no difference for the
SPP-based noise PSD estimator [70], [71]. For the threshold based estimation algorithm [81,
Section 14.1.3], for which the bias is considerably larger, the performance in PESQ is
boosted by up to 0.2 points.

In Chapter 4, an alternative method was proposed for correcting the bias caused by
adaptive recursive smoothing filters. Again, a fixed multiplicative correction factor was
employed which allows the compensation of the bias for stationary signals comprising only
noise. However, the correction factor is used at a different point in the adaptive recursive
smoothing equations and does not scale the filter input or output. Correspondingly, the
fixed correction factor is generally different to the method proposed in Chapter 3. For
estimating the fixed correction factor, we proposed an approach based on the iterative
method in Chapter 3 which results in an algorithm, which allows the determination of the
bias within a single iteration. In the evaluation, the SPP-based noise PSD estimator [70],
[71] and the threshold based noise PSD estimator [81, Section 14.1.3] were considered
again. The accuracy of the proposed estimation method was validated using Monte-
Carlo simulations which reflect the estimation error of the noise PSD estimators for
stationary signals containing only noise. The results show that the proposed method
for estimating the correction factor slightly underestimates its value which results in a
remaining underestimation of 0.6 dB for the threshold based noise PSD estimator and of
0.2 dB for the SPP-based noise PSD estimator. Similar to Chapter 3, the fixed correction
factor was replaced by a time-varying version to cope with signals where speech is present.
The alternative correction method has a small influence on the PESQ scores of the SPP-
based noise PSD estimator, whereas PESQ is boosted by 0.2 points if the threshold based
noise PSD estimator is considered.

In Chapter 5 and Chapter 6, we proposed to use a super-Gaussian clean speech estimator
to improve the enhancement quality of MLSE-based enhancement schemes. Such enhance-
ment methods leverage ML algorithms to model speech only by means of its spectral
envelope. As a consequence, MLSE-based enhancement schemes overestimate the speech
PSD between spectral speech harmonics. Our analysis of super-Gaussian clean speech
estimators showed that these estimators are able to reduce the background noise when
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the speech PSD is overestimated. For the evaluation, we used super-Gaussian estima-
tors in two exemplary MLSE-based enhancement algorithms. Instrumental measures such
as PESQ and SegSNR show that the super-Gaussian clean speech estimators improve
the performance over Gaussian estimators in MLSE-based approaches. Interestingly, the
improvement achieved by the super-Gaussian clean speech estimator is much larger for
MLSE approaches than for non-ML approaches that resolve the spectral harmonics. This
indicates that the performance benefit comes mainly from the increased suppression be-
tween the spectral harmonics. The beneficial effect of the super-Gaussian estimators was
further validated using subjective listening experiments. The MLSE-based approaches that
employ super-Gaussian estimators are rated significantly better than the Gaussian based
MLSE approaches.

Chapter 6 showed that the beneficial effect of super-Gaussian clean speech estimators on
MLSE-based enhancement schemes can also be observed for estimators that have not been
derived under an additive mixing model. Using the relations in [83], the parameters of the
spectral super-Gaussian distribution used in Chapter 5 were mapped to the mean and
variance in the log-spectral domain. These quantities were used in an MSE optimal clean
speech estimator based on the MixMax model [26], [101]. The gain function that results by
using the propagated means and variances in the MixMax based clean speech estimator
shows similar properties as the super-Gaussian estimators derived under the additive
mixing model in the spectral domain. Correspondingly, the super-Gaussian speech model
also allows the MixMax based estimator to suppress the background noise if the speech
PSD is overestimated. In terms of speech quality measured by PESQ, the estimator based
on the MixMax model and the estimator based on the spectral additive mixing model
yield similar results. Comparing both approaches using the log-kurtosis ratio, which was
used as a measure of the musical tone artifacts, reveals that the MixMax based estimator
significantly reduces musical tone artifacts.

MLSE-based speech enhancement algorithms have also been the topic of Chapter 7. But
instead of using super-Gaussian models, a combination of ML and non-ML-based estimators
was proposed, which is embedded in a statistical framework. The combination is realized
by defining a likelihood model for each enhancement approach used in the combination and
leveraging Bayesian statistics. Combining the MLSE-based enhancement approach with
the non-ML enhancement scheme allows the suppression of the noise bursts during speech
activity which results in higher PESQ scores. Further, the combination outperforms an
already existing approach, which employs a harmonic model, and the compared non-ML
approach. The PESQ scores of the combination are about 0.1 points higher than for the
non-ML-based approach in the majority of the considered noise types.

In Chapter 8, normalized non-ML-based input features were proposed to improve the
generalization of a DNN-based enhancement scheme. Instead of using non-normalized
features such as noise aware training [23], [208]-[210], we proposed a novel set of features
based on the a priori SNR and the a posteriori SNR. We showed that the proposed
normalized features have various advantages over noise aware training and the noisy
log-spectra, which were additionally included in the comparisons. The proposed features
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are independent of the overall level while the performance of the enhancement schemes
varies with the signal level if the log-spectra and noise-aware features are used. Here, the
variations can be up to 0.2 points in PESQ and up to 10 % in absolute error in STOL.
Further, the proposed features generally yield higher scores in instrumental measures such
as PESQ and STOI for unseen acoustic conditions. Again, the proposed features yield
scores that are on average 0.2 points higher in PESQ than the compared non-normalized
features. Further, the DNN-based enhancement scheme outperforms the compared non-ML
enhancement schemes by 0.1 points in PESQ and by 5 to 10 % in STOI if the proposed
features are employed. Interestingly, using only the a posteriori SNR yields similar results
as the combination of the a priori and a posteriori SNR in most acoustic environments.
This feature can be implemented by adding only little additional computational complexity
to the baseline DNN using noisy log-spectra as input features. Further, it shows that the
performance advantages of the proposed features are not the result of an increased feature
dimensionality, but are rather caused by the employed normalization. The results of the
instrumental measures were confirmed by subjective listening tests, which verify that the
proposed combination of a priori SNR and a posteriori SNR is perceived significantly
better than using only the noisy log-spectra in unseen noise conditions.

9.2. SUGGESTIONS TO FURTHER RESEARCH

In this thesis, ML-based speech enhancement, non-ML-based speech enhancement and
possible synergies of both approaches were discussed. A large part of this thesis dealt with
MLSE-based speech models, their shortcomings with respect to speech enhancement and
possible solutions. A general disadvantage of methods considered in this thesis is that
the corresponding speech model has to be inferred from the noisy environments. In very
low SNR conditions, identifying the correct model becomes increasingly difficult, which
inherently limits the performance of such approaches. A potentially promising approach
to overcome this limitation is to include further modalities, e.g., visual cues, to improve
the recognition. Recent research has shown that features extracted from lip movements
allow the spoken phoneme to be inferred from video material. In addition, these features
have been used for speech recognition, speech enhancement and synthesis of intelligible
speech. As a consequence, if reliable cues are available from a visual modality, speech can
be enhanced in very low SNR conditions. Using features extracted from the shape of the
lips will most likely only allow the extraction of information about the speech spectral
envelope. Hence, the research in this thesis on methods that allow noisy speech signals
to be enhanced using spectral envelope models with low quality losses complements this
approach. Additionally, visual cues may not only be used to identify the spoken phoneme
but potentially reveal further properties of the speaker, e.g., the gender and emotions, and
the acoustic environment which can be included in the enhancement process.

Even though simplified speech models, e.g., MLSE models, have advantages in terms of
computational complexity and tractability for deriving solutions, simplifying assumptions,
such as modeling only the envelope or ignoring correlations over time and frequency, are
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limiting factors of the performance for single-channel speech enhancement algorithms.
Accordingly, using more powerful models to describe the target signal of speech enhance-
ment algorithms appears to be a natural approach to increase the performance of speech
enhancement algorithms. Learning a powerful speech model appears to be a feasible task
compared to learning a general background noise model as speech exhibits a rather specific
structure while any arbitrary sound may compose the background noise. More powerful
speech models may be realized using dynamic NMF approaches, e.g., [141], [149], which
are able to describe speech with high-resolution and scale-invariant frequency domain
models that additionally include temporal dependencies. Recent research further shows
that modern ML-based approaches, e.g., DNNs, make it possible to learn generative mod-
els where long-term temporal correlations are extracted from training data. The WaveNet
approach proposed in [202] learns the conditional PDF of the current speech time domain
sample given a large number of previous ones. This allows the generation of high quality
speech signals in the time domain by sampling from the learned distribution. However,
while NMF-based models often ignore correlations along frequency, WaveNet is limited
to the time domain. Finding ways to obtain powerful and efficient models of speech that
include temporal and spectral dependencies in a time-frequency representation and are
suitable for speech enhancement remains an interesting topic for future research.

Besides using improved speech models, single-channel speech enhancement will also benefit
from improving the tracking capabilities of noise PSD estimation algorithms. Indirectly,
also the noise PSD estimation would benefit from the availability of more powerful speech
models. The improved speech models might facilitate the discrimination of speech and
non-speech sounds such that the tracking of highly non-stationary sounds can be improved.
Further, combinations, where slow changes are tracked by non-ML approaches and fast,
non-stationary changes are captured by ML-based methods, may increase the tracking
speed of noise PSD estimators.

In this thesis, reduction of additive background noise has been the main topic. In many
practical applications, however, speech may not only be degraded by additive background
noise but also by reverberation. In [271], [272], a single-channel non-ML-based algorithm
has been proposed to reduce reverberation. For this, the reverberant energy of the speech
signal is estimated blindly from the noisy and reverberant observation. In the Reverb
Challenge [18], this algorithm has been rated highest in terms of quality in comparison to
other single-channel approaches. However, also more ML-based speech dereverberation
methods have been considered in [152], [273], [274]. Correspondingly, using non-ML-based
estimators in combination with ML enhancement schemes to improve joint denoising and
dereverberation is another field for future research.
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APPENDIX A

ANALYTIC SOLUTIONS FOR BIAS ESTIMATION

A.1. ANALYTICAL RESULTS FOR THE ITERATIVE BIAS ESTIMATION

Here, we present the analytic expression of the expected value in (3.9) that are obtained
for the considered adaptive smoothing functions in (3.17) and (3.18). Here, we employ the
simplification described in Section 3.2 again, i.e., 7,_; is replaced by the deterministic 7705,
The following equations were derived under the assumption that y, follows an exponential
distribution (3.16).

For the noise PSD estimator proposed in [81, Section 14.1.3], the expected value E{7,},

i.e., the solution to (3.9) given (3.17), results in

(ot —1)exp (R) + (o —at)(1 +R)
(at —1)exp (R) + ot —at ’

E{ye} = A%, (A1)

with R = 7™ /AY .

The expected value E{7,} for the expression in (3.18) can be derived using the property
of the geometric series [227, p. 1.112.1] and the analytic continuation property of the
hypergeometric series [227, p. 9.130]. The result is

1= 3B [LT, 75T + 1L, T+ L—(1+&,)]

E{y,} = AY , A2
e} = Ak L—oF [L,T;T +1;—(14&y,)] (4.2)
where ,Fy, is the generalized hypergeometric function with
+1
7RSIt (A3)
E,

A.2. ANALYTIC SOLUTIONS FOR THE SELF-SIMILARITY OPTIMIZATION

Here, we derive the analytic expressions of the inverse function F~*(-) and the derivative
F'(+) for the considered adaptive smoothing functions. Using these results, the conditional
PDF f(y,|y,_;) can be obtained with (3.15). For the derivations, we assume that F(-) is
given by the expression in (3.1).

For the adaptive smoothing function arn,(y,,7,_1) in (3.17), [81, Section 14.1.3], the
existence of an inverse F'(-) depends on the relationship between the updated filter
output 7, and the previous filter output y,_;. Under the assumption that y, > 0, the
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adaptive smoothing given in (3.1) can be inverted if o'y, _; <7, <7, ; or if 7, > 7,_;.
For the first condition, the inverse is given by

Fi'@o) = % (A4)
and the denominator of (3.15) is given by

FI(FTH @) =1~ ot (A.5)
For the case that 5, > 7,_;, the filter function in (3.1) can be inverted as

Fil@) = % (A6)
where the denominator of (3.15) is

F(F2 @) =1-al. (A7)

For some values of 3, none of the conditions applies so that L = 0. For these ¥, it follows
that also f(%,|y,_1) = 0.

If agpp(yy, o) from (3.18), [70] is employed in (3.1), the filter equation can be inverted

ify,_,(1 —|—04(S1;XP))(1 +&4,))/ 2+&5,) <Yy < LT, where also the assumption is made that
yp > 0. In other words, f(7,|g,_;) is zero if this condition is not fulfilled. The quantity £
is given by

(fix)
. 5 (fix) 1 —agpp
_ 1- P A.
L=L+(1-L) <aspp+ 14 (1+ € )e—c5H1/<1+sm>> (4.8)
with
~ 1
L= S {1 + Wy (6_1_5’*1/(5“1“)(5%1 + 1))} 1 (8.9)
ng

Here, Wy (-) denotes the main branch of the Lambert-W function [275]. This function,
together with its second real branch W_;(+), constitutes the inverse of the expression
f(z) = zexp(x) [275]. One inverse function of the filter in (3.1) with respect to the
smoothing function in (3.18) is

17 - 1t &, ¥e — Apni
F1 @) = 73:’8—1?)/\}0(51) + BN (A.10)
! — %spp

where S; is given by

S = Er, L =7,/Tp_1) exp ( En, We — Oééixyzﬂz—l) ) .
(1—alS) (1 +&4,)? Too1(1— alo) (1 +&5,)

(A.11)
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If the first condition holds and, additionally, 7, fulfills 3, > J,_;, a second inverse can be
found. The result is

1 1+ &y, Yo — O‘éf%’XF)’yffl
]:2 (yZ) = Y1 Wfl(Sl) + —(ﬁx) (A12)
S I —agpp

Note that the conditions for the two inverse functions are not exclusive, i.e., there are
values for 7, where both conditions are fulfilled. For these 7,, the number of piecewise
monotonic segments L is two. Finally, the derivative is given by

N (%) §3,S2 ( Yy >( 1)
F'(y) =(1 — agpp) 0T 0+6,)5) 1 o 1 rare08) | (A.13)
with .
— __Y _Sm
%= o ( Yp—q 1+ 57-11) ' (414
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