
Sparse Frequency Estimation:
Stability and Algorithms

Dissertation with the aim of achieving a doctoral degree

at the Faculty of Mathematics, Informatics and Natural Sciences

Department of Mathematics
of Universität Hamburg

submitted by Benedikt Diederichs

Hamburg, 2018



Als Dissertation angenommen vom Fachbereich Mathematik der Universität Hamburg auf Grund der
Gutachten von:

Prof. Dr. Armin Iske
Prof. Dr. Tomas Sauer
Prof. Dr. Daniel Potts

Datum der Disputation: 17.08.2018



Abstract

The thesis at hand is concerned with the problem of sparse frequency estimation. It can be described
as follows: Presented with a �nite number of samples of an exponential sum, one wishes to calculate
its spectrum, which is a discrete set. The focus is on the higher dimensional case, which attracted
considerable attention in the last few years.

In the �rst part of this thesis, we prove that in the one and two dimensional case, the sparse
frequency problem is conditionally well-posed. More precisely, we give rather sharp estimates, which
guarantee that if two exponential sums have well separated frequencies and their samples are close, so
are their frequencies. Further, we give a posteriori error estimates. To prove that, we rely on special
band-limited functions, satisfying certain sign patterns. And while such functions are known for quite
some time, non of them satis�es an additional property we need. Therefore, we give a construction of
such a function and start by reviewing the necessary results from sampling theory.

In the second part, we turn to algorithms to actually solve the estimation problem. We quickly
review classical univariate methods and then turn to so-called projection based methods. They cleverly
reduce the higher dimensional problem to multiple one dimensional ones, by sampling the exponential
sum along several lines. We give recovery guarantees for scattered as well as for parallel lines. For
the latter case, we propose a new ESPRIT-like algorithm, combining the estimates along several lines
into a single step.

Finally, we turn to other multivariate methods. By explicitly considering the signal space, we can
quite naturally deduce higher dimensional analogs of Prony's method, ESPRIT and MUSIC. That
allows us to extend Sauer's sampling set, originally proposed for Prony's method, to ESPRIT and
MUSIC, which reduces the number of necessary samples as well as the computational complexity
signi�cantly.
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Chapter 1

Introduction

Parameter estimation problems are prevalent in all natural sciences. Whenever one has a mathematical
model, depending on a set of parameters, and observations, hopefully �tting the model, estimating
these parameters is necessary. For this reason, it is not surprising that the parameter estimation
of exponential sum has a long and fruitful history, dating back as long as 1795, when Gaspard de
Prony published his famous method in [23]. Indeed, exponential sums may be used as a model for the
superposition of waves with di�erent frequencies, which is one reason for their common occurrence.

Exponential sums, in their simplest form, are given by

f(x) =

M∑
j=1

cje
2πiyjx,

where yj ∈ [0, 1) are the frequencies of f and cj ∈ C is the coe�cient to yj . To obtain a unique repre-
sentation of f , we always assume that the frequencies are mutually distinct and that the coe�cients

are non-zero. Often, we denote the frequencies of f by Y f and the coe�cients by c = cf ∈ CY f , i.e.
we use Y f as an indexing set for the coe�cients, which results in

f(x) =
∑
y∈Y f

cye
2πiyx.

The parameter estimation problem for such an exponential sum f is asking to calculate the fre-
quencies and their coe�cients from a �nite set of samples f(k), k = 0, . . . , N , where usually the
samples are corrupted by noise.

It is important to keep in mind that we are mostly interested in the frequencies Y f and not
in approximating the given data f(k), k = 0, . . . , N by an exponential sum. To calculate such an
approximation is closely related and interesting in its own right, see for example [68, 74].

In the second half of the last century, this problem was studied intensely, as it occurs in direction-
of-arrival estimation, where one uses a sensor array to determine the direction of a superposition of
wavefronts. Many prominent algorithms, like MUSIC and ESPRIT date back to that time. For an
introduction see [61]. In recent years, this estimation problem again attracted a lot of attention. On
the one hand, estimating the frequencies of an exponential sum was proposed as a mathematical model
for super-resolution [16]. Super-resolution is a somewhat vague term, describing multiple methods,
on the technical as well as on the theoretical side, to overcome the natural di�raction limit of imaging
technologies. For seminal work in this area, the Nobel Prize in chemistry was awarded to Eric Betzig,
Stefan Hell and William Moerner in 2014.

On the other hand, the phenomenon of sparsity has become one of the central aspects in many
areas of applied mathematics. Sparsity can be described informally like this: Any element of a
vector space is given by a linear combination of a basis. In particular, to describe an element of a d
dimensional space, d numbers, called coe�cients, are needed. But for some elements, most of these
coe�cients vanish. If only s coe�cients are non-zero, only s numbers are necessary (or one could
argue 2s: s for the coe�cients themselves, s to describe which are non-zero). Such elements are
called (s-)sparse. It turns out, that quite often, the sparse (or almost sparse) elements are of interest.
The challenge then is to exploit the fact, that less information are needed to describe these sparse
elements. For example, compression problems can be phrased as �nding a basis where all signals we
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2 CHAPTER 1. INTRODUCTION

wish to compress, are approximately sparse. And in sampling, i.e. identifying an element f of a vector
space from measurements, having the a-priori information that f is sparse, might enable us to use
signi�cantly less measurements. This latter idea is the main theme of a young research area, called
compressed sensing (see [32] for an introduction). On a technical level, sparsity turns out to be quite
di�cult to exploit. One of the main challenge is the missing structure: The sum of two sparse signals
is in general less sparse. Hence, the set of sparse signals are not a linear space (or even a convex set).

Now exponential sums can also be seen as sparse signals: They are sparse in the frequency domain.
Indeed, they are given as the Fourier transform of a sum of Dirac measures. One reoccurring theme of
this thesis is to �esh out the similarities and di�erences between exponential sums and the standard
�nite dimensional setting of compressed sensing.

There are a lot possible extensions of the sparse frequency estimation problem. Here, we are mostly
interested in the multivariate case, where one wants to calculate the frequency vectors yj ∈ [0, 1)d of
a multivariate exponential sum

f(x) =

M∑
j=1

cje
2πiyj ·x (1.1)

from a �nite number of samples f(g), g ∈ G, where typically G ⊂ Zd. But there are a lot of other
variants. We give a few examples.

• Sometimes, instead of coe�cients cj one is confronted with unknown polynomials pj . In the one
dimensional case, this means that f takes the form

f(x) =

M∑
j=1

pj(x)e2πiyjx.

This problem is sometimes known as the con�uent Prony problem, see for example [6].

• Another perspective is the following: f is the Fourier transform of measure of the form

µ =

M∑
j=1

cjδyj ,

where δyj are of course the Dirac measure, located at yj . In the multivariate Prony problem,
yj are on a d dimensional torus. This can be generalized to the case that yj is on a di�erent
manifold, like a sphere or the rotation group SO(3). That is the topic of the PhD thesis of
Kristof Schröder [88].

• A more algebraic formulation is possible as well. To this end, let zj = e2πiyj . Then f becomes

f(x) =

M∑
j=1

cjz
x
j .

Now if we sample only on Nn, the right-hand side is well de�ned for cj , zj in an arbitrary �eld.
Such extensions are discussed in the PhD thesis of Ulrich von der Ohe [96].

Exponential sums are themselves fascinating objects, which are prevalent in many mathematical
�elds. They are sometimes called non-harmonic Fourier series, see the book by Young [101]. For
certain choices of frequencies y, the span of e2πiy· form a frame. Such frames are sometimes called
exponential or Fourier frames and indeed the concept of frames was introduced to describe them. Since
then, the abstract idea of a frame has become an important generalization of bases, with applications
in many �elds of mathematics, see the book by Christensen [21] for a thorough introduction.

Another �eld, where exponential sums are heavily used, is analytic number theory. E�cient esti-
mates of special exponential sums give rise to number theoretical results, like Vinogradov's theorem,
to give one of the �rst important instances. Later, such estimates became important in a sub�eld
called sieve theory. We are particularly interested in sharp estimates for the so-called large sieve, see
[64]. One possible proof is due to Atle Selberg, relying on extremal functions in Fourier analysis. We
discuss this approach in Chapter 2, though without mentioning the sieve theoretical background.
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Contributions

This thesis is divided in two parts. In the �rst part, covered in Chapter 2, we prove well-posedness
of and a posteriori error estimates for the one and two dimensional frequency estimation problem. In
Chapter 3 we discuss various existing and new methods to solve it.

The question of well-posedness can be quickly motivated as follows. Assume we are given noisy
measurements

f̃(k) = f(k) + εk, k ∈ G,

where f is a multivariate exponential sum as in (1.1), G ⊂ Zd is a �nite set and εk is some unknown
noise. Then we run an algorithm, which uses f̃(k) to give us an exponential sum g. As we are
interested in the frequencies of f , we hope that the frequencies of g and of f are reasonably close.
And because we only have the given samples of f , this leads to the question whether∑

k∈G

|f(k)− g(k)|2 � 1

implies that f and g have similar frequencies. That is the main question, we will answer in Chapter
2.

In general, this does not have to be the case. For example

f1(x) = δ1, f2(x) = 1− e2πiδ2x

are both very close to zero, if δ1 and δ2 are small and are therefore almost indistinguishable from
g(x) = 0 on any �xed sampling set G. To circumvent this problem, we assume that the modulus of
all coe�cients of f and g are larger than cmin and that all frequencies of f and g are well-separated.
We measure the distance of two frequency vectors y, w ∈ [0, 1)d in the wrap-around distance

‖y − w‖Td = min
n∈Zd

‖y − w − n‖∞.

Then we can phrase our �rst main result as follows: If f and g have well-separated frequencies and

N∑
k=−N

|f(k)− g(k)|2 ≤ c2min(N + 1),

for any frequency y of f there is exactly one frequency n(y) of g. Furthermore, we have that

∑
y∈Y f

|y − n(y)|2T . c−2
minN

−3
N∑

k=−N

|f(k)− g(k)|2 . N−2. (1.2)

We can interpret this result as a conditional well-posedness property of the frequency estimation
problem: If f and g satisfy our model assumptions and their samples are close, so are their frequencies.
The actual result, stated in Theorem 2.26, is a little bit stronger. An extension to the two dimensional
case is given in Theorem 2.31.

As we only know f̃(k), we cannot directly use (1.2) to get an a posteriori error estimate. However, it
is a routine exercise to estimate |f(k)−g(k)| by |f̃(k)−g(k)|. To this end, we need more assumptions
on the noise εk. We later state a posteriori error estimates for bounded noise ‖(εk)k‖≤η and for
Gaussian noise.

In Chapter 3 we start by reviewing classical univariate methods, namely Prony's method, MUSIC,
ESPRIT and the matrix pencil method. Our presentation here di�ers slightly from the literature. We
start by considering the signal space

Sig(f,N) := span {(f(k), . . . , f(k +N − 1)) : k ∈ Z} ⊂ CN .

After proving a few basic facts about Sig(f,N), we are able to quickly deduce the aforementioned
methods.

We then consider methods cleverly using multiple instances of the univariate problem to solve
the multivariate problem. The basic idea is that restricting a bivariate exponential sum f to a line
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` = {tv + bv⊥, t ∈ R}, where v, v⊥ ∈ R2 are orthonormal vectors and b ∈ R, gives a univariate
exponential sum:

f(tv + bv⊥) = f |`(t) =
∑
y∈Y f

cye
2πibv⊥·ye2πiv·yt =

∑
y`∈v·Y f

 ∑
y∈Y f
y·v=y`

cye
2πibv⊥·y

 e2πiy`t.

This approach is due to Potts and Tasche [75]. The question is, for which choices of lines `1, . . . , `K
we can reconstruct f from f |`j . In the case of pairwise non-parallel lines, previous work relied on the
additional assumption ∑

y∈Y f
y·v=y`

cye
2πibv⊥·y 6= 0

for all possible choice of y` and all lines `. We are able to remove this assumption, though at heavy
computational costs, a result already published in [25] by Iske and the author.

Next, we turn our attention to the case of multiple parallel lines. We give an algorithm able to
recover Y f from Od(M) number of samples (up to logarithmic factors), where M = ord f . This is
optimal, but unfortunately the algorithm has exponential complexity. For the more classical case of
sampling on GN = [−N,N ]d∩Zd, we give e�cient algorithms including a variation of ESPRIT, which
combines the estimation along several lines into a single step. Parts of these results are published in
[26], again by Iske and the author.

Finally, we turn to multivariate extensions of Prony's method, MUSIC and ESPRIT. Building
on our results for the one dimensional case, we again start by de�ning the multivariate signal space
of f . All methods then follow quite naturally. In particular, we rederive Sauer's sampling set (as
introduced in [85]), which is of order Od(M2) (up to logarithmic factors), for Prony's method and
show how similar sampling sets for MUSIC and ESPRIT can be constructed. With that, we reduce
the size of sampling sets for MUSIC and ESPRIT signi�cantly (from Od(Md) to Od(M2), up to
logarithmic factors). Furthermore, the computational complexity of ESPRIT reduces from Od(M3d)
to Od(M3) (again, up to logarithmic factors). We conclude with a few numerical examples.

Notation

We use the notations a . b, if |a| ≤ Cb for a positive constant C and a ∼ b if a . b . a. If
C depends on some parameters of interest, say on d, we write a .d b. Matrices are denoted by
A = (ai,j)

M,N
i,j=1 ∈ CM×N . A matrix A with columns v1, . . . , vN is denoted by A = [v1 . . . vN ]. A† is

the Moore-Penrose pseudo-inverse, AT the transpose and AH the conjugate transpose.
The real part of a complex number z is denoted by <z, the imaginary part by =z.
All function spaces are complex-valued, e.g. L2(R) = {f : R → C :

∫
|f |2(x) dx < ∞} (where f

is of course measurable).
For a measurable set A ⊂ Rd, we use χA to denote the characteristic function of A.
We use the following normalization of the Fourier transform of a function f ∈ L1(Rd)

F [f ](w) = Ff(w) = f̂(w) =

∫
Rd
f(x)e−2πix·w dx.

Of course, F can be extended to L1(Rd) ∪ L2(Rd) by density. In our normalization, we have that F
is an isometry on L2, i.e.

‖Ff‖2 = ‖f‖2

and that F−1[·](w) = F [·](−w). We assume that the reader is familiar with basic results, like
Plancherel's theorem, the Fourier inversion formula and Poisson's summation formula. These top-
ics can be found in many textbooks, two examples the author is particularly fond of are [36] and
[50].



Chapter 2

Stability and Well-Posedness

In this chapter we discuss stability and (conditional) well-posedness for the frequency estimation
problem. To motivate this, we consider frequency estimation as an inverse problem. Let

Sd =

f(x) =
∑
y∈Y

cye
2πiy·x : Y ⊂ [0, 1)d �nite and cy ∈ C \ {0}


be the set of all exponential sums f : Rd → C. We denote the set of frequencies of such an f by Y f ,
and the coe�cients by cf . Now we collect samples from an unknown ground truth f∗ ∈ Sd we wish
to identify, by applying the sampling operator

PG : Sd → CG, PGf = (f(g))g∈G,

where G ⊂ Rd is the �nite sampling set. Typically, G ⊂ Zd and the most popular choice is GN =
[−N,N ]d ∩ Zd. We abbreviate PGN = PN . Now we can try to solve the problem

Find f ∈ Sd with PGf = PGf∗,

but this turns out to be impossible. As PG is a linear map from an in�nite dimensional to a �nite
dimensional space, we are always able to �nd in�nitely many f with PGf = PGf∗. To have any
chance to identify f∗, we need additional information. To this end, we exploit the sparsity of f∗ in
the frequency domain. For an f ∈ Sd, we call the number of frequencies of f the order of f , i.e.,
ord f = |Y f |. Then �nding the solution of

min
f∈Sd

ord f subject to PGf = PGf∗

will recover f∗ exactly, at least if G is su�ciently large. Precise statements on the minimal size of G
are covered in the next chapter, one simple result is that GN with N ≥ ord f∗ su�ces.

The question we are interested in is what happens when we only have noisy data available, i.e.,
PGf∗ + ε, where ε ∈ CG is a vector containing the unknown noise. At this point, we do not want
to place any other assumption on the noise, except that ‖ε‖2 is small. To get a feeling what kind
of stability results are expected, we quickly recall the �nite dimensional case. Everything we discuss
here is well-known, see for example [32].

In �nite dimensions the sampling operator is a linear map

A : CN → Cm A(x) = Ax, A ∈ Cm×N

and we want to �nd the ground truth x∗ ∈ CN , given measurements Ax∗+ε, where ε ∈ Cm is a noise
vector. We are interested in the case N > m and again, even in the noise-free case

Find x ∈ CN with Ax = Ax∗,

we have in�nitely many solutions. Again, we try to exploit sparsity of x∗ and therefore assume that
‖x∗‖0 = s < N , where ‖x‖0 denotes the number of non-zero entries of a vector x ∈ CN . We call

5



6 CHAPTER 2. STABILITY AND WELL-POSEDNESS

vectors with ‖x‖0 ≤ s s-sparse. This leads to the problem

min
x∈CN

‖x‖0 subject to Ax = Ax∗. (2.1)

But when does this recover x∗ exactly? We denote one solution of this problem by x̃ and clearly
we have that ‖x̃‖0 ≤ ‖x∗‖0 and A(x̃ − x∗) = 0. Furthermore, if a vector x ∈ CN with x 6= x∗ and
‖x‖0 ≤ ‖x∗‖0 and A(x − x∗) = 0 exists, we cannot recover x∗ uniquely. Therefore, x∗ is the unique
solution to (2.1) if and only if any 2s columns of A are linearly independent.

This leads to the restriction 2s ≥ m, which is sharp. Indeed, Vandermonde matrices of the form
1 1 . . . 1
z1 z2 . . . zN
z2

1 z2
2 . . . z2

N
...

...
. . .

...
zm−1

1 zm−1
2 . . . zm−1

N ,


where z1, . . . , zN ∈ C are arbitrary, mutually distinct numbers, satisfy this condition � restricting
these matrices to a subspace spanned by m unit vectors gives an injective map.

Next we are interested to recover x∗ from noisy measurements. It turns out that we have to have
a quantitative property instead of a qualitative one (the injectivity) to deal with the noisy case. To
this end, we say that a matrix A satis�es the restricted isometric property (RIP) of order s if there is
a δ < 1 such that for all s-sparse x we have that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22. (2.2)

Note that if any s columns of A are linearly independent, we can �nd such a δ (at least if we are only
interested in the lower bound), simply because there is only a �nite number of possible choices.

The lower bound gives rise to stability. We consider

min
x∈CN

‖x‖0 subject to ‖A(x∗ − x) + ε‖2 ≤ η, (2.3)

where η ∈ R≥0. Assume that ‖ε‖2 ≤ η and that A satis�es the RIP of order 2s with constant
δ < 1. Further, denote one of the solutions to this problem by x̃. As x∗ is admissible, we have that
‖x̃‖0 ≤ ‖x∗‖0 = s. Now, and this is important, we clearly have that x∗ − x̃ is 2s-sparse. Therefore,
we can use the RIP and obtain

‖x∗ − x̃‖22 ≤
‖A(x∗ − x̃)‖22

1− δ
≤ (η + ‖ε‖2)2

1− δ
≤ 4η2

1− δ
. (2.4)

This implies that every solution to (2.3) is reasonably close to the ground truth. If additional as-
sumptions on the modulus of the smallest non-zero entry of x∗ are available, one can even conclude
that the support of x∗ is recovered exactly. Indeed, if all non-zero entries of x∗ and x̃ have a modulus
larger than 2η/

√
1− δ, we obtain suppx∗ = supp x̃ (where the support of a vector x ∈ CN is the set

of indices j with |xj | 6= 0).

We conclude: If we have an a-priori bound s on the sparsity of x∗, we see that every vector x ∈ CN ,
satisfying our model assumption (being s-sparse) with samples close to the measurements, is close to
the ground truth. A property, which can be interpreted as a conditional well-posedness of the problem.

However, solving (2.3) is more challenging. In general, such problems are NP-hard. One frequently
used approach is to relax ‖x‖0 to ‖x‖1. Of course this can result in a completely di�erent solution.
The result that under suitable conditions on the isometric constant δ the relaxation actually does not
change the solution at all, came as a surprise. This was �rst observed by Candès and Tao in [17],
one of the papers which started an active �eld of research in applied mathematics, called compressed
sensing. A thorough introduction in this �eld is given in [32].

Now we return to the frequency estimation problem. One can ask whether there is a property of
PG assembling the lower bound in (2.2). It turns out that such an estimate is not possible, at least if
one wishes to obtain a bound like

(1− δ)‖cf‖22 ≤ ‖PGf‖22 (2.5)
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uniformly over all f with ord f ≤ s. This is actually easy to see, as no such bound can hold for the
family of functions

fλ(x) = e2πix·y − e2πix·(y+λ)

for any y ∈ [0, 1)d and λ ∈ R small. We state explicit results in this direction later on.

However, it is possible to prove a bound assembling (2.5) uniformly over all exponential sums having
well-separated frequencies. To measure closeness of frequencies, we use the wrap-around distance

‖y − w‖Td = min
n∈Zd

‖y − w − n‖∞,

which accounts for the periodicity of the frequency parameter. Further, we use the notation |y−w|T =
‖y − w‖T1 . Such estimates are actually known for a long time. In the univariate case, we prove a
particular strong result in Theorem 2.18 (improving on a result due to Moitra, see [62]), namely(

2N + 2− 1

q

)
‖cf‖22 ≤ ‖PNf‖22 (2.6)

for all f ∈ S1 with sep f ≥ q, where

sep f = max
y∈Y f

min
w∈Y f
w 6=y

‖y − w‖Td for f ∈ Sd.

In the case of |Y f | = 1, we set sep f = 1. Multivariate extensions are available as well, though less
sharp, see Proposition 2.29.

Unfortunately, in contrast to the case of sparse vectors, this does not give any kind of estimate
resembling (2.4). The reason is simple. Even if we use well-separated frequency vectors as a prior,
we cannot use (2.6) to bound the error, as no information about the separation of the frequencies of
f∗ − f is available or even possible, as the whole point of our estimate is to have frequencies close to
f∗.

In this chapter we overcome this di�culty and prove that if f, g ∈ S1 have reasonably well-separated
frequencies compared to N , and if

‖PN (f)− PN (g)‖22 ≤ c2min(N + 1),

where cmin is a lower bound on the modulus of the coe�cients of f and g, the frequencies of f and g
have to be very close. Namely, for each frequency y of f there is exactly one close frequency n(y) ∈ Y g,
such that ∑

y∈Y f
|y − n(y)|2T .

‖PN (f)− PN (g)‖22
c2minN

3
. N−2.

The precise statement, including all constants, is actually a little bit stronger and given in Theorem
2.26. We show that these estimates are reasonably sharp and in particular that the given orders in N
and |y − n(y)|T are optimal. For f, g ∈ S2, a very similar statement is given in Theorem 2.31.

As all constants are reasonably small, these results can be used to obtain a posteriori error esti-
mates. Assume that we have a candidate f , close to the (unknown) ground truth f∗. Further, assume
that we are given noisy samples v = PN (f∗) + ε. Then we know ‖PN (f) − v‖22, which gives us an
estimate for ‖PN (f) − PN (f∗)‖22, at least if we have some information about ε. If only ‖ε‖2 ≤ η
is known, we have to use the triangle inequality. However, if some stochastic information on ε are
available, we can do better. We give the details for Gaussian noise as an example in Corollary 2.27
for the univariate and in Corollary 2.32 for the bivariate case.

To prove these results, we rely on speci�c functions ψ, satisfying

ψ(x) ≤ χ[−N,N ]d(x), supp ψ̂ ⊂ [−1, 1]d, d = 1, 2.

At least in the case d = 1, such functions are known for a long time. Their construction is due to
Atle Selberg, who built on work of Arne Beurling. Recently, progress for d > 1 was made by Carruth,
Gonçalves and Kelly [18]. We, however, need an additional property, namely that ψ̂ has its global
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maximum in zero (and an exact analysis of the growth of ψ̂(0)− ψ̂(w)). While in the case d = 1 such
a function is known (though di�cult to �nd in the literature), we give a new construction for d = 2.

This construction relies on a derivative sampling expansion of bandlimited functions (as in [18]).
Therefore, we start by giving an overview over the necessary results from sampling theory. One might
argue that it would su�ce to quote these results. The reason we give them in full detail is threefold.
First, the author is very fond of this theory. Secondly, we wish to point out that these expansions
were known in the sampling community before they were rediscovered by Vaaler [94] in the univariate
case and in [18] in the multivariate case. And �nally, reproving and reevaluating known results is an
important part of the mathematical science. Often a new approach to an old problem gives some new
insight. For example, we give a rather general criterion on when a generalized sampling expansion (as
introduced by Papoulis) converges locally uniformly. This result relies mostly on Lemma 2.6, which
we prove using frame theoretical results.

Related Literature

One of the �rst works in a similar direction is due to Donoho [27]. However, his assumptions are
di�erent to our setting in multiple ways. First, he assumes that the spectrum of the underlying
signal is known on an entire interval, and not only at a �nite number of sampling points, i.e., f |I ,
I = [−N,N ] ⊂ R instead of (f(k))k∈G is given. Secondly, he makes the a priori assumption that the
frequencies are on a grid, i.e., Y f ⊂ ∆Z, ∆ � 1. That in�uences his closeness measure. Namely, for
two signals f, f̃ the quantity

‖cf − cf̃‖2,

is bounded from above, where cf ∈ C∆Z is the vector of coe�cients of f . In particular, two frequencies
are considered close if and only if they are equal. We, however, aim for arbitrary frequencies. Finally,
Donoho considers only the univariate case.

Another interesting direction is due to Batenkov [6] (extending previous work by Batenkov and
Yomdin [7]). Therein Batenkov considers the so-called con�uent setting, which is more general. We
give a very short sketch of his results for the special case of exponential sums. The main idea is to
consider the mapping

P̃N : C2M 3 (y1, c1, y2, c2, . . . , yM , cM ) 7→

 M∑
j=1

cje
2πiyjk


k=0,...,N−1

∈ CN .

Note that in contrast to our analysis, the space of exponential functions is parametrized explicitly.
Denote by v = P̃N (f∗) + ε the noisy samples of our ground truth f∗ ∈ C2M . Now one could try to
recover f∗ by solving

Find g ∈ C2M minimizing ‖v − P̃N (g)‖2.

For small ‖ε‖2, a reasonable proxy is the linearized least-squares problem

Find g ∈ C2M minimizing ‖v − P̃N (f∗)− dP̃N (f∗)(g − f∗)‖2. (2.7)

Denote by g∗ ∈ C2M the solution to this problem. Then one has that g∗ − f∗ = dP̃†N (f∗)ε. There-

fore, as usual, the conditioning of this problem is described by P̃†N (f∗). Batenkov then proceeds by
estimating

κk,N (f∗) =

N∑
j=1

∣∣∣P̃†N (f∗)k,j

∣∣∣ |P̃N (f∗)j | . N−1

whenever N sep f∗ > K for a constant K. This component-wise conditioning describes the local
behavior of P̃N with respect to perturbations. In particular, if |εk|/|P̃N (f∗)| ≤ ε, the estimate

|f∗ − g∗|k ≤ κk,Nε

holds true. A similar result can be given in case of absolute perturbations. Note that (2.7) cannot be
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solved in practice, as f∗ is unknown.
This analysis is inherently local, which is an important di�erence to our results, as we strive for

global estimates. Furthermore, it is currently unknown how to lift these explicit estimates to higher
dimensions.

In the univariate case, more is known if one assumes a speci�c noise model or wants to analyze a
speci�c algorithm (or both). For example the Cramèr-Rao bound in case of Gaussian noise is derived
in [66] (i.e., a lower bound on the variance of any unbiased estimator, satisfying some weak additional
assumptions). Asymptotic results for ESPRIT and MUSIC are, again in the case of Gaussian noise,
available, see [79, 66] and the references therein. Additional results on MUSIC are given in [55].

Results beyond such a restrictive noise model are know for methods relying on total variation
minimization. That is in fact one reason for their increasing popularity over the last few years. In [15],
the error of the reconstruction and the ground truth on a larger frequency band than the observed
one is estimated. Closer to our analysis is [30], where it is shown that the solution to an in�nite
dimensional convex optimization problem (which can be solved using semide�nite programming, by a
duality argument), recovers the frequencies reasonably well even in the noisy case. A thorough analysis
extending this result is carried out in [28]. All results are in one dimension, though (in theory) an
extension to the higher dimensional case is possible.

2.1 Sampling Theorems

In this section, we summarize results from sampling theory we rely on in the next section. We start
with one-dimensional results and then extend them to higher dimensions. Almost everything in this
section is well known and can be found in the literature, though our exposition here may vary slightly,
as we develop the results with our applications in mind. An excellent starting point for the univariate
theory is [42] or [89].

We are mostly interested in Hermite interpolation, �rst introduced by Jagerman and Fogel in
1956 [47]. A slightly more general result is then used by Vaaler in [94] to derive extremal Fourier
functions, an approach we will follow in the next section. Note that if one wants to construct a
function, which interpolates data and satis�es a sign condition, Hermitian interpolation is more useful
than normal interpolation (as in the Shannon sampling theorem). Interestingly, this strategy is also
used to construct a dual certi�cate in [16], though they only have to interpolate a �nite number of
data points.

However, instead of proving the derivative sampling expansion directly, we will establish it as a
simple corollary of the generalized sampling theorem by Papoulis [67]. For completeness, we give a
proof of Papoulis' result. We generalize it to higher dimensions (a result, which might be interesting
in its own right) and again obtain a derivative sampling extension � a theorem �rst stated in [18].

The natural setting for the theory are the so called Paley-Wiener spaces.

De�nition 2.1 (Paley-Wiener Space). For δ > 0 and p ∈ [1, 2], the Paley-Wiener space PWp
δ(Rd) is

de�ned by

PWp
δ(R

d) =
{
f : Rd → C : f ∈ Lp(Rd) and supp f̂ ⊂ [−δ, δ]d

}
.

Often, we let δ = 1 or p = 2 and drop them from the notation. Further, we use the abbreviation
PW = PW(R) = PW2

1(R).

By the following theorem of Paley and Wiener, PWδ(R) can be characterized as a Hilbert space
of analytic functions, that satisfy a certain growth condition. In particular, point evaluations and
derivatives of f ∈ PW are well-de�ned.

Theorem 2.2 (Paley-Wiener Theorem). Let g ∈ L2(R) with supp g ⊂ [−a, a], where a ∈ R>0. Then
f = Fg is an entire analytic function obeying

|f(z)| . e2πa|=z|

and f |R ∈ L2(R). Conversely, every entire f satisfying these conditions has a Fourier transform with
support in [−a, a].

Proof. See [92], Theorem 11.1.2.
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Remarks. 1. No choice of normalization of the Fourier transform is perfect for everything. And
while our choice here gives slightly cleaner results later on, it is a little bit unusual in the
sampling community. One inconvenience here is that if supp ĝ ⊂ [−a, a], the function g is not
of exponential type a, but of exponential type 2πa.

2. Clearly, changing δ (by dilation) results in isometrically isomorph spaces.

3. By Hausdor�-Young, we know that if f ∈ PWp
δ(Rd), the Fourier transform of f lives in

Lp
′
([−δ, δ]d), where p′ is the Hölder conjugate of p, i.e., 1/p + 1/p′ = 1. Furthermore, for

p1 < p2, we have that L
p′1([−δ, δ]d) ⊂ Lp′2([−δ, δ]d), which results in the embedding

PWp1
δ (Rd) ⊂ PWp2

δ (Rd), p1 ≤ p2.

We start with a proof of the Shannon sampling theorem. Note that this theorem was actually
known before Shannon's groundbreaking work [90], more information on its interesting history can be
found in [42].

First, we calculate the Fourier series of e2πix· ∈ L2[−1, 1] for an arbitrary, �xed x ∈ R

e2πixw =
∑
k∈Z

sin(π(2x− k))

π(2x− k)
eπiwk. (2.8)

Now we only have to apply the Fourier inversion formula, which holds pointwise for any f ∈ PW
(indeed, it holds almost everywhere as f ∈ L2, which extends to everywhere by continuity of f):

f(x) =

∫ 1

−1

f̂(w)e2πixw dw =
∑
k∈Z

sin(π(2x− k))

π(2x− k)

∫ 1

−1

f̂(w)eπiwk dw =
∑
k∈Z

sinc(2x− k)f(k/2),

where sinc is de�ned by

sinc(x) =
sin(πx)

πx
∀x ∈ R \ {0}

and sinc(0) = 1. On the �rst glance it is not clear, why we are allowed to exchange integral and sum.
But actually, this is just a manifestation of Parseval's theorem. If g, h ∈ L2[−1, 1], then

1

2

∫ 1

−1

g(w)h(w) dw =
∑
k∈Z

ĝ(k)ĥ(k),

where ĝ(k), ĥ(k) are the Fourier coe�cients of g and h. We summarize:

Theorem 2.3 (Shannon Sampling Theorem). For any f ∈ PW, we have the pointwise representation

f(x) =
∑
k∈Z

sinc(2x− k)f(k/2).

Furthermore, the series on the right-hand side converges absolutely and locally uniformly.

Proof. We already proved that the formula holds pointwise. To prove locally uniform convergence, we
use the Weierstrass M-test. First, we note that (f(k/2))k ∈ `2(Z), as they are the Fourier coe�cients

(up to a factor of two) of f̂ ∈ L2[−1, 1]. For any compact set C ⊂ R, we �nd a K ∈ N>0 such that
for all k ∈ Z with |k| ≥ K we have

| sin(π(2x− k))|
π|2x− k|

.
1

|k|
uniformly over x ∈ C.

This immediately proves the claim, as
(
f(k/2)
|k|+1

)
k
∈ `1(Z) by Hölder's inequality.

Next, we generalize this result beyond point evaluations. A fairly general idea is to consider
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samples of the form

b[f ](t) =

∫ 1

−1

B(w)f̂(w)eπiwt dw,

where B is a function in L∞[−1, 1]. Clearly, b[f ](−k) is the k-th Fourier coe�cient of 2f̂(w)B(w) ∈
L2[−1, 1]. In particular, (b[f ](k))k ∈ `2(Z).

Example 2.4. Choosing B(w) = 1 results in b[f ](t) = f(t/2). A second important example is
B(w) = 2πiw. A short calculation shows that

b[f ](t) =

∫
R

2πiwf̂(w)eπiwt dw = f ′(t/2). (2.9)

The key insight of Papoulis' work [67] is to replace the expansion (2.8) by a more general one. As
an example, assume for the moment we wish to reconstruct an f ∈ PW from samples b1[f ](2k) and
b2[f ](2k), k ∈ Z, where b1, b2 are of the form (2.9). Note that we pick every second sample, as we
have actually two types of samples at each point 2k.

If we had an expansion of the form, where x ∈ R and w ∈ [−1, 1],

e2πixw = B1(w)
∑
k∈Z

y
(1)
k (x)e2πiwk +B2(w)

∑
k∈Z

y
(2)
k (x)e2πiwk, (2.10)

we were done � indeed, using the same idea as for the Shannon sampling theorem above, we obtain

f(x) =

∫ 1

−1

f̂(w)e2πixw dw =
∑
k∈Z

(
y

(1)
k (x)

∫ 1

−1

B1(w)f̂(w)e2πikw dw + y
(2)
k (x)

∫ 1

−1

B2(w)f̂(w)e2πikw dw

)
=
∑
k∈Z

y
(1)
k (x)b1[f ](2k) + y

(2)
k (x)b2[f ](2k).

To understand how to obtain an expansion like (2.10), we let

Yr(w, x) =
∑
k∈Z

y
(r)
k (x)e2πiwk, r = 1, 2.

Clearly, Yr is 1-periodic in w and Yr(·, x) is given as a Fourier series for every �xed x ∈ R with Fourier

coe�cients y
(r)
k (x). Therefore, (2.10) can be written as a system of equations

e2πixw = B1(w)Y1(w, x) + B2(w)Y2(w, x)

e2πixe2πixw = B1(w + 1)Y1(w, x) + B2(w + 1)Y2(w, x)
(2.11)

for all x ∈ R and w ∈ [−1, 0]. This allows an interesting observation. Multiplying the system with
e−2πixw, we see that the left-hand side is 1-periodic in x. If we assume that the system is regular, i.e.,
that (

B1(w) B2(w)
B1(w + 1) B2(w + 1)

)
is non-singular for all w ∈ [−1, 0], the solution Yr(w, x)e−2πiwx has to be 1-periodic in x as well. But
then

y
(r)
k (x) =

∫ 1

0

Yr(w, x)e−2πiwk dw =

∫ 1

0

Yr(w, x− k) dw = y
(r)
0 (x− k) =: yr(x− k)

and we get

f(x) =
∑
k∈Z

y1(x− k)b1[f ](2k) + y2(x− k)b2[f ](2k).

The general statement is now quite natural: If we have sampling operators b1, . . . , bm and samples
bj [f ](mk), k ∈ Z, the functions Yr will be 2/m-periodic and (2.11) becomes a system of m equations,
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which has to be satis�ed on [−1,−1 + 2/m].

Theorem 2.5 (Papoulis' Generalized Sampling Theorem). Given B1, . . . , Bm ∈ L∞[−1, 1] such that
the matrix

T (w) =


B1(w) B2(w) . . . Bm(w)

B1(w + 2/m) B2(w + 2/m) . . . Bm(w + 2/m)
...

...
. . .

...
B1(w + 2(m− 1)/m) B2(w + 2(m− 1)/m) . . . Bm(w + 2(m− 1)/m)


is invertible for all w ∈ [−1,−1 + 2/m] and furthermore that (T−1(w))j,k ∈ L2[−1,−1 + 2/m] for all
j, k = 1, . . . ,m. Then for all f ∈ PW we have the expansion

f(x) =
∑
k∈Z

y1(x− km/2)b1[f ](km) + · · ·+ ym(x− km/2)bm[f ](km), (2.12)

which converges absolutely and locally uniformly. Here, (bj [f ](n))n ∈ `2(Z) is given by

bj [f ](n) =

∫ 1

−1

Bj(w)f̂(w)eπiwt dw

and yj ∈ PW by

yj(x) =
m

2

∫ −1+2/m

−1

Yj(w, x) dw,

where Yj(w, x) : [−1,−1 + 2/m]× R→ C is the solution of

T (w)(Yj(w, x))j=1,...,m = (e2πix(w+2(j−1)/m))j=1,...,m.

Proof. By assumption, Yj(w, x) is given by

Yj(w, x) = tj,1(w)e2πixw + · · ·+ tj,m(w)e2πix(w+2(m−1)/m), (2.13)

where tj,s ∈ L2[−1,−1 + 2/m]. Therefore, yj is of the form

yj(x) =
m

2

∫ −1+2/m

−1

tj,1(w)e2πixw + · · ·+ tj,m(w)e2πixwe2πix(w+2(m−1)/m) dw

=
m

2

(∫ −1+2/m

−1

tj,1(w)e2πixw dw + · · ·+
∫ 1

1−2/m

tj,m(w − 2(m− 1)/m)e2πixw dw

)

and in particular is an element of the Paley-Wiener space PW.

Next we observe that Yj(w, x)e−2πixw has period m/2 in x (at least for almost all w), due to (2.13).
Thus, for all x we obtain (extending Yj(w, x) periodically in w)

yj(x− km/2) =
m

2

∫ −1+2/m

−1

Yj(w, x− km/2)e−2πi(x−km/2)we2πi(x−km/2)w dw

=
m

2

∫ −1+2/m

−1

Yj(w, x)e−πikmw dw =
1

2

∫ 1

−1

Yj(w, x)e−πikmw dw.

We see that for any �xed x ∈ R, the Fourier coe�cients of Y (·, x) ∈ L2[−1,−1 + 2/m] are given by
(yj(x− km/2))k ∈ `2(Z). This gives for all �xed x ∈ R

e2πixw =

m∑
j=1

Bj(w)Yj(w, x) =

m∑
j=1

Bj(w)
∑
k∈Z

yj(x− km/2)eπikmw

in the L2[−1, 1]-sense as functions in w. This already gives the pointwise equality, just as before by
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applying Fourier inversion and Parseval's theorem:

f(x) =

∫ 1

−1

f̂(w)e2πiwx dw =

m∑
j=1

∫ 1

−1

f̂(w)Bj(w)Yj(w, x) dw

=

m∑
j=1

2
∑
k∈Z

(
1

2

∫ 1

−1

f̂(w)Bj(w)e−πikw dw

)(
1

2

∫ 1

−1

Yj(w, x)e−πikw dw

)

=

m∑
j=1

∑
k∈Z

yj(x+ km/2)bj [f ](−km).

Here we used that only terms of the form eπikmw do appear in the Fourier expansion of Yj(w, x).
Now we prove the locally uniform convergence. Again, relying on the Weierstrass M-test, we need

to show that for any x ∈ R we �nd ε > 0 with

max
z∈[x−ε,x+ε]

|yj(z − km/2)| ≤Mk,

where (Mk) ∈ `2(Z) may depend on yj and x. Then we obtain that on [x − ε, x + ε], we have
|yj(z − km/2)b[f ](km)| ≤ Mk|b[f ](km)| and (Mk|b[f ](km)|)k ∈ `1(Z). Then, Weierstrass gives us
that ∑

k∈Z
yj(x− km/2)b1[f ](km)

converges absolutely and locally uniformly. We prove the existence of such (Mk)k for general functions
in PW in the following lemma.

Lemma 2.6. Let g ∈ PW be given. Then for any closed interval I ⊂ R we have that∑
n∈Z

max
x∈I
|g(x+ n/2)|2 .|I|

∫
R
|g(y)|2 dy.

Proof. First, it is clear that we may assume that I =
[
− 1

9 ,
1
9

]
. Indeed, any longer interval can be split

into several subintervals I1, . . . , Ir covering I. Then we clearly have that

∑
n∈Z

max
x∈I
|g(x+ n/2)|2 ≤

r∑
j=1

∑
n∈Z

max
x∈Ij
|g(x+ n/2)|2.

Furthermore, it is obvious that if the bound holds true for one interval, it holds true for all of its
translates (which is equivalent to translating g).

For a �xed g and I =
[
− 1

9 ,
1
9

]
, let xn/2 ∈ n/2 + I be chosen such that

|g(xn/2)| = max
x∈I
|g(x+ n/2)|.

We obtain

∑
n∈Z

max
x∈I
|g(x+ n/2)|2 =

∑
n∈Z
|g(xn/2)|2 =

∑
n∈Z

∣∣∣∣∫ 1

−1

ĝ(w)eπiwxn dw

∣∣∣∣2 = 4
∑
n∈Z

∣∣〈ĝ, e−πixn·〉L2[−1,1]

∣∣2 .
If we knew that (e−πixn·)n were a frame in L2[−1, 1] with an upper frame bound B ∈ R independent
of (xn)n, we were done:∑

n∈Z

∣∣〈ĝ, e−2πixk·〉L2[−1,1]

∣∣2 ≤ B‖ĝ‖2L2[−1,1] = B

∫
R
|g(y)|2 dy.

As supn |xn − n| ≤ 2
9 <

1
4 , this is indeed the case, a result of the extension of Kadec's 1

4 -Theorem to
frames, which is proved in [5] and [20], see also [21] Theorem 9.8.6.

Remarks. 1. Our proof of Theorem 2.5 follows the original proof by Papoulis, see [67]. Papoulis'
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generalized sampling theorem is well-known and found its way into textbooks, see for example
[29].

2. In [11], stability of the sampling expansion is discussed and yj ∈ PW proved. The author did
not �nd a source, which discusses the locally uniform convergence.

3. To check whether (T−1(w))j,k ∈ L2[−1,−1 + 2/m], a convenient method is to check if one can
�nd a c > 0 such that

|detT (w)| ≥ c > 0 for almost all w ∈ [−1,−1 + 2/m],

which even gives (T−1(w))j,k ∈ L∞([−1,−1 + 2/m] (and in particular Yj(w, x) ∈ L∞([−1,−1 +
2/m]× R)), by Cramer's rule. This is discussed in [11].

4. Later, we need a result like Lemma 2.6, but for the L1-norm. See Lemma 2.10, where we also
list some related literature.

5. Note that ∫
R
|g(y)|2 dy .

∑
n∈Z

max
x∈I
|g(x+ n/2))|2

holds trivially, as shrinking I decreases the right-hand side and the inequality holds with equality
(up to a factor of two) for I = {0}. This is due to the fact that g(n/2) is the n-th Fourier
coe�cient of ĝ (again up to a factor of two), a result we already used. However, by using the
lower frame bound it is possible to prove a much stronger result, namely∫

R
|g(y)|2 dy .I

∑
n∈Z

min
x∈I
|g(x+ n/2)|2,

at least if I ⊂
(
− 1

8 ,
1
8

)
is satis�ed.

Example 2.7. We now give an example, which will be of great importance later on. We pick

B1(w) = 1 and B2(w) = 2πiw.

As already discussed in Example 2.4, this results in b1[f ](t) = f(t/2) and b2[f ](t) = f ′(t/2). To
determine yj, we solve (2.11), which results in

Y2(w, x) =
1

2πi
e2πiwx

(
e2πix − 1

)
and Y1(w, x) = e2πiwx

(
1 + w − we2πix

)
.

Calculating y1 and y2 is straightforward:

y2(x) =
1

2πi

∫ 0

−1

e2πixw
(
e2πix − 1

)
dw =

1

4π2i2x

(
e2πix − 1

) (
1− e−2πix

)
=

sin2(πx)

π2x

y1(x) =

∫ 0

−1

e2πixw
(
1 + w − we2πix

)
dw =

sin2(πx)

π2x2
.

Thus, we proved the expansion

f(x) =
∑
k∈Z

sin2(π(x− k))

π2(x− k)2
f(k) +

sin2(π(x− k))

π2(x− k)
f ′(k) =

sin2(πx)

π2

∑
k∈Z

f(k)

(x− k)2
+
f ′(k)

x− k
,

which is (up to a di�erent scaling) exactly the formula introduced by Jagerman and Fogel in [47]. The
series converges absolutely and locally uniformly.

Remarks. 1. There are more examples of sampling expansions, which can be derived using Papoulis'
generalized sampling theorem. In particular, instead of using only the �rst derivative, it is
straightforward (though not easy to compute) to obtain expansions including higher derivatives.
These expansions predate Papoulis' theorem and were �rst introduced by Linden and Abramson
in [56]. Another example is bunched sampling, i.e., using samples of the form f(km/2 + αj),
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where αj , j = 1, . . . ,m are pairwise distinct numbers in ]− 1, 1[. A sampling theorem covering
this case was �rst proved by Yen in [100] and again can be recovered using Papoulis' result.
These examples are already given in Papoulis' work [67].

2. One might wish to obtain similar expansions for functions, which are entire but not in L2(R).
At least for bounded, entire function of exponential type 2π, one can easily use the presented
results, by noting that if f : R→ C is bounded and of exponential type π, we may consider

g(z) =

{
f ′(0) if z = 0
f(z)−f(0)

z otherwise.

Then g ∈ PW, by the well-known fact that an entire function f of exponential type τ , which is
bounded on the real line, satis�es |f(z)| . eτ |=z| � see [10], Theorem 6.2.4, and the Paley-Wiener
Theorem 2.2. Hence, we can apply the aforementioned results. Just to give an example, using
Shannon's sampling theorem results in

f(z) =
sin(2πz)

π

f(0)

2z
+ f ′(0) +

∑
k∈Z
k 6=0

(−1)kf(k/2)

(
1

k
+

1

2z − k

) .

This formula is well-known, see for example [102], Theorem 7.19. Using g in the derivative
expansion from Example 2.7 results in another useful representation, see [94], Theorem 10.

Now we give a multivariate extension of Papoulis' sampling theorem. We only need an expansion
using tensor-type sampling operators of the form

b[f ](k) =

∫
[−1,1]d

B(1)(w1) · · ·B(d)(wd)f̂(w1, . . . , wd)e
2πi(w1,...,wd)·k d (w1, . . . , wd)

for k ∈ Zd and f ∈ PW(Rd). Therefore, the multivariate theorem is an easy corollary of the univariate
result.

Theorem 2.8 (Papoulis' Sampling Theorem - Multivariate Case). Given B
(k)
j ∈ L∞[−1, 1], j =

1, . . . ,m and n = 1, . . . , d such that for all k the functions B
(k)
j , j = 1, . . . ,m satisfy the conditions

given in Theorem 2.5. Then for all f ∈ PW(Rd) we obtain

f(x) =
∑
k∈Zd

m∑
j1,...,jd=1

y
(1)
j1

(x1 −mk1/2) · · · y(d)
jd

(xd −mkd/2)bj1,...,jd [f ](km), (2.14)

which converges absolutely and locally uniformly.

Here, for each n = 1, . . . , d the functions y
(n)
j ∈ PW are related to B

(n)
j as in the univariate case

and bj1,...,jd [f ] is given by

bj1,...,jd [f ](k) =

∫
[−1,1]d

B
(1)
j1

(w1) · · ·B(d)
jd

(wd)f̂(w1, . . . , wd)e
2πi(w1,...,wd)·k d (w1, . . . , wd).

Proof. First, note that bj1,...,jd [f ](k/2) is the k-th Fourier coe�cient of B
(1)
j1

(w1) · · ·B(d)
jd

(wd)f̂(w) ∈
L2[−1, 1]d and therefore in `2(Zd). Further, we already know that (y

(n)
j (xn−k/2))k ∈ `2(Z). Thus, the

right-hand side of (2.14) converges absolutely in each point x ∈ Rd. Now we have the decomposition

e2πix·w = e2πix1w1 · · · e2πixdwd =

d∏
n=1

 m∑
j=1

B
(n)
j (wn)Y

(n)
j (wn, xn)


=

m∑
j1,...,jd=1

B
(1)
j1

(w1)Y
(1)
j1

(w1, x1) · · ·B(d)
jd

(wd)Y
(d)
jd

(wd, xd).
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Using Fourier inversion and Parseval's theorem gives

f(x) =

∫
[−1,1]d

f̂(w)e2πix·w dw =

m∑
j1,...,jd=1

∫
[−1,1]d

f̂(w)B
(1)
j1

(w1)Y
(1)
j1

(w1, x1) · · ·B(d)
jd

(wd)Y
(d)
jd

(wd, xd) dw

=

m∑
j1,...,jd=1

∑
k∈Zd

bj1,...,jd [f ](−km)

(
1

2d

d∏
n=1

∫ 1

−1

Y
(n)
jn

(wn, xn)eπiwnkn dwn

)

=

m∑
j1,...,jd=1

∑
k∈Zd

bj1,...,jd [f ](−km)

d∏
n=1

y
(n)
jn

(xn + knm/2).

The proof of the locally uniform convergence of (2.14) works exactly as in the univariate case, by
relying on the Weierstrass M-test. However, no multivariate version of Lemma 2.6 is necessary, as for
Q = I1 × · · · × Id (

max
(x1,...,xd)∈Q

|y(1)
j1

(x1 − k1/2) · · · y(d)
jd

(xd − kd/2)|
)
k1,...,kd

∈ `2(Zd)

follows directly from the univariate result.

Remarks. 1. It is easy (though a notational burden) to use di�erent numbers m1, . . . ,md. Indeed,
we used the expansions in each dimension separately. It is also possible to cover the case that
supp f̂ ⊂ [−a1, a1]× · · · × [−ad, ad], where aj ∈ R>0 for j = 1, . . . , d.

2. Sometimes it is of interest to obtain sampling expansions for f with supp f̂ ⊂ K, where K is
some set in Rd. Note that Theorem 2.8 can be used to cover the case of K being a parallelepiped
by applying it to f(Q·) for a suitable matrix Q. A more detailed discussion can be found in [19].

3. This result is closely related to a more general result of Brown and Sa-Ngsari in [12]. They
state an extension of the linear system (2.11) to the higher dimensional case. However, they do
not give any example and do not mention the tensor-product case. Our result on the mode of
convergence seems to be new.

Examples 2.9. We start by stating the multivariate analog of Shannon's sampling expansion. This
is known since at least 1962, see [69]. Every f ∈ PW(Rd) can be written as

f(x) =
∑
k∈Zd

sinc(2x1 − k1) · · · sinc(2xd − kd)f(k/2),

where the right-hand side converges absolutely and locally uniformly.

Next, we state the derivative sampling expansion. We let B
(k)
1 (wk) = 1 and B

(k)
2 (wk) = 2πiwk for

all k = 1, . . . , d. We use the notation 1 = (1, . . . , 1) ∈ Zd and 2 = 21. This results in

bj [f ](k) =

∫
[−1,1]d

(2πi)|j−1|wj−1f̂(w)e2πiw·k dw = ∂j−1f(k), j ∈ {1, 2}d.

Here, we use the usual notation: For j ∈ Nd0 and w ∈ Rd, wj = wj11 · · ·w
jd
d , |j| = j1 + · · · + jd and

∂j = ∂j11 . . . ∂jdd . We obtain for all f ∈ PW(Rd)

f(x) =
sin2(πx1) · · · sin2(πxd)

π2d

∑
k∈Zd

∑
j∈{0,1}d

∂jf(k)

(x− k)2−j
, (2.15)

where the right-hand side converges absolutely and locally uniformly. This expansion was �rst proved
in [19] (explicitly stated only for d = 2 and only pointwise) and reproved in [18] (Theorem 11), where
the mode of convergence was explicitly given.
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2.2 Localizing Functions

We now turn to localizing functions. To state what we understand under a localizing function, let

uN (x) =


1 x ∈ (−N,N)

0 x /∈ [−N,N ]
1
2 x = ±N

,

where N ∈ N>0. Any function f ∈ PW with f(x) ≤ uN (x) for all x ∈ R is called localizing function
(for uN ). Mainly, we are interested in �nding functions f ∈ PW minimizing∫

R
uN (x)− f(x) dx. (2.16)

These functions are sometimes called extremal functions. Of course, this question is interesting not
only for uN . In fact, the �rst results in this direction are given by Arne Beurling in [9]. He gave an
entire function of exponential type 2π with B(x) ≥ sgn(x), minimizing

∫
RB(x)− sgn(x) dx. Clearly,

B /∈ PWp, as sgn /∈ Lp(Rd) for all p ∈ [1, 2].

In the 1970s Atle Selberg noted that Beurling's construction can be used to obtain extremal
functions for uN . Indeed,

cN (x) = −1

2
(B(x−N) +B(−N − x)) ≤ uN (x)

gives ∫
R
uN (x)− cN (x) dx = 1,

which turns out to be optimal. The case where one wishes to �nd extremal functions in PW smaller (or
greater) than the characteristic function of an arbitrary interval is more tricky and was �rst announced
by Logan [59] in 1977. Much later, in 2013, a complete proof was given by Littmann [58], though we
do not need his result here.

We prove which f ∈ PW are extremal for uN without taking the detour of �nding extremal
functions to sgn, which has the technical advantage that we can work completely in PW. The extremal
function is not unique, but it will turn out that only one of them has an additional property we need
later on - namely, a global maximum of f̂ in zero. Beurling's function can then be recovered by a
limiting process.

In the higher dimensional case extremal functions are not known. However, we construct localizing
functions, which su�ce for our purpose. This builds on work of Carruth, Gonçalves and Kelly [18].
We give some extensions of their work (which is limited to N = 1) and in particular construct a
localizing function F such that F̂ has its global maximum in zero. The function enables us to prove
the main results of this chapter in the next section.

But what makes localizing functions so interesting? Their usefulness comes from the fact that they
allow to overcome a basic uncertainty principle: No function can be too localized in the spatial and in
the frequency domain simultaneously. There are many results making this abstract principle precise
like Heisenberg's uncertainty principle or Hardy's uncertainty principle. The Paley-Wiener theorems
are also connected to this observation. The Fourier transform of a perfectly localized (i.e., compactly
supported) function is an entire function (and therefore in particular not compactly supported).

Now uN is perfectly localized in the spatial domain and therefore not localized in the frequency
domain at all (F uN (w) decays only like w−1). However, by estimating uN ≥ f , where f is any
localizing function, we replaced uN by a function perfectly localized in the frequency domain.

As a preparation, we give an instance of Poisson's summation formula, slightly di�erent from most
results in literature. To this end, we need the following lemma.

Lemma 2.10. Let f ∈ PW1
δ(Rd), then∑

k∈Zd
|f(k)| .δ,d

∫
Rd
|f(x)|dx.
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Proof. We extend a technique used by Wiener in [98], Lemma 67. Pick a smooth function φ : Rd → R
with suppφ ⊂ [−2δ, 2δ]d and φ(x) = 1 for all x ∈ [−δ, δ]. Then

f(x) =

∫
Rd
f̂(w)e2πix·w dw =

∫
Rd
f̂(w)φ(w)e2πix·w dw

=

∫
Rd
f̂(w)

∫
Rd
φ̂(u− x)e2πiuw dudw

=

∫
Rd
φ̂(u− x)f(u) du.

Now, due to the smoothness of φ, we know that
∑
k∈Zd |φ̂(u− k)| ∈ L∞(Rd) and we obtain∑

k∈Zd
|f(k)| ≤

∫
Rd
|f(u)|

∑
k∈Zd

|φ̂(u− k)|du .δ,d

∫
Rd
|f(u)|du.

Remarks. 1. Note that if we additional assume that the φ in the proof is even, we have that

f(x) = f ∗ φ̂ (x).

This is not surprising, as φ does not �lter the frequencies in [−δ, δ]d.

2. It is easy to see that one can use the same idea to prove a stronger result. Namely, let D ⊂ Rd
be compact, f ∈ PW1

δ(Rd). Then∑
k∈Zd

max
x∈D
|f(x+ k)| .D,δ,d

∫
Rd
|f(x)|dx.

In the case d = 1, this is exactly the result by Wiener in [98], Lemma 67. Note the relation to
Lemma 2.6, where a similar result for f ∈ PW2

δ(R) is given.

3. There is a result covering arbitrary, positive p > 0, by Plancherel and Polya [71] (Theorem 3,
formula 127). Namely, they prove that for any F of exponential type and any positive p,∑

k∈Zd
|F (k)|p .

∫
Rd
|F (x)|p dx.

However, the author feels that using the elementary argument given above is interesting in its
own right and makes this work more self contained.

Theorem 2.11 (Poisson's Summation Formula on PW1). Let f ∈ PW1
δ(Rd) be arbitrary. Then∑

k∈Zd
f(k)e−2πik·x =

∑
k∈Zd

f̂(x− k)

holds for all x ∈ Rd, where both sums converge uniformly on compact sets.

Proof. By assumption, f̂ is continuous with support in [−δ, δ]d. We denote the periodi�cation by

G(x) =
∑
k∈Zd

f̂(x− k). (2.17)

The Fourier coe�cients of G are given by

cn =

∫
[0,1]d

G(x)e−2πix·n dx =

∫
[0,1]d

∑
k∈Zd

f̂(x− k)e−2πi(x−k)·n dx

=

∫
Rd
f̂(x)e−2πix·n dx = f(−n).



2.2. LOCALIZING FUNCTIONS 19

By Lemma 2.10, the Fourier coe�cients of G are summable. Hence, its Fourier series is absolutely
convergent and a continuous functions, almost everywhere equal to G. But due to the bounded support
of f̂ , the sum in (2.17) is actually �nite and G is continuous as well. Therefore,

G(x) =
∑
k∈Zd

f̂(x− k) =
∑
k∈Zd

f(k)e−2πik·x.

Remarks. 1. The special case x = 0 and δ = 1 is stated in [18].

2. Usually, Poisson's summation formula (for functions in L1(Rd)) relies on additional decay prop-

erties of f and f̂ , like |f |(x), |f̂ |(x) . (1+|x|)−d−ε, where ε > 0 (see for example [36], Proposition

1.4.2). This is necessary, as there are functions f ∈ L1(R) ∩ C(R) with f̂ ∈ L1(R) ∩ C(R) such
that both series converge absolutely and the formula still fails to hold, see [50], p. 130.

We are now ready to prove lower bounds for (2.16).

Proposition 2.12. For any f ∈ PW and any N ∈ N>0 with f(x) ≤ uN (x) (making the tacit
assumption that f is real valued), we have that∫

R
uN (x)− f(x) dx ≥ 1.

Equality holds if and only if f satis�es

f(k) =

{
1 k ∈ Z, |k| < N

0 k ∈ Z, |k| ≥ N
and f ′(k) = 0 for all k ∈ Z \ {±N}.

Proof. First, we notice that∫
R
uN (x)− f(x) dx = 2N −

∫
R
f(x) dx = 2N − f̂(0).

Now, if f /∈ L1(R), the inequality holds trivially. We therefore assume that f ∈ PW1, which implies

that f̂ is continuous. Thus, f̂(k) = 0, k ∈ Z \ {0}. Poisson's summation formula yields∫
R
uN (x)− f(x) dx = 2N −

∑
k∈Z

f̂(k) = 2N −
∑
k∈Z

f(k) ≥ 1,

where the last inequality follows from f(k) ≤ 1 if |k| < N and f(k) ≤ 0 if |k| ≥ N .

This already explains the �rst set of conditions. The second set follows easily from the fact that
f has to have local maxima at k ∈ Z \ {±N}, again due to f(x) ≤ uN (x).

Now we have to construct such an f ∈ PW. To this end, we invoke the expansion of Jagerman
and Fogel, as given in Example 2.7. Plugging in the necessary conditions we just proved, we obtain

f(x) =
sin2(πx)

π2

f ′(−N)

x+N
+
f ′(N)

x−N
+
∑
|k|<N

1

(x− k)2

 .

As we wish to have f ∈ L1(R), we have to have that −f ′(N) = f ′(−N). Therefore, we have to �nd
for which α ∈ R the function

sin2(πx)

π2

 α

x+N
− α

x−N
+
∑
|k|<N

1

(x− k)2

 =
sin2(πx)

π2

 2Nα

N2 − x2
+
∑
|k|<N

1

(x− k)2


is pointwise smaller than uN . This is a little bit tricky and requires some non-trivial inequalites, as
we will now see.
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Proposition 2.13. For α ∈
[

2N−1
2N , 2N+1

2N

]
, the function

Fα,N (x) =
sin2(πx)

π2

 2Nα

N2 − x2
+
∑
|k|<N

1

(x− k)2


satis�es Fα,N (x) ≤ uN (x) and minimizes (2.16) among all f ∈ PW minorizing uN . If α < 2N−1

2N ,
this is no longer true.

Proof. We have to prove that Fα,N (x) ≤ uN (x) for α ∈
[

2N−1
2N , 2N+1

2N

]
. We start by proving Fα,N (x) ≤

0 if |x| ≥ N . As Fα,N is even, we can assume that x ≥ N . Further, for x = N this is obvious and for
x > N the claim is equivalent to ∑

|k|<N

1

(x− k)2
≤ 2Nα

x2 −N2
. (2.18)

Multiplying with x2 −N2 and letting x→∞, we see that α ≥ 2N−1
2N is necessary. We show that it is

su�cient as well. To this end, we can restrict ourselves to the case α = 2N−1
2N . We note that

(x− k)2 >

(
x− k − 1

2

)(
x− k +

1

2

)
and therefore∑

|k|<N

1

(x− k)2
<
∑
|k|<N

1(
x− k − 1

2

) (
x− k + 1

2

) =
∑
|k|<N

1

x− k − 1
2

− 1

x− k + 1
2

=
1

x−N + 1
2

− 1

x+N − 1
2

.

Elementary rearrangements give

2N − 1

x2 −N2
≥ 1

x−N + 1
2

− 1

x+N − 1
2

⇔

(2N − 1)

(
x−N +

1

2

)(
x+N − 1

2

)
≥ (x2 −N2)

(
x+N − 1

2
−
(
x−N +

1

2

))
⇔

x2 −
(
N − 1

2

)2

≥ x2 −N2

and (2.18) is proved.

Now we like to prove that Fα,N (x) ≤ 1 for |x| < N . This is clearly true when x ∈ Z and by
symmetry we can assume that x > 0. Using the well-known formula

1 =
sin2(πx)

π2

∑
k∈Z

1

(x− k)2

we actually only have to prove that

2Nα

N2 − x2
≤
∑
|k|≥N

1

(x− k)2
.

Clearly, it su�ces to check the case α = (2N + 1)/(2N). We use the fact that the trapezoidal rule
overestimates convex functions to obtain∑

|k|≥N

1

(x− k)2
≥ 1

2

1

(x−N)2
+

1

2

1

(x+N)2
+

∫ ∞
N

1

(x− y)2
dy +

∫ −N
−∞

1

(x− y)2
dy

=
1

2

1

(x−N)2
+

1

2

1

(x+N)2
+

1

N − x
+

1

N + x
.
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Again we are left with a few elementary rearrangements, we state them for completeness:

1

2

1

(x−N)2
+

1

2

1

(x+N)2
+

1

N − x
+

1

N + x
≥ 2N + 1

N2 − x2
⇔

1

2

(
N + x

N − x
+
N − x
N + x

)
+N + x+N − x ≥ 2N + 1,

which is true as a+ a−1 ≥ 2 for all a ∈ R>0.

Remarks. 1. Selberg's minorant, as stated in [94], corresponds to the case α = 1. The author was
not able to �nd the result of Proposition 2.13 in the literature, though the non-uniqueness of
extremal minorants is certainly known (it is for example mentioned in [18]). In [34], p. 289, the
corresponding result for majorizing functions is stated and credited to unpublished work of A.
Selberg, but without a proof.

2. While our approach can be easily extended to �nd minorants of an interval [A,B] with A,B ∈ Z,
the general case is more di�cult. However, one can use this approach to get Beuerling's majorant
of the sgn-function. Indeed, it is not di�cult to see that

F1,N (x−N)→ F (x)

locally uniformly. Note that α = 1 is the only possible choice working for all N ∈ N>0. Then

B(x) = 2F (x)− 1 =
sin2(πx)

π2

(
2

x
+

∞∑
k=1

2

(x− k)2

)
− 1

=
sin2(πx)

π2

(
2

x
+

∞∑
k=1

1

(x− k)2
−
∞∑
k=0

1

(x+ k)2

)

is a minorant of sgn. The corresponding majorant −B(−x) is exactly Beuerling's majorizing
function and satis�es ∫

R
−B(−x)− sgn(x) dx = 1.

For any interval [α, β] ⊂ R, one then obtains a minorant by considering

ψα,β(x) =
1

2
(B(x− α) +B(−x+ β)) ≤ χ[α,β](x). (2.19)

This is Selberg's original approach. He then proved that∫
R
χ[α,β](x)− ψα,β(x) dx = 1.

Note that we are only able to obtain F1,N this way and not the functions we need later on. See
[94] for more information and proofs. However, if β − α /∈ Z, this minorant is not extremal.
Extremal functions in this case were announced by Logan in [59]. A proof appeared much later,
by Littmann [58].

This concludes the univariate theory of extremal functions we need. In higher dimensions, the
results are more complicated. We formulate the problem as follows:

Find f ∈ PWd minimizing

∫
Rd
udN (x)− f(x) dx subject to f ≤ udN , (2.20)

where udN = χ[−N,N ]d . Up to today, no extremal solution are known. However, it is known that there
are functions attaining the minimum, a result due to Carruth, Gonçalves and Kelly [18].

Theorem 2.14. The minimum in (2.20) is attained by a function F ∈ PWd. Furthermore, there
exists a solution with the symmetries of a square, i.e., for all permutations σ of d elements it holds



22 CHAPTER 2. STABILITY AND WELL-POSEDNESS

that

F (x1, . . . , xd) = F (|xσ(1)|, . . . , |xσ(d)|), for all x1, x2, . . . , xd ∈ R.

The existence part follows directly from Lemma 12 in [18]. That symmetry can be assumed is
stated implicitly and follows easily from the observation that the symmetrization of an F ∈ PW

Fsym(x) =
1

2dd!

∑
ε∈{±1}d

∑
σ

F (ε1xσ(1), . . . , εdxσ(d))

is still admissible and attains the same value in (2.20).

In the next propositions, we highlight two of the main di�erences between the one and the higher
dimensional case. Already the higher dimensional analog of Proposition 2.12 shows an important
di�erence, as the lower bound growth with N .

Proposition 2.15. For any f ∈ PW(Rd) and any N ∈ N>0 with f(x) ≤ udN (x), we have that∫
Rd
uN (x)− f(x) dx ≥ (2N)d − (2N − 1)d ≥ d(2N − 1)d−1.

Proof. The proof is a straightforward generalization of the one dimensional result. Clearly, we may
assume f ∈ PW1(Rd). As f(k) ≤ 1 if ‖k‖∞ ≤ N − 1 and f(k) ≤ 0 otherwise, using Poisson's
summation formula, we obtain∫

Rd
uN (x)− f(x) dx = (2N)d − f̂(0) = (2N)d −

∑
k∈Zd

f(k) ≥ (2N)d − (2N − 1)d.

The second inequality is a direct application of the mean value theorem.

But the main problem is that this lower bound cannot be achieved. Again, this result is due to
Carruth, Gonçalves and Kelly [18] in the case N = 1. We give a modi�ed proof for arbitrary N .

Theorem 2.16. Let F ∈ PWd be given, minorizing udN , where d ≥ 2. Then

F̂ (0) =

∫
Rd
F (x) dx < (2N − 1)d.

Proof. As already explained, we may assume that F obeys the symmetry of a square. Furthermore,
the previous proposition already established F̂ (0) ≤ (2N − 1)d. We start with the case d = 2 and
assume that F̂ (0) = (2N − 1)2. This however is only possible if

F (m,n) =

{
1 if |m|, |n| < N

0 otherwise.

As F ≤ udN , all points (m,n) not of the form (±N,n) or (m,±N) with |n|, |m| ≤ N are local maxima
of F . In particular, the partial derivatives vanish. They vanish at (m,n) with |m| = |n| = N as well,
due to the surrounding sign pattern and F (m,n) = 0. For the same reason, we have ∂2F (±N,n) = 0
and ∂1F (m,±N) = 0 whenever |m|, |n| < N .

Now we use the representation of F by the derivative sampling expansion, as stated in (2.15).
We see that the functions x 7→ F (x, n) and y 7→ F (m, y) are zero for all |n|, |m| ≥ N . Therefore,
∂2

1F (n,m) = ∂2
2F (n,m) = 0 for all |n|, |m| ≥ N . But these (m,n) are local maxima and the second-

order necessary condition is given by

∂2
1F (m,n)∂2

2F (m,n)− (∂1∂2F (m,n))
2 ≥ 0.

Hence, ∂1∂2F (m,n) = 0 at such points. Up to now, we followed the proof given in [18] closely. Now
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we plug all gathered information into the derivative sampling expansion (2.15):

F (x, y) =
sin2(πx) sin2(πy)

π4

 ∑
|m|,|n|<N

1

(x−m)2(y − n)2
+
∑
|n|<N

2N∂1F (N,n)

(x2 −N2)(y − n)2

+
∑
|m|<N

2N∂2F (m,N)

(y2 −N2)(x−m)2
+

∑
0≤m,n≤N

4mn∂1∂2F (m,n)

(x2 −m2)(y2 − n2)


Next, for ε > 0, we consider

G(k, ε) = F (
√
N2 + ε,

√
k2 + ε)

π4ε2

sin2(π
√
N2 + ε) sin2(π

√
k2 + ε)

≤ 0.

Letting ε go to zero, we obtain for all |k| ≤ N

∂1∂2F (N, k) ≤ 0. (2.21)

Now we form the limes

0 ≥ lim
k→∞

G(k, ε)k2 = ε
∑
|n|<N

2N∂1F (N,n) + ε4N

N∑
n=0

n∂1∂2F (N,n) +O(ε2).

Note that this inequality also holds for ε < 0. Therefore, we have

∑
|n|<N

2N∂1F (N,n) + 4N

N∑
n=0

n∂1∂2F (N,n) = 0. (2.22)

But x 7→ F (x, n) is in PW1, minorizes uN and is equal to one at x = −N + 1, . . . , N − 1. Therefore,
this function is actually of the type Fα,N as presented in Proposition 2.13 with

α = −∂F1(N,n) ≥ 2N − 1

2N

.

This leads to a contradiction: ∂1F (N,n) < 0 and (2.21) contradict (2.22).

The case d > 2 can be easily deduced from the case d = 2. Indeed, if F ∈ PWd minorized udN and

F̂ (0) = (2N − 1)d, the function F (x, y, 0, . . . , 0) ∈ PW2 would contradict the case d = 2.

Remark. One of the main results in [18] is, that for all dimensions d larger than a critical threshold,
the function F ∈ PWd minorizing ud1 and maximizing F̂ (0) is the zero function. However, no bound
on the critical dimension is currently known.

Though no extremal functions are known in the higher dimensional case, there are some explicit
constructions of F ∈ PWd minorizing udN . In the following discussion, we focus on the two dimensional
case. It is intriguing to start with a tensor product ansatz, for example

F (x, y) = Fα,N (x)Fα,N (y).

However, this is not a minorant, as F (x, y) ≥ 0 if |x|, |y| ≥ N . This unfortunately shows that the
function proposed in [54] is actually not a minorant.

To �x this, one has to add a correction term. One suggestion is to consider

F (x, y) = F1,N (x)F1,N (y)− sin2(πx) sin2(πy)

π4

∑
m,n=±N

1

(x−m)2(y − n)2
,

i.e., subtract a function, which is minus one at the vertices of [−N,N ]2 and zero at all other points
in Z2 (also, all partial derivatives occurring in (2.15) are zero at all points in Z2). This is Selberg and
Montgomery's construction (which agree in this instance), see [18] for a more detailed discussion and
additional references.
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To improve on this construction, we consider functions of the form

FN (x, y) = F 2N−1
2N ,N (x)F 2N−1

2N ,N (y)− C2GN (x)GN (y), (2.23)

where C > 0 is a constant and

GN (x) =
sin2(πx)

π2

(
1

(x−N)2
+

1

(x+N)2
− 2

x2 −N2

)
.

Note that GN and its �rst derivative are zero at all k ∈ Z except k = ±N .

Proposition 2.17. Let FN ∈ PW2 be given by (2.23). Then FN ≤ udN if C ≥ 1
2 and

F̂N (0) = (2N − 1)2 − 1.

In the special case N = 1, we can choose C ≥ 1
4 , which results in F̂1(0) = 3/4. We subsequently use

FN to denote the function with C = 1
4 for N = 1 and C = 1

2 otherwise.

Proof. Note that GN (x) ≥ 0 for all x ∈ R. The only thing left to prove is FN (x, y) ≤ 0 if |x|, |y| ≥ 0
and C = 1

2 . This follows from∣∣∣F 2N−1
2N ,N (x)

∣∣∣ ≤ GN (x)

2
, for all |x| ≥ N.

Equivalently, we have to show that

2N − 1

x2 −N2
−
∑
|k|<N

1

(x− k)2
≤ 1

2(x−N)2
+

1

2(x+N)2
− 1

x2 −N2
, ∀x > N.

As already in the proof of Proposition 2.13, we use that the trapezoidal rule overestimates convex
functions, which implies

2N

x2 −N2
=

∫ N

−N

1

(x− y)2
dy ≤ 1

2(x+N)2
+
∑
|k|<N

1

(x− k)2
+

1

2(x−N)2

and the claim follows. To calculate F̂N (0), we again apply the Poisson summation formula and obtain

F̂N (0) =
∑
k∈Zd

FN (k) = (2N − 1)d − 4C2.

In the special case N = 1, we apply a more direct approach. Note that

|F 1
2 ,1

(x)| = 1

x2(x2 − 1)
≤ C

(
1

(x− 1)2
+

1

(x+ 1)2
+

2

1− x2

)
=

4C

(x2 − 1)2
,

which is equivalent to

x2 − 1

4x2
≤ C.

This, however, holds true for all |x| ≥ 1 whenever C ≥ 1
4 .

Remark. The case of majorants is a lot easier. Indeed, if HN is a majorant for uN , the tensor product

H(x1, . . . , xd) = HN (x1) · · ·HN (xd)

majorizes udN and is even extremal, as virtually the same argument used in Proposition 2.15 shows.
This tensor product construction was �rst given by Liao [54].

Finally, we give a short list of other approaches. Closest to the here presented minorant is the
function constructed in [18] (covering only the case N = 1), which is given by

F̃ (x, y) = F 1
2 ,1

(x)F 1
2 ,1

(y)− 1

16
G̃(x)G̃(y),



2.3. CONDITIONAL WELL-POSEDNESS 25

where

G̃(x) =
sin2(πx)

π2

(
1

(x− 1)2
+

1

(x+ 1)2
+

2

x2 − 1

)
.

This results in a better (that is larger) ˆ̃F (0) = 63
64 , we gave F1 just for reference. However, the property

we need later on, that F̂ has a global maximum at zero, is not satis�ed (even when the paper actually
states that they numerically observed this). F2, on the other hand, has this property. Whether such
a function exists for the case N = 1 remains open.

For the already mentioned functions constructed by Selberg and Montgomery, we refer the inter-
ested reader again to [18].

If one changes the problem a bit, a lot more is known. Most notably, if one wishes to �nd functions
satisfying

supp F̂ ⊂ B2
1 , F ≤ χB2

1
, (2.24)

where Bpr is the ball {x ∈ Rd : ‖x‖p ≤ r}, extremal results are given by Holt and Vaaler in [43].

A very nice and explicit construction in the case of

supp F̂ ⊂ Bp2r, F ≤ χB2
R

(2.25)

for p ∈ [1,∞] is due to Komornik and Loreti, see [51]. The basic idea is as follows: Pick the function
G ∈ H1

0 (Bpr ) (where H1
0 (Bp1) denotes the usual Sobolev space), which is an eigenfunction of −∆ (where

∆ is of course the Laplace operator) corresponding to the smallest eigenvalue of −∆. This function
is known to be positive. Then

F̂ = (R2 + ∆)G ∗G,
F (x) = (R2 − |x|2)|Ĝ|2(x)

satis�es (2.25). For more details we refer to [51]. One interesting extension of this idea is to replace

the Laplace operator with
∑
j
∂k

∂xkj
. Then a similar construction yields functions satisfying

supp F̂ ⊂ B∞2r , F ≤ χBqR .

This idea has been investigated in [52].

2.3 Conditional Well-Posedness

We are now ready to prove the main results of this chapter. In the �rst part of this section, we restrict
ourselves to the univariate setting. Recall that we are interested to give a good lower bound to

‖PN (f − g)‖22 =

N∑
k=−N

|(f − g)(k)|2,

where f, g ∈ S1 have well-separated frequencies. We collect such exponential sums in

Sd(q) =
{
f ∈ Sd : sep f ≥ q

}
.

We start by the now classical results for PN (f). We use the dilation operator, de�ned by

Dilα f(x) = f(αx).

Recall that

F Dilα =
1

αd
Dil 1

α
F ,

a relation we will frequently use.
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Theorem 2.18. Let f ∈ S1(q) for q ∈ (0, 1] and two integers A < B be given. Then

B∑
k=A

|f(k)|2 ≥
(
B −A+ 2− 1

q

)
‖cf‖22

Proof. Let ψq(A−1),q(B+1) be de�ned as in (2.19). Then

Ψ(x) := Dilq ψq(A−1),q(B+1)(x) ≤

{
1 x ∈ (A− 1, B + 1)

0 x /∈ (A− 1, B + 1)

and we can calculate, using Poisson's summation formula, as given in Theorem 2.11

B∑
k=A

|f(k)|2Ψ(k) ≥
∑
k∈Z
|f(k)|2Ψ(k)

=
∑

y,w∈Y f
cycw

∑
k∈Z

e2πi(y−w)kΨ(k)

=
∑

y,w∈Y f
cycw

∑
k∈Z

Ψ̂(w − y − k).

But Ψ̂(w) = 1
q ψ̂q(A−1),q(B+1)(w/q), in particular it is a continuous function with supp Ψ̂ ⊂ [−q, q],

which implies that for all k and all w 6= y ∈ Y f we have that Ψ̂(w − y − k) = 0. Further,

Ψ̂(0) =
1

q
ψ̂q(A−1),q(B+1)(0) =

1

q
((B −A+ 2)q − 1).

This �nishes the proof.

Remarks. 1. The case q = 1 is only possible if f(x) = ce2πiyx. Note that in this instance, the
lower bound is exact. Furthermore, the lower bound is only non-trivial if q > 1/(B−A+ 2). In
particular, ord f ≤ B − A + 1. This is sharp, as for every Y ⊂ [0, 1) with |Y | = B − A + 2 we
can �nd a f ∈ S1 with Y f = Y and f(k) = 0 for all k = A,A+ 1 . . . , B.

2. This clearly gives for all f ∈ S1(q) the lower bound

‖PN (f)‖22 ≥
(

2N + 2− 1

q

)
‖cf‖22.

3. Note that this bound is slightly better than the original bound, obtain by Moitra in [62] by
more or less the same method. This improvement is due to the fact, that we used ψq(A−1),q(B+1)

instead of ψqA,qB . It also improves on a result given in [4], which is itself an improvement on
Moitra's result, relying on a di�erent method.

4. Virtually the same argument, but using the majorant instead, gives an upper bound, namely

B∑
k=A

|f(k)|2 ≤
(
B −A+

1

q

)
‖cf‖22, ∀f ∈ S1(q).

Details can be found again in Moitra's work [62] as well as in [94]. Note that in this case we
have to use the majorant of [qA, qB]. Also, the case q = 1 again results in equality.

This result can be reinterpreted as given bounds on the singular value of Vandermonde matrices.
This was exactly the main motivation in Moitra's work. We repeat the argument, again obtaining
slightly better results for the lower bound. We remark that the more general case of nodes in the unit
disc is covered in [4].

De�nition 2.19. For N ∈ N∗ and y ∈ [0, 1), let

vN (y) =
(

1, e2πiy, . . . , e2πiy(N−1)
)T
∈ CN .
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For y1, . . . , yM ∈ [0, 1) we de�ne the Vandermonde matrix

VN (y1, . . . , yM ) = [vN (y1) · · · vN (yM )] ∈ CN×M .

If y1, . . . , yM are clear, we use the notation VN . Recall that if yj are mutually distinct, VN (y1, . . . , yM )
has full rank.

Corollary 2.20. Let y1, . . . , yM ∈ [0, 1) have separation distance q. Let σmin and σmax be the smallest
and largest singular value of VN (y1, . . . , yM ) respectively. Then the following bounds hold true:

σ2
min ≥

(
N + 1− 1

q

)
σ2

max ≤
(
N − 1 +

1

q

)
.

Proof. For any c ∈ CN we let

f(x) =

M∑
j=1

cje
2πix·yj

which gives

‖VN (y1, . . . , yM )c‖22 =

N−1∑
k=0

|f(k)|2.

Using the aforementioned results together with the fact that σmin(A) = minx 6=0 ‖Ax‖2/‖x‖2 and the
corresponding result for the largest singular value gives the state bounds.

Remark. Again, it is interesting to compare with Moitra [62], who gave the lower bound

σ2
min ≥

(
N − 1− 1

q

)
and Aubel and Bölcskei [4], who proved

σ2
min ≥

(
N +

1

2
− 1

q

)
.

While our gain seems to be small, it covers all possible q and in particular more cases of square
Vandermonde matrices, as only if q ≤ 1

N one can �nd N frequencies, which are q-separated.

Now we extend this technique to estimate the di�erence f − g of two well-separated exponential
sums. Let Ψ as in the proof of Theorem 2.18 and

f(x) =
∑
y∈Y f

cfye
2πiyx, g(x) =

∑
y′∈Y g

cgy′e
2πiy′x.

Following the calculation in Theorem 2.18, we obtain

B∑
k=A

|f(k)− g(k)|2 ≥
B∑
k=A

|f(k)− g(k)|2Ψ(k)

=
∑

y,w∈Y f
cfyc

f
w

∑
k∈Z

e2πi(y−w)kΨ(k) +
∑

y′,w′∈Y g
cgy′c

g
w′

∑
k∈Z

e2πi(y′−w′)kΨ(k)

+ 2<

∑
y∈Y f

∑
y′∈Y g

cfyc
g
y′

∑
k∈Z

e2πi(y−y′)kΨ(k)

 .

If f, g ∈ S1(2q), for any y ∈ Y f there is at most one y′ ∈ Y g with |y− y′|T < q. We call y′ = n(y) the
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neighbor of y and collect all y ∈ Y f with a neighbor N(Y f ). The sum simpli�es to

B∑
k=A

|f(k)− g(k)|2 ≥ Ψ̂(0)

∑
y∈Y f

|cfy |2 +
∑
y′∈Y g

|cgy′ |
2

+ 2<

 ∑
y∈N(Y f )

cfyc
g
n(y)Ψ̂(|y − n(y)|T)

 (2.26)

Now we need the Fourier transform of Ψ. We calculate it in the following lemma.

Lemma 2.21. The Fourier transform of

Fα,N (x) =
sin2(πx)

π2

 2Nα

N2 − x2
+
∑
|k|<N

1

(x− k)2


is given by

F̂α,N (w) =

{
α
π sin(2πN |w|) + (1− |w|)DN−1(w) for |w| ≤ 1

0 otherwise
,

where DN−1 is the Dirichlet kernel of order N − 1, which is given by

DN−1(w) = 1 + 2

N−1∑
k=1

cos(2πkw).

Proof. We only sketch the proof, which is an easy calculation (at least if one uses the theory of
distributions). Using the Fourier convolution theorem gives

F

 ∑
|k|<N

sin2(πx)

π2(x− k)2

 (w) = F

sinc2 ∗
∑
|k|<N

δk

 (w) = F [sinc2](w) · F

 ∑
|k|<N

δk

 (w)

= (1− |w|)DN−1(w).

The other part follows by

F
[

sin2(π(x+N))

π(x+N)

]
(w) = e2πiNw (F [sinc] ∗ F [sin(πx)]) (w) =

e2πiNw

2i

(
χ[− 1

2 ,
1
2 ] ∗ (δ 1

2
− δ− 1

2
)
)

(w)

=


e2πiNw

2i if w ∈ [0, 1],

− e
2πiNw

2i if w ∈ [−1, 0],

0 otherwise.

Furthermore, we need reasonably sharp estimates of sin and cos.

Lemma 2.22. We have that

sin(x) ≥ x− x3

6
∀x ≥ 0

cos(x) ≥ 1− x2

2
∀x ∈ R.

Furthermore, the following upper bounds hold true:

sin(x) ≤ x− x3

(
1

6
− π2

120

)
∀x ∈ [0, π]

cos(x) ≤ 1− x2

(
1

2
− π2

96

)
∀x ∈

[
−π

2
,
π

2

]
.

Proof. We sketch the basic proofs for the reader's convenience. The �rst two inequalities follow from
integrating sin(x) ≤ x once (respectively twice).
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The upper bound for cosine can be derived by using the Taylor formula, which gives the existence
of a ξ ∈

[
−π2 ,

π
2

]
such that

cos(x)− 1 +
x2

2
=

cos(ξ)

24
x4 ≤ π2

96
x2, ∀x ∈

[
−π

2
,
π

2

]
.

The corresponding result for sine follows similarly.

Now consider Fα,1(x). Clearly, F̂α,1 is even and

F̂ ′α,1(w) = 2α cos(2πw)− 1 for w > 0.

Therefore, F̂α,1 has a local minimum in zero except when α = 1
2 , the smallest possible choice. F̂ 1

2 ,1
is

monotonically decreasing in [0, 1]. We use this function to obtain our �rst stability result.

Proposition 2.23. Let f, g ∈ S1(2q) be given. Assume that q ≥ 1
N+1 and that

‖PN (f − g)‖22 =

N∑
k=−N

|f(k)− g(k)|2 < c2min(N + 1), (2.27)

where cmin is a lower bound on the modulus of the coe�cients of f and g. Then for every y ∈ Y f we
�nd exactly one y′ = n(y) ∈ Y g with |y − y′| < 1

2(N+1) and vice versa.

Furthermore, we get

3(N + 1)4
∑
y∈Y f

(
(|cfy |2 + |cgn(y)|

2)|y − n(y)|3T
)

+
N + 1

2

∑
y∈Y f

|cfy − c
g
n(y)|

2 ≤ ‖PN (f − g)‖22. (2.28)

Proof. We use

Ψ(x) = Dil 1
N+1

F1, 12
(x),

which satis�es Ψ(x) ≤ 1 and Ψ(k) ≤ 0 for all |k| ≥ N + 1. Now we use (2.26) and the algebraic fact

(|a|2 + |b|2)C − 2c<(ab) = (C − c)(|a|2 + |b|2) + |a− b|2c for all a, b, c, C ∈ C

to obtain

N∑
k=−N

|f(k)− g(k)|2 ≥
∑

y∈N(Y f )

(|cfy |2 + |cgn(y)|
2)(Ψ̂(0)− Ψ̂(|y − n(y)|T)) + |cfy − c

g
n(y)|

2Ψ̂(|y − n(y)|T)

+ Ψ̂(0)

 ∑
y∈Y f\N(Y f )

|cfy |2 +
∑
y′∈Y g

@n−1(y′)

|cgy′ |
2

 .

As Ψ̂(0) = N + 1, assumption (2.27) gives that Y f = N(Y f ) and Y g = {n(y) : y ∈ Y f}, i.e., for
every y ∈ Y f we �nd exactly one y′ ∈ Y g with |y − y′| < q and vice versa.

Now we estimate

Ψ̂(0)− Ψ̂(x) = (N + 1)

(
(N + 1)|x| − 1

2π
sin(2π(N + 1)|x|)

)
for |x| ≤ 1

N + 1
.

Using Lemma 2.22 gives

Ψ̂(0)− Ψ̂(x) ≥ 4π2

(
1

6
− π2

120

)
(N + 1)4|x|3 ≥ 3(N + 1)4|x|3 for |x| ≤ 1

2(N + 1)
(2.29)
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while sin(x) ≤ 0 on [π, 2π] gives

Ψ̂(0)− Ψ̂(x) ≥ (N + 1)2|x| for |x| ∈
[

1

2(N + 1)
,

1

N + 1

]
.

Now if there were a y∗ ∈ Y f with |y∗ − n(y∗)|T ∈
[

1
2(N+1) ,

1
N+1

]
we would get

N∑
k=−N

|f(k)− g(k)|2 ≥
(
|cfy∗ |2 + |cgn(y∗)|

2
)

(Ψ̂(0)− Ψ̂(|y∗ − n(y∗)|T)) ≥ 2c2min(N + 1)2|y∗ − n(y∗)|T.

Again, (2.27) gives rise to a contradiction. Therefore, we can use (2.29), which yields

N∑
k=−N

|f(k)− g(k)|2 ≥ 3(N + 1)4
∑
y∈Y f

(|cfy |2 + |cgn(y)|
2)|y − n(y)|3T + |cfy − c

g
n(y)|

2Ψ̂(|y − n(y)|T).

Finally, the monotonicity of Ψ̂ together with |y − n(y)|T < 1
2(N+1) and Ψ̂( 1

2(N+1) ) = N+1
2 gives the

result.

Remarks. There are some possible variations of this result. For example, if one observes a very
pronounced frequency y ∈ Y f , i.e., |cy| � cmin, and one is only interested to see if a close frequency in
Y g exists, it is possible to relax (2.27) to ‖PN (f−g)‖22 . N |cy|2, to get an error estimate for d(y, Y g).
We refrain from giving the details, trusting that any reader interested in such results can carry out
the necessary analysis him/herself, following the proofs presented here.

The condition (2.27) ensures that f and g are close enough so that the frequencies of f and g can
be related. As

‖PN (f − (f + cmine
2πiy·))‖22 = (2N + 1)c2min

shows, it is (up to a factor of two) necessary.

A similar observation shows that the rate in cfy − c
g
n(y) given in (2.28) is optimal. Indeed,

‖PN (ce2πiy· − (c+ c1)e2πiy·)‖22 = (2N + 1)|c1|2.

Of course, we are mostly interested in the frequencies. We consider a similar test case in the following
lemma.

Lemma 2.24. The following estimate holds true:

‖PN (e2πi(y+ε)· − e2πiy·)‖22 =

N∑
k=−N

|e2πi(y+ε)k − e2πiyk|2 ≤ 4π2

3
(N + 1)3ε2.

More generally, for two integers A < B and ε > 0 su�ciently small we obtain

B∑
k=A

|e2πi(y+ε)k − e2πiyk|2 ∼A,B ε2.

Proof. This is the result of a direct calculation, using the mean value theorem:

N∑
k=−N

|e2πi(y+ε)k − e2πiyk|2 =

N∑
k=−N

|e2πiεk − 1|2 ≤
N∑

k=−N

4π2k2ε2 = 4π2ε2N(N + 1)(2N + 1)

6
.

For the second claim, .A,B follows by the same calculation. The lower bound on the other hand
follows with

|e2πi(y+ε)k − e2πiyk|2 = 2− 2 cos(2πεk) ≥ 8πk2ε2

for ε su�ciently small, due to 1− cos(πt) ≥ πt2 for all |t| ≤ 1
2 .
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Remarks. 1. The Lemma proves that any family of exponentials (e2πiy·)y∈Y satisfying a lower
bound like

‖c‖22 .

∥∥∥∥∥∥P
∑
y∈Y

cye
2πiy·

∥∥∥∥∥∥
2

2

, for all c ∈ CY ,

has to be reasonably well-separated. For a precise statement, see [57]. Extensions to multivariate
exponential sums are available as well, see [75].

2. While not our concern here, sometimes one is interested in the case of distinguishing l near-
colliding nodes (the lemma discusses the case l = 1). A result covering this case is given in
[1].

3. The necessity for separation is even more important than the lemma indicates. In fact, there
are two f1, f2 ∈ S1(q) such that exponentially small noise makes them indistinguishable, if only
PN (fj) are known, where qN < (1− ε). For a precise statement, see [62], Corollary 3.2.

Unfortunately, (2.28) only gives

6(N + 1)4ε2 ≤ ‖PN (e2πi(y+ε)· − e2πiy·)‖22

which is strictly worse (as ε < 1
2(N+1) whenever (2.27) holds). Before we give an estimate realizing

this order, we state an interesting consequence for functions in PW minorizing an interval.

Proposition 2.25. Let ψ ∈ PW be given, satisfying

ψ(x) ≤ χ[A,B](x).

for any real numbers A < B. Then there is a neighborhood I of zero and a constant C > 0 such that

ψ̂(0)− ψ̂(w) ≤ C|w|2, for all w ∈ I.

Proof. Following the lines of the proof of Theorem 2.18 with f(x) = 1 and g(x) = e2πiεx gives, using
Lemma 2.24,

ε2 &A,B

B∑
k=A

|f(k)− g(k)|2 ≥ 2(ψ̂(0)− ψ̂(ε)).

Now we improve the order in (2.28) to the optimal one. The proof is quite similar, only that we
use F2, 34

instead of F1, 12
. However, we need Proposition 2.23 to �nd for each y ∈ Y f a close neighbor

in Y g.

Theorem 2.26. Let f, g ∈ S1(2q). Assume that q ≥ 2
N+1 and

‖PN (f − g)‖22 =

N∑
k=−N

|f(k)− g(k)|2 < c2min(N + 1), (2.30)

where cmin is a lower bound on the modulus of the coe�cients of f and g. Then for every y ∈ Y f we
�nd exactly one y′ = n(y) ∈ Y g with |y − y′|T < 1

2(N+1) and vice versa.

Furthermore, the following estimate holds true:

π2

3
(N + 1)3

∑
y∈Y f

(|cfy |2 + |cgn(y)|
2)|y − n(y)|2T +

3

8
(N + 1)

∑
y∈Y f

|cfy − c
g
n(y)|

2 ≤ ‖PN (f − g)‖22

Proof. Let

Ψ(x) = Dil 2
N+1

F2, 34
(x) ≤

{
1, if |x| ≤ N + 1

0, if |x| ≥ N + 1
.
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By again using sin(x) ≤ x− x3

π2 for x ∈ [0, π] and

cos(x) ≤ 1− x2

π
for x ∈ [0, π]

and Lemma 2.21 we obtain for w ∈
[
0, 1

4

]
F̂2, 34

(0)− F̂2, 34
(w) = 3− 3

4π
sin(4πw)− (1− w)(1 + 2 cos(2πw))

≥ 3− 3

4π

(
4πw − 43π3

(
1

6
− π2

96

)
w3

)
− (1− w)

(
3− 8π2

(
1

2
− π2

96

)
w2

)
= 8π2

(
1

2
− π2

96

)
w2 + 8π2

(
6

(
1

6
− π2

96

)
− 1

2
+
π2

96

)
w3

≥ 8π2

3
w2.

Therefore,

Ψ̂(0)− Ψ̂(w) ≥ π2

3
(N + 1)3w2 for w ∈

[
0,

1

2(N + 1)

]
.

It is a routine exercise to check that F̂2, 34
is monotonically decreasing on [0, 1

4 ]. Indeed,

F̂ ′2, 34
(w) = 3 cos(4πw)− 1− 2 cos(2πw)− 4π sin(2πw)(1− w)

≤ 3(cos2(2πw)− sin2(2πw))− 1− 2 cos(2πw)

≤ cos(2πw)(3 cos(2πw)− 2)− 1 ≤ 0.

By Proposition 2.23 we �nd for each y ∈ Y f exactly one n(y) ∈ Y g with |y − n(y)|T < 1
2(N+1) and

hence

Ψ̂(|y − n(y)|T) =
N + 1

2
F̂2, 34

(
|y − n(y)|T(N + 1)

2

)
≥ N + 1

2
F̂2, 34

(
1

4

)
=

3

8
(N + 1).

Repeating verbatim the argument given in the proof of Proposition 2.23 yields the claim.

Remarks. 1. As already remarked, the exponents in the error term are optimal in N , |y − n(y)|2T
and |cfy − c

g
n(y)|

2, while all constants are explicitly given and reasonably large.

2. This result can be interpreted as a conditional well-posedness property of the frequency esti-
mation problem: If we use the model of well-separated exponential sums and have su�ciently
many samples available, closeness of the measurements guarantees closeness of the parameters
of interest.

One actual application of this result are a-posteriori error estimates. Assume we have given noisy
samples

s̃N (f∗) = PN (f∗) + ε,

where ε is some noise vector satisfying ‖ε‖2 ≤ η. Further, assume that we used any recovery algorithm,
resulting in f . We cannot apply Theorem 2.26 directly, as we do not know PN (f∗). But we can
estimate

(‖PN (f)− s̃N (f∗)‖2 + η)2 ≥ ‖PN (f)− PN (f∗)‖22

and (at least if (2.27) is satis�ed) give a rather tight error estimate. Note that we usually expect η to

be of order O(N). If, for example, all |εj | have values in [0, cmin/4], we can choose η =
√

2N+1
4 cmin.
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Now we estimate the error of the frequencies. We have that

π2

3
(N + 1)3

∑
y∈Y f

(|cfy |2 + |cgn(y)|
2)|y − n(y)|2T +

3

8
(N + 1)

∑
y∈Y f

|cfy − c
g
n(y)|

2

≥ 2π2

3
(N + 1)3c2min

∑
y∈Y f

|y − n(y)|2T.

This gives for the frequency error an estimate of the form

∑
y∈Y f

|y − n(y)|2T ≤
3

4π2(N + 1)

(
‖PN (f)− s̃N (f∗)‖2

cmin(N + 1)
+

√
2N + 1

2(N + 1)

)2

.

The right-hand side is of order N−2. Note that we did not assume that εj are independent, this result
holds true even if the noise is of the form εj = cmin

4 e2πiyj for a y ∈ [0, 1).

To give at least one result with a more speci�c noise model, we consider the case of complex white
noise, i.e., εj ∼ Xj,1 + iXj,2 where Xj,l ∼ N (0, σ2) for j = −N, . . . , N and l = 1, 2 are independent,
identically distributed normal random variables with mean zero and variance σ2. This results in

‖PN (f)− s̃N (f∗)‖22 = ‖PN (f)− PN (f∗)‖22 +

N∑
j=−N

(X2
j,1 +X2

j,2)− 2<〈PN (f − f∗), ε〉

= ‖PN (f)− PN (f∗)‖22 + σ2Y − 2σ‖PN (f − f∗)‖2Z,

where Z ∼ N (0, 1) (due to the rotational invariance of a Gaussian random vector) and Y ∼ χ2
4N+2,

i.e., Y is χ2-distributed with 4N + 2 degrees of freedom. Rearranging gives

(‖PN (f)− PN (f∗)‖2 − σZ)2 = ‖PN (f)− s̃N (f∗)‖22 − σ2Y + σ2Z2. (2.31)

Now we use standard tools from probability theory to bound Y and Z from above. The tail of a
Gaussian random variable can be simply estimated by:

Pr (|Z| ≥ t1) ≤ e−
t21
2 for all t1 > 0, (2.32)

see for example [32], Proposition 7.5.

Further, the expected value of Y is given by EY = 4N + 2 and

Pr (|Y − (4N + 2)| ≥ (4N + 2)t2) ≤ 2e−(4N+2)t22/8 for all t2 ∈ (0, 1) (2.33)

by the Bernstein inequality for sums of Gamma random variables, see [8], Theorem 2.57.

Corollary 2.27. Let f, f∗ ∈ S1(2q) be �xed with q ≥ 2
N+1 . Further, assume that we know f and

s̃N (f∗) = PN (f∗) + ε ∈ C2N+1,

where εj = Xj,1 + iXj,2 and Xj,l are pairwise independent, normally distributed random variables with
mean zero and variance σ2. Then for any δ ∈ (0, 1), if already∣∣‖PN (f)− s̃N (f∗)‖22 − σ2(4N + 2)

∣∣ 12 + (2 +
√

2)σ(2N + 1)(1+δ)/4 ≤ cmin(N + 1)1/2 (2.34)

the following error estimate holds true

π2

3
(N + 1)3

∑
y∈Y f

(|cfy |2 + |cgn(y)|
2)|y − n(y)|2T +

3

8
(N + 1)

∑
y∈Y f

|cfy − c
g
n(y)|

2

≤
(∣∣‖PN (f)− s̃N (f∗)‖22 − σ2(4N + 2)

∣∣ 12 + (2 +
√

2)σ(2N + 1)(1+δ)/4
)2

,
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with probability of at least

1− e−(2N+1)(1+δ)/2/2 − 2e−(2N+1)δ/8.

Proof. Rearranging (2.31) and the subadditivity of the square root give

‖PN (f)− PN (f∗)‖2 ≤
(
‖PN (f)− s̃N (f∗)‖22 − σ2Y + σ2Z2

) 1
2 + σ|Z|

≤
∣∣‖PN (f)− s̃N (f∗)‖22 − σ2(4N + 2)

∣∣ 12 + 2σ|Z|+ σ|Y − (4N + 2)| 12 .

Next we choose in (2.32) and in (2.33)

t1 = (2N + 1)(1+δ)/4, t2 =
(2N + 1)δ/2

(4N + 2)1/2
.

Then, with probability at least

1− e−t
2
1/2 − 2e−(4N+2)t22/8 = 1− e−(2N+1)(1+ε)/2/2 − 2e−(2N+1)ε/8

the estimate

‖PN (f)− PN (f∗)‖2 ≤
∣∣‖PN (f)− s̃N (f∗)‖22 − σ2(4N + 2)

∣∣ 12 + (2 +
√

2)σ(2N + 1)(1+δ)/4

holds true. The claim follows directly from Theorem 2.26.

Remarks. 1. If one is only interested in the frequency error, we see that with high probability, we
obtain ∑

y∈Y f
|y − n(y)|2T = O(N−2),

at least if the condition (2.34) is satis�ed. However, understating the result as an asymptotic
estimate is a little bit misleading, as only f = f∗ satis�es (2.34) for all N .

2. It is possible to carry out similar calculations for di�erent noise models. This is meant to be a
prototypical example, how knowledge of the noise gives rise to an a-posteriori error estimate.

Bivariate Results

Now we extend the univariate stability results to the bivariate case. Conceptually, we have little work
to do. Indeed, virtually the same proof strategy works in this case as well. We always consider a
sampling set of the form

GN = [−N,N ]2 ∩ Z2.

We start with a lower bound for singular values of multivariate Vandermonde matrices.

De�nition 2.28. For a �nite set G ⊂ Zd and y ∈ [0, 1)d we de�ne a Vandermonde vector by

vG(y) = (e2πiy·n)n∈G ∈ CG.

Further, for mutually distinct y1, . . . , yM ⊂ [0, 1)d, we de�ne the Vandermonde matrix

VG(Y ) =
(
e2πin·y)

n∈G,y∈Y =
[
vG(y) : y ∈ Y

]
∈ CG×Y .

Proposition 2.29. Let f ∈ S2(q) for q = K/(N + 1), K,N ∈ N>0 be given. Then

∑
k∈GN

|f(k)|2 ≥

{
(N + 1)2

((
2− 1

K

)2 − 1
K2

)
‖cf‖22 if K 6= 1,

63
64 (N + 1)2‖cf‖22 if K = 1.
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In particular, we get the following estimate for the smallest singular value of VGN (Y f ):

σ2
min ≥

{
(N + 1)2

((
2− 1

K

)2 − 1
K2

)
if K 6= 1,

63
64 (N + 1)2 if K = 1.

Proof. We start with the case K 6= 1. Let FK be de�ned as in Proposition 2.17 and

Ψ(x) = Dilq FK(x) ≤ χ[−N−1,N+1]2(x).

The same calculation as given in Theorem 2.18 results in

∑
k∈GN

|f(k)|2 ≥ Ψ̂(0)‖cf‖22 = (N + 1)2

((
2− 1

K

)2

− 1

K2

)
.

In the special case K = 1, we use F̃ , as given in (2.24), which gives Ψ̂(0) = (N + 1)2 63
64 .

Remarks. 1. Upper bounds can be easily provided by using a tensor product majorant, which
results in ∑

k∈GN

|f(k)|2 ≤
(

2N +
1

q

)2

‖cf‖22.

This was done in [54].

2. The condition q = K/(N + 1) is due to the fact that we only constructed minorants of χ[−N,N ]2

with N ∈ N>0. Using minorants of a more general type removes this restriction. For possible
choices, see the discussion after Proposition 2.17.

Now we turn to the lower bounds for PN (f − g). All we have to do is extend the local analysis of
F̂ 3

4 ,2
to the function F̂2, as given in Proposition 2.17.

We start by calculating the Fourier transform of F2, using Lemma 2.21:

F̂2(w1, w2) =F̂ 3
4 ,2

(w1)F̂ 3
4 ,2

(w2)− 1

4
Ĝ2(w1)Ĝ2(w2)

=

2∏
j=1

(
3

4π
sin(4π|wj |) + (1− |wj |)(1 + 2 cos(2πwj))

)

− 1

4

2∏
j=1

(
1

2π
sin(4π|wj |) + 2(1− |wj |) cos(4πwj)

)
A direct calculation gives

Lemma 2.30. If |wj | ≥ 1
4 for j = 1 or j = 2, we have that

F̂2(w1, w2) ≤ 3.

On the other hand, for 0 ≤ w1, w2 ≤ 1
4 , we have that

∂jF̂2 ≤ 0, j = 1, 2,

with equality if and only if w1 = w2 = 0.

Proof. First, note that due to symmetry, we can always assume that w1, w2 ≥ 0. We calculate

F̂ ′3
4 ,2

(w) = 3 cos(4πw)− (1 + 2 cos(2πw))− 4π(1− w) sin(2πw)

Ĝ′2(w) = 2 cos(4πw)− 2 cos(4πw)− 8π(1− w) sin(4πw) = −8π(1− w) sin(4πw)

for w ≥ 0. We start with the �rst term. Clearly, Ĝ2 has critical points exactly at n/4, n = 0, . . . , 4.
We can easily check that |Ĝ2| has its global maximum on [0, 1] at zero and on [ 1

4 , 1] at 1
4 . Furthermore,
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we already established that F̂ 3
4 ,2

is decreasing on [0, 1
4 ], see the proof of Theorem 2.26. It is routine

(though slightly annoying) to check that the maximum of |F̂ 3
4 ,2
| on [ 1

4 , 1] is at 1
4 . This results in

F̂2(w1, w2) ≤ F̂ 3
4 ,2

(0)F̂ 3
4 ,2

(
1

4

)
+

1

4
Ĝ2(0)Ĝ2

(
1

4

)
= 3 for all (w1, w2) ∈

[
0,

1

4

]
× [0, 1].

The other cases follow by symmetry.

To prove the second claim, it su�ces to check that

∂1F̂2(w1, w2) = F̂ ′3
4 ,2

(w1)F̂ 3
4 ,2

(w2)− 1

4
Ĝ′2(w1)Ĝ2(w2) ≤ 0,

where equality holds if and only if w1 = 0. The case w1 = 0 is clear, we therefore assume that w1 > 0
and the claim is equivalent to

F̂ ′3
4 ,2

(w1)

Ĝ′2(w1)
≥ 1

4

Ĝ2(w2)

F̂ 3
4 ,2

(w2)
.

First, we prove that the right-hand side is smaller than 1
4 for all w2 ∈

(
0, 1

4

)
, which is equivalent to

F̂ 3
4 ,2

> Ĝ2, which again is clearly true, as

1

4π
sin(4πw) + (1− w)(1 + 2 cos(2πw)− 2 cos(4πw) > 0.

Next, we prove that the left-hand side is at least 1
4 . This is equivalent to

4F̂ ′3
4 ,2

(w) ≤ Ĝ′2(w) ⇔

0 ≤ 8π(1− w)(2 sin(2πw)− sin(4πw)) + 4(1 + 2 cos(2πw)− 3 cos(4πw)),

which is again true (as sin(4πw) = 2 sin(2πw) cos(2πw)).

Now we are ready to prove the two dimensional analog to Theorem 2.26.

Theorem 2.31. Let f, g ∈ S2(2q). Further, assume that q ≥ 2
N+1 and

‖PN (f − g)‖22 <
5

4
(N + 1)2c2min, (2.35)

where cmin is a lower bound on the modulus of the coe�cients of f and g. Then for every y ∈ Y f we
�nd exactly one y′ = n(y) ∈ Y g with ‖y − y′‖T2 < 1

2(N+1) and vice versa.

Furthermore, the following estimate holds true:

15

16
(N + 1)4

∑
y∈Y f

(|cfy |2 + |cgn(y)|
2)‖y − n(y)‖2T2 +

3(N + 1)2

4

∑
y∈Y f

|cfy − c
g
n(y)|

2 ≤ ‖PN (f − g)‖22

Proof. We use

Ψ(x) = Dil 2
N+1

F2(x) ≤ χ[−N,N ]2(x).

The Fourier transform of Ψ is given by (N+1)2

4 F̂2((N + 1)w/2). Exactly as we derived (2.26), we get,
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using that by Lemma 2.30 the function |Ψ̂| has its global maximum in zero,∑
k∈GN

|f(k)− g(k)|2 ≥
∑
k∈Z2

|f(k)− g(k)|2Ψ(k)

≥ Ψ̂(0)

∑
y∈Y f

|cfy |2 +
∑
y′∈Y g

|cgy′ |
2

+ 2<

 ∑
y∈N(Y f )

cfyc
g
n(y)Ψ̂(y − n(y))


≥ Ψ̂(0)

∑
y∈Y f

|cfy |2 +
∑
y′∈Y g

|cgy′ |
2

− 2
∑

y∈N(Y f )

|cfy ||c
g
n(y)||Ψ̂(y − n(y))|

≥ Ψ̂(0)

 ∑
y∈Y f\N(Y f )

|cfy |2 +
∑
y′∈Y g

@n−1(y′)

|cgy′ |
2

 .

Now, as Ψ̂(0) = 2(N + 1)2, by (2.35), we see that Y f \ N(Y f ) = ∅, i.e., we �nd for each y ∈ Y f

exactly one n(y) ∈ Y g with ‖y − n(y)‖T2 < 2/(N + 1).

Now assume we �nd a pair y ∈ Y f and n(y) ∈ Y g with ‖y − n(y)‖T2 ≥ 1
2(N+1) . By Lemma 2.30,

this implies that

Ψ̂(0)− Ψ̂(y − n(y)) =
(N + 1)2

4

(
F̂2(0)− F̂2((N + 1)(y − n(y))/2)

)
≥ (N + 1)2

4
(8− 3).

Again, (2.35) yields a contradiction, which proves the �rst claim.

Next, we analyze the behavior of F̂2(0) − F̂2(w) for w ∈
[
0, 1

4

]2
(by symmetry, we can always

assume that y − n(y) ∈
[
0, 1

4

]2
). By the sign pattern of ∇F̂2, proved in Lemma 2.30, we see that

F̂2(w) ≤ F̂2(‖w‖∞, 0).

This enables us to give the following estimate, using Lemma 2.22:

F̂2(0)− F̂2(w) ≥8− F̂2(‖w‖∞, 0) ≥ 8− F̂ 3
4 ,2

(‖w‖∞)F̂ 3
4 ,2

(0) +
1

4
Ĝ2(‖w‖∞)Ĝ2(0)

≥8− 3F̂ 3
4 ,2

(‖w‖∞) +
1

2
Ĝ2(‖w‖∞)

=8− 2

π
sin(4π‖w‖∞)− 3(1− ‖w‖∞)(1 + 2 cos(2π‖w‖∞)) + (1− ‖w‖∞) cos(4π‖w‖∞)

≥8− 2

π

(
4π‖w‖∞ − 43π3‖w‖3∞

(
1

6
− π2

120

))
− 3(1− ‖w‖∞)(1 + 2− 8π2‖w‖2∞

(
1

2
− π2

96

)
)

+ (1− ‖w‖∞)
(
1− 8π2‖w‖2∞

)
=

(
24π2

(
1

2
− π2

96

)
− 8π2

)
‖w‖2∞ +

(
27π2

(
1

6
− π2

120

)
+ 8π2 − 24π2

(
1

2
− π2

96

))
‖w‖3∞

>15‖w‖2∞.

Hence,

Ψ̂(0)− Ψ̂(w) ≥ (N + 1)2

4
15(N + 1)2‖w‖2∞/4.

The same technique we already applied in the univariate case then give∑
k∈GN

|f(k)− g(k)|2 ≥
∑
y∈Y f

(|cfy |2 + |cgn(y)|
2)(Ψ̂(0)− Ψ̂(y − n(y))) + |cfy − c

g
n(y)|

2Ψ̂(y − n(y))

≥ 15

16
(N + 1)4

∑
y∈Y f

(|cfy |2 + |cgn(y)|
2)‖y − n(y)‖2T2 + |cfy − c

g
n(y)|

2Ψ̂(y − n(y))
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We apply Lemma 2.30 one last time to get

Ψ̂(y − n(y)) ≥ Ψ̂(‖y − n(y)‖T2 , ‖y − n(y)‖T2) ≥ Ψ̂

(
1

2(N + 1)
,

1

2(N + 1)

)
=

(N + 1)2

4
F̂2(1/4, 1/4) =

3(N + 1)2

4
.

Finally, we give an a-posteriori error estimate for complex Gaussian noise. This is the bivariate
extension of Corollary 2.27.

Corollary 2.32. Let f, f∗ ∈ S2(2q) be �xed with q ≥ 2
N+1 . Further, assume that we know f and

s̃N (f∗) = PN (f∗) + ε ∈ C(2N+1)2 ,

where εj = Xj,1 + iXj,2 and Xj,l are pairwise independent, normally distributed random variables with
mean zero and variance σ2. Then for any δ ∈ (0, 1), if already

∣∣‖PN (f)− s̃N (f∗)‖22 − 2σ2(2N + 1)2
∣∣ 12 + (2 +

√
2)σ(2N + 1)(2+δ)/4 ≤

√
5

2
cmin(N + 1) (2.36)

the following error estimate holds true

15

16
(N + 1)4

∑
y∈Y f

(|cfy |2 + |cgn(y)|
2)‖y − n(y)‖2T2 +

3(N + 1)2

4

∑
y∈Y f

|cfy − c
g
n(y)|

2

≤
(∣∣‖PN (f)− s̃N (f∗)‖22 − 2σ2(2N + 1)2

∣∣ 12 + (2 +
√

2)σ(2N + 1)(2+δ)/4
)2

,

with probability at least

1− e−(2N+1)(2+δ)/2/2 − 2e−(2N+1)δ/8.

Proof. Again,

‖PN (f)− s̃N (f∗)‖22 = ‖PN (f)− PN (f∗)‖22 + σ2Y − 2σ‖PN (f − f∗)‖2Z,

with Z ∼ N (0, 1) and Y ∼ χ2
2(2N+1)2 . The proof is completely analogous to Corollary 2.27.

With that we conclude this chapter. Explicit examples are given at the end of the next chapter,
after we introduced several strategies to actually estimate frequencies of exponential sums. It would
have been interesting to get well-posedness results beyond the two dimensional case. And while the
strategy presented here works independent of the dimension, suitable localizing functions are currently
unknown.

But there is another issue, which makes these results less interesting. Namely, with increasing
dimension, well-separated exponential sums become worse and worse proxies to sparse exponential
sums. The class Sd(q) contains exponential sums f up to an order of q−d and (given suitable localizing
functions), we could hope for stability if we have samples on Gdq−1 , i.e., O(q−d) samples.

On the other hand, to recover an exponential sum of order at most M , e�cient algorithms for
sampling sets of order Od(M2) (up to logarithmic factors) exist. If d > 2, these sets do not contain
subsets GdN of any reasonable size N . It would be more interesting, to establish stability for such sets.
However, there are currently no techniques available to prove such estimates.



Chapter 3

Parameter Estimation Techniques

In this chapter we discuss various techniques to solve the parameter estimation problem for exponential
sums. We reiterate some of the one dimensional methods and identify their essential ideas, which are
then extended to the multivariate case. This inspires a multivariate Prony method. We explain
the connection to Sauer's version [84, 85] and prove that d dimensional MUSIC and ESPRIT-type
methods only need Od(M2) instead of Od(Md) samples (up to logarithmic factors) and are therefore
on a par with Prony's method. Furthermore, we explain and expand a class of so-called projection-
based methods, which cleverly combine multiple one dimensional problems to obtain a result for the
multivariate case.

Again, we denote by

f(x) =

M∑
j=1

cje
2πix·yj

our unknown exponential function we wish to identify from given samples. The coe�cients cj are in
C \ {0}, the frequency vectors yj ∈ [0, 1)d are assumed to be mutually distinct. Due to the linear
independence of the exponential functions, M is uniquely determined and called the order of f . We
collect the frequencies of f in Y f and use the notation

f(x) =
∑
y∈Y f

cye
2πix·y

which does not �x any enumeration of Y f . The set of all such f is denoted by Sd, all exponential
sums of order at most M are collected in SdM .

As we wish to obtain spectral information of f from the given samples, this is an instance of a
spectral estimation problem. Furthermore, we have an explicit model of f , the harmonic model. We
only consider methods, which use this model explicitly, i.e., we choose a so-called model based or
parametric approach. Of course, general spectral estimation methods are of great importance and can
be applied here as well, but as they do not exploit the explicit model, their performance is inferior
to model based methods. In fact, by using an explicit model, we can overcome resolution limits of
general methods. This is the reason why these methods are able to achieve super-resolution. For an
introduction to general spectral estimation techniques, we refer to the books [61, 93].

Note that we do not rely on additional assumptions on f . In many applications, for example in
array processing, the coe�cients are assumed to be of the form

cj = |cj |e2πiφj ,

where φj are uncorrelated, uniformly in [0, 1) distributed random variables. This models the assump-
tion that the sources emitting the di�erent wavefronts are uncorrelated. Again, we refer to [61] for
an introduction in this application. However, when applied to certain imaging techniques, a reason-
able assumption is that cj ∈ R>0, as suggested in [65]. Then φj are not uncorrelated but perfectly
correlated. To obtain results covering all cases, we make no further assumptions on the coe�cients.

Another assumption sometimes considered is genericity. A precise de�nition of the notion of
genericity we use here is the following.

39
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De�nition 3.1. We say that a property P of an f ∈ Sd holds generically, if for allM ∈ N choosingM
points (y1, . . . , yM ) randomly in [0, 1)d with uniform probability, the probability that there is a f ∈ Sd
with frequencies Y f = {y1, . . . , yM} such that P does not hold for f is zero.

Of course, di�erent notations of genericity are possible, e.g. one could choose the coe�cients
randomly as well or even only them. But in the following discussion, it becomes clear that the
de�nition used here is reasonable. This notion is used in [48] as well. Though less focus of this work,
we comment sporadically on the generic case.

There are a few general problems with properties that hold generically. The �rst is that it restricts
our model which might cause problems in some applications. For example if the frequencies of the
unknown f are known to have some geometric structure, e.g. are on a grid, the generic model is
meaningless.

More problematic is that while the probability that a generic f does not satisfy P is zero, the
probability that a f̃ very close to f does not satisfy P is (generally) not. In particular, no numerical
stability can be expected, when the reconstruction scheme relies on a generically true property.

Finally, we are of course interested in the e�ect of noise. However, there are a lot of di�erent noise
models (like Gaussian or Poisson noise) which are used, depending on the situation at hand. The aim
of this work is not to discuss all these situations. Therefore, we (mostly) stick with a very simple noise
model, namely, that we have a bound on the `2 norm of the noise vector. This has the advantage
that it is very general and serves as a prototype of such estimates. However, it is important to keep
in mind that all methods presented here might need a tweak to fully take advantage of additional
knowledge about the noise.

This chapter is organized as follows. We start with a review of one dimensional techniques, with
a focus on subspace methods (like Prony, MUSIC and ESPRIT). While this section is classical, we
change the perspective a little bit by starting with the signal space and then presenting the di�erent
techniques.

Following this, we consider the projection-based results, �rst on scattered lines, then on parallel
lines. We derive several small sampling sets, cumulating in a sampling set of size Od(M) (up to
logarithmic factors). However, using them results in an algorithm which has exponential complexity.
Furthermore, we propose an ESPRIT-type algorithm to stabilize computations in case of parallel lines.

Finally, we discuss multivariate extension of classical algorithms. As already announced, we use our
framework, developed in the one dimensional case, to give very natural extensions of Prony's method,
MUSIC and ESPRIT to the higher dimensional case. While these are (in one form or another) already
known in the literature, we hope that our uni�ed approach clari�es similarities and di�erences.

Furthermore, we are able to prove that multivariate MUSIC and ESPRIT-type methods only
need Od(M2) samples (up to logarithmic factors) and are still able to recover all f ∈ SdM . Previous
methods of that type use Od(Md) samples. Such sampling sets were �rst introduced by Sauer in
[85], who proposed a Prony-type method relying on them. Our ESPRIT method has the additional
advantage of having a computational complexity of Od(M3) (again up to logarithmic factors), a clearly
improvement over previous ESPRIT methods, which have a complexity of Od(M3d).

3.1 Review of Univariate Methods

For the reader's convenience, we give a quick recap of one dimensional methods to estimate the
frequency of an unknown exponential sum

f(x) =

M∑
j=1

cje
2πiyjx,

where, as usual, yj ∈ [0, 1) are mutually distinct and cj ∈ C \ {0}. This section is completely classical
and a reader experienced with Prony and ESPRIT-type methods is invited to skim through or skip
it.

We remark that the restriction yj ∈ [0, 1) is necessary, if we sample at G ⊂ Z, due to the periodicity
of the exponential function. Of course, if yj ∈ [0, α), we can rescale the sampling set G ⊂ 1

αZ.
Re�ecting the common appearance of exponential sums, there is a large number of methods avail-

able. We give a non exhausted list: Prony's method [23] dating back to 1795, Pisarenko's method
[70] and its generalization, MUSIC [87], ESPRIT [83, 82] and the related matrix pencil method [45],
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OPUC, which is based on orthogonal polynomials on the unit circle [31] and methods using TV
minimization (which we will not discuss here), as in [16, 28, 88].

More methods, including non parametric approaches, can be found in [93].
Further, estimating frequencies of exponential sums is closely related to Padé approximation and

the annihilation �lter method, see [72]. The connection between Prony's approach and Sylvester's
method for solving the Waring problem for binary forms is explained in [96]. Also, the connection to
tensor decomposition is discussed there.

This section is inspired not only by the original references listed above, but also by the book [61],
which gives a more detailed introduction to MUSIC and ESPRIT and by [76], where the connection
between Prony's original method, ESPRIT and matrix pencil method is clari�ed. But our approach
here di�ers from these references in multiple ways. Most importantly, we start by de�ning the signal
space and try to establish the methods coming from there.

De�nition 3.2. Let f ∈ S1
M and a window size N ∈ N∗ be given. We call

Sig(f,N) := span
{

(f(k), . . . , f(k +N − 1))
T

: k ∈ Z
}
⊂ CN

the signal space of f and de�ne sN (j) to be one batch of samples

sN (j) = (f(j), . . . , f(j +N − 1))T .

Further, when N ≥ M let T : CN → CN be the linear map, which shifts the window by one. More
precisely, T is de�ned by

TsN (j) = sN (j + 1) for all j ∈ Z on Sig(f,N)

and extended by zero on Sig(f,N)⊥, the orthogonal complement of the signal space.

The idea is that Sig(f,N) is in fact a lower dimensional subspace of CN , which we can identify
from the given samples and that T carries information on f . Next, we show that T is well-de�ned and
establish the precise relation between T and f . Recall that we de�ned for y ∈ [0, 1) and N ∈ N>0

vN (y) =
(

1, e2πiy, . . . , e2πiy(N−1)
)T
∈ CN ,

and for y1, . . . , yM ∈ [0, 1)

VN (y1, . . . , yM ) = [vN (y1) · · · vN (yM )] ∈ CN×M .

Lemma 3.3. Let f ∈ S1
M be given with Y f = {y1, . . . , yM}, coe�cients c = (c1, . . . , cM )T and order

M . Further, let j ∈ Z and N ∈ N be arbitrarily chosen. Then the following statements hold true:

(1) Let D be the diagonal matrix diag(exp(2πiy1), . . . , exp(2πiyM )). Then

sN (j) = VND
jc.

(2) If N ≥M , a basis of Sig(f,N) is given by (sN (j), . . . , sN (j +M − 1)). In particular,

dim Sig(f,N) = M = ord f

and TsN (j) := sN (j + 1), j = 0, . . . ,M − 1 is well-de�ned.

(3) If N ≥M , the vectors (vN (yj))j=1,...,M form a basis V of Sig(f,N).

(4) If N ≥ M , T is diagonalized by V and vN (yj) is an eigenvector of T with eigenvalue e2πiyj .
Further, TsN (j) = sN (j + 1) holds for all j ∈ Z.

Proof. (1) This is a simple calculation, as

sN (j) =

M∑
k=1

cke
2πiykjvN (yk).
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(2) By (1), Sig(f,N) is contained in the span of vN (yj), j = 1, . . . ,M and dim Sig(f,N) ≤M . It
remains to show that sN (j), . . . , sN (j +M − 1) are linearly independent. Without loss of generality,
let N = M . Assume α1, . . . , αM ∈ C are given such that

0 =

M∑
k=1

αksN (k + j − 1) = VND
j
M∑
k=1

αkD
k−1c.

Now VN = VM is invertible and cj 6= 0, thus

M∑
k=1

αke
2πiyj(k−1) = 0 for j = 1, . . .M.

But this is equivalent to (α1, . . . , αM ) ⊥ vN (yj), which then implies that αj = 0 and we are done.

(3) As dim Sig(f,N) = M , they form a basis.

(4) Note that

M∑
k=1

cke
2πiykje2πiykvN (yk) = sN (j + 1) = TsN (j) =

M∑
k=1

cke
2πiykjTvN (yk).

As V and (s(j))j=1,...,M are bases of Sig(f,N), the claim TvN (yk) = e2πiykvN (yk) follows. Then we
have that

TVN = VND

which establishes the last claim.

There is an interesting perspective on f and T , connecting them to linear di�erence equations. In
fact, the matrix representing T (for N = M) is given by

0 0 . . . 0 −p0

1 0 . . . 0 −p1

0 1 . . . 0 −p2

...
...

. . .
...

...
0 0 . . . 1 −pM−1


T

,

where pj ∈ C, j = 0, . . . ,M − 1. This is of course the transposed of the companion matrix to the
polynomial P (z) = zM +pM−1z

M−1 + · · ·+p0. Further, f satis�es the linear di�erence equation with
constant coe�cients

M−1∑
k=0

−pkf(j + k) = f(j +M) for all j ∈ Z. (3.1)

As we just calculated the eigenvalues of T , we established

P (z) = zM + pM−1z
M−1 + · · ·+ p0 =

M∏
k=1

(
z − e2πiyk

)
. (3.2)

This polynomial is called the Prony polynomial. For N ≥ M , the matrix becomes the transpose of
the companion matrix of zN−MP (z), as we extended T by zero on Sig(f,N)⊥.

From this point of view, we observe a solution to a linear di�erence equation and want to learn
which linear di�erence equation this is. Furthermore, the Prony polynomial only has simple roots,
a restriction which makes sense in our model, but from the perspective of linear �nite di�erence
equation is rather restrictive. Without this restriction, one has to consider the more general model,
where coe�cients cj are allowed to be polynomials. This model has also found multiple applications.
For further information on this, we refer to the literature, for example [6, 40].

These insights already give rise to Prony's method. To state (3.1) concisely in matrix form, we
de�ne Hankel matrices.
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De�nition 3.4. Let f ∈ S1
M be given. For N,L ∈ N≥0 and j ∈ Z we de�ne the Hankel matrix

Hf
N,L(j) = HN,L(j) =

[
sN (j) sN (j + 1) . . . sN (j + L− 1)

]
=


f(j) f(j + 1) . . . f(j + L− 1)

f(j + 1) f(j + 2) . . . f(j + L)
...

...
. . .

...
f(j +N − 1) f(j +N) . . . f(j + L+N − 2)

 ∈ CN×L.

Note that by Lemma 3.3 (2), if N,L ≥ M this matrix has rank M . Further, we use the notation

Hf
N,L = Hf

N,L(0).

Theorem 3.5 (Prony's Method (Prony, 1795)). Let f ∈ S1
M be an exponential sum and j ∈ Z. Assume

that we know f(j), . . . , f(j + 2M − 1) (and hence M). The following method recovers frequencies and
coe�cients of f :

1. Calculate the solution p ∈ CM of

HM,M (j)x = −sM (j +M). (3.3)

2. Form the Prony polynomial (3.2) and solve for its roots. Call them z1, . . . , zM . Determine
yk ∈ [0, 1) with zk = e2πiyk .

3. Solve the (overdetermined) linear system

V2MD
jc = s2M (j), (3.4)

where D = diag(exp(2πiy1), . . . , exp(2πiyM )).

Proof. Due to Lemma 3.3 (2), the matrix HM,M has full rank and hence the solution to (3.3) is
unique. By the preceding discussion, it is clear that the roots of P are exactly e2πiyj . Further, the
linear system (3.4) has a unique solution, which is the vector of coe�cients - this follows from Lemma
3.3 (1).

Usually, the order of f is not known, only an upper boundN ≥M and samples (f(j+k))k=0,...,2N−1

are given. Still, Prony's method can be applied. To obtain M , one has to estimate the rank of HN,N .
Unfortunately, this is rather unstable, we discuss this issue in more detail below. Then one can proceed
as sketched above. Of course, it is advisable to replace (3.3) and (3.4) by

H2N−M,Mx = −s2N−M (j +M)

V2ND
jc = s2N (j)

to use the additional samples to stabilize the scheme.
One of the most important challenges in signal processing is how to address noise. Parameter

estimation of exponential sum is no exception. We use the notation

f̃(j) = f(j) + εj ,

where εj is some small perturbation. Analogously, we let s̃N (j) = (f̃(j), . . . , f̃(j + N − 1)) and

H̃N,L(j) = [s̃N (j) . . . s̃N (j + L− 1)].

Now estimating ord f by estimating the rank of H̃N,L(j) has to be done with care, as H̃N,L(j)

usually has full rank. The most used method is performing a singular value decomposition of H̃N,L(j)
(where we drop for ease of notation the dependence on j):

HN,L(j) = UΣWH H̃N,L(j) = Ũ Σ̃W̃H (3.5)

Here W, W̃ ∈ CL×L and U, Ũ ∈ CN×N are unitary matrices and Σ, Σ̃ ∈ CL×N are diagonal matrices
with diagonal entries σ1 ≥ · · · ≥ σmin{L,N} resp. σ̃1 ≥ · · · ≥ σ̃min{L,N}. We assume that L,N ≥ M .
Then

σ1 ≥ · · · ≥ σM > σM+1 = 0 = · · · = σmin{L,N}
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and using standard perturbation results for singular values (details are given below), one expects a
gap in the singular values of H̃N,L(j):

σ̃1 ≥ · · · ≥ σ̃M � σ̃M+1 ≥ σ̃min{L,N}.

To give a quantitative estimate for this spectral gap, we need quantitative estimates on σM (and
assumptions on εj , of course). This can be achieved by a factorization of HN,L(j) and estimates on
the singular values of Vandermonde matrices.

Lemma 3.6. For f ∈ S1
M with frequencies y1, . . . , yM and coe�cients c1, . . . , cM , we have that

Hf
N,L(j) = VL(y1, . . . , yM ) diag

(
c1e

2πijy1 , . . . , cMe
2πijyM

)
VN (y1, . . . , yM )T .

Proof. This well-known factorization (see for example [45]) is derived by a direct calculation. Using
the notation from Lemma 3.3, we obtain

Hf
N,L(j) =

[
sN (j) . . . sN (j + L− 1)

]
=
[
VND

jc . . . VND
j+L−1c

]
= VN

[
Djc . . . Dj+L−1c

]
= VN diag

(
c1e

2πijy1 , . . . , cMe
2πijyM

)
V TL .

We now present estimates on the singular values of Hf
N,L. A version of this result is given in [78],

but instead of relying on estimates for singular values of Vandermonde matrices presented in [55], we
rely on the improved estimates given in Corollary 2.20.

Theorem 3.7. Let f ∈ S1
M (q) be given, where q ∈ (0, 1). Then we obtain the following bounds for

the smallest non-zero singular value σmin and the largest singular value σmax of Hf
N,L:

σ2
min ≥ c2min

(
N + 1− 1

q

)(
L+ 1− 1

q

)
σ2

max ≤ c2max

(
N − 1 +

1

q

)(
L− 1 +

1

q

)
,

where cmin and cmax are the modulus of the smallest and largest coe�cient of f , respectively.

Proof. This is a direct consequence of the factorization of Hf
N,L, as we just proved in Lemma 3.6 and

the estimates of singular values of Vandermonde matrices, stated in Corollary 2.20.

This can be used to give some coarse estimates under which the correct order of f can be estimated.
Indeed, by perturbation results for singular values [33], Corollary 8.6.2, we have that

|σk(H̃f
N,L)− σk(Hf

N,L)| ≤ σ1(Hf
N,L − H̃

f
N,L) = ‖Hf

N,L − H̃
f
N,L‖2,

if N ≥ L. Let E = Hf
N,L − H̃

f
N,L be the matrix containing the noise. Thus, if

σM (Hf
N,L) ≥ 2‖E‖2, (3.6)

we can choose tol = ‖E‖2 and are guaranteed to recover ord f = M .

If we only know |εj | ≤ η, we have the bound

‖E‖2 ≤
√
NLη.

(3.6) holds true if

c2min

(
1 +

1

N
− 1

Nq

)(
1 +

1

L
− 1

Lq

)
≥ 4η2.

Of course, we usually assume some statistical knowledge on εj . Note that E is a structured random
matrix. Understanding spectral properties of structured random matrices has become an active re-
search topic in the last years. However, non-asymptotic bounds seem to be not known, even in the
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simplest case (e.g. if εj are i.i.d. normally distributed random variables). For asymptotic results, see
[13].

Next, we give a quick recap of (a variation of) the MUltiple SIgnal Classi�cation (short: MUSIC)
algorithm by Schmidt [87]. It is based on the fact that for N ≥M + 1 we have that

Sig(f,N) = span{vN (yj) : j = 1, . . . ,M}

and vN (y) /∈ Sig(f,N) for all y ∈ [0, 1) \ Y f . Thus, �nding the frequencies of f is equivalent to
�nding all y ∈ [0, 1) with vN (y) ∈ Sig(f,N). Now assume we are given noisy samples, enough to
build s̃N (j), j = 0, . . . , L− 1, where N ≥ M + 1, L ≥ M . Further assume that we know M (or have

determined it by �nding the gap in the singular values of H̃f
N,L = H̃f

N,L(0)). We could now try to
formalize and solve the following problem:

Find ỹ1, . . . , ỹM such that span{vN (ỹj) : j = 1, . . . ,M}
is as close as possible to span{s̃N (j) : j = 0, . . . , L− 1}.

And while it is possible to pursuit this idea (see for example the discussion on the maximum likelihood
estimator in [82]), it leads to a di�cult, nonlinear optimization problem. The idea of MUSIC is the
following simpli�cation:

1. Calculate an estimation S̃ig(f,N) of the signal space.

2. Find the M frequencies ỹj ∈ [0, 1) for which vN (ỹj) are closest to S̃ig(f,N).

For the �rst step, usually a SVD is used. Indeed, span{s̃N (j) : j = 0, . . . , L − 1} is equal to the

range of H̃f
L,N and performing a SVD like in (3.5), we let

S̃ig(f,N) = span{ũ1, . . . , ũM} (3.7)

where ũj is the jth column vector of Ũ . Note that in the noise free case, S̃ig(f,N) = Sig(f,N).

Remark. As (Hf
L,N )T = Hf

N,L, we could use the �rst M right singular vectors as well. There is no
di�erence (as long as one adjusts L and N accordingly), though one additional conjugation is then
necessary.

Now we consider the second step. MUSIC uses the following closeness indicator:

R(y) =
1∑N

k=M+1 |ũHk vN (y)|2
. (3.8)

∑N
k=M+1 |ũHk vN (y)|2 is of course the norm of the projection of vN (y) on the space spanned by

ũM+1, . . . , ũN . In the noiseless case, R(y) has singularities at yj , while in the noisy case (hopefully)
pronounced peaks at locations ỹj close to yj are visible. R is sometimes called MUSIC pseudospec-
trum. We summarize:

Algorithm 3.8 (MUSIC). Input: f̃(j), j = 0, . . . , N + L− 2, N,L ∈ N and M ∈ N

• (Incomplete) SVD of H̃N,L : Determine M left singular vectors ũ1, . . . , ũM corresponding to the
largest singular values.

• Find M largest local maxima of R(y), as given in (3.8), ỹ1, . . . , ỹM .

Output: ỹ1, . . . , ỹM

An explicit evaluation of the computational complexity of MUSIC is not possible, due to the search
for local maxima of R(y).

Remark. In the original version in [87], the signal space is estimated from the (estimated) covariance
matrix. However, the approach using SVD is long known as well (see for example the discussion in
[82]). We quickly point to a few other variations. A modi�ed version, taking the singular values σ̃k
into account is frequently used as well (see [49, 61]). Also, a reformulation, where roots instead of sin-
gularities are considered, is known (the so called root-MUSIC, see the discussion in [61]). Pisarenko's
method [70], predating MUSIC, corresponds to the special case N = M + 1.

We do not comment on stability properties of MUSIC, instead we point to the literature. A good
starting point is [55].
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Now we turn to ESPRIT, an acronym for Estimation of Signal Parameter via Rotational Invariance
Techniques. This very successful method was published by Roy et al. in 1986 [83], later extended by
Roy and Kailath in [82]. We follow [61] closely.

As the name indicates, ESPRIT exploits a rotational invariance of the signal space. Namely, let

VN =

[
V

(1)
N

∗

]
=

[
∗

V
(2)
N

]
,

i.e., V
(1)
N is formed from VN by discarding the last, V

(2)
N by discarding the �rst row. Again, let

D = diag(e2πiy1 , . . . , e2πiyM ). Then

V
(1)
N D = V

(2)
N . (3.9)

This is the rotation ESPRIT uses. The key observation is that it transfers to di�erent bases of
Sig(f,N). Indeed, given a basis B = [b1, . . . , bM ] of Sig(f,N), there is a basis transformation matrix
S ∈ CM×M , S invertible, such that

VN = BS.

Now forming B(1) and B(2) by discarding the last resp. �rst row, (3.9) transforms to

B(1)SDS−1 = B(2). (3.10)

Also, as B(1) = V
(1)
N DS−1, the matrix has full rank and hence, if N ≥ M + 1, the matrix SDS−1

is uniquely determined by (3.10). But SDS−1 is similar to D and therefore shares the eigenvalues
with D, which are precisely what we need to determine Y f . Thus, any basis of Sig(f,N) su�ces to
determine the frequencies of f , at least if N ≥M + 1.

In the noisy case, this idea can be used as well. As an estimate for a basis of Sig(f,N), we again
use a SVD and use the left singular vectors corresponding to the largest singular values, see (3.7). We
call the matrix ŨM = [ũ1 . . . ũM ], thus (3.10) becomes

Ũ
(1)
M F = Ũ

(2)
M , (3.11)

where F = SDS−1 for an unknown, invertible matrix S. The idea is now to solve for F and then
determine its eigenvalues. There are two approaches to solve this system. Either we use a least square
approach, which tries to minimize ‖E2‖F (the Frobenius norm) subject to

Ũ
(1)
M F − Ũ (2)

M = E2.

This results in

F =
(
Ũ

(1)
M

)†
Ũ

(2)
M ,

where A† denotes the Moore-Penrose inverse (or pseudoinverse) of a matrix A.

But this assumes that Ũ
(1)
M is not perturbed. Hence, a total least squares (TLS) approach, which

minimizes ‖[E1 E2]‖F subject to

(Ũ
(1)
M + E1)F = Ũ

(2)
M + E2

is usually preferable, as it treats both Ũ
(1)
M and Ũ

(2)
M equally. An extensive discussion of the TLS

problem, including many references, is given in [33].
We summarize the algorithm.

Algorithm 3.9 (ESPRIT). Input: f̃(j), j = 0, . . . , N + L− 2, N,L ∈ N with N ≥M + 1, L ≥M
and tol ≥ 0

• (Incomplete) SVD of H̃N,L : Determine M left singular vectors ũ1, . . . , ũM corresponding to the
singular values larger than tol.

• Form Ũ
(1)
M and Ũ

(2)
M . Solve (3.11) in the least (or total least) square sense.
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• Determine the eigenvalues e2πiỹk of F .

Output: ỹ1, . . . , ỹM

The computational complexity of ESPRIT is largely due to the complexity of the singular value
decomposition, which is O(min(LN2, L2N)). Indeed, the other operations are of lower order: The
least square system needs O(M2N) �ops and determining the eigenvalues requires O(M3) �ops (see
for example [33]). Note that we do not need to calculate the left singular vectors. A more detailed
discussion, including an approach using Lanczos bidiagonalization, is given in [77]. Results concerning
asymptotic convergence (assuming Gaussian noise) are given in [79, 66].

We mention one �nal improvement of ESPRIT. While the aforementioned algorithm works even
when the frequencies have an real part (e.g. when the signal decays), the following exploits that we
only have imaginary frequencies. Namely, for f ∈ S1

M we have that

f(n) =
∑
y∈Y f

cye2πiyn =
∑
y∈Y f

cye
2πiy(−n) =: g(−n).

Then g ∈ S1
M has the same frequencies and we can easily calculate g(−N), . . . , g(0) if we know

f(0), . . . , f(N). Therefore, the Hankel matrix Hf
N,L can be replaced with

[
sfN (0) . . . sfN (L− 1) sgN (−N + 1) . . . sgN (−L−N + 2)

]
=
[
Hf
N,L JNH

f
N,L

]
,

where JN is the matrix with ones on the antidiagonal and zeros elsewhere. The matrix
[
Hf
N,L JNH

f
N,L

]
has an extra structure, it is centro-Hermitian. Such matrices can be easily transformed to real matri-
ces of the same size, which has computational advantages. The improved ESPRIT taken advantage
of these ideas is known as Unitary ESPRIT and was introduced in [37].

ESPRIT is actually closely related to another technique, the matrix pencil method. This method
is introduced in [45], the close connection to ESPRIT (and several variations of ESPRIT) is explained
in [46, 76]. We give a quick introduction to the main idea of the matrix pencil method.

As the name indicates, the method recovers the frequencies by considering a matrix pencil. A
matrix pencil of two matrices A1, A2 ∈ CL×N is a linear combination of them,

A1 − zA2,

where z ∈ C is a free variable. As we are interested in possibly singular A1, A2 we are considering a
singular matrix pencil. Now for any v ∈ CN with v /∈ kerA1 ∩ kerA2, we have that (A1 − zA2)v = 0
for at most one z ∈ C. All z ∈ C for which such a v exists are called rank reducing numbers or
generalized eigenvalues (GE's) of A1−zA2, the corresponding v is called right generalized eigenvector.
The connection to the usual eigenvalues and eigenvectors is that if A1 ∈ CN×N and A2 is the identity
matrix, we obtain A1v − zv = 0, i.e., v is an eigenvector to the eigenvalue z.

It is clear that if B ∈ CN×P is surjective and C ∈ CQ×L is injective, the GE's of A1 − zA2 are
equal to the GE's of CA1B − zCA2B (the only nontrivial observation is that elements in the kernel
of B are not allowed to be chosen as generalized eigenvectors).

Now we can use the factorization of Hf , derived in Lemma 3.6, to establish that

Hf
N,L(1)− zHf

N,L(0) (3.12)

has exactly e2πiy, y ∈ Y f , as generalized eigenvalues, at least if N,L ≥M . Indeed,

Hf
N,L(1)− zHf

N,L(0)

= VN (y1, . . . , yM )
(
diag

(
c1e

2πiy1 , . . . , cMe
2πiyM

)
− z diag (c1, . . . , cM )

)
VL(y1, . . . , yM )T

and assuming N,L ≥M , VL and VN have rank M and hence this matrix pencil has the same GE's as

diag
(
c1e

2πiy1 , . . . , cMe
2πiyM

)
− z diag (c1, . . . , cM ) .

But in this case the GE's are obviously equal to e2πiyj , j = 1, . . . ,M .
However, to actually compute the GE's of Hf

N,L(1)− zHf
N,L(0), we have to work a little bit more.

Due to the fact that the involved matrices are not of full rank, we cannot simply apply a standard
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algorithm (e.g. the QZ algorithm, see [33]). One possibility to overcome this di�culty is to compute

the reduced singular value decompositions of Hf
N,L(j), j = 0, 1. Let

Hf
N,L(j) = UjΣjW

H
j , j = 0, 1,

where Uj ∈ CN×M ,Wj ∈ CN×M have orthogonal columns and Σj ∈ CM×M are diagonal matrices,

containing the non-zero singular values of Hf
N,L(j). Thus, the matrix pencil (3.12) has the same GE's

as

Σ−1
0 UH0 U1Σ1W

H
1 W0 − zIM

and we have reduced the problem to an eigenvalue problem of a (non-symmetric) matrix in CM×M .

In the noisy case, we replace H̃f
N,L(j) by its M -truncated singular value decomposition.

The connection to ESPRIT is not clear from these considerations. Furthermore, performing two
SVDs is a bit wasteful. A di�erent idea is to start with a reduced SVD

Hf
N,L+1 = UΣWH ,

where U ∈ CN×M , W ∈ C(L+1)×M and Σ ∈ RM×M . We denote by W (0) and W (1) the matrix
formed by deleting the last and �rst row respectively. This results in two factorizations

Hf
N,L(j) = UΣW (j)H , j = 1, 2.

Note that while W (j) have no longer orthogonal columns, they still have rank M , if N,L ≥ M , as

Hf
N,L(j) has rank M . Thus, we can transform (3.12) to

W (1)H − zW (0)H .

If we �nd a matrix F ∈ CM×M solving

W (0)HF = W (1)H

we see that the matrix pencil has generalized eigenvalues equal to the eigenvalues of F . This, however,
is just like equation (3.11) only using the right singular vectors instead of the left ones of Hf

N,L. A
similar discussion about the connection of matrix pencil methods and ESPRIT is already given in
[46].

A lot of further results, including perturbation theory, can be found in the literature, see [45, 46, 76].
This concludes our review of univariate methods, relying on an estimation of the signal space.

Numerical Examples

Finally, we give numerical examples. The aim is not to compare these well-known methods, but
instead to demonstrate the a posteriori error estimates developed in the last chapter.

We start with a deterministic example, to show the power of Theorem 2.26. We consider the
exponential sum f with frequencies

Y f = {0.1k : k = 0, . . . , 9}

and coe�cients c0.1k = (−1)k. As a second exponential sum, we consider gλ, which is constructed by
Y gλ = λ+ Y f . The coe�cients are then determined in a least square sense, such that

‖PN (f − gλ)‖22

is minimized. We pick N = 39 and as f, gλ ∈ S1(0.1), we have that sep f, sep gλ ≥ 4
N+1 as required

in Theorem 2.26.
We consider the frequency error, given by

π2

3
(N + 1)3

∑
y∈Y f

(|cfy |2 + |cgλn(y)|
2)|y − n(y)|2T,
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Figure 3.1: Comparison of the errors for di�erent gλ.

where again n(y) is the frequency of gλ closest to y ∈ Y f , the coe�cient error

3

8
(N + 1)

∑
y∈Y f

|cfy − c
gλ
n(y)|

2

and their sum, which we call total error. ‖PN (f − gλ)‖22 is called l2 error. For various choices of λ,
these values are reported in Figure 3.1.

Clearly, the estimate is very sharp and the l2 error is only approximately 20% larger than the total
error. For the last two data points, condition (2.27) is not satis�ed. And indeed, for the last data
point, the assertion of the theorem does not hold.

Next we consider the a posteriori estimates. We consider randomly chosen exponential sums f
with sep f ≥ 0.1. We do that by picking the �rst frequency randomly between 0 and 0.05, the next one
is picked with a distance to the �rst randomly chosen between 0.1 and 0.15 etcetera. The coe�cients
are then chosen as

cj = rje
2πiφj ,

where rj and φj are uniformly distributed in [0.2, 1.2] and [0, 1] respectively.
We then sample f at 0, 1, . . . , 2N and add noise of the form

εj = X1,j + iX2,j ,

where Xk,j ∼ N (0, σ2) are independent and normal distributed random variables. Again we choose
N = 39. Then we apply ESPRIT, as given in Algorithm 3.9, to the noisy samples (choosing tol = 0.1
and L = N), which gives us an estimate f̃ for f .

The frequency error, coe�cient error and total error are de�ned as before. Finally, the error
estimate of Corollary 2.27 is given by(∣∣∣‖PN (f)− s̃N (f̃)‖22 − σ2(4N + 2)

∣∣∣ 12 + (2 +
√

2)σ(2N + 1)(1+δ)/4

)2

.



50 CHAPTER 3. PARAMETER ESTIMATION TECHNIQUES

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100
10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Figure 3.2: Comparison of the errors at di�erent noise levels. x-axis: Standard deviation of the noise.
All results are averaged over 25 runs.

We choose δ = 0.8, resulting in a probability of at least 95% that our estimate holds true.
As Figure 3.2 indicates, the qualitative behavior of the errors is captured quite well by our estimate.

3.2 Projection-based Methods

In this section we introduce one family of reconstruction techniques for the frequency estimation
problem. The main idea is to use univariate methods, which are signi�cantly better understood than
their higher dimensional analogs, to obtain an estimate for the multivariate problem. We will focus
mostly on the two dimensional problem and comment on the situation in higher dimensions along the
lines.

Now we pick a univariate method of our choice. The choice is plenty and always extending. MUSIC,
ESPRIT and the closely related matrix-pencil method we already discussed and anyone of them is
�ne. In our numerical examples later on, we use ESPRIT.

Next we choose a line, parametrized by

` = {tv + bv⊥, t ∈ R} ⊂ R2.

Whenever we parametrize a line, we assume that v, v⊥ are orthonormal, b ∈ R. Of course, v, v⊥ are
unique only up to sign. Also, v⊥ is not uniquely determined by v. To avoid this problem, we simply
de�ne v⊥ = (−v2, v1), where v = (v1, v2).

Restricting f to `, we obtain

f(tv + bv⊥) = f |`(t) =
∑
y∈Y f

cye
2πibv⊥·ye2πiv·yt =

∑
y`∈v·Y f

 ∑
y∈Y f
y·v=y`

cye
2πibv⊥·y

 e2πiy`t. (3.13)

Hence, f |` is a univariate exponential sum with frequencies Y f |` ⊂ v · Y f , which are the projections
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of the frequencies of f onto the line `. This is the reason why methods exploiting this fact are called
projection-based. One of the mayor challenges is, that this inclusion can be strict. In fact, it is easily
possible that the occurring coe�cient is zero. Nonetheless, sampling f |` at 0, α, . . . (2M − 1)α with
α ∈ R>0 allows us to apply our univariate method of choice to obtain (a possibly perturbed estimate
of) Y f |` and the corresponding coe�cients.

Here we have to choose the step size α with care. We may assume without loss of generality that
v1 ≥ 0. Then, if v2 ≥ 0, we have that [0, 1)2 · v ⊂ [0, v1 + v2) and therefore choosing α ≤ 1√

2
is �ne.

On the other hand, if v2 < 0, we have [0, 1)2 · v ⊂ (v2, v1). Again, choosing α ≤ 1√
2
is possible, but we

have to translate the frequencies such that they are in (v2, v1) after applying our univariate method.

The question now is for which choices of lines `j = {tvj+bjv⊥j , t ∈ R}, j = 1, . . . ,K a reconstruction
of f from f |`1 , . . . , f |`K is possible. In the work of Potts and Tasche [75], where projection-based
methods were �rst introduced, it is shown that under the assumption that `j are pairwise non-parallel

and that Y f |`j = vj · Y f , only M + 1 lines are su�cient. This can be deduced from an older result

by Renyi [80]. In the author's master thesis [24], the assumption Y f |`j = vj · Y f has been removed,
though at serious computational costs. This result was then published in [25].

We give a complete overview over all projection-based methods using scattered (i.e., pairwise non-
parallel) lines in the �rst part of this chapter, including polished proofs of the aforementioned results.
Unfortunately, stability results are neither known nor expected. In fact, we already discussed in the
�rst part of this thesis that the separation distance of the frequencies is vital to obtain stability. Now
even if Y f is perfectly separated, we cannot hope for any separation of Y f |` or v ·Y f . Thus, it remains
unclear, why the univariate method applied along such a line should give reasonable results, at least
if we expect a certain noise level.

To remedy this problem, we consider in the second part of this section what happens if we project
on multiple parallel lines. First, we discuss why this still gives us the possibility to reconstruct f .
On the �rst glance, no better stability properties of this method are expected, for the same reasons
as above. However, by introducing a method which does not apply a univariate method along each
line individually, but rather on all parallel lines simultaneously, these problems are overcome. The
proposed method relies on a new variation of the ESPRIT algorithm. At least numerically, we show
that this method behaves well. A part of these results is published in [26].

Projection on Scattered Lines

We start by considering the special case of lines passing through the origin. In this case, the o�set b
in our parametrization of a line ` is zero, i.e., ` = {tv, t ∈ R}. In particular, (3.13) becomes

f(tv) = f |`(t) =
∑

y`∈v·Y f

 ∑
y∈Y f
y·v=y`

cy

 e2πiy`t,

i.e., we just have to sum the coe�cients of all frequencies which are projected on a single point. As
the univariate method gives us all y` with non-zero coe�cients, this problem is not really connected
to exponential sums, but simply the question when a discrete, weighted point cloud can be recovered
from a �nite number of projections. Not surprisingly, this problem did already occur in other areas
of mathematics. Most notably, it was considered in [80] and [41], where the aim was to recover a two
dimensional discrete probability distribution from projections. This is an easier situation, as then all
coe�cients are positive and they cannot cancel out. In particular v · Y f = Y f |` holds true.

To stress that in the case b = 0 we actually have projections of weighted point clouds, we restate
the problem as follows: Given an unknown, discrete set X ⊂ R2, |X| = M and a weight function
w : R2 → C, satisfying

w(x) 6= 0⇔ x ∈ X,

how many projections are necessary to recover X uniquely? Obviously, such a w can be constructed
from a given f by letting X = Y f and w(y) = cy.

Note that if w is known, so is X: suppw = X. A projection of w on v ∈ R2 de�nes the weight



52 CHAPTER 3. PARAMETER ESTIMATION TECHNIQUES

function on R

[Pv(w)](x) = wv(x) =
∑
y∈X
v·y=x

w(y). (3.14)

This is of course the weight function corresponding to the univariate exponential sum f |`.
Then the support of wv is a subset of the projections of X onto the line {tv, t ∈ R}:

suppwv ⊂ {v · x, x ∈ X} = v ·X.

We obtain the following inequality:

|suppwv| ≤ |v ·X| ≤ |X| = M.

When the inequality on the right-hand side holds strictly, some points inX feature the same projection
on {tv, t ∈ R}. Then, their weights are added up. If their weights add up to zero, the inequality on
the left-hand side is strict. On the other hand, if equality holds on the right-hand side, so it does on
the left-hand side.

Also note that Pv is linear, i.e., for all t ∈ R, v ∈ R2 we have

(w + tw̃)v = wv + tw̃v.

Scaling a v results in a scaling of wv:

wtv(x) =
∑
y∈X
tv·y=x

w(y) =
∑
y∈X

v·y=x/t

w(y) = wv(x/t).

Remark. Another interpretation of a weighted point cloud would be identifying it with a weighted
sum of Dirac delta distributions. Instead of w : R2 → C we obtain

dw =
∑

x:w(x) 6=0

w(x)δx.

If the weights are positive and sum up to one, dw is a probability distribution. The projections are
then marginal distributions and the corresponding exponential sum is of course exactly the Fourier
transform of this measure. But as no properties of measures are used in this section, we stick with
the simpler weight functions.

Projections of Discrete Point Clouds

In this section we summarize all results we are aware of. Note that some of them are stated in a quite
di�erent context, we reformulate them to �t our setting.
The �rst result is given in [80]:

Theorem 3.10. (Renyi, 1952) Assume projections on M + 1 pairwise linearly independent vk ∈ R2

are given and that suppwvk = vk ·X. Then X is uniquely determined and a direct reconstruction of
X and w is possible.

Proof. We follow an idea of Heppes [41], which can be generalized easily to higher dimension. Consider
the set

X̃ = {x ∈ R2 : vj · x ∈ vj ·X for all j = 1, ...,M + 1}.

Obviously, X ⊂ X̃. We prove the other inclusion. Let x ∈ X̃ be arbitrary. By de�nition, for each
j = 1, ...,M+1 we �nd a xj ∈ X with vj ·x = vj ·xj . AsM+1 points xj are chosen, by the pigeonhole
principle, we may �nd j 6= k with xj = xk. But then x · vj = xj · vj and x · vk = xj · vk. As vj , vk are
linearly independent, x = xj ∈ X.

Note that we are able to construct X̃ explicitly. We are left with calculating the weights. For each
x we have M + 1 projections but only M − 1 points in X \ {x}. In particular, we may �nd a v such
that wv(x · v) = w(x).
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Remark. We give a few remarks.

1. M + 1 cannot be improved, it is optimal in certain examples. Consider for example a regular
2M polygon and let vj be the normals to the sides. Then choosing X as every other vertex will
give the same projection as the remaining vertices. More examples are given in [80].

2. This is exactly the result mentioned in [75], where the connection between projection of point
clouds and parameter estimation of exponential sums was �rst established.

3. If we choose a �xed line `, the property |Y f |` | = |Y f | holds generically. Hence, the weight
function corresponding to f will satisfy suppwvk = vk ·X generically. Even better, only three
lines su�ce to reconstruct a generic f , by the same argument we will use to prove Theorem 3.12.

If one drops the assumption that suppwvk = vk ·X , X is still uniquely determined but a direct
reconstruction is no longer known, see [25]:

Theorem 3.11. (Diederichs, Iske, 2015) Assume projections on M + 1 pairwise linearly independent
vk ∈ R2 are given. Then X is uniquely determined.

Proof. We proof that if w 6= 0 and wvj = 0 for j = 1, ...,M pairwise linearly independent vj , then
|suppw| ≥ 2M .
Let such a w be given. Note that for each x ∈ X and each vj we have to have a y ∈ X, y 6= x with
x · vj = y · vj . Now consider for each vj the strip

Sj = {x ∈ R2 : min vj ·X ≤ x · vj ≤ max vj ·X}.

We have X ⊂ Sj and each connected component of the boundary of Sj is a line containing at least
two elements of X. Thus ∩Mj=1Sj contains X and is a convex polygon with at least 2M sides. Each
side contains at least two elements of X, hence X has to have at least 2M elements, the extremal case
being when X is exactly the set of vertices of ∩Sj .
The theorem follows then easily, because if w, w̃ feature equal projections on vk, k = 1, ...,M + 1,
w − w̃ has to have a support of at least 2M + 2 or w = w̃ as claimed.

Remark. There is an easier proof: Choose x ∈ X and assume that Re(w(x)) > 0. For wvk(x · vk) = 0
we have to �nd xk ∈ X with Re(w(xk)) < 0 and (x − xk) · vk = 0. This gives x1, ..., xM ∈ X, which
are pairwise distinct by construction. Repeating this procedure for x1 gives x̃1, ..., x̃M ∈ X with
Re(w(x̃k)) > 0. Thus we have found 2M distinct points in X.
Unfortunately, this proof does not generalize to the case of arbitrary lines. Interestingly, it does not
work if w : R2 → F2 either (where F2 is the �eld with two elements).

An adaptive choice of the vk can reduce the number of necessary lines signi�cantly (see [73]):

Theorem 3.12. (Plonka, Wischerho�, 2013) Let v1, v2 be linearly independent. If suppwvk = vk ·X,
k = 1, 2, there exists a vector v3 such that X and w can be reconstructed from wvj , j = 1, 2, 3.

Proof. Consider

X̃ = {x ∈ R2 : vj · x ∈ vj ·X, j = 1, 2}.

Then X ⊂ X̃ and |X̃| ≤M2. Choose a v3 such that |v3 · X̃| = |X̃|. Then

X = {x ∈ R2 : vj · x ∈ vj ·X, j = 1, 2, 3}

and w(x) = wv3(x · v3).

Given enough lines, it is even possible to prove that on a few of them all x ∈ X have distinct
projections. This observation is used in a proof in [14]. We present their techniques isolated from its
original purpose.

Theorem 3.13. (Buhmann, Pinkus, 1995) Let v1, ..., vs be in general position, where s =
(
M
2

)
+ 2.

Then there are at least two vr1 , vr2 on which all x ∈ X have distinct projections, i.e., |vrj ·X| = M ,
j = 1, 2.
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Proof. We count. Given x, y ∈ X, x 6= y with vj · x = vj · y, we see that vj ∈ span(x − y)⊥. As
v1, ...vs are in general position, no other vk is in this one dimensional subspace. Hence for each pair
in X at most one vj cannot distinguish them. We have

(
M
2

)
such pairs, thus two vj can distinguish

all x ∈ X.

Corollary 3.14. (Buhmann, Pinkus, 1995) Let v1, ..., vs be in general position, where s =
(
M
2

)
+ 2.

Assume further that w(x) 6= w(y) for all x 6= y in X. Then X is uniquely determined and can be
reconstructed.

Proof. Using Theorem 3.13, we �nd vr1 , vr2 such that |vrj · X| = M , j = 1, 2. Then for each
x ∈ suppwvr1 = vr1 · X we �nd one y ∈ vr2 · X such that wvr1 (x) = wvr2 (y). Let x̃ be the unique
solution to x̃ · vr1 = x and x̃ · vr2 = y. Then x̃ ∈ X.

In Rd a reconstruction from projection onto lines is possible as well. Again, many formulations
exit. Note that the de�nition of a projection of a weight function (3.14) can be used verbatim in Rd
as well. We give one particularly useful example, �rst proved in [35]:

Theorem 3.15. (Griesmaier, Schmiedecke, 2017) Let vj ∈ Rd, j = 1, . . . ,K be in general position,
i.e., any d of them form a basis. Assume w : Rd → C is a weight function with suppw = X and
|X| = M . If K > (d− 1)(2M − 1), we can reconstruct w from wvj . More speci�cally,

X = {x ∈ Rd : x · vj ∈ suppwvj for at least (d− 1)M + 1 di�erent j},

and for each x ∈ X there is at least one line where x is projected on an individual point, which gives
the weight.

Proof. We call the set on the ride-hand side X̃. Then X ⊂ X̃. Indeed, if for an x ∈ X we have
x · vj /∈ suppwvj , there has to be a distinct x′ ∈ X with x · vj = x′ · vj . Suppose this happens for
(d− 1)(M − 1) + 1 di�erent vj . By the pigeonhole principle, there is one x′ ∈ X \ {x} and j1, . . . , jd
with x · vjk = x′ · vjk . But vj being in general position yields a contradiction. Note that this also
proves the second claim (in fact, this proves that we �nd d di�erent vj where x is projected to an
individual point).

Now we show X̃ ⊂ X. If x̃ ∈ X̃, we �nd for (d−1)M +1 di�erent j an xj ∈ X with x̃ ·vj = xj ·vj .
Using the pigeonhole principle once more, we see that there is at least one x ∈ X with x̃ · vj = x · vj
for d di�erent vj . Again, x = x̃ follows.

This theorem is also interesting in the two dimensional case. Note that in contrast to Theorem 3.11,
a speci�c (and simple) reconstruction strategy is given, but the number of necessary lines increases
from M + 1 to 2M .

General Scattered Lines

Now we again consider the general case. The restriction of f to a line ` = {tv + bv⊥, t ∈ R} gives an
exponential sum, which corresponds to the one dimensional weight function

wv,b(x) =
∑
y∈X
v·y=x

w(y)e2πiby·v⊥ .

We sum up a modulation of the weights, corresponding to all points with the same projection. Again,
note that it is equivalent whether we are looking for w and know wv,b or whether we are looking for
f knowing f |`.

Now we are able to translate results from the previous section to this application.

Corollary 3.16. Let w be a weight function with suppw = X and |X| = M . If wvj ,bj , j = 1, ...,M+1
are given where vj are pairwise non-parallel and suppwvj ,bj = vj ·X, then w is uniquely determined
and a reconstruction is possible.

Proof. Just note that the proof of Theorem 3.10 is still applicable. This observation was �rst made
in [75].

Remark. M + 1 is optimal in this case as well. The 2M polygon gives again an example. A detailed
discussion can be found in [99].
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Corollary 3.17. Let w be a weight function with suppw = X and |X| = M . If wvj ,bj , j = 1, ...,M+1
are given where vj are pairwise non-parallel, then w is uniquely determined.

Proof. The proof of Theorem 3.11 applies here as well (but not the shorter proof!).

Unfortunately, it does not give a direct reconstruction. However, a reformulation as an optimization
problem can be given, where we switch back to the setting of parameter estimation of exponential
sums.

Theorem 3.18. (Diederichs, Iske, 2015) Let f : R2 → C be an exponential sum of order M and
`j = {tvj + bjv

⊥
j , t ∈ R}, j = 1, . . . ,M + 1 a collection of pairwise non-parallel lines. If G is a set of

samples on the lines `j su�cient to determine each of the restrictions f |`j , f is the unique solution to

min ‖c‖0 (3.15)

subject to:
∑
y∈Ỹ

cye
2πix·y = f(x), ∀x ∈ G. (3.16)

Here, Ỹ is the following �nite set containing all frequency vectors:

Ỹ = {y ∈ R2 : ∃j1, j2 such that y · vjk ∈ suppwvjk ,bjk for k = 1, 2}.

Proof. Pick any y ∈ Y f . As there are M − 1 other frequencies in Y f , but M + 1 non-parallel lines,
we have at least two lines where y has a di�erent projection than all other frequency vectors. In
particular, y ∈ Ỹ . Hence, f is admissible and the optimization problem has a M -sparse solution.

Now assume that there is a second M -sparse solution g. Due to the uniqueness of the univariate
problem, we have that f |`j = g|`j . By Corollary 3.17, f = g.

Remark. There is another formulation of this theorem, which captures more the essence of its proof.
Assume we have lines `1, . . . , `K as above. Let H = ∪`j the union of these lines. Then the restriction
operator

· |H : S2 → C(H,C)

is an algebra homomorphism and hence its kernel is an ideal. We then proved

f ∈ ker · |H \ {0} ⇒ ord f ≥ 2K.

As restricting f to a line gives an exponential sum of order at mostM , instead of H a suitable discrete
set can be chose, namely G.

Returning to Theorem 3.18, we observe that the stated optimization problem (3.15) is quite costly
to solve. One di�culty is that Ỹ is rather large, an upper bound is given by |Ỹ | ≤

(
M
2

)
M2. Further,

such non-convex problems are in general hard to solve. In fact, minimizing ‖ · ‖0 under a linear
constraint Ax = b is known to be NP-hard, see [32] Section 2.3. Hence, usually a convex relaxation
is considered, namely replacing ‖ · ‖0 by ‖ · ‖1. In some cases, it can be proved that the relaxation
does not change the solution. Here however, elements in Ỹ can be arbitrarily close which results in
strongly correlated columns in the matrix A, which is problematic.

By taking samples on more lines, this problem can be remedied by relying on Theorem 3.15.
Indeed, Theorem 3.15 directly applies to arbitrary lines, without any modi�cation of the stated proof.
This works in the higher dimensional case as well, however as a line is then parametrized by

` = {tv + ṽ, t ∈ R},

where ṽ ⊥ v, the projection on ` of a weight function is de�ned by

wv,ṽ(x) =
∑
y∈X
v·y=x

w(y)e2πiy·ṽ.

For completeness, we state the result (which follows directly from Theorem 3.15, proved by Griesmaier
and Schmiedecke in [35] ).
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Corollary 3.19. Let vj ∈ Rd, j = 1, . . . ,K be in general position. Assume w : Rd → C is a weight
function with suppw = X and |X| = M . If K > (d− 1)(2M − 1), it is possible to reconstruct w from
wvj ,ṽj , where ṽj ∈ Rd has to be orthogonal to vj but can otherwise be arbitrarily chosen. Again,

X = {x ∈ Rd : x · vj ∈ suppwvj ,ṽj for at least (d− 1)M + 1 di�erent j}.

Finally, we consider the generic situation in d dimensions. As expected, everything works out
smoothly.

Theorem 3.20. Let `j = {tvj + ṽ : t ∈ R}, j = 1, . . . , d+ 1 be lines in Rd, where vj are in general
position. Then for a generic f , it is possible to recover it from f |`j . Explicitly,

Y f =
{
y ∈ Rd : vj · y ∈ Y f |`j for j = 1, . . . , d+ 1

}
.

Proof. We call the set on the right-hand side Y . Obviously, Y f ⊂ Y and we are left to prove Y ⊂ Y f .
Consider

Ỹ =
{
y ∈ Rd : vj · y ∈ Y f |`j for j = 1, . . . , d

}
⊃ Y.

This is a �nite set (as v1, . . . , vd are linearly independent). By symmetry it su�ces to prove for one
y ∈ Y f that the probability of x ∈ Ỹ \ {y} satisfying y · vd+1 = x · vd+1 is zero. By assumption, there
is an index j∗ ∈ {1, . . . , d} such that x ·vj∗ = z ·vj∗ with z ∈ Y f \{y}. Further, if all other frequencies
are already chosen, y · vd+1 = x · vd+1 is only satis�ed if z lies in a proper a�ne liner space of Rd, an
event with probability zero.

Numerical Veri�cation

We close this section by giving at least a small numerical example. Due to the very special structure
of the sampling points, the only available methods are the projection-based ones. Neither methods
based on TV minimization and convex optimization (like [16]) nor multivariate Prony-type methods
(as discussed in the next section) can handle these sampling sets, as they cannot be rescaled to be
a subset of Zd. Hence, the connection to multivariate (trigonometric) polynomials is not available.
Other methods, like the multivariate matrix pencil method presented in [44, 81] rely on sampling sets
contained in Zd as well.

Now assume that we sample an unknown exponential sum f on `1 = {tv1 +b1v
⊥
1 : t ∈ R}, . . . , `K .

The frequency sets Y f |`j can be estimated by applying a univariate method to the samples on `j . In
our numerical experiments we use least squares ESPRIT, Algorithm 3.9.

However, in general the estimates Y
f |`j
est may di�er substantially from Y f |`j , in particular in the

presence of noise. To account for this fact, we have to introduce a tolerance ε ≥ 0 in such a way that
all frequencies in Y f |`j are at most perturbed by ε in our estimation.

Depending on a priori assumptions on f (in particular assuming ord f ≤M), we choose one of the
following alternatives:

1. If we know (or assume) that vj · Y f = Y f |`j and K ≥M + 1, we can reconstruct Y f by letting

Yest =
{
x ∈ R2 : dist (x · vj , Y

f |`j
est ) < ε for all j = 1, . . . ,K

}
.

This approach was proposed in [75] and can be used when K is smaller than M + 1 as well,
though no guarantee to recover Y f is possible.

2. If K ≥ 2M , we estimate Y f by

Yest =
{
x ∈ R2 : dist (x · vj , Y

f |`j
est ) < ε for at least M + 1 di�erent j = 1, . . . ,K

}
.

Note that Y = Y f by Corollary 3.19. This strategy is in the spirit of [35].

3. Finally, if K ≥M + 1, we form the candidate set

Ỹ =
{
x ∈ R2 : ∃j1, j2 such that dist (x · vjk , Y

f |`jk ) < ε for k = 1, 2
}
.
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Figure 3.3: `j , j = 1, . . . , 5. On the left-hand side: Y f and projections of Y f onto the lines. On the

right-hand side: Candidate set Ỹ and the projections we actually observe.

We denote the solution to the optimization problem (3.15) by c∗ ∈ RY . Then

Yest =
{
y ∈ Ỹ : |c∗y| ≥ ε1

}
gives Y f by Theorem 3.18. This strategy was proposed by Iske and the author in [25]. Note
that we can choose any ε1 > 0, but if some lower bound of |cy| is available, we should use it
here. Assuming such a lower bound is necessary for stability guarantees anyway, as discussed in
the previous chapter.

Of course, using stronger assumptions on f gives better results. This means that when applicable,
the �rst method is preferable over the second, which again is preferable over the third.

Note that if ε = 0 and Y
f |`j
est = Y f |`j , all three possibilities will recover f .

We give an example, where the third strategy is necessary. To this end, we choose the �ve lines

`1 = {te1 : t ∈ R}, `2 = {te2 : t ∈ R},

`3 = {t(1, 1)/
√

2 + (−1, 1)/
√

(2) : t ∈ R}, `3 = {t(1,−1)/
√

2 + (1, 1)/
√

2 : t ∈ R},
`5 = {t(sin(π/8), cos(π/8)) : t ∈ R}.

As frequencies we choose

y1 = (0.1, 0.1) y2 = (0.1, 0.6)

y3 = (0.6, 0.1) y4 = (0.6, 0.6)

with coe�cients (c1, c2, c3, c4) = (1,−1,−1, 1). This example is build in such a way that

Y f |`1 = ∅, Y f |`2 = ∅, Y f |`3 = {0.14, 0.85}, Y f |`4 = {−0.35, 0.35},

rounded up to two decimal places. In particular Y f`j ( vj · Y f for = 1, . . . , 4 and a reconstruction
of f using an arbitrary number of samples on `j , j = 1, . . . , 4 is not possible. See �gure 3.3 for a
depiction of the situation.

In this instance, the non-convex optimization problem (3.15) can solved quite easily, as the number
of candidates is smaller than the number of samples and we therefore expect that only one solution
to the linear constraint exists. We test how stable the procedure is. To this end, we add noise

f̃j(k/
√

2) = f |`j (k/
√

2) + nj,k,1 + inj,k,2,

where nj,k,l are independent and uniformly distributed in δ[−0.5, 0.5] for various choices of δ ∈ R>0.
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Table 3.1: Results of the example

δ N L tol cmin dH(Y f , Yest) fails/100

0 5 4 0.5 0.01 1e-30 -
0 10 9 0.5 0.01 1e-30 -

1e-6 5 4 0.5 0.01 1e-14 -
1e-6 10 9 0.5 0.01 2e-15 -
1e-2 5 4 0.5 0.01 1e-06 -
1e-2 10 9 0.5 0.01 2e-07 -
0.5 5 4 2 0.5 3e-03 10
0.5 10 9 2 0.5 5e-04 11

As an error measure we give

dH(Y f , Yest) = max

{
max
y∈Y f

min
ỹ∈Yest

‖y − ỹ‖2, max
ỹ∈Yest

min
y∈Y f

‖y − ỹ‖2
}
,

the Hausdor� distance, whenever the number of frequencies matches, otherwise we consider the re-
covery failed. Our �ndings are collected in Table 3.1. All results are averaged over 100 runs. The
parameter N,L, tol are as described in Algorithm 3.9. In this example, the proposed method works
well when the noise is reasonable small. In the high noise regime, one has to carefully choose tol and
have a reasonable guess for cmin to still get useful results.

To conclude this numerical test, when Y f is very small, the proposed method can be used. However,
even for moderately large Y f , the candidate set is too large and it is advisable to collect enough samples
to follow the strategy presented by Griesmaier and Schmiedecke [35], which was introduced after the
author's method and is for all practical purposes preferable. Finally, we remark that Griesmaier and
Schmiedecke also gave a MUSIC-like pairing scheme, which looks promising. However, this is not the
place to further discuss their results.

3.2.1 Projection on Parallel Lines

Now we turn to sampling sets on multiple, parallel lines. In this section, we always assume without
loss of generality that we sample along lines

`j = {te1 + bje2, t ∈ R}, j = 1, . . . ,K,

where e1 = (1, 0), e2 = (0, 1) and bj ∈ R pairwise distinct. This covers the most prominent sampling
set, both in applications and theory, namely

GN = {n ∈ Z2 : ‖n‖∞ ≤ N},

where N ∈ N, or subsets thereof. Indeed, by choosing K = 2N + 1 and bj = −N − 1 + j, the set GN
provides us with 2N + 1 equispaced samples on each line `j , j = 1, . . . , 2N + 1. If N ≥ M = ord f ,
this gives us su�cient samples to determine f |`j by any univariant method.

But why does sampling along parallel lines help us? We have that

f |`j (t) =
∑
y∈Y f

cye
2πibjy2e2πiy1t =

∑
y1∈e1·Y f

 ∑
y2:(y1,y2)∈Y f

c(y1,y2)e
2πibjy2

 e2πiy1t. (3.17)

Here we denote the jth component of y ∈ R2 by yj . The idea when using scattered lines is that we
obtain multiple di�erent projections. Here, we only see one projection. But note that the correspond-
ing coe�cients vary for di�erent bj . Even if for one particular bj a critical cancellation occurs and one
frequency vanishes, we might observe it for di�erent values of bj .

In the �rst part of this section, we make this observation precise and prove under which conditions
we are able to recover f from f |`j . In the second part we turn to an e�cient implementation of this
idea. We introduce a variation of ESPRIT, which can be applied to all parallel lines at once, which
greatly stabilizes the scheme.

Partly, these results are published in [26].
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Recovery Guarantees for Parallel Lines

A close look on (3.17) reveals, that the coe�cients of the one dimensional frequencies of f |`j form an
exponential sum (in bj) themselves. Indeed, we have that

cy1(bj) =
∑

y2:(y1,y2)∈Y f
c(y1,y2)e

2πibjy2 . (3.18)

Now as we know f |`j , we know cy1(bj) for j = 1, . . . ,K. If bj form an arithmetic progression with
step size one, we can apply a univariate method to cy1(·), which gives us the frequencies and their
coe�cients. In particular, the sampling set GN can be used here.

In the following, we use the projection on the last d− 1 coordinates

Pd−1 : Rd → Rd−1, Pd−1(x1, . . . , xd) = (x2, . . . , xd).

Theorem 3.21. (Diederichs, Iske, 2017) Let f be an exponential sum of order at most M . Then f
can be uniquely determined (under all exponential sums of order at most M) from samples taken on

GN =
{

(n1, . . . , nd) ∈ Zd : |nj | ≤ N ∀j = 1, . . . , d
}

for any N ≥M by only solving a �nite number of one dimensional parameter estimation problems.

Proof. We use induction in d. The case d = 1 is clear. We rewrite f as

f(n1, x) =
∑
y∈Y f

cye
2πiy1n1e2πiPd−1y·x =

∑
ỹ∈Pd−1Y f

 ∑
y1:(y1,ỹ)∈Y f

c(y1,ỹ)e
2πiy1n1

 e2πiỹ·x.

Using the induction hypothesis, we are able to determine for each |n1| ≤ N the frequencies and
coe�cients of f(n1, ·) ∈ Sd−1

M . We therefore know for each ỹ ∈ Pd−1Y
f and each |n1| ≤ N

cỹ(n1) =
∑

y∈P−1
d−1{ỹ}∩Y f

c(y1,ỹ)e
2πiy1n1 .

Note that cỹ(·) cannot vanish for all |n1| ≤ N , as by assumption cỹ ∈ S1
M . Further, we can recover

c(y1,ỹ) and y1 for each ỹ by applying any univariate method. Now clearly

Y f = {(y1, ỹ) : ỹ ∈ Pd−1Y
f and y1 ∈ Y cỹ},

while the coe�cients are given by c(y1,ỹ).

Remark. We give a few comments on this theorem.

1. Cuyt and Lee pursue a similar idea in [22], developed independently from the author's result.
They also use the property that the coe�cients again form an exponential sum (though without
having projections in mind). However, the focus of this work is di�erent: Instead of looking for
a �xed sampling set, an adaptive strategy is presented, which in most cases uses signi�cantly
less samples.

2. One of the important advantages of this method is that no matching of di�erent projections is
required. They are matched automatically, as the second component of the frequencies occur
in the coe�cient of the �rst component. Nonetheless, it is necessary to match projections on
parallel lines. Indeed when we use the induction hypothesis, we implicitly make the assumption
that we can match correctly the frequencies of f(n, ·) and f(m, ·) . While we just have to match
equal numbers in the noise-free case, if we only have perturbed frequencies this might cause
problems. In the next section, we are able to overcome these problems. The matching is one of
the main disadvantages of taking scattered lines, but also of direct multivariate version of the
matrix pencil method [44]. In other multivariate methods, this matching comes with the cost of
having to diagonalize certain matrices simultaneously. We discuss this approach later in more
detail.

3. We do not state computational cost, as we give an e�cient algorithm later on.
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4. In [26], Iske and the author considered a slightly smaller sampling set. We refrained here from
this small gain, as we give a signi�cantly (in fact optimal) smaller sampling set next.

We turn now to minimal sampling sets. To this end, a little bit of preparation is necessary.
It is well known that whenever N ≥M and y1, . . . , yM ∈ [0, 1) are mutually distinct, the vectors

vN (yj) =
(
e2πiyjk

)
k=0,...,N−1

are linearly independent. Indeed, the Vandermonde matrix with columns vN (yj) has full rank. We
prove an analog property for multivariate Vandermonde vectors.

De�nition 3.22. We de�ne

ΓdN =

(n1, . . . , nd) ∈ Nd0 :

d∏
j=1

(nj + 1) ≤ N

 ,

which is the non-negative part of the hyperbolic cross. Further, for y ∈ [0, 1)d, we let

vΓdN
(y) = vN (y) =

(
e2πiy·k)

k∈ΓN
.

Later, we use vG(y) = (e2πiy·n)n∈G ∈ CG for arbitrary, �nite G ⊂ Zd.

Now we prove linearly independence of M Vandermonde vectors vΓdM
. This has been proved by

Sauer in [85], though our proof here di�ers signi�cantly.

Lemma 3.23. Let Y ⊂ [0, 1)d be a �nite set, |Y | = M . Then for N ≥M , the vectors vN (y), y ∈ Y
are linearly independent.

Proof. We use induction over d. The case d = 1 is clear. Assume we have cy ∈ C such that∑
y∈Y

cyvN (y) = 0.

Then we have that ∑
y∈Y

cye
2πiy·k = 0, ∀k ∈ ΓdN . (3.19)

Let Pd−1 : Cd → Cd−1 be the projection on the last d− 1. We can rewrite (3.19) as

∑
y∈Pd−1Y

 ∑
y1:(y1,y)∈Y

c(y1,y)e
2πiy1k1

 e2πiy·k = 0, ∀(k1, k) ∈ ΓdN .

As (0, k) ∈ ΓdN for all k ∈ Γd−1
N , we can apply the induction hypothesis and obtain that∑

y1:(y1,y)∈Y

c(y1,y) = 0, ∀y ∈ Pd−1Y. (3.20)

Thus, for all y ∈ Pd−1Y with P−1
d−1{y}∩Y = {y1}, we know that c(y1,y) = 0 and hence we can assume

that no such y ∈ Pd−1Y exist (by possibly reducing M).
But this implies that |P−1

d−1{y} ∩ Y | ≥ 2 for all y ∈ Y and hence that |Pd−1Y | ≤ bM2 c. Now we

can use that (1, k) ∈ ΓdN for all k ∈ Γd−1
bN2 c

and hence, by induction hypothesis once more, that

∑
y1:(y1,y)∈Y

c(y1,y)e
2πiy1 = 0, ∀y ∈ Pd−1Y. (3.21)

However, this implies (by (3.20), (3.21) and the case d = 1) that for all y ∈ Pd−1Y with

|P−1
d−1{y} ∩ Y | ≤ 2
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the coe�cients vanish. Therefore, we may assume that |P−1
d−1{y} ∩ Y | ≥ 3. Repeating this argument

gives that all cy have to be zero, (using (r, k) ∈ ΓdN for all k ∈ Γd−1
bNr c

and r ∈ N>0).

This proof works for more general frequency vectors in [0, 1)d + iRd as well. With this in mind,
we comment quickly on the point of view in [85]. Consider the space of polynomials

ΠΓdM
= span{zn = zn1

1 . . . zndd : n ∈ ΓdM}.

Clearly, Lemma 3.23 implies that for any X ⊂ Rd + i[0, 1)d with |X| ≤M and any c ∈ CX there is a
polynomial p ∈ ΠΓdM

with p(x) = cx for all x ∈ X. Indeed, the interpolation matrix has full rank and

therefore is surjective. Of course it cannot be injective as |ΓdM | > M for d > 1. This does not come
as a surprise, as having a unique interpolant as well would contradict the Mairhuber-Curtis theorem,
see for example [97]. The set ΓdM is in certain ways an optimal choice among all G ⊂ Nd0 with this
universal interpolation property, see [85] for details.

Furthermore, we remark that this improves a lemma in [54], where full rank of Vandermonde
matrices on a full grid [0, N ]d ∩ Zd were proved. In [54], this result is then used to give recovery
guarantees for a multivariate MUSIC algorithm, which can be improved using Lemma 3.23. We
return to this later.

Theorem 3.24. Let f ∈ SdM be an exponential sum. Further, let

Γ̃dM :=

n ∈ Nd0 :

d∏
j=1

⌈
nj + 1

2

⌉
≤M

 .

Then f is uniquely determined by (f(k))k∈Γ̃dM
and Y f , as well as the coe�cients, can be recovered

using univariate methods alone.

Proof. First, we establish uniqueness. Clearly, Γd2M ⊂ Γ̃dM . Assume that f, g ∈ SdM are equal on Γd2M .
We have that

(f(k)− g(k))k∈Γd2M
=
∑
y∈Y f

cfyv2M (y)−
∑
y∈Y g

cgyv2M (y)

and as |Y f ∪ Y g| ≤ 2M the preceding lemma gives f = g.

To recover f , we give a strategy which at the end proposes a �nite number of candidates. We then
evaluate all of them on Γd2M . f will always be one of the candidates and can hence, by the �rst part
of this proof, be identi�ed uniquely. Furthermore, we use an induction on d, where the case d = 1
follows trivially.

To this end, we use the following property, relating Γ̃dM to Γ̃d−1
M :

(2k1 − 1, k) ∈ Γ̃dM ⇔ k ∈ Γ̃d−1⌊
M
k1

⌋ ∀k1 ∈ N>0, k ∈ Nd−1
0 .

The general idea is similar to the preceding lemma. We write f as

f(k1, k) =
∑

Pd−1Y f

 ∑
y1:(y1,y)∈Y f

c(y1,y)e
2πiy1k1

 e2πik·y.

Now we note that if k1 = 1 we have (2(k1 − 1), k), (2k1 − 1, k) ∈ Γ̃dM for all k ∈ Γ̃d−1
M and hence, by

induction hypothesis, we are able to recover all y ∈ Pd−1Y
f for which the two coe�cients ∑

y1:(y1,y)∈Y f
c(y1,y)e

2πiy1n1

 , n1 = 0, 1

do not vanish simultaneously. Assume for the moment that we knew for which y ∈ Pd−1Y
f only one

y1 with (y1, y) ∈ Y f exists (and collect them in Y 1), we could calculate c(y1,y) for all such y and then
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consider

f (R)(x1, x) = f(x1, x)−
∑
y∈Y 1

c(y1,y)e
2πi(x1y1+x·y).

Note that we know f (R)|Γ̃dM . Further, f (R) has the property that for all y ∈ Pd−1Y
f(R)

, there are at

least two y1, ỹ1 with (y1, y), (ỹ1, y) ∈ Y f(R)

. This on the other hand implies that |Pd−1Y
f(R) | ≤ bM2 c

and hence using the induction hypothesis, we are able to determine the coe�cients of all y ∈ Pd−1Y
f

for which  ∑
y1:(y1,y)∈Y f

c(y1,y)e
2πiy1n1

 , n1 = 0, 1, 2, 3

do not vanish simultaneously; indeed (2(k1 − 1), k), (2k1 − 1, k) ∈ Γ̃dM for all k ∈ Γ̃d−1
bM2 c

and k1 = 1, 2.

But as these are again exponential sums, we are able to determine y1 and c(y1,y) for all y where only

at most two y1, ỹ1 with (y1, y) ∈ Y f(R)

exist. Again assuming we somehow knew which y ∈ Pd−1Y
f(R)

where of this kind, we could again subtract them, obtain a new exponential sum and iterating this
will give (after at most M steps) f .

But we do not know the set Y 1 beforehand (nor the similarly formed sets in the subsequent steps).
On the other hand, we can of course take any guess for Y 1 and proceed. As for each guess only a �nite
number of possibilities exist, and only M steps are necessary, we are able to create a �nite number of
candidates. As described earlier, we are done.

Remarks. 1. This procedure is so outrageously ine�cient, that the author does not try to give the
precise computational complexity. Note however, that if |Y 1| = M/2, we have to build (at least)
one candidate function for each subset of Y 1. This alone gives O

(
2M/2

)
. Therefore, Theorem

3.24 should be considered as being of theoretical interest only.

2. As Γd2M ⊂ Γ̃dM ⊂ Γd2dM and |ΓdM | ≤ M logd−1(M) (see Lemma 1.4, p. 71 in [60]), only

Od(M logd−1(M)) sampling points are needed. This improves a result by Sauer [85], which
gives a set G with |G| ≤ (d+ 1)M2 log2d−2(M). However, Sauer's method, as well as multivari-
ate ESPRIT-type methods are of polynomial runtime, as we will soon see.

3. In the uniqueness part, we actually proved that

· |Γd2M : SdM → CΓd2M , f 7→ f |Γd2M

is one-to-one. Thus, reconstructing f from f |Γd2M is possible. But the only reconstruction scheme

is searching for f in SdM . An algorithm that only needs �nite time is unknown.

4. While Theorem 3.24 includes Theorem 3.21 as a special case, the procedure given in the proof
of Theorem 3.21 is more practical and the foundation of an algorithm presented later on.

Now we consider once again the generic situation, where only 2dM samples are required - this is
closer to the setting of Cuyt and Lee in [22]. In fact, this theorem can be easily and directly deduced
from their considerations. We give a proof more in line with the rest of this chapter.

Theorem 3.25. If we sample a f ∈ SdM on

G =

d⋃
k=1

{(n, δ2,k, . . . , δd,k) : −M < n ≤M} ,

we are generically able to reconstruct it using univariate methods alone.

Proof. In the generic situation, all frequencies of f ∈ SdM have a di�erent �rst coordinate. We apply
a univariate method to f(k, 0, . . . , 0), k = −M + 1, . . . ,M . As

f(x, 0, . . . , 0) =
∑
y∈Y f

cye
2πixy1
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this gives us the �rst coordinate of all frequencies as well as their coe�cients. Applying a univariate
method to f(k, 1, 0, . . . , 0). k = −M + 1, . . . ,M , we see that

f(x, 1, 0, . . . , 0) =
∑
y∈Y f

cye
2πiy2e2πixy1

and hence we can easily calculate the second component. Analogously, we identify all other components
of the frequencies of f .

Remark. Related results can be found in [91], extended in [48]. There, sampling sets of the form
G = [0, I1] × · · · × [0, Id] ∩ Zd are considered and various criteria under which a generic f ∈ SdM is
uniquely determined by f |G are given.

Simultaneous Frequency Estimation

Now we give an e�cient algorithm to estimate the frequencies of a multivariate sum f ∈ SdM using
samples taken on parallel lines. Recall that in the strategy suggested by Theorem 3.21 we consider
lines

`m = {(x,m) : x ∈ R},

where m ∈ Zd−1. Then we wish to estimate the set

e1 · Y f =
⋃

m∈Gd−1
N

Y f |`m .

We let fm = f |`m ∈ S1
M . Note that we expect to �nd the same frequencies in Y fm and Y fn for most

m,n ∈ Zd−1.

De�nition 3.26. For f1, . . . , fL ∈ S1
M and N ∈ N we de�ne their joint signal space of window size

N by

Sig(f1, . . . , fL, N) := Sig(f1, N) + · · ·+ Sig(fL, N).

We can immediately transfer the following results from Lemma 3.3.

Lemma 3.27. For f1, . . . , fL ∈ S1
M and N ∈ N with N ≥M let

Y =

L⋃
j=1

Y fj .

Then the following holds true:

(1) The dimension of Sig(f1, . . . , fL, N) is equal to |Y | and a basis is given by (vN (y))y∈Y .

(2) A spanning set is given by

sfkN (j) k = 1, . . . , L, j = j0, . . . , j0 +M − 1,

where j0 ∈ Z can be arbitrarily chosen.

Proof. Both claims are direct consequences of Lemma 3.3.

Now it is quite clear, that the idea of ESPRIT still applies. Indeed, ESPRIT can be interpreted
as estimating the parameters y1, . . . , yM of a space spanned by vN (y1), . . . , vN (yM ) when N ≥M + 1
from any spanning set of this space.

We summarize the proposed algorithm, which uses samples of an unknown f ∈ SdM on the set
GdN = {n ∈ Zd : ‖n‖∞ ≤ N} to determine Y f .

Algorithm 3.28. Input: N ∈ N with N ≥M , a tolerance tol ≥ 0 and f(k), k ∈ GN , where f ∈ SdM
is unknown. Let K = (2N + 1)d−1.
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• If d = 1, apply ESPRIT. Otherwise, �x any enumeration j1, . . . , jK of Gd−1
N , let fjk(x) = f(x, jk)

and build the matrix

H =
[
H
fj1
N+1,N+1(−N) . . . H

fjK
N+1,N+1(−N)

]
.

• Perform a incomplete SVD of H to determine its numerical rank, i.e., the numberM1 of singular
values larger than tol. Store the left singular vectors u1, . . . , uM1 associated with the M1 largest
singular values of H in a matrix U = [u1 . . . uM1

].

• Form U (1) and U (2) by discarding the last resp. �rst row of U . Solve

U (1)W = U (2)

in the (total) least square sense.

• Determine the eigenvalues e2πiyj , j = 1, . . . ,M1 of W . Y1 := {yj : j = 1, . . . ,M1} is the
estimate of e1 · Y f .

• For each y ∈ Y1, determine the coe�cients cy(jk) of y in the exponential sums fjk , k = 1, . . . ,K.
Apply this algorithm to cy(jk), jk ∈ Gd−1

N (which are samples of an exponential sum in Sd−1
M )

and save the result in Yy.

Output: {(y, z) ∈ [0, 1)× [0, 1)d−1 : y ∈ Y1, z ∈ Yy}.

Remarks. 1. In the case of noisy data, the algorithm is applied to H̃, storing the noisy samples.
It is then crucial that tol is chosen such that the rank, and hence M is correctly determined.
Otherwise, the algorithm will not give any reasonable results. Unfortunately, this holds true
for the subsequent applications to cy(·). But the coe�cients are more prone to perturbation, as
they arise from solving a perturbed Vandermonde system.

2. It is possible to use a di�erent block size in H, i.e., using H
fjk
L1,L2

blocks, as long as L1 ≥M + 1
and L2 ≥ M , exactly as in ESPRIT. To use all samples, one should choose L1, L2 such that
L1 + L2 = 2N + 2. Di�erent choices result in slight performance di�erences.

3. The largest computational cost is due to the (incomplete) SVD ofH, which costsOd(Nd−1NN2) =
Od(Nd+2). Solving for W and determining its eigenvalues is of lower order (as W ∈ CM1×M1).
When determining the coe�cients, it is crucial to note that they arise all from the same system
matrix. Indeed, �xing an enumeration y1, . . . , yM1

of Y1, we see that c(jk) = (cy1(jk)), . . . , cyM1
(jk))T

is given by 
e−N2πiy1 . . . e−N2πiyM1

e−(N−1)2πiy1 . . . e−(N−1)2πiyM1

...
. . .

...
eN2πiy1 . . . eN2πiyM1

 c(jk) =

fjk(−N)
...

fjk(N)

 .

Thus, one can determine a QR factorization of the matrix (which is just a shifted Vandermonde
matrix), resulting in O(N3 +Nd−1N2) operations. Furthermore, it is clear that when we apply
the algorithm in dimension d̃ < d at most M times (as each application has to give at least one
frequency). Thus, overall, we have a complexity of at most Od(Nd+2).

4. When not enough samples to form fj , j ∈ Gd−1
N are available, one can still use this algorithm,

though even in absence of noise a recovery of Y f cannot be guaranteed. One can for example
use a sampling set as suggested in Theorem 3.25 (where fj , j = 0, e1, . . . , ed are available).

5. Numerical examples are given in [26].

Corollary 3.29. For all f ∈ SdM Algorithm 3.28 recovers Y f , if one chooses tol = 0.

Proof. We use induction over d. The case d = 1 is clear, as we just apply ESPRIT. Let P1 : Rd →
R, P1x = x1. Then for (x1, x̃) ∈ R× Rd−1 we have that

f(x1, x̃) =
∑

(y1,ỹ)∈Y f
c(y1,ỹ)e

2πiy1x1e2πix̃·ỹ =
∑

y1∈P1Y f

 ∑
ỹ∈P−1

1 {y1}

c(y1,ỹ)e
2πiỹ·x̃

 e2πix1y1 ,
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which is a univariate exponential sum in x1. As

cy1(x̃) =
∑

ỹ∈P−1
1 {y1}

c(y1,ỹ)e
2πiỹ·x̃

is in Sd−1
M , it cannot vanish on Gd−1

N due to Theorem 3.21 and hence each y1 ∈ P1Y
f has to appear

with a non-zero coe�cient in at least one f(·, jk). Lemma 3.27 implies that Sig(fj1 , . . . , fjK , N) is
the range of H and that (vN (y) : y ∈ e1 · Y f = P1Y

f ) form a basis. Further, M1 = |e1 · Y f | and
u1, . . . , uM1

is a basis of Sig(fj1 , . . . , fjK , N) as well. U (1)W = U (2) gives, just as explained around
(3.10), a matrix W with eigenvalues e2πiy, y ∈ e1 · Y f .

Using that this algorithm works in dimension d − 1 by assumption, that each frequency ỹ of cy1
gives an (y1, ỹ) ∈ Y f and that all y ∈ Y f are of this form, the claim is clear.

3.3 Other Multivariate Methods

Instead of reducing the problem to a set of one dimensional ones, it is possible to directly transfer
Prony's method, MUSIC, ESPRIT and the matrix pencil method to the multivariate setting. In this
section we discuss these ideas. We start by de�ning a multivariate, windowed signal and the signal
space.

De�nition 3.30. Let f ∈ SdM and G ⊂ Zd be given. We de�ne the G-windowed signal of f at j ∈ Zd
by

sfG(j) = (f(n+ j))n∈G.

Further, we call

Sig(f,G) = spanj∈Zd
{
sfG(j)

}
the signal space of f (with window G).

In Lemma 3.3 , we used the linear independence of the Vandermonde vectors to derive several
useful properties of the signal space. Similarly, we can use Lemma 3.23 to derive properties of the
multivariate signal space, at least if ΓdM ⊂ G. To give concise statements, it is useful to de�ne a notion
of matrices, which do not �x an enumeration of a �nite set.

De�nition 3.31. For �nite sets X,Y , we de�ne a X × Y matrix A ∈ CX×Y as

A =
(
ax,y : x ∈ X, y ∈ Y

)
,

where ax,y ∈ C for all (x, y) ∈ X×Y . Of course, such a matrix can be multiplied with a vector v ∈ CY
just like a normal matrix:

Av =

∑
y∈Y

ax,yvy


x∈X

∈ CX .

Further, we de�ne AT = (ax,y)y∈Y,x∈X ∈ CY×X and AH = (ax,y)y∈Y,x∈X ∈ CY×X .

Recall the de�nition of multivariate Vandermonde matrices, which are given by

VG(Y ) =
(
e2πin·y)

n∈G,y∈Y =
[
vG(y) : y ∈ Y

]
∈ CG×Y ,

where G ⊂ Zd and Y ⊂ [0, 1)d are �nite subsets. Further, we de�ne for any j ∈ Zd the diagonal
matrix

DY (j) = diag
(
e2πij·y : y ∈ Y

)
∈ CY×Y .

Lemma 3.32. Let f ∈ SdM with frequencies Y f , coe�cients c ∈ CY f and order M be given. Let
j ∈ Zd. Then the following statements hold true:
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(1) We have the identity

sfG(j) = VG(Y f )DY f (j)c.

(2) If ΓdM ⊂ G, a spanning set of Sig(f,G) is given by

(sfG(j + k))k∈ΓdM

and

dim Sig(f,G) = M.

(3) If ΓdM ⊂ G, a basis of Sig(f,N) is given by(
vG(y)

)
y∈Y f .

Proof. The �rst identity follows easily (and just like in the one dimensional case) from a direct calcu-
lation:

sfG(j) =
∑
y∈Y f

cy(e2πi(j+n)·y)n∈G =
∑
y∈Y f

cye
2πij·yvG(y) = VG(Y f )DY f (j)c.

To prove that Sig(f,G) is spanned by sfG(j + k), k ∈ ΓdM and has dimension M , it clearly su�ces
to prove that DY f (k)c, k ∈ ΓdM span a space of dimension M , due to the injectivity of VG(Y f ) (a
consequence of Lemma 3.23 and ΓdM ⊂ G). But[

DY f (k)c : k ∈ ΓdM
]

= diag(c)
[
vΓdM

(y)T : y ∈ Y f
]T

(3.22)

and Lemma 3.23 gives that the transposed Vandermonde matrix on the right-hand side has rank M ,
which proves the claim.

Now (1) directly implies that Sig(f,G) ⊂ span(vG(y) : y ∈ Y f ) and due to Lemma 3.23 the span
has dimension M , hence (2) gives the claim.

3.3.1 Multivariate Prony-type Methods

Now, proceeding similarly to the section on one dimensional methods, we can use these properties to
describe the di�erent approaches to the multivariate frequency estimation problem. We start with
Prony's method. Instead of one shift T , we now have one shift for each dimension.

De�nition 3.33. For k = 1, . . . , d, an f ∈ SdM and a �nite set G ⊂ Zd with ΓdM ⊂ G, we de�ne the
linear map Tk as the unique extension of

sfG(j) 7→ sfG(j + ek)

to Sig(f,G). Tk is called k-shift operator. The extension of Tk to CG by zero on the orthogonal
complement of the signal space is again denoted by Tk.

Again, it is straight forward to check that the eigenvalues of Tk give the frequencies of f . The
additional di�culty is that the eigenvalues of Tk are the projection of the frequencies of f onto the
subspace ek · Cd. To match them, we use that T1, . . . , Td commute and hence have a common basis
of eigenvectors. These eigenvectors induce a matching - one eigenvector corresponds to d eigenvalues
zj = e2πiyj of Tj and gives rise to the frequency vector (y1, . . . , yd).

Lemma 3.34. For f ∈ SdM , a set G ⊂ Zd with ΓdM ⊂ G and the k-shift operator Tk de�ned above,
the following statements hold true:

(1) For any left inverse L of VG(Y f ) we have that

Tk = VG(Y f )DY f (ek)L,

in particular Tk is well-de�ned.
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(2) T1, . . . , Td commute.

(3) Tk has eigenvalues e2πiy with y ∈ ek · Y f . For one such y let Y = {ỹ ∈ Y f : y = ek · ỹ}. Then
the geometric (and algebraic) multiplicity of e2πiy is given by |Y | and the eigenvectors are given
by vG(ỹ), ỹ ∈ Y .

Proof. The �rst claim is clear due to Lemma 3.32 (1) and the fact that DY f (ek)DY f (j) = DY f (ek+j),
the second claim is obvious. Finally, for any ỹ ∈ Y we have that

TkvG(ỹ) = VG(Y f )DY f (ek)LvG(ỹ) = VG(Y f )DY f (ek)eỹ = e2πiỹ·ekVG(Y f )eỹ = e2πiyvG(ỹ).

This gives M linearly independent eigenvectors, which is the dimension of Sig(f,G).

Now all we have to do is to �nd a basis of Sig(f,G), to represent Tj , j = 1, . . . , d in this basis and
to calculate a joint eigenbasis of the eigenspaces of Tj . Then, as described above, we have estimated
Y f . We are thus left with a little bit of linear algebra.

But before we describe the necessary linear algebra, we count the minimal number of sam-
pling points we need. First of all we choose G = ΓdM (which is the minimal choice). By Lemma

3.32, sfG(k), k ∈ ΓdM form a spanning set of Sig(f,G). Therefore, Tj is uniquely determined by

Tjs
f

ΓdM
(k), k ∈ ΓdM . But we also need to know Tjs

f

ΓdM
(k) = sf

ΓdM
(k + ej). All combined, we need to

know f on ΓdM + (ΓdM + ej) to determine Tj and forming the union over all j = 1, . . . , d gives precisely
the sampling set described by Sauer [85].

De�nition 3.35. We de�ne the corona of a set G ⊂ Zd by

dGe = G ∪
d⋃
j=1

G+ ej .

We immediately see that we need samples of f on ΓdM + dΓdMe to estimate Tj , j = 1, . . . , d.
We start by estimating Sig(f,G). Assume that we know N ∈ N>0, an upper bound of M , the

unknown order of f . We then collect a spanning set of the signal space and perform a singular value
decomposition. Unfortunately, we have to leave the convenient notation of �xing no enumeration of
G and dΓdNe, as the SVD always �xes an enumeration. Let[

sfG(n) : n ∈ ΓdN
]

=: Hf

G,ΓdN
= UΣWH .

We ignore the slight notational inaccuracy that the left-hand side is a matrix in CG×ΓdN , the right-hand

side in C|G|×|ΓdN |. Estimating the rank of Hf

G,ΓdN
by thresholding the singular values at a tol > 0, we

obtain M . The �rst M columns of U , denoted by u1, . . . , uM ∈ C|G| then form an orthogonal basis of
Sig(f,G). Note that this estimate can also be applied when we only have noisy measurements.

But how to choose tol? As in the univariate case, Hf
G1,G2

can be factorized in Vandermonde
matrices and a diagonal matrix, which then gives rise to estimates of σM .

Proposition 3.36. Let f ∈ SdM with frequencies Y f , coe�cients c ∈ CY f and order M be given.
Further, let G1, G2 ⊂ Zd be two �nite sets. Then

Hf
G1,G2

= VG1(Y f ) diag
(
cy : y ∈ Y f

)
VG2(Y f )T .

Further, if d = 2 and Gj = [−Nj , Nj ]2 ∩ Z2, j = 1, 2 and f ∈ S2(q) with q ≥ Kj/(Nj + 1), where

K1,K2, N1, N2 ∈ N>0, the smallest non-zero singular value of Hf
G1,G2

can be estimated by

σ2
min ≥ c2minσ

2
min(VG1

(Y f ))σ2
min(VG2

(Y f )) & (K1K2N1N2)−2,

where cmin is a lower bound to the modulus of the coe�cients of f . The precise constants are given
in Proposition 2.29.

Proof. The factorization can be derived exactly as in the univariate case, using Lemma 3.32 and (3.22)
(which is true for arbitrary �nite sets):[

sfG(n) : n ∈ G2

]
=
[
VG1

(Y f )DY f (n)c : n ∈ G2

]
= VG1

(Y f ) diag
(
cy : y ∈ Y f

)
VG2

(Y f )T .
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The lower bound for σ2 follows directly from Proposition 2.29.

Remarks. 1. The factorization is well-known in the literature, see for example [85].

2. It is possible to obtain lower bounds for higher dimensions as well, if one relies on Montgomery's
construction, see [18] Corollary 22. For �xed q, this results in the following estimate:

σ2
min &q c

2
min

(
(2N1)d − (2N1)d−1 +O(Nd−2

1 )
) (

(2N2)d − (2N2)d−1 +O(Nd−2
2 )

)
.

3. Unfortunately, such estimates are unknown for sampling sets of the form G1 = ΓdN , G2 = dΓdNe.

4. The discussion after Theorem 3.7 carries over to the multivariate case with only slight adjust-
ments. Indeed, if we are given f̃(n) = f(n) + εn and we only know that |εn| ≤ η, we have to
choose tol larger than

‖E‖2 ≤ η
√
|G1||G2|,

where E = {εn+k : n ∈ G1, k ∈ G2} is the matrix containing the noise, to recover ord f = M

from Hf
G1,G2

. However, that is only guaranteed to work if σM (Hf
G1,G2

) ≥ 2‖E‖2. As in the
univariate case, more sophisticated estimates, using speci�c noise models and random matrix
theory are currently unknown.

Next we consider the reduced singular value decomposition of Hf

G,ΓdN
, which for readability is again

denoted by UΣWH , but now Σ ∈ CM×M is a diagonal matrix with positive, decreasing diagonal

entries, U ∈ C|G|×M and W ∈ CM×|ΓdN | with orthogonal columns.
Now we wish to obtain a matrix representation of Tj in the basis u1, . . . , uM . This results in

Mj := UHTjU = UHTjH
f

G,ΓdN
WΣ−1 = UHHf

G,ΓdN+ej
WΣ−1 ∈ CM×M . (3.23)

We summarize the algorithm.

Algorithm 3.37 (Multivariate Prony's Method). Input: f(k), k ∈ G+dΓdNe of an unknown f ∈ SdM ,
N ≥M (i.e., an upper bound of the order of f), G ⊃ ΓdM and tol ≥ 0.

• Calculate an SVD of Hf

G,ΓdN
, let M be the number of singular values larger than tol. Save the

reduced SVD Hf

G,ΓdN
= UΣWH .

• Form the matrices M1, . . . ,Md as in (3.23).

• Calculate a basis of joint eigenvectors v1, . . . , vM of Mj and denote the eigenvalue of Mj and vk

by e2πiykj .

Output: The frequency vectors (yk1 , . . . , y
k
d), k = 1, . . . ,M .

How to calculate a basis of eigenvectors is well-known, see for example [33]. To obtain a joint
eigenbasis, we usually do not need to calculate an eigenvalue decomposition of all Mj . Indeed, as
the eigenspaces of one Mj are invariant under all other Mk, we simply start with an eigenspace
decomposition of M1. All one dimensional eigenspaces are then also eigenspaces of all other matrices.
For all higher dimensional eigenspaces, we proceed as follows: Let E be such an eigenspace of M1.
We then perform an eigenspace decomposition of M2|E : E → E. For all eigenspaces of M2 in E with
a dimension larger than one we continue by decomposing M3 on each of them et cetera. See [63] and
[86], where this idea is made precise.

An alternative approach is to simply form a linear combination M of all matrices Mj . Clearly,
such a linear combination has still the same eigenvector basis. The eigenvalues of M are then the
corresponding linear combination of the eigenvalues of Mj . For all but a �nite number of linear
combinations, the eigenvalues of M will only have one dimensional eigenspaces (an easy consequence
of Lemma 3.34) and we are done. This strategy has been pursued in [81, 95]. Later, in our numerical
experiments, we will use it as well.

Remarks. 1. It is easily possible to use a larger sampling set, for example G + dG2e. As long as
ΓdM ⊂ G ∩G2 the method will work.
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2. If one uses noiseless samples and chooses tol = 0, the preceding discussion shows that the
algorithm will recover Y f .

3. Concerning the computational complexity, calculating the SVD is the most costly step, namely
O(|G||ΓdN |2). Using the minimal set G = ΓdM , this results in Od(N3), up to logarithmic terms.

4. In the case G = [−N1, N1]d ∩Zd and G2 = [−N2, N2]d ∩Zd Algorithm 3.37 is actually the same
as the algorithm proposed in [40]. However, not only is the number of samples increased to
Od(Nd), the computational complexity increases drastically to Od(N3d).

This variation of Prony's method is closely related to the method introduced by Sauer in [84].
Indeed, we claim that the matrices Mj , de�ned in (3.23) are similar to the transposed multiplication
tables, as given in [84], Theorem 5. We now give a short reasoning for this claim.

To this end, we note that each Tj can be seen as a di�erence equation, as it gives rise to an equation
of the form ∑

n∈G
t(j)m,nf(n+ k) = f(m+ k + ej) for all m ∈ G and all k ∈ Zd

with t
(j)
m,n ∈ C. In the one dimensional case, we were able to identify these coe�cients with a polyno-

mial, with roots equal to the frequencies. To see whether this is still possible, we consider

Pm,j(z) = zm+ej −
∑
n∈G

t(j)m,nz
n ∈ ΠG∪{m+ej}.

Now we see that

0 = f(m+ k + ej)−
∑
n∈G

t(j)m,nf(n+ k) =
∑
y∈Y f

cye
2πiy·k

(
e2πiy·(m+ej) −

∑
n∈G

t(j)m,ne
2πiy·n

)
=
∑
y∈Y f

cye
2πiy·kPm,j

(
e2πiy

)
.

As this equation holds for all k ∈ Zd, we conclude that Pm,j
(
e2πiy

)
= 0 for all y ∈ Y f . Further, note

that for all m+ ej /∈ G, clearly Pm,j 6= 0 and all these Pm,j are linearly independent.

Denote the vanishing ideal of Y f in the polynomial ring Π in d variables by

IY f =
{
p ∈ Π : p(y) = 0 for all y ∈ Y f

}
.

Further, we denote by [p] the equivalence class of p ∈ Π modulo IY f . We just proved that Pm,j ∈ IY f ,
i.e., [Pm,j ] = 0. If we identify CG with ΠG by

c ∈ CG ↔
∑
k∈G

ckz
k ∈ ΠG,

we can de�ne

T̃j : ΠG → Π/IY f , p 7→ [TTj p].

Next we claim that IY f ∩ΠG is in the kernel of T̃j . To prove this, we choose an arbitrary polynomial
p = (pn)n∈G ∈ IY f and calculate (using [Pm,j ] = 0)

[TTj p] =

[∑
n∈G

(∑
m∈G

t(j)m,npm

)
zn

]
=

[∑
m∈G

pm

(
Pm,j(z) +

∑
n∈G

t(j)m,nz
n

)]

=

[∑
m∈G

zjpmz
m

]
= [zjp(z)] = 0.

For notational convenience, we continue to use T̃j for the mapping ΠG/ (IY f ∩ΠG)→ Π/IY f induced

by T̃j .
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Furthermore, by interpolation on Y f , one can construct a mapping

π : Π→ ΠG/ (IY f ∩ΠG) .

Note that while interpolating on Y f is possible, the interpolant is not uniquely de�ned (see discussion
after Lemma 3.23). However, it is unique modulo IY f . π contains IY f in its kernel, as it is constructed
by interpolation.

Hence, we obtain a mapping (which is a linear mapping between vector spaces)

T̃j ◦ π : Π/IY f → Π/IY f .

We claim that this mapping is actually equal to [p] 7→ [zjp], the multiplication with the j-th variable.
It su�ces to check this on [zm], m ∈ ΓdM , which is a spanning set. This, however, can be veri�ed by
a quick calculation:

T̃j ◦ π([zm]) = T̃j([z
m]) =

[∑
n∈G

t(j)m,nz
n

]
=

[∑
n∈G

t(j)m,nz
n + Pm,j

]
= [zm+ej ] = [zjz

m],

where we used that [Pm,j ] = 0. It is interesting to note that in the one dimensional case, the shift
operator T can be represented by the companion matrix (which represents [p] 7→ [zp] in Π/IY f ).
Analogously, we just showed that TTj represents multiplication by the jth variable. A matrix rep-

resentation of T̃j ◦ π can therefore be interpreted as a higher dimensional analog of the companion
matrix. Finally, Mj can be seen as a matrix representing Tj in a suitable orthonormal basis. We
summarize:

Proposition 3.38. The matrices MT
j , j = 1, . . . , d as given in (3.23) represent the linear mappings

Π/IY f → Π/IY f

[p] 7→ [zjp].

While this theorem shows that Algorithm 3.37 and the method proposed by Sauer are closely
related, there are some important di�erences. Most importantly, Algorithm 3.37 starts with an es-
timate of the signal space, using as many samples as possible. Then projecting onto the estimated
signal space (hopefully) clears most of the noise from the data. This gives a rather stable algo-
rithm. On the other hand, the method introduced by Sauer uses a nested set of sampling points
G + A0 ⊂ G + A1 ⊂ · · · ⊂ G + dΓdMe and terminates at step k if G + Ak su�ces to recover f . It is
reasonable to assume that this leads to a method more prone to noise, as not always all samples are
used. However, as many f ∈ SdM can be estimated with fewer samples (in particular if the bound N
of the order is crude), only using as many samples as necessary has computational advantages.

Another slightly di�erent perspective is given in [40] by Harmouch, Khalil and Mourrain. Propo-
sition 3.38 is closely related to Proposition 4.1 in [40], which covers only the case G = [−N1, N1]d∩Zd
and G2 = [−N2, N2]d ∩ Zd, though a more general problem. They translate the problem to a poly-
nomial setting (along the lines of the sketch given above) and then deduce Algorithm 3.37 for this
case.

Finally, we remark that the �rst result rephrasing the multivariate Prony problem as �nding the
joint zeros of a �nite number of polynomials is given by Kunis et al. in [53]. However, no method to
actually compute these zeros is given. In our version, we circumvent this formulation entirely.

3.3.2 Multivariate MUSIC and ESPRIT-type Algorithms

Now we give a variation of MUSIC in arbitrary dimensions. Our method is more or less equivalent
to the method presented in [54]. However, we are able to reduce the number of necessary samples
signi�cantly, from Od(Md) to Od(M2) up to logarithmic factors. This brings it on a par with the
preceding multivariate Prony.

It is actually quite clear how the univariate MUSIC can be extended to the multivariate case. For
any G ⊃ ΓdM+1, we know that

∀y ∈ [0, 1)d : vG(y) ∈ Sig(f,G) ⇔ y ∈ Y f
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by Lemma 3.23. Indeed, we start again by calculating an orthonormal basis of Sig(f,G) by employing
once again the tool of our choice, the SVD. Let

Hf

G,ΓdN
= UΣWH

and U = [U1U2], where U1 are the left singular vectors associated with the non-zero singular values
and U2 the other ones. We modify the MUSIC pseudospectrum:

R(y) =
1

‖U2vG(y)‖22
.

Clearly, R(y) has peaks exactly at y ∈ Y f . We summarize the algorithm.

Algorithm 3.39 (Multivariate MUSIC). Input: Samples f(n+ k), n ∈ G, k ∈ ΓdN of an unknown
f ∈ SdM with N ≥M and G ⊃ ΓdN+1, tol ≥ 0.

• Form the matrix Hf

G,ΓdN
and perform a SVD. Estimate the rank of Hf

G,ΓdN
by counting the number

of singular values larger than tol. Let M̃ be this estimate.

• Form U2 from all left singular vectors associated with singular values smaller or equal to tol.

• Compute R(y) on [0, 1)d.

Output: The M̃ largest local maxima of R(y).

This is almost the exact algorithm presented by Liao in [54]. However, due to the theory developed
in this chapter the number of necessary samples is signi�cantly reduced for all dimensions larger than
two. Indeed, Liao uses samples of f taken on {n ∈ Nd0 : ‖n‖∞ ≤ 2N}, i.e., at least Od(Md) samples,
while we only need Od(M2) samples (again, up to logarithmic factors) when we choose the minimal
G = ΓdM+1.

Now we discuss a multivariate extension of the ESPRIT algorithm. Multivariate matrix pencil and
ESPRIT algorithms have been discussed since the early nineties, one of the �rst method introduced
is the Matrix Enhancement and Matrix Pencil method (MEMP) by Hua [44], where the pairing
procedure of the components is performed by a MUSIC-like criterion. Using a joint diagonalization
of two matrices, as in the Prony scheme given above, was then proposed in [95] and extended in [81].
Another possibility, an extension of the Unitary ESPRIT, is available if one wishes to �nd a joint
diagonalization of two real matrices M1,M2 by diagonalizing M1 + iM2. This has been proposed in
[39].

Most of these methods are given in the two dimensional case but can be extended to the multivariate
case quite easily. However, this usually results in sampling sets of the form [0, N ]d ∩Zd. One example
is [38], which includes additional references and applications. Recently, Andersson and Carlsson
stated ESPRIT in arbitrary dimensions on general grids in [2], building on their previous work [3]. In
their work, they exclude degenerate cases (basically assuming that the corresponding Vandermonde
matrices have full rank), which also makes the joint eigenspace decomposition trivial (as an eigenbasis
of one matrix is an eigenbasis for all matrices). However, combined with Lemma 3.23, their results
are equivalent to the ESPRIT algorithm we present next.

We give the basic idea of multivariate ESPRIT. Again, we can pro�t from our general results for
the multivariate signal space and reduce the necessary sampling set to be of order Od(M2) up to
logarithmic terms.

We start by echoing the rotation property of the Vandermonde basis in the higher dimensional set-
ting. While in the one dimensional case we simply removed the last and �rst row of the Vandermonde
matrix, we now select submatrices by considering (for j = 1, . . . , d)

E1 =
(
δx,y : x ∈ G, y ∈ dGe

)
∈ CG×dGe, E

(j)
2 =

(
δx+ej ,y : x ∈ G, y ∈ dGe

)
∈ CG×dGe.

With the diagonal matrices Dj = diag(e2πiy·ej , y ∈ Y f ) we obtain

E1VdGe(Y
f )Dj = E

(j)
2 VdGe(Y

f ). (3.24)

This again transfers to other bases of the signal space Sig(f, dGe). Indeed, if B = [b1, . . . , bM ] is
a matrix with columns bj ∈ CdGe forming a basis of the signal space, there is an invertible matrix
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S ∈ CM×M (now �xing an ordering of Y f ) such that

VdGe(Y
f ) = BS.

For this basis, equation (3.24) implies that

E1BSDjS
−1 = E

(j)
2 B.

As E1VdGe(Y
f ) = VG(Y f ) has rankM , provided that ΓdM ⊂ G, so has E1B and therefore we can solve

this equation for SDjS
−1. Clearly, for all j the matrices SDjS

−1 commute and are diagonalizable.
A joint eigenbasis is given by the columns s1, . . . , sM of S. As in the multivariate Prony algorithm,
such an eigenvector sj corresponds to the eigenvalues e2πiy·ej of the matrices SDjS

−1 and therefore
gives rise to a y ∈ Y f .

Algorithm 3.40 (Multivariate ESPRIT). Input: Samples f(n+k), n ∈ dGe, k ∈ ΓdN of an unknown
f ∈ SdM with N ≥M and G ⊃ ΓdN , tol ≥ 0.

• Form the matrix Hf

dGe,ΓdN
and perform a SVD. Estimate the rank of Hf

dGe,ΓdN
by counting the

number of singular values larger than tol. Let M̃ be this estimate.

• Form U from all left singular vectors associated with singular values larger than tol.

• For j = 1, . . . , d, solve

E1UNj = E
(j)
2 U

in the least (or total least) square sense.

• Calculate a basis of joint eigenvectors v1, . . . , vM̃ of Nj and denote the eigenvalue of Nj and vk

by e2πiykj .

Output: The frequency vectors (yk1 , . . . , y
k
d), k = 1, . . . , M̃ .

Remarks. 1. Similar to Prony and MUSIC, we only need Od(M2) samples (up to logarithmic fac-
tors), a signi�cant improvement to former ESPRIT-type methods, which used Od(Md) samples.

Furthermore, the same algorithm works if one uses Hf
dGe,G2

as long as ΓdM ⊂ G2.

2. The computational costs are again dominated by the singular value decomposition and of order
O(|G||ΓdN |2), i.e., at least Od(N3) (up to logarithmic factors).

3. Again, we use joint eigenvectors of commuting matrices to match the frequency components.

4. As in the one dimensional case, it is possible to derive a similar algorithm based on matrix
pencils. Due to the repetitive nature, we refrain from giving the details here.

5. Generically, |G| Vandermonde vectors of length |G| are linearly independent on CG. Therefore,
using ESPRIT on Hf

dGe,G2
with |G|, |G2| ≥M is expected to recover f . Even more, one actually

only has to have full rank of E1U , which is expected to hold generically when

M ≤ |(G+ e2) ∪ · · · ∪ (G+ ed)|.

Details can be found in [2].

There is a close relation to the multivariate Prony method and the multivariate ESPRIT algorithm.
Indeed, MT

j is similar to Nj (in the noise free case) if we choose G = ΓdN in both cases. Note that
Proposition 3.38 implies that Nj is actually similar to a multiplication table.

To give a few more details, recall that Hf

ΓdN ,Γ
d
N

= UΣWH is the reduced SVD and therefore

Mj = UHHf

ΓdN ,Γ
d
N+ej

WΣ−1UHU = UHHf

ΓN ,ΓdN+ej

(
Hf

ΓdN ,Γ
d
N

)†
U.
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On the other hand, we have

E1H
f

dΓdNe,ΓdN
= Hf

ΓdN ,Γ
d
N

,

E
(j)
2 Hf

dΓdNe,ΓdN
= Hf

ΓdN+ej ,ΓdN
.

Now given a reduced SVD Hf

dΓdNe,ΓdN
= Û Σ̂ŴH , we see that

E1Û Σ̂ŴHŴ Σ̂−1Nj = E
(j)
2 Û Σ̂ŴHŴ Σ̂−1

and therefore

Hf

ΓdN ,Γ
d
N

Ŵ Σ̂−1Nj = Hf

ΓdN+ej ,ΓdN
Ŵ Σ̂−1.

This gives (using that the columns of Ŵ are an orthonormal basis of the orthogonal complement of

the kernel of Hf

ΓdN ,Γ
d
N

and that the range of Hf

ΓdN ,Γ
d
N

is equal to the range of Hf

ΓdN+ej ,ΓdN
, as both are

the signal space Sig(f,ΓdN ))

Nj = Σ̂ŴH
(
Hf

ΓdN ,Γ
d
N

)†
Hf

ΓdN+ej ,ΓdN
Ŵ Σ̂−1.

Now we see clearly that Nj and M
T
j are similar, as (Hf

ΓdN ,Γ
d
N+ej

)T = Hf

ΓdN+ej ,ΓdN
.

Does this give any indication to what method might be preferable? Ŵ is estimated using Hf

dΓdNe,ΓdN
while U is estimated using Hf

ΓdN ,Γ
d
N

, a matrix with signi�cantly less samples. Therefore, one might

hope that in presents of noise using more samples stabilizes the scheme and that the multivariate
ESPRIT is preferable. We give numerical evidence that this is indeed the case in the next section.

3.3.3 Numerical Examples

We now give numerical examples to illustrate the performance of the proposed algorithms, in particular
of the multivariate Prony method, Algorithm 3.37 and of the multivariate ESPRIT Algorithm 3.40.
Again, we use the Hausdor� distance between the frequencies of f and the estimated frequencies Yest
as an error measure, given by

dH(Y f , Yest) = max

{
max
y∈Y f

min
ỹ∈Yest

‖y − ỹ‖2, max
ỹ∈Yest

min
y∈Y f

‖y − ỹ‖2
}

as well as

d2(Y f , Yest)
2 = max

∑
y∈Y f

dist (y, Yest)
2,
∑
y∈Yest

dist (y, Y f )2

 .

However, if |Y f | 6= |Yest| we consider the recovery failed.

We consider noisy samples

f̃(k) = f(k) + nk,1 + ink,2,

where nk,j are independent and uniformly distributed in δ[−0.5, 0.5] for multiple choices of δ ∈ R>0.

Whenever M1, . . . ,Md are a family of pairwise commuting and diagonalizable matrices and we
have perturbed M̃1, . . . , M̃j , �nding a joint eigenbasis of M̃1, . . . , M̃d is in general impossible, as M̃j

are not expected to be commuting. This seems to be a problem, as �nding matrices N1, . . . , Nd which
are close to M̃1, . . . , M̃d and commute is a di�cult problem.

We use the following easy strategy. We choose α1, . . . , αd ∈ R>0 and form the matrix

d∑
j=1

αjM̃j .
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Table 3.2: Results of the �rst example

δ N K tol dP2 dPH Prony fails/100 dE2 dEH ESPRIT fails/100

1e-4 5 5 0.1 1.6e-4 1.4e-4 1 7.7e-5 6.6e-5 0
1e-1 5 5 1 3.5e-2 3.1e-2 30 2.6e-2 2.1e-2 14
1e-1 15 5 1 8.6e-3 7.2e-3 0 7.5e-3 6.4e-3 0
1e-0 25 5 10 5.3e-2 4.4e-2 1 5.1e-2 4.4e-2 0
1e-2 10 10 1 4.1e-3 3.5e-3 7 2.1e-3 1.6e-3 6
1e-2 20 20 1 6.8e-3 5.5e-3 0 1.7e-3 1.3e-3 0
5e-1 20 20 5 1.0e-1 8.4e-2 24 5.6e-2 3.9e-2 9
5e-1 50 50 10 1.1e-1 6.7e-2 9 3.9e-2 2.6e-2 6

Table 3.3: ESPRIT, random frequencies in three dimensions

δ N K tol dE2 dEH fails/100

1e-4 5 5 1 2.5e-5 2.1e-5 0
1e-1 5 5 1 2.4e-2 2.1e-2 1
1e-0 15 5 10 7.0e-2 5.8e-2 2
1e-1 15 25 10 1.6e-2 1.1e-2 3
1e-1 50 50 10 7.6e-3 5.3e-3 0
1e-1 50 100 10 8.2e-3 5.5e-3 0

Then we determine an eigenbasis v1, . . . , vM of this matrix. Each vj gives rise to a frequency yj : yjk
is given by the average of (M̃kvj)n/vjn over all n = 1, . . . ,M with vjn 6= 0.

While one might argue that this is a naive method, we will see that it works reasonably well. We
choose αj randomly, namely as independent, uniformly distributed in [1, 2].

As a �rst example, we consider K frequencies chosen randomly in [0, 1)2 and coe�cients given
by rje

2πiφj , where rj is chosen randomly in [0.2, 1.2] and φj in [0, 1], all with respect to the uniform
distribution. We use the sampling set dΓdNe + ΓdN . For the rank estimation we use tol for both
algorithms. All examples were run 100 times. The results are collected in Table 3.2, where the
average errors of the Prony methods are denoted by dP2 and dPH while the average errors of ESPRIT
are denoted by dE2 and dEH .

The algorithms were implemented in Matlab 2016b.
Clearly, the multivariate ESPRIT algorithm is a little bit more stable than the multivariate Prony

method. This con�rms the reasoning we gave earlier. Furthermore, we see that additional samples
stabilize the problem signi�cantly.

Next, we consider randomly generated frequencies in three dimensions. As ESPRIT already proved
superior to Prony, we stick with it. However, we switch to an implementation in Julia 0.6.2, which is
much quicker (at least in the author's implementation).

We give the results in Table 3.3. As we use randomly chosen frequencies, we can usually recover
more than N frequencies, as the table shows. For N = 50 we already use 29053 samples and for
K = 100, the computational time of the 100 repetitions on a standard computer (with a AMD Ryzen
1700 processor) was roughly three minutes.

We report results for higher dimensions in Table 3.4. ESPRIT can easily and e�ciently be used
even in 12 dimensions, where the choice N = 8 results in 204418 samples. K = 20 results in a
computational time of approximately ten minutes, while K = 250 took approximately 25 minutes. If
we had to use samples on [−8, 8]12 ∩Z12, we had more that 1015 samples and any algorithm would be
completely unfeasible.

In all examples the value of tol is chosen by considering a few instances of σord f (Hf

dΓdNe,ΓdN
) and

then guessing a reasonable lower bound. That works quite well, as the examples show.

Error Estimates

Next we give examples of the error estimates presented in the previous chapter. We start with a
randomized example. As we have to generate well-separated frequencies, we pick sixteen frequency
vectors in [0, 0.1)2 and translate them by 0.25(k1, k2), k1, k2 = 0, . . . , 3. Again, the coe�cients are
given by rje

2πiφj , where rj is chosen randomly in [0.2, 1.2] and φj in [0, 1], all with respect to the
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Table 3.4: ESPRIT, random frequencies in higher dimensions

d δ N K tol dE2 dEH fails/100

4 1e-0 10 20 10 0.19 0.12 1
4 1e-0 10 50 10 0.44 0.21 3
5 1e-0 20 20 100 9.0e-2 6.4e-2 0
5 1e-1 20 200 10 2.1e-2 2.1e-2 0
8 1e-0 10 20 100 0.16 0.12 0
8 1e-1 10 200 10 6.8e-2 4.3e-2 0
12 1e-1 8 20 100 2.0e-2 2.6e-2 0
12 1e-1 8 250 100 4.4e-2 2.6e-2 0

uniform distribution.

To agree with our analysis in Corollary 2.32, we perturb the samples of a randomly generated f∗

f̃(n) = f∗(n) +Xn,1 + iXn,2,

where all Xn,j ∼ N (0, σ) are independent random variables. We then use ESPRIT on the sampling
set dΓ2

25e + Γ2
25 to get an estimate for the frequencies. To test the error estimate, we calculate new

samples on [−30, 30]2 ∩ Z2. We call(∣∣‖PN (f)− s̃N (f∗)‖22 − 2σ2(2N + 1)2
∣∣ 12 + (2 +

√
2)σ(2N + 1)(2+δ)/4

)2

the error estimator, which is an upper bound to

15

16
(N + 1)4

∑
y∈Y f

(|cfy |2 + |cgn(y)|
2)‖y − n(y)‖2T2 +

3(N + 1)2

4

∑
y∈Y f

|cfy − c
g
n(y)|

2.

Here, the �rst summand is the frequency part, the second the coe�cient part of the error. We choose
δ = 0.9, which results in a probability of at least 99% that our bound is applicable.

Carrying out this procedure for di�erent values of the standard deviation σ 25 times and averaging
gives Figure 3.4.

As is evident from this picture, the estimator is within two orders of magnitudes of the error.
Furthermore, the asymptotic behavior in σ seems to be correctly captured. Note that we cannot hope
for a perfect result, as the estimation captures the worst case.

To test how sharp Theorem 2.31 is, we consider two deterministic exponential sums. Let f be the
exponential sum with frequencies

Y f = {(n,m)/7 : n,m = 0, 1, . . . , 6}

and coe�cients c(n,m) = (−1)n+m. As a second exponential sum, we use gλ, which has frequencies

Y gλ = {y + (λ, λ) : y ∈ Y f}.

The coe�cients of gλ are determined to minimize the least squares error PN (f −gλ) for N = 30. Now
we let λ vary and compare the least squares error with the total error, the latter again split into its
frequency and its coe�cient part.

The example shows that while the qualitative behavior in λ is well captured, we are again o� by a
constant of order 10−2. That might by an indication that an improvement of the involved constants
is possible.
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Figure 3.4: Comparison of the errors at di�erent noise levels. x-axis: Standard deviation of the noise.
All results are averaged over 25 runs.
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Figure 3.5: Comparison of the errors for di�erent gλ.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit Frequenzschätzung von Exponentialsummen. Kurz gesagt
ist die Aufgabe, aus einer endlichen Anzahl abgetasteter Funktionswerte die unbekannten Frequenzen,
also das diskrete Spektrum, einer Exponentialsumme zu berechnen. Gerade der höher dimensionale
Fall hat in den letzten Jahren viel Aufmerksamkeit auf sich gezogen.

Der erste Teil dieser Arbeit behandelt die Wohlgestelltheit des Frequenzschätzungsproblem. Die
Leitfrage lässt sich wie folgt formulieren: Wenn man zwei Exponentialsummen hat, deren abgetastete
Funktionswerte eng beieinander liegen, was kann über ihre Frequenzen ausgesagt werden? Unter
der (notwendigen) Voraussetzung, dass beide Exponentialsummen wohlseparierte Frequenzen haben,
werden scharfe Abschätzungen gezeigt. Diese führen dann zu a posteriori Abschätzungen.

Für den Beweis benötigt man spezielle, bandlimitierte Funktion, die einer Vorzeichenbedingung
genügen. Da die bisher bekannten Funktionen dieser Klasse nicht über eine notwendige zusätzliche
Eigenschaft verfügen, wird eine geeignete Konstruktion angegeben. Dazu werden Ergebnisse aus der
Sampling Theorie verwendet, weshalb das Kapitel mit einer kurzen Einführung in diese beginnt.

Der zweiten Teil wendet sich dem algorithmischen Aspekt des Problems zu. Nach einer kurzen
Wiederholung einiger gängiger Methoden, werden zunächst projektionsbasierte Verfahren diskutiert.
Diese reduzieren das höherdimensionale Problem auf mehrere eindimensionale Probleme, indem die
multivariate Exponentialsumme entlang einiger Linien abgetastet wird. Sowohl für den Fall von par-
allelen, wie auch von paarweise nicht parallelen Linien werden Kriterien, die eine Wiederherstellung
garantieren, bewiesen. Im Fall von parallelen Linien wird ein ESPRIT ähnliches Verfahren vorgeschla-
gen, dass die entstehenden eindimensionalen Probleme gleichzeitig löst.

Anschlieÿend werden andere Zugänge zum mehrdimensionalen Frequenzschätzungsproblem be-
sprochen. Durch Einführen des Signalraums lassen sich leicht Varianten von Pronys Verfahren, ES-
PRIT und MUSIC für diesen Fall entwickeln. Insbesondere erlaubt dies die Verwendung von sehr
kleinen Abtastmengen, was die bisher bekannte Theorie für ESPRIT und MUSIC erweitert. Weiter-
hin wird dadurch die Komplexität erheblich reduziert. Solche Abtastmengen wurden vorher von Sauer
für das Pronyverfahren eingeführt.
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