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Summary 
A decrease in global biodiversity has been recently recorded and is attributed to human 

activities, mainly caused by predation, modification of natural habitats and climate change. 
Biological diversity, defined as the variability among living organisms, is known to have a positive 
effect on productivity and stability of ecosystems. The loss of biodiversity can have a cascading 
effect and lead to drastic changes in the dynamics and functioning of ecosystems, and subsequently 
to the services they provide to humans. In marine ecosystems, fish are extremely valuable as a 
source of protein for more than 3 billion people, and a source of income for more than 40 million 
people. Yet, fish communities are threatened by high fishing pressure and fast changing habitat 
conditions. Using a collection of fisheries-independent bottom-trawl surveys and advanced 
statistical analysis, this thesis aims to understand the importance of biodiversity for the resilience 
of marine fish populations to climate change and fisheries exploitation. More specifically, this 
complex issue has been divided into three interconnected sub-questions: (i) how to characterize 
the spatio-temporal dynamics of fish assemblages and identify their external drivers? (ii) how does 
fish functional diversity respond to changing external pressures? and (iii) what is the importance of 
biodiversity for the stability of ecosystems?  

This dissertation combines case studies demonstrating the benefits of using novel 
approaches to look at existing datasets and integrating information from multiple sources. Each 
chapter studies different aspects of the complexity of biodiversity dynamics. For instance, the 
interaction between spatial and temporal dynamics of fish communities was investigated using 
multiway multivariate analysis (chapters 2 and 3). Three-matrix multivariate approaches can 
integrate information about functional traits and disentangle the relation between traits and 
environmental changes (chapters 3, 4). Additionally, new morphological traits were derived from 
outline analysis and linked to environmental processes (chapter 5). Finally, the relationship between 
diversity and stability of communities was explored by combining abundance time series with 
ecological network analysis (chapter 6) and by considering the intra-specific trait variability (chapter 
7). None of these approaches are better than another, but together they highlight the multiple 
dimensions of fish diversity dynamics and community stability.  

A better understanding of the complexity and the multidimensionality of diversity is a first 
step toward an integrative ecosystem assessment. For example, understanding the link between 
traits and environment (chapters 3 and 4) is important to understand and predict the impact of 
changing environmental conditions on the functional diversity of communities. However, these 
predictions would be incomplete if one fails to consider the network of interactions between 
species and the possible cascading effects throughout the food web (chapter 6). Additionally, the 
intra-specific trait variability (chapter 7) might enhance the adaptation of communities to changing 
conditions. Combining these different approaches into a common framework can provide key 
information for the management and conservation of ecosystems, as well as relevant advices for 
marine ecosystem-based management. 

Embracing the complexity of ecosystem dynamics is recognizing our limited scientific 
knowledge and the high unpredictability of community dynamics. Therefore, the safest and the 
most recommendable management option is the precautionary approach. It is urgent that society 
as a whole take actions to preserve biodiversity, in all its dimensions, which is the best management 
strategy to help biotic communities adapt to ongoing and future changes. 
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Zusammenfassung 
Kürzlich wurde ein Rückgang der globalen Biodiversität verzeichnet, der auf Aktivitäten 

des Menschen wie Prädation, Modifikation natürlicher Lebensräume und den Klimawandel 
zurückzuführen ist. Die biologische Vielfalt, definiert als die Variabilität lebender Organismen, 
wirkt sich bekanntermaßen positiv auf die Produktivität und Stabilität von Ökosystemen aus. Eine 
Abnahme von Biodiversität kann kaskadenartig wirken und zu drastischen Veränderungen in der 
Dynamik und Funktionsweise von Ökosystemen führen, sowie zu Veränderungen in Ökosystem-
Dienstleistungen, die sie für den Menschen bereitstellen. In marinen Ökosystemen sind Fische 
äußerst wertvoll, als Proteinquelle für mehr als 3 Milliarden Menschen und als Einkommensquelle 
für mehr als 40 Millionen Menschen. Fischgemeinschaften sind jedoch durch den hohen 
Fischereidruck und die sich schnell ändernden Lebensraumbedingungen bedroht. Anhand einer 
Sammlung von fischereiunabhängigen Untersuchungen der Grundschleppnetzfischerei und 
fortschrittlicher statistischer Analysen soll die Bedeutung der Biodiversität für die 
Widerstandsfähigkeit der Meeresfischbestände gegenüber dem Klimawandel und der 
Fischereibewirtschaftung verstanden werden. Im Einzelnen wurde dieses komplexe Thema in drei 
miteinander verbundene Unterfragen unterteilt: (i) wie lässt sich die räumlich-zeitliche Dynamik 
von Fischbeständen charakterisieren und deren externe Treiber identifizieren? (ii) wie reagiert die 
funktionale Fisch-Vielfalt auf sich ändernde äußere Einwirkungen? und (iii) welche Bedeutung hat 
Biodiversität für die Stabilität von Ökosystemen? 

Diese Dissertation kombiniert Fallstudien, in denen die Vorteile der Verwendung neuer 
Ansätze zur Untersuchung vorhandener Datensätze und der Integration von Informationen aus 
mehreren Quellen demonstriert werden. In jedem Kapitel werden verschiedene Aspekte der 
Komplexität der Biodiversitätsdynamik untersucht. Zum Beispiel wurde die Wechselwirkung 
zwischen räumlicher und zeitlicher Dynamik von Fischgemeinschaften mithilfe einer multivariaten 
Mehrweg-Analyse untersucht (Kapitel 2 und 3). Multivariate Drei-Matrix-Ansätze können 
Informationen über funktionale Merkmale integrieren und die Beziehung zwischen Merkmalen 
und Umweltveränderungen aufdecken (Kapitel 3, 4). Darüber hinaus wurden neue morphologische 
Merkmale aus der Umrissanalyse abgeleitet und mit Umweltprozessen verknüpft (Kapitel 5). 
Schließlich wurde der Zusammenhang zwischen Diversität und Stabilität von Gemeinschaften 
untersucht, indem Abundanz-Zeitreihen mit einer ökologischen Netzwerkanalyse (Kapitel 6) 
kombiniert wurden und die intraspezifische Merkmalsvariabilität (Kapitel 7) betrachtet wurde. 
Keiner dieser Ansätze ist besser als der andere, aber gemeinsam betonen sie die vielfältigen 
Dimensionen der Dynamik der Fischvielfalt und der Stabilität der Gemeinschaft. 

Ein besseres Verständnis der Komplexität und der Multidimensionalität von Diversität ist 
ein erster Schritt hin zu einer integrativen Ökosystembewertung. Das Verständnis der Verbindung 
zwischen Merkmalen und der Umgebung (Kapitel 3 und 4) ist wichtig, um die Auswirkungen sich 
ändernder Umweltbedingungen auf die funktionale Vielfalt von Gemeinschaften zu verstehen und 
vorherzusagen. Diese Vorhersagen wären jedoch unvollständig, wenn man das Netzwerk aus 
Interaktionen zwischen den Arten und die möglichen Kaskadeneffekte im gesamten Nahrungsnetz 
nicht berücksichtigt (Kapitel 6). Darüber hinaus kann die intraspezifische Merkmalsvariabilität 
(Kapitel 7) die Anpassung von Gemeinschaften an sich ändernde Bedingungen verstärken. Die 
Kombination dieser unterschiedlichen Ansätze in einem gemeinsamen Rahmen kann wichtige 
Informationen für das Management und die Erhaltung von Ökosystemen, sowie relevante 
Ratschläge für das Management von marinen Ökosystemen liefern. 
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Um die Komplexität der Ökosystemdynamik zu erfassen, müssen wir unser begrenztes 
wissenschaftliches Wissen und die hohe Unvorhersagbarkeit von Gemeinschaftsdynamik 
erkennen. Daher stellt ein vorsorglicher Ansatz die sicherste und empfehlenswerteste 
Managementoption dar. Es ist dringend geboten, dass die Gesellschaft als Ganzes Maßnahmen 
zum Erhalt der Biodiversität in all ihren Dimensionen ergreift. Dies ist die beste 
Managementstrategie, um Ökosysteme dabei zu unterstützen, sich an die fortlaufenden 
Veränderungen anzupassen. 
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Résumé 
La perte actuelle de biodiversité dans le monde est attribuée aux activités humaines, telles 

que la prédation, la modification des habitats naturels et le changement climatique. La diversité 
biologique, définie comme la variabilité parmi les organismes vivants, a un effet positif sur la 
productivité et la stabilité des écosystèmes. La perte de biodiversité peut provoquer des 
changements radicaux dans la dynamique et le fonctionnement des écosystèmes, et ainsi affecter 
les services qu'ils fournissent aux Hommes. Dans les écosystèmes marins, les poissons sont une 
source importante de protéines pour plus de 3 milliards de personnes et une source de revenus 
pour plus de 40 millions de personnes. Cependant, les communautés de poissons sont menacées 
par la forte pression de pêche et par la modification rapide de leurs habitats. Cette thèse vise à 
comprendre l'importance de la biodiversité pour la résilience des populations de poissons au 
changement climatique et à l’effort de pêche. Plus précisément, cette question a été subdivisée en 
trois questions intermédiaires : (i) comment caractériser la dynamique spatio-temporelle des 
communautés de poissons et en identifier les causes ? (ii) comment la diversité fonctionnelle des 
poissons répond-elle aux changements environnementaux? et (iii) quelle est l'importance de la 
biodiversité pour la stabilité des écosystèmes ? 

Chaque chapitre de cette thèse étudie des aspects différents des dynamiques de la 
biodiversité. Par exemple, l’interaction entre la dynamique spatiale et temporelle des communautés 
de poissons a été étudiée à l’aide d’une analyse multivariée multi-tableaux (chapitres 2 et 3). Les 
approches multivariées à trois matrices permettent d’intégrer les traits fonctionnels et d’indiquer la 
relation entre les traits et les changements environnementaux (chapitres 3, 4). De plus, une analyse 
de contour a été proposée pour caractériser la morphologie des poissons (chapitre 5). Enfin, le lien 
entre la diversité et la stabilité des communautés a été exploré en combinant des méthodes 
d’analyses de séries temporelles avec l’analyse de réseaux trophiques (chapitre 6) et en prenant en 
compte la variabilité intra-spécifique des traits (chapitre 7). Aucune de ces approches n’est meilleure 
que les autres mais, ensemble, elles mettent en évidence les multiples dimensions des dynamiques 
de la diversité des communautés de poissons et de leur stabilité. 

Une meilleure compréhension de la complexité des communautés biologiques est un 
premier pas vers une gestion plus intégrale des écosystèmes. Par exemple, il est important de 
comprendre le lien entre les traits et l'environnement (chapitres 3 et 4) pour comprendre et prévoir 
l'impact des changements des conditions environnementales sur la diversité fonctionnelle des 
communautés. Cependant, ces prévisions seraient incomplètes si l’on ne tenait pas compte du 
réseau d’interactions entre les espèces et les possibles répercussions sur l’ensemble de la chaîne 
alimentaire (chapitre 6). De plus, la variabilité intra-spécifique des traits (chapitre 7) pourrait 
améliorer l’adaptation des communautés aux changements du milieu naturel. Combiner les résultats 
de ces différentes approches peut fournir des informations importantes pour la gestion et la 
conservation des écosystèmes marins. 

Prendre en compte la complexité de la dynamique des écosystèmes, c'est reconnaître les 
limites des connaissances scientifiques et le caractère imprévisible des dynamiques des 
communautés biologiques. Par conséquent, le principe de précaution est l'option la plus 
recommandable pour la gestion des ressources marines. Il est urgent que la société dans son 
ensemble prenne des mesures pour préserver la biodiversité, dans toutes ses dimensions, ce qui est 
la meilleure stratégie pour aider les communautés biologiques à s'adapter aux changements de leur 
milieu naturel. 
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Chapter 1 
General introduction 

 

“The real voyage of discovery consists not in seeking new landscapes, 
but in having new eyes.” 

Marcel Proust 

 

 

 

 
M.C. Escher, Fishes and scales (1959) 

© The M.C. Escher Company; used with permission 
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A global decrease in biodiversity 

A decrease in global biodiversity has been recently recorded (Young et al. 2016). The 
present extinction rate is comparable to the rate of the previous five mass extinction events, leading 
to claims that we may enter the sixth mass extinction (Barnosky et al. 2011; Ceballos et al. 2017). 
The current loss of biodiversity is due to human activities, mainly caused by predation, 
competition for resources, modification or fragmentation of natural habitats, spreading pathogens 
or non-native species, and changing global climate (Young et al. 2016). Due to the strong impact 
of human activities on ecosystems, scientists suggest that we have entered an era called 
“Anthropocene” (Crutzen 2002). In fact, humans have disturbed ecosystems since their origins, 
leading to losses of large predators and triggering strong defaunation (McCauley et al. 2015). 

The negative impact of humans on ecosystems was first described over 150 years ago by 
George Perkins Marsh in his book Man and Nature (Marsh 1864). But it was only until the 1950’s, 
with the rise of the agricultural “Green revolution” that society started to question its role in 
ecosystems, and Ecology became a rising field of Science. For example, the concept of ecosystem 
gain prominence in mid-fifties (Odum 1953) and the multi-disciplinary field of conservation 
biology emerged in 1978 (Soule & Wilcox 1980). The research that followed evidenced the threats 
caused by the loss of biodiversity, thus, in 1992, governments and scientists met at the Earth 
Summit in Rio de Janeiro to create the Convention on Biological Diversity (CBD). The CBD is the 
first international treaty recognizing the importance of biodiversity and its conservation. Recently, 
the Parties of the CBD adopted the Aichi biodiversity targets for 2020, a ten-year framework to 
“take effective and urgent action to halt the loss of biodiversity in order to ensure that by 2020 
ecosystems are resilient and continue to provide essential services, thereby securing the planet’s 
variety of life, and contributing to human well-being, and poverty eradication” (CBD 2010).  

The loss of biodiversity can have a cascading effect leading to drastic changes in the 
dynamics and functioning of ecosystems, and subsequently to the services they provide to humans 
(Hooper et al. 2012). The relationship between biodiversity and ecosystem functioning (BEF) has 
been actively studied since the early 1990’s. A recent review of 25 years of BEF research based on 
more than 1,700 published papers concluded that i) ”there is now unequivocal evidence that 
biodiversity loss reduces the efficiency by which ecological communities capture biologically 
essential resources, produce biomass, decompose and recycle biologically essential nutrients.” and 
ii) “there is mounting evidence that biodiversity increases the stability of ecosystem functions 
through time” (Cardinale et al. 2012).  

BEF research is mainly carried out with theoretical models or experiments (Tilman et al. 
2014). Among others aspects, models have largely contributed to the debates about the impact of 
diversity on the stability of ecosystems (May 1971; Ives et al. 1999; Loreau & de Mazancourt 2013). 
While a simple prey-predator model extended to communities suggest the counter-intuitive idea 
that increase in diversity lead to a decrease in stability (May 1971), more complex models 
considering interaction strength and differences in environmental responses show the opposite 
(Ives et al. 1999; Loreau & de Mazancourt 2013). Whereas models are limited by their subjective 
assumptions, long term experiments carry out on small plots or microcosms provide a solution to 
test the relationship between diversity and ecosystem functioning (Tilman & Downing 1994; Gross 
et al. 2014). Metanalysis of the numerous experimental studies in terrestrial, freshwater and marine 
ecosystems concludes that biodiversity has a positive effect on productivity, stability and resistance 
to invasion (Tilman et al. 2014). Despite BEF experiments getting more complex (Soliveres et al. 
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2016) including multi-trophic levels (Duffy et al. 2007; Hillebrand et al. 2018b) and multiple 
stressors (Crain et al. 2008), these experiments are inherently limited to a confined area with 
restricted interactions. Natural ecosystems are complex systems that cannot be entirely re-created 
in laboratory conditions. In fact, ecosystems processes interact across spatial and temporal scales 
which may trigger unexpected changes (Holling 1973; Heffernan et al. 2014). Therefore, the study 
of the past dynamics of real-world ecosystems is an important source of information for 
macroecologists (Heffernan et al. 2014; Rose et al. 2017). 

In recent years, species distributions has already been impacted by the changing climate 
(Burrows et al. 2011; Poloczanska et al. 2016). These observations can help us predict how the 
community will rearrange in the future and demonstrate the value of diversity for the resilience of 
ecosystems. However, given that in real-world observations everything is interlinked, it is difficult 
to show the effect of a single pressure on a single indicator (Cleland 2002; Ives & Carpenter 2007). 
Thanks to long-term monitoring program and to the recent improvement in data analysis, 
observational studies can bring valuable empirical evidence for disentangling long-lasting questions 
in ecology and environmental science (Edgar et al. 2016; LaDeau et al. 2017). However, 
observational studies on BEF are few and it remains to be demonstrated with observations what 
is the role of biodiversity for the ecosystem functioning and especially for its resilience to 
increasing anthropogenic pressures?  

The multiple dimensions of diversity 

Biological diversity is a multidimensional concept, defined by the CBD as “the variability 
among living organisms […] and the ecological complexes of which they are part; this includes 
diversity within species, between species and of ecosystems.”(United Nations 1992). Thus 
quantifying changes in biodiversity is not straightforward and diversity is often simplified into 
indicators that represent a level of diversity (Chao et al. 2014).  

The most common indicator of biodiversity is species richness, defined as the number of 
species found in a location. It quantifies the obvious difference between a wheat field (low diversity) 
and a tropical rainforest (high diversity). Even if species richness is simple and quite easy to 
measure, the trends in species richness are highly debated (Dornelas et al. 2014; Vellend et al. 2017; 
Cardinale et al. 2018). The debates focus on local diversity (also called alpha diversity) which, 
depending on the study, can display an increasing or a decreasing trend. This debates stress the fact 
that diversity can be measured at different scales, spatially and temporally (Levin 1992; McGill et 
al. 2015). While the global diversity is decreasing (Young et al. 2016), local diversity in the past 
decades can be influenced by species invasions. Between local (called alpha diversity) and global 
(gamma diversity), another set of indicators focus on the turnover of species (beta diversity), 
comparing the dissimilarity of biomes across space or time (McGill et al. 2015). Beta diversity is 
rarely studied at large scales (McClain & Rex 2015; Hillebrand et al. 2018a) but is subject to rapid 
development of methodologies (Legendre et al. 2005; Jost 2007; Wang & Loreau 2014).  

Furthermore, the relative species abundance in a community is important for its 
functioning (Hillebrand et al. 2008). For instance, if a diverse community is dominated by one 
species, interspecific interaction is reduced and the ecosystem processes will be mainly driven by 
this single species, not the myriad of other species. This intuitive reasoning led to the development 
of Shannon and Simpson indicators considering not only the number of species but also their 
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relative abundance. These indicators were later grouped into a common framework of indicators 
called the Hill’s numbers (Hill 1973; Chao et al. 2014).  

Additionally, increasing evidence indicates that species characteristics, called traits, can 
better link the diversity to the functioning of ecosystems (Díaz & Cabido 2001; McGill et al. 2006; 
Violle et al. 2014). In fact, it is not the identity of species but their traits that determine which 
environments and habitats organism can inhabit and with which species they can interact (Verberk 
et al. 2013). A critical step towards better understanding and predicting future changes in species 
distributions is to identify the key attributes and adaptation by which species respond to the 
environment and to characterize the shape and nature of the relationship between 
environmental variables and the response traits. Trait-environment relationships have also 
been used to study changes in ecosystem functioning (Frainer et al. 2017) and to investigate the 
effect of management measures on ecosystem services (Wesuls et al. 2012; Lamarque et al. 2014).  

Finally, organisms don’t live in isolation, but interact with each other. In 1850’s Alexander 
von Humboldt described nature as a web of life and interactions. Four primary types of 
interactions happen in nature: predatory (one eat the other), mutualistic (both species benefit from 
the interaction), commensalistic (one benefit, the other is neither helped or harmed) or parasitic 
(one benefit, the other is harmed). In all cases, a change in a single species abundance can impact 
species primarily interacting with it, and subsequently, the species interacting with these species, 
and so forth throughout the interaction network. Thanks to advances in graph theory and 
ecological network analysis, scientists can better predict the consequences of species loss (Berlow 
et al. 2009; Säterberg et al. 2013; Brose et al. 2016). Moreover, the structure of the interaction 
network is important for the stability of communities (Yodzis 1981; Rooney & McCann 2012). 

As highlighted above, research on biodiversity is common but the efforts to integrate the 
multiple dimensions of diversity are rare. One of the remaining challenges is how to characterize 
and integrate the multiple dimensions of biodiversity dynamics? 

Threats to valuable fish communities 

Fish communities are extremely diverse and provide valuable services for human societies. 
Indeed, fish is the largest group of vertebrates on Earth, with 34,000 species known to science 
(Froese & Pauly 2017). Additionally, fish is an important source of protein for more than 3 billion 
people, with an annual production of 171 million tons, worth USD 362 billions and supporting the 
livelihood of more than 40 million people (FAO 2018). Therefore, it is important for management 
and conservation efforts to understand the role of fish diversity for the functioning of 
ecosystems and the stability of services they provide to humans. Yet, it is unclear how 
diversity helps the resilience of fish communities to changing environmental conditions and 
increasing human pressures. Fishing, habitat loss and degradation, and climate change are the three 
main anthropogenic pressures known to impact marine ecosystems. 

Fishing is the only legally accepted (and sometimes subsidized) harvest of wild animals by 
humans (Young et al. 2016) and its impact on marine ecosystems has been the subject of many 
studies (Gordon et al. 2018). Numerous collapses of fish stocks have been witnessed since the 
1960’s and the spread of industrial fishing (Pinsky et al. 2011; McCauley et al. 2015), triggering 
drastic changes on ecosystem functioning (Hilborn et al. 2003). Currently 33% of commercially 
valuable fish are overexploited, 60% are fished to their maximum sustainable level and only 7% are 
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within safe biological limits (FAO 2018). Fisheries are known to impact the trophic structure and 
the size distribution of fish population toward smaller and lower trophic level fish (Pauly et al. 1998; 
Jackson et al. 2001; Hilborn et al. 2003; Duarte et al. 2015; Gascuel et al. 2016). Fishing is also a 
selecting pressure responsible for changes in the genetic structure of fish populations (Jorgensen et 
al. 2007). Finally, fished communities are known to be less resilient than non-fished ones (Rochet 
& Benoit 2012).  

Multiple human activities contribute to habitat loss and degradation such as 
contamination, extraction of marine resources and marine transport (Halpern et al. 2015). For 
instance, contamination through riverine run-off of agricultural fertilizers induce high 
eutrophication and primary production in the upper layer of the oceans, that can result in dead 
zone due to extremely low oxygen concentration in lower depth layers (Diaz & Rosenberg 2008). 
Another example of contamination are the plastic debris which accumulate in the oceans (Jambeck 
et al. 2015), and micro-plastics are known for their negative effects on organisms (Wright et al. 
2013). Expansion of aquaculture, off-shore platforms, and sea floor mining disturb and may 
contaminate marine biota (McCauley et al. 2015; van Wesenbeeck et al. 2015). Additionally, global 
commercial shipping are vectors of invasive species that can have strong impact and disturb 
ecosystems (Seebens et al. 2013; Gallardo et al. 2016). Vessel traffic is also a source of noise 
disruption (Simpson et al. 2016), and an increased risk of contamination when transporting 
hazardous substances (Hjermann et al. 2007; Whitehead 2013).   

Anthropogenic climate change is known to have multiple impact on marine ecosystems 
(Pörtner et al. 2014; Gattuso et al. 2015). Rising sea temperature can have dramatic effect on marine 
population if temperatures pass above their thermal tolerance, especially for species with low 
dispersal ability (Poloczanska et al. 2013; MacLean & Beissinger 2017). Increasing temperature can 
lead to deoxygenation of deeper waters due to increased stratification of the oceans (Pörtner et al. 
2014). Ocean acidification will negatively impact organisms producing calcium carbonate shells and 
skeletons, and subsequently species interacting with them. Differences in species’ environmental 
sensitivity and mobility lead to differences in the shift of species distribution that induce a 
reorganization of the biotic communities (Sorte et al. 2010; Burrows et al. 2014). Indeed, the impact 
of climate change on fish is cascading across levels of biological organization; from organisms, to 
population, to ecosystems. (Pörtner & Peck 2010).  

Finally, all the pressures mentioned above are not simply cumulative but their impact on 
organisms can be amplified (Crain et al. 2008; Halpern et al. 2015). Yet it is unclear how the 
interaction between multiple stressors may affect biotic communities. This high scientific 
uncertainty brings challenges for the management of fish populations.  

Management and monitoring of fish diversity 

Managing dynamic fish populations under strong anthropogenic pressures is a difficult 
issue. Traditionally, single stock assessments are used to estimate the annual “maximum sustainable 
yield” per species given their reproduction rate and mortality. However, this approach is criticized 
for its over-simplification of biotic communities. Ecosystem based management (EBM) is an 
integrative framework that aim for the sustainable use of ecological resources (Pikitch et al. 2004; 
Leslie & McLeod 2007; Fogarty 2014). EBM advocates for the inclusion of the multiple uses of 
marine resources and their inherent trade-offs. Species stocks should be managed comprehensively, 
considering species interactions and environmental variability. EBM switches from the classic view 
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of maximizing the catch of each single stock within its sustainable limit to the novel view of 
ensuring the health of ecosystems by setting coherent catch limits to multiple species.  

To be effective, EBM needs integrative ecosystem assessment (Levin et al. 2009; Möllmann 
et al. 2014) that require good estimation of population size (i.e. fish stocks). However, estimating 
the abundance of fish living in the oceans is not a simple task. The best estimations of demersal 
fish abundance come from fisheries-independent scientific surveys. The sampling is performed by 
fishing with a bottom trawl net according to a standard protocol, and by counting, and identifying 
the species’ names of all the catches. When the exact same procedure is repeated across a large area 
for decades it is then possible to estimate the distribution and the dynamics of fish species. 
However, our observations are only a tiny fraction of what occurs under water (Fig 1.1). This 
limited knowledge creates an even bigger challenge for marine ecologists: how to understand 
marine complex ecosystems from scarce observations while integrating its multiple 
dimensions, multiple scales and large interaction networks? 

 

 
Figure 1.1: Scientific bottom trawl surveys sample the benthic fish community with a net trawled 
over the sea floor for a given period of time. It offers a snapshot of the communities in a given 
location. Repeated in different locations and over decades, the survey offers an estimation of the 
changes in abundance through time and space. The following chapters are all based on the analysis of 
such dataset using innovative methods and combining it with information from different data 
sources. 
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Objectives 

The main goal of this dissertation is to understand the importance of biodiversity for the 
resilience of marine fish populations to climate change and fisheries exploitation. This complex 
issue is divided in three interconnected sub-questions (Fig. 1.2). 

A. How to characterize the spatio-temporal dynamics of species assemblage and identify 
their external drivers? 

Understanding the spatial and temporal dynamics of biotic communities containing large 
numbers of species represents a key challenge in ecology. Biotic communities are made of 
individuals from multiple species that are dynamic and their distribution can change in time and in 
space. However, the interaction between the spatial distribution and the temporal dynamics of 
species assemblages is difficult to grasp and requires specific methods that account for the 
multidimensional nature of community data.  

In chapter 2, the multiple dimensions of diversity dynamics were studied with advanced 
multivariate statistical analysis called tensor decomposition. Tensor decomposition considers the 
3D structure of the community data which can reveal the interplay between the spatial distribution 
and temporal dynamics in fish populations. Using the North Sea demersal fish community as a 
case study, we investigated how tensor decomposition can help (i) characterize the main spatio-
temporal patterns of species assemblages, (ii) identify sub-communities that share similar 
spatial distribution and temporal dynamics, and (iii) reveal external drivers of change by applying 
additional correlation analyses and Monte-Carlo permutation tests. 

In chapter 3, the multivariate methodology was refined into a comprehensive framework 
based on complementary multivariate statistical methodologies to simultaneously investigate 
the effects of environmental conditions on the spatial, temporal and functional dynamics 
of species assemblages. Using survey data collected in more than 4,000 stations over the Baltic 
Sea between 2001 and 2016, we investigated how the proposed framework can help (i) disentangle 
the effects of environmental changes on the structure of biotic communities, and (ii) identified 
sub-assemblages that co-exist and are susceptible to similar environmental conditions. 

B. How does fish functional diversity respond to changing external pressures? 

Chapter 4 originated from a collaborative work with Esther Beukhof, PhD student from 
DTU aqua in Denmark. Together, we investigated the relationship between traits and 
environmental conditions across Large Marine Ecosystems. We gathered a large dataset of 
bottom trawl surveys collected across the northeastern Pacific and northern Atlantic Ocean 
between 2005 and 2015. Based on more than 70,000 stations recording over 1,400 species, we 
investigated (i) which traits and which environmental variables best explain the distribution of 
marine fish? and (ii) what are the key trait-environment relationships for marine fish? 

In chapter 5, modern morphometrics was used to quantify morphological traits of fish 
species. In fact, traits information is difficult to collect, especially for the rare and non-commercially 
important species that are less abundant in the scientific literature. Morphology is an integrative 
trait that combines functional and evolutionary information. However, the objective and 
quantitative description of the morphological diversity is quite challenging. In order to help with 
the data gathering and analysis, a master student, Florian Caillon from the University of Aix-
Marseille, was recruited. Together, we described the shape of 85 fish species found in the North 
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Sea and demonstrated that outline analysis is a powerful tool to describe the morphology of fish 
species. We investigated how outline analysis can (i) provide a new quantitative description of 
morphological variability, and (ii) identify environmental processes structuring the fish 
community in a Large Marine Ecosystem. 

C. What is the importance of biodiversity for the stability of ecosystems? 

The structure of the interaction network between organisms is important for the stability 
of biotic communities. Due to environmental and anthropogenic pressures, ecological 
communities are constantly being reshaped. Yet, we do not know how the structure of food webs 
changes over time. In chapter 6, together with Pierre Olivier, PhD student from Abo Akademy in 
Finland, we developed a new methodology to study the dynamics of the topological structure 
of food webs. We studied the dynamics of fish and benthic macrofauna in the German Bight 
between 1998 and 2015 and investigated (i) whether the food web structural properties have 
changed and (ii) what is the origin of such change: is it primarily driven by changes in the species 
composition or in the trophic links composition?  

Finally, chapter 7 investigates the link between the diversity and the functioning of 
marine ecosystems, revisiting a question that has puzzled ecologists for decades: why and under 
what conditions is the community more stable than the sum of its parts? Although most empirical 
studies used taxonomic classifications to define diversity, organisms undergo strong ontogenetic 
shifts during their lifetime, and intra-specific size variability might be an important stabilizing 
factor. Therefore, a size-based approach was developed to investigate the relative influence of 
size asynchrony on the stability of communities. This empirical study is based on time series 
of fish biomass from over 50,000 fisheries-independent stations spread across North-Atlantic 
Large Marine Ecosystems. The main questions of the study are: (i) what is the complementarity 
between size and taxonomic synchrony for the stability of communities? (ii) which factors could 
explain the differences between size and taxonomic synchrony and (iii) what are the regulatory 
mechanisms of stability? 

Combining all the results together, the chapter 8 offers an overview of the multiple 
dimensions of fish diversity and community stability. The complementarity between chapters is 
discussed as well as their implication for marine ecosystem-based management.  
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Figure 1.2: The multiple dimensions of fish diversity dynamics. The successive chapters of this 
dissertation integrate (i) the interaction between spatial and temporal dynamics (chapter 2 and 3), (ii) 
the link between traits and environmental changes (chapter 3, 4 and 5), (iii) the trophic interaction 
network between species (chapter 6), and (iv) the intra-specific size variability, important for the 
stability of communities (chapter 7).
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Chapter 2 
Tensor decomposition reveals spatio-

temporal community dynamics 
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Abstract 

Understanding spatio-temporal dynamics of biotic communities containing large numbers 
of species is crucial to guide ecosystem management and conservation efforts. However, traditional 
approaches usually focus on studying community dynamics either in space or in time, often failing 
to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and 
promote the use of tensor decomposition for disentangling spatio-temporal community dynamics 
in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics 
(e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows 
for the synchronized study of multiple ecological variables measured repeatedly in time and space. 
We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal 
fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate 
change. Our case study demonstrates how tensor decomposition can successfully (i) characterize 
the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities 
of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external 
drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over 
time and linked to differences in depth, primary production and seasonality. Furthermore, we 
simultaneously characterized important temporal distribution changes related to the low frequency 
temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six 
major sub-communities composed of species sharing similar spatial distribution patterns and 
temporal dynamics. Our case study demonstrates the application and benefits of using tensor 
decomposition for studying complex community datasets usually derived from large-scale 
monitoring programs. 

 

Keywords: Species distribution, community assemblages, multiway multivariate analysis, beta 
diversity, demersal fish community, North Sea  
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Introduction 

Understanding the spatial and temporal dynamics of biotic communities containing large 
numbers of species represents a key challenge in ecology and is crucial to guide ecosystem 
management and conservation efforts. However, the interaction between the spatial distribution 
and the temporal dynamics of species assemblages is difficult to grasp and requires specific 
methods that account for the multidimensional nature of community data. In fact, community data 
are intrinsically multidimensional, because each sample taken in a given location at a given time can 
be described by the abundances of multiple species. Hence, datasets from monitoring programs 
with repeated sampling at multiple locations can be organized as a 3-dimensional array (i.e., 3rd-
order tensor) with species, space and time being its three dimensions. 

Common approaches in community ecology use “two dimensional” multivariate analysis 
methods such as Principal Component Analysis (PCA) or Correspondence Analysis to analyze 
community data (Gauch 1982; Legendre & Legendre 2012). Because most of the statistical methods 
are developed to analyze matrices, one of the three dimensions of community data is often 
sacrificed to reduce the 3D array into a 2D matrix. Depending on the aim of the study, scientists 
have been simplifying either the species assemblages into diversity indicators (Daan 2006), the 
spatial distribution into barycentre coordinates (Perry et al. 2005), or the temporal dynamics by 
averaging over stable periods (Pecuchet et al. 2017). One way to keep the full information in 3D 
datasets is the extension of multivariate analysis to k-tables (such as STATIS (Thioulouse & Chessel 
1987)) and the simultaneous analysis of a sequence of paired ecological tables (Thioulouse et al. 
2004; Thioulouse 2011; Mendes et al. 2016). While the extension to k-tables is a clear improvement, 
which has found numerous applications among ecologists to study spatio-temporal patterns (Rossi 
et al. 2014; Kidé et al. 2015), the k-table approach considers one of the dimensions (often time or 
space) only as a repetition, restricting the results by the a-priori choice of the repetitive dimension 
and impeding the study of the interaction between time and space. Recently, other approaches have 
been developed to extend species distribution models to full communities, like the joint dynamic 
species distribution model (Thorson et al. 2016; Thorson & Barnett 2017) and the hierarchical 
modelling of species communities (Ovaskainen et al. 2017). Multispecies distribution models are 
promising approaches, but strongly limited in size by the rapidly increasing number of parameters 
to be estimated. In contrast, multivariate approaches are free from parameters and can analyze 
dataset with a large number of species in a high number of defined areas, for long-term time series. 
However, none of these multivariate methods can simultaneously study spatial and temporal 
dynamics, including the interaction between time and space across species assemblages which is 
needed for a comprehensive understanding of spatio-temporal changes of entire ecological 
communities (Cichocki et al. 2015). 

Statistical tools able to investigate such multidimensional datasets were developed in the 
late 1960s within the fields of psychometrics (Tucker 1966). Tensor decomposition (TD) methods 
(also called multiway multivariate analysis, tensor factorization, or high order principal component 
analysis) are becoming an essential tool for data mining and have been successfully applied within 
chemistry (Bro 2006), neuroscience (Kauppi et al. 2015), bioinformatics (Omberg et al. 2007), 
geophysics (McNeice & Jones 2001) and geospatial science (Leibovici & Jackson 2011). The recent 
enthusiasm for TD fuelled by growing computing power and the emergence of big data (Mørup 
2011), was followed by the development of new software (Leibovici 2010; Giordani et al. 2014). 
Currently, multiple introductions and tutorials are available (e.g. (Kolda & Bader 2009; Mørup 
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2011; Cichocki et al. 2015)) and provide the basis for new applications using TD. An increased 
adoption of TD methods among ecologists could be beneficial because community data collected 
from large-scale ecological monitoring programs are inherently multidimensional (i.e. have more 
than 2 dimensions).  

Here we demonstrate and promote the use of TD for disentangling spatio-temporal 
ecological dynamics using the North Sea demersal fish community as an informative example. The 
North Sea marine ecosystem has suffered from strong anthropogenic pressures (Halpern et al. 
2015), such as fisheries exploitation (Engelhard et al. 2015), and is already markedly impacted by 
climate change (Weinert et al. 2016). The need to manage the many commercially important fish 
populations providing highly valued ecosystem services (Emeis et al. 2015) has resulted in a rigorous 
and internationally coordinated monitoring scheme in the North Sea (ICES 2015). The North Sea 
International Bottom Trawl Survey created a unique long-term (>30 years) dataset covering multiple 
fish species abundance in time and space, which is openly available and provides an ideal basis for 
multiway analysis. Our study shows how TD can help (i) characterize the main spatio-temporal 
patterns of species assemblages, (ii) identify sub-communities that share similar spatial distribution 
and temporal dynamics, and (iii) reveal external drivers of change by applying additional correlation 
analyses and Monte-Carlo permutation tests. 

 

Materials and methods 
Tensor decomposition  

A tensor is a multidimensional array; a generalization of a matrix (two-dimensional table) 
in more than 2 dimensions. For example, the observed abundance of a species is associated with a 
given location and a given time. Community data are made of observations of abundances of 
multiple species (also referred as species assemblages), repeated in multiple areas and at different 
times. The dataset can be seen as a three-dimensional (or third order) tensor with one dimension 
being the species taxa, a second dimension being the areas, and the third dimension being time 
(Fig. 2.1A). To get reliable and complete time series, stations (locations of individual haul) are often 
aggregated to areas sharing similar features.  
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Figure 2.1: Presentation of the dataset and its multidimensional nature. (A) Community data 
represented as a three-dimensional tensor. Each pixel represents the abundance level (relative to the 
average abundance of each species in the survey) of the fish species in the North Sea in its 3 
dimensions: species, time and space. (B) Map of the study area showing the 7 predefined areas (called 
roundfish areas) which serve as the spatial scale of our study.  

Tensor decomposition (TD) shares the same objectives of multivariate analysis, simplifying 
the original dataset (here formatted as a tensor) and explaining the maximum proportion of the 
variance in the dataset with a minimum number of components of lower dimensions. With this 
trade-off, TD reveals the main pattern (or information) within the dataset and separates it from 
noise. Different methods of TD have been developed since the 1960s along with the development 
of multilinear algebra. Three methods are among the most popular: Tucker decomposition (Tucker 
1966), canonical polyadic decomposition (also known by the acronyms CANDECOMP or 
PARAFAC, (Carroll & Chang 1970; Harshman 1970)) and Principal Tensor Analysis over k-modes 
(PTA) based on high order singular value decomposition (Leibovici & Sabatier 1998). Recent 
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extensive reviews with detailed mathematical definitions and differences between these methods 
are available (Kolda & Bader 2009; Cichocki et al. 2015). From a practical point of view, PTA offers 
an easy-to-interpret and robust method to decompose a tensor. Compared to the Tucker 
decomposition, PTA has the advantage of being independent of the dimensions of the desired 
solution (or core tensor). Compared to canonical polyadic decomposition, PTA has better 
explanatory power (due to its flexibility of having non-diagonal core tensor). The definition and 
algebra of PTA can be found in Leibovici and Sabatier (Leibovici & Sabatier 1998). We believe 
that its high similarity with the properties of the well-known PCA may facilitate its adoption by 
ecologists. 

A PTA is completed following the same three steps as a PCA: (1) scaling, (2) selecting 
relevant components and (3) visual interpretation of the components with a biplot. First, the scaling 
and transformation of the original data is an essential preliminary step for the analysis of 
community data (Legendre & Gallagher 2001). In the multidimensional context, the question is 
how to compute the distance between individuals and on which dimension(s) to center and/or 
scale the abundance values. The answer depends on the dataset and the focus of the study. In our 
case, the abundance values were highly right skewed so we log(x+1)-transformed the abundance 
values and choose to use Euclidean distances as a basis for the PTA (similar to a PCA). Then, we 
centred (mean of 0) and scaled (standard deviation of 1) the abundance of each species to consider 
the rare and abundant species equally. Second, the dominant modes of variability, summarized in 
principal tensors (PTs), are selected with a scree plot, showing the percentage of the variance 
explained by each successive PT (Fig. S2.1). Similar to successive eigenvalues from PCA, a visual 
inspection of the scree plot indicates the number of significant PTs, i.e. the best trade-off between 
minimum number of PTs and the maximum percentage of variance explained (Cattell 1966). Third, 
interpretation of PTs is made based on the projection of the dimensions on the selected PT (similar 
to a biplot in a PCA). PTA results in the simultaneous projection of the three dimensions (species, 
time and space) on simpler axis (PTs). The projection of time and space on the PT was plotted in 
a heatmap to represent the dominant spatio-temporal dynamics inherent in the dataset. 

However, the large number of species analyzed in parallel renders the interpretation of the 
species projection derived by PTA difficult. Hence, we augmented the analysis by computing 
Euclidean distances between fish species from the projection of species scores on the PTs and 
subsequently conducted a Hierarchical Cluster Analysis (HCA) based on Ward’s criterion. We 
selected the significant number of groups from the HCA based on a graphical interpretation of the 
dendrogram. The robustness of the selected number of clusters was tested by comparison with the 
alternative K-Means Cluster Analysis (Fig. S2.2). Using cluster analysis, we derived a simplification 
of the dynamics of the multitude of individual species into fewer sub-communities sharing similar 
spatio-temporal patterns. We also used information about species’ traits, in terms of behaviour and 
life history, to characterize these sub-communities (data from (Engelhard et al. 2011); Table S2.1). 
We tested if sub-communities had significant differences in the distribution of traits with a Kruskal-
Wallis test (for continuous traits) and Chi-square test (for qualitative traits). 

Example dataset – the demersal fish assemblage of the North Sea 

Abundance data of the North Sea demersal fish assemblage were compiled by the ICES 
(International Council for the Exploration of the Sea) Database for Trawl Surveys (DATRAS; 
http://datras.ices.dk/; data downloaded on the 16th of February 2016). Data were collected by the 
North Sea International Bottom Trawl Survey (ICES 2015), an international effort to monitor fish 
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populations and communities. Each contributing research vessel applies a standard otter trawl as 
sampling gear. Individual hauls are standardized to catch per unit effort, which represents the 
average catch per unit of time of trawling. To assure representative sampling of the fish community, 
at least two hauls are regularly conducted in pre-specified spatial rectangles (ICES statistical 
rectangles) of one degree longitude and 0.5 degree latitude each (ICES 2015). 

For our analysis, we only used data collected during the first quarter (January-March) of 
the year, in order to avoid seasonal bias and benefit from the longest time series available (31 year 
continuous period from 1985 to 2015). We investigated spatio-temporal changes of the fish 
community on the scale of the seven predefined areas (called roundfish areas by ICES, RAs; Fig. 
2.1B) which sub-divide the North Sea based on ecological aspects of the fish fauna, including 
spawning, feeding and species composition (Daan et al. 1990; Daan 2006). Hence, our dataset 
represents reliable relative annual abundance estimates per RA based on the aggregation of at least 
16 hauls. Our approach sacrifices spatial information collected on the smaller rectangle basis (ICES 
statistical rectangles) for a better estimation of the abundance on each spatial unit. Nevertheless, 
conducting the analysis on a higher spatial resolution resulted in similar outcomes (Fig. S2.3).  

We conducted pre-processing checks for misnaming or misidentification of species, 
removal of non-fish organisms and pelagic fish species that are not representatively sampled by the 
gear (Fung et al. 2012). Furthermore, we excluded sporadic species that occurred less than once 
every year in at least one area. By this procedure, we removed 50% of the total number of species 
recorded. However, these species amounted to less than 1% of the total abundance. Our final 
dataset contained annual abundance expressed in catch per unit effort of 65 individual species for 
the period 1985 to 2015 averaged over the seven RAs. We log(x+1)-transformed and then 
standardized the data (zero mean and sd of 1) to reduce the skewness and to scale rare and 
abundant species equally. Finally, we organized the data for the statistical analysis in an array of 
three dimensions, i.e. species, space and time, which we refer to as a tensor in the following text 
(Fig. 2.1A).  

Information about the biological characteristics of the species (maximum length, trophic 
level and biogeography) were extracted from Engelhard et al. (Engelhard et al. 2011). Boreal fishes 
are species that extend north to the Norwegian Sea and Icelandic waters. Lusitanian fishes tend to 
be abundant from the Iberian Peninsula to as far north as the British Isles and the central North 
Sea. Atlantic species are species widespread in the North Atlantic. 

All data analyses were performed with the statistical software environment R (R Core team 
2017). The PTA method is implemented in the R package PTA-k (Leibovici 2010) and a tutorial 
(containing script and data) explaining TD on fish assemblages is openly available on GitHub 
(https://github.com/rfrelat/Multivariate2D3D, DOI : 10.5281/zenodo.831739). 

Environmental conditions and fishing pressure influences on spatio-temporal 
community patterns 

We explored the effects of natural and anthropogenic drivers known to affect fish 
distribution patterns in the North Sea (Emeis et al. 2015), specifically depth, local hydrographic 
conditions, primary productivity, large-scale climate indices and fishing pressure. Depth was 
retrieved from the General Bathymetric Chart of the Oceans, (GEBCO 2014 grid, www.gebco.net) 
and averaged per subdivision. Local hydrographic conditions were represented by bottom and 
surface temperatures and salinities derived from optimally interpolated observations of the North 
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Sea (Núñez-Riboni & Akimova 2015). Chlorophyll a (Chl) concentration (as proxy for primary 
production) was estimated from GlobColour (http://globcolour.info), a product developed, 
validated, and distributed by ACRI-ST, France (Maritorena et al. 2010). The oceanographic dataset 
and GlobColour are provided with a monthly time step and at high spatial resolution (respectively 
0.2° and 1km). We spatially averaged these values over the RAs and derived three temporal indices 
from the 12 monthly values: an annual index (averages over 12 months, labelled with the subscript 
AN), a first quarter index (average values over January-February-March, labelled with the subscript 
Q1) and a seasonality index (difference between the maximum and minimum monthly value, labelled 
with the subscript var). The annual and the seasonality indices were compared to the fish abundance 
estimated in the first quarter of the following year. We restricted the number of temporal indices 
by considering a maximum lag of 1 year between the possible drivers and responses in fish 
abundance, which represents recruitment success of most species in the North Sea. 

Large-scale climate conditions were represented by the Atlantic Multidecadal Oscillation 
(AMO, (Enfield et al. 2001)), as well as the North Atlantic Oscillation (NAO, (Jones et al. 1997)) 
index. The two indices are known to affect the ecosystems of the North Atlantic and adjacent seas 
(Ottersen et al. 2001; Edwards et al. 2013). The NAO indicates high frequency (7-25 years) 
atmospheric variation, whereas AMO is a low frequency multidecadal (60 years) variation of the 
sea surface temperature. Time-series on both indices were derived from the climate indices 
platform of the Earth System Research Laboratory:  
http://www.esrl.noaa.gov/psd/data/climateindices/list/. Fishing effort as an index of 
exploitation pressure was estimated from a dataset provided by the Scientific, Technical and 
Economic Committee for Fisheries of the European Commission  
(https://datacollection.jrc.ec.europa.eu/data-dissemination). Annual fishing efforts (in hours per 
ICES rectangle per year and per gear type) are available from 2003 onwards. We followed the 
recommendation by Engelhard et al. (Engelhard et al. 2015) to consider beam and otter trawl effort 
separately. 

Potential external drivers were identified through correlation analysis with the derived PTs, 
as well as with the spatio-temporal dynamics of the sub-communities (represented by the spatio-
temporal distribution of species aggregated by cluster). For drivers that can be defined in time and 
space (e.g. hydrography and fishing effort), the relationships between the spatio-temporal matrices 
were tested using the RV coefficient, a generalization of the Pearson correlation coefficient for 
matrices, and applying a Monte-Carlo permutation test with 5,000 permutations (Heo & Gabriel 
1998). For 1-dimensional drivers defined only in time (e.g. climatic indices) or space (i.e. depth), 
Pearson correlation coefficients were computed. To account for the autocorrelation inherent in 
the time-series affecting significance levels, p-values were calculated from 5,000 random time series 
with similar first order autocorrelation (AR1). Eventually, the p-values were adjusted for multiple 
testing to correct false discovery rates following a method suggested by Benjamini and Yekutieli 
(Benjamini & Yekutieli 2001).  
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Results 

Spatio-temporal dynamics of fish assemblages in the North Sea  

PTA decomposed the initial tensor, i.e. the array of fish abundance in the three dimensions 
– species, space and time - into the dominant modes of variability, summarized in PTs. Based on 
a visual interpretation of the scree plot, we identified four significant PTs, which in total explained 
43.2 % of the variability in the North Sea demersal fish dataset (Fig. S2.1). We evaluated the 
significance of our results by performing a PTA on the same tensor, but with its values randomly 
shuffled. This analysis explained only 6% of the total variability, suggesting our decomposition to 
reliably capture the main patterns in our dataset. For simplicity and analogy with the more common 
PCA, we renamed the significant PTs with a number according to the decreasing order of variability 
explained, which differs from the labelling provided by the software used. The full results of the 
PTA (i.e., the output of the PTAk package) are provided in Fig. S2.1. 

Our results showed that the spatial structure of the fish assemblage explained a larger 
proportion of the variability in the dataset compared to temporal variability. Spatial structure is 
represented by three PTs that together explained 38% of the total variability. The temporal pattern 
on the other hand is represented by only one PT and explained 5.2% of the total variability. We 
used heatmaps with time and space on the x- and y-axes respectively, to visualize the four main 
patterns found (Fig. 2.2). PT 1 – 3 (Fig. 2.2A-C) revealed strong differences between RAs displayed 
by homogeneity in the abundance levels over time (i.e. homogeneity in row colours). PT4 (Fig. 
2.2D) represented a component of temporal variation that is homogeneous in space (i.e. 
homogeneity in column colours).  

PT1 explained 23.7% of the variability in the dataset and discriminated the northern (RA 
1, 2 and 3) and southern parts (RA 5 and 6) of the North Sea (Fig. 2.2A). Correlation analysis 
revealed significant relationships of PT1 with Chl (ChlQ1, p-value = 0.03), the seasonality of sea 
bottom temperature (SBTvar, p-value = 0.03) and of sea bottom salinity (SBSvar,, p-value = 0.03) 
(Table 2.1 and Table S2.2). Moreover, PT1 was correlated with sea bottom salinity (SBSQ1, p-value 
= 0.07) and depth (p-value = 0.07). Therefore, PT1 highlighted the differences of fish species living 
in the southern part of the North Sea, a shallow area with high primary production and pronounced 
seasonality in bottom temperature and salinity, compared to fish species living in the northern part, 
a deeper area with lower primary production and lower seasonal variations in temperature and 
salinity. In other words, the analysis revealed a strong north-south gradient in the composition of 
the North Sea fish community corresponding to a strong gradient in geography, hydrography and 
biological productivity. 

PT2 and PT3 explained 8.7 and 5.6% of the variability in the dataset, respectively. PT2 
showed the connectivity of fish communities to other seas and opposes the Atlantic entrance of 
the North Sea (toward the Norwegian Sea, RA 1, and the English Channel, RA 5) to the Baltic Sea 
entrance (RA 7) (Fig. 2.2B). PT3 discriminated the western (RA 3 and 4) and eastern NS (RA 1 
and 7) (Fig. 2.2C). PTs 2 and 3 were tensors with a temporal mode associated to PT1, i.e. they 
shared the same temporal components. PTs 2 and 3 were uncorrelated with environmental 
conditions and fishing pressure (Table 2.1). PT4 displayed the main temporal trend in the fish 
community and discriminated parts of the community continuously decreasing in abundance 
compared to those continuously increasing over the last 30 years (Fig. 2.2D). The trend shown by 
PT4 was correlated with the AMO (p-value =0.07, Table 2.1).  
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Figure 2.2: Results of the Principal Tensor Analysis with 4 principal tensors (PT) explaining together 
43% of the total variability in the North Sea fish assemblage. (A) PT1 showed a spatial gradient in 
species abundance from North to South. (B) PT2 showed the difference in abundance between 
strongly localized species (either in the North or the South) and species living in the central part of the 
North Sea. (C) PT3 showed the abundance difference between species in the West and East of the 
North Sea. (D) PT4 showed a temporal trend in species abundance. 
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Table 2.1: Correlation analysis to identify environmental influences on spatio-temporal community 
patterns. Correlation coefficients between drivers (in rows) and spatio-temporal dynamics of the 
North Sea fish assemblages (in columns). Pearson correlation coefficients and RV coefficients were 
calculated for 1- dimensional (e.g. climatic indices, depth) and 2 dimensional (e.g. hydrography and 
fishing effort) drivers, respectively. The subscript ‘Q1’ represents the first quarter of the year, ‘var’ 
indicates the seasonality of the previous year, i.e. the difference between the minimum and the 
maximum monthly values. PTs are the principal tensors found by the Principal Tensor Analysis; the 
spatio-temporal dynamics of the clusters were represented by the projection of their barycentre on the 
PTs. Adjusted p-values to correct for false discovery rates in multiple testing were computed and 
correlation significance is indicated by ‘°’ p<0.1 and ‘*’p <0.05. 

 
Tensor Decomposition Clusters 

 PT1 PT2 PT3 PT4 Southern Northern NW Inc SE Inc Increasing Decreasing 
SSTQ1 0.47 0.24 0.4 0.03 0.25 0.21 0.73 0.93 * 0.44 0.07 
SSTvar 0.51 0.26 0.28 0.02 0.24 0.27 0.65 0.96 * 0.49 0.05 
SBTQ1 0.64 0.39 0.05 0.05 0.32 0.56 0.39 0.89 * 0.59 0.13 
SBTvar 0.94 * 0.01 0.03 0.03 0.81  ° 0.45 0.61 0.67 0.06 0.46 
SSSQ1 0.68 0.20 0.14 0.10 0.40 0.49 0.49 0.84 ° 0.39 0.18 
SSSvar 0.08 0.41 0.31 0.18 0.09 0.07 0.20 0.39 0.48 0.27 
SBSQ1 0.84 ° 0.06 0.02 0.03 0.56 0.73  ° 0.29 0.61 0.18 0.32 

SBSvar 0.90 * 0.13 0.05 0.04 0.67 0.55 0.54 0.79  ° 0.25 0.36 

ChlQ1 0.92 * 0.08 0.02 0.00 0.97 ° 0.35 0.56 0.45 0.01 0.68 
Chlvar 0.83  ° 0.15 0.04 0.02 0.97 * 0.26 0.55 0.34 0.04 0.74 
Otter 0.52 0.31 0.12 0.23 0.19 0.88 0.05 0.46 0.47 0.05 
Beam 0.64 0.01 0.06 0.05 0.52 0.28 0.52 0.55 0.08 0.20 
AMO 0.40 - - 0.74  ° 0.70 -0.72  ° 0.74  ° 0.74  ° 0.74  ° -0.74  ° 
NAO 0.17 - - -0.06 -0.01 0.03 -0.06 -0.06 -0.06 0.06 
Depth 0.88  ° 0.36 -0.27 0.30 0.66 -0.96 * -0.38 0.75 -0.52 -0.5 

 

Characteristic sub-communities of North Sea fish species 

The projection of the fish species on the four PTs was used to cluster species according to 
their spatio-temporal dynamics (Fig. 2.3A). The dendogram indicated six clusters of species 
confirmed by the scree-test (Fig. S2.2). The six clusters were projected separately on the four PTs 
(Fig. 2.3B-D). Two clusters (Southern and Northern) had strong spatial patterns and no temporal 
trend, while two clusters (North-West Increasing and South-East Increasing) had a strong spatial pattern 
and a weak temporal trend. The two remaining clusters (Increasing and Decreasing) were characterized 
by a temporal pattern (Fig. 2.4). In the following, clusters of species are referred to as sub-
communities and we labelled them according to their spatio-temporal characteristics and 
characterized them through key species (identified by having the highest average abundance and 
represented by drawings in Fig. 2.4). The full species list and their assignments to the identified 
sub-communities is given in Table S2.1. 
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Figure 2.3: Classification of fish species based on their spatio-temporal dynamics. (A) Dendrogram 
of the Hierarchical Agglomerative Clustering and the separation of 6 clusters. (B-D) Clusters 
represented on the different principal tensors (PTs), with x-axis showing PT1 projections, and y-axis 
showing (B) PT2, (C) PT3 and (D) PT4 projections. 

 
Figure 2.4: Main characterization of the sub-communities. (A) Spatio-temporal abundance, 
represented in a heatmap with time on the x-axis and space on the y-axis. (B) Spatially average 
abundance of the clusters in the roundfish areas. (C) Temporal average of the abundance per cluster. 
(D) Illustrations of fish species with the highest abundance in the respective cluster (images from FAO 
and Wikimedia). 
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The Southern sub-community consisted of 14 fish species, among them lesser weever 
(Echiichthys vipera) and sole (Solea solea) with a distribution concentrated in the southern NS (RAs 5 
and 6) and very low abundance in the northern RAs 1 and 2 (Fig. 2.4). The Southern community 
was positively and significantly correlated with the Chl concentration and its seasonality (ChlQ1 and 
Chlvar; p-value = 0.07 and 0.03 respectively, Table 2.1) and mean annual sea bottom temperature 
of the previous year (SBTan; p-value = 0.04, Table S2.2). The Northern community consisted of a 
cluster of 10 fish species, among them saithe (Pollachius virens), with high abundance in the North 
(RA 1) and very low occurrence in the southern RAs 4 and 6. The Northern community was 
negatively correlated with depth (p-value = 0.03) and had a weak positive relationship with sea 
bottom salinity (SBSQ1, p-value = 0.07).  

The North-West increasing sub-community was a very heterogeneous cluster composed of 15 
fish species, including whiting (Merlangius merlangus), haddock (Melanogrammus aeglefinus), dab 
(Limanda limanda) and Norway pout (Trisopterus esmarkii). The high heterogeneity of the sub-
community resulted in weak temporal and spatial pattern, which appeared to be uncorrelated with 
environmental conditions and fishing pressure (Table 2.1). A positive temporal trend was observed 
for the South-East increasing sub-community, which consisted of 12 fish species, among them plaice 
(Pleuronectes platessa), concentrated in RAs 6 and 7. The South-East increasing sub-community was 
significantly correlated with sea bottom temperature (SBTQ1, p-value = 0.03) and with sea surface 
temperature and its seasonality (SSTQ1 and SSTvar,, p-value = 0.04 and 0.03 respectively). 

The Increasing sub-community was a cluster composed of 11 species, among them poor cod 
(Trisopterus minutus) and hake (Merluccius merluccius) with a positive temporal trend and a weak spatial 
preference (Fig. 2.4) for the entrance of the Atlantic Ocean (RA 1 and 3) or the English Channel 
(RA 5).  The Decreasing community was composed of a cluster of only 4 fish species, among them 
cod (Gadus morhua) and starry ray (Amblyraja radiata) characterized by a strong decreasing trend 
during the past 30 years. The two sub-communities Increasing and Decreasing were uncorrelated with 
environmental conditions and fishing pressure (Table 2.1).  

Finally, we investigated the biological characteristics of the six sub-communities described 
above by comparing the traits of species classified into each sub-community. The distribution of 
biological traits significantly reflected the north-south division of the fish sub-communities (Fig. 
2.5). Fish species were on average larger (significant difference, p-value = 0.001) in the Northern 
sub-community (median of 110 cm) and the Decreasing sub-community (107.5 cm), compared to 
fish in the Southern sub-community (41 cm) and South-East increasing sub-community (32.5 cm). The 
same separation was evident in the trophic level of the fish species (Fig. 2.5B, p-value = 0.04). The 
Northern and the Decreasing sub-community had a higher trophic level (on average 4.1 and 3.9, 
respectively) while the Southern sub-community and South-East increasing sub-community displayed 
lower average trophic levels (3.6 and 3.6, respectively). Furthermore, biogeography was a good 
indicator of the main temporal trends in the North Sea fish community (Fig. 2.5C, p-value = 0.002). 
The Increasing and South-East increasing sub-community were mainly composed of Lusitanian species, 
while the Decreasing cluster contained only boreal species. The latter division indicated the climatic 
influence on the temporal development of the North Sea fish community. 
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Figure 2.5: Biological characteristics of the spatio-temporal clusters (A: maximum length, B: trophic 
level and C: biogeography). Widths of the boxplot (A-B) and the bars (C) are proportional to the 
number of species per cluster. 

Discussion 

We demonstrated the use of TD, an integrative statistical analysis for studying multi-
dimensional datasets, typically collected by large-scale ecological monitoring programs. Here we 
analyzed a multi-decadal dataset on the spatial distribution of 65 demersal North Sea fish species 
to better understand the spatial structure and recent temporal changes in the species assemblages. 
Our study shows that TD is able to identify strong and persistent spatial structure in the fish 
community while simultaneously identifying strong temporal changes in abundance.  

The first main outcome of our study was the identification of a strong and stable spatial 
structure of the fish community into a Northern and a Southern sub-community. Correlation analysis 
explained this structure by differences in depth, primary production levels (represented by Chl 
concentrations), as well as the seasonality of temperature and salinity conditions. The 
demonstration of two very different sub-systems confirms earlier investigations in the area (Daan 
2006; Dulvy et al. 2008). To a lesser degree, our analysis revealed a west to east gradient in 
community dynamics (PTs 2 and 3), which despite insignificant correlations with the explaining 
variables used, is likely related to the transition zones to the open Atlantic Ocean (PT2) and to the 
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Baltic Sea (PT3). The spatial structuring revealed by our TD approach is robust to using biomass 
instead of abundance and especially to the spatial scale applied (Fig. S2.3). A higher resolution, i.e. 
on a statistical rectangle basis and therefore sacrificing sample sizes and adding noise in the 
estimated abundance, revealed the same spatial community structure as shown with the relatively 
coarse spatial scale of the RAs. 

A second main outcome of our study was that despite the strong and predominant spatial 
structure our method was able to identify strong temporal changes in the fish community. 
Although explaining only a comparatively small fraction of the overall variability in the dataset, this 
temporal trend indicates changes in community dynamics with a strong turning point around the 
late 1990s and the early 2000s. Correlation analysis indicated this change to be at least partly climate 
driven since it was correlated to the low frequency temperature variability of the AMO. The results 
confirm the importance of the recent positive anomaly phase of the AMO for ecosystem dynamics 
in the North-East Atlantic shown in earlier studies targeting single fish species or only small parts 
of the fish community alone (Beare et al. 2004; Sparrevohn et al. 2013), lower trophic level dynamics 
(Goberville et al. 2014) and multi-trophic ecosystem changes (Lindegren et al. 2012; Edwards et al. 
2013). Our correlation analysis showed no significant correlation with fishing effort, although there 
is undoubtedly a high impact of fishing on many commercially important species [27]. We attribute 
this result to the length of the time-series of fishing effort beginning only in 2003. However, if the 
low and non-significant correlations with fishing effort are a result of data shortage or are a result 
of the TD methodology remains to be seen in future studies. 

We used hierarchical cluster analysis on the PT projection to identify sub-communities that 
group species sharing similar spatio-temporal dynamics. We verified the internal consistency of 
these six sub-communities by investigating the distribution of biological traits within the identified 
clusters. This approach revealed meaningful results, showing that the Northern sub-community is 
composed of mainly boreal species with larger sizes and higher trophic levels compared to the 
smaller Lusitanian species residing primarily in the southern North Sea. Interestingly, the 
homogeneity in biological traits that we found for the clusters based on spatio-temporal dynamics 
supports the theory that organisms sharing similar traits exhibit similar dynamics (Engelhard et al. 
2011; Pecuchet et al. 2017). However, future analyses would benefit from using additional biological 
characteristics. 

As with any statistical approach, the ability of the method applied here is limited by the 
quality and amount of data available. For example, the dataset used covers the period 1985-2015, 
not including the stable period before the regime shift occurring in the North Sea during the late 
1980s (Beaugrand 2004; Kenny et al. 2009). Including this period of change would likely increase 
the importance of the temporal component (represented by PT4) compared to the spatial 
components (PTs 1-3) by increasing the range of variability in species abundance fluctuations. 
Spatial limitations, however, mean that we cannot track fish species that move out of the study 
area.  Moreover, limited sample sizes forced us to conduct the analysis on the scale of the seven 
RAs which may mask fine-scale spatial variability. However, as mentioned previously, we 
performed an additional analysis at the spatial scale of 168 statistical rectangles and found similar 
results (Fig. S2.3).  

Overall, the results of our study have implications for the design of future modelling studies 
with respect to spatial structure and trophic group composition of fish assemblages, for example 
in food web models (Stäbler et al. 2016). Similarly, our results can readily inform future ecosystem-
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based management approaches that are multi-species or community-based compared to the 
prevailing single-species approaches (Lindegren et al. 2009; Möllmann et al. 2014). For example, 
PTA could be used to define species assemblages based on in-situ data or, with a finer spatial scale, 
to define areas for management based on ecology rather than current political boundaries. 
Furthermore, we argue and conclude that multiway statistical approaches accounting for multiple 
dimensions of community data are fruitful and ready for uptake in community ecology and 
macroecology. Ecosystems and the species they contain vary both in time and in space. Classical 
two-way analyses simplify this information, which is inherently three dimensional, and therefore 
cannot investigate the multiple interactions between these dimensions (Cichocki et al. 2015). 
Methods such as the one applied here reveal these multidimensional patterns and provide a 
promising tool for knowledge discovery in large-scale datasets derived from modern ecological 
monitoring programs.  
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scale of roundfish areas), (B) abundance expressed in biomass (catch per unit effort, expressed in 
kg/hour) and (C) a finer spatial resolution, at the scale of ICES rectangle (and abundance in 
number/hour). The three decompositions are similar, with 4 significant PT. The three first PTs 
show strong spatial patterns, while the PT4 shows a trend in time series.   
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Table S2.1: Biological characteristics of species, ordered by cluster. Information about the 
biogeography, the trophic level (TL), the maximum length (Lmax) are from Engelhard et al., 2011. 
Average Catch per Unit Effort (av CPUE) are calculated from the data itself. 

   

Species Common	name Biogeography TL Lmax	(cm) av	CPUE
Agonus	cataphractus Pogge	(armed	bullhead) Boreal 3.4 21 5.0
Ciliata	mustela Five-bearded	rockling Boreal 3.5 45 0.8
Echiichthys	vipera Lesser	weever	fish Lusitanian 4.4 15 15.2
Enchelyopus	cimbrius Four-bearded	rockling Boreal 3.5 41 3.2
Gaidropsarus	vulgaris Three-bearded	rockling Lusitanian 3.3 43 0.0
Liparis	liparis Sea	snail Boreal 3.6 18 2.2
Liparis	montagui Montagu's	seasnail Boreal 3.5 10 0.1
Myoxocephalus	scorpius Bullrout	(father	lasher) Boreal 3.9 60 2.9
Pholis	gunnellus Butterfish	(gunnel) Boreal 3.5 25 1.0
Raja	clavata Thornback	ray Lusitanian 3.8 90 2.5
Solea	solea Sole Lusitanian 3.1 70 2.9
Taurulus	bubalis Sea	scorpion Boreal 3.6 18 0.7
Trisopterus	luscus Bib Lusitanian 3.7 45 3.8
Brosme	brosme Tusk Boreal 4 100 0.0
Glyptocephalus	cynoglossus Witch Boreal 3.1 60 0.9
Helicolenus	dactylopterus Bluemouth	redfish Atlantic 3.8 44 0.2
Hippoglossus	hippoglossus Halibut Boreal 4.5 200 0.0
Lepidorhombus	whiffiagonis Megrim Lusitanian 4.2 59 0.8
Lophius	piscatorius Anglerfish Lusitanian 4.4 200 0.6
Molva	molva Common	ling Boreal 4.3 200 0.4
Pollachius	pollachius Pollack Boreal 4.2 130 0.3
Pollachius	virens Saithe Boreal 4.4 120 11.6
Sebastes	viviparus Norway	haddock Boreal 4 35 0.2
Callionymus	lyra Common	dragonet Lusitanian 3.3 32 4.0
Eutrigla	gurnardus Grey	gurnard Lusitanian 3.6 50 200.4
Hippoglossoides	platessoides Long	rough	dab Boreal 3.7 50 93.7
Leucoraja	naevus Cuckoo	ray Lusitanian 3.9 70 1.0
Limanda	limanda Dab Boreal 3.3 40 619.4
Melanogrammus	aeglefinus Haddock Boreal 4.1 112 685.7
Merlangius	merlangus Whiting Lusitanian 4.4 70 1353.5
Microstomus	kitt Lemon	sole Boreal 3.3 45 10.6
Mullus	surmuletus Striped	red	mullet Lusitanian 3.4 40 1.0
Mustelus	mustelus Smoothhound Lusitanian 3.8 150 0.1
Myxine	glutinosa Hagfish Atlantic 3.5 45 0.0
Phrynorhombus	norvegicus Norwegian	topknot Boreal 4 12 0.3
Scophthalmus	rhombus Brill Lusitanian 3.8 75 0.1
Squalus	acanthias Spurdog Boreal 4.3 105 1.5
Trisopterus	esmarkii Norway	pout Boreal 3.2 26 1828.5
Arnoglossus	laterna Scaldfish Lusitanian 3.6 20 0.7
Buglossidium	luteum Solenette Lusitanian 3.3 15 7.2
Callionymus	reticulatus Reticulate	dragonet Lusitanian 3.3 11 0.1
Lumpenus	lampretaeformis Snake	blenny Boreal 3.6 49 0.4
Platichthys	flesus Flounder Lusitanian 3.2 50 1.1
Pleuronectes	platessa European	plaice Boreal 3.3 100 44.9
Pomatoschistus	minutus Sand	goby Lusitanian 3.2 10 0.8
Scophthalmus	maximus Turbot Lusitanian 4 100 0.4
Syngnathus	acus Great	pipefish Lusitanian 3.4 46 0.5
Syngnathus	rostellatus Nilsson's	pipefish Lusitanian 3.7 17 0.2
Trachinus	draco Greater	weever	fish Lusitanian 4.2 40 0.2
Zeugopterus	punctatus Topknot Lusitanian 4 25 0.1
Callionymus	maculatus Spotted	dragonet Lusitanian 3.3 16 0.9
Chelidonichthys	cuculus Red	gurnard Lusitanian 3.8 50 2.5
Chelidonichthys	lucerna Tub	gurnard Lusitanian 3.7 75 0.1
Entelurus	aequoreus Snake	pipefish Lusitanian 3.5 60 1.3
Merluccius	merluccius European	hake Lusitanian 4.4 120 2.2
Microchirus	variegatus Thickback	sole Lusitanian 3.3 35 0.1
Mustelus	asterias Starry	smoothhound Lusitanian 3.7 140 0.4
Raja	brachyura Blonde	ray Lusitanian 4 120 0.1
Raja	montagui Spotted	ray Lusitanian 3.7 80 0.7
Scyliorhinus	canicula Lesser	spotted	dogfish Lusitanian 3.7 80 4.3
Trisopterus	minutus Poor	cod Lusitanian 3.8 26 30.8
Amblyraja	radiata Starry	ray Boreal 4 90 8.5
Anarhichas	lupus Wolffish	(catfish) Boreal 3.2 125 0.1
Cyclopterus	lumpus Lumpsucker Boreal 3.9 61 0.3
Gadus	morhua Cod Boreal 4.4 190 37.9De
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Table S2.2: Full correlation coefficient table. Table of Pearson and RV correlation coefficient (c) with 
p-value (p) and adjusted p-value (ap). 
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Figure S2.1: Results of the Principal Tensor Analysis. Output of the PTA-k R-package (top) and 
selection of the four principal tensors (PTs) based on the scree-plot (bottom). 

 

 
  

Name PTA-k	names no Sing	Val ssX local	Pct Global	Pct
PT1 vs111 1 57.63 14040.00 23.66 23.66

65	vs111	31	7 3 9.10 3464.06 2.39 0.59
65	vs111	31	7 4 5.21 3464.06 0.78 0.19

PT2 31	vs111	65	7 6 35.03 6511.03 18.85 8.74
PT3 31	vs111	65	7 7 28.10 6511.03 12.13 5.62

7	vs111	65	31 9 17.69 4600.42 6.80 2.23
7	vs111	65	31 10 11.46 4600.42 2.85 0.93

PT4 vs222 11 27.14 6107.06 12.06 5.25
65	vs222	31	7 13 4.18 789.39 2.21 0.12
65	vs222	31	7 14 3.57 789.39 1.61 0.09
31	vs222	65	7 16 13.77 1313.69 14.44 1.35
31	vs222	65	7 17 12.48 1313.69 11.86 1.11
7	vs222	65	31 19 14.08 2068.85 9.58 1.41
7	vs222	65	31 20 13.01 2068.85 8.18 1.21
vs333 21 13.53 3408.02 5.37 1.30
65	vs333	31	7 23 4.36 220.69 8.63 0.14
65	vs333	31	7 24 3.07 220.69 4.26 0.07
31	vs333	65	7 26 7.96 336.79 18.81 0.45
31	vs333	65	7 27 6.38 336.79 12.07 0.29
7	vs333	65	31 29 11.66 996.61 13.64 0.97
7	vs333	65	31 30 9.61 996.61 9.28 0.66

PTA-		3	modes;	data	:	65	31	7	
Percent	Rebuilt-	:	56.37922	%
Percent	Rebuilt	from	Selected	:	43.26678	%
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Figure S2.2: Clustering analysis of the fish species realised with K-means algorithm 
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Figure S2.3: Robustness analysis to data transformation and spatial scale. TD computed with (A) the 
method presented in the manuscript (abundance expressed in number/hour, at the scale of roundfish 
areas), (B) abundance expressed in biomass (catch per unit effort, expressed in kg/hour) and (C) a 
finer spatial resolution, at the scale of ICES rectangle (and abundance in number/hour). The three 
decompositions are similar, with 4 significant PT. The three first PTs show strong spatial patterns, 
while the PT4 shows a trend in time series. 
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Abstract 

Fisheries and marine ecosystem-based management requires a holistic understanding of the 
dynamics of fish communities and their responses to changes in environmental conditions. 
Environmental conditions can simultaneously shape the spatial distribution and the temporal 
dynamics of a population, which together can trigger changes in the functional structure of 
communities. Here, we developed a comprehensive framework based on complementary 
multivariate statistical methodologies to simultaneously investigate the effects of environmental 
conditions on the spatial, temporal and functional dynamics of species assemblages. The 
framework is tested using survey data collected during more than 4,000 fisheries hauls over the 
Baltic Sea between 2001 and 2016. The approach revealed the Baltic fish community to be 
structured into three sub-assemblages along a strong and temporally stable salinity gradient 
decreasing from West to the East. Additionally, we highlight a mismatch between species and 
functional richness associated with a lower functional redundancy in the Baltic Proper compared 
to other sub-areas, suggesting an ecosystem more susceptible to external pressures. Based on a 
large dataset of community data analyzed in an innovative and comprehensive way, we could 
disentangle the effects of environmental changes on the structure of biotic communities –key 
information for the management and conservation of ecosystems. 

 

Keywords: Baltic Sea, demersal fish community, functional traits, multivariate analysis, spatio-
temporal dynamics, species distribution. 
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Introduction 

Understanding the impact of environmental conditions on the dynamics and diversity of 
fish communities is an essential preliminary step for a better prediction of their responses to future 
changes (Burrows et al. 2011) and for integrative ecosystem-based management (Pikitch et al. 2004; 
Levin et al. 2009; Möllmann et al. 2014). However, changing environmental conditions can impact 
biotic communities in multiple ways, and be responsible for changes in structure and function of 
ecosystems (McGill et al. 2006; Conversi et al. 2015). Environmental conditions are reported to 
shape the spatial distribution of species (Perry et al. 2005; Poloczanska et al. 2016; Smoliński & 
Radtke 2017), influence the temporal dynamics of communities (Rouyer et al. 2008; Möllmann et 
al. 2009; Hiddink & Coleby 2012), and select or favour some functional traits (Brind’Amour et al. 
2011; Wesuls et al. 2012; Asefa et al. 2017). To the best of our knowledge, no holistic empirical 
study has investigated simultaneously the effects of environmental changes on (1) spatial 
distribution, (2) temporal dynamics and (3) functional structure of species assemblages likely due 
to a lack of appropriate statistical methodologies. 

The development of multivariate statistical analyses during the past 20 years has provided 
ecologists with tools to comprehensively analyze community data and investigate the link between 
species assemblages, environmental conditions and functional traits (Dray et al. 2003; Dray & 
Dufour 2007; Legendre & Legendre 2012). Most notably, two frameworks were developed to 
extend the multivariate methods traditionally limited to the study of the common structure of a 
pair of data tables (e.g. matrices of species abundance and environmental data, Supplementary 
Table S3.1). First, the pair of data tables was extended to study a sequence of paired tables, 
sequence that could represent different times or spatial locations (Thioulouse et al. 2004; 
Thioulouse 2011). These approaches proved to bring new insights into the spatio-temporal 
structuring of ecological communities (Mazzocchi et al. 2012; Kidé et al. 2015; Chamaille-Jammes 
et al. 2016). Second, the pair of data tables was extended to a triplet of data tables (Dray & Legendre 
2008; Pavoine et al. 2011; Dray et al. 2014) and allowed the analysis of additional information about 
traits to discern the traits selected by environmental conditions (Brind’Amour et al. 2011; Wesuls et 
al. 2012; Asefa et al. 2017). However, these two frameworks are often used separately, limiting 
studies to investigate the effect of the environment either on the spatio-temporal dynamics of 
communities or on the selection of traits. 

Here, we developed a comprehensive framework based on complementary multivariate 
statistical methodologies to simultaneously investigate the effects of environmental conditions on 
the spatial, temporal and functional dynamics of species assemblages, using the Baltic Sea fish 
community as a case study. The Baltic Sea is a semi-enclosed sea strongly affected by anthropogenic 
pressures and climate change (Möllmann et al. 2009; Korpinen et al. 2012; Andersen et al. 2015). A 
strong west-east salinity gradient (Fig. 3.1A) allows the coexistence of approximatively 200 fish 
species (Ojaveer et al. 2010) ranging from marine to limnic species (Bonsdorff 2006). The species 
assemblages are dominated by clupeids, sprat (Sprattus sprattus) and herring (Clupea harengus), that 
together with cod (Gadus morhua) and flounder (Platichthys flesus) account on average for 90% of the 
catches. Furthermore, regional climate change models predict an increase in temperature and a 
decrease in salinity but a high uncertainty remains about the impact of climate change on fish stocks 
(MacKenzie et al. 2007; Hiddink & Coleby 2012; Niiranen et al. 2013). The recent increase of anoxic 
and hypoxic areas in the central Baltic Sea also creates additional pressure on the demersal fish 
communities (Hinrichsen et al. 2011; Casini et al. 2016; Neumann et al. 2017). Therefore, it is urgent 



Chapter 3 

 44 

to investigate the role of environmental condition on the spatio-temporal dynamics and structures 
of fish assemblages in this area.  

Here we provide a coherent and comprehensive analysis of spatial, temporal and functional 
dynamics of an entire fish community using modern multivariate statistical approaches. In our case 
study, we identified sub-assemblages of the Baltic Sea fish community that co-exist and are 
susceptible to similar environmental conditions. Comprehensive multivariate statistical analyses as 
suggested and demonstrated here provide crucial information needed for coherent ecosystem-
based management of the oceans. 

Material and Methods  

Fish abundance data 

Abundance data were collected during the Baltic International Trawl Survey (BITS) (ICES 
2014). Since 2001, the survey has been carried out with a harmonized sampling scheme and a 
standard gear to sample the demersal fish community in the Baltic Sea. This sampling scheme 
consists of trawl hauls with a duration of 30 minutes on average, carried out at a speed of 3 knots 
with a demersal otter trawl gear best suited for sampling demersal fish such as gadoids and flatfish. 
Because of poor survey coverage in shallow areas, we excluded hauls carried out at depths shallower 
than 20 m. We only included valid hauls carried out during the first quarter of the year (15 February 
– 31 March). In total, our dataset included information from 4086 hauls carried out between 2001 
and 2016. With around 250 hauls per year on average, the sampling has a good spatial coverage of 
the area defined from the Kattegat to the northern Baltic proper (no hauls were recorded at latitude 
higher than 59°N). The original dataset was downloaded from the ICES Database for Trawl 
Surveys (DATRAS; http://datras.ices.dk/ Home/Default.aspx; data downloaded on the 22nd of 
June 2017). 

We conducted pre-processing checks to fix mis-identified species and removed non fish 
species following previous recommendations (Hiddink & Coleby 2012; Fung et al. 2012). We 
aggregated species to genus or family level when species were not consistently identified (only for 
Gobiidae and Callionymus spp.) as suggested by Fung et al. (2012). Among the pelagic species, only 
sprat and herring were retained in the analyses since they are the two species with the highest 
catches in the BITS and are consistently caught in almost all the hauls. Other pelagic fish species 
are not properly sampled by the otter trawl gear and were removed from the dataset. Details of 
data cleaning are given in Table S3.2. Furthermore, we excluded rare species that occurred in less 
than 1% of our dataset (i.e. recorded in less than 40 hauls). The procedure identified 60 rare species 
(61% of all recorded species), that in total correspond to less than 0.01% of the total abundance. 
The final community dataset consisted of abundance values (expressed in number per trawling 
hour) of 33 species from 4086 hauls.  

Traits dataset 

Information on the life history of Baltic fish species was retrieved from a previous study 
(Pecuchet et al. 2016) and the Fishbase database (Froese & Pauly 2017). Specifically, trophic level 
and maximum length (in cm) were extracted from Fishbase (Froese & Pauly 2017). Mean fecundity 
(in number of eggs spawned per adult female in one spawning season), the shape of the caudal fin 
(in 5 categories: rounded, truncated, emarginated, forked and continuous) and the body shape (in 
4 categories: gadoid-like, flat, elongated and eel-like) were obtained from Pecuchet et al. (2016). In 
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total, two qualitative and three quantitative traits were used to characterize the 33 fish species. 
These five different traits are complementary and describe the diet, habitat and reproduction for 
all species included in the study (Pecuchet et al. 2016). For graphical visualization, species were 
identified in accordance with their FAO 3-Alpha Species Codes provided in Table 3.1 (ASFIS, 
http://www.fao.org/fishery/collection/asfis/en, version Feb. 2017). 

Table 3.1: Fish species found in the Baltic Sea, ordered per spatial cluster. Traits are derived from 
Pecuchet et al., 2016, 2017; Froese and Pauly, 2017. 

 Species 
FAO 
name 

Trophic 
Level 

Maximum 
length (cm) 

Fecundity 
(# eggs) 

Caudal 
shape 

Body 
shape 

Ka
tte

ga
t 

Arnoglossus laterna MSF 3.6 25 50,000 Rounded Flat 

Callionymus YVX 3.3 32 5,000 Rounded Gadoid-like 

Eutrigla gurnardus GUG 3.6 60 245,000 Emarginated Gadoid-like 

Glyptocephalus cynoglossus WIT 3.1 60 100,000 Rounded Flat 

Hippoglossoides platessoides PLA 3.5 83 380,000 Rounded Flat 

Lepidorhombus whiffiagonis MEG 4.2 60 500,000 Rounded Flat 

Lumpenus lampretaeformis LMJ 3.6 50 700 Rounded Eel-like 

Melanogrammus aeglefinus HAD 4 112 9,000,000 Emarginated Gadoid-like 

Merluccius merluccius HKE 4.4 140 1,000,000 Truncated Elongated 

Microstomus kitt LEM 3.2 65 200,000 Rounded Flat 

Pholis gunnellus FGN 3.5 25 100 Rounded Eel-like 

Scophthalmus rhombus BLL 3.8 75 5,000,000 Rounded Flat 

Solea solea SOL 3.1 70 300,000 Rounded Flat 

Trachinus draco WEG 4.2 53 57,600 Truncated Gadoid-like 

Trisopterus esmarkii NOP 3.2 35 220,000 Emarginated Gadoid-like 

Trisopterus minutus POD 3.7 40 10,000 Truncated Gadoid-like 

W
es

te
rn

 

Agonus cataphractus AFT 3.4 21 3,000 Rounded Elongated 

Gobiidae FGX 3.2 10 3,000 Rounded Elongated 

Limanda limanda DAB 3.3 40 150,000 Rounded Flat 

Merlangius merlangus WHG 4.2 70 400,000 Truncated Gadoid-like 

Pleuronectes platessa PLE 3.3 100 552,000 Rounded Flat 

Pollachius virens POK 4.2 130 2,900,000 Emarginated Gadoid-like 

Ea
st

er
n 

Clupea harengus HER 3.2 45 60,000 Forked Gadoid-like 

Cyclopterus lumpus LUM 3.8 61 100,000 Truncated Gadoid-like 

Enchelyopus cimbrius ENC 3.5 41 500,000 Rounded Elongated 

Gadus morhua COD 4.3 200 1,000,000 Truncated Gadoid-like 

Gasterosteus aculeatus GTA 3.4 11 350 Truncated Gadoid-like 

Myoxocephalus quadricornis TGQ 3.7 60 18,000 Truncated Gadoid-like 

Myoxocephalus scorpius MXV 3.6 60 10,000 Truncated Gadoid-like 

Platichthys flesus FLE 3.2 60 1,000,000 Rounded Flat 

Scophthalmus maximus TUR 4 100 5,000,000 Rounded Flat 

Sprattus sprattus SPR 3 16 10,000 Forked Gadoid-like 

Zoarces viviparus ELP 3.5 52 100 Continuous Elongated 



Chapter 3 

 46 

Environmental dataset 

Based on the location and time of each of the 4086 hauls, we extracted nine environmental 
variables. We selected environmental variables based on their potential or known effect on the 
demersal fish community, specifically depth, local hydrographic conditions, primary productivity 
and large-scale climatic conditions. Additionally, we assured that the selected variables were not 
strongly cross-correlated (Pearson coefficient < 0.7). 

Trawl depth was retrieved directly from the information provided in the BITS dataset. Five 
variables concerning local hydrographic conditions were derived from the Baltic Sea Ice-Ocean 
Model (BSIOM) (Lehmann & Hinrichsen 2000; Lehmann et al. 2002, 2014), a hydrodynamic model 
with an oxygen consumption calculation sub-module. BSIOM provided values of temperature, 
salinity and oxygen with a horizontal resolution of 2.5 km and 60 vertical levels. The temporal 
evolution of three-dimensional temperature, salinity and oxygen fields are in good agreement with 
hydrographic measurements of the ICES database (Lehmann et al. 2014). The five variables used 
in this study were annual bottom temperature, oxygen and salinity, surface temperature at the time 
of the survey and seasonality of bottom temperature. Annual bottom hydrographic conditions were 
selected as characteristic of the habitat (temperature: sbt_an, salinity: sbs_an, and oxygen: oxb_an). 
Average surface temperature during the first quarter (sst_q1) was selected as a snapshot of the 
hydrographic conditions at the time of the survey. The seasonality of bottom temperature (sbt_ra) 
was estimated as the range between average monthly temperatures and is an indicator of seasonal 
variation of the benthic habitat. Two variables concerning primary productivity were estimated 
from the Chlorophyll a concentration (mg.m-3) of the GlobColour project (Maritorena et al. 2010), 
merging Ocean Colour products from different sensors. We used a monthly averaged dataset with 
a spatial resolution of 1 km, downloaded from http://hermes.acri.fr/ on 13th June 2017. The two 
variables selected as indicators of the primary production were Chlorophyll a concentrations 
averaged over the first quarter (chl_q1) and over the previous year (chl_an). Large-scale climate 
conditions were represented in our analysis by the North Atlantic Oscillation (NAO) index (Hurrell 
1995), which indicates high frequency (7-25 years) atmospheric variations and is known to affect 
Baltic biotic communities (Hänninen et al. 2000; Möllmann et al. 2009). The NAO time series was 
downloaded from the climate indices platform of the Earth System Research Laboratory: 
http://www.esrl.noaa.gov/psd/data/climateindices/list/ on 2nd June 2017. 

Multi-tables multivariate analyses  

First, each dataset (i.e. species abundance, species traits and environmental data) was 
analyzed according to appropriate ordination methods corresponding to the nature of the variables 
(Fig. 3.1B, Table S3.1). Correspondence analysis (CA) was computed on the fish abundance dataset 
(a matrix of species by sample). CA is well suited for abundance data along large environmental 
gradient because species communities often show a unimodal distribution along a gradient and, 
using the chi-square distance, CA can highlight differences of species composition profiles 
(Legendre & Gallagher 2001; Greenacre 2017). Abundance was previously log-transformed (x+1) 
to reduce the influence of the dominant species in the analysis of community structure. Principal 
component analysis (PCA) was performed on the environmental dataset with 9 quantitative 
variables (a matrix of environment variables by sample) using the row weights (corresponding to 
the samples) from the previous CA on the fish abundance dataset in order to permit the 
comparison between species distribution and environmental conditions. The trait dataset (a matrix 
of species by trait) contained a mix of quantitative and qualitative variables and was analyzed using 
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the Hill and Smith method (Hill & Smith 1976). This method combined a PCA on quantitative 
variables and a multiple correspondence analysis on qualitative variables. Species were weighted 
according to column weights in the previous CA on the fish abundance dataset, in order to permit 
the comparison between species distribution and species traits.  

Secondly, we used within and between-group analysis to assess and separate spatial and 
temporal variabilities, with the year of sampling as grouping variable (Dolédec & Chessel 1987; 
Franquet et al. 1995). Between-group analysis is analogous to an ordination of the table of group 
means. In other words, it seeks to reveal the main temporal pattern by looking for the highest 
differences among years. Within-group analysis is the reverse of between-group analysis, i.e. it is 
the ordination of the residuals among initial data and group means. It removes the effect of the 
grouping variable and analyses the remaining variability, so in our case the spatial variability.  

Thirdly, co-inertia analysis (COA) was used to link fish community composition with 
environmental conditions by coupling these two data tables (Dray et al. 2003, 2014). COA is an 
unconstrained symmetric analysis that searches for axes that maximize the covariance between the 
samples of both data tables. We applied COA on the results of the between and within-group 
analysis, resulting in the so called Between-group co-inertia analysis (BGCOA) and the Within-
group co-inertia analysis (WGCOA) (Thioulouse 2011). BGCOA reveals the temporal co-
dynamics between fish species and the environment. WGCOA shows the spatial structure of the 
fish community that could be explained by environmental conditions. Beforehand, the association 
between the two tables was tested using a Monte-Carlo permutation test and the RV coefficient 
(Heo & Gabriel 1998). The RV coefficient is a generalization of the Pearson’s correlation 
coefficient for matrices (instead of vectors). A permutation test with 1,000 random permutations 
was performed to evaluate if the association between the two data tables was significantly stronger 
than expected by chance. In the cases that the p-value was higher than 0.05, the results of the COA 
were not analyzed and are not presented in the Results section. 

Finally, fourth-corner and RLQ methods were used to assess the link between the species 
trait composition and environmental variation (Dolédec et al. 1996; Dray & Legendre 2008; Dray 
et al. 2014). The fourth-corner method is a permutation test to evaluate the pairwise association 
between traits and environmental variables, measured by a Pearson’s correlation coefficient. We 
used a combination of permutations of samples and of species to correct for inflated type I error 
(Dray & Legendre 2008). RLQ is a multivariate method, that assess the trait-environment 
relationships (Dolédec et al. 1996). Partial RLQ takes into account the partition of environmental 
variation in within and between-groups analysis (Wesuls et al. 2012). In the case that none of the 
relationships between species traits and the environment was significant in the fourth-corner test, 
the results of the RLQ analysis are not presented in the Results section. 
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Figure 3.1: Overview of the study. (A) Map of the Baltic Sea with surface salinity of January 2015 
represented in scales of blue. (B) Schematic representation of the different dataset and the multivariate 
methods used for their analysis. A description of the methods can be found in Table S3.2 

Definition and characterization of spatial sub-assemblages 

We defined sub-assemblages of Baltic Sea fish species that share similar spatial distributions 
and hence are favoured by similar environmental conditions. We computed Euclidean distances 
between fish species from the projection of species on the PCs of the WGCOA, and subsequently 
conducted a hierarchical cluster analysis based on Ward’s criterion (Ward 1963). Based on a 
graphical interpretation of the dendrogram, we selected the number of clusters. The robustness of 
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the selected number of clusters and of the clustering solution was tested by comparison with the 
alternative k-means cluster analysis. The clustering provided a simplification of the fish community 
into fewer sub-assemblages sharing similar spatial distributions. We characterize these sub-
assemblages by looking at their temporal dynamics and functional richness. Functional richness 
was calculated as the area of the convex hull on the functional space, i.e. the volume of the 
functional space occupied by the community(Villéger et al. 2008). The functional space is defined 
from species projections on the principal components of the previous Hill and Smith analysis.  

Software and sources 

All statistical analyses were conducted in the programming environment R 3.3 (R Core 
team 2017). The ade4 package (Dray & Dufour 2007) was used to compute the multivariate 
analyses. The functional richness was calculated with the FD R package (Laliberté & Legendre 
2010). Maps were created with the mapdata package (Becker et al. 2016). The cleaned datasets and 
the R-script are available in the Supplementary Material at ICESJMS online version of the article. 

Results 

Spatial distribution of the fish community linked with environment 

The structure of the fish community in the Baltic Sea was strongly linked with salinity 
conditions and depth (Fig. 3.2). The first two principal components of the within-group co-inertia 
analysis (WGCOA) explained 95% of the covariance between fish abundance and environmental 
variables. The first principal component (PC1, 87% of the covariance) separated fish species 
favouring highly saline waters in the Kattegat, against fish species inhabiting less saline waters in 
the Baltic Proper (Fig. 3.2A&B). The salinity gradient was also associated with higher bottom 
temperatures (sbt_an), higher primary production (chl_q1) and shallower waters (Fig. 3.2F). Most 
of the fish species had a negative score on PC1 (Fig. 3.2E, left side on the x-axis), i.e. were located 
in highly saline waters. The second PC, explaining only 8% of the covariance, represented mainly 
the differences between shallow and deep waters (Fig. 3.2C&D). Deep basins were also associated 
with lower seasonal variation in bottom temperature and lower oxygen content (Fig. 3.2F). Some 
species strongly preferred shallow waters (Scophtalmus maximus, TUR), while others were caught 
mainly in deep basins (Enchelyopus cimbrius, ENC) (Fig. 3.2E). 
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Figure 3.2: The within-group co-inertia analysis summarized the spatial links between community 
composition and environmental conditions in two Principal Components (PC). The red to blue 
colour gradient represents the hauls’ score on the PC1 based on fish composition (A) or environmental 
variables (B). The purple to green gradient represents the hauls’ score on PC2 based on fish 
composition (C) or environmental variables (D). The link between fish composition and 
environmental conditions can be visualized by the scores on the two first PCs of fish species (E) and 
environmental variables (F). Species are represented following the 3-letters code shown in Table 3.1. 
The names of the environmental variables showing low scores on the PCs were abbreviated: sbt_an is 
the annual bottom temperature, sst_q1 is the surface temperature during the first quarter, chl_q1 and 
chl_an are chlorophyll a concentrations averaged over the first quarter and over the previous year, 
respectively.  
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Three sub-assemblages of the Baltic Sea fish community were identified with hierarchical 
clustering analysis based on their PC scores derived by the WGCOA (Fig. 3.3A, as also confirmed 
by K-means, Supplementary Fig. S3.1). The sub-assemblages grouped species according to their 
spatial distribution and to whether they were sharing similar environmental conditions. The 
differences between sub-assemblages were mainly defined along PC1 (Fig. 3.3B, x-axis), in other 
words were strongly linked to the west-east salinity gradient. A sub-assemblage of 16 Kattegat fish 
species (Table 3.1) were favoured by high saline waters, therefore inhabiting only the Kattegat 
(latitude higher than 56°N and longitude lower than 13°E). The Kattegat sub-assemblage included 
among the most abundant species, American plaice (Hippoglossoides platessoides, PLA), norway pout 
(Trisopterus esmarkii, NOP), dragonets (Callionymus spp., YVX) and greater weever (Trachinus draco, 
WEG). The cluster analysis identified another sub-assemblage of 6 Western Baltic fish species (Table 
3.1), adapted to middle salinity conditions, with a distribution ranging from the Kattegat to the 
Arkona basin (longitude lower than 15°E). The Western Baltic fish species included dab (Limanda 
limanda, DAB), whiting (Merlangius merlangus, WHG) and European plaice (Pleuronectes platessa, PLE). 
The third sub-assemblage comprised 11 Eastern Baltic fish species (Table 3.1) that were favoured 
by low salinity conditions and could potentially inhabit the entire study area, from the Kattegat to 
the northern Baltic proper. The Eastern Baltic group included sprat (Sprattus sprattus, SPR), herring 
(Clupea harengus, HER), cod (Gadus morhua, COD) and flounder (Platichthys flesus, FLE).  

 
Figure 3.3: Three sub-assemblages were identified from a cluster analysis of Baltic Sea fish species 
according to their spatial distribution. (A) Dendrogram of the cluster analysis, suggesting three 
distinct groups. (B) Projection of the groups on the two first PC of the within-group co-inertia analysis. 
The key environmental drivers are shown on the PC.  
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Temporal and functional patterns of the fish community 

According to the between-group analysis, the temporal dynamics of the Baltic Sea fish 
community accounted for only 2% of the variance of fish abundances, suggesting a relatively stable 
structure of fish assemblages during the period 2001-2016. The relationship with environmental 
dynamics, tested with a permutation test using the RV coefficient, was not significant (p-value = 
0.1) (Fig. S3.2). Therefore, the results of the between-group co-inertia analysis linking fish dynamics 
and environment are not presented here, but rather the results of the between-group analysis of 
fish community dynamics (even if representing only 2% of total spatio-temporal variance). The 
main mode of variability in the fish community dynamics was associated with a general increase in 
species abundances between 2001 and 2016 (PC1, explaining 39% of the temporal variance) (Fig. 
3.4A). The species with the highest relative increase were Arnoglossus laterna (MSF) and Myoxocephalus 
quadricornis (TGQ) (Fig. 3.4B). Some species also experienced a decrease, especially Lepidorhombus 
whiffiagonis (MEG) that was last recorded in the Baltic Sea in 2011. The second PC, explaining 19% 
of the temporal variance, highlighted the difference in abundances between the years 2001 and 
2013 and the year 2016, which was mainly characterizing the dynamics of saithe (Pollachius virens, 
POK) (Fig. 3.4A&B).  

The ordination of the five functional traits with the Hill and Smith analysis highlighted two 
main functional characteristics of fish species along the first two PCs, together explaining 55% of 
the traits variance (Fig. 3.4C). The first PC (32% of the total variance) summarized the small-large 
continuum. Large, high trophic level, and high fecundity species such as cod (Gadus morhua, COD) 
were separated from species that are small, with low trophic level and low fecundity such as rock 
gunnel (Pholis gunnellus, FGN) or sprat (Sprattus sprattus, SPR) (Fig. 3.4D). The second PC (23% of 
the total variance) revealed the difference between flat fish species with rounded caudal fin and the 
gadoid-like shaped species. The link between fish traits and environmental variables was tested 
with a fourth corner permutation test and no significant relation was found between individual 
traits and environmental variables (Fig S3.3). 
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Figure 3.4: Temporal and functional characteristics of fish community. (A) The temporal dynamics 
revealed by between-group analysis and summarized in 2 PCs, explaining respectively 39 and 19% of 
the total variance. (B) Projection of fish species on these temporal PC is displayed with colour 
associated to their spatial sub-assemblage. (C) Functional space, revealed by Hill and Smith analysis, 
with 2 PCs explaining respectively 32% and 23% of the total variance. (D) Projection of fish species on 
these functional PC is displayed with colour associated to their spatial sub-assemblage. 

Sub-assemblages characteristics and local biodiversity indices 

The spatial distributions of the three sub-assemblages were nested, i.e. the Western Baltic 
sub-assemblage also inhabits the Kattegat, and the Eastern Baltic sub-community was present all 
over the surveyed area (Fig. 3.5A). The temporal dynamics were quite diverse but, on average, the 
abundance of fish species had increased in the observation period (grey shaded area in Fig. 3.5B). 
However, we observed differences between the sub-assemblages, the Kattegat displaying the lowest 
relative increase in abundances (apart of 2016) and the Eastern Baltic sub-assemblage the highest. 
Interestingly, the functional richness of the Kattegat and Eastern Baltic sub-assemblages was high 
(Fig. 3.5C).  
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The spatial overlap of the three sub-assemblages was confirmed by the community 
composition per haul (Fig. 3.6A&B). Hauls in the Kattegat (defined by latitude higher than 56°N 
and longitude lower than 13°E) were composed, on average, of 34% of Kattegat fish, 31% of Western 
Baltic fish and 35% of Eastern Baltic fish. Hauls carried out in the Baltic Proper (longitude >15°E) 
were nearly exclusively composed of species from the Eastern Baltic sub-assemblage (95% and 5% 
from the Western Baltic sub-assemblage). The spatial distribution of species richness per haul 
confirmed the increase of species richness along the salinity gradient (Fig. 3.6C). As expected from 
the nested sub-assemblages and the high functional richness of the Eastern Baltic sub-assemblage, 
functional richness had a relatively lower variation along the salinity gradient (Fig. 3.6D). The recent 
increase in abundance of some fish species of the Eastern Baltic assemblage could explain the recent 
increase of species richness among the less diverse hauls (the 9th decile showed an increase since 
2009, while the median is more or less stable) (Fig. 3.6E).  

 
Figure 3.5: Spatial, temporal and functional characterization of the sub-assemblages. (A) Average 
spatial distribution, with the intensity of colours proportional to the spatial distribution. (B) Temporal 
dynamics from 2001 to 2016. The bold line represents the median relative abundance, the shaded area 
the inter-decile range. The whole fish assemblage is represented in grey, the sub-assemblages in their 
respective colours. (C) Functional richness of the sub-assemblages, compared with the whole 
community; PC1 in x-axis represents the difference between large (left) and small (right) fish species, 
PC2 in y-axis represent the difference between flat (up) and gadoid-like shaped (bottom) fish species. 
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Figure 3.6: Fish biodiversity in the Baltic Sea from the information of more than 4,000 samplings. 
(A+B) Hauls composition of the three sub-assemblages are represented in RGB colour scale with red 
for the Kattegat, green for the Western and blue for the Eastern sub assemblages. (C+D) Spatial 
distribution of species and functional richness per haul. (E) Temporal evolution of species richness, 
the line represents the median, the shaded area represents the interdecile range. 

Discussion 

Environmental conditions drive fish community composition 

Based on a large dataset of more than 4,000 samples and using complementary multivariate 
analyses and statistical tests, we investigate the links between fish communities and environmental 
conditions in the Baltic Sea. Salinity, decreasing from marine waters in the Kattegat to brackish 
waters in the Baltic Proper, is the main driver of fish community composition. Along this gradient, 
our statistical approach is able to identify three sub-assemblages within the overall Baltic fish 
community. The three sub-assemblages are nested, with most fish species inhabiting the Kattegat. 
This finding agrees with the predicted reduction of species richness from marine to brackish water 
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(Pecuchet et al. 2016; Smoliński & Radtke 2017), also found in the Baltic Sea zoobenthic community 
(Bonsdorff 2006). Additionally, our study disentangles the species composition and identifies 16 
species strongly limited in their spatial distribution by salinity, preferring high-salinity conditions 
(the Kattegat sub-assemblage). Interestingly, the depth gradient is often reported as the most 
important environmental driver shaping the fish community in other Large Marine Ecosystem 
(Kidé et al. 2015; Dencker et al. 2017; Pecuchet et al. 2017). Here we find a weaker linkage of fish 
assemblages with depth, confirming the very unique conditions in the semi-enclosed brackish 
waters of the Baltic Sea. The salinity gradient is, by far, the main driver of fish assemblages, 
suggesting that the Baltic Sea could be more similar to a large estuary than open ocean. While this 
information is not novel, our study compares both drivers quantitatively and we find that salinity 
explain 87% of the covariance between fish and environmental conditions, while the depth gradient 
accounts only for 8%. If similar methodological framework would be applied to other ecosystems, 
we could compare the importance of different drivers across marine ecosystems. Our approach 
needs a large amount of collected data, which are already available for intensively monitored seas 
in Europe (Granger et al. 2015; Dencker et al. 2017; Frainer et al. 2017) or in North America (Batt 
et al. 2017). 

Mismatch between taxonomic and functional diversity 

Even though species distributions are highly linked with environmental gradients, we do 
not find any significant relationship between the functional characteristics of fish species and 
environmental conditions. If species would be selected randomly, the functional richness would 
tend to increase with the number of species (Mouillot et al. 2007). On the contrary, the spatial 
overlap of sub-assemblages and the high functional richness of Kattegat and Eastern Baltic sub-
assemblages suggest that the number of species is reduced along the west-east gradient but without 
a decrease of functional richness (Fig. 3.5C&3.6C). This is especially surprising for the Eastern Baltic 
sub-assemblage, which includes the few species that can tolerate the low salinity conditions. These 
remaining species are able to occupy all the “niches” defined in the functional space, suggesting 
that the environmental conditions may limit similarities between the remaining species thus 
favouring the realisation of all the niches needed for the functioning of communities. This result 
agrees with Pecuchet et al. (2016) that proved a distinction between environmental filtering acting 
in the western Baltic Sea and neutral or limiting similarity acting in the Baltic Proper. However, 
Pecuchet et al. (2016) also found a link between functional richness and salinity when the diversity 
indicator was aggregated spatially into a regular grid. This link is not confirmed by our analysis 
made at the species level and considering each individual haul. The difference can be explained by 
some outlier hauls in the Baltic Proper with low catches, resulting in an abnormal low functional 
richness that can have a high influence on spatially averaged values. Moreover, the limited number 
of traits, although usual in functional studies of fish assemblages (Dencker et al. 2017; Pecuchet et 
al. 2017), covers only the life history strategies (survival, growth, reproduction) and do not take 
into account tolerance range of species (e.g. temperature or salinity preferences). Adding 
environmental tolerance traits would clearly increase the link between environment and traits, but 
our goal was to focus only on the life history strategies.  

Limits of data driven approach 

As with any statistical approach, the ability of the methods applied here is limited by the 
quality and amount of data available. For example, the dataset used covers the 16-year period from 
2001 to 2016, i.e. after the regime shift occurring in the Baltic Sea during the late 1980s (Möllmann 



3D view on biodiversity changes 

 57 

et al. 2009; Casini 2013). Including the period prior to the shift would likely increase the importance 
of the temporal dynamics and the capacity to detect a significant link with environmental variability. 
Even though the sampling started in 1991, we did not include data prior to 2001 because the 
sampling was performed using different gears and the sampling scheme of the surveys was 
different, potentially affecting the robustness of our analysis. The short length of the time series is 
the main limitation of our study, and it stresses the importance of rigorous and continuous data 
collection, a very valuable source of information in order to understand, preserve and manage 
marine ecosystems in a better way. In our analysis, the absence of a link between the temporal 
dynamics of fish species and the environmental conditions in the period 2001-2016 is informative. 
This finding is contrary to Hiddink and Coleby (2012) that linked the dynamics of species richness 
with temperature in Kattegat and salinity in Baltic Proper. The difference can be explained by a 
different time period (1990-2008) used by Hiddink and Coleby (2012) and the fact that our 
approach does not aggregate species into a diversity indicator and assume homogeneous dynamics 
over the whole study area. While looking at the dynamics of the sub-assemblages, we find that 
Kattegat and Eastern Baltic sub-assemblages have different dynamics, suggesting the use of methods 
that could study the interaction between spatial distribution and temporal dynamics, such as tensor 
decomposition (Frelat et al. 2017).  

Moreover, we could not include fishing pressure or other direct anthropogenic pressures 
in our study because they are difficult to estimate and not available at the spatial resolution of our 
analysis. Yet, it is clear that human pressures have a strong impact on the fish community 
(Korpinen et al. 2012; Andersen et al. 2015) and their trait composition (Henriques et al. 2014; 
D’agata et al. 2014; Koutsidi et al. 2016). Another limit of our study remains in the fact that we 
study abundance at species level, which may hide information about different sub-populations of 
the same species. For example, cod is known to be divided in two populations: the Eastern and 
Western Baltic cod stocks (Aro 1989; Bagge et al. 1994), but here included as only one species, 
which may blur the temporal dynamics of these two stocks.  

Management implications and concluding remarks 

The mismatch between taxonomic and functional diversity, associated with the spatial 
overlap of sub-assemblages, suggests that the functional redundancy decreases from west to east 
in our study area. The low functional redundancy in the Baltic Proper implies that its ecosystem is 
susceptible to changes in external pressures such as hydrography, nutrient inputs and fisheries 
overexploitation that can provoke drastic reductions in fish abundances (Rice et al. 2013). 
Therefore, fisheries management in the Baltic Proper should be precautious by taking in 
consideration the specific local characteristics of the fish community. Our study demonstrates that 
based on a large dataset of community data, analyzed in an innovative and comprehensive way, we 
can provide a complete view of the effects of environment on the structuring of biotic communities 
in space, time and functions. Similar methodological framework can be used in other Large Marine 
Ecosystems to gain better understanding of the effect of environmental variations on biodiversity, 
key information for the management and conservation of ecosystems.  
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Table S3.1: Pre-processing checks and corrections on BITS dataset 

Species removed from BITS dataset: 

Species Reason 
Acanthascus (Rhabdocalyptus) mirabilis Not a fish 
Alosa fallax Pelagic species 
Cancer pagurus Not a fish 

Caranx rhonchus 
Outside species range - probable 
missindentification 

Cephalopoda Not a fish 
Engraulis encrasicolus Pelagic species 
Nephrops norvegicus Not a fish 
Osmerus eperlanus Pelagic species 
Scomber scombrus Pelagic species 
Trachurus trachurus Pelagic species 

 

Species mis-identified or aggregated to genus or family level: 

Species name Original name in Datras Reason 
Ammodytes Ammodytes marinus Often only identified to genus 
Ammodytes Ammodytes tobianus Often only identified to genus 
Callionymus Callionymus lyra Often only identified to genus 
Callionymus Callionymus maculatus Often only identified to genus 
Chelidonichthys lucerna Chelidonichthys lucernus Spelling variation 
Gobiidae Gobius niger Many variations within family 
Gymnocephalus cernua Gymnocephalus cernuus Spelling variation 

Labridae Labrus bergylta 
Infrequent, with frequent 
identification at family level 

Liparis liparis Liparis Spelling variation 
Mullus surmuletus Mullus barbatus Spelling variation 
Neogobius melanostomus Neogobius Spelling variation 
Gymnocephalus cernua Perca cernua Spelling variation 
Gobiidae Pomatoschistus Many variations within family 
Gobiidae Pomatoschistus microps Many variations within family 
Scophthalmus maximus Psetta maxima Spelling variation 

Syngnathus Syngnathus acus 
Infrequent, with frequent 
identification at genus level 

Syngnathus Syngnathus rostellatus 
Infrequent, with frequent 
identification at genus level 

Syngnathus Syngnathus typhle 
Infrequent, with frequent 
identification at genus level 

Myoxocephalus quadricornis Triglopsis quadricornis Spelling variation 
Sprattus sprattus Sprattus sprattus balticus Spelling variation 
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Figure S3.1: Clustering analysis of the fish species based on their spatial distribution realised with 
K-means algorithm. 
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Figure S3.2: RV-test for the between group co-inertia between fish abundance and environmental 
variables. 

 
 

Figure S3.3: Fourth-corner test between the traits of fish species and the environmental variables. 
All the pairwise correlations are not significant (i.e represented in grey), meaning that adjusted p-
values>0.05. 
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Chapter 4 
Warm waters favour fast living fish 
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Abstract 

One of the most fundamental challenges in ecology is to understand why species occur 
where they are and where they are likely to be found in the future. Trait-based approaches has 
shown great promise in providing a mechanistic understanding of the underlying processes, since 
traits of species determine which environments and habitats a fish is capable to inhabit and 
additionally, with which species it may interacts. In this study, we used a unique dataset containing 
the spatial occurrence of over 1,400 marine fish species recorded in 70,000 stations in continental 
shelf seas across oceans – ranging from Northeastern Pacific Ocean to North Atlantic Ocean and 
the Mediterranean Sea. Three-matrix approaches (RLQ and fourth-corner analysis) were used to 
investigate the relationships between species traits and environmental variables through the 
information on species occurrences. Temperature was the strongest predictor driving latitudinal 
gradients in traits, particular those related to the fast-slow continuum (lifespan, age at maturity, 
growth coefficient K). The fast-slow continuum also followed a coastal-to-offshore gradient, that 
was characterized by depth and seasonality in temperature, in addition to temperature. When 
scaling up the species and trait information to the community level, the same trait-environment 
relationships were observed using random forests. Our results empirically confirm the accelerating 
effect of temperature on physiological rates by demonstrating a strong spatial association between 
bottom temperatures and the key response traits, namely growth, maturation and lifespan. Our 
study demonstrates the great benefit of collating datasets from multiple regions and, by using 
different approaches, to deliver robust results that have strong implications for our understanding 
and management of marine fish communities and for predicting how fish communities will adapt 
to a changing climate. 

Keywords: biogeography, traits, fish, trait-environment relationships, big data, RLQ, fourth-
corner, fast-slow continuum  



Warm waters favour fast living fish 

 65 

Introduction 

One of the most fundamental challenges in ecology is to understand why species occur 
where they are, and where they are likely to be found in the future. Traditionally, bio-geographers 
and macro-ecologists have tried to answer this question by analysing species distributions and their 
changes in space and time relative to the surrounding environment (Lomolino 2000; Keith et al. 
2012). Such species-based approaches have successfully demonstrated the variety of species 
responses to environmental variables (e.g., temperature) (Walther et al. 2002; Poloczanska et al. 
2016) and allowed us to forecast and explore species distributions in response to changes in these 
drivers (Maguire et al. 2015). However, they fail to provide a mechanistic understanding of the 
underlying processes whereby species respond to the environment (Kearney & Porter 2009) and 
as a consequence the predictive performance has shown to be quite poor (Brun et al. 2016a). Such 
a mechanistic understanding is therefore needed to more reliably predict future changes in species 
distributions and to inform policymakers and resource managers about the potential consequences 
of climate change on the biodiversity, functioning and services of ecosystems.  

Trait-based approaches have shown great promise in providing this mechanistic 
understanding, since traits of species determine which environments and habitats an organism is 
capable to inhabit and additionally, with which species it may interacts (Verberk et al. 2013; Violle 
et al. 2014). Moreover, trait-based approaches enable us to search for fundamental principles by 
facilitating comparisons across ecosystems with entirely different species compositions. A critical 
step towards better understanding and predicting future changes in species distributions is to 
identify the key attributes and adaptation by which species respond to the environment and to 
characterize the shape and nature of the relationship between environmental variables and the 
response traits. 

The recent increase in the availability of species occurrence data and trait information has 
inspired a growing number of large-scale studies on trait biogeography and its ties to the 
environment, primarily on land (Ordoñez et al. 2009, van Bodegom et al. 2014, Lawing et al. 2017), 
but also in fresh-water, estuarine and marine ecosystems (Mims et al. 2010; Brun et al. 2016b; 
Henriques et al. 2017; Pecuchet et al. 2017; Acevedo-Trejos et al. 2018; van Denderen et al. 2018). 
However, most studies express trait variation at an aggregated level of communities or functional 
groups, hence disregarding inter- and intra-specific trait variability, as well as spatial and temporal 
differences in species abundances and evenness across communities. Furthermore, trait 
distributions are primarily investigated in specific regions or across larger geographic areas, but at 
a single and often coarse spatial resolution. This limits the range of environmental conditions and 
trait expressions included and insufficiently accounts for fine-scaled variability and potential scale-
dependence in trait expressions and trait-environment relationships. Fortunately, the rapid increase 
in computational power and the development of fast and efficient methods for analysis of large 
dataset offers a unique opportunity to make better use of available data to account for many of 
these issues and to expand the geographical scale and spatial resolution in macroecological and 
biogeographical studies (Peters et al. 2014; LaDeau et al. 2017).  

In this study, we take advantage of these developments and compiled an extensive survey 
dataset of abundances and life-history traits for ~1,800 marine fish taxa across the North Atlantic 
and North-East Pacific. The data encompass >77,000 unique geo-referenced stations sampled 
along pronounced latitudinal- and environmental gradients over an 11-year time period (2005 to 
2015). We then used a suit of complementary tools including machine learning, a three-matrix 
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ordination approaches (RLQ analysis) and a permutation test (fourth corner analysis) (Dray et al. 
2014), capable of summarizing station-specific information on species abundances, traits and 
environmental conditions. In order to understand marine trait-environment relationships and the 
degree to which these can explain and predict fish species distributions we formulated and pursued 
the following two research questions: (i) Which traits and which environmental variables best 
explain the distribution of marine fish species? and (ii) What are the key trait-environment 
relationships and how variable are these across regions and spatial scales? 

Methods 

Overview 

To assess trait distributions and trait-environment relationships, we collated three datasets 
(Fig. 4.1): (i) survey data on fish species abundances (matrix L); (ii) species trait information (matrix 
Q); (iii) and environmental data (matrix R). The data were analyzed via different but complementary 
approaches (Kleyer et al. 2012). First, two species-based analyses summarized the structure among 
the three datasets using the distribution of fish species abundances to infer key traits and their trait-
environment relationships. Second, a community-based approach used the fish abundance data 
and trait information to calculate community weighted mean (CWM) traits per sampling station. 
These CWM traits were then statistically modelled against the environmental data. 

 
Figure 4.1: Presentation of the fourth corner problem. What is the link between the traits of fish 
species (matrix Q), and the characteristics of the environment (matrix R) that species inhabit (matrix 
L)? 

Survey data 

We collated data from 21 scientific bottom-trawl surveys in the North Atlantic and 
Northeast Pacific (Table S4.1). The aim of the surveys is to gather data on the stock size of 
commercially valuable species and to monitor the diversity and dynamics of species assemblages. 
Although gears and survey protocols vary between surveys, all surveys use otter trawls, and all 
catches are identified at species level whenever possible. We verified and updated the taxonomy of 
reported species with the World Register of Marine Species (WoRMS Editorial Board 2018). 
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Furthermore, we discarded all non-fish taxa by keeping only organisms from the following classes: 
Actinopterygii, Elasmobranchii, Holocephali, Myxini and Petromyzonti. We then selected only taxa 
that had been recorded at the family, genus or species level. Finally, we reduced the temporal extent 
to an 11-year period from 2005 to 2015 in order to reduce the influence of temporal variation and 
have a consistent sampling period across surveys. In total, we gathered data from 77824 stations, 
recording the abundance of 1889 different taxa (1583 taxa defined at species level, 203 at genus 
level and 103 at family level). 

Trait data  

We selected seven traits to represent the life history and ecology of fish, based on 
availability from literature, known trade-offs in life history strategies and the use in previous trait-
based studies on fish (Winemiller & Rose 1992; Juan-Jordá et al. 2013). These traits are: maximum 
body length (cm), trophic level, fecundity (number of offspring produced by a female per year), 
offspring size (egg diameter, length of egg case or length of pup in mm), age at maturity (years), 
lifespan (years) and the Von Bertalanffy growth coefficient K (year-1) as a proxy for growth rate. 
Trait information was extracted from a trait database of European and North American marine 
fish (Maureaud et al. in prep) that contains species trait values at the scale of Large Marine 
Ecosystems (LME), whenever such intraspecific trait information is present. The database’s main 
source is Fishbase (Froese & Pauly 2017), and gaps were filled in by values from primary literature 
and genus- or family-averaged values. In order to account for intra-specific variability in species 
traits across the area, available trait values were averaged at the scale of Large Marine Ecosystems 
(LMEs). We additionally checked the pairwise correlation between traits, and all the Pearson 
correlations were below 0.7 (Figure S4.1). 

Environmental data 

We selected nine environmental variables representing hydrography, habitat, food 
availability and anthropogenic pressures, which are key factors known to affect the distribution of 
fish species. Sea bottom temperature (SBT in °C) and sea bottom salinity (SBS in psu) represented 
the hydrographical environment, and were obtained from the Global Ocean Physics Reanalysis 
with a spatial resolution of 1/4° (GLORYSs2v4, Ferry et al. 2012). Monthly SBT and SBS data 
from 2004 to 2015 were downloaded from the Copernicus Marine Environment Monitoring 
Service (http://marine.copernicus.eu/). Chlorophyll a concentration (Chl, in mg·m-3) served as a 
proxy for primary production and food availability. Aggregated monthly data from satellites optical 
sensors with a spatial resolution of 4 km were downloaded from the GlobColour database 
(Maritorena et al. 2010, http://hermes.acri.fr/).We extracted for each unique haul the 
corresponding monthly values of bottom salinity, bottom temperature and chlorophyll 
concentration. Additionally, we calculated the range of values of temperature and chlorophyll 
concentration within the past twelve months as indicators of seasonality. Depth was measured 
during the surveys and provided with the survey data. When not available or when measurements 
seemed incorrect (< 5% of the stations), we used the depth values from the General Bathymetric 
Chart of the Oceans, (GEBCO 2014 grid, www.gebco.net). As a measure of anthropogenic 
pressure, we used the cumulative demersal fishing pressure of 2013, which has been estimated 
globally at 1 km2 spatial resolution (Halpern et al. 2015). We added up demersal fishing pressure 
estimates from both destructive and non-destructive trawling, as well as with high and low by-
catches. We checked the pairwise correlation between environmental variables, and all Pearson 
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correlations were below 0.7 (Fig. S4.2), although with a notable high correlation between bottom 
temperature and its seasonality. 

Species-based analysis  

The fourth corner and RLQ analysis are two complementary three-matrix approaches 
(Dray et al. 2014), that are based on a species occurrence or abundance matrix (L), a species-trait 
matrix (Q) and an environment-sites matrix (R) (Fig. 4.1). The fourth corner analysis tests pair-
wise relationships between traits and environmental variables, while RLQ considers the inter-
correlation of traits and environmental drivers. The RLQ analysis is a multivariate analysis that can 
be considered as an extension of a co-inertia analysis (ordination method exploring the link 
between two matrices). First, the three matrices R, L and Q are ordinated following the best suited 
method to their data type. In this study, we performed a correspondence analysis (CA) on the 
abundance matrix L, because the method uses the chi-square distance and is particularly well suited 
for abundance data along large environmental gradients (Legendre & Gallagher 2001; Greenacre 
2017). Principal component analyses (PCA) on matrices Q and R were computed using the stations 
and species scores from the previous CA analysis on matrix L as weight of the rows. The RLQ 
analysis maximizes the cross-covariance between the environmental and trait ordinations. The 
result is a co-structure between the three matrices, which is quantified through so-called RLQ axes. 
The associations of species, traits and environmental variables with the RLQ axes represent the 
best compromise between traits and environmental variables through species abundances (Dray et 
al. 2014).  

We tested the sensitivity of the RLQ analysis to different factors. First, we tested for 
potential scale-dependency between traits and the environment by spatially aggregating our station-
based dataset into grid squares of 0.25°, 0.5°, 1° and 2.5°. Moreover, we divided our dataset into 
three different regions, following the coastlines of the Northeast Atlantic (NE Atlantic), Northwest 
Atlantic (NW Atlantic) and Northeast Pacific (NE Pacific), to test the validity of the RLQ analysis 
in the three main areas. We also divided our dataset into four different depth strata and seasons to 
test the influence of depth and season on our results.  

The fourth corner method computes a trait-environment correlation matrix (so-called 
fourth corner matrix) based on the three matrices R, L and Q. Then, a permutation test on the 
abundance matrix L is performed with 5,000 permutations of rows and columns successively. The 
correlations between the traits and environmental variables are calculated with the randomly 
permuted L matrix. The actual correlation values were compared to these correlations with 
permutation to obtain the significance level of the correlations between traits and environment 
(Dray et al. 2014). The resulting p-values were adjusted for multiple testing, following the false 
discovery rate procedure (Benjamini & Hochberg 1995).  

Community-based approach 

Community weighted means (CWM) for all seven traits were computed as geometric mean 
trait values, based on species trait values and relative species abundances (Beukhof et al. in review, 
Garnier et al. 2004). Random Forests (RF, Breiman 2001) were applied to model the CWMs of 
each trait with the seven external pressure variables as predictors. RF does not make any 
assumptions on the distribution of the data, considers the interactions between variables and is 
known to have good predicting power (Cutler et al. 2007). To reduce the computational power 
required for modelling, stations were placed on a 0.25° by 0.25° grid, which was used to first 
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calculate the relative species abundances and environmental variables per grid cell, followed by 
calculating the CWM traits per grid cell (8022 grid cells in total). We trained the RF for each trait 
on a training dataset containing 75% of the data (6016 sites), with 100 trees of 2 nodes. We selected 
the best RF over 10 RFs computed. To test the robustness of the models, we repeated 100 times 
the selection of the training dataset and the optimizations. This procedure yielded 100 optimized 
RFs per CWM trait, which were used to compute the average response of the CWM traits and the 
confidence interval of the response curves.   

All data analyses were performed in the statistical software R (R Core team 2017). The RLQ 
and fourth corner method are implemented in the ade4 package (Dray & Dufour 2007), RFs were 
computed with the package randomForest (Liaw & Wiener 2002). 

Results and discussion 

 

 
Figure 4.2. Results of the RLQ analysis summarizing the cross-covariance between traits and 
environmental variables across all species and sites. (A) Scores of the traits, (B) environmental 
variables, and (C) the scores of each individual stations and species on RLQ1. In order to illustrate the 
trait changes occurring along RLQ1, images of Amblyraja radiata, Gadus morhua, Melanogrammus 
aeglefinus, and Sprattus sprattus (from top to bottom) are shown as examples of species characterized 
by different growth rates, age at maturity and lifespan. (The images were derived from FAO website’ 
and Wikimedia commons). 
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Trait environment relationship 

The main relationships between the set of traits and environment variables are summarized 
by the first RLQ axis (RLQ1) which explained 96% of the cross-covariance between traits and 
environmental variables across all species and sites (Fig. 4.2). In other words, RLQ1 is the best 
compromise through which stations, species, traits and environment are projected on a single axis. 
The traits with the highest absolute score on RLQ1 were the growth coefficient K, age at maturity 
and lifespan, demonstrating highly positive or negative scores (Fig. 4.2a). Given by the high degree 
of explained variance of RLQ1, these traits can therefore be regarded as the key response traits of 
fish associated to the set of environmental variables included in our study. Maximum length, 
offspring size and fecundity were of intermediate importance, demonstrating only moderate scores 
on RLQ1, while trophic level had low importance, illustrated by scores close to zero. In terms of 
environmental variables, sea bottom temperature (SBT), seasonality in SBT (SBTsea) and depth 
were most strongly represented by RLQ1 (Fig. 4.2b). High negative RLQ1 scores were thus 
associated with high temperatures, strong seasonality and shallow waters, whereas highly positive 
scores reflect deep waters, lower temperatures and less seasonality in temperature. Consequently, 
these variables can be regarded as the dominant environmental drivers determining the distribution 
of species conditioned on their traits.  

The station scores projected on RLQ1 reflected strong latitudinal gradients from negative 
scores in warm-temperate and sub-tropical waters (e.g., Gulf of Mexico) to positive scores in boreal 
and sub-polar seas around Greenland, Iceland, Norway, Newfoundland and Alaska (Fig. 4.2c). 
Because of the high score for SBT on RLQ1 (Fig. 4.2b), the gradient in station scores can largely 
be explained by a latitudinal gradient also in terms of SBT (Fig. S4.3). The absence of a strong 
latitudinal gradient in stations scores observed along the Northeast Pacific is likely due to the 
considerably weaker latitudinal gradient in SBT caused by the southward flowing California current, 
brining deep, cold and nutrient-rich water along the entire Pacific US coastline (Checkley & Barth 
2009). In addition to the gradient in station scores from high to low temperatures, many areas along 
the three coastlines showed a marked transition from negative to positive scores from the coast to 
offshore waters (Fig. 4.2c). Since depth typically increases once moving offshore, the strong 
importance of depth on RLQ1 implies that differences in traits are also represented by a coastal-
to-offshore depth gradient. The structuring effect of both temperature and depth on species traits 
was consistent based on the fourth corner analysis, demonstrating significant correlations between 
SBT, SBTsea and depth with growth coefficient K, age at maturity and lifespan (Fig. 4.3). The key 
drivers were also supported by the random forest (RF) approach where SBT and depth were found 
the best predictors of the spatial variability in community-weighted mean (CWM) traits (Fig 4.4). 
Furthermore, the resulting trait-environment relationships reflect the trade-offs between traits 
found in the RLQ and fourth corner analysis, illustrated by a positive relationship between growth 
(K) and SBT, but a negative relationship for maximum length (Lmax), lifespan and age at maturity. 
Interestingly, the response curves of the RFs revealed several non-linear trait-environment 
relationships that could not be detected by the RLQ or fourth corner analysis. For instance, the 
partial effect of SBT on growth shows a sigmoid relationship with a steep increase at intermediate 
temperatures (Fig. 4.4).  
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Figure 4.3: Fourth corner analysis demonstrating pair-wise correlations between traits and 
environmental variables. The p-values have been calculated from 5,000 permutation and corrected 
for multiple comparison using the false discovery rates. Cells in red show positive correlations, cells in 
blue show negative correlations. The significance level is given with the stars scale (‘.’ : p-value <0.1; 
‘*’ : <0.05;  ; ‘**’ : <0.01). Non-significant correlations are in light grey.  

 
Figure 4.4: Response curves of the random forest models predicting the different traits (7 different 
models were computed, one for each trait, shown in rows). The relative importance (averaged over 
the 100 RFs) of explanatory variables (environmental variables and fishing pressure, in columns) is 
given below each curve. The R-squared of each model is shown on the right side of the plot. The 
confidence interval was computed from 100 different training sets.  
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Fast-slow continuum of fish follows warm-cold gradient 

In summary, our suit of methods, including RLQ, fourth corner and RF consistently show 
that fish communities in warm areas at lower latitudes or at shallow depths are dominated by 
species characterized by rapid growth, early maturation and short lifespan. Conversely, fish 
communities in cold, deep and more seasonally stable environments are primarily composed of 
slow-growing, late-maturing and long-lived fish species. Our findings are consistent with the 
classification of organisms along a “fast-slow continuum” that ranks species according to their life-
history traits from early-maturing, short-lived and fast-growing to late-maturing, long-lived and 
slow-growing (Read & Harvey 1989). The fast-slow continuum has been observed in plants 
(Franco & Silvertown 1996; Reich 2014), mammals (Stearns 1983; Oli 2004) and birds (Gaillard et 
al. 1989), but has also been reported for specific groups of fish (Rochet et al. 2000; Juan-Jordá et al. 
2013; Wiedmann et al. 2014). The underlying mechanisms explaining the fast-slow continuum has 
primarily been related to a direct effect of temperature on physiology, particularly by regulating 
rates of metabolism, growth, feeding and mortality (Gillooly et al. 2001; Clarke 2006). Such direct 
temperature effects on growth and resting metabolism on individual fish species has been well 
documented by previous experimental and modelling studies (Gislason et al. 2010; Neuheimer et al. 
2011). Our results empirically confirm the accelerating effect of temperature on physiological rates 
by demonstrating a strong spatial association between bottom temperatures and the key response 
traits, namely growth, maturation and lifespan. In addition to a direct physiological effect of 
temperature on traits, the degree of seasonality in terms of both temperature and resource 
availability (e.g., light, nutrients and primary production) has been shown to affect the distribution 
of traits and life-history strategies of fish (Winemiller and Rose 1992; Pecuchet et al. 2017).  

These overall patterns consistent with a fast-slow continuum of fish species life-histories 
were consistent when repeating the analysis across a range of spatial resolutions (Fig. S4.4), as well 
as across seasons (Fig. S4.5). This indicates that the response traits and trait-environment 
relationships were robust and insensitive to spatial and temporal scales. However, some noticeable 
differences were observed if splitting the analysis into different depth strata or regions (Fig. S4.6). 
In the former case, the key response traits and drivers remained similar with increasing depth, 
except for the deepest depth strata (>300m), where fishing pressure and bottom salinity, as well as 
trophic level and lifespan showed relatively higher scores on RLQ1. Similarly, the analysis split by 
regions showed an increased importance of fishing pressure and bottom salinity in combination 
with maximum size and fecundity in the North-east Pacific, compared to the North-west and 
North-east Atlantic where the traits and trait-environment relationships remained similar. The 
lower importance of bottom temperature in structuring community composition in the North-east 
Pacific and below 300m is most likely due to the uniformly cold temperatures along the US Pacific 
coast (i.e., caused by the cold, southward flowing California Current) and at greater depth 
throughout the global ocean (Fig. S4.7). This highlights an important issue that while regional 
studies may identify more local drivers of traits (e.g., fishing), they may fail to recognize other 
drivers operating at significantly larger spatial scales (e.g., temperature). This clearly emphasizes the 
need for large-scale studies encompassing strong contrasts and pronounced gradients across a 
range of environmental variables to understand the underlying processes and drivers regulating 
species distributions, community composition and traits across regions and spatial scales (local, 
regional and global).  
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Implications and conclusion 

Knowing the relationship between traits and the environment is of uttermost importance 
in order to better understand and predict the impact of changing environmental conditions on the 
future distribution and composition of organisms, including marine fish. For example, it is 
expected that global warming will result in an increase of temperature, as well as an increase in 
climate variability (Belkin 2009; Pörtner et al. 2014). Our results suggest that these new conditions 
will favour fast-living species, characterized by rapid growth, early maturation and short life-span, 
as it has already been shown in damselfly (Debecker & Stoks 2018). Additionally, warming waters 
may bring fast-living species to live at higher latitudes, as it has already been recorded in fish (Perry 
et al. 2005; Frainer et al. 2017). Furthermore, our study demonstrates the great benefit of collating 
datasets from multiple regions and, by using different approaches, to deliver robust results that 
have far-reaching implications for our understanding and management of marine fish communities 
and for predicting how fish communities will adapt to a changing climate. 
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Table S4.1: Survey data overview 

Survey Area Month Number 
hauls 

Depth 
min (m) 

Depth 
max (m) 

AI Aleutian Islands Jun.-Aug. 1,605 30 1,210 
EBS Eastern bergin Sea Shelf Jun.-Aug. 3,756 20 210 
EVHOE Bay of Biscay & Celtic Sea Oct.-Dec 1,535 20 560 
FR-CGFS English Channel Sep.-Nov. 1,055 10 80 
FR-MEDITS French mediterranean coast May-Jul. 945 20 870 
GMEX Gulf of Mexico All 8,681 0 850 
GOA Gulf of Alaska May-Aug. 3,700 10 980 
Gre-GFS Greenland Oct.-Nov. 1,025 50 1,460 
Ice-GFS Iceland Feb.-April 5,672 20 1,490 
IE-IGFS Ireland Shelf Sea Sep.-Dec. 1,809 10 750 
NEUS North East US Feb.-May; Sep-Dec. 7,334 10 920 
NI-GFS Irish Sea - Ireland Oct.-Mar. 883 20 120 
NorBTS Norwegian coast and Barents Sea All 12,423 20 2,100 
NS-IBTS North Sea Jan.-Mar.; Jun.-Sep. 7,741 10 420 
PT-IBTS Portugal Shelf Sea Sep.-Nov. 796 20 960 
ROCKALL Rockall plateau Aug.-Sep. 385 130 460 
SA South East US Apr.-Nov 6,338 0 10 
SCS Scotian Shelf Feb-Aug. 3,084 20 1,940 
SP-NORTH North of Spain -Atlantic Sep.-Oct 1,390 40 810 
SWC-IBTS Scotland Shelf Sea Nov.-Mars 1,072 20 500 
WCANN West Coast US May-Oct. 6,595 60 1,270 

TOTAL       77,824 
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Figure S4.1: Pairwise correlation between species traits. The number represent the Pearson 
correlation r. 
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Figure S4.2: Pairwise correlation between environmental variables. The number on the upper right 
represent the Pearson correlation r. 
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Figure S4.3: Spatial distribution of the seven external pressures, (A) depth in m; (B) sea bottom 
temperature in °C; (C) sea bottom salinity in °C; (D) Chlorophyll a concentration in mg·m-3; (E) range 
of annual temperature; (F) range of annual chlorophyll a concentration; and (G) cumulative fishing 
pressure (Halpern et al. 2015). 
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Figure S4.4: RLQ analysis per spatial scale, calculated by aggregating stations into (C) 0.25 degree, 
(D) 0.5 degree, (E) 1 degree and (F) 2.5 degree rectangle. 
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Figure S4.5: RLQ analysis per seasons calculated by dividing stations per season: (C) Q1, (D) Q2, (E) 
Q3 and (F) Q4. 
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Figure S4.6: RLQ analysis per depth stratum, with stations divided into four depth layers. (A) scores 
of the traits on RLQ1, (B) scores of the environment variables on RLQ1. The colour of dots represents 
depth layer, with blue above 30m depth, green between 30 and 150m, purple between 150 and 300m, 
and orange below 300m depth. The black dot is the scores considering all the stations (as in Figure 2). 
(C-F) Scores of the stations and the species on RLQ1 divided per depth layer. 
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Figure S4.7: RLQ analysis per coastline with stations divided into three regions. (A) scores of the 
traits on RLQ1, (B) scores of the environment variables on RLQ1. The colour of dots represents the 
regions, with red for Northeast Atlantic, blue for Northwest Atlantic and green for Northeast Pacific. 
The black dot are the scores considering all the stations (as in Figure 4.2). (C) Scores of the stations and 
the species on RLQ1 divided per region.  
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Chapter 5 
A morphometric dive into fish diversity 
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Abstract 

Trait-based approaches are increasingly popular in ecology to describe communities and 
their responses to natural or anthropogenic changes. Morphology is an integrative trait that 
combines functional and evolutionary information. However, the objective and quantitative 
description of the morphological diversity is quite challenging. Modern morphometrics encompass 
an array of mathematical approaches that turn shapes into quantitative variables. For models with 
no or only a few homologous points, outline analysis (e.g. elliptical Fourier transform) converts the 
outline geometry into quantitative variables, which can be used in the multivariate framework. The 
elliptical Fourier transform here describes the shape of 85 fish species found in the North Sea. This 
approach shows that the main component of morphological diversity is the elongation and 
development of dorsal, pelvic, and caudal fins. The spatial distribution of morphological diversity 
decreases along a latitudinal gradient, with higher diversity in the southern part. Compared to 
species diversity, our results indicate that environmental conditions filter morphological traits in 
the northern North Sea. Outline analysis is a powerful approach to provide an objective description 
of fish morphology and to improve our understanding of the diversity of Large Marine Ecosystems. 

 

Keywords: fish diversity, morphological traits, outline analysis, elliptical Fourier transform, 
North Sea. 
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Introduction 

Trait-based approaches are increasingly popular in ecology to describe communities and 
their responses to natural or anthropogenic changes (Keddy 1992; McGill et al. 2006; Mouillot et 
al. 2013). These approaches characterize species by key features, known as traits, which can be the 
morphological, biochemical, physiological, structural, phenological, or behavioural characteristics 
of an organism. Traits help researchers to understand species responses to the environment and 
the contribution of community biodiversity to the ecosystem functioning (Violle et al. 2007, 2014). 
Morphology is a highly integrative trait that combines functional and evolutionary information 
(Wainwright & Reilly 1994). The high inertial and viscous drag of water (e.g. compared to air) is a 
major selection pressure on the shape of marine organisms. However, the huge morphological 
diversity of fishes has often been described subjectively and qualitatively (Pecuchet et al. 2016; 
Froese & Pauly 2017). But trait-based approaches favour quantitative traits that are considered 
more practical, objective, and informative than their qualitative counterparts (McGill et al. 2006). 

The quantitative description of shapes has long been challenging. Morphometrics, the 
statistical description of shapes, now distinguishes between traditional and modern morphometrics 
(Rohlf 1990). Traditional morphometrics rely upon the measurements of shape indicators such as 
lengths, areas, angles, and their ratios (Gatz 1979; Wainwright 1988; Wikramanayake 1990) hence 
focusing on selected aspects of shape only (subjectively chosen and/or technically constrained). 
Consequently, the original shape cannot be unequivocally reconstructed from the measured 
indicators. Modern morphometrics, in contrast, consider the entire shape and two main approaches 
are currently used: configuration of landmarks and outline analysis (Rohlf 1990; Claude 2008; 
Bonhomme et al. 2014). The first approach uses homologous points between shapes, known as 
landmarks, and studies their relative position. The technique has been used extensively in the last 
decades to study intra-species fish morphology (Loy et al. 2000; Klingenberg et al. 2003; Costa & 
Cataudella 2007; Elmer et al. 2010). However, homologous points are often hard to define between 
various shapes—e.g. between species from different families, and the number and position of 
homologous landmarks vary between studies and organisms (Farré et al. 2016). In contrast, outline 
analyses consider the whole outline. The most popular outline analysis approach is elliptical Fourier 
transform (EFT), and it has been used in marine biology to describe otolith shapes (Tracey et al. 
2006; Mérigot et al. 2007), shells (Costa et al. 2008) and fish species morphologies (Loy et al. 2000; 
Ventura et al. 2017). To our knowledge, these studies considered very similar biological objects only 
and the technique was never extended to explore the diversity patterns in species assemblages. 

Using the North Sea as a case study, this study demonstrates the use of EFT to 
quantitatively describe the morphological variability in a highly diverse marine fish species 
assemblage (Daan et al. 1990). The North Sea fish community is structured along a strong latitudinal 
gradient, mainly associated with differences in depth and primary production (Emeis et al. 2015; 
Frelat et al. 2017). The many commercially important fish populations provide highly valued 
ecosystem services. Our new quantitative description of morphological variability can improve our 
understanding of the community diversity and identify environmental processes structuring the 
fish community of this Large Marine Ecosystem. 
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Material and methods 

Sample collection  

Images of bony fishes from the North Sea were collected in January 2017 from nine online 
image databases (Table S5.1). Four criteria were used to only retain comparable images:�(1) lateral 
views of (2) male individuals (to cope with any sexual dimorphism) (3) with all their fins well 
represented (i.e. spread and not eaten); (4) eel-shaped species were discarded because of their 
recurrent serpentine representation. We considered images of all species recorded regularly during 
bottom trawl survey in the North Sea and fitting the four criteria previously cited. When available, 
several images of the same species were included to evaluate the robustness of the approach. A 
total of 218 images (48 photos and 170 drawings) from 85 bony fish species of the North Sea were 
included in this study (Fig. S5.1). 

Before performing the outline analysis, we transformed the images into black silhouettes 
(Fig. 5.1B). Numerous studies have defined landmarks on fish to study their morphology. We used 
five commonly used landmarks (Loy et al. 2000; Elmer et al. 2010; Farré et al. 2016) that are located 
on the outline, easily recognizable, and present on all species: (1) snout tip; (2) anterior insertion of 
the dorsal fin; (3) dorsal and (4) ventral insertion of the caudal fin; and (5) insertion of the pelvic 
fin (Fig. 5.1B). The silhouettes were then converted into (x; y) coordinates.  

 
Figure 5.1: Illustration of outline analysis using elliptical Fourier transform. From original image 
(a), to black silhouette with five landmarks (b), on which the outline (c), can be described with 
elliptical Fourier transform (d). The species in the figure is Gadus morhua, image from FAO. 



A morphometric dive into fish diversity 

 87 

Elliptical Fourier transform 

Elliptical Fourier transform (EFT) is a popular method of outline analysis, fitting separately 
the x and y coordinates of an outline projected on a plane (Rohlf 1990; Bonhomme et al. 2014). 
Before conducting such analysis, outlines must be aligned to remove differences in rotation, 
translation or size. We used five landmarks to align the outlines using a full Procrustes 
superimposition. This superimposition optimally rotates, translates and scales these five landmarks 
to minimize Procrustes distances between all landmark configuration. The first landmark (position 
of the mouth) was defined as the starting point of every outline. Outlines are closed curves than 
can be described as periodic functions. The elliptical Fourier transform (EFT) describes the outline 
geometry as two periodic functions—the difference between the abscissa/ordinate of the first and 
all successive points (Fig. 5.1C). The Fourier transform then decomposes them into a harmonic 
sum of trigonometric functions, weighted with coefficients known as harmonic coefficients. The 
original signal f can then be expressed as follows:  
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with T as the perimeter of a given closed outline and t as the curvilinear abscissa that varies 
from 0 to T. The harmonic coefficients an and bn can be expressed as follows:  
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Four coefficients are obtained for each harmonic calculated. The number of harmonics 
was chosen to retain 99% of the cumulative harmonic power. The harmonic coefficients can be 
considered as quantitative variables and analyzed within a multivariate framework. More details can 
be found in Bonhomme et al. 2014. A principal component analysis (PCA) was calculated on the 
matrix of coefficients. Each principal component (PC) captured an independent and synthetic 
aspect of shape variability. Morphospaces, theoretical shapes regularly drawn on the factorial plane, 
helped to interpret the results. The first three PCs were compared to commonly used 
morphological traits by categorizing the caudal and body shapes (Pecuchet et al. 2016, Dencker et 
al. 2017; Fig. S5.2). Finally, we compared the morphological distance (Euclidean pairwise distances 
of images calculated from coordinates on the first three PCs) with the taxonomical distance 
calculated with five taxonomic levels (Fig. S5.3).  

Morphological diversity in the North Sea 

Abundance data of the North Sea fish community has been collected by the North Sea 
International Bottom Trawl Survey (ICES 2015), an international effort to monitor demersal fish 
populations. The sampling procedure monitored the North Sea on a regular grid of 1° longitude x 
0.5° latitude, known as the ICES rectangles. Each contributing research vessel applies a standard 
otter trawl net which is hauled over the seabed for 30 minutes. The data for the first quarter of the 
period 2006 to 2015 was downloaded from http://datras.ices.dk/. To avoid any bias that may arise 
due to different sampling efforts (i.e. different number of hauls per ICES rectangles), 10 hauls per 
ICES rectangles were randomly selected, and we assessed their species and morphological richness. 
We repeated the random selection 100 times to estimate the variability of species occurrence (i.e. 
the presence or absence of species). ICES rectangles with less than 10 hauls in the 10-year period 
were removed from the analysis. In total, 172 ICES rectangles were included in the analysis.  
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Two indicators of morphological diversity were calculated for each ICES rectangle from 
occurrence data and the mean scores of species on the three PCs defining the morphospace 
(Villéger et al. 2008). Morphological richness is the volume of the morphospace occupied by the 
convex hull of the community. Morphological dispersion is the mean distance to the barycenter of 
each community (Laliberté & Legendre 2010). The morphological diversity was then compared to 
species (i.e. taxonomic) richness obtained from the occurrence data. We expected that the 
morphological richness increases with taxonomic richness. A null model for the relationship 
between species and morphological richness was estimated by randomly selecting a given number 
of species from the entire species pool (with specific probabilities in accordance with their 
occurrence in the North Sea) and by calculating the morphological diversity indicators with a 
random assemblage of species. We repeated the randomization process 1,000 times, and computed 
it for species richness ranging from 10 to 50.  

Software and tutorial 

All statistical analyses were conducted in the programming environment R 3.3 (R Core 
team 2017). Morphometric analyses were done with the package Momocs 1.2.3 (Bonhomme et al. 
2014), while morphological diversity indicators were calculated with the FD package. The 
geographic distribution of species and morphological richness was visualized with the mapdata and 
rgdal packages. A tutorial explaining the elliptical Fourier transform on fish communities is available 
on GitHub: https://rfrelat.github.io/FishMorpho.html (DOI: 10.5281/zenodo.1108518). 

 

Results 

 
Figure 5.2: Progressive reconstruction of shapes. Fourteen harmonics gathered 99% of the total 
harmonic power. 
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Outline analysis and morphological space  

Fourteen harmonics were enough to gather 99% of the total harmonic power (Fig. 5.2). 
The principal component analysis on the 56 resulting coefficients yielded three principal 
components, accounting for 78% of the variance (Fig. 5.3). The first principal component (PC1), 
accounting for 42% of the total variance, highlighted the general rounding or elongation of the 
shapes (Fig 5.3B). Shapes presenting the lowest scores on this PC belonged to elongated fish 
species like the smooth sandeel (Gymnammodytes semisquamatus) and the great sandeel (Hyperoplus 
lanceolatus). On the other hand, shapes presenting the highest values on this component belonged 
to flat fish species like the turbot (Scophthalmus maximus) or the European plaice (Pleuronectes platessa). 

The second principal component (PC2), explaining 24% of the variability, highlighted the 
development of the pelvic fin and the underside. Shapes presenting the lowest values on this 
component belonged to species with strong and developed pelvic fins such as the tub gurnard 
(Chelidonichthys lucerna) and the golden redfish (Sebastes norvegicus). On the contrary, shapes presenting 
the highest values on this component belonged to species with smooth ventral sides and short 
pelvic fins like the Norway pout (Trisopterus luscus) and the sand sole (Pegusa lascaris). 

Finally, the third principal component (PC3), explaining 12% of the variability, was related 
to the shape of the dorsal and caudal fins. Shapes that presented the lowest values on this 
component belonged to species with strong, short, and developed dorsal fins and fork-shaped 
caudal fins such as the Clupeidae family like the allis shad (Alosa alosa), sardine (Sardina pilchardus), 
and herring (Clupea harengus). On the other hand, shapes presenting the highest values on this 
component belonged to species with a continuous body, long dorsal fins, and round-shaped caudal 
fins like the striped seasnail (Liparis liparis) and the checker eelpout (Lycodes vahlii). Body and caudal 
shape traits described by Pecuchet et al. (2016), were significantly linked with PC1 and PC3 
respectively (Fig. S5.2). The morphological distance between individuals increased with the 
taxonomical distance (Fig. S5.3). We found no significant difference in the distances within species 
if calculated only with the same type of images, or with one drawings and one photo (p-value of 
the Student’s t-test=0.26). This result indicated that the type of images does not influence our 
analysis. The average scores for each species on the three components is provided in Table S5.2. 
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Figure 5.3: Principal component analysis calculated on the matrix of Fourier coefficients. (a) 
Scatterplot of the scores on the first two principal components (PC), accounting for 66% of the total 
variance; the morphospace in the background presents theoretical shapes reconstructed from the PCs. 
(b) Illustration of the synthetic components of shape captured by the first three PCs. Raw outlines of 
the species projected near PCs extrema are displayed as example. 

Morphological diversity in the North Sea fish assemblages 

Morphological diversity, expressed as richness or dispersion, decreased along a latitudinal 
gradient with highest values in the southern North Sea (Fig. 5.4AB). The maximum morphological 
diversity was observed in the Kattegat, at the Elbe river mouth, and at the connection to the 
English Channel. The Kattegat also presented the maximum species richness of all ICES rectangles 
(39 species recorded). As expected, a positive correlation was found between the species richness 
and the morphological richness in the null model (Fig. 5.4C). We compared the observed 
morphological diversity indicators of each ICES rectangle with their expected values in the null 
model (Fig. 5.4CD). As expected, the null model predicted that morphological richness increased 
with the number of species (Fig. 5.4C). Morphological dispersion was not linked with species 
richness, but the variance of the predictions of the null model decreased with the number of species 
(Fig. 5.4D). Most of the area in the northern North Sea had lower morphological richness than 
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predicted by the null model, and nine ICES rectangles had significantly (P value < 0.05) lower 
morphological richness than expected by the 1,000 randomizations in the null model (Fig. 5.4E). 
In the southern North Sea, most of the rectangles had morphological richness falling within the 
range or slightly higher than the predicted level, but none was significantly different those in the 
null model. Similar patterns were found with morphological dispersion. Eight ICES rectangle in 
the southern North Sea had significantly higher morphological dispersion than expected, and 
twelve ICES rectangle located in the northern North Sea had significantly lower morphological 
dispersion than expected (Fig. 5.4F). 

 
Figure 5.4: Spatial distribution of morphological diversity. (a-b) Spatial patterns of fish 
morphological diversity in the North Sea. (c-d) Relationship between the observed morphological 
diversity and species richness. The bold black line represents the mean morphological diversity of 
1,000 random samplings for a given number of species; the shaded areas in dark and light grey 
represent the standard deviation and 95th percentile, respectively. (e-f) The map of the residuals 
between observed and predicted morphological diversity. Black dots indicate communities 
significantly different from the null model. The left column (a, c, e) represent morphological richness 
and the right column (b, d, f) represents morphological dispersion. 
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Discussion 

Outline analysis appeared to be effective at describing the morphological diversity of fish 
species in the North Sea. Elliptical Fourier transform (EFT) revealed three main components of 
morphological diversity in marine fish species. The most important component was related to 
elongation of the main body; the second to the development of the pelvic fin; and the third to the 
shape of the dorsal and caudal fins. These three integrative and quantitative variables are good 
candidates for new morphological traits in accordance with the criteria stated by McGill et al. 
(2006): “To be useful to community ecology, traits should vary more between than within species 
and preferably be measured on continuous scales.” 

Morphological traits found in this study had already been described by previous subjective 
and qualitative descriptions (Pecuchet et al. 2016). Furthermore, we found elongation to be the 
major source of variability in shape, in accordance to numerous studies on fish morphology (Elmer 
et al. 2010; Claverie & Wainwright 2014; Ventura et al. 2017) and more generally, on vertebrates 
morphology (Collar et al. 2013). These similarities suggest that EFT can describe both quantitatively 
and objectively the known morphological features and reveal more subtle components of 
morphological diversity. Additional studies should link these morphological traits with specific 
functions of fish, like swimming performance and feeding behaviour (Norton et al. 1995; Bejarano 
et al. 2017). 

Morphological diversity decreased along a latitudinal gradient with highest values in the 
southern North Sea. This shallow area is known to host a different species assemblage than the 
northern part due to different environmental pressures—for example, higher temperature and 
primary production (Daan et al. 1990; Frelat et al. 2017) and different epibenthic invertebrate 
community (Callaway et al. 2002). One of the main difference in species assemblages is the 
numerous small flatfish species that inhabits only the southern North Sea (Callaway et al. 2002). 
Adding quantitative morphological traits will help researchers to determine the community 
assembly rules, the relationship between taxonomic and functional diversity (Bellwood et al. 2002; 
Dencker et al. 2017). As expected, we observed that areas with high species richness were more 
likely to present a higher morphological richness. However, areas with low species richness in the 
northern North Sea presented significantly lower morphological diversity than expected, if the 
species were chosen randomly. This result suggests that the environmental conditions filter species 
lacking a specific combination of morphological traits (Keddy 1992; Mouillot et al. 2007). This 
observation was confirmed by morphological dispersion which showed a strong latitudinal gradient 
and suggests two opposing mechanisms: environmental filtering in the north and limiting similarity 
in the south. The border between the two mechanisms match the boundary between the thermally 
stratified waters of the northern North Sea and the permanently vertically mixed waters of the 
southern North Sea (Callaway et al. 2002). The high seasonal fluctuations in bottom water 
temperature in the south may be a factor limiting the morphological similarities between species, 
while the more stable conditions in the northern North Sea seems to filter morphologically similar 
species. This interpretation remains to be confirmed and tested in other Large Marine Ecosystems. 

EFT is known to be sensitive to the choice of the alignment method but our analysis 
consistently found the same three main components (Fig. S5.4 and S5.5). Naturally, fishes are 3D 
objects whose morphological descriptions could be refined, for example, with EFT on 2D 
orthogonal views to characterize the cross-section body shape (Terral et al. 2004; Bonhomme et al. 
2015; Bouby et al. 2016). It would require a collection of images of the cross-section data for 
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numerous fish species that are not available online yet. Our study focused on only the shape, which 
is the form minus size, and the latter would probably be an informative covariate. Moreover, the 
outline analysis produced here only considers the information included in the outline, missing for 
example the shape and the position of the pectoral fin, the operculum and the eye, features known 
to have a functional role (Klingenberg et al. 2003; Mouillot et al. 2007; Farré et al. 2016). However, 
a comparison of landmark based approach and outline analysis showed no significant differences 
(Loy et al. 2000) and a recent study shows that most of the morphological variability in reef fishes 
was found in body elongation (Claverie & Wainwright 2014). The outline analysis of the shape of 
the single lateral view proved to bring important insights into the diversity of fish morphology. 
The outcome of the outline analysis can be of great interest for further morphological studies and 
trait-based approaches in ecology and biogeography. Extending such an approach to the species 
from other large marine or freshwater ecosystems would characterize the global spectrum of fish 
morphology. 

List of supplementary materials 

Table S5.1: Description of the online image databases used for the study 

Table S5.2: Morphological characterization of 85 fish species in the North Sea 
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Figure S5.2: Relationship between EFT results and commonly used morphological traits. 

Figure S5.3: Comparison between the morphological and taxonomical distance 

Figure S5.4: Shape alignment of the four different alignments tested 

Figure S5.5: Robustness of the results from the alignment method 
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Table S5.1: Description of the online image databases used for the study with the number of images 
collected in each database and the nature of the image (drawing or picture). 

ID  Name  Nature  Nb of 
images  

Link  

ADd  Animal Diversity Web  Drawing  1  http://animaldiversity.org/accounts/ 
Actinopterygii/pictures/  

FAOd  FAO Fisheries and 
Aquaculture Department  

Drawing  44 http://www.fao.org/fishery/species/ 
search/en  FAOp  Photo  2 

FBd  FishBase  Drawing  37  http://fishbase.mnhn.fr/photos/ 
BestPhotos.php  FBp  Photo  21  

GOBd  Gobidae  Drawing  1 http://gobiidae.com  
IFd  Ittiofauna  Drawing  1  http://www.ittiofauna.org/  
NPd  Naturporten  Drawing  1  http://naturporten.dk  
NRMp  Swedish Museum of Natural 

History Ichthyology Database  
Photo  10  http://artedi.nrm.se/nrmfish/ imgsearch.php  

WIKd  Wikimedia Commons  Drawing  22  https://commons.wikimedia.org/ wiki/Accueil  
WIKp  Photo  1 
WoRd  World Register of Marine 

Species  
Drawing  63  http://marinespecies.org/  

WoRp Photo 14 
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Table S5.2: Morphological characterization of 85 fish species in the North Sea 

 

Species PC1 PC2 PC3 Body Caudal
Alosa	alosa -0.02 0.02 0.08 Normal Forked
Alosa	fallax -0.04 -0.02 0.05 Normal Forked
Ammodytes	marinus -0.10 0.00 -0.05 Elongated Forked
Ammodytes	tobianus -0.10 -0.03 -0.06 Elongated Forked
Anarhichas	lupus -0.05 0.02 -0.04 Elongated Rounded
Aphia	minuta 0.00 -0.08 -0.01 Normal Rounded
Argentina	silus -0.06 0.00 0.03 Normal Forked
Argentina	sphyraena -0.08 0.02 0.04 Normal Forked
Arnoglossus	imperialis 0.07 0.00 -0.04 Flat Rounded
Arnoglossus	laterna 0.06 0.03 -0.03 Flat Rounded
Atherina	presbyter -0.06 0.00 0.02 Normal Forked
Brosme	brosme -0.04 -0.04 -0.06 Elongated Rounded
Buglossidium	luteum 0.04 0.07 -0.04 Flat Rounded
Callionymus	maculatus 0.01 0.13 -0.01 Normal Rounded
Chelidonichthys	cuculus -0.02 -0.04 0.00 Normal Truncated
Chelidonichthys	lucerna -0.01 -0.09 -0.02 Normal Truncated
Ciliata	mustela -0.06 0.00 -0.04 Elongated Rounded
Clupea	harengus -0.05 -0.01 0.05 Normal Forked
Crystallogobius	linearis -0.07 -0.10 -0.04 Elongated Truncated
Ctenolabrus	rupestris 0.04 -0.04 0.00 Normal Rounded
Cyclopterus	lumpus 0.05 0.09 -0.05 short_deep Truncated
Dicentrarchus	labrax 0.00 -0.05 0.01 Normal Emarginated
Echiichthys	vipera -0.01 -0.09 -0.01 Normal Truncated
Enchelyopus	cimbrius -0.08 0.03 -0.04 Elongated Rounded
Engraulis	encrasicolus -0.09 0.03 0.05 Elongated Forked
Eutrigla	gurnardus -0.03 -0.07 -0.03 Normal Emarginated
Gadiculus	argenteus -0.05 -0.04 0.04 Normal Truncated
Gadus	morhua -0.04 0.05 0.01 Normal Truncated
Gaidropsarus	vulgaris -0.06 0.00 -0.02 Elongated Rounded
Gasterosteus	aculeatus -0.06 0.04 0.03 Elongated shark_like
Glyptocephalus	cynoglossus 0.04 0.04 -0.03 Flat Rounded
Gobius	niger 0.04 -0.06 0.00 Normal Rounded
Gymnammodytes	semisquamatus -0.12 0.00 -0.06 Elongated Forked
Helicolenus	dactylopterus 0.06 -0.04 0.03 short_deep Truncated
Hippoglossoides	platessoides 0.06 0.00 -0.01 Flat Rounded
Hippoglossus	hippoglossus 0.02 -0.02 -0.01 Flat Rounded
Hyperoplus	lanceolatus -0.11 -0.05 -0.05 Elongated Forked
Labrus	bergylta 0.06 -0.04 0.01 Normal Truncated
Labrus	mixtus 0.02 -0.03 0.00 Normal Rounded
Lepidorhombus	whiffiagonis 0.06 0.02 -0.01 Flat Rounded
Leptoclinus	maculatus -0.10 -0.02 -0.08 Elongated Truncated
Lesueurigobius	friesii -0.03 0.01 0.03 Normal Rounded
Limanda	limanda 0.08 0.05 -0.01 Flat Rounded
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Limanda	limanda 0.08 0.05 -0.01 Flat Rounded
Liparis	liparis -0.02 -0.01 -0.04 Normal Rounded
Liparis	montagui -0.03 0.03 -0.02 Normal Rounded
Lycodes	vahlii -0.09 0.04 -0.11 Elongated Continuous
Maurolicus	muelleri -0.02 -0.06 0.04 Normal Forked
Melanogrammus	aeglefinus -0.03 0.04 0.03 Normal Emarginated
Merlangius	merlangus -0.04 0.04 0.02 Normal Truncated
Merluccius	merluccius -0.04 -0.04 -0.01 Elongated Truncated
Microchirus	variegatus 0.04 0.07 -0.04 Flat Rounded
Micromesistius	poutassou -0.07 0.05 0.01 Normal Emarginated
Microstomus	kitt 0.10 0.03 -0.01 Flat Rounded
Molva	molva -0.08 -0.02 -0.04 Elongated Rounded
Mullus	surmuletus -0.01 0.02 0.03 Normal Forked
Myoxocephalus	scorpioides 0.01 -0.07 -0.04 Normal Truncated
Myoxocephalus	scorpius -0.05 0.01 0.02 Normal Truncated
Osmerus	eperlanus -0.05 -0.02 0.04 Normal Forked
Phycis	blennoides -0.04 0.07 -0.01 Normal Rounded
Platichthys	flesus 0.09 0.01 0.01 Flat Rounded
Pleuronectes	platessa 0.12 0.00 0.00 Flat Rounded
Pollachius	pollachius -0.04 0.02 0.05 Normal Emarginated
Pollachius	virens -0.03 0.00 0.04 Normal Emarginated
Pomatoschistus	lozanoi -0.06 0.11 0.04 Elongated Rounded
Pomatoschistus	minutus -0.05 0.00 0.00 Elongated Rounded
Pomatoschistus	pictus -0.03 -0.04 -0.03 Elongated Rounded
Salmo	trutta -0.04 -0.01 0.03 Normal Truncated
Sardina	pilchardus -0.06 -0.01 0.07 Normal Forked
Scomber	scombrus -0.07 -0.02 0.02 Normal Forked
Scophthalmus	maximus 0.19 0.03 0.01 Flat Rounded
Scophthalmus	rhombus 0.15 0.03 0.00 Flat Rounded
Sebastes	norvegicus 0.05 -0.11 0.00 Normal Truncated
Sebastes	viviparus 0.06 -0.09 -0.01 Normal Truncated
Solea	solea 0.04 0.08 -0.05 Flat Rounded
Spondyliosoma	cantharus 0.07 -0.02 0.03 short_deep Emarginated
Sprattus	sprattus -0.05 -0.01 0.05 Normal Forked
Taurulus	bubalis 0.03 -0.03 0.02 Normal Rounded
Trachinus	draco -0.04 -0.01 -0.01 Normal Truncated
Trachurus	trachurus -0.02 -0.04 0.03 Normal Forked
Trigloporus	lastoviza -0.01 -0.05 0.00 Normal Truncated
Triglops	murrayi -0.04 -0.05 0.01 Normal Truncated
Trisopterus	esmarkii -0.05 0.04 0.01 Normal Emarginated
Trisopterus	luscus 0.00 0.09 0.02 Normal Truncated
Trisopterus	minutus -0.03 0.08 0.01 Normal Truncated
Zoarces	viviparus -0.08 0.01 -0.09 Elongated Continuous
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Figure S5.1: Outlines of the 218 images of fish.  
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Figure S5.2: Relationship between EFT results and commonly used morphological traits. on (a) 
body and (b) caudal fin shape proposed by Pecuchet et al. (2016). 

 
The first three PCs from EFT were compared with categorical morphological traits. We 

used the classification proposed by Pecuchet et al. (2016) that categorized the caudal fin shape into 
six classes (rounded, truncated, emarginated, forked, continuous, shark-like) and the body shape 
into four classes (gadoid-like, flat, elongated, eel-like). We compared the distribution of the 
component scores for every category using a boxplot and the non-parametric Kruskal–Wallis rank 
sum test.  

The first component, which was related to the elongation of the body, was linked to the 
categorical variable “body shape”. Fish classified as “elongated” had negative scores on PC1, 
whereas flat fish had positive scores on PC1. The third component, which was related to the shape 
of the caudal and dorsal fins, was linked to the categorical variable “caudal shape”. Fish classified 
as having a “shark-like” caudal fin had negative scores on PC3, whereas fish with a “continuous” 
caudal fin had the highest score on PC3. The two relationships described above were highly 
significant (P values < 0.001) with the Kruskal–Wallis rank sum test. 

  

a 

b 
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Figure S5.3: Comparison between the morphological and taxonomical distance. Boxplot of the 
relationship between morphological and taxonomical distances. The horizontal dotted line represents 
the mean pairwise morphological distance. 

 
Taxonomically close species were expected to have similar morphology. To test this 

hypothesis, we compared the distance between the images computed with the scores on the 
morphospace (Euclidean distance) to the taxonomical distance. Five taxonomic levels were 
considered: genus, family, order, superorder, and class. The taxonomical distance was calculated 
using the vegan R package. The morphological distance increased with the taxonomical distance. A 
saturation was observed when the taxonomical distance was larger than the order and then the 
morphological distance fluctuated around its mean.  
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Figure S5.4: Shape alignment of the four different alignments tested: a) with 5 landmarks; b) with 3 
landmarks; c) with 1 landmark; d) without fin and 3 landmarks. Red crosses represent landmarks and 
black crosses represent centroids.  

 

Four different alignments were tested with different numbers of landmarks and with or 
without fins: (a) five landmarks (original study); (b) three landmarks: only the snout tip, and the 
ventral and dorsal insertion of the caudal fin; (c) one landmark: only the snout tip. The alignment 
was made by centering and scaling only (no Procrustes superimposition); (d) no fin: all fins apart 
of the caudal fin were removed from the outline, while three landmarks (snout tip and ventral and 
dorsal insertion of the caudal fin) were used for the Procrustes superimposition. 

Depending on the number of landmarks considered, the resulting alignment differed 
visually. With three landmarks—with or without fins—all the species were scaled the same way to 
superimpose caudal fins and snout tips. For the alignment using only one landmark, the shapes 
were only centered using the centroid and scaled accordingly. When using five landmarks, the 
superimposition scaled the shapes in accordance with the position of the dorsal and pelvic fins. 
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Figure S5.5: Robustness of the results from the alignment method. Pearson correlation (r2) between 
the PC of the 4 different alignments.  

 

PC scores from the EFT of the four different alignments were compared using Pearson’s 
correlation coefficients. It was found that the first components of the four methods were correlated 
(Pearson correlation r2 > 0.87, P < 0.001) as well as the second components of techniques 
considering fins (r2 > 0.9, P < 0.001). The components of the “no fin” alignment were less 
correlated with the other components because they described shapes without the dorsal or pelvic 
fins. However, the third component of the “no fin” technique was correlated with the third 
component of the five landmarks’ alignment used in this study (r2 = 0.46, P < 0.001). The EFT 
method appeared to be robust when considering the alignment method. The first PC was always 
describing the elongation of fishes. The alignments considering fins had a similar PC2 and 
accordingly showed the development of the pelvic fins. The study without fins and the alignment 
with five landmarks characterized the shape of the caudal fin on PC3. 
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Chapter 6 
Temporal variability of food web topology 

 

 

 

 

 

 
Ray Troll, There is no free lunch (1989) 
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Abstract 

Ecological communities are constantly being reshaped in the face of environmental change 
and anthropogenic pressures. Yet, we do not know how food webs change over time. Food web 
science is characterized by a trade-off between complexity (in terms of the number of species and 
feeding links) and dynamics. Topological analysis uses complex, highly resolved food web models 
to explore the architecture of feeding interactions but is limited to a static view, whereas ecosystem 
models can be dynamic but use highly aggregated food webs. Here, we present a first attempt at 
reconciling this trade-off by exploring the temporal variability of a highly resolved empirical food 
web over a time period of 18 years, using the German Bight fish and benthic epifauna community 
as our case study. We relied on long-term monitoring ecosystem surveys (from 1998 to 2015) to 
build a metaweb, i.e. the meta food web containing all species and all possible trophic interactions 
recorded over the time span of our study. We then combined time series of species abundances 
with topological network analysis to construct annual food web snapshots. We developed food 
web metrics by including species abundances in order to represent the temporal dynamics of the 
food web structure. Our results suggest that structural food web properties change through time; 
however, food web structural properties may not be as temporally variable as the underlying 
changes in species composition and trophic interactions. Our results demonstrate how ecosystem 
surveys can be used to monitor temporal changes in food web structure, which are important 
ecosystem indicators for building marine management and conservation plans. 

 

Keywords: food web structure, temporal variability, topology 
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Introduction 

Ecological communities are constantly being reshaped with climate change and 
anthropogenic pressures either leading to losses (e.g. local extinctions) or gains (e.g. species 
invasions) in biodiversity (Pimm et al. 2014; Young et al. 2016). Additionally, species are connected 
through trophic interactions, and the presence or absence of a species may influence the dynamics 
of another through bottom-up or top-down control (Lynam et al. 2017). Food webs describe the 
'who eats whom' in an ecosystem, i.e. the community composition and the trophic interactions 
among taxa. Understanding how changes in species composition and trophic interactions affect 
the structure and functioning of ecosystems is of vital importance to guide ecosystem management 
and conservation (Thompson et al. 2012; Cardinale et al. 2012). Yet, it remains unclear how the 
structure of food webs changes over time and the study of this temporal component remains 
neglected (Poisot et al. 2015).  

The lack of temporal food web research arises from the difficulty in monitoring food webs 
through time, i.e. recording the occurrence of all species and all of their interactions at each time 
steps. Further, adding a layer of complexity to food webs such as the temporal dimension, has 
often resulted in aggregating taxa into functional groups, a procedure that will alter food web 
structure (Allesina & Bondavalli 2003; Pinnegar et al. 2005; Olivier & Planque 2017). For example, 
some food web studies have used poorly and/or unevenly resolved dynamical food webs to 
investigate stability of food webs or look at changes in their dynamic (McCann 2000; Heath 2005), 
or assess management scenarios or climatic projections (Christensen & Pauly 1992; Ulanowicz 
2004; Mackinson & Daskalov 2007; Albouy et al. 2014). On the other hand, studies focusing on 
highly resolved food webs and their topology have only considered a limited number of time steps, 
e.g. before and after condition (Kaartinen & Roslin 2012; Yletyinen et al. 2016; Bodini et al. 2018). 

Topological food webs portray the structure of food webs and can thereby encompass the 
large diversity in nature (Dunne 2009). Topological analyses are useful for summarizing structural 
properties of food webs and for comparing different ecosystems or regional food webs in space 
(Dunne et al. 2008; De Santana et al. 2013; Kortsch et al. 2018). However, topological food web 
analysis works under the assumption that food webs are static, and that species composition and 
species interactions do not vary over space or time (Pimm et al. 1991). This static view on food 
web structure not only neglects the spatio-temporal variability of species composition but also of 
realized trophic interactions (McCann & Rooney 2009; Poisot et al. 2012, 2015). Empirical spatio-
temporal variability in food web structure can come from distributional shifts of species following 
changes in the environment, e.g. 'thermal niche tracking' (Beaugrand et al. 2014a; Hiddink et al. 
2015) such as the northward migration of cod (Kortsch et al. 2015). The mechanism responsible 
for structural changes is a rewiring of the food web (Thierry et al. 2011). Considering food webs as 
static has major influence on how we understand their structure and functioning. Therefore, in 
order to understand how changes in communities affect the structure of food webs, a framework 
that operates at the nexus of food web topology and dynamical food web models should be 
developed and applied (Thompson et al. 2012; McMeans et al. 2015). 

Although it is challenging to monitor food webs in space and time, large amounts of data 
have already been collected that could help building spatio-temporally resolved food webs (e.g. 
monitoring of species composition, abundances, gut content). From such data, it is possible to 
construct a metaweb that is a food web which include all the species occurrences and potential 
trophic interactions at any given time and site within an area, e.g. the 'Barents Sea food web' 
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(Planque et al. 2014). Subsampling a metaweb (i.e. creating food web snapshots) could represent 
spatio-temporal configurations of one food web solely based on which species co-occur (Dunne 
2006). This technic was applied on spatially resolved empirical marine food webs to investigate the 
spatial variability of food webs (Kortsch et al. 2015, 2018). A similar approach could be used to 
study their temporal variability (Fig. 6.1).  

In the present study, we use standard topological analysis on unweighted and weighted 
food web metrics (weighted by species abundance), to explore and document the temporal changes 
in the structure of a food web. We investigated temporal variability of a marine food web by 
combining food web topology and time series analysis of species abundances. We constructed a 
time series, spanning 18 years (1998-2015), of a food web for a small area in the German Bight 
(North Sea), which is monitored yearly. Using the monitoring data, we constructed a temporally 
resolved metaweb with limited aggregation of species. We hypothesized that the food web structure 
fluctuates over time, due to changes in the community likely as a response to large-scale changes 
in environmental conditions reported for the North Sea. For example, for the North Sea, changes 
both in the physics (e.g. warming, Belkin 2009) and ecology both of benthos and fish have largely 
been documented (e.g. climate-induced species migrations and distributional shifts, Perry et al. 
2005, Neumann et al. 2013). Considering that both environmental conditions and ecological 
communities in the North Sea have changed, we should expect a temporal restructuring of the 
German Bight food web that follows changes in the occurrence of species and of their trophic 
interactions. Therefore, our aim is to understand (i) whether and how the food web structure has 
changed through time, and (ii) whether those potential changes are related to changes in the 
composition of species and links, or to the abundances of taxa? 

Methods 

Study area – Time series of taxa abundances 

The North Sea makes a good case study to investigate community temporal changes for 
three main reasons. (i) It has been well sampled over decades (Ehrich et al. 2007). (ii) Numerous 
studies documented the ecology and dynamic of the system, e.g. community structure (Reiss et al. 
2010); food web dynamic (Greenstreet et al. 1997). (iii) It is heavily impacted by diverse stressors 
(Emeis et al. 2015): high fishing pressure (Daan et al. 2005); climate change (Belkin 2009) that led 
to a modification of the community (Beaugrand 2004; Perry et al. 2005; Heath 2005; Simpson et 
al. 2011; Weinert et al. 2016). The North Sea has been reported to get warmer, with a recorded 
increase of 1.31°C between 1982 and 2006 (Belkin 2009). This warming caused a northward 
migration of fish (Perry et al. 2005), an increase in fish species richness (Hiddink & ter Hofstede 
2008), and an increase of fish abundances (Simpson et al. 2011). It is potentially also the case for 
benthos (Weinert et al. 2016) with species expanding their distributional range in the German Bight 
(Neumann et al. 2013) or possibly leaving the German Bight (Kröncke et al. 2011). A biological 
shift was reported for the benthic macrofauna around 2000/2001 (Kröncke et al. 2013). 
Simultaneously, a biological shift in the plankton community have occurred between 1996 and 
2003 in the North Sea and might have affected directly their predator populations and indirectly 
the predators of those predators (Beaugrand et al. 2014b). We expect changes in the food web 
structure due to changes in species occurrence.  

We used data collected through the German Small-Scale Bottom Trawl Survey (GSBTS), a 
long term, high-intensity sampling in selected small areas of 10x10 nautical miles (Ehrich et al. 
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2007). This survey monitors benthic macrofauna and demersal fish. Three days of sampling every 
fall (quarter 3) are necessary to effectively sample benthic fish with an otter trawl in 21 stations and 
the macrofauna with a beam trawl in 9 stations. This protocol has been carried out continuously 
since 1998 (but no sampling was performed in 2013). In our study, we focus on the Box A, located 
in the German Bight (Fig. 6.1D). In the following text we use interchangeably the term macrofauna, 
invertebrates or macrofaunal invertebrates to refer to all invertebrates that live on sediment, or 
attached to hard substrates that were caught by a net with a 4mm mesh size of the cod end.  

The taxa names were updated using the World Register of Marine Species (WoRMS 
Editorial Board 2018). To account for differences in sampling methodologies between fish and 
benthos, we standardized the abundances of fish and macrofauna separately by calculating their 
relative abundance (i.e. raw abundance divided by the average of abundance). Abundances were 
sometimes lacking (e.g. colonial organisms as bryozoa). Rather than removing taxa that may 
structure the community, we kept them but assigned them a constant abundance. Additionally, 
trawl survey does not sample correctly all taxa it captures. Pelagic fish were reported but would 
under-sampled with otter trawl gear. We tested the influence of the abundance of pelagic fish on 
our results (i.e. recorded abundances vs. constant abundance of one) and found no differences 
(Fig. S6.1). Therefore, we kept the recorded abundance because it is the more realistic estimate.  

The GSBTS recorded 152 species. However, some “rare” taxa are only recorded 
occasionally, and their time series are too variable and does not represent their actual trends. We 
identified persistent taxa (i.e. taxa consistently reported) using the inflection points in the 
persistence plot, following Genner et al. (2004). The inflexion point was detected at 10 years (Fig. 
S6.2). Thus, we kept taxa that had been detected at least 10 years which, in total, represented 95% 
of the abundance.  

Due to differences in sampling effort between years, we repeated 100 times a bootstrap to 
randomly select a constant number of sampling stations and evaluate the sensitivity of our results 
to the inherent variability of biological samplings. We selected randomly 14 fish stations and 7 
macrofauna stations per year. Even if the sampling intensity was remarkably high for such a limited 
area (21 stations in total per year over 10 by 10 nautical miles), some rare species may not be 
detected properly. To test results' sensitivity to the sampling intensity, we considered a three-years 
moving window that would include 35 fish and 17 macrofauna stations. The results were coherent 
with the results from the annual sampling but would decrease the temporal resolution (Fig S6.3). 
We further worked with the annual sampling.  
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Figure 6.1: Schematic representation of the objectives of our study. (A) Temporal changes in 
abundance of species results in (B) changes in the topology of food webs that can be investigated with 
(C) time series of topological indicators. (D) Our case study is located in the German Bight, on a box of 
10 by 10 nautical miles, where fish and benthic macrofauna have been sampled intensively for more 
than 17 years. 

Trophic relationships 

To build a food web, it is essential to know 'who is there' (i.e. the species composition) and 
'who eats whom' (i.e. the trophic relationships also called 'trophic links'). We first built a metaweb 
which contained every taxa selected previously, together with their trophic interactions. This 
metaweb includes detailed information on macrofauna and demersal fish. We added seven 
compartments that were not sampled by the GSBTS survey but important for the food web 
structure: four primary producer compartments (phytoplankton, microalgae, macroalgae, 
macrophyta), bacteria, detritus, and one group 'zooplankton' as zooplankton may constitute the 
main resource for juveniles and pelagic fish. We considered the abundance of these seven 
compartments as constant. 

The trophic interactions were established through an extensive literature review of diet and 
feeding studies. We first assumed that if trophic interactions happened in the past or in areas 
outside the North Sea, these were possible interactions also today or in our area of interest. 
Consequently, our metaweb represents a network of possible trophic interactions between taxa. 
Moreover, we did not consider ontogenic diet shifts (i.e. no distinction between a juvenile and an 
adult) and excluded any feeding on larvae or eggs because they are under-reported in the literature 
and such feeding may misrepresent the trophic positioning of taxa in the food web. 

Information on trophic interactions are biased towards predators and commercial species 
(e.g. cod) which are better studied compared to rarer species or invertebrates. Indeed, most trophic 
interactions originate from observations of predator diet (e.g. stomach content analysis, feeding 
experiments), and the higher the trophic level, the more detailed the reported information. We 
tried to counter-balance this asymmetry by reviewing more intensively the diet of invertebrates. 
However, even after our long and careful review process, diet information for some taxon was still 
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lacking. To solve this problem, we assumed that taxonomically related species may share the same 
predators or may have similar diets (i.e. predators target a morphology rather than an identity). We 
inferred links, which have been double-checked by experts. We had to remove three species for 
which trophic links were lacking or if their main prey were not selected (i.e. Acteon tornatilis, 
Macropodia rostrata, Nymphon brevirostre). The metaweb with the diet references and species list will 
be made available on publication of the manuscript. 

 

Table 6.1: Selected food web metrics and their definition. 'L' denotes the number of trophic links in 
the food web, S the number of species or species richness of the food web, wi the abundance of 
trophospecies E, and li the number of links of trophospecies E, E2F is the number of prey of 
trophospecies E, 2G  is the number of predators, HEIFG	 is the weighted mean of the Jaccard similarity of 
prey (weight of 0.4) and predators (weight of 0.6) between species E and J . The shaded part of the 
table contains community-level descriptors. The second part contains species- and population-level 
descriptors. 

Metric and formula Definition Ecological implications 
Linkage density  

K	 = 	
L
M
 

Average number of interactions per 
taxa (Dunne 2009). 

Inform how connected species are 
within the network. 

Weighted linkage density 

NK =
∑NF × QF
2∑NF

 

Abundance-weighted average number 
of interactions per taxa. 

Inform how connected species are 
considering their respective 
abundances. 

Directed connectance 

R =
L
M>

 

Proportion of all possible trophic links 
(M>) that are realized (Dunne 2009) 

One measure of network complexity 
which can be related to the 
robustness of food webs in the face 
of perturbation. 

Weighted directed 
connectance 

NR =
∑NF × QF

2 × M × ∑NF
 

Abundance-weighted proportion of all 
possible trophic links that are realized. 

Measures of food web complexity 
considering the abundance of 
species. 

Generality 

S	 = 	
∑ QF-
-T
G<=

2G
 

Mean number of prey per predators 
(Schoener 1989). 

Indicates if the system contains more 
generalist or specialist species. 

Weighted generality 

NS =
∑ NF × QF-
-T
G<=

∑NF
 

Abundance weighted mean of the 
number of prey per predators. 

Idem as above but considering the 
relative abundance of species. 

Normalized standard 
deviation in Generality 
SU2MV

=	
1
K
X

1
M − 1

+(E2F 	− 	SF)> 

Dispersion in the number of prey per 
taxa (Williams & Martinez 2000) 

Reflects the variability in the number 
of prey per predators. 

Short-weighted trophic level 

4L =
∑4LF
M

 

Prey averaged trophic level calculated 
from the shortest path between a 
taxon and a basal species (Thompson 
et al. 2007; De Santana et al. 2013) 

Lower TLs indicate a more energy 
efficient system with less steps 
between a taxon and a primary 
producer. 

Mean maximum trophic 
similarity 
Z[MEI	 = 	=

\
∑ I&[	]EIFG	
\
F<=   

with E ≠ J 

Mean maximum similarity of shared 
predators and prey measured as the 
weighted Jaccard similarity index 
(Williams & Martinez 2000; Olivier & 
Planque 2017) 

A low value shows that most 
consumers feed on the same 
resources which can indicate a low 
food partitioning and higher 
competition in the system. 
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Analysis and food web descriptors 

We combined topology analysis with time series analysis to identify changes in the 
community structure. At each time step, we subsampled the metaweb according to the 
presence/absence data and applied structural analysis on the food web snapshot. When relevant, 
we adapted widely used food web descriptors to consider the effect of fluctuating abundances on 
the food web structure (Table 6.1). Community-level descriptors give an insight in how 
communities are structured while species-level descriptors inform on the species participation in 
the food web. We measured the species compositional and trophic interaction turnovers, i.e. the 
dissimilarity in species and trophic interactions between years (Poisot et al. 2012; Kortsch et al. 
2018).  

All data analyses were performed with the statistical software environment R (R Core team 
2017) and the 'igraph' R package (Csárdi & Nepusz 2006). 

Results 

 
Figure 6.2: Metaweb of the fish and benthic macrofauna in the German Bight. The y-axis indicates 
the trophic levels of the species. Basal species are represented at the bottom and connected to higher 
trophic level by trophic links (i.e. arrows oriented from the prey to the predator). The size of the nodes 
is proportional to the mean abundance of species over the 17-years time-series. Name abbreviations 
are built from the first three letters of the genus and the names. Red, blue, purple, green and black 
nodes represent fish, invertebrates, grazers, primary producers and detritus, respectively. 
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The metaweb 

After selection of the persistent species, we obtained a benthic metaweb that contained 55 
trophospecies (S, out of originally 152 taxa). The food web contained 599 trophic links (L) between 
21 macrofaunal invertebrates, 27 fish resolved to the species level, and 7 functional groups (Fig. 
6.2). We kept food web aggregation to the minimum by not aggregating taxa with very similar, but 
often not equal diets. Of the 599 trophic links reported in our food web, 28% of them came from 
peer-reviewed literature, 40% from grey literature and diet databases, and 32% from inference and 
confirmed by expert. The link density (Z) was 10.9 links per nodes and the connectance (C) was of 
0.20, i.e. the food web expresses 20% of all possible links. The annual snapshots subsampled from 
the metaweb (Fig. S6.4) were used to perform the food web topology analysis. 

Temporal variability in the food web structure 

The species richness increased in the early years from 45 in 1998 to above 50 species 
between 2005 and 2008, and decreased afterward to return to 45 species in 2015 (Fig. 6.3). The 
increase of species richness between 1998 and 2006 was accompanied with an increase in link 
density (Z) and generality (G), indicating that the new species had, in average more interactions, 
and specifically a larger number of prey. Weighted link density (wZ) showed similar fluctuations to 
its unweighted counterpart. Anomalies in abundance confirmed that more and more species with 
a high number of prey were becoming more frequent or became detectable in the beginning of the 
twenty-first century (Fig. 6.4). This was the case for a few flatfish species that were nearly absent 
in the early years of the time series (e.g. Platichthys flesus, Scophthalmus rhombus, with 28 to 24 prey 
taxa, respectively). In contrast, the taxa showing the largest increases in abundance over the time 
series were not generalist taxa but taxa with few prey and more predators than prey (i.e. between 3 
to 9 prey and 10 to 22 predators; e.g. Sprattus sprattus and Crangon allmanni) at the exception of 
whiting (Merlangius merlangus, with 40 prey and 13 predators). Anomalies also revealed that generalist 
predators which were present at the beginning of the time series decreased in abundance, such as 
Atlantic mackerel (i.e. Scomber scombrus with 23 prey) and Atlantic horse mackerel (i.e. Trachurus 
trachurus with 23 prey). The mean short-weighted trophic level almost showed no fluctuations apart 
of the outlier year 2009. 

The two metrics of connectance (C and wC) and the standard deviation of generality 
displayed a different pattern. Their trends changed direction in the early 2000s. The standard 
deviation of generality decreased constantly since 2000, suggesting a homogenisation of the 
number of prey per species.  We additionally tested Pearson-correlations between the food web 
metrics (Fig. S6.5). The Pearson-correlation test revealed a strong positive relationship between 
connectance and generality (i.e. 0.65) but weak negative relationship with species richness. 
Weighted connectance (wC), however, showed a strong negative relationship with the standard 
deviation of generality (i.e. GenSD, -0.72). 
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Figure 6.3: Time series of food web metrics. From left to right, top to bottom: species richness of the 
food web (S), mean trophic level (TL), link density (Z), weighted link density (wZ), connectance (C), 
weighted connectance (wC), generality (G), weighted generality (wG), standard deviation of 
generality (GenSD), mean maximum trophic similarity (MxSim). The bold black line indicates the 
median, the dotted lines are the first and third quartiles from the bootstrap of 100 repetitions. 
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Figure 6.4: Time series of relative abundance anomalies. Red and blue colours indicate a difference 
between the median abundance of the year and the median over the time series. Black indicates a local 
extinction. Species are ranked in decreasing strength of their trend (approximated with the difference 
of their abundance in the first five years and the last five years) with the largest increase in abundance 
at the top and largest decrease in abundance at the bottom. The taxa names are abbreviated according 
to the species list, and a letter “F” or “I” indicates if the taxon is a fish or an invertebrate, respectively. 
At the top, black, green and red values indicate the rate of change in species composition, gains and 
losses of species from years to years. On the right of the heatmap are indicated the number of prey 
and predators of each trophospecies. 
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Turnovers in species composition vs. turnover in trophic interactions 

 The previous results highlighted that the community had changed over the time 
series. Prior to 2006, a decrease in both turnovers revealed that the changes in food web decreased, 
not only in terms of species composition, but also in terms of trophic interactions (Fig. 6.5). After 
2006, the turnover in trophic interactions increased to higher values than before (i.e. ca. 0.15 in 
1998 compared to ca. 0.20 in 2015) while the turnover in species composition went back to 
previous values (i.e. ca. 0.10). The dissimilarity in species composition is lower than the dissimilarity 
of trophic interactions, suggesting that the food web changed faster in terms of trophic interactions 
than in species composition (Fig. 6.5). This was also shown in the mean maximum trophic similarity 
(i.e. MxSim, Fig. 6.3) as taxa showed more redundancy in their sets of trophic interactions in the 
early 2000s than after 2006. However, if the food web diverged from its original counterpart, the 
change from years to years was not constant: the rate of change in species composition first slowed 
down to increase again after 2006 (Fig. 6.4). 

 
Figure 6.5: Species and interaction turnovers. Turnovers in species composition and interactions (left) 
and relationship between the two turnovers for all pairs of food web snapshots (right). The colour 
gradient indicates the time distance between food web snapshots. The dashed grey line indicates the 
1:1 relationship. 

Discussion 

Food web structural response to a change 

Our results demonstrate that population dynamic and food web structure revealed two 
complementary information. The food web has undergone a structural transition since the early 
2000: the food web structure was following a trend that progressively reversed as the ecological 
community was changing. Our results revealed an opposite asynchronous response of species 
richness and complexity of the food web. Numerous studies argued as to how connectance should 
vary with species richness (Dunne 2006). We would expect connectance to decrease if the number 
of links increases linearly with the number of species (May 1972). If a decrease in connectance was 
observable in the first years of the time series, the food web structure underwent a structural 
inflation and complexification starting in the early 2000s (i.e. the food web became more complex 
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as species richness of the food web increased). Connectance would increase only if the number of 
links would increase faster than the square of the number of taxa. The structural complexification 
that we observed could be explained by the introduction of taxa with a large number of links: either 
taxa with many prey, many predators or both. In our case, generalist taxa were introduced in the 
first phase posterior to the change (i.e. the rising of species richness). Our study revealed that the 
food web structure changed from a dominance of generalist consumers to a dominance of more 
specialist consumers. Our results are coherent with findings reported in the Baltic Sea, which 
reported a similar increase in generalism and no changes in other structural properties observed 
when comparing the structure of two food webs prior and following the Baltic Sea regime shift 
(Yletyinen et al. 2016). We suggest that food webs react to community changes by a progressive 
readjustment of the sets of trophic interactions, i.e. food web rewiring (Thierry et al. 2011), and a 
balancing of those interactions through fluctuating abundances of species and changes in 
dominance of species, i.e. asynchronization of resources (McMeans et al. 2015). Indeed, species 
abundance did not influence the fluctuations of structural properties at the food web level (i.e. link 
density and connectance) but influenced fluctuations at the taxa level (i.e. generality vs. weighted 
generality). This may suggest that each species contributions to the structure of the food web could 
be balanced by their own abundances. 

High levels of turnover (both in species composition and species interactions), coupled 
with species density compensation, could be responsible for the rapid adaptability of community 
to changes. The constant reshuffling of species could allow for a progressive structural 
readjustment of the food web. An empirical study focusing on temporal variability in terrestrial 
food webs showed temporal consistency in quantitative food web metrics (i.e. such as weighted 
generality) at the local scale in the face of high compositional turnover (Kaartinen & Roslin 2012). 
They suggested that the stability of species composition in food webs may be partly resulting from 
a balancing between the abundance of species and their ecological specialisation. Our results would 
suggest that in the face of a disturbance, the food web structure could be transiting between phases 
of low and high ecological specialisation driven and compensated by variations in species 
abundance until it reaches an adequate balancing of those interactions (i.e. both structural presence 
and structural importance through abundance). 

Limitations of our approach 

Currently, our metaweb displays values similar to older generations of food webs that were 
criticized for overestimating food web structural properties (Dunne 2006). Building metawebs is 
time consuming and require a challenging data-quality check not to overestimate food web 
structural properties. An overestimation of food web metrics is indeed pathological of cumulative 
food webs which have been built upon accumulated data on species trophic interactions. 
Additionally, our food web does not consider the dynamic of trophic interactions and variability in 
trophic interactions only results from changes in the species composition. Our approach could be 
improved by integrating the dynamic of trophic interactions. It is likely that some trophic 
interactions that we included may no longer occur or not yearly. We have tried to partly overcome 
this weakness by assuming that trophic interactions with lower abundances should be less 
represented (and conversely). However, this assumption does not address consumers' preferences 
and behaviours. Consumers may have drastically different diet from years to years as some species 
may not occur yearly, or their preferred prey may become more abundant.  
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Annual time step may hide numerous seasonal patterns. For instance, it is likely that mobile 
organisms follow any periodicity (i) in the availability of their preferred prey or (ii) in the physics 
of their environment. Timing becomes critical and consumers will locally occur when it is most 
favourable for them (Durant et al. 2007). Variability in trophic interactions is believed to be 
responsible for the high adaptability of food webs in the face of a change and integrating spatial 
and temporal variability of trophic interactions will give better insight in the structure and 
functioning of food webs (Poisot et al. 2015; Ushio et al. 2018). We suggest that this weakness in 
our methodology could be overcome by combining our approach with trophic relationships 
inference technics that would allow for refining and improving both the metaweb and snapshots 
of food webs (Gravel et al. 2013; Poisot et al. 2015).  

Implications for ecosystem management 

Food webs constitutes an ideal tool to summarize changes occurring at the ecosystem level. 
Unfortunately, they become often too complex for management purposes and most management 
measures often focus on single species or group of species of commercial interest they interact 
with. The European Union required moving towards a more ecosystem-based management 
through the Marine Strategy Framework Directive (MSFD) which includes one specific descriptor 
for marine food webs  (Rogers et al. 2010). Numerous food web indicators, including structural 
indicators, have been proposed to evaluate Good Environmental Status (Tam et al. 2017; Otto et 
al. 2018) but biomonitoring of food webs is still cruelly lacking (Gray et al. 2014). Combined with 
the right indicators, our coupled topology-time series analysis is an easy-to-use and practical tool 
to monitor ecological changes at the community scale and evaluate trends in the Good 
Environmental Status of ecosystems. This methodology only requires a metaweb and a way to 
assess changes in the community. It takes advantage of data that are already collected on a yearly 
basis. With the increase of monitoring effort and the proliferation of food webs, our proposed 
methodology is a promising approach to reveal changes in the ecological status of ecosystems. 
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Figure S6.1: Time series of food web metrics but abundances of pelagic taxa were maintained 
constant to a value of one. From left to right, top to bottom: species richness of the food web (S), mean 
trophic level (TL), link density (Z), weighted link density (wZ), connectance (C), weighted 
connectance (wC), generality (G), weighted generality (wG), standard deviation of generality 
(GenSD), mean maximum trophic similarity (MxSim). The bold black line indicates the median, the 
dotted lines are the first and third quartiles from the bootstrap of 100 repetitions. 

 
  



Chapter 6 

 118 

Figure S6.2: Plot of abundance against persistence for fish and invertebrate taxa in assemblages. 
The point of inflexion, identified around 10 years, represents the breakpoint between rare and 
common species. 
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Figure S6.3: Time series of food web metrics considering a 3-years moving window on the 
abundance time series with information from 35 fish stations and 17 macrofauna stations. From left to 
right, top to bottom: species richness of the food web (S), mean trophic level (TL), link density (Z), 
weighted link density (wZ), connectance (C), weighted connectance (wC), generality (G), weighted 
generality (wG), standard deviation of generality (GenSD), mean maximum trophic similarity 
(MxSim). The bold black line indicates the median, the dotted lines are the first and third quartiles 
from the bootstrap of 100 repetitions. 
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Figure S6.4: Snapshot of the food web at individual time step. The y-axis indicates the trophic levels 
of the species. Basal species are represented at the bottom and connected to higher trophic level by 
trophic links (i.e. arrows oriented from the prey to the predator). The size of the nodes is proportional 
to the abundance of species estimated by the median over 100 subsamplings. Red, blue, purple, green 
and black nodes represent fish, invertebrates, grazers with constant abundance, primary producers 
and detritus, respectively. 
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Figure S6.5: Matrix of correlations between food web structural properties. The size of the text as the 
asterisks indicates significance of a correlation. Significance is shown with stars : *** p-value <0.001, ** 
<0.01, * <0.05. 
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Abstract 

The relationship between diversity and stability has challenged ecologists for decades. Most 
studies use taxonomic approaches to understand why and under what conditions a community is 
more stable than the sum of its parts. However, organisms undergo strong ontogenetic shifts 
during their lifetime, and intra-specific size variability might be an important stabilizing factor. 
Therefore, we developed a size-based approach to investigate the relative influence of size 
asynchrony on the stability of communities. Our empirical study is based on long time series (>20 
years) of fish biomass from over 50,000 fisheries-independent stations spread across North-
Atlantic Large Marine Ecosystems. We found that taxonomic and size asynchrony correctly 
predicted community stability. In particular, size asynchrony was a major stabilizing mechanism 
for communities dominated by few and large-bodied species. Our results challenge the current 
understanding of the regulation of stability and have far-reaching implications for integrative 
ecosystem-based management. 

Keywords: diversity, evenness, stability, synchrony, insurance hypothesis, size spectra, 
intraspecific variations, traits, fish community, big data  
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Introduction 

The long-lasting debate about the relationship between diversity and stability has fascinated 
generations of ecologists (Elton 1958; May 1971; McCann 2000; Loreau & de Mazancourt 2013). 
Currently, humanity’s impact on ecosystems and their biodiversity is stronger than ever and 
expected to increase under population growth and changing climate conditions (Young et al. 2016). 
Given mankind’s dependence on ecosystem services, unraveling the relationship between diversity 
and ecosystem stability is urgently needed and has strong implications for managing and conserving 
the biosphere.  

The debate about the diversity-stability relationship (DSR) started with a relatively simple 
Lotka-Volterra model developed by Robert May in 1971 that contradicted the common 
understanding of the positive effect of diversity on ecosystem stability (Elton 1958). Since then, 
more complex models have been developed that account for interaction strengths between species 
(McCann et al. 1998), differential responses to environmental fluctuations (Yachi & Loreau 1999; 
Ives et al. 1999; Loreau & de Mazancourt 2013), and intra and inter-specific trait variability (Zhang 
et al. 2013). These models confirm the positive impact of diversity on ecosystem stability and 
suggest that community stability increases with differences in intrinsic environmental responses (in 
terms of effect and speed) and reduced strength of interspecific competition (Loreau & de 
Mazancourt 2013). Additionally, trait diversity, especially differences in growth rate, has been 
identified as an important factor stabilizing communities (Zhang et al. 2013). Finally, stability has 
been theoretically linked to the synchrony of species fluctuations and average species-level stability 
(Thibaut & Connolly 2013). Species evenness can be an important driver of stability, but it remains 
unclear whether its influence is positive or negative (Thibaut & Connolly 2013). 

Numerous long-term biodiversity experiments have been conducted in terrestrial, 
freshwater and marine environments. Recent meta-analyses confirm that diversity increases both 
the productivity and stability of ecosystems at the community level, while destabilizing temporal 
dynamics of individual populations (Tilman et al. 2014; Gross et al. 2014). However, the large 
variability in the results of the experiments suggests that we have yet to fully grasp the mechanism 
of the connection between diversity and stability. Indeed, empirical studies examining natural 
communities have confirmed this large variability in DSR (Valone & Barber 2008; Schindler et al. 
2010; Mikkelson et al. 2011; Thibaut et al. 2011; Anderson et al. 2013). For example, the insurance 
hypothesis (also called portfolio effect), which predicts that a community is more stable than the 
sum of its parts, has been rejected in terrestrial communities (Valone & Barber 2008), validated in 
salmon populations (Schindler et al. 2010) and coral fish (Thibaut et al. 2011), and was found to be 
either positive or negative depending on the system (Anderson et al. 2013; Cusson et al. 2015). 

Trait-based approaches to diversity suggest that the characteristics of individuals might 
better inform the functioning of ecosystems and their responses to environmental variability than 
taxonomic approaches (Violle et al. 2007). Body size is generally recognized as a universally 
important trait influencing key organismal processes such as feeding, growth, and metabolism 
(Andersen et al. 2016). In vertebrates (e.g. mammals, birds, fish), body size is strongly correlated 
with prey size, motility, spatial range, reproductive output, physiology, and morphology. Some of 
these correlations have also been found for protozoa, algae, bacteria, and plants (Peters 1983). 
Moreover, fish are known for their strong ontogenetic shifts, i.e. there are strong differences in 
diet, predation risk, and environmental responses within species and between age classes (Cohen 
et al. 2003; Rudolf & Lafferty 2011; Zhang et al. 2013). In fact, similar size classes across species 
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may have similar dynamics due to intra-size class competition for food, similar predators and 
similar environmental responses. Dynamical size-spectrum models have shown that community 
abundance can have self-induced oscillations, called waves, moving along the size spectrum from 
small to large body size (Law et al. 2009). Moreover, a dynamic trait-based size-spectrum model 
indicated that the diversity of growth rates stabilizes community dynamics through asynchrony in 
species waves (Zhang et al. 2013). However, these theoretical predictions have never been 
confirmed empirically in species assemblages, and it remains to be fully shown whether size 
categories (e.g. small, medium or large fish) are complementary to taxonomic descriptors for 
understanding the dynamics and stability of communities (Fig. 7.1A). 

 
Figure 7.1: Conceptual approach and dataset. (A) Our goal is to understand community stability, as 
described by the coefficient of variation (CV) of the total biomass over time, by looking at synchrony 
between species (taxonomic synchrony) and between size classes (size synchrony). (B) Our study 
builds on empirical evidence from a large dataset (>50,000 stations) of fisheries-independent trawl 
surveys across the North Atlantic. Colours represent the 36 different areas, homogeneous in terms of 
species composition and habitat characteristics.  

Our empirical study addresses the diversity-stability relationship using multiple datasets 
collected by large-scale and long-term fisheries-independent ecological monitoring programmes 
(Fig. 7.1B). By merging these national and regional surveys, we are able to test the robustness and 
variability of the DSR across ecosystems. As recently suggested, large datasets, such as ours, can 
bring valuable empirical evidence for disentangling long-lasting questions in ecology and 
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environmental science (Edgar et al. 2016; LaDeau et al. 2017). Our analysis is based on more than 
50,000 stations from twelve long-term fisheries-independent surveys spanning the northwestern 
and northeastern Atlantic shelves, the Baltic Sea, and the western Mediterranean Sea. We focus on 
the stability of productivity, measured here as the variability of biomass over time. The aim of our 
study is to understand the influence of size structure on the stability of fish communities and to 
explore the relative contribution of size asynchrony (i.e. asynchrony of biomass time series among 
size classes) on community-level stability in 36 different marine ecosystems. The main questions 
of our study are: i) what is the complementarity between size and taxonomic synchrony for the 
stability of communities? ii) which factors could explain the differences between size and 
taxonomic synchrony and iii) what are the regulatory mechanisms of stability? 

Material and methods 

Fisheries-independent bottom trawl surveys 

We gathered data from twelve long-term monitoring surveys targeting groundfish 
populations across the North Atlantic coastlines, the Baltic Sea, and the western Mediterranean Sea 
(Fig. 7.1B and Table S7.1 in Supporting Information). The common goal of these surveys is to 
estimate the stock size of commercially-valuable species as well as to assess the diversity of species 
assemblages and their dynamics. Therefore, all catches were identified (mostly at species level), and 
the lengths of all individuals (or a representative subsample per species) were measured to monitor 
the size structure of species catches. The gears and protocols used vary between surveys (Table 
S7.1), but within each survey the protocol was kept constant and therefore the annual time series 
are consistent. We accounted for the seasonal migration pattern of fish species by considering only 
one season per year, identifying for each survey the season with the best sampling coverage and 
the longest time series (Table S7.1). In the case of surveys with 24-hour samplings, we removed 
the night stations to eliminate the effect of diurnal migration. 

Our study investigated the multidecadal variation in demersal shelf fish assemblages. 
Therefore, we only kept hauls between 20 and 300 m depth, removing coastal and deep community 
samples (Pecuchet et al. 2017). The bottom trawls used in the surveys are efficient for estimating 
demersal fish populations, but may not consistently sample pelagic fishes. Consequently, we 
removed pelagic and mesopelagic fish species that spend most of their time in the upper water 
column, or that display variable catchability among years, such as European pilchard (Sardina 
pilchardus) and American shad (Alosa sapidissima). All taxa reported were checked to ensure 
consistency of taxonomic information reported throughout each survey and to prevent 
overestimating species richness and species turnover. Hereafter, we use “species” to refer to taxa, 
even if some taxa (only 2% of all records) correspond to the genus or family level. 

From length to weight class 

We transformed length measurements (in cm) to weight (in g) for all species, using length-
weight relationships (Froese 2006). The coefficient of the arithmetic length-weight relationship a 
and the allometric growth parameter b were taken from local validated databases (Table S7.1). 
When the parameters were not available, we used data extracted from FishBase (Froese & Pauly 
2017). If the parameters were not available in FishBase, we approximated a=0.01 and b=3, as these 
values are commonly accepted parameters and closely approximate the median of more than 3,500 
fish species (Froese 2006).  
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We created classes of 0.5 log2 size bins following a commonly-used procedure in body size-
spectra studies (Jennings & Dulvy 2005; Hidalgo et al. 2017). We evaluated the minimum and 
maximum size classes that were consistently sampled by visually detecting breaks in the slope of 
the size spectra (Fig. S7.1). The size classes were limited to the range between 23 g and 23 kg, 
because fish outside this range were rarely were rarely caught and not consistently sampled. 

Community time series 

The hauls (or stations) were grouped into “areas”, which were subdivisions of the surveys 
defined as relatively homogeneous ecosystems in terms of fish species composition and habitat 
characteristics according to previous literature (Daan et al. 1990; Stefansdottir et al. 2010; Shackell 
et al. 2012). We restricted our dataset to areas that have been sampled at least 10 times annually, 
without interruption for at least 19 years. In total, we used information collected from 54,739 hauls 
in 36 different areas between 1963 and 2017, recording the abundance of 491 different species (Fig. 
7.1B). 

Not all demersal species are well-sampled by bottom trawl surveys. The “rare” taxa are only 
recorded occasionally, and thus their observed dynamics are highly variable and may not represent 
actual trends. Consequently, we limited species assemblages to persistent taxa, i.e. species that were 
consistently reported. We identified persistent taxa using inflexion points in a persistence plot, 
comparing the number of years of presence against the log of the biomass (Genner et al. 2004). 
The inflexion point was detected at 50% of the time series (Fig S7.2), therefore we only kept species 
that have been detected during more than 50% of the years in the time series. 

Furthermore, the number of stations sampled was not constant over the time series or 
across areas, so we kept the same number of hauls per year for all surveys. This procedure assured 
that synchrony estimates are not influenced by the number of samples and the averaging effect. 
We randomly selected 10 hauls per year from each area and then repeated this random selection 
100 times. This random selection procedure provided an estimation of the variability of our results. 

Stability and diversity indicators 

Stability was defined as the variability in community biomass over time, measured as the 
inverse of the coefficient of variation (McCann 2000). We used synchrony as the DSR indicator, 
defined as the ratio between community variance and species-level variance (Loreau & de 
Mazancourt 2008). The synchrony indicator varies between 0 (perfect asynchrony) and 1 (perfect 
synchrony) and has the advantage of being both mathematically robust and easy to interpret 
(Thibaut & Connolly 2013). For instance, if two species are perfectly synchronous, the sum of their 
biomasses will be highly unstable (similar to the sum of two waves with similar phases), while 
perfectly asynchronous species will counterbalance, and the sum of their biomasses will be 
constant. 

We computed synchrony indicators for size classes and taxonomic classification (Fig. 7.1A) 
and referred to these as size synchrony and taxonomic synchrony. Moreover, to investigate the 
differences between the two synchrony indicators, we calculated their standardized difference 
(DM_2) divided by their mean: 

DM_2 = 2 ×
H_2`Fab −	H_2cdef
H_2`Fab +	H_2cdef
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Size and species richness were defined as the number of size classes and taxa, respectively, 
that were persistently recorded over the time series of 10 randomly selected hauls per year. Size 
richness was, by construction, limited to 20 size classes. Pielou’s evenness, defined as the ratio 
between the Shannon index and the species richness, was used as an indicator of evenness in the 
species assemblages (Pielou 1966). Evenness is close to 0 if the community was dominated by few 
species, or close to 1 if most species had similar biomass. Diversity indicators (i.e. richness and 
evenness) were calculated for each time step, and then averaged over the entire time period.  

We built a linear model predicting log-transformed CV with size and taxonomic synchrony 
including interactions. We tested pairwise relationships between different diversity indicators and 
DM_2 using linear models and Pearson correlation coefficients. For every linear model, we visually 
checked that all the assumptions of the linear model were verified, particularly the statistical 
independence, normality and homoscedasticity of the residuals.  

All statistical analyses and data processing were conducted in the programming 
environment R3.3 (R Core team 2017). Maps were created with the mapdata package (Becker et al. 
2016), 3D visualization with the plot3D package (Soetaert 2013) and diversity indicators were 
calculated using the vegan package (Oksanen et al. 2017). 

Results 

Spatial distribution of diversity and stability indicators 

Species richness, measured as the number of species recorded persistently along the time 
series with 10 hauls per year, was highest (>30 species) in the Mediterranean Sea, the Celtic Sea 
and the Bay of Biscay, while lowest in the eastern Baltic Sea (< 10 species) (Fig. 7.2A). In the North 
Sea, we observed a strong latitudinal gradient from low species richness in the southeast to high 
values in the northwest. A similar gradient was observed along the east coast of North America, 
with lower diversity in the southwest. Species evenness was exceptionally high (0.7) where species 
richness was highest, i.e. in the Mediterranean Sea, the Celtic Sea and the Bay of Biscay (Fig 7.2B). 
Lowest evenness was found off the east coast of Greenland, dominated by Atlantic cod (Gadus 
morhua) and redfish (Sebastes spp.). In the North Sea, evenness followed an east-west gradient, with 
the western fish assemblages dominated by whiting (Merlangius merlangus) or haddock 
(Melanogrammus aeglefinus). Size richness reflects the maximum size class that was persistent in the 
time series. The size richness followed a latitudinal gradient (Fig. 7.2C) with lowest diversity in the 
Mediterranean Sea and the Mid-Atlantic Bight (12 size classes, corresponding to a maximum size 
of 1 kg), the largest diversity around Iceland and Greenland (20 size classes, maximum size 23 kg). 

By definition, stability is inversely related to the coefficient of variation (CV). The most 
unstable communities (CV>1) were reported off the western coast of Greenland, the southwestern 
North Sea and the southern New England region along the US coast (Fig. 7.2D). The most stable 
communities (CV <0.5) reside in the Celtic Sea, the Bay of Biscay and the western Baltic Sea. 
Taxonomic and size synchrony displayed a similar spatial pattern, with strong synchrony in the 
assemblages off the western coast of Greenland, the southern North Sea and the eastern Baltic Sea 
(Fig. 7.2E&F). 
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Figure 7.2: Spatial distribution of diversity and stability indicators. Diversity indicators are shown 
on the left side: species richness (A), species evenness (B) and size richness (C). Stability and 
synchrony indicators are shown on the right side: coefficient of variation of the community biomass 
(D), taxonomic synchrony (E) and size synchrony (F). 

Asynchronous assemblages are more stable 

We investigated the relation between stability and synchrony with a linear regression model 
predicting log-transformed CV from size and taxonomic synchrony including their interaction. The 
two synchrony indicators were positively and significantly associated with CV (Fig. 7.3A). In other 
words, low taxonomic or size synchrony was related to lower variability of biomass, i.e. higher 
stability. This observation confirmed the positive effect of asynchronous population dynamics on 
community stability. The partition of variance indicated that taxonomic and size synchrony 
explained together 34% of the variability of log-transformed CV (Fig. 7.3B). Taxonomic synchrony 
alone explained an additional 15% and size synchrony alone explained an additional 5%. Such a 
simple model with only two predictors was able to explain more than 53% of the variability of the 
coefficient of variation. 
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The majority of the points were situated on the left side of the 3D visualization (Fig. 7.3A), 
indicating than on average, size synchrony was higher than taxonomic synchrony. In fact, 27 areas 
out of 36 had, on average, a higher size synchrony than taxonomic synchrony. When considering 
the 95% confidence interval from random sampling, 17 areas (~50%) always had higher size 
synchrony than taxonomic synchrony; only 3 areas (~10%) demonstrated the opposite. In the 
remaining 16 areas, size and taxonomic synchrony were similar.  

 

 
Figure 7.3: Relationship between size synchrony, taxonomic synchrony and stability (as indicated 
by CV). Points represent the 100 repetitions for each area and colours indicate areas (see Fig. 7.1B). 
The grey grid is a linear regression modeling the log-transformed CV from size and taxonomic 
synchrony including their interaction. The dark bold line is the predicted CV when size and 
taxonomic synchrony are equal. (B) Partition of the variance of log-transformed CV (in %), explained 
by taxonomic and size synchrony. 
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Relationship between evenness and synchrony 

To investigate the factors that could explain the difference between size and taxonomic 
synchrony, we calculated the standardized difference between taxonomic synchrony and size 
synchrony (dSyn). Negative (or positive) differences denote stronger taxonomic (or size) 
synchrony. With high positive values, fish assemblages in the Ebro Delta in the Mediterranean Sea, 
the Cantabrian Sea, and the central Scotian Shelf had lower species synchrony, indicating that 
asynchrony among species dynamics had a stronger stabilizing effect than differences among size 
classes. In contrast, negative differences observed off east Greenland and in the Baltic Sea indicate 
assemblages with lower size synchrony than taxonomic synchrony, suggesting the opposite 
mechanism. 

 

 
Figure 7.4: Relationship between species evenness and the difference between size synchrony and 
taxonomic synchrony. Polygons represent the variability of results, as indicated by the convex hull of 
the inter-quartile range of 100 repetitions for each area. The bold dashed line represents equality 
between taxonomic and size synchrony while the dotted line is the linear regression calculated from 
the 100 repetitions. Colours indicate areas, as mapped in (B). 
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The standardized difference in synchrony was positively correlated with species evenness 
(r=0.69, p-value<0.001, Fig 7.4A). Communities with a highly even assemblage (e.g. the 
Mediterranean Sea) displayed stronger taxonomic synchrony than size synchrony, while opposite 
for communities with low species evenness (e.g. off east Greenland). In fact, species evenness was 
the best explaining variable of dSyn among the 4 variables of richness and evenness tested (Fig. 
S7.3). Species richness and size evenness were also positively and significantly correlated with dSyn 
(Fig. S7.3A&C), but both variables were highly correlated with species evenness (Fig. S7.3D&F). 
Additionally, a negative correlation was found between dSyn and size richness (Fig. S7.3B). These 
results indicate that systems with high species diversity and high evenness maintain stability through 
between species asynchrony while systems with low species diversity and few large-bodied 
dominant species maintain stability through within-species size asynchrony. 

Discussion 

Size asynchrony stabilizes uneven communities 

Our study offers a novel perspective on the link between synchrony, stability, species 
diversity and size structure, based on more than 50,000 samples from long-term fisheries-
independent surveys. Across North Atlantic Large Marine Ecosystems, asynchrony was an 
important driver of stability in fish assemblages. In fact, the synchrony among taxa, and the 
synchrony among size classes could explained 53% of the variability of CV (Fig. 7.3). Our study 
empirically confirms the results of models about the “insurance hypothesis” or the “portfolio 
effect” (Yachi & Loreau 1999; Ives & Carpenter 2007; Thibaut & Connolly 2013). Additionally, 
our results indicate that taxonomic synchrony is important when species are even, while size 
synchrony is more important when assemblages are dominated by few species (Fig. 7.4). Evenness 
in community biomass seems to be a good indicator of the stability mechanism, corroborating the 
importance of evenness in ecosystem processes (Hillebrand et al. 2008). Indeed, when assemblages 
are dominated by few species, the difference in species’ responses to environmental or 
anthropogenic perturbations does not stabilize the community, but rather asynchrony of different 
size classes of the dominant species. Lower evenness in the North Atlantic generally means that a 
system is dominated by a few large-bodied predatory species. Since these species have a wider range 
of sizes throughout their life-span, the asynchrony is mainly within species, not across species. In 
systems with high species evenness, which also means higher species richness, asynchrony is among 
species, not within species. In other words, the system seems to adjust to maintain stability and 
intra-specific trait variability, such as body size, which can be an important stabilizing mechanism 
in systems with strong dominance. Our results are in line with a recent meta-analysis on intra-
specific variability which can have a higher or comparable effect on ecosystem functions (such as 
stability) than between species variability (Des Roches et al. 2018).  

Limitations and robustness 

Despite differences in sampling protocols between areas, we considered the time series of 
fish biomass within each area to represent the dynamics of that species assemblage. The level of 
stability of each area can be influenced by external drivers or different sampling protocols. 
However, the stabilizing mechanism identified here, either regulated by size or taxonomic 
asynchrony depending on community evenness, is independent of the level of stability. Our study 
did not consider possible drivers of synchrony or stability other than diversity. Environmental 
fluctuations and anthropogenic pressures have affected the areas differently, hence also influencing 
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these indicators to variable degrees. For example, fishing pressure has been found to increase 
synchrony of populations, therefore ecosystems with lower fishing pressure are usually more stable 
(Bell et al. 2014). However, our study investigated the relationship between stability and synchrony, 
and external pressures impact both, therefore our results likely stand regardless of the level of 
environmental fluctuations or fishing pressure. 

Our results were robust to multiple sensitivity tests on species inclusion, taxonomic 
resolution, size class resolution and spatial scale. Since the definition of “pelagic species” is 
subjective, we tested the sensitivity of our results to the deletion of pelagic species and our results 
stood even when we kept all pelagic species (Fig. S7.4). Because different surveys recorded taxa at 
varying taxonomic resolutions, we tested the effect of taxonomic resolution on our results. 
Running the same analysis aggregating species to genus or family confirmed our results (Fig. S7.5). 
To test whether our results were sensitive to the definition of size classes, we grouped size classes 
together, to keep only 10 or 7 size classes instead of 20. Again, the results and the relationship 
between synchrony and stability were consistent with the results presented here (Fig. S7.6). Finally, 
we tested for the effects of using different spatial scales in the analysis, but found similar results 
both at small (the size of one-degree longitude and 0.5-degree latitude rectangles, Fig. S7.7) and 
large (the extent of the surveys) scales (Fig. S7.8). Altogether, we are confident that our large 
dataset, although being a composite from many different sources, reliably demonstrates the 
relationship between stability and diversity, through two complementary mechanisms: 
asynchronous species fluctuations and within-species asynchronous size fluctuations. 

Implications for ecology and conservation 

Our study is, to the best of our knowledge, the first to provide empirical evidence for the 
role of species evenness in determining the mechanism by which marine populations maintain 
community-level stability. Our results indicate that, in species-poor ecosystems dominated by few 
large-bodied species, size diversity within species leads to asynchrony among size classes, which 
contributes to community-level stability. In species-rich ecosystems, the asynchrony among 
species, resulting from diverse responses to external pressure and growth rate, is the main factor 
of community-level stability. This result has far-reaching implications for our understanding of the 
regulation of stability in ecosystems and for integrative ecosystem-based management. 

Communities evolve in an ever-changing environment, and conservation efforts should 
focus on preserving the diversity of environmental responses among species, rather than the 
species themselves (Schindler et al. 2015). Knowing that the dynamics of the size structure of 
communities can buffer ecosystems with few dominant species is highly relevant for management, 
particularly while there is ongoing debate about the benefits of balanced harvesting in fisheries 
management (Law et al. 2012; Jacobsen et al. 2014; Froese et al. 2016). Our study shows that the 
size structure in ecosystems dominated by few large-bodied species is important for their stability, 
hence maintaining size structure by lowering pressure on large individuals might improve the 
biomass stability of the community (and subsequently the stability of fisheries yield). Our study 
brings new evidence in favour of size-based and trait-based approaches for studying the role of 
diversity in ecological communities and for ecosystem functioning. In fact, size structure offers a 
complementary view to the taxonomic community description, which is important for 
understanding the complex and multidimensional relationship between diversity and stability 
(Donohue et al. 2016). For theorists and empiricists, our results suggest incorporating size 
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distributions in future research on stability, and more generally to consider intra-specific trait 
variability for the study of ecosystem functioning.  
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Table S7.1: Description of the twelve scientific surveys. 

Survey Region Year 
start 

Year 
end 

Number 
hauls 

Number 
areas 

Number 
species 

Contact Local LW 
parameters 

BITS Baltic Sea 1991 2017 5,534 5 47 ICES 
DATRAS1 

Fung et al. 
20123 

CGFS English 
Channel 

1988 2014 1,846 1 54 IFREMER2 Fung et al. 
20123 

EVHOE Celtic Sea 
and Bay of 
Biscay 

1997 2016 2,347 4 121 IFREMER2 Fung et al. 
20123 

GBTS Greenland 1981 2017 2,564 2 59 Heino Fock private 
communication 

GSL Gulf of Saint 
Lawrence 

1971 2002 2,489 1 52 Daniel Ricard Wigley et al. 
20034 

IGS Iceland 1996 2017 4,747 2 77 Jón 
Sólmundsson 

Use data from 
HF, Greenland 

NEFSC Northeastern 
coast of 
United States 

1963 2009 10,646 4 198 Sean M. 
Lucey 

Wigley et al. 
20034 

NSIBTS North Sea 1985 2017 11,292 9 109 ICES 
DATRAS 

Fung et al. 
20123 

SCS Scotian Shelf 1970 2017 8,461 3 115 Nancy L. 
Shackell 

Wigley et al. 
20034 

SPATL Spanish 
Atlantic coast 

1991 2015 2,673 2 120 Manuel 
Hidalgo 

private 
communication 

SPMED Spanish 
Mediterranean 
Sea 

1994 2017 1,102 2 137 Manuel 
Hidalgo 

private 
communication 

SWCBTS Scottish West 
Coast 

1999 2017 1,038 1 77 ICES 
DATRAS 

Fung et al. 
20123 

 TOTAL 1963 2017 54,739 36 491   
 

1 ICES DATRAS: http://datras.ices.dk/Data_products/ 
2 IFREMER: http://www.ifremer.fr/SIH-indices-campagnes/  
3 Fung, T., Farnsworth, K. D., Reid, D. G., & Rossberg, A. G. (2012). Recent data suggest no 
further recovery in North Sea Large Fish Indicator. ICES Journal of Marine Science, 69(2), 235–
239. doi:10.1093/icesjms/fsr206 
4 Wigley, S. E., McBride, H. M., & McHugh, N. J. (2003). Length-weight relationships for 74 fish 
species collected during NEFSC research vessel bottom trawl surveys, 1992-99. NOAA 
Technical Memorandum NMFS-NE-171 
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Figure S7.1: Size spectra calculated with log2 size bin from 1g to 131kg. Bin classes between 23g and 
23kg were selected as correctly sampled by bottom trawl surveys. 

 
 

Figure S7.2: Persistence plot (length of time series vs log abundance) of all the species caught by 
demersal trawl survey. The points represent the different species while the colours represent the 
different areas. The lines are third-order polynomial regressions fitted to the different surveys, the 
vertical dotted lines are the inflexion points. The black line is the global model for the entire dataset, 
with an inflexion point at 53%. 
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Figure S7.3: Pairwise correlation between diversity and synchrony. Relationship between the 
difference of synchrony (size-taxonomic) and (A) species richness, (B) size richness, and (C) size 
evenness. Relationship between species evenness and (D) species richness, (E) size richness and (F) 
size evenness. 
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Figure S7.4: Sensitivity to pelagic species. Results using demersal and pelagic species. (A) 
Relationship between size synchrony, taxonomic synchrony and stability (as indicated by CV). Points 
represent the 100 repetitions for each area. The grey grid is a linear regression modeling the log-
transformed CV from the size and taxonomic synchrony including interaction. The dark bold line is 
the predicted CV when size and taxonomic synchrony are equal. (B) Partition of the variance of log-
transformed CV (in %), explained by taxonomic and size synchrony. (C) Relationship between species 
evenness and the difference between size and taxonomic synchrony. Polygons represent the 
variability of results, as indicated by the convex hull of the inter-quartile range of 100 repetitions for 
each area. The bold dashed line represents equality between taxonomic and size synchrony while the 
dotted line is the linear regression calculated from the 100 repetitions. Colours of the dots in (A) and 
of the polygons in (C) indicate areas, as mapped in (D). 
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Figure S7.5: Sensitivity to taxonomic level. Results when taxa are all aggregated at family level. (A) 
Relationship between size synchrony, taxonomic synchrony and stability (as indicated by CV). Points 
represent the 100 repetitions for each area. The grey grid is a linear regression modeling the log-
transformed CV from the size and taxonomic synchrony including interaction. The dark bold line is 
the predicted CV when size and taxonomic synchrony are equal. (B) Partition of the variance of log-
transformed CV (in %), explained by taxonomic and size synchrony. (C) Relationship between species 
evenness and the difference between size and taxonomic synchrony. Polygons represent the 
variability of results, as indicated by the convex hull of the inter-quartile range of 100 repetitions for 
each area. The bold dashed line represents equality between taxonomic and size synchrony while the 
dotted line is the linear regression calculated from the 100 repetitions. Colours of the dots in (A) and 
of the polygons in (C) indicate areas, as mapped in (D). 
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Figure S7.6: Sensitivity to size class width. Results when merging the size classes three by three (i.e. 
using 7 size classes instead of 20). (A) Relationship between size synchrony, taxonomic synchrony and 
stability (as indicated by CV). Points represent the 100 repetitions for each area. The grey grid is a 
linear regression modeling the log-transformed CV from the size and taxonomic synchrony including 
interaction. The dark bold line is the predicted CV when size and taxonomic synchrony are equal. (B) 
Partition of the variance of log-transformed CV (in %), explained by taxonomic and size synchrony. 
(C) Relationship between species evenness and the difference between size and taxonomic synchrony. 
Polygons represent the variability of results, as indicated by the convex hull of the inter-quartile range 
of 100 repetitions for each area. The bold dashed line represents equality between taxonomic and size 
synchrony while the dotted line is the linear regression calculated from the 100 repetitions. Colours of 
the dots in (A) and of the polygons in (C) indicate areas, as mapped in (D). 
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Figure S7.7: Sensitivity to spatial scale – high resolution. Results at fine spatial scales, using 330 
rectangles of one-degree longitude and 0.5-degree latitude with at least one haul per year during 20 
years. (A) Relationship between size synchrony, taxonomic synchrony and stability (as indicated by 
CV). Points represent each rectangle. The grey grid is a linear regression modeling the log-
transformed CV from the size and taxonomic synchrony including interaction. The dark bold line is 
the predicted CV when size and taxonomic synchrony are equal. (B) Partition of the variance of log-
transformed CV (in %), explained by taxonomic and size synchrony. (C) Relationship between species 
evenness and the difference between size and taxonomic synchrony. The bold dashed line represents 
equality between taxonomic and size synchrony while the dotted line is the linear regression 
calculated from the 100 repetitions. Colours of the dots in (A) and of the polygons in (C) indicate 
areas, as mapped in (D). 
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Figure S7.8: Sensitivity to spatial scale – low resolution. Results when merging the abundances per 
survey (i.e 12 surveys instead of 36 areas). (A) Relationship between size synchrony, taxonomic 
synchrony and stability (as indicated by CV). Points represent the 100 repetitions for each survey. The 
grey grid is a linear regression modeling the log-transformed CV from the size and taxonomic 
synchrony including interaction. The dark bold line is the predicted CV when size and taxonomic 
synchrony are equal. (B) Partition of the variance of log-transformed CV (in %), explained by 
taxonomic and size synchrony. (C) Relationship between species evenness and the difference between 
size and taxonomic synchrony. Polygons represent the variability of results, as indicated by the 
convex hull of the inter-quartile range of 100 repetitions for each survey. The bold dashed line 
represents equality between taxonomic and size synchrony while the dotted line is the linear 
regression calculated from the 100 repetitions. Colours of the dots in (A) and of the polygons in (C) 
indicate surveys, as mapped in (D). 
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Summary of the 6 studies 

A. How to characterize the spatio-temporal dynamics of species assemblage and identify 
their external drivers? 

In chapter 2, the dynamics of North Sea fish community was analyzed using tensor 
decomposition. This case study demonstrated the application and benefits of tensor 
decomposition for studying community datasets derived from large-scale monitoring 
programs. Our results revealed a strong spatial structure persistent over time and linked to 
differences in depth, primary production and seasonality. Simultaneously, the temporal distribution 
changes were characterized and related to the low frequency temperature variability inherent in the 
Atlantic Multidecadal Oscillation. Finally, the fish community was divided in six major sub-
communities composed of species sharing similar spatial distribution patterns and temporal 
dynamics.  

In chapter 3, a comprehensive framework based on complementary multivariate 
statistical methodologies was developed to simultaneously investigate the effects of 
environmental conditions on the spatial, temporal and functional dynamics of species assemblages. 
The approach revealed the Baltic fish community to be structured into three sub-assemblages along 
a strong and temporally stable salinity gradient decreasing from West to the East. Additionally, a 
mismatch between species and functional richness highlighted a lower functional redundancy in 
the Baltic Proper compared to other sub-areas, suggesting an ecosystem more susceptible to 
external pressures. Based on a large dataset of community data analyzed in an innovative and 
comprehensive way, we could disentangle the effects of environmental changes on the 
structure of biotic communities. 

B. How does fish functional diversity respond to changing external pressures? 

Chapters 3 and 4 investigated the traits-environment relationship with three-matrices 
multivariate method; respectively at a local and global scale. While traits of fish communities in the 
Baltic Sea seem to be disconnected to environmental variations (Chapter 3), globally across the 
Atlantic and Pacific Oceans, the fast-slow continuum of fish life history was strongly linked 
to the warm-cold temperature gradient (Chapter 4). Our results empirically confirm the 
accelerating effect of temperature on physiological rates by demonstrating a strong spatial 
association between bottom temperatures and the key response traits, namely growth, maturation 
and lifespan. Our study demonstrates the benefit of collating datasets from multiple regions to 
deliver robust results that have strong implications for our understanding and management of 
marine fish communities and for predicting how fish communities will adapt to a changing climate. 

In chapter 5, outline analysis was proposed to characterize fish morphology with 
quantitative and objective indicators. The elliptical Fourier transform described the shape of 85 
fish species found in the North Sea. This approach shows that the main components of 
morphological diversity is the elongation and development of dorsal, pelvic, and caudal fins. The 
spatial distribution of morphological diversity decreases along a latitudinal gradient, with higher 
diversity in the southern part. Compared to species diversity, our results indicate that 
environmental conditions filter morphological traits in the northern North Sea. Outline analysis 
is a powerful approach to provide an objective description of fish morphology and to 
improve our understanding of the morphological diversity in marine ecosystems.  
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C. What is the importance of biodiversity for the stability of ecosystems? 

In chapter 6, the dynamics of the topological structure of the food web was 
investigated using a novel methodology, combining time series analysis with ecological network 
analysis. The structural properties of the fish and macrofauna food web in the German Bight show 
differences in temporal variability. Our results suggest that food webs may be more stable than the 
underlying changes in the community composition. Our case study demonstrates the application 
and benefits of a coupled topology-time series analysis, which is a practical tool to integrate food 
webs in management and conservation plans.  

Chapter 7 offers a novel perspective on the link between stability, species diversity and 
size structure, based on more than 50,000 samples from long-term fisheries-independent surveys. 
Across North Atlantic Large Marine Ecosystems, asynchrony was an important driver of stability 
in fish assemblages. Additionally, our results indicate that taxonomic synchrony is important when 
species are even, while size synchrony is more important when assemblages are dominated by few 
species. Our study provides empirical evidence for the role of species evenness in determining the 
mechanism by which marine populations maintain community-level stability. In species-poor 
ecosystems dominated by few large-bodied species, size diversity within species leads to asynchrony 
among size classes, which contributes to community-level stability. In species-rich ecosystems with 
evenly abundant species, the asynchrony among species, resulting from diverse responses to 
external pressure and growth rate, is the main factor of community-level stability. 

Embracing complexity 

The different chapters of this dissertation can be seen as pieces of the diversity puzzle. 
Biodiversity is a multidimensional concept and each chapter studies different aspects of the 
complexity of biodiversity dynamics. The successive chapters integrate (i) the interaction between 
spatial and temporal dynamics (chapter 2 and 3), (ii) the link between traits and environmental 
changes (chapter 3, 4 and 5), (iii) the trophic interactions between species (chapter 6), and (iv) the 
intra-specific trait variability, important for the stability of communities (chapter 7). Each chapter 
stands alone, but together, they convey a stronger message. The chapters are complementary and 
inform each-other. For instance, the absence of morphological traits in the study of traits-
environment relationship (chapter 3 and 4) highlights the urgent need for new quantitative traits 
to characterize the variability of fish morphology (chapter 5). The study of the spatio-temporal 
dynamics of species assemblages reveals that the spatial variability is stronger than the temporal 
dynamics in large ecosystems with strong environmental gradient (chapter 2 and 3). This 
conclusion reinforced the choice of studying the spatial distribution of traits without considering 
the minor temporal dynamics across large spatial extent (chapter 4 and 5). The temporal dynamics 
was studied only when reduced to local environment (chapter 6), or by dividing the spatial extent 
to locally homogenous areas (chapter 7). None of these approaches is better than another, they are 
all equally important and answer different questions. Together, they highlight the multiple 
dimensions of fish diversity dynamics and community stability.  

Ecological systems are complex and have processes interacting across spatial and 
temporal scales (Rose et al. 2017; Isbell et al. 2017). On one hand, large scale studies are important 
to provide context because large scale processes constrain and control lower level processes. On 
the other hand, small scale studies can reveal the details and the mechanisms of processes observed 
at larger scale (Heffernan et al. 2014). The six case studies presented here have different spatial 
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scales (Fig 8.1), from local (a box of 10 by 10 nautical miles in the German Bight, chapter 6) to 
one single Large Marine Ecosystem (the North Sea, chapters 2 and 5; the Baltic Sea, chapter 3) to 
multiple Large Marine Ecosystems across seas and oceans (chapters 4 and 7). At local scale, the 
ecology of each species and its interactions can be studied in great detail, but the results are hardly 
generalizable. On the contrary, studies across large spatial extent definitely neglect the specific local 
details but capture the large patterns emerging across ecosystems. Therefore, studies across spatial 
scales are complementary, and knowledge accumulated at one scale should inform studies at 
smaller and larger spatial scale.  

 
Figure 8.1: Spatial and temporal scales of the 6 case studies. Spatial scales vary from local (a box of 
10 by 10 nautical miles in the German Bight, chapter 6 : “Temporal variability of food web topology”), 
to one single Large Marine Ecosystem (the North Sea, chapter 2 : “Tensor decomposition reveals 
spatio-temporal community dynamics” and chapter 5: “A morphometric dive into fish diversity”; the 
Baltic Sea, chapter 3: “3D view on biodiversity changes”), to multiple Large Marine Ecosystems across 
seas and oceans (chapter 4: “Warm waters favour fast living fish” and chapter 7 “Size asynchrony 
stabilizes uneven communities”). The temporal scales vary between one year and more than 50 years. 
Chapter 4 and 5 considers temporally constant communities from annual samplings; chapter 2, 3 and 
6 use time series of 31, 16 and 17 years, respectively. Chapter 7 combines dataset across regions with 
time series of at least 20 years. 

Similar cross-scale interactions happen across temporal scales. However, due to limitation 
of data availability, the temporal extent was limited between one year up to five decades (Fig 8.1). 
Two chapters considered temporally constant communities from annual samplings (chapters 4 and 
5), whereas other chapters were limited to data availability, with less than 20 years in the Baltic Sea 
and the German Bight (chapters 3 and 6), and more than 20 years in the North Sea and across 
other Large Marine Ecosystems (chapters 2 and 7). The dynamics of fish was studied only with an 
annual time step, while seasonal migration are important for the resilience of communities through 
increase connectivity (Fisher et al. 2010; McMeans et al. 2015). Similarly, the dynamics of plankton 
was studied with annual or monthly time step while plankton have a fast and local dynamics. Cross-
scale emergence of plankton small scale dynamics might play a major role in the productivity of 
ecosystems (Stock et al. 2017).  

Temporal scale

Spatial scale

1yr 10 yr 20 yr >30 yr
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global
Ch. 4

Ch. 7

Ch. 2
Ch. 3

Ch. 6

Ch. 5



General discussion 

 149 

Understanding the complexity and the multidimensionality of diversity is a first step toward 
an integrative management of ecosystems. Thus, all the case studies presented here are relevant for 
an integrative ecosystem assessment that can provide relevant advices for marine ecosystem-based 
management (Levin et al. 2009). 

Implications for the management of marine ecosystems 

This dissertation is a modest contribution towards an integrative understanding of 
ecosystem processes, highlighting the importance of the multiple dimensions of fish community 
dynamics. For example, understanding the link between traits and environment (chapters 3 and 4) 
is important to understand and predict the impact of changing environmental conditions on the 
functional diversity of communities. However, these predictions would be incomplete if one 
doesn’t consider the network of interactions between species and the possible cascading effects 
throughout the food web (chapter 6). Additionally, the intra-specific trait variability (chapter 7) 
might help communities to adapt to changing conditions. Therefore, integrating the multiple 
dimensions of diversity is crucial to reveal the interactions and trade-offs in ecosystems. 

This thesis is a call to use novel approaches to look at existing datasets and integrating 
information from multiple sources. The six case studies focused on the dynamics of fish 
assemblages as measured from bottom trawl surveys. Advanced multivariate methods are effective 
to reduce the inherent complexity of community data and reveal the main spatio-temporal 
dynamics (chapters 2 and 3). Additionally, community dataset can be combined with information 
about the traits and life history of fish species from global databases (e.g. Fishbase in chapters 3 
and 4) or diet information from literature review (chapter 6). Online images of fish were used to 
characterized the morphological diversity of fish communities (chapter 5). Moreover, spatio-
temporal dynamics of fish communities were linked to external drivers using information from 
interpolated observations (e.g. Núñez-Riboni & Akimova 2015), reanalysis datasets (e.g. Ferry et al. 
2012), large scale climate indicators (e.g. Jones et al. 1997) and remote sensing (e.g. GlobColour, 
Maritorena et al. 2010) Using novel approaches and combining different dataset into an integrative 
framework can provide key information for the management and conservation of 
ecosystems. 

Communicating and integrating complexity into management strategy is challenging. 
In fact, more accurate but more complex answers to management issues might be too complicated 
to implement and therefore, less valuable for management (Cochrane 1999). Historically, scientists 
provided simple answers to simple questions (e.g. how much cod could be sustainably fished next 
year?); but often failed to predict correctly the ecological consequences of human actions combined 
with environmental variability (e.g. no scientists predicted accurately the simultaneous collapse of 
Northern Atlantic cod stocks). Understand the trade-offs between the exploitation of different of 
marine resources is crucial for a comprehensive marine management. Therefore, integrating more 
complexity, such as the prey-predatory interactions or the impact of environmental variability on 
biotic communities, is needed for ecosystem-based marine management and require experts from 
multiple fields. 

Effective ecosystem-based management needs multi-disciplinary collaboration (Berkes 
2012). One of the main factor omitted in this dissertation is the preponderant human and social 
dimension of marine socio-ecological systems (Holm et al. 2013; Ellis 2015). Human societies, 
similar to other biological communities, are organized in different hierarchical levels that interacts 



Chapter 8 

 150 

across spatial and temporal scales (Holling 2001). To give relevant advices for the management of 
marine resources, scientists need a better understanding of the trade-offs between users of marine 
resources and the cross-scale interaction between local, regional and international management 
strategies. Additionally, the fast and large scale changes in species distribution require a dynamic 
approaches to marine resource management (Lewison et al. 2015; Pinsky et al. 2018).  

Multiple scientific approaches to study ecological systems should be encourage and 
especially the collaboration between theoretical, experimental and observational sciences. 
While this dissertation is only dedicated to observational evidences coming from real-world 
ecosystem datasets, the exploration and interpretations of empirical data is based on previous 
theoretical and experimental work. The joint development of theory, experiments and 
observational analysis is needed to provide strong evidence and inform society about the trade-offs 
between the ecosystem's health and its exploitation. 

A call for open science 

Ecosystems are complex, and if humans want to understand the multiple interactions 
within natural ecosystems, a long-term global monitoring effort is needed. The effect of multiple 
drivers can only be disentangled with long-term time series. Therefore, it is important that 
monitoring programs have continuous founding schemes and are extended to data-poor regions. 
Additionally, major scientific advances can only be done if monitoring data are archived properly 
and shared openly in order to combined different sources of information, such as modeled or 
remotely sensed datasets (Edgar et al. 2016). Global scientific databases (such as FishBase, the 
World Register of Marine Species, or the Global Biodiversity Information Facility) are a 
tremendous source of information for scientists and citizens alike (Costello et al. 2018). Such effort 
to centralize, clean and validate encyclopedic and cumulative knowledge should be encouraged and 
properly valued. In fact, the work presented here build on dataset shared openly and proves that 
innovative statistical methods and open data can provide relevant information for ecology.  

This dissertation builds on the lives of millions of fish killed by scientists on monitoring 
cruises because it is, so far, the best way to estimate the abundance and diversity of benthic fish 
communities, as well as their diet and growth. However, innovative solutions could reduce the 
ecological and monetary costs of monitoring and therefore help increase its spatial and temporal 
coverage (Hampton et al. 2013; Borja et al. 2016). Among other solutions, monitoring could build 
on network of remote sensing devices (Laney et al. 2015; Pettorelli et al. 2018), autonomous surface 
or underwater vehicle (Ackleson et al. 2017) or citizen science (Dickinson et al. 2012; Stuart-Smith 
et al. 2017). 

All case studies presented here use datasets that are publicly available online and free 
softwares to analyze them. The rapid development of machine learning and data mining tools in 
open source software such as R and Python have encouraged the uptake of good statistical 
practices across scientific fields. The processed dataset and the script used to run the analysis 
presented in the six previous chapters (2-7) are (or will be) provided as supplementary materials of 
the published articles. Sharing the scripts allow other scientists to reproduce and verify the analysis, 
but most importantly, it facilitates the uptake of novel methodologies by colleagues and contribute 
to the general improvement of statistical robustness in science. When possible, tutorials were 
developed to facilitate the uptake of the new methods (available online: https://rfrelat.github.io/). 
These tutorials were used for teaching at the University of Hamburg, at the Leibniz Center for 



General discussion 

 151 

Tropical Marine Ecology (ZMT) in Bremen, and at the Integrated School of Ocean Sciences at the 
University of Kiel. 

Future perspectives 

Despite the important findings of this work, all the different chapters are but pieces of the 
diversity puzzle. Merging all the pieces together in an integrative framework can provide relevant 
information for the management and conservation of ecosystems. In fact, each chapter is a case 
study that could be extended to large continental or global scale, in order to provide relevant 
information for decision makers and management (Heffernan et al. 2014; Rose et al. 2017; Isbell et 
al. 2017). For example, extending the morphological description of fish using outline analysis 
(chapter 5) to a larger pool of species could provide a global spectra of fish morphology across 
oceans. Moreover, extending the collection of bottom trawls surveys across different oceans and 
combining this information with other sampling of fish abundance and diversity (e.g. Reef Life 
Survey, Stuart-Smith et al. 2017) would bring a better understanding of the global processes, and 
increase our ability to predict in data-poor regions. Additionally, increasing the spatial extent would 
favour research using the “space for time” approach (Blois et al. 2013). Indeed, the predicted future 
conditions of a given location may be the present conditions of another area, so scientists could 
use Climate Analogues to comprehend upcoming changes and challenges of marine 
ecosystems (Hallegatte 2009). Most importantly, the combination of these approaches together 
could bring new insights about the stability mechanism of fish communities. For example, new 
morphological traits would greatly improve the prediction of trophic interactions between 
organisms, that will help understanding the variability in the structure of interaction networks, 
valuable information for the sustainable management of ecosystems. Studying the dynamics of 
communities from a global perspective considering the multiple dimensions of diversity and the 
effect of scales on the spatial and temporal dynamics would lead to new exciting challenges and 
questions.  

Embracing the complexity of ecosystem dynamics is acknowledging the limited 
scientific knowledge and the high unpredictability of community dynamics. Even with the 
best models and dataset, Science will not be able to forecast with precision the short- and long-
term consequences of humans’ actions on its environment. Past experiences and models have 
proved that ecosystems dynamics can have drastic changes, such as regime shifts (Folke et al. 2004; 
Mollmann et al. 2014), or ecological surprises (Filbee-Dexter et al. 2017). These drastic changes are 
due to non-linear relationships, feedback loops, and hysteresis. Currently, we are on the verge of a 
global regime shift with unpredictable consequences (Barnosky et al. 2012). Therefore, the only safe 
and recommendable management option is to follow a precautionary approach (Schindler & 
Hilborn 2015; Selkoe et al. 2015). Preserving biodiversity is the best management strategy to 
cope with increased environmental variability and changing climate (Webster et al. 2017). 
Numerous studies (including this dissertation) show the importance of biodiversity for human well-
being, and the current anthropogenic pressure on ecosystems might lead to drastic changes in 
diversity that would be difficult or impossible to reverse (Barnosky et al. 2012). It is urgent that 
society, as a whole, take actions to preserve the biodiversity, in all its dimension, which is the most 
effective way to help ecosystems adapt to ongoing and future changes.  
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